Sample records for regular magnetic fields

  1. A regularization method for extrapolation of solar potential magnetic fields

    NASA Technical Reports Server (NTRS)

    Gary, G. A.; Musielak, Z. E.

    1992-01-01

    The mathematical basis of a Tikhonov regularization method for extrapolating the chromospheric-coronal magnetic field using photospheric vector magnetograms is discussed. The basic techniques show that the Cauchy initial value problem can be formulated for potential magnetic fields. The potential field analysis considers a set of linear, elliptic partial differential equations. It is found that, by introducing an appropriate smoothing of the initial data of the Cauchy potential problem, an approximate Fourier integral solution is found, and an upper bound to the error in the solution is derived. This specific regularization technique, which is a function of magnetograph measurement sensitivities, provides a method to extrapolate the potential magnetic field above an active region into the chromosphere and low corona.

  2. I Am The One And Only: Regular Magnetic Field In The Igm Of The Stepan'S Quintet

    NASA Astrophysics Data System (ADS)

    Nikiel-Wroczyński, Błażej

    2017-10-01

    Ordered magnetic fields are generally believed not to exist in the intergalactic space of galaxy groups; on the one hand, it is known that groups undergo violent interactions that could easily dirupt the delicate fabric of a non-turbulent field, on the other hand - it was never said that survival of such a field is an impossible occurence. The most well-known galaxy group, the Stephan's Quintet, once again turns to be an amazing object, this time in regards to the matter of the existence of a regular magnetic field. Our new study, done with the high fidelity WSRT data, shows strong hints that non-negligible field is present in the volume inhabited by the Quintet, and it is a large-scale, strong, and regular one. As for the moment, no other group was found to host similar magnetic fields, as the Quintet hosts.

  3. Note on use of slope diffraction coefficients for aperture antennas on finite ground planes

    NASA Technical Reports Server (NTRS)

    Cockrell, C. R.; Beck, F. B.

    1995-01-01

    The use of slope diffraction coefficients along with regular diffraction coefficients for calculating the radiation patterns of aperture antennas in a finite ground plane is investigated. Explicit expressions for regular diffraction coefficients and slope diffraction coefficients are presented. The expressions for the incident magnetic field in terms of the magnetic current in the aperture are given. The slope of the incident magnetic field is calculated and closed form expressions are presented.

  4. Invariant models in the inversion of gravity and magnetic fields and their derivatives

    NASA Astrophysics Data System (ADS)

    Ialongo, Simone; Fedi, Maurizio; Florio, Giovanni

    2014-11-01

    In potential field inversion problems we usually solve underdetermined systems and realistic solutions may be obtained by introducing a depth-weighting function in the objective function. The choice of the exponent of such power-law is crucial. It was suggested to determine it from the field-decay due to a single source-block; alternatively it has been defined as the structural index of the investigated source distribution. In both cases, when k-order derivatives of the potential field are considered, the depth-weighting exponent has to be increased by k with respect that of the potential field itself, in order to obtain consistent source model distributions. We show instead that invariant and realistic source-distribution models are obtained using the same depth-weighting exponent for the magnetic field and for its k-order derivatives. A similar behavior also occurs in the gravity case. In practice we found that the depth weighting-exponent is invariant for a given source-model and equal to that of the corresponding magnetic field, in the magnetic case, and of the 1st derivative of the gravity field, in the gravity case. In the case of the regularized inverse problem, with depth-weighting and general constraints, the mathematical demonstration of such invariance is difficult, because of its non-linearity, and of its variable form, due to the different constraints used. However, tests performed on a variety of synthetic cases seem to confirm the invariance of the depth-weighting exponent. A final consideration regards the role of the regularization parameter; we show that the regularization can severely affect the depth to the source because the estimated depth tends to increase proportionally with the size of the regularization parameter. Hence, some care is needed in handling the combined effect of the regularization parameter and depth weighting.

  5. Some astrophysical processes around magnetized black hole

    NASA Astrophysics Data System (ADS)

    Kološ, M.; Tursunov, A.; Stuchlík, Z.

    2018-01-01

    We study the dynamics of charged test particles in the vicinity of a black hole immersed into an asymptotically uniform external magnetic field. A real magnetic field around a black hole will be far away from to be completely regular and uniform, a uniform magnetic field is used as linear approximation. Ionized particle acceleration, charged particle oscillations and synchrotron radiation of moving charged particle have been studied.

  6. Field theoretic perspectives of the Wigner function formulation of the chiral magnetic effect

    NASA Astrophysics Data System (ADS)

    Wu, Yan; Hou, De-fu; Ren, Hai-cang

    2017-11-01

    We assess the applicability of the Wigner function formulation in its present form to the chiral magnetic effect and note some issues regarding the conservation and the consistency of the electric current in the presence of an inhomogeneous and time-dependent axial chemical potential. The problems are rooted in the ultraviolet divergence of the underlying field theory associated with the axial anomaly and can be fixed with the Pauli-Villars regularization of the Wigner function. The chiral magnetic current with a nonconstant axial chemical potential is calculated with the regularized Wigner function and the phenomenological implications are discussed.

  7. Magnetically charged regular black hole in a model of nonlinear electrodynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, Meng-Sen, E-mail: mengsenma@gmail.com

    2015-11-15

    We obtain a magnetically charged regular black hole in general relativity. The source to the Einstein field equations is nonlinear electrodynamic field in a physically reasonable model of nonlinear electrodynamics (NED). “Physically” here means the NED model is constructed on the basis of three conditions: the Maxwell asymptotic in the weak electromagnetic field limit; the presence of vacuum birefringence phenomenon; and satisfying the weak energy condition (WEC). In addition, we analyze the thermodynamic properties of the regular black hole in two ways. According to the usual black hole thermodynamics, we calculate the heat capacity at constant charge, from which wemore » know the smaller black hole is more stable. We also employ the horizon thermodynamics to discuss the thermodynamic quantities, especially the heat capacity at constant pressure.« less

  8. Irregular-regular mode oscillations inside plasma bubble and its fractal analysis in glow discharge magnetized plasma

    NASA Astrophysics Data System (ADS)

    Megalingam, Mariammal; Hari Prakash, N.; Solomon, Infant; Sarma, Arun; Sarma, Bornali

    2017-04-01

    Experimental evidence of different kinds of oscillations in floating potential fluctuations of glow discharge magnetized plasma is being reported. A spherical gridded cage is inserted into the ambient plasma volume for creating plasma bubbles. Plasma is produced between a spherical mesh grid and chamber. The spherical mesh grid of 80% optical transparency is connected to the positive terminal of power supply and considered as anode. Two Langmuir probes are kept in the ambient plasma to measure the floating potential fluctuations in different positions within the system, viz., inside and outside the spherical mesh grid. At certain conditions of discharge voltage (Vd) and magnetic field, irregular to regular mode appears, and it shows chronological changes with respect to magnetic field. Further various nonlinear analyses such as Recurrence Plot, Hurst exponent, and Lyapunov exponent have been carried out to investigate the dynamics of oscillation at a range of discharge voltages and external magnetic fields. Determinism, entropy, and Lmax are important measures of Recurrence Quantification Analysis which indicate an irregular to regular transition in the dynamics of the fluctuations. Furthermore, behavior of the plasma oscillation is characterized by the technique called multifractal detrended fluctuation analysis to explore the nature of the fluctuations. It reveals that it has a multifractal nature and behaves as a long range correlated process.

  9. On the regularity criterion of weak solutions for the 3D MHD equations

    NASA Astrophysics Data System (ADS)

    Gala, Sadek; Ragusa, Maria Alessandra

    2017-12-01

    The paper deals with the 3D incompressible MHD equations and aims at improving a regularity criterion in terms of the horizontal gradient of velocity and magnetic field. It is proved that the weak solution ( u, b) becomes regular provided that ( \

  10. Regularly scheduled, day-time, slow-onset 60 Hz electric and magnetic field exposure does not depress serum melatonin concentration in nonhuman primates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rogers, W.R.; Smith, H.D.; Orr, J.L.

    Experiments conducted with laboratory rodents indicate that exposure to 60 Hz electric fields or magnetic fields can suppress nocturnal melatonin concentrations in pineal gland and blood. In three experiments employing three field-exposed and three sham-exposed nonhuman primates, each implanted with an indwelling venous cannula to allow repeated blood sampling, the authors studied the effects of either 6 kV/m and 50 {micro}T (0.5 G) or 30 kV/m and 100 {micro}T (1.0 G) on serum melatonin patterns. The fields were ramped on and off slowly, so that no transients occurred. Extensive quality control for the melatonin assay, computerized control and monitoring ofmore » field intensities, and consistent exposure protocols were used. No changes in nocturnal serum melatonin concentration resulted from 6 weeks of day-time exposure with slow field onset/offset and a highly regular exposure protocol. These results indicate that, under the conditions tested, day-time exposure to 60 Hz electric and magnetic fields in combination does not result in melatonin suppression in primates.« less

  11. The CHAOS-4 geomagnetic field model

    NASA Astrophysics Data System (ADS)

    Olsen, Nils; Lühr, Hermann; Finlay, Christopher C.; Sabaka, Terence J.; Michaelis, Ingo; Rauberg, Jan; Tøffner-Clausen, Lars

    2014-05-01

    We present CHAOS-4, a new version in the CHAOS model series, which aims to describe the Earth's magnetic field with high spatial and temporal resolution. Terms up to spherical degree of at least n = 85 for the lithospheric field, and up to n = 16 for the time-varying core field are robustly determined. More than 14 yr of data from the satellites Ørsted, CHAMP and SAC-C, augmented with magnetic observatory monthly mean values have been used for this model. Maximum spherical harmonic degree of the static (lithospheric) field is n = 100. The core field is expressed by spherical harmonic expansion coefficients up to n = 20; its time-evolution is described by order six splines, with 6-month knot spacing, spanning the time interval 1997.0-2013.5. The third time derivative of the squared radial magnetic field component is regularized at the core-mantle boundary. No spatial regularization is applied to the core field, but the high-degree lithospheric field is regularized for n > 85. CHAOS-4 model is derived by merging two submodels: its low-degree part has been derived using similar model parametrization and data sets as used for previous CHAOS models (but of course including more recent data), while its high-degree lithospheric field part is solely determined from low-altitude CHAMP satellite observations taken during the last 2 yr (2008 September-2010 September) of the mission. We obtain a good agreement with other recent lithospheric field models like MF7 for degrees up to n = 85, confirming that lithospheric field structures down to a horizontal wavelength of 500 km are currently robustly determined.

  12. Magnetic Field of Conductive Objects as Superposition of Elementary Eddy Currents and Eddy Current Tomography

    NASA Astrophysics Data System (ADS)

    Sukhanov, D. Ya.; Zav'yalova, K. V.

    2018-03-01

    The paper represents induced currents in an electrically conductive object as a totality of elementary eddy currents. The proposed scanning method includes measurements of only one component of the secondary magnetic field. Reconstruction of the current distribution is performed by deconvolution with regularization. Numerical modeling supported by the field experiments show that this approach is of direct practical relevance.

  13. Regularized Biot-Savart Laws for Modeling Magnetic Flux Ropes

    NASA Astrophysics Data System (ADS)

    Titov, Viacheslav; Downs, Cooper; Mikic, Zoran; Torok, Tibor; Linker, Jon A.

    2017-08-01

    Many existing models assume that magnetic flux ropes play a key role in solar flares and coronal mass ejections (CMEs). It is therefore important to develop efficient methods for constructing flux-rope configurations constrained by observed magnetic data and the initial morphology of CMEs. As our new step in this direction, we have derived and implemented a compact analytical form that represents the magnetic field of a thin flux rope with an axis of arbitrary shape and a circular cross-section. This form implies that the flux rope carries axial current I and axial flux F, so that the respective magnetic field is a curl of the sum of toroidal and poloidal vector potentials proportional to I and F, respectively. The vector potentials are expressed in terms of Biot-Savart laws whose kernels are regularized at the rope axis. We regularized them in such a way that for a straight-line axis the form provides a cylindrical force-free flux rope with a parabolic profile of the axial current density. So far, we set the shape of the rope axis by tracking the polarity inversion lines of observed magnetograms and estimating its height and other parameters of the rope from a calculated potential field above these lines. In spite of this heuristic approach, we were able to successfully construct pre-eruption configurations for the 2009 February13 and 2011 October 1 CME events. These applications demonstrate that our regularized Biot-Savart laws are indeed a very flexible and efficient method for energizing initial configurations in MHD simulations of CMEs. We discuss possible ways of optimizing the axis paths and other extensions of the method in order to make it more useful and robust.Research supported by NSF, NASA's HSR and LWS Programs, and AFOSR.

  14. Observed Faraday Effects in Damped Lyα Absorbers and Lyman Limit Systems: The Magnetized Environment of Galactic Building Blocks at Redshift = 2

    NASA Astrophysics Data System (ADS)

    Farnes, J. S.; Rudnick, L.; Gaensler, B. M.; Haverkorn, M.; O'Sullivan, S. P.; Curran, S. J.

    2017-06-01

    Protogalactic environments are typically identified using quasar absorption lines and can manifest as Damped Lyman-alpha Absorbers (DLAs) and Lyman Limit Systems (LLSs). We use radio observations of Faraday effects to test whether these galactic building blocks host a magnetized medium, by combining DLA and LLS detections with 1.4 GHz polarization data from the NRAO VLA Sky Survey (NVSS). We obtain a control, a DLA, and an LLS sample consisting of 114, 19, and 27 lines of sight, respectively. Using a Bayesian framework and weakly informative priors, we are unable to detect either coherent or random magnetic fields in DLAs: the regular coherent fields must be ≤slant 2.8 μG, and the lack of depolarization suggests the weakly magnetized gas in DLAs is non-turbulent and quiescent. However, we find a mild suggestive indication that LLSs have coherent magnetic fields, with a 71.5% probability that LLSs have higher | {RM}| than a control, although this is sensitive to the redshift distribution. We also find a strong indication that LLSs host random magnetic fields, with a 95.5% probability that LLS lines of sight have lower polarized fractions than a control. The regular coherent fields within the LLSs must be ≤slant 2.4 μG, and the magnetized gas must be highly turbulent with a typical turbulent length scale on the order of ≈5-20 pc. Our results are consistent with the standard dynamo paradigm, whereby magnetism in protogalaxies increases in coherence over cosmic time, and with a hierarchical galaxy formation scenario, with the DLAs and LLSs exploring different stages of magnetic field evolution in galaxies.

  15. Black hole solution in the framework of arctan-electrodynamics

    NASA Astrophysics Data System (ADS)

    Kruglov, S. I.

    An arctan-electrodynamics coupled with the gravitational field is investigated. We obtain the regular black hole solution that at r →∞ gives corrections to the Reissner-Nordström solution. The corrections to Coulomb’s law at r →∞ are found. We evaluate the mass of the black hole that is a function of the dimensional parameter β introduced in the model. The magnetically charged black hole was investigated and we have obtained the magnetic mass of the black hole and the metric function at r →∞. The regular black hole solution is obtained at r → 0 with the de Sitter core. We show that there is no singularity of the Ricci scalar for electrically and magnetically charged black holes. Restrictions on the electric and magnetic fields are found that follow from the requirement of the absence of superluminal sound speed and the requirement of a classical stability.

  16. Coulomb Impurity Problem of Graphene in Strong Coupling Regime in Magnetic Fields.

    PubMed

    Kim, S C; Yang, S-R Eric

    2015-10-01

    We investigate the Coulomb impurity problem of graphene in strong coupling limit in the presence of magnetic fields. When the strength of the Coulomb potential is sufficiently strong the electron of the lowest energy boundstate of the n = 0 Landau level may fall to the center of the potential. To prevent this spurious effect the Coulomb potential must be regularized. The scaling function for the inverse probability density of this state at the center of the impurity potential is computed in the strong coupling regime. The dependence of the computed scaling function on the regularization parameter changes significantly as the strong coupling regime is approached.

  17. Toroidal regularization of the guiding center Lagrangian

    DOE PAGES

    Burby, J. W.; Ellison, C. L.

    2017-11-22

    In the Lagrangian theory of guiding center motion, an effective magnetic field B* = B+ (m/e)v ∥∇ x b appears prominently in the equations of motion. Because the parallel component of this field can vanish, there is a range of parallel velocities where the Lagrangian guiding center equations of motion are either ill-defined or very badly behaved. Moreover, the velocity dependence of B* greatly complicates the identification of canonical variables and therefore the formulation of symplectic integrators for guiding center dynamics. Here, this letter introduces a simple coordinate transformation that alleviates both these problems simultaneously. In the new coordinates, themore » Liouville volume element is equal to the toroidal contravariant component of the magnetic field. Consequently, the large-velocity singularity is completely eliminated. Moreover, passing from the new coordinate system to canonical coordinates is extremely simple, even if the magnetic field is devoid of flux surfaces. We demonstrate the utility of this approach in regularizing the guiding center Lagrangian by presenting a new and stable one-step variational integrator for guiding centers moving in arbitrary time-dependent electromagnetic fields.« less

  18. Toroidal regularization of the guiding center Lagrangian

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burby, J. W.; Ellison, C. L.

    In the Lagrangian theory of guiding center motion, an effective magnetic field B* = B+ (m/e)v ∥∇ x b appears prominently in the equations of motion. Because the parallel component of this field can vanish, there is a range of parallel velocities where the Lagrangian guiding center equations of motion are either ill-defined or very badly behaved. Moreover, the velocity dependence of B* greatly complicates the identification of canonical variables and therefore the formulation of symplectic integrators for guiding center dynamics. Here, this letter introduces a simple coordinate transformation that alleviates both these problems simultaneously. In the new coordinates, themore » Liouville volume element is equal to the toroidal contravariant component of the magnetic field. Consequently, the large-velocity singularity is completely eliminated. Moreover, passing from the new coordinate system to canonical coordinates is extremely simple, even if the magnetic field is devoid of flux surfaces. We demonstrate the utility of this approach in regularizing the guiding center Lagrangian by presenting a new and stable one-step variational integrator for guiding centers moving in arbitrary time-dependent electromagnetic fields.« less

  19. Evaluating secular acceleration in geomagnetic field model GRIMM-3

    NASA Astrophysics Data System (ADS)

    Lesur, V.; Wardinski, I.

    2012-12-01

    Secular acceleration of the magnetic field is the rate of change of its secular variation. One of the main results of studying magnetic data collected by the German survey satellite CHAMP was the mapping of field acceleration and its evolution in time. Questions remain about the accuracy of the modeled acceleration and the effect of the applied regularization processes. We have evaluated to what extent the regularization affects the temporal variability of the Gauss coefficients. We also obtained results of temporal variability of the Gauss coefficients where alternative approaches to the usual smoothing norms have been applied for regularization. Except for the dipole term, the secular acceleration of the Gauss coefficients is fairly well described up to spherical harmonic degree 5 or 6. There is no clear evidence from observatory data that the spectrum of this acceleration is underestimated at the Earth surface. Assuming a resistive mantle, the observed acceleration supports a characteristic time scale for the secular variation of the order of 11 years.

  20. Observation of the Meissner effect in a lattice Higgs model

    NASA Technical Reports Server (NTRS)

    Damgaard, Poul H.; Heller, Urs M.

    1988-01-01

    The lattice-regularized U(1) Higgs model in an external electromagnetic field is studied by Monte Carlo techniques. In the Coulomb phase, magnetic flux can flow through uniformly. The Higgs phase splits into a region where magnetic flux can penetrate only in the form of vortices and a region where the magnetic flux is completely expelled, the relativistic analog of the Meissner effect in superconductivity. Evidence is presented for symmetry restoration in strong external fields.

  1. Remarks on the regularity criteria of three-dimensional magnetohydrodynamics system in terms of two velocity field components

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamazaki, Kazuo

    2014-03-15

    We study the three-dimensional magnetohydrodynamics system and obtain its regularity criteria in terms of only two velocity vector field components eliminating the condition on the third component completely. The proof consists of a new decomposition of the four nonlinear terms of the system and estimating a component of the magnetic vector field in terms of the same component of the velocity vector field. This result may be seen as a component reduction result of many previous works [C. He and Z. Xin, “On the regularity of weak solutions to the magnetohydrodynamic equations,” J. Differ. Equ. 213(2), 234–254 (2005); Y. Zhou,more » “Remarks on regularities for the 3D MHD equations,” Discrete Contin. Dyn. Syst. 12(5), 881–886 (2005)].« less

  2. Computed inverse resonance imaging for magnetic susceptibility map reconstruction.

    PubMed

    Chen, Zikuan; Calhoun, Vince

    2012-01-01

    This article reports a computed inverse magnetic resonance imaging (CIMRI) model for reconstructing the magnetic susceptibility source from MRI data using a 2-step computational approach. The forward T2*-weighted MRI (T2*MRI) process is broken down into 2 steps: (1) from magnetic susceptibility source to field map establishment via magnetization in the main field and (2) from field map to MR image formation by intravoxel dephasing average. The proposed CIMRI model includes 2 inverse steps to reverse the T2*MRI procedure: field map calculation from MR-phase image and susceptibility source calculation from the field map. The inverse step from field map to susceptibility map is a 3-dimensional ill-posed deconvolution problem, which can be solved with 3 kinds of approaches: the Tikhonov-regularized matrix inverse, inverse filtering with a truncated filter, and total variation (TV) iteration. By numerical simulation, we validate the CIMRI model by comparing the reconstructed susceptibility maps for a predefined susceptibility source. Numerical simulations of CIMRI show that the split Bregman TV iteration solver can reconstruct the susceptibility map from an MR-phase image with high fidelity (spatial correlation ≈ 0.99). The split Bregman TV iteration solver includes noise reduction, edge preservation, and image energy conservation. For applications to brain susceptibility reconstruction, it is important to calibrate the TV iteration program by selecting suitable values of the regularization parameter. The proposed CIMRI model can reconstruct the magnetic susceptibility source of T2*MRI by 2 computational steps: calculating the field map from the phase image and reconstructing the susceptibility map from the field map. The crux of CIMRI lies in an ill-posed 3-dimensional deconvolution problem, which can be effectively solved by the split Bregman TV iteration algorithm.

  3. Magnetic field induced dynamical chaos.

    PubMed

    Ray, Somrita; Baura, Alendu; Bag, Bidhan Chandra

    2013-12-01

    In this article, we have studied the dynamics of a particle having charge in the presence of a magnetic field. The motion of the particle is confined in the x-y plane under a two dimensional nonlinear potential. We have shown that constant magnetic field induced dynamical chaos is possible even for a force which is derived from a simple potential. For a given strength of the magnetic field, initial position, and velocity of the particle, the dynamics may be regular, but it may become chaotic when the field is time dependent. Chaotic dynamics is very often if the field is time dependent. Origin of chaos has been explored using the Hamiltonian function of the dynamics in terms of action and angle variables. Applicability of the present study has been discussed with a few examples.

  4. Effect of a magnetic field on Schwinger mechanism in de Sitter spacetime

    NASA Astrophysics Data System (ADS)

    Bavarsad, Ehsan; Kim, Sang Pyo; Stahl, Clément; Xue, She-Sheng

    2018-01-01

    We investigate the effect of a uniform magnetic field background on scalar QED pair production in a four-dimensional de Sitter spacetime (dS4 ). We obtain a pair production rate which agrees with the known Schwinger result in the limit of Minkowski spacetime and with Hawking radiation in dS spacetime in the zero electric field limit. Our results describe how the cosmic magnetic field affects the pair production rate in cosmological setups. In addition, using the zeta function regularization scheme we calculate the induced current and examine the effect of a magnetic field on the vacuum expectation value of the current operator. We find that, in the case of a strong electromagnetic background the current responds as E .B , while in the infrared regime, it responds as B /E , which leads to a phenomenon of infrared hyperconductivity. These results for the induced current have important applications for the cosmic magnetic field evolution.

  5. A Quantitative Determination of Magnetic Nanoparticle Separation Using On-Off Field Operation of Quadrupole Magnetic Field-Flow Fractionation (QMgFFF)

    PubMed Central

    Orita, Toru; Moore, Lee R.; Joshi, Powrnima; Tomita, Masahiro; Horiuchi, Takashi; Zborowski, Maciej

    2014-01-01

    Quadrupole Magnetic Field-Flow Fractionation (QMgFFF) is a technique for characterization of sub-micrometer magnetic particles based on their retention in the magnetic field from flowing suspensions. Different magnetic field strengths and volumetric flow rates were tested using on-off field application and two commercial nanoparticle preparations that significantly differed in their retention parameter, λ (by nearly 8-fold). The fractograms showed a regular pattern of higher retention (98.6% v. 53.3%) for the larger particle (200 nm v. 90 nm) at the higher flow rate (0.05 mL/min v. 0.01 mL/min) at the highest magnetic field (0.52 T), as expected because of its lower retention parameter. The significance of this approach is a demonstration of a system that is simpler in operation than a programmed field QMgFFF in applications to particle mixtures consisting of two distinct particle fractions. This approach could be useful for detection of unwanted particulate contaminants, especially important in industrial and biomedical applications. PMID:23842422

  6. Modeling the Radiation Belts During a Geomagnetic Storm

    NASA Astrophysics Data System (ADS)

    Glocer, A.; Fok, M.; Toth, G.

    2009-05-01

    We utilize the Radiation Belt Environment (RBE) model to simulate the radiation belt electrons during a geomagnetic storm. Particularly, we focus on the relative contribution of whistler mode wave-particle interactions and radial diffusion associated with rapid changes in the magnetospheric magnetic field. In our study, the RBE model obtains a realistic magnetic field from the BATS-R-US magnetosphere model at a regular, but adjustable, cadence. We simulate the storm with and without wave particle interactions, and with different frequencies for updating the magnetic field. The impacts of the wave-particle interactions, and the rapid variations in the magnetospheric magnetic field, can then be studied. Simulation results are also extracted along various satellite trajectories for direct comparison where appropriate.

  7. Integration of the radiation belt environment model into the space weather modeling framework

    NASA Astrophysics Data System (ADS)

    Glocer, A.; Toth, G.; Fok, M.; Gombosi, T.; Liemohn, M.

    2009-11-01

    We have integrated the Fok radiation belt environment (RBE) model into the space weather modeling framework (SWMF). RBE is coupled to the global magnetohydrodynamics component (represented by the Block-Adaptive-Tree Solar-wind Roe-type Upwind Scheme, BATS-R-US, code) and the Ionosphere Electrodynamics component of the SWMF, following initial results using the Weimer empirical model for the ionospheric potential. The radiation belt (RB) model solves the convection-diffusion equation of the plasma in the energy range of 10 keV to a few MeV. In stand-alone mode RBE uses Tsyganenko's empirical models for the magnetic field, and Weimer's empirical model for the ionospheric potential. In the SWMF the BATS-R-US model provides the time dependent magnetic field by efficiently tracing the closed magnetic field-lines and passing the geometrical and field strength information to RBE at a regular cadence. The ionosphere electrodynamics component uses a two-dimensional vertical potential solver to provide new potential maps to the RBE model at regular intervals. We discuss the coupling algorithm and show some preliminary results with the coupled code. We run our newly coupled model for periods of steady solar wind conditions and compare our results to the RB model using an empirical magnetic field and potential model. We also simulate the RB for an active time period and find that there are substantial differences in the RB model results when changing either the magnetic field or the electric field, including the creation of an outer belt enhancement via rapid inward transport on the time scale of tens of minutes.

  8. Generalized Squashing Factors for Covariant Description of Magnetic Connectivity in the Solar Corona

    NASA Technical Reports Server (NTRS)

    Titov, V. S.

    2007-01-01

    The study of magnetic connectivity in the solar corona reveals a need to generalize the field line mapping technique to arbitrary geometry of the boundaries and systems of coordinates. Indeed, the global description of the connectivity in the corona requires the use of the photospheric and solar wind boundaries. Both are closed surfaces and therefore do not admit a global regular system of coordinates. At least two overlapping regular systems of coordinates for each of the boundaries are necessary in this case to avoid spherical-pole-like singularities in the coordinates of the footpoints. This implies that the basic characteristic of magnetic connectivity-the squashing degree or factor Q of elemental flux tubes, according to Titov and coworkers-must be rewritten in covariant form. Such a covariant expression of Q is derived in this work. The derived expression is very flexible and highly efficient for describing the global magnetic connectivity in the solar corona. In addition, a general expression for a new characteristic Q1, which defines a squashing of the flux tubes in the directions perpendicular to the field lines, is determined. This new quantity makes it possible to filter out the quasi-separatrix layers whose large values of Q are caused by a projection effect at the field lines nearly touching the photosphere. Thus, the value Q1 provides a much more precise description of the volumetric properties of the magnetic field structure. The difference between Q and Q1 is illustrated by comparing their distributions for two configurations, one of which is the Titov-Demoulin model of a twisted magnetic field.

  9. π0 pole mass calculation in a strong magnetic field and lattice constraints

    NASA Astrophysics Data System (ADS)

    Avancini, Sidney S.; Farias, Ricardo L. S.; Benghi Pinto, Marcus; Tavares, William R.; Timóteo, Varese S.

    2017-04-01

    The π0 neutral meson pole mass is calculated in a strongly magnetized medium using the SU(2) Nambu-Jona-Lasinio model within the random phase approximation (RPA) at zero temperature and zero baryonic density. We employ a magnetic field dependent coupling, G (eB), fitted to reproduce lattice QCD results for the quark condensates. Divergent quantities are handled with a magnetic field independent regularization scheme in order to avoid unphysical oscillations. A comparison between the running and the fixed couplings reveals that the former produces results much closer to the predictions from recent lattice calculations. In particular, we find that the π0 meson mass systematically decreases when the magnetic field increases while the scalar mass remains almost constant. We also investigate how the magnetic background influences other mesonic properties such as fπ0 and gπ0qq.

  10. Martian low-altitude magnetic topology deduced from MAVEN/SWEA observations

    NASA Astrophysics Data System (ADS)

    Xu, Shaosui; Mitchell, David; Liemohn, Michael; Fang, Xiaohua; Ma, Yingjuan; Luhmann, Janet; Brain, David; Steckiewicz, Morgane; Mazelle, Christian; Connerney, Jack; Jacosky, Bruce

    2016-10-01

    The Mars Atmosphere and Volatile Evolution (MAVEN) mission for the first time make regular particle and field measurements down to ~150 km altitude. The Solar Wind Electron Analyzer (SWEA) instrument provides 3-D measurements of the electron energy and angular distributions. This study presents the pitch angle-resolved shape parameters that can separate photoelectrons from solar wind electrons, therefore used to deduce the Martian magnetic topology. The three-dimensional view of the magnetic topology is manifested for the first time. The northern hemisphere is found to be dominated by the crustal closed field lines, instead of draped interplanetary magnetic fields (IMF), on the dayside and more day-night connections through cross-terminator closed field lines than in the south. This study can also single out open field lines attached to the dayside ionosphere, which provide possible passage for ion outflow. Magnetic topology governs energetic electrons' movement, thus necessary to understand nightside ionosphere, and aurora.

  11. The construction of sparse models of Mars' crustal magnetic field

    NASA Astrophysics Data System (ADS)

    Moore, Kimberly; Bloxham, Jeremy

    2017-04-01

    The crustal magnetic field of Mars is a key constraint on Martian geophysical history, especially the timing of the dynamo shutoff. Maps of the crustal magnetic field of Mars show wide variations in the intensity of magnetization, with most of the Northern hemisphere only weakly magnetized. Previous methods of analysis tend to favor smooth solutions for the crustal magnetic field of Mars, making use of techniques such as L2 norms. Here we utilize inversion methods designed for sparse models, to see how much of the surface area of Mars must be magnetized in order to fit available spacecraft magnetic field data. We solve for the crustal magnetic field at 10,000 individual magnetic pixels on the surface of Mars. We employ an L1 regularization, and solve for models where each magnetic pixel is identically zero, unless required otherwise by the data. We find solutions with an adequate fit to the data with over 90% sparsity (90% of magnetic pixels having a field value of exactly 0). We contrast these solutions with L2-based solutions, as well as an elastic net model (combination of L1 and L2). We find our sparse solutions look dramatically different from previous models in the literature, but still give a physically reasonable history of the dynamo (shutting off around 4.1 Ga).

  12. REVIEWS OF TOPICAL PROBLEMS: Instabilities of a multicomponent plasma with accelerated particles and magnetic field generation in astrophysical objects

    NASA Astrophysics Data System (ADS)

    Bykov, Andrei M.; Toptygin, Igor'N.

    2007-02-01

    A system of MHD equations for the description of a magnetized nonequilibrium astrophysical plasma with neutral atoms and suprathermal (in particular, relativistic) particles is formulated. The instabilities of such a plasma, which arise from the presence of neutral and relativistic components, are considered. It is shown that the presence of nonthermal particles interacting with the thermal plasma component via regular and fluctuating electromagnetic fields is responsible for the emergence of specific mechanisms of MHD wave generation. The main generation mechanisms of static and turbulent magnetic fields near shock wave fronts in the Galaxy and interplanetary space are analyzed. We discuss the application of the generation effects of long-wave magnetic fluctuations to the problems of magnetic field origin and relativistic particle acceleration in astrophysical objects of various natures.

  13. On the Global Regularity for the 3D Magnetohydrodynamics Equations Involving Partial Components

    NASA Astrophysics Data System (ADS)

    Qian, Chenyin

    2018-03-01

    In this paper, we study the regularity criteria of the three-dimensional magnetohydrodynamics system in terms of some components of the velocity field and the magnetic field. With a decomposition of the four nonlinear terms of the system, this result gives an improvement of some corresponding previous works (Yamazaki in J Math Fluid Mech 16: 551-570, 2014; Jia and Zhou in Nonlinear Anal Real World Appl 13: 410-418, 2012).

  14. [The temperature factor and magnetic noise under the conditions of stochastic resonance of magnetosomes].

    PubMed

    Bingi, V N; Chernavskiĭ, D S; Rubin, A B

    2006-01-01

    The influence of magnetic noise on the dynamics of magnetic nanoparticles under the conditions of stochastic resonance is considered. The effect of the magnetic noise is shown to be equivalent to the growth of the effective thermostat temperature for the particles at the permanent actual temperature of the medium. This regularity may be used for testing the hypothesis on the involvement of magnetic nanoparticles in the formation of biological effects of weak magnetic fields.

  15. Bias correction for magnetic resonance images via joint entropy regularization.

    PubMed

    Wang, Shanshan; Xia, Yong; Dong, Pei; Luo, Jianhua; Huang, Qiu; Feng, Dagan; Li, Yuanxiang

    2014-01-01

    Due to the imperfections of the radio frequency (RF) coil or object-dependent electrodynamic interactions, magnetic resonance (MR) images often suffer from a smooth and biologically meaningless bias field, which causes severe troubles for subsequent processing and quantitative analysis. To effectively restore the original signal, this paper simultaneously exploits the spatial and gradient features of the corrupted MR images for bias correction via the joint entropy regularization. With both isotropic and anisotropic total variation (TV) considered, two nonparametric bias correction algorithms have been proposed, namely IsoTVBiasC and AniTVBiasC. These two methods have been applied to simulated images under various noise levels and bias field corruption and also tested on real MR data. The test results show that the proposed two methods can effectively remove the bias field and also present comparable performance compared to the state-of-the-art methods.

  16. Large Solar Flares and Sheared Magnetic Field Configuration

    NASA Technical Reports Server (NTRS)

    Choudhary, Debi Prasad

    2001-01-01

    This Comment gives additional information about the nature of flaring locations on the Sun described in the article "Sun unleashes Halloween storm", by R. E. Lopez, et al. What causes the large explosions from solar active regions that unleash huge magnetic storms and adverse space weather? It is now beyond doubt that the magnetic field in solar active regions harbors free energy that is released during these events. Direct measurements of the longitudinal and transverse components of active region magnetic fields with the vector magnetograph at NASA Marshall Space Flight Center (MSFC), taken on a regular basis for the last 30 years, have found key signatures of the locations of powerful flares. A vector magnetograph detects and measures the magnetic shear, which is the deviation of the observed transverse magnetic field direction from the potential field. The sheared locations possess abundant free magnetic energy for solar flares. In addition to active region NOAA 10486, the one that produced the largest flares last October, the NASA/MSFC vector magnetograph has observed several other such complex super active regions, including NOAA 6555 and 6659.

  17. Topology optimization for three-dimensional electromagnetic waves using an edge element-based finite-element method.

    PubMed

    Deng, Yongbo; Korvink, Jan G

    2016-05-01

    This paper develops a topology optimization procedure for three-dimensional electromagnetic waves with an edge element-based finite-element method. In contrast to the two-dimensional case, three-dimensional electromagnetic waves must include an additional divergence-free condition for the field variables. The edge element-based finite-element method is used to both discretize the wave equations and enforce the divergence-free condition. For wave propagation described in terms of the magnetic field in the widely used class of non-magnetic materials, the divergence-free condition is imposed on the magnetic field. This naturally leads to a nodal topology optimization method. When wave propagation is described using the electric field, the divergence-free condition must be imposed on the electric displacement. In this case, the material in the design domain is assumed to be piecewise homogeneous to impose the divergence-free condition on the electric field. This results in an element-wise topology optimization algorithm. The topology optimization problems are regularized using a Helmholtz filter and a threshold projection method and are analysed using a continuous adjoint method. In order to ensure the applicability of the filter in the element-wise topology optimization version, a regularization method is presented to project the nodal into an element-wise physical density variable.

  18. Topology optimization for three-dimensional electromagnetic waves using an edge element-based finite-element method

    PubMed Central

    Korvink, Jan G.

    2016-01-01

    This paper develops a topology optimization procedure for three-dimensional electromagnetic waves with an edge element-based finite-element method. In contrast to the two-dimensional case, three-dimensional electromagnetic waves must include an additional divergence-free condition for the field variables. The edge element-based finite-element method is used to both discretize the wave equations and enforce the divergence-free condition. For wave propagation described in terms of the magnetic field in the widely used class of non-magnetic materials, the divergence-free condition is imposed on the magnetic field. This naturally leads to a nodal topology optimization method. When wave propagation is described using the electric field, the divergence-free condition must be imposed on the electric displacement. In this case, the material in the design domain is assumed to be piecewise homogeneous to impose the divergence-free condition on the electric field. This results in an element-wise topology optimization algorithm. The topology optimization problems are regularized using a Helmholtz filter and a threshold projection method and are analysed using a continuous adjoint method. In order to ensure the applicability of the filter in the element-wise topology optimization version, a regularization method is presented to project the nodal into an element-wise physical density variable. PMID:27279766

  19. Fabrication and magnetic properties of Fe nanostructures in anodic alumina membrane

    NASA Astrophysics Data System (ADS)

    Lim, J.-H.; Chae, W.-S.; Lee, H.-O.; Malkinski, L.; Min, S.-G.; Wiley, J. B.; Jun, J.-H.; Lee, S.-H.; Jung, J.-S.

    2010-05-01

    Several Fe nanostructures with different lengths, diameters, and separations of the constituting magnetic components have been synthesized using anodized alumina membranes (AAMs) to understand the influence of these parameters on their magnetic properties. Fe nanostructures with high crystallinity and (110) orientation were synthesized by electrodeposition at room temperature in regular AAMs and mild-hard AAM (Mi-Ha AAM). Fe nanostructures with different aspect ratios (1:1, 1:10, and 1:75) in the form of nanodots, nanorods, or nanowires were synthesized in regular AAMs with the 100 nm interpore distance. Mi-Ha AAMs with two different pore sizes (70 and 120 nm) and 250 nm interpore distances were used to investigate the effect of the interactions and of the diameter of the wires on their magnetic behavior. Nearly linear magnetization characteristics with small coercivity, observed for Fe nanowires, suggest the magnetization rotation to be the predominant magnetization process for the field applied transverse to the wires. The anisotropy of the arrays was governed by the shape anisotropy of the magnetic objects with different aspect ratios. Reduced interactions between the nanowires grown in Mi-Ha AAMs resulted in enhancement of the average anisotropy. It is believed that due to difference in spin configuration, the increased diameter of the nanowires led to reduction in the coercivity in the case of the field applied along the wires.

  20. The mean coronal magnetic field determined from Helios Faraday rotation measurements

    NASA Technical Reports Server (NTRS)

    Patzold, M.; Bird, M. K.; Volland, H.; Levy, G. S.; Seidel, B. L.; Stelzried, C. T.

    1987-01-01

    Coronal Faraday rotation of the linearly polarized carrier signals of the Helios spacecraft was recorded during the regularly occurring solar occultations over almost a complete solar cycle from 1975 to 1984. These measurements are used to determine the average strength and radial variation of the coronal magnetic field at solar minimum at solar distances from 3-10 solar radii, i.e., the range over which the complex fields at the coronal base are transformed into the interplanetary spiral. The mean coronal magnetic field in 1975-1976 was found to decrease with radial distance according to r exp-alpha, where alpha = 2.7 + or - 0.2. The mean field magnitude was 1.0 + or - 0.5 x 10 to the -5th tesla at a nominal solar distance of 5 solar radii. Possibly higher magnetic field strengths were indicated at solar maximum, but a lack of data prevented a statistical determination of the mean coronal field during this epoch.

  1. Effects of magnetic field exposure on open field behaviour and nociceptive responses in mice.

    PubMed

    Del Seppia, Cristina; Mezzasalma, Lorena; Choleris, Elena; Luschi, Paolo; Ghione, Sergio

    2003-09-15

    Results of previous studies have shown that nociceptive sensitivity in male C57 mice is enhanced by exposure to a regular 37 Hz or an irregularly varying (<1 Hz) electromagnetic field. In order to test whether these fields affect more generally mouse behaviour, we placed Swiss CD-1 mice in a novel environment (open field test) and exposed them for 2 h to these two different magnetic field conditions. Hence, we analysed how duration and time course of various behavioural patterns (i.e. exploration, rear, edge chew, self-groom, sit, walk and sleep) and nociceptive sensitivity had been affected by such exposure. Nociceptive sensitivity was significantly greater in magnetically treated mice than in controls. The overall time spent in exploratory activities was significantly shorter in both magnetically treated groups (< 1 Hz, 33% and 37 Hz, 29% of total time), than in controls (42%). Conversely, the time spent in sleeping was markedly longer in the treated groups (both 27% of total time) than in controls (11%). These results suggest that exposure to altered magnetic fields induce a more rapid habituation to a novel environment.

  2. Impact of gyro-motion and sheath acceleration on the flux distribution on rough surfaces

    NASA Astrophysics Data System (ADS)

    Schmid, K.; Mayer, M.; Adelhelm, C.; Balden, M.; Lindig, S.; ASDEX Upgrade Team

    2010-10-01

    As was already observed experimentally, the erosion of tungsten (W) coated graphite (C) tiles in ASDEX-Upgrade (AUG) exhibits regular erosion patterns on the micrometre rough surfaces whose origin is not fully understood: surfaces inclined towards the magnetic field direction show strong net W erosion while surfaces facing away from the magnetic field are shadowed from erosion and may even exhibit net W deposition. This paper presents a model which explains the observed erosion/deposition pattern. It is based on the calculation of ion trajectories dropping through the plasma sheath region to the rough surface with combined magnetic and electrical fields. The surface topography used in the calculations is taken from atomic force microscope measurement of real AUG tiles. The calculated erosion patterns are directly compared with secondary electron microscopy images of the erosion zones from the same location. The erosion on surfaces inclined towards the magnetic field is due to ions from the bulk plasma which enter the sheath gyrating along the magnetic field lines, while the deposition of W on surfaces facing away from the magnetic field is due to promptly re-deposited W that is ionized still within the magnetic pre-sheath.

  3. Magnetic Flux Expulsion Studies in Niobium SRF Cavities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Posen, Sam; Checchin, Mattia; Crawford, Anthony

    2016-06-01

    With the recent discovery of nitrogen doping treatment for SRF cavities, ultra-high quality factors at medium accelerating fields are regularly achieved in vertical RF tests. To preserve these quality factors into the cryomodule, it is important to consider background magnetic fields, which can become trapped in the surface of the cavity during cooldown and cause Q₀ degradation. Building on the recent discovery that spatial thermal gradients during cooldown can significantly improve expulsion of magnetic flux, a detailed study was performed of flux expulsion on two cavities with different furnace treatments that are cooled in magnetic fields amplitudes representative of whatmore » is expected in a realistic cryomodule. In this contribution, we summarize these cavity results, in order to improve understanding of the impact of flux expulsion on cavity performance.« less

  4. Tailoring of the Perpendicular Magnetization Component in Ferromagnetic Films on a Vicinal Substrate

    NASA Astrophysics Data System (ADS)

    Stupakiewicz, A.; Maziewski, A.; Matlak, K.; Spiridis, N.; Ślęzak, M.; Ślęzak, T.; Zajac, M.; Korecki, J.

    2008-11-01

    We have engineered the magnetic properties of 1 8 nm Co films epitaxially grown on an Au-buffered bifacial W(110)/W(540) single crystal. The surface of Au/W(110) was atomically flat, whereas the Au/W(540) followed the morphology of the vicinal W surface, showing a regular array of monoatomic steps. For Co grown on Au/W(540), the existence of the out-of-plane magnetization component extended strongly to a thickness d of about 8 nm, which was accompanied by an anomalous increase of the out-of-plane switching field with increasing d. In addition, the process of up-down magnetization switching could be realized with both a perpendicular and in-plane external magnetic field.

  5. On the signatures of magnetic islands and multiple X-lines in the solar wind as observed by ARTEMIS and WIND

    NASA Astrophysics Data System (ADS)

    Eriksson, S.; Newman, D. L.; Lapenta, G.; Angelopoulos, V.

    2014-06-01

    We report the first observation consistent with a magnetic reconnection generated magnetic island at a solar wind current sheet that was observed on 10 June 2012 by the two ARTEMIS satellites and the upstream WIND satellite. The evidence consists of a core magnetic field within the island which is formed by enhanced Hall magnetic fields across a solar wind reconnection exhaust. The core field at ARTEMIS displays a local dip coincident with a peak plasma density enhancement and a locally slower exhaust speed which differentiates it from a regular solar wind exhaust crossing. Further indirect evidence of magnetic island formation is presented in the form of a tripolar Hall magnetic field, which is supported by an observed electron velocity shear, and plasma density depletion regions which are in general agreement with multiple reconnection X-line signatures at the same current sheet on the basis of predicted signatures of magnetic islands as generated by a kinetic reconnection simulation for solar wind-like conditions. The combined ARTEMIS and WIND observations of tripolar Hall magnetic fields across the same exhaust and Grad-Shrafranov reconstructions of the magnetic field suggest that an elongated magnetic island was encountered which displayed a 4RE normal width and a 43RE extent along the exhaust between two neighboring X-lines.

  6. Regularized Reconstruction of Dynamic Contrast-Enhanced MR Images for Evaluation of Breast Lesions

    DTIC Science & Technology

    2011-01-01

    Magnetic resonance imaging contrast-enhanced relaxometry of breast tumors: an MRI multicenter investigation concerning 100 patients,” Mag. Res. Im., vol...The overall goal of this project was to develop, implement, and evaluate methods for im- proving image quality in dynamic magnetic resonance imaging ...Olafsson, H. R. Shi, and D. C. Noll, “Toeplitz-based iterative image reconstruction for MRI with correction for magnetic field inhomogeneity,” IEEE

  7. Rotationally driven 'zebra stripes' in Earth's inner radiation belt.

    PubMed

    Ukhorskiy, A Y; Sitnov, M I; Mitchell, D G; Takahashi, K; Lanzerotti, L J; Mauk, B H

    2014-03-20

    Structured features on top of nominally smooth distributions of radiation-belt particles at Earth have been previously associated with particle acceleration and transport mechanisms powered exclusively by enhanced solar-wind activity. Although planetary rotation is considered to be important for particle acceleration at Jupiter and Saturn, the electric field produced in the inner magnetosphere by Earth's rotation can change the velocity of trapped particles by only about 1-2 kilometres per second, so rotation has been thought inconsequential for radiation-belt electrons with velocities of about 100,000 kilometres per second. Here we report that the distributions of energetic electrons across the entire spatial extent of Earth's inner radiation belt are organized in regular, highly structured and unexpected 'zebra stripes', even when the solar-wind activity is low. Modelling reveals that the patterns are produced by Earth's rotation. Radiation-belt electrons are trapped in Earth's dipole-like magnetic field, where they undergo slow longitudinal drift motion around the planet because of the gradient and curvature of the magnetic field. Earth's rotation induces global diurnal variations of magnetic and electric fields that resonantly interact with electrons whose drift period is close to 24 hours, modifying electron fluxes over a broad energy range into regular patterns composed of multiple stripes extending over the entire span of the inner radiation belt.

  8. On-Orbit Performance of the Helioseismic and Magnetic Imager Instrument onboard the Solar Dynamics Observatory

    NASA Astrophysics Data System (ADS)

    Hoeksema, J. T.; Baldner, C. S.; Bush, R. I.; Schou, J.; Scherrer, P. H.

    2018-03-01

    The Helioseismic and Magnetic Imager (HMI) instrument is a major component of NASA's Solar Dynamics Observatory (SDO) spacecraft. Since commencement of full regular science operations on 1 May 2010, HMI has operated with remarkable continuity, e.g. during the more than five years of the SDO prime mission that ended 30 September 2015, HMI collected 98.4% of all possible 45-second velocity maps; minimizing gaps in these full-disk Dopplergrams is crucial for helioseismology. HMI velocity, intensity, and magnetic-field measurements are used in numerous investigations, so understanding the quality of the data is important. This article describes the calibration measurements used to track the performance of the HMI instrument, and it details trends in important instrument parameters during the prime mission. Regular calibration sequences provide information used to improve and update the calibration of HMI data. The set-point temperature of the instrument front window and optical bench is adjusted regularly to maintain instrument focus, and changes in the temperature-control scheme have been made to improve stability in the observable quantities. The exposure time has been changed to compensate for a 20% decrease in instrument throughput. Measurements of the performance of the shutter and tuning mechanisms show that they are aging as expected and continue to perform according to specification. Parameters of the tunable optical-filter elements are regularly adjusted to account for drifts in the central wavelength. Frequent measurements of changing CCD-camera characteristics, such as gain and flat field, are used to calibrate the observations. Infrequent expected events such as eclipses, transits, and spacecraft off-points interrupt regular instrument operations and provide the opportunity to perform additional calibration. Onboard instrument anomalies are rare and seem to occur quite uniformly in time. The instrument continues to perform very well.

  9. The magnetic field of a permanent hollow cylindrical magnet

    NASA Astrophysics Data System (ADS)

    Reich, Felix A.; Stahn, Oliver; Müller, Wolfgang H.

    2016-09-01

    Based on the rational version of M AXWELL's equations according to T RUESDELL and T OUPIN or KOVETZ, cf. (Kovetz in Electromagnetic theory, Oxford University Press, Oxford, 2000; Truesdell and Toupin in Handbuch der Physik, Bd. III/1, Springer, Berlin, pp 226-793; appendix, pp 794-858, 2000), we present, for stationary processes, a closed-form solution for the magnetic flux density of a hollow cylindrical magnet. Its magnetization is constant in axial direction. We consider M AXWELL's equations in regular and singular points that are obtained by rational electrodynamics, adapted to stationary processes. The magnetic flux density is calculated analytically by means of a vector potential. We obtain a solution in terms of complete elliptic integrals. Therefore, numerical evaluation can be performed in a computationally efficient manner. The solution is written in dimensionless form and can easily be applied to cylinders of arbitrary shape. The relation between the magnetic flux density and the magnetic field is linear, and an explicit relation for the field is presented. With a slight modification the result can be used to obtain the field of a solid cylindrical magnet. The mathematical structure of the solution and, in particular, singularities are discussed.

  10. The Large Scale Structure of the Galactic Magnetic Field and High Energy Cosmic Ray Anisotropy

    NASA Astrophysics Data System (ADS)

    Alvarez-Muñiz, Jaime; Stanev, Todor

    2006-10-01

    Measurements of the magnetic field in our Galaxy are complex and usually difficult to interpret. A spiral regular field in the disk is favored by observations, however the number of field reversals is still under debate. Measurements of the parity of the field across the Galactic plane are also very difficult due to the presence of the disk field itself. In this work we demonstrate that cosmic ray protons in the energy range 1018 to 1019eV, if accelerated near the center of the Galaxy, are sensitive to the large scale structure of the Galactic Magnetic Field (GMF). In particular if the field is of even parity, and the spiral field is bi-symmetric (BSS), ultra high energy protons will predominantly come from the Southern Galactic hemisphere, and predominantly from the Northern Galactic hemisphere if the field is of even parity and axi-symmetric (ASS). There is no sensitivity to the BSS or ASS configurations if the field is of odd parity.

  11. Summary of dipole field angle measurements on 50mm-aperture SSC Collider Dipole Magnet Protoypes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marks, J.; DiMarco, J.; Kuzminski, J.

    At several stages in the production of the SSC collider dipole magnets and their final installation the magnetic field angle needs to be known. A simple device using a permanent magnet which aligns itself with the magnetic field had been developed at FNAL to survey the direction of the magnetic dipole field with respect to the vertical (as determined by gravity) along the magnet axis. The determination of the dipole field angle was part of the field quality characterization of a series of thirteen full-length 50mm-aperture SSC Collider Dipole Magnet Prototypes which were built for R&D purposes at FNAL. Measurementsmore » with the first developed FAP system were performed on a regular basis through several stages of the magnet production process with the intention of fabrication quality control. Part of these included measurements performed before and after cryogenic testing: these data are summarized here. The performance of a second system with an improved probe and data acquisition system was tested on part of the DCA series as well. This paper includes a presentation of time stability, noise and angular resolution data of this second probe. Another alternative instrument to determine the dipole field angle is the ``mole`` rotating coil system developed at BNL used mainly to measure the multipole components of the magnetic field. In the case of magnet DCA320, a comparison is made between the field angle as determined by the mole and those determined by both of the FAPS.« less

  12. Bardeen regular black hole with an electric source

    NASA Astrophysics Data System (ADS)

    Rodrigues, Manuel E.; Silva, Marcos V. de S.

    2018-06-01

    If some energy conditions on the stress-energy tensor are violated, is possible construct regular black holes in General Relativity and in alternative theories of gravity. This type of solution has horizons but does not present singularities. The first regular black hole was presented by Bardeen and can be obtained from Einstein equations in the presence of an electromagnetic field. E. Ayon-Beato and A. Garcia reinterpreted the Bardeen metric as a magnetic solution of General Relativity coupled to a nonlinear electrodynamics. In this work, we show that the Bardeen model may also be interpreted as a solution of Einstein equations in the presence of an electric source, whose electric field does not behave as a Coulomb field. We analyzed the asymptotic forms of the Lagrangian for the electric case and also analyzed the energy conditions.

  13. Cosmic ray sources, acceleration and propagation

    NASA Technical Reports Server (NTRS)

    Ptuskin, V. S.

    1986-01-01

    A review is given of selected papers on the theory of cosmic ray (CR) propagation and acceleration. The high isotropy and a comparatively large age of galactic CR are explained by the effective interaction of relativistic particles with random and regular electromagnetic fields in interstellar medium. The kinetic theory of CR propagation in the Galaxy is formulated similarly to the elaborate theory of CR propagation in heliosphere. The substantial difference between these theories is explained by the necessity to take into account in some cases the collective effects due to a rather high density of relativisitc particles. In particular, the kinetic CR stream instability and the hydrodynamic Parker instability is studied. The interaction of relativistic particles with an ensemble of given weak random magnetic fields is calculated by perturbation theory. The theory of CR transfer is considered to be basically completed for this case. The main problem consists in poor information about the structure of the regular and the random galactic magnetic fields. An account is given of CR transfer in a turbulent medium.

  14. Rotating hairy black holes.

    PubMed

    Kleihaus, B; Kunz, J

    2001-04-23

    We construct stationary black-hole solutions in SU(2) Einstein-Yang-Mills theory which carry angular momentum and electric charge. Possessing nontrivial non-Abelian magnetic fields outside their regular event horizon, they represent nonperturbative rotating hairy black holes.

  15. Adiabatic Edge Channel Transport in a Nanowire Quantum Point Contact Register.

    PubMed

    Heedt, S; Manolescu, A; Nemnes, G A; Prost, W; Schubert, J; Grützmacher, D; Schäpers, Th

    2016-07-13

    We report on a prototype device geometry where a number of quantum point contacts are connected in series in a single quasi-ballistic InAs nanowire. At finite magnetic field the backscattering length is increased up to the micron-scale and the quantum point contacts are connected adiabatically. Hence, several input gates can control the outcome of a ballistic logic operation. The absence of backscattering is explained in terms of selective population of spatially separated edge channels. Evidence is provided by regular Aharonov-Bohm-type conductance oscillations in transverse magnetic fields, in agreement with magnetoconductance calculations. The observation of the Shubnikov-de Haas effect at large magnetic fields corroborates the existence of spatially separated edge channels and provides a new means for nanowire characterization.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsang, David; Gourgouliatos, Konstantinos N., E-mail: dtsang@physics.mcgill.ca, E-mail: kostasg@physics.mcgill.ca

    We examine timing noise in both magnetars and regular pulsars, and find that there exists a component of the timing noise ({sigma}{sub TN}) with strong magnetic field dependence ({sigma}{sub TN}{approx}B{sub o}{sup 2}{Omega}T{sup 3/2}) above B{sub o} {approx} 10{sup 12.5} G. The dependence of the timing noise floor on the magnetic field is also reflected in the smallest observable glitch size. We find that magnetospheric torque variation cannot explain this component of timing noise. We calculate the moment of inertia of the magnetic field outside of a neutron star and show that this timing noise component may be due to variationmore » of this moment of inertia, and could be evidence of rapid global magnetospheric variability.« less

  17. Diffusion of strongly magnetized cosmic ray particles in a turbulent medium

    NASA Technical Reports Server (NTRS)

    Ptuskin, V. S.

    1985-01-01

    Cosmic ray (CR) propagation in a turbulent medium is usually considered in the diffusion approximation. Here, the diffusion equation is obtained for strongly magnetized particles in the general form. The influence of a large-scale random magnetic field on CR propagation in interstellar medium is discussed. Cosmic rays are assumed to propagate in a medium with a regular field H and an ensemble of random MHD waves. The energy density of waves on scales smaller than the free path 1 of CR particles is small. The collision integral of the general form which describes interaction between relativistic particles and waves in the quasilinear approximation is used.

  18. CLASHING BEAM PARTICLE ACCELERATOR

    DOEpatents

    Burleigh, R.J.

    1961-04-11

    A charged-particle accelerator of the proton synchrotron class having means for simultaneously accelerating two separate contra-rotating particle beams within a single annular magnet structure is reported. The magnet provides two concentric circular field regions of opposite magnetic polarity with one field region being of slightly less diameter than the other. The accelerator includes a deflector means straddling the two particle orbits and acting to collide the two particle beams after each has been accelerated to a desired energy. The deflector has the further property of returning particles which do not undergo collision to the regular orbits whereby the particles recirculate with the possibility of colliding upon subsequent passages through the deflector.

  19. A scenario for solar wind penetration of earth's magnetic tail based on ion composition data from the ISEE 1 spacecraft

    NASA Technical Reports Server (NTRS)

    Lennartsson, W.

    1992-01-01

    Based on He(2+) and H(-) ion composition data from the Plasma Composition Experiment on ISEE 1, a scenario is proposed for the solar wind penetration of the earth's magnetic tail, which does not require that the solar wind plasma be magnetized. While this study does not take issue with the notion that earth's magnetic field merges with the solar wind magnetic field on a regular basis, it focuses on certain aspects of interaction between the solar wind particles and the earth's field, e.g, the fact that the geomagnetic tail always has a plasma sheet, even during times when the physical signs of magnetic merging are weak or absent. It is argued that the solar plasma enters along slots between the tail lobes and the plasma sheet, even quite close to earth, convected inward along the plasma sheet boundary layer or adjacent to it, by the electric fringe field of the ever present low-latitude magnetopause boundary layer (LLBL). The required E x B drifts are produced by closing LLBL equipotential surfaces through the plasma sheet.

  20. Dynamic stabilization of the magnetic field surrounding the neutron electric dipole moment spectrometer at the Paul Scherrer Institute

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Afach, S.; Fertl, M.; Franke, B., E-mail: beatrice.franke@psi.ch, E-mail: bernhard.lauss@psi.ch

    The Surrounding Field Compensation (SFC) system described in this work is installed around the four-layer Mu-metal magnetic shield of the neutron electric dipole moment spectrometer located at the Paul Scherrer Institute. The SFC system reduces the DC component of the external magnetic field by a factor of about 20. Within a control volume of approximately 2.5 m × 2.5 m × 3 m, disturbances of the magnetic field are attenuated by factors of 5–50 at a bandwidth from 10{sup −3} Hz up to 0.5 Hz, which corresponds to integration times longer than several hundreds of seconds and represent the important timescale for the neutron electric dipole moment measurement.more » These shielding factors apply to random environmental noise from arbitrary sources. This is achieved via a proportional-integral feedback stabilization system that includes a regularized pseudoinverse matrix of proportionality factors which correlates magnetic field changes at all sensor positions to current changes in the SFC coils.« less

  1. Study of the Vertical Magnetic Field in Face-on Galaxies Using Faraday Tomography

    NASA Astrophysics Data System (ADS)

    Ideguchi, Shinsuke; Tashiro, Yuichi; Akahori, Takuya; Takahashi, Keitaro; Ryu, Dongsu

    2017-07-01

    Faraday tomography allows astronomers to probe the distribution of the magnetic field along the line of sight (LOS), but that can be achieved only after the Faraday spectrum is interpreted. However, the interpretation is not straightforward, mainly because the Faraday spectrum is complicated due to a turbulent magnetic field; it ruins the one-to-one relation between the Faraday depth and the physical depth, and appears as many small-scale features in the Faraday spectrum. In this paper, by employing “simple toy models” for the magnetic field, we describe numerically as well as analytically the characteristic properties of the Faraday spectrum. We show that the Faraday spectrum along “multiple LOSs” can be used to extract the global properties of the magnetic field. Specifically, considering face-on spiral galaxies and modeling turbulent magnetic field as a random field with a single coherence length, we numerically calculate the Faraday spectrum along a number of LOSs and its shape-characterizing parameters, that is, the moments. When multiple LOSs cover a region of ≳(10 coherence length)2, the shape of the Faraday spectrum becomes smooth and the shape-characterizing parameters are well specified. With the Faraday spectrum constructed as a sum of Gaussian functions with different means and variances, we analytically show that the parameters are expressed in terms of the regular and turbulent components of the LOS magnetic field and the coherence length. We also consider the turbulent magnetic field modeled with a power-law spectrum, and study how the magnetic field is revealed in the Faraday spectrum. Our work suggests a way to obtain information on the magnetic field from a Faraday tomography study.

  2. Study of the Vertical Magnetic Field in Face-on Galaxies Using Faraday Tomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ideguchi, Shinsuke; Ryu, Dongsu; Tashiro, Yuichi

    Faraday tomography allows astronomers to probe the distribution of the magnetic field along the line of sight (LOS), but that can be achieved only after the Faraday spectrum is interpreted. However, the interpretation is not straightforward, mainly because the Faraday spectrum is complicated due to a turbulent magnetic field; it ruins the one-to-one relation between the Faraday depth and the physical depth, and appears as many small-scale features in the Faraday spectrum. In this paper, by employing “simple toy models” for the magnetic field, we describe numerically as well as analytically the characteristic properties of the Faraday spectrum. We showmore » that the Faraday spectrum along “multiple LOSs” can be used to extract the global properties of the magnetic field. Specifically, considering face-on spiral galaxies and modeling turbulent magnetic field as a random field with a single coherence length, we numerically calculate the Faraday spectrum along a number of LOSs and its shape-characterizing parameters, that is, the moments. When multiple LOSs cover a region of ≳(10 coherence length){sup 2}, the shape of the Faraday spectrum becomes smooth and the shape-characterizing parameters are well specified. With the Faraday spectrum constructed as a sum of Gaussian functions with different means and variances, we analytically show that the parameters are expressed in terms of the regular and turbulent components of the LOS magnetic field and the coherence length. We also consider the turbulent magnetic field modeled with a power-law spectrum, and study how the magnetic field is revealed in the Faraday spectrum. Our work suggests a way to obtain information on the magnetic field from a Faraday tomography study.« less

  3. Spin-flop states in a synthetic antiferromagnet and variations of unidirectional anisotropy in FeMn-based spin valves

    NASA Astrophysics Data System (ADS)

    Milyaev, M. A.; Naumova, L. I.; Chernyshova, T. A.; Proglyado, V. V.; Kulesh, N. A.; Patrakov, E. I.; Kamenskii, I. Yu.; Ustinov, V. V.

    2016-12-01

    Spin valves with a synthetic antiferromagnet have been prepared by magnetron sputtering. Regularities of the formation of single- and two-phase spin-flop states in the synthetic antiferromagnet have been studied using magnetoresistance measurements and imaging the magnetic structure. A thermomagnetic treatment of spin valve in a field that corresponds to the single-phase spin-flop state of synthetic antiferromagnet was shown to allow us to obtain a magnetically sensitive material characterized by hysteresis-free field dependence of the magnetoresistance.

  4. Dynamical turbulent flow on the Galton board with friction.

    PubMed

    Chepelianskii, A D; Shepelyansky, D L

    2001-07-16

    We study numerically and analytically the dynamics of charged particles on the Galton board, a regular lattice of disk scatters, in the presence of constant external force, magnetic field, and friction. It is shown that under certain conditions friction leads to the appearance of a strange chaotic attractor. In this regime the average velocity and direction of particle flow can be effectively affected by electric and magnetic fields. We discuss the applications of these results to the charge transport in antidot superlattices and the stream of suspended particles in a viscous flow through scatters.

  5. The effect of the neutral sheet structure of the interplanetary magnetic field on cosmic ray distribution in space

    NASA Technical Reports Server (NTRS)

    Alania, M. V.; Aslamazashvili, R. G.; Bochorishvili, T.; Djapiashvili, T. V.; Tkemaladze, V. S.

    1985-01-01

    Results of the numerical solution of the anistoropic diffusion equation are presented. The modulation depth of galactic cosmic rays is defined by the degree of curvature of the neutral current sheet in the heliosphere. The effect of the regular interplanetary magnetic field (IMF) on cosmic ray anisotropy in the period of solar activity minimum (in 1976) is analyzed by the data of the neutron super-monitors of the world network, and the heliolatitudinal gradient and cosmic ray diffusion coefficient are defined.

  6. Exposing Drifting Subpulses from the Slowest to the Fastest Pulsars.

    NASA Astrophysics Data System (ADS)

    van Leeuwen, Joeri

    2006-06-01

    Pulsar emission is surprisingly similar over a vast range of periods and magnetic fields: all the way from the 2-millisecond 108-G recycled pulsars to the 6-second 1014-G magnetar-like regular pulsars. We think the stability and speed of the subpulse drift seen over this whole range can discern between different mechanisms for pulsar emission. Using two new techniques to discern and interpret subpulse drift patterns in both dim and bright pulsars, we investigate the relation between subpulse-drift speed and the pulsar period and magnetic field.

  7. Regular flow reversals in Rayleigh-Bénard convection in a horizontal magnetic field.

    PubMed

    Tasaka, Yuji; Igaki, Kazuto; Yanagisawa, Takatoshi; Vogt, Tobias; Zuerner, Till; Eckert, Sven

    2016-04-01

    Magnetohydrodynamic Rayleigh-Bénard convection was studied experimentally using a liquid metal inside a box with a square horizontal cross section and aspect ratio of five. Systematic flow measurements were performed by means of ultrasonic velocity profiling that can capture time variations of instantaneous velocity profiles. Applying a horizontal magnetic field organizes the convective motion into a flow pattern of quasi-two-dimensional rolls arranged parallel to the magnetic field. The number of rolls has the tendency to decrease with increasing Rayleigh number Ra and to increase with increasing Chandrasekhar number Q. We explored convection regimes in a parameter range, at 2×10^{3}

  8. Magnetic Field Homogenization of the Human Prefrontal Cortex with a Set of Localized Electrical Coils

    PubMed Central

    Juchem, Christoph; Nixon, Terence W.; McIntyre, Scott; Rothman, Douglas L.; de Graaf, Robin A.

    2011-01-01

    The prefrontal cortex is a common target brain structure in psychiatry and neuroscience due to its role in working memory and cognitive control. Large differences in magnetic susceptibility between the air-filled sinuses and the tissue/bone in the frontal part of the human head cause a strong and highly localized magnetic field focus in the prefrontal cortex. As a result, image distortion and signal dropout are observed in MR imaging. A set of external, electrical coils is presented that provides localized and high amplitude shim fields in the prefrontal cortex with minimum impact on the rest of the brain when combined with regular zero-to-second order spherical harmonics shimming. The experimental realization of the new shim method strongly minimized or even eliminated signal dropout in gradient-echo images acquired at settings typically used in functional magnetic resonance at 4 Tesla. PMID:19918909

  9. Observations of the Earth's magnetic field from the shuttle: Using the Spartan carrier as a magnetic survey tool

    NASA Technical Reports Server (NTRS)

    Webster, W. J., Jr.

    1986-01-01

    The shuttle-deployed and recovered Spartan shows promise as an inexpensive and simple support module for potential field measurements. The results of a preliminary engineering study on the applications of the Spartan carrier to magnetic measurements shows: (1) Extension of the mission duration to as long as 7 days is feasible but requires more reconfiguration of the internal systems; (2) On-board recording of Global Positioning System signals will provide position determination with an accuracy consistent with the most severe requirements; and (3) Making Spartan a magnetically clean spacecraft is straight forward but requires labor-intensive modifications to both the data and power systems. As a magnetic survey tool, Spartan would allow surveys at regularly spaced intervals and could make quick-reaction surveys at times of instability in the secular variation.

  10. Influences of different parameters on the microstructure of magnetic-field-induced self-assembled film

    NASA Astrophysics Data System (ADS)

    Dan, X.; Yang, J. J.

    2016-07-01

    Self-assembled films with needle-like microarrays were fabricated using a mixture of cobalt and fluorocarbon resin under a magnetic field. The various influences of magnetic powder content, viscosity and size distribution on the structure of the self-assembled films were investigated. The self-assembled film morphologies were characterized by stereomicroscope and scanning electron microscopy. Experimental results indicate that an increase in magnetic powder content results in greater unit height and diameter, and that a reduction in viscosity results in increasing array density and decreasing unit width. Additionally, particles with narrow size distribution were able to attain more regular microarray structures. The structural alterations were closely related to numerous effects such as van der Waals forces, dipole-dipole interactions, and external-dipole interactions. The self-assembled film demonstrated magnetic anisotropy, as identified by vibrating sample magnetometry (VSM).

  11. Radiated flow of chemically reacting nanoliquid with an induced magnetic field across a permeable vertical plate

    NASA Astrophysics Data System (ADS)

    Mahanthesh, B.; Gireesha, B. J.; Athira, P. R.

    Impact of induced magnetic field over a flat porous plate by utilizing incompressible water-copper nanoliquid is examined analytically. Flow is supposed to be laminar, steady and two-dimensional. The plate is subjected to a regular free stream velocity as well as suction velocity. Flow formulation is developed by considering Maxwell-Garnetts (MG) and Brinkman models of nanoliquid. Impacts of thermal radiation, viscous dissipation, temperature dependent heat source/sink and first order chemical reaction are also retained. The subjected non-linear problems are non-dimensionalized and analytic solutions are presented via series expansion method. The graphs are plotted to analyze the influence of pertinent parameters on flow, magnetism, heat and mass transfer fields as well as friction factor, current density, Nusselt and Sherwood numbers. It is found that friction factor at the plate is more for larger magnetic Prandtl number. Also the rate of heat transfer decayed with increasing nanoparticles volume fraction and the strength of magnetism.

  12. Regularized Biot–Savart Laws for Modeling Magnetic Flux Ropes

    NASA Astrophysics Data System (ADS)

    Titov, Viacheslav S.; Downs, Cooper; Mikić, Zoran; Török, Tibor; Linker, Jon A.; Caplan, Ronald M.

    2018-01-01

    Many existing models assume that magnetic flux ropes play a key role in solar flares and coronal mass ejections (CMEs). It is therefore important to develop efficient methods for constructing flux-rope configurations constrained by observed magnetic data and the morphology of the pre-eruptive source region. For this purpose, we have derived and implemented a compact analytical form that represents the magnetic field of a thin flux rope with an axis of arbitrary shape and circular cross-sections. This form implies that the flux rope carries axial current I and axial flux F, so that the respective magnetic field is the curl of the sum of axial and azimuthal vector potentials proportional to I and F, respectively. We expressed the vector potentials in terms of modified Biot–Savart laws, whose kernels are regularized at the axis in such a way that, when the axis is straight, these laws define a cylindrical force-free flux rope with a parabolic profile for the axial current density. For the cases we have studied so far, we determined the shape of the rope axis by following the polarity inversion line of the eruptions’ source region, using observed magnetograms. The height variation along the axis and other flux-rope parameters are estimated by means of potential-field extrapolations. Using this heuristic approach, we were able to construct pre-eruption configurations for the 2009 February 13 and 2011 October 1 CME events. These applications demonstrate the flexibility and efficiency of our new method for energizing pre-eruptive configurations in simulations of CMEs.

  13. Graphene levitation and orientation control using a magnetic field

    NASA Astrophysics Data System (ADS)

    Niu, Chao; Lin, Feng; Wang, Zhiming M.; Bao, Jiming; Hu, Jonathan

    2018-01-01

    This paper studies graphene levitation and orientation control using a magnetic field. The torques in all three spatial directions induced by diamagnetic forces are used to predict stable conditions for different shapes of millimeter-sized graphite plates. We find that graphite plates, in regular polygon shapes with an even number of sides, will be levitated in a stable manner above four interleaved permanent magnets. In addition, the orientation of micrometer-sized graphene flakes near a permanent magnet is studied in both air and liquid environments. Using these analyses, we are able to simulate optical transmission and reflection on a writing board and thereby reveal potential applications using this technology for display screens. Understanding the control of graphene flake orientation will lead to the discovery of future applications using graphene flakes.

  14. Course 4: Anyons

    NASA Astrophysics Data System (ADS)

    Myrheim, J.

    Contents 1 Introduction 1.1 The concept of particle statistics 1.2 Statistical mechanics and the many-body problem 1.3 Experimental physics in two dimensions 1.4 The algebraic approach: Heisenberg quantization 1.5 More general quantizations 2 The configuration space 2.1 The Euclidean relative space for two particles 2.2 Dimensions d=1,2,3 2.3 Homotopy 2.4 The braid group 3 Schroedinger quantization in one dimension 4 Heisenberg quantization in one dimension 4.1 The coordinate representation 5 Schroedinger quantization in dimension d ≥ 2 5.1 Scalar wave functions 5.2 Homotopy 5.3 Interchange phases 5.4 The statistics vector potential 5.5 The N-particle case 5.6 Chern-Simons theory 6 The Feynman path integral for anyons 6.1 Eigenstates for position and momentum 6.2 The path integral 6.3 Conjugation classes in SN 6.4 The non-interacting case 6.5 Duality of Feynman and Schroedinger quantization 7 The harmonic oscillator 7.1 The two-dimensional harmonic oscillator 7.2 Two anyons in a harmonic oscillator potential 7.3 More than two anyons 7.4 The three-anyon problem 8 The anyon gas 8.1 The cluster and virial expansions 8.2 First and second order perturbative results 8.3 Regularization by periodic boundary conditions 8.4 Regularization by a harmonic oscillator potential 8.5 Bosons and fermions 8.6 Two anyons 8.7 Three anyons 8.8 The Monte Carlo method 8.9 The path integral representation of the coefficients GP 8.10 Exact and approximate polynomials 8.11 The fourth virial coefficient of anyons 8.12 Two polynomial theorems 9 Charged particles in a constant magnetic field 9.1 One particle in a magnetic field 9.2 Two anyons in a magnetic field 9.3 The anyon gas in a magnetic field 10 Interchange phases and geometric phases 10.1 Introduction to geometric phases 10.2 One particle in a magnetic field 10.3 Two particles in a magnetic field 10.4 Interchange of two anyons in potential wells 10.5 Laughlin's theory of the fractional quantum Hall effect

  15. Spherical Magnetic Vortex in an External Potential Field: A Dissipative Contraction

    NASA Astrophysics Data System (ADS)

    Solov'ev, A. A.

    2013-09-01

    We consider the dissipative evolution of a spherical magnetic vortex with a force-free internal structure, located in a resistive medium and held in equilibrium by the potential external field. The magnetic field inside the sphere is force-free (the model of Chandrasekhar in Proc. Natl. Acad. Sci. 42, 1, 1956). Topologically, it is a set of magnetic toroids enclosed in spherical layers. A new exact MHD solution has been derived, describing a slow, uniform, radial compression of a magnetic spheroid under the pressure of an ambient field, when the plasma density and pressure are growing inside it. There is no dissipation in the potential field outside the sphere, but inside the sphere, where the current density can be high enough, the magnetic energy is continuously converted into heat. Joule dissipation lowers the magnetic pressure inside the sphere, which balances the pressure of the ambient field. This results in radial contraction of the magnetic sphere with a speed defined by the conductivity of the plasma and the characteristic spatial scale of the magnetic field inside the sphere. Formally, the sphere shrinks to zero within a finite time interval (magnetic collapse). The time of compression can be relatively small, within a day, even for a sphere with a radius of about 1 Mm, if the magnetic helicity trapped initially in the sphere (which is proportional to the number of magnetic toroids in the sphere) is quite large. The magnetic system is open along its axis of symmetry. On this axis, the magnetic and electric fields are strictly radial and sign-variable along the radius, so the plasma will be ejected along the axis of magnetic sphere outwards in both directions (as jets) at a rate much higher than the diffusive one, and the charged particles will be accelerated unevenly, in spurts, creating quasi-regular X-ray spikes. The applications of the solution to solar flares are discussed.

  16. Magnetic particle capture for biomagnetic fluid flow in stenosed aortic bifurcation considering particle-fluid coupling

    NASA Astrophysics Data System (ADS)

    Bose, Sayan; Banerjee, Moloy

    2015-07-01

    Magnetic nanoparticles drug carriers continue to attract considerable interest for drug targeting in the treatment of cancer and other pathological conditions. Guiding magnetic iron oxide nanoparticles with the help of an external magnetic field to its target is the basic principle behind the Magnetic Drug Targeting (MDT). It is essential to couple the ferrohydrodynamic (FHD) and magnetohydrodynamic (MHD) principles when magnetic fields are applied to blood as a biomagnetic fluid. The present study is devoted to study on MDT technique by particle tracking in the presence of a non uniform magnetic field in a stenosed aortic bifurcation. The present numerical model of biomagnetic fluid dynamics (BFD) takes into accounts both magnetization and electrical conductivity of blood. The blood flow in the bifurcation is considered to be incompressible and Newtonian. An Eulerian-Lagrangian technique is adopted to resolve the hemodynamic flow and the motion of the magnetic particles in the flow using ANSYS FLUENT two way particle-fluid coupling. An implantable infinitely long cylindrical current carrying conductor is used to create the requisite magnetic field. Targeted transport of the magnetic particles in a partly occluded vessel differs distinctly from the same in a regular unblocked vessel. Results concerning the velocity and temperature field indicate that the presence of the magnetic field influences the flow field considerably and the disturbances increase as the magnetic field strength increases. The insert position is also varied to observe the variation in flow as well as temperature field. Parametric investigation is conducted and the influence of the particle size (dp), flow Reynolds number (Re) and external magnetic field strength (B0) on the "capture efficiency" (CE) is reported. The difference in CE is also studied for different particle loading condition. According to the results, the magnetic field increased the particle concentration in the target region. Analysis shows that there exists an optimum regime of operating parameters for which deposition of the drug carrying magnetic particles in a target zone on the partly occluded vessel wall can be maximized. The results provide useful design bases for in vitro set up for the investigation of MDT in stenosed blood vessels.

  17. Effect of a nighttime magnetic field exposure on sleep patterns in young women.

    PubMed

    Tworoger, Shelley S; Davis, Scott; Emerson, Scott S; Mirick, Dana K; Lentz, Martha J; McTiernan, Anne

    2004-08-01

    Since poor sleep quality is associated with multiple health problems, it is important to understand factors that may affect sleep patterns. The purpose of this study was to determine the effect of a continuous, 60-Hz, nighttime magnetic field exposure on sleep outcomes in young women sleeping at home. The study was a randomized crossover trial, comparing intervention (0.5-1.0 micro T above ambient levels) with ambient magnetic field levels, during two 5-night measurement periods. Subjects lived in the Seattle, Washington, area and were 20-40 years of age, had regular menstrual cycles, were not taking oral contraceptives, and had not breastfed or been pregnant during the previous year. The study was conducted between March and September of 2001. Sleep outcomes were measured via actigraphy. The range of magnetic field exposure was 0.001-0.50 micro T during the ambient period and 0.41-1.21 micro T during the intervention period. Sleep outcomes were not significantly different between the intervention and the ambient measurement periods. The intervention magnetic field had no effect on sleep patterns, suggesting that this exposure may not be an important factor in predicting sleep of young women who sleep at home.

  18. Mercury's Internal Magnetic Field: Results from MESSENGER's Search for Remanent Crustal Magnetization Associated with Impact Basins

    NASA Astrophysics Data System (ADS)

    Purucker, M. E.; Johnson, C. L.; Nicholas, J. B.; Philpott, L. C.; Korth, H.; Anderson, B. J.; Head, J. W., III; Phillips, R. J.; Solomon, S. C.

    2014-12-01

    Magnetic field measurements obtained by the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft in orbit around Mercury have entered a new phase since April 2014, with periapsis altitudes below 200 km. MESSENGER is now obtaining magnetic profiles across large impact features at altitudes less than the horizontal scale of those features. We use data from this latest phase to investigate evidence for remanent crustal magnetization specifically associated with impact basins and large craters. The spatial resolution of magnetic field measurements for investigating crustal magnetization is approximately equal to the altitude of the observations. We focus on large impact features because their relative ages provide a powerful chronological tool for interpreting any associated magnetic signatures. We examine profiles across large impact basins such as Caloris, Shakespeare, Budh-Sobkou and Goethe. For example, coverage over Caloris during the last year of the mission will be largely at night and will comprise 18 profiles with altitudes between 125 and 200 km and 12 profiles with altitudes between 50 and 125 km over the northern part of the basin. We use large-scale magnetospheric models developed with MESSENGER data to remove contributions from the offset axial dipole, magnetopause, and magnetotail. The residual magnetic fields above 200 km are still dominated by poorly understood magnetospheric fields such as those from the cusp and from Birkeland currents. We empirically average, or exclude observations from these local times, in order to search for repeatable internal field signals. We use local basis functions such as equivalent source dipoles, applied with regularization tools, in order to map the altitude-normalized magnetic field from internal sources. These internal sources may comprise both crustal and core contributions, and we use the information from the along-track magnetic gradient in order to separate these contributions.

  19. Colloidal domain lithography for regularly arranged artificial magnetic out-of-plane monodomains in Au/Co/Au layers.

    PubMed

    Kuświk, Piotr; Ehresmann, Arno; Tekielak, Maria; Szymański, Bogdan; Sveklo, Iosif; Mazalski, Piotr; Engel, Dieter; Kisielewski, Jan; Lengemann, Daniel; Urbaniak, Maciej; Schmidt, Christoph; Maziewski, Andrzej; Stobiecki, Feliks

    2011-03-04

    Regularly arranged magnetic out-of-plane patterns in continuous and flat films are promising for applications in data storage technology (bit patterned media) or transport of individual magnetic particles. Whereas topographic magnetic structures are fabricated by standard lithographical techniques, the fabrication of regularly arranged artificial domains in topographically flat films is difficult, since the free energy minimization determines the existence, shape, and regularity of domains. Here we show that keV He(+) ion bombardment of Au/Co/Au layer systems through a colloidal mask of hexagonally arranged spherical polystyrene beads enables magnetic patterning of regularly arranged cylindrical magnetic monodomains with out-of-plane magnetization embedded in a ferromagnetic matrix with easy-plane anisotropy. This colloidal domain lithography creates artificial domains via periodic lateral anisotropy variations induced by periodic defect density modulations. Magnetization reversal of the layer system observed by magnetic force microscopy shows individual disc switching indicating monodomain states.

  20. Structure of small-scale magnetic fields in the kinematic dynamo theory.

    PubMed

    Schekochihin, Alexander; Cowley, Steven; Maron, Jason; Malyshkin, Leonid

    2002-01-01

    A weak fluctuating magnetic field embedded into a a turbulent conducting medium grows exponentially while its characteristic scale decays. In the interstellar medium and protogalactic plasmas, the magnetic Prandtl number is very large, so a broad spectrum of growing magnetic fluctuations is excited at small (subviscous) scales. The condition for the onset of nonlinear back reaction depends on the structure of the field lines. We study the statistical correlations that are set up in the field pattern and show that the magnetic-field lines possess a folding structure, where most of the scale decrease is due to the field variation across itself (rapid transverse direction reversals), while the scale of the field variation along itself stays approximately constant. Specifically, we find that, though both the magnetic energy and the mean-square curvature of the field lines grow exponentially, the field strength and the field-line curvature are anticorrelated, i.e., the curved field is relatively weak, while the growing field is relatively flat. The detailed analysis of the statistics of the curvature shows that it possesses a stationary limiting distribution with the bulk located at the values of curvature comparable to the characteristic wave number of the velocity field and a power tail extending to large values of curvature where it is eventually cut off by the resistive regularization. The regions of large curvature, therefore, occupy only a small fraction of the total volume of the system. Our theoretical results are corroborated by direct numerical simulations. The implication of the folding effect is that the advent of the Lorentz back reaction occurs when the magnetic energy approaches that of the smallest turbulent eddies. Our results also directly apply to the problem of statistical geometry of the material lines in a random flow.

  1. The effect of the geomagnetic field on negative voltage spheres in the ionospheric plasma: Fluid simulation

    NASA Astrophysics Data System (ADS)

    Ma, T.-Z.; Schunk, R. W.

    1994-07-01

    Experiments involving the interaction of spherical conducting objects biases with hight voltages in the Low-Earth-Orbit (LEO) environment have been conducted and designed. In these experiments, both positive and negative voltages have been applied to the spheres. Previously, there have been theoretical and numerical studies of positive voltage spheres in plasmas with and without magnetic fields. There also have been studies of negative voltage objects in unmagnetized plasmas. Here, we used a fluid model to study the plasma response to a negative voltage sphere immersed in a magnetized plasma. Our main purpose was to investigate the role of the magnetic field during the early-time interaction between the negative voltage sphere and the ambient plasma in the LEO environment. In this study, different applied voltages, magnetic field strengths, and rise-times of the applied voltages were considered. It was found that with the strength of the geomagnetic field the ions are basically not affected by the magnetic field on the time scale of hundreds of plasma periods considered in this study. The ion density distribution around the sphere and the collected ion flux by the sphere are basically the same as in the case without the magnetic field. The electron motion is strongly affected by the magnetic field. One effect is to change the nature of the electron over-shoot oscillation from regular to somewhat turbulent. Although the electrons move along the magnetic field much more easily than across the magnetic field, some redirection effect causes the electron density to distribute as if the magnetic field effect is minimal. The sheath struture and the electric field around the sphere tend to be spherical. A finite rise-time of the applied voltage reduces the oscillatory activities and delays the ion acceleration. However, the effect of the rise-time depends on both the duration of the rise-time and the ion plasma period.

  2. An algorithm for deriving core magnetic field models from the Swarm data set

    NASA Astrophysics Data System (ADS)

    Rother, Martin; Lesur, Vincent; Schachtschneider, Reyko

    2013-11-01

    In view of an optimal exploitation of the Swarm data set, we have prepared and tested software dedicated to the determination of accurate core magnetic field models and of the Euler angles between the magnetic sensors and the satellite reference frame. The dedicated core field model estimation is derived directly from the GFZ Reference Internal Magnetic Model (GRIMM) inversion and modeling family. The data selection techniques and the model parameterizations are similar to what were used for the derivation of the second (Lesur et al., 2010) and third versions of GRIMM, although the usage of observatory data is not planned in the framework of the application to Swarm. The regularization technique applied during the inversion process smoothes the magnetic field model in time. The algorithm to estimate the Euler angles is also derived from the CHAMP studies. The inversion scheme includes Euler angle determination with a quaternion representation for describing the rotations. It has been built to handle possible weak time variations of these angles. The modeling approach and software have been initially validated on a simple, noise-free, synthetic data set and on CHAMP vector magnetic field measurements. We present results of test runs applied to the synthetic Swarm test data set.

  3. Derivation of Inviscid Quasi-geostrophic Equation from Rotational Compressible Magnetohydrodynamic Flows

    NASA Astrophysics Data System (ADS)

    Kwon, Young-Sam; Lin, Ying-Chieh; Su, Cheng-Fang

    2018-04-01

    In this paper, we consider the compressible models of magnetohydrodynamic flows giving rise to a variety of mathematical problems in many areas. We derive a rigorous quasi-geostrophic equation governed by magnetic field from the rotational compressible magnetohydrodynamic flows with the well-prepared initial data. It is a first derivation of quasi-geostrophic equation governed by the magnetic field, and the tool is based on the relative entropy method. This paper covers two results: the existence of the unique local strong solution of quasi-geostrophic equation with the good regularity and the derivation of a quasi-geostrophic equation.

  4. Magnetization plateau as a result of the uniform and gradual electron doping in a coupled spin-electron double-tetrahedral chain

    NASA Astrophysics Data System (ADS)

    Gálisová, Lucia

    2017-11-01

    The double-tetrahedral chain in a longitudinal magnetic field, whose nodal lattice sites occupied by the localized Ising spins regularly alternate with triangular plaquettes with the dynamics described by the Hubbard model, is rigorously investigated. It is demonstrated that the uniform change of electron concentration controlled by the chemical potential in a combination with the competition between model parameters and the external magnetic field leads to the formation of one chiral and seven nonchiral phases at the absolute zero temperature. Rational plateaux at one-third and one-half of the saturation magnetization can also be identified in the low-temperature magnetization curves. On the other hand, the gradual electron doping results in 11 different ground-state regions that distinguish from each other by the evolution of the electron distribution during this process. Several doping-dependent magnetization plateaux are observed in the magnetization process as a result of the continuous change of electron content in the model.

  5. Effects of magnetic fields during high voltage live-line maintenance

    NASA Astrophysics Data System (ADS)

    Göcsei, Gábor; Kiss, István, Dr; Németh, Bálint

    2015-10-01

    In case of transmission and distribution networks, extra low frequency (typically 50 or 60 Hz) electric and magnetic fields have to be taken into consideration separately from each other. Health effects have been documented from exposures to both types of fields. Magnetic fields are qualified as possibly carcinogenic to humans (category “2B”) by WHO's cancer research institute, International Agency for Research on Cancer (IARC), so it is essential to protect the workers against their harmful effects. During live-line maintenance (LLM) electric fields can be shielded effectively by different kinds of conductive clothing, which are enclosed metal surfaces acting as a Faraday-cage. In practice laboratory measurements also prove their efficiency, the required shielding ratio is above 99% by the related standard.. A set of measurements have proved that regular conductive clothing used against the electric fields cannot shield the magnetic fields effectively at all. This paper introduces the possible risks of LLM from the aspect of the health effects of magnetic fields. Although in this case the principle of shielding the electric fields cannot be applied, new considerations in equipment design and technology can be used as a possible solution. Calculations and simulations based on the data of the Hungarian transmission network - which represents the European grid as a part of ENTSO-E - and high-current laboratory measurement results also prove the importance of the topic.

  6. Unconventional Magnetic Domain Structure in the Ferromagnetic Phase of MnP Single Crystals

    NASA Astrophysics Data System (ADS)

    Koyama, Tsukasa; Yano, Shin-ichiro; Togawa, Yoshihiko; Kousaka, Yusuke; Mori, Shigeo; Inoue, Katsuya; Kishine, Jun-ichiro; Akimitsu, Jun

    2012-04-01

    We have studied ferromagnetic (FM) structures in the FM phase of MnP single crystals by low-temperature Lorentz transmission electron microscopy and small-angle electron diffraction analysis. In Lorentz Fresnel micrographs, striped FM domain structures were observed at an external magnetic field less than 10 Oe in specimens with the ab-plane in their plane. From real- and reciprocal-space analyses, it was clearly identified that striped FM domains oriented to the c-axis appear with Bloch-type domain walls in the b-direction and order regularly along the a-axis with a constant separation less than 100 nm. Moreover, the magnetic chirality reverses in alternate FM domain walls. These specific spin configuration of striped FM domains will affect the magnetic phase transition from the FM phase to the proper screw spiral phase at low temperature or to the FAN phase in magnetic fields in MnP.

  7. MRI Estimates of Brain Iron Concentration in Normal Aging Using Quantitative Susceptibility Mapping

    PubMed Central

    Bilgic, Berkin; Pfefferbaum, Adolf; Rohlfing, Torsten; Sullivan, Edith V.; Adalsteinsson, Elfar

    2011-01-01

    Quantifying tissue iron concentration in vivo is instrumental for understanding the role of iron in physiology and in neurological diseases associated with abnormal iron distribution. Herein, we use recently-developed Quantitative Susceptibility Mapping (QSM) methodology to estimate the tissue magnetic susceptibility based on MRI signal phase. To investigate the effect of different regularization choices, we implement and compare ℓ1 and ℓ2 norm regularized QSM algorithms. These regularized approaches solve for the underlying magnetic susceptibility distribution, a sensitive measure of the tissue iron concentration, that gives rise to the observed signal phase. Regularized QSM methodology also involves a pre-processing step that removes, by dipole fitting, unwanted background phase effects due to bulk susceptibility variations between air and tissue and requires data acquisition only at a single field strength. For validation, performances of the two QSM methods were measured against published estimates of regional brain iron from postmortem and in vivo data. The in vivo comparison was based on data previously acquired using Field-Dependent Relaxation Rate Increase (FDRI), an estimate of MRI relaxivity enhancement due to increased main magnetic field strength, requiring data acquired at two different field strengths. The QSM analysis was based on susceptibility-weighted images acquired at 1.5T, whereas FDRI analysis used Multi-Shot Echo-Planar Spin Echo images collected at 1.5T and 3.0T. Both datasets were collected in the same healthy young and elderly adults. The in vivo estimates of regional iron concentration comported well with published postmortem measurements; both QSM approaches yielded the same rank ordering of iron concentration by brain structure, with the lowest in white matter and the highest in globus pallidus. Further validation was provided by comparison of the in vivo measurements, ℓ1-regularized QSM versus FDRI and ℓ2-regularized QSM versus FDRI, which again yielded perfect rank ordering of iron by brain structure. The final means of validation was to assess how well each in vivo method detected known age-related differences in regional iron concentrations measured in the same young and elderly healthy adults. Both QSM methods and FDRI were consistent in identifying higher iron concentrations in striatal and brain stem ROIs (i.e., caudate nucleus, putamen, globus pallidus, red nucleus, and substantia nigra) in the older than in the young group. The two QSM methods appeared more sensitive in detecting age differences in brain stem structures as they revealed differences of much higher statistical significance between the young and elderly groups than did FDRI. However, QSM values are influenced by factors such as the myelin content, whereas FDRI is a more specific indicator of iron content. Hence, FDRI demonstrated higher specificity to iron yet yielded noisier data despite longer scan times and lower spatial resolution than QSM. The robustness, practicality, and demonstrated ability of predicting the change in iron deposition in adult aging suggest that regularized QSM algorithms using single-field-strength data are possible alternatives to tissue iron estimation requiring two field strengths. PMID:21925274

  8. Core surface magnetic field evolution 2000-2010

    NASA Astrophysics Data System (ADS)

    Finlay, C. C.; Jackson, A.; Gillet, N.; Olsen, N.

    2012-05-01

    We present new dedicated core surface field models spanning the decade from 2000.0 to 2010.0. These models, called gufm-sat, are based on CHAMP, Ørsted and SAC-C satellite observations along with annual differences of processed observatory monthly means. A spatial parametrization of spherical harmonics up to degree and order 24 and a temporal parametrization of sixth-order B-splines with 0.25 yr knot spacing is employed. Models were constructed by minimizing an absolute deviation measure of misfit along with measures of spatial and temporal complexity at the core surface. We investigate traditional quadratic or maximum entropy regularization in space, and second or third time derivative regularization in time. Entropy regularization allows the construction of models with approximately constant spectral slope at the core surface, avoiding both the divergence characteristic of the crustal field and the unrealistic rapid decay typical of quadratic regularization at degrees above 12. We describe in detail aspects of the models that are relevant to core dynamics. Secular variation and secular acceleration are found to be of lower amplitude under the Pacific hemisphere where the core field is weaker. Rapid field evolution is observed under the eastern Indian Ocean associated with the growth and drift of an intense low latitude flux patch. We also find that the present axial dipole decay arises from a combination of subtle changes in the southern hemisphere field morphology.

  9. Commensurate vortex configurations in thin superconducting films nanostructured by square lattice of magnetic dots

    NASA Astrophysics Data System (ADS)

    Milošević, M. V.; Peeters, F. M.

    2004-05-01

    Within the phenomenological Ginzburg-Landau (GL) theory, we investigate the vortex structure of a thin superconducting film (SC) with a regular matrix of ferromagnetic dots (FD) deposited on top of it. The vortex pinning properties of such a magnetic lattice are studied, and the field polarity dependent votex pinning is observed. The exact vortex configuration depends on the size of the magnetic dots, their polarity, periodicity of the FD-rooster and the properties of the SC expressed through the effective Ginzburg-Landau parameter κ*.

  10. The Maximum Entropy Limit of Small-scale Magnetic Field Fluctuations in the Quiet Sun

    NASA Astrophysics Data System (ADS)

    Gorobets, A. Y.; Berdyugina, S. V.; Riethmüller, T. L.; Blanco Rodríguez, J.; Solanki, S. K.; Barthol, P.; Gandorfer, A.; Gizon, L.; Hirzberger, J.; van Noort, M.; Del Toro Iniesta, J. C.; Orozco Suárez, D.; Schmidt, W.; Martínez Pillet, V.; Knölker, M.

    2017-11-01

    The observed magnetic field on the solar surface is characterized by a very complex spatial and temporal behavior. Although feature-tracking algorithms have allowed us to deepen our understanding of this behavior, subjectivity plays an important role in the identification and tracking of such features. In this paper, we continue studies of the temporal stochasticity of the magnetic field on the solar surface without relying either on the concept of magnetic features or on subjective assumptions about their identification and interaction. We propose a data analysis method to quantify fluctuations of the line-of-sight magnetic field by means of reducing the temporal field’s evolution to the regular Markov process. We build a representative model of fluctuations converging to the unique stationary (equilibrium) distribution in the long time limit with maximum entropy. We obtained different rates of convergence to the equilibrium at fixed noise cutoff for two sets of data. This indicates a strong influence of the data spatial resolution and mixing-polarity fluctuations on the relaxation process. The analysis is applied to observations of magnetic fields of the relatively quiet areas around an active region carried out during the second flight of the Sunrise/IMaX and quiet Sun areas at the disk center from the Helioseismic and Magnetic Imager on board the Solar Dynamics Observatory satellite.

  11. Self-assembly of nanorod motors into geometrically regular multimers and their propulsion by ultrasound.

    PubMed

    Ahmed, Suzanne; Gentekos, Dillon T; Fink, Craig A; Mallouk, Thomas E

    2014-11-25

    Segmented gold-ruthenium nanorods (300 ± 30 nm in diameter and 2.0 ± 0.2 μm in length) with thin Ni segments at one end assemble into few-particle, geometrically regular dimers, trimers, and higher multimers while levitated in water by ∼4 MHz ultrasound at the midpoint of a cylindrical acoustic cell. The assembly of the nanorods into multimers is controlled by interactions between the ferromagnetic Ni segments. These assemblies are propelled autonomously in fluids by excitation with ∼4 MHz ultrasound and exhibit several distinct modes of motion. Multimer assembly and disassembly are dynamic in the ultrasonic field. The relative numbers of monomers, dimers, trimers, and higher multimers are dependent upon the number density of particles in the fluid and their speed, which is in turn determined by the ultrasonic power applied. The magnetic binding energy of the multimers estimated from their speed-dependent equilibria is in agreement with the calculated strength of the magnetic dipole interactions. These autonomously propelled multimers can also be steered with an external magnetic field and remain intact after removal from the acoustic chamber for SEM imaging.

  12. Grand Minima and Equatorward Propagation in a Cycling Stellar Convective Dynamo

    NASA Astrophysics Data System (ADS)

    Augustson, Kyle C.; Brun, Allan Sacha; Miesch, Mark; Toomre, Juri

    2015-08-01

    The 3-D magnetohydrodynamic (MHD) Anelastic Spherical Harmonic (ASH) code, using slope-limited diffusion, is employed to capture convective and dynamo processes achieved in a global-scale stellar convection simulation for a model solar-mass star rotating at three times the solar rate. The dynamo generated magnetic fields possesses many time scales, with a prominent polarity cycle occurring roughly every 6.2 years. The magnetic field forms large-scale toroidal wreaths, whose formation is tied to the low Rossby number of the convection in this simulation. The polarity reversals are linked to the weakened differential rotation and a resistive collapse of the large-scale magnetic field. An equatorial migration of the magnetic field is seen, which is due to the strong modulation of the differential rotation rather than a dynamo wave. A poleward migration of magnetic flux from the equator eventually leads to the reversal of the polarity of the high-latitude magnetic field. This simulation also enters an interval with reduced magnetic energy at low latitudes lasting roughly 16 years (about 2.5 polarity cycles), during which the polarity cycles are disrupted and after which the dynamo recovers its regular polarity cycles. An analysis of this grand minimum reveals that it likely arises through the interplay of symmetric and antisymmetric dynamo families. This intermittent dynamo state potentially results from the simulations relatively low magnetic Prandtl number. A mean-field-based analysis of this dynamo simulation demonstrates that it is of the α-Ω type. The time scales that appear to be relevant to the magnetic polarity reversal are also identified.

  13. Grand Minima and Equatorward Propagation in a Cycling Stellar Convective Dynamo

    NASA Astrophysics Data System (ADS)

    Augustson, Kyle; Brun, Allan Sacha; Miesch, Mark; Toomre, Juri

    2015-08-01

    The 3D MHD Anelastic Spherical Harmonic code, using slope-limited diffusion, is employed to capture convective and dynamo processes achieved in a global-scale stellar convection simulation for a model solar-mass star rotating at three times the solar rate. The dynamo-generated magnetic fields possesses many timescales, with a prominent polarity cycle occurring roughly every 6.2 years. The magnetic field forms large-scale toroidal wreaths, whose formation is tied to the low Rossby number of the convection in this simulation. The polarity reversals are linked to the weakened differential rotation and a resistive collapse of the large-scale magnetic field. An equatorial migration of the magnetic field is seen, which is due to the strong modulation of the differential rotation rather than a dynamo wave. A poleward migration of magnetic flux from the equator eventually leads to the reversal of the polarity of the high-latitude magnetic field. This simulation also enters an interval with reduced magnetic energy at low latitudes lasting roughly 16 years (about 2.5 polarity cycles), during which the polarity cycles are disrupted and after which the dynamo recovers its regular polarity cycles. An analysis of this grand minimum reveals that it likely arises through the interplay of symmetric and antisymmetric dynamo families. This intermittent dynamo state potentially results from the simulation’s relatively low magnetic Prandtl number. A mean-field-based analysis of this dynamo simulation demonstrates that it is of the α-Ω type. The timescales that appear to be relevant to the magnetic polarity reversal are also identified.

  14. GRAND MINIMA AND EQUATORWARD PROPAGATION IN A CYCLING STELLAR CONVECTIVE DYNAMO

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Augustson, Kyle; Miesch, Mark; Brun, Allan Sacha

    2015-08-20

    The 3D MHD Anelastic Spherical Harmonic code, using slope-limited diffusion, is employed to capture convective and dynamo processes achieved in a global-scale stellar convection simulation for a model solar-mass star rotating at three times the solar rate. The dynamo-generated magnetic fields possesses many timescales, with a prominent polarity cycle occurring roughly every 6.2 years. The magnetic field forms large-scale toroidal wreaths, whose formation is tied to the low Rossby number of the convection in this simulation. The polarity reversals are linked to the weakened differential rotation and a resistive collapse of the large-scale magnetic field. An equatorial migration of themore » magnetic field is seen, which is due to the strong modulation of the differential rotation rather than a dynamo wave. A poleward migration of magnetic flux from the equator eventually leads to the reversal of the polarity of the high-latitude magnetic field. This simulation also enters an interval with reduced magnetic energy at low latitudes lasting roughly 16 years (about 2.5 polarity cycles), during which the polarity cycles are disrupted and after which the dynamo recovers its regular polarity cycles. An analysis of this grand minimum reveals that it likely arises through the interplay of symmetric and antisymmetric dynamo families. This intermittent dynamo state potentially results from the simulation’s relatively low magnetic Prandtl number. A mean-field-based analysis of this dynamo simulation demonstrates that it is of the α-Ω type. The timescales that appear to be relevant to the magnetic polarity reversal are also identified.« less

  15. Inter-Wire Antiferromagnetic Exchange Interaction in Ni/Si-Ferromagnetic/Semiconductor Nanocomposites

    NASA Astrophysics Data System (ADS)

    Granitzer, P.; Rumpf, K.; Hofmayer, M.; Krenn, H.; Pölt, P.; Reichmann, A.; Hofer, F.

    2007-04-01

    A matrix of mesoporous silicon offering an array of quasi 1-dimensional oriented pores of high aspect ratio perpendicular to the sample surface has been produced. This porous silicon (PS) skeleton is filled with Ni in a further process-step to achieve ferromagnetic metallic nanostructures within the channels. This produced silicon based nanocomposite is compatible with state-of-the-art silicon technology. Beside the vertical magnetic surface anisotropy of this Ni-filled composite the nearly monodisperse distribution of pore diameters and its regular arrangement in a quasi 2-dimensional lattice provides novel magnetic phenomena like a depression of the magnetization curve at magnetic fields beyond 2T, which can be interpreted as a field induced antiferromagnetic exchange interaction between Ni-wires which is strongly influenced by magnetostrictive stresses at the Ni/Si-interface. 2007 American Institute of Physics

  16. Image-guided regularization level set evolution for MR image segmentation and bias field correction.

    PubMed

    Wang, Lingfeng; Pan, Chunhong

    2014-01-01

    Magnetic resonance (MR) image segmentation is a crucial step in surgical and treatment planning. In this paper, we propose a level-set-based segmentation method for MR images with intensity inhomogeneous problem. To tackle the initialization sensitivity problem, we propose a new image-guided regularization to restrict the level set function. The maximum a posteriori inference is adopted to unify segmentation and bias field correction within a single framework. Under this framework, both the contour prior and the bias field prior are fully used. As a result, the image intensity inhomogeneity can be well solved. Extensive experiments are provided to evaluate the proposed method, showing significant improvements in both segmentation and bias field correction accuracies as compared with other state-of-the-art approaches. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Regularized Biot-Savart Laws for Modeling Magnetic Configurations with Flux Ropes

    NASA Astrophysics Data System (ADS)

    Titov, V. S.; Downs, C.; Mikic, Z.; Torok, T.; Linker, J.

    2017-12-01

    Many existing models assume that magnetic flux ropes play a key role in solar flares and coronal mass ejections (CMEs). It is therefore important to develop efficient methods for constructing flux-rope configurations constrained by observed magnetic data and the initial morphology of CMEs. For this purpose, we have derived and implemented a compact analytical form that represents the magnetic field of a thin flux rope with an axis of arbitrary shape and a circular cross-section. This form implies that the flux rope carries axial current I and axial flux F, so that the respective magnetic field is the curl of the sum of toroidal and poloidal vector potentials proportional to I and F, respectively. We expressed the vector potentials in terms of modified Biot-Savart laws whose kernels are regularized at the axis in such a way that these laws define a cylindrical force-free flux rope with a parabolic profile of the axial current density, when the axis is straight. For the cases we have studied so far, we determined the shape of the rope axis by following the polarity inversion line of the eruptions' source region, using observed magnetograms. The height variation along the axis and other flux-rope parameters are estimated by means of potential field extrapolations. Using this heuristic approach, we were able to construct pre-eruption configurations for the 2009 February13 and 2011 October 1 CME events. These applications demonstrate the flexibility and efficiency of our new method for energizing pre-eruptive configurations in MHD simulations of CMEs. We discuss possible ways of optimizing the axis paths and other extensions of the method in order to make it more useful and robust. Research supported by NSF, NASA's HSR and LWS Programs, and AFOSR.

  18. The Helioseismic and Magnetic Imager (HMI) Vector Magnetic Field Pipeline: Magnetohydrodynamics Simulation Module for the Global Solar Corona.

    PubMed

    Hayashi, K; Hoeksema, J T; Liu, Y; Bobra, M G; Sun, X D; Norton, A A

    Time-dependent three-dimensional magnetohydrodynamics (MHD) simulation modules are implemented at the Joint Science Operation Center (JSOC) of the Solar Dynamics Observatory (SDO). The modules regularly produce three-dimensional data of the time-relaxed minimum-energy state of the solar corona using global solar-surface magnetic-field maps created from Helioseismic and Magnetic Imager (HMI) full-disk magnetogram data. With the assumption of a polytropic gas with specific-heat ratio of 1.05, three types of simulation products are currently generated: i) simulation data with medium spatial resolution using the definitive calibrated synoptic map of the magnetic field with a cadence of one Carrington rotation, ii) data with low spatial resolution using the definitive version of the synchronic frame format of the magnetic field, with a cadence of one day, and iii) low-resolution data using near-real-time (NRT) synchronic format of the magnetic field on a daily basis. The MHD data available in the JSOC database are three-dimensional, covering heliocentric distances from 1.025 to 4.975 solar radii, and contain all eight MHD variables: the plasma density, temperature, and three components of motion velocity, and three components of the magnetic field. This article describes details of the MHD simulations as well as the production of the input magnetic-field maps, and details of the products available at the JSOC database interface. To assess the merits and limits of the model, we show the simulated data in early 2011 and compare with the actual coronal features observed by the Atmospheric Imaging Assembly (AIA) and the near-Earth in-situ data.

  19. The relation between magnetic and material arms in models for spiral galaxies

    NASA Astrophysics Data System (ADS)

    Moss, D.; Beck, R.; Sokoloff, D.; Stepanov, R.; Krause, M.; Arshakian, T. G.

    2013-08-01

    Context. Observations of polarized radio emission show that large-scale (regular) magnetic fields in spiral galaxies are not fully axisymmetric, but generally stronger in interarm regions. In some nearby galaxies such as NGC 6946 they are organized in narrow magnetic arms situated between the material spiral arms. Aims: The phenomenon of magnetic arms and their relation to the optical spiral arms (the material arms) calls for an explanation in the framework of galactic dynamo theory. Several possibilities have been suggested but are not completely satisfactory; here we attempt a consistent investigation. Methods: We use a 2D mean-field dynamo model in the no-z approximation and add injections of small-scale magnetic field, taken to result from supernova explosions, to represent the effects of dynamo action on smaller scales. This injection of small scale field is situated along the spiral arms, where star-formation mostly occurs. Results: A straightforward explanation of magnetic arms as a result of modulation of the dynamo mechanism by material arms struggles to produce pronounced magnetic arms, at least with realistic parameters, without introducing new effects such as a time lag between Coriolis force and α-effect. In contrast, by taking into account explicitly the small-scale magnetic field that is injected into the arms by the action of the star forming regions that are concentrated there, we can obtain dynamo models with magnetic structures of various forms that can be compared with magnetic arms. These are rather variable entities and their shape changes significantly on timescales of a few 100 Myr. Properties of magnetic arms can be controlled by changing the model parameters. In particular, a lower injection rate of small-scale field makes the magnetic configuration smoother and eliminates distinct magnetic arms. Conclusions: We conclude that magnetic arms can be considered as coherent magnetic structures generated by large-scale dynamo action, and associated with spatially modulated small-scale magnetic fluctuations, caused by enhanced star formation rates within the material arms.

  20. Density-functional theory for internal magnetic fields

    NASA Astrophysics Data System (ADS)

    Tellgren, Erik I.

    2018-01-01

    A density-functional theory is developed based on the Maxwell-Schrödinger equation with an internal magnetic field in addition to the external electromagnetic potentials. The basic variables of this theory are the electron density and the total magnetic field, which can equivalently be represented as a physical current density. Hence, the theory can be regarded as a physical current density-functional theory and an alternative to the paramagnetic current density-functional theory due to Vignale and Rasolt. The energy functional has strong enough convexity properties to allow a formulation that generalizes Lieb's convex analysis formulation of standard density-functional theory. Several variational principles as well as a Hohenberg-Kohn-like mapping between potentials and ground-state densities follow from the underlying convex structure. Moreover, the energy functional can be regarded as the result of a standard approximation technique (Moreau-Yosida regularization) applied to the conventional Schrödinger ground-state energy, which imposes limits on the maximum curvature of the energy (with respect to the magnetic field) and enables construction of a (Fréchet) differentiable universal density functional.

  1. Fluxgate magnetometer offset vector determination by the 3D mirror mode method

    NASA Astrophysics Data System (ADS)

    Plaschke, F.; Goetz, C.; Volwerk, M.; Richter, I.; Frühauff, D.; Narita, Y.; Glassmeier, K.-H.; Dougherty, M. K.

    2017-07-01

    Fluxgate magnetometers on-board spacecraft need to be regularly calibrated in flight. In low fields, the most important calibration parameters are the three offset vector components, which represent the magnetometer measurements in vanishing ambient magnetic fields. In case of three-axis stabilized spacecraft, a few methods exist to determine offsets: (I) by analysis of Alfvénic fluctuations present in the pristine interplanetary magnetic field, (II) by rolling the spacecraft around at least two axes, (III) by cross-calibration against measurements from electron drift instruments or absolute magnetometers, and (IV) by taking measurements in regions of well-known magnetic fields, e.g. cometary diamagnetic cavities. In this paper, we introduce a fifth option, the 3-dimensional (3D) mirror mode method, by which 3D offset vectors can be determined using magnetic field measurements of highly compressional waves, e.g. mirror modes in the Earth's magnetosheath. We test the method by applying it to magnetic field data measured by the following: the Time History of Events and Macroscale Interactions during Substorms-C spacecraft in the terrestrial magnetosheath, the Cassini spacecraft in the Jovian magnetosheath and the Rosetta spacecraft in the vicinity of comet 67P/Churyumov-Gerasimenko. The tests reveal that the achievable offset accuracies depend on the ambient magnetic field strength (lower strength meaning higher accuracy), on the length of the underlying data interval (more data meaning higher accuracy) and on the stability of the offset that is to be determined.

  2. Assessment of ALEGRA Computation for Magnetostatic Configurations

    DOE PAGES

    Grinfeld, Michael; Niederhaus, John Henry; Porwitzky, Andrew

    2016-03-01

    Here, a closed-form solution is described here for the equilibrium configurations of the magnetic field in a simple heterogeneous domain. This problem and its solution are used for rigorous assessment of the accuracy of the ALEGRA code in the quasistatic limit. By the equilibrium configuration we understand the static condition, or the stationary states without macroscopic current. The analysis includes quite a general class of 2D solutions for which a linear isotropic metallic matrix is placed inside a stationary magnetic field approaching a constant value H i° at infinity. The process of evolution of the magnetic fields inside and outsidemore » the inclusion and the parameters for which the quasi-static approach provides for self-consistent results is also explored. Lastly, it is demonstrated that under spatial mesh refinement, ALEGRA converges to the analytic solution for the interior of the inclusion at the expected rate, for both body-fitted and regular rectangular meshes.« less

  3. Comment on "Impurity spectra of graphene under electric and magnetic fields"

    NASA Astrophysics Data System (ADS)

    Van Pottelberge, R.; Zarenia, M.; Peeters, F. M.

    2018-05-01

    In a recent paper [Phys. Rev. B 89, 155403 (2014), 10.1103/PhysRevB.89.155403], the authors investigated the spectrum of a Coulomb impurity in graphene in the presence of magnetic and electric fields using the coupled series expansion approach. In the first part of their paper, they investigated how Coulomb impurity states collapse in the presence of a perpendicular magnetic field. We argue that the obtained spectrum does not give information about the atomic collapse and that their interpretation of the spectrum regarding atomic collapse is not correct. We also argue that the obtained results are only valid up to the dimensionless charge |α |=0.5 and, to obtain correct results for α >0.5 , a proper regularization of the Coulomb interaction is required. Here we present the correct numerical results for the spectrum for arbitrary values of α .

  4. Modified coulomb law in a strongly magnetized vacuum.

    PubMed

    Shabad, Anatoly E; Usov, Vladimir V

    2007-05-04

    We study the electric potential of a charge placed in a strong magnetic field B>B(0) approximately 4.4x10(13) G, as modified by the vacuum polarization. In such a field the electron Larmour radius is much less than its Compton length. At the Larmour distances a scaling law occurs, with the potential determined by a magnetic-field-independent function. The scaling regime implies short-range interaction, expressed by the Yukawa law. The electromagnetic interaction regains its long-range character at distances larger than the Compton length, the potential decreasing across B faster than along. Correction to the nonrelativistic ground-state energy of a hydrogenlike atom is found. In the limit B = infinity, the modified potential becomes the Dirac delta function plus a regular background. With this potential the ground-state energy is finite--the best pronounced effect of the vacuum polarization.

  5. Long-range dynamical magnetic order and spin tunneling in the cooperative paramagnetic states of the pyrochlore analogous spinel antiferromagnets CdYb2X4 (X =S or Se)

    NASA Astrophysics Data System (ADS)

    Dalmas de Réotier, P.; Marin, C.; Yaouanc, A.; Ritter, C.; Maisuradze, A.; Roessli, B.; Bertin, A.; Baker, P. J.; Amato, A.

    2017-10-01

    Magnetic systems with spins sitting on a lattice of corner sharing regular tetrahedra have been particularly prolific for the discovery of new magnetic states for the last two decades. The pyrochlore compounds have offered the playground for these studies, while little attention has been comparatively devoted to other compounds where the rare earth R occupies the same sublattice, e.g., the spinel chalcogenides Cd R2X4 (X =S or Se ). Here, we report measurements performed on powder samples of this series with R =Yb using specific heat, magnetic susceptibility, neutron diffraction, and muon-spin-relaxation measurements. The two compounds are found to be magnetically similar. They long-range order into structures described by the Γ5 irreducible representation. The magnitude of the magnetic moment at low temperature is 0.77 (1) and 0.62 (1) μB for X =S and Se , respectively. Persistent spin dynamics is present in the ordered states. The spontaneous field at the muon site is anomalously small, suggesting magnetic moment fragmentation. A double spin-flip tunneling relaxation mechanism is suggested in the cooperative paramagnetic state up to 10 K. The magnetic space groups into which magnetic moments of systems of corner-sharing regular tetrahedra order are provided for a number of insulating compounds characterized by null propagation wave vectors.

  6. A formalism for reference dosimetry in photon beams in the presence of a magnetic field

    NASA Astrophysics Data System (ADS)

    van Asselen, B.; Woodings, S. J.; Hackett, S. L.; van Soest, T. L.; Kok, J. G. M.; Raaymakers, B. W.; Wolthaus, J. W. H.

    2018-06-01

    A generic formalism is proposed for reference dosimetry in the presence of a magnetic field. Besides the regular correction factors from the conventional reference dosimetry formalisms, two factors are used to take into account magnetic field effects: (1) a dose conversion factor to correct for the change in local dose distribution and (2) a correction of the reading of the dosimeter used for the reference dosimetry measurements. The formalism was applied to the Elekta MRI-Linac, for which the 1.5 T magnetic field is orthogonal to the 7 MV photon beam. For this setup at reference conditions it was shown that the dose decreases with increasing magnetic field strength. The reduction in local dose for a 1.5 T transverse field, compared to no field is 0.51%  ±  0.03% at the reference point of 10 cm depth. The effect of the magnetic field on the reading of the dosimeter was measured for two waterproof ionization chambers types (PTW 30013 and IBA FC65-G) before and after multiple ramp-up and ramp-downs of the magnetic field. The chambers were aligned perpendicular and parallel to the magnetic field. The corrections of the readings of the perpendicularly aligned chambers were 0.967  ±  0.002 and 0.957  ±  0.002 for respectively the PTW and IBA ionization chambers. In the parallel alignment the corrections were small; 0.997  ±  0.001 and 1.002  ±  0.003 for the PTW and IBA chamber respectively. The change in reading due to the magnetic field can be measured by individual departments. The proposed formalism can be used to determine the correction factors needed to establish the absorbed dose in a magnetic field. It requires Monte Carlo simulations of the local dose and measurements of the response of the dosimeter. The formalism was successfully implemented for the MRI-Linac and is applicable for other field strengths and geometries.

  7. A formalism for reference dosimetry in photon beams in the presence of a magnetic field.

    PubMed

    van Asselen, B; Woodings, S J; Hackett, S L; van Soest, T L; Kok, J G M; Raaymakers, B W; Wolthaus, J W H

    2018-06-11

    A generic formalism is proposed for reference dosimetry in the presence of a magnetic field. Besides the regular correction factors from the conventional reference dosimetry formalisms, two factors are used to take into account magnetic field effects: (1) a dose conversion factor to correct for the change in local dose distribution and (2) a correction of the reading of the dosimeter used for the reference dosimetry measurements. The formalism was applied to the Elekta MRI-Linac, for which the 1.5 T magnetic field is orthogonal to the 7 MV photon beam. For this setup at reference conditions it was shown that the dose decreases with increasing magnetic field strength. The reduction in local dose for a 1.5 T transverse field, compared to no field is 0.51%  ±  0.03% at the reference point of 10 cm depth. The effect of the magnetic field on the reading of the dosimeter was measured for two waterproof ionization chambers types (PTW 30013 and IBA FC65-G) before and after multiple ramp-up and ramp-downs of the magnetic field. The chambers were aligned perpendicular and parallel to the magnetic field. The corrections of the readings of the perpendicularly aligned chambers were 0.967  ±  0.002 and 0.957  ±  0.002 for respectively the PTW and IBA ionization chambers. In the parallel alignment the corrections were small; 0.997  ±  0.001 and 1.002  ±  0.003 for the PTW and IBA chamber respectively. The change in reading due to the magnetic field can be measured by individual departments. The proposed formalism can be used to determine the correction factors needed to establish the absorbed dose in a magnetic field. It requires Monte Carlo simulations of the local dose and measurements of the response of the dosimeter. The formalism was successfully implemented for the MRI-Linac and is applicable for other field strengths and geometries.

  8. Mercury's Crustal Magnetic Field from MESSENGER Data

    NASA Astrophysics Data System (ADS)

    Plattner, A.; Johnson, C.

    2017-12-01

    We present a regional spherical-harmonic based crustal magnetic field model for Mercury between latitudes 45° and 70° N, derived from MESSENGER magnetic field data. In addition to contributions from the core dynamo, the bow shock, and the magnetotail, Mercury's magnetic field is also influenced by interactions with the solar wind. The resulting field-aligned currents generate magnetic fields that are typically an order of magnitude stronger at spacecraft altitude than the field from sources within Mercury's crust. These current sources lie within the satellite path and so the resulting magnetic field can not be modeled using potential-field approaches. However, these fields are organized in the local-time frame and their spatial structure differs from that of the smaller-scale crustal field. We account for large-scale magnetic fields in the local-time reference frame by subtracting from the data a low-degree localized vector spherical-harmonic model including curl components fitted at satellite altitude. The residual data exhibit consistent signals across individual satellite tracks in the body fixed reference frame, similar to those obtained via more rudimentary along-track filtering approaches. We fit a regional internal-source spherical-harmonic model to the night-time radial component of the residual data, allowing a maximum spherical-harmonic degree of L = 150. Due to the cross-track spacing of the satellite tracks, spherical-harmonic degrees beyond L = 90 are damped. The strongest signals in the resulting model are in the region around the Caloris Basin and over Suisei Planitia, as observed previously. Regularization imposed in the modeling allows the field to be downward continued to the surface. The strongest surface fields are 30 nT. Furthermore, the regional power spectrum of the model shows a downward dipping slope between spherical-harmonic degrees 40 and 80, hinting that the main component of the crustal field lies deep within the crust.

  9. Design and analysis of tubular permanent magnet linear generator for small-scale wave energy converter

    NASA Astrophysics Data System (ADS)

    Kim, Jeong-Man; Koo, Min-Mo; Jeong, Jae-Hoon; Hong, Keyyong; Cho, Il-Hyoung; Choi, Jang-Young

    2017-05-01

    This paper reports the design and analysis of a tubular permanent magnet linear generator (TPMLG) for a small-scale wave-energy converter. The analytical field computation is performed by applying a magnetic vector potential and a 2-D analytical model to determine design parameters. Based on analytical solutions, parametric analysis is performed to meet the design specifications of a wave-energy converter (WEC). Then, 2-D FEA is employed to validate the analytical method. Finally, the experimental result confirms the predictions of the analytical and finite element analysis (FEA) methods under regular and irregular wave conditions.

  10. A time-averaged regional model of the Hermean magnetic field

    NASA Astrophysics Data System (ADS)

    Thébault, E.; Langlais, B.; Oliveira, J. S.; Amit, H.; Leclercq, L.

    2018-03-01

    This paper presents the first regional model of the magnetic field of Mercury developed with mathematical continuous functions. The model has a horizontal spatial resolution of about 830 km at the surface of the planet, and it is derived without any a priori information about the geometry of the internal and external fields or regularization. It relies on an extensive dataset of the MESSENGER's measurements selected over its entire orbital lifetime between 2011 and 2015. A first order separation between the internal and the external fields over the Northern hemisphere is achieved under the assumption that the magnetic field measurements are acquired in a source free region within the magnetospheric cavity. When downward continued to the core-mantle boundary, the model confirms some of the general structures observed in previous studies such as the dominance of zonal field, the location of the North magnetic pole, and the global absence of significant small scale structures. The transformation of the regional model into a global spherical harmonic one provides an estimate for the axial quadrupole to axial dipole ratio of about g20/g10 = 0.27 . This is much lower than previous estimates of about 0.40. We note that it is possible to obtain a similar ratio provided that more weight is put on the location of the magnetic equator and less elsewhere.

  11. Interpretation of the Total Magnetic Field Anomalies Measured by the CHAMP Satellite Over a Part of Europe and the Pannonian Basin

    NASA Technical Reports Server (NTRS)

    Kis, K. I.; Taylor, Patrick T.; Wittmann, G.; Toronyi, B.; Puszta, S.

    2012-01-01

    In this study we interpret the magnetic anomalies at satellite altitude over a part of Europe and the Pannonian Basin. These anomalies are derived from the total magnetic measurements from the CHAMP satellite. The anomalies reduced to an elevation of 324 km. An inversion method is used to interpret the total magnetic anomalies over the Pannonian Basin. A three dimensional triangular model is used in the inversion. Two parameter distributions: Laplacian and Gaussian are investigated. The regularized inversion is numerically calculated with the Simplex and Simulated Annealing methods and the anomalous source is located in the upper crust. A probable source of the magnetization is due to the exsolution of the hematite-ilmenite minerals.

  12. Sensitivity regularization of the Cramér-Rao lower bound to minimize B1 nonuniformity effects in quantitative magnetization transfer imaging.

    PubMed

    Boudreau, Mathieu; Pike, G Bruce

    2018-05-07

    To develop and validate a regularization approach of optimizing B 1 insensitivity of the quantitative magnetization transfer (qMT) pool-size ratio (F). An expression describing the impact of B 1 inaccuracies on qMT fitting parameters was derived using a sensitivity analysis. To simultaneously optimize for robustness against noise and B 1 inaccuracies, the optimization condition was defined as the Cramér-Rao lower bound (CRLB) regularized by the B 1 -sensitivity expression for the parameter of interest (F). The qMT protocols were iteratively optimized from an initial search space, with and without B 1 regularization. Three 10-point qMT protocols (Uniform, CRLB, CRLB+B 1 regularization) were compared using Monte Carlo simulations for a wide range of conditions (e.g., SNR, B 1 inaccuracies, tissues). The B 1 -regularized CRLB optimization protocol resulted in the best robustness of F against B 1 errors, for a wide range of SNR and for both white matter and gray matter tissues. For SNR = 100, this protocol resulted in errors of less than 1% in mean F values for B 1 errors ranging between -10 and 20%, the range of B 1 values typically observed in vivo in the human head at field strengths of 3 T and less. Both CRLB-optimized protocols resulted in the lowest σ F values for all SNRs and did not increase in the presence of B 1 inaccuracies. This work demonstrates a regularized optimization approach for improving the robustness of auxiliary measurements (e.g., B 1 ) sensitivity of qMT parameters, particularly the pool-size ratio (F). Predicting substantially less B 1 sensitivity using protocols optimized with this method, B 1 mapping could even be omitted for qMT studies primarily interested in F. © 2018 International Society for Magnetic Resonance in Medicine.

  13. Theory of Friedel oscillations in monolayer graphene and group-VI dichalcogenides in a magnetic field

    NASA Astrophysics Data System (ADS)

    Rusin, Tomasz M.; Zawadzki, Wlodek

    2018-05-01

    Friedel oscillations (FO) of electron density caused by a deltalike neutral impurity in two-dimensional (2D) systems in a magnetic field are calculated. Three 2D cases are considered: free electron gas, monolayer graphene, and group-VI dichalcogenides. An exact form of the renormalized Green's function is used in the calculations, as obtained by a summation of the infinite Dyson series and regularization procedure. Final results are valid for large ranges of potential strengths V0, electron densities ne, magnetic fields B , and distances from the impurity r . Realistic models for the impurities are used. The first FO of induced density in WS2 are described by the relation Δ n (r ) ∝sin(2 π r /TFO) /r2 , where TFO∝1 /√{EF} . For weak impurity potentials, the amplitudes of FO are proportional to V0. For attractive potentials and high fields, the total electron density remains positive for all r . On the other hand, for low fields, repulsive potentials and small r , the total electron density may become negative, so that many-body effects should be taken into account.

  14. Passive shimming of a superconducting magnet using the L1-norm regularized least square algorithm.

    PubMed

    Kong, Xia; Zhu, Minhua; Xia, Ling; Wang, Qiuliang; Li, Yi; Zhu, Xuchen; Liu, Feng; Crozier, Stuart

    2016-02-01

    The uniformity of the static magnetic field B0 is of prime importance for an MRI system. The passive shimming technique is usually applied to improve the uniformity of the static field by optimizing the layout of a series of steel shims. The steel pieces are fixed in the drawers in the inner bore of the superconducting magnet, and produce a magnetizing field in the imaging region to compensate for the inhomogeneity of the B0 field. In practice, the total mass of steel used for shimming should be minimized, in addition to the field uniformity requirement. This is because the presence of steel shims may introduce a thermal stability problem. The passive shimming procedure is typically realized using the linear programming (LP) method. The LP approach however, is generally slow and also has difficulty balancing the field quality and the total amount of steel for shimming. In this paper, we have developed a new algorithm that is better able to balance the dual constraints of field uniformity and the total mass of the shims. The least square method is used to minimize the magnetic field inhomogeneity over the imaging surface with the total mass of steel being controlled by an L1-norm based constraint. The proposed algorithm has been tested with practical field data, and the results show that, with similar computational cost and mass of shim material, the new algorithm achieves superior field uniformity (43% better for the test case) compared with the conventional linear programming approach. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Proton imaging of stochastic magnetic fields

    NASA Astrophysics Data System (ADS)

    Bott, A. F. A.; Graziani, C.; Tzeferacos, P.; White, T. G.; Lamb, D. Q.; Gregori, G.; Schekochihin, A. A.

    2017-12-01

    Recent laser-plasma experiments (Fox et al., Phys. Rev. Lett., vol. 111, 2013, 225002; Huntington et al., Nat. Phys., vol. 11(2), 2015, 173-176 Tzeferacos et al., Phys. Plasmas, vol. 24(4), 2017a, 041404; Tzeferacos et al., 2017b, arXiv:1702.03016 [physics.plasm-ph]) report the existence of dynamically significant magnetic fields, whose statistical characterisation is essential for a complete understanding of the physical processes these experiments are attempting to investigate. In this paper, we show how a proton-imaging diagnostic can be used to determine a range of relevant magnetic-field statistics, including the magnetic-energy spectrum. To achieve this goal, we explore the properties of an analytic relation between a stochastic magnetic field and the image-flux distribution created upon imaging that field. This `Kugland image-flux relation' was previously derived (Kugland et al., Rev. Sci. Instrum. vol. 83(10), 2012, 101301) under simplifying assumptions typically valid in actual proton-imaging set-ups. We conclude that, as with regular electromagnetic fields, features of the beam's final image-flux distribution often display a universal character determined by a single, field-scale dependent parameter - the contrast parameter s/{\\mathcal{M}}lB$ - which quantifies the relative size of the correlation length B$ of the stochastic field, proton displacements s$ due to magnetic deflections and the image magnification . For stochastic magnetic fields, we establish the existence of four contrast regimes, under which proton-flux images relate to their parent fields in a qualitatively distinct manner. These are linear, nonlinear injective, caustic and diffusive. The diffusive regime is newly identified and characterised. The nonlinear injective regime is distinguished from the caustic regime in manifesting nonlinear behaviour, but as in the linear regime, the path-integrated magnetic field experienced by the beam can be extracted uniquely. Thus, in the linear and nonlinear injective regimes we show that the magnetic-energy spectrum can be obtained under a further statistical assumption of isotropy. This is not the case in the caustic or diffusive regimes. We discuss complications to the contrast-regime characterisation arising for inhomogeneous, multi-scale stochastic fields, which can encompass many contrast regimes, as well as limitations currently placed by experimental capabilities on one's ability to extract magnetic-field statistics. The results presented in this paper are of consequence in providing a comprehensive description of proton images of stochastic magnetic fields, with applications for improved analysis of proton-flux images.

  16. Roald Amundsen's contributions to our knowledge of the magnetic fields of the Earth and the Sun

    NASA Astrophysics Data System (ADS)

    Egeland, A.; Deehr, C. S.

    2011-12-01

    Roald Amundsen (1872-1928) was known as one of the premier polar explorers in the golden age of polar exploration. His accomplishments clearly document that he has contributed to knowledge in fields as diverse as ethnography, meteorology and geophysics. In this paper we will concentrate on his studies of the Earth's magnetic field. With his unique observations at the polar station Gjøahavn (geographic coordinates 68°37'10'' N; 95°53'25'' W), Amundsen was first to demonstrate, without doubt, that the north magnetic dip-pole does not have a permanent location, but steadily moves its position in a regular manner. In addition, his carefully calibrated measurements at high latitudes were the first and only observations of the Earth's magnetic field in the polar regions for decades until modern polar observatories were established. After a short review of earlier measurements of the geomagnetic field, we tabulate the facts regarding his measurements at the observatories and the eight field stations associated with the Gjøa expedition. The quality of his magnetic observations may be seen to be equal to that of the late 20th century observations by subjecting them to analytical techniques showing the newly discovered relationship between the diurnal variation of high latitude magnetic observations and the direction of the horizontal component of the interplanetary magnetic field (IMF By). Indeed, the observations at Gjøahavn offer a glimpse of the character of the solar wind 50 yr before it was known to exist. Our motivation for this paper is to illuminate the contributions of Amundsen as a scientist and to celebrate his attainment of the South Pole as an explorer 100 yr ago.

  17. Homogeneity and EPR metrics for assessment of regular grids used in CW EPR powder simulations.

    PubMed

    Crăciun, Cora

    2014-08-01

    CW EPR powder spectra may be approximated numerically using a spherical grid and a Voronoi tessellation-based cubature. For a given spin system, the quality of simulated EPR spectra depends on the grid type, size, and orientation in the molecular frame. In previous work, the grids used in CW EPR powder simulations have been compared mainly from geometric perspective. However, some grids with similar homogeneity degree generate different quality simulated spectra. This paper evaluates the grids from EPR perspective, by defining two metrics depending on the spin system characteristics and the grid Voronoi tessellation. The first metric determines if the grid points are EPR-centred in their Voronoi cells, based on the resonance magnetic field variations inside these cells. The second metric verifies if the adjacent Voronoi cells of the tessellation are EPR-overlapping, by computing the common range of their resonance magnetic field intervals. Beside a series of well known regular grids, the paper investigates a modified ZCW grid and a Fibonacci spherical code, which are new in the context of EPR simulations. For the investigated grids, the EPR metrics bring more information than the homogeneity quantities and are better related to the grids' EPR behaviour, for different spin system symmetries. The metrics' efficiency and limits are finally verified for grids generated from the initial ones, by using the original or magnetic field-constraint variants of the Spherical Centroidal Voronoi Tessellation method. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. A divergence-cleaning scheme for cosmological SPMHD simulations

    NASA Astrophysics Data System (ADS)

    Stasyszyn, F. A.; Dolag, K.; Beck, A. M.

    2013-01-01

    In magnetohydrodynamics (MHD), the magnetic field is evolved by the induction equation and coupled to the gas dynamics by the Lorentz force. We perform numerical smoothed particle magnetohydrodynamics (SPMHD) simulations and study the influence of a numerical magnetic divergence. For instabilities arising from {nabla }\\cdot {boldsymbol B} related errors, we find the hyperbolic/parabolic cleaning scheme suggested by Dedner et al. to give good results and prevent numerical artefacts from growing. Additionally, we demonstrate that certain current SPMHD implementations of magnetic field regularizations give rise to unphysical instabilities in long-time simulations. We also find this effect when employing Euler potentials (divergenceless by definition), which are not able to follow the winding-up process of magnetic field lines properly. Furthermore, we present cosmological simulations of galaxy cluster formation at extremely high resolution including the evolution of magnetic fields. We show synthetic Faraday rotation maps and derive structure functions to compare them with observations. Comparing all the simulations with and without divergence cleaning, we are able to confirm the results of previous simulations performed with the standard implementation of MHD in SPMHD at normal resolution. However, at extremely high resolution, a cleaning scheme is needed to prevent the growth of numerical {nabla }\\cdot {boldsymbol B} errors at small scales.

  19. Particle dynamics around time conformal regular black holes via Noether symmetries

    NASA Astrophysics Data System (ADS)

    Jawad, Abdul; Umair Shahzad, M.

    The time conformal regular black hole (RBH) solutions which are admitting the time conformal factor e𝜖g(t), where g(t) is an arbitrary function of time and 𝜖 is the perturbation parameter are being considered. The approximate Noether symmetries technique is being used for finding the function g(t) which leads to t α. The dynamics of particles around RBHs are also being discussed through symmetry generators which provide approximate energy as well as angular momentum of the particles. In addition, we analyze the motion of neutral and charged particles around two well known RBHs such as charged RBH using Fermi-Dirac distribution and Kehagias-Sftesos asymptotically flat RBH. We obtain the innermost stable circular orbit and corresponding approximate energy and angular momentum. The behavior of effective potential, effective force and escape velocity of the particles in the presence/absence of magnetic field for different values of angular momentum near horizons are also being analyzed. The stable and unstable regions of particle near horizons due to the effect of angular momentum and magnetic field are also explained.

  20. Study of the method of water-injected meat identifying based on low-field nuclear magnetic resonance

    NASA Astrophysics Data System (ADS)

    Xu, Jianmei; Lin, Qing; Yang, Fang; Zheng, Zheng; Ai, Zhujun

    2018-01-01

    The aim of this study to apply low-field nuclear magnetic resonance technique was to study regular variation of the transverse relaxation spectral parameters of water-injected meat with the proportion of water injection. Based on this, the method of one-way ANOVA and discriminant analysis was used to analyse the differences between these parameters in the capacity of distinguishing water-injected proportion, and established a model for identifying water-injected meat. The results show that, except for T 21b, T 22e and T 23b, the other parameters of the T 2 relaxation spectrum changed regularly with the change of water-injected proportion. The ability of different parameters to distinguish water-injected proportion was different. Based on S, P 22 and T 23m as the prediction variable, the Fisher model and the Bayes model were established by discriminant analysis method, qualitative and quantitative classification of water-injected meat can be realized. The rate of correct discrimination of distinguished validation and cross validation were 88%, the model was stable.

  1. Spin-up flow of ferrofluids: Asymptotic theory and experimental measurements

    NASA Astrophysics Data System (ADS)

    Chaves, Arlex; Zahn, Markus; Rinaldi, Carlos

    2008-05-01

    We treat the flow of ferrofluid in a cylindrical container subjected to a uniform rotating magnetic field, commonly referred to as spin-up flow. A review of theoretical and experimental results published since the phenomenon was first observed in 1967 shows that the experimental data from surface observations of tracer particles are inadequate for the assessment of bulk flow theories. We present direct measurements of the bulk flow by using the ultrasound velocity profile method, and torque measurements for water and kerosene based ferrofluids, showing the fluid corotating with the field in a rigid-body-like fashion throughout most of the bulk region of the container, except near the air-fluid interface, where it was observed to counter-rotate. We obtain an extension of the spin diffusion theory of Zaitsev and Shliomis, using the regular perturbation method. The solution is rigorously valid for αK≪√3/2 , where αK is the Langevin parameter evaluated by using the applied field magnitude, and provides a means for obtaining successively higher contributions of the nonlinearity of the equilibrium magnetization response and the spin-magnetization coupling in the magnetization relaxation equation. Because of limitations in the sensitivity of our apparatus, experiments were carried out under conditions for which α ˜1. Still, under such conditions the predictions of the analysis are in good qualitative agreement with the experimental observations. An estimate of the spin viscosity is obtained from comparison of flow measurements and theoretical results of the extrapolated wall velocity from the regular perturbation method. The estimated value lies in the range of 10-8-10-12kgms-1 and is several orders of magnitude higher than that obtained from dimensional analysis of a suspension of noninteracting particles in a Newtonian fluid.

  2. Impact of human activities on the geomagnetic field of Antarctica: a high resolution aeromagnetic survey over Mario Zucchelli Station.

    PubMed

    Armadillo, E; Bozzo, E; Gambetta, M; Rizzello, D

    2012-10-15

    Environmental protection of Antarctica is a fundamental principle of the Antarctic Treaty. Impact assessment and significance evaluation are due for every human activity on the remote continent. While chemical and biological contaminations are widely studied, very little is known about the electromagnetic pollution levels. In this frame, we have evaluated the significance of the impact of Mario Zucchelli Antarctic Station (Northern Victoria Land) on the local geomagnetic field. We have flown a high resolution aeromagnetic survey in drape mode at 320m over the Station, covering an area of 2km(2). The regional and the local field have been separated by a third order polynomial fitting. After the identification of the anthropic magnetic anomaly due to the Station, we have estimated the magnetic field at the ground level by downward continuation with an original inversion scheme regularized by a minimum gradient support functional to avoid high frequency noise effects. The resulting anthropic static magnetic field at ground extends up to 650m far from the Station and reaches a maximum peak to peak value of about 2800nT. This anthropic magnetic anomaly may interact with biological systems, raising the necessity to evaluate the significance of the static magnetic impact of human installations in order to protect the electromagnetic environment and the biota of Antarctica. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Middle- and low-latitude ionosphere response to 2015 St. Patrick's Day geomagnetic storm

    NASA Astrophysics Data System (ADS)

    Nava, B.; Rodríguez-Zuluaga, J.; Alazo-Cuartas, K.; Kashcheyev, A.; Migoya-Orué, Y.; Radicella, S. M.; Amory-Mazaudier, C.; Fleury, R.

    2016-04-01

    This paper presents a study of the St Patrick's Day storm of 2015, with its ionospheric response at middle and low latitudes. The effects of the storm in each longitudinal sector (Asian, African, American, and Pacific) are characterized using global and regional electron content. At the beginning of the storm, one or two ionospheric positive storm effects are observed depending on the longitudinal zones. After the main phase of the storm, a strong decrease in ionization is observed at all longitudes, lasting several days. The American region exhibits the most remarkable increase in vertical total electron content (vTEC), while in the Asian sector, the largest decrease in vTEC is observed. At low latitudes, using spectral analysis, we were able to separate the effects of the prompt penetration of the magnetospheric convection electric field (PPEF) and of the disturbance dynamo electric field (DDEF) on the basis of ground magnetic data. Concerning the PPEF, Earth's magnetic field oscillations occur simultaneously in the Asian, African, and American sectors, during southward magnetization of the Bz component of the interplanetary magnetic field. Concerning the DDEF, diurnal magnetic oscillations in the horizontal component H of the Earth's magnetic field exhibit a behavior that is opposed to the regular one. These diurnal oscillations are recognized to last several days in all longitudinal sectors. The observational data obtained by all sensors used in the present paper can be interpreted on the basis of existing theoretical models.

  4. Mars environment and magnetic orbiter scientific and measurement objectives.

    PubMed

    Leblanc, F; Langlais, B; Fouchet, T; Barabash, S; Breuer, D; Chassefière, E; Coates, A; Dehant, V; Forget, F; Lammer, H; Lewis, S; Lopez-Valverde, M; Mandea, M; Menvielle, M; Pais, A; Paetzold, M; Read, P; Sotin, C; Tarits, P; Vennerstrom, S

    2009-01-01

    In this paper, we summarize our present understanding of Mars' atmosphere, magnetic field, and surface and address past evolution of these features. Key scientific questions concerning Mars' surface, atmosphere, and magnetic field, along with the planet's interaction with solar wind, are discussed. We also define what key parameters and measurements should be performed and the main characteristics of a martian mission that would help to provide answers to these questions. Such a mission--Mars Environment and Magnetic Orbiter (MEMO)--was proposed as an answer to the Cosmic Vision Call of Opportunity as an M-class mission (corresponding to a total European Space Agency cost of less than 300 Meuro). MEMO was designed to study the strong interconnection between the planetary interior, atmosphere, and solar conditions, which is essential to our understanding of planetary evolution, the appearance of life, and its sustainability. The MEMO main platform combined remote sensing and in situ measurements of the atmosphere and the magnetic field during regular incursions into the martian upper atmosphere. The micro-satellite was designed to perform simultaneous in situ solar wind measurements. MEMO was defined to conduct: * Four-dimensional mapping of the martian atmosphere from the surface up to 120 km by measuring wind, temperature, water, and composition, all of which would provide a complete view of the martian climate and photochemical system; Mapping of the low-altitude magnetic field with unprecedented geographical, altitude, local time, and seasonal resolutions; A characterization of the simultaneous responses of the atmosphere, magnetic field, and near-Mars space to solar variability by means of in situ atmospheric and solar wind measurements.

  5. Full particle orbit effects in regular and stochastic magnetic fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ogawa, Shun; Cambon, Benjamin P.; Leoncini, Xavier

    Here we present a numerical study of charged particle motion in a time-independent magnetic field in cylindrical geometry. The magnetic field model consists of an unperturbed reversed-shear (non-monotonic q-profile) helical part and a perturbation consisting of a superposition of modes. Contrary to most of the previous studies, the particle trajectories are computed by directly solving the full Lorentz force equations of motion in a six-dimensional phase space using a sixth-order, implicit, symplectic Gauss-Legendre method. The level of stochasticity in the particle orbits is diagnosed using averaged, effective Poincare sections. It is shown that when only one mode is present, themore » particle orbits can be stochastic even though the magnetic field line orbits are not stochastic (i.e., fully integrable). The lack of integrability of the particle orbits in this case is related to separatrix crossing and the breakdown of the global conservation of the magnetic moment. Some perturbation consisting of two modes creates resonance overlapping, leading to Hamiltonian chaos in magnetic field lines. Then, the particle orbits exhibit a nontrivial dynamics depending on their energy and pitch angle. It is shown that the regions where the particle motion is stochastic decrease as the energy increases. The non-monotonicity of the q-profile implies the existence of magnetic ITBs (internal transport barriers) which correspond to shearless flux surfaces located in the vicinity of the q-profile minimum. It is shown that depending on the energy, these magnetic ITBs might or might not confine particles. That is, magnetic ITBs act as an energy-dependent particle confinement filter. Magnetic field lines in reversed-shear configurations exhibit topological bifurcations (from homoclinic to heteroclinic) due to separatrix reconnection. Finally, we show that a similar but more complex scenario appears in the case of particle orbits that depend in a non-trivial way on the energy and pitch angle of the particles.« less

  6. Full particle orbit effects in regular and stochastic magnetic fields

    DOE PAGES

    Ogawa, Shun; Cambon, Benjamin P.; Leoncini, Xavier; ...

    2016-07-18

    Here we present a numerical study of charged particle motion in a time-independent magnetic field in cylindrical geometry. The magnetic field model consists of an unperturbed reversed-shear (non-monotonic q-profile) helical part and a perturbation consisting of a superposition of modes. Contrary to most of the previous studies, the particle trajectories are computed by directly solving the full Lorentz force equations of motion in a six-dimensional phase space using a sixth-order, implicit, symplectic Gauss-Legendre method. The level of stochasticity in the particle orbits is diagnosed using averaged, effective Poincare sections. It is shown that when only one mode is present, themore » particle orbits can be stochastic even though the magnetic field line orbits are not stochastic (i.e., fully integrable). The lack of integrability of the particle orbits in this case is related to separatrix crossing and the breakdown of the global conservation of the magnetic moment. Some perturbation consisting of two modes creates resonance overlapping, leading to Hamiltonian chaos in magnetic field lines. Then, the particle orbits exhibit a nontrivial dynamics depending on their energy and pitch angle. It is shown that the regions where the particle motion is stochastic decrease as the energy increases. The non-monotonicity of the q-profile implies the existence of magnetic ITBs (internal transport barriers) which correspond to shearless flux surfaces located in the vicinity of the q-profile minimum. It is shown that depending on the energy, these magnetic ITBs might or might not confine particles. That is, magnetic ITBs act as an energy-dependent particle confinement filter. Magnetic field lines in reversed-shear configurations exhibit topological bifurcations (from homoclinic to heteroclinic) due to separatrix reconnection. Finally, we show that a similar but more complex scenario appears in the case of particle orbits that depend in a non-trivial way on the energy and pitch angle of the particles.« less

  7. Full particle orbit effects in regular and stochastic magnetic fields

    NASA Astrophysics Data System (ADS)

    Ogawa, Shun; Cambon, Benjamin; Leoncini, Xavier; Vittot, Michel; del Castillo-Negrete, Diego; Dif-Pradalier, Guilhem; Garbet, Xavier

    2016-07-01

    We present a numerical study of charged particle motion in a time-independent magnetic field in cylindrical geometry. The magnetic field model consists of an unperturbed reversed-shear (non-monotonic q-profile) helical part and a perturbation consisting of a superposition of modes. Contrary to most of the previous studies, the particle trajectories are computed by directly solving the full Lorentz force equations of motion in a six-dimensional phase space using a sixth-order, implicit, symplectic Gauss-Legendre method. The level of stochasticity in the particle orbits is diagnosed using averaged, effective Poincare sections. It is shown that when only one mode is present, the particle orbits can be stochastic even though the magnetic field line orbits are not stochastic (i.e., fully integrable). The lack of integrability of the particle orbits in this case is related to separatrix crossing and the breakdown of the global conservation of the magnetic moment. Some perturbation consisting of two modes creates resonance overlapping, leading to Hamiltonian chaos in magnetic field lines. Then, the particle orbits exhibit a nontrivial dynamics depending on their energy and pitch angle. It is shown that the regions where the particle motion is stochastic decrease as the energy increases. The non-monotonicity of the q-profile implies the existence of magnetic ITBs (internal transport barriers) which correspond to shearless flux surfaces located in the vicinity of the q-profile minimum. It is shown that depending on the energy, these magnetic ITBs might or might not confine particles. That is, magnetic ITBs act as an energy-dependent particle confinement filter. Magnetic field lines in reversed-shear configurations exhibit topological bifurcations (from homoclinic to heteroclinic) due to separatrix reconnection. We show that a similar but more complex scenario appears in the case of particle orbits that depend in a non-trivial way on the energy and pitch angle of the particles.

  8. Sustainment Study of Flipped Spherical Torus Plasmas on HIST

    NASA Astrophysics Data System (ADS)

    Takamiya, T.; Nagata, M.; Kawami, K.; Hasegawa, H.; Fukumoto, N.; Uyama, T.; Masamune, S.; Iida, M.; Katsurai, M.

    2003-10-01

    We have discovered that helicity-driven ST plasmas relax toward the flipped state by decreasing the external toroidal field and reversing its sign in time [1]. From the viewpoint of coaxial helicity injection (CHI) current drive, it is conceivable that the flipped ST (F-ST), which consists of only closed flux surfaces, compares favorably with the normal ST. We have investigated the sustainment mechanism of the F-ST plasma. The helicity-driven relaxed theory shows that there exist the mixed states of ST and F-ST in the flux conserver. Helicity is transferred to F-ST through the ST with coupling with gun electrodes. It has been found that magnetic reconnection between the toroidal magnetic field plays important role in the sustainment of the F-ST. The magnetic field in the outer edge region shows regular oscillations which have a large amplitude of the n=1 mode. The core region of the F-ST seems to be relatively stable. [1] M. Nagata, et al., Phys. Rev. Lett. 90, 225001 (2003)

  9. Polar Magnetic Field Experiment

    NASA Technical Reports Server (NTRS)

    Russell, C. T.

    1999-01-01

    This grant covers the initial data reduction and analysis of the magnetic field measurements of the Polar spacecraft. At this writing data for the first three years of the mission have been processed and deposited in the key parameter database. These data are also available in a variety of time resolutions and coordinate systems via a webserver at UCLA that provides both plots and digital data. The flight software has twice been reprogrammed: once to remove a glitch in the data where there were rare collisions between commands in the central processing unit and once to provide burst mode data at 100 samples per second on a regular basis. The instrument continues to function as described in the instrument paper (1.1 in the bibliography attached below). The early observations were compared with observations on the same field lines at lower altitude. The polar magnetic measurements also proved to be most useful for testing the accuracy of MHD models. WE also made important contributions to study of waves and turbulence.

  10. Plasma Clouds and Snowplows: Bulk Plasma Escape from Mars Observed by MAVEN

    NASA Technical Reports Server (NTRS)

    Halekas, J. S.; Brain, D. A.; Ruhunusiri, S.; McFadden, J. P.; Mitchell, D. L.; Mazelle, C.; Connerney, J. E. P.; Harada, Y.; Hara, T.; Espley, J. R.; hide

    2016-01-01

    We present initial Mars Atmosphere and Volatile EvolutioN (MAVEN) observations and preliminary interpretation of bulk plasma loss from Mars. MAVEN particle and field measurements show that planetary heavy ions derived from the Martian atmosphere can escape in the form of discrete coherent structures or "clouds." The ions in these clouds are unmagnetized or weakly magnetized, have velocities well above the escape speed, and lie directly downstream from magnetic field amplifications, suggesting a "snowplow" effect. This postulated escape process, similar to that successfully used to explain the dynamics of active gas releases in the solar wind and terrestrial magnetosheath, relies on momentum transfer from the shocked solar wind protons to the planetary heavy ions, with the electrons and magnetic field acting as intermediaries. Fluxes of planetary ions on the order of 10(exp 7)/sq cm/s can escape by this process, and if it operates regularly, it could contribute 10-20% of the current ion escape from Mars.

  11. Charged particle dynamics in multiple colliding electromagnetic waves. Survey of random walk, Lévy flights, limit circles, attractors and structurally determinate patterns

    NASA Astrophysics Data System (ADS)

    Bulanov, S. V.; Esirkepov, T. Zh.; Koga, J. K.; Bulanov, S. S.; Gong, Z.; Yan, X. Q.; Kando, M.

    2017-04-01

    The multiple colliding laser pulse concept formulated by Bulanov et al. (Phys. Rev. Lett., vol. 104, 2010b, 220404) is beneficial for achieving an extremely high amplitude of coherent electromagnetic field. Since the topology of electric and magnetic fields of multiple colliding laser pulses oscillating in time is far from trivial and the radiation friction effects are significant in the high field limit, the dynamics of charged particles interacting with the multiple colliding laser pulses demonstrates remarkable features corresponding to random walk trajectories, limit circles, attractors, regular patterns and Lévy flights. Under extremely high intensity conditions the nonlinear dissipation mechanism stabilizes the particle motion resulting in the charged particle trajectory being located within narrow regions and in the occurrence of a new class of regular patterns made by the particle ensembles.

  12. Charged particle dynamics in multiple colliding electromagnetic waves. Survey of random walk, Lévy flights, limit circles, attractors and structurally determinate patterns

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bulanov, S. V.; Esirkepov, T. Zh.; Koga, J. K.

    The multiple colliding laser pulse concept formulated by Bulanovet al.(Phys. Rev. Lett., vol. 104, 2010b, 220404) is beneficial for achieving an extremely high amplitude of coherent electromagnetic field. Since the topology of electric and magnetic fields of multiple colliding laser pulses oscillating in time is far from trivial and the radiation friction effects are significant in the high field limit, the dynamics of charged particles interacting with the multiple colliding laser pulses demonstrates remarkable features corresponding to random walk trajectories, limit circles, attractors, regular patterns and Lévy flights. Lastly, under extremely high intensity conditions the nonlinear dissipation mechanism stabilizes the particle motionmore » resulting in the charged particle trajectory being located within narrow regions and in the occurrence of a new class of regular patterns made by the particle ensembles.« less

  13. Charged particle dynamics in multiple colliding electromagnetic waves. Survey of random walk, Lévy flights, limit circles, attractors and structurally determinate patterns

    DOE PAGES

    Bulanov, S. V.; Esirkepov, T. Zh.; Koga, J. K.; ...

    2017-03-09

    The multiple colliding laser pulse concept formulated by Bulanovet al.(Phys. Rev. Lett., vol. 104, 2010b, 220404) is beneficial for achieving an extremely high amplitude of coherent electromagnetic field. Since the topology of electric and magnetic fields of multiple colliding laser pulses oscillating in time is far from trivial and the radiation friction effects are significant in the high field limit, the dynamics of charged particles interacting with the multiple colliding laser pulses demonstrates remarkable features corresponding to random walk trajectories, limit circles, attractors, regular patterns and Lévy flights. Lastly, under extremely high intensity conditions the nonlinear dissipation mechanism stabilizes the particle motionmore » resulting in the charged particle trajectory being located within narrow regions and in the occurrence of a new class of regular patterns made by the particle ensembles.« less

  14. Global High Resolution Crustal Magnetic Field Mapping at the Surface of the Moon from Lunar Prospector and SELENE/Kaguya Satellites

    NASA Astrophysics Data System (ADS)

    Ravat, D.; Purucker, M.; Olsen, N.; Finlay, C.

    2017-12-01

    We derive new models of the lunar crustal magnetic field at the lunar surface with data from Lunar Prospector (LP) and SELENE/Kaguya (K) satellite using a global set of 35820 1° equal area monopoles (O'Brien and Parker, 1994; Olsen et al., 2017). The resulting fields have similar features to surface fields obtained by Tsunakawa et al. (2015) using 230 subset regions and the primary differences are due to our stringent data selection (see below). The use of monopoles allows closer spacing than dipoles with lesser amount of regularization and moderate cluster computer resources. We use the scheme of iteratively reweighted least-squares inversion to compute the initial model. Then the amplitudes of these monopoles are determined by minimizing the misfit to the components together with the global average of |Br| at the ellipsoid surface (i.e. applying a L1 model regularization of Br). In a final step we transform the point-source representation to a spherical harmonic expansion. We extract high quality data segments using a processing scheme based on internal/external dipole field removal, low order polynomial removal, and a new processing scheme called Joint Equivalent Source Cross-validation. In the cross-validation procedure we analyze the fit of modeled components to data in 10° latitudinal segments from an inversion of triplets of nearby passes to a single set of dipoles along the passes. We evaluate the fit using four criteria in each segment: correlation coefficient, amplitude ratio, RMS of the misfit, and standard deviation of field values themselves. We fine-tune the criteria to the choice we would have made in visually retaining pass segments and this yields a global dataset of more than 2.87 million (x 3 components) points at altitudes <60 km. The selected Lunar Prospector and Kaguya magnetic data independently show similar features and statistics for altitudes, observed and modeled components, and their misfit (number of observation locations: LP 1.8 million and K 1.07 million x 3 components). We use these data to make a regional assessment of key magnetic features on the Moon (including impacts and swirls), the depth of magnetization of regional sources, and source parameters of isolated anomalies.

  15. The LHC magnet system and its status of development

    NASA Technical Reports Server (NTRS)

    Bona, Maurizio; Perin, Romeo; Vlogaert, Jos

    1995-01-01

    CERN is preparing for the construction of a new high energy accelerator/collider, the Large Hadron Collider (LHC). This new facility will mainly consist of two superconducting magnetic beam channels, 27 km long, to be installed in the existing LEP tunnel. The magnetic system comprises about 1200 twin-aperture dipoles, 13.145 m long, with an operational field of 8.65 T, about 600 quadrupoles, 3 m long, and a very large number of other superconducting magnetic components. A general description of the system is given together with the main features of the design of the regular lattice magnets. The paper also describes the present state of the magnet R & D program. Results from short model work, as well as from full scale prototypes will be presented, including the recently tested 10 m long full-scale prototype dipole manufactured in industry.

  16. Topological properties of microwave magnetoelectric fields.

    PubMed

    Berezin, M; Kamenetskii, E O; Shavit, R

    2014-02-01

    Collective excitations of electron spins in a ferromagnetic sample dominated by the magnetic dipole-dipole interaction strongly influence the field structure of microwave radiation. A small quasi-two-dimensional ferrite disk with magnetic-dipolar-mode (MDM) oscillation spectra can behave as a source of specific fields in vacuum, termed magnetoelectric (ME) fields. A coupling between the time-varying electric and magnetic fields in the ME-field structures is different from such a coupling in regular electromagnetic fields. The ME fields are characterized by strong energy confinement at a subwavelength region of microwave radiation, topologically distinctive power-flow vortices, and helicity parameters [E. O. Kamenetskii, R. Joffe, and R. Shavit, Phys. Rev. E 87, 023201 (2013)]. We study topological properties of microwave ME fields by loading a MDM ferrite particle with different dielectric samples. We establish a close connection between the permittivity parameters of dielectric environment and the topology of ME fields. We show that the topology of ME fields is strongly correlated with the Fano-resonance spectra observed at terminals of a microwave structure. We reveal specific thresholds in the Fano-resonance spectra appearing at certain permittivity parameters of dielectric samples. We show that ME fields originated from MDM ferrite disks can be distinguished by topological portraits of the helicity parameters and can have a torsion degree of freedom. Importantly, the ME-field phenomena can be viewed as implementations of space-time coordinate transformations on waves.

  17. Rapid-onset/offset, variably scheduled 60 Hz electric and magnetic field exposure reduces nocturnal serum melatonin concentration in nonhuman primates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rogers, W.R.; Smith, H.D.; Reiter, R.J.

    Experiments with rodents indicate that power-frequency electric field (EF) or magnetic field (MF) exposure can suppress the normal nocturnal increase in melatonin concentration in pineal gland and blood. In a separate set of three experiments conducted with nonhuman primates, the authors did not observe melatonin suppression as a result of 6 weeks of day-time exposure to combined 60 Hz electric and magnetic fields (E/MF) with regularly schedule ``slow`` E/MF onsets/offsets. The study described here used a different exposure paradigm in which two baboons were exposed to E/MF with ``rapid`` E/MF onsets/offsets accompanied by EF transients not found with slowly rampedmore » E/MF onset/offset; profound reductions in nocturnal serum melatonin concentration were observed in this experiment. If replicated in a more extensive experiment, the observation of melatonin suppression only in the presence of E/MF transients would suggest that very specific exposure parameters determine the effects of 60 Hz E/MF on melatonin.« less

  18. Vortex-antivortex lattices in superconducting films with arrays of magnetic dots

    NASA Astrophysics Data System (ADS)

    Milosevic, M. V.; Peeters, F. M.

    2004-03-01

    Using the numerical approach within the phenomenological Ginzburg-Landau (GL) theory, we investigate the vortex structure of a thin superconducting film (SC) with a regular matrix of out-of-plane magnetized ferromagnetic dots (FD) deposited on top of it. The perturbation of the superconducting order parameter in the SC film as subject of the inhomogeneous magnetic field of the FDs is studied, and various vortex-antivortex configurations are observed, with net vorticity equal zero. In the case of a periodic array of magnetic disks, vortices are confined under the disks, while the antivortices form a rich spectra of lattice states. In the ground state, antivortices are arranged in the so-called matching configurations between the FDs, while other configurational varieties have higher energy. In the metastable regime, the states with fractional number of vortex-antivortex pairs per unit cell are found, some of which with strongly distorted vortex cores. The exact (anti)vortex structure depends on the size, thickness and magnetization of the magnetic dots, periodicity of the FD-rooster and the properties of the SC expressed through the effective Ginzburg-Landau parameter κ ^* . We discuss the further experimental implications, such as magnetic-field-induced superconductivity.

  19. Field-assisted organization, substrate effects and magnetic behavior of Ag 30Co 70 core-shell nanoparticles

    NASA Astrophysics Data System (ADS)

    Crisan, A. D.; Angelakeris, M.; Simeonidis, K.; Tsiaoussis, I.; Crisan, O.

    2010-11-01

    In core-shell systems with non-magnetic core and magnetic shell, the electron transport and magnetic properties are expected to show enhanced behavior due to the particular morpho-structural features of the conductive and magnetic regions. This may lead to novel advanced GMR materials and spin valves. This is the case of core-shell Ag-Co colloidal nanoscale particles that organize into regular arrays. An insight on the structure and morphology of the newly synthesized Ag-Co nanoparticles deposited on different substrates will be presented. The influence of the substrate on different morphologies and organization dynamics is discussed. It is shown that the magnetic behavior of the Ag-Co nanoparticles is highly influenced by the corona-like morphology of Co shell, chemical environment of the magnetic atoms and by the fact that they exhibit strongly reduced coordination due to the surface states.

  20. Exposing Drifting Subpulses From The Slowest To The Fastest Pulsars

    NASA Astrophysics Data System (ADS)

    van Leeuwen, Joeri

    2006-08-01

    Pulsar emission is surprisingly similar over a vast range of periods and magnetic fields: all the way from the 2-millisecond 10^8 G recycled pulsars to the 6-second 10^14 G magnetar-like regular pulsars. We investigate how the curious instabilities called 'drifting subpulses' we observe can discern between different mechanisms for pulsar emission.

  1. Decay of the compressible magneto-micropolar fluids

    NASA Astrophysics Data System (ADS)

    Zhang, Peixin

    2018-02-01

    This paper considers the large-time behavior of solutions to the Cauchy problem on the compressible magneto-micropolar fluid system under small perturbation in regular Sobolev space. Based on the time-weighted energy estimate, the asymptotic stability of the steady state with the strictly positive constant density, vanishing velocity, micro-rotational velocity, and magnetic field is established.

  2. Standard map in magnetized relativistic systems: fixed points and regular acceleration.

    PubMed

    de Sousa, M C; Steffens, F M; Pakter, R; Rizzato, F B

    2010-08-01

    We investigate the concept of a standard map for the interaction of relativistic particles and electrostatic waves of arbitrary amplitudes, under the action of external magnetic fields. The map is adequate for physical settings where waves and particles interact impulsively, and allows for a series of analytical result to be exactly obtained. Unlike the traditional form of the standard map, the present map is nonlinear in the wave amplitude and displays a series of peculiar properties. Among these properties we discuss the relation involving fixed points of the maps and accelerator regimes.

  3. Periodic vortex pinning by regular structures in Nb thin films: magnetic vs. structural effects

    NASA Astrophysics Data System (ADS)

    Montero, Maria Isabel; Jonsson-Akerman, B. Johan; Schuller, Ivan K.

    2001-03-01

    The defects present in a superconducting material can lead to a great variety of static and dynamic vortex phases. In particular, the interaction of the vortex lattice with regular arrays of pinning centers such as holes or magnetic dots gives rise to commensurability effects. These commensurability effects can be observed in the magnetoresistance and in the critical current dependence with the applied field. In recent years, experimental results have shown that there is a dependence of the periodic pinning effect on the properties of the vortex lattice (i.e. vortex-vortex interactions, elastic energy and vortex velocity) and also on the dots characteristics (i.e. dot size, distance between dots, magnetic character of the dot material, etc). However, there is not still a good understanding of the nature of the main pinning mechanisms by the magnetic dots. To clarify this important issue, we have studied and compared the periodic pinning effects in Nb films with rectangular arrays of Ni, Co and Fe dots, as well as the pinning effects in a Nb film deposited on a hole patterned substrate without any magnetic material. We will discuss the differences on pinning energies arising from magnetic effects as compared to structural effects of the superconducting film. This work was supported by NSF and DOE. M.I. Montero acknowledges postdoctoral fellowship by the Secretaria de Estado de Educacion y Universidades (Spain).

  4. Effects of a strong magnetic field on internal gravity waves: trapping, phase mixing, reflection, and dynamical chaos

    NASA Astrophysics Data System (ADS)

    Loi, Shyeh Tjing; Papaloizou, John C. B.

    2018-07-01

    The spectrum of oscillation modes of a star provides information not only about its material properties (e.g. mean density), but also its symmetries. Spherical symmetry can be broken by rotation and/or magnetic fields. It has been postulated that strong magnetic fields in the cores of some red giants are responsible for their anomalously weak dipole mode amplitudes (the `dipole dichotomy' problem), but a detailed understanding of how gravity waves interact with strong fields is thus far lacking. In this work, we attack the problem through a variety of analytical and numerical techniques, applied to a localized region centred on a null line of a confined axisymmetric magnetic field which is approximated as being cylindrically symmetric. We uncover a rich variety of phenomena that manifest when the field strength exceeds a critical value, beyond which the symmetry is drastically broken by the Lorentz force. When this threshold is reached, the spatial structure of the g modes becomes heavily altered. The dynamics of wave packet propagation transitions from regular to chaotic, which is expected to fundamentally change the organization of the mode spectrum. In addition, depending on their frequency and the orientation of field lines with respect to the stratification, waves impinging on different parts of the magnetized region are found to undergo either reflection or trapping. Trapping regions provide an avenue for energy loss through Alfvén wave phase mixing. Our results may find application in various astrophysical contexts, including the dipole dichotomy problem, the solar interior, and compact star oscillations.

  5. Physical properties of Moving Magnetic Features observed around a pore

    NASA Astrophysics Data System (ADS)

    Criscuoli, S.; Del Moro, D.; Giannattasio, F.; Viticchié, B.; Giorgi, F.; Ermolli, I.; Zuccarello, F.; Berrilli, F.

    2012-06-01

    Movies of magnetograms of sunspots often show small-size magnetic patches that move radially away and seem to be expelled from the field of the spot. These patches are named Moving Magnetic Features (MMFs). They have been mostly observed around spots and have been interpreted as manifestations of penumbral filaments. Nevertheless, few observations of MMFS streaming out from spots without penumbra have been reported. He we investigate the physical properties of MMFs observed around the field of a pore derived by the analyses of high spectral, spatial and temporal resolution data acquired at the Dunn Solar Telescope with IBIS. We find that the main properties of the investigated features agree with those reported for MMFs observed around regular spots. These results indicate that an improvement of current numerical simulations is required to understand the generation of MMFs in the lack of penumbrae.

  6. Could we use beamlets as a tool for remote sensing of the magnetotail?

    NASA Astrophysics Data System (ADS)

    Dolgonosov, Maxim; Zelenyi, Lev; Zimbardo, Gaetano; Perri, Silvia; Kovrazhkin, Rostislav

    2012-07-01

    In our presentation we are going to raise a question of exploiting beamlets for remote sensing of magnetotail. There is a long history of investigation of particle dynamics and features of distribution functions with prescribed electric and magnetic fields that could be measured by spacecrafts. But we would like to focus our attention on small part of this story and study in detail the behavior of ion the vicinity of the current sheet. Burkhart and Chen [Burkhart and Chen, 1991,JGR] employed the modified Harris model of the current sheet magnetic field [vec{B}=B_{0} tanh (z/L)vec{e}_{x} +B_{z} vec{e}_{z} ] and found a signature of nonlinear particle dynamics and an underlying partitioning of phase space that manifests itself as a series of peaks in the ion distribution function. The separation between the peaks is proportional to the fourth root of the particle energy and quantities that describe the current sheet structure. Formation of these peaks in the ion distribution function was explained on the basis resonant condition proposed by Buchner and Zelenyi [Buchner and Zelenyi,1989, JGR]. The non-adiabatic dynamics of the ions at vicinity of equatorial plane can be characterized by the action integral I_{z} =1/2 π \\oint \\dot{z}dz , which serves as an approximate integral of motion [Sonnerup, 1971]. Chaos is generated by the jumps Δ I_{z} of this invariant which accompany the particle crossing of the current sheet, which can lead both to the almost regular (field-aligned) motion of particles and to the capture of particles in the center of the current sheet, due to the unavoidable chaotic scattering. However, a subset of the ``regularity'' regions can exist in the physical space for certain combinations of current sheet parameters. Successive jumps of the adiabatic invariant Iz within these regions at the entry of particle into the current sheet and its exit from the current sheet, in the first approximation compensate each other, and ions ejected from these regions form almost monoenergetic highly accelerated and spatially localized ion beams, the so-called beamlets. The quasi-stationary dawn-dusk electric field Ey in the magnetotail accelerates ions between these jumps [Buchner and Zelenyi, 1990; Zelenyi et al., 2006a; Grigorenko et al., 2007]. The sites of acceleration depend on the value of Bn, and for a typical energy of the ions coming from the mantle, the resonance condition is satisfied at a number of discrete positions downtail. Zelenyi et al. [Zelenyi et al., 2007, JETP Letters] found the universal scaling characterizing the chain of these "regularity" regions. This ``law'' gives a relation between the typical beamlet energy WN and corresponding number of resonant region N: W_{N} =4/3 log N. Later Dolgonosov et al. [Dolgonosov et al., 2010, JGR] modified ``universal'' scaling and showed that to study experimentally observed beamlets one should take into account presence of the electric field perpendicular to the plane of the current sheet. On the basis of this paper [Kovrakhin et al., 2012, JETP Letters] it was analyzed spacecraft data (Cluster and Interball) to study properties of thin current sheets. Evidently, nonlinear particle dynamic result to the generation of the regularity ``island'' with some characteristic features. In the paper of Zelenyi et al. [Zelenyi et al, 2006, GRL] modulation of the normal component of the magnetic field under influence of self-consistent currents of particles was investigated. Peaks of Bz modulation nearly coincided with ``regularity'' islands. This result indicates on the fact that turbulence in the plasma sheet could be resulted from the nonlinear particle dynamic and properties of these ``noise'' are governed by features of particle motion. Thereby influence of ``noise'' constrains exploiting beamlets for remote sensing. It is also natural to ask what happens with these ``resonant'' regions under influence of external noise (or externally driven turbulence). Experimental observation of the magnetic field in the plasma sheet indicate on the permanent perturbation of the magnetic field and this perturbation could be very significant δBz ˜Bz. At the same time measurements of beamlets at the PSBL show that beamlets are long living structures [Grigorenko, 2003, JETP Letters]. What is the value of the magnetic field perturbation that could destroy generation of beamlets? In our report we are going to discuss current sheet properties obtained from beamlets analysis and natural restrictions imposed by turbulence.

  7. SU(2) Yang-Mills solitons in R2 gravity

    NASA Astrophysics Data System (ADS)

    Perapechka, I.; Shnir, Ya.

    2018-05-01

    We construct new family of spherically symmetric regular solutions of SU (2) Yang-Mills theory coupled to pure R2 gravity. The particle-like field configurations possess non-integer non-Abelian magnetic charge. A discussion of the main properties of the solutions and their differences from the usual Bartnik-McKinnon solitons in the asymptotically flat case is presented. It is shown that there is continuous family of linearly stable non-trivial solutions in which the gauge field has no nodes.

  8. Structural control of elastic moduli in ferrogels and the importance of non-affine deformations

    NASA Astrophysics Data System (ADS)

    Pessot, Giorgio; Cremer, Peet; Borin, Dmitry Y.; Odenbach, Stefan; Löwen, Hartmut; Menzel, Andreas M.

    2014-09-01

    One of the central appealing properties of magnetic gels and elastomers is that their elastic moduli can reversibly be adjusted from outside by applying magnetic fields. The impact of the internal magnetic particle distribution on this effect has been outlined and analyzed theoretically. In most cases, however, affine sample deformations are studied and often regular particle arrangements are considered. Here we challenge these two major simplifications by a systematic approach using a minimal dipole-spring model. Starting from different regular lattices, we take into account increasingly randomized structures, until we finally investigate an irregular texture taken from a real experimental sample. On the one hand, we find that the elastic tunability qualitatively depends on the structural properties, here in two spatial dimensions. On the other hand, we demonstrate that the assumption of affine deformations leads to increasingly erroneous results the more realistic the particle distribution becomes. Understanding the consequences of the assumptions made in the modeling process is important on our way to support an improved design of these fascinating materials.

  9. Magnetic gates and guides for superconducting vortices

    DOE PAGES

    Vlasko-Vlasov, V. K.; Colauto, F.; Buzdin, A. I.; ...

    2017-04-04

    Here, we image the motion of superconducting vortices in niobium film covered with a regular array of thin permalloy stripes. By altering the magnetization orientation in the stripes using a small in-plane magnetic field, we can tune the strength of interactions between vortices and the stripe edges, enabling acceleration or retardation of the superconducting vortices in the sample and consequently introducing strong tunable anisotropy into the vortex dynamics. We discuss our observations in terms of the attraction/repulsion between point magnetic charges carried by vortices and lines of magnetic charges at the stripe edges, and derive analytical formulas for the vortex-magneticmore » stripes coupling. Our approach demonstrates the analogy between the vortex motion regulated by the magnetic stripe array and electric carrier flow in gated semiconducting devices. Scaling down the geometrical features of the proposed design may enable controlled manipulation of single vortices, paving the way for Abrikosov vortex microcircuits and memories.« less

  10. Magnetic gates and guides for superconducting vortices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vlasko-Vlasov, V. K.; Colauto, F.; Buzdin, A. I.

    Here, we image the motion of superconducting vortices in niobium film covered with a regular array of thin permalloy stripes. By altering the magnetization orientation in the stripes using a small in-plane magnetic field, we can tune the strength of interactions between vortices and the stripe edges, enabling acceleration or retardation of the superconducting vortices in the sample and consequently introducing strong tunable anisotropy into the vortex dynamics. We discuss our observations in terms of the attraction/repulsion between point magnetic charges carried by vortices and lines of magnetic charges at the stripe edges, and derive analytical formulas for the vortex-magneticmore » stripes coupling. Our approach demonstrates the analogy between the vortex motion regulated by the magnetic stripe array and electric carrier flow in gated semiconducting devices. Scaling down the geometrical features of the proposed design may enable controlled manipulation of single vortices, paving the way for Abrikosov vortex microcircuits and memories.« less

  11. Nongyrotropic electron orbits in collisionless magnetic reconnection

    NASA Astrophysics Data System (ADS)

    Zenitani, S.

    2016-12-01

    In order to study inner workings of magnetic reconnection, NASA has recently launched Magnetospheric MultiScale (MMS) spacecraft. It is expected to observe electron velocity distribution functions (VDFs) at high resolution in magnetotail reconnection sites in 2017. Since VDFs are outcomes of many particle orbits, it is important to understand the relation between electron orbits and VDFs. In this work, we study electron orbits and associated VDFs in the electron current layer in magnetic reconnection, by using a two-dimensional particle-in-cell (PIC) simulation. By analyzing millions of electron orbits, we discover several new orbits: (1) Figure-eight-shaped regular orbits inside the super-Alfvenic electron jet, (2) noncrossing Speiser orbits that do not cross the midplane, (3) noncrossing regular orbits on the jet flanks, and (4) nongyrotropic electrons in the downstream of the jet termination region. Properties of these orbits are organized by a theory on particle orbits (Buchner & Zelenyi 1989 JGR). The noncrossing orbits are mediated by the polarization electric field (Hall electric field E_z) near the midplane. These orbits can be understood as electrostatic extensions of the conventional theory. Properties of the super-Alfvenic electron jet are attributed to the traditional Speiser-orbit electrons. On the other hand, the noncrossing electrons are the majority in number density in the jet flanks. This raise a serious question to our present understanding of physics of collisionless magnetic reconnection, which only assumes crossing populations. We will also discuss spatial distribution of energetic electrons and observational signatures of noncrossing electrons. Reference: Zenitani & Nagai (2016), submitted to Phys. Plasmas.

  12. Structural and magnetic properties of the nanocomposite materials based on a mesoporous silicon dioxide matrix

    NASA Astrophysics Data System (ADS)

    Grigor'eva, N. A.; Eckerlebe, H.; Eliseev, A. A.; Lukashin, A. V.; Napol'skii, K. S.; Kraje, M.; Grigor'ev, S. V.

    2017-03-01

    The structural and magnetic properties of the mesoporous systems based on silicon dioxide with a regular hexagonal arrangement of pores several microns in length and several nanometers in diameter, which are filled with iron compound nanofilaments in various chemical states, are studied in detail. The studies are performed using the following mutually complementary methods: transmission electron microscopy, SQUID magnetometry, electron spin resonance, Mössbauer spectroscopy, polarized neutron small-angle diffraction, and synchrotron radiation diffraction. It is shown that the iron nanoparticles in pores are mainly in the γ phase of Fe2O3 with a small addition of the α phase and atomic iron clusters. The effective magnetic field acting on a nanofilament from other nanofilaments is 11 mT and has a dipole nature, the ferromagnetic-paramagnetic transition temperature is in the range 76-94 K depending on the annealing temperature of the samples, and the temperature that corresponds to the change in the magnetic state of the iron oxide nanofilaments is T ≈ 50-60 K at H = 0 and T ≈ 80 K at H = 300 mT. It is also shown that the magnetization reversal of an array of nanofilaments is caused by the magnetostatic interaction between nanofilaments at the fields that are lower than the saturation field.

  13. Magnetoresistance due to domain walls in an epitaxial microfabricated Fe wire

    NASA Astrophysics Data System (ADS)

    Rüdiger, U.; Yu, J.; Kent, A. D.; Parkin, S. S. P.

    1998-08-01

    The domain wall (DW) contribution to magnetoresistance has been investigated using an epitaxial microfabricated bcc (110) Fe wires of 2 μm linewidth. A strong in-plane uniaxial component to the magnetic anisotropy perpendicular to the wire axis causes a regular stripe domain pattern with closure domains. The stripe domain width in zero-applied magnetic field is strongly affected by the magnetic history and can be continuously varied from 0.45 to 1.8 μm. This enables a measurement of the resistivity as a function of DW density in a single wire. Clear evidence is presented that the resistivity is reduced in the presence of DWs at low temperatures.

  14. The Properties of Oxygen Investigated with Easily Accessible Instrumentation: The "One-Photon-Two-Molecule" Mechanism Revisited

    ERIC Educational Resources Information Center

    Adelhelm, Manfred; Aristov, Natasha; Habekost, Achim

    2010-01-01

    The physical properties of oxygen, in particular, the blue color of the liquid phase, the red glow of its chemiluminescence, and its paramagnetism as shown by the entrapment or deflection of liquid oxygen by a magnetic field, can be investigated in a regular school setting with hand-held spectrophotometers and digital cameras. In college-level…

  15. The magnetic field of the Milky Way

    NASA Astrophysics Data System (ADS)

    Jansson, Ronnie

    The magnetic field of the Milky Way is a significant component of our Galaxy, and impacts a great variety of Galactic processes. For example, it regulates star formation, accelerates cosmic rays, transports energy and momentum, acts as a source of pressure, and obfuscates the arrival directions of ultrahigh energy cosmic rays (UHECRs). This thesis is mainly concerned with the large scale Galactic magnetic field (GMF), and the effect it has on UHECRs. In Chapter 1 we review what is known about Galactic and extragalactic magnetic fields, their origin, the different observables of the GMF, and the ancillary data that is necessary to constrain astrophysical magnetic fields. Chapter 2 introduces a method to quantify the quality-of-fit between data and observables sensitive to the large scale Galactic magnetic field. We combine WMAP5 polarized synchrotron data and rotation measures of extragalactic sources in a joint analysis to obtain best-fit parameters and confidence levels for GMF models common in the literature. None of the existing models provide a good fit in both the disk and halo regions, and in many instances best-fit parameters are quite different than the original values. We introduce a simple model of the magnetic field in the halo that provides a much improved fit to the data. We show that some characteristics of the electron densities can already be constrained using our method and with future data it may be possible to carry out a self-consistent analysis in which models of the GMF and electron densities are simultaneously optimized. Chapter 3 investigates the observed excess of UHECRs in the region of the sky close to the nearby radio galaxy Centaurus A. We constrain the large-scale Galactic magnetic field and the small-scale random magnetic field in the direction of Cen A, and estimate the deflection of the observed UHECRs and predict their source positions on the sky. We find that the deflection due to random fields are small compared to deflections due to the regular field. Assuming the UHECRs are protons we find that 4 of the published Auger events above 57 EeV are consistent with coming from Cen A.We conclude that the proposed scenarios in which most of the events within approximately 20° of Cen A come from it are unlikely, regardless of the composition of the UHECRs.

  16. First-order particle acceleration in magnetically driven flows

    DOE PAGES

    Beresnyak, Andrey; Li, Hui

    2016-03-02

    In this study, we demonstrate that particles are regularly accelerated while experiencing curvature drift in flows driven by magnetic tension. Some examples of such flows include spontaneous turbulent reconnection and decaying magnetohydrodynamic turbulence, where a magnetic field relaxes to a lower-energy configuration and transfers part of its energy to kinetic motions of the fluid. We show that this energy transfer, which normally causes turbulent cascade and heating of the fluid, also results in a first-order acceleration of non-thermal particles. Since it is generic, this acceleration mechanism is likely to play a role in the production of non-thermal particle distribution inmore » magnetically dominant environments such as the solar chromosphere, pulsar magnetospheres, jets from supermassive black holes, and γ-ray bursts.« less

  17. The magnetic field in the disk of our Galaxy

    NASA Astrophysics Data System (ADS)

    Han, J. L.; Qiao, G. J.

    1994-08-01

    The magnetic field in the disk of our Galaxy is investigated by using the Rotation Measures (RMs) of pulsars and Extragalactic Radio Sources (ERSes). Through analyses of the RMs of carefully selected pulsar samples, it is found that the Galaxy has a global field of BiSymmetric Spiral (BSS) configuration, rather than a concentric ring or an AxiSymmetric Spiral (ASS) configuration. The Galactic magnetic field of BSS structure is supposed to be of primordial origin. The pitch angle of the BSS structure is -8.2deg+/-0.5deg. The field geometry shows that the field goes along the Carina-Sagittarius arm, which is delineated by Giant Molecular Clouds (GMCs). The amplitude of the BSS field is 1.8+/-0.3μG. The first field strength maximum is at r_0_=11.9+/-0.15 kpc in the direction of l=180deg. The field is strong in the interarm regions and it reverses in the arm regions. In the vicinity of the Sun, it has a strength of ~1.4μG and reverses at 0.2-0.3kpc in the direction of l=0deg. Because of the unknown electron distribution of the Galaxy and other difficulties, it is impossible to derive the galactic field from the RMs of ERSes very quantitatively. Nevertheless, the RMs of ERSes located in the region of the two galactic poles are used to estimate the vertical component of the local galactic field, which is found to have a strength of 0.2-0.3μG and is directed from the south galactic pole to the north galactic pole. The scale height of the magnetic disk of the Galaxy is estimated from the RMs of all-sky distributed ERSes, being about 1.2+/-0.4pc. The regular magnetic field of our Galaxy, which is probably similar to that of M81, extends far from the optical disk.

  18. Magnetically aligned dust and SiO maser polarisation in the envelope of the red supergiant VY Canis Majoris

    NASA Astrophysics Data System (ADS)

    Vlemmings, W. H. T.; Khouri, T.; Martí-Vidal, I.; Tafoya, D.; Baudry, A.; Etoka, S.; Humphreys, E. M. L.; Jones, T. J.; Kemball, A.; O'Gorman, E.; Pérez-Sánchez, A. F.; Richards, A. M. S.

    2017-07-01

    Aims: Polarisation observations of circumstellar dust and molecular (thermal and maser) lines provide unique information about dust properties and magnetic fields in circumstellar envelopes of evolved stars. Methods: We use Atacama Large Millimeter/submillimeter Array (ALMA) Band 5 science verification observations of the red supergiant VY CMa to study the polarisation of SiO thermal/maser lines and dust continuum at 1.7 mm wavelength. We analyse both linear and circular polarisation and derive the magnetic field strength and structure, assuming the polarisation of the lines originates from the Zeeman effect, and that of the dust originates from aligned dust grains. We also discuss other effects that could give rise to the observed polarisation. Results: We detect, for the first time, significant polarisation ( 3%) of the circumstellar dust emission at millimeter wavelengths. The polarisation is uniform with an electric vector position angle of 8°. Varying levels of linear polarisation are detected for the J = 4 - 328SiO v = 0, 1, 2, and 29SiO v = 0, 1 lines, with the strongest polarisation fraction of 30% found for the 29SiO v = 1 maser. The linear polarisation vectors rotate with velocity, consistent with earlier observations. We also find significant (up to 1%) circular polarisation in several lines, consistent with previous measurements. We conclude that the detection is robust against calibration and regular instrumental errors, although we cannot yet fully rule out non-standard instrumental effects. Conclusions: Emission from magnetically aligned grains is the most likely origin of the observed continuum polarisation. This implies that the dust is embedded in a magnetic field >13 mG. The maser line polarisation traces the magnetic field structure. The magnetic field in the gas and dust is consistent with an approximately toroidal field configuration, but only higher angular resolution observations will be able to reveal more detailed field structure. If the circular polarisation is due to Zeeman splitting, it indicates a magnetic field strength of 1-3 Gauss, consistent with previous maser observations.

  19. Magnetic field effects on peristaltic flow of blood in a non-uniform channel

    NASA Astrophysics Data System (ADS)

    Latha, R.; Rushi Kumar, B.

    2017-11-01

    The objective of this paper is to carry out the effect of the MHD on the peristaltic transport of blood in a non-uniform channel have been explored under long wavelength approximation with low (zero) Reynolds number. Blood is made of an incompressible, viscous and electrically conducting. Explicit expressions for the axial velocity, axial pressure gradient are derived using long wavelength assumptions with slip and regularity conditions. It is determined that the pressure gradient diminishes as the couple stress parameter increments and it decreases as the magnetic parameter increments. We additionally concentrate the embedded parameters through graphs.

  20. Optimal Magnetic Sensor Vests for Cardiac Source Imaging

    PubMed Central

    Lau, Stephan; Petković, Bojana; Haueisen, Jens

    2016-01-01

    Magnetocardiography (MCG) non-invasively provides functional information about the heart. New room-temperature magnetic field sensors, specifically magnetoresistive and optically pumped magnetometers, have reached sensitivities in the ultra-low range of cardiac fields while allowing for free placement around the human torso. Our aim is to optimize positions and orientations of such magnetic sensors in a vest-like arrangement for robust reconstruction of the electric current distributions in the heart. We optimized a set of 32 sensors on the surface of a torso model with respect to a 13-dipole cardiac source model under noise-free conditions. The reconstruction robustness was estimated by the condition of the lead field matrix. Optimization improved the condition of the lead field matrix by approximately two orders of magnitude compared to a regular array at the front of the torso. Optimized setups exhibited distributions of sensors over the whole torso with denser sampling above the heart at the front and back of the torso. Sensors close to the heart were arranged predominantly tangential to the body surface. The optimized sensor setup could facilitate the definition of a standard for sensor placement in MCG and the development of a wearable MCG vest for clinical diagnostics. PMID:27231910

  1. Resonant fluorescence for multilevel systems in intense nonmonochromatic fields: possibilities for applications in laser medicine

    NASA Astrophysics Data System (ADS)

    Karagodova, Tamara Y.

    1999-03-01

    The theory of resonant fluorescence of multilevel system in two monochromatic intense laser fields has been applied for investigating the temporal decay of magnetic sublevels of an atom. As for two-level system the triplet of resonant fluorescence is observed, for real atom being the multilevel system the multiplet of resonant fluorescence can be observed. The excitation spectra, defining the intensities of lines in the multiplet of resonant fluorescence, and shifts of components of spectra are shown. Typical temporal dependence of fluorescence intensity for magnetic sublevels of an atom having different relaxation constants is shown. The computer simulation of resonant fluorescence for simple systems can help to understand the regularities in temporal decay curves of atherosclerotic plaque, malignant tumor compared to normal surrounding tissue.

  2. Quantitative Oxygenation Venography from MRI Phase

    PubMed Central

    Fan, Audrey P.; Bilgic, Berkin; Gagnon, Louis; Witzel, Thomas; Bhat, Himanshu; Rosen, Bruce R.; Adalsteinsson, Elfar

    2014-01-01

    Purpose To demonstrate acquisition and processing methods for quantitative oxygenation venograms that map in vivo oxygen saturation (SvO2) along cerebral venous vasculature. Methods Regularized quantitative susceptibility mapping (QSM) is used to reconstruct susceptibility values and estimate SvO2 in veins. QSM with ℓ1 and ℓ2 regularization are compared in numerical simulations of vessel structures with known magnetic susceptibility. Dual-echo, flow-compensated phase images are collected in three healthy volunteers to create QSM images. Bright veins in the susceptibility maps are vectorized and used to form a three-dimensional vascular mesh, or venogram, along which to display SvO2 values from QSM. Results Quantitative oxygenation venograms that map SvO2 along brain vessels of arbitrary orientation and geometry are shown in vivo. SvO2 values in major cerebral veins lie within the normal physiological range reported by 15O positron emission tomography. SvO2 from QSM is consistent with previous MR susceptometry methods for vessel segments oriented parallel to the main magnetic field. In vessel simulations, ℓ1 regularization results in less than 10% SvO2 absolute error across all vessel tilt orientations and provides more accurate SvO2 estimation than ℓ2 regularization. Conclusion The proposed analysis of susceptibility images enables reliable mapping of quantitative SvO2 along venograms and may facilitate clinical use of venous oxygenation imaging. PMID:24006229

  3. Are black holes with hair a normal state of matter?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nieuwenhuizen, Th. M.

    Recent observations put forward that quasars are black holes with a magnetic dipole moment and no event horizon. To model hairy black holes a quantum field for hydrogen is considered in curved space, coupled to the scalar curvature. An exact, regular solution for the interior metric occurs for supermassive black holes. The equation of state is p = -{rho}c{sup 2}/3.

  4. Drift-Free Indoor Navigation Using Simultaneous Localization and Mapping of the Ambient Heterogeneous Magnetic Field

    NASA Astrophysics Data System (ADS)

    Chow, J. C. K.

    2017-09-01

    In the absence of external reference position information (e.g. surveyed targets or Global Navigation Satellite Systems) Simultaneous Localization and Mapping (SLAM) has proven to be an effective method for indoor navigation. The positioning drift can be reduced with regular loop-closures and global relaxation as the backend, thus achieving a good balance between exploration and exploitation. Although vision-based systems like laser scanners are typically deployed for SLAM, these sensors are heavy, energy inefficient, and expensive, making them unattractive for wearables or smartphone applications. However, the concept of SLAM can be extended to non-optical systems such as magnetometers. Instead of matching features such as walls and furniture using some variation of the Iterative Closest Point algorithm, the local magnetic field can be matched to provide loop-closure and global trajectory updates in a Gaussian Process (GP) SLAM framework. With a MEMS-based inertial measurement unit providing a continuous trajectory, and the matching of locally distinct magnetic field maps, experimental results in this paper show that a drift-free navigation solution in an indoor environment with millimetre-level accuracy can be achieved. The GP-SLAM approach presented can be formulated as a maximum a posteriori estimation problem and it can naturally perform loop-detection, feature-to-feature distance minimization, global trajectory optimization, and magnetic field map estimation simultaneously. Spatially continuous features (i.e. smooth magnetic field signatures) are used instead of discrete feature correspondences (e.g. point-to-point) as in conventional vision-based SLAM. These position updates from the ambient magnetic field also provide enough information for calibrating the accelerometer bias and gyroscope bias in-use. The only restriction for this method is the need for magnetic disturbances (which is typically not an issue for indoor environments); however, no assumptions are required for the general motion of the sensor (e.g. static periods).

  5. Magnetic Field Suppression of Flow in Semiconductor Melt

    NASA Technical Reports Server (NTRS)

    Fedoseyev, A. I.; Kansa, E. J.; Marin, C.; Volz, M. P.; Ostrogorsky, A. G.

    2000-01-01

    One of the most promising approaches for the reduction of convection during the crystal growth of conductive melts (semiconductor crystals) is the application of magnetic fields. Current technology allows the experimentation with very intense static fields (up to 80 KGauss) for which nearly convection free results are expected from simple scaling analysis in stabilized systems (vertical Bridgman method with axial magnetic field). However, controversial experimental results were obtained. The computational methods are, therefore, a fundamental tool in the understanding of the phenomena accounting during the solidification of semiconductor materials. Moreover, effects like the bending of the isomagnetic lines, different aspect ratios and misalignments between the direction of the gravity and magnetic field vectors can not be analyzed with analytical methods. The earliest numerical results showed controversial conclusions and are not able to explain the experimental results. Although the generated flows are extremely low, the computational task is a complicated because of the thin boundary layers. That is one of the reasons for the discrepancy in the results that numerical studies reported. Modeling of these magnetically damped crystal growth experiments requires advanced numerical methods. We used, for comparison, three different approaches to obtain the solution of the problem of thermal convection flows: (1) Spectral method in spectral superelement implementation, (2) Finite element method with regularization for boundary layers, (3) Multiquadric method, a novel method with global radial basis functions, that is proven to have exponential convergence. The results obtained by these three methods are presented for a wide region of Rayleigh and Hartman numbers. Comparison and discussion of accuracy, efficiency, reliability and agreement with experimental results will be presented as well.

  6. Magnetic fields from domestic appliances in the UK.

    PubMed

    Preece, A W; Kaune, W; Grainger, P; Preece, S; Golding, J

    1997-01-01

    In a survey of 50 UK homes the 50 Hz fundamental and harmonic magnetic fields generated by 806 domestic appliances found in the homes, and used regularly by mothers, were measured. Measurements were made in the direction of most likely access, and from the surface of the appliances. Mothers completed a questionnaire on the use of appliances and were monitored for 24 h so that acquired exposure could be compared with the measured ambient fields in the home. Appliances were measured at standard distances and an algorithm was used to calculate fields at 100 and 50 cm to remove room background contributions. A few appliances generated fields in excess of 0.2 microT at 1 m: microwave cookers 0.37 +/- 0.14 microT; washing machines 0.27 +/- 0.14 microT; dishwashers 0.23 +/- 0.13 microT; some electric showers 0.11 +/- 0.25 microT and can openers 0.20 +/- 0.21 microT. Of continuously operating devices, only central heating pumps (0.51 +/- 0.47 microT), central heating boilers (0.27 +/- 0.26 microT) and fish-tank air pumps (0.32 +/- 0.09 microT) produced significant fields at 0.5 m. There were no obvious ways to group different types of appliances as high- or low-strength sources. Mothers spent on average about 4.5 h per day in the kitchen, where the strongest sources of magnetic field were located.

  7. Effect of non-Newtonian characteristics of blood on magnetic particle capture in occluded blood vessel

    NASA Astrophysics Data System (ADS)

    Bose, Sayan; Banerjee, Moloy

    2015-01-01

    Magnetic nanoparticles drug carriers continue to attract considerable interest for drug targeting in the treatment of cancer and other pathological conditions. Magnetic carrier particles with surface-bound drug molecules are injected into the vascular system upstream from the desired target site, and are captured at the target site via a local applied magnetic field. Herein, a numerical investigation of steady magnetic drug targeting (MDT) using functionalized magnetic micro-spheres in partly occluded blood vessel having a 90° bent is presented considering the effects of non-Newtonian characteristics of blood. An Eulerian-Lagrangian technique is adopted to resolve the hemodynamic flow and the motion of the magnetic particles in the flow using ANSYS FLUENT. An implantable infinitely long cylindrical current carrying conductor is used to create the requisite magnetic field. Targeted transport of the magnetic particles in a partly occluded vessel differs distinctly from the same in a regular unblocked vessel. Parametric investigation is conducted and the influence of the insert configuration and its position from the central plane of the artery (zoffset), particle size (dp) and its magnetic property (χ) and the magnitude of current (I) on the "capture efficiency" (CE) is reported. Analysis shows that there exists an optimum regime of operating parameters for which deposition of the drug carrying magnetic particles in a target zone on the partly occluded vessel wall can be maximized. The results provide useful design bases for in vitro set up for the investigation of MDT in stenosed blood vessels.

  8. Spin-interaction effects for ultralong-range Rydberg molecules in a magnetic field

    NASA Astrophysics Data System (ADS)

    Hummel, Frederic; Fey, Christian; Schmelcher, Peter

    2018-04-01

    We investigate the fine and spin structure of ultralong-range Rydberg molecules exposed to a homogeneous magnetic field. Each molecule consists of a 87Rb Rydberg atom the outer electron of which interacts via spin-dependent s - and p -wave scattering with a polarizable 87Rb ground-state atom. Our model includes also the hyperfine structure of the ground-state atom as well as spin-orbit couplings of the Rydberg and ground-state atom. We focus on d -Rydberg states and principal quantum numbers n in the vicinity of 40. The electronic structure and vibrational states are determined in the framework of the Born-Oppenheimer approximation for varying field strengths ranging from a few up to hundred Gauss. The results show that the interplay between the scattering interactions and the spin couplings gives rise to a large variety of molecular states in different spin configurations as well as in different spatial arrangements that can be tuned by the magnetic field. This includes relatively regularly shaped energy surfaces in a regime where the Zeeman splitting is large compared to the scattering interaction but small compared to the Rydberg fine structure, as well as more complex structures for both weaker and stronger fields. We quantify the impact of spin couplings by comparing the extended theory to a spin-independent model.

  9. Effects of a strong magnetic field on internal gravity waves: trapping, phase mixing, reflection and dynamical chaos

    NASA Astrophysics Data System (ADS)

    Loi, Shyeh Tjing; Papaloizou, John C. B.

    2018-04-01

    The spectrum of oscillation modes of a star provides information not only about its material properties (e.g. mean density), but also its symmetries. Spherical symmetry can be broken by rotation and/or magnetic fields. It has been postulated that strong magnetic fields in the cores of some red giants are responsible for their anomalously weak dipole mode amplitudes (the "dipole dichotomy" problem), but a detailed understanding of how gravity waves interact with strong fields is thus far lacking. In this work, we attack the problem through a variety of analytical and numerical techniques, applied to a localised region centred on a null line of a confined axisymmetric magnetic field which is approximated as being cylindrically symmetric. We uncover a rich variety of phenomena that manifest when the field strength exceeds a critical value, beyond which the symmetry is drastically broken by the Lorentz force. When this threshold is reached, the spatial structure of the g-modes becomes heavily altered. The dynamics of wave packet propagation transitions from regular to chaotic, which is expected to fundamentally change the organisation of the mode spectrum. In addition, depending on their frequency and the orientation of field lines with respect to the stratification, waves impinging on different parts of the magnetised region are found to undergo either reflection or trapping. Trapping regions provide an avenue for energy loss through Alfvén wave phase mixing. Our results may find application in various astrophysical contexts, including the dipole dichotomy problem, the solar interior, and compact star oscillations.

  10. GIFTed Demons: deformable image registration with local structure-preserving regularization using supervoxels for liver applications

    PubMed Central

    Gleeson, Fergus V.; Brady, Michael; Schnabel, Julia A.

    2018-01-01

    Abstract. Deformable image registration, a key component of motion correction in medical imaging, needs to be efficient and provides plausible spatial transformations that reliably approximate biological aspects of complex human organ motion. Standard approaches, such as Demons registration, mostly use Gaussian regularization for organ motion, which, though computationally efficient, rule out their application to intrinsically more complex organ motions, such as sliding interfaces. We propose regularization of motion based on supervoxels, which provides an integrated discontinuity preserving prior for motions, such as sliding. More precisely, we replace Gaussian smoothing by fast, structure-preserving, guided filtering to provide efficient, locally adaptive regularization of the estimated displacement field. We illustrate the approach by applying it to estimate sliding motions at lung and liver interfaces on challenging four-dimensional computed tomography (CT) and dynamic contrast-enhanced magnetic resonance imaging datasets. The results show that guided filter-based regularization improves the accuracy of lung and liver motion correction as compared to Gaussian smoothing. Furthermore, our framework achieves state-of-the-art results on a publicly available CT liver dataset. PMID:29662918

  11. GIFTed Demons: deformable image registration with local structure-preserving regularization using supervoxels for liver applications.

    PubMed

    Papież, Bartłomiej W; Franklin, James M; Heinrich, Mattias P; Gleeson, Fergus V; Brady, Michael; Schnabel, Julia A

    2018-04-01

    Deformable image registration, a key component of motion correction in medical imaging, needs to be efficient and provides plausible spatial transformations that reliably approximate biological aspects of complex human organ motion. Standard approaches, such as Demons registration, mostly use Gaussian regularization for organ motion, which, though computationally efficient, rule out their application to intrinsically more complex organ motions, such as sliding interfaces. We propose regularization of motion based on supervoxels, which provides an integrated discontinuity preserving prior for motions, such as sliding. More precisely, we replace Gaussian smoothing by fast, structure-preserving, guided filtering to provide efficient, locally adaptive regularization of the estimated displacement field. We illustrate the approach by applying it to estimate sliding motions at lung and liver interfaces on challenging four-dimensional computed tomography (CT) and dynamic contrast-enhanced magnetic resonance imaging datasets. The results show that guided filter-based regularization improves the accuracy of lung and liver motion correction as compared to Gaussian smoothing. Furthermore, our framework achieves state-of-the-art results on a publicly available CT liver dataset.

  12. The effect of magnetic topography on high-latitude radio emission at Neptune

    NASA Technical Reports Server (NTRS)

    Sawyer, C. B.; Warwick, James W.; Romig, J. H.

    1992-01-01

    Occultation by a local elevation on the surface of constant magnetic field is proposed as a new interpretation for the unusual properties of Neptune high-latitude emission. Abrupt changes in intensity and polarization of this broadband smooth radio emission were observed as the Voyager 2 spacecraft passed near the north magnetic pole before closest approach. The observed sequence of cutoffs with polarization reversal would not occur during descent of the spacecraft through regular surfaces of increasing magnetic field. The sequence can be understood in terms of constant-frequency (constant-field) surfaces that are not only offset from the planet center but are locally highly distorted by an elevation that occults the outgoing extraordinary-mode beam. The required occulter is similar to the field enhancement observed directly by the magnetometer team when Voyager reached lower altitude farther to the west. Evidence is presented that the sources of the high-altitude emission are located near the longitude of the minimum-B anomaly associated with the dipole offset and that the local elevation of constant-B surfaces extends eastward from the longitude where it is directly measured by the magnetometer to the longitude where occultation of the remote radio source is observed. Together, the radio and magnetometer experiments indicate that the constant-frequency surfaces are distorted by an elevation that extends 0.3 rad in the longitudinal direction.

  13. Entanglement and area law with a fractal boundary in a topologically ordered phase

    NASA Astrophysics Data System (ADS)

    Hamma, Alioscia; Lidar, Daniel A.; Severini, Simone

    2010-01-01

    Quantum systems with short-range interactions are known to respect an area law for the entanglement entropy: The von Neumann entropy S associated to a bipartition scales with the boundary p between the two parts. Here we study the case in which the boundary is a fractal. We consider the topologically ordered phase of the toric code with a magnetic field. When the field vanishes it is possible to analytically compute the entanglement entropy for both regular and fractal bipartitions (A,B) of the system and this yields an upper bound for the entire topological phase. When the A-B boundary is regular we have S/p=1 for large p. When the boundary is a fractal of the Hausdorff dimension D, we show that the entanglement between the two parts scales as S/p=γ⩽1/D, and γ depends on the fractal considered.

  14. Structural and magnetic properties of the nanocomposite materials based on a mesoporous silicon dioxide matrix

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grigor’eva, N. A., E-mail: natali@lns.pnpi.spb.ru; Eckerlebe, H.; Eliseev, A. A.

    2017-03-15

    The structural and magnetic properties of the mesoporous systems based on silicon dioxide with a regular hexagonal arrangement of pores several microns in length and several nanometers in diameter, which are filled with iron compound nanofilaments in various chemical states, are studied in detail. The studies are performed using the following mutually complementary methods: transmission electron microscopy, SQUID magnetometry, electron spin resonance, Mössbauer spectroscopy, polarized neutron small-angle diffraction, and synchrotron radiation diffraction. It is shown that the iron nanoparticles in pores are mainly in the γ phase of Fe{sub 2}O{sub 3} with a small addition of the α phase andmore » atomic iron clusters. The effective magnetic field acting on a nanofilament from other nanofilaments is 11 mT and has a dipole nature, the ferromagnetic–paramagnetic transition temperature is in the range 76–94 K depending on the annealing temperature of the samples, and the temperature that corresponds to the change in the magnetic state of the iron oxide nanofilaments is T ≈ 50–60 K at H = 0 and T ≈ 80 K at H = 300 mT. It is also shown that the magnetization reversal of an array of nanofilaments is caused by the magnetostatic interaction between nanofilaments at the fields that are lower than the saturation field.« less

  15. Spin Transfer Torque in Spin Filter Tunnel Junctions

    NASA Astrophysics Data System (ADS)

    Ortiz Pauyac, Christian; Kalitsov, Alan; Manchon, Aurelien; Chshiev, Mair

    2014-03-01

    STT in MTJs is well known for its potential spin electronic applications. However, recently a new class of MTJs based on spin filtering across magnetic insulators (SFTJ) has been attracting much attention since in such MTJs electrons with a certain spin orientation tunnel much more efficiently. In this structure, STT remains to be addressed and clarified. Here we present a systematic study of its angular and voltage bias dependences consisting of one or two FM layers separated by a magnetic insulator (MI). The calculations were performed within the tight-binding model using NEGF technique in the framework of Keldysh formalism. We predict that STT is higher in magnitude compared to regular MTJs, which strongly depends in the relative directions of the magnetic states of the free layer (FM2) and MI. Namely, in case of parallel orientation of MI and FM2 moments in a FM1|MI|FM2 structure, the system behaves as a regular MTJ with a modest increase of STT magnitude. However, as the angle between MI and FM2 moments increases, the field-like torque becomes three orders of magnitude higher than the Slonczewski component and oscillates with bias as band-filling increases. This may have practical implications.

  16. Inkjet-Print Micromagnet Array on Glass Slides for Immunomagnetic Enrichment of Circulating Tumor Cells

    PubMed Central

    Chen, Peng; Huang, Yu-Yen; Bhave, Gauri; Hoshino, Kazunori; Zhang, Xiaojing

    2015-01-01

    We report an inkjet-printed microscale magnetic structure that can be integrated on regular glass slides for the immunomagnetic screening of rare Circulating Tumor Cells (CTCs). CTCs detach from the primary tumor site, circulate with the bloodstream, and initiate the cancer metastasis process. Therefore, a liquid biopsy in the form of capturing and analyzing CTCs may provide key information for cancer prognosis and diagnosis. Inkjet printing technology provides a non-contact, layer-by-layer and mask-less approach to deposit defined magnetic patterns on an arbitrary substrate. Such thin film patterns, when placed in an external magnetic field, significantly enhance the attractive force in the near-field close to the CTCs to facilitate the separation. We demonstrated the efficacy of the inkjet-print micromagnet array integrated immunomagnetic assay in separating COLO205 (human colorectal cancer cell line) from whole blood samples. The micromagnets increased the capture efficiency by 26% compared with using plain glass slide as the substrate. PMID:26289942

  17. Acceleration during magnetic reconnection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beresnyak, Andrey; Li, Hui

    2015-07-16

    The presentation begins with colorful depictions of solar x-ray flares and references to pulsar phenomena. Plasma reconnection is complex, could be x-point dominated or turbulent, field lines could break due to either resistivity or non-ideal effects, such as electron pressure anisotropy. Electron acceleration is sometimes observed, and sometimes not. One way to study this complex problem is to have many examples of the process (reconnection) and compare them; the other way is to simplify and come to something robust. Ideal MHD (E=0) turbulence driven by magnetic energy is assumed, and the first-order acceleration is sought. It is found that dissipationmore » in big (length >100 ion skin depths) current sheets is universal and independent on microscopic resistivity and the mean imposed field; particles are regularly accelerated while experiencing curvature drift in flows driven by magnetic tension. One example of such flow is spontaneous reconnection. This explains hot electrons with a power-law tail in solar flares, as well as ultrashort time variability in some astrophysical sources.« less

  18. A new model for the (geo)magnetic power spectrum, with application to planetary dynamo radii

    NASA Astrophysics Data System (ADS)

    Langlais, Benoit; Amit, Hagay; Larnier, Hugo; Thébault, Erwan; Mocquet, Antoine

    2014-09-01

    We propose two new analytical expressions to fit the Mauersberger-Lowes geomagnetic field spectrum at the core-mantle boundary. These can be used to estimate the radius of the outer liquid core where the geodynamo operates, or more generally the radius of the planetary dynamo regions. We show that two sub-families of the geomagnetic field are independent of spherical harmonics degree n at the core-mantle boundary and exhibit flat spectra. The first is the non-zonal field, i.e., for spherical harmonics order m different from zero. The second is the quadrupole family, i.e., n+m even. The flatness of their spectra is motivated by the nearly axisymmetric time-average paleomagnetic field (for the non-zonal field) and the dominance of rotational effects in core dynamics (for the quadrupole family). We test our two expressions with two approaches using the reference case of the Earth. First we estimate at the seismic core radius the agreement between the actual spectrum and the theoretical one. Second we estimate the magnetic core radius, where the spectrum flattens. We show that both sub-families offer a better agreement with the actual spectrum compared with previously proposed analytical expressions, and predict a magnetic core radius within less than 10 km of the Earth's seismic core radius. These new expressions supersede previous ones to infer the core radius from geomagnetic field information because the low degree terms are not ignored. Our formalism is then applied to infer the radius of the dynamo regions on Jupiter, Saturn, Uranus and Neptune. The axisymmetric nature of the magnetic field of Saturn prevents the use of the non-zonal expression. For the three other planets both expressions converge and offer independent constraints on the internal structure of these planets. These non-zonal and quadrupole family expressions may be implemented to extrapolate the geomagnetic field spectrum beyond observable degrees, or to further regularize magnetic field models constructed from modern or historical observations.

  19. Effect of calcination routes on phase formation of BaTiO3 and their electronic and magnetic properties

    NASA Astrophysics Data System (ADS)

    Majumder, Supriyo; Choudhary, R. J.; Tripathi, M.; Phase, D. M.

    2018-05-01

    We have investigated the phase formation and correlation between electronic and magnetic properties of oxygen deficient BaTiO3 ceramics, synthesized by solid state reaction method, following different calcination paths. The phase analysis divulge that a higher calcination temperature above 1000° C is favored for tetragonal phase formation than the cubic phase. The core level X-ray photo electron spectroscopy measurements confirm the presence of oxygen vacancies and oxygen vacancy mediated Ti3+ states. As the calcination temperature and calcination time increases these oxygen vacancies and hence Ti3+ concentrations reduce in the sample. The temperature dependent magnetization curves suggest unexpected magnetic ordering, which may be due to the presence of unpaired electron at the t2g state (d1) of nearest-neighbor Ti atoms. In magnetization vs magnetic field isotherms, the regular decrease of saturation moment value with increasing calcination temperature and calcination time, can be discussed considering the amount of oxygen deficiency induced Ti3+ concentrations, present in the sample.

  20. Distributions of Magnetic Field Variations, Differences and Residuals

    DTIC Science & Technology

    1999-02-01

    differences and residuals between two neighbouring sites (1997 data, Monte - cristo area). Each panel displays the results from a specific vector...This means, in effect, counting the number of times the absolute value increased past one of a series of regularly spaced thresholds, and tally the...results. Crossings of the zero level were not counted . Fig. 7 illustrates the binning procedure for a fictitious data set and four bin thresholds on

  1. A new high resolution total magnetic intensity data set of the Laacher See Volcano in the East-Eifel volcanic field, Germany

    NASA Astrophysics Data System (ADS)

    Goepel, A.; Queitsch, M.; Lonschinski, M.; Eitner, A.; Meisel, M.; Reißig, S.; Engelhardt, J.; Büchel, G.; Kukowski, N.

    2012-04-01

    The Laacher See Volcano (LSV) is part of the Quaternary East-Eifel volcanic field (EVF) located in the western part of Germany, where at least 103 eruptive centers have been identified. The Laacher See volcano explosively erupted about 6.3 km3 of phonolitic magma during a dominantly phreato-plinian eruption at about 12,900 BP. Despite numerous previous studies the eruptive history of LSV is not fully unveiled. For a better understanding of the eruptive history of LSV several geophysical methods, including magnetic, gravimetric and bathymetric surveys have been applied on and around Laacher See Volcano. Here we focus on the magnetic and bathymetric data. The presented high resolution magnetic data covering an area of about 25 km2 (20,000 sample points) and were collected using ground based proton magnetometers (GEM Systems GSM-19TGW, Geometrics G856) during several field campaigns. In addition, a magnetic survey on the lake was done using a non-magnetic boat as platform. The bathymetric survey was conducted on profiles (total length of 235 km) using an echo sounder GARMIN GPSMap 421. Depth data were computed to a bathymetric model on a 10 m spaced regular grid. A joint interpretation of magnetic, morphologic and bathymetric data allows us to search for common patterns which can be associated with typical volcanic features. From our data at least one new eruptive center and lava flow could be identified. Furthermore, the new data suggest that previously identified lava flows have not been accurately located.

  2. Utilizing of magnetic parameters for evaluation of soil erosion rates on two different agricultural sites

    NASA Astrophysics Data System (ADS)

    Kapicka, A.; Grison, H.; Petrovsky, E.; Jaksik, O.; Kodesova, R.

    2015-12-01

    Field measurements of magnetic susceptibility were carried out on regular grid, resulting in 101 data points at Brumovice and 65 at Vidim locality. Mass specific magnetic susceptibility χ and its frequency dependence χFD was used to estimate the significance of SP ferrimagnetic particles of pedogenic origin in topsoil horizons. The lowest magnetic susceptibility was obtained on the steep valley sides. Here the original topsoil was eroded and mixed by tillage with the soil substrate (loess). Soil profiles unaffected by erosion were investigated in detail. The vertical distribution of magnetic susceptibility along these "virgin" profiles was measured in laboratory on samples collected with 2-cm spacing. The differences between the distribution of susceptibility in the undisturbed soil profiles and the magnetic signal after uniform mixing of the soil material as a result of erosion and tillage are fundamental for the estimation of soil loss in the studied test fields. Maximum cumulative soil erosion depth in Brumovice and Vidim is around 100 cm and 50 cm respectively. The magnetic method is suitable for mapping at the chernozem localities and measurement of soil magnetic susceptibility is in this case useful and fast technique for quantitative estimation of soil loss caused by erosion. However, it is less suitable (due to lower magnetic differentiation with depth) in areas with luvisol as dominant soil unit. Acknowledgement: This study was supported by NAZV Agency of the Ministry of Agriculture of the Czech Republic through grant No QJ1230319.

  3. Zeeman splitting of 6.7 GHz methanol masers. On the uncertainty of magnetic field strength determinations

    NASA Astrophysics Data System (ADS)

    Vlemmings, W. H. T.; Torres, R. M.; Dodson, R.

    2011-05-01

    Context. To properly determine the role of magnetic fields during massive star formation, a statistically significant sample of field measurements probing different densities and regions around massive protostars needs to be established. However, relating Zeeman splitting measurements to magnetic field strengths needs a carefully determined splitting coefficient. Aims: Polarization observations of, in particular, the very abundant 6.7 GHz methanol maser, indicate that these masers appear to be good probes of the large scale magnetic field around massive protostars at number densities up to nH2 ≈ 109 cm-3. We thus investigate the Zeeman splitting of the 6.7 GHz methanol maser transition. Methods: We have observed of a sample of 46 bright northern hemisphere maser sources with the Effelsberg 100-m telescope and an additional 34 bright southern masers with the Parkes 64-m telescope in an attempt to measure their Zeeman splitting. We also revisit the previous calculation of the methanol Zeeman splitting coefficients and show that these were severely overestimated making the determination of magnetic field strengths highly uncertain. Results: In total 44 of the northern masers were detected and significant splitting between the right- and left-circular polarization spectra is determined in >75% of the sources with a flux density >20 Jy beam-1. Assuming the splitting is due to a magnetic field according to the regular Zeeman effect, the average detected Zeeman splitting corrected for field geometry is ~0.6 m s-1. Using an estimate of the 6.7 GHz A-type methanol maser Zeeman splitting coefficient based on old laboratory measurements of 25 GHz E-type methanol transitions this corresponds to a magnetic field of ~120 mG in the methanol maser region. This is significantly higher than expected using the typically assumed relation between magnetic field and density (B∝ n_H_20.47) and potentially indicates the extrapolation of the available laboratory measurements is invalid. The stability of the right- and left-circular calibration of the Parkes observations was insufficient to determine the Zeeman splitting of the Southern sample. Spectra are presented for all sources in both samples. Conclusions: There is no strong indication that the measured splitting between right- and left-circular polarization is due to non-Zeeman effects, although this cannot be ruled out until the Zeeman coefficient is properly determined. However, although the 6.7 GHz methanol masers are still excellent magnetic field morphology probes through linear polarization observations, previous derivations of magnetic fields strength turn out to be highly uncertain. A solution to this problem will require new laboratory measurements of the methanol Landé-factors. Table 2 and Figs. 5-7 are only available in electronic form at http://www.aanda.org

  4. Radial profile of pressure in a storm ring current as a function of D st

    NASA Astrophysics Data System (ADS)

    Kovtyukh, A. S.

    2010-06-01

    Using satellite data obtained near the equatorial plane during 12 magnetic storms with amplitudes from -61 down to -422 nT, the dependences of maximum in L-profile of pressure ( L m) of the ring current (RC) on the current value of D st are constructed, and their analytical approximations are derived. It is established that function L m( D st ) is steeper on the phase of recovery than during the storm’s main phase. The form of the outer edge of experimental radial profiles of RC pressure is studied, and it is demonstrated to correspond to exponential growth of the total energy of RC particles on a given L shell with decreasing L. It is shown that during the storms’ main phase the ratio of plasma and magnetic field pressures at the RC maximum does not practically depend on the storm strength and L m value. This fact reflects resistance of the Earth’s magnetic field to RC expansion, and testifies that during storms the possibilities of injection to small L are limited for RC particles. During the storms’ recovery phase this ratio quickly increases with increasing L m, which reflects an increased fraction of plasma in the total pressure balance. It is demonstrated that function L m( D st ) is derived for the main phase of storms from the equations of drift motion of RC ions in electrical and magnetic fields, reflecting the dipole character of magnetic field and scale invariance of the pattern of particle convection near the RC maximum. For the recovery phase it is obtained from the Dessler-Parker-Sckopke relationship. The obtained regularities allow one to judge about the radial profile of RC pressure from ground-based magnetic measurements (data on the D st variation).

  5. Magnetic Fields in Evolved Stars: Imaging the Polarized Emission of High-frequency SiO Masers

    NASA Astrophysics Data System (ADS)

    Vlemmings, W. H. T.; Humphreys, E. M. L.; Franco-Hernández, R.

    2011-02-01

    We present Submillimeter Array observations of high-frequency SiO masers around the supergiant VX Sgr and the semi-regular variable star W Hya. The J = 5-4, v = 128SiO and v = 029SiO masers of VX Sgr are shown to be highly linearly polarized with a polarization from ~5% to 60%. Assuming the continuum emission peaks at the stellar position, the masers are found within ~60 mas of the star, corresponding to ~100 AU at a distance of 1.57 kpc. The linear polarization vectors are consistent with a large-scale magnetic field, with position and inclination angles similar to that of the dipole magnetic field inferred in the H2O and OH maser regions at much larger distances from the star. We thus show for the first time that the magnetic field structure in a circumstellar envelope can remain stable from a few stellar radii out to ~1400 AU. This provides further evidence supporting the existence of large-scale and dynamically important magnetic fields around evolved stars. Due to a lack of parallactic angle coverage, the linear polarization of masers around W Hya could not be determined. For both stars, we observed the 28SiO and 29SiO isotopologues and find that they have a markedly different distributions and that they appear to avoid each other. Additionally, emission from the SO 55-44 line was imaged for both sources. Around W Hya, we find a clear offset between the red- and blueshifted SO emission. This indicates that W Hya is likely host to a slow bipolar outflow or a rotating disk-like structure.

  6. Synthesis and Characterization of Magnetic Carriers Based on Immobilized Enzyme

    NASA Astrophysics Data System (ADS)

    Li, F. H.; Tang, N.; Wang, Y. Q.; Zhang, L.; Du, W.; Xiang, J.; Cheng, P. G.

    2018-05-01

    Several new types of carriers and technologies have been implemented to improve traditional enzyme immobilization in industrial biotechnology. The magnetic immobilized enzyme is a kind of new method of enzyme immobilization developed in recent years. An external magnetic field can be used to control the motion mode and direction of immobilized enzyme, and to improve the catalytic efficiency of immobilized enzyme. In this paper, Fe3O4-CaCO3-PDA complex and CaCO3/Fe3O4 composite modified by PEI were prepared. The results show that the morphology of Fe3O4-CaCO3-PDA complex formation is irregular, while the morphology of CaCO3/Fe3O4 composite modified by PEI is regular and has a porous structure.

  7. Comparisons of Cassini flybys of the Titan magnetospheric interaction with an MHD model: Evidence for organized behavior at high altitudes

    NASA Astrophysics Data System (ADS)

    Ulusen, D.; Luhmann, J. G.; Ma, Y. J.; Mandt, K. E.; Waite, J. H.; Dougherty, M. K.; Wahlund, J. E.; Russell, C. T.; Cravens, T. E.; Edberg, N. J. T.; Agren, K.

    2012-01-01

    Recent papers suggest the significant variability of conditions in Saturn's magnetosphere at the orbit of Titan. Because of this variability, it was expected that models would generally have a difficult time regularly comparing to data from the Titan flybys. However, we find that in contrast to this expectation, it appears that there is underlying organization of the interaction features roughly above ˜1800 km (1.7 Rt) altitude by the average external field due to Saturn's dipole moment. In this study, we analyze Cassini's plasma and magnetic field data collected at 9 Titan encounters during which the external field is close to the ideal southward direction and compare these observations to the results from a 2-fluid (1 ion, 1 electron) 7-species MHD model simulations obtained under noon SLT conditions. Our comparative analysis shows that under noon SLT conditions the Titan plasma interaction can be viewed in two layers: an outer layer between 6400 and 1800 km where interaction features observed in the magnetic field are in basic agreement with a purely southward external field interaction and an inner layer below 1800 km where the magnetic field measurements show strong variations and deviate from the model predictions. Thus the basic features inferred from the Voyager 1 flyby seem to be generally present above ˜1800 km in spite of the ongoing external variations from SLT excursions, time variability and magnetospheric current systems as long as a significant southward external field component is present. At around ˜1800 km kinetic effects (such as mass loading and heavy ion pickup) and below 1800 km ionospheric effects (such as drag of ionospheric plasma due to coupling with neutral winds and/or magnetic memory of Titan's ionosphere) complicate what is observed.

  8. Scaling laws in magnetized plasma turbulence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boldyrev, Stanislav

    2015-06-28

    Interactions of plasma motion with magnetic fields occur in nature and in the laboratory in an impressively broad range of scales, from megaparsecs in astrophysical systems to centimeters in fusion devices. The fact that such an enormous array of phenomena can be effectively studied lies in the existence of fundamental scaling laws in plasma turbulence, which allow one to scale the results of analytic and numerical modeling to the sized of galaxies, velocities of supernovae explosions, or magnetic fields in fusion devices. Magnetohydrodynamics (MHD) provides the simplest framework for describing magnetic plasma turbulence. Recently, a number of new features ofmore » MHD turbulence have been discovered and an impressive array of thought-provoking phenomenological theories have been put forward. However, these theories have conflicting predictions, and the currently available numerical simulations are not able to resolve the contradictions. MHD turbulence exhibits a variety of regimes unusual in regular hydrodynamic turbulence. Depending on the strength of the guide magnetic field it can be dominated by weakly interacting Alfv\\'en waves or strongly interacting wave packets. At small scales such turbulence is locally anisotropic and imbalanced (cross-helical). In a stark contrast with hydrodynamic turbulence, which tends to ``forget'' global constrains and become uniform and isotropic at small scales, MHD turbulence becomes progressively more anisotropic and unbalanced at small scales. Magnetic field plays a fundamental role in turbulent dynamics. Even when such a field is not imposed by external sources, it is self-consistently generated by the magnetic dynamo action. This project aims at a comprehensive study of universal regimes of magnetic plasma turbulence, combining the modern analytic approaches with the state of the art numerical simulations. The proposed study focuses on the three topics: weak MHD turbulence, which is relevant for laboratory devices, the solar wind, solar corona heating, and planetary magnetospheres; strong MHD turbulence, which is relevant for fusion devices, star formation, cosmic rays acceleration, scattering and trapping in galaxies, as well as many aspects of dynamics, distribution and composition of space plasmas, and the process of magnetic dynamo action, which explains the generation and the structure of magnetic fields in turbulent plasmas. The planned work will aim at developing new analytic approaches, conducting new numerical simulations with currently unmatched resolution, and training students in the methods of the modern theory of plasma turbulence. The work will be performed at the University of Wisconsin--Madison.« less

  9. Non-invasive Hall current distribution measurement in a Hall effect thruster

    NASA Astrophysics Data System (ADS)

    Mullins, Carl R.; Farnell, Casey C.; Farnell, Cody C.; Martinez, Rafael A.; Liu, David; Branam, Richard D.; Williams, John D.

    2017-01-01

    A means is presented to determine the Hall current density distribution in a closed drift thruster by remotely measuring the magnetic field and solving the inverse problem for the current density. The magnetic field was measured by employing an array of eight tunneling magnetoresistive (TMR) sensors capable of milligauss sensitivity when placed in a high background field. The array was positioned just outside the thruster channel on a 1.5 kW Hall thruster equipped with a center-mounted hollow cathode. In the sensor array location, the static magnetic field is approximately 30 G, which is within the linear operating range of the TMR sensors. Furthermore, the induced field at this distance is approximately tens of milligauss, which is within the sensitivity range of the TMR sensors. Because of the nature of the inverse problem, the induced-field measurements do not provide the Hall current density by a simple inversion; however, a Tikhonov regularization of the induced field does provide the current density distributions. These distributions are shown as a function of time in contour plots. The measured ratios between the average Hall current and the average discharge current ranged from 6.1 to 7.3 over a range of operating conditions from 1.3 kW to 2.2 kW. The temporal inverse solution at 1.5 kW exhibited a breathing mode frequency of 24 kHz, which was in agreement with temporal measurements of the discharge current.

  10. Non-invasive Hall current distribution measurement in a Hall effect thruster.

    PubMed

    Mullins, Carl R; Farnell, Casey C; Farnell, Cody C; Martinez, Rafael A; Liu, David; Branam, Richard D; Williams, John D

    2017-01-01

    A means is presented to determine the Hall current density distribution in a closed drift thruster by remotely measuring the magnetic field and solving the inverse problem for the current density. The magnetic field was measured by employing an array of eight tunneling magnetoresistive (TMR) sensors capable of milligauss sensitivity when placed in a high background field. The array was positioned just outside the thruster channel on a 1.5 kW Hall thruster equipped with a center-mounted hollow cathode. In the sensor array location, the static magnetic field is approximately 30 G, which is within the linear operating range of the TMR sensors. Furthermore, the induced field at this distance is approximately tens of milligauss, which is within the sensitivity range of the TMR sensors. Because of the nature of the inverse problem, the induced-field measurements do not provide the Hall current density by a simple inversion; however, a Tikhonov regularization of the induced field does provide the current density distributions. These distributions are shown as a function of time in contour plots. The measured ratios between the average Hall current and the average discharge current ranged from 6.1 to 7.3 over a range of operating conditions from 1.3 kW to 2.2 kW. The temporal inverse solution at 1.5 kW exhibited a breathing mode frequency of 24 kHz, which was in agreement with temporal measurements of the discharge current.

  11. Induced electric currents in the Alaska oil pipeline measured by gradient, fluxgate, and SQUID magnetometers

    NASA Technical Reports Server (NTRS)

    Campbell, W. H.; Zimmerman, J. E.

    1979-01-01

    The field gradient method for observing the electric currents in the Alaska pipeline provided consistent values for both the fluxgate and SQUID method of observation. These currents were linearly related to the regularly measured electric and magnetic field changes. Determinations of pipeline current were consistent with values obtained by a direct connection, current shunt technique at a pipeline site about 9.6 km away. The gradient method has the distinct advantage of portability and buried- pipe capability. Field gradients due to the pipe magnetization, geological features, or ionospheric source currents do not seem to contribute a measurable error to such pipe current determination. The SQUID gradiometer is inherently sensitive enough to detect very small currents in a linear conductor at 10 meters, or conversely, to detect small currents of one amphere or more at relatively great distances. It is fairly straightforward to achieve imbalance less than one part in ten thousand, and with extreme care, one part in one million or better.

  12. Superconducting magnetoresistance in ferromagnet/superconductor/ferromagnet trilayers

    PubMed Central

    Stamopoulos, D.; Aristomenopoulou, E.

    2015-01-01

    Magnetoresistance is a multifaceted effect reflecting the diverse transport mechanisms exhibited by different kinds of plain materials and hybrid nanostructures; among other, giant, colossal, and extraordinary magnetoresistance versions exist, with the notation indicative of the intensity. Here we report on the superconducting magnetoresistance observed in ferromagnet/superconductor/ferromagnet trilayers, namely Co/Nb/Co trilayers, subjected to a parallel external magnetic field equal to the coercive field. By manipulating the transverse stray dipolar fields that originate from the out-of-plane magnetic domains of the outer layers that develop at coercivity, we can suppress the supercurrent of the interlayer. We experimentally demonstrate a scaling of the magnetoresistance magnitude that we reproduce with a closed-form phenomenological formula that incorporates relevant macroscopic parameters and microscopic length scales of the superconducting and ferromagnetic structural units. The generic approach introduced here can be used to design novel cryogenic devices that completely switch the supercurrent ‘on’ and ‘off’, thus exhibiting the ultimate magnetoresistance magnitude 100% on a regular basis. PMID:26306543

  13. Electronic orbital response of regular extended and infinite periodic systems to magnetic fields. I. Theoretical foundations for static case

    NASA Astrophysics Data System (ADS)

    Springborg, Michael; Molayem, Mohammad; Kirtman, Bernard

    2017-09-01

    A theoretical treatment for the orbital response of an infinite, periodic system to a static, homogeneous, magnetic field is presented. It is assumed that the system of interest has an energy gap separating occupied and unoccupied orbitals and a zero Chern number. In contrast to earlier studies, we do not utilize a perturbation expansion, although we do assume the field is sufficiently weak that the occurrence of Landau levels can be ignored. The theory is developed by analyzing results for large, finite systems and also by comparing with the analogous treatment of an electrostatic field. The resulting many-electron Hamilton operator is forced to be hermitian, but hermiticity is not preserved, in general, for the subsequently derived single-particle operators that determine the electronic orbitals. However, we demonstrate that when focusing on the canonical solutions to the single-particle equations, hermiticity is preserved. The issue of gauge-origin dependence of approximate solutions is addressed. Our approach is compared with several previously proposed treatments, whereby limitations in some of the latter are identified.

  14. Multiferroic and magnetoelectric nanocomposites for data processing

    NASA Astrophysics Data System (ADS)

    Kleemann, Wolfgang

    2017-06-01

    Recent progress in preparing and understanding composite magnetoelectrics is highlighted. Apart from optimized standard solutions novel methods of switching magnetism with electric fields and vice versa with focus on magnetoelectric (ME) data processing in multiferroic and magnetoelectric nanocomposites deserve particular interest. First, we report on the patented MERAM, which uses the electric field control of exchange bias in a layered composite via an epitaxial magnetoelectric Cr2O3 layer exchange coupled to a Pt/Co/Pt trilayer. It promises to crucially reduce Joule energy losses in RAM devices. Second, magnetic switching of the electric polarization by a transverse magnetic field in a composite of CoFe2O4 nanopillars embedded in a vertically poled BaTiO3 thick film produces a regular surface polarization pattern with rectangular local symmetry. Its possible use for data processing is discussed. Third, in the relaxor ferroelectric single-phase compound (BiFe0.9Co0.1O3)0.4-(Bi1/2K1/2TiO3)0.6 polar nanoregions emerging from ferrimagnetic Bi(Fe,Co)O3 regions embedded in a Bi1/2K1/2TiO3 relaxor component transform into ferroelectric clusters and simultaneously enable congruent magnetic clusters. The local polarization and magnetization couple with record-high direct and converse magnetoelectric coupling coefficients, α  ≈  1.0  ×  10-5 s m-1. These ‘multiferroic’ clusters are promising for applications in data storage or processing devices.

  15. The solar magnetic field: from complexity to simplicity (and back)

    NASA Astrophysics Data System (ADS)

    Schüssler, Manfred

    2017-06-01

    The Sun is the only astrophysical object that permits a detailed study of the basic processes governing its magnetic field. Observations reveal stunning complexity due to the interaction with turbulent convection. Numerical simulations and observations strongly suggest that most of the small-scale field is generated by a process called small-scale dynamo action. The fundamental nature of this process makes it a candidate for magnetic field generation in a broad variety of astrophysical settings.On the other hand, the global nature of the 11-year cycle (as exhibited, for instance, by the polarity laws of sunspot groups and the regularly reversing axial dipole field) reveals a surprising simplicity. This suggests a description of the global dynamo process underlying the solar cycle in terms of relatively simple concepts. Insufficient knowledge about the structure of magnetic field and flows in the convection zone requires the introduction of a variety of free parameters (or even free functions), which severely impairs the explanatory power of most such models. However, during the last decades, surface observations of plasma flows and magnetic flux emergence, together with studies of magnetic flux transport, provided crucial information aboutthe workings of the dynamo process. They confirm the visionary approach proposed already in the 1960s by Babcock and Leighton. A recent update of their model permits a full study of the space spanned by the few remaining parameters in order to identify the regions with solar-like solutions.Observations of other cool stars show that the magnetic activity level decreases strongly with stellar rotation rate. The relatively slow rotation of the Sun puts it near to the threshold at which global dynamo action ceases. This suggests a further simplification of the dynamo model in terms of a generic normal form for a weakly nonlinear system. Including the inherent randomness brought about by the flux emergence process leads to a stochastic model whose parameters are fixed by observations. The model results explain the variability of the solar cycle amplitudes from decadal to millennial time scales.

  16. A compact high-speed mechanical sample shuttle for field-dependent high-resolution solution NMR

    NASA Astrophysics Data System (ADS)

    Chou, Ching-Yu; Chu, Minglee; Chang, Chi-Fon; Huang, Tai-huang

    2012-01-01

    Analysis of NMR relaxation data has provided significant insight on molecular dynamic, leading to a more comprehensive understanding of macromolecular functions. However, traditional methodology allows relaxation measurements performed only at a few fixed high fields, thus severely restricting their potential for extracting more complete dynamic information. Here we report the design and performance of a compact high-speed servo-mechanical shuttle assembly adapted to a commercial 600 MHz high-field superconducting magnet. The assembly is capable of shuttling the sample in a regular NMR tube from the center of the magnet to the top (fringe field ˜0.01 T) in 100 ms with no loss of sensitivity other than that due to intrinsic relaxation. The shuttle device can be installed by a single experienced user in 30 min. Excellent 2D- 15N-HSQC spectra of (u- 13C, 15N)-ubiquitin with relaxation at low fields (3.77 T) and detection at 14.1 T were obtained to illustrate its utility in R 1 measurements of macromolecules at low fields. Field-dependent 13C-R 1 data of (3,3,3-d)-alanine at various field strengths were determined and analyzed to assess CSA and 1H- 13C dipolar contributions to the carboxyl 13C-R 1.

  17. Superparamagnetic magnetite nanocrystals-graphene oxide nanocomposites: facile synthesis and their enhanced electric double-layer capacitor performance.

    PubMed

    Wang, Qihua; Wang, Dewei; Li, Yuqi; Wang, Tingmei

    2012-06-01

    Superparamagnetic magnetite nanocrystals-graphene oxide (FGO) nanocomposites were successfully synthesized through a simple yet versatile one-step solution-processed approach at ambient conditions. Magnetite (Fe3O4) nanocrystals (NCs) with a size of 10-50 nm were uniformly deposited on the surfaces of graphene oxide (GO) sheets, which were confirmed by transmission electron microscopy (TEM) and high-angle annular dark field scanning transmission election microscopy (HAADF-STEM) studies. FGO with different Fe3O4 loadings could be controlled by simply manipulating the initial weight ratio of the precursors. The M-H measurements suggested that the as-prepared FGO nanocomposites have a large saturation magnetizations that made them can move regularly under an external magnetic field. Significantly, FGO nanocomposites also exhibit enhanced electric double-layer capacitor (EDLC) activity compared with pure Fe3O4 NCs and GO in terms of specific capacitance and high-rate charge-discharge.

  18. Localization and Related Phenomena in Multiply Connected Nanostructured Inverse Opal Bismuth

    NASA Astrophysics Data System (ADS)

    Bleiweiss, Michael; Saygi, Salih; Amirzadeh, Jafar; Datta, Timir; Lungu, Anca; Yin, Ming; Palm, Eric; Brandt, Bruce; Iqbal, Zafar

    2001-03-01

    The nanostructures were fabricated by pressure infiltration of bismuth into porous artificial opal and were characterized using SEM, EDX and XRD. These structures form a regular three-dimensional network in which the bismuth regions percolate in all directions between the close packed spheres of SiO_2. The sizes of the conducting regions are of the order of tens of nanometers. The static magnetic properties of both bismuth inverse opal and bulk bismuth were studied using a SQUID magnetometer. Transport measurements, including Hall, were done using standard ac four and six probe techniques in fields up to 17 T* and temperatures between 4.2 and 150 K. The results of these measurements, including the observation of localization phenomena, will be discussed. Comparisons will be made with published results on bismuth nanowires. *Performed at the National High Magnetic Field Lab (NHMFL) FSU, Tallahassee, FL. Partially supported by a grant from NASA.

  19. A Combined FEM/MoM/GTD Technique To Analyze Elliptically Polarized Cavity-Backed Antennas With Finite Ground Plane

    NASA Technical Reports Server (NTRS)

    Reddy, C. J.; Deshpande, M. D.; Fralick, D. T.; Cockrell, C. R.; Beck, F. B.

    1996-01-01

    Radiation pattern prediction analysis of elliptically polarized cavity-backed aperture antennas in a finite ground plane is performed using a combined Finite Element Method/Method of Moments/Geometrical Theory of Diffraction (FEM/MoM/GTD) technique. The magnetic current on the cavity-backed aperture in an infinite ground plane is calculated using the combined FEM/MoM analysis. GTD, including the slope diffraction contribution, is used to calculate the diffracted fields caused by both soft and hard polarizations at the edges of the finite ground plane. Explicit expressions for regular diffraction coefficients and slope diffraction coefficients are presented. The slope of the incident magnetic field at the diffraction points is derived and analytical expressions are presented. Numerical results for the radiation patterns of a cavity-backed circular spiral microstrip patch antenna excited by a coaxial probe in a finite rectangular ground plane are computed and compared with experimental results.

  20. Steepening of Waves at the Duskside Magnetopause

    NASA Technical Reports Server (NTRS)

    Plaschke, F.; Kahr, N.; Fischer, D.; Nakamura, R.; Baumjohann, W.; Magnes, W.; Burch, J. L.; Torbert, R.; Russell, C. T.; Giles, B. L.; hide

    2016-01-01

    Surface waves at the magnetopause flanks typically feature steeper, i.e., more inclined leading (antisunward facing) than trailing (sunward facing) edges. This is expected for Kelvin-Helmholtz instability (KHI) amplified waves. Very rarely, during northward interplanetary magnetic field (IMF) conditions, anomalous inverse steepening has been observed. The small-scale tetrahedral configuration of the Magnetospheric Multiscale spacecraft and their high time resolution measurements enable us to routinely ascertain magnetopause boundary inclinations during surface wave passage with high accuracy by four-spacecraft timing analysis. At the dusk flank magnetopause, 77%/23% of the analyzed wave intervals exhibit regular inverse steepening. Inverse steepening happens during northward IMF conditions, as previously reported and, in addition, during intervals of dominant equatorial IMF. Inverse steepening observed under the latter conditions may be due to the absence of KHI or due to instabilities arising from the alignment of flow and magnetic fields in the magnetosheath.

  1. Small-scale plasma, magnetic, and neutral density fluctuations in the nightside Venus ionosphere

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoegy, W.R.; Brace, L.H.; Kasprazak, W.T.

    1990-04-01

    Pioneer Venus orbiter measurements have shown that coherent small-scale waves exist in the electron density, the electron temperature, and the magnetic field in the lower ionosphere of Venus just downstream of the solar terminator (Brace et al., 1983). The waves become less regular and less coherent at larger solar zenith angles, and Brace et al. suggested that these structures may have evolved from the terminator waves as they are convected into the nightside ionosphere, driven by the day-to-night plasma pressure gradient. In this paper the authors describe the changes in wave characteristics with solar zenith angle and show that themore » neutral gas also has related wave characteristics, probably because of atmospheric gravity waves. The plasma pressure exceeds the magnetic pressure in the nightside ionosphere at these altitudes, and thus the magnetic field is carried along and controlled by the turbulent motion of the plasma, but the wavelike nature of the thermosphere may also be coupled to the plasma and magnetic structure. They show that there is a significant coherence between the ionosphere, thermosphere, and magnetic parameters at altitudes below about 185 km, a coherence which weakens in the antisolar region. The electron temperature and density are approximately 180{degree} out of phase and consistently exhibit the highest correlation of any pair of variables. Waves in the electron and neutral densities are moderately correlated on most orbits, but with a phase difference that varies within each orbit. The average electron temperature is higher when the average magnetic field is more horizontal; however, the correlation between temperature and dip angle does not extend to individual wave structures observed within a satellite pass, particularly in the antisolar region.« less

  2. High-cadence nowcast of a proxy K-type index of the local magnetic activity for improved space weather monitoring applications

    NASA Astrophysics Data System (ADS)

    Stankov, S.; Verhulst, T. G. W.; Sapundjiev, D.

    2016-12-01

    The K index is a quasi-logarithmic index characterizing the 3-hourly range in the transient geomagnetic field activity at a certain location relative to its regular "quiet-day" variation. It is a popular choice among researchers; however, the 3-hour time scale is much larger than the characteristic time of various phenomena associated with an elevated geomagnetic activity. These include disturbances in the ionosphere that are of particular interest because of their (adverse) effects on present-day radio communications and navigation practices. From this aspect, there is an on-going demand for services providing real-time assessment of the (local and global) magnetic activity and alerting the users for the purpose of taking mitigating actions. An obstacle to the real-time estimation of the K index stems from the fact that the original definition of this index postulates the use of measurements from both sides of the abovementioned 3-hour interval. We offer a method for estimating, in real time, the local magnetic activity via a K-type index (K*) which closely resembles the "classical" K index. The main difference is in the way of determining the solar regular variation of the geomagnetic field - the new, real-time approach uses data from past measurements only. Another difference is that the concept of fixed 3-hour time periods (0-3, 3-6, …, 21-24), each characterized with a single K value, is abolished; instead, in the new approach, a K* value is derived at any time using data from the most recent 3 hours. Following this approach, a novel nowcast system was developed based on a fully automated computer procedure for real-time digital magnetogram data acquisition, data screening, establishing the field's regular variation, calculating the K* index, and issuing an alert if storm-level activity is indicated. The nominal cadence is envisaged to be as high as one K* value per minute. Another important feature of this nowcast system is the strict control on the data input and processing, allowing for an immediate assessment of the quality of output. The quality control employs the fact that a complete and sound dataset provides the ideal platform for reliable, closest-to-definite index production.

  3. Computed inverse MRI for magnetic susceptibility map reconstruction

    PubMed Central

    Chen, Zikuan; Calhoun, Vince

    2015-01-01

    Objective This paper reports on a computed inverse magnetic resonance imaging (CIMRI) model for reconstructing the magnetic susceptibility source from MRI data using a two-step computational approach. Methods The forward T2*-weighted MRI (T2*MRI) process is decomposed into two steps: 1) from magnetic susceptibility source to fieldmap establishment via magnetization in a main field, and 2) from fieldmap to MR image formation by intravoxel dephasing average. The proposed CIMRI model includes two inverse steps to reverse the T2*MRI procedure: fieldmap calculation from MR phase image and susceptibility source calculation from the fieldmap. The inverse step from fieldmap to susceptibility map is a 3D ill-posed deconvolution problem, which can be solved by three kinds of approaches: Tikhonov-regularized matrix inverse, inverse filtering with a truncated filter, and total variation (TV) iteration. By numerical simulation, we validate the CIMRI model by comparing the reconstructed susceptibility maps for a predefined susceptibility source. Results Numerical simulations of CIMRI show that the split Bregman TV iteration solver can reconstruct the susceptibility map from a MR phase image with high fidelity (spatial correlation≈0.99). The split Bregman TV iteration solver includes noise reduction, edge preservation, and image energy conservation. For applications to brain susceptibility reconstruction, it is important to calibrate the TV iteration program by selecting suitable values of the regularization parameter. Conclusions The proposed CIMRI model can reconstruct the magnetic susceptibility source of T2*MRI by two computational steps: calculating the fieldmap from the phase image and reconstructing the susceptibility map from the fieldmap. The crux of CIMRI lies in an ill-posed 3D deconvolution problem, which can be effectively solved by the split Bregman TV iteration algorithm. PMID:22446372

  4. Infrared spectro-polarimeter on the Solar Flare Telescope at NAOJ/Mitaka

    NASA Astrophysics Data System (ADS)

    Sakurai, Takashi; Hanaoka, Yoichiro; Arai, Takehiko; Hagino, Masaoki; Kawate, Tomoko; Kitagawa, Naomasa; Kobiki, Toshihiko; Miyashita, Masakuni; Morita, Satoshi; Otsuji, Ken'ichi; Shinoda, Kazuya; Suzuki, Isao; Yaji, Kentaro; Yamasaki, Takayuki; Fukuda, Takeo; Noguchi, Motokazu; Takeyama, Norihide; Kanai, Yoshikazu; Yamamuro, Tomoyasu

    2018-05-01

    An infrared spectro-polarimeter installed on the Solar Flare Telescope at the Mitaka headquarters of the National Astronomical Observatory of Japan is described. The new spectro-polarimeter observes the full Sun via slit scans performed at two wavelength bands, one near 1565 nm for a Zeeman-sensitive spectral line of Fe I and the other near 1083 nm for He I and Si I lines. The full Stokes profiles are recorded; the Fe I and Si I lines give information on photospheric vector magnetic fields, and the helium line is suitable for deriving chromospheric magnetic fields. The infrared detector we are using is an InGaAs camera with 640 × 512 pixels and a read-out speed of 90 frames s-1. The solar disk is covered by two swaths (the northern and southern hemispheres) of 640 pixels each. The final magnetic maps are made of 1200 × 1200 pixels with a pixel size of 1{^''.}8. We have been carrying out regular observations since 2010 April, and have provided full-disk, full-Stokes maps, at the rate of a few maps per day, on the internet.

  5. Measurement of g using a magnetic pendulum and a smartphone magnetometer

    NASA Astrophysics Data System (ADS)

    Pili, Unofre; Violanda, Renante; Ceniza, Claude

    2018-04-01

    The internal sensors in smartphones for their advanced add-in functions have also paved the way for these gadgets becoming multifunctional tools in elementary experimental physics. For instance, the acceleration sensor has been used to analyze free-falling motion and to study the oscillations of a spring-mass system. The ambient light sensor on the other hand has been proven to be a capable tool in studying an astronomical phenomenon as well as in measuring speed and acceleration. In this paper we present an accurate, convenient, and engaging use of the smartphone magnetic field sensor to measure the acceleration due to gravity via measurement of the period of oscillations (simply called "period" in what follows) of a simple pendulum. Measurement of the gravitational acceleration via the simple pendulum is a standard elementary physics laboratory activity, but the employment of the magnetic field sensor of a smartphone device in measuring the period is quite new and the use of it is seen as fascinating among students. The setup and procedure are rather simple and can easily be replicated as a classroom demonstration or as a regular laboratory activity.

  6. Nano-soldering of magnetically aligned three-dimensional nanowire networks.

    PubMed

    Gao, Fan; Gu, Zhiyong

    2010-03-19

    It is extremely challenging to fabricate 3D integrated nanostructures and hybrid nanoelectronic devices. In this paper, we report a simple and efficient method to simultaneously assemble and solder nanowires into ordered 3D and electrically conductive nanowire networks. Nano-solders such as tin were fabricated onto both ends of multi-segmented nanowires by a template-assisted electrodeposition method. These nanowires were then self-assembled and soldered into large-scale 3D network structures by magnetic field assisted assembly in a liquid medium with a high boiling point. The formation of junctions/interconnects between the nanowires and the scale of the assembly were dependent on the solder reflow temperature and the strength of the magnetic field. The size of the assembled nanowire networks ranged from tens of microns to millimeters. The electrical characteristics of the 3D nanowire networks were measured by regular current-voltage (I-V) measurements using a probe station with micropositioners. Nano-solders, when combined with assembling techniques, can be used to efficiently connect and join nanowires with low contact resistance, which are very well suited for sensor integration as well as nanoelectronic device fabrication.

  7. Evidence of Active MHD Instability in EULAG-MHD Simulations of Solar Convection

    NASA Astrophysics Data System (ADS)

    Lawson, Nicolas; Strugarek, Antoine; Charbonneau, Paul

    2015-11-01

    We investigate the possible development of magnetohydrodynamical instabilities in the EULAG-MHD “millennium simulation” of Passos & Charbonneau. This simulation sustains a large-scale magnetic cycle characterized by solar-like polarity reversals taking place on a regular multidecadal cadence, and in which zonally oriented bands of strong magnetic fields accumulate below the convective layers, in response to turbulent pumping from above in successive magnetic half-cycles. Key aspects of this simulation include low numerical dissipation and a strongly sub-adiabatic fluid layer underlying the convectively unstable layers corresponding to the modeled solar convection zone. These properties are conducive to the growth and development of two-dimensional instabilities that are otherwise suppressed by stronger dissipation. We find evidence for the action of a non-axisymmetric magnetoshear instability operating in the upper portions of the stably stratified fluid layers. We also investigate the possibility that the Tayler instability may be contributing to the destabilization of the large-scale axisymmetric magnetic component at high latitudes. On the basis of our analyses, we propose a global dynamo scenario whereby the magnetic cycle is driven primarily by turbulent dynamo action in the convecting layers, but MHD instabilities accelerate the dissipation of the magnetic field pumped down into the overshoot and stable layers, thus perhaps significantly influencing the magnetic cycle period. Support for this scenario is found in the distinct global dynamo behaviors observed in an otherwise identical EULAG-MHD simulations, using a different degree of sub-adiabaticity in the stable fluid layers underlying the convection zone.

  8. Force Balance at the Magnetopause Determined with MMS: Application to Flux Transfer Events

    NASA Technical Reports Server (NTRS)

    Zhao, C.; Russell, C. T.; Strangeway, R. J.; Petrinec, S. M.; Paterson, W. R.; Zhou, M.; Anderson, B. J.; Baumjohann, W.; Bromund, K. R.; Chutter, M.; hide

    2016-01-01

    The Magnetospheric Multiscale mission (MMS) consists of four identical spacecraft forming a closely separated (less than or equal to 10 km) and nearly regular tetrahedron. This configuration enables the decoupling of spatial and temporal variations and allows the calculation of the spatial gradients of plasma and electromagnetic field quantities. We make full use of the well cross-calibrated MMS magnetometers and fast plasma instruments measurements to calculate both the magnetic and plasma forces in flux transfer events (FTEs) and evaluate the relative contributions of different forces to the magnetopause momentum variation. This analysis demonstrates that some but not all FTEs, consistent with previous studies, are indeed force-free structures in which the magnetic pressure force balances the magnetic curvature force. Furthermore, we contrast these events with FTE events that have non-force-free signatures.

  9. Magnetized black holes and nonlinear electrodynamics

    NASA Astrophysics Data System (ADS)

    Kruglov, S. I.

    2017-08-01

    A new model of nonlinear electrodynamics with two parameters is proposed. We study the phenomenon of vacuum birefringence, the causality and unitarity in this model. There is no singularity of the electric field in the center of pointlike charges and the total electrostatic energy is finite. We obtain corrections to the Coulomb law at r →∞. The weak, dominant and strong energy conditions are investigated. Magnetized charged black hole is considered and we evaluate the mass, metric function and their asymptotic at r →∞ and r → 0. The magnetic mass of the black hole is calculated. The thermodynamic properties and thermal stability of regular black holes are discussed. We calculate the Hawking temperature of black holes and show that there are first-order and second-order phase transitions. The parameters of the model when the black hole is stable are found.

  10. Spin waves in rings of classical magnetic dipoles

    NASA Astrophysics Data System (ADS)

    Schmidt, Heinz-Jürgen; Schröder, Christian; Luban, Marshall

    2017-03-01

    We theoretically and numerically investigate spin waves that occur in systems of classical magnetic dipoles that are arranged at the vertices of a regular polygon and interact solely via their magnetic fields. There are certain limiting cases that can be analyzed in detail. One case is that of spin waves as infinitesimal excitations from the system’s ground state, where the dispersion relation can be determined analytically. The frequencies of these infinitesimal spin waves are compared with the peaks of the Fourier transform of the thermal expectation value of the autocorrelation function calculated by Monte Carlo simulations. In the special case of vanishing wave number an exact solution of the equations of motion is possible describing synchronized oscillations with finite amplitudes. Finally, the limiting case of a dipole chain with N\\longrightarrow ∞ is investigated and completely solved.

  11. Identifying events with prominent fluctuations common to particle and wave observations by the ERG/Arase satellite

    NASA Astrophysics Data System (ADS)

    Chiang, C. Y.; Tam, S. W. Y.; Chang, T. F.; Syugu, W. J.; Kazama, Y.; Wang, S. Y.; Wang, B. J.; Asamura, K.; Higashio, N.; Kasahara, S.; Kasahara, Y.; Matsuoka, A.; Mitani, T.; Yokota, S.; Miyoshi, Y.; Shinohara, I.

    2017-12-01

    The Energization and Radiation in Geospace (ERG) satellite, launched in December 2016 and also known as "Arase" since then, began its regular observations of the inner magnetosphere in March 2017. On board the satellite are various instruments for the measurements of electrons and ions of various energy ranges, and electric and magnetic fields at various frequencies. The electron instruments include the Low-Energy Particle Experiments - Electron Analyzer (LEP-e), which performs measurements of electrons in the energy range between 20 eV and 19 keV, and three other experiments, Medium-Energy Particle Experiments - Electron Analyzer (MEP-e), High-Energy Electron Experiments (HEP) and Extremely High-Energy Electron Experiments (XEP), respectively covering the medium, high, and extremely high energy ranges up to 20 MeV. Ion measurements are performed by Low-Energy Particle Experiments - Ion Mass Analyzer (LEP-i) and Medium-Energy Particle Experiments - Ion Mass Analyzer (MEP-i) together for energies between 10 eV and 180 keV per unit charge, while the electric and magnetic fields are observed by Plasma Wave Experiment (PWE) and Magnetic Field Experiment (MGF).As LEP-e focuses on the lowest energy range among the electron sensors, it is expected to cover the largest electron population in the observations. Hence, significant variations in the LEP-e measurements are indicators of physical processes that affect a majority of electrons. Over several months, LEP-e has observed a number of events in which the measured electron counts exhibit prominent fluctuations at regular time scales. These events are examined also using measurements of the other aforementioned experiments, and it is found that similar prominent fluctuations are also observed by all of those instruments in quite a few events. In this presentation, we focus on such events and discuss the similarities and differences among them.

  12. Electrical conductivity of the Earth's mantle after one year of SWARM magnetic field measurements

    NASA Astrophysics Data System (ADS)

    Civet, François; Thebault, Erwan; Verhoeven, Olivier; Langlais, Benoit; Saturnino, Diana

    2015-04-01

    We present a global EM induction study using L1b Swarm satellite magnetic field measurements data down to a depth of 2000 km. Starting from raw measurements, we first derive a model for the main magnetic field, correct the data for a lithospheric field model, and further select the data to reduce the contributions of the ionospheric field. These computations allowed us to keep a full control on the data processes. We correct residual field from outliers and estimate the spherical harmonic coefficients of the transient field for periods between 2 and 256 days. We used full latitude range and all local times to keep a maximum amount of data. We perform a Bayesian inversion and construct a Markov chain during which model parameters are randomly updated at each iteration. We first consider regular layers of equal thickness and extra layers are added where conductivity contrast between successive layers exceed a threshold value. The mean and maximum likelihood of the electrical conductivity profile is then estimated from the probability density function. The obtained profile particularly shows a conductivity jump in the 600-700 km depth range, consistent with the olivine phase transition at 660 km depth. Our study is the first one to show such a conductivity increase in this depth range without any a priori informations on the internal strucutres. Assuming a pyrolitic mantle composition, this profile is interpreted in terms of temperature variations in the depth range where the probability density function is the narrowest. We finally obtained a temperature gradient in the lower mantle close to adiabatic.

  13. A parameter-free method to extract the superconductor’s J c(B,θ) field-dependence from in-field current-voltage characteristics of high temperature superconductor tapes

    NASA Astrophysics Data System (ADS)

    Zermeño, Víctor M. R.; Habelok, Krzysztof; Stępień, Mariusz; Grilli, Francesco

    2017-03-01

    The estimation of the critical current (I c) and AC losses of high-temperature superconductor devices through modeling and simulation requires the knowledge of the critical current density (J c) of the superconducting material. This J c is in general not constant and depends both on the magnitude (B loc) and the direction (θ, relative to the tape) of the local magnetic flux density. In principle, J c(B loc,θ) can be obtained from the experimentally measured critical current I c(B a,θ), where B a is the magnitude of the applied magnetic field. However, for applications where the superconducting materials experience a local field that is close to the self-field of an isolated conductor, obtaining J c(B loc,θ) from I c(B a,θ) is not a trivial task. It is necessary to solve an inverse problem to correct for the contribution derived from the self-field. The methods presented in the literature comprise a series of approaches dealing with different degrees of mathematical regularization to fit the parameters of preconceived nonlinear formulas by means of brute force or optimization methods. In this contribution, we present a parameter-free method that provides excellent reproduction of experimental data and requires no human interaction or preconception of the J c dependence with respect to the magnetic field. In particular, it allows going from the experimental data to a ready-to-run J c(B loc,θ) model in a few minutes.

  14. Mermin-Wagner physics, (H ,T ) phase diagram, and candidate quantum spin-liquid phase in the spin-1/2 triangular-lattice antiferromagnet Ba8CoNb6O24

    NASA Astrophysics Data System (ADS)

    Cui, Y.; Dai, J.; Zhou, P.; Wang, P. S.; Li, T. R.; Song, W. H.; Wang, J. C.; Ma, L.; Zhang, Z.; Li, S. Y.; Luke, G. M.; Normand, B.; Xiang, T.; Yu, W.

    2018-04-01

    Ba8CoNb6O24 presents a system whose Co2 + ions have an effective spin 1/2 and construct a regular triangular-lattice antiferromagnet (TLAFM) with a very large interlayer spacing, ensuring purely two-dimensional character. We exploit this ideal realization to perform a detailed experimental analysis of the S =1 /2 TLAFM, which is one of the keystone models in frustrated quantum magnetism. We find strong low-energy spin fluctuations and no magnetic ordering, but a diverging correlation length down to 0.1 K, indicating a Mermin-Wagner trend toward zero-temperature order. Below 0.1 K, however, our low-field measurements show an unexpected magnetically disordered state, which is a candidate quantum spin liquid. We establish the (H ,T ) phase diagram, mapping in detail the quantum fluctuation corrections to the available theoretical analysis. These include a strong upshift in field of the maximum ordering temperature, qualitative changes to both low- and high-field phase boundaries, and an ordered regime apparently dominated by the collinear "up-up-down" state. Ba8CoNb6O24 , therefore, offers fresh input for the development of theoretical approaches to the field-induced quantum phase transitions of the S =1 /2 Heisenberg TLAFM.

  15. The Role of Marangoni Convection for the FZ-Growth of Silicon

    NASA Technical Reports Server (NTRS)

    Dold, P.; Corell, A.; Schweizer, M.; Kaiser, Th.; Szofran, F.; Nakamura, S.; Hibiya, T.; Benz, K. W.

    1998-01-01

    Fluctuations of the electrical resistivity due to inhomogeneous dopant distribution are still a serious problem for the industrial processing yield of doped silicon crystals. In the case of silicon floating-zone growth, the main sources of these inhomogeneities are time- dependent flows in the liquid phase during the growth process. Excluding radio frequency (RF) induced convection, buoyancy and thermocapillary (Marangoni) convection are the two natural reasons for fluid flow. Both originate from temperature/concentration gradients in the melt, buoyancy convection through thermal/concentrational volume expansion, and thermocapillary convection through the temperature/concentration dependence of the surface tension. To improve the properties of grown crystals, knowledge of the strength, the characteristic, and the relation of these two flow mechanisms is essential. By the use of microgravity, the effect and the strength of buoyancy (gravity dependent) and thermocapillary (gravity independent) convection can be separated and clarified. Applying magnetic fields, both convective modes can be influenced: fluid flow can either be damped (static magnetic fields) or overlaid by a regular flow regime (rotating magnetic fields). Two complementary approaches have been pursued: Silicon full zones (experiments on the German sounding rockets TEXUS 7, 12, 22, 29, and 36) with the maximum temperature at half of the zone height and silicon half zones (experiments on the Japanese sounding rockets TR-IA4 and 6) with the maximum temperature at the top of the melt. With the full zone arrangement, the intensity and the frequency of the dopant striations could be determined and the critical Marangoni number could be identified. The half zone configuration is suited to classify the flow pattern and to measure the amplitude and the frequency of temperature fluctuations in the melt by inserting thermocouples or temperature sensors into the melt. All experiments have been carried out in monoellipsoid mirror furnaces. Typical zone geometries are approx. 8 to 14 mm in diameter and height. The crystals grown under microgravity are compared to crystals grown in static axial magnetic fields (B<5 tesla) and in transversal rotating magnetic fields (B<7.5 mT / f=50 Hz). Experimental results are completed by 3D numerical simulations: the obtained temperature and concentration distribution in the melt confirm the damping effect of rotating magnetic fields and explain the change in the radial segregation under static magnetic fields.

  16. Numerical modeling of higher order magnetic moments in UXO discrimination

    USGS Publications Warehouse

    Sanchez, V.; Yaoguo, L.; Nabighian, M.N.; Wright, D.L.

    2008-01-01

    The surface magnetic anomaly observed in unexploded ordnance (UXO) clearance is mainly dipolar, and consequently, the dipole is the only magnetic moment regularly recovered in UXO discrimination. The dipole moment contains information about the intensity of magnetization but lacks information about the shape of the target. In contrast, higher order moments, such as quadrupole and octupole, encode asymmetry properties of the magnetization distribution within the buried targets. In order to improve our understanding of magnetization distribution within UXO and non-UXO objects and to show its potential utility in UXO clearance, we present a numerical modeling study of UXO and related metallic objects. The tool for the modeling is a nonlinear integral equation describing magnetization within isolated compact objects of high susceptibility. A solution for magnetization distribution then allows us to compute the magnetic multipole moments of the object, analyze their relationships, and provide a depiction of the anomaly produced by different moments within the object. Our modeling results show the presence of significant higher order moments for more asymmetric objects, and the fields of these higher order moments are well above the noise level of magnetic gradient data. The contribution from higher order moments may provide a practical tool for improved UXO discrimination. ?? 2008 IEEE.

  17. An integrated approach to evaluate the Aji-Chai potash resources in Iran using potential field data

    NASA Astrophysics Data System (ADS)

    Abedi, Maysam

    2018-03-01

    This work presents an integrated application of potential field data to discover potash-bearing evaporite sources in Aji-Chai salt deposit, located in east Azerbaijan province, northwest of Iran. Low density and diamagnetic effect of salt minerals, i.e. potash, give rise to promising potential field anomalies that assist to localize sought blind targets. The halokinetic-type potash-bearing salts in the prospect zone have flowed upward and intruded into surrounded sedimentary sequences dominated frequently by marl, gypsum and alluvium terraces. Processed gravity and magnetic data delineated a main potash source with negative gravity and magnetic amplitude responses. To better visualize these evaporite deposits, 3D model of density contrast and magnetic susceptibility was constructed through constrained inversion of potential field data. A mixed-norm regularization technique was taken into account to generate sharp and compact geophysical models. Since tectonic pressure causes vertical movement of the potash in the studied region, a simple vertical cylindrical shape is an appropriate geometry to simulate these geological targets. Therefore, structural index (i.e. decay rate of potential field amplitude with distance) of such assumed source was embedded in the inversion program as a geometrical constraint to image these geologically plausible sources. In addition, the top depth of the main and the adjacent sources were estimated 39 m and 22 m, respectively, via the combination of the analytic signal and the Euler deconvolution techniques. Drilling result also indicated that the main source of potash starts at a depth of 38 m. The 3D models of the density contrast and the magnetic susceptibility (assuming a superficial sedimentary cover as a hard constraint in the inversion algorithm) demonstrated that potash source has an extension in depth less than 150 m.

  18. Global Regularity and Time Decay for the 2D Magnetohydrodynamic Equations with Fractional Dissipation and Partial Magnetic Diffusion

    NASA Astrophysics Data System (ADS)

    Dong, Bo-Qing; Jia, Yan; Li, Jingna; Wu, Jiahong

    2018-05-01

    This paper focuses on a system of the 2D magnetohydrodynamic (MHD) equations with the kinematic dissipation given by the fractional operator (-Δ )^α and the magnetic diffusion by partial Laplacian. We are able to show that this system with any α >0 always possesses a unique global smooth solution when the initial data is sufficiently smooth. In addition, we make a detailed study on the large-time behavior of these smooth solutions and obtain optimal large-time decay rates. Since the magnetic diffusion is only partial here, some classical tools such as the maximal regularity property for the 2D heat operator can no longer be applied. A key observation on the structure of the MHD equations allows us to get around the difficulties due to the lack of full Laplacian magnetic diffusion. The results presented here are the sharpest on the global regularity problem for the 2D MHD equations with only partial magnetic diffusion.

  19. Inventory of MRI applications and workers exposed to MRI-related electromagnetic fields in the Netherlands.

    PubMed

    Schaap, Kristel; Christopher-De Vries, Yvette; Slottje, Pauline; Kromhout, Hans

    2013-12-01

    This study aims to characterise and quantify the population that is occupationally exposed to electromagnetic fields (EMF) from magnetic resonance imaging (MRI) devices and to identify factors that determine the probability and type of exposure. A questionnaire survey was used to collect information about scanners, procedures, historical developments and employees working with or near MRI scanners in clinical and research MRI departments in the Netherlands. Data were obtained from 145 MRI departments. A rapid increase in the use of MRI and field strength of the scanners was observed and quantified. The strongest magnets were employed by academic hospitals and research departments. Approximately 7000 individuals were reported to be working inside an MRI scanner room and were thus considered to have high probability of occupational exposure to static magnetic fields (SMF). Fifty-four per cent was exposed to SMF at least one day per month. The largest occupationally exposed group were radiographers (n ~ 1700). Nine per cent of the 7000 involved workers were regularly present inside a scanner room during image acquisition, when exposure to additional types of EMF is considered a possibility. This practice was most prevalent among workers involved in scanning animals. The data illustrate recent trends and historical developments in magnetic resonance imaging and provide an extensive characterisation of the occupationally exposed population. A considerable number of workers are potentially exposed to MRI-related EMF. Type and frequency of potential exposure depend on the job performed, as well as the type of workplace. Copyright © 2013 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  20. A signature of anisotropic cosmic-ray transport in the gamma-ray sky

    NASA Astrophysics Data System (ADS)

    Cerri, Silvio Sergio; Gaggero, Daniele; Vittino, Andrea; Evoli, Carmelo; Grasso, Dario

    2017-10-01

    A crucial process in Galactic cosmic-ray (CR) transport is the spatial diffusion due to the interaction with the interstellar turbulent magnetic field. Usually, CR diffusion is assumed to be uniform and isotropic all across the Galaxy. However, this picture is clearly inaccurate: several data-driven and theoretical arguments, as well as dedicated numerical simulations, show that diffusion exhibits highly anisotropic properties with respect to the direction of a background (ordered) magnetic field (i.e., parallel or perpendicular to it). In this paper we focus on a recently discovered anomaly in the hadronic CR spectrum inferred by the Fermi-LAT gamma-ray data at different positions in the Galaxy, i.e. the progressive hardening of the proton slope at low Galactocentric radii. We propose the idea that this feature can be interpreted as a signature of anisotropic diffusion in the complex Galactic magnetic field: in particular, the harder slope in the inner Galaxy is due, in our scenario, to the parallel diffusive escape along the poloidal component of the large-scale, regular, magnetic field. We implement this idea in a numerical framework, based on the DRAGON code, and perform detailed numerical tests on the accuracy of our setup. We discuss how the effect proposed depends on the relevant free parameters involved. Based on low-energy extrapolation of the few focused numerical simulations aimed at determining the scalings of the anisotropic diffusion coefficients, we finally present a set of plausible models that reproduce the behavior of the CR proton slopes inferred by gamma-ray data.

  1. A signature of anisotropic cosmic-ray transport in the gamma-ray sky

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cerri, Silvio Sergio; Grasso, Dario; Gaggero, Daniele

    A crucial process in Galactic cosmic-ray (CR) transport is the spatial diffusion due to the interaction with the interstellar turbulent magnetic field. Usually, CR diffusion is assumed to be uniform and isotropic all across the Galaxy. However, this picture is clearly inaccurate: several data-driven and theoretical arguments, as well as dedicated numerical simulations, show that diffusion exhibits highly anisotropic properties with respect to the direction of a background (ordered) magnetic field (i.e., parallel or perpendicular to it). In this paper we focus on a recently discovered anomaly in the hadronic CR spectrum inferred by the Fermi-LAT gamma-ray data at differentmore » positions in the Galaxy, i.e. the progressive hardening of the proton slope at low Galactocentric radii. We propose the idea that this feature can be interpreted as a signature of anisotropic diffusion in the complex Galactic magnetic field: in particular, the harder slope in the inner Galaxy is due, in our scenario, to the parallel diffusive escape along the poloidal component of the large-scale, regular, magnetic field. We implement this idea in a numerical framework, based on the DRAGON code, and perform detailed numerical tests on the accuracy of our setup. We discuss how the effect proposed depends on the relevant free parameters involved. Based on low-energy extrapolation of the few focused numerical simulations aimed at determining the scalings of the anisotropic diffusion coefficients, we finally present a set of plausible models that reproduce the behavior of the CR proton slopes inferred by gamma-ray data.« less

  2. Magnetic Measurements as a Useful Tool for the Evaluation of Spatial Variability of the Arable Horizon Thickness

    NASA Astrophysics Data System (ADS)

    Fattakhova, Leysan; Shinkarev, Alexandr; Ryzhikh, Lyudmila; Kosareva, Lina

    2017-04-01

    In normal practice, the thickness of the arable horizon is determined on the basis of field morphological descriptions, allowing the subjectivity of perception and judgment at the crucial role of experience of the researcher. The subject of special interest are independent analytical and technically relatively simple in design approaches to the diagnosis of the lower boundary of the blended plowing the profiles part. Theoretical premises to use spectrophotometry and magnetometry to arable horizon depth diagnose is based on the concept of regular color and magnetic properties vertical differentiation in a profile of virgin soils. This work is devoted to the comparative assessment of the possibility to objectively and reliably diagnose the lower boundary of the arable horizon in gray forest soils by determining the color characteristics and the magnetic susceptibility of their layer-wise samples. It was shown with arable gray forest soil (Cutanic Luvisols (Anthric)) as example that the magnetic susceptibility profile distribution curves can provide more reliable and objective assessment of the arable horizon thickness spatial variability than the profile curves of the color characteristics in the CIELAB coordinates. Therefore, magnetic measurements can be a useful tool for the tillage erosion estimation in the monitoring of soil characteristics in connection with the development of precision agriculture technologies and the organizing of agricultural field plot experiments.

  3. A Thin-Flux-Rope Approximation as a Basis for Modeling of Pre- and Post-Eruptive Magnetic Configurations

    NASA Astrophysics Data System (ADS)

    Titov, V. S.; Mikic, Z.; Torok, T.; Linker, J.

    2016-12-01

    Many existing models of solar flares and coronal mass ejections (CMEs) assume a key role of magnetic flux ropes in these phenomena. It is therefore important to have efficient methods for constructing flux-rope configurations consistent with the observed photospheric magnetic data and morphology of CMEs. As our new step in this direction, we propose an analytical formulation that succinctly represents the magnetic field of a thin flux rope, which has an axis of arbitrary shape and a circular cross-section with the diameter slowly varying along the axis. This representation implies also that the flux rope carries axial current I and axial flux F, so that the respective magnetic field is a curl of the sum of toroidal and poloidal vector potentials proportional to I and F, respectively. Each of the two potentials is individually expressed in terms of a modified Biot-Savart law with separate kernels, both regularized at the rope axis. We argue that the proposed representation is flexible enough to be used in MHD simulations for initializing pre-eruptive configurations in the low corona or post-eruptive configurations (interplanetary CMEs) in the heliosphere. We discuss the potential advantages of our approach, and the subsequent steps to be performed, to develop a fully operative and highly competitive method compared to existing methods. Research supported by NSF, NASA's HSR and LWS Programs, and AFOSR.

  4. Analytic dyon solution in SU/N/ grand unified theories

    NASA Astrophysics Data System (ADS)

    Lyi, W. S.; Park, Y. J.; Koh, I. G.; Kim, Y. D.

    1982-10-01

    Analytic solutions which are regular everywhere, including at the origin, are found for certain cases of SU(N) grand unified theories. Attention is restricted to order-1/g behavior of the SU(N) grand unified theory, and aspects of the solutions of the Higgs field of the SU(N) near the origin are considered. Comments regarding the mass, the Pontryagin-like index of the dyon, and magnetic charge are made with respect to the recent report of a monopole discovery.

  5. Acetylcholine molecular arrays enable quantum information processing

    NASA Astrophysics Data System (ADS)

    Tamulis, Arvydas; Majauskaite, Kristina; Talaikis, Martynas; Zborowski, Krzysztof; Kairys, Visvaldas

    2017-09-01

    We have found self-assembly of four neurotransmitter acetylcholine (ACh) molecular complexes in a water molecules environment by using geometry optimization with DFT B97d method. These complexes organizes to regular arrays of ACh molecules possessing electronic spins, i.e. quantum information bits. These spin arrays could potentially be controlled by the application of a non-uniform external magnetic field. The proper sequence of resonant electromagnetic pulses would then drive all the spin groups into the 3-spin entangled state and proceed large scale quantum information bits.

  6. RLE Progress Report Number 122.

    DTIC Science & Technology

    1980-01-01

    generator capable of delivering 20 kA of current at 1.5 MV. Both the pipe and the diode region are immersed in the uniform axial magnetic field of a...it decays into a slow space-charge wave and a TM wave of the guide. The dispersion PR No. 122 100 I ____ W/Wp (wi,ki) BEAM FRAME (a) .. ( 3, k3) ka ...to regular operation with well-confined plasmas and plasma currents of approximately as high as 300 kA . We recall that the reference design value of

  7. Fabrication and characterization of magnetically tunable metal-semiconductor schottky diode using barium hexaferrite thin film on gold

    NASA Astrophysics Data System (ADS)

    Kaur, Jotinder; Sharma, Vinay; Sharma, Vipul; Veerakumar, V.; Kuanr, Bijoy K.

    2016-05-01

    Barium Hexaferrite (BaM) is an extensively studied magnetic material due to its potential device application. In this paper, we study Schottky junction diodes fabricated using gold and BaM and demonstrate the function of a spintronic device. Gold (50 nm)/silicon substrate was used to grow the BaM thin films (100-150 nm) using pulsed laser deposition. I-V characteristics were measured on the Au/BaM structure sweeping the voltage from ±5 volts. The forward and reverse bias current-voltage curves show diode like rectifying characteristics. The threshold voltage decreases while the output current increases with increase in the applied external magnetic field showing that the I-V characteristics of the BaM based Schottky junction diodes can be tuned by external magnetic field. It is also demonstrated that, the fabricated Schottky diode can be used as a half-wave rectifier, which could operate at high frequencies in the range of 1 MHz compared to the regular p-n junction diodes, which rectify below 10 kHz. In addition, it is found that above 1 MHz, Au/BaM diode can work as a rectifier as well as a capacitor filter, making the average (dc) voltage much larger.

  8. Dynamic Theory of Relativistic Electrons Stochastic Heating by Whistler Mode Waves with Application to the Earth Magnetosphere

    NASA Technical Reports Server (NTRS)

    Khazanov, G. V.; Tel'nikhin, A. A.; Kronberg, T. K.

    2007-01-01

    In the Hamiltonian approach an electron motion in a coherent packet of the whistler mode waves propagating along the direction of an ambient magnetic field is studied. The physical processes by which these particles are accelerated to high energy are established. Equations governing a particle motion were transformed in to a closed pair of nonlinear difference equations. The solutions of these equations have shown there exists the energetic threshold below that the electron motion is regular, and when the initial energy is above the threshold an electron moves stochastically. Particle energy spectra and pitch angle electron scattering are described by the Fokker-Planck-Kolmogorov equations. Calculating the stochastic diffusion of electrons due to a spectrum of whistler modes is presented. The parametric dependence of the diffusion coefficients on the plasma particle density, magnitude of wave field, and the strength of magnetic field is studies. It is shown that significant pitch angle diffusion occurs for the Earth radiation belt electrons with energies from a few keV up to a few MeV.

  9. Critical Behavior of the Annealed Ising Model on Random Regular Graphs

    NASA Astrophysics Data System (ADS)

    Can, Van Hao

    2017-11-01

    In Giardinà et al. (ALEA Lat Am J Probab Math Stat 13(1):121-161, 2016), the authors have defined an annealed Ising model on random graphs and proved limit theorems for the magnetization of this model on some random graphs including random 2-regular graphs. Then in Can (Annealed limit theorems for the Ising model on random regular graphs, arXiv:1701.08639, 2017), we generalized their results to the class of all random regular graphs. In this paper, we study the critical behavior of this model. In particular, we determine the critical exponents and prove a non standard limit theorem stating that the magnetization scaled by n^{3/4} converges to a specific random variable, with n the number of vertices of random regular graphs.

  10. A compact high-speed mechanical sample shuttle for field-dependent high-resolution solution NMR.

    PubMed

    Chou, Ching-Yu; Chu, Minglee; Chang, Chi-Fon; Huang, Tai-Huang

    2012-01-01

    Analysis of NMR relaxation data has provided significant insight on molecular dynamic, leading to a more comprehensive understanding of macromolecular functions. However, traditional methodology allows relaxation measurements performed only at a few fixed high fields, thus severely restricting their potential for extracting more complete dynamic information. Here we report the design and performance of a compact high-speed servo-mechanical shuttle assembly adapted to a commercial 600 MHz high-field superconducting magnet. The assembly is capable of shuttling the sample in a regular NMR tube from the center of the magnet to the top (fringe field ∼0.01 T) in 100 ms with no loss of sensitivity other than that due to intrinsic relaxation. The shuttle device can be installed by a single experienced user in 30 min. Excellent 2D-(15)N-HSQC spectra of (u-(13)C, (15)N)-ubiquitin with relaxation at low fields (3.77 T) and detection at 14.1T were obtained to illustrate its utility in R(1) measurements of macromolecules at low fields. Field-dependent (13)C-R(1) data of (3,3,3-d)-alanine at various field strengths were determined and analyzed to assess CSA and (1)H-(13)C dipolar contributions to the carboxyl (13)C-R(1). Copyright © 2011 Elsevier Inc. All rights reserved.

  11. Influence of La-Mn substitutions on magnetic properties of M-type strontium hexaferrites

    NASA Astrophysics Data System (ADS)

    Zi, Z. F.; Ma, X. H.; Wei, Y. Y.; Liu, Q. C.; Zhang, M.; Zhu, X. B.; Sun, Y. P.

    2018-05-01

    M-type strontium hexaferrites of Sr1-xLaxFe12-xMnxO19 (0.0≤x≤0.4) were synthesized by the chemical coprecipitation method. X-ray diffraction (XRD) studies indicate that the samples are single-phase with the space group of P63/mmc. The results of field-emission scanning electronic microscopy (FE-SEM) show that the grains are regular hexagonal platelets with sizes from 0.7 to 1.4 μm. It is observed that the value of Hc increases at low substitution (x ≤ 0.1), reaches a maximum at x = 0.1 and then decreases at x ≥ 0.1, while the value of Ms decreases monotonously with increasing x. The variations of magnetic properties can be tentatively attributed to the effects of La-Mn substitutions. The results above indicate that our samples might be promising candidates for permanent magnets in the future.

  12. Application of sub-micrometer patterned permalloy thin film in tunable radio frequency inductors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rahman, B.M. Farid; Divan, Ralu; Rosenmann, Daniel

    Electrical tunable meander line inductor using coplanar waveguide structures with patterned permalloy (Py) thin film has been designed and implemented in this paper. High resistivity Si substrate is used to reduce the dielectric loss from the substrate. Inductor is implemented with a 60 nm thick Py deposited and patterned on top of the gold meander line, and Py film is patterned with dimension of 440 nm 10 lm to create the shape anisotropy field, which in turn increases the FMR frequency. Compared to a regular meanderline inductor without the application of sub-micrometer patterned Py thin film, the inductance density hasmore » been increased to 20% for the implemented inductor with patterned Py. Measured FMR frequency of the patterned Py is 4.51 GHz without the application of any external magnetic field. This has enabled the inductor application in the practical circuit boards, where the large external magnet is unavailable. Inductance tunability of the implemented inductor is demonstrated by applying a DC current. Applied DC current creates a magnetic field along the hard axis of the patterned Py thin film, which changes the magnetic moment of the thin film and thus, decreases the inductance of the line. Measured results show that the inductance density of the inductor can be varied 5% by applying 300 mA DC current, larger inductance tunability is achievable by increasing the thickness of Py film. VC 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4918766]« less

  13. Parsec-scale Faraday rotation and polarization of 20 active galactic nuclei jets

    NASA Astrophysics Data System (ADS)

    Kravchenko, E. V.; Kovalev, Y. Y.; Sokolovsky, K. V.

    2017-05-01

    We perform polarimetry analysis of 20 active galactic nuclei jets using the very long baseline array at 1.4, 1.6, 2.2, 2.4, 4.6, 5.0, 8.1, 8.4 and 15.4 GHz. The study allowed us to investigate linearly polarized properties of the jets at parsec scales: distribution of the Faraday rotation measure (RM) and fractional polarization along the jets, Faraday effects and structure of Faraday-corrected polarization images. Wavelength dependence of the fractional polarization and polarization angle is consistent with external Faraday rotation, while some sources show internal rotation. The RM changes along the jets, systematically increasing its value towards synchrotron self-absorbed cores at shorter wavelengths. The highest core RM reaches 16 900 rad m-2 in the source rest frame for the quasar 0952+179, suggesting the presence of highly magnetized, dense media in these regions. The typical RM of transparent jet regions has values of an order of a hundred rad m-2. Significant transverse RM gradients are observed in seven sources. The magnetic field in the Faraday screen has no preferred orientation, and is observed to be random or regular from source to source. Half of the sources show evidence for the helical magnetic fields in their rotating magneto-ionic media. At the same time jets themselves contain large-scale, ordered magnetic fields and tend to align its direction with the jet flow. The observed variety of polarized signatures can be explained by a model of spine-sheath jet structure.

  14. Pulse electromagnetic fields enhance extracellular electron transfer in magnetic bioelectrochemical systems.

    PubMed

    Zhou, Huihui; Liu, Bingfeng; Wang, Qisong; Sun, Jianmin; Xie, Guojun; Ren, Nanqi; Ren, Zhiyong Jason; Xing, Defeng

    2017-01-01

    Microbial extracellular electron transfer (EET) is essential in driving the microbial interspecies interaction and redox reactions in bioelectrochemical systems (BESs). Magnetite (Fe 3 O 4 ) and magnetic fields (MFs) were recently reported to promote microbial EET, but the mechanisms of MFs stimulation of EET and current generation in BESs are not known. This study investigates the behavior of current generation and EET in a state-of-the-art pulse electromagnetic field (PEMF)-assisted magnetic BES (PEMF-MBES), which was equipped with magnetic carbon particle (Fe 3 O 4 @N-mC)-coated electrodes. Illumina Miseq sequencing of 16S rRNA gene amplicons was also conducted to reveal the changes of microbial communities and interactions on the anode in response to magnetic field. PEMF had significant influences on current generation. When reactors were operated in microbial fuel cell (MFC) mode with pulse electromagnetic field (PEMF-MMFCs), power densities increased by 25.3-36.0% compared with no PEMF control MFCs (PEMF-OFF-MMFCs). More interestingly, when PEMF was removed, the power density dropped by 25.7%, while when PEMF was reintroduced, the value was restored to the previous level. Illumina sequencing of 16S rRNA gene amplicon and principal component analysis (PCA) based on operational taxonomic units (OTUs) indicate that PEMFs led to the shifts in microbial community and changes in species evenness that decreased biofilm microbial diversity. Geobacter spp. were found dominant in all anode biofilms, but the relative abundance in PEMF-MMFCs (86.1-90.0%) was higher than in PEMF-OFF-MMFCs (82.5-82.7%), indicating that the magnetic field enriched Geobacter on the anode. The current generation of Geobacter -inoculated microbial electrolysis cells (MECs) presented the same change regularity, the accordingly increase or decrease corresponding with switch of PEMF, which confirmed the reversible stimulation of PEMFs on microbial electron transfer. The pulse electromagnetic field (PEMF) showed significant influence on state-of-the-art pulse magnetic bioelectrochemical systems (PEMF-MBES) in terms of current generation and microbial ecology. EET was instantaneously and reversibly enhanced in MBESs inoculated with either mixed-culture or Geobacter . PEMF notably decreased bacterial and archaeal diversities of the anode biofilms in MMFCs via changing species evenness rather than species richness, and facilitated specific enrichment of exoelectrogenic bacteria ( Geobacter ) on the anode surface. This study demonstrates a new magnetic approach for understanding and facilitating microbial electrochemical activities.

  15. EVIDENCE OF ACTIVE MHD INSTABILITY IN EULAG-MHD SIMULATIONS OF SOLAR CONVECTION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lawson, Nicolas; Strugarek, Antoine; Charbonneau, Paul, E-mail: nicolas.laws@gmail.ca, E-mail: strugarek@astro.umontreal.ca, E-mail: paulchar@astro.umontreal.ca

    We investigate the possible development of magnetohydrodynamical instabilities in the EULAG-MHD “millennium simulation” of Passos and Charbonneau. This simulation sustains a large-scale magnetic cycle characterized by solar-like polarity reversals taking place on a regular multidecadal cadence, and in which zonally oriented bands of strong magnetic fields accumulate below the convective layers, in response to turbulent pumping from above in successive magnetic half-cycles. Key aspects of this simulation include low numerical dissipation and a strongly sub-adiabatic fluid layer underlying the convectively unstable layers corresponding to the modeled solar convection zone. These properties are conducive to the growth and development of two-dimensionalmore » instabilities that are otherwise suppressed by stronger dissipation. We find evidence for the action of a non-axisymmetric magnetoshear instability operating in the upper portions of the stably stratified fluid layers. We also investigate the possibility that the Tayler instability may be contributing to the destabilization of the large-scale axisymmetric magnetic component at high latitudes. On the basis of our analyses, we propose a global dynamo scenario whereby the magnetic cycle is driven primarily by turbulent dynamo action in the convecting layers, but MHD instabilities accelerate the dissipation of the magnetic field pumped down into the overshoot and stable layers, thus perhaps significantly influencing the magnetic cycle period. Support for this scenario is found in the distinct global dynamo behaviors observed in an otherwise identical EULAG-MHD simulations, using a different degree of sub-adiabaticity in the stable fluid layers underlying the convection zone.« less

  16. Magnetic stripes and skyrmions with helicity reversals.

    PubMed

    Yu, Xiuzhen; Mostovoy, Maxim; Tokunaga, Yusuke; Zhang, Weizhu; Kimoto, Koji; Matsui, Yoshio; Kaneko, Yoshio; Nagaosa, Naoto; Tokura, Yoshinori

    2012-06-05

    It was recently realized that topological spin textures do not merely have mathematical beauty but can also give rise to unique functionalities of magnetic materials. An example is the skyrmion--a nano-sized bundle of noncoplanar spins--that by virtue of its nontrivial topology acts as a flux of magnetic field on spin-polarized electrons. Lorentz transmission electron microscopy recently emerged as a powerful tool for direct visualization of skyrmions in noncentrosymmetric helimagnets. Topologically, skyrmions are equivalent to magnetic bubbles (cylindrical domains) in ferromagnetic thin films, which were extensively explored in the 1970s for data storage applications. In this study we use Lorentz microscopy to image magnetic domain patterns in the prototypical magnetic oxide-M-type hexaferrite with a hint of scandium. Surprisingly, we find that the magnetic bubbles and stripes in the hexaferrite have a much more complex structure than the skyrmions and spirals in helimagnets, which we associate with the new degree of freedom--helicity (or vector spin chirality) describing the direction of spin rotation across the domain walls. We observe numerous random reversals of helicity in the stripe domain state. Random helicity of cylindrical domain walls coexists with the positional order of magnetic bubbles in a triangular lattice. Most unexpectedly, we observe regular helicity reversals inside skyrmions with an unusual multiple-ring structure.

  17. A perturbative correction for electron-inertia in magnetized sheath structures

    NASA Astrophysics Data System (ADS)

    Gohain, Munmi; Karmakar, Pralay K.

    2016-10-01

    We propose a hydrodynamic model to study the equilibrium properties of planar plasma sheaths in two-component quasi-neutral magnetized plasmas. It includes weak but finite electron-inertia incorporated via a regular perturbation of the electronic fluid dynamics only relative to a new smallness parameter, δ, assessing the weak inertial-to-electromagnetic strengths. The zeroth-order perturbation around δ leads to the usual Boltzmann distribution law, which describes inertialess thermalized electrons. The forthwith next higher-order yields the modified Boltzmann law describing the putative lowest-order electron-inertial correction, which is applied meticulously to derive the local Bohm criterion for sheath formation. It is found to be influenced jointly by electron-inertial corrective effects, magnetic field and field orientation relative to the bulk plasma flow. We establish that the mutualistic action of electron-inertia amid gyro-kinetic effects slightly enhances the ion-flow Mach threshold value (typically, M i0 ⩾ 1.140), against the normal value of unity, confrontationally towards the sheath entrance. A numerical illustrative scheme is methodically constructed to see the parametric dependence of the new sheath properties on diverse problem arguments. The merits and demerits are highlighted in the light of the existing results conjointly with clear indication to future ameliorations.

  18. 2D Unstructured Grid Based Constrained Inversion of Magnetic Data Using Fuzzy C Means Clustering and Lithology Classification

    NASA Astrophysics Data System (ADS)

    Kumar, V.; Singh, A.; Sharma, S. P.

    2016-12-01

    Regular grid discretization is often utilized to define complex geological models. However, this subdivision strategy performs at lower precision to represent the topographical observation surface. We have developed a new 2D unstructured grid based inversion for magnetic data for models including topography. It will consolidate prior parametric information into a deterministic inversion system to enhance the boundary between the different lithology based on recovered magnetic susceptibility distribution from the inversion. The presented susceptibility model will satisfy both the observed magnetic data and parametric information and therefore can represent the earth better than geophysical inversion models that only honor the observed magnetic data. Geophysical inversion and lithology classification are generally treated as two autonomous methodologies and connected in a serial way. The presented inversion strategy integrates these two parts into a unified scheme. To reduce the storage space and computation time, the conjugate gradient method is used. It results in feasible and practical imaging inversion of magnetic data to deal with large number of triangular grids. The efficacy of the presented inversion is demonstrated using two synthetic examples and one field data example.

  19. Fine Structure and Dynamics of Sunspot Penumbra

    NASA Astrophysics Data System (ADS)

    Ryutova, M.; Berger, T.; Title, A.

    2007-08-01

    A mature sunspot is usually surrounded by a penumbra: strong vertical magnetic field in the umbra, the dark central region of sunspot, becomes more and more horizontal toward the periphery forming an ensemble of a thin magnetic filaments of varying inclinations. Recent high resolution observations with the 1-meter Swedish Solar Telescope (SST) on La Palma revealed a fine substructure of penumbral filaments and new regularities in their dynamics.1 These findings provide both the basis and constraints for an adequate model of the penumbra whose origin still remains enigmatic. We present results of recent observations obtained with the SST. Our data, taken simultaneously in 4305 Å G-band and 4396 Å continuum bandpasses and compiled in high cadence movies, confirm previous results and reveal new features of the penumbra. We find e.g. that individual filaments are cylindrical helices with a pitch/radius ratio providing their dynamic stability. We propose a mechanism that may explain the fine structure of penumbral filaments, the observed regularities, and their togetherness with sunspot formation. The mechanism is based on the anatomy of sunspots in which not only penumbra has a filamentary structure but umbra itself is a dense conglomerate of twisted interlaced flux tubes.

  20. Magnetic black holes and monopoles in a nonminimal Einstein-Yang-Mills theory with a cosmological constant: Exact solutions

    NASA Astrophysics Data System (ADS)

    Balakin, Alexander B.; Lemos, José P. S.; Zayats, Alexei E.

    2016-04-01

    Alternative theories of gravity and their solutions are of considerable importance since, at some fundamental level, the world can reveal new features. Indeed, it is suspected that the gravitational field might be nonminimally coupled to the other fields at scales not yet probed, bringing into the forefront nonminimally coupled theories. In this mode, we consider a nonminimal Einstein-Yang-Mills theory with a cosmological constant. Imposing spherical symmetry and staticity for the spacetime and a magnetic Wu-Yang ansatz for the Yang-Mills field, we find expressions for the solutions of the theory. Further imposing constraints on the nonminimal parameters, we find a family of exact solutions of the theory depending on five parameters—two nonminimal parameters, the cosmological constant, the magnetic charge, and the mass. These solutions represent magnetic monopoles and black holes in magnetic monopoles with de Sitter, Minkowskian, and anti-de Sitter asymptotics, depending on the sign and value of the cosmological constant Λ . We classify completely the family of solutions with respect to the number and the type of horizons and show that the spacetime solutions can have, at most, four horizons. For particular sets of the parameters, these horizons can become double, triple, and quadruple. For instance, for a positive cosmological constant Λ , there is a critical Λc for which the solution admits a quadruple horizon, evocative of the Λc that appears for a given energy density in both the Einstein static and Eddington-Lemaître dynamical universes. As an example of our classification, we analyze solutions in the Drummond-Hathrell nonminimal theory that describe nonminimal black holes. Another application is with a set of regular black holes previously treated.

  1. Soil erosion at agricultural land in Moravia loess region estimated by using magnetic properties

    NASA Astrophysics Data System (ADS)

    Kapicka, Ales; Dlouha, Sarka; Petrovsky, Eduard; Jaksik, Ondrej; Grison, Hana; Kodesova, Radka

    2014-05-01

    A detailed field study on a small test site of agricultural land situated in loess region in Southern Moravia (Czech Republic) and subsequent laboratory analyses have been carried out in order to test the applicability of magnetic methods for the estimation of soil erosion. Chernozem, the original dominant soil unit in the wider area, is nowadays progressively transformed into different soil units along with intensive soil erosion. As a result, an extremely diversified soil cover structure has resulted from the erosion. The site was characterized by a flat upper part while the middle part, formed by a substantive side valley, is steeper (up to 15°). We carried out field measurements of magnetic susceptibility on a regular grid, resulting in 101 data points. The bulk soil material for laboratory investigation was gathered from all the grid points. We found a strong correlation between the volume magnetic susceptibility (field measurement) and mass specific magnetic susceptibility measured in the laboratory (R2 = 0.80). Values of the magnetic susceptibility are spatially distributed depending on the terrain. Higher values were measured in the flat upper part (where the original top horizon remained). The lowest values of magnetic susceptibility were obtained on the steep valley sides. Here the original topsoil was eroded and mixed by tillage with the soil substrate (loess). The soil profile that was unaffected by erosion was investigated in detail. The vertical distribution of magnetic susceptibility along this "virgin" profile was measured in laboratory on the samples from layers along the whole profile with 2-cm spacing. The undisturbed profile shows several soil horizons. Horizons Ac and A show a slight increase in magnetic susceptibility up to a depth of about 70 cm. Horizon A/Ck is characterized by a decrease in susceptibility, and the underlying C horizon (h > 103 cm) has a very low value of magnetic susceptibility. The differences between the values of susceptibility in the undisturbed soil profile and the magnetic signal after uniform mixing the soil material as a result of tillage and erosion are fundamental for the estimation of soil loss in the studied test field. Using the uneroded profile from the studied locality as a basis for examining the changes in cultivated soils, tillage homogenization model can be applied to predict changes in the surface soil magnetism with progressive soil erosion. The model is very well applicable at the studied site. Acknowledgement: This study was supported by NAZV Agency of the Ministry of Agriculture of the Czech Republic through grant No QJ1230319

  2. Galactic magnetic deflections and Centaurus A as a UHECR source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farrar, Glennys R.; Jansson, Ronnie; Feain, Ilana J.

    2013-01-01

    We evaluate the validity of leading models of the Galactic magnetic field for predicting UHECR deflections from Cen A. The Jansson-Farrar 2012 GMF model (JF12), which includes striated and random components as well as an out-of-plane contribution to the regular field not considered in other models, gives by far the best fit globally to all-sky data including the WMAP7 22 GHz synchrotron emission maps for Q, U and I and ≈ 40,000 extragalactic Rotation Measures (RMs). Here we test the models specifically in the Cen A region, using 160 well-measured RMs and the Polarized Intensity from WMAP, nearby but outsidemore » the Cen A radio lobes. The JF12 model predictions are in excellent agreement with the observations, justifying confidence in its predictions for deflections of UHECRs from Cen A. We find that up to six of the 69 Auger events above 55 EeV are consistent with originating in Cen A and being deflected ≤ 18°; in this case three are protons and three have Z = 2−4. Others of the 13 events within 18° must have another origin. In order for a random extragalactic magnetic field between Cen A and the Milky Way to appreciably alter these conclusions, its strength would have to be ∼>80 nG — far larger than normally imagined.« less

  3. Weak stability of the plasma-vacuum interface problem

    NASA Astrophysics Data System (ADS)

    Catania, Davide; D'Abbicco, Marcello; Secchi, Paolo

    2016-09-01

    We consider the free boundary problem for the two-dimensional plasma-vacuum interface in ideal compressible magnetohydrodynamics (MHD). In the plasma region, the flow is governed by the usual compressible MHD equations, while in the vacuum region we consider the Maxwell system for the electric and the magnetic fields. At the free interface, driven by the plasma velocity, the total pressure is continuous and the magnetic field on both sides is tangent to the boundary. We study the linear stability of rectilinear plasma-vacuum interfaces by computing the Kreiss-Lopatinskiĭ determinant of an associated linearized boundary value problem. Apart from possible resonances, we obtain that the piecewise constant plasma-vacuum interfaces are always weakly linearly stable, independently of the size of tangential velocity, magnetic and electric fields on both sides of the characteristic discontinuity. We also prove that solutions to the linearized problem obey an energy estimate with a loss of regularity with respect to the source terms, both in the interior domain and on the boundary, due to the failure of the uniform Kreiss-Lopatinskiĭ condition, as the Kreiss-Lopatinskiĭ determinant associated with this linearized boundary value problem has roots on the boundary of the frequency space. In the proof of the a priori estimates, a crucial part is played by the construction of symmetrizers for a reduced differential system, which has poles at which the Kreiss-Lopatinskiĭ condition may fail simultaneously.

  4. Quantum dynamics in phase space: Moyal trajectories 2

    NASA Astrophysics Data System (ADS)

    Braunss, G.

    2013-01-01

    Continuing a previous paper [G. Braunss, J. Phys. A: Math. Theor. 43, 025302 (2010), 10.1088/1751-8113/43/2/025302] where we had calculated ℏ2-approximations of quantum phase space viz. Moyal trajectories of examples with one and two degrees of freedom, we present in this paper the calculation of ℏ2-approximations for four examples: a two-dimensional Toda chain, the radially symmetric Schwarzschild field, and two examples with three degrees of freedom, the latter being the nonrelativistic spherically Coulomb potential and the relativistic cylinder symmetrical Coulomb potential with a magnetic field H. We show in particular that an ℏ2-approximation of the nonrelativistic Coulomb field has no singularity at the origin (r = 0) whereas the classical trajectories are singular at r = 0. In the third example, we show in particular that for an arbitrary function γ(H, z) the expression β ≡ pz + γ(H, z) is classically (ℏ = 0) a constant of motion, whereas for ℏ ≠ 0 this holds only if γ(H, z) is an arbitrary polynomial of second order in z. This statement is shown to extend correspondingly to a cylinder symmetrical Schwarzschild field with a magnetic field. We exhibit in detail a number of properties of the radially symmetric Schwarzschild field. We exhibit finally the problems of the nonintegrable Hénon-Heiles Hamiltonian and give a short review of the regular Hilbert space representation of Moyal operators.

  5. Reconstructing the magnetosphere from data using radial basis functions

    NASA Astrophysics Data System (ADS)

    Andreeva, Varvara A.; Tsyganenko, Nikolai A.

    2016-03-01

    A new method is proposed to derive from data magnetospheric magnetic field configurations without any a priori assumptions on the geometry of electric currents. The approach utilizes large sets of archived satellite data and uses an advanced technique to represent the field as a sum of toroidal and poloidal parts, whose generating potentials Ψ1 and Ψ2 are expanded into series of radial basis functions (RBFs) with their nodes regularly distributed over the 3-D modeling domain. The method was tested by reconstructing the inner and high-latitude field within geocentric distances up to 12RE on the basis of magnetometer data of Geotail, Polar, Cluster, Time History of Events and Macroscale Interactions during Substorms, and Van Allen space probes, taken during 1995-2015. Four characteristic states of the magnetosphere before and during a disturbance have been modeled: a quiet prestorm period, storm deepening phase with progressively decreasing SYM-H index, the storm maximum around the negative peak of SYM-H, and the recovery phase. Fitting the RBF model to data faithfully resolved contributions to the total magnetic field from all principal sources, including the westward and eastward ring current, the tail current, diamagnetic currents associated with the polar cusps, and the large-scale effect of the field-aligned currents. For two main phase conditions, the model field exhibited a strong dawn-dusk asymmetry of the low-latitude magnetic depression, extending to low altitudes and partly spreading sunward from the terminator plane in the dusk sector. The RBF model was found to resolve even finer details, such as the bifurcation of the innermost tail current. The method can be further developed into a powerful tool for data-based studies of the magnetospheric currents.

  6. The theory of transient radiation of a charged particle in a waveguide with an anisotropic magnetodielectric filling

    NASA Astrophysics Data System (ADS)

    Gevorkyan, E. A.

    2015-08-01

    We have considered transient radiation of a charged particle that moves at a constant velocity perpendicularly to the axis of a regular waveguide filled with an anisotropic magnetodielectric medium. Wave equations and analytical expressions for transverse electric (TE) and transverse magnetic (TM) fields in the waveguide have been found. Energies of transient radiation of the particle moving in a rectangular waveguide have been determined. We have obtained conditions of occurrence, the frequency, and the energy of Vavilov-Cherenkov radiation.

  7. High-resolution imaging-guided electroencephalography source localization: temporal effect regularization incorporation in LORETA inverse solution

    NASA Astrophysics Data System (ADS)

    Boughariou, Jihene; Zouch, Wassim; Slima, Mohamed Ben; Kammoun, Ines; Hamida, Ahmed Ben

    2015-11-01

    Electroencephalography (EEG) and magnetic resonance imaging (MRI) are noninvasive neuroimaging modalities. They are widely used and could be complementary. The fusion of these modalities may enhance some emerging research fields targeting the exploration better brain activities. Such research attracted various scientific investigators especially to provide a convivial and helpful advanced clinical-aid tool enabling better neurological explorations. Our present research was, in fact, in the context of EEG inverse problem resolution and investigated an advanced estimation methodology for the localization of the cerebral activity. Our focus was, therefore, on the integration of temporal priors to low-resolution brain electromagnetic tomography (LORETA) formalism and to solve the inverse problem in the EEG. The main idea behind our proposed method was in the integration of a temporal projection matrix within the LORETA weighting matrix. A hyperparameter is the principal fact for such a temporal integration, and its importance would be obvious when obtaining a regularized smoothness solution. Our experimental results clearly confirmed the impact of such an optimization procedure adopted for the temporal regularization parameter comparatively to the LORETA method.

  8. Kinetic-scale fluctuations resolved with the Fast Plasma Investigation on NASA's Magnetospheric Multiscale mission.

    NASA Astrophysics Data System (ADS)

    Gershman, D. J.; Figueroa-Vinas, A.; Dorelli, J.; Goldstein, M. L.; Shuster, J. R.; Avanov, L. A.; Boardsen, S. A.; Stawarz, J. E.; Schwartz, S. J.; Schiff, C.; Lavraud, B.; Saito, Y.; Paterson, W. R.; Giles, B. L.; Pollock, C. J.; Strangeway, R. J.; Russell, C. T.; Torbert, R. B.; Moore, T. E.; Burch, J. L.

    2017-12-01

    Measurements from the Fast Plasma Investigation (FPI) on NASA's Magnetospheric Multiscale (MMS) mission have enabled unprecedented analyses of kinetic-scale plasma physics. FPI regularly provides estimates of current density and pressure gradients of sufficient accuracy to evaluate the relative contribution of terms in plasma equations of motion. In addition, high-resolution three-dimensional velocity distribution functions of both ions and electrons provide new insights into kinetic-scale processes. As an example, for a monochromatic kinetic Alfven wave (KAW) we find non-zero, but out-of-phase parallel current density and electric field fluctuations, providing direct confirmation of the conservative energy exchange between the wave field and particles. In addition, we use fluctuations in current density and magnetic field to calculate the perpendicular and parallel wavelengths of the KAW. Furthermore, examination of the electron velocity distribution inside the KAW reveals a population of electrons non-linearly trapped in the kinetic-scale magnetic mirror formed between successive wave peaks. These electrons not only contribute to the wave's parallel electric field but also account for over half of the density fluctuations within the wave, supplying an unexpected mechanism for maintaining quasi-neutrality in a KAW. Finally, we demonstrate that the employed wave vector determination technique is also applicable to broadband fluctuations found in Earth's turbulent magnetosheath.

  9. Orbitally limited pair-density-wave phase of multilayer superconductors

    NASA Astrophysics Data System (ADS)

    Möckli, David; Yanase, Youichi; Sigrist, Manfred

    2018-04-01

    We investigate the magnetic field dependence of an ideal superconducting vortex lattice in the parity-mixed pair-density-wave phase of multilayer superconductors within a circular cell Ginzburg-Landau approach. In multilayer systems, due to local inversion symmetry breaking, a Rashba spin-orbit coupling is induced at the outer layers. This combined with a perpendicular paramagnetic (Pauli) limiting magnetic field stabilizes a staggered layer dependent pair-density-wave phase in the superconducting singlet channel. The high-field pair-density-wave phase is separated from the low-field BCS phase by a first-order phase transition. The motivating guiding question in this paper is: What is the minimal necessary Maki parameter αM for the appearance of the pair-density-wave phase of a superconducting trilayer system? To address this problem we generalize the circular cell method for the regular flux-line lattice of a type-II superconductor to include paramagnetic depairing effects. Then, we apply the model to the trilayer system, where each of the layers are characterized by Ginzburg-Landau parameter κ0 and a Maki parameter αM. We find that when the spin-orbit Rashba interaction compares to the superconducting condensation energy, the orbitally limited pair-density-wave phase stabilizes for Maki parameters αM>10 .

  10. Short initial length quench on CICC of ITER TF coils

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nicollet, S.; Ciazynski, D.; Duchateau, J.-L.

    Previous quench studies performed for the International Thermonuclear Experimental Reactor (ITER) Toroidal Field (TF) Coils have led to identify two extreme families of quench: first 'severe' quenches over long initial lengths in high magnetic field, and second smooth quenches over short initial lengths in low field region. Detailed analyses and results on smooth quench propagation and detectability on one TF Cable In Conduit Conductor (CICC) with a lower propagation velocity are presented here. The influence of the initial quench energy is shown and results of computations with either a Fast Discharge (FD) of the magnet or without (failure of themore » voltage quench detection system) are reported. The influence of the central spiral of the conductor on the propagation velocity is also detailed. In the cases of a regularly triggered FD, the hot spot temperature criterion of 150 K (with helium and jacket) is fulfilled for an initial quench length of 1 m, whereas this criterion is exceed (Tmax ≈ 200 K) for an extremely short length of 5 cm. These analyses were carried out using both the Supermagnet(trade mark, serif) and Venecia codes and the comparisons of the results are also discussed.« less

  11. The critical 1-arm exponent for the ferromagnetic Ising model on the Bethe lattice

    NASA Astrophysics Data System (ADS)

    Heydenreich, Markus; Kolesnikov, Leonid

    2018-04-01

    We consider the ferromagnetic nearest-neighbor Ising model on regular trees (Bethe lattice), which is well-known to undergo a phase transition in the absence of an external magnetic field. The behavior of the model at critical temperature can be described in terms of various critical exponents; one of them is the critical 1-arm exponent ρ which characterizes the rate of decay of the (root) magnetization as a function of the distance to the boundary. The crucial quantity we analyze in this work is the thermal expectation of the root spin on a finite subtree, where the expected value is taken with respect to a probability measure related to the corresponding finite-volume Hamiltonian with a fixed boundary condition. The spontaneous magnetization, which is the limit of this thermal expectation in the distance between the root and the boundary (i.e., in the height of the subtree), is known to vanish at criticality. We are interested in a quantitative analysis of the rate of this convergence in terms of the critical 1-arm exponent ρ. Therefore, we rigorously prove that ⟨σ0⟩ n +, the thermal expectation of the root spin at the critical temperature and in the presence of the positive boundary condition, decays as ⟨σ0 ⟩ n +≈n-1/2 (in a rather sharp sense), where n is the height of the tree. This establishes the 1-arm critical exponent for the Ising model on regular trees (ρ =1/2 ).

  12. Study of field-aligned current (FAC), interplanetary electric field component (Ey), interplanetary magnetic field component (Bz), and northward (x) and eastward (y) components of geomagnetic field during supersubstorm

    NASA Astrophysics Data System (ADS)

    Adhikari, Binod; Dahal, Subodh; Chapagain, Narayan P.

    2017-05-01

    A dominant process by which energy and momentum are transported from the magnetosphere to the ionosphere is known as field-aligned current (FAC). It is enhanced during magnetic reconnection and explosive energy release at a substorm. In this paper, we studied FAC, interplanetary electric field component (Ey), interplanetary magnetic field component (Bz), and northward (x) and eastward (y) components of geomagnetic field during three events of supersubstorm occurred on 24 November 2001, 21 January 2005, and 24 August 2005. Large-scale FAC, supposed to be produced during supersubstorm (SSS), has potentiality to cause blackout on Earth. We examined temporal variations of the x and y components of high-latitude geomagnetic field during SSS, which is attributed to the FACs. We shall report the characteristics of high-latitude northward and eastward components of geomagnetic field variation during the growth phase of SSS by the implementation of discrete wavelet transform (DWT) and cross-correlation analysis. Among three examples of SSS events, the highest peak value of FAC was estimated to be 19 μAm-2. This is shore up with the prediction made by Parks (1991) and Stasiewicz et al. (1998) that the FACs may vary from a few tens to several hundred μAm-2. Although this peak value of FACs for SSS event is much higher than the average FACs associated with regular substorms or magnetic storms, it is expedient and can be expect for SSS events which might be due to very high density solar wind plasma parcels (PPs) triggering the SSS events. In all events, during growth phase, the FAC increases to extremely high level and the geomagnetic northward component decreases to extremely low level. This represents a strong positive correlation between FAC and geomagnetic northward component. The DWT analysis accounts that the highest amplitude of the wavelet coefficients indicates singularities present in FAC during SSS event. But the amplitude of squared wavelet coefficient is found to be different from each other, which might be due to the solar wind PPs of different density triggering the SSS events. The cross-correlation analysis suggests that the perturbation on geomagnetic northward component at high latitude during SSS strongly correlates with the fluctuation pattern of FAC density. Hence, the FAC is the primary sources for the eastward-westward magnetic field perturbations at high latitude.

  13. Comparison of magnetic helicity close to the sun and in magnetic clouds

    NASA Astrophysics Data System (ADS)

    Rust, D.

    Magnetic helicity is present in the solar atmosphere - as inferred from vector magnetograph measurements, solar filaments, S-shaped coronal structures known as sigmoids, and sunspot whorls. I will survey the possible solar sources of this magnetic helicity. Included are fieldline footpoint motions, effects of Coriolis forces, effects of convection, shear associated with differential rotation, and, of course, the internal dynamo. Besides the survey of possible local mechanisms for helicity generation, I will consider the global view of the flow of helicity from the sun into interplanetary space. The principal agents by which the sun sheds helicity are coronal mass ejections (CMEs). They are often associated with interplanetary magnetic clouds (MCs), whose fields are regularly probed with sensitive spacecraft magnetometers. MCs yield more direct measurements of helicity. They show that each MC carries helicity away from the sun. A major issue in solar-heliospheric research is whether the amount of helicity that MCs carry away in a solar cycle can be accounted for by the helicity generation mechanisms proposed so far. The NASA Solar and Heliospheric Physics Program supports this work under grants NAG5- 7921 and NAG 5-11584.

  14. Global equivalent magnetization of the oceanic lithosphere

    NASA Astrophysics Data System (ADS)

    Dyment, J.; Choi, Y.; Hamoudi, M.; Lesur, V.; Thebault, E.

    2015-11-01

    As a by-product of the construction of a new World Digital Magnetic Anomaly Map over oceanic areas, we use an original approach based on the global forward modeling of seafloor spreading magnetic anomalies and their comparison to the available marine magnetic data to derive the first map of the equivalent magnetization over the World's ocean. This map reveals consistent patterns related to the age of the oceanic lithosphere, the spreading rate at which it was formed, and the presence of mantle thermal anomalies which affects seafloor spreading and the resulting lithosphere. As for the age, the equivalent magnetization decreases significantly during the first 10-15 Myr after its formation, probably due to the alteration of crustal magnetic minerals under pervasive hydrothermal alteration, then increases regularly between 20 and 70 Ma, reflecting variations in the field strength or source effects such as the acquisition of a secondary magnetization. As for the spreading rate, the equivalent magnetization is twice as strong in areas formed at fast rate than in those formed at slow rate, with a threshold at ∼40 km/Myr, in agreement with an independent global analysis of the amplitude of Anomaly 25. This result, combined with those from the study of the anomalous skewness of marine magnetic anomalies, allows building a unified model for the magnetic structure of normal oceanic lithosphere as a function of spreading rate. Finally, specific areas affected by thermal mantle anomalies at the time of their formation exhibit peculiar equivalent magnetization signatures, such as the cold Australian-Antarctic Discordance, marked by a lower magnetization, and several hotspots, marked by a high magnetization.

  15. Peristaltic motion of magnetohydrodynamic viscous fluid in a curved circular tube

    NASA Astrophysics Data System (ADS)

    Yasmeen, Shagufta; Okechi, Nnamdi Fidelis; Anjum, Hafiz Junaid; Asghar, Saleem

    In this paper we investigate the peristaltic flow of viscous fluid through three-dimensional curved tube in the presence of the applied magnetic field. We present a mathematical model and an asymptotic solution for the three dimensional Navier-Stokes equations under the assumption of small inertial forces and long wavelength approximation. The effects of the curvature of the tube are investigated with particular interest. The solution is sought in terms of regular perturbation expansion for small curvature parameter. It is noted that the velocity field is more sensitive to the curvature of tube in comparison to the pressure gradient. It is shown that peristaltic magnetohydrodynamic (MHD) flow in a straight tube is the limiting case of this study.

  16. Ground-state and magnetocaloric properties of a coupled spin-electron double-tetrahedral chain (exact study at the half filling)

    NASA Astrophysics Data System (ADS)

    Gálisová, Lucia; Jakubczyk, Dorota

    2017-01-01

    Ground-state and magnetocaloric properties of a double-tetrahedral chain, in which nodal lattice sites occupied by the localized Ising spins regularly alternate with triangular clusters half filled with mobile electrons, are exactly investigated by using the transfer-matrix method in combination with the construction of the Nth tensor power of the discrete Fourier transformation. It is shown that the ground state of the model is formed by two non-chiral phases with the zero residual entropy and two chiral phases with the finite residual entropy S = NkB ln 2. Depending on the character of the exchange interaction between the localized Ising spins and mobile electrons, one or three magnetization plateaus can be observed in the magnetization process. Their heights basically depend on the values of Landé g-factors of the Ising spins and mobile electrons. It is also evidenced that the system exhibits both the conventional and inverse magnetocaloric effect depending on values of the applied magnetic field and temperature.

  17. 1D hetero-bimetallic regularly alternated 4f-3d coordination polymers based on N-oxide-4,4'-bipyridine (bipyMO) as a linker: photoluminescence and magnetic properties.

    PubMed

    Armelao, Lidia; Belli Dell'Amico, Daniela; Bottaro, Gregorio; Bellucci, Luca; Labella, Luca; Marchetti, Fabio; Mattei, Carlo Andrea; Mian, Federica; Pineider, Francesco; Poneti, Giordano; Samaritani, Simona

    2018-06-13

    Heterotopic divergent ligand N-oxide-4,4'-bipyridine (bipyMO) has been herein exploited for the preparation of hetero-bimetallic coordination polymers where Ln(hfac)3 and M(hfac)2 nodes regularly alternate (Hhfac = 1,1,1,5,5,5-hexafluoro-2,4-pentanedione), bipyMO being able to selectively use its two potential coordination sites to discriminate the metal ions. The synthesis of three coordination polymers, [Ln(hfac)3M(hfac)2(bipyMO)2]n (Ln = Eu, M = Zn, 1; Ln = Eu, M = Cu, 2, Ln = Dy, M = Co, 3), was carried out by reacting the appropriate [M(hfac)2(bipyMO)]n and [Ln(hfac)3] precursors in toluene in the presence of a given stoichiometric amount of bipyMO. The products were characterized by elemental analysis, X-ray powder diffraction, and FTIR spectroscopy. Single crystal X-ray diffraction studies carried out on 2 showed that it was formed by chains containing the hexa-coordinated 3d metal (Cu(hfac)2[N]2) and the octa-coordinated lanthanide (Eu(hfac)3[O]2) nodes, where [N] and [O] stand for the donor atom of the bridging divergent ligand. The X-ray powder diffraction patterns of the three compounds and the comparison of their cell constant values allowed establishing that the derivatives were isotypic. Photoluminescence (PL) studies on microcrystalline sample powders evidenced a bright red emission for 1 with an absolute PL quantum yield of 0.24. The sensitized emission of Eu3+ can be excited in a wide wavelength range, from UV to visible, up to ≈450 nm. Conversely, europium emissions are not detectable in 2 due to the presence of Cu(hfac)2(bipyMO) moieties whose strong absorption overlaps Eu3+ transitions. Magnetic measurements conducted on 3 revealed the presence of a weak ferromagnetic interaction below 2.1 K. An ac susceptibility study highlighted a slow relaxation of the magnetization of 3 with an applied static magnetic field of 0.1 T, which could be equally fitted with a Orbach-direct or a Raman-direct mechanism. No relaxation dynamics was detected without the application of a static magnetic field.

  18. Motion-adaptive spatio-temporal regularization for accelerated dynamic MRI.

    PubMed

    Asif, M Salman; Hamilton, Lei; Brummer, Marijn; Romberg, Justin

    2013-09-01

    Accelerated magnetic resonance imaging techniques reduce signal acquisition time by undersampling k-space. A fundamental problem in accelerated magnetic resonance imaging is the recovery of quality images from undersampled k-space data. Current state-of-the-art recovery algorithms exploit the spatial and temporal structures in underlying images to improve the reconstruction quality. In recent years, compressed sensing theory has helped formulate mathematical principles and conditions that ensure recovery of (structured) sparse signals from undersampled, incoherent measurements. In this article, a new recovery algorithm, motion-adaptive spatio-temporal regularization, is presented that uses spatial and temporal structured sparsity of MR images in the compressed sensing framework to recover dynamic MR images from highly undersampled k-space data. In contrast to existing algorithms, our proposed algorithm models temporal sparsity using motion-adaptive linear transformations between neighboring images. The efficiency of motion-adaptive spatio-temporal regularization is demonstrated with experiments on cardiac magnetic resonance imaging for a range of reduction factors. Results are also compared with k-t FOCUSS with motion estimation and compensation-another recently proposed recovery algorithm for dynamic magnetic resonance imaging. . Copyright © 2012 Wiley Periodicals, Inc.

  19. Pulsar current sheet C̆erenkov radiation

    NASA Astrophysics Data System (ADS)

    Zhang, Fan

    2018-04-01

    Plasma-filled pulsar magnetospheres contain thin current sheets wherein the charged particles are accelerated by magnetic reconnections to travel at ultra-relativistic speeds. On the other hand, the plasma frequency of the more regular force-free regions of the magnetosphere rests almost precisely on the upper limit of radio frequencies, with the cyclotron frequency being far higher due to the strong magnetic field. This combination produces a peculiar situation, whereby radio-frequency waves can travel at subluminal speeds without becoming evanescent. The conditions are thus conducive to C̆erenkov radiation originating from current sheets, which could plausibly serve as a coherent radio emission mechanism. In this paper we aim to provide a portrait of the relevant processes involved, and show that this mechanism can possibly account for some of the most salient features of the observed radio signals.

  20. Quantitative susceptibility mapping (QSM): Decoding MRI data for a tissue magnetic biomarker

    PubMed Central

    Wang, Yi; Liu, Tian

    2015-01-01

    In MRI, the main magnetic field polarizes the electron cloud of a molecule, generating a chemical shift for observer protons within the molecule and a magnetic susceptibility inhomogeneity field for observer protons outside the molecule. The number of water protons surrounding a molecule for detecting its magnetic susceptibility is vastly greater than the number of protons within the molecule for detecting its chemical shift. However, the study of tissue magnetic susceptibility has been hindered by poor molecular specificities of hitherto used methods based on MRI signal phase and T2* contrast, which depend convolutedly on surrounding susceptibility sources. Deconvolution of the MRI signal phase can determine tissue susceptibility but is challenged by the lack of MRI signal in the background and by the zeroes in the dipole kernel. Recently, physically meaningful regularizations, including the Bayesian approach, have been developed to enable accurate quantitative susceptibility mapping (QSM) for studying iron distribution, metabolic oxygen consumption, blood degradation, calcification, demyelination, and other pathophysiological susceptibility changes, as well as contrast agent biodistribution in MRI. This paper attempts to summarize the basic physical concepts and essential algorithmic steps in QSM, to describe clinical and technical issues under active development, and to provide references, codes, and testing data for readers interested in QSM. Magn Reson Med 73:82–101, 2015. © 2014 The Authors. Magnetic Resonance in Medicine Published by Wiley Periodicals, Inc. on behalf of International Society of Medicine in Resonance. This is an open access article under the terms of the Creative commons Attribution License, which permits use, distribution, and reproduction in any medium, provided the original work is properly cited. PMID:25044035

  1. On the Anticipatory Aspects of the Four Interactions: what the Known Classical and Semi-Classical Solutions Teach us

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lusanna, Luca

    2004-08-19

    The four (electro-magnetic, weak, strong and gravitational) interactions are described by singular Lagrangians and by Dirac-Bergmann theory of Hamiltonian constraints. As a consequence a subset of the original configuration variables are gauge variables, not determined by the equations of motion. Only at the Hamiltonian level it is possible to separate the gauge variables from the deterministic physical degrees of freedom, the Dirac observables, and to formulate a well posed Cauchy problem for them both in special and general relativity. Then the requirement of causality dictates the choice of retarded solutions at the classical level. However both the problems of themore » classical theory of the electron, leading to the choice of (1/2) (retarded + advanced) solutions, and the regularization of quantum field theory, leading to the Feynman propagator, introduce anticipatory aspects. The determination of the relativistic Darwin potential as a semi-classical approximation to the Lienard-Wiechert solution for particles with Grassmann-valued electric charges, regularizing the Coulomb self-energies, shows that these anticipatory effects live beyond the semi-classical approximation (tree level) under the form of radiative corrections, at least for the electro-magnetic interaction.Talk and 'best contribution' at The Sixth International Conference on Computing Anticipatory Systems CASYS'03, Liege August 11-16, 2003.« less

  2. On the chiral magnetic effect in Weyl superfluid 3He-A

    NASA Astrophysics Data System (ADS)

    Volovik, G. E.

    2017-01-01

    In the theory of the chiral anomaly in relativistic quantum field theories (RQFTs), some results depend on a regularization scheme at ultraviolet. In the chiral superfluid 3He-A, which contains two Weyl points and also experiences the effects of chiral anomaly, the "trans-Planckian" physics is known and the results can be obtained without regularization. We discuss this on example of the chiral magnetic effect (CME), which has been observed in 3He-A in the 1990s [1]. There are two forms of the contribution of the CME to the Chern-Simons term in free energy, perturbative and non-perturbative. The perturbative term comes from the fermions living in the vicinity of the Weyl point, where the fermions are "relativistic" and obey the Weyl equation. The non-perturbative term originates from the deep vacuum, being determined by the separation of the two Weyl points in momentum space. Both terms are obtained using the Adler-Bell-Jackiw equation for chiral anomaly, and both agree with the results of the microscopic calculations in the "trans-Planckian" region. Existence of the two nonequivalent forms of the Chern-Simons term demonstrates that the results obtained within the RQFT depend on the specific properties of the underlying quantum vacuum and may reflect different physical phenomena in the same vacuum.

  3. Stochastic resonance in the majority vote model on regular and small-world lattices

    NASA Astrophysics Data System (ADS)

    Krawiecki, A.

    2017-11-01

    The majority vote model with two states on regular and small-world networks is considered under the influence of periodic driving. Monte Carlo simulations show that the time-dependent magnetization, playing the role of the output signal, exhibits maximum periodicity at nonzero values of the internal noise parameter q, which is manifested as the occurrence of the maximum of the spectral power amplification; the location of the maximum depends in a nontrivial way on the amplitude and frequency of the periodic driving as well as on the network topology. This indicates the appearance of stochastic resonance in the system as a function of the intensity of the internal noise. Besides, for low frequencies and for certain narrow ranges of the amplitudes of the periodic driving double maxima of the spectral power amplification as a function of q occur, i.e., stochastic multiresonance appears. The above-mentioned results quantitatively agree with those obtained from numerical simulations of the mean-field equations for the time-dependent magnetization. In contrast, analytic solutions for the spectral power amplification obtained from the latter equations using the linear response approximation deviate significanlty from the numerical results since the effect of the periodic driving on the system is not small even for vanishing amplitude.

  4. Superconducting nanowire networks formed on nanoporous membrane substrates

    NASA Astrophysics Data System (ADS)

    Luo, Qiong

    Introducing a regular array of holes into superconducting thin films has been actively pursued to stabilize and pin the vortex lattice against external driving forces, enabling higher current capabilities. If the width of the sections between neighboring holes is comparable to the superconducting coherence length, the circulation of the Cooper pairs in around the holes in the presence of a magnetic field can also produce the Little-Parks effect, i.e. periodic oscillation of the critical temperature. These two mechanisms, commensurate vortex pinning enhancement by the hole-array and the critical temperature oscillations of a wire network due to Little-Parks effect can induce similar experimental observations such as magnetoresistance oscillation and enhancement of the critical current at specific magnetic fields. This dissertation work investigates the effect of a hole-array on the properties of superconducting films deposited onto nanoporous substrates. Experiments on anisotropies of the critical temperature for niobium films on anodic aluminum oxide membrane substrates containing a regular hole-array reveal that the critical temperature exhibits two strong anisotropic effects: Little-Parks oscillations whose period varies with field direction superimposed on a smooth background arising from one dimensional confinement by the finite lateral space between neighboring holes. The two components of the anisotropy are intrinsically linked and appear in concert. That is, the hole-array changes the dimensionality of a two-dimensional (2D) film to a network of 1D nanowire network. Network of superconducting nanowires with transverse dimensions as small as few nanometers were achieved by coating molybdenum germanium (MoGe) layer onto commercially available filtration membranes which have extremely dense nanopores. The magnetoresistance, magnetic field dependence of the critical temperature and the anisotropies of the synthesized MoGe nanowire networks can be consistently attributed to thermal phase slips and Little-Parks effect, revealing new phenomena at extreme conditions. This research significantly advanced our understanding on confinement effects in superconductors. Since AAO membranes of large area can be fabricated easily and filtration membranes are commercially available, the developed fabrication approach provides an alternative but more accessible templating method to achieve samples for exploring phenomena in superconductors with transverse dimensions down to few nanometers. This research also sets limitations on efforts to pursue high commensurate vortex pinning fields by increasing the density of holes in a perforated film: a reduction in the width of superconducting section between neighboring holes can turn a 2D film into a network of 1D nanowires which dissipate energy when conducting electricity due to thermal and possibly also quantum phase slippages, eliminating the desired pinning effect of the introduced hole.

  5. Self-organised fractional quantisation in a hole quantum wire

    NASA Astrophysics Data System (ADS)

    Gul, Y.; Holmes, S. N.; Myronov, M.; Kumar, S.; Pepper, M.

    2018-03-01

    We have investigated hole transport in quantum wires formed by electrostatic confinement in strained germanium two-dimensional layers. The ballistic conductance characteristics show the regular staircase of quantum levels with plateaux at n2e 2/h, where n is an integer, e is the fundamental unit of charge and h is Planck’s constant. However as the carrier concentration is reduced, the quantised levels show a behaviour that is indicative of the formation of a zig-zag structure and new quantised plateaux appear at low temperatures. In units of 2e 2/h the new quantised levels correspond to values of n  =  1/4 reducing to 1/8 in the presence of a strong parallel magnetic field which lifts the spin degeneracy but does not quantise the wavefunction. A further plateau is observed corresponding to n  =  1/32 which does not change in the presence of a parallel magnetic field. These values indicate that the system is behaving as if charge was fractionalised with values e/2 and e/4, possible mechanisms are discussed.

  6. Effects of Magnetic field on Peristalsis transport of a Carreau Fluid in a tapered asymmetric channel

    NASA Astrophysics Data System (ADS)

    Prakash, J.; Balaji, N.; Siva, E. P.; Kothandapani, M.; Govindarajan, A.

    2018-04-01

    The paper is concerned with effects of a uniform applied magnetic field on a Carreau fluid flow in a tapered asymmetric channel with peristalsis. The channel non-uniform & asymmetry are formed by choosing the peristaltic wave train on the tapered walls to have different amplitude and phase (ϕ). The governing equations of the Carreau model in two - dimensional peristaltic flow phenomena are constructed under assumptions of long wave length and low Reynolds number approximations. The simplified non - linear governing equations are solved by regular perturbation method. The expressions for pressure rise, frictional force, velocity and stream function are determined and the effects of different parameters like non-dimensional amplitudes walls (a and b), non - uniform parameter (m), Hartmann number (M), phase difference (ϕ),power law index (n) and Weissenberg numbers (We) on the flow characteristics are discussed. It is viewed that the rheological parameter for large (We), the curves of the pressure rise are not linear but it behaves like a Newtonian fluid for very small Weissenberg number.

  7. The flush-mounted rail Langmuir probe array designed for the Alcator C-Mod vertical target plate divertor

    NASA Astrophysics Data System (ADS)

    Kuang, A. Q.; Brunner, D.; LaBombard, B.; Leccacorvi, R.; Vieira, R.

    2018-04-01

    An array of flush-mounted and toroidally elongated Langmuir probes (henceforth called rail probes) have been specifically designed for the Alcator C-Mod's vertical target plate divertor and operated over multiple campaigns. The "flush" geometry enables the tungsten electrodes to survive high heat flux conditions in which traditional "proud" tungsten electrodes suffer damage from melting. The toroidally elongated rail-like geometry reduces the influence of sheath expansion, which is an important effect to consider in the design and interpretation of flush-mounted Langmuir probes. The new rail probes successfully operated during C-Mod's FY2015 and FY2016 experimental campaigns with no evidence of damage, despite being regularly subjected to heat flux densities parallel to the magnetic field exceeding ˜1 GW m-2 for short periods of time. A comparison between rail and proud probe data indicates that sheath expansion effects were successfully mitigated by the rail design, extending the use of these Langmuir probes to incident magnetic field line angles as low as 0.5°.

  8. The Effects of Career Magnet Schools. IEE Brief Number 22.

    ERIC Educational Resources Information Center

    Crain, Robert L.; Allen, Anna; Little, Judith Warren; Sullivan, Debora; Thaler, Robert; Quigley, Denise; Zellman, Gail

    A research study compared graduates of career magnet programs to graduates of comprehensive high schools in a large metropolitan area. The career magnet programs studied are located either within regular comprehensive high schools or combined with other magnet programs to fill an entire building. Research was conducted through school records of…

  9. 76 FR 21426 - Proposed Collection; Comment Request

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-15

    ... soliciting comments concerning the Capital Magnet Fund (CMF) Environmental Review Notification Report (ERNR... call (202) 622-6355. This is not a toll free number. SUPPLEMENTARY INFORMATION: Title: Capital Magnet.... Current Actions: New collection. Type of Review: Regular Review. Affected Public: Capital Magnet Fund...

  10. Magnetic avalanches in manganese-acetate, "magnetic deflagration"

    NASA Astrophysics Data System (ADS)

    Suzuki, Yoko

    Mn12-acetate, first synthesized in 1980 by Lis, is one example of a class of many molecules called single molecule magnets (SMMs) or molecular nanomagnets. These molecules have several atomic spins strongly coupled together within each molecule. They exhibit interesting quantum mechanical phenomena at low temperatures such as quantum tunneling of magnetization, which was first found with Mn12-acetate in 1996 by Friedman, et al. , and Berry phase oscillations which were measured in Fe8 (another SMM) in 1999 by Wernsdorfer, et al. In addition to possible application as memory storage and qubits for quantum computers, these systems provide the means for studies of mesoscopic physics as well as the interactions of the molecules with their environment, such as phonon, photon, nuclear spin, intermolecular dipole, and exchange interactions. Mn12-acetate has twelve Mn ions magnetically coupled in the center of the molecule yielding a giant spin of S = 10 at low temperature. It also has a large uniaxial anisotropy of 65 K. Below 3 K, magnetization curves show strong hysteresis due to the anisotropy barrier. At thesis temperatures, the spin relaxes through the barrier by quantum tunneling of magnetization, which produces regularly-spaced multiple resonant steps in the hysteresis curve. Magnetic avalanches, first detected by Paulsen et al., also occur for some samples only at low temperature, leading to a very fast single-step reversal of the full magnetization, which clearly differs from relaxation by tunneling. In this thesis, I present the results of detailed experimental studies of two aspects of magnetic avalanche phenomenon: "conditions for the triggering of avalanches" and "propagation of the avalanche front". In the first study, we find the magnetic fields at which avalanches occur are stochastically distributed in a particular range of fields. For the second study, we conducted local time-resolved measurements. The results indicate the magnetization avalanches spread as a narrow interface that propagate through the crystal at a constant velocity which is roughly two orders of magnitude smaller than the speed of sound in solids. We argue this phenomenon is closely analogous to the propagation of a flame front(deflagration) through a flammable chemical substance.

  11. Perfluorocyclobutane containing aromatic ether polymers as planarization materials for alternative magnetic media substrates

    NASA Astrophysics Data System (ADS)

    Perettie, Donald J.; Judy, Jack; Chen, Qixu; Keirstead, Rick

    1994-11-01

    Perfluorocyclobutane aromatic ether polymers (PFCB) are being researched as planarization materials for alternative magnetic media substrates allowing smoother surfaces for lower head flying recording. The results of current work reported herein have shown that PFCB can be used to affect surfaces on canasite with R(sub A)'s less than 2 nm. In addition, magnetic media can be produced of a quality comparative to that obtained on standard NiP-coated Al as well as that produced on regular canasite with equivalent coercivities at about 1500-1600 Oe and squarenesses of 0.8 or better. In addition to the above magnetic properties the recording performance was excellent with signal-to-noise ratios of planarized media 3.5 dB higher than that on regular canasite.

  12. Role of Orbital Dynamics in Spin Relaxation and Weak Antilocalization in Quantum Dots

    NASA Astrophysics Data System (ADS)

    Zaitsev, Oleg; Frustaglia, Diego; Richter, Klaus

    2005-01-01

    We develop a semiclassical theory for spin-dependent quantum transport to describe weak (anti)localization in quantum dots with spin-orbit coupling. This allows us to distinguish different types of spin relaxation in systems with chaotic, regular, and diffusive orbital classical dynamics. We find, in particular, that for typical Rashba spin-orbit coupling strengths, integrable ballistic systems can exhibit weak localization, while corresponding chaotic systems show weak antilocalization. We further calculate the magnetoconductance and analyze how the weak antilocalization is suppressed with decreasing quantum dot size and increasing additional in-plane magnetic field.

  13. A non-invasive Hall current distribution measurement system for Hall Effect thrusters

    NASA Astrophysics Data System (ADS)

    Mullins, Carl Raymond

    A direct, accurate method to measure thrust produced by a Hall Effect thruster on orbit does not currently exist. The ability to calculate produced thrust will enable timely and precise maneuvering of spacecraft---a capability particularly important to satellite formation flying. The means to determine thrust directly is achievable by remotely measuring the magnetic field of the thruster and solving the inverse magnetostatic problem for the Hall current density distribution. For this thesis, the magnetic field was measured by employing an array of eight tunneling magnetoresistive (TMR) sensors capable of milligauss sensitivity when placed in a high background field. The array was positioned outside the channel of a 1.5 kW Colorado State University Hall thruster equipped with a center-mounted electride cathode. In this location, the static magnetic field is approximately 30 Gauss, which is within the linear operating range of the TMR sensors. Furthermore, the induced field at this distance is greater than tens of milligauss, which is within the sensitivity range of the TMR sensors. Due to the nature of the inverse problem, the induced-field measurements do not provide the Hall current density by a simple inversion; however, a Tikhonov regularization of the induced field along with a non-negativity constraint and a zero boundary condition provides current density distributions. Our system measures the sensor outputs at 2 MHz allowing the determination of the Hall current density distribution as a function of time. These data are shown in contour plots in sequential frames. The measured ratios between the average Hall current and the discharge current ranged from 0.1 to 10 over a range of operating conditions from 1.3 kW to 2.2 kW. The temporal inverse solution at 2.0 kW exhibited a breathing mode of 37 kHz, which was in agreement with temporal measurements of the discharge current.

  14. Historical records of the geomagnetic field

    NASA Astrophysics Data System (ADS)

    Arneitz, Patrick; Heilig, Balázs; Vadasz, Gergely; Valach, Fridrich; Dolinský, Peter; Hejda, Pavel; Fabian, Karl; Hammerl, Christa; Leonhardt, Roman

    2014-05-01

    Records of historical direct measurements of the geomagnetic field are invaluable sources to reconstruct temporal variations of the Earth's magnetic field. They provide information about the field evolution back to the late Middle Age. We have investigated such records with focus on Austria and some neighbouring countries. A variety of new sources and source types are examined. These include 19th century land survey and observatory records of the Imperial and Royal "Centralanstalt f. Meteorologie und Erdmagnetismus", which are not included in the existing compilations. Daily measurements at the Imperial and Royal Observatory in Prague have been digitized. The Imperial and Royal Navy carried out observations in the Adriatic Sea during several surveys. Declination values have been collected from famous mining areas in the former Austro-Hungarian Empire. In this connection, a time series for Banska Stiavnica has been compiled. In the meteorological yearbooks of the monastery Kremsmünster regular declination measurements for the first half of the 19th century were registered. Marsigli's observations during military mapping works in 1696 are also included in our collection. Moreover, compass roses on historical maps or declination values marked on compasses, sundials or globes also provide information about ancient field declination. An evaluation of church orientations in Lower Austria and Northern Germany did not support the hypothesis that church naves had been aligned along the East-West direction by means of magnetic compasses. Therefore, this potential source of information must be excluded from our collection. The gathered records are integrated into a database together with corresponding metadata, such as the used measurement instruments and methods. This information allows an assessment of quality and reliability of the historical observations. The combination of compilations of historical measurements with high quality archeo- and paleomagnetic data in a single database enables a reliable joint evaluation of all types of magnetic field records from different origins. This collection forms the basis for a combined inverse modelling of the geomagnetic field evolution.

  15. Cranial surgery navigation aided by a compact intraoperative magnetic resonance imager.

    PubMed

    Schulder, M; Liang, D; Carmel, P W

    2001-06-01

    In this article the authors report on a novel, compact device for magnetic resonance (MR) imaging that has been developed for use in a standard neurosurgical operating room. The device includes a permanent magnet with a field strength of 0.12 tesla. The poles of the magnet are vertically aligned, with a gap of 25 cm. When not in use the magnet is stored in a shielded cage in a corner of the operating room; it is easily moved into position and attaches to a regular operating table. The magnet is raised for imaging when needed and may be lowered to allow surgery to proceed unencumbered. Surgical navigation with optical and/or magnetic probes is incorporated into the system. Twenty-five patients have undergone removal of intracranial lesions with the aid of this device. Operations included craniotomy for tumor or other lesion in 18 patients and transsphenoidal resection of tumor in seven. The number of scans ranged from two to five per surgery (average 3.4); image quality was excellent in 45%, adequate in 43%, and poor in 12%. In four patients MR imaging revealed additional tumor that was then resected; in five others visual examination of the operative field was inconclusive but complete tumor removal was confirmed on MR imaging. In 21 patients early postoperative diagnostic MR studies corroborated the findings on the final intraoperative MR image. Using a water-covered phantom, the accuracy of the navigational tools was assessed; 120 data points were measured. The accuracy of the magnetic probe averaged 1.3 mm and 2.1 mm in the coronal and axial planes, respectively; the optical probe accuracy was 2.1 mm and 1.8 mm in those planes. This device provides high-quality intraoperative imaging and accurate surgical navigation with minimal disruption in a standard neurosurgical operating room.

  16. Structural characterization of a magnetic granular system under a time-dependent magnetic field: Voronoi tessellation and multifractal analysis

    NASA Astrophysics Data System (ADS)

    Moctezuma, R. E.; Arauz-Lara, J. L.; Donado, F.

    2018-04-01

    The structure of a two-dimensional magnetic granular system was determined by multifractal and Voronoi polygon analysis for a wide range of particle concentrations. Randomizing of the particle motions are produced by applying to the system a time-dependent sinusoidal magnetic field directed along the vertical direction. Both repulsive and attractive short-range interactions between the particles are induced. A direct observation of such system shows qualitatively that, as particle concentration increases, the structure evolves from being liquid-like at low particle concentrations to solid-like at high concentrations. We observe the formation of clusters which are small and weakly bonded and short-lived at low concentrations. Above a threshold particle concentration, clusters grow larger and are more strongly attached. In the system, one can distinguish the mobile particles from the immobile particles belonging to clusters, they can be considered separately as two different phases, a fluid and a solid. We determined the information entropy of the system as a whole and separately from each phase as particle concentration increases. The distribution of the Voronoi polygon areas are well fitted by a two-parameter gamma distribution and we have found that the regularity factor shows a notable change when pieces of the solid phase start to form. The methods we use here show that they can use even when the system is heterogeneous and they provide information when changes start.

  17. VO-ESD: a virtual observatory approach to describe the geomagnetic field temporal variations with application to Swarm data

    NASA Astrophysics Data System (ADS)

    Saturnino, Diana; Langlais, Benoit; Amit, Hagay; Mandea, Mioara; Civet, François; Beucler, Éric

    2017-04-01

    A complete description of the main geomagnetic field temporal variation is crucial to understand dynamics in the core. This variation, termed secular variation (SV), is known with high accuracy at ground magnetic observatory locations. However the description of its spatial variability is hampered by the globally uneven distribution of the observatories. For the past two decades a global coverage of the field changes has been allowed by satellites. Their surveys of the geomagnetic field have been used to derive and improve global spherical harmonic (SH) models through some strict data selection schemes to minimise external field contributions. But discrepancies remain between ground measurements and field predictions by these models. Indeed, the global models do not reproduce small spatial scales of the field temporal variations. To overcome this problem we propose a modified Virtual Observatory (VO) approach by defining a globally homogeneous mesh of VOs at satellite altitude. With this approach we directly extract time series of the field and its temporal variation from satellite measurements as it is done at observatory locations. As satellite measurements are acquired at different altitudes a correction for the altitude is needed. Therefore, we apply an Equivalent Source Dipole (ESD) technique for each VO and each given time interval to reduce all measurements to a unique location, leading to time series similar to those available at ground magnetic observatories. Synthetic data is first used to validate the new VO-ESD approach. Then, we apply our scheme to measurements from the Swarm mission. For the first time, a 2.5 degrees resolution global mesh of VO times series is built. The VO-ESD derived time series are locally compared to ground observations as well as to satellite-based model predictions. The approach is able to describe detailed temporal variations of the field at local scales. The VO-ESD time series are also used to derive global SH models. Without regularization these models describe well the secular trend of the magnetic field. The derivation of longer VO-ESD time series, as more data will be made available, will allow the study of field temporal variations features such as geomagnetic jerks.

  18. Influence of signal intensity non-uniformity on brain volumetry using an atlas-based method.

    PubMed

    Goto, Masami; Abe, Osamu; Miyati, Tosiaki; Kabasawa, Hiroyuki; Takao, Hidemasa; Hayashi, Naoto; Kurosu, Tomomi; Iwatsubo, Takeshi; Yamashita, Fumio; Matsuda, Hiroshi; Mori, Harushi; Kunimatsu, Akira; Aoki, Shigeki; Ino, Kenji; Yano, Keiichi; Ohtomo, Kuni

    2012-01-01

    Many studies have reported pre-processing effects for brain volumetry; however, no study has investigated whether non-parametric non-uniform intensity normalization (N3) correction processing results in reduced system dependency when using an atlas-based method. To address this shortcoming, the present study assessed whether N3 correction processing provides reduced system dependency in atlas-based volumetry. Contiguous sagittal T1-weighted images of the brain were obtained from 21 healthy participants, by using five magnetic resonance protocols. After image preprocessing using the Statistical Parametric Mapping 5 software, we measured the structural volume of the segmented images with the WFU-PickAtlas software. We applied six different bias-correction levels (Regularization 10, Regularization 0.0001, Regularization 0, Regularization 10 with N3, Regularization 0.0001 with N3, and Regularization 0 with N3) to each set of images. The structural volume change ratio (%) was defined as the change ratio (%) = (100 × [measured volume - mean volume of five magnetic resonance protocols] / mean volume of five magnetic resonance protocols) for each bias-correction level. A low change ratio was synonymous with lower system dependency. The results showed that the images with the N3 correction had a lower change ratio compared with those without the N3 correction. The present study is the first atlas-based volumetry study to show that the precision of atlas-based volumetry improves when using N3-corrected images. Therefore, correction for signal intensity non-uniformity is strongly advised for multi-scanner or multi-site imaging trials.

  19. Influence of Signal Intensity Non-Uniformity on Brain Volumetry Using an Atlas-Based Method

    PubMed Central

    Abe, Osamu; Miyati, Tosiaki; Kabasawa, Hiroyuki; Takao, Hidemasa; Hayashi, Naoto; Kurosu, Tomomi; Iwatsubo, Takeshi; Yamashita, Fumio; Matsuda, Hiroshi; Mori, Harushi; Kunimatsu, Akira; Aoki, Shigeki; Ino, Kenji; Yano, Keiichi; Ohtomo, Kuni

    2012-01-01

    Objective Many studies have reported pre-processing effects for brain volumetry; however, no study has investigated whether non-parametric non-uniform intensity normalization (N3) correction processing results in reduced system dependency when using an atlas-based method. To address this shortcoming, the present study assessed whether N3 correction processing provides reduced system dependency in atlas-based volumetry. Materials and Methods Contiguous sagittal T1-weighted images of the brain were obtained from 21 healthy participants, by using five magnetic resonance protocols. After image preprocessing using the Statistical Parametric Mapping 5 software, we measured the structural volume of the segmented images with the WFU-PickAtlas software. We applied six different bias-correction levels (Regularization 10, Regularization 0.0001, Regularization 0, Regularization 10 with N3, Regularization 0.0001 with N3, and Regularization 0 with N3) to each set of images. The structural volume change ratio (%) was defined as the change ratio (%) = (100 × [measured volume - mean volume of five magnetic resonance protocols] / mean volume of five magnetic resonance protocols) for each bias-correction level. Results A low change ratio was synonymous with lower system dependency. The results showed that the images with the N3 correction had a lower change ratio compared with those without the N3 correction. Conclusion The present study is the first atlas-based volumetry study to show that the precision of atlas-based volumetry improves when using N3-corrected images. Therefore, correction for signal intensity non-uniformity is strongly advised for multi-scanner or multi-site imaging trials. PMID:22778560

  20. Use of Magnetic Parameters to Asses Soil Erosion Rates on Agricultural Site

    NASA Astrophysics Data System (ADS)

    Petrovsky, E.; Kapicka, A.; Dlouha, S.; Jaksik, O.; Grison, H.; Kodesova, R.

    2014-12-01

    A detailed field study on a small test site of agricultural land situated in loess region in Southern Moravia (Czech Republic) and laboratory analyses were carried out in order to test the applicability of magnetic methods in assessing soil erosion. Haplic Chernozem, the original dominant soil unit in the area, is nowadays progressively transformed into different soil units along with intense soil erosion. As a result, an extremely diversified soil cover structure has developed due to the erosion. The site was characterized by a flat upper part while the middle part, formed by a substantive side valley, is steeper. We carried out field measurements of magnetic susceptibility on a regular grid, resulting in 101 data points. The bulk soil material for laboratory investigation was gathered from all the grid points. Values of the magnetic susceptibility are spatially distributed depending on the terrain. Higher values were measured in the flat upper part (where the original top horizon remained). The lowest values of were obtained on the steep valley sides. Here the original topsoil was eroded and mixed by tillage with the soil substrate (loess). A soil profile unaffected by erosion was investigated in detail. The vertical distribution of magnetic susceptibility along this "virgin" profile was measured in laboratory on the samples collected with 2-cm spacing. The undisturbed profile shows several soil horizons. Horizons Ac and A show a slight increase in magnetic susceptibility up to a depth of about 70 cm. Horizon A/Ck is characterized by a decrease in susceptibility, and the underlying C horizon (h > 103 cm) has a very low value of magnetic susceptibility. The differences between the values of susceptibility in the undisturbed soil profile and the magnetic signal after uniform mixing the soil material as a result of tillage and erosion are fundamental for the estimation of soil loss in the studied test field. Using the uneroded profile from the studied locality as a basis for examining the changes in cultivated soils, tillage homogenization model can be applied to predict changes in the surface soil magnetism with progressive soil erosion. The model is very well applicable at the studied site. Acknowledgement: This study was supported by NAZV Agency of the Ministry of Agriculture of the Czech Republic through grant No QJ1230319.

  1. Electromagnetic Performance Calculation of HTS Linear Induction Motor for Rail Systems

    NASA Astrophysics Data System (ADS)

    Liu, Bin; Fang, Jin; Cao, Junci; Chen, Jie; Shu, Hang; Sheng, Long

    2017-07-01

    According to a high temperature superconducting (HTS) linear induction motor (LIM) designed for rail systems, the influence of electromagnetic parameters and mechanical structure parameters on the electromagnetic horizontal thrust, vertical force of HTS LIM and the maximum vertical magnetic field of HTS windings are analyzed. Through the research on the vertical field of HTS windings, the development regularity of the HTS LIM maximum input current with different stator frequency and different thickness value of the secondary conductive plate is obtained. The theoretical results are of great significance to analyze the stability of HTS LIM. Finally, based on theory analysis, HTS LIM test platform was built and the experiment was carried out with load. The experimental results show that the theoretical analysis is correct and reasonable.

  2. Localizing the Frequency x Regularity Word Reading Interaction in the Cerebral Cortex

    ERIC Educational Resources Information Center

    Cummine, Jacqueline; Sarty, Gordon E.; Borowsky, Ron

    2010-01-01

    The aim of this work is to combine behavioural and functional magnetic resonance imaging (fMRI) data to advance our knowledge of where the Frequency x Regularity interaction on word naming is located in the cerebral cortex. Participants named high and low frequency, regular and exception words in a behavioural lab (Experiment 1) and during an fMRI…

  3. Time-dependent modulation of galactic cosmic rays by merged interaction regions

    NASA Technical Reports Server (NTRS)

    Perko, J. S.

    1993-01-01

    Models that solve the one-dimensional, solar modulation equation have reproduced the 11-year galactic cosmic ray using functional representations of global merged interaction regions (MIRs). This study extends those results to the solution of the modulation equation with explicit time dependence. The magnetometers on Voyagers 1 and 2 provide local magnetic field intensities at regular intervals, from which one calculates the ratio of the field intensity to the average local field. These ratios in turn are inverted to form diffusion coefficients. Strung together in radius and time, these coefficents then fall and rise with the strength of the interplanetary magnetic field, becoming representations of MIRs. These diffusion coefficients, calculated locally, propagate unchanged from approx. 10 AU to the outer boundary (120 AU). Inside 10 AU, all parameters, including the diffusion coefficient are assumed constant in time and space. The model reproduces the time-intensity profiles of Voyager 2 and Pioneer 10. Radial gradient data from 1982-1990 between Pioneer 10 and Voyager 2 are about the same magnitude as those calculated in the model. It is also shows agreement in rough magnitude with the radial gradient between Pioneer 10 and 1 AU. When coupled with enhanced, time-dependent solar wind speed at the probe's high latitude, as measured by independent observers, the model also follows Voyager 1's time-intensity profile reasonably well, providing a natural source the model also follows Voyager 1's time-intensity profile reasonably well, providing a natural source for the observed negative latitudinal gradients. The model exhibits the 11-year cyclical cosmic ray intensity behavior at all radii, including 1 AU, not just at the location of the spacecraft where the magnetic fields are measured. In addition, the model's point of cosmic ray maximum correctly travels at the solar wind speed, illustrating the well-known propagation of modulation. Finally, at least in the inner heliosphere this model accounts for the delay experienced by lower-rigidity protons in reaching their time-intensity peak. The actual delays in this model, however, are somewhat smaller than the data. In the outer heliosphere the models sees no delays, and the data are ambiguous as to their existence. It appears that strong magnetic field compression regions (merged interaction regions) that are 3-4 times the average field strength can, at least in a helioequatorial band, disrupt effects, such as drifts, that could dominate in quieter magnetic fields. The question remains: Is the heliosphere ever quiet enough to allow such effects to be unambiguously measured, at least in the midlatitudes?

  4. Sparse magnetic resonance imaging reconstruction using the bregman iteration

    NASA Astrophysics Data System (ADS)

    Lee, Dong-Hoon; Hong, Cheol-Pyo; Lee, Man-Woo

    2013-01-01

    Magnetic resonance imaging (MRI) reconstruction needs many samples that are sequentially sampled by using phase encoding gradients in a MRI system. It is directly connected to the scan time for the MRI system and takes a long time. Therefore, many researchers have studied ways to reduce the scan time, especially, compressed sensing (CS), which is used for sparse images and reconstruction for fewer sampling datasets when the k-space is not fully sampled. Recently, an iterative technique based on the bregman method was developed for denoising. The bregman iteration method improves on total variation (TV) regularization by gradually recovering the fine-scale structures that are usually lost in TV regularization. In this study, we studied sparse sampling image reconstruction using the bregman iteration for a low-field MRI system to improve its temporal resolution and to validate its usefulness. The image was obtained with a 0.32 T MRI scanner (Magfinder II, SCIMEDIX, Korea) with a phantom and an in-vivo human brain in a head coil. We applied random k-space sampling, and we determined the sampling ratios by using half the fully sampled k-space. The bregman iteration was used to generate the final images based on the reduced data. We also calculated the root-mean-square-error (RMSE) values from error images that were obtained using various numbers of bregman iterations. Our reconstructed images using the bregman iteration for sparse sampling images showed good results compared with the original images. Moreover, the RMSE values showed that the sparse reconstructed phantom and the human images converged to the original images. We confirmed the feasibility of sparse sampling image reconstruction methods using the bregman iteration with a low-field MRI system and obtained good results. Although our results used half the sampling ratio, this method will be helpful in increasing the temporal resolution at low-field MRI systems.

  5. Probing the Earth's core with magnetic field observations from Swarm

    NASA Astrophysics Data System (ADS)

    Finlay, Christopher; Olsen, Nils; Kotsiaros, Stavros; Gillet, Nicolas; Tøffner-Clausen, Lars

    2016-07-01

    By far the largest part of the Earth's magnetic field is generated by motions taking place within our planet's liquid metal outer core. Variations of this core-generated field thus provide a unique means of probing the dynamics taking place in the deepest reaches of the Earth. In this contribution we present a new high resolution model of the core-generated magnetic field, and its recent time changes, derived from a dataset that includes more two years of observations from the Swarm mission. Resulting inferences regarding the underlying core flow, its dynamics, and the nature of the geodynamo process will be discussed. The CHAOS-6 geomagnetic field model, covering the interval 1999-2016, is derived from magnetic data collected by the three Swarm missions, as well as the earlier CHAMP and Oersted satellites, and monthly means data collected from 160 ground observatories. Advantage is taken of the constellation aspect of the Swarm mission by ingesting both scalar and vector field differences along-track and across track between the lower pair of Swarm satellites. The internal part of the model consists of a spherical harmonic (SH) expansion, time-dependent for degrees 20 and below. The model coefficients are estimated using a regularized, iteratively reweighted, least squares scheme involving Huber weights. At Earth's surface, CHAOS-6 shows evidence for positive acceleration of the field intensity in 2015 over a broad area around longitude 90deg E that is also seen at ground observatories such as Novosibirsk. At the core surface, we are able to map the secular variation (linear trend in the magnetic field) up to SH degree 16. The radial field acceleration at the core surface in 2015 is found be largest at low latitudes under the India-South East Asia region and under the region of northern South America, as well as at high northern latitudes under Alaska and Siberia. Surprisingly, there is also evidence for some acceleration in the central Pacific region, for example near Hawaii, where radial field SA is observed either side of a jerk event in 2014. On the other hand, little activity has occurred over the past 17 years in the Southern polar region. Maps of the underlying core flow can be derived assuming that field changes result from advective processes, and taking into account the organizing influence of the Coriolis force. The dominant large-scale flow feature is found to be a planetary-scale, anti-cyclonic, gyre centered on the Atlantic hemisphere. In addition to this gyre we find evidence for time-dependent eddies at mid-latitudes and oscillating, non-axisymmetric, jets in the azimuthal direction at low latitudes.

  6. Phase transformation in rapidly quenched Fe-Cr-Co-Mo-Ti-Si-B alloys

    NASA Astrophysics Data System (ADS)

    Zhukov, D. G.; Shubakov, V. S.; Zhukova, E. Kh; Gorshenkov, M. V.

    2018-03-01

    The research results of phase transformations in Fe-24Cr-16Co-3Mo-0.2Ti-1Si-B alloys (with a boron content of 1 to 3% by mass) obtained by rapid quenching are presented. The structure formation regularities during the melt spinning and during the subsequent crystallization annealing in rapidly quenched bands of the Fe-Cr-Co-Mo-Ti-Si-B system alloys were studied. The changes in the phase composition of the rapidly quenched Fe-Cr-Co-Mo-Ti- Si-B system alloys after quenching at various quench rates and at different boron concentrations in the alloys are studied. It is shown that during crystallization from an amorphous state, at temperatures above 570 °C, in addition to the α-phase, the σ-phase appears first, followed by the γ-phase. Heat treatment of rapidly quenched bands to high-coercive state was carried out. A qualitative assessment of magnetic properties in a high-coercivity state was carried out. An evaluation of the level of magnetic properties in a high-coercivity state allows us to conclude that the application of a magnetic field during crystallization from an amorphous state leads to anisotropy of the magnetic properties, that is, an anisotropic effect of thermo-magnetic treatment is detected.

  7. Archaeogeophysical Investigation of Water Tower Region on Enez (Ainos) Ancient City

    NASA Astrophysics Data System (ADS)

    Deniz, Hazel; Ahmet Yüksel, Fethi; Başaran, Sait

    2017-04-01

    Archaeogeophysical (geomagnetics) surveys have been made in two locations which are, Enez Entry Region and Water Tower Necropolis.The objective of geophysical mesurements is to reach the informations such as detailed depths, orientations and locations of achaeological structure remnants. Enez (Ainos) is located in the Northwestern coastal side of the Aegean Sea in which Meriç (Maritza-Hebros) River flows down to the sea. The city displaced due to alluvium accumulate which are drifted by Meriç River in contrast with its former location. Existing of settlements of Enez and its surrounding in Neolithic times has been proved. Enez has a castle ambient acropolis apex which is built on Miocene limestone rocks rise about 25 m above the sea level. The castle walls are 740 m long and are thought to have been built in the middle ages. three different cultural phases form the 2nd building level of the archaeological excavations representing the ancient Greek cultures, Archaic, Classical and Hellenistic bottom to top. In all of the openings made on the acropolis, a thick layer dated to the Hellenistic era is located just above The Classical Age layer. The 3rd cultural floor dated from the Roman Age is represented by a thin layer and whose boundaries can not be determined with certain lines. In this study, Proton Magnetometer has been used for magnetic measurements. Across Water Tower Region, total magnetic field has been measured by magnetometer equipment on 592 m2 site. Existing of remarkable regular and irregular anomalies have been detected when magnetic maps produced from magnetic measurements are examined. It is determined from excavations after measurements that regular anomalies refer to water structures of old times or current electrical cables and dispersed anomalies to graves, sarcophagus and pithos burials. During excavations in locations where notable anomalies are found in Magnetic maps derived from magnetic measurements applied on Water Tower Necropolis, brick-walled, rock and roof-tile covered buried graves have been found. Many, solid Lekythos and skeletons were found from the graves opened. 15 sarcophagi and 59 tombs emerged from the graves opened in the Water Tower Necropolis. Keywords: Enez, Ainos ,Necropolis, Proton Magnetometer, Turkey.

  8. Prospect of Using Numerical Dynamo Model for Prediction of Geomagnetic Secular Variation

    NASA Technical Reports Server (NTRS)

    Kuang, Weijia; Tangborn, Andrew

    2003-01-01

    Modeling of the Earth's core has reached a level of maturity to where the incorporation of observations into the simulations through data assimilation has become feasible. Data assimilation is a method by which observations of a system are combined with a model output (or forecast) to obtain a best guess of the state of the system, called the analysis. The analysis is then used as an initial condition for the next forecast. By doing assimilation, not only we shall be able to predict partially secular variation of the core field, we could also use observations to further our understanding of dynamical states in the Earth's core. One of the first steps in the development of an assimilation system is a comparison between the observations and the model solution. The highly turbulent nature of core dynamics, along with the absence of any regular external forcing and constraint (which occurs in atmospheric dynamics, for example) means that short time comparisons (approx. 1000 years) cannot be made between model and observations. In order to make sensible comparisons, a direct insertion assimilation method has been implemented. In this approach, magnetic field observations at the Earth's surface have been substituted into the numerical model, such that the ratio of the multiple components and the dipole component from observation is adjusted at the core-mantle boundary and extended to the interior of the core, while the total magnetic energy remains unchanged. This adjusted magnetic field is then used as the initial field for a new simulation. In this way, a time tugged simulation is created which can then be compared directly with observations. We present numerical solutions with and without data insertion and discuss their implications for the development of a more rigorous assimilation system.

  9. Bioactivity of gelatin coated magnetic iron oxide nanoparticles: in vitro evaluation.

    PubMed

    Gaihre, Babita; Khil, Myung Seob; Kang, Hyo Kyoung; Kim, Hak Yong

    2009-02-01

    Current research explores formation of bone like apatite on gelatin coated magnetic iron oxide nanoparticles (GIOPs) to evaluate the bioactivity of the material. The GIOPs were soaked in simulated body fluid (SBF) and the apatite formation on the surface was investigated in regular interval of time. Fourier transform-infrared (FT-IR) and x-ray diffraction spectroscopic (XRD) analyses were done to investigate the chemical changes and field emission-scanning electron microscopic (FE-SEM) analysis was done to investigate the morphological changes occurring on the surface of the GIOPs after soaking in different time intervals. The kinetic studies of the apatite growth in SBF suggest that initially calcium and phosphorous ions were deposited to the surface of the GIOPs from the SBF leading to formation of amorphous Ca/P particles. Later, after 9 days of the incubation the amorphous particles were fused to form needle and blade like crystalline structures of bone like apatite.

  10. Effect of synthesis methods with different annealing temperatures on micro structure, cations distribution and magnetic properties of nano-nickel ferrite

    NASA Astrophysics Data System (ADS)

    El-Sayed, Karimat; Mohamed, Mohamed Bakr; Hamdy, Sh.; Ata-Allah, S. S.

    2017-02-01

    Nano-crystalline NiFe2O4 was synthesized by citrate and sol-gel methods at different annealing temperatures and the results were compared with a bulk sample prepared by ceramic method. The effect of methods of preparation and different annealing temperatures on the crystallize size, strain, bond lengths, bond angles, cations distribution and degree of inversions were investigated by X-ray powder diffraction, high resolution transmission electron microscope, Mössbauer effect spectrometer and vibrating sample magnetometer. The cations distributions were determined at both octahedral and tetrahedral sites using both Mössbauer effect spectroscopy and a modified Bertaut method using Rietveld method. The Mössbauer effect spectra showed a regular decrease in the hyperfine field with decreasing particle size. Saturation magnetization and coercivity are found to be affected by the particle size and the cations distribution.

  11. Precipitation of energetic magnetospheric electrons and accompanying solar wind characteristics

    NASA Astrophysics Data System (ADS)

    Bazilevskaya, G. A.; Kalinin, M. S.; Kvashnin, A. N.; Krainev, M. B.; Makhmutov, V. S.; Svirzhevskaya, A. K.; Svirzhevsky, N. S.; Stozhkov, Yu. I.; Balabin, Yu. V.; Gvozdevsky, B. B.

    2017-03-01

    From 1957 up to the present time, the Lebedev Physical Institute (LPI) has performed regular monitoring of ionizing radiation in the Earth's atmosphere. There are cases when the X-ray radiation generated by energetic magnetospheric electrons penetrates the atmosphere and is observed at polar latitudes. The vast majority of these events occurs against the background of high-velocity solar wind streams, while magnetospheric perturbations related to interplanetary coronal mass ejections (ICMEs) are noneffective for precipitation. It is shown in the paper that ICMEs do not cause acceleration of a sufficient amount of electrons in the magnetosphere. Favorable conditions for acceleration and subsequent scattering of electrons into the loss cone are created by magnetic storms with an extended recovery phase and with sufficiently frequent periods of negative Bz component of the interplanetary magnetic field (IMF). Such geomagnetic perturbations are typical for storms associated with high-velocity solar wind streams.

  12. MRI reconstruction with joint global regularization and transform learning.

    PubMed

    Tanc, A Korhan; Eksioglu, Ender M

    2016-10-01

    Sparsity based regularization has been a popular approach to remedy the measurement scarcity in image reconstruction. Recently, sparsifying transforms learned from image patches have been utilized as an effective regularizer for the Magnetic Resonance Imaging (MRI) reconstruction. Here, we infuse additional global regularization terms to the patch-based transform learning. We develop an algorithm to solve the resulting novel cost function, which includes both patchwise and global regularization terms. Extensive simulation results indicate that the introduced mixed approach has improved MRI reconstruction performance, when compared to the algorithms which use either of the patchwise transform learning or global regularization terms alone. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. A comparison of image restoration approaches applied to three-dimensional confocal and wide-field fluorescence microscopy.

    PubMed

    Verveer, P. J; Gemkow, M. J; Jovin, T. M

    1999-01-01

    We have compared different image restoration approaches for fluorescence microscopy. The most widely used algorithms were classified with a Bayesian theory according to the assumed noise model and the type of regularization imposed. We considered both Gaussian and Poisson models for the noise in combination with Tikhonov regularization, entropy regularization, Good's roughness and without regularization (maximum likelihood estimation). Simulations of fluorescence confocal imaging were used to examine the different noise models and regularization approaches using the mean squared error criterion. The assumption of a Gaussian noise model yielded only slightly higher errors than the Poisson model. Good's roughness was the best choice for the regularization. Furthermore, we compared simulated confocal and wide-field data. In general, restored confocal data are superior to restored wide-field data, but given sufficient higher signal level for the wide-field data the restoration result may rival confocal data in quality. Finally, a visual comparison of experimental confocal and wide-field data is presented.

  14. Novel Magnetic Fluids for Breast Cancer Therapy

    DTIC Science & Technology

    2005-04-01

    synthesis and characterization efforts concerning nickel-based alloys have been reported previously [5]. Nano-material has been obtained using an inverse...gar gel d ork his task regularly accompanies the synthesis work. Characterization analysis includes size, composition, magnetic pro perties. The...currently available magnetic fluids used in hyperthermia. The specific goals are: 1. Develop a synthesis process to fabricate magnetic nano

  15. Parallel manipulation of individual magnetic microbeads for lab-on-a-chip applications

    NASA Astrophysics Data System (ADS)

    Peng, Zhengchun

    Many scientists and engineers are turning to lab-on-a-chip systems for faster and cheaper analysis of chemical reactions and biomolecular interactions. A common approach that facilitates the handling of reagents and biomolecules in these systems utilizes micro/nano beads as the solid carrier. Physical manipulation, such as assembly, transport, sorting, and tweezing, of beads on a chip represents an essential step for fully utilizing their potentials in a wide spectrum of bead-based analysis. Previous work demonstrated manipulation of either an ensemble of beads without individual control, or single beads but lacks the capability for parallel operation. Parallel manipulation of individual beads is required to meet the demand for high-throughput and location-specific analysis. In this work, we introduced two methods for parallel manipulation of individual magnetic microbeads, which can serve as effective lab-on-a-chip platforms and/or efficient analytic tools. The first method employs arrays of soft ferromagnetic patterns fabricated inside a microfluidic channel and subjected to an external magnetic field. We demonstrated that the system can be used to assemble individual beads (1-3 mum) from a flow of suspended beads into a regular array on the chip, hence improving the integrated electrochemical detection of biomolecules bound to the bead surface. By rotating the external field, the assembled microbeads can be remotely controlled with synchronized, high-speed circular motion around individual soft magnets on the chip. We employed this manipulation mode for efficient sample mixing in continuous microflow. Furthermore, we discovered a simple but effective way of transporting the microbeads on the chip by varying the strength of the local bias field within a revolution of the external field. In addition, selective transport of microbeads with different size was realized, providing a platform for effective on-chip sample separation and offering the potential for multiplexing capability. The second method integrates magnetic and dielectrophoretic manipulations of the same microbeads. The device combines tapered conducting wires and fingered electrodes to generate desirable magnetic and electric fields, respectively. By externally programming the magnetic attraction and dielectrophoretic repulsion forces, out-of-plane oscillation of the microbeads across the channel height was realized. This manipulation mode can facilitate the interaction between the beads with multiple layers of sample fluid inside the channel. We further demonstrated the tweezing of microbeads in liquid with high spatial resolutions, i.e., from submicrometer to nanometer range, by fine-tuning the net force from magnetic attraction and dielectrophoretic repulsion of the beads. The highresolution control of the out-of-plane motion of the microbeads led to the invention of massively parallel biomolecular tweezers. We believe the maturation of bead-based microtweezers will revolutionize the state-of-art tools currently used for single cell and single molecule studies.

  16. Mapping of soil erosion and redistribution on two agricultural areas in Czech Republic by using of magnetic parameters.

    NASA Astrophysics Data System (ADS)

    Kapicka, Ales; Stejskalova, Sarka; Grison, Hana; Petrovsky, Eduard; Jaksik, Ondrej; Kodesova, Radka

    2015-04-01

    Soil erosion is one of the major concerns in sustainability of agricultural systems in different areas. Therefore there is a need to develop suitable innovative indirect methods of soil survey. One of this methods is based on well established differentiation in magnetic signature with depth in soil profile. Magnetic method can be applied in the field as well as in the laboratory on collected soil samples. The aim of this study is to evaluate suitability of magnetic method to assess soil degradation and construct maps of cumulative soil loss due to erosion at two morphologically diverse areas with different soil types. Dominant soil unit in the first locality (Brumovice) is chernozem, which is gradually degraded on slopes to regosols. In the second site (Vidim), the dominant soil unit is luvisol, gradualy transformed to regosol due to erosion. Field measurements of magnetic susceptibility were carried out on regular grid, resulting in 101 data points in Brumovice and 65 in Vidim locality. Mass specific magnetic susceptibility χ and its frequency dependence χFD was used to estimate the significance of SP ferrimagnetic particles of pedogenic origin in top soil horizons. Strong correlation was found between the volume magnetic susceptibility (field measurement) and mass- specific magnetic susceptibility measured in the laboratory (Kapicka et al 2013). Values of magnetic susceptibility are spatially distributed depending on terrain position. Higher values were measured at the flat parts (where the original topsoil horizon remained). The lowest values magnetic susceptibility were obtained on the steep valley sides. Here the original topsoil was eroded and mixed by tillage with the soil substrate (loess). Positive correlation between the organic carbon content and volume magnetic susceptibility (R2= 0.89) was found for chernozem area. The differences between the values of susceptibility in the undisturbed soil profile and the magnetic signal after uniform mixing of the soil material as a result of tillage and erosion are fundamental for the estimation of soil loss in the studied test field (Royall 2001). The map of soil erosion shows maximum removal of soil material in the steepest parts of the testing localities. The magnetic method is very well suitable for mapping at the chernozem locality (Brumovice) and measurement of soil magnetic susceptibility is in this case a useful and fast technique for quantitative estimation of soil loss caused by erosion and tillage. However, it is less suitable (probably due to high terrain heterogeneity) for mapping in areas with luvisol as dominant soil unit. Acknowledgement: This study was supported by NAZV Agency of the Ministry of Agriculture of the Czech Republic through grant No QJ1230319. References : Royall, D. (2001). Use of mineral magnetic measurements to investigate soil erosion and sediment delivery in small agricultural catchment in limestone terrain. Catena, 46, 15-34. Kapicka, A., Dlouha, S., Grison, H., Jaksik, O., Kodesova, R., Petrovsky, E. (2013) Magnetism of soils applied for estimation of erosion at an agricultural land. Geophys Res Abstr Vol. 15, EGU2013 -4774.

  17. Fabrication and nanoscale characterization of magnetic multilayer nanowires

    NASA Astrophysics Data System (ADS)

    Elawayeb, Mohamed

    Magnetic multilayers nanowires are scientifically fascinating and have potential industrial applications in many areas of advanced nanotechnology. These applications arise due to the nanoscale dimensions of nanostructures that lead to unique physical properties. Magnetic multilayer nanowires have been successfully produced by electrodeposition into templates. Anodic Aluminium Oxide (AAO) membranes were used as templates in this process; the templates were fabricated by anodization method in acidic solutions at a fixed voltage. The fabrication method of a range of magnetic multilayer nanowires is described in this study and their structure and dimensions were analyzed using scanning electron microscope (SEM), Transmission electron microscope (TEM) and scanning transmission electron microscopy (STEM). This study is focused on the first growth of NiFe/Pt and NiFe/Fe magnetic multilayer nanowires, which were successfully fabricated by pulse electrodeposition into the channels of porous anodic aluminium oxide (AAO) templates, and characterized at the nanoscale. Individual nanowires have uniform structure and regular periodicity. The magnetic and nonmagnetic layers are polycrystalline, with randomly oriented fcc lattice structure crystallites. Chemical compositions of the individual nanowires were analyzed using TEM equipped with energy-dispersive x-ray analysis (EDX) and electron energy loss spectrometry (EELS). The electrical and magnetoresistance properties of individual magnetic multilayer nanowires have been measured inside a SEM using two sharp tip electrodes attached to in situ nanomanipulators and a new electromagnet technique. The giant magnetoresistance (GMR) effect of individual magnetic multilayer nanowires was measured in the current - perpendicular to the plane (CPP) geometry using a new in situ method at variable magnetic field strength and different orientations..

  18. Numerical 3+1 General Relativistic Magnetohydrodynamics: A Local Characteristic Approach

    NASA Astrophysics Data System (ADS)

    Antón, Luis; Zanotti, Olindo; Miralles, Juan A.; Martí, José M.; Ibáñez, José M.; Font, José A.; Pons, José A.

    2006-01-01

    We present a general procedure to solve numerically the general relativistic magnetohydrodynamics (GRMHD) equations within the framework of the 3+1 formalism. The work reported here extends our previous investigation in general relativistic hydrodynamics (Banyuls et al. 1997) where magnetic fields were not considered. The GRMHD equations are written in conservative form to exploit their hyperbolic character in the solution procedure. All theoretical ingredients necessary to build up high-resolution shock-capturing schemes based on the solution of local Riemann problems (i.e., Godunov-type schemes) are described. In particular, we use a renormalized set of regular eigenvectors of the flux Jacobians of the relativistic MHD equations. In addition, the paper describes a procedure based on the equivalence principle of general relativity that allows the use of Riemann solvers designed for special relativistic MHD in GRMHD. Our formulation and numerical methodology are assessed by performing various test simulations recently considered by different authors. These include magnetized shock tubes, spherical accretion onto a Schwarzschild black hole, equatorial accretion onto a Kerr black hole, and magnetized thick disks accreting onto a black hole and subject to the magnetorotational instability.

  19. Quantum dynamics in phase space: Moyal trajectories 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Braunss, G.

    Continuing a previous paper [G. Braunss, J. Phys. A: Math. Theor. 43, 025302 (2010)] where we had calculated Planck-Constant-Over-Two-Pi {sup 2}-approximations of quantum phase space viz. Moyal trajectories of examples with one and two degrees of freedom, we present in this paper the calculation of Planck-Constant-Over-Two-Pi {sup 2}-approximations for four examples: a two-dimensional Toda chain, the radially symmetric Schwarzschild field, and two examples with three degrees of freedom, the latter being the nonrelativistic spherically Coulomb potential and the relativistic cylinder symmetrical Coulomb potential with a magnetic field H. We show in particular that an Planck-Constant-Over-Two-Pi {sup 2}-approximation of the nonrelativisticmore » Coulomb field has no singularity at the origin (r= 0) whereas the classical trajectories are singular at r= 0. In the third example, we show in particular that for an arbitrary function {gamma}(H, z) the expression {beta}{identical_to}p{sub z}+{gamma}(H, z) is classically ( Planck-Constant-Over-Two-Pi = 0) a constant of motion, whereas for Planck-Constant-Over-Two-Pi {ne} 0 this holds only if {gamma}(H, z) is an arbitrary polynomial of second order in z. This statement is shown to extend correspondingly to a cylinder symmetrical Schwarzschild field with a magnetic field. We exhibit in detail a number of properties of the radially symmetric Schwarzschild field. We exhibit finally the problems of the nonintegrable Henon-Heiles Hamiltonian and give a short review of the regular Hilbert space representation of Moyal operators.« less

  20. Simultaneous MR quantification of hepatic fat content, fatty acid composition, transverse relaxation time and magnetic susceptibility for the diagnosis of non-alcoholic steatohepatitis.

    PubMed

    Leporq, B; Lambert, S A; Ronot, M; Vilgrain, V; Van Beers, B E

    2017-10-01

    Non-alcoholic steatohepatitis (NASH) is characterized at histology by steatosis, hepatocyte ballooning and inflammatory infiltrates, with or without fibrosis. Although diamagnetic material in fibrosis and inflammation can be detected with quantitative susceptibility imaging, fatty acid composition changes in NASH relative to simple steatosis have also been reported. Therefore, our aim was to develop a single magnetic resonance (MR) acquisition and post-processing scheme for the diagnosis of steatohepatitis by the simultaneous quantification of hepatic fat content, fatty acid composition, T 2 * transverse relaxation time and magnetic susceptibility in patients with non-alcoholic fatty liver disease. MR acquisition was performed at 3.0 T using a three-dimensional, multi-echo, spoiled gradient echo sequence. Phase images were unwrapped to compute the B 0 field inhomogeneity (ΔB 0 ) map. The ΔB 0 -demodulated real part images were used for fat-water separation, T 2 * and fatty acid composition quantification. The external and internal fields were separated with the projection onto dipole field method. Susceptibility maps were obtained after dipole inversion from the internal field map with single-orientation Bayesian regularization including spatial priors. Method validation was performed in 32 patients with biopsy-proven, non-alcoholic fatty liver disease from which 12 had simple steatosis and 20 NASH. Liver fat fraction and T 2 * did not change significantly between patients with simple steatosis and NASH. In contrast, the saturated fatty acid fraction increased in patients with NASH relative to patients with simple steatosis (48 ± 2% versus 44 ± 4%; p < 0.05) and the magnetic susceptibility decreased (-0.30 ± 0.27 ppm versus 0.10 ± 0.14 ppm; p < 0.001). The area under the receiver operating characteristic curve for magnetic susceptibility as NASH marker was 0.91 (95% CI: 0.79-1.0). Simultaneous MR quantification of fat content, fatty acid composition, T 2 * and magnetic susceptibility is feasible in the liver. Our preliminary results suggest that quantitative susceptibility imaging has a high diagnostic performance for the diagnosis of NASH. Copyright © 2017 John Wiley & Sons, Ltd.

  1. Schwinger-variational-principle theory of collisions in the presence of multiple potentials

    NASA Astrophysics Data System (ADS)

    Robicheaux, F.; Giannakeas, P.; Greene, Chris H.

    2015-08-01

    A theoretical method for treating collisions in the presence of multiple potentials is developed by employing the Schwinger variational principle. The current treatment agrees with the local (regularized) frame transformation theory and extends its capabilities. Specifically, the Schwinger variational approach gives results without the divergences that need to be regularized in other methods. Furthermore, it provides a framework to identify the origin of these singularities and possibly improve the local frame transformation. We have used the method to obtain the scattering parameters for different confining potentials symmetric in x ,y . The method is also used to treat photodetachment processes in the presence of various confining potentials, thereby highlighting effects of the infinitely many closed channels. Two general features predicted are the vanishing of the total photoabsorption probability at every channel threshold and the occurrence of resonances below the channel thresholds for negative scattering lengths. In addition, the case of negative-ion photodetachment in the presence of uniform magnetic fields is also considered where unique features emerge at large scattering lengths.

  2. General phase regularized reconstruction using phase cycling.

    PubMed

    Ong, Frank; Cheng, Joseph Y; Lustig, Michael

    2018-07-01

    To develop a general phase regularized image reconstruction method, with applications to partial Fourier imaging, water-fat imaging and flow imaging. The problem of enforcing phase constraints in reconstruction was studied under a regularized inverse problem framework. A general phase regularized reconstruction algorithm was proposed to enable various joint reconstruction of partial Fourier imaging, water-fat imaging and flow imaging, along with parallel imaging (PI) and compressed sensing (CS). Since phase regularized reconstruction is inherently non-convex and sensitive to phase wraps in the initial solution, a reconstruction technique, named phase cycling, was proposed to render the overall algorithm invariant to phase wraps. The proposed method was applied to retrospectively under-sampled in vivo datasets and compared with state of the art reconstruction methods. Phase cycling reconstructions showed reduction of artifacts compared to reconstructions without phase cycling and achieved similar performances as state of the art results in partial Fourier, water-fat and divergence-free regularized flow reconstruction. Joint reconstruction of partial Fourier + water-fat imaging + PI + CS, and partial Fourier + divergence-free regularized flow imaging + PI + CS were demonstrated. The proposed phase cycling reconstruction provides an alternative way to perform phase regularized reconstruction, without the need to perform phase unwrapping. It is robust to the choice of initial solutions and encourages the joint reconstruction of phase imaging applications. Magn Reson Med 80:112-125, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  3. Adiabatic regularization for gauge fields and the conformal anomaly

    NASA Astrophysics Data System (ADS)

    Chu, Chong-Sun; Koyama, Yoji

    2017-03-01

    Adiabatic regularization for quantum field theory in conformally flat spacetime is known for scalar and Dirac fermion fields. In this paper, we complete the construction by establishing the adiabatic regularization scheme for the gauge field. We show that the adiabatic expansion for the mode functions and the adiabatic vacuum can be defined in a similar way using Wentzel-Kramers-Brillouin-type (WKB-type) solutions as the scalar fields. As an application of the adiabatic method, we compute the trace of the energy momentum tensor and reproduce the known result for the conformal anomaly obtained by the other regularization methods. The availability of the adiabatic expansion scheme for the gauge field allows one to study various renormalized physical quantities of theories coupled to (non-Abelian) gauge fields in conformally flat spacetime, such as conformal supersymmetric Yang Mills, inflation, and cosmology.

  4. Quantifying Complexity in Quantum Phase Transitions via Mutual Information Complex Networks

    NASA Astrophysics Data System (ADS)

    Valdez, Marc Andrew; Jaschke, Daniel; Vargas, David L.; Carr, Lincoln D.

    2017-12-01

    We quantify the emergent complexity of quantum states near quantum critical points on regular 1D lattices, via complex network measures based on quantum mutual information as the adjacency matrix, in direct analogy to quantifying the complexity of electroencephalogram or functional magnetic resonance imaging measurements of the brain. Using matrix product state methods, we show that network density, clustering, disparity, and Pearson's correlation obtain the critical point for both quantum Ising and Bose-Hubbard models to a high degree of accuracy in finite-size scaling for three classes of quantum phase transitions, Z2, mean field superfluid to Mott insulator, and a Berzinskii-Kosterlitz-Thouless crossover.

  5. Clustering, randomness and regularity in cloud fields. I - Theoretical considerations. II - Cumulus cloud fields

    NASA Technical Reports Server (NTRS)

    Weger, R. C.; Lee, J.; Zhu, Tianri; Welch, R. M.

    1992-01-01

    The current controversy existing in reference to the regularity vs. clustering in cloud fields is examined by means of analysis and simulation studies based upon nearest-neighbor cumulative distribution statistics. It is shown that the Poisson representation of random point processes is superior to pseudorandom-number-generated models and that pseudorandom-number-generated models bias the observed nearest-neighbor statistics towards regularity. Interpretation of this nearest-neighbor statistics is discussed for many cases of superpositions of clustering, randomness, and regularity. A detailed analysis is carried out of cumulus cloud field spatial distributions based upon Landsat, AVHRR, and Skylab data, showing that, when both large and small clouds are included in the cloud field distributions, the cloud field always has a strong clustering signal.

  6. Observations of ionospheric convection vortices - Signatures of momentum transfer

    NASA Technical Reports Server (NTRS)

    Mchenry, M. A.; Clauer, C. R.; Friis-Christensen, E.; Kelly, J. D.

    1988-01-01

    Several classes of traveling vortices in the dayside ionospheric flow have been detected and tracked using the Greenland magnetometer chain. One class observed during quiet times consists of a continuous series of vortices moving generally antisunward for several hours at a time. Assuming each vortex to be the convection pattern produced by a small field aligned current moving across the ionosphere, the amount of field aligned current was found by fitting a modeled ground magnetic signature to measurements from the chain of magnetometers. The calculated field aligned current is seen to be steady for each vortex and neighboring vortices have currents of opposite sign. Low altitude DMSP observations indicate the vortices are on field lines which map to the inner edge of the low latitude boundary layer. Because the vortices are conjugate to the boundary layer, repeat in a regular fashion and travel antisunward, it is argued that this class of vortices is caused by surface waves at the magnetopause. No strong correlations between field aligned current strength and solar wind density, velocity, or Bz is found.

  7. Heat and Mass Transfer on MHD Free convective flow of Second grade fluid through Porous medium over an infinite vertical plate

    NASA Astrophysics Data System (ADS)

    Dastagiri Babu, D.; Venkateswarlu, S.; Keshava Reddy, E.

    2017-08-01

    In this paper, we have considered the unsteady free convective two dimensional flow of a viscous incompressible electrically conducting second grade fluid over an infinite vertical porous plate under the influence of uniform transverse magnetic field with time dependent permeability, oscillatory suction. The governing equations of the flow field are solved by a regular perturbation method for small amplitude of the permeability. The closed form solutions for the velocity, temperature and concentration have been derived analytically and also its behavior is computationally discussed with reference to different flow parameters with the help of profiles. The skin fiction on the boundary, the heat flux in terms of the Nusselt number and rate of mass transfer in terms of Sherwood number are also obtained and their behavior computationally discussed.

  8. Effective field theory dimensional regularization

    NASA Astrophysics Data System (ADS)

    Lehmann, Dirk; Prézeau, Gary

    2002-01-01

    A Lorentz-covariant regularization scheme for effective field theories with an arbitrary number of propagating heavy and light particles is given. This regularization scheme leaves the low-energy analytic structure of Greens functions intact and preserves all the symmetries of the underlying Lagrangian. The power divergences of regularized loop integrals are controlled by the low-energy kinematic variables. Simple diagrammatic rules are derived for the regularization of arbitrary one-loop graphs and the generalization to higher loops is discussed.

  9. Transition from moving to stationary double layers in a single-ended Q machine

    NASA Technical Reports Server (NTRS)

    Song, Bin; Merlino, R. L.; D'Angelo, N.

    1990-01-01

    Large-amplitude (less than about 100 percent) relaxation oscillations in the plasma potential are known to be generated when the cold endplate of a single-ended Q machine is biased positively. These oscillations are associated with double layers that form near the hot plate (plasma source) and travel toward the endplate at about the ion-acoustic velocity. At the endplate they dissolve and then form again near the hot plate, the entire process repeating itself in a regular manner. By admitting a sufficient amount of neutral gas into the system, the moving double layers were slowed down and eventually stopped. The production of stationary double layers requires an ion source on the high-potential side of the double layers. These ions are provided by ionization of the neutral gas by electrons that are accelerated through the double layer. The dependence of the critical neutral gas pressure required for stationary double-layer formation on endplate voltage, magnetic field strength, and neutral atom mass has been examined. These results are discussed in terms of a simple model of ion production and loss, including ion losses across the magnetic field.

  10. Elementary Science-Magnet School Student Attitudes toward Science as Measured by Selected National Assessment of Educational Progress Items and Achievement in Science: A Replication and Extension.

    ERIC Educational Resources Information Center

    Solomon, Alan; Rachild, Bruce

    Attitudes toward science of magnet school students were compared with those of their counterparts in two regular schools. This study attempted to replicate the findings of a 1988 study by A. Solomon and J. Wroblewski involving the same magnet school, the John Moffett Neighborhood Elementary Science Magnet School located in North Philadelphia…

  11. Improved liver R2* mapping by pixel-wise curve fitting with adaptive neighborhood regularization.

    PubMed

    Wang, Changqing; Zhang, Xinyuan; Liu, Xiaoyun; He, Taigang; Chen, Wufan; Feng, Qianjin; Feng, Yanqiu

    2018-08-01

    To improve liver R2* mapping by incorporating adaptive neighborhood regularization into pixel-wise curve fitting. Magnetic resonance imaging R2* mapping remains challenging because of the serial images with low signal-to-noise ratio. In this study, we proposed to exploit the neighboring pixels as regularization terms and adaptively determine the regularization parameters according to the interpixel signal similarity. The proposed algorithm, called the pixel-wise curve fitting with adaptive neighborhood regularization (PCANR), was compared with the conventional nonlinear least squares (NLS) and nonlocal means filter-based NLS algorithms on simulated, phantom, and in vivo data. Visually, the PCANR algorithm generates R2* maps with significantly reduced noise and well-preserved tiny structures. Quantitatively, the PCANR algorithm produces R2* maps with lower root mean square errors at varying R2* values and signal-to-noise-ratio levels compared with the NLS and nonlocal means filter-based NLS algorithms. For the high R2* values under low signal-to-noise-ratio levels, the PCANR algorithm outperforms the NLS and nonlocal means filter-based NLS algorithms in the accuracy and precision, in terms of mean and standard deviation of R2* measurements in selected region of interests, respectively. The PCANR algorithm can reduce the effect of noise on liver R2* mapping, and the improved measurement precision will benefit the assessment of hepatic iron in clinical practice. Magn Reson Med 80:792-801, 2018. © 2018 International Society for Magnetic Resonance in Medicine. © 2018 International Society for Magnetic Resonance in Medicine.

  12. Bulk renormalization and particle spectrum in codimension-two brane worlds

    NASA Astrophysics Data System (ADS)

    Salvio, Alberto

    2013-04-01

    We study the Casimir energy due to bulk loops of matter fields in codimension-two brane worlds and discuss how effective field theory methods allow us to use this result to renormalize the bulk and brane operators. In the calculation we explicitly sum over the Kaluza-Klein (KK) states with a new convenient method, which is based on a combined use of zeta function and dimensional regularization. Among the general class of models we consider we include a supersymmetric example, 6D gauged chiral supergravity. Although much of our discussion is more general, we treat in some detail a class of compactifications, where the extra dimensions parametrize a rugby ball shaped space with size stabilized by a bulk magnetic flux. The rugby ball geometry requires two branes, which can host the Standard Model fields and carry both tension and magnetic flux (of the bulk gauge field), the leading terms in a derivative expansion. The brane properties have an impact on the KK spectrum and therefore on the Casimir energy as well as on the renormalization of the brane operators. A very interesting feature is that when the two branes carry exactly the same amount of flux, one half of the bulk supersymmetries survives after the compactification, even if the brane tensions are large. We also discuss the implications of these calculations for the natural value of the cosmological constant when the bulk has two large extra dimensions and the bulk supersymmetry is partially preserved (or completely broken).

  13. Intensity of the Earth's magnetic field in Greece during the last five millennia: New data from Greek pottery

    NASA Astrophysics Data System (ADS)

    Tema, Evdokia; Gómez-Paccard, Miriam; Kondopoulou, Despina; Almar, Ylenia

    2012-08-01

    New archaeointensity results have been obtained from the study of four ceramic collections coming from four different archaeological sites in Greece. The ages of the ceramic fragments, based on archaeological constrains and radiocarbon analysis, range from 2200 BC to 565 AD. Low-field magnetic susceptibility versus temperature reveals a good thermal stability for most of the samples. However, for some samples the thermomagnetic curves are not reversible indicating mineralogical changes during heating. Isothermal remanent magnetisation (IRM) acquisition curves and thermal demagnetisation of three orthogonal IRM components have also been performed. The rock magnetic results identify magnetite and/ or Ti-magnetite as the main magnetic carriers in the studied samples. Classical Thellier experiments with regular partial thermoremanent magnetisation (pTRM) checks have been conducted on 125 specimens belonging to 34 independent ceramic fragments. Only 61 archaeointensity determinations (at specimen level) that correspond to linear NRM-TRM plots were used for the calculation of the site mean archaeointensities. The effect of the anisotropy of the thermoremanent magnetisation (TRM) and cooling rate upon TRM intensity acquisition have been investigated in all specimens. The maximum difference between the TRM anisotropy corrected and uncorrected intensities is around 30% at specimen level confirming that the TRM effect can be very important in ceramic samples. Cooling rate correction factors determined per specimen are up to 10% with only one exception that reaches 35%. Despite the moderate success rate of archaeointensity determination (around 50%) reliable mean site intensities have been obtained, with in situ intensities ranging from 53.6 ± 4.1 to 69.3 ± 3.9 μT, corresponding to virtual axial dipole moments from 9.2 ± 0.7 to 11.9 ± 0.7 × 1022 Am2. The new data are reasonably consistent with other available data for the studied region as well as with the SV reference curves for Greece and the South Balkan Peninsula, and the regional and global geomagnetic field models. Combined with previously published data from the area, they confirm that important changes of the Earth's magnetic field intensity occurred in Greece during the last five millennia. For some periods, the available archaeointensity data for the Balkan area show a large dispersion, even for data corresponding to high quality intensity standards, whereas for other periods their limited number prevents an accurate description of geomagnetic field intensity changes. This evidences the need of new reliable and well dated archaeointensity data in order to obtain a robust description of geomagnetic field intensity changes during the last five millennia in this area.

  14. Cardiac magnetic field map topology quantified by Kullback-Leibler entropy identifies patients with hypertrophic cardiomyopathy

    NASA Astrophysics Data System (ADS)

    Schirdewan, A.; Gapelyuk, A.; Fischer, R.; Koch, L.; Schütt, H.; Zacharzowsky, U.; Dietz, R.; Thierfelder, L.; Wessel, N.

    2007-03-01

    Hypertrophic cardiomyopathy (HCM) is a common primary inherited cardiac muscle disorder, defined clinically by the presence of unexplained left ventricular hypertrophy. The detection of affected patients remains challenging. Genetic testing is limited because only in 50%-60% of all HCM diagnoses an underlying mutation can be found. Furthermore, the disease has a varied clinical course and outcome, with many patients having little or no discernible cardiovascular symptoms, whereas others develop profound exercise limitation and recurrent arrhythmias or sudden cardiac death. Therefore prospective screening of HCM family members is strongly recommended. According to the current guidelines this includes serial echocardiographic and electrocardiographic examinations. In this study we investigated the capability of cardiac magnetic field mapping (CMFM) to detect patients suffering from HCM. We introduce for the first time a combined diagnostic approach based on map topology quantification using Kullback-Leibler (KL) entropy and regional magnetic field strength parameters. The cardiac magnetic field was recorded over the anterior chest wall using a multichannel-LT-SQUID system. CMFM was calculated based on a regular 36 point grid. We analyzed CMFM in patients with confirmed diagnosis of HCM (HCM, n =33, 43.8±13 years, 13 women, 20 men), a control group of healthy subjects (NORMAL, n =57, 39.6±8.9 years; 22 women and 35 men), and patients with confirmed cardiac hypertrophy due to arterial hypertension (HYP, n =42, 49.7±7.9 years, 15 women and 27 men). A subgroup analysis was performed between HCM patients suffering from the obstructive (HOCM, n =19) and nonobstructive (HNCM, n =14) form of the disease. KL entropy based map topology quantification alone identified HCM patients with a sensitivity of 78.8% and specificity of 86.9% (overall classification rate 84.8%). The combination of the KL parameters with a regional field strength parameter improved the overall classification rate to 87.9% (sensitivity: 84.8%, specificity: 88.9%, area under ROC curve: 0.94). KL measures applied to discriminate between HOCM and HNCM patients showed a correct classification of 78.8%. The combination of one KL and one regional parameter again improved the overall classification rate to 97%. A preliminary prospective analysis in two HCM families showed the feasibility of this diagnostic approach with a correct diagnosis of all 22 screened family members (1 HOCM, 4 HNCM, 17 normal). In conclusion, Cardiac Magnetic Field Mapping including KL entropy based topology quantifications is a suitable tool for HCM screening.

  15. Cobalt(II) sheet-like systems based on diacetic ligands: from subtle structural variances to different magnetic behaviors.

    PubMed

    Fabelo, Oscar; Pasán, Jorge; Cañadillas-Delgado, Laura; Delgado, Fernando S; Lloret, Francesc; Julve, Miguel; Ruiz-Pérez, Catalina

    2009-07-06

    The preparation, X-ray crystallography, and magnetic investigation of the compounds [Co(H(2)O)(2)(phda)](n) (1), [Co(phda)](n) (2), and [Co(chda)](n) (3) [H(2)phda = 1,4-phenylenediacetic acid and H(2)chda = 1,1-cyclohexanediacetic acid] are described herein. The cobalt atoms in this series are six- (1) and four-coordinated (2 and 3) in distorted octahedral (CoO(6)) and tetrahedral (CoO(4)) environments. The structures of 1-3 consists of rectangular-grids which are built up by sheets of cobalt atoms linked through anti-syn carboxylate bridges, giving rise to either a three-dimensional structure across the phenyl ring (1 and 2) or to regularly stacked layers with the cyclohexyl groups acting as organic separators (3). The magnetic properties of 1-3 were investigated as a function of the temperature and the magnetic field. Ferromagnetic coupling between the six-coordinate cobalt(II) ions across the anti-syn carboxylate bridge occurs in 1 (J = +1.2 cm(-1)) whereas antiferromagnetic coupling among the tetrahedral cobalt(II) centers within the sheets is observed in 2 and 3 [J = -1.63 (2) and -1.70 cm(-1) (3)] together with a spin-canted structure in 3 giving rise a long-range magnetic ordering (T(c) = 7.5 K).

  16. Levitation forces of a bulk YBCO superconductor in gradient varying magnetic fields

    NASA Astrophysics Data System (ADS)

    Jiang, J.; Gong, Y. M.; Wang, G.; Zhou, D. J.; Zhao, L. F.; Zhang, Y.; Zhao, Y.

    2015-09-01

    The levitation forces of a bulk YBCO superconductor in gradient varying high and low magnetic fields generated from a superconducting magnet were investigated. The magnetic field intensity of the superconducting magnet was measured when the exciting current was 90 A. The magnetic field gradient and magnetic force field were both calculated. The YBCO bulk was cooled by liquid nitrogen in field-cooling (FC) and zero-field-cooling (ZFC) condition. The results showed that the levitation forces increased with increasing the magnetic field intensity. Moreover, the levitation forces were more dependent on magnetic field gradient and magnetic force field than magnetic field intensity.

  17. Evaluation of using R-SCHA to simultaneously model main field and secular variation multilevel geomagnetic data for the North Atlantic

    NASA Astrophysics Data System (ADS)

    Talarn, Àngela; Pavón-Carrasco, F. Javier; Torta, J. Miquel; Catalán, Manuel

    2017-02-01

    One efficient approach to modelling the Earth's core magnetic field involves the inclusion of crossover marine data which cover areas lacking in observatory and repeat station data for epochs when precise three-component satellite magnetic field measurements were not common. In this study, we show how the Revised Spherical Cap Harmonic Analysis (R-SCHA) can appropriately provide a continuous-time field model for the North Atlantic region by using multilevel sets of geomagnetic data such as marine, repeat station, observatory, and satellite data. Taking advantage of the properties of the R-SCHA basis functions we can model the radial and horizontal variations of the main field and its secular variation with the most suitable spatial and temporal wavelengths. To assess the best compromise between the data fit and the model roughness, temporal and spatial regularization matrices were implemented in the modelling approach. Two additional strategies were also used to obtain a satisfactory regional model: the opportunity to fit the anomaly bias at each observatory location, and constraining the regional model to the CHAOS-6 model at the end of its period of validity, i.e. 1999-2000, allowing a smooth transition with the predictions of this recent model. In terms of the root mean square error, the degree of success was limited partly because of the high uncertainties associated with some of the datasets (especially the marine ones), but we have produced a model that performs comparably to the global models for the period 1960-2000, thus showing the benefits of using this regional technique.

  18. The Consequences of Saturn’s Rotating Asymmetric Ring Current

    NASA Astrophysics Data System (ADS)

    Southwood, D. J.; Kivelson, M. G.

    2009-12-01

    The plasma and field behavior in the dipolar region of the Saturnian magnetosphere is described, based primarily on interpretation of the magnetic field behavior measured by the Cassini spacecraft. Previous authors, such as Provan and Khurana, have pointed out that the regular pulses in field strength at around 10.8 hrs period detected in this region imply the existence not only of a symmetric ring current but also of a partial ring current. Once spacecraft motion in local time has been allowed for, one finds a close to sinusoidal variation with azimuth and time of the magnetic signal. Hence the partial ring current appears to quasi-rigidly rotate about the planetary axis at the same 10.8 hr period as the pulsing of the Saturn kilometric radiation. We point out that, independent of whether the excess current is due to asymmetry in flux tube population or in plasma beta (pressure normalized to field pressure), such a current gives rise to a rotating circulation system. The compressional field pattern is consistent with an m = 1 pattern of circulation. The fairly uniform inner magnetosphere cam magnetic signature predicted on the basis of inner magnetosphere transverse field components in our past work is modified in a systematic way by the partial ring current effects. The circulation due to the partial ring current has its own set of distributed field aligned currents (FACs). The rotating transverse perturbation field components are twisted by the FACs so that the radial field is reduced at low L-shells and increased at larger L. Overall the cam field is depressed at low L and enhanced as one approaches the boundary of the cam region at L = 10-12. In practice the system must also respond to some local time effects. Loss of plasma is easier on the night-side and flanks than on the day-side and so a day-night asymmetry is imposed tending to increase the perturbation field amplitudes by night. The FACs driven by the asymmetric ring current should be broadly distributed throughout the cam region and correspondingly are associated with smaller current densities than those associated with the more narrowly confined cam current system on the outer edge of the cam. Accordingly the intense fluxes of electrons that give rise to the SKR signals are associated with the upward elements of the latter current system.

  19. Magnetic fields from domestic appliances in the UK

    NASA Astrophysics Data System (ADS)

    Preece, A. W.; Kaune, W.; Grainger, P.; Preece, S.; Golding, J.

    1997-01-01

    In a survey of 50 UK homes the 50 Hz fundamental and harmonic magnetic fields generated by 806 domestic appliances found in the homes, and used regularly by mothers, were measured. Measurements were made in the direction of most likely access, and from the surface of the appliances. Mothers completed a questionnaire on the use of appliances and were monitored for 24 h so that acquired exposure could be compared with the measured ambient fields in the home. Appliances were measured at standard distances and an algorithm was used to calculate fields at 100 and 50 cm to remove room background contributions. A few appliances generated fields in excess of at 1 m: microwave cookers ; washing machines ; dishwashers ; some electric showers and can openers . Of continuously operating devices, only central heating pumps (), central heating boilers () and fish-tank air pumps () produced significant fields at 0.5 m. There were no obvious ways to group different types of appliances as high- or low-strength sources. Mothers spent on average about 4.5 h per day in the kitchen, where the strongest sources of magnetic field were located.

  20. High magnetic field ohmically decoupled non-contact technology

    DOEpatents

    Wilgen, John [Oak Ridge, TN; Kisner, Roger [Knoxville, TN; Ludtka, Gerard [Oak Ridge, TN; Ludtka, Gail [Oak Ridge, TN; Jaramillo, Roger [Knoxville, TN

    2009-05-19

    Methods and apparatus are described for high magnetic field ohmically decoupled non-contact treatment of conductive materials in a high magnetic field. A method includes applying a high magnetic field to at least a portion of a conductive material; and applying an inductive magnetic field to at least a fraction of the conductive material to induce a surface current within the fraction of the conductive material, the surface current generating a substantially bi-directional force that defines a vibration. The high magnetic field and the inductive magnetic field are substantially confocal, the fraction of the conductive material is located within the portion of the conductive material and ohmic heating from the surface current is ohmically decoupled from the vibration. An apparatus includes a high magnetic field coil defining an applied high magnetic field; an inductive magnetic field coil coupled to the high magnetic field coil, the inductive magnetic field coil defining an applied inductive magnetic field; and a processing zone located within both the applied high magnetic field and the applied inductive magnetic field. The high magnetic field and the inductive magnetic field are substantially confocal, and ohmic heating of a conductive material located in the processing zone is ohmically decoupled from a vibration of the conductive material.

  1. Scalar field coupling to Einstein tensor in regular black hole spacetime

    NASA Astrophysics Data System (ADS)

    Zhang, Chi; Wu, Chen

    2018-02-01

    In this paper, we study the perturbation property of a scalar field coupling to Einstein's tensor in the background of the regular black hole spacetimes. Our calculations show that the the coupling constant η imprints in the wave equation of a scalar perturbation. We calculated the quasinormal modes of scalar field coupling to Einstein's tensor in the regular black hole spacetimes by the 3rd order WKB method.

  2. Myelogenous leukemia and electric blanket use.

    PubMed

    Preston-Martin, S; Peters, J M; Yu, M C; Garabrant, D H; Bowman, J D

    1988-01-01

    In a case-control study of adult acute and chronic myelogenous leukemia in Los Angeles County, we tested the hypothesis that excess exposure to electromagnetic fields from electric blankets was associated with risk of leukemia. We did this by studying 116 cases of acute myelogenous leukemia (AML) and 108 cases of chronic myelogenous leukemia (CML) along with matched neighborhood controls. The cases and controls were queried as to electric blanket use and the risks computed. For AML the risk was 0.9 (95% CI 0.5-1.6) and for CML the risk was 0.8 (95% CI 0.4-1.6). Cases did not differ from controls by duration of use, year of first regular use, year since last use, or socioeconomic status. Our best estimates of exposure indicate that electric blanket use increases overall exposure to electric fields by less than 50% and magnetic fields by less than 100%. We conclude that there is no major leukemogenic risk associated with electric blanket use in Los Angeles County.

  3. Electric Field Feature of Moving Magnetic Field

    NASA Astrophysics Data System (ADS)

    Chen, You Jun

    2001-05-01

    A new fundamental relationship of electric field with magnetic field has been inferred from the fundamental experimental laws and theories of classical electromagnetics. It can be described as moving magnetic field has or gives electric feature. When a field with magnetic induction of B moves in the velocity of V, it will show electric field character, the electric field intensity E is E = B x V and the direction of E is in the direction of the vector B x V. It is improper to use the time-varying electromagnetics theories as the fundamental theory of the electromagnetics and group the electromagnetic field into static kind and time-varying kind for the static is relative to motional not only time-varying. The relationship of time variation of magnetic field induction or magnetic flux with electric field caused by magnetic field is fellowship not causality. Thus time-varying magnetic field can cause electric field is not a nature principle. Sometime the time variation of magnetic flux is equal to the negative electromotive force or the time variation of magnetic field induction is equal to the negative curl of electric field caused by magnetic field motion, but not always. And not all motion of magnetic field can cause time variation of magnetic field. Therefore Faraday-Lenz`s law can only be used as mathematics tool to calculate the quantity relation of the electricity with the magnetism in some case like the magnetic field moving in uniform medium. Faraday-Lenz`s law is unsuitable to be used in moving uniform magnetic field or there is magnetic shield. Key word: Motional magnetic field, Magnetic induction, Electric field intensity, Velocity, Faraday-Lenz’s law

  4. Contributions from the data samples in NOC technique on the extracting of the Sq variation

    NASA Astrophysics Data System (ADS)

    Wu, Yingyan; Xu, Wenyao

    2015-04-01

    The solar quiet daily variation, Sq, a rather regular variation is usually observed at mid-low latitudes on magnetic quiet days or less-disturbed days. It is mainly resulted from the dynamo currents in the ionospheric E region, which are driven by the atmospheric tidal wind and different processes and flow as two current whorls in each of the northern and southern hemispheres[1]. The Sq exhibits a conspicuous day-to-day (DTD) variability in daily range (or strength), shape (or phase) and its current focus. This variability is mainly attributed to changes in the ionospheric conductivity and tidal winds, varying with solar radiation and ionospheric conditions. Furthermore, it presents a seasonal variation and solar cycle variation[2-4]. In generally, Sq is expressed with the average value of the five international magnetic quiet days. Using data from global magnetic stations, equivalent current system of daily variation can be constructed to reveal characteristics of the currents[5]. In addition, using the differences of H component at two stations on north and south side of the Sq currents of focus, Sq is extracted much better[6]. Recently, the method of Natural Orthoganal Components (NOC) is used to decompose the magnetic daily variation and express it as the summation of eigenmodes, and indicate the first NOC eigenmode as the solar quiet daily variation, the second as the disturbance daily variation[7-9]. As we know, the NOC technique can help reveal simpler patterns within a complex set of variables, without designed basic-functions such as FFT technique. But the physical explanation of the NOC eigenmodes is greatly depends on the number of data samples and data regular-quality. Using the NOC method, we focus our present study on the analysis of the hourly means of the H component at BMT observatory in China from 2001 to 2008. The contributions of the number and the regular-quality of the data samples on which eigenmode corresponds to the Sq are analyzed, by using different number of data sample from 5 to 365. The result shows the first eigenmode expresses the Sq in most cases. 1.Campbell, W, Introduction to Geomagnetic Fields, Cambridge Univ. Press, New York. 1997 2.Hasegawa, M, Geomagnetic Sq current system, J. Geophys. Res., 1960, 65: 1437~ 1447 3.Tarpley J D. The Ionospheric wind dynanmo 2 solar tides. Planet. Space Sci., 1970, 18: 1091~ 1103 4.Richmond A D. Modeling the ionospheric wind dynamo a review. Pure Appl. Geophys., 1989, 131: 413 ~ 435 5.Suzuki, A., and H. Maeda (1978), Equivalent current systems of the daily geomagnetic variations in December 1964, Data Book No. 1, World Data Center C2 for Geomagnetic. 6.Hibberd, F H. Day-to-day variability of the Sq geomagnetic field variation, Aust. J. Phys., 1981, 34: 81~ 90 7.Xu, W.-Y., and Y. Kamide (2004), Decomposition of daily geomagnetic variation by using method of natural orthogonal component, J. Geophys. Res., 109(A5), A05218, doi:10.1029/2003JA010216. 8.Chen G X, Xu W Y, Du A M, and et al, Statistical characteristics of the day-to-day variability in the geomagnetic Sq field, J. Geophys. Res.,2007, 112, A06320, doi:10.1029/2006JA012059 9.Michelis P. De. Principal components' features of mid-latitude geomagnetic daily variation. Ann. Geophys., 2010,28: 1-14

  5. Background field removal using a region adaptive kernel for quantitative susceptibility mapping of human brain

    NASA Astrophysics Data System (ADS)

    Fang, Jinsheng; Bao, Lijun; Li, Xu; van Zijl, Peter C. M.; Chen, Zhong

    2017-08-01

    Background field removal is an important MR phase preprocessing step for quantitative susceptibility mapping (QSM). It separates the local field induced by tissue magnetic susceptibility sources from the background field generated by sources outside a region of interest, e.g. brain, such as air-tissue interface. In the vicinity of air-tissue boundary, e.g. skull and paranasal sinuses, where large susceptibility variations exist, present background field removal methods are usually insufficient and these regions often need to be excluded by brain mask erosion at the expense of losing information of local field and thus susceptibility measures in these regions. In this paper, we propose an extension to the variable-kernel sophisticated harmonic artifact reduction for phase data (V-SHARP) background field removal method using a region adaptive kernel (R-SHARP), in which a scalable spherical Gaussian kernel (SGK) is employed with its kernel radius and weights adjustable according to an energy "functional" reflecting the magnitude of field variation. Such an energy functional is defined in terms of a contour and two fitting functions incorporating regularization terms, from which a curve evolution model in level set formation is derived for energy minimization. We utilize it to detect regions of with a large field gradient caused by strong susceptibility variation. In such regions, the SGK will have a small radius and high weight at the sphere center in a manner adaptive to the voxel energy of the field perturbation. Using the proposed method, the background field generated from external sources can be effectively removed to get a more accurate estimation of the local field and thus of the QSM dipole inversion to map local tissue susceptibility sources. Numerical simulation, phantom and in vivo human brain data demonstrate improved performance of R-SHARP compared to V-SHARP and RESHARP (regularization enabled SHARP) methods, even when the whole paranasal sinus regions are preserved in the brain mask. Shadow artifacts due to strong susceptibility variations in the derived QSM maps could also be largely eliminated using the R-SHARP method, leading to more accurate QSM reconstruction.

  6. Background field removal using a region adaptive kernel for quantitative susceptibility mapping of human brain.

    PubMed

    Fang, Jinsheng; Bao, Lijun; Li, Xu; van Zijl, Peter C M; Chen, Zhong

    2017-08-01

    Background field removal is an important MR phase preprocessing step for quantitative susceptibility mapping (QSM). It separates the local field induced by tissue magnetic susceptibility sources from the background field generated by sources outside a region of interest, e.g. brain, such as air-tissue interface. In the vicinity of air-tissue boundary, e.g. skull and paranasal sinuses, where large susceptibility variations exist, present background field removal methods are usually insufficient and these regions often need to be excluded by brain mask erosion at the expense of losing information of local field and thus susceptibility measures in these regions. In this paper, we propose an extension to the variable-kernel sophisticated harmonic artifact reduction for phase data (V-SHARP) background field removal method using a region adaptive kernel (R-SHARP), in which a scalable spherical Gaussian kernel (SGK) is employed with its kernel radius and weights adjustable according to an energy "functional" reflecting the magnitude of field variation. Such an energy functional is defined in terms of a contour and two fitting functions incorporating regularization terms, from which a curve evolution model in level set formation is derived for energy minimization. We utilize it to detect regions of with a large field gradient caused by strong susceptibility variation. In such regions, the SGK will have a small radius and high weight at the sphere center in a manner adaptive to the voxel energy of the field perturbation. Using the proposed method, the background field generated from external sources can be effectively removed to get a more accurate estimation of the local field and thus of the QSM dipole inversion to map local tissue susceptibility sources. Numerical simulation, phantom and in vivo human brain data demonstrate improved performance of R-SHARP compared to V-SHARP and RESHARP (regularization enabled SHARP) methods, even when the whole paranasal sinus regions are preserved in the brain mask. Shadow artifacts due to strong susceptibility variations in the derived QSM maps could also be largely eliminated using the R-SHARP method, leading to more accurate QSM reconstruction. Copyright © 2017. Published by Elsevier Inc.

  7. The Steens Mountain (Oregon) geomagnetic polarity transition: 1. Directional history, duration of episodes, and rock magnetism

    USGS Publications Warehouse

    Mankinen, Edward A.; Prevot, M.; Gromme, C. Sherman; Coe, Robert S.

    1985-01-01

    The thick sequence of Miocene lava flows exposed on Steens Mountain in southeastern Oregon is well known for containing a detailed record of a reversed‐to‐normal geomagnetic polarity transition. Paleomagnetic samples were obtained from the sequence for a combined study of the directional and intensity variations recorded; the paleointensity study is reported in a companion paper. This effort has resulted in the first detailed history of total geomagnetic field behavior during a reversal of polarity. A comparison of the directional variation history of the reversed and normal polarity intervals on either side of the transition with the Holocene record has allowed an estimate of the duration of these periods to be made. These time estimates were then used to calculate accumulation rates for the volcanic sequence and thereby provide a means for estimating time periods within the transition itself. The polarity transition was found to consist of two phases, each with quite different characteristics. At the onset of the first phase, a one‐third decrease in magnetic field intensity may have preceded the first intermediate field directions by about 600 years. Changes in field direction were confined near the local north‐south vertical plane when the actual reversal in direction occurred and normal polarity directions may have been attained within 550±150 years. The end of the first phase of the transition was marked by a brief (possibly 100–300 years) period with normal polarity and a pretransitional intensity which suggests a quasi‐normal dipole field structure existed during this interval. The second phase of the transition was characterized by a return to very low field intensities with the changes in direction describing a long counterclockwise loop in contrast to the earlier narrowly constrained changes. This second phase lasted 2900±300 years, and both normal directions and intensities were recovered at the same time. Both directional and intensity data document very erratic geomagnetic field behavior during the polarity transition. Changes in magnetic field direction were variable and occurred either (1) in a regular, progressive manner, (2) with sudden, extremely rapid angular changes (58°±21°/year), or (3) with little or no movement for periods of the order of 600±200 years. Changes in magnetic intensity occurred in a like manner and were sometimes correlated with changes in direction, but during other periods both directional and intensity changes occurred independently. Directional changes following the polarity transition occurred in a seemingly normal manner, although intensity fluctuations attest to some instability of the newly reestablished dipole.

  8. High spatial resolution upgrade of the electron cyclotron emission radiometer for the DIII-D tokamak

    DOE PAGES

    Truong, D. D.; Austin, M. E.

    2014-11-01

    The 40-channel DIII-D electron cyclotron emission (ECE) radiometer provides measurements of Te(r,t) at the tokamak midplane from optically thick, second harmonic X-mode emission over a frequency range of 83-130 GHz. Heterodyning divides this frequency range into three 2-18 GHz intermediate frequency (IF) bands. The frequency spacing of the radiometer’s channels results in a spatial resolution of ~1-3 cm, depending on local magnetic field and electron temperature. A new high resolution subsystem has been added to the DIII-D ECE radiometer to make sub-centimeter (0.6-0.8 cm) resolution Te measurements. The high resolution subsystem branches off from the regular channels’ IF bands andmore » consists of a microwave switch to toggle between IF bands, a switched filter bank for frequency selectivity, an adjustable local oscillator and mixer for further frequency down-conversion, and a set of eight microwave filters in the 2-4 GHz range. We achieved a higher spatial resolution through the use of a narrower (200 MHz) filter bandwidth and closer spacing between the filters’ center frequencies (250 MHz). This configuration allows for full coverage of the 83-130 GHz frequency range in 2 GHz bands. Depending on the local magnetic field, this translates into a “zoomed-in” analysis of a ~2-4 cm radial region. These high resolution channels will be most useful in the low-field side edge region where modest Te values (1-2 keV) result in a minimum of relativistic broadening. Some expected uses of these channels include mapping the spatial dependence of Alfven eigenmodes, geodesic acoustic modes, and externally applied magnetic perturbations. Initial Te measurements, which demonstrate that the desired resolution is achieved, is presented.« less

  9. Modulation of galactic cosmic rays in solar cycles 22-24: Analysis and physical interpretation

    NASA Astrophysics Data System (ADS)

    Kalinin, M. S.; Bazilevskaya, G. A.; Krainev, M. B.; Svirzhevskaya, A. K.; Svirzhevsky, N. S.; Starodubtsev, S. A.

    2017-09-01

    This work represents a physical interpretation of cosmic ray modulation in the 22nd-24th solar cycles, including an interpretation of an unusual behavior of their intensity in the last minimum of the solar activity (2008-2010). In terms of the Parker modulation model, which deals with regularly measured heliospheric characteristics, it is shown that the determining factor of the increased intensity of the galactic cosmic rays in the minimum of the 24th solar cycle is an anomalous reduction of the heliospheric magnetic field strength during this time interval under the additional influence of the solar wind velocity and the tilt angle of the heliospheric current sheet. We have used in the calculations the dependence of the diffusion tensor on the rigidity in the form K ij ∝ R 2-μ with μ = 1.2 in the sector zones of the heliospheric magnetic field and with μ = 0.8 outside the sector zones, which leads to an additional amplification of the diffusion mechanism of cosmic ray modulation. The proposed approach allows us to describe quite satisfactorily the integral intensity of protons with an energy above 0.1 GeV and the energy spectra in the minima of the 22nd-24th solar cycles at the same value of the free parameter. The determining factor of the anomalously high level of the galactic cosmic ray intensity in the minimum of the 24th solar cycle is the significant reduction of the heliospheric magnetic field strength during this time interval. The forecast of the intensity level in the minimum of the 25th solar cycle is provided.

  10. DYNAMO EFFECTS NEAR THE TRANSITION FROM SOLAR TO ANTI-SOLAR DIFFERENTIAL ROTATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simitev, Radostin D.; Kosovichev, Alexander G.; Busse, Friedrich H.

    2015-09-01

    Numerical MHD simulations play an increasingly important role for understanding the mechanisms of stellar magnetism. We present simulations of convection and dynamos in density-stratified rotating spherical fluid shells. We employ a new 3D simulation code for obtaining the solution of a physically consistent anelastic model of the process with a minimum number of parameters. The reported dynamo simulations extend into a “buoyancy-dominated” regime where the buoyancy forcing is dominant while the Coriolis force is no longer balanced by pressure gradients, and strong anti-solar differential rotation develops as a result. We find that the self-generated magnetic fields, despite being relatively weak,more » are able to reverse the direction of differential rotation from anti-solar to solar-like. We also find that convection flows in this regime are significantly stronger in the polar regions than in the equatorial region, leading to non-oscillatory dipole-dominated dynamo solutions, and to a concentration of magnetic field in the polar regions. We observe that convection has a different morphology in the inner and the outer part of the convection zone simultaneously such that organized geostrophic convection columns are hidden below a near-surface layer of well-mixed highly chaotic convection. While we focus our attention on the buoyancy-dominated regime, we also demonstrate that conical differential rotation profiles and persistent regular dynamo oscillations can be obtained in the parameter space of the rotation-dominated regime even within this minimal model.« less

  11. High spatial resolution upgrade of the electron cyclotron emission radiometer for the DIII-D tokamak.

    PubMed

    Truong, D D; Austin, M E

    2014-11-01

    The 40-channel DIII-D electron cyclotron emission (ECE) radiometer provides measurements of Te(r,t) at the tokamak midplane from optically thick, second harmonic X-mode emission over a frequency range of 83-130 GHz. The frequency spacing of the radiometer's channels results in a spatial resolution of ∼1-3 cm, depending on local magnetic field and electron temperature. A new high resolution subsystem has been added to the DIII-D ECE radiometer to make sub-centimeter (0.6-0.8 cm) resolution Te measurements. The high resolution subsystem branches off from the regular channels' IF bands and consists of a microwave switch to toggle between IF bands, a switched filter bank for frequency selectivity, an adjustable local oscillator and mixer for further frequency down-conversion, and a set of eight microwave filters in the 2-4 GHz range. Higher spatial resolution is achieved through the use of a narrower (200 MHz) filter bandwidth and closer spacing between the filters' center frequencies (250 MHz). This configuration allows for full coverage of the 83-130 GHz frequency range in 2 GHz bands. Depending on the local magnetic field, this translates into a "zoomed-in" analysis of a ∼2-4 cm radial region. Expected uses of these channels include mapping the spatial dependence of Alfven eigenmodes, geodesic acoustic modes, and externally applied magnetic perturbations. Initial Te measurements, which demonstrate that the desired resolution is achieved, are presented.

  12. Vortex-antivortex phenomena in superconductors with antidot arrays

    NASA Astrophysics Data System (ADS)

    Berdiyorov, Golibjon; Milosevic, Milorad; Geurts, Roeland; Peeters, Francois

    2007-03-01

    We investigated in detail the vortex configurations in superconducting films with regular antidot-arrays within the non-linear Ginzburg-Landau theory, where demagnetization effects and overlapping vortex cores are fully taken into account (contrary to the London approach). In addition to the well-known matching phenomena, we predict: (i) the nucleation of giant-vortex states at interstitial sites; (ii) the combination of giant- and multi-vortices at rational matching fields; and (iii) for particular interstitial vorticity, the symmetry imposed creation of vortex-antivortex configurations. As a consequence of (iii), we predict resistance maxima at particular matching fields, opposite to the expected minima due to commensurability effects. Using the same principle, we stabilized vortex-antivortex molecules in finite submicron superconducting polygons by strategically placed nanoholes. Compared to earlier predictions, we enhanced the stamina of the antivortex with respect to temperature, applied fields and geometrical defects in the sample. Further, increased vortex-antivortex spacing and pronounced amplitudes of the local magnetic field in our system make these fascinating structures observable by e.g. Scanning Tunneling or Hall probe microscopy.

  13. Filtering techniques for efficient inversion of two-dimensional Nuclear Magnetic Resonance data

    NASA Astrophysics Data System (ADS)

    Bortolotti, V.; Brizi, L.; Fantazzini, P.; Landi, G.; Zama, F.

    2017-10-01

    The inversion of two-dimensional Nuclear Magnetic Resonance (NMR) data requires the solution of a first kind Fredholm integral equation with a two-dimensional tensor product kernel and lower bound constraints. For the solution of this ill-posed inverse problem, the recently presented 2DUPEN algorithm [V. Bortolotti et al., Inverse Problems, 33(1), 2016] uses multiparameter Tikhonov regularization with automatic choice of the regularization parameters. In this work, I2DUPEN, an improved version of 2DUPEN that implements Mean Windowing and Singular Value Decomposition filters, is deeply tested. The reconstruction problem with filtered data is formulated as a compressed weighted least squares problem with multi-parameter Tikhonov regularization. Results on synthetic and real 2D NMR data are presented with the main purpose to deeper analyze the separate and combined effects of these filtering techniques on the reconstructed 2D distribution.

  14. Adiabatic pumping solutions in global AdS

    NASA Astrophysics Data System (ADS)

    Carracedo, Pablo; Mas, Javier; Musso, Daniele; Serantes, Alexandre

    2017-05-01

    We construct a family of very simple stationary solutions to gravity coupled to a massless scalar field in global AdS. They involve a constantly rising source for the scalar field at the boundary and thereby we name them pumping solutions. We construct them numerically in D = 4. They are regular and, generically, have negative mass. We perform a study of linear and nonlinear stability and find both stable and unstable branches. In the latter case, solutions belonging to different sub-branches can either decay to black holes or to limiting cycles. This observation motivates the search for non-stationary exactly timeperiodic solutions which we actually construct. We clarify the role of pumping solutions in the context of quasistatic adiabatic quenches. In D = 3 the pumping solutions can be related to other previously known solutions, like magnetic or translationally-breaking backgrounds. From this we derive an analytic expression.

  15. Magnetohydrodynamic simulations of noninductive helicity injection in the reversed-field pinch and tokamak

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sovinec, Carl R.

    1995-11-01

    Numerical computation is used to investigate resistive magnetohydrodynamic (MHD) fluctuations in the reversed-field pinch (RFP) and in tokamak-like configurations driven solely by direct current (DC) helicity injection. A Lundquist number (S) scan of RFP turbulence without plasma pressure produces the weak scaling of S -0.18 for the root-mean-square magnetic fluctuation level for 2.5x10 3≤S≤4x10 4. The temporal behavior of fluctuations and the reversal parameter becomes more regular as S is increased, acquiring a "sawtooth" shape at the largest value of S. Simulations with plasma pressure and anisotropic thermal conduction demonstrate energy transport resulting from parallel heat fluctuations. To investigate meansmore » of improving RFP energy confinement, three forms of current profile modification are tested. Radio frequency (RF) current drive is modeled with an auxiliary electron force, and linear stability calculations are used.« less

  16. Rhythmic behavior in a two-population mean-field Ising model

    NASA Astrophysics Data System (ADS)

    Collet, Francesca; Formentin, Marco; Tovazzi, Daniele

    2016-10-01

    Many real systems composed of a large number of interacting components, as, for instance, neural networks, may exhibit collective periodic behavior even though single components have no natural tendency to behave periodically. Macroscopic oscillations are indeed one of the most common self-organized behavior observed in living systems. In the present paper we study some dynamical features of a two-population generalization of the mean-field Ising model with the scope of investigating simple mechanisms capable to generate rhythms in large groups of interacting individuals. We show that the system may undergo a transition from a disordered phase, where the magnetization of each population fluctuates closely around zero, to a phase in which they both display a macroscopic regular rhythm. In particular, there exists a region in the parameter space where having two groups of spins with inter- and intrapopulation interactions of different strengths suffices for the emergence of a robust periodic behavior.

  17. The interference of electronic implants in low frequency electromagnetic fields.

    PubMed

    Silny, J

    2003-04-01

    Electronic implants such as cardiac pacemakers or nerve stimulators can be impaired in different ways by amplitude-modulated and even continuous electric or magnetic fields of strong field intensities. For the implant bearer, possible consequences of a temporary electromagnetic interference may range from a harmless impairment of his well-being to a perilous predicament. Electromagnetic interferences in all types of implants cannot be covered here due to their various locations in the body and their different sensing systems. Therefore, this presentation focuses exemplarily on the most frequently used implant, the cardiac pacemaker. In case of an electromagnetic interference the cardiac pacemaker reacts by switching to inhibition mode or to fast asynchronous pacing. At a higher disturbance voltage on the input of the pacemaker, a regular asynchronous pacing is likely to arise. In particular, the first-named interference could be highly dangerous for the pacemaker patient. The interference threshold of cardiac pacemakers depends in a complex way on a number of different factors such as: electromagnetic immunity and adjustment of the pacemaker, the composition of the applied low-frequency fields (only electric or magnetic fields or combinations of both), their frequencies and modulations, the type of pacemaker system (bipolar, unipolar) and its location in the body, as well as the body size and orientation in the field, and last but not least, certain physiological conditions of the patient (e.g. inhalation, exhalation). In extensive laboratory studies we have investigated the interference mechanisms in more than 100 cardiac pacemakers (older types as well as current models) and the resulting worst-case conditions for pacemaker patients in low-frequency electric and magnetic fields. The verification of these results in different practical everyday-life situations, e.g. in the fields of high-voltage overhead lines or those of electronic article surveillance systems is currently in progress. In case of the vertically-oriented electric 50 Hz fields preliminary results show that per 1 kV/m unimpaired electrical field strength (rms) an interference voltage of about 400 microVpp as worst-case could occur at the input of a unipolar ventricularly controlled, left-pectorally implanted cardiac pacemaker. Thus, already a field strength above ca. 5 kV/m could cause an interference with an implanted pacemaker. The magnetic fields induces an electric disturbance voltage at the input of the pacemaker. The body and the pacemaker system compose several induction loops, whose induced voltages rates add or subtract. The effective area of one representing inductive loop ranges from 100 to 221 cm2. For the unfavourable left-pectorally implantated and atrially-controlled pacemaker with a low interference threshold, the interference threshold ranges between 552 and 16 microT (rms) for magnetic fields at frequencies between 10 and 250 Hz. On this basis the occurrence of interferences with implanted pacemakers is possible in everyday-life situations. But experiments demonstrate a low probability of interference of cardiac pacemakers in practical situations. This apparent contradiction can be explained by a very small band of inhibition in most pacemakers and, in comparison with the worst-case, deviating conditions.

  18. Relativistic calculation of nuclear magnetic shielding using normalized elimination of the small component

    NASA Astrophysics Data System (ADS)

    Kudo, K.; Maeda, H.; Kawakubo, T.; Ootani, Y.; Funaki, M.; Fukui, H.

    2006-06-01

    The normalized elimination of the small component (NESC) theory, recently proposed by Filatov and Cremer [J. Chem. Phys. 122, 064104 (2005)], is extended to include magnetic interactions and applied to the calculation of the nuclear magnetic shielding in HX (X =F,Cl,Br,I) systems. The NESC calculations are performed at the levels of the zeroth-order regular approximation (ZORA) and the second-order regular approximation (SORA). The calculations show that the NESC-ZORA results are very close to the NESC-SORA results, except for the shielding of the I nucleus. Both the NESC-ZORA and NESC-SORA calculations yield very similar results to the previously reported values obtained using the relativistic infinite-order two-component coupled Hartree-Fock method. The difference between NESC-ZORA and NESC-SORA results is significant for the shieldings of iodine.

  19. The formation of the planetary system

    NASA Astrophysics Data System (ADS)

    Tscharnuter, W. M.

    1984-12-01

    The basic ideas concerning solar system formation were developed by Kant (1755) and Laplace (1796) whose starting point was the so-called nebular hypothesis. The great advantage of the nebular hypothesis is that many regularities, e.g. prograde motions of all planets and asteroids in almost coplanar orbits, can be explained. Observations in the radio and infrared region strongly support the nebular hypothesis provided that the angular momentum problem can be solved in some way. Three possibilities are listed: (1) magnetic fields via Alfvén waves which can transport angular momentum from the contracting cloud fragment into the external medium, (2) turbulent friction, (3) gravitational torques exerted by high amplitude spiral or bar-like density waves in the nebula.

  20. Design study of the storage ring EUTERPE

    NASA Astrophysics Data System (ADS)

    Xi, Boling; Botman, J. I. M.; Timmermans, C. J.; Hagedoorn, H. L.

    1992-05-01

    At present the 400 MeV electron storage ring EUTERPE is being constructed at the Eindhoven University of Technology. It is a university project set up for studies of charged particle beam dynamics and applications of synchroton radiation, and for the education of students in these fields. The design of the ring is described in this paper. Considering the requirements of users in different fields, a lattice based on a so-called triple bend achromat structure with a high flexibility has been chosen. With this lattice, different optical options, including the HBSB (high brightness, small beam), the SBL (short bunch length) and the HLF (high light flux) modes can be realized. A small emittance of 7 nm rad and a short bunch length of the order of several mm can be achieved. In the first phase the synchrotron radiation in the UV and XUV region (the critical wavelength is 8.3 nm) will be provided from the regular dipole magnets. Later on, a 10 T wiggler magnet and other special inserters will be added, and other applications and beam dynamics studies will be feasible. Bending magnets are of the parallel faced C configuration. The effective aperture of the vacuum chamber is 2.3 cm (vertical) in the bending magnets and 4.7 cm elsewhere with a working vacuum condition of 10-9 Torr. Collective effects have been studied initially. First calculations indicate that a lifetime of several hours, influenced by the Touschek effect and residual gas scattering will be achievable for a 200 mA beam in the HLF mode for the standard rf parameters. A 70 MeV racetrack microtron will serve as injector for the ring.

  1. Synchronization stability and pattern selection in a memristive neuronal network.

    PubMed

    Wang, Chunni; Lv, Mi; Alsaedi, Ahmed; Ma, Jun

    2017-11-01

    Spatial pattern formation and selection depend on the intrinsic self-organization and cooperation between nodes in spatiotemporal systems. Based on a memory neuron model, a regular network with electromagnetic induction is proposed to investigate the synchronization and pattern selection. In our model, the memristor is used to bridge the coupling between the magnetic flux and the membrane potential, and the induction current results from the time-varying electromagnetic field contributed by the exchange of ion currents and the distribution of charged ions. The statistical factor of synchronization predicts the transition of synchronization and pattern stability. The bifurcation analysis of the sampled time series for the membrane potential reveals the mode transition in electrical activity and pattern selection. A formation mechanism is outlined to account for the emergence of target waves. Although an external stimulus is imposed on each neuron uniformly, the diversity in the magnetic flux and the induction current leads to emergence of target waves in the studied network.

  2. Synchronization stability and pattern selection in a memristive neuronal network

    NASA Astrophysics Data System (ADS)

    Wang, Chunni; Lv, Mi; Alsaedi, Ahmed; Ma, Jun

    2017-11-01

    Spatial pattern formation and selection depend on the intrinsic self-organization and cooperation between nodes in spatiotemporal systems. Based on a memory neuron model, a regular network with electromagnetic induction is proposed to investigate the synchronization and pattern selection. In our model, the memristor is used to bridge the coupling between the magnetic flux and the membrane potential, and the induction current results from the time-varying electromagnetic field contributed by the exchange of ion currents and the distribution of charged ions. The statistical factor of synchronization predicts the transition of synchronization and pattern stability. The bifurcation analysis of the sampled time series for the membrane potential reveals the mode transition in electrical activity and pattern selection. A formation mechanism is outlined to account for the emergence of target waves. Although an external stimulus is imposed on each neuron uniformly, the diversity in the magnetic flux and the induction current leads to emergence of target waves in the studied network.

  3. Magnetizing technique for permanent magnets by intense static fields generated by HTS bulk magnets: Numerical Analysis

    NASA Astrophysics Data System (ADS)

    N. Kawasaki; Oka, T.; Fukui, S.; Ogawa, J.; Sato, T.; Terasawa, T.; Itoh, Y.

    A demagnetized Nd-Fe-B permanent magnet was scanned in the strong magnetic field space just above the magnetic pole containing a HTS bulk magnet which generates the magnetic field 3.4 T. The magnet sample was subsequently found to be fully magnetized in the open space of the static magnetic fields. The finite element method was carried out for the static field magnetization of a permanent magnet using a HTS bulk magnet. Previously, our research group experimentally demonstrated the possibility of full magnetization of rare earth permanent magnets with high-performance magnetic properties with use of the static field of HTS bulk magnets. In the present study, however, we succeeded for the first time in visualizing the behavior of the magnetizing field of the bulk magnet during the magnetization process and the shape of the magnetic field inside the body being magnetized. By applying this kind of numerical analysis to the magnetization for planned motor rotors which incorporate rare-earth permanent magnets, we hope to study the fully magnetized regions for the new magnetizing method using bulk magnets and to give motor designing a high degree of freedom.

  4. Methodology to estimate the relative pressure field from noisy experimental velocity data

    NASA Astrophysics Data System (ADS)

    Bolin, C. D.; Raguin, L. G.

    2008-11-01

    The determination of intravascular pressure fields is important to the characterization of cardiovascular pathology. We present a two-stage method that solves the inverse problem of estimating the relative pressure field from noisy velocity fields measured by phase contrast magnetic resonance imaging (PC-MRI) on an irregular domain with limited spatial resolution, and includes a filter for the experimental noise. For the pressure calculation, the Poisson pressure equation is solved by embedding the irregular flow domain into a regular domain. To lessen the propagation of the noise inherent to the velocity measurements, three filters - a median filter and two physics-based filters - are evaluated using a 2-D Couette flow. The two physics-based filters outperform the median filter for the estimation of the relative pressure field for realistic signal-to-noise ratios (SNR = 5 to 30). The most accurate pressure field results from a filter that applies in a least-squares sense three constraints simultaneously: consistency between measured and filtered velocity fields, divergence-free and additional smoothness conditions. This filter leads to a 5-fold gain in accuracy for the estimated relative pressure field compared to without noise filtering, in conditions consistent with PC-MRI of the carotid artery: SNR = 5, 20 x 20 discretized flow domain (25 X 25 computational domain).

  5. Controlled assembly of nanoparticle structures: spherical and toroidal superlattices and nanoparticle-coated polymeric beads.

    PubMed

    Isojima, Tatsushi; Suh, Su Kyung; Vander Sande, John B; Hatton, T Alan

    2009-07-21

    The emulsion droplet solvent evaporation method has been used to prepare nanoclusters of monodisperse magnetite nanoparticles of varying morphologies depending on the temperature and rate of solvent evaporation and on the composition (solvent, presence of polymer, nanoparticle concentration, etc.) of the emulsion droplets. In the absence of a polymer, and with increasing solvent evaporation temperatures, the nanoparticles formed single- or multidomain crystalline superlattices, amorphous spherical aggregates, or toroidal clusters, as determined by the energetics and dynamics of the solvent evaporation process. When polymers that are incompatible with the nanoparticle coatings were included in the emulsion formulation, monolayer- and multilayer-coated polymer beads and partially coated Janus beads were prepared; the nanoparticles were expelled by the polymer as its concentration increased on evaporation of the solvent and accumulated on the surfaces of the beads in a well-ordered structure. The precise number of nanoparticle layers depended on the polymer/magnetic nanoparticle ratio in the oil droplet phase parent emulsion. The magnetic nanoparticle superstructures responded to the application of a modest magnetic field by forming regular chains with alignment of nonuniform structures (e.g., toroids and Janus beads) that are in accord with theoretical predictions and with observations in other systems.

  6. FAST TRACK COMMUNICATION: Regularized Kerr-Newman solution as a gravitating soliton

    NASA Astrophysics Data System (ADS)

    Burinskii, Alexander

    2010-10-01

    The charged, spinning and gravitating soliton is realized as a regular solution of the Kerr-Newman (KN) field coupled with a chiral Higgs model. A regular core of the solution is formed by a domain wall bubble interpolating between the external KN solution and a flat superconducting interior. An internal electromagnetic (em) field is expelled to the boundary of the bubble by the Higgs field. The solution reveals two new peculiarities: (i) the Higgs field is oscillating, similar to the known oscillon models; (ii) the em field forms on the edge of the bubble a Wilson loop, resulting in quantization of the total angular momentum.

  7. Numerical Calculation of Non-uniform Magnetization Using Experimental Magnetic Field Data

    NASA Astrophysics Data System (ADS)

    Jhun, Bukyoung; Jhun, Youngseok; Kim, Seung-wook; Han, JungHyun

    2018-05-01

    A relation between the distance from the surface of a magnet and the number of cells required for a numerical calculation in order to secure the error below a certain threshold is derived. We also developed a method to obtain the magnetization at each part of the magnet from the experimentally measured magnetic field. This method is applied to three magnets with distinct patterns on magnetic-field-viewing film. Each magnet showed a unique pattern of magnetization. We found that the magnet that shows symmetric magnetization on the magnetic-field-viewing film is not uniformly magnetized. This method can be useful comparing the magnetization between magnets that yield typical magnetic field and those that yield atypical magnetic field.

  8. Rotatable Small Permanent Magnet Array for Ultra-Low Field Nuclear Magnetic Resonance Instrumentation: A Concept Study.

    PubMed

    Vogel, Michael W; Giorni, Andrea; Vegh, Viktor; Pellicer-Guridi, Ruben; Reutens, David C

    2016-01-01

    We studied the feasibility of generating the variable magnetic fields required for ultra-low field nuclear magnetic resonance relaxometry with dynamically adjustable permanent magnets. Our motivation was to substitute traditional electromagnets by distributed permanent magnets, increasing system portability. The finite element method (COMSOL®) was employed for the numerical study of a small permanent magnet array to calculate achievable magnetic field strength, homogeneity, switching time and magnetic forces. A manually operated prototype was simulated and constructed to validate the numerical approach and to verify the generated magnetic field. A concentric small permanent magnet array can be used to generate strong sample pre-polarisation and variable measurement fields for ultra-low field relaxometry via simple prescribed magnet rotations. Using the array, it is possible to achieve a pre-polarisation field strength above 100 mT and variable measurement fields ranging from 20-50 μT with 200 ppm absolute field homogeneity within a field-of-view of 5 x 5 x 5 cubic centimetres. A dynamic small permanent magnet array can generate multiple highly homogeneous magnetic fields required in ultra-low field nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI) instruments. This design can significantly reduce the volume and energy requirements of traditional systems based on electromagnets, improving portability considerably.

  9. Apparatus and method for magnetically processing a specimen

    DOEpatents

    Ludtka, Gerard M; Ludtka, Gail M; Wilgen, John B; Kisner, Roger A; Jaramillo, Roger A

    2013-09-03

    An apparatus for magnetically processing a specimen that couples high field strength magnetic fields with the magnetocaloric effect includes a high field strength magnet capable of generating a magnetic field of at least 1 Tesla and a magnetocaloric insert disposed within a bore of the high field strength magnet. A method for magnetically processing a specimen includes positioning a specimen adjacent to a magnetocaloric insert within a bore of a magnet and applying a high field strength magnetic field of at least 1 Tesla to the specimen and to the magnetocaloric insert. The temperature of the specimen changes during the application of the high field strength magnetic field due to the magnetocaloric effect.

  10. Stable Computation of the Vertical Gradient of Potential Field Data Based on Incorporating the Smoothing Filters

    NASA Astrophysics Data System (ADS)

    Baniamerian, Jamaledin; Liu, Shuang; Abbas, Mahmoud Ahmed

    2018-04-01

    The vertical gradient is an essential tool in interpretation algorithms. It is also the primary enhancement technique to improve the resolution of measured gravity and magnetic field data, since it has higher sensitivity to changes in physical properties (density or susceptibility) of the subsurface structures than the measured field. If the field derivatives are not directly measured with the gradiometers, they can be calculated from the collected gravity or magnetic data using numerical methods such as those based on fast Fourier transform technique. The gradients behave similar to high-pass filters and enhance the short-wavelength anomalies which may be associated with either small-shallow sources or high-frequency noise content in data, and their numerical computation is susceptible to suffer from amplification of noise. This behaviour can adversely affect the stability of the derivatives in the presence of even a small level of the noise and consequently limit their application to interpretation methods. Adding a smoothing term to the conventional formulation of calculating the vertical gradient in Fourier domain can improve the stability of numerical differentiation of the field. In this paper, we propose a strategy in which the overall efficiency of the classical algorithm in Fourier domain is improved by incorporating two different smoothing filters. For smoothing term, a simple qualitative procedure based on the upward continuation of the field to a higher altitude is introduced to estimate the related parameters which are called regularization parameter and cut-off wavenumber in the corresponding filters. The efficiency of these new approaches is validated by computing the first- and second-order derivatives of noise-corrupted synthetic data sets and then comparing the results with the true ones. The filtered and unfiltered vertical gradients are incorporated into the extended Euler deconvolution to estimate the depth and structural index of a magnetic sphere, hence, quantitatively evaluating the methods. In the real case, the described algorithms are used to enhance a portion of aeromagnetic data acquired in Mackenzie Corridor, Northern Mainland, Canada.

  11. Magnetic field reversals in the Milky Way- "cherchez le champ magnetique".

    NASA Astrophysics Data System (ADS)

    Vallee, J. P.

    1996-04-01

    Radio observations of nearby spiral galaxies have tremendously enhanced our knowledge of their global magnetic field distributions. Recent theoretical developments in the area of dynamos have also helped in the interpretation of magnetic field data in spiral galaxies. When it comes to the magnetic field in the Milky Way galaxy, our position in the Milky Way's galactic disk hinders our attempts at interpreting the observational data. This makes the proposition of "cherchez le champ magnetique" a difficult one to follow. Some recent papers have attempted to fit magnetic field models to spiral galaxies, and in particular to the Milky Way galaxy. Magnetic field reversals in the Milky Way are crucial to all interpretations, be they axisymmetric spiral (ASS) or bisymmetric spiral (BSS) global magnetic field models. Magnetic field reversals can be found in both ASS and BSS magnetic field models, not just BSS ones. The axisymmetric spiral (ASS) magnetic field models produced by the dynamo theory already predict magnetic field reversals, and they are of the type observed in the Milky Way. The small number of magnetic field reversals observed in the Milky Way is compatible with the ASS magnetic field models. The bisymmetric spiral (BSS) magnetic field models as applied to the pulsar RM data and to the QSO and galaxies data have many problems, due to the many pitfalls in model fitting the magnetic field reversals observed in the Milky Way. Many pitfalls are discussed here, including the incomplete comparisons of BSS versus ASS models, the number of spiral arms to be used in modelling, and the proper distance to pulsars via the more accurate distribution of thermal electrons within spiral arms. The two magnetic field reversals in our Milky Way are clearly located in the interarm regions. Predicted magnetic field reversals are periodic, while observed ones are not periodic. Magnetic field reversals cannot be masked effectively by local interstellar magnetised shells. The strength and direction of the magnetic field with galactic radius show that the BSS magnetic field models are less suitable to explain the RM data in the Milky Way. The prediction by the BSS magnetic field models of a large number of magnetic field reversals differs from the available observations.

  12. External split field generator

    DOEpatents

    Thundat, Thomas George [Knoxville, TN; Van Neste, Charles W [Kingston, TN; Vass, Arpad Alexander [Oak Ridge, TN

    2012-02-21

    A generator includes a coil disposed about a core. A first stationary magnetic field source may be disposed on a first end portion of the core and a second stationary magnetic field source may be disposed on a second end portion of core. The first and second stationary magnetic field sources apply a stationary magnetic field to the coil. An external magnetic field source may be disposed outside the coil to apply a moving magnetic field to the coil. Electrical energy is generated in response to an interaction between the coil, the moving magnetic field, and the stationary magnetic field.

  13. Effect of frictional heating on radiative ferrofluid flow over a slendering stretching sheet with aligned magnetic field

    NASA Astrophysics Data System (ADS)

    Ramana Reddy, J. V.; Sugunamma, V.; Sandeep, N.

    2017-01-01

    The pivotal objective of this paper is to look into the flow of ferrofluids past a variable thickness surface with velocity slip. Magnetite (Fe3O4 nanoparticles are embedded to the regular fluid. The occurrence of frictional heating in the flow is also taken into account. So the flow equations will be coupled and nonlinear. These are remodelled into dimensionless form with the support of suitable transmutations. The solution of the transformed equations is determined with the support of an effective Runge-Kutta (RK)-based shooting technique. Ultimately, the effects of a few flow modulating quantities on fluid motion and heat transport were explored through plots which are procured using the MATLAB tool box. Owing to the engineering applications, we also calculated the friction factor and the heat transfer coefficient for the influencing parameters. The results are presented comparatively for both regular fluid (water) and water-based ferrofluid. This study enables us to deduce that inflation in the aligned angle or surface thickness reduces the fluid velocity. The radiation and dissipation parameters are capable of providing heat energy to the flow.

  14. Cross correlation and time-lag between cosmic ray intensity and solar activity during solar cycles 21, 22 and 23

    NASA Astrophysics Data System (ADS)

    Sierra-Porta, D.

    2018-07-01

    In the present paper a systematic study is carried out to validate the similarity or co-variability between daily terrestrial cosmic-ray intensity and three parameters of the solar corona evolution, i.e., the number of sunspots and flare index observed in the solar corona and the Ap index for regular magnetic field variations caused by regular solar radiation changes. The study is made for a period including three solar cycles starting with cycle 21 (year 1976) and ending on cycle 23 (year 2008). A cross-correlation analysis was used to establish patterns and dependence of the variables. This study focused on the time lag calculation for these variables and found a maximum of negative correlation over CC1≈ 0.85, CC2≈ 0.75 and CC3≈ 0.63 with an estimation of 181, 156 and 2 days of deviation between maximum/minimum of peaks for the intensity of cosmic rays related with sunspot number, flare index and Ap index regression, respectively.

  15. Internal split field generator

    DOEpatents

    Thundat,; George, Thomas [Knoxville, TN; Van Neste, Charles W [Kingston, TN; Vass, Arpad Alexander [Oak Ridge, TN

    2012-01-03

    A generator includes a coil of conductive material. A stationary magnetic field source applies a stationary magnetic field to the coil. An internal magnetic field source is disposed within a cavity of the coil to apply a moving magnetic field to the coil. The stationary magnetic field interacts with the moving magnetic field to generate an electrical energy in the coil.

  16. Rotatable Small Permanent Magnet Array for Ultra-Low Field Nuclear Magnetic Resonance Instrumentation: A Concept Study

    PubMed Central

    Vegh, Viktor; Reutens, David C.

    2016-01-01

    Object We studied the feasibility of generating the variable magnetic fields required for ultra-low field nuclear magnetic resonance relaxometry with dynamically adjustable permanent magnets. Our motivation was to substitute traditional electromagnets by distributed permanent magnets, increasing system portability. Materials and Methods The finite element method (COMSOL®) was employed for the numerical study of a small permanent magnet array to calculate achievable magnetic field strength, homogeneity, switching time and magnetic forces. A manually operated prototype was simulated and constructed to validate the numerical approach and to verify the generated magnetic field. Results A concentric small permanent magnet array can be used to generate strong sample pre-polarisation and variable measurement fields for ultra-low field relaxometry via simple prescribed magnet rotations. Using the array, it is possible to achieve a pre-polarisation field strength above 100 mT and variable measurement fields ranging from 20–50 μT with 200 ppm absolute field homogeneity within a field-of-view of 5 x 5 x 5 cubic centimetres. Conclusions A dynamic small permanent magnet array can generate multiple highly homogeneous magnetic fields required in ultra-low field nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI) instruments. This design can significantly reduce the volume and energy requirements of traditional systems based on electromagnets, improving portability considerably. PMID:27271886

  17. A new ring-shape high-temperature superconducting trapped-field magnet

    NASA Astrophysics Data System (ADS)

    Sheng, Jie; Zhang, Min; Wang, Yawei; Li, Xiaojian; Patel, Jay; Yuan, Weijia

    2017-09-01

    This paper presents a new trapped-field magnet made of second-generation high-temperature superconducting (2G HTS) rings. This so-called ring-shape 2G HTS magnet has the potential to provide much stronger magnetic fields relative to existing permanent magnets. Compared to existing 2G HTS trapped- field magnets, e.g. 2G HTS bulks and stacks, this new ring-shape 2G HTS magnet is more flexible in size and can be made into magnets with large dimensions for industrial applications. Effective magnetization is the key to being able to use trapped-field magnets. Therefore, this paper focuses on the magnetization mechanism of this new magnet using both experimental and numerical methods. Unique features have been identified and quantified for this new type of HTS magnet in the field cooling and zero field cooling process. The magnetization mechanism can be understood by the interaction between shielding currents and the penetration of external magnetic fields. An accumulation in the trapped field was observed by using multiple pulse field cooling. Three types of demagnetization were studied to measure the trapped-field decay for practical applications. Our results show that this new ring-shape HTS magnet is very promising in the trapping of a high magnetic field. As a super-permanent magnet, it will have a significant impact on large-scale industrial applications, e.g. the development of HTS machines with a very high power density and HTS magnetic resonance imaging devices.

  18. Magnetic field effect in organic films and devices

    NASA Astrophysics Data System (ADS)

    Gautam, Bhoj Raj

    In this work, we focused on the magnetic field effect in organic films and devices, including organic light emitting diodes (OLEDs) and organic photovoltaic (OPV) cells. We measured magnetic field effect (MFE) such as magnetoconductance (MC) and magneto-electroluminescence (MEL) in OLEDs based on several pi- conjugated polymers and small molecules for fields |B|<100 mT. We found that both MC(B) and MEL(B) responses in bipolar devices and MC(B) response in unipolar devices are composed of two B-regions: (i) an 'ultra-small' region at |B| < 1-2 mT, and (ii) a monotonic response region at |B| >˜2mT. Magnetic field effect (MFE) measured on three isotopes of Poly (dioctyloxy) phenylenevinylene (DOO-PPV) showed that both regular and ultra-small effects are isotope dependent. This indicates that MFE response in OLED is mainly due to the hyperfine interaction (HFI). We also performed spectroscopy of the MFE including magneto-photoinduced absorption (MPA) and magneto-photoluminescence (MPL) at steady state conditions in several systems. This includes pristine Poly[2-methoxy-5-(2-ethylhexyl-oxy)-1,4-phenylene-vinylene] (MEH-PPV) films, MEH-PPV films subjected to prolonged illumination, and MEH-PPV/[6,6]-Phenyl C61 butyric acid methyl ester (PCBM) blend, as well as annealed and pristine C60 thin films. For comparison, we also measured MC and MEL in organic diodes based on the same materials. By directly comparing the MPA and MPL responses in films to MC and MEL in organic diodes based on the same active layers, we are able to relate the MFE in organic diodes to the spin densities of the excitations formed in the device, regardless of whether they are formed by photon absorption or carrier injection from the electrodes. We also studied magneto-photocurrent (MPC) and power conversion efficiency (PCE) of a 'standard' Poly (3-hexylthiophene)/PCBM device at various Galvinoxyl radical wt%. We found that the MPC reduction with Galvinoxyl wt% follows the same trend as that of the PCE enhancement. In addition, we also measured the MPC response of a series of OPV cells. We attribute the observed broad MPC to short-lived charge transfer complex species, where spin mixing is caused by the difference, Deltag of the donor/acceptor g factors; whereas narrow MPC is due to HFI within long-lived polaron-pairs.

  19. LCS-1: a high-resolution global model of the lithospheric magnetic field derived from CHAMP and Swarm satellite observations

    NASA Astrophysics Data System (ADS)

    Olsen, Nils; Ravat, Dhananjay; Finlay, Christopher C.; Kother, Livia K.

    2017-12-01

    We derive a new model, named LCS-1, of Earth's lithospheric field based on four years (2006 September-2010 September) of magnetic observations taken by the CHAMP satellite at altitudes lower than 350 km, as well as almost three years (2014 April-2016 December) of measurements taken by the two lower Swarm satellites Alpha and Charlie. The model is determined entirely from magnetic 'gradient' data (approximated by finite differences): the north-south gradient is approximated by first differences of 15 s along-track data (for CHAMP and each of the two Swarm satellites), while the east-west gradient is approximated by the difference between observations taken by Swarm Alpha and Charlie. In total, we used 6.2 mio data points. The model is parametrized by 35 000 equivalent point sources located on an almost equal-area grid at a depth of 100 km below the surface (WGS84 ellipsoid). The amplitudes of these point sources are determined by minimizing the misfit to the magnetic satellite 'gradient' data together with the global average of |Br| at the ellipsoid surface (i.e. applying an L1 model regularization of Br). In a final step, we transform the point-source representation to a spherical harmonic expansion. The model shows very good agreement with previous satellite-derived lithospheric field models at low degree (degree correlation above 0.8 for degrees n ≤ 133). Comparison with independent near-surface aeromagnetic data from Australia yields good agreement (coherence >0.55) at horizontal wavelengths down to at least 250 km, corresponding to spherical harmonic degree n ≈ 160. The LCS-1 vertical component and field intensity anomaly maps at Earth's surface show similar features to those exhibited by the WDMAM2 and EMM2015 lithospheric field models truncated at degree 185 in regions where they include near-surface data and provide unprecedented detail where they do not. Example regions of improvement include the Bangui anomaly region in central Africa, the west African cratons, the East African Rift region, the Bay of Bengal, the southern 90°E ridge, the Cretaceous quiet zone south of the Walvis Ridge and the younger parts of the South Atlantic.

  20. Singularity of the time-energy uncertainty in adiabatic perturbation and cycloids on a Bloch sphere

    PubMed Central

    Oh, Sangchul; Hu, Xuedong; Nori, Franco; Kais, Sabre

    2016-01-01

    Adiabatic perturbation is shown to be singular from the exact solution of a spin-1/2 particle in a uniformly rotating magnetic field. Due to a non-adiabatic effect, its quantum trajectory on a Bloch sphere is a cycloid traced by a circle rolling along an adiabatic path. As the magnetic field rotates more and more slowly, the time-energy uncertainty, proportional to the length of the quantum trajectory, calculated by the exact solution is entirely different from the one obtained by the adiabatic path traced by the instantaneous eigenstate. However, the non-adiabatic Aharonov- Anandan geometric phase, measured by the area enclosed by the exact path, approaches smoothly the adiabatic Berry phase, proportional to the area enclosed by the adiabatic path. The singular limit of the time-energy uncertainty and the regular limit of the geometric phase are associated with the arc length and arc area of the cycloid on a Bloch sphere, respectively. Prolate and curtate cycloids are also traced by different initial states outside and inside of the rolling circle, respectively. The axis trajectory of the rolling circle, parallel to the adiabatic path, is shown to be an example of transitionless driving. The non-adiabatic resonance is visualized by the number of cycloid arcs. PMID:26916031

  1. On the origin of the 1-hour pulsations in the Saturn's magnetosphere

    NASA Astrophysics Data System (ADS)

    Rusaitis, L.; Walker, R. J.; Khurana, K. K.; Kivelson, M.

    2016-12-01

    The quasi-periodic pulsations of approximately 1-hour periodicity in the magnetic field and particle fluxes have been regularly detected in the outer Saturnian magnetosphere by the Cassini spacecraft since the orbital insertion in 2004 [Palmaerts, 2016; Roussos, 2016]. In this study we focus on the Cassini's magnetometer (MAG) and the Cassini Plasma Spectrometer (CAPS) data from the July 1st, 2004 to June 4th, 2012 (when the CAPS instrument was turned off). Throughout this 8-year period we find over 130 pulsation events in the MAG data, ranging in periodicity from 40 to 90 minutes, and having a typical amplitude of 0.5-1nT in the transverse (φ ) direction. The pulsations typically last 4-6 hours before decaying, and occur both in the dawn and dusk sectors during the crossings of the outer magnetosphere. We study the pulsations in the azimuthal magnetic field as signatures for the periodic enhancements detected in the CAPS data in the plasma temperature and densities. Additionally, we investigate a high temporal resolution 3-D MHD simulation of Saturn's magnetosphere to look for the signatures of these pulsations at the equivalent positions, and use the simulation results to suggest their physical origin and the triggering mechanism by varying the solar wind parameters.

  2. Van Hove singularities in the paramagnetic phase of the Hubbard model: DMFT study

    NASA Astrophysics Data System (ADS)

    Žitko, Rok; Bonča, Janez; Pruschke, Thomas

    2009-12-01

    Using the dynamical mean-field theory (DMFT) with the numerical renormalization-group impurity solver we study the paramagnetic phase of the Hubbard model with the density of states (DOS) corresponding to the three-dimensional (3D) cubic lattice and the two-dimensional (2D) square lattice, as well as a DOS with inverse square-root singularity. We show that the electron correlations rapidly smooth out the square-root van Hove singularities (kinks) in the spectral function for the 3D lattice and that the Mott metal-insulator transition (MIT) as well as the magnetic-field-induced MIT differ only little from the well-known results for the Bethe lattice. The consequences of the logarithmic singularity in the DOS for the 2D lattice are more dramatic. At half filling, the divergence pinned at the Fermi level is not washed out, only its integrated weight decreases as the interaction is increased. While the Mott transition is still of the usual kind, the magnetic-field-induced MIT falls into a different universality class as there is no field-induced localization of quasiparticles. In the case of a power-law singularity in the DOS at the Fermi level, the power-law singularity persists in the presence of interaction, albeit with a different exponent, and the effective impurity model in the DMFT turns out to be a pseudogap Anderson impurity model with a hybridization function which vanishes at the Fermi level. The system is then a generalized Fermi liquid. At finite doping, regular Fermi-liquid behavior is recovered.

  3. Porous Silicon—A Versatile Host Material

    PubMed Central

    Granitzer, Petra; Rumpf, Klemens

    2010-01-01

    This work reviews the use of porous silicon (PS) as a nanomaterial which is extensively investigated and utilized for various applications, e.g., in the fields of optics, sensor technology and biomedicine. Furthermore the combination of PS with one or more materials which are also nanostructured due to their deposition within the porous matrix is discussed. Such nanocompounds offer a broad avenue of new and interesting properties depending on the kind of involved materials as well as on their morphology. The filling of the pores performed by electroless or electrochemical deposition is described, whereas different morphologies, reaching from micro- to macro pores are utilized as host material which can be self-organized or fabricated by prestructuring. For metal-deposition within the porous structures, both ferromagnetic and non-magnetic metals are used. Emphasis will be put on self-arranged mesoporous silicon, offering a quasi-regular pore arrangement, employed as template for filling with ferromagnetic metals. By varying the deposition parameters the precipitation of the metal structures within the pores can be tuned in geometry and spatial distribution leading to samples with desired magnetic properties. The correlation between morphology and magnetic behaviour of such semiconducting/magnetic systems will be determined. Porous silicon and its combination with a variety of filling materials leads to nanocomposites with specific physical properties caused by the nanometric size and give rise to a multiplicity of potential applications in spintronics, magnetic and magneto-optic devices, nutritional food additives as well as drug delivery.

  4. FOREWORD: Focus on Materials Analysis and Processing in Magnetic Fields Focus on Materials Analysis and Processing in Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Sakka, Yoshio; Hirota, Noriyuki; Horii, Shigeru; Ando, Tsutomu

    2009-03-01

    Recently, interest in the applications of feeble (diamagnetic and paramagnetic) magnetic materials has grown, whereas the popularity of ferromagnetic materials remains steady and high. This trend is due to the progress of superconducting magnet technology, particularly liquid-helium-free superconducting magnets that can generate magnetic fields of 10 T and higher. As the magnetic energy is proportional to the square of the applied magnetic field, the magnetic energy of such 10 T magnets is in excess of 10 000 times that of conventional 0.1 T permanent magnets. Consequently, many interesting phenomena have been observed over the last decade, such as the Moses effect, magnetic levitation and the alignment of feeble magnetic materials. Researchers in this area are widely spread around the world, but their number in Japan is relatively high, which might explain the success of magnetic field science and technology in Japan. Processing in magnetic fields is a rapidly expanding research area with a wide range of promising applications in materials science. The 3rd International Workshop on Materials Analysis and Processing in Magnetic Fields (MAP3), which was held on 14-16 May 2008 at the University of Tokyo, Japan, focused on various topics including magnetic field effects on chemical, physical, biological, electrochemical, thermodynamic and hydrodynamic phenomena; magnetic field effects on the crystal growth and processing of materials; diamagnetic levitation, the magneto-Archimedes effect, spin chemistry, magnetic orientation, control of structure by magnetic fields, magnetic separation and purification, magnetic-field-induced phase transitions, properties of materials in high magnetic fields, the development of NMR and MRI, medical applications of magnetic fields, novel magnetic phenomena, physical property measurement by magnetic fields, and the generation of high magnetic fields. This focus issue compiles 13 key papers selected from the proceedings of MAP3. Other papers of the proceedings are published in Journal of Physics: Conference Series. Tournier and Beaugnon review experimental texturing in metallic melts by cooling in magnetic fields, which is modeled in detail in a study by Tournier. Wang et al provide further experimental results on the solidification of Mn-90.4 wt % Sb alloy in magnetic fields. The orientations of grains and particles induced by magnetic fields is reported by Horii et al (rare-earth-doped cuprates), Tanaka et al (barium-bismuth titanate ceramics), Liu and Schwartz (Bi2Sr2CaCu2Ox/AgMg wires) and Tsuda and Sakka (carbon nanotubes). Gielen et al present a model of how to quantify a molecular alignment using magnetic birefringence, and Ando et al simulate the movement of feeble particles in magnetic fields. Hirota et al report the experimental control of the lattice constant in a triangular lattice of feeble magnetic particles. The size separation of diamagnetic particles by magnetic fields is experimentally studied by Tarn et al and theoretically studied by Fukui et al. A setup measuring x-ray diffraction patterns in magnetic fields up to 5 T and temperatures above 200 oC has been developed by Mitsui et al. We hope that this focus issue will help readers to understand several aspects of materials analysis and processing in magnetic fields at the frontier of the science.

  5. ELECTRODYNAMIC CORRECTIONS TO MAGNETIC MOMENT OF ELECTRON

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ulehla, I.

    1960-01-01

    Values obtained for fourth-order corrections to the magnetic moment of the electron were compared and recalculated. The regularizsion for small momenta was modified so that each diverging integral was regularized by expanding the denominator by an infinitely small part. The value obtained for the magnetic moment, mu = mu /sub o/ (1 + alpha /2 pi - 0.328 alpha /sup 2// pi /sup 2/, agreed with that of Petermann. (M.C.G.)

  6. Magnetic field sensor for isotropically sensing an incident magnetic field in a sensor plane

    NASA Technical Reports Server (NTRS)

    Pant, Bharat B. (Inventor); Wan, Hong (Inventor)

    2001-01-01

    A magnetic field sensor that isotropically senses an incident magnetic field. This is preferably accomplished by providing a magnetic field sensor device that has one or more circular shaped magnetoresistive sensor elements for sensing the incident magnetic field. The magnetoresistive material used is preferably isotropic, and may be a CMR material or some form of a GMR material. Because the sensor elements are circular in shape, shape anisotropy is eliminated. Thus, the resulting magnetic field sensor device provides an output that is relatively independent of the direction of the incident magnetic field in the sensor plane.

  7. Magnetic field mediated conductance oscillation in graphene p–n junctions

    NASA Astrophysics Data System (ADS)

    Cheng, Shu-Guang

    2018-04-01

    The electronic transport of graphene p–n junctions under perpendicular magnetic field is investigated in theory. Under low magnetic field, the transport is determined by the resonant tunneling of Landau levels and conductance versus magnetic field shows a Shubnikov–de Haas oscillation. At higher magnetic field, the p–n junction subjected to the quasi-classical regime and the formation of snake states results in periodical backscattering and transmission as magnetic field varies. The conductance oscillation pattern is mediated both by magnetic field and the carrier concentration on bipolar regions. For medium magnetic field between above two regimes, the combined contributions of resonant tunneling, snake states oscillation and Aharanov–Bohm interference induce irregular oscillation of conductance. At very high magnetic field, the system is subjected to quantum Hall regime. Under disorder, the quantum tunneling at low magnetic field is slightly affected and the oscillation of snake states at higher magnetic field is suppressed. In the quantum Hall regime, the conductance is a constant as predicted by the mixture rule.

  8. Effect of sample initial magnetic field on the metal magnetic memory NDT result

    NASA Astrophysics Data System (ADS)

    Moonesan, Mahdi; Kashefi, Mehrdad

    2018-08-01

    One of the major concerns regarding the use of Metal Magnetic Memory (MMM) technique is the complexity of residual magnetization effect on output signals. The present study investigates the influence of residual magnetic field on stress induced magnetization. To this end, various initial magnetic fields were induced on a low carbon steel sample, and for each level of residual magnetic field, the sample was subjected to a set of 4-point bending tests and, their corresponding MMM signals were collected from the surface of the bended sample using a tailored metal magnetic memory scanning device. Results showed a strong correlation between sample residual magnetic field and its corresponding level of stress induced magnetic field. It was observed that the sample magnetic field increases with applying the bending stress as long as the initial residual magnet field is low (i.e. <117 mG), but starts decreasing with higher levels of initial residual magnetic fields. Besides, effect of bending stress on the MMM output of a notched sample was investigated. The result, again, showed that MMM signals exhibit a drop at stress concentration zone when sample has high level of initial residual magnetic field.

  9. Dielectrophoresis-magnetophoresis force driven magnetic nanoparticle movement in transformer oil based magnetic fluids.

    PubMed

    Lee, Jong-Chul; Lee, Sangyoup

    2013-09-01

    Magnetic fluid is a stable colloidal mixture contained magnetic nanoparticles coated with a surfactant. Recently, it was found that the fluid has properties to increase heat transfer and dielectric characteristics due to the added magnetic nanoparticles in transformer oils. The magnetic nanoparticles in the fluid experience an electrical force directed toward the place of maximum electric field strength when the electric field is applied. And when the external magnetic field is applied, the magnetic nanoparticles form long chains oriented along the direction of the field. The behaviors of magnetic nanoparticles in both the fields must play an important role in changing the heat transfer and dielectric characteristics of the fluids. In this study, we visualized the movement of magnetic nanoparticles influenced by both the fields applied in-situ. It was found that the magnetic nanoparticles travel in the region near the electrode by the electric field and form long chains along the field direction by the magnetic field. It can be inferred that the movement of magnetic nanoparticles appears by both the fields, and the breakdown voltage of transformer oil based magnetic fluids might be influenced according to the dispersion of magnetic nanoparticles.

  10. Magnetism of soils applied for estimation of erosion at an agricultural land

    NASA Astrophysics Data System (ADS)

    Kapicka, Ales; Dlouha, Sarka; Grison, Hana; Jaksik, Ondrej; Kodesova, Radka; Petrovsky, Eduard

    2013-04-01

    A detailed field study on small test site of agricultural land situated in loess region in Southern Moravia (Czech Republic), followed by laboratory analyses, has been carried out in order to test the applicability of magnetic methods in soil erosion estimation. The approach is based on the well-established differentiation in magnetic signature of topsoil from subsoil horizons as a result of "in situ" formation of strongly magnetic iron oxides e.g. (Maher 1986). Introducing a simple tillage homogenization model for predicting magnetic signal after uniform mixing of soil material as a result of tillage and subsequent erosion, Royall (2001) showed that magnetic susceptibility and its frequency dependence can be used to estimate soil loss. Haplic Chernozem is an original dominant soil unit in the wider area, nowadays progressively transformed into different soil units along with intensive soil erosion. The site was characterized by a flat upper part while the middle part, formed by a substantive side valley, is steeper (up to 15°). The side valley represented a major line of concentrated runoff emptying into a colluvial fan (Zadorova et al., 2011; Jaksik et al., 2011). Field measurements of magnetic susceptibility were carried out on regular grid, resulting in 101 data points. Bulk soil material for laboratory investigation was gathered from all grid points. Mass specific magnetic susceptibility χ and its frequency dependence kFD was used to estimate the significance of SP ferrimagnetic particles of pedogenic origin. Thermomagnetic analyses, hysteresis measurement and SEM were used in order to determine dominant ferrimagnetic carriers in top-soil and sub-soil layers. Strong correlation was found between the volume magnetic susceptibility (field measurement) and mass specific magnetic susceptibility measured in the laboratory (R2 = 0.80). At the same time, no correlations were found between the values of kFD and mass specific susceptibility. Values of organic carbon content, pHKCl and magnetic susceptibly are spatially distributed depending on terrain position. Higher values of magnetic susceptibly and organic carbon content were measured at the flat upper part (where the original top horizon remained). The lowest values of organic carbon content and magnetic susceptibly were obtained on the steep valley sides. Here the original topsoil was eroded and mixed by tillage with the soil substrate (loess). Regression analysis showed positive correlation between the organic carbon content and volume magnetic susceptibility (R2= 0.89). Vertical distribution of magnetic susceptibility along the selected transect was measured using SM400 soil kappameter (Petrovský et al., 2004). Differences between susceptibility values in undisturbed soil profiles and magnetic signal after uniform mixing of soil material as a result of tillage and erosion are fundamental for estimation of soil loss in studied test field. Acknowledgement: This study was supported by NAZV Agency of the Ministry of Agriculture of the Czech Republic through grant No QJ1230319. References. Jakšík, O., Kodešová, R., Stehlíková, I., Kapička, A. (2011). Mapování změn půdních vlastností v důsledku eroze. In: Sb. Konf. Hydrologie malého povodí 2011, (M. Šír, M. Tesař, Eds.), 183-188. Maher, B. (1986). Characterization of soils by mineral magnetic measurements. Phys Earth Planet. Int. 42, 76-92. Petrovský, E., Hůlka, Z., Kapička, A. (2004). A new tool for in situ measurements of the vertical distribution of magnetic susceptibility in soils as basis for mapping deposited dust. Environ. Tech., 25, 1021-1029. Royall, D. (2001). Use of mineral magnetic measurements to investigate soil erosion and sediment delivery in a small agricultural catchment in limestone terrain. Catena 46, 15-34. Zadorova, T., Penizek, V., Sefrna, L., Rohoskova, M., Boruvka, L. (2011). Spatial delineation of organic carbon-rich Colluvial soils in Chernozem regions by Terrain analysis and fuzzy classification, Catena, 85, 22-33

  11. Magnetic reconnection in terms of catastrophe theory

    NASA Astrophysics Data System (ADS)

    Echkina, E. Y.; Inovenkov, I. N.; Nefedov, V. V.

    2017-12-01

    Magnetic field line reconnection (magnetic reconnection) is a phenomenon that occurs in space and laboratory plasma. Magnetic reconnection allows both the change the magnetic topology and the conversion of the magnetic energy into energy of fast particles. The critical point (critical line or plane in higher dimensional cases) of the magnetic field play an important role in process of magnetic reconnection, as in its neighborhood occurs a change of its topology of a magnetic field and redistribution of magnetic field energy. A lot of literature is devoted to the analytical and numerical investigation of the reconnection process. The main result of these investigations as the result of magnetic reconnection the current sheet is formed and the magnetic topology is changed. While the studies of magnetic reconnection in 2D and 3D configurations have a led to several important results, many questions remain open, including the behavior of a magnetic field in the neighborhood of a critical point of high order. The magnetic reconnection problem is closely related to the problem of the structural stability of vector fields. Since the magnetic field topology changes during both spontaneous and induced magnetic reconnection, it is natural to expect that the magnetic field should evolve from a structurally unstable into a structurally stable configuration. Note that, in this case, the phenomenon under analysis is more complicated since, during magnetic reconnection in a highly conducting plasma, we deal with the non-linear interaction between two vector fields: the magnetic field and the field of the plasma velocities. The aim of our article is to consider the process of magnetic reconnection and transformation of the magnetic topology from the viewpoint of catastrophe theory. Bifurcations in similar configurations (2D magnetic configuration with null high order point) with varying parameters were thoroughly discussed in a monograph by Poston and Stewart.

  12. Precision measurement of magnetic characteristics of an article with nullification of external magnetic fields

    NASA Technical Reports Server (NTRS)

    Honess, Shawn B. (Inventor); Narvaez, Pablo (Inventor); Mcauley, James M. (Inventor)

    1992-01-01

    An apparatus for characterizing the magnetic field of a device under test is discussed. The apparatus is comprised of five separate devices: (1) a device for nullifying the ambient magnetic fields in a test environment area with a constant applied magnetic field; (2) a device for rotating the device under test in the test environment area; (3) a device for sensing the magnetic field (to obtain a profile of the magnetic field) at a sensor location which is along the circumference of rotation; (4) a memory for storing the profiles; and (5) a processor coupled to the memory for characterizing the magnetic field of the device from the magnetic field profiles thus obtained.

  13. Cosmic Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Sánchez Almeida, J.; Martínez González, M. J.

    2018-05-01

    Magnetic fields play an important role in many astrophysical processes. They are difficult to detect and characterize since often their properties have to be inferred through interpreting the polarization of the light. Magnetic fields are also challenging to model and understand. Magnetized plasmas behave following highly non-linear differential equations having no general solution, so that every astrophysical problem represents a special case to be studied independently. Hence, magnetic fields are often an inconvenient subject which is overlooked or simply neglected (the elephant in the room, as they are dubbed in poster of the school). Such difficulty burdens the research on magnetic fields, which has evolved to become a very technical subject, with many small disconnected communities studying specific aspects and details. The school tried to amend the situation by providing a unifying view of the subject. The students had a chance to understand the behavior of magnetic fields in all astrophysical contexts, from cosmology to the Sun, and from starbursts to AGNs. The school was planed to present a balanced yet complete review of our knowledge, with excursions into the unknown to point out present and future lines of research. The subject of Cosmic Magnetic Fields was split into seven different topics: cosmic magnetic field essentials, solar magnetic fields, stellar magnetic fields, the role of magnetic fields on AGN feedback, magnetic fields in galaxies, magnetic fields in galaxy clusters and at larger scales, and primordial magnetic fields and magnetic fields in the early Universe. The corresponding lectures were delivered by seven well known and experienced scientists that have played key roles in the major advances of the field during the last years: F. Cattaneo, P. Judge, O. Kochukhov, R. Keppens, R. Beck, K. Dolag, and F. Finelli. Their lectures were recorded and are freely available at the IAC website: http://iactalks.iac.es/talks/serie/19.

  14. Improvements in GRACE Gravity Fields Using Regularization

    NASA Astrophysics Data System (ADS)

    Save, H.; Bettadpur, S.; Tapley, B. D.

    2008-12-01

    The unconstrained global gravity field models derived from GRACE are susceptible to systematic errors that show up as broad "stripes" aligned in a North-South direction on the global maps of mass flux. These errors are believed to be a consequence of both systematic and random errors in the data that are amplified by the nature of the gravity field inverse problem. These errors impede scientific exploitation of the GRACE data products, and limit the realizable spatial resolution of the GRACE global gravity fields in certain regions. We use regularization techniques to reduce these "stripe" errors in the gravity field products. The regularization criteria are designed such that there is no attenuation of the signal and that the solutions fit the observations as well as an unconstrained solution. We have used a computationally inexpensive method, normally referred to as "L-ribbon", to find the regularization parameter. This paper discusses the characteristics and statistics of a 5-year time-series of regularized gravity field solutions. The solutions show markedly reduced stripes, are of uniformly good quality over time, and leave little or no systematic observation residuals, which is a frequent consequence of signal suppression from regularization. Up to degree 14, the signal in regularized solution shows correlation greater than 0.8 with the un-regularized CSR Release-04 solutions. Signals from large-amplitude and small-spatial extent events - such as the Great Sumatra Andaman Earthquake of 2004 - are visible in the global solutions without using special post-facto error reduction techniques employed previously in the literature. Hydrological signals as small as 5 cm water-layer equivalent in the small river basins, like Indus and Nile for example, are clearly evident, in contrast to noisy estimates from RL04. The residual variability over the oceans relative to a seasonal fit is small except at higher latitudes, and is evident without the need for de-striping or spatial smoothing.

  15. Behavioral evidence for a magnetic sense in the oriental armyworm, Mythimna separata

    PubMed Central

    Xu, Jingjing; Zhang, Yingchao; Li, Yue; Wan, Guijun; Chen, Fajun; Sword, Gregory A.; Pan, Weidong

    2017-01-01

    ABSTRACT Progress has been made in understanding the mechanisms underlying directional navigation in migratory insects, yet the magnetic compass involved has not been fully elucidated. Here we developed a flight simulation system to study the flight directionality of the migratory armyworm Mythimna separata in response to magnetic fields. Armyworm moths were exposed to either a 500 nT extreme weak magnetic field, 1.8 T strong magnetic field, or a deflecting magnetic field and subjected to tethered flight trials indoors in the dark. The moths were disoriented in the extreme weak magnetic field, with flight vectors that were more dispersed (variance=0.60) than in the geomagnetic field (variance=0.32). After exposure to a 1.8 T strong magnetic field, the mean flight vectors were shifted by about 105° in comparison with those in the geomagnetic field. In the deflecting magnetic field, the flight directions varied with the direction of the magnetic field, and also pointed to the same direction of the magnetic field. In the south-north magnetic field and the east-west field, the flight angles were determined to be 98.9° and 166.3°, respectively, and formed the included angles of 12.66° or 6.19° to the corresponding magnetic direction. The armyworm moths responded to the change of the intensity and direction of magnetic fields. Such results provide initial indications of the moth reliance on a magnetic compass. The findings support the hypothesis of a magnetic sense used for flight orientation in the armyworm Mythimna separata. PMID:28126710

  16. An improved current potential method for fast computation of stellarator coil shapes

    NASA Astrophysics Data System (ADS)

    Landreman, Matt

    2017-04-01

    Several fast methods for computing stellarator coil shapes are compared, including the classical NESCOIL procedure (Merkel 1987 Nucl. Fusion 27 867), its generalization using truncated singular value decomposition, and a Tikhonov regularization approach we call REGCOIL in which the squared current density is included in the objective function. Considering W7-X and NCSX geometries, and for any desired level of regularization, we find the REGCOIL approach simultaneously achieves lower surface-averaged and maximum values of both current density (on the coil winding surface) and normal magnetic field (on the desired plasma surface). This approach therefore can simultaneously improve the free-boundary reconstruction of the target plasma shape while substantially increasing the minimum distances between coils, preventing collisions between coils while improving access for ports and maintenance. The REGCOIL method also allows finer control over the level of regularization, it preserves convexity to ensure the local optimum found is the global optimum, and it eliminates two pathologies of NESCOIL: the resulting coil shapes become independent of the arbitrary choice of angles used to parameterize the coil surface, and the resulting coil shapes converge rather than diverge as Fourier resolution is increased. We therefore contend that REGCOIL should be used instead of NESCOIL for applications in which a fast and robust method for coil calculation is needed, such as when targeting coil complexity in fixed-boundary plasma optimization, or for scoping new stellarator geometries.

  17. Dirac-Born-Infeld actions and tachyon monopoles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Calo, Vincenzo; Tallarita, Gianni; Thomas, Steven

    2010-04-15

    We investigate magnetic monopole solutions of the non-Abelian Dirac-Born-Infeld (DBI) action describing two coincident non-BPS D9-branes in flat space. Just as in the case of kink and vortex solitonic tachyon solutions of the full DBI non-BPS actions, as previously analyzed by Sen, these monopole configurations are singular in the first instance and require regularization. We discuss a suitable non-Abelian ansatz that describes a pointlike magnetic monopole and show it solves the equations of motion to leading order in the regularization parameter. Fluctuations are studied and shown to describe a codimension three BPS D6-brane, and a formula is derived for itsmore » tension.« less

  18. Indoor Positioning System Using Magnetic Field Map Navigation and an Encoder System

    PubMed Central

    Kim, Han-Sol; Seo, Woojin; Baek, Kwang-Ryul

    2017-01-01

    In the indoor environment, variation of the magnetic field is caused by building structures, and magnetic field map navigation is based on this feature. In order to estimate position using this navigation, a three-axis magnetic field must be measured at every point to build a magnetic field map. After the magnetic field map is obtained, the position of the mobile robot can be estimated with a likelihood function whereby the measured magnetic field data and the magnetic field map are used. However, if only magnetic field map navigation is used, the estimated position can have large errors. In order to improve performance, we propose a particle filter system that integrates magnetic field map navigation and an encoder system. In this paper, multiple magnetic sensors and three magnetic field maps (a horizontal intensity map, a vertical intensity map, and a direction information map) are used to update the weights of particles. As a result, the proposed system estimates the position and orientation of a mobile robot more accurately than previous systems. Also, when the number of magnetic sensors increases, this paper shows that system performance improves. Finally, experiment results are shown from the proposed system that was implemented and evaluated. PMID:28327513

  19. Indoor Positioning System Using Magnetic Field Map Navigation and an Encoder System.

    PubMed

    Kim, Han-Sol; Seo, Woojin; Baek, Kwang-Ryul

    2017-03-22

    In the indoor environment, variation of the magnetic field is caused by building structures, and magnetic field map navigation is based on this feature. In order to estimate position using this navigation, a three-axis magnetic field must be measured at every point to build a magnetic field map. After the magnetic field map is obtained, the position of the mobile robot can be estimated with a likelihood function whereby the measured magnetic field data and the magnetic field map are used. However, if only magnetic field map navigation is used, the estimated position can have large errors. In order to improve performance, we propose a particle filter system that integrates magnetic field map navigation and an encoder system. In this paper, multiple magnetic sensors and three magnetic field maps (a horizontal intensity map, a vertical intensity map, and a direction information map) are used to update the weights of particles. As a result, the proposed system estimates the position and orientation of a mobile robot more accurately than previous systems. Also, when the number of magnetic sensors increases, this paper shows that system performance improves. Finally, experiment results are shown from the proposed system that was implemented and evaluated.

  20. New directional results and determination of absolute archaeointensity using both the classical Thellier and the multi-specimen procedures for two kilns excavated at Osterietta, Italy

    NASA Astrophysics Data System (ADS)

    Tema, Evdokia; Camps, Pierre; Ferrara, Enzo

    2014-05-01

    A detailed rock-magnetic and archaeomagnetic study has been carried out on two rescue excavation kilns discovered during the works to expand a highway at the location of Osterietta, in Northen Italy. Systematic archaeomagnetic sampling was carried out collecting 15 samples from the first kiln (OSA) and 8 samples from the second kiln (OSB), all of them oriented in situ with a magnetic compass and an inclinometer. Magnetic mineralogy measurements have been carried out in order to determine the main magnetic carrier of the samples and to check their thermal stability. Standard thermal demagnetization procedures have been used to determine the archaeomagnetic direction registered by the bricks during their last firing. Demagnetization results show a very stable characteristic remanent magnetization (ChRM). We averaged the directions for each kiln separately and calculated the statistical parameters assuming a Fisherian distribution. The archaeointensity of both kilns has also been recovered with both the classical Thellier-Thellier method and the multi-specimen procedure (MSP-DSC). During the Thellier experiments, regular partial thermoremanent magnetization checks have been performed and the effect of the anisotropy of the thermoremanent magnetization (TRM) and cooling rate upon TRM intensity acquisition have been investigated in all samples. The multi-specimen procedure was performed with a very fast-heating oven developed at Montpellier (France). The intensity results obtained from both methods have been compared and the full geomagnetic field vector determined for each kiln has been used for archaeomagnetic dating. The obtained results show that the kilns were almost contemporaneous and their last use occurred in the 1750-1850 AD time interval.

  1. Mild hydrothermal crystal growth of new uranium(IV) fluorides, Na3.13Mg1.43U6F30 and Na2.50Mn1.75U6F30: Structures, optical and magnetic properties

    NASA Astrophysics Data System (ADS)

    Yeon, Jeongho; Smith, Mark D.; Tapp, Joshua; Möller, Angela; zur Loye, Hans-Conrad

    2016-04-01

    Two new uranium(IV) fluorides, Na3.13Mg1.43U6F30 (1) and Na2.50Mn1.75U6F30 (2), were synthesized through an in situ mild hydrothermal route, and were structurally characterized by single crystal X-ray diffraction. The compounds exhibit complex crystal structures composed of corner- or edge-shared UF9 and MF6 (M=Mg, Mn) polyhedra, forming hexagonal channels in the three-dimensional framework, in which ordered or disordered divalent metal and sodium atoms reside. The large hexagonal voids contain the nearly regular M(II)F6 octahedra and sodium ions, whereas the small hexagonal cavities include M(II) and sodium ions on a mixed-occupied site. Magnetic susceptibility measurements yielded effective magnetic moments of 8.36 and 11.6 μB for 1 and 2, respectively, confirming the presence and oxidation states of U(IV) and Mn(II). The large negative Weiss constants indicate the spin gap between a triplet and a singlet state in the U(IV). Magnetization data as a function of applied fields revealed that 2 exhibits paramagnetic behavior due to the nonmagnetic singlet ground state of U(IV) at low temperature. UV-vis diffuse reflectance and X-ray photoelectron spectroscopy data were also analyzed.

  2. Magnetic fields for transporting charged beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parzen, G.

    1976-01-01

    The transport of charged particle beams requires magnetic fields that must be shaped correctly and very accurately. During the last 20 years or so, many studies have been made, both analytically and through the use of computer programs, of various magnetic shapes that have proved to be useful. Many of the results for magnetic field shapes can be applied equally well to electric field shapes. A report is given which gathers together the results that have more general significance and would be useful in designing a configuration to produce a desired magnetic field shape. The field shapes studied include themore » fields in dipoles, quadrupoles, sextupoles, octupoles, septum magnets, combined-function magnets, and electrostatic septums. Where possible, empirical formulas are proposed, based on computer and analytical studies and on magnetic field measurements. These empirical formulas are often easier to use than analytical formulas and often include effects that are difficult to compute analytically. In addition, results given in the form of tables and graphs serve as illustrative examples. The field shapes studied include uniform fields produced by window-frame magnets, C-magnets, H-magnets, and cosine magnets; linear fields produced by various types of quadrupoles; quadratic and cubic fields produced by sextupoles and octupoles; combinations of uniform and linear fields; and septum fields with sharp boundaries.« less

  3. Physics of the Solar Active Regions from Radio Observations

    NASA Astrophysics Data System (ADS)

    Gelfreikh, G. B.

    1999-12-01

    Localized increase of the magnetic field observed by routine methods on the photosphere result in the growth of a number of active processes in the solar atmosphere and the heliosphere. These localized regions of increased magnetic field are called active regions (AR). The main processes of transfer, accumulation and release of energy in an AR is, however, out of scope of photospheric observations being essentially a 3D-process and happening either under photosphere or up in the corona. So, to investigate these plasma structures and processes we are bound to use either extrapolation of optical observational methods or observations in EUV, X-rays and radio. In this review, we stress and illustrate the input to the problem gained from radio astronomical methods and discuss possible future development of their applicatications. Historically speaking each new step in developing radio technique of observations resulted in detecting some new physics of ARs. The most significant progress in the last few years in radio diagnostics of the plasma structures of magnetospheres of the solar ARs is connected with the developing of the 2D full disk analysis on regular basis made at Nobeyama and detailed multichannel spectral-polarization (but one-dimensional and one per day) solar observations at the RATAN-600. In this report the bulk of attention is paid to the new approach to the study of solar activity gained with the Nobeyama radioheliograph and analyzing the ways for future progress. The most important new features of the multicomponent radio sources of the ARs studied using Nobeyama radioheliograph are as follow: 1. The analysis of magnetic field structures in solar corona above sunspot with 2000 G. Their temporal evolution and fluctuations with the periods around 3 and 5 minutes, due to MHD-waves in sunspot magnetic tubes and surrounding plasma. These investigations are certainly based on an analysis of thermal cyclotron emission of lower corona and CCTR above sunspot umbra. 2. Magnetography of the solar active regions presenting the weak magnetic fields (with the sensitivity of several G) reflecting longitude component of the magnetic field in chromosphere and corona and solar faculae structure. The method is based on an analysis of the weak polarization (of the order of 1% or less). 3. An analysis of the structure, temperature, and density of arches seen above neutral magnetic field lines (seen in most ARs with spots and without ones). 4. Study of temporal and spatial behavior of inversion of the sign of the circular polarization with the result of magnetography of the solar corona. 5. An analysis of the solar activity at high heliographic latitudes, observed mostly as polar faculae (increased brightness structures having counterparts in optical white light observations). In modern study of the solar activity analysis of the activity of polar zones are of principal importance. Nobeyama probably presents the most reliable way to study this. The above points present not exactly completed results but rather the directions for future studies. These should use full time coverage of observations at different phases of the solar activity and combination of observations with other radio, optical, EUV and X-ray observations whenever possible.

  4. Pulsed magnetic field generation suited for low-field unilateral nuclear magnetic resonance systems

    NASA Astrophysics Data System (ADS)

    Gaunkar, Neelam Prabhu; Selvaraj, Jayaprakash; Theh, Wei-Shen; Weber, Robert; Mina, Mani

    2018-05-01

    Pulsed magnetic fields can be used to provide instantaneous localized magnetic field variations. In presence of static fields, pulsed field variations are often used to apply torques and in-effect to measure behavior of magnetic moments in different states. In this work, the design and experimental performance of a pulsed magnetic field generator suited for low static field nuclear magnetic resonance (NMR) applications is presented. One of the challenges of low bias field NMR measurements is low signal to noise ratio due to the comparable nature of the bias field and the pulsed field. Therefore, a circuit is designed to apply pulsed currents through an inductive load, leading to generation of pulsed magnetic fields which can temporarily overpower the effect of the bias field on magnetic moments. The designed circuit will be tuned to operate at the precession frequency of 1H (protons) placed in a bias field produced by permanent magnets. The designed circuit parameters may be tuned to operate under different bias conditions. Therefore, low field NMR measurements can be performed for different bias fields. Circuit simulations were used to determine design parameters, corresponding experimental measurements will be presented in this work.

  5. Large-scale properties of the interplanetary magnetic field

    NASA Technical Reports Server (NTRS)

    Schatten, K. H.

    1972-01-01

    Early theoretical work of Parker is presented along with the observational evidence supporting his Archimedes spiral model. Variations present in the interplanetary magnetic field from the spiral angle are related to structures in the solar wind. The causes of these structures are found to be either nonuniform radial solar wind flow or the time evolution of the photospheric field. Coronal magnetic models are related to the connection between the solar magnetic field and the interplanetary magnetic field. Direct extension of the solar field-magnetic nozzle controversy is discussed along with the coronal magnetic models. Effects of active regions on the interplanetary magnetic field is discussed with particular reference to the evolution of interplanetary sectors. Interplanetary magnetic field magnitude variations are shown throughout the solar cycle. The percentage of time the field magnitude is greater than 10 gamma is shown to closely parallel sunspot number. The sun's polar field influence on the interplanetary field and alternative views of the magnetic field structure out of the ecliptic plane are presented. In addition, a variety of significantly different interplanetary field structures are discussed.

  6. Rotating superconductor magnet for producing rotating lobed magnetic field lines

    DOEpatents

    Hilal, Sadek K.; Sampson, William B.; Leonard, Edward F.

    1978-01-01

    This invention provides a rotating superconductor magnet for producing a rotating lobed magnetic field, comprising a cryostat; a superconducting magnet in the cryostat having a collar for producing a lobed magnetic field having oppositely directed adjacent field lines; rotatable support means for selectively rotating the superconductor magnet; and means for energizing the superconductor magnet.

  7. The Effect of a Guide Field on the Structures of Magnetic Islands: 2D PIC Simulations

    NASA Astrophysics Data System (ADS)

    Huang, C.; Lu, Q.; Lu, S.; Wang, P.; Wang, S.

    2014-12-01

    Magnetic island plays an important role in magnetic reconnection. Using a series of 2D PIC simulations, we investigate the magnetic structures of a magnetic island formed during multiple X-line magnetic reconnection, considering the effects of the guide field in symmetric and asymmetric current sheets. In a symmetric current sheet, the current in the direction forms a tripolar structure inside a magnetic island during anti-parallel reconnection, which results in a quadrupole structure of the out-of-plane magnetic field. With the increase of the guide field, the symmetry of both the current system and out-of-plane magnetic field inside the magnetic island is distorted. When the guide field is sufficiently strong, the current forms a ring along the magnetic field lines inside magnetic island. At the same time, the current carried by the energetic electrons accelerated in the vicinity of the X lines forms another ring at the edge of the magnetic island. Such a dual-ring current system enhance the out-of-plane magnetic field inside the magnetic island with a dip in the center of the magnetic island. In an asymmetric current sheet, when there is no guide field, electrons flows toward the X lines along the separatrices from the side with a higher density, and are then directed away from the X lines along the separatrices to the side with a lower density. The formed current results in the enhancement of the out-of-plane magnetic field at one end of the magnetic island, and the attenuation at the other end. With the increase of the guide field, the structures of both the current system and the out-of-plane magnetic field are distorted.

  8. The effect of a guide field on the structures of magnetic islands formed during multiple X line reconnections: Two-dimensional particle-in-cell simulations

    NASA Astrophysics Data System (ADS)

    Huang, Can; Lu, Quanming; Lu, San; Wang, Peiran; Wang, Shui

    2014-02-01

    A magnetic island plays an important role in magnetic reconnection. In this paper, using a series of two-dimensional particle-in-cell simulations, we investigate the magnetic structures of a magnetic island formed during multiple X line magnetic reconnections, considering the effects of the guide field in symmetric and asymmetric current sheets. In a symmetric current sheet, the current in the x direction forms a tripolar structure inside a magnetic island during antiparallel reconnection, which results in a quadrupole structure of the out-of-plane magnetic field. With the increase of the guide field, the symmetry of both the current system and out-of-plane magnetic field inside the magnetic island is distorted. When the guide field is sufficiently strong, the current forms a ring along the magnetic field lines inside a magnetic island. At the same time, the current carried by the energetic electrons accelerated in the vicinity of the X lines forms another ring at the edge of the magnetic island. Such a dual-ring current system enhances the out-of-plane magnetic field inside the magnetic island with a dip in the center of the magnetic island. In an asymmetric current sheet, when there is no guide field, electrons flow toward the X lines along the separatrices from the side with a higher density and are then directed away from the X lines along the separatrices to the side with a lower density. The formed current results in the enhancement of the out-of-plane magnetic field at one end of the magnetic island and the attenuation at the other end. With the increase of the guide field, the structures of both the current system and the out-of-plane magnetic field are distorted.

  9. Dependence of Brownian and Néel relaxation times on magnetic field strength

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deissler, Robert J., E-mail: rjd42@case.edu; Wu, Yong; Martens, Michael A.

    2014-01-15

    Purpose: In magnetic particle imaging (MPI) and magnetic particle spectroscopy (MPS) the relaxation time of the magnetization in response to externally applied magnetic fields is determined by the Brownian and Néel relaxation mechanisms. Here the authors investigate the dependence of the relaxation times on the magnetic field strength and the implications for MPI and MPS. Methods: The Fokker–Planck equation with Brownian relaxation and the Fokker–Planck equation with Néel relaxation are solved numerically for a time-varying externally applied magnetic field, including a step-function, a sinusoidally varying, and a linearly ramped magnetic field. For magnetic fields that are applied as a stepmore » function, an eigenvalue approach is used to directly calculate both the Brownian and Néel relaxation times for a range of magnetic field strengths. For Néel relaxation, the eigenvalue calculations are compared to Brown's high-barrier approximation formula. Results: The relaxation times due to the Brownian or Néel mechanisms depend on the magnitude of the applied magnetic field. In particular, the Néel relaxation time is sensitive to the magnetic field strength, and varies by many orders of magnitude for nanoparticle properties and magnetic field strengths relevant for MPI and MPS. Therefore, the well-known zero-field relaxation times underestimate the actual relaxation times and, in particular, can underestimate the Néel relaxation time by many orders of magnitude. When only Néel relaxation is present—if the particles are embedded in a solid for instance—the authors found that there can be a strong magnetization response to a sinusoidal driving field, even if the period is much less than the zero-field relaxation time. For a ferrofluid in which both Brownian and Néel relaxation are present, only one relaxation mechanism may dominate depending on the magnetic field strength, the driving frequency (or ramp time), and the phase of the magnetization relative to the applied magnetic field. Conclusions: A simple treatment of Néel relaxation using the common zero-field relaxation time overestimates the relaxation time of the magnetization in situations relevant for MPI and MPS. For sinusoidally driven (or ramped) systems, whether or not a particular relaxation mechanism dominates or is even relevant depends on the magnetic field strength, the frequency (or ramp time), and the phase of the magnetization relative to the applied magnetic field.« less

  10. Magnetic fringe field interference between the quadrupole and corrector magnets in the CSNS/RCS

    NASA Astrophysics Data System (ADS)

    Yang, Mei; Kang, Wen; Deng, Changdong; Sun, Xianjing; Li, Li; Wu, Xi; Gong, Lingling; Cheng, Da; Zhu, Yingshun; Chen, Fusan

    2017-03-01

    The Rapid Cycling Synchrotron (RCS) of the China Spallation Neutron Source (CSNS) employs large aperture quadrupole and corrector magnets with small aspect ratios and relatively short iron to iron separations; so the fringe field interference becomes serious which results in integral field strength reduction and extra field harmonics. We have performed 3D magnetic field simulations to investigate the magnetic field interference in the magnet assemblies and made some adjustments on the magnet arrangement. The Fourier analysis is used to quantify the integral gradient reduction and field harmonic changes of the quadrupole magnets. Some magnetic field measurements are undertaken to verify the simulation results. The simulation details and the major results are presented in this paper.

  11. The influence of magnetic fields on the wake field and stopping power of an ion-beam pulse in plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Xiao-ying; Zhang, Ya-ling; Duan, Wen-shan

    2015-09-15

    We performed two-dimensional particle-in-cell simulations to investigate how a magnetic field affects the wake field and stopping power of an ion-beam pulse moving in plasmas. The corresponding density of plasma electrons is investigated. At a weak magnetic field, the wakes exhibit typical V-shaped cone structures. As the magnetic field strengthens, the wakes spread and lose their typical V-shaped structures. At a sufficiently strong magnetic field, the wakes exhibit conversed V-shaped structures. Additionally, strengthening the magnetic field reduces the stopping power in regions of low and high beam density. However, the influence of the magnetic field becomes complicated in regions ofmore » moderate beam density. The stopping power increases in a weak magnetic field, but it decreases in a strong magnetic field. At high beam density and moderate magnetic field, two low-density channels of plasma electrons appear on both sides of the incident beam pulse trajectory. This is because electrons near the beam pulses will be attracted and move along with the beam pulses, while other electrons nearby are restricted by the magnetic field and cannot fill the gap.« less

  12. GROWTH OF A LOCALIZED SEED MAGNETIC FIELD IN A TURBULENT MEDIUM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cho, Jungyeon; Yoo, Hyunju, E-mail: jcho@cnu.ac.kr

    2012-11-10

    Turbulence dynamo deals with the amplification of a seed magnetic field in a turbulent medium and has been studied mostly for uniform or spatially homogeneous seed magnetic fields. However, some astrophysical processes (e.g., jets from active galaxies, galactic winds, or ram-pressure stripping in galaxy clusters) can provide localized seed magnetic fields. In this paper, we numerically study amplification of localized seed magnetic fields in a turbulent medium. Throughout the paper, we assume that the driving scale of turbulence is comparable to the size of the system. Our findings are as follows. First, turbulence can amplify a localized seed magnetic fieldmore » very efficiently. The growth rate of magnetic energy density is as high as that for a uniform seed magnetic field. This result implies that magnetic field ejected from an astrophysical object can be a viable source of a magnetic field in a cluster. Second, the localized seed magnetic field disperses and fills the whole system very fast. If turbulence in a system (e.g., a galaxy cluster or a filament) is driven at large scales, we expect that it takes a few large-eddy turnover times for the magnetic field to fill the whole system. Third, growth and turbulence diffusion of a localized seed magnetic field are also fast in high magnetic Prandtl number turbulence. Fourth, even in decaying turbulence, a localized seed magnetic field can ultimately fill the whole system. Although the dispersal rate of the magnetic field is not fast in purely decaying turbulence, it can be enhanced by an additional forcing.« less

  13. Enzymatic mechanisms of biological magnetic sensitivity.

    PubMed

    Letuta, Ulyana G; Berdinskiy, Vitaly L; Udagawa, Chikako; Tanimoto, Yoshifumi

    2017-10-01

    Primary biological magnetoreceptors in living organisms is one of the main research problems in magnetobiology. Intracellular enzymatic reactions accompanied by electron transfer have been shown to be receptors of magnetic fields, and spin-dependent ion-radical processes can be a universal mechanism of biological magnetosensitivity. Magnetic interactions in intermediate ion-radical pairs, such as Zeeman and hyperfine (HFI) interactions, in accordance with proposed strict quantum mechanical theory, can determine magnetic-field dependencies of reactions that produce biologically important molecules needed for cell growth. Hyperfine interactions of electrons with nuclear magnetic moments of magnetic isotopes can explain the most important part of biomagnetic sensitivities in a weak magnetic field comparable to the Earth's magnetic field. The theoretical results mean that magnetic-field dependencies of enzymatic reaction rates in a weak magnetic field that can be independent of HFI constant a, if H < a, and are determined by the rate constant of chemical transformations in the enzyme active site. Both Zeeman and HFI interactions predict strong magnetic-field dependence in weak magnetic fields and magnetic-field independence of enzymatic reaction rate constants in strong magnetic fields. The theoretical results can explain the magnetic sensitivity of E. coli cell and demonstrate that intracellular enzymatic reactions are primary magnetoreceptors in living organisms. Bioelectromagnetics. 38:511-521, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  14. Characterization of magnetic force microscopy probe tip remagnetization for measurements in external in-plane magnetic fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weis, Tanja; Engel, Dieter; Ehresmann, Arno

    2008-12-15

    A quantitative analysis of magnetic force microscopy (MFM) images taken in external in-plane magnetic fields is difficult because of the influence of the magnetic field on the magnetization state of the magnetic probe tip. We prepared calibration samples by ion bombardment induced magnetic patterning with a topographically flat magnetic pattern magnetically stable in a certain external magnetic field range for a quantitative characterization of the MFM probe tip magnetization in point-dipole approximation.

  15. Unimodular gravity and the lepton anomalous magnetic moment at one-loop

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martín, Carmelo P., E-mail: carmelop@fis.ucm.es

    We work out the one-loop contribution to the lepton anomalous magnetic moment coming from Unimodular Gravity. We use Dimensional Regularization and Dimensional Reduction to carry out the computations. In either case, we find that Unimodular Gravity gives rise to the same one-loop correction as that of General Relativity.

  16. Fe3O4-in-silica super crystal of defined interstices for single protein molecules entrapment under magnetic flux.

    PubMed

    Ye, Lin; Yu, Chih Hao; Jiang, PengJu; Qiu, Lin; Ng, Olivia T W; Yung, Ken K L; He, Heyong; Tsang, Shik Chi

    2010-09-28

    Confocal fluorescence demonstrates that single molecules of dye-labelled Cytochrome C or B5 containing paramagnetic Fe(III) can be magnetically placed into the interstices of super-crystal which is composed of three dimensional regular arrays of Fe(3)O(4) nanoparticles.

  17. Steel characteristics measurement system using Barkhausen jump sum rate and magnetic field intensity and method of using same

    DOEpatents

    Kohn, Gabriel; Hicho, George; Swartzendruber, Lydon

    1997-01-01

    A steel hardness measurement system and method of using same are provided for measuring at least one mechanical or magnetic characteristic of a ferromagnetic sample as a function of at least one magnetic characteristic of the sample. A magnetic field generator subjects the sample to a variable external magnetic field. The magnetic field intensity of the magnetic field generated by the magnetic field generating means is measured and a signal sensor is provided for measuring Barkhausen signals from the sample when the sample is subjected to the external magnetic field. A signal processing unit calculates a jump sum rate first moment as a function of the Barkhausen signals measured by the signal sensor and the magnetic field intensity, and for determining the at least one mechanical or magnetic characteristic as a function of the jump sum rate first moment.

  18. Steel characteristics measurement system using Barkhausen jump sum rate and magnetic field intensity and method of using same

    DOEpatents

    Kohn, G.; Hicho, G.; Swartzendruber, L.

    1997-04-08

    A steel hardness measurement system and method of using same are provided for measuring at least one mechanical or magnetic characteristic of a ferromagnetic sample as a function of at least one magnetic characteristic of the sample. A magnetic field generator subjects the sample to a variable external magnetic field. The magnetic field intensity of the magnetic field generated by the magnetic field generating means is measured and a signal sensor is provided for measuring Barkhausen signals from the sample when the sample is subjected to the external magnetic field. A signal processing unit calculates a jump sum rate first moment as a function of the Barkhausen signals measured by the signal sensor and the magnetic field intensity, and for determining the at least one mechanical or magnetic characteristic as a function of the jump sum rate first moment. 7 figs.

  19. [Measurements of the flux densities of static magnetic fields generated by two types of dental magnetic attachments and their retentive forces].

    PubMed

    Xu, Chun; Chao, Yong-lie; Du, Li; Yang, Ling

    2004-05-01

    To measure and analyze the flux densities of static magnetic fields generated by two types of commonly used dental magnetic attachments and their retentive forces, and to provide guidance for the clinical application of magnetic attachments. A digital Gaussmeter was used to measure the flux densities of static magnetic fields generated by two types of magnetic attachments, under four circumstances: open-field circuit; closed-field circuit; keeper and magnet slid laterally for a certain distance; and existence of air gap between keeper and magnet. The retentive forces of the magnetic attachments in standard closed-field circuit, with the keeper and magnet sliding laterally for a certain distance or with a certain air gap between keeper and magnet were measured by a tensile testing machine. There were flux leakages under both the open-field circuit and closed-field circuit of the two types of magnetic attachments. The flux densities on the surfaces of MAGNEDISC 800 (MD800) and MAGFIT EX600W (EX600) magnetic attachments under open-field circuit were 275.0 mT and 147.0 mT respectively. The flux leakages under closed-field circuit were smaller than those under open-field circuit. The respective flux densities on the surfaces of MD800 and EX600 magnetic attachments decreased to 11.4 mT and 4.5 mT under closed-field circuit. The flux density around the magnetic attachment decreased as the distance from the surface of the attachment increased. When keeper and magnet slid laterally for a certain distance or when air gap existed between keeper and magnet, the flux leakage increased in comparison with that under closed-field circuit. Under the standard closed-field circuit, the two types of magnetic attachments achieved the largest retentive forces. The retentive forces of MD800 and EX600 magnetic attachments under the standard closed-field circuit were 6.20 N and 4.80 N respectively. The retentive forces decreased with the sliding distance or with the increase of air gap between keeper and magnet. The magnetic attachments have flux leakages. When they are used in patients' oral cavities, if keeper and magnet are not attached accurately, the flux leakage will increase, and at the same time the retentive force will decrease. Therefore the keeper and magnet should be attached accurately in clinical application.

  20. Thermodynamics of anisotropic antiferromagnetic Heisenberg chain in the presence of longitudinal magnetic field

    NASA Astrophysics Data System (ADS)

    Rezania, H.

    2018-07-01

    We have addressed the specific heat and magnetization of one dimensional spin-1/2 anisotropic antiferromagnetic Heisenberg chain at finite magnetic field. We have investigated the thermodynamic properties by means of excitation spectrum in terms of a hard core Bosonic representation. The effect of in-plane anisotropy thermodynamic properties has also been studied via the Bosonic model by Green's function approach. This anisotropy is considered for exchange constants that couple spin components perpendicular to magnetic field direction. We have found the temperature dependence of the specific heat and longitudinal magnetization in the gapped field induced spin-polarized phase for various magnetic fields and anisotropy parameters. Furthermore we have studied the magnetic field dependence of specific heat and magnetization for various anisotropy parameters. Our results show temperature dependence of specific heat includes a peak so that its temperature position goes to higher temperature with increase of magnetic field. We have found the magnetic field dependence of specific heat shows a monotonic decreasing behavior for various magnetic fields due to increase of energy gap in the excitation spectrum. Also we have studied the temperature dependence of magnetization for different magnetic fields and various anisotropy parameters.

  1. Study of Bacterial Response to Antibiotics in Low Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Abdul-Moqueet, Mohammad; Albalawi, Abdullah; Masood, Samina

    Effect of low magnetic fields on bacterial growth has been well established. Current study shows how different magnetic fields effect the bacterial response to antibiotics shows that the bacterial infections treatment and disease cure is changed in the presence of weak fields. This study has focused on understanding how different types of low magnetic fields change the response the bacterium to antibiotics in a liquid medium. This low magnetic field coupled with the introduction of antibiotics to the growth medium shows a drop in the growth curve. The most significant effect of low magnetic fields was seen with the uniform electromagnetic field as compared to the similar strength of constant static magnetic field produced by a bar magnets.

  2. Magnetic phase diagram, static properties and relaxation of the insulating spin glass Co 1- xMn x(SCN) 2(CH 3OH) 2

    NASA Astrophysics Data System (ADS)

    DeFotis, G. C.; Just, E. M.; Pugh, V. J.; Coffey, G. A.; Hogg, B. D.; Fitzhenry, S. L.; Marmorino, J. L.; Krovich, D. J.; Chamberlain, R. V.

    1999-07-01

    The magnetic behavior of Co 1- xMn x(SCN) 2(CH 3OH) 2 has been studied by DC magnetization and susceptibility measurements on mixtures spanning the complete composition range. The pure components are a quasi-two-dimensional Heisenberg antiferromagnet (Mn system) and a three-dimensional Ising antiferromagnet (Co system). The crystal structure of the cobalt constituent is determined, and is closely related to that of the manganese constituent. Competing orthogonal spin anisotropies should occur in mixtures, and frustration effects arising from competing ferromagnetic and antiferromagnetic interactions may also arise. The Curie and Weiss constants, in χM= C/( T- θ), vary regularly with composition. C versus x is essentially linear while θ versus x shows a definite curvature, analysis of which reveals that the unlike-ion exchange interaction is antiferromagnetic and stronger than the like-ion interactions. The magnetic susceptibility is field dependent, more markedly so with increasing x. Plots of M/ H versus T exhibit maxima at low temperatures only for mixtures substantially richer in cobalt than manganese. Magnetic transition temperatures are estimated from these data. Magnetization versus field isotherms evolve with composition and with temperature; those for x=0.24 5 and 0.16 9 exhibit S-shapes for temperatures at or below the identified transitions. The nonlinear susceptibility versus temperature for x=0.24 5 displays structure but does not diverge. The temperature dependence of the thermoremanent magnetization (TRM) for x=0.24 5 shows characteristic features but does not follow any simple form. The time-dependence of the TRM is fitted at a series of temperatures employing a stretched exponential decay form. The thermal variation of the fit parameters is systematic and suggests that temperatures just below 3 K and slightly above 6 K have special significance. Over a limited temperature range the TRM is found to scale approximately as T log10(t/τ 0) , with τ0≈10 -12 s. Strong and weak irreversibility lines are determined for x=0.24 5; both vary as τg∝ h0.56, with zero-field temperatures of Ts(0)=5.5 5 K and Tw(0)=9.8 5 K, respectively. The exponent is closer to that recently predicted (0.53) for a short-range three-dimensional Ising spin glass than to the value 2/3 of the DeAlmeida-Thouless line in the infinite range mean-field Ising model. The existence of strong random anisotropy may account for the presence of a weak irreversibility line with the observed exponent. The T- x magnetic phase diagram exhibits a crossing of paramagnetic-ordered state phase boundaries and an associated tetracritical point at x≈0.20 5 and T≈2.6 0 K. Spin glass properties are apparent for compositions close to the tetracritical point.

  3. Machine-Specific Magnetic Resonance Imaging Quality Control Procedures for Stereotactic Radiosurgery Treatment Planning

    PubMed Central

    Taghizadeh, Somayeh; Yang, Claus Chunli; R. Kanakamedala, Madhava; Morris, Bart; Vijayakumar, Srinivasan

    2017-01-01

    Purpose Magnetic resonance (MR) images are necessary for accurate contouring of intracranial targets, determination of gross target volume and evaluation of organs at risk during stereotactic radiosurgery (SRS) treatment planning procedures. Many centers use magnetic resonance imaging (MRI) simulators or regular diagnostic MRI machines for SRS treatment planning; while both types of machine require two stages of quality control (QC), both machine- and patient-specific, before use for SRS, no accepted guidelines for such QC currently exist. This article describes appropriate machine-specific QC procedures for SRS applications. Methods and materials We describe the adaptation of American College of Radiology (ACR)-recommended QC tests using an ACR MRI phantom for SRS treatment planning. In addition, commercial Quasar MRID3D and Quasar GRID3D phantoms were used to evaluate the effects of static magnetic field (B0) inhomogeneity, gradient nonlinearity, and a Leksell G frame (SRS frame) and its accessories on geometrical distortion in MR images. Results QC procedures found in-plane distortions (Maximum = 3.5 mm, Mean = 0.91 mm, Standard deviation = 0.67 mm, >2.5 mm (%) = 2) in X-direction (Maximum = 2.51 mm, Mean = 0.52 mm, Standard deviation = 0.39 mm, > 2.5 mm (%) = 0) and in Y-direction (Maximum = 13. 1 mm , Mean = 2.38 mm, Standard deviation = 2.45 mm, > 2.5 mm (%) = 34) in Z-direction and < 1 mm distortion at a head-sized region of interest. MR images acquired using a Leksell G frame and localization devices showed a mean absolute deviation of 2.3 mm from isocenter. The results of modified ACR tests were all within recommended limits, and baseline measurements have been defined for regular weekly QC tests. Conclusions With appropriate QC procedures in place, it is possible to routinely obtain clinically useful MR images suitable for SRS treatment planning purposes. MRI examination for SRS planning can benefit from the improved localization and planning possible with the superior image quality and soft tissue contrast achieved under optimal conditions. PMID:29487771

  4. Machine-Specific Magnetic Resonance Imaging Quality Control Procedures for Stereotactic Radiosurgery Treatment Planning.

    PubMed

    Fatemi, Ali; Taghizadeh, Somayeh; Yang, Claus Chunli; R Kanakamedala, Madhava; Morris, Bart; Vijayakumar, Srinivasan

    2017-12-18

    Purpose Magnetic resonance (MR) images are necessary for accurate contouring of intracranial targets, determination of gross target volume and evaluation of organs at risk during stereotactic radiosurgery (SRS) treatment planning procedures. Many centers use magnetic resonance imaging (MRI) simulators or regular diagnostic MRI machines for SRS treatment planning; while both types of machine require two stages of quality control (QC), both machine- and patient-specific, before use for SRS, no accepted guidelines for such QC currently exist. This article describes appropriate machine-specific QC procedures for SRS applications. Methods and materials We describe the adaptation of American College of Radiology (ACR)-recommended QC tests using an ACR MRI phantom for SRS treatment planning. In addition, commercial Quasar MRID 3D and Quasar GRID 3D phantoms were used to evaluate the effects of static magnetic field (B 0 ) inhomogeneity, gradient nonlinearity, and a Leksell G frame (SRS frame) and its accessories on geometrical distortion in MR images. Results QC procedures found in-plane distortions (Maximum = 3.5 mm, Mean = 0.91 mm, Standard deviation = 0.67 mm, >2.5 mm (%) = 2) in X-direction (Maximum = 2.51 mm, Mean = 0.52 mm, Standard deviation = 0.39 mm, > 2.5 mm (%) = 0) and in Y-direction (Maximum = 13. 1 mm , Mean = 2.38 mm, Standard deviation = 2.45 mm, > 2.5 mm (%) = 34) in Z-direction and < 1 mm distortion at a head-sized region of interest. MR images acquired using a Leksell G frame and localization devices showed a mean absolute deviation of 2.3 mm from isocenter. The results of modified ACR tests were all within recommended limits, and baseline measurements have been defined for regular weekly QC tests. Conclusions With appropriate QC procedures in place, it is possible to routinely obtain clinically useful MR images suitable for SRS treatment planning purposes. MRI examination for SRS planning can benefit from the improved localization and planning possible with the superior image quality and soft tissue contrast achieved under optimal conditions.

  5. The effects of magnetic field in plume region on the performance of multi-cusped field thruster

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Peng, E-mail: hupengemail@126.com; Liu, Hui, E-mail: thruster@126.com; Yu, Daren

    2015-10-15

    The performance characteristics of a Multi-cusped Field Thruster depending on the magnetic field in the plume region were investigated. Five magnetic field shielding rings were separately mounted near the exit of discharge channel to decrease the strength of magnetic field in the plume region in different levels, while the magnetic field in the upstream was well maintained. The test results show that the electron current increases with the decrease of magnetic field strength in the plume region, which gives rise to higher propellant utilization and lower current utilization. On the other hand, the stronger magnetic field in the plume regionmore » improves the performance at low voltages (high current mode) while lower magnetic field improves the performance at high voltages (low current mode). This work can provide some optimal design ideas of the magnetic strength in the plume region to improve the performance of thruster.« less

  6. Origin and structures of solar eruptions II: Magnetic modeling

    NASA Astrophysics Data System (ADS)

    Guo, Yang; Cheng, Xin; Ding, MingDe

    2017-07-01

    The topology and dynamics of the three-dimensional magnetic field in the solar atmosphere govern various solar eruptive phenomena and activities, such as flares, coronal mass ejections, and filaments/prominences. We have to observe and model the vector magnetic field to understand the structures and physical mechanisms of these solar activities. Vector magnetic fields on the photosphere are routinely observed via the polarized light, and inferred with the inversion of Stokes profiles. To analyze these vector magnetic fields, we need first to remove the 180° ambiguity of the transverse components and correct the projection effect. Then, the vector magnetic field can be served as the boundary conditions for a force-free field modeling after a proper preprocessing. The photospheric velocity field can also be derived from a time sequence of vector magnetic fields. Three-dimensional magnetic field could be derived and studied with theoretical force-free field models, numerical nonlinear force-free field models, magnetohydrostatic models, and magnetohydrodynamic models. Magnetic energy can be computed with three-dimensional magnetic field models or a time series of vector magnetic field. The magnetic topology is analyzed by pinpointing the positions of magnetic null points, bald patches, and quasi-separatrix layers. As a well conserved physical quantity, magnetic helicity can be computed with various methods, such as the finite volume method, discrete flux tube method, and helicity flux integration method. This quantity serves as a promising parameter characterizing the activity level of solar active regions.

  7. Magnetic field deformation due to electron drift in a Hall thruster

    NASA Astrophysics Data System (ADS)

    Liang, Han; Yongjie, Ding; Xu, Zhang; Liqiu, Wei; Daren, Yu

    2017-01-01

    The strength and shape of the magnetic field are the core factors in the design of the Hall thruster. However, Hall current can affect the distribution of static magnetic field. In this paper, the Particle-In-Cell (PIC) method is used to obtain the distribution of Hall current in the discharge channel. The Hall current is separated into a direct and an alternating part to calculate the induced magnetic field using Finite Element Method Magnetics (FEMM). The results show that the direct Hall current decreases the magnetic field strength in the acceleration region and also changes the shape of the magnetic field. The maximum reduction in radial magnetic field strength in the exit plane is 10.8 G for an anode flow rate of 15 mg/s and the maximum angle change of the magnetic field line is close to 3° in the acceleration region. The alternating Hall current induces an oscillating magnetic field in the whole discharge channel. The actual magnetic deformation is shown to contain these two parts.

  8. Deconfinement phase transition in a magnetic field in 2 + 1 dimensions from holographic models

    NASA Astrophysics Data System (ADS)

    M. Rodrigues, Diego; Capossoli, Eduardo Folco; Boschi-Filho, Henrique

    2018-05-01

    Using two different models from holographic quantum chromodynamics (QCD) we study the deconfinement phase transition in 2 + 1 dimensions in the presence of a magnetic field. Working in 2 + 1 dimensions lead us to exact solutions on the magnetic field, in contrast with the case of 3 + 1 dimensions where the solutions on the magnetic field are perturbative. As our main result we predict a critical magnetic field Bc where the deconfinement critical temperature vanishes. For weak fields meaning B Bc we find that the critical temperature raises with growing field showing a magnetic catalysis (MC). These results for IMC and MC are in agreement with the literature.

  9. The Logarithmic Tail of Néel Walls

    NASA Astrophysics Data System (ADS)

    Melcher, Christof

    We study the multiscale problem of a parametrized planar 180° rotation of magnetization states in a thin ferromagnetic film. In an appropriate scaling and when the film thickness is comparable to the Bloch line width, the underlying variational principle has the form where the reduced stray-field operator Q approximates (-Δ)1/2 as the quality factor Q tends to zero. We show that the associated Néel wall profile u exhibits a very long logarithmic tail. The proof relies on limiting elliptic regularity methods on the basis of the associated Euler-Lagrange equation and symmetrization arguments on the basis of the variational principle. Finally we study the renormalized limit behavior as Q tends to zero.

  10. Transient radiation in an anisotropic magnetodielectric plate in a waveguide

    NASA Astrophysics Data System (ADS)

    Gevorkyan, E. A.

    2017-02-01

    We have considered transient radiation of a charged particle in an anisotropic magnetodielectric plate placed into a regular waveguide. It is assumed that the charged particle passes through the plate moving at a constant velocity perpendicularly to the waveguide axis. Wave equations and analytical expressions for transverse electric (TE) and transverse magnetic (TM) fields in different regions of the waveguide have been obtained. Energies of transient radiation of the moving particle have been calculated. The properties of transient radiation and Vavilov-Cherenkov radiation have been analyzed for the case of a rectangular waveguide. Energies of transient radiation have been calculated for the case of a "thin" plate in the waveguide, when the wavelength in the plate is much greater than the length of the plate.

  11. Ultra-sharp oscillatory magneto-resistance in spatially confined La{sub 0.3}Pr{sub 0.4}Ca{sub 0.3}MnO{sub 3} epitaxial thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alagoz, H. S., E-mail: alagoz@ualberta.ca; Jeon, J.; Boos, R.

    Our investigations of magneto-transport properties of La{sub 0.3}Pr{sub 0.4}Ca{sub 0.3}MnO{sub 3} manganite thin films of reduced dimensions revealed dramatic changes in R(θ), the dependence of resistivity on the angle between the magnetic field direction and the current direction, and consequently in the anisotropic magneto-resistance. A regular oscillatory  sin{sup 2}θ form of R(θ) is replaced by a very sharp rectangular-shaped ones when the dimensions of the system become comparable to the size of the intrinsic electronic domains. We discuss possible mechanisms that could be responsible for these changes.

  12. Effect of magnetic field inhomogeneity on ion cyclotron motion coherence at high magnetic field.

    PubMed

    Vladimirov, Gleb; Kostyukevich, Yury; Hendrickson, Christopher L; Blakney, Greg T; Nikolaev, Eugene

    2015-01-01

    A three-dimensional code based on the particle-in-cell algorithm modified to account for the inhomogeneity of the magnetic field was applied to determine the effect of Z(1), Z(2), Z(3), Z(4), X, Y, ZX, ZY, XZ(2) YZ(2), XY and X(2)-Y(2) components of an orthogonal magnetic field expansion on ion motion during detection in an FT-ICR cell. Simulations were performed for magnetic field strengths of 4.7, 7, 14.5 and 21 Tesla, including experimentally determined magnetic field spatial distributions for existing 4.7 T and 14.5 T magnets. The effect of magnetic field inhomogeneity on ion cloud stabilization ("ion condensation") at high numbers of ions was investigated by direct simulations of individual ion trajectories. Z(1), Z(2), Z(3) and Z(4) components have the largest effect (especially Z(1)) on ion cloud stability. Higher magnetic field strength and lower m/z demand higher relative magnetic field homogeneity to maintain cloud coherence for a fixed time period. The dependence of mass resolving power upper limit on Z(1) inhomogeneity is evaluated for different magnetic fields and m/z. The results serve to set the homogeneity requirements for various orthogonal magnetic field components (shims) for future FT-ICR magnet design.

  13. Measurement of magnetic field fluctuations and diamagnetic currents within a laser ablation plasma interacting with an axial magnetic field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ikeda, S.; Horioka, K.; Okamura, M.

    Here, the guiding of laser ablation plasmas with axial magnetic fields has been used for many applications, since its effectiveness has been proven empirically. For more sophisticated and complicated manipulations of the plasma flow, the behavior of the magnetic field during the interaction and the induced diamagnetic current in the plasma plume needs to be clearly understood. To achieve the first milestone for establishing magnetic plasma manipulation, we measured the spatial and temporal fluctuations of the magnetic field caused by the diamagnetic current. We showed that the small fluctuations of the magnetic field can be detected by using a simplemore » magnetic probe. We observed that the field penetrates to the core of the plasma plume. The diamagnetic current estimated from the magnetic field had temporal and spatial distributions which were confirmed to be correlated with the transformation of the plasma plume. Our results show that the measurement by the magnetic probe is an effective method to observe the temporal and spatial distributions of the magnetic field and diamagnetic current. The systematic measurement of the magnetic field variations is a valuable method to establish the magnetic field manipulation of the laser ablation plasma.« less

  14. Measurement of magnetic field fluctuations and diamagnetic currents within a laser ablation plasma interacting with an axial magnetic field

    DOE PAGES

    Ikeda, S.; Horioka, K.; Okamura, M.

    2017-10-10

    Here, the guiding of laser ablation plasmas with axial magnetic fields has been used for many applications, since its effectiveness has been proven empirically. For more sophisticated and complicated manipulations of the plasma flow, the behavior of the magnetic field during the interaction and the induced diamagnetic current in the plasma plume needs to be clearly understood. To achieve the first milestone for establishing magnetic plasma manipulation, we measured the spatial and temporal fluctuations of the magnetic field caused by the diamagnetic current. We showed that the small fluctuations of the magnetic field can be detected by using a simplemore » magnetic probe. We observed that the field penetrates to the core of the plasma plume. The diamagnetic current estimated from the magnetic field had temporal and spatial distributions which were confirmed to be correlated with the transformation of the plasma plume. Our results show that the measurement by the magnetic probe is an effective method to observe the temporal and spatial distributions of the magnetic field and diamagnetic current. The systematic measurement of the magnetic field variations is a valuable method to establish the magnetic field manipulation of the laser ablation plasma.« less

  15. Magnetically targeted delivery through cartilage

    NASA Astrophysics Data System (ADS)

    Jafari, Sahar; Mair, Lamar O.; Chowdhury, Sagar; Nacev, Alek; Hilaman, Ryan; Stepanov, Pavel; Baker-McKee, James; Ijanaten, Said; Koudelka, Christian; English, Bradley; Malik, Pulkit; Weinberg, Irving N.

    2018-05-01

    In this study, we have invented a method of delivering drugs deep into articular cartilage with shaped dynamic magnetic fields acting on small metallic magnetic nanoparticles with polyethylene glycol coating and average diameter of 30 nm. It was shown that transport of magnetic nanoparticles through the entire thickness of bovine articular cartilage can be controlled by a combined alternating magnetic field at 100 Hz frequency and static magnetic field of 0.8 tesla (T) generated by 1" dia. x 2" thick permanent magnet. Magnetic nanoparticles transport through bovine articular cartilage samples was investigated at various settings of magnetic field and time durations. Combined application of an alternating magnetic field and the static field gradient resulted in a nearly 50 times increase in magnetic nanoparticles transport in bovine articular cartilage tissue as compared with static field conditions. This method can be applied to locally deliver therapeutic-loaded magnetic nanoparticles deep into articular cartilage to prevent cartilage degeneration and promote cartilage repair in osteoarthritis.

  16. Different Relative Orientation of Static and Alternative Magnetic Fields and Cress Roots Direction of Growth Changes Their Gravitropic Reaction

    NASA Astrophysics Data System (ADS)

    Sheykina, Nadiia; Bogatina, Nina

    The following variants of roots location relatively to static and alternative components of magnetic field were studied. At first variant the static magnetic field was directed parallel to the gravitation vector, the alternative magnetic field was directed perpendicular to static one; roots were directed perpendicular to both two fields’ components and gravitation vector. At the variant the negative gravitropysm for cress roots was observed. At second variant the static magnetic field was directed parallel to the gravitation vector, the alternative magnetic field was directed perpendicular to static one; roots were directed parallel to alternative magnetic field. At third variant the alternative magnetic field was directed parallel to the gravitation vector, the static magnetic field was directed perpendicular to the gravitation vector, roots were directed perpendicular to both two fields components and gravitation vector; At forth variant the alternative magnetic field was directed parallel to the gravitation vector, the static magnetic field was directed perpendicular to the gravitation vector, roots were directed parallel to static magnetic field. In all cases studied the alternative magnetic field frequency was equal to Ca ions cyclotron frequency. In 2, 3 and 4 variants gravitropism was positive. But the gravitropic reaction speeds were different. In second and forth variants the gravitropic reaction speed in error limits coincided with the gravitropic reaction speed under Earth’s conditions. At third variant the gravitropic reaction speed was slowed essentially.

  17. Study of the internal structure, instabilities, and magnetic fields in the dense Z-pinch

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ivanov, Vladimir V.

    Z-pinches are sources of hot dense plasma which generates powerful x-ray bursts and can been applied to various areas of high-energy-density physics (HEDP). The 26-MA Z machine is at the forefront of many of these applications, but important aspects of HEDP have been studied on generators at the 1 MA current level. Recent development of laser diagnostics and upgrade of the Leopard laser at Nevada Terawatt Facility (NTF) give new opportunities for the dense Z-pinch study. The goal of this project is the investigation of the internal structure of the stagnated Z pinch including sub-mm and micron-scale instabilities, plasma dynamics,more » magnetic fields, and hot spots formation and initiation. New plasma diagnostics will be developed for this project. A 3D structure and instabilities of the pinch will be compared with 3D MHD and spectroscopic modeling and theoretical analysis. The structure and dynamics of stagnated Z pinches has been studied with x-ray self-radiation diagnostics which derive a temperature map of the pinch with a spatial resolution of 70-150 µm. The regular laser diagnostics at 532 nm does not penetrate in the dense pinch due to strong absorption and refraction in trailing plasma. Recent experiments at NTF showed that shadowgraphy at the UV wavelength of 266 nm unfolds a fine structure of the stagnated Z-pinch with unprecedented detail. We propose to develop laser UV diagnostics for Z pinches with a spatial resolution <5 μm to study the small-scale plasma structures, implement two-frame shadowgraphy/interferometry, and develop methods for investigation of strong magnetic fields. New diagnostics will help to understand better basic physical processes in Z pinches. A 3D internal structure of the pinch and characteristic instabilities will be studied in wire arrays with different configurations and compared with 3D MHD simulations and analytical models. Mechanisms of “enhanced heating” of Z-pinch plasma will be studied. Fast dynamics of stagnated plasma will be studied to estimate its contribution to the Doppler broadening of x-ray lines. Development of “necks” and “hot spots” will be studied with high-resolution UV diagnostics, an x-ray streak camera, and x-ray spectroscopy. Laser initiation of hot spots in Z pinches will be tested. A Faraday rotation diagnostic at 266 nm will be applied to 1-10 MG magnetic fields. For magnetic fields B>20 MG, suggested in micropinches, Cotton-Mouton and cutoff diagnostics will be applied. A picosecond optical Kerr shutter will be tested to increase a sensitivity of UV methods for application at multi-MA Z pinches. The proposal is based on the experimental capability of NTF. The Zebra generator produces 1-1.7 MA Z-pinches with electron plasma density of 10 20-10 21cm -3, electron temperature of 0.5-1 keV, and magnetic fields >10 MG. The Leopard laser was upgraded to energy of 90-J at 0.8 ns. This regime will be used for laser initiation of hot spots. A further upgrade to energy of 250-J is suggested for laser-Z-pinch interaction. A picosecond regime will be used for optical gating. A 10-TW Tomcat laser at NTF is available for the high energy UV laser probing of the Z-pinch. Two graduate students will develop new optical and x-ray diagnostics, carry out experiments, and process experimental data. Other students will be involved in the design and fabrication of loads, supporting regular optical and x-ray diagnostics, and data processing. The new plasma diagnostics may be applied to HEDP experiments at NTF and other multi-MA generators. The feasibility of the research plan is based on the experience of the scientific team in Z-pinch plasma physics, laser physics, development of new plasma diagnostics, and the experimental capability of NTF. The experimental group of Dr. V. V. Ivanov (UNR) collaborates with a group for Z pinch MHD modeling of Dr. J. P. Chittenden (Imperial College, London), and theoretical group of Dr. D. D. Ryutov (LLNL). The suggested research ideas are supported by preliminary experiments.« less

  18. Fast superconducting magnetic field switch

    DOEpatents

    Goren, Yehuda; Mahale, Narayan K.

    1996-01-01

    The superconducting magnetic switch or fast kicker magnet is employed with electron stream or a bunch of electrons to rapidly change the direction of flow of the electron stream or bunch of electrons. The apparatus employs a beam tube which is coated with a film of superconducting material. The tube is cooled to a temperature below the superconducting transition temperature and is subjected to a constant magnetic field which is produced by an external dc magnet. The magnetic field produced by the dc magnet is less than the critical field for the superconducting material, thus, creating a Meissner Effect condition. A controllable fast electromagnet is used to provide a magnetic field which supplements that of the dc magnet so that when the fast magnet is energized the combined magnetic field is now greater that the critical field and the superconducting material returns to its normal state allowing the magnetic field to penetrate the tube. This produces an internal field which effects the direction of motion and of the electron stream or electron bunch. The switch can also operate as a switching mechanism for charged particles.

  19. Fast superconducting magnetic field switch

    DOEpatents

    Goren, Y.; Mahale, N.K.

    1996-08-06

    The superconducting magnetic switch or fast kicker magnet is employed with electron stream or a bunch of electrons to rapidly change the direction of flow of the electron stream or bunch of electrons. The apparatus employs a beam tube which is coated with a film of superconducting material. The tube is cooled to a temperature below the superconducting transition temperature and is subjected to a constant magnetic field which is produced by an external dc magnet. The magnetic field produced by the dc magnet is less than the critical field for the superconducting material, thus, creating a Meissner Effect condition. A controllable fast electromagnet is used to provide a magnetic field which supplements that of the dc magnet so that when the fast magnet is energized the combined magnetic field is now greater that the critical field and the superconducting material returns to its normal state allowing the magnetic field to penetrate the tube. This produces an internal field which effects the direction of motion and of the electron stream or electron bunch. The switch can also operate as a switching mechanism for charged particles. 6 figs.

  20. Pulsed Magnetic Field Improves the Transport of Iron Oxide Nanoparticles through Cell Barriers

    PubMed Central

    Min, Kyoung Ah; Shin, Meong Cheol; Yu, Faquan; Yang, Meizhu; David, Allan E.; Yang, Victor C.; Rosania, Gus R.

    2013-01-01

    Understanding how a magnetic field affects the interaction of magnetic nanoparticles (MNPs) with cells is fundamental to any potential downstream applications of MNPs as gene and drug delivery vehicles. Here, we present a quantitative analysis of how a pulsed magnetic field influences the manner in which MNPs interact with, and penetrate across a cell monolayer. Relative to a constant magnetic field, the rate of MNP uptake and transport across cell monolayers was enhanced by a pulsed magnetic field. MNP transport across cells was significantly inhibited at low temperature under both constant and pulsed magnetic field conditions, consistent with an active mechanism (i.e. endocytosis) mediating MNP transport. Microscopic observations and biochemical analysis indicated that, in a constant magnetic field, transport of MNPs across the cells was inhibited due to the formation of large (>2 μm) magnetically-induced MNP aggregates, which exceeded the size of endocytic vesicles. Thus, a pulsed magnetic field enhances the cellular uptake and transport of MNPs across cell barriers relative to a constant magnetic field by promoting accumulation while minimizing magnetically-induced MNP aggregates at the cell surface. PMID:23373613

  1. Toroidal magnetic detector for high resolution measurement of muon momenta

    DOEpatents

    Bonanos, P.

    1992-01-07

    A muon detector system including central and end air-core superconducting toroids and muon detectors enclosing a central calorimeter/detector. Muon detectors are positioned outside of toroids and all muon trajectory measurements are made in a nonmagnetic environment. Internal support for each magnet structure is provided by sheets, located at frequent and regularly spaced azimuthal planes, which interconnect the structural walls of the toroidal magnets. In a preferred embodiment, the shape of the toroidal magnet volume is adjusted to provide constant resolution over a wide range of rapidity. 4 figs.

  2. Toroidal magnetic detector for high resolution measurement of muon momenta

    DOEpatents

    Bonanos, Peter

    1992-01-01

    A muon detector system including central and end air-core superconducting toroids and muon detectors enclosing a central calorimeter/detector. Muon detectors are positioned outside of toroids and all muon trajectory measurements are made in a nonmagnetic environment. Internal support for each magnet structure is provided by sheets, located at frequent and regularly spaced azimuthal planes, which interconnect the structural walls of the toroidal magnets. In a preferred embodiment, the shape of the toroidal magnet volume is adjusted to provide constant resolution over a wide range of rapidity.

  3. Accelerating 4D flow MRI by exploiting vector field divergence regularization.

    PubMed

    Santelli, Claudio; Loecher, Michael; Busch, Julia; Wieben, Oliver; Schaeffter, Tobias; Kozerke, Sebastian

    2016-01-01

    To improve velocity vector field reconstruction from undersampled four-dimensional (4D) flow MRI by penalizing divergence of the measured flow field. Iterative image reconstruction in which magnitude and phase are regularized separately in alternating iterations was implemented. The approach allows incorporating prior knowledge of the flow field being imaged. In the present work, velocity data were regularized to reduce divergence, using either divergence-free wavelets (DFW) or a finite difference (FD) method using the ℓ1-norm of divergence and curl. The reconstruction methods were tested on a numerical phantom and in vivo data. Results of the DFW and FD approaches were compared with data obtained with standard compressed sensing (CS) reconstruction. Relative to standard CS, directional errors of vector fields and divergence were reduced by 55-60% and 38-48% for three- and six-fold undersampled data with the DFW and FD methods. Velocity vector displays of the numerical phantom and in vivo data were found to be improved upon DFW or FD reconstruction. Regularization of vector field divergence in image reconstruction from undersampled 4D flow data is a valuable approach to improve reconstruction accuracy of velocity vector fields. © 2014 Wiley Periodicals, Inc.

  4. Measuring magnetic field vector by stimulated Raman transitions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Wenli; Wei, Rong, E-mail: weirong@siom.ac.cn; Lin, Jinda

    2016-03-21

    We present a method for measuring the magnetic field vector in an atomic fountain by probing the line strength of stimulated Raman transitions. The relative line strength for a Λ-type level system with an existing magnetic field is theoretically analyzed. The magnetic field vector measured by our proposed method is consistent well with that by the traditional bias magnetic field method with an axial resolution of 6.1 mrad and a radial resolution of 0.16 rad. Dependences of the Raman transitions on laser polarization schemes are also analyzed. Our method offers the potential advantages for magnetic field measurement without requiring additional bias fields,more » beyond the limitation of magnetic field intensity, and extending the spatial measurement range. The proposed method can be widely used for measuring magnetic field vector in other precision measurement fields.« less

  5. Note: An approach to 1000 T using the electro-magnetic flux compression.

    PubMed

    Nakamura, D; Sawabe, H; Takeyama, S

    2018-01-01

    The maximum magnetic field obtained by the electro-magnetic flux compression technique was investigated with respect to the initial seed magnetic field. It was found that the reduction in the seed magnetic field from 3.8 T to 3.0 T led to a substantial increase in the final peak magnetic field. The optical Faraday rotation method with a minimal size probe evades disturbances from electromagnetic noise and shockwave effects to detect such final peak fields in a reduced space of an inner wall of the imploding liner. The Faraday rotation signal recorded the maximum magnetic field increased significantly to the highest magnetic field of 985 T approaching 1000 T, ever achieved by the electro-magnetic flux compression technique as an indoor experiment.

  6. Assessing human exposure to power-frequency electric and magnetic fields.

    PubMed Central

    Kaune, W T

    1993-01-01

    This paper reviews published literature and current problems relating to the assessment of occupational and residential human exposures to power-frequency electric and magnetic fields. Available occupational exposure data suggest that the class of job titles known as electrical workers may be an effective surrogate for time-weighted-average (TWA) magnetic-field (but not electric-field) exposure. Current research in occupational-exposure assessment is directed to the construction of job-exposure matrices based on electric- and magnetic-field measurements and estimates of worker exposures to chemicals and other factors of interest. Recent work has identified five principal sources of residential magnetic fields: electric power transmission lines, electric power distribution lines, ground currents, home wiring, and home appliances. Existing residential-exposure assessments have used one or more of the following techniques: questionnaires, wiring configuration coding, theoretical field calculations, spot electric- and magnetic-field measurements, fixed-site magnetic-field recordings, personal- exposure measurements, and geomagnetic-field measurements. Available normal-power magnetic-field data for residences differ substantially between studies. It is not known if these differences are due to geographical differences, differences in measurement protocols, or instrumentation differences. Wiring codes and measured magnetic fields (but not electric fields) are associated weakly. Available data suggest, but are far from proving, that spot measurements may be more effective than wire codes as predictors of long-term historical magnetic-field exposure. Two studies find that away-from-home TWA magnetic-field exposures are less variable than at-home exposures. The importance of home appliances as contributors to total residential magnetic-field exposure is not known at this time. It also is not known what characteristics (if any) of residential electric and magnetic fields are determinants of human health effects. PMID:8206021

  7. Apparatus and method for reducing inductive coupling between levitation and drive coils within a magnetic propulsion system

    DOEpatents

    Post, Richard F.

    2001-01-01

    An apparatus and method is disclosed for reducing inductive coupling between levitation and drive coils within a magnetic levitation system. A pole array has a magnetic field. A levitation coil is positioned so that in response to motion of the magnetic field of the pole array a current is induced in the levitation coil. A first drive coil having a magnetic field coupled to drive the pole array also has a magnetic flux which induces a parasitic current in the levitation coil. A second drive coil having a magnetic field is positioned to attenuate the parasitic current in the levitation coil by canceling the magnetic flux of the first drive coil which induces the parasitic current. Steps in the method include generating a magnetic field with a pole array for levitating an object; inducing current in a levitation coil in response to motion of the magnetic field of the pole array; generating a magnetic field with a first drive coil for propelling the object; and generating a magnetic field with a second drive coil for attenuating effects of the magnetic field of the first drive coil on the current in the levitation coil.

  8. The Formation of Magnetic Depletions and Flux Annihilation Due to Reconnection in the Heliosheath

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Drake, J. F.; Swisdak, M.; Opher, M.

    The misalignment of the solar rotation axis and the magnetic axis of the Sun produces a periodic reversal of the Parker spiral magnetic field and the sectored solar wind. The compression of the sectors is expected to lead to reconnection in the heliosheath (HS). We present particle-in-cell simulations of the sectored HS that reflect the plasma environment along the Voyager 1 and 2 trajectories, specifically including unequal positive and negative azimuthal magnetic flux as seen in the Voyager data. Reconnection proceeds on individual current sheets until islands on adjacent current layers merge. At late time, bands of the dominant fluxmore » survive, separated by bands of deep magnetic field depletion. The ambient plasma pressure supports the strong magnetic pressure variation so that pressure is anticorrelated with magnetic field strength. There is little variation in the magnetic field direction across the boundaries of the magnetic depressions. At irregular intervals within the magnetic depressions are long-lived pairs of magnetic islands where the magnetic field direction reverses so that spacecraft data would reveal sharp magnetic field depressions with only occasional crossings with jumps in magnetic field direction. This is typical of the magnetic field data from the Voyager spacecraft. Voyager 2 data reveal that fluctuations in the density and magnetic field strength are anticorrelated in the sector zone, as expected from reconnection, but not in unipolar regions. The consequence of the annihilation of subdominant flux is a sharp reduction in the number of sectors and a loss in magnetic flux, as documented from the Voyager 1 magnetic field and flow data.« less

  9. On the change in the spectral composition of solar ultraviolet emission preceding proton flares, and its connection with the preflare fluctuations in the horizontal component of the geomagnetic field

    NASA Astrophysics Data System (ADS)

    Sheiner, Olga; Snegirev, Sergei; Smirnova, Anna

    The importance problem of Solar-terrestrial physics is regular forecasting of solar activity phenomena, which negatively influence the human’s health, operating safety, communication, radar sets and others. We previously reported the existence of long-period pulsations of H component of the geomagnetic field recorded at stations tested 2-3 days before the proton solar flares. There are the increasing of pulsation amplitude of the horizontal component of the magnetic field with periods of 30-60 minutes. The spectrum of the flux of ultraviolet solar radiation on the eve of proton flares was conducted to determine the presence of oscillations - precursors of flares, as one of the possible agents causing amplification of large periods pulsations of H component of the geomagnetic field. Used data on ultraviolet radiation of the sun with a wavelength of 115-127 nm are obtained from a geostationary satellite GOES 15, the method of wavelet analysis is used. It is found the congruence in the behavior of spectral components with periods of 30-60 minutes in the ground-based measurements and in UV emission for 3-1 days before the proton flare.

  10. Pharmacometabonomics Technique to Identify Warfarin Response Using Nuclear Magnetic Resonance Spectroscopy.

    PubMed

    Bawadikji, Abdulkader A; Teh, Chin-Hoe; Kader, Muhamad A B S A; Sulaiman, Syed A S; Ibrahim, Baharudin

    2017-01-01

    Warfarin, an anticoagulant medication, is prescribed regularly despite of its bleeding tendency for the prevention and/or treatment of various thromboembolic conditions, such as deep vein thrombosis, and complications associated with atrial fibrillation, and myocardial infarction, but because of its narrow therapeutic window, it has a lot of interactions with drugs and diet. Warfarin relies on regular monitoring of International Normalized Ratio which is a standardized test to measure prothrombin time and appropriate dose adjustment. Pharmacometabonomics is a novel scientific field which deals with identification and quantification of the metabolites present in the metabolome using spectroscopic techniques such as Nuclear Magnetic Resonance (NMR). Pharmacometabonomics helps to indicate perturbation in the levels of metabolites in the cells and tissues due to drug or ingestion of any substance. NMR is one of the most widely-used spectroscopic techniques in metabolomics because of its reproducibility and speed. There are many factors that influence the metabolism of warfarin, making changes in drug dosage common, and clinical factors like drug-drug interactions, dietary interactions and age explain for the most part the variability in warfarin dosing. Some studies have showed that pharmacogenetic testing for warfarin dosing does not improve health outcomes, and around 26% of the variation in warfarin dose requirements remains unexplained yet. Many recent pharmacometabonomics studies have been conducted to identify novel biomarkers of drug therapies such as paracetamol, aspirin and simvastatin. Thus, a technique such as NMR based pharmacometabonomics to find novel biomarkers in plasma and urine might be useful to predict warfarin outcome. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  11. Magnetic sponge prepared with an alkanedithiol-bridged network of nanomagnets.

    PubMed

    Ito, Yoshikazu; Miyazaki, Akira; Takai, Kazuyuki; Sivamurugan, Vajiravelu; Maeno, Takashi; Kadono, Takeshi; Kitano, Masaaki; Ogawa, Yoshihiro; Nakamura, Naotake; Hara, Michikazu; Valiyaveettil, Suresh; Enoki, Toshiaki

    2011-08-03

    The magnetic dipole-dipole interaction between nanomagnets having huge magnetic moments can have a strength comparable to that of the van der Waals interaction between them, and it can be manipulated by applying an external magnetic field of conventional strength. Therefore, the cooperation between the dipole-dipole interaction and the applied magnetic field allows the magnetic moments of nanomagnets to be aligned and organized in an ordered manner. In this work, a network of magnetic nanoparticles connected with flexible long-alkyl-chain linkers was designed to develop a "magnetic sponge" capable of absorbing and desorbing guest molecules with changes in the applied magnetic field. The magnetization of the sponge with long-alkyl-chain bridges (30 C atoms) exhibited a 500% increase after cooling in the presence of an applied field of 7 T relative to that in the absence of a magnetic field. Cooling in a magnetic field leads to anisotropic stretching in the sponge due to reorganization of the nanomagnets along the applied field, in contrast to the isotropic organization under zero-field conditions. Such magnetic-responsive organization and reorganization of the magnetic particle network significantly influences the gas absorption capacity of the nanopores inside the material. The absorption and desorption of guests in an applied magnetic field at low temperature can be regarded as a fascinating "breathing feature" of our magnetic sponge.

  12. Magnetic properties of artificially designed magnetic stray field landscapes in laterally confined exchange-bias layers.

    PubMed

    Mitin, D; Kovacs, A; Schrefl, T; Ehresmann, A; Holzinger, D; Albrecht, M

    2018-08-31

    Magnetic stray fields generated by domain walls (DWs) have attracted significant attention as they might be employed for precise positioning and active control of micro- and nano-sized magnetic objects in fluids or in the field of magnonics. The presented work intends to investigate the near-field response of magnetic stray field landscapes above generic types of charged DWs as occurring in thin films with in-plane anisotropy and preferential formation of Néel type DWs when disturbed by external magnetic fields. For this purpose, artificial magnetic stripe domain patterns with three defined domain configurations, i.e. head-to-head (tail-to-tail), head-to-side, and side-by-side, were fabricated via ion bombardment induced magnetic patterning of an exchange-biased IrMn/CoFe bilayer. The magnetic stray field landscapes as well as the local magnetization reversal of the various domain configurations were analyzed in an external magnetic field by scanning magnetoresistive microscopy and compared to micromagnetic simulations.

  13. Stochastic field-line wandering in magnetic turbulence with shear. II. Decorrelation trajectory method

    NASA Astrophysics Data System (ADS)

    Negrea, M.; Petrisor, I.; Shalchi, A.

    2017-11-01

    We study the diffusion of magnetic field lines in turbulence with magnetic shear. In the first part of the series, we developed a quasi-linear theory for this type of scenario. In this article, we employ the so-called DeCorrelation Trajectory method in order to compute the diffusion coefficients of stochastic magnetic field lines. The magnetic field configuration used here contains fluctuating terms which are described by the dimensionless functions bi(X, Y, Z), i = (x, y) and they are assumed to be Gaussian processes and are perpendicular with respect to the main magnetic field B0. Furthermore, there is also a z-component of the magnetic field depending on radial coordinate x (representing the gradient of the magnetic field) and a poloidal average component. We calculate the diffusion coefficients for magnetic field lines for different values of the magnetic Kubo number K, the dimensionless inhomogeneous magnetic parallel and perpendicular Kubo numbers KB∥, KB⊥ , as well as Ka v=bya vKB∥/KB⊥ .

  14. Free and forced Barkhausen noises in magnetic thin film based cross-junctions

    NASA Astrophysics Data System (ADS)

    Elzwawy, Amir; Talantsev, Artem; Kim, CheolGi

    2018-07-01

    Barkhausen noise, driven by thermal fluctuations in stationary magnetic field, and Barkhausen jumps, driven by sweeping magnetic field, are demonstrated to be effects of different orders of magnitude. The critical magnetic field for domain walls depinning, followed by avalanched and irreversible magnetization jumps, is determined. Magnetoresistive response of NiFe/M/NiFe (M = Au, Ta, Ag) trilayers to stationary and sweeping magnetic field is studied by means of anisotropic magnetoresistance (AMR) and planar Hall effect (PHE) measurements. Thermal fluctuations result in local and reversible changes of magnetization of the layers in thin film magnetic junctions, while the sweeping magnetic field results in reversible and irreversible avalanched domain motion, dependently on the ratio between the values of sweeping magnetic field and domain wall depinning field. The correlation between AMR and PHE responses to Barkhausen jumps is studied. The value of this correlation is found to be dependent on the α angle between the directions of magnetic field and current path.

  15. Study of magnetofluidic laser scattering under rotating magnetic field

    NASA Astrophysics Data System (ADS)

    Pai, Chintamani; Shalini, M.; Varma, Vijaykumar B.; Radha, S.; Nagarajan, R.; Ramanujan, Raju V.

    2018-04-01

    Magnetic field driven self-assembly of magnetic nanoparticles provides wireless programmable approach for tunable magnetofluidic laser scattering. In this work, we study magnetofluidic laser scattering from a commercial aqueous magnetic fluid (EMG 707) under an external rotating magnetic field. A set-up is developed to generate rotating magnetic field for the purpose. Self-assembled magnetic nanoparticle structures in the form of chains and bundles are formed along the magnetic field. This creates a linear streak formation in the forward laser scattering. Rotating magnetic field produces rotating linear streak. We report our initial results of rotating linear streaks at 3 rpm, 6 rpm and 10 rpm and our analysis of the patterns. The studies are useful for developing magnetic fluid based optical devices.

  16. Application of the magnetic fluid as a detector for changing the magnetic field

    NASA Astrophysics Data System (ADS)

    Zyatkov, D.; Yurchenko, A.; Yurchenko, V.; Balashov, V.

    2018-05-01

    In article the possibility of use of magnetic fluid as a sensitive element for fixing of change of induction of magnetic field in space is considered. Importance of solvable tasks is connected with search of the perspective magnetic substances susceptible to weak magnetic field. The results of a study of the capacitive method for fixing the change in the magnetic field on the basis of a ferromagnetic liquid are presented. The formation of chain structures in the ferrofluid from magnetic particles under the influence of the applied magnetic field leads to a change in the capacitance of the plate condenser. This task has important practical value for development of a magnetosensitive sensor of change of magnetic field.

  17. The Polarization Signature of Photospheric Magnetic Fields in 3D MHD Simulations and Observations at Disk Center

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beck, C.; Fabbian, D.; Rezaei, R.

    2017-06-10

    Before using three-dimensional (3D) magnetohydrodynamical (MHD) simulations of the solar photosphere in the determination of elemental abundances, one has to ensure that the correct amount of magnetic flux is present in the simulations. The presence of magnetic flux modifies the thermal structure of the solar photosphere, which affects abundance determinations and the solar spectral irradiance. The amount of magnetic flux in the solar photosphere also constrains any possible heating in the outer solar atmosphere through magnetic reconnection. We compare the polarization signals in disk-center observations of the solar photosphere in quiet-Sun regions with those in Stokes spectra computed on themore » basis of 3D MHD simulations having average magnetic flux densities of about 20, 56, 112, and 224 G. This approach allows us to find the simulation run that best matches the observations. The observations were taken with the Hinode SpectroPolarimeter (SP), the Tenerife Infrared Polarimeter (TIP), the Polarimetric Littrow Spectrograph (POLIS), and the GREGOR Fabry–Pèrot Interferometer (GFPI), respectively. We determine characteristic quantities of full Stokes profiles in a few photospheric spectral lines in the visible (630 nm) and near-infrared (1083 and 1565 nm). We find that the appearance of abnormal granulation in intensity maps of degraded simulations can be traced back to an initially regular granulation pattern with numerous bright points in the intergranular lanes before the spatial degradation. The linear polarization signals in the simulations are almost exclusively related to canopies of strong magnetic flux concentrations and not to transient events of magnetic flux emergence. We find that the average vertical magnetic flux density in the simulation should be less than 50 G to reproduce the observed polarization signals in the quiet-Sun internetwork. A value of about 35 G gives the best match across the SP, TIP, POLIS, and GFPI observations.« less

  18. The mechanisms of the effects of magnetic fields on cells

    NASA Astrophysics Data System (ADS)

    Kondrachuk, A.

    The evolution of organisms in conditions of the Earth magnetism results in close dependence of their functioning on the properties of the Earth magnetic field. The magnetic conditions in space flight differ from those on the Earth (e.g. much smaller values of magnetic filed) that effect various processes in living organisms. Meanwhile the mechanisms of interaction of magnetic fields with cell structures are poorly understood and systemized. The goal of the present work is to analyze and estimate the main established mechanisms of "magnetic fields - cell" interaction. Due to variety and complexity of the effects the analysis is mainly restricted to biological effects of the static magnetic field at a cellular level. 1) Magnetic induction. Static magnetic fields exert forces on moving ions in solution (e.g., electrolytes), giving rise to induced electric fields and currents. This effect may be especially important when the currents changed due to the magnetic field application are participating in some receptor functions of cells (e.g. plant cells). 2) Magneto-mechanical effect of reorientation. Uniform static magnetic fields produce torques on certain molecules with anisotropic magnetic properties, which results in their reorientation and spatial ordering. Since the structures of biological cells are magnetically and mechanically inhomogeneous, the application of a homogeneous magnetic field may cause redistribution of stresses within cells, deformation of intracellular structures, change of membrane permeability, etc. 3) Ponderomotive effects. Spatially non-uniform magnetic field exerts ponderomotive force on magnetically non-uniform cell structures. This force is proportional to the gradient of the square of magnetic field and the difference of magnetic susceptibilities of the component of the cell and its environment. 4) Biomagnetic effects. Magnetic fields can exert torques and translational forces on ferromagnetic structures, such as magnetite and ferritins presented in the cells. 5) Electronic interactions. Static magnetic fields can alter energy levels and spin orientation of electrons. Similar interactions can also occur with nuclear spins, but these are very weak compared to electron interactions. 6) Free radicals. Magnetic fields alter the spin states of the radicals, which, in turn, changes the relative probabilities of recombination and other interactions, possibly with biological consequences. 7) Non-linear effects. A number of non-linear mechanisms of magnetic effects on cells were recently proposed to explain how the cell could extract a weak magnetic signal from noise (e.g. stochastic non-linear resonance, self-tuned Hopf bifurcations). These new models need further experimental testing.

  19. SU-F-J-146: Experimental Validation of 6 MV Photon PDD in Parallel Magnetic Field Calculated by EGSnrc

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghila, A; Steciw, S; Fallone, B

    Purpose: Integrated linac-MR systems are uniquely suited for real time tumor tracking during radiation treatment. Understanding the magnetic field dose effects and incorporating them in treatment planning is paramount for linac-MR clinical implementation. We experimentally validated the EGSnrc dose calculations in the presence of a magnetic field parallel to the radiation beam travel. Methods: Two cylindrical bore electromagnets produced a 0.21 T magnetic field parallel to the central axis of a 6 MV photon beam. A parallel plate ion chamber was used to measure the PDD in a polystyrene phantom, placed inside the bore in two setups: phantom top surfacemore » coinciding with the magnet bore center (183 cm SSD), and with the magnet bore’s top surface (170 cm SSD). We measured the field of the magnet at several points and included the exact dimensions of the coils to generate a 3D magnetic field map in a finite element model. BEAMnrc and DOSXYZnrc simulated the PDD experiments in parallel magnetic field (i.e. 3D magnetic field included) and with no magnetic field. Results: With the phantom surface at the top of the electromagnet, the surface dose increased by 10% (compared to no-magnetic field), due to electrons being focused by the smaller fringe fields of the electromagnet. With the phantom surface at the bore center, the surface dose increased by 30% since extra 13 cm of air column was in relatively higher magnetic field (>0.13T) in the magnet bore. EGSnrc Monte Carlo code correctly calculated the radiation dose with and without the magnetic field, and all points passed the 2%, 2 mm Gamma criterion when the ion chamber’s entrance window and air cavity were included in the simulated phantom. Conclusion: A parallel magnetic field increases the surface and buildup dose during irradiation. The EGSnrc package can model these magnetic field dose effects accurately. Dr. Fallone is a co-founder and CEO of MagnetTx Oncology Solutions (under discussions to license Alberta bi-planar linac MR for commercialization).« less

  20. Bats Respond to Very Weak Magnetic Fields

    PubMed Central

    Tian, Lan-Xiang; Pan, Yong-Xin; Metzner, Walter; Zhang, Jin-Shuo; Zhang, Bing-Fang

    2015-01-01

    How animals, including mammals, can respond to and utilize the direction and intensity of the Earth’s magnetic field for orientation and navigation is contentious. In this study, we experimentally tested whether the Chinese Noctule, Nyctalus plancyi (Vespertilionidae) can sense magnetic field strengths that were even lower than those of the present-day geomagnetic field. Such field strengths occurred during geomagnetic excursions or polarity reversals and thus may have played an important role in the evolution of a magnetic sense. We found that in a present-day local geomagnetic field, the bats showed a clear preference for positioning themselves at the magnetic north. As the field intensity decreased to only 1/5th of the natural intensity (i.e., 10 μT; the lowest field strength tested here), the bats still responded by positioning themselves at the magnetic north. When the field polarity was artificially reversed, the bats still preferred the new magnetic north, even at the lowest field strength tested (10 μT), despite the fact that the artificial field orientation was opposite to the natural geomagnetic field (P<0.05). Hence, N. plancyi is able to detect the direction of a magnetic field even at 1/5th of the present-day field strength. This high sensitivity to magnetic fields may explain how magnetic orientation could have evolved in bats even as the Earth’s magnetic field strength varied and the polarity reversed tens of times over the past fifty million years. PMID:25922944

  1. Bats respond to very weak magnetic fields.

    PubMed

    Tian, Lan-Xiang; Pan, Yong-Xin; Metzner, Walter; Zhang, Jin-Shuo; Zhang, Bing-Fang

    2015-01-01

    How animals, including mammals, can respond to and utilize the direction and intensity of the Earth's magnetic field for orientation and navigation is contentious. In this study, we experimentally tested whether the Chinese Noctule, Nyctalus plancyi (Vespertilionidae) can sense magnetic field strengths that were even lower than those of the present-day geomagnetic field. Such field strengths occurred during geomagnetic excursions or polarity reversals and thus may have played an important role in the evolution of a magnetic sense. We found that in a present-day local geomagnetic field, the bats showed a clear preference for positioning themselves at the magnetic north. As the field intensity decreased to only 1/5th of the natural intensity (i.e., 10 μT; the lowest field strength tested here), the bats still responded by positioning themselves at the magnetic north. When the field polarity was artificially reversed, the bats still preferred the new magnetic north, even at the lowest field strength tested (10 μT), despite the fact that the artificial field orientation was opposite to the natural geomagnetic field (P<0.05). Hence, N. plancyi is able to detect the direction of a magnetic field even at 1/5th of the present-day field strength. This high sensitivity to magnetic fields may explain how magnetic orientation could have evolved in bats even as the Earth's magnetic field strength varied and the polarity reversed tens of times over the past fifty million years.

  2. Study of magnetic field expansion using a plasma generator for space radiation active protection

    NASA Astrophysics Data System (ADS)

    Jia, Xiang-Hong; Jia, Shao-Xia; Xu, Feng; Bai, Yan-Qiang; Wan, Jun; Liu, Hong-Tao; Jiang, Rui; Ma, Hong-Bo; Wang, Shou-Guo

    2013-09-01

    There are many active protecting methods including Electrostatic Fields, Confined Magnetic Field, Unconfined Magnetic Field and Plasma Shielding etc. for defending the high-energy solar particle events (SPE) and Galactic Cosmic Rays (GCR) in deep space exploration. The concept of using cold plasma to expand a magnetic field is the best one of all possible methods so far. The magnetic field expansion caused by plasma can improve its protective efficiency of space particles. One kind of plasma generator has been developed and installed into the cylindrical permanent magnet in the eccentric. A plasma stream is produced using a helical-shaped antenna driven by a radio-frequency (RF) power supply of 13.56 MHz, which exits from both sides of the magnet and makes the magnetic field expand on one side. The discharging belts phenomenon is similar to the Earth's radiation belt, but the mechanism has yet to be understood. A magnetic probe is used to measure the magnetic field expansion distributions, and the results indicate that the magnetic field intensity increases under higher increments of the discharge power.

  3. On turbulent diffusion of magnetic fields and the loss of magnetic flux from stars

    NASA Technical Reports Server (NTRS)

    Vainshtein, Samuel I.; Rosner, Robert

    1991-01-01

    The turbulent diffusion of magnetic fields in astrophysical objects, and the processes leading to magnetic field flux loss from such objects are discussed with attention to the suppression of turbulent diffusion by back-reaction of magnetic fields on small spatial scales, and on the constraint imposed on magnetic flux loss by flux-freezing within stars. Turbulent magnetic diffusion can be suppressed even for very weak large-scale magnetic fields, so that 'standard' turbulent diffusion is incapable of significant magnetic flux destruction within a star. Finally, magnetic flux loss via winds is shown to be generally ineffective, no matter what the value of the effective magnetic Reynolds number is.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takahashi, Masato; Maeda, Hideaki; Graduate School of Yokohama City University, Yokohama, Kanagawa 230-0045

    Achieving a higher magnetic field is important for solid-state nuclear magnetic resonance (NMR). But a conventional low temperature superconducting (LTS) magnet cannot exceed 1 GHz (23.5 T) due to the critical magnetic field. Thus, we started a project to replace the Nb{sub 3}Sn innermost coil of an existing 920 MHz NMR (21.6 T) with a Bi-2223 high temperature superconducting (HTS) innermost coil. Unfortunately, the HTS magnet cannot be operated in persistent current mode; an external dc power supply is required to operate the NMR magnet, causing magnetic field fluctuations. These fluctuations can be stabilized by a field-frequency lock system basedmore » on an external NMR detection coil. We demonstrate here such a field-frequency lock system in a 500 MHz LTS NMR magnet operated in an external current mode. The system uses a {sup 7}Li sample in a microcoil as external NMR detection system. The required field compensation is calculated from the frequency of the FID as measured with a frequency counter. The system detects the FID signal, determining the FID frequency, and calculates the required compensation coil current to stabilize the sample magnetic field. The magnetic field was stabilized at 0.05 ppm/3 h for magnetic field fluctuations of around 10 ppm. This method is especially effective for a magnet with large magnetic field fluctuations. The magnetic field of the compensation coil is relatively inhomogeneous in these cases and the inhomogeneity of the compensation coil can be taken into account.« less

  5. Compensation of Gradient-Induced Magnetic Field Perturbations

    PubMed Central

    Nixon, Terence W.; McIntyre, Scott; Rothman, Douglas L.; de Graaf, Robin A.

    2008-01-01

    Pulsed magnetic field gradients are essential for MR imaging and localized spectroscopy applications. However, besides the desired linear field gradients, pulsed currents in a strong external magnetic field also generate unwanted effects like eddy currents, gradient coil vibrations and acoustic noise. While the temporal magnetic field perturbations associated with eddy currents lead to spectral line shape distortions and signal loss, the vibration-related modulations lead to anti-symmetrical sidebands of any large signal (i.e. water), thereby obliterating the signals from smaller signals (i.e. metabolites). Here the measurement, characterization and compensation of vibrations-related magnetic field perturbations is presented. Following a quantitative evaluation of the various temporal components of the main magnetic field, a digital B0 magnetic field waveform is generated which reduces all temporal variations of the main magnetic field to within the spectral noise level. PMID:18329304

  6. Global enhancement and structure formation of the magnetic field in spiral galaxies

    NASA Astrophysics Data System (ADS)

    Khoperskov, Sergey A.; Khrapov, Sergey S.

    2018-01-01

    In this paper we study numerically large-scale magnetic field evolution and its enhancement in gaseous disks of spiral galaxies. We consider a set of models with the various spiral pattern parameters and the initial magnetic field strength with taking into account gas self-gravity and cooling and heating processes. In agreement with previous studies we find out that galactic magnetic field is mostly aligned with gaseous structures, however small-scale gaseous structures (spurs and clumps) are more chaotic than the magnetic field structure. In spiral arms magnetic field often coexists with the gas distribution, in the inter-arm region we see filamentary magnetic field structure. These filaments connect several isolated gaseous clumps. Simulations reveal the presence of the small-scale irregularities of the magnetic field as well as the reversal of magnetic field at the outer edge of the large-scale spurs. We provide evidences that the magnetic field in the spiral arms has a stronger mean-field component, and there is a clear inverse correlation between gas density and plasma-beta parameter, compared to the rest of the disk with a more turbulent component of the field and an absence of correlation between gas density and plasma-beta. We show the mean field growth up to >3-10 μG in the cold gas during several rotation periods (>500-800 Myr), whereas ratio between azimuthal and radial field is equal to >4/1. We find an enhancement of random and ordered components of the magnetic field. Mean field strength increases by a factor of >1.5-2.5 for models with various spiral pattern parameters. Random magnetic field component can reach up to 25% from the total strength. By making an analysis of the time-dependent evolution of the radial Poynting flux, we point out that the magnetic field strength is enhanced more strongly at the galactic outskirts which is due to the radial transfer of magnetic energy by the spiral arms pushing the magnetic field outward. Our results also support the presence of sufficient conditions for the development of magnetorotational instability at distances >11 kpc after >300 Myr of evolution.

  7. Magnetic field sensor

    NASA Astrophysics Data System (ADS)

    Silva, Nicolas

    2012-09-01

    Earlier papers1-3 in this journal have described experiments on measuring the magnetic fields of current-carrying wires and permanent magnets using magnetic field probes of various kinds. This paper explains how to use an iPad and the free app MagnetMeter-3D Vector Magnetometer and Accelerometer4 (compass HD) to measure the magnetic fields.

  8. Magnetic field amplification by the r-mode instability

    NASA Astrophysics Data System (ADS)

    Chugunov, A. I.; Friedman, J. L.; Lindblom, L.; Rezzolla, L.

    2017-12-01

    We discuss the magnetic field enhancement by unstable r-modes (driven by the gravitational radiation reaction force) in rotating stars. In the absence of a magnetic field, gravitational radiation exponentially increases the r-mode amplitude α, and accelerates differential rotation (secular motion of fluid elements). For a magnetized star, differential rotation enhances the magnetic field energy. Rezzolla et al (2000-2001) argued that if the magnetic energy grows faster than the gravitational radiation reaction force pumps energy into the r-modes, then the r-mode instability is suppressed. Chugunov (2015) demonstrated that without gravitational radiation, differential rotation can be treated as a degree of freedom decoupled from the r-modes and controlled by the back reaction of the magnetic field. In particular, the magnetic field windup does not damp r-modes. Here we discuss the effect of the back reaction of the magnetic field on differential rotation of unstable r-modes, and show that it limits the generated magnetic field and the magnetic energy growth rate preventing suppression of the r-mode instability by magnetic windup at low saturation amplitudes, α ≪ 1, predicted by current models.

  9. Heat transfer enhancement of Fe3O4 ferrofluids in the presence of magnetic field

    NASA Astrophysics Data System (ADS)

    Fadaei, Farzad; Shahrokhi, Mohammad; Molaei Dehkordi, Asghar; Abbasi, Zeinab

    2017-05-01

    In this article, three-dimensional (3D) forced-convection heat transfer of magnetic nanofluids in a pipe subject to constant wall heat flux in the presence of single or double permanent magnet(s) or current-carrying wire has been investigated and compared. In this regard, laminar fluid flow and equilibrium magnetization for the ferrofluid were considered. In addition, variations of magnetic field in different media were taken into account and the assumption of having a linear relationship of magnetization with applied magnetic field intensity was also relaxed. Effects of magnetic field intensity, nanoparticle volume fraction, Reynolds number value, and the type of magnetic field source (i.e., a permanent magnet or current-carrying wire) on the forced-convection heat transfer of magnetic nanofluids were carefully investigated. It was found that by applying the magnetic field, the fluid mixing could be intensified that leads to an increase in the Nusselt number value along the pipe length. Moreover, the obtained simulation results indicate that applying the magnetic field induced by two permanent magnets with a magnetization of 3×105 (A/m) (for each one), the fully developed Nusselt number value can be increased by 196%.

  10. Study on Properties of CoNi Films with mn Doping Prepared by Magnetic Fields Induced Codeposition Technology

    NASA Astrophysics Data System (ADS)

    Gang, Liang; Yu, Yundan; Ge, Hongliang; Wei, Guoying; Jiang, Li; Sun, Lixia

    Magnetic field parallel to electric field was induced during plating process to prepare CoNiMn alloy films on copper substrate. Electrochemistry mechanism and properties of CoNiMn alloy films were investigated in this paper. Micro magnetohydrodynamic convection phenomenon caused by vertical component of current density and parallel magnetic field due to deformation of current distribution contributed directly to the improvement of cathode current and deposition rate. Cathode current of the CoNiMn plating system increased about 30% with 1T magnetic field induced. It was found that CoNiMn films electrodeposited with magnetic fields basically belonged to a kind of progressive nucleation mode. Higher magnetic intensity intended to obtain CoNiMn films with good crystal structures and highly preferred orientations. With the increase of magnetic intensities, surface morphology of CoNiMn alloy films changed from typically nodular to needle-like structures. Compared with coatings electrodeposited without magnetic field, CoNiMn alloy films prepared with magnetic fields possessed better magnetic properties. Coercivity, remanence and saturation magnetization of samples increased sharply when 1T magnetic field was induced during plating process.

  11. Suppression of cooling by strong magnetic fields in white dwarf stars.

    PubMed

    Valyavin, G; Shulyak, D; Wade, G A; Antonyuk, K; Zharikov, S V; Galazutdinov, G A; Plachinda, S; Bagnulo, S; Machado, L Fox; Alvarez, M; Clark, D M; Lopez, J M; Hiriart, D; Han, Inwoo; Jeon, Young-Beom; Zurita, C; Mujica, R; Burlakova, T; Szeifert, T; Burenkov, A

    2014-11-06

    Isolated cool white dwarf stars more often have strong magnetic fields than young, hotter white dwarfs, which has been a puzzle because magnetic fields are expected to decay with time but a cool surface suggests that the star is old. In addition, some white dwarfs with strong fields vary in brightness as they rotate, which has been variously attributed to surface brightness inhomogeneities similar to sunspots, chemical inhomogeneities and other magneto-optical effects. Here we describe optical observations of the brightness and magnetic field of the cool white dwarf WD 1953-011 taken over about eight years, and the results of an analysis of its surface temperature and magnetic field distribution. We find that the magnetic field suppresses atmospheric convection, leading to dark spots in the most magnetized areas. We also find that strong fields are sufficient to suppress convection over the entire surface in cool magnetic white dwarfs, which inhibits their cooling evolution relative to weakly magnetic and non-magnetic white dwarfs, making them appear younger than they truly are. This explains the long-standing mystery of why magnetic fields are more common amongst cool white dwarfs, and implies that the currently accepted ages of strongly magnetic white dwarfs are systematically too young.

  12. Single-Step 3-D Image Reconstruction in Magnetic Induction Tomography: Theoretical Limits of Spatial Resolution and Contrast to Noise Ratio

    PubMed Central

    Hollaus, Karl; Rosell-Ferrer, Javier; Merwa, Robert

    2006-01-01

    Magnetic induction tomography (MIT) is a low-resolution imaging modality for reconstructing the changes of the complex conductivity in an object. MIT is based on determining the perturbation of an alternating magnetic field, which is coupled from several excitation coils to the object. The conductivity distribution is reconstructed from the corresponding voltage changes induced in several receiver coils. Potential medical applications comprise the continuous, non-invasive monitoring of tissue alterations which are reflected in the change of the conductivity, e.g. edema, ventilation disorders, wound healing and ischemic processes. MIT requires the solution of an ill-posed inverse eddy current problem. A linearized version of this problem was solved for 16 excitation coils and 32 receiver coils with a model of two spherical perturbations within a cylindrical phantom. The method was tested with simulated measurement data. Images were reconstructed with a regularized single-step Gauss–Newton approach. Theoretical limits for spatial resolution and contrast/noise ratio were calculated and compared with the empirical results from a Monte-Carlo study. The conductivity perturbations inside a homogeneous cylinder were localized for a SNR between 44 and 64 dB. The results prove the feasibility of difference imaging with MIT and give some quantitative data on the limitations of the method. PMID:17031597

  13. Fundamental study on the magnetic field control method using multiple HTS coils for Magnetic Drug Delivery System

    NASA Astrophysics Data System (ADS)

    Hirano, R.; Kim, S. B.; Nakagawa, T.; Tomisaka, Y.; Ueda, H.

    2017-07-01

    The magnetic drug delivery system (MDDS) is a key technology to reduce the side effects in the medical applications, and the magnetic force control is very important issue in MDDS. In this application, the strength of magnetic field and gradient required to MDDS devices are 54 mT and 5.5 T/m, respectively. We proposed the new magnetic force control system that consists of the multiple racetrack HTS magnets. We can control the magnetic field gradient along the longitudinal direction by the arrangement of the multiple racetrack HTS magnets and operating current of each magnet. When the racetrack HTS magnets were used, the critical current was reduced by the self-magnetic field. Therefore, the shape design of HTS magnet to reduce the magnet field into the surface of HTS tapes was required. Therefore, the electromagnetic analysis based on finite element method (FEM) was carried out to design and optimize the shape of multiple racetrack HTS magnet. We were able to suppress the reduction of critical current by placing the magnetic substance at upper and lower side of the HTS magnets. It was confirmed that obtained maximum values of magnetic field strength and field gradient were 33 mT and 0.18 T/m, respectively.

  14. Noninvasive valve monitor using constant magnetic and/or DC electromagnetic field

    DOEpatents

    Casada, D.A.; Haynes, H.D.

    1993-08-17

    One or more sources of steady magnetic field are carefully located on the outside of a valve body. The constant magnetic field is transmitted into the valve body and valve internals. A magnetic field detector carefully located on the outside of the valve body detects the intensity of the magnetic field at its location. As the position of a valve internal part is changed, there is an alteration in the magnetic field in the valve, and a consequent change in the detected magnetic field. Changes in the detected signal provide an indication of the position and motion of the valve internals.

  15. Noninvasive valve monitor using constant magnetic and/or DC electromagnetic field

    DOEpatents

    Casada, Donald A.; Haynes, Howard D.

    1993-01-01

    One or more sources of steady magnetic field are carefully located on the outside of a valve body. The constant magnetic field is transmitted into the valve body and valve internals. A magnetic field detector carefully located on the outside of the valve body detects the intensity of the magnetic field at its location. As the position of a valve internal part is changed, there is an alteration in the magnetic field in the valve, and a consequent change in the detected magnetic field. Changes in the detected signal provide an indication of the position and motion of the valve internals.

  16. CORONAL MAGNETIC FIELDS DERIVED FROM SIMULTANEOUS MICROWAVE AND EUV OBSERVATIONS AND COMPARISON WITH THE POTENTIAL FIELD MODEL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miyawaki, Shun; Nozawa, Satoshi; Iwai, Kazumasa

    2016-02-10

    We estimated the accuracy of coronal magnetic fields derived from radio observations by comparing them to potential field calculations and the differential emission measure measurements using EUV observations. We derived line-of-sight components of the coronal magnetic field from polarization observations of the thermal bremsstrahlung in the NOAA active region 11150, observed around 3:00 UT on 2011 February 3 using the Nobeyama Radioheliograph at 17 GHz. Because the thermal bremsstrahlung intensity at 17 GHz includes both chromospheric and coronal components, we extracted only the coronal component by measuring the coronal emission measure in EUV observations. In addition, we derived only themore » radio polarization component of the corona by selecting the region of coronal loops and weak magnetic field strength in the chromosphere along the line of sight. The upper limits of the coronal longitudinal magnetic fields were determined as 100–210 G. We also calculated the coronal longitudinal magnetic fields from the potential field extrapolation using the photospheric magnetic field obtained from the Helioseismic and Magnetic Imager. However, the calculated potential fields were certainly smaller than the observed coronal longitudinal magnetic field. This discrepancy between the potential and the observed magnetic field strengths can be explained consistently by two reasons: (1) the underestimation of the coronal emission measure resulting from the limitation of the temperature range of the EUV observations, and (2) the underestimation of the coronal magnetic field resulting from the potential field assumption.« less

  17. Interaction of neutrons with layered magnetic media in oscillating magnetic field

    NASA Astrophysics Data System (ADS)

    Nikitenko, Yu. V.; Ignatovich, V. K.; Radu, F.

    2011-06-01

    New experimental possibilities of investigating layered magnetic structures in oscillating magnetic fields are discussed. Spin-flip and nonspin-flip neutron reflection and transmission probabilities show a frequency dependency near the magnetic neutron resonance condition. This allows to increase the precision of the static magnetic depth profile measurements of the magnetized matter. Moreover, this opens new possibilities of measuring the induction of the oscillating field inside the matter and determining the magnetic susceptibility of the oscillating magnetic field. Refraction of neutrons as they pass through a magnetic prism in the presence of an oscillating magnetic field is also investigated. A non-polarized neutron beam splits into eight spatially separated neutron beams, whose intensity and polarization depend on the strength and frequency of the oscillating field. Also, it is shown that the oscillating magnetic permeability of an angstrom-thick layer can be measured with a neutron wave resonator.

  18. A Magnetic Field Sensor Based on a Magnetic Fluid-Filled FP-FBG Structure

    PubMed Central

    Xia, Ji; Wang, Fuyin; Luo, Hong; Wang, Qi; Xiong, Shuidong

    2016-01-01

    Based on the characteristic magnetic-controlled refractive index property, in this paper, a magnetic fluid is used as a sensitive medium to detect the magnetic field in the fiber optic Fabry-Perot (FP) cavity. The temperature compensation in fiber Fabry-Perot magnetic sensor is demonstrated and achieved. The refractive index of the magnetic fluid varies with the applied magnetic field and external temperature, and a cross-sensitivity effect of the temperature and magnetic field occurs in the Fabry-Perot magnetic sensor and the accuracy of magnetic field measurements is affected by the thermal effect. In order to overcome this problem, we propose a modified sensor structure. With a fiber Bragg grating (FBG) written in the insert fiber end of the Fabry-Perot cavity, the FBG acts as a temperature compensation unit for the magnetic field measurement and it provides an effective solution to the cross-sensitivity effect. The experimental results show that the sensitivity of magnetic field detection improves from 0.23 nm/mT to 0.53 nm/mT, and the magnetic field measurement resolution finally reaches 37.7 T. The temperature-compensated FP-FBG magnetic sensor has obvious advantages of small volume and high sensitivity, and it has a good prospect in applications in the power industry and national defense technology areas. PMID:27136564

  19. A Magnetic Field Sensor Based on a Magnetic Fluid-Filled FP-FBG Structure.

    PubMed

    Xia, Ji; Wang, Fuyin; Luo, Hong; Wang, Qi; Xiong, Shuidong

    2016-04-29

    Based on the characteristic magnetic-controlled refractive index property, in this paper, a magnetic fluid is used as a sensitive medium to detect the magnetic field in the fiber optic Fabry-Perot (FP) cavity. The temperature compensation in fiber Fabry-Perot magnetic sensor is demonstrated and achieved. The refractive index of the magnetic fluid varies with the applied magnetic field and external temperature, and a cross-sensitivity effect of the temperature and magnetic field occurs in the Fabry-Perot magnetic sensor and the accuracy of magnetic field measurements is affected by the thermal effect. In order to overcome this problem, we propose a modified sensor structure. With a fiber Bragg grating (FBG) written in the insert fiber end of the Fabry-Perot cavity, the FBG acts as a temperature compensation unit for the magnetic field measurement and it provides an effective solution to the cross-sensitivity effect. The experimental results show that the sensitivity of magnetic field detection improves from 0.23 nm/mT to 0.53 nm/mT, and the magnetic field measurement resolution finally reaches 37.7 T. The temperature-compensated FP-FBG magnetic sensor has obvious advantages of small volume and high sensitivity, and it has a good prospect in applications in the power industry and national defense technology areas.

  20. A Novel Method of Localization for Moving Objects with an Alternating Magnetic Field

    PubMed Central

    Gao, Xiang; Yan, Shenggang; Li, Bin

    2017-01-01

    Magnetic detection technology has wide applications in the fields of geological exploration, biomedical treatment, wreck removal and localization of unexploded ordinance. A large number of methods have been developed to locate targets with static magnetic fields, however, the relation between the problem of localization of moving objectives with alternating magnetic fields and the localization with a static magnetic field is rarely studied. A novel method of target localization based on coherent demodulation was proposed in this paper. The problem of localization of moving objects with an alternating magnetic field was transformed into the localization with a static magnetic field. The Levenberg-Marquardt (L-M) algorithm was applied to calculate the position of the target with magnetic field data measured by a single three-component magnetic sensor. Theoretical simulation and experimental results demonstrate the effectiveness of the proposed method. PMID:28430153

  1. Magnetic Torque in Single Crystal Ni-Mn-Ga

    NASA Astrophysics Data System (ADS)

    Hobza, Anthony; Müllner, Peter

    2017-06-01

    Magnetic shape memory alloys deform in an external magnetic field in two distinct ways: by axial straining—known as magnetic-field-induced strain—and by bending when exposed to torque. Here, we examine the magnetic torque that a magnetic field exerts on a long Ni-Mn-Ga rod. A single crystal specimen of Ni-Mn-Ga was constrained with respect to bending and subjected to an external magnetic field. The torque required to rotate the specimen in the field was measured as a function of the orientation of the sample with the external magnetic field, strain, and the magnitude of the external magnetic field. The torque was analyzed based on the changes in the free energy with the angle between the field and the sample. The contributions of magnetocrystalline anisotropy and shape anisotropy to the Zeeman energy determine the net torque. The torque is large when magneotcrystalline and shape anisotropies act synergistically and small when these anisotropies act antagonistically.

  2. Imaging of dynamic magnetic fields with spin-polarized neutron beams

    DOE PAGES

    Tremsin, A. S.; Kardjilov, N.; Strobl, M.; ...

    2015-04-22

    Precession of neutron spin in a magnetic field can be used for mapping of a magnetic field distribution, as demonstrated previously for static magnetic fields at neutron beamline facilities. The fringing in the observed neutron images depends on both the magnetic field strength and the neutron energy. In this paper we demonstrate the feasibility of imaging periodic dynamic magnetic fields using a spin-polarized cold neutron beam. Our position-sensitive neutron counting detector, providing with high precision both the arrival time and position for each detected neutron, enables simultaneous imaging of multiple phases of a periodic dynamic process with microsecond timing resolution.more » The magnetic fields produced by 5- and 15-loop solenoid coils of 1 cm diameter, are imaged in our experiments with ~100 μm resolution for both dc and 3 kHz ac currents. Our measurements agree well with theoretical predictions of fringe patterns formed by neutron spin precession. We also discuss the wavelength dependence and magnetic field quantification options using a pulsed neutron beamline. Furthermore, the ability to remotely map dynamic magnetic fields combined with the unique capability of neutrons to penetrate various materials (e.g., metals), enables studies of fast periodically changing magnetic processes, such as formation of magnetic domains within metals due to the presence of ac magnetic fields.« less

  3. Imaging of dynamic magnetic fields with spin-polarized neutron beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tremsin, A. S.; Kardjilov, N.; Strobl, M.

    Precession of neutron spin in a magnetic field can be used for mapping of a magnetic field distribution, as demonstrated previously for static magnetic fields at neutron beamline facilities. The fringing in the observed neutron images depends on both the magnetic field strength and the neutron energy. In this paper we demonstrate the feasibility of imaging periodic dynamic magnetic fields using a spin-polarized cold neutron beam. Our position-sensitive neutron counting detector, providing with high precision both the arrival time and position for each detected neutron, enables simultaneous imaging of multiple phases of a periodic dynamic process with microsecond timing resolution.more » The magnetic fields produced by 5- and 15-loop solenoid coils of 1 cm diameter, are imaged in our experiments with ~100 μm resolution for both dc and 3 kHz ac currents. Our measurements agree well with theoretical predictions of fringe patterns formed by neutron spin precession. We also discuss the wavelength dependence and magnetic field quantification options using a pulsed neutron beamline. Furthermore, the ability to remotely map dynamic magnetic fields combined with the unique capability of neutrons to penetrate various materials (e.g., metals), enables studies of fast periodically changing magnetic processes, such as formation of magnetic domains within metals due to the presence of ac magnetic fields.« less

  4. The influence of static magnetic field (50 mT) on development and motor behaviour of Tenebrio (Insecta, Coleoptera).

    PubMed

    Todorović, Dajana; Marković, Tamara; Prolić, Zlatko; Mihajlović, Spomenko; Rauš, Snežana; Nikolić, Ljiljana; Janać, Branka

    2013-01-01

    There is considerable concern about potential effects associated with exposure to magnetic fields on organisms. Therefore, duration of pupa-adult development and motor behaviour of adults were analyzed in Tenebrio obscursus and T. molitor after exposure to static magnetic field (50 mT). The experimental groups were: Control (kept 5 m from the magnets), groups which pupae and adults were placed closer to the North pole, or closer to the South pole of magnetic dipole. The pupae were exposed to the magnetic field until the moment of adult eclosion. The pupa-adult development dynamics were recorded daily. Subsequently, behaviour (distance travelled, average speed and immobility) of adults exposed to the magnetic field was monitored in a circular open field arena. Static magnetic field did not affect pupa-adult developmental dynamic of examined Tenebrio species. Exposure to magnetic field did not significantly change motor behaviour of T. obscurus adults. The changes in the motor behaviour of T. molitor induced by static magnetic field were opposite in two experimental groups developed closer to the North pole or closer to the South pole of magnetic dipole. Static magnetic field (50 mT) did not affect on pupa-adult development dynamic of two examined Tenebrio species, but modulated their motor behaviour.

  5. Trapped magnetic field of a mini-bulk magnet using YBaCuO at 77 K

    NASA Astrophysics Data System (ADS)

    Fujimoto, Hiroyuki; Kamijo, Hiroki

    2001-09-01

    Melt-processed rare earth (RE)123 superconductors have a high Jc at 77 K and high magnetic field. Solidification processes for producing (L)RE123 superconductors and pinning centers in the (L)RE123 matrix are effective for obtaining high Jc, leading to high-field application as a superconducting quasi-permanent bulk magnet with the liquid nitrogen refrigeration. One of the promising applications is a superconducting magnet for the magnetically levitated train. We fabricated a mini-superconducting bulk magnet of 200×100 mm2, consisting of 18 bulks, which are a square 33 mm on a side and 10 mm in thickness, and magnetized the mini-magnet by field cooling. The mini-magnet showed the trapped magnetic field of larger than 0.1 T on the surface of the outer vessel of the magnet. The present preliminary study discusses trapped magnetic field properties of the mini-bulk magnet using YBaCuO superconductors at 77 K.

  6. Theoretical predictions for spatially-focused heating of magnetic nanoparticles guided by magnetic particle imaging field gradients

    NASA Astrophysics Data System (ADS)

    Dhavalikar, Rohan; Rinaldi, Carlos

    2016-12-01

    Magnetic nanoparticles in alternating magnetic fields (AMFs) transfer some of the field's energy to their surroundings in the form of heat, a property that has attracted significant attention for use in cancer treatment through hyperthermia and in developing magnetic drug carriers that can be actuated to release their cargo externally using magnetic fields. To date, most work in this field has focused on the use of AMFs that actuate heat release by nanoparticles over large regions, without the ability to select specific nanoparticle-loaded regions for heating while leaving other nanoparticle-loaded regions unaffected. In parallel, magnetic particle imaging (MPI) has emerged as a promising approach to image the distribution of magnetic nanoparticle tracers in vivo, with sub-millimeter spatial resolution. The underlying principle in MPI is the application of a selection magnetic field gradient, which defines a small region of low bias field, superimposed with an AMF (of lower frequency and amplitude than those normally used to actuate heating by the nanoparticles) to obtain a signal which is proportional to the concentration of particles in the region of low bias field. Here we extend previous models for estimating the energy dissipation rates of magnetic nanoparticles in uniform AMFs to provide theoretical predictions of how the selection magnetic field gradient used in MPI can be used to selectively actuate heating by magnetic nanoparticles in the low bias field region of the selection magnetic field gradient. Theoretical predictions are given for the spatial decay in energy dissipation rate under magnetic field gradients representative of those that can be achieved with current MPI technology. These results underscore the potential of combining MPI and higher amplitude/frequency actuation AMFs to achieve selective magnetic fluid hyperthermia (MFH) guided by MPI.

  7. Magnetic diffusion and flare energy buildup

    NASA Technical Reports Server (NTRS)

    Wu, S. T.; Yin, C. L.; Yang, W.-H.

    1992-01-01

    Photospheric motion shears or twists solar magnetic fields to increase magnetic energy in the corona, because this process may change a current-free state of a coronal field to force-free states which carry electric current. This paper analyzes both linear and nonlinear 2D force-free magnetic field models and derives relations of magnetic energy buildup with photospheric velocity field. When realistic data of solar magnetic field and photospheric velocity field are used, it is found that 3-4 hours are needed to create an amount of free magnetic energy which is of the order of the current-free field energy. Furthermore, the paper studies situations in which finite magnetic diffusivities in photospheric plasma are introduced. The shearing motion increases coronal magnetic energy, while the photospheric diffusion reduces the energy. The variation of magnetic energy in the coronal region, then, depends on which process dominates.

  8. Research on single-chip microcomputer controlled rotating magnetic field mineralization model

    NASA Astrophysics Data System (ADS)

    Li, Yang; Qi, Yulin; Yang, Junxiao; Li, Na

    2017-08-01

    As one of the method of selecting ore, the magnetic separation method has the advantages of stable operation, simple process flow, high beneficiation efficiency and no chemical environment pollution. But the existing magnetic separator are more mechanical, the operation is not flexible, and can not change the magnetic field parameters according to the precision of the ore needed. Based on the existing magnetic separator is mechanical, the rotating magnetic field can be used for single chip microcomputer control as the research object, design and trial a rotating magnetic field processing prototype, and through the single-chip PWM pulse output to control the rotation of the magnetic field strength and rotating magnetic field speed. This method of using pure software to generate PWM pulse to control rotary magnetic field beneficiation, with higher flexibility, accuracy and lower cost, can give full play to the performance of single-chip.

  9. FOREWORD: Focus on Magneto-Science

    NASA Astrophysics Data System (ADS)

    Tanimoto, Yoshifumi; Beaugnon, Eric; Kimura, Tsunehisa; Ozeki, Sumio

    2008-06-01

    Magnetite, a natural magnetic material, was discovered in China several thousand years ago. Since then, many ancient people have been fascinated by the interesting properties of magnetite. Similarly, many scientists have dreamed of manipulating chemical, physical and biological phenomena using magnetic fields. Despite the long time that has passed since the discovery of magnetite, this dream has only recently been accomplished. Magnetism, an important physical property of materials, is of three types: diamagnetism, paramagnetism and ferromagnetism. The magnetic susceptibilities of diamagnetic, paramagnetic and ferromagnetic materials are in the order of -10-10, +10-8 and +10-2 m3 mol-1, respectively. Note that most commonly used materials such as water and benzene are diamagnetic; air is paramagnetic. The magnetic energy of diamagnetic and paramagnetic (magnetically weak) materials under a magnetic field of 1 T, which is the maximum field generated by a tabletop electromagnet, is very small compared with the thermal energy at room temperature. Therefore, it is difficult to believe that a magnetic field less than 1 T markedly affects the chemical and physical phenomena of magnetically weak materials. Recently, the progress of superconducting magnet manufacturing technology has enabled us to freely use strong magnetic fields of 10 T or more in our laboratories. Because magnetic energy is proportional to the square of the magnetic flux density, the magnetic energy at 10 T, for example, is 100 times greater than that at 1 T, indicating that the effect of a 10 T magnetic field on magnetically weak materials becomes so great that magnetic phenomena, which cannot be observed in a 1 T field, are very clear in a 10 T field. Consequently, many interesting phenomena have been observed. For example, it was demonstrated that water in a vessel could be separated into two parts by applying strong horizontal magnetic fields to create the so-called Moses effect. Reportedly, diamagnetic materials such as water and wood can be levitated by applying vertical magnetic fields: magnetic levitation. These phenomena are interpreted in terms of magnetic force. Although the effect of a magnetic force has been well investigated both theoretically and experimentally, before these reports it was difficult to imagine that water could be separated or levitated using magnetic fields, simply because the magnetic force generated by a tabletop electromagnet is not strong enough to demonstrate these phenomena clearly. The magnetic phenomena occurring under a 10 T field markedly differ from those under a 1 T field: strong magnetic fields of approximately 10 T present researchers with a new interdisciplinary field of science, encompassing physics, chemistry and biology, which will also be useful for technological development. Taking these benefits into account, we adopted the term 'magneto-science' (basic and applied), to refer to the investigation of magnetic field effects (MFEs) on physical, chemical and biological phenomena in order to differentiate this new interdisciplinary field from traditional ones. In consideration of the important role of magneto-science in the 21st century, this focus issue contains 16 articles selected from the International Conference on Magneto-Science (ICMS2007), which was held in Hiroshima, Japan in November 2007. The selected papers describe various studies of MFEs (≤ 16 T) in hard, soft and biological materials. Topics such as the magnetic processing of alloys or hard materials, spin chemistry and spin dynamics, magneto-electrochemistry, the magnetic processing of soft materials, the applications of magnetic fields to analysis, and magneto-biology are addressed to delineate the frontiers of magneto-science. We hope that this focus issue will help readers to understand several aspects of the frontiers of magneto-science.

  10. Connecting the large- and the small-scale magnetic fields of solar-like stars

    NASA Astrophysics Data System (ADS)

    Lehmann, L. T.; Jardine, M. M.; Mackay, D. H.; Vidotto, A. A.

    2018-05-01

    A key question in understanding the observed magnetic field topologies of cool stars is the link between the small- and the large-scale magnetic field and the influence of the stellar parameters on the magnetic field topology. We examine various simulated stars to connect the small-scale with the observable large-scale field. The highly resolved 3D simulations we used couple a flux transport model with a non-potential coronal model using a magnetofrictional technique. The surface magnetic field of these simulations is decomposed into spherical harmonics which enables us to analyse the magnetic field topologies on a wide range of length scales and to filter the large-scale magnetic field for a direct comparison with the observations. We show that the large-scale field of the self-consistent simulations fits the observed solar-like stars and is mainly set up by the global dipolar field and the large-scale properties of the flux pattern, e.g. the averaged latitudinal position of the emerging small-scale field and its global polarity pattern. The stellar parameters flux emergence rate, differential rotation and meridional flow affect the large-scale magnetic field topology. An increased flux emergence rate increases the magnetic flux in all field components and an increased differential rotation increases the toroidal field fraction by decreasing the poloidal field. The meridional flow affects the distribution of the magnetic energy across the spherical harmonic modes.

  11. Model of driven and decaying magnetic turbulence in a cylinder.

    PubMed

    Kemel, Koen; Brandenburg, Axel; Ji, Hantao

    2011-11-01

    Using mean-field theory, we compute the evolution of the magnetic field in a cylinder with outer perfectly conducting boundaries and imposed axial magnetic and electric fields. The thus injected magnetic helicity in the system can be redistributed by magnetic helicity fluxes down the gradient of the local current helicity of the small-scale magnetic field. A weak reversal of the axial magnetic field is found to be a consequence of the magnetic helicity flux in the system. Such fluxes are known to alleviate so-called catastrophic quenching of the α effect in astrophysical applications. A stronger field reversal can be obtained if there is also a significant kinetic α effect. Application to the reversed field pinch in plasma confinement devices is discussed.

  12. Magnetic field, reconnection, and particle acceleration in extragalactic jets

    NASA Technical Reports Server (NTRS)

    Romanova, M. M.; Lovelace, R. V. E.

    1992-01-01

    Extra-galactic radio jets are investigated theoretically taking into account that the jet magnetic field is dragged out from the central rotating source by the jet flow. Thus, magnetohydrodynamic models of jets are considered with zero net poloidal current and flux, and consequently a predominantly toroidal magnetic field. The magnetic field naturally has a cylindrical neutral layer. Collisionless reconnection of the magnetic field in the vicinity of the neutral layer acts to generate a non-axisymmetric radial magnetic field. In turn, axial shear-stretching of reconnected toroidal field gives rise to a significant axial magnetic field if the flow energy-density is larger than the energy-density of the magnetic field. This can lead to jets with an apparent longitudinal magnetic field as observed in the Fanaroff-Riley class II jets. In the opposite limit, where the field energy-density is large, the field remains mainly toroidal as observed in Fanaroff-Riley class I jets. Driven collisionless reconnection at neutral layers may lead to acceleration of electrons to relativistic energies in the weak electrostatic field of the neutral layer. A simple model is discussed for particle acceleration at neutral layers in electron/positron and electron/proton plasmas.

  13. Exploration of solar photospheric magnetic field data sets using the UCSD tomography

    NASA Astrophysics Data System (ADS)

    Jackson, B. V.; Yu, H.-S.; Buffington, A.; Hick, P. P.; Nishimura, N.; Nozaki, N.; Tokumaru, M.; Fujiki, K.; Hayashi, K.

    2016-12-01

    This article investigates the use of two different types of National Solar Observatory magnetograms and two different coronal field modeling techniques over 10 years. Both the "open-field" Current Sheet Source Surface (CSSS) and a "closed-field" technique using CSSS modeling are compared. The University of California, San Diego, tomographic modeling, using interplanetary scintillation data from Japan, provides the global velocities to extrapolate these fields outward, which are then compared with fields measured in situ near Earth. Although the open-field technique generally gives a better result for radial and tangential fields, we find that a portion of the closed extrapolated fields measured in situ near Earth comes from the direct outward mapping of these fields in the low solar corona. All three closed-field components are nonzero at 1 AU and are compared with the appropriate magnetometer values. A significant positive correlation exists between these closed-field components and the in situ measurements over the last 10 years. We determine that a small fraction of the static low-coronal component flux, which includes the Bn (north-south) component, regularly escapes from closed-field regions. The closed-field flux fraction varies by about a factor of 3 from a mean value during this period, relative to the magnitude of the field components measured in situ near Earth, and maximizes in 2014. This implies that a relatively more efficient process for closed-flux escape occurs near solar maximum. We also compare and find that the popular Potential Field Source Surface and CSSS model closed fields are nearly identical in sign and strength.

  14. Full-vector geomagnetic field records from the East Eifel, Germany

    NASA Astrophysics Data System (ADS)

    Monster, Marilyn W. L.; Langemeijer, Jaap; Wiarda, Laura R.; Dekkers, Mark J.; Biggin, Andy J.; Hurst, Elliot A.; Groot, Lennart V. de

    2018-01-01

    To create meaningful models of the geomagnetic field, high-quality directional and intensity input data are needed. However, while it is fairly straightforward to obtain directional data, intensity data are much scarcer, especially for periods before the Holocene. Here, we present data from twelve flows (age range ∼ 200 to ∼ 470 ka) in the East Eifel volcanic field (Germany). These sites had been previously studied and are resampled to further test the recently proposed multi-method palaeointensity approach. Samples are first subjected to classic palaeomagnetic and rock magnetic analyses to optimise the subsequent palaeointensity experiments. Four different palaeointensity methods - IZZI-Thellier, the multispecimen method, calibrated pseudo-Thellier, and microwave-Thellier - are being used in the present study. The latter should be considered as supportive because only one or two specimens per site could be processed. Palaeointensities obtained for ten sites pass our selection criteria: two sites are successful with a single approach, four sites with two approaches, three more sites work with three approaches, and one site with all four approaches. Site-averaged intensity values typically range between 30 and 35 μT. No typically low palaeointensity values are found, in line with paleodirectional results which are compatible with regular palaeosecular variation of the Earth's magnetic field. Results from different methods are remarkably consistent and generally agree well with the values previously reported. They appear to be below the average for the Brunhes chron; there are no indications for relatively higher palaeointensities for units younger than 300 ka. However, our young sites could be close in age, and therefore may not represent the average intensity of the paleofield. Three of our sites are even considered coeval; encouragingly, these do yield the same palaeointensity within uncertainty bounds.

  15. DOUBLE DYNAMO SIGNATURES IN A GLOBAL MHD SIMULATION AND MEAN-FIELD DYNAMOS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beaudoin, Patrice; Simard, Corinne; Cossette, Jean-François

    The 11 year solar activity cycle is the most prominent periodic manifestation of the magnetohydrodynamical (MHD) large-scale dynamo operating in the solar interior, yet longer and shorter (quasi-) periodicities are also present. The so-called “quasi-biennial” signal appearing in many proxies of solar activity has been gaining increasing attention since its detection in p -mode frequency shifts, which suggests a subphotospheric origin. A number of candidate mechanisms have been proposed, including beating between co-existing global dynamo modes, dual dynamos operating in spatially separated regions of the solar interior, and Rossby waves driving short-period oscillations in the large-scale solar magnetic field producedmore » by the 11 year activity cycle. In this article, we analyze a global MHD simulation of solar convection producing regular large-scale magnetic cycles, and detect and characterize shorter periodicities developing therein. By constructing kinematic mean-field α {sup 2}Ω dynamo models incorporating the turbulent electromotive force (emf) extracted from that same simulation, we find that dual-dynamo behavior materializes in fairly wide regions of the model’s parameters space. This suggests that the origin of the similar behavior detected in the MHD simulation lies with the joint complexity of the turbulent emf and differential rotation profile, rather that with dynamical interactions such as those mediated by Rossby waves. Analysis of the simulation also reveals that the dual dynamo operating therein leaves a double-period signature in the temperature field, consistent with a dual-period helioseismic signature. Order-of-magnitude estimates for the magnitude of the expected frequency shifts are commensurate with helioseismic measurements. Taken together, our results support the hypothesis that the solar quasi-biennial oscillations are associated with a secondary dynamo process operating in the outer reaches of the solar convection zone.« less

  16. Using SOHO to Understand CME-Producing Quiet-Region Filament Eruptions

    NASA Technical Reports Server (NTRS)

    Sterling, A. C.; Moore, R. L.; Harra, L. K.

    2006-01-01

    In recent years we have been studying solar eruptions in an attempt to determine their primary initiation mechanism. We have focused on events involving filaments, because motions of the filaments just prior to their violent eruption are indicative of changes in the entire magnetic field system involved in the eruption. When the pre-eruption filament resides in a quiet region, the motions leading up to eruption are slower than in similar eruptions in active regions due to the weaker magnetic field strength and correspondingly lower Alfven velocities. These early motions manifest themselves in a slow rise (a few km/s) of the filament, in some cases lasting several hours. After this the filament and associated magnetic structures erupt rapidly, accelerating to speeds of a few 10 kmh over a few minutes. Because of their slow evolution, quiet-region eruptions such as these can be effectively studied in EUV with SOHO/EIT, with its regular cadence of about 12 min. For several cases we have combined EIT images with SOHO/MDI magnetograms and data from other other instruments, and compared our observations with predictions from various eruption scenarios, in particular the "breakout" (Antiochos 1998), "tether cutting" (e.g., Moore et al. 2001), and MHD instability mechanisms. Here we present a representative example of a quiet-region eruption involving a filament ejection, that occurred on 2001 February 28 in a magnetically quadrupolar region and produced a halo CME in SOHO/LASCO images. In addition to EIT and MDI, we analyzed spectral data from SOHO/CDS and soft X-ray (SXR) images from Yohkoh/SXT. We found that flux emergence occurred near one end of the filament, and that both this emergence and resulting microflaring in SXRs and EUV were temporally and spatially closely related to the start of the filament's slow rise. Intensity changes (dimmings and brightenings) in the EIT and SXT images indicate that fields far removed from the erupting core were involved in the eruption, and that breakout-type reconnection did occur. Our observations allow us to investigate whether breakout was the trigger of the eruption, or merely a consequence of a more fundamental eruption process such as tether cutting or MHD instability occurring in a complex magnetic environment.

  17. Public magnetic field exposure based on internal current density for electric low voltage systems.

    PubMed

    Keikko, Tommi; Seesvuori, Reino; Hyvönen, Martti; Valkealahti, Seppo

    2009-04-01

    A measurement concept utilizing a new magnetic field exposure metering system has been developed for indoor substations where voltage is transformed from a medium voltage of 10 or 20 kV to a low voltage of 400 V. The new metering system follows the guidelines published by the International Commission on Non-Ionizing Radiation Protection. It can be used to measure magnetic field values, total harmonic distortion of the magnetic field, magnetic field exposure ratios for public and workers, load current values, and total harmonic distortion of the load current. This paper demonstrates how exposure to non-sinusoidal magnetic fields and magnetic flux density exposure values can be compared directly with limit values for internal current densities in a human body. Further, we present how the magnetic field and magnetic field exposure behaves in the vicinity of magnetic field sources within the indoor substation and in the neighborhood. Measured magnetic fields around the substation components have been used to develop a measurement concept by which long-term measurements in the substations were performed. Long-term measurements revealed interesting and partly unexpected dependencies between the measured quantities, which have been further analyzed. The principle of this paper is to substitute a demanding exposure measurement with measurements of the basic quantities like the 50 Hz fundamental magnetic field component, which can be estimated based on the load currents for certain classes of substation lay-out.

  18. Crisp clustering of airborne geophysical data from the Alto Ligonha pegmatite field, northeastern Mozambique, to predict zones of increased rare earth element potential

    NASA Astrophysics Data System (ADS)

    Eberle, Detlef G.; Daudi, Elias X. F.; Muiuane, Elônio A.; Nyabeze, Peter; Pontavida, Alfredo M.

    2012-01-01

    The National Geology Directorate of Mozambique (DNG) and Maputo-based Eduardo-Mondlane University (UEM) entered a joint venture with the South African Council for Geoscience (CGS) to conduct a case study over the meso-Proterozoic Alto Ligonha pegmatite field in the Zambézia Province of northeastern Mozambique to support the local exploration and mining sectors. Rare-metal minerals, i.e. tantalum and niobium, as well as rare-earth minerals have been mined in the Alto Ligonha pegmatite field since decades, but due to the civil war (1977-1992) production nearly ceased. The Government now strives to promote mining in the region as contribution to poverty alleviation. This study was undertaken to facilitate the extraction of geological information from the high resolution airborne magnetic and radiometric data sets recently acquired through a World Bank funded survey and mapping project. The aim was to generate a value-added map from the airborne geophysical data that is easier to read and use by the exploration and mining industries than mere airborne geophysical grid data or maps. As a first step towards clustering, thorium (Th) and potassium (K) concentrations were determined from the airborne geophysical data as well as apparent magnetic susceptibility and first vertical magnetic gradient data. These four datasets were projected onto a 100 m spaced regular grid to assemble 850,000 four-element (multivariate) sample vectors over the study area. Classification of the sample vectors using crisp clustering based upon the Euclidian distance between sample and class centre provided a (pseudo-) geology map or value-added map, respectively, displaying the spatial distribution of six different classes in the study area. To learn the quality of sample allocation, the degree of membership of each sample vector was determined using a-posterior discriminant analysis. Geophysical ground truth control was essential to allocate geology/geophysical attributes to the six classes. The highest probability to meet pegmatite bodies is in close vicinity to (magnetic) amphibole schist occurring in areas where depletion of potassium as indication of metasomatic processes is evident from the airborne radiometric data. Clustering has proven to be a fast and effective method to compile value-added maps from multivariate geophysical datasets. Experience made in the Alto Ligonha pegmatite field encourages adopting this new methodology for mapping other parts of the Mozambique Fold Belt.

  19. Effects of head field and AC field on magnetization reversal for microwave assisted magnetic recording

    NASA Astrophysics Data System (ADS)

    Kase, Aina; Akagi, Fumiko; Yoshida, Kazuetsu

    2018-05-01

    Microwave assisted magnetic recording (MAMR) is a promising recording method for achieving high recording densities in hard disk drives. In MAMR, the AC field from a spin-torque oscillator (STO) assists the head field with magnetization reversal in a medium. Therefore, the relationship between the head field and the AC field is very important. In this study, the effects of the head field and the AC field on magnetization reversal were analyzed using a micromagnetic simulator that takes the magnetic interactions between a single-pole type (SPT) write-head, an exchange coupled composite (ECC) medium, and the STO into account. As a result, the magnetization reversal was assisted not just by the y-component of the AC field (Hstoy) but also by the y-component of the head field (Hhy) in the medium. The Hhy over 100 kA/m with a frequency of about 15.5 GHz induced the magnetic resonance. The large Hhy was produced by the field from the STO to the SPT head.

  20. Magnetic field sensing based on tilted fiber Bragg grating coated with nanoparticle magnetic fluid

    NASA Astrophysics Data System (ADS)

    Yang, Dexing; Du, Lei; Xu, Zengqi; Jiang, Yajun; Xu, Jian; Wang, Meirong; Bai, Yang; Wang, Haiyan

    2014-02-01

    A magnetic field sensor based on a tilted fiber Bragg grating (TFBG) coated with magnetic fluid is proposed and demonstrated experimentally. The sensing element is made by injecting the magnetic fluid into a capillary tube which contains a TFBG. The resonant wavelengths of the cladding modes of TFBG shift by varying the magnetic field which is perpendicular to the axis of TFBG. The results indicate that the resonant wavelength shifts of the cladding modes show a nonlinear dependence on the magnetic field. As the magnetic field increases to 32 mT, the largest resonant wavelength shift reaches to 106 pm. Moreover, this sensor shows good repeatability when it is used for magnetic field sensing.

  1. Role of magnetic fields in physics and astrophysics; Proceedings of the Conference, Copenhagen, Denmark, June 5-7, 1974

    NASA Technical Reports Server (NTRS)

    Canuto, V.

    1975-01-01

    The papers deal with the role of magnetism in astrophysics and the properties of matter in the presence of unusually large magnetic fields. Topics include a quantum-mechanical treatment of high-energy charged particles radiating in a homogeneous magnetic field, the solution and properties of the Dirac equation for magnetic fields of any strength up to 10 to the 13th power gauss, experimental difficulties encountered and overcome in generating megagauss fields, the effect of strong radiation damping for an ultrarelativistic charge in an external electromagnetic field, magnetic susceptibilities of nuclei and elementary particles, and Compton scattering in strong external electromagnetic fields. Other papers examine static uniform electric and magnetic polarizabilities of the vacuum in arbitrarily strong magnetic fields, quantum-mechanical processes in neutron stars, basic ideas of mean-field magnetohydrodynamics, helical MHD turbulence, relations between cosmic and laboratory plasma physics, and insights into the nature of magnetism provided by relativity and cosmology. Individual items are announced in this issue.

  2. Observations of two-dimensional magnetic field evolution in a plasma opening switch

    NASA Astrophysics Data System (ADS)

    Shpitalnik, R.; Weingarten, A.; Gomberoff, K.; Krasik, Ya.; Maron, Y.

    1998-03-01

    The time dependent magnetic field distribution was studied in a coaxial 100-ns positive-polarity Plasma Opening Switch (POS) by observing the Zeeman effect in ionic line emission. Measurements local in three dimensions are obtained by doping the plasma using laser evaporation techniques. Fast magnetic field penetration with a relatively sharp magnetic field front (⩽1 cm) is observed at the early stages of the pulse (t≲25). Later in the pulse, the magnetic field is observed at the load-side edge of the plasma, leaving "islands" of low magnetic field at the plasma center that last for about 10 ns. The two-dimensional (2-D) structure of the magnetic field in the r,z plane is compared to the results of an analytical model based on electron-magneto-hydrodynamics, that utilizes the measured 2-D plasma density distribution and assumes fast magnetic field penetration along both POS electrodes. The model results provide quantitative explanation for the magnetic field evolution observed.

  3. Estimation of Soil Erosion by Using Magnetic Method: A Case Study of an Agricultural Field in Southern Moravia (Czech Republic)

    NASA Astrophysics Data System (ADS)

    Petrovsky, E.; Grison, H.; Kapicka, A.; Dlouha, S.; Kodesova, R.; Jaksik, O.

    2013-05-01

    In this study we have applied magnetism of soils for estimation of erosion at an agricultural land. The testing site is situated in loess region in Southern Moravia (in Central Europe). The approach is based on well-established method of differentiation of magnetic parameters of the topsoil and the subsoil horizons as a result of in situ formation of strongly magnetic iron oxides. Our founding is established on a simple tillage homogenization model described by Royall (2001) using magnetic susceptibility and its frequency dependence to estimate soil loss caused by the tillage and subsequent erosion. The original dominant Soil Unit in the investigated area is Haplic Chernozem, which is due to intensive erosion progressively transformed into different Soil Units. The site is characterized by a flat upper part while the middle part, formed by a substantive side valley, is steeper (up to 15°). The side valley represents a major line of concentrated runoff emptying into a colluvial fan. Field measurements of the topsoil volume magnetic susceptibility were carried out by the Bartington MS2D probe. Data are resulting in regular grid of 101 data points, where the bulk soil material was gathered for further laboratory investigations. Moreover, vertical distribution of magnetic susceptibility (deep to 40 cm) was measured on selected transects using the SM400 kappameter. In the laboratory, after drying and sieving of collected soil samples, mass-specific magnetic susceptibility and its frequency-dependent susceptibility was measured. In order to identify magnetic minerals the thermomagnetic analyses were performed using the AGICO KLY-4S Kappabridge with CS-3 furnace. Hysteresis loops were carried out on vibrating magnetometer ADE EV9 to assess the grain-size distribution of ferrimagnetic particles. Hereafter, the isothermal remanent magnetization acqusition followed by D.C. demagnetization were done. All these laboratory magnetic measurements were performed in order to compare differences along soil profiles including A, B horizons and undisturbed soil, which is fundamental for magnetic estimation of soil loss. Regression analysis was used to evaluate correlations between magnetic parameters and some chemical properties of soil. For example, higher values of magnetic susceptibility and organic carbon content were measured at the flat upper part, where the original top horizon remained. On the steep valley side these values were much lower, because the original topsoil was eroded and mixed by tillage with the soil substrate (loess). The result confirm positive correlation (R2=0.89) between values of organic carbon content and volume magnetic susceptibility. This study was supported by NAZV Agency of the Ministry of Agriculture of the Czech Republic through grant NO. QJ1230319. References: Royall, D. (2001). Use of mineral magnetic measurements to investigate soil erosion and sediment delivery in a small agricultural catchment in limestone terrain. Catena, 46, 15-34.

  4. Theoretical validation for changing magnetic fields of systems of permanent magnets of drum separators

    NASA Astrophysics Data System (ADS)

    Lozovaya, S. Y.; Lozovoy, N. M.; Okunev, A. N.

    2018-03-01

    This article is devoted to the theoretical validation of the change in magnetic fields created by the permanent magnet systems of the drum separators. In the article, using the example of a magnetic separator for enrichment of highly magnetic ores, the method of analytical calculation of the magnetic fields of systems of permanent magnets based on the Biot-Savart-Laplace law, the equivalent solenoid method, and the superposition principle of fields is considered.

  5. Cloaking magnetic field and generating electric field with topological insulator and superconductor bi-layer sphere

    NASA Astrophysics Data System (ADS)

    Xu, Jin

    2017-12-01

    When an electric field is applied on a topological insulator, not only the electric field is generated, but also the magnetic field is generated, vice versa. I designed topological insulator and superconductor bi-layer magnetic cloak, derived the electric field and magnetic field inside and outside the topological insulator and superconductor sphere. Simulation and calculation results show that the applied magnetic field is screened by the topological insulator and superconductor bi-layer, and the electric field is generated in the cloaked region.

  6. Magnetite nano-islands on silicon-carbide with graphene

    DOE PAGES

    Anderson, Nathaniel A.; Zhang, Qiang; Hupalo, Myron; ...

    2017-01-05

    X-ray magnetic circular dichroism (XMCD) measurements of iron nano-islands grown on graphene and covered with a Au film for passivation reveal that the oxidation through defects in the Au film spontaneously leads to the formation of magnetite nano-particles (i.e, Fe 3O 4). The Fe nano-islands (20 and 75 monolayers; MLs) are grown on epitaxial graphene formed by thermally annealing 6HSiC( 0001) and subsequently covered, in the growth chamber, with nominal 20 layers of Au. Our X-ray absorption spectroscopy and XMCD measurements at applied magnetic fields show that the thin film (20 ML) is totally converted to magnetite whereas the thickermore » lm (75 ML) exhibits properties of magnetite but also those of pure metallic iron. Temperature dependence of the XMCD signal (of both samples) shows a clear transition at T V ≈ 120 K consistent with the Verwey transition of bulk magnetite. These results have implications on the synthesis of magnetite nano-crystals and also on their regular arrangements on functional substrates such as graphene.« less

  7. Magnetite nano-islands on silicon-carbide with graphene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, Nathaniel A.; Zhang, Qiang; Hupalo, Myron

    X-ray magnetic circular dichroism (XMCD) measurements of iron nano-islands grown on graphene and covered with a Au film for passivation reveal that the oxidation through defects in the Au film spontaneously leads to the formation of magnetite nano-particles (i.e, Fe 3O 4). The Fe nano-islands (20 and 75 monolayers; MLs) are grown on epitaxial graphene formed by thermally annealing 6HSiC( 0001) and subsequently covered, in the growth chamber, with nominal 20 layers of Au. Our X-ray absorption spectroscopy and XMCD measurements at applied magnetic fields show that the thin film (20 ML) is totally converted to magnetite whereas the thickermore » lm (75 ML) exhibits properties of magnetite but also those of pure metallic iron. Temperature dependence of the XMCD signal (of both samples) shows a clear transition at T V ≈ 120 K consistent with the Verwey transition of bulk magnetite. These results have implications on the synthesis of magnetite nano-crystals and also on their regular arrangements on functional substrates such as graphene.« less

  8. Chaotic coordinates for the Large Helical Device

    NASA Astrophysics Data System (ADS)

    Hudson, Stuart; Suzuki, Yasuhiro

    2014-10-01

    The study of dynamical systems is facilitated by a coordinate framework with coordinate surfaces that coincide with invariant structures of the dynamical flow. For axisymmetric systems, a continuous family of invariant surfaces is guaranteed and straight-fieldline coordinates may be constructed. For non-integrable systems, e.g. stellarators, perturbed tokamaks, this continuous family is broken. Nevertheless, coordinates can still be constructed that simplify the description of the dynamics. The Poincare-Birkhoff theorem, the Aubry-Mather theorem, and the KAM theorem show that there are important structures that are invariant under the perturbed dynamics; namely the periodic orbits, the cantori, and the irrational flux surfaces. Coordinates adapted to these invariant sets, which we call chaotic coordinates, provide substantial advantages. The regular motion becomes straight, and the irregular motion is bounded by, and dissected by, coordinate surfaces that coincide with surfaces of locally-minimal magnetic-fieldline flux. The chaotic edge of the magnetic field, as calculated by HINT2 code, in the Large Helical Device (LHD) is examined, and a coordinate system is constructed so that the flux surfaces are ``straight'' and the islands become ``square.''

  9. The non-resonant kink modes triggering strong sawtooth-like crashes in the EAST tokamak

    NASA Astrophysics Data System (ADS)

    Li, Erzhong; Igochine, V.; Dumbrajs, O.; Xu, L.; Chen, K.; Shi, T.; Hu, L.

    2014-12-01

    Evolution of the safety factor (q) profile during L-H transitions in the Experimental Advanced Superconducting Tokamak (EAST) was accompanied by strong core crashes prior to regular sawtooth behavior. These crashes appeared in the absence of q = 1 (q is the safety factor) rational surface inside the plasma. Analysis indicates that the m/n = 2/1 tearing mode is destabilized and phase-locked with the m/n = 1/1 non-resonant kink mode (the q = 1 rational surface is absent) due to the self-consistent evolution of plasma profiles as the L-H transition occurs (m and n are the poloidal and toroidal mode numbers, respectively). The growing m/n = 1/1 mode destabilizes the m/n = 2/2 kink mode which eventually triggers the strong crash due to an anomalous heat conductivity, as predicted by the transport model of stochastic magnetic fields using experimental parameters. It is also shown that the magnetic topology changes with the amplitude of m/n = 2/2 mode and the value of center safety factor in a reasonable range.

  10. Four-Spacecraft Magnetic Curvature and Vorticity Analyses on Kelvin-Helmholtz Waves in MHD Simulations

    NASA Astrophysics Data System (ADS)

    Kieokaew, Rungployphan; Foullon, Claire; Lavraud, Benoit

    2018-01-01

    Four-spacecraft missions are probing the Earth's magnetospheric environment with high potential for revealing spatial and temporal scales of a variety of in situ phenomena. The techniques allowed by these four spacecraft include the calculation of vorticity and the magnetic curvature analysis (MCA), both of which have been used in the study of various plasma structures. Motivated by curved magnetic field and vortical structures induced by Kelvin- Helmholtz (KH) waves, we investigate the robustness of the MCA and vorticity techniques when increasing (regular) tetrahedron sizes, to interpret real data. Here for the first time, we test both techniques on a 2.5-D MHD simulation of KH waves at the magnetopause. We investigate, in particular, the curvature and flow vorticity across KH vortices and produce time series for static spacecraft in the boundary layers. The combined results of magnetic curvature and vorticity further help us to understand the development of KH waves. In particular, first, in the trailing edge, the magnetic curvature across the magnetopause points in opposite directions, in the wave propagation direction on the magnetosheath side and against it on the magnetospheric side. Second, the existence of a "turnover layer" in the magnetospheric side, defined by negative vorticity for the duskside magnetopause, which persists in the saturation phase, is reminiscent of roll-up history. We found significant variations in the MCA measures depending on the size of the tetrahedron. This study lends support for cross-scale observations to better understand the nature of curvature and its role in plasma phenomena.

  11. Highly stable and finely tuned magnetic fields generated by permanent magnet assemblies.

    PubMed

    Danieli, E; Perlo, J; Blümich, B; Casanova, F

    2013-05-03

    Permanent magnetic materials are the only magnetic source that can be used to generate magnetic fields without power consumption or maintenance. Such stand-alone magnets are very attractive for many scientific and engineering areas, but they suffer from poor temporal field stability, which arises from the strong sensitivity of the magnetic materials and mechanical support to temperature variation. In this work, we describe a highly efficient method useful to cancel the temperature coefficient of permanent magnet assemblies in a passive and accurate way. It is based on the combination of at least two units made of magnetic materials with different temperature coefficients arranged in such a way that the ratio of the fields generated by each unit matches the ratio of their effective temperature coefficients defined by both the magnetic and mechanical contributions. Although typically available magnetic materials have negative temperature coefficients, the cancellation is achieved by aligning the fields generated by each unit in the opposite direction. We demonstrate the performance of this approach by stabilizing the field generated by a dipolar Halbach magnet, recently proposed to achieve high field homogeneity. Both the field drift and the homogeneity are monitored via nuclear magnetic resonance spectroscopy experiments. The results demonstrate the compatibility of the thermal compensation approach with existing strategies useful to fine-tune the spatial dependence of the field generated by permanent magnet arrays.

  12. Magnetic field and dielectric environment effects on an exciton trapped by an ionized donor in a spherical quantum dot

    NASA Astrophysics Data System (ADS)

    Aghoutane, N.; Feddi, E.; El-Yadri, M.; Bosch Bailach, J.; Dujardin, F.; Duque, C. A.

    2017-11-01

    Magnetic field and host dielectric environment effects on the binding energy of an exciton trapped by an ionized donor in spherical quantum dot are investigated. In the framework of the effective mass approximation and by using a variational method, the calculations have been performed by developing a robust ten-terms wave function taking into account the different inter-particles correlations and the distortion of symmetry induced by the orientation of the applied magnetic field. The binding and the localization energies are determined as functions of dot size and magnetic field strength. It appears that the variation of magnetic shift obeys a quadratic law for low magnetic fields regime while, for strong magnetic fields, this shift tends to be linear versus the magnetic field strength. The stability of this complex subjected to a magnetic field is also discussed according to the electron-hole ratio and the dielectric constant of the surrounding medium. A last point to highlight is that the Haynes' rule remains valid even in the presence of an applied magnetic field.

  13. EBSD Study of the Influence of a High Magnetic Field on the Microstructure and Orientation of the Al-Si Eutectic During Directional Solidification

    NASA Astrophysics Data System (ADS)

    Li, Xi; Fautrelle, Yves; Gagnoud, Annie; Ren, Zhongming; Moreau, Rene

    2016-06-01

    The effect of a high magnetic field on the morphology of the Al-Si eutectic was investigated using EBSD technology. The results revealed that the application of the magnetic field modified the morphology of the Al-Si eutectic significantly. Indeed, the magnetic field destroyed the coupled growth of the Al-Si eutectic and caused the formation of the divorced α-Al and Si dendrites at low growth speeds (≤1 μm/s). The magnetic field was also found to refine the eutectic grains and reduce the eutectic spacing at the initial growth stage. Moreover, the magnetic field caused the occurrence of the columnar-to-equiaxed transition of the α-Al phase in the Al-Si eutectic. The abovementioned effects were enhanced as the magnetic field increased. This result should be attributed to the magnetic field restraining the interdiffusion of Si and Al atoms in liquid ahead of the liquid/solid interface and the thermoelectric magnetic force acting on the eutectic lamellae under the magnetic field.

  14. 36-segmented high magnetic field hexapole magnets for electron cyclotron resonance ion source.

    PubMed

    Sun, L T; Zhao, H W; Zhang, Z M; Wang, H; Ma, B H; Zhang, X Z; Li, X X; Feng, Y C; Li, J Y; Guo, X H; Shang, Y; Zhao, H Y

    2007-05-01

    Two high magnetic field hexapoles for electron cyclotron resonance ion source (ECRIS) have successfully fabricated to provide sufficient radial magnetic confinement to the ECR plasma. The highest magnetic field at the inner pole tip of one of the magnets exceeds 1.5 T, with the inner diameter (i.d.)=74 mm. The other hexapole magnet provides more than 1.35 T magnetic field at the inner pole tip, and the i.d. is 84 mm. In this article, we discuss the necessity to have a good radial magnetic field confinement and the importance of a Halbach hexapole to a high performance ECRIS. The way to design a high magnetic field Halbach structure hexapole and one possible solution to the self-demagnetization problem are both discussed. Based on the above discussions, two high magnetic field hexapoles have been fabricated to be utilized on two high performance ECRISs in Lanzhou. The preliminary results obtained from the two ECR ion sources are given.

  15. Huge Inverse Magnetization Generated by Faraday Induction in Nano-Sized Au@Ni Core@Shell Nanoparticles.

    PubMed

    Kuo, Chen-Chen; Li, Chi-Yen; Lee, Chi-Hung; Li, Hsiao-Chi; Li, Wen-Hsien

    2015-08-25

    We report on the design and observation of huge inverse magnetizations pointing in the direction opposite to the applied magnetic field, induced in nano-sized amorphous Ni shells deposited on crystalline Au nanoparticles by turning the applied magnetic field off. The magnitude of the induced inverse magnetization is very sensitive to the field reduction rate as well as to the thermal and field processes before turning the magnetic field off, and can be as high as 54% of the magnetization prior to cutting off the applied magnetic field. Memory effect of the induced inverse magnetization is clearly revealed in the relaxation measurements. The relaxation of the inverse magnetization can be described by an exponential decay profile, with a critical exponent that can be effectively tuned by the wait time right after reaching the designated temperature and before the applied magnetic field is turned off. The key to these effects is to have the induced eddy current running beneath the amorphous Ni shells through Faraday induction.

  16. Unique topological characterization of braided magnetic fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yeates, A. R.; Hornig, G.

    We introduce a topological flux function to quantify the topology of magnetic braids: non-zero, line-tied magnetic fields whose field lines all connect between two boundaries. This scalar function is an ideal invariant defined on a cross-section of the magnetic field, and measures the average poloidal magnetic flux around any given field line, or the average pairwise crossing number between a given field line and all others. Moreover, its integral over the cross-section yields the relative magnetic helicity. Using the fact that the flux function is also an action in the Hamiltonian formulation of the field line equations, we prove thatmore » it uniquely characterizes the field line mapping and hence the magnetic topology.« less

  17. Geometrical Vortex Lattice Pinning and Melting in YBaCuO Submicron Bridges.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Papari, G. P.; Glatz, A.; Carillo, F.

    Since the discovery of high-temperature superconductors (HTSs), most efforts of researchers have been focused on the fabrication of superconducting devices capable of immobilizing vortices, hence of operating at enhanced temperatures and magnetic fields. Recent findings that geometric restrictions may induce self-arresting hypervortices recovering the dissipation-free state at high fields and temperatures made superconducting strips a mainstream of superconductivity studies. Here in this paper we report on the geometrical melting of the vortex lattice in a wide YBCO submicron bridge preceded by magnetoresistance (MR) oscillations fingerprinting the underlying regular vortex structure. Combined magnetoresistance measurements and numerical simulations unambiguously relate the resistancemore » oscillations to the penetration of vortex rows with intermediate geometrical pinning and uncover the details of geometrical melting. Our findings offer a reliable and reproducible pathway for controlling vortices in geometrically restricted nanodevices and introduce a novel technique of geometrical spectroscopy, inferring detailed information of the structure of the vortex system through a combined use of MR curves and large-scale simulations.« less

  18. Existence of topological hairy dyons and dyonic black holes in anti-de Sitter su(N) Einstein-Yang-Mills theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baxter, J. Erik, E-mail: e.baxter@shu.ac.uk

    We investigate dyonic black hole and dyon solutions of four-dimensional su(N) Einstein-Yang-Mills theory with a negative cosmological constant. We derive a set of field equations in this case, and prove the existence of non-trivial solutions to these equations for any integer N, with 2N − 2 gauge degrees of freedom. We do this by showing that solutions exist locally at infinity, and at the event horizon for black holes and the origin for solitons. We then prove that we can patch these solutions together regularly into global solutions that can be integrated arbitrarily far into the asymptotic regime. Our mainmore » result is to show that dyonic solutions exist in open sets in the parameter space, and hence that we can find non-trivial dyonic solutions in a number of regimes whose magnetic gauge fields have no zeros, which is likely important to the stability of the solutions.« less

  19. Quantum Effects in Inverse Opal Structures

    NASA Astrophysics Data System (ADS)

    Bleiweiss, Michael; Datta, Timir; Lungu, Anca; Yin, Ming; Iqbal, Zafar; Palm, Eric; Brandt, Bruce

    2002-03-01

    Properties of bismuth inverse opals and carbon opal replicas were studied. The bismuth nanostructures were fabricated by pressure infiltration into porous artificial opal, while the carbon opal replicas were created via CVD. These structures form a regular three-dimensional network in which the bismuth and carbon regions percolate in all directions between the close packed spheres of SiO_2. The sizes of the conducting regions are of the order of tens of nanometers. Static susceptibility of the bismuth inverse opal showed clear deHaas-vanAlphen oscillations. Transport measurements, including Hall, were done using standard ac four and six probe techniques in fields up to 17 T* and temperatures between 4.2 and 200 K. Observations of Shubnikov-deHaas oscillations in magnetoresistance, one-dimensional weak localization, quantum Hall and other effects will be discussed. *Performed at the National High Magnetic Field Lab (NHMFL) FSU, Tallahassee, FL. This work was partially supported by grants from DARPA-nanothermoelectrics, NASA-EPSCOR and the USC nanocenter.

  20. Geometrical Vortex Lattice Pinning and Melting in YBaCuO Submicron Bridges.

    DOE PAGES

    Papari, G. P.; Glatz, A.; Carillo, F.; ...

    2016-12-23

    Since the discovery of high-temperature superconductors (HTSs), most efforts of researchers have been focused on the fabrication of superconducting devices capable of immobilizing vortices, hence of operating at enhanced temperatures and magnetic fields. Recent findings that geometric restrictions may induce self-arresting hypervortices recovering the dissipation-free state at high fields and temperatures made superconducting strips a mainstream of superconductivity studies. Here in this paper we report on the geometrical melting of the vortex lattice in a wide YBCO submicron bridge preceded by magnetoresistance (MR) oscillations fingerprinting the underlying regular vortex structure. Combined magnetoresistance measurements and numerical simulations unambiguously relate the resistancemore » oscillations to the penetration of vortex rows with intermediate geometrical pinning and uncover the details of geometrical melting. Our findings offer a reliable and reproducible pathway for controlling vortices in geometrically restricted nanodevices and introduce a novel technique of geometrical spectroscopy, inferring detailed information of the structure of the vortex system through a combined use of MR curves and large-scale simulations.« less

Top