Science.gov

Sample records for regular multi-sequences copolymers

  1. Synthesis and Structure - Property Relationships for Regular Multigraft Copolymers

    SciTech Connect

    Mays, Jimmy; Uhrig, David; Gido, Samuel; Zhu, Yuqing; Weidisch, Roland; Iatrou, Hermis; Hadjichristidis, Nikos; Hong, Kunlun; Beyer, Frederick; Lach, Ralph

    2004-01-01

    Multigraft copolymers with polyisoprene backbones and polystyrene branches, having multiple regularly spaced branch points, were synthesized by anionic polymerization high vacuum techniques and controlled chlorosilane linking chemistry. The functionality of the branch points (1, 2 and 4) can be controlled, through the choice of chlorosilane linking agent. The morphologies of the various graft copolymers were investigated by transmission electron microscopy and X-ray scattering. It was concluded that the morphology of these complex architectures is governed by the behavior of the corresponding miktoarm star copolymer associated with each branch point (constituting block copolymer), which follows Milner's theoretical treatment for miktoarm stars. By comparing samples having the same molecular weight backbone and branches but different number of branches it was found that the extent of long range order decreases with increasing number of branch points. The stress-strain properties in tension were investigated for some of these multigraft copolymers. For certain compositions thermoplastic elastomer (TPE) behavior was observed, and in many instances the elongation at break was much higher (2-3X) than that of conventional triblock TPEs.

  2. Microphase separation in random multiblock copolymers

    NASA Astrophysics Data System (ADS)

    Govorun, E. N.; Chertovich, A. V.

    2017-01-01

    Microphase separation in random multiblock copolymers is studied with the mean-field theory assuming that long blocks of a copolymer are strongly segregated, whereas short blocks are able to penetrate into "alien" domains and exchange between the domains and interfacial layer. A bidisperse copolymer with blocks of only two sizes (long and short) is considered as a model of multiblock copolymers with high polydispersity in the block size. Short blocks of the copolymer play an important role in the microphase separation. First, their penetration into the "alien" domains leads to the formation of joint long blocks in their own domains. Second, short blocks localized at the interface considerably change the interfacial tension. The possibility of penetration of short blocks into the "alien" domains is controlled by the product χ Nsh (χ is the Flory-Huggins interaction parameter and Nsh is the short block length). At not very large χ Nsh , the domain size is larger than that for a regular copolymer consisting of the same long blocks as in the considered random copolymer. At a fixed mean block size, the domain size grows with an increase in the block size dispersity, the rate of the growth being dependent of the more detailed parameters of the block size distribution.

  3. Phase separations in a copolymer copolymer mixture

    NASA Astrophysics Data System (ADS)

    Zhang, Jin-Jun; Jin, Guojun; Ma, Yuqiang

    2006-01-01

    We propose a three-order-parameter model to study the phase separations in a diblock copolymer-diblock copolymer mixture. The cell dynamical simulations provide rich information about the phase evolution and structural formation, especially the appearance of onion-rings. The parametric dependence and physical reason for the domain growth of onion-rings are discussed.

  4. Multi-sequence H.264/AVC Rate Control Based on the Linear Model

    NASA Astrophysics Data System (ADS)

    Pastuszak, Grzegorz; Pietrasiewicz, Andrzej

    Multi-sequence video coding can distribute bit-budget among sequences to balance the qualities subject to a common limitation on the bit-rate. This paper presents the method of selection of a common quantization parameter, which is applied concurrently to each sequence. The approach takes into account ρ-domain rate-distortion models kept independently for each video sequence and builds a common model. The output buffer is verified jointly for all the sequences and drives a joint bit allocation process. The method has been verified in simulation to demonstrate its usefulness in video encoding.

  5. Protein based Block Copolymers

    PubMed Central

    Rabotyagova, Olena S.; Cebe, Peggy; Kaplan, David L.

    2011-01-01

    Advances in genetic engineering have led to the synthesis of protein-based block copolymers with control of chemistry and molecular weight, resulting in unique physical and biological properties. The benefits from incorporating peptide blocks into copolymer designs arise from the fundamental properties of proteins to adopt ordered conformations and to undergo self-assembly, providing control over structure formation at various length scales when compared to conventional block copolymers. This review covers the synthesis, structure, assembly, properties, and applications of protein-based block copolymers. PMID:21235251

  6. New Polytetrahydrofuran Graft Copolymers.

    DTIC Science & Technology

    1979-03-15

    chioroprene) , chiorobutyl - ~~~~~ rubber , bromobutyl rubber , chlorinated EPDM , chlorinated poly(buta— diene) and chlorinated butadiene styrene copolymer...bromobutyl rubber , which after dehalogenation is unstable with respect to conjugated dienes, the yields of graft copolymer are low. With poly(chloroprerte

  7. Silicone/Acrylate Copolymers

    NASA Technical Reports Server (NTRS)

    Dennis, W. E.

    1982-01-01

    Two-step process forms silicone/acrylate copolymers. Resulting acrylate functional fluid is reacted with other ingredients to produce copolymer. Films of polymer were formed by simply pouring or spraying mixture and allowing solvent to evaporate. Films showed good weatherability. Durable, clear polymer films protect photovoltaic cells.

  8. Crystalline Morphology of Propylene 1-Octene Random Copolymers

    NASA Astrophysics Data System (ADS)

    Jeon, Keesu; Alamo, Rufina G.

    2008-03-01

    The morphology of isotactic propylene 1-octene random copolymers has been studied by AFM, DSC, WAXS, and FTIR in an octene range of 10-20 mol %. Different morphologies were observed below and above 15 mol %. The morphological components in the higher counit copolymers are not of the lamellae-type, thicker than lamellae observed below 15 mol %, connected and isotropic in their orientation. Their global morphology is developed via nucleation and growth (NG) of spherulitic aggregates. The evolution of heat of fusion with time is also sigmoidal shape, typical of NG-type crystallization mechanism. WAXS diffractograms for the higher counit copolymers are devoid of crystalline reflections, except for small and broad peaks suggesting mesomorphic-like structures, which by FTIR show small contents of the 840 cm-1, 12 and higher units regularity bands, and hence formed of short helical sequences. The PO morphology is additionally compared with copolymers with ethylene, 1-butene and 1-hexene counits at matched contents.

  9. Mixing thermodynamics of block-random copolymers

    NASA Astrophysics Data System (ADS)

    Beckingham, Bryan Scott

    regular mixing prediction, XA-ArB = fB2 XA-B, thereby confirming the utility of this simple relationship in designing block copolymers with targeted interaction strengths using only these two common monomers. Thus, this fB 2 scaling is a useful "design rule" for tuning the interblock segregation strength in A-ArB (and B-ArB) block-random copolymers using styrene and isoprene as constituents. The reduction in XA-ArB over X A-B permits the synthesis of polymers having much larger M and domain spacing d while maintaining a thermally-accessible ODT; measured domain spacings are found to closely follow the expected scaling, d ~ X1/6M2/3. The decoupling of the order-disorder transition temperature from polymer molecular weight---and thereby interdomain spacing---provides an additional means to alter the polymer structure-property dynamic through synthesis, in addition to more common molecular variations, such as changes in block sequence, length of the blocks, and number of blocks. A similar examination of the interaction energy densities between E (hydrogenated Bd) and both hydrogenated derivatives of random copolymers of styrene and isoprene (SrhI and VCHrhI) found large positive deviations from regular mixing in the E-SrhI system and smaller but significant negative deviations in the E-VCHrhI system. Nevertheless, a ternary mixing model ("copolymer equation"), using independently-determined values of the three component interaction energy densities, is found to provide a good representation of the experimental interaction energies. Random copolymer blocks are also incorporated into linear A-B-C triblock copolymers, and the extent of block microphase separation in nonfrustrated E-hI-ArhI, where A is either S or VCH, triblock copolymers forming a "three-domain, four-layer" lamellar morphology is examined. Specifically, the extent of separation between the B and C blocks is probed, for the case where the B and C blocks are sufficiently compatible that they would not be

  10. Multigraft Copolymer Superelastomers: Synthesis Morphology, and Properties

    SciTech Connect

    Uhrig, David; Schlegel, Ralf; Weidisch, Roland; Mays, Jimmy

    2011-01-01

    The synthesis of well-defined multigraft copolymers having a polydiene backbone with polystyrene side chains is briefly reviewed, with particular focus on controlling branch point spacing and branch point functionality. Use of living anionic polymerization and chlorosilane linking chemistry has led to the synthesis of series of materials having regularly spaced trifunctional (comb), tetrafunctional (centipede), and hexafunctional (barbwire) branch points. The morphologies of these materials were characterized by transmission electron microscopy and small-angle X-ray scattering, and it was found that the morphologies were controlled by the local architectural asymmetry associated with each branch point. Mechanical properties studies revealed that such multigraft copolymers represent a new class of thermoplastic elastomers (TPEs) with superior elongation at break and low residual strains as compared to conventional TPEs.

  11. Defect trapping in ABC block copolymers

    NASA Astrophysics Data System (ADS)

    Corte, Laurent; Yamauchi, Kazuhiro; Court, Francois; Cloitre, Michel; Hashimoto, Takeji; Leibler, Ludwik

    2004-03-01

    Equilibrium morphologies in molten ABC triblock terpolymers are much more difficult to attain than in AB diblocks. In practice, it is important to know whether and how synthesis conditions influence the morphology and properties of copolymer materials. It is also relevant to understand the mechanisms of defect formation and annihilation. Indeed, a potential use of copolymers in new applications such as lithography highly depends on the ability to produce regular structures with no or few defects. We show that even the simplest lamellar structures exhibit high sensitivity to preparation conditions and that strongly trapped structural defects inherent to ABC triblock architecture cannot be removed by long annealing. Annealing can induce a transition from a lamellar structure in which A and C blocks are mixed to a lamellar structure where A, B and C are segregated. We propose reorganization mechanisms that are at the origin of some characteristic defects.

  12. Block coordination copolymers

    DOEpatents

    Koh, Kyoung Moo; Wong-Foy, Antek G.; Matzger, Adam J.; Benin, Annabelle I.; Willis, Richard R.

    2012-12-04

    The present invention provides compositions of crystalline coordination copolymers wherein multiple organic molecules are assembled to produce porous framework materials with layered or core-shell structures. These materials are synthesized by sequential growth techniques such as the seed growth technique. In addition, the invention provides a simple procedure for controlling functionality.

  13. Block coordination copolymers

    DOEpatents

    Koh, Kyoung Moo; Wong-Foy, Antek G; Matzger, Adam J; Benin, Annabelle I; Willis, Richard R

    2012-11-13

    The present invention provides compositions of crystalline coordination copolymers wherein multiple organic molecules are assembled to produce porous framework materials with layered or core-shell structures. These materials are synthesized by sequential growth techniques such as the seed growth technique. In addition, the invention provides a simple procedure for controlling functionality.

  14. Block coordination copolymers

    DOEpatents

    Koh, Kyoung Moo; Wong-Foy, Antek G; Matzger, Adam J; Benin, Annabelle I; Willis, Richard R

    2014-11-11

    The present invention provides compositions of crystalline coordination copolymers wherein multiple organic molecules are assembled to produce porous framework materials with layered or core-shell structures. These materials are synthesized by sequential growth techniques such as the seed growth technique. In addition, the invention provides a simple procedure for controlling functionality.

  15. Ultraviolet absorbing copolymers

    DOEpatents

    Gupta, Amitava; Yavrouian, Andre H.

    1982-01-01

    Photostable and weather stable absorping copolymers have been prepared from acrylic esters such as methyl methacrylate containing 0.1 to 5% of an 2-hydroxy-allyl benzophenone, preferably the 4,4' dimethoxy derivative thereof. The pendant benzophenone chromophores protect the acrylic backbone and when photoexcited do not degrade the ester side chain, nor abstract hydrogen from the backbone.

  16. Imide/arylene ether copolymers

    NASA Technical Reports Server (NTRS)

    Jensen, Brian J. (Inventor); Hergenrother, Paul M. (Inventor); Bass, Robert G. (Inventor)

    1992-01-01

    Imide/arylene ether block copolymers are prepared by reacting anhydride terminated poly(amic acids) with amine terminated poly(arylene ethers) in polar aprotic solvents and by chemically or thermally cyclodehydrating the resulting intermediate poly(amic acids). The resulting block copolymers have one glass transition temperature or two, depending upon the particular structure and/or the compatibility of the block units. Most of these block copolymers form tough, solvent resistant films with high tensile properties.

  17. Block copolymer battery separator

    DOEpatents

    Wong, David; Balsara, Nitash Pervez

    2016-04-26

    The invention herein described is the use of a block copolymer/homopolymer blend for creating nanoporous materials for transport applications. Specifically, this is demonstrated by using the block copolymer poly(styrene-block-ethylene-block-styrene) (SES) and blending it with homopolymer polystyrene (PS). After blending the polymers, a film is cast, and the film is submerged in tetrahydrofuran, which removes the PS. This creates a nanoporous polymer film, whereby the holes are lined with PS. Control of morphology of the system is achieved by manipulating the amount of PS added and the relative size of the PS added. The porous nature of these films was demonstrated by measuring the ionic conductivity in a traditional battery electrolyte, 1M LiPF.sub.6 in EC/DEC (1:1 v/v) using AC impedance spectroscopy and comparing these results to commercially available battery separators.

  18. Clickable Amphiphilic Triblock Copolymers.

    PubMed

    Isaacman, Michael J; Barron, Kathryn A; Theogarajan, Luke S

    2012-06-15

    Amphiphilic polymers have recently garnered much attention due to their potential use in drug-delivery and other biomedical applications. A modular synthesis of these polymers is extremely desirable since it offers precise individual block characterization and increased yields. We present here for the first time a modular synthesis of poly(oxazoline)-poly(siloxane)-poly(oxazoline) block copolymers that have been clicked together using the copper-catalyzed azide-alkyne cycloaddition reaction. Various click methodologies for the synthesis of these polymers have been carefully evaluated and optimized. The approach using copper nanoparticles was found to be the most optimal among the methods evaluated. Furthermore, these results were extended to allow for a reactive Si-H group-based siloxane middle block to be successfully clicked. This enables the design of more complex amphiphilic block copolymers that have additional functionality, such as stimuli responsiveness, to be synthesized via a simple hydrosilylation reaction.

  19. Baroplastic Block copolymers

    NASA Astrophysics Data System (ADS)

    Hewlett, Sheldon A.

    2005-03-01

    Block copolymers with rubbery and glassy components have been observed to have pressure induced miscibility. These microphase-separated materials, termed baroplastics, were able to flow and be processed at temperatures below the Tg of the glassy component by simple compression molding and extrusion. Diblock and triblock copolymers of polystyrene and poly(butyl acrylate) or poly(2-ethyl hexyl acrylate) were synthesized by atom transfer radical polymerization (ATRP) and processed at room temperature into well defined transparent objects. SAXS and SANS measurements demonstrated partial mixing between components as a result of pressure during processing. DSC results also show the presence of distinct domains even after several processing cycles. Their mechanical properties after processing were tested and compared with commercial thermoplastic elastomers.

  20. Imide/Arylene Ether Copolymers

    NASA Technical Reports Server (NTRS)

    Jensen, Brian J.; Hergenrother, Paul M.; Bass, Robert G.

    1991-01-01

    New imide/arylene ether copolymers prepared by reacting anhydride-terminated poly(amic acids) with amine-terminated poly(arylene ethers) in polar aprotic solvents. Each resulting copolymer may have one glass-transition temperature or two, depending on chemical structure and/or compatibility of block units. Most of copolymers form tough, solvent-resistant films with high tensile properties. Films cast from solution tough and flexible, and exhibit useful thermal and mechanical properties. Potentially useful as moldings, adhesives, or composite matrices. Because of flexible arylene ether blocks, these copolymers easier to process than polyimides.

  1. Analysis of melt copolymers.

    PubMed

    Montaudo, Maurizio S

    2007-01-01

    Melt copolymer chains are the main (most abundant) reaction product obtained when heating a blend of two (or more) condensation polymers (such as polyester + polycarbonate or polyester + polyamide or polyester + polyester) in which exchange reactions occur. In fact, during the melt-mixing reaction, an AB copolymer is formed and, as a consequence, the sample is a complex mixture made of three components or simply "parts", referred to as Z1, Z2 and Z3, where Z1 and Z2 are the parts for unreacted homopolymers (A and B), whereas Z3 is the part for the copolymer. In this paper, it is shown that matrix-assisted laser desorption/ionization mass spectrometry (and mass spectrometry in general) can be used to monitor the yield of the reactive blending reaction, YR, by measuring the amount of unreacted homopolymer (Z1 and Z2). In order to allow for comparisons, the paper also discusses conventional methods for measuring Z1 and Z2, such as liquid chromatography and nuclear magnetic resonance.

  2. Block copolymer investigations

    NASA Astrophysics Data System (ADS)

    Yufa, Nataliya A.

    The research presented in this thesis deals with various aspects of block copolymers on the nanoscale: their behavior at a range of temperatures, their use as scaffolds, or for creation of chemically striped surfaces, as well as the behavior of metals on block copolymers under the influence of UV light, and the healing behavior of copolymers. Invented around the time of World War II, copolymers have been used for decades due to their macroscopic properties, such as their ability to be molded without vulcanization, and the fact that, unlike rubber, they can be recycled. In recent years, block copolymers (BCPs) have been used for lithography, as scaffolds for nano-objects, to create a magnetic hard drive, as well as in photonic and other applications. In this work we used primarily atomic force microscopy (AFM) and transmission electron microscopy (TEM), described in Chapter II, to conduct our studies. In Chapter III we demonstrate a new and general method for positioning nanoparticles within nanoscale grooves. This technique is suitable for nanodots, nanocrystals, as well as DNA. We use AFM and TEM to demonstrate selective decoration. In Chapters IV and V we use AFM and TEM to study the structure of polymer surfaces coated with metals and self-assembled monolayers. We describe how the surfaces were created, exhibit their structure on the nanoscale, and prove that their macroscopic wetting properties have been altered compared to the original polymer structures. Finally, Chapters VI and VII report out in-situ AFM studies of BCP at high temperatures, made possible only recently with the invention of air-tight high-temperature AFM imaging cells. We locate the transition between disordered films and cylinders during initial ordering. Fluctuations of existing domains leading to domain coarsening are also described, and are shown to be consistent with reptation and curvature minimization. Chapter VII deals with the healing of PS-b-PMMA following AFM-tip lithography or

  3. Interfacial Modification by Copolymers: The Importance of Copolymer Microstructure

    NASA Astrophysics Data System (ADS)

    Dadmun, Mark; Eastwood, Eric

    2002-03-01

    The dispersion of nanoscale particles or domains in a polymer matrix can readily lead to nonlinear enhancement of material properties. Our research group has been examining two primary methods to improve the properties of multicomponent polymer systems: compatibilization of a blend with an interfacial modifier or improving the miscibility and properties of polymer blends with specific interactions. In this talk, the importance of specific copolymer microstructure on its ability to strengthen a biphasic interface will be discussed. Atom transfer radical polymerization has been utilized to polymerize a series of multiblock copolymers containing styrene and methyl methacrylate. This, in turn, has allowed the synthesis of a series of copolymers with careful control of the sequence distribution. Subsequent experiments that determine the interfacial strength between two polymers in the presence and absence of these copolymers has provided critical information that documents the importance of copolymer sequence distribution on its ability to strengthen a biphasic interface.

  4. Polyether/Polyester Graft Copolymers

    NASA Technical Reports Server (NTRS)

    Bell, Vernon L., Jr.; Wakelyn, N.; Stoakley, D. M.; Proctor, K. M.

    1986-01-01

    Higher solvent resistance achieved along with lower melting temperature. New technique provides method of preparing copolymers with polypivalolactone segments grafted onto poly (2,6-dimethyl-phenylene oxide) backbone. Process makes strong materials with improved solvent resistance and crystalline, thermally-reversible crosslinks. Resulting graft copolymers easier to fabricate into useful articles, including thin films, sheets, fibers, foams, laminates, and moldings.

  5. Second generation copolymers for EOR

    SciTech Connect

    McCormick, C.L.

    1988-05-01

    In this report, the authors review four types of acrylamide-based copolymers with distinctly different dilute solutions and rheological behavior. Each of these ''second generation'' systems possesses characteristics which, in theory, should be superior to conventional polymers under certain operational conditions. Type I copolymers are prepared from acrylamide (AM) and sodium-3-acrylamido-3-methylbutanoate (NaAMB). The high molecular weight, viscosity maintenance, and phase stability in the presence of divalent ions make these copolymers especially attractive for mobility control in EOR. Type II copolymers address the problems of entrapment, pore clogging, and shear degradation often encountered with ultrahigh molecular weight copolymers. The copolymers of this type are lower molecular weight than Type 1 but associate in a cooperative manner in semi-dilute solutions to enhance solution viscoscity. In this report, the authors discuss associative polymers of acrylamide/N-alkyl acrylamides which contain low mole percentages of C/sub 8/, C/sub 10/, or C/sub 12/ comonomers. In practice, a third charged comonomer such as carboxylated or sulfonated one, might be necessary to reduce adsorption to reservoir rock. Type III systems are relatively low molecular weight and hyrophibically modified in order to bring about intramolecular micelle-like association in aqueous solution. The aqueous solutions are non-viscous; viscosification occurs upon solubilization of hydrocarbons in the hydrophobic domains. Copolymers of acrylamide with N-propyl diacetone acrylamide are examples of Type III.

  6. Iterated fractional Tikhonov regularization

    NASA Astrophysics Data System (ADS)

    Bianchi, Davide; Buccini, Alessandro; Donatelli, Marco; Serra-Capizzano, Stefano

    2015-05-01

    Fractional Tikhonov regularization methods have been recently proposed to reduce the oversmoothing property of the Tikhonov regularization in standard form, in order to preserve the details of the approximated solution. Their regularization and convergence properties have been previously investigated showing that they are of optimal order. This paper provides saturation and converse results on their convergence rates. Using the same iterative refinement strategy of iterated Tikhonov regularization, new iterated fractional Tikhonov regularization methods are introduced. We show that these iterated methods are of optimal order and overcome the previous saturation results. Furthermore, nonstationary iterated fractional Tikhonov regularization methods are investigated, establishing their convergence rate under general conditions on the iteration parameters. Numerical results confirm the effectiveness of the proposed regularization iterations.

  7. Reversible Tuning of a Block Copolymer Nanostructure via Electric Fields

    SciTech Connect

    Schmidt, K.; Schoberth, Heiko; Ruppel, Markus A.; Zettl, H; Weiss, Thomas; Urban, Volker S; Krausch, G; Boker, A.

    2007-01-01

    Block copolymers consisting of incompatible components self-assemble into microphase-separated domains yielding highly regular structures with characteristic length scales of the order of several tens of nanometres. Therefore, in the past decades, block copolymers have gained considerable potential for nanotechnological applications, such as in nanostructured networks and membranes, nanoparticle templates and high-density data storage media. However, the characteristic size of the resulting structures is usually determined by molecular parameters of the constituent polymer molecules and cannot easily be adjusted on demand. Here, we show that electric d.c. fields can be used to tune the characteristic spacing of a block-copolymer nanostructure with high accuracy by as much as 6% in a fully reversible way on a timescale in the range of several milliseconds. We discuss the influence of various physical parameters on the tuning process and study the time response of the nanostructure to the applied field. A tentative explanation of the observed effect is given on the basis of anisotropic polarizabilities and permanent dipole moments of the monomeric constituents. This electric-field-induced effect further enhances the high technological potential of block-copolymer-based soft-lithography applications.

  8. Hyperviscous diblock copolymer vesicles

    NASA Astrophysics Data System (ADS)

    Dimova, R.; Seifert, U.; Pouligny, B.; Förster, S.; Döbereiner, H.-G.

    2002-03-01

    Giant vesicles prepared from the diblock copolymer polybutadien-b-polyethyleneoxide (PB-PEO) exhibit a shear surface viscosity, which is about 500 times higher than those found in common phospholipid bilayers. Our result constitutes the first direct measurement of the shear surface viscosity of such polymersomes. At the same time, we measure bending and stretching elastic constants, which fall in the range of values typical for lipid membranes. Pulling out a tether from an immobilized polymersome and following its relaxation back to the vesicle body provides an estimate of the viscous coupling between the two monolayers composing the polymer membrane. The detected intermonolayer friction is about an order of magnitude higher than the characteristic one for phospholipid membranes. Polymersomes are tough vesicles with a high lysis tension. This, together with their robust rheological properties, makes them interesting candidates for a number of technological applications.

  9. Making Carbon-Nanotube Arrays Using Block Copolymers: Part 2

    NASA Technical Reports Server (NTRS)

    Bronikowski, Michael

    2004-01-01

    Some changes have been incorporated into a proposed method of manufacturing regular arrays of precisely sized, shaped, positioned, and oriented carbon nanotubes. Such arrays could be useful as mechanical resonators for signal filters and oscillators, and as electrophoretic filters for use in biochemical assays. A prior version of the method was described in Block Copolymers as Templates for Arrays of Carbon Nanotubes, (NPO-30240), NASA Tech Briefs, Vol. 27, No. 4 (April 2003), page 56. To recapitulate from that article: As in other previously reported methods, carbon nanotubes would be formed by decomposition of carbon-containing gases over nanometer-sized catalytic metal particles that had been deposited on suitable substrates. Unlike in other previously reported methods, the catalytic metal particles would not be so randomly and densely distributed as to give rise to thick, irregular mats of nanotubes with a variety of lengths, diameters, and orientations. Instead, in order to obtain regular arrays of spaced-apart carbon nanotubes as nearly identical as possible, the catalytic metal particles would be formed in predetermined regular patterns with precise spacings. The regularity of the arrays would be ensured by the use of nanostructured templates made of block copolymers.

  10. Lignin poly(lactic acid) copolymers

    DOEpatents

    Olsson, Johan Vilhelm; Chung, Yi-Lin; Li, Russell Jingxian; Waymouth, Robert; Sattely, Elizabeth; Billington, Sarah; Frank, Curtis W.

    2017-02-14

    Provided herein are graft co-polymers of lignin and poly(lactic acid) (lignin-g-PLA copolymer), thermoset and thermoplastic polymers including them, methods of preparing these polymers, and articles of manufacture including such polymers.

  11. Dimensional Regularization is Generic

    NASA Astrophysics Data System (ADS)

    Fujikawa, Kazuo

    The absence of the quadratic divergence in the Higgs sector of the Standard Model in the dimensional regularization is usually regarded to be an exceptional property of a specific regularization. To understand what is going on in the dimensional regularization, we illustrate how to reproduce the results of the dimensional regularization for the λϕ4 theory in the more conventional regularization such as the higher derivative regularization; the basic postulate involved is that the quadratically divergent induced mass, which is independent of the scale change of the physical mass, is kinematical and unphysical. This is consistent with the derivation of the Callan-Symanzik equation, which is a comparison of two theories with slightly different masses, for the λϕ4 theory without encountering the quadratic divergence. In this sense the dimensional regularization may be said to be generic in a bottom-up approach starting with a successful low energy theory. We also define a modified version of the mass independent renormalization for a scalar field which leads to the homogeneous renormalization group equation. Implications of the present analysis on the Standard Model at high energies and the presence or absence of SUSY at LHC energies are briey discussed.

  12. Copolymers For Capillary Gel Electrophoresis

    DOEpatents

    Liu, Changsheng; Li, Qingbo

    2005-08-09

    This invention relates to an electrophoresis separation medium having a gel matrix of at least one random, linear copolymer comprising a primary comonomer and at least one secondary comonomer, wherein the comonomers are randomly distributed along the copolymer chain. The primary comonomer is an acrylamide or an acrylamide derivative that provides the primary physical, chemical, and sieving properties of the gel matrix. The at least one secondary comonomer imparts an inherent physical, chemical, or sieving property to the copolymer chain. The primary and secondary comonomers are present in a ratio sufficient to induce desired properties that optimize electrophoresis performance. The invention also relates to a method of separating a mixture of biological molecules using this gel matrix, a method of preparing the novel electrophoresis separation medium, and a capillary tube filled with the electrophoresis separation medium.

  13. Individual chromosomes as viscoelastic copolymers

    NASA Astrophysics Data System (ADS)

    Almagro, S.; Dimitrov, S.; Hirano, T.; Vallade, M.; Riveline, D.

    2003-09-01

    We report elastic measurements of individual chromosomes observed in vitro. Free fluctuations of shapes show that a chromosome can be seen as a copolymer, exhibiting rigid regions alternating with semi-flexible regions. We characterize this behavior and compare it with known biopolymers. We further show that the inner part of a chromosome exhibits viscoelasticity, as extracted by the loading rate dependence of the stretch modulus. Taken together, these data suggest an organization for the chromosome as a copolymer composed of an inner rigid core exhibiting viscoelasticity surrounded by an elastic soft envelope.

  14. Gradient copolymers - a new class of materials

    SciTech Connect

    Greszta, D.; Matyjaszewski, K.

    1996-10-01

    In this work preparation of a new class of copolymers, namely gradient copolymers via controlled Atom Transfer Radical Polymerization (ATRP) is described. Due to the compositional gradient along the chain, gradient copolymers are expected to exhibit unique physical characteristics as compared to block and random copolymers with similar composition and molecular weight. These include unusual phase separation behavior, and mechanical and thermal properties. Using ATRP one can prepare gradient copolymers via two routes. The first one is the one-pot copolymerization of monomers with different reactitvity ratios r{sub 1}{much_gt}r{sub 2}. The second one is a copolymerization while continuously changing the comonomers feed composition.

  15. Crystalline imide/arylene ether copolymers

    NASA Technical Reports Server (NTRS)

    Jensen, Brian J. (Inventor); Hergenrother, Paul M. (Inventor); Bass, Robert G. (Inventor)

    1995-01-01

    Crystalline imide/arylene ether block copolymers are prepared by reacting anhydride terminated poly(amic acids) with amine terminated poly)arylene ethers) in polar aprotic solvents and chemically or thermally cyclodehydrating the resulting intermediate poly(amic acids). The block copolymers of the invention have one glass transition temperature or two, depending on the particular structure and/or the compatibility of the block units. Most of these crystalline block copolymers for tough, solvent resistant films with high tensile properties. While all of the copolymers produced by the present invention are crystalline, testing reveals that copolymers with longer imide blocks or higher imide content have increased crystallinity.

  16. Self-Consistent Field Approach for Cross-Linked Copolymer Materials

    NASA Astrophysics Data System (ADS)

    Schmid, Friederike

    2013-07-01

    A generalized self-consistent field approach for polymer networks with a fixed topology is developed. It is shown that the theory reproduces the localization of cross-links, which is characteristic for gels. The theory is then used to study the order-disorder transition in regular networks of end-linked diblock copolymers. Compared to diblock copolymer melts, the transition is shifted towards lower values of the incompatibility parameter χ (the Flory- Huggins parameter). Moreover, the transition becomes strongly first order already at the mean-field level. If stress is applied, the transition is further shifted and finally vanishes in a critical point.

  17. Qualitative Evaluation of a High-Resolution 3D Multi-Sequence Intracranial Vessel Wall Protocol at 3 Tesla MRI.

    PubMed

    Dieleman, Nikki; Yang, Wenjie; van der Kolk, Anja G; Abrigo, Jill; Lee, Ka Lok; Chu, Winnie Chiu Wing; Zwanenburg, Jaco J M; Siero, Jeroen C W; Wong, Ka Sing; Hendrikse, Jeroen; Chen, Fiona Xiang Yan

    2016-01-01

    Intracranial vessel wall imaging using MRI has great potential as a clinical method for assessing intracranial atherosclerosis. The purpose of the current study was to compare three 3T MRI vessel wall sequences with different contrast weightings (T1w, PD, T2w) and dedicated sagittal orientation perpendicular to the middle cerebral artery, to the reconstructed sagittal image from a transverse 3D T1w volumetric isotropically reconstructed turbo spin-echo acquisition (VIRTA), and provide a clinical recommendation. The above-mentioned sequences were acquired in 10 consecutive Chinese ischemic stroke or TIA patients (age: 68 years, sex: 4 females) with angiographic-confirmed MCA stenosis at 3T. Institutional review board approval was obtained. Two raters qualitatively scored all images on overall image quality, presence of artifacts, and visibility of plaques. Data were compared using Repeated measures ANOVA and Sidak's adjusted post hoc tests. All sequences except the T2w sequence were able to depict the walls of the large vessels of the Circle of Willis (p<0.05). T1w sagittal oblique VIRTA showed significantly more artifacts (p<0.01). Peripherally located plaques were sometimes missed on the sagittal sequences, but could be appreciated on the transverse T1w VIRTA. With the 3T multi-sequence vessel wall protocol we were able to assess the intracranial plaque with two different image contrast weightings. The sequence of preference to include in a clinical protocol would be the transverse 3D T1w VIRTA based on absence of artifacts, larger coverage including the whole Circle of Willis, and excellent lesion depiction.

  18. Multi-sequence magnetic resonance imaging integration framework for image-guided catheter ablation of scar-related ventricular tachycardia

    NASA Astrophysics Data System (ADS)

    Tao, Qian; Milles, Julien; van Huls van Taxis, Carine; Reiber, Johan H. C.; Zeppenfeld, Katja; van der Geest, Rob J.

    2012-02-01

    Catheter ablation is an important option to treat ventricular tachycardias (VT). Scar-related VT is among the most difficult to treat, because myocardial scar, which is the underlying arrhythmogenic substrate, is patient-specific and often highly complex. The scar image from preprocedural late gadolinium enhancement magnetic resonance imaging (LGE- MRI) can provide high-resolution substrate information and, if integrated at the early stage of the procedure, can largely facilitate the procedure with image guidance. In clinical practice, however, early MRI integration is difficult because available integration tools rely on matching the MRI surface mesh and electroanatomical mapping (EAM) points, which is only possible after extensive EAM has been performed. In this paper, we propose to use a priori information on patient posture and a multi-sequence MRI integration framework to achieve accurate MRI integration that can be accomplished at an early stage of the procedure. From the MRI sequences, the left ventricular (LV) geometry, myocardial scar characteristics, and an anatomical landmark indicating the origin of the left main coronary artery are obtained preprocedurally using image processing techniques. Thereby the integration can be realized at the beginning of the procedure after acquiring a single mapping point. The integration method has been evaluated postprocedurally in terms of LV shape match and actual scar match. Compared to the iterative closest point (ICP) method that uses high-intensity mapping (225+/-49 points), our method using one mapping point reached a mean point-to-surface distance of 5.09+/-1.09 mm (vs. 3.85+/-0.60 mm, p<0.05), and scar correlation of -0.51+/-0.14 (vs. -0.50+/-0.14, p=NS).

  19. Liquid ethylene-propylene copolymers

    NASA Technical Reports Server (NTRS)

    Rhein, R. A.; Ingham, J. D.; Humphrey, M. F.

    1975-01-01

    Oligomers are prepared by heating solid ethylene-propylene rubber in container that retains solid and permits liquid product to flow out as it is formed. Molecular weight and viscosity of liquids can be predetermined by process temperature. Copolymers have low viscosity for given molecular weight.

  20. Polyether-polyester graft copolymer

    NASA Technical Reports Server (NTRS)

    Bell, Vernon L. (Inventor)

    1987-01-01

    Described is a polyether graft polymer having improved solvent resistance and crystalline thermally reversible crosslinks. The copolymer is prepared by a novel process of anionic copolymerization. These polymers exhibit good solvent resistance and are well suited for aircraft parts. Previous aromatic polyethers, also known as polyphenylene oxides, have certain deficiencies which detract from their usefulness. These commercial polymers are often soluble in common solvents including the halocarbon and aromatic hydrocarbon types of paint thinners and removers. This limitation prevents the use of these polyethers in structural articles requiring frequent painting. In addition, the most popular commercially available polyether is a very high melting plastic. This makes it considerably more difficult to fabricate finished parts from this material. These problems are solved by providing an aromatic polyether graft copolymer with improved solvent resistance and crystalline thermally reversible crosslinks. The graft copolymer is formed by converting the carboxyl groups of a carboxylated polyphenylene oxide polymer to ionic carbonyl groups in a suitable solvent, reacting pivalolactone with the dissolved polymer, and adding acid to the solution to produce the graft copolymer.

  1. Electrochemical Deposition Of Conductive Copolymers

    NASA Technical Reports Server (NTRS)

    Nagasubramanian, Ganesan; Distefano, Salvador; Liang, Ranty H.

    1991-01-01

    Experiments show electrically conductive films are deposited on glassy carbon or indium tin oxide substrates by electrochemical polymerization of N-{(3-trimethoxy silyl) propyl} pyrrole or copolymerization with pyrrole. Copolymers of monomer I and pyrrole exhibit desired electrical conductivity as well as desired adhesion and other mechanical properties. When fully developed, new copolymerization process useful in making surface films of selectable conductivity.

  2. Sparsity regularized image reconstruction

    NASA Astrophysics Data System (ADS)

    Hero, Alfred

    2015-03-01

    Most image reconstruction problems are under-determined: there are far more pixels to be resolved than there are measurements available. This means that the image space has more degrees of freedom than the measurement space. To make headway in such under-determined image reconstruction problems one must either incorporate domain knowledge or regularize. Domain knowledge restricts the size of the image space while regularization introduces bias, e.g., by forcing the reconstructed image to be smooth or have limited support. Both approaches are equivalent and can be interpreted as making the image sparse in some domain. This paper will provide a selective overview of some of the principal methods of sparsity regularized image reconstruction.

  3. Regular phantom black holes.

    PubMed

    Bronnikov, K A; Fabris, J C

    2006-06-30

    We study self-gravitating, static, spherically symmetric phantom scalar fields with arbitrary potentials (favored by cosmological observations) and single out 16 classes of possible regular configurations with flat, de Sitter, and anti-de Sitter asymptotics. Among them are traversable wormholes, bouncing Kantowski-Sachs (KS) cosmologies, and asymptotically flat black holes (BHs). A regular BH has a Schwarzschild-like causal structure, but the singularity is replaced by a de Sitter infinity, giving a hypothetic BH explorer a chance to survive. It also looks possible that our Universe has originated in a phantom-dominated collapse in another universe, with KS expansion and isotropization after crossing the horizon. Explicit examples of regular solutions are built and discussed. Possible generalizations include k-essence type scalar fields (with a potential) and scalar-tensor gravity.

  4. Regularized Structural Equation Modeling.

    PubMed

    Jacobucci, Ross; Grimm, Kevin J; McArdle, John J

    A new method is proposed that extends the use of regularization in both lasso and ridge regression to structural equation models. The method is termed regularized structural equation modeling (RegSEM). RegSEM penalizes specific parameters in structural equation models, with the goal of creating easier to understand and simpler models. Although regularization has gained wide adoption in regression, very little has transferred to models with latent variables. By adding penalties to specific parameters in a structural equation model, researchers have a high level of flexibility in reducing model complexity, overcoming poor fitting models, and the creation of models that are more likely to generalize to new samples. The proposed method was evaluated through a simulation study, two illustrative examples involving a measurement model, and one empirical example involving the structural part of the model to demonstrate RegSEM's utility.

  5. Synchronization of Regular Automata

    NASA Astrophysics Data System (ADS)

    Caucal, Didier

    Functional graph grammars are finite devices which generate the class of regular automata. We recall the notion of synchronization by grammars, and for any given grammar we consider the class of languages recognized by automata generated by all its synchronized grammars. The synchronization is an automaton-related notion: all grammars generating the same automaton synchronize the same languages. When the synchronizing automaton is unambiguous, the class of its synchronized languages forms an effective boolean algebra lying between the classes of regular languages and unambiguous context-free languages. We additionally provide sufficient conditions for such classes to be closed under concatenation and its iteration.

  6. Manifold Regularized Reinforcement Learning.

    PubMed

    Li, Hongliang; Liu, Derong; Wang, Ding

    2017-01-27

    This paper introduces a novel manifold regularized reinforcement learning scheme for continuous Markov decision processes. Smooth feature representations for value function approximation can be automatically learned using the unsupervised manifold regularization method. The learned features are data-driven, and can be adapted to the geometry of the state space. Furthermore, the scheme provides a direct basis representation extension for novel samples during policy learning and control. The performance of the proposed scheme is evaluated on two benchmark control tasks, i.e., the inverted pendulum and the energy storage problem. Simulation results illustrate the concepts of the proposed scheme and show that it can obtain excellent performance.

  7. Impacts of Repeat Unit Structure and Copolymer Architecture on Thermal and Solution Properties in Homopolymers, Copolymers, and Copolymer Blends

    NASA Astrophysics Data System (ADS)

    Marrou, Stephen Raye

    Gradient copolymers are a relatively new type of copolymer architecture in which the distribution of comonomers gradually varies over the length of the copolymer chain, resulting in a number of unusual properties derived from the arrangement of repeat units. For example, nanophase-segregated gradient copolymers exhibit extremely broad glass transition temperatures (Tgs) resulting from the wide range of compositions present in the nanostructure. This dissertation presents a number of studies on how repeat unit structure and copolymer architecture dictate bulk and solution properties, specifically taking inspiration from the gradient copolymer architecture and comparing the response from this compositionally heterogeneous material to other more conventional materials. The glass transition behavior of a range of common homopolymers was studied to determine the effects of subunit structure on Tg breadth, observing a significant increase in T g breadth with increasing side chain length in methacrylate-based homopolymers and random copolymers. Additionally, increasing the composition distribution of copolymers, either by blending individual random copolymers of different overall composition or synthesizing random copolymers to high conversion, resulted in significant increases to Tg breadth. Plasticization of homopolymers and random copolymers with low molecular weight additives also served to increase the Tg breadth; the most dramatic effect was observed in the selective plasticization of a styrene/4-vinylpyridine gradient copolymer with increases in T g breadth to values above 100 °C. In addition, the effects of repeat unit structure and copolymer architecture on other polymer properties besides Tg were also investigated. The intrinsic fluorescence of styrene units in styrene-containing copolymers was studied, noting the impact of repeat unit structure and copolymer architecture on the resulting fluorescence spectra in solution. The impact of repeat unit structure on

  8. Protein-like copolymers: computer simulation

    NASA Astrophysics Data System (ADS)

    Khokhlov, Alexei R.; Khalatur, Pavel G.

    The notion of protein-like AB copolymers is introduced. Such copolymers can be generated with the help of the “ instant image” of a dense homopolymer globule by assigning that the monomeric units closer to the globular surface are of A type, while the core is formed by the B type units. After that the primary structure of the chain is fixed, and one introduces different interaction potentials for A and B units. In doing so, we have in mind mainly aqueous systems and analogy with globular proteins, therefore A units are regarded as hydrophilic, and B units as hydrophobic. By means of Monte Carlo simulation using the bond fluctuation model we study the coil-globule transition for a protein-like copolymer upon the increase of attraction of hydrophobic B units, and compare the results with those for random AB copolymers. From the analysis of the primary structure of protein-like copolymers one can see that the “ degree of blockiness” of the protein-like sequence is higher than for random copolymers, therefore the copolymers with the “ random-block” primary structure are generated for comparison as well (the average length of A and B sequences being the same as for protein-like copolymers). It is shown that the coil-globule transition in protein-like copolymers occurs at higher temperatures, is more abrupt and has faster kinetics than for random copolymers with the same A/ B composition and for random-block copolymers with the same A/ B composition and “ degree of blockiness”. The globules of protein-like copolymers exhibit a dense micelle-like core of hydrophobic B units stabilized by the long dangling loops of hydrophilic A units. Apparently, a protein-like copolymer “ inherits” some of the properties of the “ parent globule” which is reflected in the special long-range correlations in primary structure.

  9. Geometry of spinor regularization

    NASA Technical Reports Server (NTRS)

    Hestenes, D.; Lounesto, P.

    1983-01-01

    The Kustaanheimo theory of spinor regularization is given a new formulation in terms of geometric algebra. The Kustaanheimo-Stiefel matrix and its subsidiary condition are put in a spinor form directly related to the geometry of the orbit in physical space. A physically significant alternative to the KS subsidiary condition is discussed. Derivations are carried out without using coordinates.

  10. Seeking a Regularity.

    ERIC Educational Resources Information Center

    Sokol, William

    This autoinstructional unit deals with the phenomena of regularity in chemical behavior. The prerequisites suggested are two other autoinstructional lessons (Experiments 1 and 2) identified in the Del Mod System as SE 018 020 and SE 018 023. The equipment needed is listed and 45 minutes is the suggested time allotment. The Student Guide includes…

  11. Nanoscale buckling deformation in layered copolymer materials

    PubMed Central

    Makke, Ali; Perez, Michel; Lame, Olivier; Barrat, Jean-Louis

    2012-01-01

    In layered materials, a common mode of deformation involves buckling of the layers under tensile deformation in the direction perpendicular to the layers. The instability mechanism, which operates in elastic materials from geological to nanometer scales, involves the elastic contrast between different layers. In a regular stacking of “hard” and “soft” layers, the tensile stress is first accommodated by a large deformation of the soft layers. The inhibited Poisson contraction results in a compressive stress in the direction transverse to the tensile deformation axis. The hard layers sustain this transverse compression until buckling takes place and results in an undulated structure. Using molecular simulations, we demonstrate this scenario for a material made of triblock copolymers. The buckling deformation is observed to take place at the nanoscale, at a wavelength that depends on strain rate. In contrast to what is commonly assumed, the wavelength of the undulation is not determined by defects in the microstructure. Rather, it results from kinetic effects, with a competition between the rate of strain and the growth rate of the instability. PMID:22203970

  12. Bioinspired catecholic copolymers for antifouling surface coatings.

    PubMed

    Cho, Joon Hee; Shanmuganathan, Kadhiravan; Ellison, Christopher J

    2013-05-01

    We report here a synthetic approach to prepare poly(methyl methacrylate)-polydopamine diblock (PMMA-PDA) and triblock (PDA-PMMA-PDA) copolymers combining mussel-inspired catecholic oxidative chemistry and atom transfer radical polymerization (ATRP). These copolymers display very good solubility in a range of organic solvents and also a broad band photo absorbance that increases with increasing PDA content in the copolymer. Spin-cast thin films of the copolymer were stable in water and showed a sharp reduction (by up to 50%) in protein adsorption compared to those of neat PMMA. Also the peak decomposition temperature of the copolymers was up to 43°C higher than neat PMMA. The enhanced solvent processability, thermal stability and low protein adsorption characteristics of this copolymer makes it attractive for variety of applications including antifouling coatings on large surfaces such as ship hulls, buoys, and wave energy converters.

  13. Langmuir-Blodgett films of random copolymers of fluoroalkyl(meth)acrylate and methacrylic acid: Fabrication and X-ray diffraction study

    SciTech Connect

    Safronov, V.; Feigin, L.A.; Budovskaya, L.D.; Ivanova, V.N.

    1994-12-31

    Langmuir-Blodgett films of amphiphilic fluorinated copolymers were fabricated and studied by X-ray diffraction. Although these films show poor interlayer periodicity, they possess a uniform thickness even in the case of very thin films of one bilayer (22 {angstrom}). This feature was used to obtain complex LB structures (superlattices) with alteration of copolymer and fatty acid bilayers. X-ray diffraction data proved the regular periodical organization of these structures and allowed to calculate electron density distribution across the superlattices.

  14. Crystalline Imide/Arylene Ether Copolymers

    NASA Technical Reports Server (NTRS)

    Jensen, Brian J.; Hergenrother, Paul M.; Bass, Robert G.

    1991-01-01

    Series of imide/arylene ether block copolymers prepared by using arylene ether blocks to impart low melt viscosity, and imide blocks to provide high strength and other desirable mechanical properties. Work represents extension of LAR-14159 on imide/arylene ether copolymers in form of films, moldings, adhesives, and composite matrices. Copolymers potentially useful in variety of high-temperature aerospace and microelectronic applications.

  15. Phase Behavior of Symmetric Sulfonated Block Copolymers

    SciTech Connect

    Park, Moon Jeong; Balsara, Nitash P.

    2008-08-21

    Phase behavior of poly(styrenesulfonate-methylbutylene) (PSS-PMB) block copolymers was studied by varying molecular weight, sulfonation level, and temperature. Molecular weights of the copolymers range from 2.9 to 117 kg/mol. Ordered lamellar, gyroid, hexagonally perforated lamellae, and hexagonally packed cylinder phases were observed in spite of the fact that the copolymers are nearly symmetric with PSS volume fractions between 0.45 and 0.50. The wide variety of morphologies seen in our copolymers is inconsistent with current theories on block copolymer phase behavior such as self-consistent field theory. Low molecular weight PSS-PMB copolymers (<6.2 kg/mol) show order-order and order-disorder phase transitions as a function of temperature. In contrast, the phase behavior of high molecular weight PSS-PMB copolymers (>7.7 kg/mol) is independent of temperature. Due to the large value of Flory-Huggins interaction parameter, x, between the sulfonated and non-sulfonated blocks, PSS-PMB copolymers with PSS and PMB molecular weights of 1.8 and 1.4 kg/mol, respectively, show the presence of an ordered gyroid phase with a 2.5 nm diameter PSS network. A variety of methods are used to estimate x between PSS and PMB chains as a function of sulfonation level. Some aspects of the observed phase behavior of PSS-PMB copolymers can be rationalized using x.

  16. Self-assembly of Random Copolymers

    PubMed Central

    Li, Longyu; Raghupathi, Kishore; Song, Cunfeng; Prasad, Priyaa; Thayumanavan, S.

    2014-01-01

    Self-assembly of random copolymers has attracted considerable attention recently. In this feature article, we highlight the use of random copolymers to prepare nanostructures with different morphologies and to prepare nanomaterials that are responsive to single or multiple stimuli. The synthesis of single-chain nanoparticles and their potential applications from random copolymers are also discussed in some detail. We aim to draw more attention to these easily accessible copolymers, which are likely to play an important role in translational polymer research. PMID:25036552

  17. Copolymers of fluorinated polydienes and sulfonated polystyrene

    DOEpatents

    Mays, Jimmy W.; Gido, Samuel P.; Huang, Tianzi; Hong, Kunlun

    2009-11-17

    Copolymers of fluorinated polydienes and sulfonated polystyrene and their use in fuel cell membranes, batteries, breathable chemical-biological protective materials, and templates for sol-gel polymerization.

  18. Krein regularization of QED

    SciTech Connect

    Forghan, B. Takook, M.V.; Zarei, A.

    2012-09-15

    In this paper, the electron self-energy, photon self-energy and vertex functions are explicitly calculated in Krein space quantization including quantum metric fluctuation. The results are automatically regularized or finite. The magnetic anomaly and Lamb shift are also calculated in the one loop approximation in this method. Finally, the obtained results are compared to conventional QED results. - Highlights: Black-Right-Pointing-Pointer Krein regularization yields finite values for photon and electron self-energies and vertex function. Black-Right-Pointing-Pointer The magnetic anomaly is calculated and is exactly the same as the conventional result. Black-Right-Pointing-Pointer The Lamb shift is calculated and is approximately the same as in Hilbert space.

  19. Scanning probe block copolymer lithography

    PubMed Central

    Chai, Jinan; Huo, Fengwei; Zheng, Zijian; Giam, Louise R.; Shim, Wooyoung; Mirkin, Chad A.

    2010-01-01

    Integration of individual nanoparticles into desired spatial arrangements over large areas is a prerequisite for exploiting their unique electrical, optical, and chemical properties. However, positioning single sub-10-nm nanoparticles in a specific location individually on a substrate remains challenging. Herein we have developed a unique approach, termed scanning probe block copolymer lithography, which enables one to control the growth and position of individual nanoparticles in situ. This technique relies on either dip-pen nanolithography (DPN) or polymer pen lithography (PPL) to transfer phase-separating block copolymer inks in the form of 100 or more nanometer features on an underlying substrate. Reduction of the metal ions via plasma results in the high-yield formation of single crystal nanoparticles per block copolymer feature. Because the size of each feature controls the number of metal atoms within it, the DPN or PPL step can be used to control precisely the size of each nanocrystal down to 4.8 ± 0.2 nm. PMID:21059942

  20. Interfaces between Block Copolymer Domains

    NASA Astrophysics Data System (ADS)

    Kim, Jaeup; Jeong, Seong-Jun; Kim, Sang Ouk

    2011-03-01

    Block copolymers naturally form nanometer scale structures which repeat their geometry on a larger scale. Such a small scale periodic pattern can be used for various applications such as storage media, nano-circuits and optical filters. However, perfect alignment of block copolymer domains in the macroscopic scale is still a distant dream. The nanostructure formation usually occurs with spontaneously broken symmetry; hence it is easily infected by topological defects which sneak in due to entropic fluctuation and incomplete annealing. Careful annealing can gradually reduce the number of defects, but once kinetically trapped, it is extremely difficult to remove all the defects. One of the main reasons is that the defect finds a locally metastable morphology whose potential depth is large enough to prohibit further morphology evolution. In this work, the domain boundaries between differently oriented lamellar structures in thin film are studied. For the first time, it became possible to quantitatively study the block copolymer morphology in the transitional region, and it was shown that the twisted grain boundary is energetically favorable compared to the T-junction grain boundary. [Nano Letters, 9, 2300 (2010)]. This theoretical method successfully explained the experimental results.

  1. Regularized Hamiltonians and Spinfoams

    NASA Astrophysics Data System (ADS)

    Alesci, Emanuele

    2012-05-01

    We review a recent proposal for the regularization of the scalar constraint of General Relativity in the context of LQG. The resulting constraint presents strengths and weaknesses compared to Thiemann's prescription. The main improvement is that it can generate the 1-4 Pachner moves and its matrix elements contain 15j Wigner symbols, it is therefore compatible with the spinfoam formalism: the drawback is that Thiemann anomaly free proof is spoiled because the nodes that the constraint creates have volume.

  2. Regularizing portfolio optimization

    NASA Astrophysics Data System (ADS)

    Still, Susanne; Kondor, Imre

    2010-07-01

    The optimization of large portfolios displays an inherent instability due to estimation error. This poses a fundamental problem, because solutions that are not stable under sample fluctuations may look optimal for a given sample, but are, in effect, very far from optimal with respect to the average risk. In this paper, we approach the problem from the point of view of statistical learning theory. The occurrence of the instability is intimately related to over-fitting, which can be avoided using known regularization methods. We show how regularized portfolio optimization with the expected shortfall as a risk measure is related to support vector regression. The budget constraint dictates a modification. We present the resulting optimization problem and discuss the solution. The L2 norm of the weight vector is used as a regularizer, which corresponds to a diversification 'pressure'. This means that diversification, besides counteracting downward fluctuations in some assets by upward fluctuations in others, is also crucial because it improves the stability of the solution. The approach we provide here allows for the simultaneous treatment of optimization and diversification in one framework that enables the investor to trade off between the two, depending on the size of the available dataset.

  3. Strongly Regular Graphs,

    DTIC Science & Technology

    1973-10-01

    The theory of strongly regular graphs was introduced by Bose r7 1 in 1963, in connection with partial geometries and 2 class association schemes. One...non adjacent vertices is constant and equal to ~. We shall denote by ~(p) (reap.r(p)) the set of vertices adjacent (resp.non adjacent) to a vertex p...is the complement of .2’ if the set of vertices of ~ is the set of vertices of .2’ and if two vertices in .2’ are adjacent if and only if they were

  4. Responsive copolymers for enhanced petroleum recovery

    SciTech Connect

    McCormick, C.; Hester, R.

    1992-01-01

    The overall goal of this research is the development of advanced water-soluble copolymers for use in enhanced oil recovery which rely on reversible microheterogeneous associations for mobility control and reservoir conformance. Technical progress is summarized for the following tasks: advanced copolymer synthesis; characterization of macromolecular structure and properties; and solution rheology in a porous media.

  5. Thermochemical characteristics of chitosan-polylactide copolymers

    NASA Astrophysics Data System (ADS)

    Goruynova, P. E.; Larina, V. N.; Smirnova, N. N.; Tsverova, N. E.; Smirnova, L. A.

    2016-05-01

    The energies of combustion of chitosan and its block-copolymers with different polylactide contents are determined in a static bomb calorimeter. Standard enthalpies of combustion and formation are calculated for these substances. The dependences of the thermochemical characteristics on block-copolymer composition are determined and discussed.

  6. Dimensionally Stable Ether-Containing Polyimide Copolymers

    NASA Technical Reports Server (NTRS)

    Fay, Catharine C. (Inventor); St.Clair, Anne K. (Inventor)

    1999-01-01

    Novel polyimide copolymers containing ether linkages were prepared by the reaction of an equimolar amount of dianhydride and a combination of diamines. The polyimide copolymers described herein possess the unique features of low moisture uptake, dimensional stability, good mechanical properties, and moderate glass transition temperatures. These materials have potential application as encapsulants and interlayer dielectrics.

  7. Process-Accessible States of Block Copolymers

    NASA Astrophysics Data System (ADS)

    Sun, De-Wen; Müller, Marcus

    2017-02-01

    Process-directed self-assembly of block copolymers refers to thermodynamic processes that reproducibly direct the kinetics of structure formation from a starting, unstable state into a selected, metastable mesostructure. We investigate the kinetics of self-assembly of linear A C B triblock copolymers after a rapid transformation of the middle C block from B to A . This prototypical process (e.g., photochemical transformation) converts the initial, equilibrium mesophase of the A B B copolymer into a well-defined but unstable, starting state of the A A B copolymer. The spontaneous structure formation that ensues from this unstable state becomes trapped in a metastable mesostructure, and we systematically explore which metastable mesostructures can be fabricated by varying the block copolymer composition of the initial and final states. In addition to the equilibrium mesophases of linear A B diblock copolymers, this diagram of process-accessible states includes 7 metastable periodic mesostructures, inter alia, Schoen's F-RD periodic minimal surface. Generally, we observe that the final, metastable mesostructure of the A A B copolymer possesses the same symmetry as the initial, equilibrium mesophase of the A B B copolymer.

  8. Nanostructured high-performance dielectric block copolymers.

    PubMed

    Liu, Wenmei; Liao, Xiaojuan; Li, Yawei; Zhao, Qiuhua; Xie, Meiran; Sun, Ruyi

    2015-10-25

    A new type of insulating-conductive block copolymer was synthesized by metathesis polymerization. The copolymer can self-assemble into unique nanostructures of micelles or hollow spheres. It exhibits a high dielectric constant, low dielectric loss, and high stored/released energy density due to the strong dipolar and nano-interfacial polarization contributions.

  9. Process-Accessible States of Block Copolymers.

    PubMed

    Sun, De-Wen; Müller, Marcus

    2017-02-10

    Process-directed self-assembly of block copolymers refers to thermodynamic processes that reproducibly direct the kinetics of structure formation from a starting, unstable state into a selected, metastable mesostructure. We investigate the kinetics of self-assembly of linear ACB triblock copolymers after a rapid transformation of the middle C block from B to A. This prototypical process (e.g., photochemical transformation) converts the initial, equilibrium mesophase of the ABB copolymer into a well-defined but unstable, starting state of the AAB copolymer. The spontaneous structure formation that ensues from this unstable state becomes trapped in a metastable mesostructure, and we systematically explore which metastable mesostructures can be fabricated by varying the block copolymer composition of the initial and final states. In addition to the equilibrium mesophases of linear AB diblock copolymers, this diagram of process-accessible states includes 7 metastable periodic mesostructures, inter alia, Schoen's F-RD periodic minimal surface. Generally, we observe that the final, metastable mesostructure of the AAB copolymer possesses the same symmetry as the initial, equilibrium mesophase of the ABB copolymer.

  10. Synthesis and Characterization of Block Copolymers.

    DTIC Science & Technology

    1987-07-01

    Polyether-Polyimide Block Copolymers; Three series of Polyether-Polyimide (PEPI) block copolymers were synthesized. Soft segments were poly( propylene ... glycol ) (PPO) Mn = 2,000 and 4,000. Hard segments were pyromellitic dianhydride (PMDA) and di-(2-hydroxyethyl)-dimethylhydantoin (H). The hard

  11. Imide/arylene ether block copolymers

    NASA Technical Reports Server (NTRS)

    Jensen, B. J.; Hergenrother, P. M.; Bass, R. G.

    1991-01-01

    Two series of imide/arylene either block copolymers were prepared using an arylene ether block and either an amorphous or semi-crystalline imide block. The resulting copolymers were characterized and selected physical and mechanical properties were determined. These results, as well as comparisons to the homopolymer properties, are discussed.

  12. Flexible sparse regularization

    NASA Astrophysics Data System (ADS)

    Lorenz, Dirk A.; Resmerita, Elena

    2017-01-01

    The seminal paper of Daubechies, Defrise, DeMol made clear that {{\\ell }}p spaces with p\\in [1,2) and p-powers of the corresponding norms are appropriate settings for dealing with reconstruction of sparse solutions of ill-posed problems by regularization. It seems that the case p = 1 provides the best results in most of the situations compared to the cases p\\in (1,2). An extensive literature gives great credit also to using {{\\ell }}p spaces with p\\in (0,1) together with the corresponding quasi-norms, although one has to tackle challenging numerical problems raised by the non-convexity of the quasi-norms. In any of these settings, either superlinear, linear or sublinear, the question of how to choose the exponent p has been not only a numerical issue, but also a philosophical one. In this work we introduce a more flexible way of sparse regularization by varying exponents. We introduce the corresponding functional analytic framework, that leaves the setting of normed spaces but works with so-called F-norms. One curious result is that there are F-norms which generate the ℓ 1 space, but they are strictly convex, while the ℓ 1-norm is just convex.

  13. Regularized versus non-regularized statistical reconstruction techniques

    NASA Astrophysics Data System (ADS)

    Denisova, N. V.

    2011-08-01

    An important feature of positron emission tomography (PET) and single photon emission computer tomography (SPECT) is the stochastic property of real clinical data. Statistical algorithms such as ordered subset-expectation maximization (OSEM) and maximum a posteriori (MAP) are a direct consequence of the stochastic nature of the data. The principal difference between these two algorithms is that OSEM is a non-regularized approach, while the MAP is a regularized algorithm. From the theoretical point of view, reconstruction problems belong to the class of ill-posed problems and should be considered using regularization. Regularization introduces an additional unknown regularization parameter into the reconstruction procedure as compared with non-regularized algorithms. However, a comparison of non-regularized OSEM and regularized MAP algorithms with fixed regularization parameters has shown very minor difference between reconstructions. This problem is analyzed in the present paper. To improve the reconstruction quality, a method of local regularization is proposed based on the spatially adaptive regularization parameter. The MAP algorithm with local regularization was tested in reconstruction of the Hoffman brain phantom.

  14. Processible Polyaniline Copolymers and Complexes.

    NASA Astrophysics Data System (ADS)

    Liao, Yun-Hsin

    1995-01-01

    Polyaniline (PANI) is an intractable polymer due to the difficulty of melt processing or dissolving it in common solvents. The purpose of the present investigation was to prepare a new class of conducting polyanilines with better solubility both in base and dope forms by (1) adding external salt to break aggregated chains, (2) introducing ring substituted units onto the backbone without disturbing the coplanar structure, and (3) complexing with polymeric dopants to form a soluble polymer complex. Aggregation of PANI chains in dilute solution was investigated in N-methyl-2-pyrrolidinone (NMP) by light scattering, gel permeation chromatography, and viscosity measurements. The aggregation of chains resulted in a negative second virial coefficient in light scattering measurement, a bimodal molecular weight distribution in gel permeation chromatography, and concave reduced viscosity curves. The aggregates can be broken by adding external salt, which resulting in a higher reduced viscosity. The driving force for aggregation is assumed to be a combination of hydrogen bonding between the imine and amine groups, and the rigidity of backbone. The aggregation was modeled to occur via side-on packing of PANI chains. The ring substituted PANI copolymers, poly(aniline -co-phenetidine) were synthesized by chemical oxidation copolymerization using ammonium persulfate as an oxidant. The degree of copolymerization declined with an increasing feed of o-phenetidine in the reaction mixture. The o-phenetidine had a higher reactivity than aniline in copolymerization resulting in a higher content of o-phenetidine in copolymers. The resulting copolymers can be readily dissolved in NMP up to 20% (w/w), and other common solvents, and solutions possess a longer gelation time. The highly soluble copolymer with 20 mole % o-phenetidine in the backbone has same order of conductivity as the unsubstituted PANI after it is doped by HCl. Complexation of PANI and polymeric dopant, poly

  15. Hybridization of Block Copolymer Micelles

    DTIC Science & Technology

    1993-01-01

    J. Macromol. Sci., Part A 1973, 7,601. (10) Tiara, M.; Ramireddy, C.; Webber, S. K; Munk,P. Collect. Czer" (14) 0snford, C. In The Hydrophobic Effect ...equilibrate In the first series of experiments we have studied the within 20 min, similarly as ASA-10 micelles do. However, effect of the copolymer...high. This may happen after a sudden The Johnston-Ogston effect 2’ 6- also may play a role in jump in temperature or in the composition of the mixed

  16. 21 CFR 177.1060 - n-Alkylglutarimide/acrylic copolymers.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false n-Alkylglutarimide/acrylic copolymers. 177.1060... Use Food Contact Surfaces § 177.1060 n-Alkylglutarimide/acrylic copolymers. n-Alkylglutarimide/acrylic...) Identity. For the purpose of this section, n-alkylglutarimide/acrylic copolymers are copolymers obtained by...

  17. Short-range ordered photonic structures of lamellae-forming diblock copolymers for excitation-regulated fluorescence enhancement

    NASA Astrophysics Data System (ADS)

    Kim, Se Hee; Kim, Ki-Se; Char, Kookheon; Yoo, Seong Il; Sohn, Byeong-Hyeok

    2016-05-01

    Photonic crystals can be represented by periodic nanostructures with alternating refractive indices, which create artificial stop bands with the appearance of colors. In this regard, nanodomains of block copolymers and the corresponding structural colors have been intensively studied in the past. However, the practical application of photonic crystals of block copolymers has been limited to a large degree because of the presence of large defects and grain boundaries in the nanodomains of block copolymers. The present study focuses on the alternative opportunity of short-range ordered nanodomains of block copolymers for fluorescence enhancement, which also has a direct relevance to the development of fluorescence sensors or detectors. The enhancement mechanism was found to be interconnected with the excitation process rather than the alternation of the decay kinetics. In particular, we demonstrate that randomly oriented, but regular grains of lamellae of polystyrene-block-polyisoprene, PS-b-PI, diblock copolymers and their blend with PS homopolymers can behave as Bragg mirrors to induce multiple reflections of the excitation source inside the photonic structures. This process in turn significantly increases the effective absorption of the given fluorophores inside the polymeric photonic structures to amplify the fluorescence signal.Photonic crystals can be represented by periodic nanostructures with alternating refractive indices, which create artificial stop bands with the appearance of colors. In this regard, nanodomains of block copolymers and the corresponding structural colors have been intensively studied in the past. However, the practical application of photonic crystals of block copolymers has been limited to a large degree because of the presence of large defects and grain boundaries in the nanodomains of block copolymers. The present study focuses on the alternative opportunity of short-range ordered nanodomains of block copolymers for fluorescence

  18. Mainstreaming the Regular Classroom Student.

    ERIC Educational Resources Information Center

    Kahn, Michael

    The paper presents activities, suggested by regular classroom teachers, to help prepare the regular classroom student for mainstreaming. The author points out that regular classroom children need a vehicle in which curiosity, concern, interest, fear, attitudes and feelings can be fully explored, where prejudices can be dispelled, and where the…

  19. Rapid self-assembly of block copolymers to photonic crystals

    DOEpatents

    Xia, Yan; Sveinbjornsson, Benjamin R; Grubbs, Robert H; Weitekamp, Raymond; Miyake, Garret M; Atwater, Harry A; Piunova, Victoria; Daeffler, Christopher Scot; Hong, Sung Woo; Gu, Weiyin; Russell, Thomas P.

    2016-07-05

    The invention provides a class of copolymers having useful properties, including brush block copolymers, wedge-type block copolymers and hybrid wedge and polymer block copolymers. In an embodiment, for example, block copolymers of the invention incorporate chemically different blocks comprising polymer size chain groups and/or wedge groups that significantly inhibit chain entanglement, thereby enhancing molecular self-assembly processes for generating a range of supramolecular structures, such as periodic nanostructures and microstructures. The present invention also provides useful methods of making and using copolymers, including block copolymers.

  20. LaRC-ITPI/arylene ether copolymers

    NASA Technical Reports Server (NTRS)

    Jensen, Brian J.; Working, Dennis C.

    1991-01-01

    As part of an effort to develop high performance structural resins for aerospace applications, work has continued on block copolymers containing imide and arylene ether segments. The arylene ether block used in this study contains a bulky fluorene group in the polymer backbone while the imide block contains an arylene ketone segment similar to that in the arylene ether block and has been named LaRC-ITPI. A series of imide/arylene ether block and segmented copolymers were prepared and characterized. Films were prepared from these copolymers and mechanical properties were measured.

  1. Block Copolymer Membranes for Biofuel Purification

    NASA Astrophysics Data System (ADS)

    Evren Ozcam, Ali; Balsara, Nitash

    2012-02-01

    Purification of biofuels such as ethanol is a matter of considerable concern as they are produced in complex multicomponent fermentation broths. Our objective is to design pervaporation membranes for concentrating ethanol from dilute aqueous mixtures. Polystyrene-b-polydimethylsiloxane-b-polystyrene block copolymers were synthesized by anionic polymerization. The polydimethylsiloxane domains provide ethanol-transporting pathways, while the polystyrene domains provide structural integrity for the membrane. The morphology of the membranes is governed by the composition of the block copolymer while the size of the domains is governed by the molecular weight of the block copolymer. Pervaporation data as a function of these two parameters will be presented.

  2. Injectible bodily prosthetics employing methacrylic copolymer gels

    DOEpatents

    Mallapragada, Surya K.; Anderson, Brian C.

    2007-02-27

    The present invention provides novel block copolymers as structural supplements for injectible bodily prosthetics employed in medical or cosmetic procedures. The invention also includes the use of such block copolymers as nucleus pulposus replacement materials for the treatment of degenerative disc disorders and spinal injuries. The copolymers are constructed by polymerization of a tertiary amine methacrylate with either a (poly(ethylene oxide)-b-poly(propylene oxide)-b-poly(ethylene oxide) polymer, such as the commercially available Pluronic.RTM. polymers, or a poly(ethylene glycol) methyl ether polymer.

  3. Ensemble manifold regularization.

    PubMed

    Geng, Bo; Tao, Dacheng; Xu, Chao; Yang, Linjun; Hua, Xian-Sheng

    2012-06-01

    We propose an automatic approximation of the intrinsic manifold for general semi-supervised learning (SSL) problems. Unfortunately, it is not trivial to define an optimization function to obtain optimal hyperparameters. Usually, cross validation is applied, but it does not necessarily scale up. Other problems derive from the suboptimality incurred by discrete grid search and the overfitting. Therefore, we develop an ensemble manifold regularization (EMR) framework to approximate the intrinsic manifold by combining several initial guesses. Algorithmically, we designed EMR carefully so it 1) learns both the composite manifold and the semi-supervised learner jointly, 2) is fully automatic for learning the intrinsic manifold hyperparameters implicitly, 3) is conditionally optimal for intrinsic manifold approximation under a mild and reasonable assumption, and 4) is scalable for a large number of candidate manifold hyperparameters, from both time and space perspectives. Furthermore, we prove the convergence property of EMR to the deterministic matrix at rate root-n. Extensive experiments over both synthetic and real data sets demonstrate the effectiveness of the proposed framework.

  4. Organosilane Polymers. III. Block Copolymers.

    DTIC Science & Technology

    1980-04-01

    5446 (1969) 9) R. West, J. Polym. Sci., C, 29, 65 (1970) 10) V.F. Traven and R. West, J. Am. Chem. Soc., 95, 6824 (1973) 11) W.G. Boberski and-A.L...COMPOSITION Alkyl H/Aryl H (2 ) Copolymer Method,1 , Calculated Found 111-3 A 0.72 0.73 B 0.72 0.73 111-5 A 0.80 0.85 B 0.80 0.80 111-8 A 1.0 1.4 B 1.0...1.1 (1) A: Chloro-oligomer added to lithio-oligomer. B : Lithio-oligomer added to chloro-oligomer. (2) By HI-NMR TABLE 2 INFRA-RED ABSORPTIONS

  5. Curable polyphosphazene copolymers and terpolymers

    NASA Technical Reports Server (NTRS)

    Reynard, Kennard A. (Inventor); Rose, Selwyn H. (Inventor)

    1976-01-01

    Copolymers and terpolymers comprising randomly repeating units represented by the general formulae ##EQU1## wherein the R' radicals contain OH functionality and R being at least one member of the group of monovalent radicals selected from alkyl, substituted alkyl, aryl, substituted aryl and arylalkyl, and R' is represented by ##EQU2## wherein Q represents either --(CH.sub.2).sub. n or --C.sub.6 H.sub.4 X(CH.sub.2).sub. m, the --X(CH.sub.2).sub. m group being either meta or para and n is an integer from 1 to 6, m is an integer from 1 to 3, X is O or CH.sub.2, and R is H or a lower alkyl radical with up to four carbon atoms (methyl, ethyl, etc.). The ratio of R to R' is between 99.5 to 0.5 and 65 to 35.

  6. Salt Complexation in Block Copolymer Thin Films

    SciTech Connect

    Kim,S.; Misner, M.; Yang, L.; Gang, O.; Ocko, B.; Russell, T.

    2006-01-01

    Ion complexation within cylinder-forming block copolymer thin films was found to affect the ordering process of the copolymer films during solvent annealing, significantly enhancing the long-range positional order. Small amounts of alkali halide or metal salts were added to PS-b-PEO, on the order of a few ions per chain, where the salt complexed with the PEO block. The orientation of the cylindrical microdomains strongly depended on the salt concentration and the ability of the ions to complex with PEO. The process shows large flexibility in the choice of salt used, including gold or cobalt salts, whereby well-organized patterns of nanoparticles can be generated inside the copolymer microdomains. By further increasing the amount of added salts, the copolymer remained highly ordered at large degrees of swelling and demonstrated long-range positional correlations of the microdomains in the swollen state, which holds promise as a route to addressable media.

  7. Electrostatic control of block copolymer morphology

    NASA Astrophysics Data System (ADS)

    Sing, Charles E.; Zwanikken, Jos W.; Olvera de La Cruz, Monica

    2014-07-01

    Energy storage is at present one of the foremost issues society faces. However, material challenges now serve as bottlenecks in technological progress. Lithium-ion batteries are the current gold standard to meet energy storage needs; however, they are limited owing to the inherent instability of liquid electrolytes. Block copolymers can self-assemble into nanostructures that simultaneously facilitate ion transport and provide mechanical stability. The ions themselves have a profound, yet previously unpredictable, effect on how these nanostructures assemble and thus the efficiency of ion transport. Here we demonstrate that varying the charge of a block copolymer is a powerful mechanism to predictably tune nanostructures. In particular, we demonstrate that highly asymmetric charge cohesion effects can induce the formation of nanostructures that are inaccessible to conventional uncharged block copolymers, including percolated phases desired for ion transport. This vastly expands the design space for block copolymer materials and is informative for the versatile design of battery electrolyte materials.

  8. Arbitrary lattice symmetries via block copolymer nanomeshes

    PubMed Central

    Majewski, Pawel W.; Rahman, Atikur; Black, Charles T.; Yager, Kevin G.

    2015-01-01

    Self-assembly of block copolymers is a powerful motif for spontaneously forming well-defined nanostructures over macroscopic areas. Yet, the inherent energy minimization criteria of self-assembly give rise to a limited library of structures; diblock copolymers naturally form spheres on a cubic lattice, hexagonally packed cylinders and alternating lamellae. Here, we demonstrate multicomponent nanomeshes with any desired lattice symmetry. We exploit photothermal annealing to rapidly order and align block copolymer phases over macroscopic areas, combined with conversion of the self-assembled organic phase into inorganic replicas. Repeated photothermal processing independently aligns successive layers, providing full control of the size, symmetry and composition of the nanoscale unit cell. We construct a variety of symmetries, most of which are not natively formed by block copolymers, including squares, rhombuses, rectangles and triangles. In fact, we demonstrate all possible two-dimensional Bravais lattices. Finally, we elucidate the influence of nanostructure on the electrical and optical properties of nanomeshes. PMID:26100566

  9. Morphologies in Sulfonated Styrenic Pentablock Copolymer Membranes

    NASA Astrophysics Data System (ADS)

    Choi, Jae-Hong; Bramson, Matt; Winey, Karen I.

    2010-03-01

    Membranes of pentablock and triblock copolymers consisting of poly(tert-butyl styrene) (TBS), hydrogenated polyisoprene (HI), and partially sulfonated poly(styrene-ran-styrene sulfonate) (SS) were studied using small angle X-ray scattering (SAXS) and transmission electron microscopy (TEM). The TBS-HI-SS-HI-TBS pentablock and TBS-HI-SS triblock copolymer membranes exhibit anisotropic microphase separated morphologies. Because the pentablock and triblock copolymers can be expected to have complex morphologies, thermal annealing was conducted to promote well-defined morphologies. The annealed membranes exhibit stronger peaks and more high order reflections in SAXS patterns, as well as better defined microstructures in the TEM. Electron microcopy studies with various staining protocols are underway to establish the morphology of the pentablock copolymer membranes including the size and shape of the three microdomains (TBS, HI and SS). We gratefully acknowledge Kraton Polymers, Inc. for materials.

  10. Block copolymer structures in nano-pores

    NASA Astrophysics Data System (ADS)

    Pinna, Marco; Guo, Xiaohu; Zvelindovsky, Andrei

    2010-03-01

    We present results of coarse-grained computer modelling of block copolymer systems in cylindrical and spherical nanopores on Cell Dynamics Simulation. We study both cylindrical and spherical pores and systematically investigate structures formed by lamellar, cylinders and spherical block copolymer systems for various pore radii and affinity of block copolymer blocks to the pore walls. The obtained structures include: standing lamellae and cylinders, ``onions,'' cylinder ``knitting balls,'' ``golf-ball,'' layered spherical, ``virus''-like and mixed morphologies with T-junctions and U-type defects [1]. Kinetics of the structure formation and the differences with planar films are discussed. Our simulations suggest that novel porous nano-containers can be formed by confining block copolymers in pores of different geometries [1,2]. [4pt] [1] M. Pinna, X. Guo, A.V. Zvelindovsky, Polymer 49, 2797 (2008).[0pt] [2] M. Pinna, X. Guo, A.V. Zvelindovsky, J. Chem. Phys. 131, 214902 (2009).

  11. Method for making block siloxane copolymers

    DOEpatents

    Butler, N.L.; Jessop, E.S.; Kolb, J.R.

    1981-02-25

    A method for synthesizing block polysiloxane copolymers is disclosed. Diorganoscyclosiloxanes and an end-blocking compound are interacted in the presence of a ring opening polymerization catalyst, producing a blocked prepolymer. The prepolymer is then interacted with a silanediol, resulting in condensation polymerization of the prepolymers. A second end-blocking compound is subsequently introduced to end-cap the polymers and copolymers formed from the condensation polymerization.

  12. Responsive Copolymers for Enhanced Petroleum Recovery

    SciTech Connect

    McCormick, C.; Hester, R.

    2001-02-27

    The objectives of this work was to: synthesize responsive copolymer systems; characterize molecular structure and solution behavior; measure rheological properties of aqueous fluids in fixed geometry flow profiles; and to tailor final polymer compositions for in situ rheology control under simulated conditions. This report focuses on the synthesis and characterization of novel stimuli responsive copolymers, the investigation of dilute polymer solutions in extensional flow and the design of a rheometer capable of measuring very dilute aqueous polymer solutions at low torque.

  13. Reactivity ratios for organotin copolymer systems.

    PubMed

    El-Newehy, Mohamed H; Al-Deyab, Salem S; Al-Hazmi, Ali Mohsen Ali

    2010-04-15

    Di(tri-n-butyltin) itaconate (DTBTI) and monoethyl tributyltin fumarate (METBTF) were synthesized as organotin monomers. The organotin monomers were copolymerized with styrene (ST) and methyl methacrylate (MMA) via a free radical polymerization technique. The overall conversion was kept low (copolymer composition was determined from tin analysis. The synthesized monomers and copolymers were characterized by elemental analysis, 1H- and 13C-NMR, and FTIR spectroscopy.

  14. Method for making block siloxane copolymers

    DOEpatents

    Butler, Nora; Jessop, Edward S.; Kolb, John R.

    1982-01-01

    A method for synthesizing block polysiloxane copolymers. Diorganoscyclosiloxanes and an end-blocking compound are interacted in the presence of a ring opening polymerization catalyst, producing a blocked prepolymer. The prepolymer is then interacted with a silanediol, resulting in condensation polymerization of the prepolymers. A second end-blocking compound is subsequently introduced to end-cap the polymers and copolymers formed from the condensation polymerization.

  15. On regular rotating black holes

    NASA Astrophysics Data System (ADS)

    Torres, R.; Fayos, F.

    2017-01-01

    Different proposals for regular rotating black hole spacetimes have appeared recently in the literature. However, a rigorous analysis and proof of the regularity of this kind of spacetimes is still lacking. In this note we analyze rotating Kerr-like black hole spacetimes and find the necessary and sufficient conditions for the regularity of all their second order scalar invariants polynomial in the Riemann tensor. We also show that the regularity is linked to a violation of the weak energy conditions around the core of the rotating black hole.

  16. Regular polygons in taxicab geometry

    NASA Astrophysics Data System (ADS)

    Hanson, J. R.

    2014-10-01

    A polygon of n sides will be called regular in taxicab geometry if it has n equal angles and n sides of equal taxicab length. This paper will show that there are no regular taxicab triangles and no regular taxicab pentagons. The sets of taxicab rectangles and taxicab squares will be shown to be the same, respectively, as the sets of Euclidean rectangles and Euclidean squares. A method of construction for a regular taxicab 2n-gon for any n will be demonstrated.

  17. Linear regularity and [phi]-regularity of nonconvex sets

    NASA Astrophysics Data System (ADS)

    Ng, Kung Fu; Zang, Rui

    2007-04-01

    In this paper, we discuss some sufficient conditions for the linear regularity and bounded linear regularity (and their variations) of finitely many closed (not necessarily convex) sets in a normed vector space. The accompanying necessary conditions are also given in the setting of Asplund spaces.

  18. Diffusion of copolymers composed of monomers with drastically different friction factors in copolymer/homopolymer blends

    NASA Astrophysics Data System (ADS)

    Duranty, Edward R.; Baschnagel, Jörg; Dadmun, Mark

    2017-02-01

    Copolymers are commonly used as interface modifiers that allow for the compatibilization of polymer components in a blend. For copolymers to function as a compatibilizer, they must diffuse through the matrix of the blend to the interface between the two blend components. The diffusivity of a copolymer in a blend matrix therefore becomes important in determining good candidates for use as compatibilizers. In this work, coarse-grained Monte Carlo simulations using the bond fluctuation model modified with an overlap penalty have been developed to study the diffusive behavior of PS/PMMA random copolymers in a PMMA homopolymer blend. The simulations vary the connectivity between different monomers, the thermodynamic interactions between the monomers which manifest within a chain, and between copolymer and homopolymer matrix and define the monomer friction coefficient of each component independently, allowing for the determination of the combined effect of these parameters on copolymer chain diffusion. The results of this work indicate that PS-r-PMMA copolymer diffusion is not linearly dependent on the copolymer composition on a logarithmic scale, but its diffusion is a balance of the kinetics governed by the dominant motion of the faster styrene monomers and thermodynamics, which are governed by the concentration of styrene monomer within a given monomer's local volume.

  19. Diffusion of copolymers composed of monomers with drastically different friction factors in copolymer/homopolymer blends

    DOE PAGES

    Duranty, Edward R.; Baschnagel, Jörg; Dadmun, Mark

    2017-02-07

    Copolymers are commonly used as interface modifiers that allow for the compatibilization of polymer components in a blend. For copolymers to function as a compatibilizer, they must diffuse through the matrix of the blend to the interface between the two blend components. The diffusivity of a copolymer in a blend matrix therefore becomes important in determining good candidates for use as compatibilizers. In this paper, coarse-grained Monte Carlo simulations using the bond fluctuation model modified with an overlap penalty have been developed to study the diffusive behavior of PS/PMMA random copolymers in a PMMA homopolymer blend. The simulations vary themore » connectivity between different monomers, the thermodynamic interactions between the monomers which manifest within a chain, and between copolymer and homopolymer matrix and define the monomer friction coefficient of each component independently, allowing for the determination of the combined effect of these parameters on copolymer chain diffusion. Finally, the results of this work indicate that PS-r-PMMA copolymer diffusion is not linearly dependent on the copolymer composition on a logarithmic scale, but its diffusion is a balance of the kinetics governed by the dominant motion of the faster styrene monomers and thermodynamics, which are governed by the concentration of styrene monomer within a given monomer’s local volume.« less

  20. Interaction chromatography for characterization and large-scale fractionation of chemically heterogeneous copolymers

    NASA Astrophysics Data System (ADS)

    Han, Junwon

    copolymers and to ultimately obtain well-defined dendronized or branched copolymers with a low polydispersity. The effects of excess arm-polymers on (1) the micellar self-assembly of dendronized polymers and (2) the regularity of the pore morphology in the low-k applications by the sol-gel process have been studied.

  1. Regularized Generalized Canonical Correlation Analysis

    ERIC Educational Resources Information Center

    Tenenhaus, Arthur; Tenenhaus, Michel

    2011-01-01

    Regularized generalized canonical correlation analysis (RGCCA) is a generalization of regularized canonical correlation analysis to three or more sets of variables. It constitutes a general framework for many multi-block data analysis methods. It combines the power of multi-block data analysis methods (maximization of well identified criteria) and…

  2. 76 FR 3629 - Regular Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-20

    ... From the Federal Register Online via the Government Publishing Office FARM CREDIT SYSTEM INSURANCE CORPORATION Farm Credit System Insurance Corporation Board Regular Meeting SUMMARY: Notice is hereby given of the regular meeting of the Farm Credit System Insurance Corporation Board (Board). Date and Time: The...

  3. Trajectory optimization using regularized variables

    NASA Technical Reports Server (NTRS)

    Lewallen, J. M.; Szebehely, V.; Tapley, B. D.

    1969-01-01

    Regularized equations for a particular optimal trajectory are compared with unregularized equations with respect to computational characteristics, using perturbation type numerical optimization. In the case of the three dimensional, low thrust, Earth-Jupiter rendezvous, the regularized equations yield a significant reduction in computer time.

  4. 75 FR 76006 - Regular Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-07

    ... Board (Board). Date and Time: The meeting of the Board will be held at the offices of the Farm Credit Administration in McLean, Virginia, on December 9, 2010, from 12:30 p.m. until such time as the Board concludes... CORPORATION Regular Meeting AGENCY: Farm Credit System Insurance Corporation Board. ACTION: Regular meeting...

  5. Regularly timed events amid chaos

    NASA Astrophysics Data System (ADS)

    Blakely, Jonathan N.; Cooper, Roy M.; Corron, Ned J.

    2015-11-01

    We show rigorously that the solutions of a class of chaotic oscillators are characterized by regularly timed events in which the derivative of the solution is instantaneously zero. The perfect regularity of these events is in stark contrast with the well-known unpredictability of chaos. We explore some consequences of these regularly timed events through experiments using chaotic electronic circuits. First, we show that a feedback loop can be implemented to phase lock the regularly timed events to a periodic external signal. In this arrangement the external signal regulates the timing of the chaotic signal but does not strictly lock its phase. That is, phase slips of the chaotic oscillation persist without disturbing timing of the regular events. Second, we couple the regularly timed events of one chaotic oscillator to those of another. A state of synchronization is observed where the oscillators exhibit synchronized regular events while their chaotic amplitudes and phases evolve independently. Finally, we add additional coupling to synchronize the amplitudes, as well, however in the opposite direction illustrating the independence of the amplitudes from the regularly timed events.

  6. Quantum Ergodicity on Regular Graphs

    NASA Astrophysics Data System (ADS)

    Anantharaman, Nalini

    2017-07-01

    We give three different proofs of the main result of Anantharaman and Le Masson (Duke Math J 164(4):723-765, 2015), establishing quantum ergodicity—a form of delocalization—for eigenfunctions of the laplacian on large regular graphs of fixed degree. These three proofs are much shorter than the original one, quite different from one another, and we feel that each of the four proofs sheds a different light on the problem. The goal of this exploration is to find a proof that could be adapted for other models of interest in mathematical physics, such as the Anderson model on large regular graphs, regular graphs with weighted edges, or possibly certain models of non-regular graphs. A source of optimism in this direction is that we are able to extend the last proof to the case of anisotropic random walks on large regular graphs.

  7. Polyhydroxyalkanoate copolymers from forest biomass.

    PubMed

    Keenan, Thomas M; Nakas, James P; Tanenbaum, Stuart W

    2006-07-01

    The potential for the use of woody biomass in poly-beta-hydroxyalkanoate (PHA) biosynthesis is reviewed. Based on previously cited work indicating incorporation of xylose or levulinic acid (LA) into PHAs by several bacterial strains, we have initiated a study for exploring bioconversion of forest resources to technically relevant copolymers. Initially, PHA was synthesized in shake-flask cultures of Burkholderia cepacia grown on 2.2% (w/v) xylose, periodically amended with varying concentrations of levulinic acid [0.07-0.67% (w/v)]. Yields of poly(beta-hydroxybutyrate-co-beta-hydroxyvalerate) [P(3HB-co-3HV)] from 1.3 to 4.2 g/l were obtained and could be modulated to contain from 1.0 to 61 mol% 3-hydroxyvalerate (3HV), as determined by 1H and 13C NMR analyses. No evidence for either the 3HB or 4HV monomers was found. Characterization of these P(3HB-co-3HV) samples, which ranged in molecular mass (viscometric, Mv) from 511-919 kDa, by differential scanning calorimetry and thermogravimetric analyses (TGA) provided data which were in agreement for previously reported P(3HB-co-3HV) copolymers. For these samples, it was noted that melting temperature (Tm) and glass transition temperature (Tg) decreased as a function of 3HVcontent, with Tm demonstrating a pseudoeutectic profile as a function of mol% 3HV content. In order to extend these findings to the use of hemicellulosic process streams as an inexpensive carbon source, a detoxification procedure involving sequential overliming and activated charcoal treatments was developed. Two such detoxified process hydrolysates (NREL CF: aspen and CESF: maple) were each fermented with appropriate LA supplementation. For the NREL CF hydrolysate-based cultures amended with 0.25-0.5% LA, P(3HB-co-3HV) yields, PHA contents (PHA as percent of dry biomass), and mol% 3HV compositions of 2.0 g/l, 40% (w/w), and 16-52 mol% were obtained, respectively. Similarly, the CESF hydrolysate-based shake-flask cultures yielded 1.6 g/l PHA, 39% (w

  8. Random hydrophilic-hydrophobic copolymers

    NASA Astrophysics Data System (ADS)

    Garel, T.; Leibler, L.; Orland, H.

    1994-12-01

    We study a single statistical amphiphilic copolymer chain AB in a selective solvent (e.g. water). Two situations are considered. In the annealed case, hydrophilic (A) and hydrophobic (B) monomers are at local chemical equilibrium and both the fraction of A monomers and their location along the chain can vary, whereas in the quenched case (which is relevant to proteins), the chemical sequence along the chain is fixed by synthesis. In both cases, the physical behaviour depends on the average hydrophobicity of the polymer chain. For a strongly hydrophobic chain (large fraction of B), we find an ordinary continuous θ collapse, with a large conformational entropy in the collapsed phase. For a weakly hydrophobic, or a hydrophilic chain, there is an unusual first-order collapse transition. In particular, for the case of Gaussian disorder, this discontinuous transition is driven by a change of sign of the third virial coefficient. The entropy of this collapsed phase is strongly reduced with respect to the θ collapsed phase. Nous étudions un copolymère aléatoire amphiphile AB dans un solvant sélectif (par exemple, de l'eau). Nous considérons deux cas. Dans le cas du désordre mobile, les monomères hydrophiles (A) et hydrophobes (B) sont à l'équilibre chimique local, et la fraction de monomères A ainsi que leur position dans l'espace peuvent varier, alors que dans le cas du désordre gelé (qui est relié au problème des protéines), la séquence chimique est fixée par synthèse. Dans les deux cas, le comportement de la chaîne depend de son hydrophobicité moyenne. Pour une chaîne fortement hydrophobe (grande fraction de B), on trouve un point d'effondrement θ continu ordinaire, avec une grande entropie conformationnelle. Pour une chaîne faiblement hydrophobe ou hydrophile, on trouve une transition inhabituelle du premier ordre. En particulier, dans le cas du désordre gaussien, cette transition discontinue est pilotée par un changement de signe du troisi

  9. Initiator Effects in Reactive Extrusion of Starch Graft Copolymers

    USDA-ARS?s Scientific Manuscript database

    Graft copolymers of starch with water-soluble polymers such as polyacrylamide have potential applications including hydrogels, superabsorbents, and thickening agents. Reactive extrusion is a rapid, continuous method for production of starch graft copolymers with high reaction and grafting efficienc...

  10. Polyamide copolymers having 2,5-furan dicarboxamide units

    DOEpatents

    Chisholm, Bret Ja; Samanta, Satyabrata

    2017-09-19

    Polyamide copolymers, and methods of making and using polyamide copolymers, having 2,5-furan dicarboxamide units are disclosed herein. Such polymers can be useful for engineering thermoplastics having advantageous physical and/or chemical properties.

  11. Hydrogen-bonded aggregates in precise acid copolymers

    SciTech Connect

    Lueth, Christopher A.; Bolintineanu, Dan S.; Stevens, Mark J. Frischknecht, Amalie L.

    2014-02-07

    We perform atomistic molecular dynamics simulations of melts of four precise acid copolymers, two poly(ethylene-co-acrylic acid) (PEAA) copolymers, and two poly(ethylene-co-sulfonic acid) (PESA) copolymers. The acid groups are spaced by either 9 or 21 carbons along the polymer backbones. Hydrogen bonding causes the acid groups to form aggregates. These aggregates give rise to a low wavevector peak in the structure factors, in agreement with X-ray scattering data for the PEAA materials. The structure factors for the PESA copolymers are very similar to those for the PEAA copolymers, indicating a similar distance between aggregates which depends on the spacer length but not on the nature of the acid group. The PEAA copolymers are found to form more dimers and other small aggregates than do the PESA copolymers, while the PESA copolymers have both more free acid groups and more large aggregates.

  12. Hydrogen-bonded side chain liquid crystalline block copolymer: Molecular design, synthesis, characterization and applications

    NASA Astrophysics Data System (ADS)

    Chao, Chi-Yang

    Block copolymers can self-assemble into highly regular, microphase-separated morphologies with dimensions at nanometer length scales. Potential applications such as optical wavelength photonic crystals, templates for nanolithographic patterning, or nanochannels for biomacromolecular separation take advantage of the well-ordered, controlled size microdomains of block copolymers. Side-chain liquid crystalline block copolymers (SCLCBCPs) are drawing increasing attention since the incorporation of liquid crystallinity turns their well-organized microstructures into dynamic functional materials. As a special type of block copolymer, hydrogen-bonded SCLCBCPs are unique, compositionally tunable materials with multiple dynamic functionalities that can readily respond to thermal, electrical and mechanical fields. Hydrogen-bonded SCLCBCPs were synthesized and assembled from host poly(styrene- b-acrylic acid) diblock copolymers with narrow molecular weight distributions as proton donors and guest imidazole functionalized mesogenic moieties as proton acceptors. In these studies non-covalent hydrogen bonding is employed to connect mesogenic side groups to a block copolymer backbone, both for its dynamic character as well as for facile materials preparation. The homogeneity and configuration of the hydrogen-bonded complexes were determined by both the molecular architecture of imidazolyl side groups and the process conditions. A one-dimensional photonic crystal composed of high molecular weight hydrogen-bonded SCLCBCP, with temperature dependent optical wavelength stop bands was successfully produced. The microstructures of hydrogen-bonded complexes could be rapidly aligned in an AC electric field at temperatures below the order-disorder transition but above their glass transitions. Remarkable dipolar properties of the mesogenic groups and thermal dissociation of hydrogen bonds are key elements to fast orientation switching. Studies of a wide range of mesogen and polymer

  13. Adhesion promotion with random copolymers

    NASA Astrophysics Data System (ADS)

    Simmons, Edward Read

    This thesis presents a study of adhesion promotion with random copolymers (RCP's). Monte Carlo (MC) simulations are used to study the potential use of RCP's as interfacial strengtheners at a homopolymer-solid interface. We discuss the effect of varying several design parameters of the RCP chains on interfacial strength. We find that RCP's can promote adhesion dependent upon careful selection of the parameters such as the RCP composition, blockiness, and concentration. We draw our conclusions from both equilibrium and non-equilibrium MC simulations in which we impose a normal stress on the interfacial chain system and observe the response as the system is deformed. These simulations are designed to reflect experimentally realizable conditions as closely as possible. The ultimate goal of our work is to guide experimentalists in the design and selection of the best adhesion promoter for a given system. With this goal in mind, we suggest several extensions of our methodology to further tighten the connection between simulation and experiment.

  14. Rotating regular black hole solution

    NASA Astrophysics Data System (ADS)

    Abdujabbarov, Ahmadjon

    2016-07-01

    Based on the Newman-Janis algorithm, the Ayón-Beato-García spacetime metric [Phys. Rev. Lett. 80, 5056 (1998)] of the regular spherically symmetric, static, and charged black hole has been converted into rotational form. It is shown that the derived solution for rotating a regular black hole is regular and the critical value of the electric charge for which two horizons merge into one sufficiently decreases in the presence of the nonvanishing rotation parameter a of the black hole.

  15. Melt Rheology of Block Copolymers in Relation to Melt Structure.

    DTIC Science & Technology

    1980-06-23

    According to their theory, (A-B-A) type block copolymer melts are expected to exhibit a network response including a yield stress at very low shear rates ...observed the following very unusual flow behavior with SBS block copolymers . 1. The viscosities of SBS block copolymers at low shear rates go...unusual flow properties. One can expect from the probable two-phase structure in the melt that block copolymer melts would exhibit strong elastic

  16. Charge Transport in Conjugated Block Copolymers

    NASA Astrophysics Data System (ADS)

    Smith, Brandon; Le, Thinh; Lee, Youngmin; Gomez, Enrique

    Interest in conjugated block copolymers for high performance organic photovoltaic applications has increased considerably in recent years. Polymer/fullerene mixtures for conventional bulk heterojunction devices, such as P3HT:PCBM, are severely limited in control over interfaces and domain length scales. In contrast, microphase separated block copolymers self-assemble to form lamellar morphologies with alternating electron donor and acceptor domains, thereby maximizing electronic coupling and local order at interfaces. Efficiencies as high as 3% have been reported in solar cells for one block copolymer, P3HT-PFTBT, but the details concerning charge transport within copolymers have not been explored. To fill this gap, we probed the transport characteristics with thin-film transistors. Excellent charge mobility values for electron transport have been observed on aluminum source and drain contacts in a bottom gate, bottom contact transistor configuration. Evidence of high mobility in ordered PFTBT phases has also been obtained following thermal annealing. The insights gleaned from our investigation serve as useful guideposts, revealing the significance of the interplay between charge mobility, interfacial order, and optimal domain size in organic block copolymer semiconductors.

  17. Morphology study in block copolymer electrolytes

    NASA Astrophysics Data System (ADS)

    Mullin, Scott; Wanakule, Nisita; Balsara, Nitash

    2008-03-01

    Poly(styrene-b-ethylene oxide)/lithium bis(trifluoromethane)sulfonimide (SEO/LiTFSI) is of interest in battery applications since the doped PEO phase can conduct ions and the glassy PS phase can prevent dendrite growth upon recharging. It is believed that the LiTFSI molecules are localized in the PEO microphases. Previous studies have shown that highly conducting electrolytes can be made from symmetric SEO copolymers. The purpose of this study is to explore the conductivity of asymmetric SEO copolymer systems doped with LiTFSI. Our studies encompass both neat asymmetric SEO copolymers and SEO copolymers blended with PS homopolymers to separate the effects of architecture of the copolymer molecules and morphology adopted by the system in the melt state. Conductivity is measured by AC impedance, morphology is determined by small angle X-ray scattering, and crystallinity of the PEO chains is determined by differential scanning calorimetry. All samples were prepared in hermetically sealed sample cells in an Argon glovebox.

  18. 21 CFR 172.775 - Methacrylic acid-divinylbenzene copolymer.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Methacrylic acid-divinylbenzene copolymer. 172.775... HUMAN CONSUMPTION Other Specific Usage Additives § 172.775 Methacrylic acid-divinylbenzene copolymer. Methacrylic acid-divinylbenzene copolymer may be safely used in food in accordance with the following...

  19. 21 CFR 177.1310 - Ethylene-acrylic acid copolymers.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Ethylene-acrylic acid copolymers. 177.1310 Section... Basic Components of Single and Repeated Use Food Contact Surfaces § 177.1310 Ethylene-acrylic acid copolymers. The ethylene-acrylic acid copolymers identified in paragraph (a) of this section may be safely...

  20. 21 CFR 172.775 - Methacrylic acid-divinylbenzene copolymer.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Methacrylic acid-divinylbenzene copolymer. 172.775... Additives § 172.775 Methacrylic acid-divinylbenzene copolymer. Methacrylic acid-divinylbenzene copolymer may... produced by the polymerization of methacrylic acid and divinylbenzene. The divinylbenzene functions as a...

  1. 21 CFR 177.1310 - Ethylene-acrylic acid copolymers.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Ethylene-acrylic acid copolymers. 177.1310 Section... Basic Components of Single and Repeated Use Food Contact Surfaces § 177.1310 Ethylene-acrylic acid copolymers. The ethylene-acrylic acid copolymers identified in paragraph (a) of this section may be safely...

  2. 21 CFR 177.1310 - Ethylene-acrylic acid copolymers.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Ethylene-acrylic acid copolymers. 177.1310 Section... Basic Components of Single and Repeated Use Food Contact Surfaces § 177.1310 Ethylene-acrylic acid copolymers. The ethylene-acrylic acid copolymers identified in paragraph (a) of this section may be safely...

  3. 21 CFR 172.775 - Methacrylic acid-divinylbenzene copolymer.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Methacrylic acid-divinylbenzene copolymer. 172.775... HUMAN CONSUMPTION Other Specific Usage Additives § 172.775 Methacrylic acid-divinylbenzene copolymer. Methacrylic acid-divinylbenzene copolymer may be safely used in food in accordance with the following...

  4. 21 CFR 172.775 - Methacrylic acid-divinylbenzene copolymer.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Methacrylic acid-divinylbenzene copolymer. 172.775... HUMAN CONSUMPTION Other Specific Usage Additives § 172.775 Methacrylic acid-divinylbenzene copolymer. Methacrylic acid-divinylbenzene copolymer may be safely used in food in accordance with the following...

  5. 21 CFR 177.1312 - Ethylene-carbon monoxide copolymers.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Ethylene-carbon monoxide copolymers. 177.1312... Basic Components of Single and Repeated Use Food Contact Surfaces § 177.1312 Ethylene-carbon monoxide copolymers. The ethylene-carbon monoxide copolymers identified in paragraph (a) of this section may be...

  6. 21 CFR 177.1312 - Ethylene-carbon monoxide copolymers.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Ethylene-carbon monoxide copolymers. 177.1312... Basic Components of Single and Repeated Use Food Contact Surfaces § 177.1312 Ethylene-carbon monoxide copolymers. The ethylene-carbon monoxide copolymers identified in paragraph (a) of this section may be...

  7. 21 CFR 177.1312 - Ethylene-carbon monoxide copolymers.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Ethylene-carbon monoxide copolymers. 177.1312... Use Food Contact Surfaces § 177.1312 Ethylene-carbon monoxide copolymers. The ethylene-carbon monoxide... of this section, ethylene-carbon monoxide copolymers (CAS Reg. No. 25052-62-4) consist of the...

  8. 21 CFR 177.1312 - Ethylene-carbon monoxide copolymers.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Ethylene-carbon monoxide copolymers. 177.1312... Basic Components of Single and Repeated Use Food Contact Surfaces § 177.1312 Ethylene-carbon monoxide copolymers. The ethylene-carbon monoxide copolymers identified in paragraph (a) of this section may be...

  9. 21 CFR 177.1312 - Ethylene-carbon monoxide copolymers.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Ethylene-carbon monoxide copolymers. 177.1312... Basic Components of Single and Repeated Use Food Contact Surfaces § 177.1312 Ethylene-carbon monoxide copolymers. The ethylene-carbon monoxide copolymers identified in paragraph (a) of this section may be...

  10. 21 CFR 177.1820 - Styrene-maleic anhydride copolymers.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Styrene-maleic anhydride copolymers. 177.1820... Basic Components of Single and Repeated Use Food Contact Surfaces § 177.1820 Styrene-maleic anhydride copolymers. Styrene-maleic anhydride copolymers identified in paragraph (a) of this section may be...

  11. 40 CFR 721.484 - Fluorinated acrylic copolymer (generic name).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Fluorinated acrylic copolymer (generic... Specific Chemical Substances § 721.484 Fluorinated acrylic copolymer (generic name). (a) Chemical substance... fluorinated acrylic copolymer (PMN P-95-1208) is subject to reporting under this section for the...

  12. 40 CFR 721.484 - Fluorinated acrylic copolymer (generic name).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Fluorinated acrylic copolymer (generic... Specific Chemical Substances § 721.484 Fluorinated acrylic copolymer (generic name). (a) Chemical substance... fluorinated acrylic copolymer (PMN P-95-1208) is subject to reporting under this section for the...

  13. 40 CFR 721.10519 - Perfluoroalkyl acrylate copolymer (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Perfluoroalkyl acrylate copolymer... Specific Chemical Substances § 721.10519 Perfluoroalkyl acrylate copolymer (generic). (a) Chemical... as perfluoroalkyl acrylate copolymer (PMN P-11-63) is subject to reporting under this section for the...

  14. 40 CFR 721.10519 - Perfluoroalkyl acrylate copolymer (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Perfluoroalkyl acrylate copolymer... Specific Chemical Substances § 721.10519 Perfluoroalkyl acrylate copolymer (generic). (a) Chemical... as perfluoroalkyl acrylate copolymer (PMN P-11-63) is subject to reporting under this section for the...

  15. 21 CFR 177.1060 - n-Alkylglutarimide/acrylic copolymers.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false n-Alkylglutarimide/acrylic copolymers. 177.1060... Basic Components of Single and Repeated Use Food Contact Surfaces § 177.1060 n-Alkylglutarimide/acrylic copolymers. n-Alkylglutarimide/acrylic copolymers identified in this section may be safely used as articles...

  16. 21 CFR 177.1060 - n-Alkylglutarimide/acrylic copolymers.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false n-Alkylglutarimide/acrylic copolymers. 177.1060... Basic Components of Single and Repeated Use Food Contact Surfaces § 177.1060 n-Alkylglutarimide/acrylic copolymers. n-Alkylglutarimide/acrylic copolymers identified in this section may be safely used as articles...

  17. Structure Confirmation and Properties of Poly(Dimethylsiloxaneco-diethylsiloxane) Copolymer

    NASA Astrophysics Data System (ADS)

    Gao, Li-Juan; Ma, De-Peng; Feng, Sheng-Yu

    2016-05-01

    High molecular weight poly (dimethylsiloxane-co-diethylsiloxane) (PMES) copolymer was synthesized by anionic ring opening polymerization. Its composition and structures was determined by 29Si NMR spectroscopy. A random microstructure of copolymer was observed in the 29Si NMR spectrum. Further, PMES was characterized by GPC and DSC. The results show that PMES is crystallization-free copolymer with low glass transition temperatures.

  18. pH-sensitive methacrylic copolymers and the production thereof

    DOEpatents

    Mallapragada, Surya K.; Anderson, Brian C.; Bloom, Paul D.; Sheares Ashby, Valerie V.

    2007-01-09

    The present invention provides novel multi-functional methacrylic copolymers that exhibit cationic pH-sensitive behavior as well as good water solubility under acidic conditions. The copolymers are constructed from tertiary amine methacrylates and poly(ethylene glycol) containing methacrylates. The copolymers are useful as gene vectors, pharmaceutical carriers, and in protein separation applications.

  19. pH-sensitive methacrylic copolymers and the production thereof

    DOEpatents

    Mallapragada, Surya K.; Anderson, Brian C.; Bloom, Paul D.; Sheares Ashby, Valerie V.

    2006-02-14

    The present invention provides novel multi-functional methacrylic copolymers that exhibit cationic pH-sensitive behavior as well as good water solubility under acidic conditions. The copolymers are constructed from tertiary amine methacrylates and poly(ethylene glycol) containing methacrylates. The copolymers are useful as gene vectors, pharmaceutical carriers, and in protein separation applications.

  20. 21 CFR 177.1320 - Ethylene-ethyl acrylate copolymers.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Ethylene-ethyl acrylate copolymers. 177.1320... Basic Components of Single and Repeated Use Food Contact Surfaces § 177.1320 Ethylene-ethyl acrylate copolymers. Ethylene-ethyl acrylate copolymers may be safely used to produce packaging materials,...

  1. 21 CFR 177.1350 - Ethylene-vinyl acetate copolymers.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Ethylene-vinyl acetate copolymers. 177.1350... Basic Components of Single and Repeated Use Food Contact Surfaces § 177.1350 Ethylene-vinyl acetate copolymers. Ethylene-vinyl acetate copolymers may be safely used as articles or components of...

  2. 21 CFR 177.1950 - Vinyl chloride-ethylene copolymers.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Vinyl chloride-ethylene copolymers. 177.1950... Basic Components of Single and Repeated Use Food Contact Surfaces § 177.1950 Vinyl chloride-ethylene copolymers. The vinyl chloride-ethylene copolymers identified in paragraph (a) of this section may be...

  3. 21 CFR 177.1310 - Ethylene-acrylic acid copolymers.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Ethylene-acrylic acid copolymers. 177.1310 Section... Basic Components of Single and Repeated Use Food Contact Surfaces § 177.1310 Ethylene-acrylic acid copolymers. The ethylene-acrylic acid copolymers identified in paragraph (a) of this section may be...

  4. 21 CFR 177.1350 - Ethylene-vinyl acetate copolymers.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Ethylene-vinyl acetate copolymers. 177.1350... Basic Components of Single and Repeated Use Food Contact Surfaces § 177.1350 Ethylene-vinyl acetate copolymers. Ethylene-vinyl acetate copolymers may be safely used as articles or components of...

  5. 21 CFR 177.1320 - Ethylene-ethyl acrylate copolymers.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Ethylene-ethyl acrylate copolymers. 177.1320... Basic Components of Single and Repeated Use Food Contact Surfaces § 177.1320 Ethylene-ethyl acrylate copolymers. Ethylene-ethyl acrylate copolymers may be safely used to produce packaging materials,...

  6. 21 CFR 177.1320 - Ethylene-ethyl acrylate copolymers.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Ethylene-ethyl acrylate copolymers. 177.1320... Basic Components of Single and Repeated Use Food Contact Surfaces § 177.1320 Ethylene-ethyl acrylate copolymers. Ethylene-ethyl acrylate copolymers may be safely used to produce packaging materials,...

  7. 21 CFR 177.1350 - Ethylene-vinyl acetate copolymers.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Ethylene-vinyl acetate copolymers. 177.1350... Use Food Contact Surfaces § 177.1350 Ethylene-vinyl acetate copolymers. Ethylene-vinyl acetate... with the following prescribed conditions: (a)(1) Ethylene-vinyl acetate copolymers consist of...

  8. 21 CFR 177.1060 - n-Alkylglutarimide/acrylic copolymers.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false n-Alkylglutarimide/acrylic copolymers. 177.1060... Basic Components of Single and Repeated Use Food Contact Surfaces § 177.1060 n-Alkylglutarimide/acrylic copolymers. n-Alkylglutarimide/acrylic copolymers identified in this section may be safely used as...

  9. 21 CFR 177.1060 - n-Alkylglutarimide/acrylic copolymers.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true n-Alkylglutarimide/acrylic copolymers. 177.1060... Basic Components of Single and Repeated Use Food Contact Surfaces § 177.1060 n-Alkylglutarimide/acrylic copolymers. n-Alkylglutarimide/acrylic copolymers identified in this section may be safely used as articles...

  10. NONCONVEX REGULARIZATION FOR SHAPE PRESERVATION

    SciTech Connect

    CHARTRAND, RICK

    2007-01-16

    The authors show that using a nonconvex penalty term to regularize image reconstruction can substantially improve the preservation of object shapes. The commonly-used total-variation regularization, {integral}|{del}u|, penalizes the length of the object edges. They show that {integral}|{del}u|{sup p}, 0 < p < 1, only penalizes edges of dimension at least 2-p, and thus finite-length edges not at all. We give numerical examples showing the resulting improvement in shape preservation.

  11. Block copolymer blend phase behavior: Binary diblock blends and amphiphilic block copolymer/epoxy mixtures

    NASA Astrophysics Data System (ADS)

    Lipic, Paul Martin

    The phase behavior of block copolymers and block copolymer blends has provided an extensive amount of exciting research and industrial applications for over thirty years. However, the unique nanoscale morphologies of microphase separated block copolymer systems is still not completely understood. This thesis examines the phase behavior of diblock copolymers and binary diblock copolymer blends in the strong segregation limit (SSL), and blends of an amphiphilic diblock copolymer with an epoxy resin. Studies of high molecular weight (˜84,000 g/mole) poly(ethylene)-poly(ethyl ethylene) (PE-PEE) diblock copolymers probed the ability of block copolymers to reach equilibrium in the SSL. Samples of pure diblocks or binary diblock blends prepared using different preparation techniques (solvent casting or precipitation) had different phase behaviors, as identified with transmission electron microscopy (TEM) and small-angle x-ray scattering (SAXS), confirming non-equilibrium phase behavior. This non-equilibrium behavior was metastable, and these results identify the caution that should be used when claiming equilibrium phase behavior in the SSL. Blends of an amphiphilic diblock copolymer, poly(ethylene oxide)-poly(ethylene-alt-propylene) (PEO-PEP) with a polymerizable epoxy resin selectively miscible with PEO, poly(Bisphenol-A-co-epichlorohydrin), supported theoretical calculations and increased the understanding of block copolymer/homopolymer blends. These blends formed different ordered structures (lamellae, bicontinuous cubic gyroid, hexagonally packed cylinders, cubic and hexagonally packed spheres) as well as a disordered spherical micellar structure, identified with SAXS and rheological measurements. Addition of hardener, methylene dianiline, to the system resulted in cross-linking of the epoxy resin and formation of a thermoset material. Macrophase separation between the epoxy and block copolymer did not occur, but local expulsion of the PEO from the epoxy was

  12. Microbial Cometabolism and Polyhydroxyalkanoate Co-polymers.

    PubMed

    Ray, Subhasree; Kalia, Vipin Chandra

    2017-03-01

    Polyhydroxyalkanoate (PHAs) are natural, biodegradable biopolymers, which can be produced from renewable materials. PHAs have potential to replace petroleum derived plastics. Quite a few bacteria can produce PHA under nutritional stress. They generally produce homopolymers of butyrate i.e., polyhydroxybutyrate (PHB), as a storage material. The biochemical characteristics of PHB such as brittleness, low strength, low elasticity, etc. make these unsuitable for commercial applications. Co-polymers of PHA, have high commercial value as they overcome the limitations of PHBs. Co-polymers can be produced by supplementing the feed with volatile fatty acids or through hydrolysates of different biowastes. In this review, we have listed the potential bacterial candidates and the substrates, which can be co-metabolized to produce PHA co-polymers.

  13. Rod-Coil Block Polyimide Copolymers

    NASA Technical Reports Server (NTRS)

    Meador, Mary Ann B. (Inventor); Kinder, James D. (Inventor)

    2005-01-01

    This invention is a series of rod-coil block polyimide copolymers that are easy to fabricate into mechanically resilient films with acceptable ionic or protonic conductivity at a variety of temperatures. The copolymers consist of short-rigid polyimide rod segments alternating with polyether coil segments. The rods and coil segments can be linear, branched or mixtures of linear and branched segments. The highly incompatible rods and coil segments phase separate, providing nanoscale channels for ion conduction. The polyimide segments provide dimensional and mechanical stability and can be functionalized in a number of ways to provide specialized functions for a given application. These rod-coil black polyimide copolymers are particularly useful in the preparation of ion conductive membranes for use in the manufacture of fuel cells and lithium based polymer batteries.

  14. Rod-Coil Block Polyimide Copolymers

    NASA Technical Reports Server (NTRS)

    Meador, Mary Ann B. (Inventor); Kinder, James D. (Inventor)

    2005-01-01

    This invention is a series of rod-coil block polyimide copolymers that are easy to fabricate into mechanically resilient films with acceptable ionic or protonic conductivity at a variety of temperatures. The copolymers consist of short-rigid polyimide rod segments alternating with polyether coil segments. The rods and coil segments can be linear, branched or mixtures of linear and branched segments. The highly incompatible rods and coil segments phase separate, providing nanoscale channels for ion conduction. The polyimide segments provide dimensional and mechanical stability and can be functionalized in a number of ways to provide specialized functions for a given application. These rod-coil black polyimide copolymers are particularly useful in the preparation of ion conductive membranes for use in the manufacture of fuel cells and lithium based polymer batteries.

  15. Additive-driven assembly of block copolymers

    NASA Astrophysics Data System (ADS)

    Lin, Ying; Daga, Vikram; Anderson, Eric; Watkins, James

    2011-03-01

    One challenge to the formation of well ordered hybrid materials is the incorporation of nanoscale additives including metal, semiconductor and dielectric nanoparticles at high loadings while maintaining strong segregation. Here we describe the molecular and functional design of small molecule and nanoparticle additives that enhance phase segregation in their block copolymer host and enable high additive loadings. Our approach includes the use of hydrogen bond interactions between the functional groups on the additive or particle that serve as hydrogen bond donors and one segment of the block copolymer containing hydrogen bond acceptors. Further, the additives show strong selectively towards the targeted domains, leading to enhancements in contrast between properties of the phases. In addition to structural changes, we explore how large changes in the thermal and mechanical properties occur upon incorporation of the additives. Generalization of this additive-induced ordering strategy to various block copolymers will be discussed.

  16. Microphase segregation in molten randomly grafted copolymers

    NASA Astrophysics Data System (ADS)

    Qi, Shuyan; Chakraborty, Arup K.; Balsara, Nitash P.

    2001-08-01

    We study microphase ordering of molten randomly grafted copolymers (RGCs) by using a mean field theory and the replica method to calculate the quenched average. Our results illustrate that in the weak segregation limit (WSI), the optimal wave vector q* of the lamellar phase formed by molten RGCs, has a temperature dependence different from either linear random copolymers (LRCs) or diblock copolymers (DCPs): when close, but below the microphase separation transition (MST) temperature, q* increases sharply with decreasing temperature; then q* gradually acquires an asymptotic value determined by the length of the branch and the average distance between branch points on the backbone. Our results are compared with recent experiments, and the effects of chain architecture on the microphase separation characteristics of RGCs are delineated. Our results suggest a new method for controlling the microphase spacing by exploiting quenched disorder.

  17. Nanoscale Ionic Aggregate Morphology in Zwitterionic Copolymers

    NASA Astrophysics Data System (ADS)

    Choi, Jae-Hong; Huyck, Rebecca; Salas-de La Cruz, David; Long, Timothy E.; Winey, Karen I.

    2009-03-01

    The morphology of two different zwitterionic copolymers, poly(sulfobetaine methacrylate-ran-butyl acrylate), and poly(sulfobetaine methacrylamide-ran-butyl acrylate) are investigated as a function of the mol % content of SBMA (7 and 9 mol %) and SBMAm (6, 10 and 13 mol %), respectively. In both copolymers, X-ray scattering results show a new structure in the material arising from ionic aggregates. The sizes of the ionic aggregates are obtained through the scattering model. The sizes of the ionic aggregates increase as the ion content increases. The application of scanning transmission electron microscopy to the study of ionomer morphology has enabled direct, model-independent visualization of the ionic aggregates. The correlation between X-ray scattering results and the real space imaging for morphology of these zwitterionic copolymers will be presented.

  18. Structure-property relationships in block copolymers

    NASA Technical Reports Server (NTRS)

    Mcgrath, J. E.

    1976-01-01

    Block copolymers are a class of relatively new materials which contain long sequences of two (or more) chemically different repeat units. Unlike random copolymers, each segment may retain some properties which are characteristic of its homopolymer. It is well known that most physical blends of two different homopolymers are incompatible on a macro-scale. By contrast most block copolymers display only a microphase (eg. 100-200 A domains) separation. Complete separation is restricted because of a loss in configurational entropy. The latter is due to presence of chemical bond(s) between the segments. Novel physical properties can be obtained because it is possible to prepare any desired combination of rubber-like, glassy, or crystalline blocks. The architecture and sequential arrangement of the segments can strongly influence mechanical behavior.

  19. Optical properties of coumarins containing copolymers

    NASA Astrophysics Data System (ADS)

    Skowronski, L.; Krupka, O.; Smokal, V.; Grabowski, A.; Naparty, M.; Derkowska-Zielinska, B.

    2015-09-01

    We investigate the optical properties such as absorption coefficient, refractive index, real and imaginary parts of dielectric function and energy band gap of coumarin-containing copolymers thin films by means of spectroscopic ellipsometry (SE) combined with transmittance measurements (T) and atomic force microscopy (AFM). We found that the optical properties of coumarin-containing copolymers strongly depend from length of alkyl spacer as well as the type of substitution in coumarin moiety. In our case the refractive index as well as the energy band gap of coumarin-containing copolymer decrease with increase the length of alkyl spacer. Additionally, the lengthening of the alkyl spacer brings the bathochromic shifts of the absorption spectra towards longer wavelengths.

  20. Condition Number Regularized Covariance Estimation.

    PubMed

    Won, Joong-Ho; Lim, Johan; Kim, Seung-Jean; Rajaratnam, Bala

    2013-06-01

    Estimation of high-dimensional covariance matrices is known to be a difficult problem, has many applications, and is of current interest to the larger statistics community. In many applications including so-called the "large p small n" setting, the estimate of the covariance matrix is required to be not only invertible, but also well-conditioned. Although many regularization schemes attempt to do this, none of them address the ill-conditioning problem directly. In this paper, we propose a maximum likelihood approach, with the direct goal of obtaining a well-conditioned estimator. No sparsity assumption on either the covariance matrix or its inverse are are imposed, thus making our procedure more widely applicable. We demonstrate that the proposed regularization scheme is computationally efficient, yields a type of Steinian shrinkage estimator, and has a natural Bayesian interpretation. We investigate the theoretical properties of the regularized covariance estimator comprehensively, including its regularization path, and proceed to develop an approach that adaptively determines the level of regularization that is required. Finally, we demonstrate the performance of the regularized estimator in decision-theoretic comparisons and in the financial portfolio optimization setting. The proposed approach has desirable properties, and can serve as a competitive procedure, especially when the sample size is small and when a well-conditioned estimator is required.

  1. Condition Number Regularized Covariance Estimation*

    PubMed Central

    Won, Joong-Ho; Lim, Johan; Kim, Seung-Jean; Rajaratnam, Bala

    2012-01-01

    Estimation of high-dimensional covariance matrices is known to be a difficult problem, has many applications, and is of current interest to the larger statistics community. In many applications including so-called the “large p small n” setting, the estimate of the covariance matrix is required to be not only invertible, but also well-conditioned. Although many regularization schemes attempt to do this, none of them address the ill-conditioning problem directly. In this paper, we propose a maximum likelihood approach, with the direct goal of obtaining a well-conditioned estimator. No sparsity assumption on either the covariance matrix or its inverse are are imposed, thus making our procedure more widely applicable. We demonstrate that the proposed regularization scheme is computationally efficient, yields a type of Steinian shrinkage estimator, and has a natural Bayesian interpretation. We investigate the theoretical properties of the regularized covariance estimator comprehensively, including its regularization path, and proceed to develop an approach that adaptively determines the level of regularization that is required. Finally, we demonstrate the performance of the regularized estimator in decision-theoretic comparisons and in the financial portfolio optimization setting. The proposed approach has desirable properties, and can serve as a competitive procedure, especially when the sample size is small and when a well-conditioned estimator is required. PMID:23730197

  2. Fluorene-fluorenone copolymer: Stable and efficient yellow-emitting material for electroluminescent devices

    NASA Astrophysics Data System (ADS)

    Panozzo, S.; Vial, J.-C.; Kervella, Y.; Stéphan, O.

    2002-10-01

    We have synthesized and characterized a new fluorene copolymer exhibiting bright yellow luminescence. In order to ensure a complete π-stacking of the active layer, a 9-fluorenone monomeric unit (FOne) has been used as comonomer in conjunction with the more classical 9,9-di-n-nonylfluorene unit. As expected with fluorene-based materials, when excited at 370 nm, the corresponding dilute copolymer solution photoluminescence spectra exhibit a main peak centered at 450 nm in the blue part of the visible spectrum. However, in the solid state, immediate structural reorganization of the layer occurs, leading to a red-shifted emission (bright yellow emission) centered at 550 nm. The origin of the emitted light has been attributed to excimers and/or aggregates based on short FOne segments and involves mainly exciton transfer between nonaggregated fluorene segments and aggregated ones. It is noteworthy that organic light-emitting devices based on these new materials exhibit no spectral evolution upon device operation. However, although stacking leads generally to a detrimental quenching of the luminescence in the solid state, as for regular poly(alkyl-fluorene), the luminescence efficiency of the fluorene-fluorenone copolymer remains suitable for device preparation. High material stability is attributed to an efficient and fast structural reorganization of the active layer, triggered by the small proportion of fluorenone. High electroluminescence efficiency, when compared to aggregated regular poly(alkyl-fluorene), results from an improved electron injection, a better carrier transport, and the conjunction of an efficient energy transfer from fluorene segments to excimers and/or aggregates with the implication of spin triplet, which is often lacking when using regular semiconducting polymers.

  3. [Hydrodynamic properties of exopolysaccharide-acrylamide copolymer].

    PubMed

    Votselko, S K

    2000-01-01

    The method for producing copolymer EPAA of exopolysaccharide (EPS)--polyacrylamide (PAA) has been presented which was based on microbial exopolysaccharides (enposane, xampane), their mixture and model EPS (xanthane sigma, rodopol P-23). The copolymer was produced by acrylamide polymerization in 1-2% water solutions of polysaccharides, the concentration of acrylamide in the reaction mixture being 4.7-2% and that of polysaccharides 0.1-1% of the weight. Hydrodynamic parameters of the studied polymers have been determined, their heterogenity as to molecular-weight characteristics has been demonstrated. Molecular-weight distribution of copolymers showed that the content of low-molecular fractions decreased, thus the Mw values were (0.08-0.2) x 10(6) Da in contrast to that of exopolysaccharides possessing Mw (1.2-0.4) x 10(6) Da and of polyacrylamide possessing Mw within (2-30) x 10(6) Da. The value of efficient viscosity of copolymers ranged from 120 to 131 mPa.s that was lower than that of polyacrylamide (500 mPa.s), and higher than that of exopolysaccharides (42 mPa.s), and it depended on the sample, raw material, production conditions. A possibility has been shown to produce a new copolymer based on microbial polysaccharides enposane and xampane in the process of acrylamide polymerization. It has been found out that the studied copolymers EPAA differ from initial ones as to their hydrodynamical properties, which determines their preference: better solubility, good glueing properties, prolonged term of preservation, resistance to bacterial pollution.

  4. Geometric continuum regularization of quantum field theory

    SciTech Connect

    Halpern, M.B. . Dept. of Physics)

    1989-11-08

    An overview of the continuum regularization program is given. The program is traced from its roots in stochastic quantization, with emphasis on the examples of regularized gauge theory, the regularized general nonlinear sigma model and regularized quantum gravity. In its coordinate-invariant form, the regularization is seen as entirely geometric: only the supermetric on field deformations is regularized, and the prescription provides universal nonperturbative invariant continuum regularization across all quantum field theory. 54 refs.

  5. Dynamics of Block Copolymer Nanocomposites

    SciTech Connect

    Mochrie, Simon G. J.

    2014-09-09

    A detailed study of the dynamics of cadmium sulfide nanoparticles suspended in polystyrene homopolymer matrices was carried out using X-ray photon correlation spectroscopy for temperatures between 120 and 180 °C. For low molecular weight polystyrene homopolymers, the observed dynamics show a crossover from diffusive to hyper-diffusive behavior with decreasing temperatures. For higher molecular weight polystyrene, the nanoparticle dynamics appear hyper-diffusive at all temperatures studied. The relaxation time and characteristic velocity determined from the measured hyper-diffusive dynamics reveal that the activation energy and underlying forces determined are on the order of 2.14 × 10-19 J and 87 pN, respectively. We also carried out a detailed X-ray scattering study of the static and dynamic behavior of a styrene– isoprene diblock copolymer melt with a styrene volume fraction of 0.3468. At 115 and 120 °C, we observe splitting of the principal Bragg peak, which we attribute to phase coexistence of hexagonal cylindrical and cubic double- gyroid structure. In the disordered phase, above 130 °C, we have characterized the dynamics of composition fluctuations via X-ray photon correlation spectroscopy. Near the peak of the static structure factor, these fluctuations show stretched-exponential relaxations, characterized by a stretching exponent of about 0.36 for a range of temperatures immediately above the MST. The corresponding characteristic relaxation times vary exponentially with temperature, changing by a factor of 2 for each 2 °C change in temperature. At low wavevectors, the measured relaxations are diffusive with relaxation times that change by a factor of 2 for each 8 °C change in temperature.

  6. Co-polymer Films for Sensors

    NASA Technical Reports Server (NTRS)

    Ryan, Margaret A. (Inventor); Homer, Margie L. (Inventor); Yen, Shiao-Pin S. (Inventor); Kisor, Adam (Inventor); Jewell, April D. (Inventor); Shevade, Abhijit V. (Inventor); Manatt, Kenneth S. (Inventor); Taylor, Charles (Inventor); Blanco, Mario (Inventor); Goddard, William A. (Inventor)

    2012-01-01

    Embodiments include a sensor comprising a co-polymer, the co-polymer comprising a first monomer and a second monomer. For some embodiments, the first monomer is poly-4-vinyl pyridine, and the second monomer is poly-4-vinyl pyridinium propylamine chloride. For some embodiments, the first monomer is polystyrene and the second monomer is poly-2-vinyl pyridinium propylamine chloride. For some embodiments, the first monomer is poly-4-vinyl pyridine, and the second monomer is poly-4-vinyl pyridinium benzylamine chloride. Other embodiments are described and claimed.

  7. Co-polymer films for sensors

    NASA Technical Reports Server (NTRS)

    Ryan, Margaret A. (Inventor); Homer, Margie L. (Inventor); Yen, Shiao-Pin S. (Inventor); Kisor, Adam (Inventor); Jewell, April D. (Inventor); Shevade, Abhijit V. (Inventor); Manatt, Kenneth S. (Inventor); Taylor, Charles (Inventor); Blanco, Mario (Inventor); Goddard, William A. (Inventor)

    2010-01-01

    Embodiments include a sensor comprising a co-polymer, the co-polymer comprising a first monomer and a second monomer. For some embodiments, the first monomer is poly-4-vinyl pyridine, and the second monomer is poly-4-vinyl pyridinium propylamine chloride. For some embodiments, the first monomer is polystyrene and the second monomer is poly-2-vinyl pyridinium propylamine chloride. For some embodiments, the first monomer is poly-4-vinyl pyridine, and the second monomer is poly-4-vinyl pyridinium benzylamine chloride. Other embodiments are described and claimed.

  8. Pancreatic Arteriovenous Malformation Involving the Duodenum Embolized with Ethylene-Vinyl Alcohol Copolymer (Onyx)

    SciTech Connect

    Grasso, Rosario Francesco Cazzato, Roberto Luigi; Luppi, Giacomo; Faiella, Eliodoro; Del Vescovo, Riccardo; Giurazza, Francesco; Borzomati, Domenico; Coppola, Roberto; Beomonte Zobel, Bruno

    2012-08-15

    Arteriovenous malformation (AVM) of the pancreas is a rare condition. Most patients are asymptomatic or alternatively may present with a wide spectrum of symptoms. Traditionally, surgery has been considered the treatment of choice; however, alternative approaches, such as transcatheter embolization (TAE), may be proposed. We report a case of a 48-year-old man with a pancreatic head AVM, presenting with upper abdominal pain and slight anemia. The patient refused surgery and underwent TAE by means of ethylene-vinyl alcohol copolymer (EVOH). At 3 months follow-up, the patient was able to eat regularly, with no residual pain and no signs of anemia.

  9. New functionalized block copolymers for bonding copper to epoxy

    SciTech Connect

    Kent, M.; Saunders, R.; Emerson, J.; Hurst, M.

    1995-11-01

    The authors are exploring the use of functionalized block copolymers for bonding copper to epoxy in printed wiring boards. The program involves four key elements: (i) synthesis of suitable functionalized block copolymers; (ii) characterization of the conformation of the copolymers at the relevant interfaces by neutron reflectivity; (iii) spectroscopic measurements of chemical bonding, and (iv) measurement of the mechanical properties of the interfaces. The copolymers are synthesized by living, ring-opening metathesis polymerization. This relatively new technique allows great flexibility for synthesis of functionalized block copolymers in that the initiators are relatively insensitive to a wide range of functional groups. Significant adhesion enhancement has been observed in lap shear tests.

  10. Electrochemical and spectroscopic characterization of poly (bithiophene + 2-methylfuran) copolymer

    NASA Astrophysics Data System (ADS)

    Lamiri, Leila; Nessark, Belkacem; Habelhames, Farid; Sibous, Lakhdar

    2017-09-01

    In this work, Poly(bithiophene + 2-methylfuran) copolymer was successfully synthetized by an electrochemical polymerization of two monomers, bithiophene and 2-methylfuran in acetonitrile containing lithium perchlorate. The obtained copolymer was characterized via cyclic voltammetry, impedance spectroscopy, UV-visible, scanning electron microscope, conductivity and photocurrent measurements. The cyclic voltammetry study showed two redox couples characteristic of Poly (bithiophene + 2-methylfuran) copolymer. The impedance spectroscopy study revealed that the resistance of the copolymer film increases with the addition of 2-methylfuran. The photocurrent measurement showed good photoelectrochemical properties, making this copolymer an ideal candidate for photovoltaic cell applications.

  11. Molecular Interaction Control in Diblock Copolymer Blends and Multiblock Copolymers with Opposite Phase Behaviors

    NASA Astrophysics Data System (ADS)

    Cho, Junhan

    2014-03-01

    Here we show how to control molecular interactions via mixing AB and AC diblock copolymers, where one copolymer exhibits upper order-disorder transition and the other does lower disorder-order transition. Linear ABC triblock copolymers possessing both barotropic and baroplastic pairs are also taken into account. A recently developed random-phase approximation (RPA) theory and the self-consistent field theory (SCFT) for general compressible mixtures are used to analyze stability criteria and morphologies for the given systems. It is demonstrated that the copolymer systems can yield a variety of phase behaviors in their temperature and pressure dependence upon proper mixing conditions and compositions, which is caused by the delicate force fields generated in the systems. We acknowledge the financial support from National Research Foundation of Korea and Center for Photofunctional Energy Materials.

  12. Block copolymer nanolithography for the fabrication of patterned media.

    SciTech Connect

    Warke, Vishal V; Bakker, Martin G; Hong, Kunlun; Mays, Jimmy; Britt, Phillip F; Li, Xuefa; Wang, Jin

    2008-01-01

    Abstract Bit patterned perpendicular media has the potential to increase the density of magnetic recording beyond what can be achieved by granular media. Self assembling diblock copolymers are of interest as templates for patterned media, as they potentially provide a low cost fabrication route. A method to fabricate the desired pattern using cylinder forming diblock copolymers of (PS-b-PMMA) as template is reported. Upon phase separation hexagonally packed cylinders of the minority phase (PMMA) surrounded by the continuous majority phase (PS) are obtained. The processing sequence began with spin coating the block copolymer on a suitable substrate, followed by annealing the block copolymer thin film in vacuum to orient it perpendicular to the substrate. Block copolymer templates were obtained by glacial acetic acid treatment which opened the pores in the block copolymer thin film. Ni was electrodeposited in the block copolymer templates and this pattern was then transferred onto the underlying substrate by ion milling

  13. Acrylamide/acrylic acid copolymers for cement fluid loss control

    SciTech Connect

    McKenzie, L.F.; McElfresh, P.M.

    1982-01-01

    Acrylamide/acrylic acid copolymers are considered as effective fluid loss control additives in a wide range of oil well cements. Unlike HEC based fluid loss aditives, these copolymers can be used with calcium chloride accelerator without significantly influencing fluid loss control. Another advantage of the copolymers is that the amount of fluid loss for a given concentration of polymer remains relatively constant over a wide range of temperatures. The use of acrylamide/acrylic acid copolymers has generally been restricted to wells below 60 degree C BHCT. Above that temperature chemical changes in the copolymer often lead to retardation of the cement. This paper presents data related to the use of acrylamide/acrylic acid copolymers as fluid loss control agents in oil well cementing. A comparison of these polymers with HEC based fluid loss control additives is made. In addition, data related to the cause of acrylamide/acrylic acid copolymer retarding effects is presented. 4 refs.

  14. Solid-supported block copolymer membranes through interfacial adsorption of charged block copolymer vesicles.

    PubMed

    Rakhmatullina, Ekaterina; Meier, Wolfgang

    2008-06-17

    The properties of amphiphilic block copolymer membranes can be tailored within a wide range of physical parameters. This makes them promising candidates for the development of new (bio)sensors based on solid-supported biomimetic membranes. Here we investigated the interfacial adsorption of polyelectrolyte vesicles on three different model substrates to find the optimum conditions for formation of planar membranes. The polymer vesicles were made from amphiphilic ABA triblock copolymers with short, positively charged poly(2,2-dimethylaminoethyl methacrylate) (PDMAEMA) end blocks and a hydrophobic poly( n-butyl methacrylate) (PBMA) middle block. We observed reorganization of the amphiphilic copolymer chains from vesicular structures into a 1.5+/-0.04 nm thick layer on the hydrophobic HOPG surface. However, this film starts disrupting and dewetting upon drying. In contrast, adsorption of the vesicles on the negatively charged SiO2 and mica substrates induced vesicle fusion and formation of planar, supported block copolymer films. This process seems to be controlled by the surface charge density of the substrate and concentration of the block copolymers in solution. The thickness of the copolymer membrane on mica was comparable to the thickness of phospholipid bilayers.

  15. Word regularity affects orthographic learning.

    PubMed

    Wang, Hua-Chen; Castles, Anne; Nickels, Lyndsey

    2012-01-01

    Share's self-teaching hypothesis proposes that orthographic representations are acquired via phonological decoding. A key, yet untested, prediction of this theory is that there should be an effect of word regularity on the number and quality of word-specific orthographic representations that children acquire. Thirty-four Grade 2 children were exposed to the sound and meaning of eight novel words and were then presented with those words in written form in short stories. Half the words were assigned regular pronunciations and half irregular pronunciations. Lexical decision and spelling tasks conducted 10 days later revealed that the children's orthographic representations of the regular words appeared to be stronger and more extensive than those of the irregular words.

  16. Chiral Block Copolymer Structures for Metamaterial Applications

    DTIC Science & Technology

    2015-01-27

    transformation. 15. SUBJECT TERMS Block Copolymers, Chiral Metamaterials, Gyroids, Nanotechnology, Nanoporous Materials , Networks...Chiral Metamaterials, Gyroids, Nanotechnology, Nanoporous Materials , Networks 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT Same as... nanoporous materials for templating, in particular with network morphologies, as templates could be developed. BCPs comprising chiral entities were

  17. 21 CFR 173.65 - Divinylbenzene copolymer.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... subjected to pre-use extraction with a water soluble alcohol until the level of divinylbenzene in the..._locations.html. The copolymer is then treated with water according to the manufacturer's recommendation to remove the extraction solvent to guarantee a food-grade purity of the resin at the time of use, in...

  18. 21 CFR 173.65 - Divinylbenzene copolymer.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... subjected to pre-use extraction with a water soluble alcohol until the level of divinylbenzene in the..._locations.html. The copolymer is then treated with water according to the manufacturer's recommendation to remove the extraction solvent to guarantee a food-grade purity of the resin at the time of use, in...

  19. 21 CFR 173.65 - Divinylbenzene copolymer.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... subjected to pre-use extraction with a water soluble alcohol until the level of divinylbenzene in the..._locations.html. The copolymer is then treated with water according to the manufacturer's recommendation to remove the extraction solvent to guarantee a food-grade purity of the resin at the time of use, in...

  20. Copolymer sealant compositions and method for making

    NASA Technical Reports Server (NTRS)

    Singh, Navjot (Inventor); Leman, John Thomas (Inventor); Whitney, John M. (Inventor); Krabbenhoft, Herman Otto (Inventor)

    2003-01-01

    Condensation curable poly(fluoroorgano)siloxane-poly(silarylene)siloxane block copolymer compositions having a glass transition temperature not exceeding about -54.degree. C. and excellent solvent resistance have been found useful as sealants. Polyalkoxysilylorgano compounds, such as 1,4-bis[trimethoxysilyl(ethyl)]benzene have been found to be effective as cross-linkers.

  1. Copolymer sealant compositions and method for making

    NASA Technical Reports Server (NTRS)

    Singh, Navjot (Inventor); Leman, John Thomas (Inventor); Whitney, John M. (Inventor); Krabbenhoft, Herman Otto (Inventor)

    2004-01-01

    Condensation curable poly(fluoroorgano)siloxane-poly(silarylene)siloxane block copolymer compositions having a glass transition temperature not exceeding about -54.degree. C. and excellent solvent resistance have been found useful as sealants. Polyalkoxysilylorgano compounds, such as 1,4-bis[trimethoxysilyl(ethyl)]benzene have been found to be effective as cross-linkers.

  2. Copolymer sealant compositions and method for making

    NASA Technical Reports Server (NTRS)

    Singh, Navjot (Inventor); Leman, John Thomas (Inventor); Whitney, John M. (Inventor); Krabbenhoft, Herman Otto (Inventor)

    2002-01-01

    Condensation curable poly(fluoroorgano)siloxane-poly(silarylene)siloxane block copolymer compositions having a glass transition temperature not exceeding about -54.degree. C. and excellent solvent resistance have been found useful as sealants. Polyalkoxysilylorgano compounds, such as 1,4-bis[trimethoxysilyl(ethyl)]benzene have been found to be effective as cross-linkers.

  3. 21 CFR 173.65 - Divinylbenzene copolymer.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... subjected to pre-use extraction with a water soluble alcohol until the level of divinylbenzene in the..._locations.html. The copolymer is then treated with water according to the manufacturer's recommendation to... with food only of Types I, II, and VI-B (excluding carbonated beverages) described in table 1 of...

  4. Amphiphilic block copolymer nanocontainers as bioreactors

    NASA Astrophysics Data System (ADS)

    Nardin, C.; Widmer, J.; Winterhalter, M.; Meier, W.

    2001-04-01

    Self-assembly of an amphiphilic triblock copolymer carrying polymerizable end-groups is used to prepare nanometer-sized vesicular structures in aqueous solution. The triblock copolymer shells of the vesicles can be regarded as a mimetic of biological membranes although they are 2 to 3 times thicker than a conventional lipid bilayer. Nevertheless, they can serve as a matrix for membrane-spanning proteins. Surprisingly, the proteins remain functional despite the extreme thickness of the membranes and that even after polymerization of the reactive triblock copolymers. This opens a new field to create mechanically stable protein/polymer hybrid membranes. As a representative example we functionalize (polymerized) triblock copolymer vesicles by reconstituting a channel-forming protein from the outer cell wall of Gram-negative bacteria. The protein used (OmpF) acts as a size-selective filter, which allows only for passage of molecules with a molecular weight below 400 g mol^{-1}. Therefore substrates may still have access to enzymes encapsulated in such protein/polymer hybrid nanocontainers. We demonstrate this using the enzyme β -lactamase which is able to hydrolyze the antibiotic ampicillin. In addition, a transmembrane voltage above a given threshold causes a reversible gating transition of OmpF. This can be used to reversibly activate or deactivate the resulting nanoreactors.

  5. 21 CFR 173.65 - Divinylbenzene copolymer.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Divinylbenzene copolymer. 173.65 Section 173.65 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) SECONDARY DIRECT FOOD ADDITIVES PERMITTED IN FOOD FOR HUMAN CONSUMPTION Polymer Substances and Polymer...

  6. 21 CFR 180.22 - Acrylonitrile copolymers.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Acrylonitrile copolymers. 180.22 Section 180.22 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD ADDITIVES PERMITTED IN FOOD OR IN CONTACT WITH FOOD ON AN INTERIM BASIS PENDING ADDITIONAL STUDY Specific...

  7. 21 CFR 177.2470 - Polyoxymethylene copolymer.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... molecular weight of the copolymer is 15,000 as determined by a method titled “Number Average Molecular... particles that pass through a U.S.A. Standard Sieve No. 6 and that are retained on a U.S.A. Standard Sieve...

  8. 21 CFR 177.2470 - Polyoxymethylene copolymer.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... molecular weight of the copolymer is 15,000 as determined by a method titled “Number Average Molecular... particles that pass through a U.S.A. Standard Sieve No. 6 and that are retained on a U.S.A. Standard Sieve...

  9. Dimensional regularization in configuration space

    SciTech Connect

    Bollini, C.G. |; Giambiagi, J.J.

    1996-05-01

    Dimensional regularization is introduced in configuration space by Fourier transforming in {nu} dimensions the perturbative momentum space Green functions. For this transformation, the Bochner theorem is used; no extra parameters, such as those of Feynman or Bogoliubov and Shirkov, are needed for convolutions. The regularized causal functions in {ital x} space have {nu}-dependent moderated singularities at the origin. They can be multiplied together and Fourier transformed (Bochner) without divergence problems. The usual ultraviolet divergences appear as poles of the resultant analytic functions of {nu}. Several examples are discussed. {copyright} {ital 1996 The American Physical Society.}

  10. Block copolymer/ferroelectric nanoparticle nanocomposites

    NASA Astrophysics Data System (ADS)

    Pang, Xinchang; He, Yanjie; Jiang, Beibei; Iocozzia, James; Zhao, Lei; Guo, Hanzheng; Liu, Jin; Akinc, Mufit; Bowler, Nicola; Tan, Xiaoli; Lin, Zhiqun

    2013-08-01

    Nanocomposites composed of diblock copolymer/ferroelectric nanoparticles were formed by selectively constraining ferroelectric nanoparticles (NPs) within diblock copolymer nanodomains via judicious surface modification of ferroelectric NPs. Ferroelectric barium titanate (BaTiO3) NPs with different sizes that are permanently capped with polystyrene chains (i.e., PS-functionalized BaTiO3NPs) were first synthesized by exploiting amphiphilic unimolecular star-like poly(acrylic acid)-block-polystyrene (PAA-b-PS) diblock copolymers as nanoreactors. Subsequently, PS-functionalized BaTiO3 NPs were preferentially sequestered within PS nanocylinders in the linear cylinder-forming polystyrene-block-poly(methyl methacrylate) (PS-b-PMMA) diblock copolymer upon mixing the BaTiO3 NPs with PS-b-PMMA. The use of PS-b-PMMA diblock copolymers, rather than traditional homopolymers, offers the opportunity for controlling the spatial organization of PS-functionalized BaTiO3 NPs in the PS-b-PMMA/BaTiO3 NP nanocomposites. Selective solvent vapor annealing was utilized to control the nanodomain orientation in the nanocomposites. Vertically oriented PS nanocylinders containing PS-functionalized BaTiO3 NPs were yielded after exposing the PS-b-PMMA/BaTiO3 NP nanocomposite thin film to acetone vapor, which is a selective solvent for PMMA block. The dielectric properties of nanocomposites in the microwave frequency range were investigated. The molecular weight of PS-b-PMMA and the size of BaTiO3 NPs were found to exert an apparent influence on the dielectric properties of the resulting nanocomposites.Nanocomposites composed of diblock copolymer/ferroelectric nanoparticles were formed by selectively constraining ferroelectric nanoparticles (NPs) within diblock copolymer nanodomains via judicious surface modification of ferroelectric NPs. Ferroelectric barium titanate (BaTiO3) NPs with different sizes that are permanently capped with polystyrene chains (i.e., PS-functionalized BaTiO3NPs) were

  11. Precision Synthesis of Alternating Copolymers via Ring-Opening Polymerization of 1-Substituted Cyclobutenes.

    PubMed

    Parker, Kathlyn A; Sampson, Nicole S

    2016-03-15

    Investigation of complex molecular systems depends on our ability to correlate physical measurements with molecular structure. Interpretation of studies that rely on synthetic polymers is generally limited by their heterogeneity; i.e., there is variation in the number and arrangement of the monomeric building blocks that have been incorporated. Superior physics and biology can be performed with materials and tools that exert precise control over the sequence and spacing of functional groups. An interest in functional ligands combined with a desire to control the orientation and stereochemistry of monomer incorporation led to the design of new substrates for ruthenium-catalyzed ring-opening metathesis polymerization (ROMP). We discovered that ROMP of cyclobutene-1-carboxamides provides uniform and translationally invariant polymers. In contrast, cyclobutene-1-carboxylate esters ring open upon treatment with ruthenium catalyst, but they are stable to homopolymerization. However, in the presence of cyclohexene monomers, they undergo alternating ROMP (AROMP or alt-ROMP) to give copolymers with a precisely controlled sequence. The alternating cyclobutene ester/cyclohexene pair provides access to functional group spacing larger than is possible with homopolymers. This can be desirable; for example, polymers with a regular 8-10 Å backbone spacing of cationic charge and with between four and eight cationic groups were the most effective antibacterial agents and had low cytotoxicity. Moreover, the AROMP chemistry allows alternation of two functional moieties: one associated with the cyclohexene and one attached to the cyclobutene. In the case of antibacterial copolymers, the alternating chemistry allowed variation of hydrophobicity via the cyclohexene while maintaining a constant cation spacing through the cyclobutene. In the case of copolymers that bear donor and acceptor groups, strict alternation of the groups increased intrachain charge transfer. Like cyclobutene-1

  12. Precision Synthesis of Alternating Copolymers via Ring-Opening Polymerization of 1-Substituted Cyclobutenes

    PubMed Central

    2016-01-01

    Conspectus Investigation of complex molecular systems depends on our ability to correlate physical measurements with molecular structure. Interpretation of studies that rely on synthetic polymers is generally limited by their heterogeneity; i.e., there is variation in the number and arrangement of the monomeric building blocks that have been incorporated. Superior physics and biology can be performed with materials and tools that exert precise control over the sequence and spacing of functional groups. An interest in functional ligands combined with a desire to control the orientation and stereochemistry of monomer incorporation led to the design of new substrates for ruthenium-catalyzed ring-opening metathesis polymerization (ROMP). We discovered that ROMP of cyclobutene-1-carboxamides provides uniform and translationally invariant polymers. In contrast, cyclobutene-1-carboxylate esters ring open upon treatment with ruthenium catalyst, but they are stable to homopolymerization. However, in the presence of cyclohexene monomers, they undergo alternating ROMP (AROMP or alt-ROMP) to give copolymers with a precisely controlled sequence. The alternating cyclobutene ester/cyclohexene pair provides access to functional group spacing larger than is possible with homopolymers. This can be desirable; for example, polymers with a regular 8–10 Å backbone spacing of cationic charge and with between four and eight cationic groups were the most effective antibacterial agents and had low cytotoxicity. Moreover, the AROMP chemistry allows alternation of two functional moieties: one associated with the cyclohexene and one attached to the cyclobutene. In the case of antibacterial copolymers, the alternating chemistry allowed variation of hydrophobicity via the cyclohexene while maintaining a constant cation spacing through the cyclobutene. In the case of copolymers that bear donor and acceptor groups, strict alternation of the groups increased intrachain charge transfer. Like

  13. Block copolymer/ferroelectric nanoparticle nanocomposites.

    PubMed

    Pang, Xinchang; He, Yanjie; Jiang, Beibei; Iocozzia, James; Zhao, Lei; Guo, Hanzheng; Liu, Jin; Akinc, Mufit; Bowler, Nicola; Tan, Xiaoli; Lin, Zhiqun

    2013-09-21

    Nanocomposites composed of diblock copolymer/ferroelectric nanoparticles were formed by selectively constraining ferroelectric nanoparticles (NPs) within diblock copolymer nanodomains via judicious surface modification of ferroelectric NPs. Ferroelectric barium titanate (BaTiO3) NPs with different sizes that are permanently capped with polystyrene chains (i.e., PS-functionalized BaTiO3NPs) were first synthesized by exploiting amphiphilic unimolecular star-like poly(acrylic acid)-block-polystyrene (PAA-b-PS) diblock copolymers as nanoreactors. Subsequently, PS-functionalized BaTiO3 NPs were preferentially sequestered within PS nanocylinders in the linear cylinder-forming polystyrene-block-poly(methyl methacrylate) (PS-b-PMMA) diblock copolymer upon mixing the BaTiO3 NPs with PS-b-PMMA. The use of PS-b-PMMA diblock copolymers, rather than traditional homopolymers, offers the opportunity for controlling the spatial organization of PS-functionalized BaTiO3 NPs in the PS-b-PMMA/BaTiO3 NP nanocomposites. Selective solvent vapor annealing was utilized to control the nanodomain orientation in the nanocomposites. Vertically oriented PS nanocylinders containing PS-functionalized BaTiO3 NPs were yielded after exposing the PS-b-PMMA/BaTiO3 NP nanocomposite thin film to acetone vapor, which is a selective solvent for PMMA block. The dielectric properties of nanocomposites in the microwave frequency range were investigated. The molecular weight of PS-b-PMMA and the size of BaTiO3 NPs were found to exert an apparent influence on the dielectric properties of the resulting nanocomposites.

  14. Poly(dimethyl siloxane) (PDMS) network blends of amphiphilic acrylic copolymers with poly(ethylene glycol)-fluoroalkyl side chains for fouling-release coatings. II. Laboratory assays and field immersion trials.

    PubMed

    Martinelli, Elisa; Sarvothaman, Mahesh K; Galli, Giancarlo; Pettitt, Michala E; Callow, Maureen E; Callow, James A; Conlan, Sheelagh L; Clare, Anthony S; Sugiharto, Albert B; Davies, Cait; Williams, David

    2012-01-01

    Amphiphilic copolymers containing different amounts of poly(ethylene glycol)-fluoroalkyl acrylate and polysiloxane methacrylate units were blended with a poly(dimethyl siloxane) (PDMS) matrix in different proportions to investigate the effect of both copolymer composition and loading on the biological performance of the coatings. Laboratory bioassays revealed optimal compositions for the release of sporelings of Ulva linza, and the settlement of cypris larvae of Balanus amphitrite. The best-performing coatings were subjected to field immersion tests. Experimental coatings containing copolymer showed significantly reduced levels of hard fouling compared to the control coatings (PDMS without copolymer), their performance being equivalent to a coating based on Intersleek 700™. XPS analysis showed that only small amounts of fluorine at the coating surface were sufficient for good antifouling/fouling-release properties. AFM analyses of coatings under immersion showed that the presence of a regular surface structure with nanosized domains correlated with biological performance.

  15. Cellulose ester-graft-poly(epsilon-caprolactone): effects of copolymer composition and intercomponent miscibility on the enzymatic hydrolysis behavior.

    PubMed

    Kusumi, Ryosuke; Lee, Seung-Hwan; Teramoto, Yoshikuni; Nishio, Yoshiyuki

    2009-10-12

    Enzymatic hydrolysis was conducted with Pseudomonas lipase for film samples of graft copolymers of cellulose acetate (CA) and butyrate (CB) with poly(epsilon-caprolactone) (PCL), CA-g-PCL, and CB-g-PCL, respectively. The two trunk polymers CA and CB, both having the degree of acyl substitution (DS) of >2, are respectively immiscible and miscible with PCL. A hindrance effect of the cellulose ester trunks on the enzymatic attack to the PCL component was observed for the two copolymer series; the situation was more conspicuous in the use of CB trunks. After the selective hydrolytic degradation of the PCL component, a topographical study by AFM revealed that the CA and CB constituents as residues formed a protuberant structure on the surface of the respective film specimens. The altitude and regularity of the protuberances were variant depending on the initial copolymer composition. In a phase-imaging mode of AFM, a hydrolyzed film of CA-g-PCL with an extremely low graft-density (acetyl DS > 2.95) showed particularly larger CA domains of >25 nm in diameter. The domain sizes were in accordance with a heterogeneity scale in the original intercomponent mixing state estimated by (1)H spin-lattice relaxation time (T(1)(H)) measurements in solid-state (13)C NMR spectroscopy. The present results demonstrate a high potential in application of the PCL-grafted cellulosic copolymers as spatiotemporally biodegradation-controllable materials.

  16. Cycloolefin effect in cycloolefin-(meth)acryl copolymer

    NASA Astrophysics Data System (ADS)

    Lim, Hyun Soon; Seo, Dong Chul; Lee, Chang Soo; Park, Sang Wok; Kim, Sang Jin; Shin, Dae Hyeon; Shin, Jin Bong; Park, Joo Hyun

    2008-11-01

    One of the most important factors in ArF resist development is a resin platform, which dominates a lot of parts of resist characteristics. It has been much changed in order to improve their physical properties such as resolution, pattern profile, etch resistance and line edge roughness. Through the low etch resistance in ArF initial (meth)acryl type copolymer and low transmittance in COMA type copolymer most researchers were interested in developing of (meth)acryl type copolymer again for ArF photoresist. On the other hand, we have studied various polymer platforms suitable ArF photoresist except for meth(acryl) type copolymer. As a result of this study we had developed ROMA type polymers and cycloolefin-(meth)acryl type copolymers. Among the polymers cycloolefin-(meth)acryl type copolymer has many attractions such as etch roughness, resist reflow which needs low glass transition temperature and solvent solubility. In this study, we intend to find out cycloolefin-(meth)acryl copolymer characteristics compared with (meth)acryl copolymer. And, we have tried to find out any differences between acrylate type copolymer and cycloolefin-(meth)acrylate type copolymer with various evaluation results. As a result of this study we are going to talk about the reason that the resist using acrylate type copolymer and cycloolefin-(meth)acryl type copolymer show good pattern profile while acrylate type copolymer show poor pattern profile. We also intend to explain the role of cycloolefin as a function of molecular weight variation and substitution ratio variation of cycloolefin in cycloolefin-(meth)acrylate resin.One of the most important factors in ArF resist development is a resin platform, which dominates a lot of parts of resist characteristics. It has been much changed in order to improve their physical properties such as resolution, pattern profile, etch resistance and line edge roughness. Through the low etch resistance in ArF initial (meth)acryl type copolymer and low

  17. Solution Self-Assembly of Globular Protein-Polymer Conjugate Block Copolymers

    NASA Astrophysics Data System (ADS)

    Olsen, Bradley

    2014-03-01

    Controlling the nanostructured self-assembly of globular proteins and enzymes can significantly advance the applications of soft materials as catalysts, sensors, and medical materials. However, the incorporation of globular proteins as one block in the block copolymer introduces changes in chain shape, chain entropy, and specific interactions that significantly impact the thermodynamics of self-assembly. Here, we explore the self-assembly of model globular protein-polymer block copolymers in concentrated solutions to form nanostructured materials. A phase diagram as a function of concentration and temperature for a model material mCherry-poly(N-isopropylacrylamide) (PNIPAM) is asymmetric, showing hexagonal cylinders for coil fractions less than 0.5 and a lamellar ordering for coil fractions greater than 0.5, divided by a narrow region of hexagonally perforated lamellae. Order-order transitions as a function of temperature are driven by the thermoresponsive desolvation of PNIPAM. Surprisingly, the materials exhibit reentrant order-disorder transition behavior, such that the conjugate block copolymers are disordered at both low and high concentrations but well-ordered at intermediate concentrations. Changing the polymer chemistry to monomers with different types of hydrogen bonding results in significant changes in the self-assembly, including the observation of a cubic phase that shows the same scattering pattern as the gyroid phase observed in traditional block copolymers. The choice of polymer also has a strong impact on the order-disorder transition concentration, demonstrating that the polymer-protein interaction plays a significant role in governing self-assembly in solution. Consistent with this effect, the order-disorder transition concentration is minimized in symmetric conjugates. Changing the protein from mCherry to myoglobin results in a reduction in ordering, suggesting that the regularity of the protein shape is important. This research was supported by

  18. Resource Guide for Regular Teachers.

    ERIC Educational Resources Information Center

    Kampert, George J.

    The resource guide for regular teachers provides policies and procedures of the Flour Bluff (Texas) school district regarding special education of handicapped students. Individual sections provide guidelines for the following areas: the referral process; individual assessment; participation on student evaluation and placement committee; special…

  19. Sparsity regularization in dynamic elastography.

    PubMed

    Honarvar, M; Sahebjavaher, R S; Salcudean, S E; Rohling, R

    2012-10-07

    We consider the inverse problem of continuum mechanics with the tissue deformation described by a mixed displacement-pressure finite element formulation. The mixed formulation is used to model nearly incompressible materials by simultaneously solving for both elasticity and pressure distributions. To improve numerical conditioning, a common solution to this problem is to use regularization to constrain the solutions of the inverse problem. We present a sparsity regularization technique that uses the discrete cosine transform to transform the elasticity and pressure fields to a sparse domain in which a smaller number of unknowns is required to represent the original field. We evaluate the approach by solving the dynamic elastography problem for synthetic data using such a mixed finite element technique, assuming time harmonic motion, and linear, isotropic and elastic behavior for the tissue. We compare our simulation results to those obtained using the more common Tikhonov regularization. We show that the sparsity regularization is less dependent on boundary conditions, less influenced by noise, requires no parameter tuning and is computationally faster. The algorithm has been tested on magnetic resonance elastography data captured from a CIRS elastography phantom with similar results as the simulation.

  20. Regularized Generalized Structured Component Analysis

    ERIC Educational Resources Information Center

    Hwang, Heungsun

    2009-01-01

    Generalized structured component analysis (GSCA) has been proposed as a component-based approach to structural equation modeling. In practice, GSCA may suffer from multi-collinearity, i.e., high correlations among exogenous variables. GSCA has yet no remedy for this problem. Thus, a regularized extension of GSCA is proposed that integrates a ridge…

  1. Regularized Generalized Structured Component Analysis

    ERIC Educational Resources Information Center

    Hwang, Heungsun

    2009-01-01

    Generalized structured component analysis (GSCA) has been proposed as a component-based approach to structural equation modeling. In practice, GSCA may suffer from multi-collinearity, i.e., high correlations among exogenous variables. GSCA has yet no remedy for this problem. Thus, a regularized extension of GSCA is proposed that integrates a ridge…

  2. Giftedness in the Regular Classroom.

    ERIC Educational Resources Information Center

    Green, Anne

    This paper presents a rationale for serving gifted students in the regular classroom and offers guidelines for recognizing students who are gifted in the seven types of intelligence proposed by Howard Gardner. Stressed is the importance of creating in the classroom a community of learners that allows all children to actively explore ideas and…

  3. Rotations of the Regular Polyhedra

    ERIC Educational Resources Information Center

    Jones, MaryClara; Soto-Johnson, Hortensia

    2006-01-01

    The study of the rotational symmetries of the regular polyhedra is important in the classroom for many reasons. Besides giving the students an opportunity to visualize in three dimensions, it is also an opportunity to relate two-dimensional and three-dimensional concepts. For example, rotations in R[superscript 2] require a point and an angle of…

  4. Regularization of Localized Degradation Processes

    DTIC Science & Technology

    1996-12-28

    order to assess the regularization properties of non-classical micropolar Cosserat continua which feature non-symmetric stress and strain tensors because...of the presence of couple-stresses and micro-curvatures. It was shown that micropolar media may only exhibit localized failure in the form of tensile

  5. Temporal regularity in speech perception: Is regularity beneficial or deleterious?

    PubMed

    Geiser, Eveline; Shattuck-Hufnagel, Stefanie

    2012-04-01

    Speech rhythm has been proposed to be of crucial importance for correct speech perception and language learning. This study investigated the influence of speech rhythm in second language processing. German pseudo-sentences were presented to participants in two conditions: 'naturally regular speech rhythm' and an 'emphasized regular rhythm'. Nine expert English speakers with 3.5±1.6 years of German training repeated each sentence after hearing it once over headphones. Responses were transcribed using the International Phonetic Alphabet and analyzed for the number of correct, false and missing consonants as well as for consonant additions. The over-all number of correct reproductions of consonants did not differ between the two experimental conditions. However, speech rhythmicization significantly affected the serial position curve of correctly reproduced syllables. The results of this pilot study are consistent with the view that speech rhythm is important for speech perception.

  6. Regular languages, regular grammars and automata in splicing systems

    NASA Astrophysics Data System (ADS)

    Mohamad Jan, Nurhidaya; Fong, Wan Heng; Sarmin, Nor Haniza

    2013-04-01

    Splicing system is known as a mathematical model that initiates the connection between the study of DNA molecules and formal language theory. In splicing systems, languages called splicing languages refer to the set of double-stranded DNA molecules that may arise from an initial set of DNA molecules in the presence of restriction enzymes and ligase. In this paper, some splicing languages resulted from their respective splicing systems are shown. Since all splicing languages are regular, languages which result from the splicing systems can be further investigated using grammars and automata in the field of formal language theory. The splicing language can be written in the form of regular languages generated by grammar. Besides that, splicing systems can be accepted by automata. In this research, two restriction enzymes are used in splicing systems namely BfuCI and NcoI.

  7. Well-ordered nanohybrids and nanoporous materials from gyroid block copolymer templates.

    PubMed

    Hsueh, Han-Yu; Yao, Cheng-Thai; Ho, Rong-Ming

    2015-04-07

    The design of nanostructured materials and their corresponding morphologies has attracted intense attention because of their effectiveness in tuning electronic, optical, magnetic, and catalytic properties, as well as mechanical properties. Although many technologies have been explored to fabricate nanostructured materials, templated synthesis is one of the most important approaches to fabricate nanostructured materials with precisely controlled structures and morphologies from their constituent components. In this review article, we aim to highlight the use of the self-assembly of block copolymers as an emerging and powerful tool to fabricate well-defined nanomaterials with precise control over the structural dimensions and shape, as well as over the composition and corresponding spatial arrangement. After providing a brief introduction to the synthesis of regular porous materials, including silica- and carbon-based mesoporous materials, the review focuses on the fabrication of well-ordered nanoporous polymers from the selfassembly of degradable block copolymers, in particular with gyroid-forming network morphologies, as templates for the syntheses of various materials with different entities. We highlight the principles of different templated syntheses, from the fundamentals to their practical uses in the fabrication of nanohybrids and nanoporous materials; moreover, we provide an introduction to templates, precursors, solvents, and processing. Finally, some recent examples using block copolymer structure-directed nanomaterials for applications, such as solar cells, catalysis, and drug delivery, are presented. In particular, by taking advantage of the "well-ordered" structural characteristics of the gyroid texture, the properties and applications of 3D regular nanostructures, such as the photonic behavior and optical properties of gyroid-forming nanostructures, as well as of gyroid-forming metamaterials, will be emphasized. Special attention is also given to

  8. Solvent enhanced block copolymer ordering in thin films

    NASA Astrophysics Data System (ADS)

    Misner, Matthew J.

    Diblock copolymer self-assembly of materials is emerging as a key element in the fabrication of functional nanostructured materials. By solvent casting or solvent annealing block copolymer thin films, we have demonstrated methods to produce diblock copolymer films with highly oriented, close-packed arrays of nanoscopic cylindrical domains with a high degree of long-range lateral order with few defects. The solvent imparts a high degree of mobility in the microphase-separated copolymer that enables a rapid removal of defects and a high degree of lateral order. Though the use of a selective cosolvent during solvent casting, it was found that the microdomain size and spacing could be increased, leading to a size-tunable system. Additionally, the presence of water also led to the ability to control the microdomain orientation during solvent annealing. Ionic complexation within cylinder-forming PS- b-EO block copolymer thin films was also investigated, where added salts bind PEO block as the minor component. Small amounts of added salts, on the order a few ions per chain, show large effects on the ordering of the copolymer films during solvent annealing. By using gold or cobalt salts, well-organized patterns of nanoparticles can be generated in the copolymer microdomains. Topographically and chemically patterned surfaces were used as a route to sectorizing and controlling the lattice orientation of copolymer films. Topographically patterned surfaces allow well-defined boundaries to confine the copolymer microdomains on a surface and effectively direct the ordering and grain orientation of the copolymer microdomains. Chemically patterned surfaces provide a route to direct the block copolymer ordering on completely flat surface, which may have advantages in applications where adding additional topography may be undesirable. To generate nanoporous templates from PS-b-PEO bases materials several routs were followed. The first route was through the addition and selective

  9. 21 CFR 872.3500 - Polyvinylmethylether maleic anhydride (PVM-MA), acid copolymer, and carboxymethylcellulose sodium...

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ...), acid copolymer, and carboxymethylcellulose sodium (NACMC) denture adhesive. 872.3500 Section 872.3500...), acid copolymer, and carboxymethylcellulose sodium (NACMC) denture adhesive. (a) Identification. Polyvinylmethylether maleic anhydride (PVM-MA), acid copolymer, and carboxymethylcellulose sodium (NACMC) denture...

  10. 21 CFR 872.3500 - Polyvinylmethylether maleic anhydride (PVM-MA), acid copolymer, and carboxymethylcellulose sodium...

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...), acid copolymer, and carboxymethylcellulose sodium (NACMC) denture adhesive. 872.3500 Section 872.3500...), acid copolymer, and carboxymethylcellulose sodium (NACMC) denture adhesive. (a) Identification. Polyvinylmethylether maleic anhydride (PVM-MA), acid copolymer, and carboxymethylcellulose sodium (NACMC) denture...

  11. 21 CFR 872.3500 - Polyvinylmethylether maleic anhydride (PVM-MA), acid copolymer, and carboxymethylcellulose sodium...

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ...), acid copolymer, and carboxymethylcellulose sodium (NACMC) denture adhesive. 872.3500 Section 872.3500...), acid copolymer, and carboxymethylcellulose sodium (NACMC) denture adhesive. (a) Identification. Polyvinylmethylether maleic anhydride (PVM-MA), acid copolymer, and carboxymethylcellulose sodium (NACMC) denture...

  12. 21 CFR 872.3500 - Polyvinylmethylether maleic anhydride (PVM-MA), acid copolymer, and carboxymethylcellulose sodium...

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ...), acid copolymer, and carboxymethylcellulose sodium (NACMC) denture adhesive. 872.3500 Section 872.3500...), acid copolymer, and carboxymethylcellulose sodium (NACMC) denture adhesive. (a) Identification. Polyvinylmethylether maleic anhydride (PVM-MA), acid copolymer, and carboxymethylcellulose sodium (NACMC) denture...

  13. 21 CFR 872.3500 - Polyvinylmethylether maleic anhydride (PVM-MA), acid copolymer, and carboxymethylcellulose sodium...

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...), acid copolymer, and carboxymethylcellulose sodium (NACMC) denture adhesive. 872.3500 Section 872.3500...), acid copolymer, and carboxymethylcellulose sodium (NACMC) denture adhesive. (a) Identification. Polyvinylmethylether maleic anhydride (PVM-MA), acid copolymer, and carboxymethylcellulose sodium (NACMC) denture...

  14. 40 CFR 721.10523 - Perfluoroalkylethyl methacrylate copolymer with hydroxymethyl acrylamide, vinyl chloride and long...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... copolymer with hydroxymethyl acrylamide, vinyl chloride and long chain fatty alkyl acrylate (generic). 721... Substances § 721.10523 Perfluoroalkylethyl methacrylate copolymer with hydroxymethyl acrylamide, vinyl... methacrylate copolymer with hydroxymethyl acrylamide, vinyl chloride and long chain fatty alkyl acrylate (PMN...

  15. 40 CFR 721.10523 - Perfluoroalkylethyl methacrylate copolymer with hydroxymethyl acrylamide, vinyl chloride and long...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... copolymer with hydroxymethyl acrylamide, vinyl chloride and long chain fatty alkyl acrylate (generic). 721... Substances § 721.10523 Perfluoroalkylethyl methacrylate copolymer with hydroxymethyl acrylamide, vinyl... methacrylate copolymer with hydroxymethyl acrylamide, vinyl chloride and long chain fatty alkyl acrylate (PMN...

  16. Interaction of poloxamine block copolymers with lipid membranes: Role of copolymer structure and membrane cholesterol content.

    PubMed

    Sandez-Macho, Isabel; Casas, Matilde; Lage, Emilio V; Rial-Hermida, M Isabel; Concheiro, Angel; Alvarez-Lorenzo, Carmen

    2015-09-01

    Interactions of X-shaped poly(ethylene oxide)-poly(propylene oxide) (PEO-PPO) block copolymers with cell membranes were investigated recording the π-A isotherms of monolayer systems of dipalmitoylphosphatidylcholine (DPPC):cholesterol 100:0; 80:20 and 60:40 mol ratio and evaluating the capability of the copolymers to trigger haemolysis or to protect from haemolytic agents. Four varieties of poloxamine (Tetronic 904, 908, 1107 and 1307) were chosen in order to cover a wide range of EO and PO units contents and molecular weights, and compared to a variety of poloxamer (Pluronic P85). The π-A isotherms revealed that the greater the content in cholesterol, the stronger the interaction of the block copolymers with the lipids monolayer. The interactions were particularly relevant at low pressures and low lipid proportions, mimicking the conditions of damaged membranes. Relatively hydrophobic copolymers bearing short PEO blocks (e.g., T904 and P85) intercalated among the lipids expanding the surface area (ΔGexc) but not effectively sealing the pores. These varieties showed haemolytic behavior. Oppositely, highly hydrophilic copolymers bearing long PEO blocks (e.g., T908, T1107 and T1307) caused membrane contraction and outer leaflet sealing due to strong interactions of PEO with cholesterol and diamine core with phospholipids. These later varieties were not haemolytic and exerted a certain protective effect against spontaneous haemolysis for both intact erythrocytes and cholesterol-depleted erythrocytes.

  17. Phase Behavior of Neat Triblock Copolymers and Copolymer/Homopolymer Blends Near Network Phase Windows

    SciTech Connect

    M Tureau; L Rong; B Hsiao; T Epps

    2011-12-31

    The phase behavior of poly(isoprene-b-styrene-b-methyl methacrylate) (ISM) copolymers near the styrene-rich network phase window was examined through the use of neat triblock copolymers and copolymer/homopolymer blends. Both end-block and middle-block blending protocols were employed using poly(isoprene) (PI), poly(methyl methacrylate) (PMMA), and poly(styrene) (PS) homopolymers. Blended specimens exhibited phase transformations to well-ordered nanostructures (at homopolymer loadings up to 26 vol % of the total blend volume). Morphological consistency between neat and blended specimens was established at various locations in the ISM phase space. Copolymer/homopolymer blending permitted the refinement of lamellar, hexagonally packed cylinder, and disordered melt phase boundaries as well as the identification of double gyroid (Q{sup 230}), alternating gyroid (Q{sup 214}), and orthorhombic (O{sup 70}) network regimes. Additionally, the experimental phase diagram exhibited similar trends to those found in a theoretical ABC triblock copolymer phase diagram with symmetric interactions and statistical segments lengths generated by Tyler et al.

  18. Oxygen plasma resistant phosphine oxide containing imide/arylene copolymers

    NASA Technical Reports Server (NTRS)

    Jensen, Brian J.

    1993-01-01

    A series of oxygen plasma resistant imide/arylene ether copolymers were prepared by reacting anhydride-terminated poly(amide acids) and amine-terminated polyarylene ethers containing phosphine oxide units. Inherent viscosities for these copolymers ranged from 0.42 to 0.80 dL/g. After curing, the resulting copolymers had glass transition temperatures ranging from 224 C to 228 C. Solution cast films of the block copolymers were tough and flexible with tensile strength, tensile moduli, and elongation at break up to 16.1 ksi, 439 ksi, and 23 percent, respectively at 25 C and 9.1 ksi, 308 ksi and 97 percent, respectively at 150 C. The copolymers show a significant improvement in resistance to oxygen plasma when compared to the commercial polyimide Kapton. The imide/arylene ether copolymers containing phosphine oxide units are suitable as coatings, films, adhesives, and composite matrices.

  19. Amphiphilic block copolymer membrane for vanadium redox flow battery

    NASA Astrophysics Data System (ADS)

    Wang, Fei; Sylvia, James M.; Jacob, Monsy M.; Peramunage, Dharmasena

    2013-11-01

    An amphiphilic block copolymer comprised of hydrophobic polyaryletherketone (PAEK) and hydrophilic sulfonated polyaryletherketone (SPAEK) blocks has been synthesized and characterized. A membrane prepared from the block copolymer is used as the separator in a single cell vanadium redox flow battery (VRB). The proton conductivity, mechanical property, VO2+ permeability and single VRB cell performance of this block copolymer membrane are investigated and compared to Nafion™ 117. The block copolymer membrane showed significantly improved vanadium ion selectivity, higher mechanical strength and lower conductivity than Nafion™ 117. The VRB containing the block copolymer membrane exhibits higher coulombic efficiency and similar energy efficiency compared to a VRB using Nafion™ 117. The better vanadium ion selectivity of the block copolymer membrane has led to a much smaller capacity loss during 50 charge-discharge cycles for the VRB.

  20. Regular Motions of Resonant Asteroids

    NASA Astrophysics Data System (ADS)

    Ferraz-Mello, S.

    1990-11-01

    RESUMEN. Se revisan resultados analiticos relativos a soluciones regulares del problema asteroidal eliptico promediados en la vecindad de una resonancia con jupiten Mencionamos Ia ley de estructura para libradores de alta excentricidad, la estabilidad de los centros de liberaci6n, las perturbaciones forzadas por la excentricidad de jupiter y las 6rbitas de corotaci6n. ABSTRAC This paper reviews analytical results concerning the regular solutions of the elliptic asteroidal problem averaged in the neighbourhood of a resonance with jupiter. We mention the law of structure for high-eccentricity librators, the stability of the libration centers, the perturbations forced by the eccentricity ofjupiter and the corotation orbits. Key words: ASThROIDS

  1. Energy functions for regularization algorithms

    NASA Technical Reports Server (NTRS)

    Delingette, H.; Hebert, M.; Ikeuchi, K.

    1991-01-01

    Regularization techniques are widely used for inverse problem solving in computer vision such as surface reconstruction, edge detection, or optical flow estimation. Energy functions used for regularization algorithms measure how smooth a curve or surface is, and to render acceptable solutions these energies must verify certain properties such as invariance with Euclidean transformations or invariance with parameterization. The notion of smoothness energy is extended here to the notion of a differential stabilizer, and it is shown that to void the systematic underestimation of undercurvature for planar curve fitting, it is necessary that circles be the curves of maximum smoothness. A set of stabilizers is proposed that meet this condition as well as invariance with rotation and parameterization.

  2. Physical model of dimensional regularization

    NASA Astrophysics Data System (ADS)

    Schonfeld, Jonathan F.

    2016-12-01

    We explicitly construct fractals of dimension 4{-}ɛ on which dimensional regularization approximates scalar-field-only quantum-field theory amplitudes. The construction does not require fractals to be Lorentz-invariant in any sense, and we argue that there probably is no Lorentz-invariant fractal of dimension greater than 2. We derive dimensional regularization's power-law screening first for fractals obtained by removing voids from 3-dimensional Euclidean space. The derivation applies techniques from elementary dielectric theory. Surprisingly, fractal geometry by itself does not guarantee the appropriate power-law behavior; boundary conditions at fractal voids also play an important role. We then extend the derivation to 4-dimensional Minkowski space. We comment on generalization to non-scalar fields, and speculate about implications for quantum gravity.

  3. Diffusion on regular random fractals

    NASA Astrophysics Data System (ADS)

    Aarão Reis, Fábio D. A.

    1996-12-01

    We study random walks on structures intermediate to statistical and deterministic fractals called regular random fractals, constructed introducing randomness in the distribution of lacunas of Sierpinski carpets. Random walks are simulated on finite stages of these fractals and the scaling properties of the mean square displacement 0305-4470/29/24/007/img1 of N-step walks are analysed. The anomalous diffusion exponents 0305-4470/29/24/007/img2 obtained are very near the estimates for the carpets with the same dimension. This result motivates a discussion on the influence of some types of lattice irregularity (random structure, dead ends, lacunas) on 0305-4470/29/24/007/img2, based on results on several fractals. We also propose to use these and other regular random fractals as models for real self-similar structures and to generalize results for statistical systems on fractals.

  4. Regular connections among generalized connections

    NASA Astrophysics Data System (ADS)

    Fleischhack, Christian

    2003-09-01

    The properties of the space A of regular connections as a subset of the space Ā of generalized connections in the Ashtekar framework are studied. For every choice of compact structure group and smoothness category for the paths, it is determined whether A is dense in Ā or not. Moreover, it is proven that A has Ashtekar-Lewandowski measure zero for every non-trivial structure group and every smoothness category. The analogous results hold for gauge orbits instead of connections.

  5. On different facets of regularization theory.

    PubMed

    Chen, Zhe; Haykin, Simon

    2002-12-01

    This review provides a comprehensive understanding of regularization theory from different perspectives, emphasizing smoothness and simplicity principles. Using the tools of operator theory and Fourier analysis, it is shown that the solution of the classical Tikhonov regularization problem can be derived from the regularized functional defined by a linear differential (integral) operator in the spatial (Fourier) domain. State-of-the-art research relevant to the regularization theory is reviewed, covering Occam's razor, minimum length description, Bayesian theory, pruning algorithms, informational (entropy) theory, statistical learning theory, and equivalent regularization. The universal principle of regularization in terms of Kolmogorov complexity is discussed. Finally, some prospective studies on regularization theory and beyond are suggested.

  6. New Two-Body Regularization

    NASA Astrophysics Data System (ADS)

    Fukushima, Toshio

    2007-01-01

    We present a new scheme to regularize a three-dimensional two-body problem under perturbations. It is a combination of Sundman's time transformation and Levi-Civita's spatial coordinate transformation applied to the two-dimensional components of the position and velocity vectors in the osculating orbital plane. We adopt a coordinate triad specifying the plane as a function of the orbital angular momentum vector only. Since the magnitude of the orbital angular momentum is explicitly computed from the in-the-plane components of the position and velocity vectors, only two components of the orbital angular momentum vector are to be determined. In addition to these, we select the total energy of the two-body system and the physical time as additional components of the new variables. The equations of motion of the new variables have no singularity even when the mutual distance is extremely small, and therefore, the new variables are suitable to deal with close encounters. As a result, the number of dependent variables in the new scheme becomes eight, which is significantly smaller than the existing schemes to avoid close encounters: two less than the Kustaanheimo-Stiefel and the Bürdet-Ferrandiz regularizations, and five less than the Sperling-Bürdet/Bürdet-Heggie regularization.

  7. Regular sun exposure benefits health.

    PubMed

    van der Rhee, H J; de Vries, E; Coebergh, J W

    2016-12-01

    Since it was discovered that UV radiation was the main environmental cause of skin cancer, primary prevention programs have been started. These programs advise to avoid exposure to sunlight. However, the question arises whether sun-shunning behaviour might have an effect on general health. During the last decades new favourable associations between sunlight and disease have been discovered. There is growing observational and experimental evidence that regular exposure to sunlight contributes to the prevention of colon-, breast-, prostate cancer, non-Hodgkin lymphoma, multiple sclerosis, hypertension and diabetes. Initially, these beneficial effects were ascribed to vitamin D. Recently it became evident that immunomodulation, the formation of nitric oxide, melatonin, serotonin, and the effect of (sun)light on circadian clocks, are involved as well. In Europe (above 50 degrees north latitude), the risk of skin cancer (particularly melanoma) is mainly caused by an intermittent pattern of exposure, while regular exposure confers a relatively low risk. The available data on the negative and positive effects of sun exposure are discussed. Considering these data we hypothesize that regular sun exposure benefits health. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Reversible geling co-polymer and method of making

    DOEpatents

    Gutowska, Anna

    2005-12-27

    The present invention is a thereapeutic agent carrier having a thermally reversible gel or geling copolymer that is a linear random copolymer of an [meth-]acrylamide derivative and a hydrophilic comonomer, wherein the linear random copolymer is in the form of a plurality of linear chains having a plurality of molecular weights greater than or equal to a minimum geling molecular weight cutoff and a therapeutic agent.

  9. ROMP from ROMP: A New Approach to Graft Copolymer Synthesis

    PubMed Central

    Allen, Matthew J.; Wangkanont, Kittikhun; Raines, Ronald T.; Kiessling, Laura L.

    2009-01-01

    A new strategy is presented for the synthesis of graft copolymers using only the ring-opening metathesis polymerization (ROMP). From a ROMP-derived main chain, pendant maleimide functional groups are converted into norbornene moieties via a Diels–Alder reaction with cyclopentadiene. The norbornene groups serve as sites of initiation, and subsequent ROMP from the main chain yields graft copolymers with both main and side chains derived from ROMP. This strategy offers ready access to defined graft copolymers. PMID:20161406

  10. On the birefringence of multilayered symmetric diblock copolymer films

    SciTech Connect

    Kim, J.; Chin, I.; Smith, B.A.; Russell, T.P. ); Mays, J.W. . Dept. of Chemistry)

    1993-09-27

    The chain extension at lamellar interfaces was studied in thin films of symmetric diblock copolymers on gold substrates. The first copolymer consisted of blocks of polystyrene (PS) and poly(2-vinylpyridine) (P2VP), denoted P(S-b-2VP). The second was a diblock copolymer of PS and poly(methyl methacrylate) (PMMA), denoted P(S-b-MMA), on a gold substrate. Using attenuated total reflectance spectroscopy, the refractive indices parallel, n[sub [parallel

  11. Imide/Arylene Ether Copolymers Containing Phosphine Oxide

    NASA Technical Reports Server (NTRS)

    Jensen, Brian J.; Partos, Richard D.

    1993-01-01

    Phosphine oxide groups react with oxygen to form protective phosphate surface layers. Series of imide/arylene ether block copolymers containing phosphine oxide units in backbone synthesized and characterized. In comparison with commercial polyimide, these copolymers display better resistance to etching by oxygen plasma. Tensile strengths and tensile moduli greater than those of polyarylene ether homopolymer. Combination of properties makes copolymers attractive for films, coatings, adhesives, and composite matrices where resistance to atomic oxygen needed.

  12. "Clickable" PEG-dendritic block copolymers.

    PubMed

    Fernandez-Megia, Eduardo; Correa, Juan; Riguera, Ricardo

    2006-11-01

    Three generations of azido-terminated PEG-dendritic block copolymers have been synthesized and completely characterized by NMR and MALDI-TOF. A radial decrease of density, leading to more mobile protons at the outermost periphery, and an increasingly higher compactness of the core with generation have been determined by T(1) and T(2) relaxation time studies. The efficient surface decoration of these dendritic polymers by means of click chemistry has been demonstrated by the incorporation of unprotected carbohydrate units in very good to excellent yields. The reaction proceeds at room temperature, under aqueous conditions, and requires just catalytic amounts of Cu. The modified block copolymers are conveniently purified by ultrafiltration. The glycodendrimers functionalized with alpha-mannose form aggregates with concanavalin A as determined by absorbance experiments at 400 nm. This aggregation ability increases with generation.

  13. Rapid ordering of block copolymer thin films

    DOE PAGES

    Majewski, Pawel W.; Yager, Kevin G.

    2016-08-18

    Block-copolymers self-assemble into diverse morphologies, where nanoscale order can be finely tuned via block architecture and processing conditions. However, the ultimate usage of these materials in real-world applications may be hampered by the extremely long thermal annealing times—hours or days—required to achieve good order. Here, we provide an overview of the fundamentals of block-copolymer self-assembly kinetics, and review the techniques that have been demonstrated to influence, and enhance, these ordering kinetics. We discuss the inherent tradeoffs between oven annealing, solvent annealing, microwave annealing, zone annealing, and other directed self-assembly methods; including an assessment of spatial and temporal characteristics. Here, wemore » also review both real-space and reciprocal-space analysis techniques for quantifying order in these systems.« less

  14. Rapid ordering of block copolymer thin films

    SciTech Connect

    Majewski, Pawel W.; Yager, Kevin G.

    2016-08-18

    Block-copolymers self-assemble into diverse morphologies, where nanoscale order can be finely tuned via block architecture and processing conditions. However, the ultimate usage of these materials in real-world applications may be hampered by the extremely long thermal annealing times—hours or days—required to achieve good order. Here, we provide an overview of the fundamentals of block-copolymer self-assembly kinetics, and review the techniques that have been demonstrated to influence, and enhance, these ordering kinetics. We discuss the inherent tradeoffs between oven annealing, solvent annealing, microwave annealing, zone annealing, and other directed self-assembly methods; including an assessment of spatial and temporal characteristics. Here, we also review both real-space and reciprocal-space analysis techniques for quantifying order in these systems.

  15. Biofilaments as annealed semi-flexible copolymers

    NASA Astrophysics Data System (ADS)

    Fierling, Julien; Mohrbach, Hervé; Kulic, Igor; Lee, Nam-Kyung; Johner, Albert

    2014-06-01

    In many in vivo or in vitro situations, biofilaments manifest some annealed heterogeneity and should be considered as annealed random copolymers. The building blocks of the filaments differ from each other, for example, by the internal structure of the monomer, by the presence of some adsorbed species or by the curvature. Based on the copolymer concept, we embed the description of these systems in a common formalism. We demonstrate how the annealed heterogeneous nature of the filament is reflected by statistical correlations like the tangent-tangent correlation function or the cyclization probability. Our results show that annealed filaments adapt cooperatively to external constraints. This could contribute to explain anomalous elasticity manifested by biofilaments.

  16. Photothermal degradation of ethylene/vinylacetate copolymer

    NASA Technical Reports Server (NTRS)

    Liang, R. H.; Chung, S.; Clayton, A.; Di Stefano, S.; Oda, K.; Hong, S. D.; Gupta, A.

    1983-01-01

    Photothermal degradation studies were conducted on a 'stabilized' formulation of ethylene/vinyl acetate copolymer (EVA) in the temperature range 25-105 C under three different oxygen environments (in open air, with limited access to O2, and in a dark closed stagnant oven). These studies were performed in order to evaluate the utility of EVA as an encapsulation material for photovoltaic modules. Results showed that at low temperature (25 C), slow photooxidation of the polymer occurred via electronic energy transfer involving the UV absorber incorporated in the polymer. However, no changes in the physical properties of the bulk polymer were detected up to 1500 hours of irradiation. At elevated temperatures, leaching and evaporation of the additives occurred, which ultimately resulted in the chemical crosslinking of the copolymer and the formation of volatile photoproducts such as acetic acid.

  17. [Researches on PEG-modified copolymer nanoparticle].

    PubMed

    Chen, Wei; Yang, Xiangliang

    2003-03-01

    Biodegradable polymeric nanoparticles acting as drug carrier have important potential applications such as site-specific drug delivery and controllable drug delivery. However, these carriers cannot generally be used because they are eliminated by the reticulo-endothelial system within seconds or minutes after intravenous injection. To overcome this limitation, more and more researchers introduce hydrophilic polyethylene glyeol(PEG) to modify polymeric nanoparticles for avoiding their uptake by reticulo-endothelial system. Introducing PEG not only changes polymer nanoparticles' biodegradation in vivo, but also influences drug's properties such as drug release, in vivo biodistribution, et. al. In this paper are reviewed the researches of PEG-modified copolymer nanoparticles, including their preparation and size distribution, stability, drug incorporation, drug release, in vivo biodistribution, in vitro cytotoxicty. A prospect for the researches and developments of the PEG-modified copolymer nanoparticles was also made.

  18. Amine-reactive biodegradable diblock copolymers.

    PubMed

    Tessmar, Jörg K; Mikos, Antonios G; Göpferich, Achim

    2002-01-01

    A new class of diblock copolymers was synthesized from biodegradable poly(lactic acid) and poly(ethylene glycol)minus signmonoamine. These polymers were activated by covalently attaching linkers such as disuccinimidyl tartrate or disuccinimidyl succinate to the hydrophilic polymer chain. The polymers were characterized by (1)H NMR spectroscopy, (13)C NMR spectroscopy and gel permeation chromatography (GPC). These investigations indicated that the polymers were obtained with the correct composition, in high purities, and the expected molecular weight. By using dyes containing primary amine groups such as 5-aminoeosin as model substrates, it was possible to show that the polymers are able to bind such compounds covalently. The diblock copolymers were developed to suppress unspecific protein adsorption and allow the binding of bioactive molecules by instant surface modification. The polymers are intended to be used for tissue engineering applications where surface immobilized cell adhesion peptides or growth factors are needed to control cell behavior.

  19. Rapid ordering of block copolymer thin films

    SciTech Connect

    Majewski, Pawel W.; Yager, Kevin G.

    2016-08-18

    Block-copolymers self-assemble into diverse morphologies, where nanoscale order can be finely tuned via block architecture and processing conditions. However, the ultimate usage of these materials in real-world applications may be hampered by the extremely long thermal annealing times—hours or days—required to achieve good order. Here, we provide an overview of the fundamentals of block-copolymer self-assembly kinetics, and review the techniques that have been demonstrated to influence, and enhance, these ordering kinetics. We discuss the inherent tradeoffs between oven annealing, solvent annealing, microwave annealing, zone annealing, and other directed self-assembly methods; including an assessment of spatial and temporal characteristics. Here, we also review both real-space and reciprocal-space analysis techniques for quantifying order in these systems.

  20. Photothermal degradation of ethylene/vinylacetate copolymer

    NASA Technical Reports Server (NTRS)

    Liang, R. H.; Chung, S.; Clayton, A.; Di Stefano, S.; Oda, K.; Hong, S. D.; Gupta, A.

    1983-01-01

    Photothermal degradation studies were conducted on a 'stabilized' formulation of ethylene/vinyl acetate copolymer (EVA) in the temperature range 25-105 C under three different oxygen environments (in open air, with limited access to O2, and in a dark closed stagnant oven). These studies were performed in order to evaluate the utility of EVA as an encapsulation material for photovoltaic modules. Results showed that at low temperature (25 C), slow photooxidation of the polymer occurred via electronic energy transfer involving the UV absorber incorporated in the polymer. However, no changes in the physical properties of the bulk polymer were detected up to 1500 hours of irradiation. At elevated temperatures, leaching and evaporation of the additives occurred, which ultimately resulted in the chemical crosslinking of the copolymer and the formation of volatile photoproducts such as acetic acid.

  1. Formation of Anisotropic Block Copolymer Gels

    NASA Astrophysics Data System (ADS)

    Liaw, Chya Yan; Shull, Kenneth; Henderson, Kevin; Joester, Derk

    2011-03-01

    Anisotropic, fibrillar gels are important in a variety of processes. Biomineralization is one example, where the mineralization process often occurs within a matrix of collagen or chitin fibers that trap the mineral precursors and direct the mineralization process. We wish to replicate this type of behavior within block copolymer gels. Particularly, we are interested in employing gels composed of cylindrical micelles, which are anisotropic and closely mimic biological fibers. Micelle geometry is controlled in our system by manipulating the ratio of molecular weights of the two blocks and by controlling the detailed thermal processing history of the copolymer solutions. Small-Angle X-ray Scattering and Dynamic Light Scattering are used to determine the temperature dependence of the gel formation process. Initial experiments are based on a thermally-reversible alcohol-soluble system, that can be subsequently converted to a water soluble system by hydrolysis of a poly(t-butyl methacrylate) block to a poly (methacrylic acid) block. MRSEC.

  2. Hierarchical porous polymer scaffolds from block copolymers.

    PubMed

    Sai, Hiroaki; Tan, Kwan Wee; Hur, Kahyun; Asenath-Smith, Emily; Hovden, Robert; Jiang, Yi; Riccio, Mark; Muller, David A; Elser, Veit; Estroff, Lara A; Gruner, Sol M; Wiesner, Ulrich

    2013-08-02

    Hierarchical porous polymer materials are of increasing importance because of their potential application in catalysis, separation technology, or bioengineering. Examples for their synthesis exist, but there is a need for a facile yet versatile conceptual approach to such hierarchical scaffolds and quantitative characterization of their nonperiodic pore systems. Here, we introduce a synthesis method combining well-established concepts of macroscale spinodal decomposition and nanoscale block copolymer self-assembly with porosity formation on both length scales via rinsing with protic solvents. We used scanning electron microscopy, small-angle x-ray scattering, transmission electron tomography, and nanoscale x-ray computed tomography for quantitative pore-structure characterization. The method was demonstrated for AB- and ABC-type block copolymers, and resulting materials were used as scaffolds for calcite crystal growth.

  3. Rapid ordering of block copolymer thin films

    NASA Astrophysics Data System (ADS)

    Majewski, Pawel W.; Yager, Kevin G.

    2016-10-01

    Block-copolymers self-assemble into diverse morphologies, where nanoscale order can be finely tuned via block architecture and processing conditions. However, the ultimate usage of these materials in real-world applications may be hampered by the extremely long thermal annealing times—hours or days—required to achieve good order. Here, we provide an overview of the fundamentals of block-copolymer self-assembly kinetics, and review the techniques that have been demonstrated to influence, and enhance, these ordering kinetics. We discuss the inherent tradeoffs between oven annealing, solvent annealing, microwave annealing, zone annealing, and other directed self-assembly methods; including an assessment of spatial and temporal characteristics. We also review both real-space and reciprocal-space analysis techniques for quantifying order in these systems.

  4. Hierarchical Structures of a Multiblock Copolymer Melt

    NASA Astrophysics Data System (ADS)

    Li, Weihua; Shi, An-Chang

    2007-03-01

    Hierarchical structures of a multiblock copolymer melt are investigated using real-space self-consistent mean-field theory. The polymer, A(BC)nBA, is composed of three species A, B, and C. The parameter n indicates the number of short BC blocks with equal lengths. Hierarchical lamellar structures with parallel double periodicity have been observed in very recent experiments done by Masuda, et al. in this type of multiblock copolymer melts. These heirachical structures are reproduced in our one-dimensional calculations. We locate the transitions between hierarchical lamellar phase and single lamellar phase as the composition fA is varied for two types of hierarchical lamellae with five and seven thin layers, respectively. In addition, we explore hierarchical cylindrical structures using two-dimensional calculations.

  5. ``Sequence space soup'' of proteins and copolymers

    NASA Astrophysics Data System (ADS)

    Chan, Hue Sun; Dill, Ken A.

    1991-09-01

    To study the protein folding problem, we use exhaustive computer enumeration to explore ``sequence space soup,'' an imaginary solution containing the ``native'' conformations (i.e., of lowest free energy) under folding conditions, of every possible copolymer sequence. The model is of short self-avoiding chains of hydrophobic (H) and polar (P) monomers configured on the two-dimensional square lattice. By exhaustive enumeration, we identify all native structures for every possible sequence. We find that random sequences of H/P copolymers will bear striking resemblance to known proteins: Most sequences under folding conditions will be approximately as compact as known proteins, will have considerable amounts of secondary structure, and it is most probable that an arbitrary sequence will fold to a number of lowest free energy conformations that is of order one. In these respects, this simple model shows that proteinlike behavior should arise simply in copolymers in which one monomer type is highly solvent averse. It suggests that the structures and uniquenesses of native proteins are not consequences of having 20 different monomer types, or of unique properties of amino acid monomers with regard to special packing or interactions, and thus that simple copolymers might be designable to collapse to proteinlike structures and properties. A good strategy for designing a sequence to have a minimum possible number of native states is to strategically insert many P monomers. Thus known proteins may be marginally stable due to a balance: More H residues stabilize the desired native state, but more P residues prevent simultaneous stabilization of undesired native states.

  6. Viscoelastic Properties of Some Alkyl Disulfide Copolymers

    DTIC Science & Technology

    1963-12-01

    disulfide polymer in this paper. Polymer sheets were prepared by molding the rubber crumb in a hydraulic press. Ten second torsion modulus...DISULFIDE COPOLYMERS by ¥. J. MacKnight, M. Takahashi and A. V. Tobolsky Introduction Polysulfide polymers were the first synthetic rubbers produced in...Gaylord, ed., Interscience, New York, 1962, Chap. XIII, contains many references to the original literature. 2. Gee, G., Trans. Inst. Rubber Ind

  7. Critical adsorption of copolymer tethered on selective surfaces

    NASA Astrophysics Data System (ADS)

    Li, Hong; Qian, Chang-Ji; Luo, Meng-Bo

    2016-04-01

    Critical adsorption behaviors of flexible copolymer chains tethered to a flat homogeneous surface are studied by using Monte Carlo simulations. We have compared the critical adsorption temperature Tc, estimated by a finite-size scaling method, for different AB copolymer sequences with A the attractive monomer and B the inert monomer. We find that Tc increases with an increase in the fraction of monomers A, fA, in copolymers, and it increases with an increase in the length of block A for the same fA. In particular, Tc of copolymer (AnBn)r can be expressed as a function of the block length, n, and Tc of copolymer (AnB)r and (ABm)r can be expressed as a linear function of fA. Tc of random copolymer chains also can be expressed as a linear function of fA and it can be estimated by using weight-average of Tc of different diblocks in the random copolymer. However, the crossover exponent is roughly independent of AB sequence distributions either for block copolymers or for random copolymers.

  8. Asymmetric block copolymers for supramolecular templating of inorganic nanospace materials.

    PubMed

    Bastakoti, Bishnu Prasad; Li, Yunqi; Kimura, Tatsuo; Yamauchi, Yusuke

    2015-05-06

    This review focuses on polymeric micelles consisting of asymmetric block copolymers as designed templates for several inorganic nanospace materials with a wide variety of compositions. The presence of chemically distinct domains of asymmetric triblock and diblock copolymers provide self-assemblies with more diverse morphological and functional features than those constructed by EOn POm EOn type symmetric triblock copolymers, thereby affording well-designed nanospace materials. This strategy can produce unprecedented nanospace materials, which are very difficult to prepare through other conventional organic templating approaches. Here, the recent development on the synthesis of inorganic nanospace materials are mainly focused on, such as hollow spheres, tubes, and porous oxides, using asymmetric triblock copolymers.

  9. Comparing the morphology and phase diagram of H-shaped ABC block copolymers and linear ABC block copolymers.

    PubMed

    Ye, Xianggui; Yu, Xifei; Sun, Zhaoyan; An, Lijia

    2006-06-22

    By using a combinatorial screening method based on the self-consistent field theory (SCFT) for polymers, we have investigated the morphology of H-shaped ABC block copolymers (A2BC2) and compared them with those of the linear ABC block copolymers. By changing the ratios of the volume fractions of two A arms and two C arms, one can obtain block copolymers with different architectures ranging from linear block copolymer to H-shaped block copolymer. By systematically varying the volume fractions of block A, B, and C, the triangle phase diagrams of the H-shaped ABC block copolymer with equal interactions among the three species are constructed. In this study, we find four different morphologies (lamellar phase (LAM), hexagonal lattice phase (HEX), core-shell hexagonal lattice phase (CSH), and two interpenetrating tetragonal lattice (TET2)). Furthermore, the order-order transitions driven by architectural change are discussed.

  10. Genotyping markers used for multi locus VNTR analysis with ompA (MLVA-ompA) and multi sequence typing (MST) retain stability in Chlamydia trachomatis.

    PubMed

    Labiran, Clare; Clarke, Ian N; Cutcliffe, Lesley T; Wang, Yibing; Skilton, Rachel J; Persson, Kenneth; Bjartling, Carina; Herrmann, Björn; Christerson, Linus; Marsh, Peter

    2012-01-01

    We aimed to evaluate the stability of the Chlamydia trachomatis multi locus VNTR analysis (MLVA-ompA) and multi sequence typing (MST) systems through multiple passages in tissue culture. Firstly, we analyzed the stability of these markers through adaptation of C. trachomatis to tissue culture and secondly, we examined the stability of a four-locus MLVA-ompA and a five-locus MST system after multiple passages in tissue culture. Marker sequences were monitored through successive chlamydial developmental cycles to evaluate the stability of the individual DNA markers through many bacterial divisions and this, in turn, informed us of the usefulness of using such typing systems for short and long-term molecular epidemiology. Southampton genitourinary medicine (GUM) clinic isolates from endocervical swabs collected from C. trachomatis positive women were passaged through tissue culture. MLVA-ompA typing was applied to primary swab samples and to the same samples after C. trachomatis had been passaged through cell culture (eight passages). Sequence data from time-zero and passage-eight isolates were aligned with reference sequences to determine the stability of the markers. The Swedish new variant (nvCT) underwent 72 passages in cell culture and the markers of the two schemes were similarly analyzed. Analysis of genetic markers of the MLVA-ompA typing system before and after the isolates were introduced to tissue culture showed no change in the dominant sequence. The nvCT that had been passaged 72 times over the duration of a year also showed no variation in the dominant sequence for both the genotyping schemes. MLVA-ompA and MST markers are stable upon adaptation of C. trachomatis to tissue culture following isolation of strains from primary endocervical swab samples. These markers remain stable throughout multiple rounds of cell-division in tissue culture, concomitant with the incubation period and appearance of symptoms normally associated with host-infection. Both

  11. Block and Graft Copolymers of Polyhydroxyalkanoates

    NASA Astrophysics Data System (ADS)

    Marchessault, Robert H.; Ravenelle, François; Kawada, Jumpei

    2004-03-01

    Polyhydroxyalkanoates (PHAs) were modified for diblock copolymer and graft polymer by catalyzed transesterification in the melt and by chemical synthesis to extend the side chains of the PHAs, and the polymers were studied by transmission electron microscopy (TEM) X-ray diffraction, thermal analysis and nuclear magnetic resonance (NMR). Catalyzed transesterification in the melt is used to produce diblock copolymers of poly[3-hydroxybutyrate] (PHB) and monomethoxy poly[ethylene glycol] (mPEG) in a one-step process. The resulting diblock copolymers are amphiphilic and self-assemble into sterically stabilized colloidal suspensions of PHB crystalline lamellae. Graft polymer was synthesized in a two-step chemical synthesis from biosynthesized poly[3-hydroxyoctanoate-co-3-hydroxyundecenoate] (PHOU) containing ca. 25 mol chains. 11-mercaptoundecanoic acid reacts with the side chain alkenes of PHOU by the radical addition creating thioether linkage with terminal carboxyl functionalities. The latter groups were subsequently transformed into the amide or ester linkage by tridecylamine or octadecanol, respectively, producing new graft polymers. The polymers have different physical properties than poly[3-hydroxyoctanoate] (PHO) which is the main component of the PHOU, such as non-stickiness and higher thermal stability. The combination of biosynthesis and chemical synthesis produces a hybrid thermoplastic elastomer with partial biodegradability.

  12. Gyroid nickel nanostructures from diblock copolymer supramolecules.

    PubMed

    Vukovic, Ivana; Punzhin, Sergey; Voet, Vincent S D; Vukovic, Zorica; de Hosson, Jeff Th M; ten Brinke, Gerrit; Loos, Katja

    2014-04-28

    Nanoporous metal foams possess a unique combination of properties - they are catalytically active, thermally and electrically conductive, and furthermore, have high porosity, high surface-to-volume and strength-to-weight ratio. Unfortunately, common approaches for preparation of metallic nanostructures render materials with highly disordered architecture, which might have an adverse effect on their mechanical properties. Block copolymers have the ability to self-assemble into ordered nanostructures and can be applied as templates for the preparation of well-ordered metal nanofoams. Here we describe the application of a block copolymer-based supramolecular complex - polystyrene-block-poly(4-vinylpyridine)(pentadecylphenol) PS-b-P4VP(PDP) - as a precursor for well-ordered nickel nanofoam. The supramolecular complexes exhibit a phase behavior similar to conventional block copolymers and can self-assemble into the bicontinuous gyroid morphology with two PS networks placed in a P4VP(PDP) matrix. PDP can be dissolved in ethanol leading to the formation of a porous structure that can be backfilled with metal. Using electroless plating technique, nickel can be inserted into the template's channels. Finally, the remaining polymer can be removed via pyrolysis from the polymer/inorganic nanohybrid resulting in nanoporous nickel foam with inverse gyroid morphology.

  13. Gyroid Nickel Nanostructures from Diblock Copolymer Supramolecules

    PubMed Central

    Vukovic, Ivana; Punzhin, Sergey; Voet, Vincent S. D.; Vukovic, Zorica; de Hosson, Jeff Th. M.; ten Brinke, Gerrit; Loos, Katja

    2014-01-01

    Nanoporous metal foams possess a unique combination of properties - they are catalytically active, thermally and electrically conductive, and furthermore, have high porosity, high surface-to-volume and strength-to-weight ratio. Unfortunately, common approaches for preparation of metallic nanostructures render materials with highly disordered architecture, which might have an adverse effect on their mechanical properties. Block copolymers have the ability to self-assemble into ordered nanostructures and can be applied as templates for the preparation of well-ordered metal nanofoams. Here we describe the application of a block copolymer-based supramolecular complex - polystyrene-block-poly(4-vinylpyridine)(pentadecylphenol) PS-b-P4VP(PDP) - as a precursor for well-ordered nickel nanofoam. The supramolecular complexes exhibit a phase behavior similar to conventional block copolymers and can self-assemble into the bicontinuous gyroid morphology with two PS networks placed in a P4VP(PDP) matrix. PDP can be dissolved in ethanol leading to the formation of a porous structure that can be backfilled with metal. Using electroless plating technique, nickel can be inserted into the template's channels. Finally, the remaining polymer can be removed via pyrolysis from the polymer/inorganic nanohybrid resulting in nanoporous nickel foam with inverse gyroid morphology. PMID:24797367

  14. Crystallization in Ordered Polydisperse Polyolefin Diblock Copolymers

    SciTech Connect

    Li, Sheng; Register, Richard A.; Landes, Brian G.; Hustad, Phillip D.; Weinhold, Jeffrey D.

    2010-12-07

    The morphologies of polydisperse ethylene-octene diblock copolymers, synthesized via a novel coordinative chain transfer polymerization process, are examined using two-dimensional synchrotron small-angle and wide-angle X-ray scattering on flow-aligned specimens. The diblock copolymers comprise one amorphous block with high 1-octene content and one semicrystalline block with relatively low 1-octene content, and each block ideally exhibits the most-probable distribution. Near-symmetric diblocks with a sufficiently large octene differential between the amorphous and semicrystalline blocks show well-ordered lamellar domain structures with long periods exceeding 100 nm. Orientation of these domain structures persists through multiple melting/recrystallization cycles, reflecting a robust structure which self-assembles in the melt. The domain spacings are nearly 3-fold larger than those in near-monodisperse polyethylene block copolymers of similar molecular weights. Although the well-ordered lamellar domain structure established in the melt is preserved in the solid state, the crystallites are isotropic in orientation. These materials display crystallization kinetics consistent with a spreading growth habit, indicating that the lamellae do not confine or template the growing crystals. The exceptionally large domain spacings and isotropic crystal growth are attributed to interblock mixing resulting from the large polydispersity; short hard blocks dissolved in the soft-block-rich domains swell the domain spacing in the melt and allow hard block crystallization to proceed across the lamellar domain interfaces.

  15. Cavitation in block copolymer modified epoxy

    NASA Astrophysics Data System (ADS)

    Declet-Perez, Carmelo; Francis, Lorraine; Bates, Frank

    2013-03-01

    Today, brittleness in epoxy networks limits most commercial applications. Significant toughness can be imparted by adding small amounts of micelle forming block copolymers (BCP) without compromising critical properties such as high use temperature and modulus. Curing the network locks in the self-assembled BCP micellar structures formed in the monomer resin providing control of the resulting morphology. Despite significant research over the last decade, a complete description of the parameters influencing toughness in block copolymer modified epoxies is still lacking. In this presentation we compare the ultimate mechanical behavior of epoxies modified with spherical micelle forming BCP's containing rubbery and glassy cores using real-time in-situ small-angle X-ray scattering (SAXS) performed during tensile deformation. Striking differences in the 2D SAXS patterns were documented for epoxies modified with rubbery (PEP) versus glassy (PS) micelle cores. Rubbery cores dilate by 100% in volume upon specimen yielding, while the glassy micelle cores deform at approximately constant volume. These results provide direct evidence of a cavitation mediated mechanism for toughness in block copolymer modified epoxies. We further interpret characteristic butterfly features in the 2D SAXS patterns in terms of epoxy network deformation. Support was provided by the NSF sponsored MRSEC at the University of Minnesota

  16. Sulfur copolymers for infrared optical imaging

    NASA Astrophysics Data System (ADS)

    Namnabat, S.; Gabriel, J. J.; Pyun, J.; Norwood, R. A.; Dereniak, E. L.; van der Laan, J.

    2014-06-01

    The development of organic polymers with low infrared absorption has been investigated as a possible alternative to inorganic metal oxide, semiconductor, or chalcogenide-based materials for a variety of optical devices and components, such as lenses, goggles, thermal imaging cameras and optical fibers. In principle, organic-based polymers are attractive for these applications because of their low weight, ease of processing, mechanical toughness, and facile chemical variation using commercially available precursors. Herein we report on the optical characterization of a new class of sulfur copolymers that are readily moldable, transparent above 500 nm, possess high refractive index (n > 1.8) and take advantage of the low infrared absorption of S-S bonds for potential use in the mid-infrared at 3-5 microns. These materials are largely made from elemental sulfur by an inverse vulcanization process; in the current study we focus on the properties of a chemically stable, branched copolymer of poly(sulfur-random-1,3-diisopropenylbenzene) (poly(S-r- DIB). Copolymers with elemental sulfur content ranging from 50% to 80% by weight were studied by UV-VIS spectroscopy, FTIR, and prism coupling for refractive index measurement. Clear correlation between material composition and the optical properties was established, confirming that the high polarizability of the sulfur atom leads to high refractive index while also maintaining low optical loss in the infrared.

  17. Regulating block copolymer phases via selective homopolymers

    SciTech Connect

    Yang, Shuang E-mail: eqchen@pku.edu.cn; Lei, Zhen; Hu, Nan; Chen, Er-Qiang E-mail: eqchen@pku.edu.cn; Shi, An-Chang

    2015-03-28

    The phase behavior of strongly segregated AB diblock copolymer and selective C homopolymer blends is examined theoretically using a combination of strong stretching theory (SST) and self-consistent field theory (SCFT). The C-homopolymer is immiscible with the B-blocks but strongly attractive with the A-blocks. The effect of homopolymer content on the order-order phase transitions is analyzed. It is observed that, for AB diblock copolymers with majority A-blocks, the addition of the C-homopolymers results in lamellar to cylindrical to spherical phase transitions because of the A/C complexation. For diblock copolymers with minor A-blocks, adding C-homopolymers leads to transitions from spherical or cylindrical morphology with A-rich core to lamellae to inverted cylindrical and spherical morphologies with B-rich core. The results from analytical SST and numerical SCFT are in good agreement within most regions of the phase diagram. But the deviation becomes more obvious when the composition of A-blocks is too small and the content of added C-homopolymers is large enough, where the SCFT predicts a narrow co-existence region between different ordered phases. Furthermore, it is found that the phase behavior of the system is insensitive to the molecular weight of C-homopolymer.

  18. Comparing Fluid and Elastic Block Copolymer Shells

    NASA Astrophysics Data System (ADS)

    Rozairo, Damith; Croll, Andrew B.

    2014-03-01

    Emulsions can be stabilized with the addition of an amphiphilic diblock copolymer, resulting in droplets surrounded and protected by a polymer monolayer. Such droplets show considerable promise as advanced cargo carriers in pharmaceuticals or cosmetics due to their strength and responsiveness. Diblock copolymer interfaces remain mostly fluid and may not be able to attain the mechanical performance desired by industry. To strengthen block copolymer emulsion droplets we have developed a novel method for creating thin elastic shells using polystyrene-b-poly(acrylic acid)-b-polystyrene (PS-PAA-PS). Characterization of the fluid filled elastic shells is difficult with traditional means which lead us to develop a new and general method of mechanical measurement. Specifically, we use laser scanning confocal microscopy to achieve a high resolution measure of the deformation of soft spheres under the influence of gravity. To prove the resilience of the technique we examine both a polystyrene-b-poly(ethylene oxide) (PS-PEO) stabilized emulsion and the PS-PAA-PS emulsion. The mechanical measurement allows the physics of the polymer at the interface to be examined, which will ultimately lead to the rational development of these technologies.

  19. Are block copolymer worms more effective Pickering emulsifiers than block copolymer spheres?

    PubMed

    Thompson, K L; Mable, C J; Cockram, A; Warren, N J; Cunningham, V J; Jones, E R; Verber, R; Armes, S P

    2014-11-21

    RAFT-mediated polymerisation-induced self-assembly (PISA) is used to prepare six types of amphiphilic block copolymer nanoparticles which were subsequently evaluated as putative Pickering emulsifiers for the stabilisation of n-dodecane-in-water emulsions. It was found that linear poly(glycerol monomethacrylate)-poly(2-hydroxypropyl methacrylate) (PGMA-PHPMA) diblock copolymer spheres and worms do not survive the high shear homogenisation conditions used for emulsification. Stable emulsions are obtained, but the copolymer acts as a polymeric surfactant; individual chains rather than particles are adsorbed at the oil-water interface. Particle dissociation during emulsification is attributed to the weakly hydrophobic character of the PHPMA block. Covalent stabilisation of these copolymer spheres or worms can be readily achieved by addition of ethylene glycol dimethacrylate (EGDMA) during the PISA synthesis. TEM studies confirm that the resulting cross-linked spherical or worm-like nanoparticles survive emulsification and produce genuine Pickering emulsions. Alternatively, stabilisation can be achieved by either replacing or supplementing the PHPMA block with the more hydrophobic poly(benzyl methacrylate) (PBzMA). The resulting linear spheres or worms also survive emulsification and produce stable n-dodecane-in-water Pickering emulsions. The intrinsic advantages of anisotropic worms over isotropic spheres for the preparation of Pickering emulsions are highlighted. The former particles are more strongly adsorbed at similar efficiencies compared to spheres and also enable smaller oil droplets to be produced for a given copolymer concentration. The scalable nature of PISA formulations augurs well for potential applications of anisotropic block copolymer nanoparticles as Pickering emulsifiers.

  20. Knowledge and regularity in planning

    NASA Technical Reports Server (NTRS)

    Allen, John A.; Langley, Pat; Matwin, Stan

    1992-01-01

    The field of planning has focused on several methods of using domain-specific knowledge. The three most common methods, use of search control, use of macro-operators, and analogy, are part of a continuum of techniques differing in the amount of reused plan information. This paper describes TALUS, a planner that exploits this continuum, and is used for comparing the relative utility of these methods. We present results showing how search control, macro-operators, and analogy are affected by domain regularity and the amount of stored knowledge.

  1. 21 CFR 177.1310 - Ethylene-acrylic acid copolymers.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Ethylene-acrylic acid copolymers. 177.1310 Section... Use Food Contact Surfaces § 177.1310 Ethylene-acrylic acid copolymers. The ethylene-acrylic acid... for use in contact with food subject to the provisions of this section. (a) The ethylene-acrylic acid...

  2. Piezoelectric Properties of Non-Polar Block Copolymers

    SciTech Connect

    Pester, Christian; Ruppel, Markus A; Schoberth, Heiko; Schmidt, K.; Liedel, Clemens; Van Rijn, Patrick; Littrell, Ken; Schindler, Kerstin; Hiltl, Stephanie; Czubak, Thomas; Mays, Jimmy; Urban, Volker S; Boker, Alexander

    2011-01-01

    Piezoelectric properties in non-polar block copolymers are a novelty in the field of electroactive polymers. The piezoelectric susceptibility of poly(styrene-b-isoprene) block copolymer lamellae is found to be up to an order of magnitude higher when compared to classic piezoelectric materials. The electroactive response increases with temperature and is found to be strongest in the disordered phase.

  3. 21 CFR 177.1211 - Cross-linked polyacrylate copolymers.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... polyacrylate copolymers consist of: (1) The grafted copolymer of cross-linked sodium polyacrylate identified as 2-propenoic acid, polymers with N,N-di-2-propenyl-2-propen-1-amine and hydrolyzed polyvinyl acetate, sodium salts, graft (CAS Reg. No. 166164-74-5); or (2) 2-propenoic acid, polymer with 2-ethyl-2-(((1-oxo...

  4. 21 CFR 177.1211 - Cross-linked polyacrylate copolymers.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... polyacrylate copolymers consist of: (1) The grafted copolymer of cross-linked sodium polyacrylate identified as 2-propenoic acid, polymers with N,N-di-2-propenyl-2-propen-1-amine and hydrolyzed polyvinyl acetate, sodium salts, graft (CAS Reg. No. 166164-74-5); or (2) 2-propenoic acid, polymer with 2-ethyl-2-(((1-oxo...

  5. 21 CFR 177.1211 - Cross-linked polyacrylate copolymers.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... grafted copolymer of cross-linked sodium polyacrylate identified as 2-propenoic acid, polymers with N,N-di-2-propenyl-2-propen-1-amine and hydrolyzed polyvinyl acetate, sodium salts, graft (CAS Reg. No...-propanediyl di-2-propenoate and sodium 2-propenoate (CAS Reg. No. 76774-25-9). (b) Adjuvants. The copolymers...

  6. 21 CFR 177.1211 - Cross-linked polyacrylate copolymers.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... polyacrylate copolymers consist of: (1) The grafted copolymer of cross-linked sodium polyacrylate identified as 2-propenoic acid, polymers with N,N-di-2-propenyl-2-propen-1-amine and hydrolyzed polyvinyl acetate, sodium salts, graft (CAS Reg. No. 166164-74-5); or (2) 2-propenoic acid, polymer with 2-ethyl-2-(((1-oxo...

  7. 21 CFR 177.1211 - Cross-linked polyacrylate copolymers.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... polyacrylate copolymers consist of: (1) The grafted copolymer of cross-linked sodium polyacrylate identified as 2-propenoic acid, polymers with N,N-di-2-propenyl-2-propen-1-amine and hydrolyzed polyvinyl acetate, sodium salts, graft (CAS Reg. No. 166164-74-5); or (2) 2-propenoic acid, polymer with 2-ethyl-2-(((1-oxo...

  8. Morphological studies on block copolymer modified PA 6 blends

    NASA Astrophysics Data System (ADS)

    Poindl, M.; Bonten, C.

    2014-05-01

    Recent studies show that compounding polyamide 6 (PA 6) with a PA 6 polyether block copolymers made by reaction injection molding (RIM) or continuous anionic polymerization in a reactive extrusion process (REX) result in blends with high impact strength and high stiffness compared to conventional rubber blends. In this paper, different high impact PA 6 blends were prepared using a twin screw extruder. The different impact modifiers were an ethylene propylene copolymer, a PA PA 6 polyether block copolymer made by reaction injection molding and one made by reactive extrusion. To ensure good particle matrix bonding, the ethylene propylene copolymer was grafted with maleic anhydride (EPR-g-MA). Due to the molecular structure of the two block copolymers, a coupling agent was not necessary. The block copolymers are semi-crystalline and partially cross-linked in contrast to commonly used amorphous rubbers which are usually uncured. The combination of different analysis methods like atomic force microscopy (AFM), transmission electron microscopy (TEM) and scanning electron microscopy (SEM) gave a detailed view in the structure of the blends. Due to the partial cross-linking, the particles of the block copolymers in the blends are not spherical like the ones of ethylene propylene copolymer. The differences in molecular structure, miscibility and grafting of the impact modifiers result in different mechanical properties and different blend morphologies.

  9. Morphological studies on block copolymer modified PA 6 blends

    SciTech Connect

    Poindl, M. E-mail: christian.bonten@ikt.uni-stuttgart.de; Bonten, C. E-mail: christian.bonten@ikt.uni-stuttgart.de

    2014-05-15

    Recent studies show that compounding polyamide 6 (PA 6) with a PA 6 polyether block copolymers made by reaction injection molding (RIM) or continuous anionic polymerization in a reactive extrusion process (REX) result in blends with high impact strength and high stiffness compared to conventional rubber blends. In this paper, different high impact PA 6 blends were prepared using a twin screw extruder. The different impact modifiers were an ethylene propylene copolymer, a PA PA 6 polyether block copolymer made by reaction injection molding and one made by reactive extrusion. To ensure good particle matrix bonding, the ethylene propylene copolymer was grafted with maleic anhydride (EPR-g-MA). Due to the molecular structure of the two block copolymers, a coupling agent was not necessary. The block copolymers are semi-crystalline and partially cross-linked in contrast to commonly used amorphous rubbers which are usually uncured. The combination of different analysis methods like atomic force microscopy (AFM), transmission electron microscopy (TEM) and scanning electron microscopy (SEM) gave a detailed view in the structure of the blends. Due to the partial cross-linking, the particles of the block copolymers in the blends are not spherical like the ones of ethylene propylene copolymer. The differences in molecular structure, miscibility and grafting of the impact modifiers result in different mechanical properties and different blend morphologies.

  10. Alternation and tunable composition in hydrogen bonded supramolecular copolymers.

    PubMed

    Felder, Thorsten; de Greef, Tom F A; Nieuwenhuizen, Marko M L; Sijbesma, Rint P

    2014-03-07

    Sequence control in supramolecular copolymers is limited by the selectivity of the associating monomer end groups. Here we introduce the use of monomers with aminopyrimidinone and aminohydroxynaphthyridine quadruple hydrogen bonding end groups, which both homodimerize, but form even stronger heterodimers. These features allow the formation of supramolecular copolymers with a tunable composition and a preference for alternating sequences.

  11. 21 CFR 177.1320 - Ethylene-ethyl acrylate copolymers.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... blended with polyethylene or with one or more olefin copolymers complying with § 177.1520 or with a mixture of polyethylene and one or more olefin copolymers, in such proportions that the ethyl acrylate... prescribed in paragraph (c)(2) of this section, when tested by the methods prescribed for polyethylene...

  12. 21 CFR 177.1320 - Ethylene-ethyl acrylate copolymers.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... percent by weight unless it is blended with polyethylene or with one or more olefin copolymers complying with § 177.1520 or with a mixture of polyethylene and one or more olefin copolymers, in such... prescribed for polyethylene in § 177.1520. (1) Specifications—(i) Infrared identification....

  13. Block Copolymer Directed Assembly for Nanomaterials and Nanodevices

    NASA Astrophysics Data System (ADS)

    Kim, Sang

    2013-03-01

    Block copolymer nanopatterning is a promising technology that can complement the inherent limitations of conventional photolithography. The spontaneous and parallel assembly of block copolymers may generate densely packed, periodic 10-nm-scale nanodomains in a scalable way. Furthermore, laterally ordered, device-oriented nanostructures are attainable by the directed self-assembly principles employing prepatterned substrates. In this presentation, the overview of my research achievements associated to block copolymer nanopatterning will be presented. My research group demonstrated the world-first successful integration of block copolymer nanopatterning with 193 nm ArF lithography. We also developed soft-graphoepitaxy, which generates highly aligned nanoscale metal and semiconductor nanostructures without any trace of structure-directing topographic pattern. Soft-graphoepitaxy could be further developed to ultralarge-area nanopatterning, where micrometer scale photoresist pattern can be completely transformed into large-area block copolymer nanopattern. My research group also developed various pattern transfer methods for block copolymer nanopatterning. Mussel-inspired block copolymer nanopatterning exploiting universal natural adhesive of mussel polydopamine enables the nanopatterning of low surface energy materials, such as gold, Teflon and graphene. Our recent transferrable and flexible nanopatterning employing chemically modified graphene films as pattern substrates makes it possible to apply block copolymer nanopatterning onto arbitrary nonplanar and flexible geometries and generates ideal three-dimensional assembly of carbon nanotubes and graphene.

  14. 40 CFR 721.10213 - Polyether polyester copolymer phosphate (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... phosphate (generic). 721.10213 Section 721.10213 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.10213 Polyether polyester copolymer phosphate (generic). (a) Chemical... as polyether polyester copolymer phosphate (PMN P-09-253) is subject to reporting under this section...

  15. 40 CFR 721.10213 - Polyether polyester copolymer phosphate (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... phosphate (generic). 721.10213 Section 721.10213 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.10213 Polyether polyester copolymer phosphate (generic). (a) Chemical... as polyether polyester copolymer phosphate (PMN P-09-253) is subject to reporting under this section...

  16. 40 CFR 721.10213 - Polyether polyester copolymer phosphate (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... phosphate (generic). 721.10213 Section 721.10213 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.10213 Polyether polyester copolymer phosphate (generic). (a) Chemical... as polyether polyester copolymer phosphate (PMN P-09-253) is subject to reporting under this section...

  17. 40 CFR 721.10213 - Polyether polyester copolymer phosphate (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... phosphate (generic). 721.10213 Section 721.10213 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.10213 Polyether polyester copolymer phosphate (generic). (a) Chemical... as polyether polyester copolymer phosphate (PMN P-09-253) is subject to reporting under this section...

  18. Block Copolymers for Alkaline Fuel Cell Membrane Materials

    DTIC Science & Technology

    2014-07-30

    113 CHAPTER 5 MONO METHOXY POLY( ETHYLENE GLYCOL) GRAFTED BLOCK COPOLYMERS FOR ALKALINE EXCHANGE MEMBRANE...polystyrene-poly( ethylene -co-butylene)-polystyrene (SEBS) copolymer.[37, 42] Chloromethylation of the polystyrene block and trimethylamine...temperature. The same graft and functionalization strategy was applied to poly( ethylene -co- tetrafluoroethylene) (ETFE) film leading to a promising

  19. Light-emitting block copolymers composition, process and use

    DOEpatents

    Ferraris, John P.; Gutierrez, Jose J.

    2006-11-14

    Generally, and in one form, the present invention is a composition of light-emitting block copolymer. In another form, the present invention is a process producing a light-emitting block copolymers that intends polymerizing a first di(halo-methyl) aromatic monomer compound in the presence of an anionic initiator and a base to form a polymer and contacting a second di(halo-methyl) aromatic monomer compound with the polymer to form a homopolymer or block copolymer wherein the block copolymer is a diblock, triblock, or star polymer. In yet another form, the present invention is an electroluminescent device comprising a light-emitting block copolymer, wherein the electroluminescent device is to be used in the manufacturing of optical and electrical devices.

  20. Block Copolymer Metastability: Scientific Nightmare or Engineering Dream?

    NASA Astrophysics Data System (ADS)

    Bates, Frank S.

    1997-03-01

    Most experimental studies and almost all theories that deal with block copolymers, or mixtures of block copolymers and homopolymers, have been designed from an equilibrium perspective. Yet a myriad of factors conspire to retard approach to equilibrium in these systems, including: subtle features in the free energy surface that are controlled by ordered state symmetry; a coupling between microphase separation and entanglement dynamics; complex molecular architectures such as multiblock, starblock, and miktoarm. Even unentangled low molecular weight diblock copolymers, the simplest and dynamically least encumbered materials, exhibit long-lived metastable states that confound attempts to validate equilibrium theories. However, this apparent dilemma can be exploited through clever processing strategies. This lecture will address two opposing consequences of block copolymer metastability. The first is a potential nightmare: Can we ever establish universal block copolymer phase diagrams? The second is the stuff of dreams: Self-assembled thermoset nanocomposites.

  1. Electric Field Induced Selective Disordering in Lamellar Block Copolymers

    SciTech Connect

    Ruppel, Markus A; Pester, Christian W; Langner, Karol M; Sevink, Geert; Schoberth, Heiko; Schmidt, Kristin; Urban, Volker S; Mays, Jimmy; Boker, Alexander

    2013-01-01

    External electric fields align nanostructured block copolymers by either rotation of grains or nucleation and growth depending on how strongly the chemically distinct block copolymer components are segregated. In close vicinity to the orderdisorder transition, theory and simulations suggest a third mechanism: selective disordering. We present a time-resolved small-angle X-ray scattering study that demonstrates how an electric field can indeed selectively disintegrate ill-aligned lamellae in a lyotropic block copolymer solution, while lamellae with interfaces oriented parallel to the applied field prevail. The present study adds an additional mechanism to the experimentally corroborated suite of mechanistic pathways, by which nanostructured block copolymers can align with an electric field. Our results further unveil the benefit of electric field assisted annealing for mitigating orientational disorder and topological defects in block copolymer mesophases, both in close vicinity to the orderdisorder transition and well below it.

  2. Electric field induced selective disordering in lamellar block copolymers.

    PubMed

    Ruppel, Markus; Pester, Christian W; Langner, Karol M; Sevink, Geert J A; Schoberth, Heiko G; Schmidt, Kristin; Urban, Volker S; Mays, Jimmy W; Böker, Alexander

    2013-05-28

    External electric fields align nanostructured block copolymers by either rotation of grains or nucleation and growth depending on how strongly the chemically distinct block copolymer components are segregated. In close vicinity to the order-disorder transition, theory and simulations suggest a third mechanism: selective disordering. We present a time-resolved small-angle X-ray scattering study that demonstrates how an electric field can indeed selectively disintegrate ill-aligned lamellae in a lyotropic block copolymer solution, while lamellae with interfaces oriented parallel to the applied field prevail. The present study adds an additional mechanism to the experimentally corroborated suite of mechanistic pathways, by which nanostructured block copolymers can align with an electric field. Our results further unveil the benefit of electric field assisted annealing for mitigating orientational disorder and topological defects in block copolymer mesophases, both in close vicinity to the order-disorder transition and well below it.

  3. In situ-Gelling, Erodible N-Isopropylacrylamide Copolymers

    PubMed Central

    Lee, Bae Hoon; Vernon, Brent

    2005-01-01

    Summary Copolymers of N-isopropylacrylamide, 2-hydroxyethyl methacryl lactate and acrylic acid were prepared with varying mole ratios of monomers to develop copolymers with gelation properties above a certain concentration for a bioerodible, in-situ gelling material. The copolymers formed gels in situ under physiological condition. The gelation temperature of the copolymers decreased as the HEMA-lactate content of the copolymers increased due to the hydrophobicity of HEMA-lactate, and increased as the AAc content increased due to the hydrophilicity of AAc. The gels redissolve at 37 °C as their LCSTs increase above 37°C due to the hydrolysis of the HEMA-lactate pendant groups. PMID:15997439

  4. Fabrication routes for one-dimensional nanostructures via block copolymers

    NASA Astrophysics Data System (ADS)

    Tharmavaram, Maithri; Rawtani, Deepak; Pandey, Gaurav

    2017-05-01

    Nanotechnology is the field which deals with fabrication of materials with dimensions in the nanometer range by manipulating atoms and molecules. Various synthesis routes exist for the one, two and three dimensional nanostructures. Recent advancements in nanotechnology have enabled the usage of block copolymers for the synthesis of such nanostructures. Block copolymers are versatile polymers with unique properties and come in many types and shapes. Their properties are highly dependent on the blocks of the copolymers, thus allowing easy tunability of its properties. This review briefly focusses on the use of block copolymers for synthesizing one-dimensional nanostructures especially nanowires, nanorods, nanoribbons and nanofibers. Template based, lithographic, and solution based approaches are common approaches in the synthesis of nanowires, nanorods, nanoribbons, and nanofibers. Synthesis of metal, metal oxides, metal oxalates, polymer, and graphene one dimensional nanostructures using block copolymers have been discussed as well.

  5. N-halamine copolymers for use in antimicrobial paints.

    PubMed

    Kocer, Hasan B; Cerkez, Idris; Worley, S D; Broughton, R M; Huang, T S

    2011-08-01

    A series of copolymers containing units of a novel hydantoinylacrylamide and the sodium salt of 2-(acrylamido)-2-methylpropanesulfonic acid have been synthesized. The homopolymer of the hydantoinylacrylamide compound was insoluble in water, while the copolymers with the sulfonic acid sodium salt were water-dispersible/soluble, with the solution becoming completely transparent when the feed ratio for the copolymer contained 7 parts of the hydantoin moiety to 3 parts of the sodium sulfonate moiety. The polymers were added into a commercial water-based latex paint, and upon drying, the painted surfaces treated with the water-miscible copolymers were rendered antimicrobial following chlorination with dilute household bleach. The chlorinated homopolymer failed to provide an antimicrobial property for the paint because of its tendency to isolate into aggregates in the paint, while the completely miscible copolymers were capable of 6-log inactivation of Staphylococcus aureus and Escherichia coli O157:H7 within 5 min of contact time.

  6. First-principles investigation of PVDF and its copolymers

    NASA Astrophysics Data System (ADS)

    Ranjan, V.; Yu, Liping; Buongiorno Nardelli, Marco; Bernholc, J.

    2009-03-01

    Recently, PVDF and its copolymers have generated significant interest due to their electroactive properties [1] and potential for ultra-high energy-storage applications [2]. In this talk, we present the results of first-principles calculations of stable phases and dielectric properties of different copolymers and terpolymers of PVDF at varying concentrations. Our results show that at very high concentrations of Chloro-trifluoroethylene (CTFE), PVDF/CTFE displays sharp transitions between non-polar (α) and polar (β) phases. On the contrary, the same transitions in copolymers with trifluoroethylene (TrFE) and tetrafluoroethylene (TeFE) are not sharp and happen at lower concentrations. We discuss the interplay of copolymer admixture on the dielectric properties of PVDF and discuss the suitability of copolymers for energy storage and electroactive applications. [1] S. G. Lu et al., App. Phys. Lett. 93, 042905 (2008). [2] V. Ranjan et al., Phys. Rev. Lett. 99, 047801 (2007).

  7. Poly(methyl methacrylate)-cellulose nitrate copolymers. I. Preparation

    SciTech Connect

    Badran, B.M.; Sherif, S.; Abu-Sedira, A.A.

    1981-03-01

    Poly(methyl methacrylate)-cellulose nitrate copolymers were prepared in the form of rods and sheets by bulk polymerization using benzoyl peroxide as initiator. Suspension polymerization did not succeed in preparing poly(methyl methacrylate)-cellulose nitrate copolymers, especially when cellulose nitrate of 11.4% nitrogen content was used. The parameters such as cellulose nitrate concentration, nitrogen content of cellulose nitrate, the amount of initiator and the reaction time, and the temperature are discussed. The prepared copolymers were irradiated for specified periods of up to 11.83 Mrad. It was found that poly(methyl methacrylate)-cellulose nitrate copolymers did not dissolve in any conventional solvent, but they swelled. Swelling decreases with increasing cellulose nitrate concentrations, nitrogen content of cellulose nitrate, and irradiation dose, indicating the crosslinked structure of the prepared copolymers.

  8. Phase behavior of block copolymers in compressed carbon dioxide and as single domain-layer, nanolithographic etch resists for sub-10 nm pattern transfer

    NASA Astrophysics Data System (ADS)

    Chandler, Curran Matthew

    Diblock copolymers have many interesting properties, which first and foremost include their ability to self-assemble into various ordered, regularly spaced domains with nanometer-scale feature sizes. The work in this dissertation can be logically divided into two parts -- the first and the majority of this work describes the phase behavior of certain block copolymer systems, and the second discusses real applications possible with block copolymer templates. Many compressible fluids have solvent-like properties dependent on fluid pressure and can be used as processing aids similar to liquid solvents. Here, compressed CO2 was shown to swell several thin homopolymer films, including polystyrene and polyisoprene, as measured by high pressure ellipsometry at elevated temperatures and pressures. The ellipsometric technique was modified to produce accurate data at these conditions through a custom pressure vessel design. The order-disorder transition (ODT) temperatures of several poly(styrene-bisoprene) diblock copolymers were also investigated by static birefringence when dilated with compressed CO2. Sorption of CO2 in each copolymer resulted in significant depressions of the ODT temperature as a function of fluid pressure, and the data above was used to estimate the quantitative amount of solvent in each of the diblock copolymers. These depressions were not shown to follow dilution approximation, and showed interesting, exaggerated scaling of the ODT at near-bulk polymer concentrations. The phase behavior of block copolymer surfactants was studied when blended with polymer or small molecule additives capable of selective hydrogen bonds. This work used small angle X-ray scattering (SAXS) to identify several low molecular weight systems with strong phase separation and ordered domains as small as 2--3 nanometers upon blending. One blend of a commercially-available surfactant with a small molecule additive was further developed and showed promise as a thin-film pattern

  9. MAXIMAL POINTS OF A REGULAR TRUTH FUNCTION

    DTIC Science & Technology

    Every canonical linearly separable truth function is a regular function, but not every regular truth function is linearly separable. The most...promising method of determining which of the regular truth functions are linearly separable r quires finding their maximal and minimal points. In this...report is developed a quick, systematic method of finding the maximal points of any regular truth function in terms of its arithmetic invariants. (Author)

  10. Natural frequency of regular basins

    NASA Astrophysics Data System (ADS)

    Tjandra, Sugih S.; Pudjaprasetya, S. R.

    2014-03-01

    Similar to the vibration of a guitar string or an elastic membrane, water waves in an enclosed basin undergo standing oscillatory waves, also known as seiches. The resonant (eigen) periods of seiches are determined by water depth and geometry of the basin. For regular basins, explicit formulas are available. Resonance occurs when the dominant frequency of external force matches the eigen frequency of the basin. In this paper, we implement the conservative finite volume scheme to 2D shallow water equation to simulate resonance in closed basins. Further, we would like to use this scheme and utilizing energy spectra of the recorded signal to extract resonant periods of arbitrary basins. But here we first test the procedure for getting resonant periods of a square closed basin. The numerical resonant periods that we obtain are comparable with those from analytical formulas.

  11. Regularized degenerate multi-solitons

    NASA Astrophysics Data System (ADS)

    Correa, Francisco; Fring, Andreas

    2016-09-01

    We report complex {P}{T} -symmetric multi-soliton solutions to the Korteweg de-Vries equation that asymptotically contain one-soliton solutions, with each of them possessing the same amount of finite real energy. We demonstrate how these solutions originate from degenerate energy solutions of the Schrödinger equation. Technically this is achieved by the application of Darboux-Crum transformations involving Jordan states with suitable regularizing shifts. Alternatively they may be constructed from a limiting process within the context Hirota's direct method or on a nonlinear superposition obtained from multiple Bäcklund transformations. The proposed procedure is completely generic and also applicable to other types of nonlinear integrable systems.

  12. Rule extraction by successive regularization.

    PubMed

    Ishikawa, M

    2000-12-01

    Knowledge acquisition is, needless to say, important, because it is a key to the solution to one of the bottlenecks in artificial intelligence. Recently, knowledge acquisition using neural networks, called rule extraction, is attracting wide attention because of its computational simplicity and ability to generalize. Proposed in this paper is a novel approach to rule extraction named successive regularization. It generates a small number of dominant rules at an earlier stage and less dominant rules or exceptions at later stages. It has various advantages such as robustness of computation, better understanding, and similarity to child development. It is applied to the classification of mushrooms, the recognition of promoters in DNA sequences and the classification of irises. Empirical results indicate superior performance of rule extraction in terms of the number and the size of rules for explaining data.

  13. Ionization of amphiphilic acidic block copolymers.

    PubMed

    Colombani, Olivier; Lejeune, Elise; Charbonneau, Céline; Chassenieux, Christophe; Nicolai, Taco

    2012-06-28

    The ionization behavior of an amphiphilic diblock copolymer poly(n-butyl acrylate(50%)-stat-acrylic acid(50%))(100)-block-poly(acrylic acid)(100) (P(nBA(50%)-stat-AA(50%))(100)-b-PAA(100), DH50) and of its equivalent triblock copolymer P(nBA(50%)-stat-AA(50%))(100)-b-PAA(200)-b-P(nBA(50%)-stat-AA(50%))(100) (TH50) were studied by potentiometric titration either in pure water or in 0.5 M NaCl. These polymers consist of a hydrophilic acidic block (PAA) connected to a hydrophobic block, P(nBA(50%)-stat-AA(50%))(100), whose hydrophobic character has been mitigated by copolymerization with hydrophilic units. We show that all AA units, even those in the hydrophobic block could be ionized. However, the AA units within the hydrophobic block were less acidic than those in the hydrophilic block, resulting in the preferential ionization of the latter block. The preferential ionization of PAA over that of P(nBA(50%)-stat-AA(50%))(100) was stronger at higher ionic strength. Remarkably, the covalent bonds between the PAA and P(nBA(50%)-stat-AA(50%))(100) blocks in the diblock or the triblock did not affect the ionization of each block, although the self-association of the block copolymers into spherical aggregates modified the environment of the PAA blocks compared to when PAA was molecularly dispersed.

  14. Some Cosine Relations and the Regular Heptagon

    ERIC Educational Resources Information Center

    Osler, Thomas J.; Heng, Phongthong

    2007-01-01

    The ancient Greek mathematicians sought to construct, by use of straight edge and compass only, all regular polygons. They had no difficulty with regular polygons having 3, 4, 5 and 6 sides, but the 7-sided heptagon eluded all their attempts. In this article, the authors discuss some cosine relations and the regular heptagon. (Contains 1 figure.)

  15. Regular Pentagons and the Fibonacci Sequence.

    ERIC Educational Resources Information Center

    French, Doug

    1989-01-01

    Illustrates how to draw a regular pentagon. Shows the sequence of a succession of regular pentagons formed by extending the sides. Calculates the general formula of the Lucas and Fibonacci sequences. Presents a regular icosahedron as an example of the golden ratio. (YP)

  16. 22 CFR 120.39 - Regular employee.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 22 Foreign Relations 1 2013-04-01 2013-04-01 false Regular employee. 120.39 Section 120.39 Foreign Relations DEPARTMENT OF STATE INTERNATIONAL TRAFFIC IN ARMS REGULATIONS PURPOSE AND DEFINITIONS § 120.39 Regular employee. (a) A regular employee means for purposes of this subchapter: (1) An...

  17. 22 CFR 120.39 - Regular employee.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 22 Foreign Relations 1 2014-04-01 2014-04-01 false Regular employee. 120.39 Section 120.39 Foreign Relations DEPARTMENT OF STATE INTERNATIONAL TRAFFIC IN ARMS REGULATIONS PURPOSE AND DEFINITIONS § 120.39 Regular employee. (a) A regular employee means for purposes of this subchapter: (1) An...

  18. 22 CFR 120.39 - Regular employee.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 22 Foreign Relations 1 2012-04-01 2012-04-01 false Regular employee. 120.39 Section 120.39 Foreign Relations DEPARTMENT OF STATE INTERNATIONAL TRAFFIC IN ARMS REGULATIONS PURPOSE AND DEFINITIONS § 120.39 Regular employee. (a) A regular employee means for purposes of this subchapter: (1) An...

  19. Nanostructured Block Copolymer Coatings for Biofouling Inhibition

    DTIC Science & Technology

    2015-06-30

    we hoped. Inhibition, but not highly tunable by change of MW ratio The inhibition of diatoms by the diblocks was not significant (See figure 13). M...OH O a. £ o EC o a. in £ 0 Cu Figure 13 - The initial attachment density of the diatom Navicula on PS-b-PMMA coatings after gentle...washing on glass-nylon supports. Diatom Settlement: no effect of diblock copolymer We did have some success with triblocks, and that work is on-going. We

  20. Corrugational Instabilities of Thin Copolymer Films

    NASA Astrophysics Data System (ADS)

    Williams, D. R. M.

    1995-07-01

    We study the equilibrium configurations of thin films of diblock copolymers, in the strong segregation limit, resting on a flat surface. The top surface is free. Such films are geometrically frustrated and possess an inherent strain. Here we show how this strain induces an undulational instability in the film. The existence of this instability is very sensitive to the chain end distribution within the bilayers, and a macroscopic observation of this instability on a length scale of 1000 Å gives an indication of the chain end distribution on the scale of 5 Å.

  1. Small domain-size multiblock copolymer electrolytes

    DOEpatents

    Pistorino, Jonathan; Eitouni, Hany Basam

    2016-09-20

    New block polymer electrolytes have been developed which have higher conductivities than previously reported for other block copolymer electrolytes. The new materials are constructed of multiple blocks (>5) of relatively low domain size. The small domain size provides greater protection against formation of dendrites during cycling against lithium in an electrochemical cell, while the large total molecular weight insures poor long range alignment, which leads to higher conductivity. In addition to higher conductivity, these materials can be more easily synthesized because of reduced requirements on the purity level of the reagents.

  2. 21 CFR 177.1340 - Ethylene-methyl acrylate copolymer resins.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Ethylene-methyl acrylate copolymer resins. 177... Repeated Use Food Contact Surfaces § 177.1340 Ethylene-methyl acrylate copolymer resins. Ethylene-methyl... section, the ethylene-methyl acrylate copolymer resins consist of basic copolymers produced by...

  3. Multidimensional chromatographic techniques for hydrophilic copolymers II. Analysis of poly(ethylene glycol)-poly(vinyl acetate) graft copolymers.

    PubMed

    Knecht, Daniela; Rittig, Frank; Lange, Ronald F M; Pasch, Harald

    2006-10-13

    A large variety of hydrophilic copolymers is applied in different fields of chemical industry including bio, pharma and pharmaceutical applications. For example, poly(ethylene glycol)-poly(vinyl alcohol) graft copolymers that are used as tablet coatings are responsible for the controlled release of the active compounds. These copolymers are produced by grafting of vinyl acetate onto polyethylene glycol (PEG) and subsequent hydrolysis of the poly(ethylene glycol)-poly(vinyl acetate) graft copolymers. The poly(ethylene glycol)-poly(vinyl acetate) copolymers are distributed with regard to molar mass and chemical composition. In addition, they frequently contain the homopolymers polyethylene glycol and polyvinyl acetate. The comprehensive analysis of such complex systems requires hyphenated analytical techniques, including two-dimensional liquid chromatography and combined LC and nuclear magnetic resonance spectroscopy. The development and application of these techniques are discussed in the present paper.

  4. Multiple patterns of diblock copolymer confined in irregular geometries with soft surface

    NASA Astrophysics Data System (ADS)

    Li, Ying; Sun, Min-Na; Zhang, Jin-Jun; Pan, Jun-Xing; Guo, Yu-Qi; Wang, Bao-Feng; Wu, Hai-Shun

    2015-12-01

    The different confinement shapes can induce the formation of various interesting and novel morphologies, which might inspire potential applications of materials. In this paper, we study the directed self-assembly of diblock copolymer confined in irregular geometries with a soft surface by using self-consistent field theory. Two types of confinement geometries are considered, namely, one is the concave pore with one groove and the other is the concave pore with two grooves. We obtain more novel and different structures which could not be produced in other two-dimensional (2D) confinements. Comparing these new structures with those obtained in regular square confinement, we find that the range of ordered lamellae is enlarged and the range of disordered structure is narrowed down under the concave pore confinement. We also compare the different structures obtained under the two types of confinement geometries, the results show that the effect of confinement would increase, which might induce the diblock copolymer to form novel structures. We construct the phase diagram as a function of the fraction of B block and the ratio of h/L of the groove. The simulation reveals that the wetting effect of brushes and the shape of confinement geometries play important roles in determining the morphologies of the system. Our results improve the applications in the directed self-assembly of diblock copolymer for fabricating the irregular structures. Project supported by the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20121404110004), the Research Foundation for Excellent Talents of Shanxi Provincial Department of Human Resources and Social Security, China, and the Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi Province, China.

  5. Hollow flower micelles from a diblock copolymer

    NASA Astrophysics Data System (ADS)

    Changez, Mohammad; Kang, Nam-Goo; Kim, Dong Woo; Lee, Jae-Suk

    2013-11-01

    A poly(2-vinylpyridine)-block-poly(2-(4-vinylphenyl)pyridine) (P2VP106-b-PVPPy95) coil-coil diblock copolymer forms hollow flower micelles in a mixed solvent of methanol and water (95/5, v/v) in a one step process. The geometry and composition of the micelles allow formation of a Pt-Au bimetallic dendritic nanocatalyst with a Pt leaf at room temperature.A poly(2-vinylpyridine)-block-poly(2-(4-vinylphenyl)pyridine) (P2VP106-b-PVPPy95) coil-coil diblock copolymer forms hollow flower micelles in a mixed solvent of methanol and water (95/5, v/v) in a one step process. The geometry and composition of the micelles allow formation of a Pt-Au bimetallic dendritic nanocatalyst with a Pt leaf at room temperature. Electronic supplementary information (ESI) available: Experimental details. See DOI: 10.1039/c3nr03063f

  6. Anomalous Micellization of Pluronic Block Copolymers

    NASA Astrophysics Data System (ADS)

    Leonardi, Amanda; Ryu, Chang Y.

    2014-03-01

    Poly(ethylene oxide) - poly(propylene oxide) - poly(ethylene oxide) (PEO-PPO-PEO) block copolymers, commercially known as Pluronics, are a unique family of amphiphilic triblock polymers, which self-assemble into micelles in aqueous solution. These copolymers have shown promise in therapeutic, biomedical, cosmetic, and nanotech applications. As-received samples of Pluronics contain low molecular weight impurities (introduced during the manufacturing and processing), that are ignored in most applications. It has been observed, however, that in semi-dilute aqueous solutions, at concentrations above 1 wt%, the temperature dependent micellization behavior of the Pluronics is altered. Anomalous behavior includes a shift of the critical micellization temperature and formation of large aggregates at intermediate temperatures before stable sized micelles form. We attribute this behavior to the low molecular weight impurities that are inherent to the Pluronics which interfere with the micellization process. Through the use of Dynamic Light Scattering and HPLC, we compared the anomalous behavior of different Pluronics of different impurity levels to their purified counterparts.

  7. Interface-enforced complexation between copolymer blocks.

    PubMed

    Steinschulte, Alexander A; Xu, Weinan; Draber, Fabian; Hebbeker, Pascal; Jung, Andre; Bogdanovski, Dimitri; Schneider, Stefanie; Tsukruk, Vladimir V; Plamper, Felix A

    2015-05-14

    Binary diblock copolymers and corresponding ternary miktoarm stars are studied at oil-water interfaces. All polymers contain oil-soluble poly(propylene oxide) PPO, water-soluble poly(dimethylaminoethyl methacrylate) PDMAEMA and/or poly(ethylene oxide) PEO. The features of their Langmuir compression isotherms are well related to the ones of the corresponding homopolymers. Within the Langmuir-trough, PEO-b-PPO acts as the most effective amphiphile compared to the other PPO-containing copolymers. In contrast, the compression isotherms show a complexation of PPO and PDMAEMA for PPO-b-PDMAEMA and the star, reducing their overall amphiphilicity. Such complex formation between the blocks of PPO-b-PDMAEMA is prevented in bulk water but facilitated at the interface. The weakly-interacting blocks of PPO-b-PDMAEMA form a complex due to their enhanced proximity in such confined environments. Scanning force microscopy and Monte Carlo simulations with varying confinement support our results, which are regarded as compliant with the mathematical random walk theorem by Pólya. Finally, the results are expected to be of relevance for e.g. emulsion formulation and macromolecular engineering.

  8. Controlling Structure in Sulfonated Block Copolymer Membranes

    NASA Astrophysics Data System (ADS)

    Truong, Phuc; Stein, Gila; Strzalka, Joe

    2015-03-01

    In many ionic block copolymer systems, the strong incompatibility between ionic and non-ionic segments will trap non-equilibrium structures in the film, making it difficult to engineer the optimal domain sizes and transport pathways. The goal of this work is to establish a framework for controlling the solid-state structure of sulfonated pentablock copolymer membranes. They have ABCBA block sequence, where A is poly(t-butyl styrene), B is poly(hydrogenated isoprene), and C is poly(styrene sulfonate). To process into films, the polymer is dissolved in toluene/n-propanol solvent mixtures, where the solvent proportions and the polymer loading were both varied. Solution-state structure was measured with small angle X-ray scattering (SAXS). We detected micelles with radii that depend on the solvent composition and polymer loading. Film structure was measured with grazing-incidence SAXS, which shows (i) domain periodicity is constant throughout film thickness; (ii) domain periodicity depends on solvent composition and polymer loading, and approximately matches the micelle radii in solutions. The solid-state packing is consistent with a hard sphere structure factor. Results suggest that solid-state structure can be tuned by manipulating the solution-state self-assembly.

  9. Responsive linear-dendritic block copolymers.

    PubMed

    Blasco, Eva; Piñol, Milagros; Oriol, Luis

    2014-06-01

    The combination of dendritic and linear polymeric structures in the same macromolecule opens up new possibilities for the design of block copolymers and for applications of functional polymers that have self-assembly properties. There are three main strategies for the synthesis of linear-dendritic block copolymers (LDBCs) and, in particular, the emergence of click chemistry has made the coupling of preformed blocks one of the most efficient ways of obtaining libraries of LDBCs. In these materials, the periphery of the dendron can be precisely functionalised to obtain functional LDBCs with self-assembly properties of interest in different technological areas. The incorporation of stimuli-responsive moieties gives rise to smart materials that are generally processed as self-assemblies of amphiphilic LDBCs with a morphology that can be controlled by an external stimulus. Particular emphasis is placed on light-responsive LDBCs. Furthermore, a brief review of the biomedical or materials science applications of LDBCs is presented. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. ESCA Study of Poly (Vinylidene Fluoride) Tetrafluoroethylene - Ethylene Copolymer and Polyethylene Exposed to Atomic Oxygen

    NASA Technical Reports Server (NTRS)

    Golub, Morton A.; Cormia, Robert D.

    1989-01-01

    The ESCA (electron spectroscopy for chemical analysis) spectra of films of poly(vinylidene fluoride) (PVDF), tetrafluoroethylene-ethylene copolymer (TFE/ET) and polyethylene (PE) exposed to atomic oxygen (O(P-3)), in or out of the glow of a radio-frequency O2 plasma, were compared. ESCA spectra of PE films exposed to (O(P-3)) in low Earth orbit (LEO) on the STS-8 Space Shuttle were also examined. Apart from O(P-3)-induced surface recession (etching), the various polymer films exhibited surface oxidation, which proceeded towards equilibrium saturation oxygen levels. The maximum surface oxygen uptakes for in-glow or out-of-glow exposures were in the order: PE greater than TFE/ET greater than PVDF; for PE itself, the oxygen uptakes were in the order: in glow greater than out of glow greater than LEO. Given prior ESCA data on poly(vinyl fluoride) and polytetrafluoroethylene films exposed to O(P-3), the extent of surface oxidation is seen to decrease regularly with increase in fluorine substitution in a family of ethylene-type polymers. (Keywords: ESCA; poly(vinylidene fluoride); tetrafluoroethylene ethylene copolymer; polyethylene; atomic oxygen; radio-frequency oxygen plasma; low Earth orbit)

  11. ESCA Study of Poly (Vinylidene Fluoride) Tetrafluoroethylene - Ethylene Copolymer and Polyethylene Exposed to Atomic Oxygen

    NASA Technical Reports Server (NTRS)

    Golub, Morton A.; Cormia, Robert D.

    1989-01-01

    The ESCA (electron spectroscopy for chemical analysis) spectra of films of poly(vinylidene fluoride) (PVDF), tetrafluoroethylene-ethylene copolymer (TFE/ET) and polyethylene (PE) exposed to atomic oxygen (O(P-3)), in or out of the glow of a radio-frequency O2 plasma, were compared. ESCA spectra of PE films exposed to (O(P-3)) in low Earth orbit (LEO) on the STS-8 Space Shuttle were also examined. Apart from O(P-3)-induced surface recession (etching), the various polymer films exhibited surface oxidation, which proceeded towards equilibrium saturation oxygen levels. The maximum surface oxygen uptakes for in-glow or out-of-glow exposures were in the order: PE greater than TFE/ET greater than PVDF; for PE itself, the oxygen uptakes were in the order: in glow greater than out of glow greater than LEO. Given prior ESCA data on poly(vinyl fluoride) and polytetrafluoroethylene films exposed to O(P-3), the extent of surface oxidation is seen to decrease regularly with increase in fluorine substitution in a family of ethylene-type polymers. (Keywords: ESCA; poly(vinylidene fluoride); tetrafluoroethylene ethylene copolymer; polyethylene; atomic oxygen; radio-frequency oxygen plasma; low Earth orbit)

  12. The formation of standing cylinders in block copolymer films by irreversibly adsorbed polymer layers on substrates

    NASA Astrophysics Data System (ADS)

    Shang, Jun; Jiang, Naisheng; Endoh, Maya; Koga, Tadanori

    2013-03-01

    Block copolymers offer a simple and effective route to produce standing cylindrical nanostructures with regularity on the order of 10-100 nm, the length scale that is desirable for many advanced applications. However, these formations have been especially troublesome due to the fact that preferential interactions between one of the blocks and the surfaces will induce parallel alignment of the cylinders in order to minimize interfacial and surface energy. Here we introduce an alternative simple method utilizing an irreversibly adsorbed polymer layer (a ``Guiselin'' brush) as a neutral ``substrate'' formed on solid substrates for the arrangement of standing cylindrical nanostructures. The effect of polymer adsorbed layer on the long range ordering of asymmetric cylinder forming poly(styrene-block-ethylene/butylene-block-styrene) (SEBS) triblock copolymer thin films were investigated by using a combination of grazing incidence small angle x-ray scattering and atomic force microscopy techniques. We found that the SEBS, which forms cylinders lying parallel to the surface when prepared on silicon substrates, show standing cylindrical structures on selected Guiselin brush layers after prolong thermal annealing. The details will be discussed in the presentation. We acknowledges the financial support from NSF Grant No. CMMI-084626

  13. Real-space evidence of the equilibrium ordered bicontinuous double diamond structure of a diblock copolymer.

    PubMed

    Chu, C Y; Jiang, X; Jinnai, H; Pei, R Y; Lin, W F; Tsai, J C; Chen, H L

    2015-03-14

    The ordered bicontinuous double diamond (OBDD) structure has long been believed to be an unstable ordered network nanostructure, which is relative to the ordered bicontinuous double gyroid (OBDG) structure for diblock copolymers. Using electron tomography, we present the first real-space observation of the thermodynamically stable OBDD structure in a diblock copolymer composed of a stereoregular block, syndiotactic polypropylene-block-polystyrene (sPP-b-PS), in which the sPP tetrapods are interconnected via a bicontinuous network with Pn3̄m symmetry. The OBDD structure underwent a thermally reversible order-order transition (OOT) to OBDG upon heating, and the transition was accompanied with a slight reduction of domain spacing, as demonstrated both experimentally and theoretically. The thermodynamic stability of the OBDD structure was attributed to the ability of the configurationally regular sPP block to form helical segments, even above its melting point, as the reduction of internal energy associated with the helix formation may effectively compensate the greater packing frustration in OBDD relative to that in the tripods of OBDG.

  14. Benzodithiophene and Imide-Based Copolymers for Photovoltaic; Applications

    SciTech Connect

    Braunecker, W. A.; Owczarczyk, Z. R.; Garcia, A.; Kopidakis, N.; Larsen, R. E.; Hammond, S. R.; Ginley, D. S.; Olson, D. C.

    2012-04-10

    Conjugated alternating copolymers were designed with low optical band gaps for organic photovoltaic (OPV) applications by considering quinoid resonance stabilization. Copolymers of thienoisoindoledione (TID) and benzodithiophene (BDT) had appreciably lower band gaps (by {approx}0.4 eV) than copolymers of thienopyrroledione (TPD) and BDT. In addition to intramolecular charge transfer stabilization (i.e., the 'push-pull' effect), the former copolymer's quinoid resonance structure is stabilized by a gain in aromatic resonance energy in the isoindole unit. Additionally, the HOMO levels of the copolymers could be tuned with chemical modifications to the BDT monomer, resulting in open circuit voltages of greater than 1 V in photovoltaic devices. Despite the optimized band gap, TID containing polymers displayed lower photoconductance, as determined by time-resolved microwave conductivity, and decreased device efficiency (2.1% vs 4.8%) as compared with TPD analogues. These results were partially attributed to morphology, as computational modeling suggests TID copolymers have a twisted backbone, and X-ray diffraction data indicate the polymer films do not form ordered domains, whereas TPD copolymers are considerably more planar and are shown to form partially ordered domains.

  15. Manipulating Ordering Transitions in Interfacially Modified Block Copolymers

    SciTech Connect

    Singh, N.; Tureau, M; Epps, T

    2009-01-01

    We report a synthetic strategy that allows us to manipulate the interfacial region between blocks and control ordering transitions in poly(isoprene-b-styrene) [P(I-S)] block copolymers. This interfacial modification is accomplished by combining a semi-batch feed with anionic polymerization techniques. Using this approach, we are able to control the segmental composition and molecular interactions in our phase-separated block copolymers, independent of molecular weight and block constituents. A library of copolymers is prepared with various interfacial modifications to examine the effect of interfacial composition on copolymer self-assembly. The morphological characteristics of the self-assembled structures are investigated using small-angle X-ray scattering (SAXS), transmission electron microscopy (TEM), and dynamic mechanical analysis (DMA). Normal and inverse tapered block copolymers, containing approximately 15-35 vol% tapered material, show a measurable decrease in the order-disorder transition temperature (TODT) relative to the corresponding non-tapered diblock copolymers, with the inverse tapered materials showing the greatest deviation in TODT. Additionally, TODT was inversely related to the volume fraction of the tapered region in both normal and inverse tapered copolymer materials.

  16. Effects of Blockiness on the phase behavior of random copolymers

    NASA Astrophysics Data System (ADS)

    Vanderwoude, Gordon; Shi, An-Chang

    Theoretical study of random block copolymers remains a challenging topic due in part to the sheer enormity of their phase space. In this study we use the self-consistent field theory to investigate the phase behaviour of linear (AB)n-type and (AB)n-C-type multiblock copolymers with randomly distributed A and B blocks. In particular, we examine the effect of ``blockiness'' of the random copolymers on the formation of ordered phases. The blockiness can be quantified by the average length of individual A or B blocks, which can be taken as a measure of the heterogeneity of the random copolymers. We observed that the critical value of the χ parameter, at which the order-disorder transition occurs, decreases with increasing blockiness in the (AB)n copolymers. We also observed that the phase behaviour of the (AB)n-C copolymers depends strongly on the blockiness of the random chain. In particular, the blockiness governs whether or not the A/B blocks can phase separate within the A/B domains, thus dictating whether the (AB)n-C behaves as A/B-C diblock copolymers or as ABC terpolymers. The theoretical phase diagrams will be compared with available experiments.

  17. Class of regular bouncing cosmologies

    NASA Astrophysics Data System (ADS)

    Vasilić, Milovan

    2017-06-01

    In this paper, I construct a class of everywhere regular geometric sigma models that possess bouncing solutions. Precisely, I show that every bouncing metric can be made a solution of such a model. My previous attempt to do so by employing one scalar field has failed due to the appearance of harmful singularities near the bounce. In this work, I use four scalar fields to construct a class of geometric sigma models which are free of singularities. The models within the class are parametrized by their background geometries. I prove that, whatever background is chosen, the dynamics of its small perturbations is classically stable on the whole time axis. Contrary to what one expects from the structure of the initial Lagrangian, the physics of background fluctuations is found to carry two tensor, two vector, and two scalar degrees of freedom. The graviton mass, which naturally appears in these models, is shown to be several orders of magnitude smaller than its experimental bound. I provide three simple examples to demonstrate how this is done in practice. In particular, I show that graviton mass can be made arbitrarily small.

  18. Nanopatterning of recombinant proteins and viruses using block copolymer templates

    NASA Astrophysics Data System (ADS)

    Cresce, Arthur Von Wald

    The study of interfaces is important in understanding biological interactions, including cellular signaling and virus infection. This thesis is an original effort to examine the interaction between a block copolymer and both a protein and a virus. Block copolymers intrinsically form nanometer-scale structures over large areas without expensive processing, making them ideal for the synthesis of the nanopatterned surfaces used in this study. The geometry of these nanostructures can be easily tuned for different applications by altering the block ratio and composition of the block copolymer. Block copolymers can be used for controlled uptake of metal ions, where one block selectively binds metal ions while the other does not. 5-norbornene-2,3-dicarboxylic acid is synthesized through ring-opening metathesis polymerization. It formed spherical domains with spheres approximately 30 nm in diameter, and these spheres were then subsequently loaded with nickel ion. This norbornene block copolymer was tested for its ability to bind histidine-tagged green fluorescent protein (hisGFP), and it was found that the nickel-loaded copolymer was able to retain hisGFP through chelation between the histidine tag and the metal-containing portions of the copolymer surface. Poly(styrene-b-4-vinylpyridine) (PS/P4VP) was also loaded with nickel, forming a cylindrical microstructure. The binding of Tobacco mosaic virus and Tobacco necrosis virus was tested through Tween 20 detergent washes. Electron microscopy allowed for observation of both block copolymer nanostructures and virus particles. Results showed that Tween washes could not remove bound Tobacco mosaic virus from the surface of PS/P4VP. It was also seen that the size and tunability of block copolymers and the lack of processing needed to attain different structures makes them attractive for many applications, including microfluidic devices, surfaces to influence cellular signaling and growth, and as a nanopatterning surface for

  19. Degradation of PCL-MPEG diblock copolymer in rat plasma.

    PubMed

    Lin, Wen-Jen; Chang, Kai-Ling

    2008-06-01

    The poly(epsilon-caprolactone)-co-poly(ethylene glycol) (PCL-MPEG) amphiphilic diblock copolymer with molar ratio of epsilon-CL to MPEG 81:1 is synthesized via a ring-opening polymerization without a catalyst. The M(w) and M(n) molecular weights and the polydispersities are 18,000, 11,000 g/mole and 1.55, respectively. The pegylated amphiphilic copolymer forms micelles with a low critical micelle concentration 6.71 x 10(-8) mole/L, and the average particle size of copolymeric micelles is 62.3 +/- 12.9 nm. The degradation behavior of diblock copolymer was studied in rat plasma at 37 degrees C for 90 days. The changes of mass, composition, morphology, molecular weight, and thermal property of PCL-MPEG copolymer were investigated. The decrease of copolymer mass shows two phases with rate constants of 1.91 x 10(-1) day(-1) in the first-phase (1-24 h) and 1.77 x 10(-3) day(-1) in the second-phase (1-90 days). The degradation of labile ester linkage between PCL block and MPEG block accounts for continuous decrease of copolymer mass in plasma. The decrease of EG molar ratio from 1.30 to 0.67 and prominent reduction of enthalpy of fusion of remained copolymer from 116.5 to 85.2 J/g provide evidences of PCL-MPEG chain scission. On the other hand, the presence of partially degraded copolymers in the residuals results in its polydispersity increased from 1.55 to 2.24 at the end of 90 days. Nevertheless, the surface erosion of copolymer makes the molecular weight not quite different from its original value. Copyright 2007 Wiley Periodicals, Inc.

  20. Electrochemically controlled self-assembly of block copolymer nanostructures

    NASA Astrophysics Data System (ADS)

    Eitouni, Hany Basam

    Organometallic block copolymers, wherein one block is composed of alternating ferrocene and dialkylsilane units in the main chain, undergo self-assembly to form microphase-separated ordered structures similarly to typical organic block copolymers. The 1,1'-dimethylsilylferrocenophane monomer was synthesized and polymerized anionically with other monomers to make a variety of different organometallic block copolymers. The phase behavior and thermodynamic interactions of anionically synthesized poly(styrene-block-ferrocenyldimethylsilane) (SF) and poly(isoprene-block-ferrocenyldimethylsilane) (IF) copolymers were examined using depolarized light scattering, small angle x-ray and neutron scattering (SAXS and SANS), and transmission electron microscopy. The temperature-dependence of the Flory-Huggins parameter, chi, and the statistical segment lengths of SF and IF copolymers were determined by SAXS and SANS using the random phase approximation. The thermodynamic interactions in poly(ferrocenyldimethylsilane) diblock copolymers were systematically adjusted by oxidizing the ferrocene moieties with silver salts and examined using SAXS and depolarized light scattering. The polymers retained microphase separated ordered structures upon oxidation and showed systematic changes in the location of the order-disorder transition as a function of extent of oxidation. By controlling the redox properties of the ferrocene moiety in the backbone of the polymer, we present a method for controlling the self-assembled microstructure and hence bulk material properties. Using electrochemical techniques, a novel means of controlling the order-disorder transition of block copolymers was discovered. By applying very small electrical potentials to disordered solutions of organometallic block copolymers, oriented ordered grains were formed near one electrode, the result of electrochemical reactions. After reversing the electrical bias on the system, the ordered grains disappeared and new

  1. Microphase Separated Block Copolymers in Pervaporation Membranes for Biofuels Processing

    NASA Astrophysics Data System (ADS)

    Greer, Douglas; Shin, Chae-Young; Ozcam, Evren; Skerker, Jeffrey; Basso, Thalita; Leon, Dacia; Bauer, Stefan; Balsara, Nitash; Energy Biosciences Institute Collaboration

    2014-03-01

    The production of transportation biofuels requires numerous continuous separation processes. We designed block copolymer membranes for pervaporation as a means to achieve these separations. These block copolymers contain a glassy structure block for support and a rubbery transport block for sorption and diffusion. We create membranes with nanoscale conducting channels using the unique trait of block copolymers to assemble into ordered morphologies. We have previously used nanostructured membranes to separate ethanol/water binary mixtures [J. Membr. Sci. 373, 112 (2011)], [J. Membr. Sci. 401, 125 (2012)]. We report this type of membranes is effective in other, more complex separations important to biofuel production. These separations increase yield and decrease process time.

  2. Verapamil hydrochloride release characteristics from new copolymer zwitterionic matrix tablets.

    PubMed

    Kostova, Bistra; Kamenska, Elena; Ivanov, Ivo; Momekov, George; Rachev, Dimitar; Georgiev, George

    2008-01-01

    The aim of this study was to synthesize stable copolymer (vinyl acetate-co-3-dimethyl[methacryloyloxyethyl] ammonium propane sulfinate) zwitterionic latex with different compositions for the first time by emulsifier-free emulsion copolymerization. Throughout the course of the study, a proposal was made for the explanation of the relationship between the "overshooting" phenomenon (a swelling kinetics with a maximum) and the specific self-association of the zwitterionic copolymers. The zwitterionic monomer unit mole fraction, pH, and ionic strength effects on this relationship, on the swelling kinetics of the zwitterionic copolymers, and on the sustained verapamil hydrochloride release from the model tablets were established by the study's authors.

  3. Photocrosslinkable copolymers for non-linear optical applications

    SciTech Connect

    Kawatsuki, N.; Pakbaz, K.; Schmidt, H.W.

    1993-12-31

    New photocrosslinkable copolymers have been synthesized and applied as non-linear optical materials. The copolymers are based on methyl methacrylate, a photo-excitable benzophenone monomer, a non-linear optical active 4`-[(2-hydroxyethyl)ethylamino]-4-nitro-azobenzene (disperse red 1) side chain monomer and a crosslinkable 2-butenyl monomer. These copolymers can be crosslinked by UV light at 366 nm in the poled state and show a stable alignment of NLO chromophore by monitoring the adsorption spectra. The crosslinked and poled film did not change its alignment after storing 4 weeks at room temperature.

  4. Polysaccharide based Copolymers as Supramolecular Systems in Biomedical Applications.

    PubMed

    Célia Monteiro de Paula, Regina; Andrade Feitosa, Judith Pessoa; Beserra Paula, Haroldo César

    2015-01-01

    Polysaccharides are natural polymers, obtained from a large variety of sources ranging from fungi to more complex organisms such as birds and whales. Their use for pharmaceutical and biomedical applications has been the subject of numerous researches by the world´s academia. Polysaccharide chemical/physical modifications leading to graft copolymers are discussed in this review, focusing on those nanosystems that are potential candidates for drug delivery applications. Therefore, this review focuses on the biomedical application of polysaccharide based copolymers, particularly as nanocarriers. Copolymer of polysaccharides such as alginate, cellulose, chitosan, dextran, guar, hyaluronic acid, pullulan and starch as drug delivery nanocarriers will be discussed.

  5. Thin membranes of new hard/soft segment copolymers

    SciTech Connect

    Ho, W.S.; Sartori, G.; Thaler, W.A.

    1996-12-31

    Thin membranes of new hard/soft segment copolymers have been synthesized for the separation of aromatics from saturates through high temperature pervaporation. In the membranes, hard segments provide temperature stability and solvent resistance, while soft segments govern aromatic/saturate selectivity and flux. We have synthesized new chlorinated polyurethane/polyester and polyimide/polyester copolymers. Based on a polyimide copolymer membrane, a new technology has been developed recently to separate heavy catalytically cracked naphtha into an aromatics-rich permeate and an aromatics-lean retentate.

  6. Electrically conductive doped block copolymer of polyacetylene and polyisoprene

    DOEpatents

    Aldissi, Mahmoud

    1985-01-01

    An electrically conductive block copolymer of polyisoprene and polyacetyl and a method of making the same are disclosed. The polymer is prepared by first polymerizing isoprene with n-butyllithium in a toluene solution to form an active isoprenyllithium polymer. The active polymer is reacted with an equimolar amount of titanium butoxide and subsequently exposed to gaseous acetylene. A block copolymer of polyisoprene and polyacetylene is formed. The copolymer is soluble in common solvents and may be doped with I.sub.2 to give it an electrical conductivity in the metallic regime.

  7. Effect of water uptake on morphology of polymerized ionic liquid block copolymers and random copolymers

    NASA Astrophysics Data System (ADS)

    Wang, Tsen-Shan; Ye, Yuesheng; Elabd, Yossef; Winey, Karen

    2012-02-01

    Dynamic studies of polymer morphology probe how the physical properties of polymerized ionic liquids are affected by the environment, such as temperature or moisture. For a series of poly(methyl methacrylate-b-1-[2-(methacryloyloxy)ethyl]-3-Butylimidazolium X^-) block and random copolymers with hydrophilic counterions (X^- = Br^-, HCO3^-, OH^-), the introduction of water vapor to the system can swell the ionic liquid block, causing enlarged hydrophilic domains and swollen channels for ion conduction. This expected expansion of ionic liquid domains in humid environments can be used to intelligently design these copolymers for use in technological applications. The effect of water vapor exposure in these imidazolium-based acrylate polymers is studied by small-angle X-ray scattering. These morphology results will be discussed alongside complementary studies of water uptake and ion conductivity.

  8. Enhanced infarct myocardium repair mediated by thermosensitive copolymer hydrogel-based stem cell transplantation

    PubMed Central

    Xia, Yu; Zhu, Kai; Lai, Hao; Lang, Meidong; Xiao, Yan; Lian, Sheng

    2015-01-01

    Mesenchymal stem cell (MSC) transplantation by intramyocardial injection has been proposed as a promising therapy strategy for cardiac repair after myocardium infarction. However, low retention and survival of grafted MSCs hinder its further application. In this study, copolymer with N-isopropylacrylamide/acrylic acid/2-hydroxylethyl methacrylate-poly(ɛ-caprolactone) ratio of 88:9.6:2.4 was bioconjugated with type I collagen to construct a novel injectable thermosensitive hydrogel. The injectable and biocompatible hydrogel-mediated MSC transplantation could enhance the grafted cell survival in the myocardium, which contributed to the increased neovascularization, decreased interstitial fibrosis, and ultimately improved heart function to a significantly greater degree than regular MSC transplantation. We suggest that this novel hydrogel has the potential for future stem cell transplantation. PMID:25432986

  9. Enhanced infarct myocardium repair mediated by thermosensitive copolymer hydrogel-based stem cell transplantation.

    PubMed

    Xia, Yu; Zhu, Kai; Lai, Hao; Lang, Meidong; Xiao, Yan; Lian, Sheng; Guo, Changfa; Wang, Chunsheng

    2015-05-01

    Mesenchymal stem cell (MSC) transplantation by intramyocardial injection has been proposed as a promising therapy strategy for cardiac repair after myocardium infarction. However, low retention and survival of grafted MSCs hinder its further application. In this study, copolymer with N-isopropylacrylamide/acrylic acid/2-hydroxylethyl methacrylate-poly(ɛ-caprolactone) ratio of 88:9.6:2.4 was bioconjugated with type I collagen to construct a novel injectable thermosensitive hydrogel. The injectable and biocompatible hydrogel-mediated MSC transplantation could enhance the grafted cell survival in the myocardium, which contributed to the increased neovascularization, decreased interstitial fibrosis, and ultimately improved heart function to a significantly greater degree than regular MSC transplantation. We suggest that this novel hydrogel has the potential for future stem cell transplantation.

  10. Bicomponent Block Copolymers Derived from One or More Random Copolymers as an Alternative Route to Controllable Phase Behavior.

    PubMed

    Ashraf, Arman R; Ryan, Justin J; Satkowski, Michael M; Lee, Byeongdu; Smith, Steven D; Spontak, Richard J

    2017-09-01

    Block copolymers have been extensively studied due to their ability to spontaneously self-organize into a wide variety of morphologies that are valuable in energy-, medical-, and conservation-related (nano)technologies. While the phase behavior of bicomponent diblock and triblock copolymers is conventionally governed by temperature and individual block masses, it is demonstrated here that their phase behavior can alternatively be controlled through the use of blocks with random monomer sequencing. Block random copolymers (BRCs), i.e., diblock copolymers wherein one or both blocks are a random copolymer comprised of A and B repeat units, have been synthesized, and their phase behavior, expressed in terms of the order-disorder transition (ODT), has been investigated. The results establish that, depending on the block composition contrast and molecular weight, BRCs can microphase-separate. We also report that large variation in incompatibility can be generated at relatively constant molecular weight and temperature with these new soft materials. This sequence-controlled synthetic strategy is extended to thermoplastic elastomeric triblock copolymers differing in chemistry and possessing a random-copolymer midblock. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Morphology and phase diagram of complex block copolymers: ABC linear triblock copolymers.

    PubMed

    Tang, Ping; Qiu, Feng; Zhang, Hongdong; Yang, Yuliang

    2004-03-01

    Using a real space implementation of the self-consistent field theory for the polymeric system, we explore microphases of ABC linear triblock copolymers. For the sake of numerical tractability, the calculation is carried out in a two-dimensional (2D) space. Seven microphases are found to be stable for the ABC triblock copolymer in 2D, which include lamellae, hexagonal lattice, core-shell hexagonal lattice, tetragonal lattice, lamellae with beads inside, lamellae with beads at the interface, and hexagonal phase with beads at the interface. By systematically varying the composition, triangle phase diagrams are constructed for four classes of typical triblock polymers in terms of the relative strengths of the interaction energies between different species. In general, when both volume fractions and interaction energies of the three species are comparable, lamellar phases are found to be the most stable. While one of the volume fractions is large, core-shell hexagonal or tetragonal phases can be formed, depending on which of the blocks dominates. Furthermore, more complex morphologies, such as lamellae with beads inside, lamellae with beads at the interface, and hexagonal phases with beads at the interface compete for stability with lamellae structures, as the interaction energies between distinct blocks become asymmetric. Our study provides guidance for the design of microstructures in complex block copolymers.

  12. Characterization of copolymer latexes by capillary electrophoresis.

    PubMed

    Anik, Nadia; Airiau, Marc; Labeau, Marie-Pierre; Bzducha, Wojciech; Cottet, Hervé

    2010-02-02

    Latexes are widely used for industrial applications, including decorative paints, binders for the papermaking industry, and drilling fluids for oil-field applications. In this work, the interest of capillary zone electrophoresis (CE) for the characterization of hydrophobic block copolymer latexes obtained by the conventional emulsion polymerization technique consisting of a core of polystyrene (PS) surrounded by a layer of poly(ethyl acrylate) (PEA) has been investigated. The PEA part of the copolymer can be partially hydrolyzed in poly(acrylic acid) (PAA) leading to PS-PEA-AA water-soluble amphiphilic copolymer having high viscosifying properties. The main purpose of this work was to evaluate the potential of CE for the characterization of the latexes at the different stages of the synthesis (PS core, PS-PEA diblock latex, and hydrolyzed PS-PEA-AA gel). The main analytical issues were to state (i) if there was free PS or PEA homopolymer latexes in the PS-PEA latex sample and (ii) if there was free PS, PEA, PS-PEA latexes, or free PAA chains in the PS-PEA-AA gel. Within this scope, this work describes the optimization of the selectivity of the separation between the different species (PS, PEA particles in the not hydrolyzed diblock latex and PS, PEA, PS-PEA particles as well as the polymer PAA chains in the PS-PEA-AA diblock gel sample obtained by latter latex hydrolysis). For that purpose, several experimental parameters were investigated such as pH and ionic strength of the background electrolyte (BGE) or the concentration of neutral surfactant added in the BGE. A challenging issue was to overcome the high viscosity of the PS-PEA-AA gel. This was resolved by the addition of 10 mM neutral surfactant in the gel sample and in the BGE. Finally, it is demonstrated that, within the detection limits, CE is a suitable analytical tool for controlling and monitoring the syntheses of these latexes and for intrinsically characterizing the distribution in charge density of

  13. A multiplicative regularization for force reconstruction

    NASA Astrophysics Data System (ADS)

    Aucejo, M.; De Smet, O.

    2017-02-01

    Additive regularizations, such as Tikhonov-like approaches, are certainly the most popular methods for reconstructing forces acting on a structure. These approaches require, however, the knowledge of a regularization parameter, that can be numerically computed using specific procedures. Unfortunately, these procedures are generally computationally intensive. For this particular reason, it could be of primary interest to propose a method able to proceed without defining any regularization parameter beforehand. In this paper, a multiplicative regularization is introduced for this purpose. By construction, the regularized solution has to be calculated in an iterative manner. In doing so, the amount of regularization is automatically adjusted throughout the resolution process. Validations using synthetic and experimental data highlight the ability of the proposed approach in providing consistent reconstructions.

  14. Total variation regularization with bounded linear variations

    NASA Astrophysics Data System (ADS)

    Makovetskii, Artyom; Voronin, Sergei; Kober, Vitaly

    2016-09-01

    One of the most known techniques for signal denoising is based on total variation regularization (TV regularization). A better understanding of TV regularization is necessary to provide a stronger mathematical justification for using TV minimization in signal processing. In this work, we deal with an intermediate case between one- and two-dimensional cases; that is, a discrete function to be processed is two-dimensional radially symmetric piecewise constant. For this case, the exact solution to the problem can be obtained as follows: first, calculate the average values over rings of the noisy function; second, calculate the shift values and their directions using closed formulae depending on a regularization parameter and structure of rings. Despite the TV regularization is effective for noise removal; it often destroys fine details and thin structures of images. In order to overcome this drawback, we use the TV regularization for signal denoising subject to linear signal variations are bounded.

  15. Testing times: regularities in the historical sciences.

    PubMed

    Jeffares, Ben

    2008-12-01

    The historical sciences, such as geology, evolutionary biology, and archaeology, appear to have no means to test hypotheses. However, on closer examination, reasoning in the historical sciences relies upon regularities, regularities that can be tested. I outline the role of regularities in the historical sciences, and in the process, blur the distinction between the historical sciences and the experimental sciences: all sciences deploy theories about the world in their investigations.

  16. Regularity effect in prospective memory during aging

    PubMed Central

    Blondelle, Geoffrey; Hainselin, Mathieu; Gounden, Yannick; Heurley, Laurent; Voisin, Hélène; Megalakaki, Olga; Bressous, Estelle; Quaglino, Véronique

    2016-01-01

    Background Regularity effect can affect performance in prospective memory (PM), but little is known on the cognitive processes linked to this effect. Moreover, its impacts with regard to aging remain unknown. To our knowledge, this study is the first to examine regularity effect in PM in a lifespan perspective, with a sample of young, intermediate, and older adults. Objective and design Our study examined the regularity effect in PM in three groups of participants: 28 young adults (18–30), 16 intermediate adults (40–55), and 25 older adults (65–80). The task, adapted from the Virtual Week, was designed to manipulate the regularity of the various activities of daily life that were to be recalled (regular repeated activities vs. irregular non-repeated activities). We examine the role of several cognitive functions including certain dimensions of executive functions (planning, inhibition, shifting, and binding), short-term memory, and retrospective episodic memory to identify those involved in PM, according to regularity and age. Results A mixed-design ANOVA showed a main effect of task regularity and an interaction between age and regularity: an age-related difference in PM performances was found for irregular activities (older < young), but not for regular activities. All participants recalled more regular activities than irregular ones with no age effect. It appeared that recalling of regular activities only involved planning for both intermediate and older adults, while recalling of irregular ones were linked to planning, inhibition, short-term memory, binding, and retrospective episodic memory. Conclusion Taken together, our data suggest that planning capacities seem to play a major role in remembering to perform intended actions with advancing age. Furthermore, the age-PM-paradox may be attenuated when the experimental design is adapted by implementing a familiar context through the use of activities of daily living. The clinical implications of regularity

  17. P(HPMA)-block-P(LA) copolymers in paclitaxel formulations: polylactide stereochemistry controls micellization, cellular uptake kinetics, intracellular localization and drug efficiency.

    PubMed

    Barz, Matthias; Armiñán, Ana; Canal, Fabiana; Wolf, Florian; Koynov, Kaloian; Frey, Holger; Zentel, Rudolf; Vicent, María J

    2012-10-10

    In order to explore the influence of polymer microstructure and stereochemistry in biological settings, the synthesis, micellization, cellular fate and the use in paclitaxel formulations of poly(N-(2-hydroxypropyl)-methacrylamide)-block-poly(L-lactide) (P(HPMA)-block-P(LLA)) and poly(N-(2-hydroxypropyl)-methacrylamide)-block-poly(DL-lactide) block copolymers (P(HPMA)-block-P(DLLA)) were studied. To this end, P(HPMA)-block-P(lactide) block copolymers and their fluorescently labeled analogues were synthesized. The polymers exhibited molecular weights M(n) around 20,000 g/mol with dispersities (D=M(w)/M(n)) below 1.3. In addition, the solution conformation of this new type of partially degradable amphiphilic block copolymers was studied with and without paclitaxel loading in PBS buffer (pH 7.2), employing fluorescence correlation spectroscopy (FCS). We observed polymeric micelles with a hydrodynamic diameter of 17.0 nm for a fluorescently labeled P(HPMA)-block-P(LLA) block copolymer (P2*) and 20.4 nm for a P(HPMA)-block-P(DLLA) block copolymer (P3*). For the corresponding loaded block copolymers aggregates with a diameter of 40.0 nm (P2*) and 41.4 nm (P3*) in formulations containing 17 wt.% paclitaxel were observed, respectively. While the block copolymer itself showed non-toxic behavior up to a concentration of 3 mg/mL in HeLa (human cervix adenocarcinoma) cells, the paclitaxel containing formulations showed IC 50 values in the range of 10-100 nM. The P(HPMA)-block-P(DLLA) polymer (P3*) enters the cells more efficiently than stereo regular polymer (P2*) via an energy-dependent uptake mechanism. Thus, differences in the IC(50) value are--most likely--attributed to significant changes in cellular uptake. Polymer tacticity and stereoregularity appear to represent a key feature determining cellular uptake and efficiency for the PLA block copolymer drug formulations. This work demonstrates the importance of the microstructure of polymers used in drug delivery systems (DDS

  18. Nanoparticle-Loaded Multifunctional Block Copolymer Micelles

    NASA Astrophysics Data System (ADS)

    Bae, Jinhye; Lawrence, Jimmy; Miesch, Caroline; Ribbe, Alexander; Li, Weikun; Emrick, Todd; Zhu, Jintao; Hayward, Ryan

    2012-02-01

    We have studied the incorporation of pre-synthesized hydrophobic inorganic nanoparticles within the cores of amphiphilic polystyrene-block-poly(ethylene oxide) (PS-PEO) diblock copolymer micelles formed through solvent-evaporation-induced interfacial instabilities of emulsion droplets. Using iron oxide, gold, and cadmium selenide nanoparticles coated with native alkane ligands, highly uniform encapsulation is obtained for cylindrical micelles, while spherical micelles can be enriched to ˜ 90 % of loaded micelles through simple magnetic or centrifugal purification steps. Multiple different types of nanoparticles can easily be incorporated into each micelle, yielding multi-functional micelles. The ability to encapsulate both spherical and rod-like particles of different core chemistries and sizes ranging from ˜ 1 to 20 nm, without the necessity of coating particles with specially designed ligands, makes this a versatile route to prepare hybrid micelle structures.

  19. Ion transport through block copolymer electrolytes

    NASA Astrophysics Data System (ADS)

    Mullin, Scott; Panday, Ashoutosh; Balsara, Nitash

    2009-03-01

    Poly(styrene)-block-poly(ethylene oxide) (SEO) is a candidate material for electrolytes for rechargeable lithium metal batteries. The PS phase suppresses lithium dendrite growth on the anode during recharge, and the PEO phase solvates lithium bis(trifluoromethane)sulfonimide (LiTFSI) salt to form conducting pathways. Complete electrochemical characterization of PEO/LiTFSI mixtures requires measurement of conductivity, salt diffusion coefficient, and lithium ion transference number. The present study covers SEO copolymers that exhibit lamellar and cylindrical morphologies in the absence of salt. The addition of salt affects morphology but the relationships between morphology and electrochemical characteristics have not yet been clarified. Some aspects of these relationships will be presented.

  20. Cationic vinyl pyridine copolymers and products thereof

    NASA Technical Reports Server (NTRS)

    Rembaum, Alan (Inventor)

    1978-01-01

    Quaternized, cross-linked, insoluble copolymers of unsubstituted and substituted vinyl pyridines and a dihalo organic compound are spontaneously formed at ambient temperature on mixing the two monomers in bulk, in solution or in suspension. The amount of cross-linking may be varied according to the composition and reaction conditions. The polymer product exhibits ion exchange capacity and undergoes a reversible color change from black at a pH above 7 to yellow at a pH below 7. The polymer may be formed in the presence of preformed polymers, substrates such as porous or impervious particles or films to deposit an ion exchange film in situ or on the surface of the substrate. The coated or resin impregnated substrate may be utilized for separation of anionic species from aqueous solution.

  1. Computational engineering of low bandgap copolymers

    PubMed Central

    Wykes, Michael; Milián-Medina, Begoña; Gierschner, Johannes

    2013-01-01

    We present a conceptual approach to low bandgap copolymers, in which we clarify the physical parameters which control the optical bandgap, develop a fundamental understanding of bandgap tuning, unify the terminology, and outline the minimum requirements for accurate prediction of polymer bandgaps from those of finite length oligomers via extrapolation. We then test the predictive power of several popular hybrid and long-range corrected (LC) DFT functionals when applied to this task by careful comparison to experimental studies of homo- and co-oligomer series. These tests identify offset-corrected M06HF, with 100% HF exchange, as a useful alternative to the poor performance of tested hybrid and LC functionals with lower fractions of HF exchange (B3LYP, CAM-B3LYP, optimally-tuned LC-BLYP, BHLYP), which all significantly overestimate changes in bandgap as a function of system size. PMID:24790963

  2. Triblock Copolymer Theory: Ordered ABC Lamellar Phase

    NASA Astrophysics Data System (ADS)

    Ren, G.; Wei, J. A.

    2003-04-01

    The ABC lamellar phase of a triblock copolymer in the strong segregation region is studied on periodic and bounded intervals. In the periodic case we find a family of local minimizers of the free energy functional all with a fine lamellar structure. Among these local minimizers we identify the one most favored by the free energy, and hence determine the thickness of lamellar microdomains. In the bounded interval case we show that perfect lamellar structure does not exist due to the boundary effect. We view the strong segregation limit as a Γ -limit of the free energy by a proper choice of the material sample size. The key step is the spectral analysis of a large matrix resulting from the second derivative of the Γ -limit.

  3. Block and graft copolymers and NanoGel copolymer networks for DNA delivery into cell.

    PubMed

    Lemieux, P; Vinogradov, S V; Gebhart, C L; Guérin, N; Paradis, G; Nguyen, H K; Ochietti, B; Suzdaltseva, Y G; Bartakova, E V; Bronich, T K; St-Pierre, Y; Alakhov, V Y; Kabanov, A V

    2000-01-01

    Self-assembling complexes from nucleic acids and synthetic polymers are evaluated for plasmid and oligonucleotide (oligo) delivery. Polycations having linear, branched, dendritic. block- or graft copolymer architectures are used in these studies. All these molecules bind to nucleic acids due to formation of cooperative systems of salt bonds between the cationic groups of the polycation and phosphate groups of the DNA. To improve solubility of the DNA/polycation complexes, cationic block and graft copolymers containing segments from polycations and non-ionic soluble polymers, for example, poly(ethylene oxide) (PEO) were developed. Binding of these copolymers with short DNA chains, such as oligos, results in formation of species containing hydrophobic sites from neutralized DNA polycation complex and hydrophilic sites from PEO. These species spontaneously associate into polyion complex micelles with a hydrophobic core from neutralized polyions and a hydrophilic shell from PEO. Such complexes are very small (10-40 nm) and stable in solution despite complete neutralization of charge. They reveal significant activity with oligos in vitro and in vivo. Binding of cationic copolymers to plasmid DNA forms larger (70-200 nm) complexes. which are practically inactive in cell transfection studies. It is likely that PEO prevents binding of these complexes with the cell membranes ("stealth effect"). However attaching specific ligands to the PEO-corona can produce complexes, which are both stable in solution and bind to target cells. The most efficient complexes were obtained when PEO in the cationic copolymer was replaced with membrane-active PEO-b-poly(propylene oxide)-b-PEO molecules (Pluronic 123). Such complexes exhibited elevated levels of transgene expression in liver following systemic administration in mice. To increase stability of the complexes, NanoGel carriers were developed that represent small hydrogel particles synthesized by cross-linking of PEI with double end

  4. Thermal analytical study of polyamide copolymer/Surlyn Ionomers Blends

    SciTech Connect

    Qin, C.; Ding, Y.P.

    1993-12-31

    Thermal analytical technique was used as a screening method to study polyamide(Nylon)/ethylene-co-methacrylic acid copolymer-based ionomer(Surlyn)blends. The retardation of crystallization process from molten state of Nylon-12 by the existence of the ionomer was observed, but the crystallization of Nylon-12 can not be thwarted even at high concentration of ionomers. Zinc ionomers shows stronger effect than sodium ionomers. A Nylon copolymer, polyamide-6,6-co-polyamide-6,10, was used to blend with different ionomers and the crystallization process from molten state of Nylon copolymer could be thwarted at high concentration of zinc ionomer even at very cooling rate. Interesting cold crystallization behavior of polyamide copolymer was observed during second DSC heating cycle in the temperature range of the melting process of ionomer.

  5. Self-Assembly of Block Copolymers in an Ionic Liquid

    NASA Astrophysics Data System (ADS)

    He, Yiyong; Li, Zhibo; Lodge, Timothy P.

    2006-03-01

    Amphiphilic diblock copolymers poly((1,2-butadiene)-b-ethylene oxide) (PB-PEO) were shown to aggregate and form well-defined micelles in an ionic liquid, 1-butyl-3-methyl imidazolium hexafluorophosphate ([BMIM][PF6]). The universal sequence of micellar structures (spherical micelle, wormlike micelle, and bilayered vesicle) were all resolved by varying the block copolymer composition. For the first time, the nanostructures of PB-PEO micelles formed in an ionic liquid were directly visualized by cryogenic transmission electron microscopy (cryo-TEM). The detailed micelle structure information was extracted from cryo-TEM and dynamic light scattering (DLS) measurements, and compared to their aqueous counterparts. The work demonstrates the feasibility of controlling micellar nanostructures of amphiphilic block copolymers in ionic liquids, and also provides important knowledge for further applications of copolymers for forming microemulsions and ion gels.

  6. Surface Characterization of Aliphatic Polyester -g- Phosphorylcholine Copolymers

    NASA Astrophysics Data System (ADS)

    Zhang, Xiongfei; Emrick, Todd; Hsu, Shaw L.

    2007-03-01

    In order to control biodegradation behavior of a class of polyesters, hydrophilic functional groups were grafted onto the main chains. Phosphorylcholine (PC) molecules with azide attached at the end were synthesized. Due to their excellent biocompatibility and hydrophilicity, they have been covalently coupled to biodegradable aliphatic polyesters via a ``click'' cycloaddition reaction to produce amphiphilic graft copolymers. A series of copolymers were prepared by varying the molar incorporation of PC groups. Surface properties of the copolymers were examined to further explore their applications in drug delivery systems. Grazing angle reflection infrared spectroscopy was employed to determine segmental orientation at the film surface. XPS was used to verify surface composition. A water adsorption experiment was carried out to determine the water permeation rate. The improvement in hydrophilicity was confirmed by a water contact experiment. Results indicate that the graft copolymers were promising in drug delivery systems.

  7. Nanostructured photovoltaic materials using conjugated block copolymer assemblies

    NASA Astrophysics Data System (ADS)

    Mastroianni, Sarah E.; Epps, Thomas H., III

    2011-03-01

    Block copolymers containing a conjugated block offer attractive possibilities for creating nanostructured organic photovoltaic (OPV) devices. Current OPV materials suffer from efficiency losses primarily due to a size-scale discrepancy between exciton diffusion length and domain sizes; excitons that do not reach the interface between electron and hole-conducting materials recombine, preventing charge carrier separation. The inherent nature of block-copolymers to self-assemble into well-defined nanoscale structures with domain spacings on the order of exciton diffusion length offers a potential solution for reducing exciton recombination. In this work, allyl-terminated poly(3-hexyl thiophene) or poly(3-decyl thiophene) acting as electron donors are incorporated into the block copolymer chain via a coupling reaction with poly(styrene) or poly(isoprene- b -styrene) derivatives synthesized by anionic polymerization. The resulting block copolymer morphologies are characterized by small angle X-ray scattering and transmission electron microscopy.

  8. Sequence transferable coarse-grained model of amphiphilic copolymers

    NASA Astrophysics Data System (ADS)

    De Silva, Chathuranga C.; Leophairatana, Porakrit; Ohkuma, Takahiro; Koberstein, Jeffrey T.; Kremer, Kurt; Mukherji, Debashish

    2017-08-01

    Polymer properties are inherently multi-scale in nature, where delicate local interaction details play a key role in describing their global conformational behavior. In this context, deriving coarse-grained (CG) multi-scale models for polymeric liquids is a non-trivial task. Further complexities arise when dealing with copolymer systems with varying microscopic sequences, especially when they are of amphiphilic nature. In this work, we derive a segment-based generic CG model for amphiphilic copolymers consisting of repeat units of hydrophobic (methylene) and hydrophilic (ethylene oxide) monomers. The system is a simulation analogue of polyacetal copolymers [S. Samanta et al., Macromolecules 49, 1858 (2016)]. The CG model is found to be transferable over a wide range of copolymer sequences and also to be consistent with existing experimental data.

  9. Electrode coating composed of copolymers derived from diacetone acrylamide

    SciTech Connect

    Rampel, G.

    1985-07-23

    An improved electrode coating and separator coating derived from a copolymer of diacetone acrylamide and a polymerizable monomer. This invention relates to novel rechargeable electrodes, separators and processes for preparing same.

  10. HPMA copolymers: Origins, early developments, present, and future☆

    PubMed Central

    Kopeček, Jindřich; Kopečková, Pavla

    2010-01-01

    The overview covers the discovery of N-(2-hydroxypropyl)methacrylamide (HPMA) copolymers, initial studies on their synthesis, evaluation of biological properties, and explorations of their potential as carriers of biologically active compounds in general and anticancer drugs in particular. The focus is on the research in the authors’ laboratory – the development of macromolecular therapeutics for the treatment of cancer and musculoskeletal diseases. In addition, the evaluation of HPMA (co)polymers as building blocks of mod and new biomaterials is presented: the utilization of semitelechelic poly(HPMA) and HPMA copolymers for the modification of biomaterial and protein surfaces and the design of hybrid block and graft HPMA copolymers that self-assemble into smart hydrogels. Finally, suggestions for the design of second-generation macromolecular therapeutics are portrayed. PMID:19919846

  11. Insensitive explosive composition of halogenated copolymer and triaminotrinitrobenzene

    DOEpatents

    Benziger, Theodore M.

    1976-01-01

    A highly insensitive and heat resistant plastic-bonded explosive containing 90 wt % triaminotrinitrobenzene and 10 wt % of a fully saturated copolymer of chlorotrifluoroethylene and vinylidene fluoride is readily manufactured by the slurry process.

  12. Self-assembled architectures from biohybrid triblock copolymers.

    PubMed

    Reynhout, Irene C; Cornelissen, Jeroen J L M; Nolte, Roeland J M

    2007-02-28

    The synthesis and self-assembly behavior of biohybrid ABC triblock copolymers consisting of a synthetic diblock, polystyrene-b-polyethylene glycol (PSm-b-PEG113), where m is varied, and a hemeprotein, myoglobin (Mb) or horse radish peroxidase (HRP), is described. The synthetic diblock copolymer is first functionalized with the heme cofactor and subsequently reconstituted with the apoprotein or the apoenzyme to yield the protein-containing ABC triblock copolymer. The obtained amphiphilic block copolymers self-assemble in aqueous solution into a large variety of aggregate structures. Depending on the protein and the polystyrene block length, micellar rods, vesicles, toroids, figure eight structures, octopus structures, and spheres with a lamellar surface are formed.

  13. Electrode coating composed of copolymers derived from diacetone acrylamide

    SciTech Connect

    Rampel, G.

    1981-01-13

    An improved electrode coating and separator coating derived from a copolymer of diacetone acrylamide and a polymerizable monomer are disclosed. This invention relates to novel rechargeable electrodes, separators and processes for preparing same.

  14. Stepwise Activation of Switchable Glazing by Compositional Gradient of Copolymers.

    PubMed

    Lee, Eunsu; Kim, Dowan; Yoon, Jinhwan

    2016-10-05

    Thermotropic glazing is one of the most promising developments for adaptive solar control; however, a monotonic transparent-opaque transition limits its practical application. In this work, to render stepwise activation of the switchable glazing, we prepared multicomposition copolymers having a compositional gradient. By slow addition of the monomers in the reaction mixture during free-radical polymerization, the blend of copolymers with each polymer having different compositions of the monomers could be prepared. We found that the developed copolymers exhibit different thermal behaviors according to the monomer composition, yielding the nearly linear transmittance change over a wide temperature range due to the gradient hydrophilic-hydrophobic balances. By combining prepared copolymers with photothermal graphene oxide as a heat transducer, we demonstrated gradual solar control of the smart window in response to sunlight intensity in outdoor testing.

  15. Fluorescence properties of PEN and PET/PEN copolymers

    SciTech Connect

    Jones, A.S.; Dickson, T.J.; Wilson, B.E.

    1996-10-01

    The fluorescence properties of PEN (polyethylene napthalate) and PET (polyethylene terephthalate)/PEN copolymers were studied using time-resolved and steady-state fluorescence. Excimer and monomer emission are probed.

  16. Organically modified aluminosilicate mesostructures from block copolymer phases

    PubMed

    Templin; Franck; Du Chesne A; Leist; Zhang; Ulrich; Schadler; Wiesner

    1997-12-05

    Organically modified aluminosilicate mesostructures were synthesized from two metal alkoxides with the use of poly(isoprene-b-ethyleneoxide) block copolymers (PI-b-PEO) as the structure-directing molecules. By increasing the fraction of the inorganic precursors with respect to the polymer, morphologies expected from the phase diagrams of diblock copolymers were obtained. The length scale of the microstructures and the state of alignment were varied using concepts known from the study of block copolymers. These results suggest that the use of higher molecular weight block copolymer mesophases instead of conventional low-molecular weight surfactants may provide a simple, easily controlled pathway for the preparation of various silica-type mesostructures that extends the accessible length scale of these structures by about an order of magnitude.

  17. Multicompartmental Microcapsules from Star Copolymer Micelles

    SciTech Connect

    Choi, Ikjun; Malak, Sidney T.; Xu, Weinan; Heller, William T.; Tsitsilianis, Constantinos; Tsukruk, Vladimir V.

    2013-02-26

    We present the layer-by-layer (LbL) assembly of amphiphilic heteroarm pH-sensitive star-shaped polystyrene-poly(2-pyridine) (PSnP2VPn) block copolymers to fabricate porous and multicompartmental microcapsules. Pyridine-containing star molecules forming a hydrophobic core/hydrophilic corona unimolecular micelle in acidic solution (pH 3) were alternately deposited with oppositely charged linear sulfonated polystyrene (PSS), yielding microcapsules with LbL shells containing hydrophobic micelles. The surface morphology and internal nanopore structure of the hollow microcapsules were comparatively investigated for shells formed from star polymers with a different numbers of arms (9 versus 22) and varied shell thickness (5, 8, and 11 bilayers). The successful integration of star unimers into the LbL shells was demonstrated by probing their buildup, surface segregation behavior, and porosity. The larger arm star copolymer (22 arms) with stretched conformation showed a higher increment in shell thickness due to the effective ionic complexation whereas a compact, uniform grainy morphology was observed regardless of the number of deposition cycles and arm numbers. Small-angle neutron scattering (SANS) revealed that microcapsules with hydrophobic domains showed different fractal properties depending upon the number of bilayers with a surface fractal morphology observed for the thinnest shells and a mass fractal morphology for the completed shells formed with the larger number of bilayers. Moreover, SANS provides support for the presence of relatively large pores (about 25 nm across) for the thinnest shells as suggested from permeability experiments. The formation of robust microcapsules with nanoporous shells composed of a hydrophilic polyelectrolyte with a densely packed hydrophobic core based on star amphiphiles represents an intriguing and novel case of compartmentalized microcapsules with an ability to simultaneously store different hydrophilic, charged, and hydrophobic

  18. Supramolecular Multiblock Copolymers Featuring Complex Secondary Structures.

    PubMed

    Elacqua, Elizabeth; Manning, Kylie B; Lye, Diane S; Pomarico, Scott K; Morgia, Federica; Weck, Marcus

    2017-09-06

    This contribution introduces main-chain supramolecular ABC and ABB'A block copolymers sustained by orthogonal metal coordination and hydrogen bonding between telechelic polymers that feature distinct secondary structure motifs. Controlled polymerization techniques in combination with supramolecular assembly are used to engineer heterotelechelic π-sheets that undergo high-fidelity association with both helical and coil-forming synthetic polymers. Our design features multiple advances to achieve our targeted structures, in particular, those emulating sheet-like structural aspects using poly(p-phenylenevinylene)s (PPVs). To engineer heterotelechelic PPVs in a sheet-like design, we engineer an iterative one-pot cross metathesis-ring-opening metathesis polymerization (CM-ROMP) strategy that affords functionalized Grubbs-II initiators that subsequently polymerize a paracyclophanediene. Supramolecular assembly of two heterotelechelic PPVs is used to realize a parallel π-sheet, wherein further orthogonal assembly with helical motifs is possible. We also construct an antiparallel π-sheet, wherein terminal PPV blocks are adjacent to a flexible coil-like poly(norbornene) (PNB). The PNB is designed, through supramolecular chain collapse, to expose benzene and perfluorobenzene motifs that promote a hairpin turn via charge-transfer-aided folding. We demonstrate that targeted helix-(π-sheet)-helix and helix-(π-sheet)-coil assemblies occur without compromising intrinsic helicity, while both parallel and antiparallel β-sheet-like structures are realized. Our main-chain orthogonal assembly approach allows the engineering of multiblock copolymer scaffolds featuring diverse secondary structures via the directional assembly of telechelic building blocks. The targeted assemblies, a mix of sequence-defined helix-sheet-coil and helix-sheet-helix architectures, are Nature-inspired synthetic mimics that expose α/β and α+β protein classes via de novo design and cooperative assembly

  19. Interfacial properties of semifluorinated alkane diblock copolymers

    NASA Astrophysics Data System (ADS)

    Pierce, Flint; Tsige, Mesfin; Borodin, Oleg; Perahia, Dvora; Grest, Gary S.

    2008-06-01

    The liquid-vapor interfacial properties of semifluorinated linear alkane diblock copolymers of the form F3C(CF2)n-1(CH2)m-1CH3 are studied by fully atomistic molecular dynamics simulations. The chemical composition and the conformation of the molecules at the interface are identified and correlated with the interfacial energies. A modified form of the Optimized Parameter for Liquid Simulation All-Atom (OPLS-AA) force field of Jorgensen and co-workers [J. Am. Chem. Soc. 106, 6638 (1984); 118, 11225 (1996); J. Phys. Chem. A 105, 4118 (2001)], which includes specific dihedral terms for H-F blocks-and corrections to the H-F nonbonded interaction, is used together with a new version of the exp-6 force field developed in this work. Both force fields yield good agreement with the available experimental liquid density and surface tension data as well as each other over significant temperature ranges and for a variety of chain lengths and compositions. The interfacial regions of semifluorinated alkanes are found to be rich in fluorinated groups compared to hydrogenated groups, an effect that decreases with increasing temperature but is independent of the fractional length of the fluorinated segments. The proliferation of fluorine at the surface substantially lowers the surface tension of the diblock copolymers, yielding values near those of perfluorinated alkanes and distinct from those of protonated alkanes of the same chain length. With decreasing temperatures within the liquid state, chains are found to preferentially align perpendicular to the interface, as previously seen.

  20. Block Copolymer Thin Films: Patterns and Patterning

    NASA Astrophysics Data System (ADS)

    Register, Richard A.

    2001-03-01

    The nanostructures ("microdomains") in thin block copolymer films make excellent contact masks for surface patterning on the nanoscale. Using these thin films as templates, we have developed techniques based on reactive ion etching to uniformly and completely pattern the underlying substrate with a dense periodic pattern of dots, holes, or lines, with widths of order 20 nm. In addition, we have fabricated arrays of metal dots by backfilling these holes, and GaAs quantum dots by regrowth onto patterned GaAs substrates. A key issue in this nanopatterning approach is controlling the pattern which forms within the mask. While the local structure of the pattern (e.g., spheres vs. cylinders) is easily controlled through block copolymer composition, the long-range order ("grain size") is more difficult to manipulate. For cylinder-forming diblocks, we find that the correlation length of the microdomains grows as a weak power of annealing time, approximately 1/4. The principal types of defects which destroy the long-range order of the microdomains are disclinations. Sequential AFM images taken on the same region of the film after varying annealing times can be strung together into "movies" (to be shown at the talk) which directly show that the principal mode of defect annihilation (and hence grain growth) is the annihilation of disclination quadrupoles (pairs of +1/2 and -1/2 disclinations). We propose a model for quadrupole annihilation which reproduces the 1/4 exponent. Preliminary results for sphere-forming systems suggest that the exponent there is even lower than 1/4, making it difficult to achieve a significant degree of coarsening by extending the annealing time. * in collaboration with D.H. Adamson, P.M. Chaikin, Z. Cheng, P.D. Dapkus (USC), C.K. Harrison, D.A. Huse, R.R. Li (USC), and M. Park.

  1. Melt structure and self-nucleation of ethylene copolymers

    NASA Astrophysics Data System (ADS)

    Alamo, Rufina G.

    A strong memory effect of crystallization has been observed in melts of random ethylene copolymers well above the equilibrium melting temperature. These studies have been carried out by DSC, x-ray, TEM and optical microscopy on a large number of model, narrow, and broad copolymers with different comonomer types and contents. Melt memory is correlated with self-seeds that increase the crystallization rate of ethylene copolymers. The seeds are associated with molten ethylene sequences from the initial crystals that remain in close proximity and lower the nucleation barrier. Diffusion of all sequences to a randomized melt state is a slow process, restricted by topological chain constraints (loops, knots, and other entanglements) that build in the intercrystalline region during crystallization. Self-seeds dissolve above a critical melt temperature that demarcates homogeneity of the copolymer melt. There is a critical threshold level of crystallinity to observe the effect of melt memory on crystallization rate, thus supporting the correlation between melt memory and the change in melt structure during copolymer crystallization. Unlike binary blends, commercial ethylene-1-alkene copolymers with a range in inter-chain comonomer composition between 1 and about 15 mol % display an inversion of the crystallization rate in a range of melt temperatures where narrow copolymers show a continuous acceleration of the rate. With decreasing the initial melt temperature, broadly distributed copolymers show enhanced crystallization followed by a decrease of crystallization rate. The inversion demarcates the onset of liquid-liquid phase separation (LLPS) and a reduction of self-nuclei due to the strong thermodynamic drive for molecular segregation inside the binodal. The strong effect of melt memory on crystallization rate can be used to identify liquid-liquid phase separation in broadly distributed copolymers, and offers strategies to control the state of copolymer melts in ways of

  2. Block copolymer adhesion promoters via ring-opening metathesis polymerization

    DOEpatents

    Kent, Michael S.; Saunders, Randall

    1997-01-01

    Coupling agents based on functionalized block copolymers for bonding thermoset polymers to solid materials. These are polymers which possess at least two types of functional groups, one which is able to attach to and react with solid surfaces, and another which can react with a thermoset resin, which are incorporated as pendant groups in monomers distributed in blocks (typically two) along the backbone of the chain. The block copolymers in this invention are synthesized by living ring-opening metathesis polymerization.

  3. Thin Film Assembly of Spider Silk-like Block Copolymers

    DTIC Science & Technology

    2011-01-01

    Film Assembly of Spider Silk -like Block Copolymers Sreevidhya T. Krishnaji,†,‡ Wenwen Huang,§ Olena Rabotyagova,†,‡ Eugenia Kharlampieva, ) Ikjun Choi...Received November 26, 2010 We report the self-assembly of monolayers of spider silk -like block copolymers. Langmuir isotherms were obtained for a series of...bioengineered variants of the spider silks , and stable monolayers were generated. Langmuir-Blodgett films were prepared by transferring the monolayers

  4. Thin Films of Bottlebrush Block Copolymers with Homopolymer

    NASA Astrophysics Data System (ADS)

    Jeong, Gajin; Sveinbjornsson, Benjamin R.; Grubbs, Robert Howard; Russell, Thomas P.; Polymer science; engineering department, University of Massachusetts Amherst Team; Chemistry department, California Institute of Technology Team

    2015-03-01

    We have investigated the self assembled structures of bottlebrush block copolymers (BrBCPs) in thin films by blending deuterated homopolymer. By use of neutron reflectivity (NR), the assemblies with microdomain oriented parallel to the substrate, the distribution of the homopolymer in the bottlebrush block copolymer was obtained. Polynorbornene-backbone-based bottlebrush BCPs with polylactide (PLA) and polystyrene (PS) side chains of different molecular weights were investigated. Small angle x-ray scattering was used to complement the NR studies.

  5. Photooxidative degradation of clear ultraviolet absorbing acrylic copolymer surfaces

    NASA Technical Reports Server (NTRS)

    Gupta, A.; Liang, R. H.; Vogl, O.; Pradellok, W.; Huston, A. L.; Scott, G. W.

    1983-01-01

    Photodegradation of copolymer of methyl methacrylate and 2(2'-hydroxy 5'vinyl-phenyl) 2H-benzotriazole has been investigated in order to determine the changes in the chemical composition of the surface of the copolymer on photooxidation. An electronic energy transfer mechanism has been postulated in order to interpret the observed photochemical changes in the polymer. Preliminary examination of the photophysical properties of the chromophore provides support for such a mechanism.

  6. Thermoreversible, epitaxial fcc<-->bcc transitions in block copolymer solutions.

    PubMed

    Bang, Joona; Lodge, Timothy P; Wang, Xiaohui; Brinker, Kristin L; Burghardt, Wesley R

    2002-11-18

    Uncharged block copolymer micelles display thermoreversible transitions between close-packed and bcc lattices for a range of concentration, solvent selectivity, and copolymer composition. Using small-angle x-ray scattering on shear-oriented solutions, highly aligned fcc crystals are seen to transform epitaxially to bcc crystals, with fcc/bcc orientational relationships that are well established in martensitic transformations in metals. The transition is driven by decreasing solvent selectivity with increasing temperature, inducing solvent penetration of the micellar core.

  7. Complex copolymers for mobility control, water purification, and surface activity

    SciTech Connect

    Meister, J.J.

    1988-05-01

    Many processes that are basic to the extraction of natural resources are facilitated by addition of polymers. To be useful, the polymers must meet an interrelated list of chemical and physical properties as well as economic criteria. Two important properties demanded of the polymers are: 1. Rheology. Polymers are often added to change solvent or process flow properties. The addition of polymers almost always causes non-Newtonian flow behavior in the resulting fluid. Methods of controlling surface behavior are to: 1) create polar and nonpolar regions in the molecule thus producing a hydrophilic-lipophilic balance in the molecule, 2) charge the molecule by introducing ionic sites with the same or opposite charge as the boundary, or 3) introduce or remove functional groups in the molecule which produce binding reactions, such as a) hydrogen bond creation of b) nitrogen lone-pair donation, with the surface. This multitude of properties the polymer must possess dictate that better polymer performance is obtained from materials with complicated structures. Such polymers are complex polymers: random copolymers, block copolymers, graft copolymers, micellizing copolymers, and network copolymers. There has been a dramatic increase in the past decade in the number and complexity of these copolymers and it is these newly discovered polymers and their chemistry which will be described here. The synthesis, analysis, and testing of these polymers, with particular emphasis on those polymers designed for enhanced oil recovery, is presented.

  8. Carboxymethylbetaine copolymer layer covalently fixed to a glass substrate.

    PubMed

    Suzuki, Hisatomo; Li, Lifu; Nakaji-Hirabayashi, Tadashi; Kitano, Hiromi; Ohno, Kohji; Matsuoka, Kazuyoshi; Saruwatari, Yoshiyuki

    2012-06-01

    A random copolymer of zwitterionic monomer, carboxymethylbetaine (CMB), and 3-methacryloyloxypropyl trimethoxysilane was prepared in ethanol using 2,2'-azobisisobutyronitrile as initiator. The incubation of ethanol solution of the copolymer with a glass plate gave a layer of the copolymer with a thickness of about 2-3 nm. The copolymer-modified glass substrate became highly hydrophilic upon immersion in water, and showed a resistance against non-specific adsorption of proteins, and the degree of resistance increased with the content of CMB residues in the copolymer and leveled off. The adhesion of various cells to the glass substrate was also strongly suppressed by the surface modification with the copolymer layer. Further introduction of PolyCMB graft chains on the surface of the layer enhanced the suppression of cell adhesion due to the steric hindrance for the cells to approach the layer. The usefulness of the combination of zwitterionic polymer layer and graft chains to afford anti-biofouling properties to a solid surface of metal oxides was shown.

  9. Theory for the aggregation of proteins and copolymers

    SciTech Connect

    Fields, G.B.; Alonso, D.O.V.; Stigter, D.; Dill, K.A.

    1992-05-14

    We develop mean-field lattice statistical mechanics theory for the equilibrium between denatured and aggregated states of proteins and other random copolymers of hydrophobic and polar monomers in aqueous solution. We suppose that the aggregated state is a mixture of amorphous polymer plus solvent and that the driving forces are the hydrophobic interaction, which favors aggregation, and conformational and translational entropies, which favor disaggregation. The theory predicts that the phase diagram for thermal aggregation is an asymmetric closed loop, and for denaturants (guanidinium hydrochloride of urea) it is asymmetric with an upper consolute point. The theory predicts that a copolymer in a poor solvent will expand with increasing polymer concentration because of {open_quotes}screening{close_quotes} of the solvent interactions by the other chains; the chain ultimately reaches a theta-like state in the absence of solvent. The screening concentration depends strongly on the copolymer composition. We find two striking features of these copolymer phase diagrams. First, they are extraordinarily sensitive to the copolymer composition; a change of one amino acid can substantially change the aggregation behavior. Second, relative to homopolymers, copolymers should be stable against aggregation at concentrations that are higher by many orders of magnitude. 43 refs., 13 figs.

  10. Nanopatterning of Viruses and Proteins Using Microphase Separated Block Copolymers

    NASA Astrophysics Data System (ADS)

    Cresce, Arthur; Lewandowski, Angela; Bentley, William; Kofinas, Peter

    2006-03-01

    Diblock copolymers containing nickel ions have been prepared that are capable of selectively adsorbing histidine-tagged green fluorescent protein (hisGFP), and also binding tobacco mosaic virus (TMV). A block copolymer of norbornene and norbornene dicarboxylic acid was synthesized using ring-opening metathesis polymerization. A 400/50 block ratio achieved a spherical microphase-separated morphology with roughly 20 nm diameter dicarboxylic acid spheres. The spherical phase was exposed to nickel ions in solution, templating the formation of nickel nanoparticles. This process gave a nickel-loaded diblock copolymer film whose surface was used to chelate hisGFP. Fluorescence spectroscopy and TEM confirmed the presence of the protein on the polymer surface. A sulfonated triblock copolymer was loaded with nickel ions using a similar solution-doping procedure. The morphology of this copolymer was lamellar, and its sulfonated block was loaded with nickel ions. TEM studies revealed the presence of the virus on the surface of the copolymer and showed that the bond between the TMV and the polymer surface can withstand severe detergent washes.

  11. Field-theoretic simulations of random copolymers with structural rigidity.

    PubMed

    Mao, Shifan; MacPherson, Quinn; Qin, Jian; Spakowitz, Andrew J

    2017-04-12

    Copolymers play an important role in a range of soft-materials applications and biological phenomena. Prevalent works on block copolymer phase behavior use flexible chain models and incorporate interactions using a mean-field approximation. However, when phase separation takes place on length scales comparable to a few monomers, the structural rigidity of the monomers becomes important. In addition, concentration fluctuations become significant at short length scales, rendering the mean-field approximation invalid. In this work, we use simulation to address the role of finite monomer rigidity and concentration fluctuations in microphase segregation of random copolymers. Using a field-theoretic Monte-Carlo simulation of semiflexible polymers with random chemical sequences, we generate phase diagrams for random copolymers. We find that the melt morphology of random copolymers strongly depends on chain flexibility and chemical sequence correlation. Chemically anti-correlated copolymers undergo first-order phase transitions to local lamellar structures. With increasing degree of chemical correlation, this first-order phase transition is softened, and melts form microphases with irregular shaped domains. Our simulations in the homogeneous phase exhibit agreement with the density-density correlation from mean-field theory. However, conditions near a phase transition result in deviations between simulation and mean-field theory for the density-density correlation and the critical wavemode. Chain rigidity and sequence randomness lead to frustration in the segregated phase, introducing heterogeneity in the resulting morphologies.

  12. Thermodynamics of block copolymers with and without salt.

    PubMed

    Teran, Alexander A; Balsara, Nitash P

    2014-01-09

    Ion-containing block copolymers are of interest for applications such as electrolytes in rechargeable lithium batteries. The addition of salt to these materials is necessary to make them conductive; however, even small amounts of salt can have significant effects on the phase behavior of these materials and consequently on their ion-transport and mechanical properties. As a result, the effect of salt addition on block copolymer thermodynamics has been the subject of significant interest over the past decade. This feature article describes a comprehensive study of the thermodynamics of block copolymer/salt mixtures over a wide range of molecular weights, compositions, salt concentrations, and temperatures. The Flory-Huggins interaction parameter was determined by fitting small-angle X-ray scattering data of disordered systems to predictions based on the random phase approximation. Experiments on neat block copolymers revealed that the Flory-Huggins parameter is a strong function of chain length. Experiments on block copolymer/salt mixtures revealed a highly nonlinear dependence of the Flory-Huggins parameter on salt concentration. These findings are a significant departure from previous results and indicate the need for improved theories for describing thermodynamic interactions in neat and salt-containing block copolymers.

  13. Antimicrobial activity of poly(acrylic acid) block copolymers.

    PubMed

    Gratzl, Günther; Paulik, Christian; Hild, Sabine; Guggenbichler, Josef P; Lackner, Maximilian

    2014-05-01

    The increasing number of antibiotic-resistant bacterial strains has developed into a major health problem. In particular, biofilms are the main reason for hospital-acquired infections and diseases. Once formed, biofilms are difficult to remove as they have specific defense mechanisms against antimicrobial agents. Antimicrobial surfaces must therefore kill or repel bacteria before they can settle to form a biofilm. In this study, we describe that poly(acrylic acid) (PAA) containing diblock copolymers can kill bacteria and prevent from biofilm formation. The PAA diblock copolymers with poly(styrene) and poly(methyl methacrylate) were synthesized via anionic polymerization of tert-butyl acrylate with styrene or methyl methacrylate and subsequent acid-catalyzed hydrolysis of the tert-butyl ester. The copolymers were characterized via nuclear magnetic resonance spectroscopy (NMR), size-exclusion chromatography (SEC), Fourier transform infrared spectroscopy (FTIR), elemental analysis, and acid-base titrations. Copolymer films with a variety of acrylic acid contents were produced by solvent casting, characterized by atomic force microscopy (AFM) and tested for their antimicrobial activity against Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa. The antimicrobial activity of the acidic diblock copolymers increased with increasing acrylic acid content, independent of the copolymer-partner, the chain length and the nanostructure. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. MALDI-ToF Analysis of Model Copolymer Blends

    NASA Astrophysics Data System (ADS)

    Pan, David; Arnould, Mark

    2008-03-01

    MALDI-ToF mass spectrometry was used to determine the composition of a low MW styrene (S) / n-butyl acrylate (nBA) copolymer. Bernoullian chain statistics were used to predict the copolymer distribution and confirm that MALDI-ToF detects the correct composition. The copolymer was blended with a low MW polystyrene homopolymer having the same end group as the copolymer at several levels to determine if MALDI-ToF could be used to calculate the amount of homopolymer by subtracting homopolymer peak areas. It is found that, while MALDI-ToF can be used to monitor the amount of homopolymer blended into the copolymer, the observed increase is always greater than the actual amount added, e.g. up to 13% error. This could be due to the fact that the homopolymer ionizes more efficiently than the low MW copolymer. A model to improve the accuracy of the calculated amount of homopolymer in the blend is discussed.

  15. Radical-cured block copolymer-modified thermosets

    SciTech Connect

    Redline, Erica M.; Francis, Lorraine F.; Bates, Frank S.

    2013-01-10

    Poly(ethylene-alt-propylene)-b-poly(ethylene oxide) (PEP-PEO) diblock copolymers were synthesized and added at 4 wt % to 2,2-bis[4-(2-hydroxy-3-methacryloxypropoxy)phenyl]propane (BisGMA), a monomer that cures using free radical chemistry. In separate experiments, poly(ethylene glycol) dimethacrylate (PEGDMA) was combined as a secondary monomer with BisGMA and the monomers were loaded with 4 wt % PEP-PEO. The diblock copolymers self-assembled into well-dispersed spherical micelles with PEP cores and PEO coronas. No appreciable change in the final extent of cure of the thermosets was caused by the addition of diblock copolymer, except in the case of BisGMA, where the addition of the block copolymer increased extent of cure by 12%. Furthermore, the extent of cure was increased by 29% and 37% with the addition of 25 and 50 wt % PEGDMA, respectively. Elastic modulus and fracture resistance were also determined, and the values indicate that the addition of block copolymers does not significantly toughen the thermoset materials. This finding is surprising when compared with the large increase in fracture resistance seen in block copolymer-modified epoxies, and an explanation is proposed.

  16. Properties of radiation cured vinyl-divinyl copolymers. [Gamma rays

    SciTech Connect

    Micko, M.M.; Paszner, L.

    1980-04-01

    Analysis of compression stress-strain curves of radiation-cured vinyl methacrylate copolymers shows that addition of small concentrations of vinyl comonomers significantly alter all mechanical strength properties in compression. Stress-strain behavior is found to be a function of the copolymer composition. Best strength results are limited to a narrow comonomer concentration region; between 5 to 10% of divinyl monomer (DVM) for the four systems studied. This concentration range broadens with increasing molecular bridge length of the crosslinking agent being narrowest for ethylene glycol dimethylacrylate and broadest for tetraethylene glycol dimethacrylate. Copolymer connection number (CN/sub co/), as introduced earlier, is found to be useful structural parameter for crosslinked copolymers in that it correlates quantitatively mechanical or thermomechanical properties with crosslink densities within copolymers. The Methyl methacrylate-TEGDMA comonomer system was found to be the most suitable and economically attractive. It represents a well balanced compromise of improved polymerization parameters and copolymer properties desirable in many polymeric products. 9 figures, 2 tables.

  17. Regular Decompositions for H(div) Spaces

    SciTech Connect

    Kolev, Tzanio; Vassilevski, Panayot

    2012-01-01

    We study regular decompositions for H(div) spaces. In particular, we show that such regular decompositions are closely related to a previously studied “inf-sup” condition for parameter-dependent Stokes problems, for which we provide an alternative, more direct, proof.

  18. 12 CFR 725.3 - Regular membership.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 12 Banks and Banking 6 2010-01-01 2010-01-01 false Regular membership. 725.3 Section 725.3 Banks and Banking NATIONAL CREDIT UNION ADMINISTRATION REGULATIONS AFFECTING CREDIT UNIONS NATIONAL CREDIT UNION ADMINISTRATION CENTRAL LIQUIDITY FACILITY § 725.3 Regular membership. (a) A natural person...

  19. Continuum regularization of quantum field theory

    SciTech Connect

    Bern, Z.

    1986-04-01

    Possible nonperturbative continuum regularization schemes for quantum field theory are discussed which are based upon the Langevin equation of Parisi and Wu. Breit, Gupta and Zaks made the first proposal for new gauge invariant nonperturbative regularization. The scheme is based on smearing in the ''fifth-time'' of the Langevin equation. An analysis of their stochastic regularization scheme for the case of scalar electrodynamics with the standard covariant gauge fixing is given. Their scheme is shown to preserve the masslessness of the photon and the tensor structure of the photon vacuum polarization at the one-loop level. Although stochastic regularization is viable in one-loop electrodynamics, two difficulties arise which, in general, ruins the scheme. One problem is that the superficial quadratic divergences force a bottomless action for the noise. Another difficulty is that stochastic regularization by fifth-time smearing is incompatible with Zwanziger's gauge fixing, which is the only known nonperturbaive covariant gauge fixing for nonabelian gauge theories. Finally, a successful covariant derivative scheme is discussed which avoids the difficulties encountered with the earlier stochastic regularization by fifth-time smearing. For QCD the regularized formulation is manifestly Lorentz invariant, gauge invariant, ghost free and finite to all orders. A vanishing gluon mass is explicitly verified at one loop. The method is designed to respect relevant symmetries, and is expected to provide suitable regularization for any theory of interest. Hopefully, the scheme will lend itself to nonperturbative analysis. 44 refs., 16 figs.

  20. 12 CFR 725.3 - Regular membership.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 12 Banks and Banking 6 2011-01-01 2011-01-01 false Regular membership. 725.3 Section 725.3 Banks... UNION ADMINISTRATION CENTRAL LIQUIDITY FACILITY § 725.3 Regular membership. (a) A natural person credit... stock subscription;1 and 1 A credit union which submits its application for membership prior to...

  1. 12 CFR 725.3 - Regular membership.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 12 Banks and Banking 7 2014-01-01 2014-01-01 false Regular membership. 725.3 Section 725.3 Banks... UNION ADMINISTRATION CENTRAL LIQUIDITY FACILITY § 725.3 Regular membership. (a) A natural person credit... stock subscription;1 and 1 A credit union which submits its application for membership prior to...

  2. 12 CFR 725.3 - Regular membership.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 12 Banks and Banking 7 2012-01-01 2012-01-01 false Regular membership. 725.3 Section 725.3 Banks... UNION ADMINISTRATION CENTRAL LIQUIDITY FACILITY § 725.3 Regular membership. (a) A natural person credit... stock subscription;1 and 1 A credit union which submits its application for membership prior to...

  3. 12 CFR 725.3 - Regular membership.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 12 Banks and Banking 7 2013-01-01 2013-01-01 false Regular membership. 725.3 Section 725.3 Banks... UNION ADMINISTRATION CENTRAL LIQUIDITY FACILITY § 725.3 Regular membership. (a) A natural person credit... stock subscription;1 and 1 A credit union which submits its application for membership prior to...

  4. Numerical Regularization of Ill-Posed Problems.

    DTIC Science & Technology

    1980-07-09

    Unione Matematica Italiana. 4. The parameter choice problem in linear regularization: a mathematical introduction, in "Ill-Posed Problems: Theory and...vector b which is generally unavailable (see [21], [22]). Kdckler [33] has shon however that in the case of Tikhonov regularization for matrices it may

  5. Transport Code for Regular Triangular Geometry

    SciTech Connect

    1993-06-09

    DIAMANT2 solves the two-dimensional static multigroup neutron transport equation in planar regular triangular geometry. Both regular and adjoint, inhomogeneous and homogeneous problems subject to vacuum, reflective or input specified boundary flux conditions are solved. Anisotropy is allowed for the scattering source. Volume and surface sources are allowed for inhomogeneous problems.

  6. Regularity Re-Revisited: Modality Matters

    ERIC Educational Resources Information Center

    Tsapkini, Kyrana; Jarema, Gonia; Kehayia, Eva

    2004-01-01

    The issue of regular-irregular past tense formation was examined in a cross-modal lexical decision task in Modern Greek, a language where the orthographic and phonological overlap between present and past tense stems is the same for both regular and irregular verbs. The experiment described here is a follow-up study of previous visual lexical…

  7. Functional Polymers and Sequential Copolymers by Phase Transfer Catalysis. 30. Synthesis of Liquid Crystalline Poly(epichlorohydrin) and Copolymers.

    DTIC Science & Technology

    1986-10-01

    Copolymers K0 By Coleen Pugh and V. Percec Department of Macromolecular Science Case Western Reserve University Cleveland, OH 44106 Submitted for... Coleen Pugh and V. Percec Department of Macromolecular Science Case Western Reserve University Cleveland, OH 44106 f ABSTRACT/ -Poly(epichlotohydrin...Catalysis. 30. Synthesis of Liquid Crystalline Poly(epichlorohydrin) and Copolymers 12 PERSONAL AUTIIOR(S C Coleen Pugh and V. Percec 13a TYPE OF

  8. Regularization techniques in realistic Laplacian computation.

    PubMed

    Bortel, Radoslav; Sovka, Pavel

    2007-11-01

    This paper explores regularization options for the ill-posed spline coefficient equations in the realistic Laplacian computation. We investigate the use of the Tikhonov regularization, truncated singular value decomposition, and the so-called lambda-correction with the regularization parameter chosen by the L-curve, generalized cross-validation, quasi-optimality, and the discrepancy principle criteria. The provided range of regularization techniques is much wider than in the previous works. The improvement of the realistic Laplacian is investigated by simulations on the three-shell spherical head model. The conclusion is that the best performance is provided by the combination of the Tikhonov regularization and the generalized cross-validation criterion-a combination that has never been suggested for this task before.

  9. A linear functional strategy for regularized ranking.

    PubMed

    Kriukova, Galyna; Panasiuk, Oleksandra; Pereverzyev, Sergei V; Tkachenko, Pavlo

    2016-01-01

    Regularization schemes are frequently used for performing ranking tasks. This topic has been intensively studied in recent years. However, to be effective a regularization scheme should be equipped with a suitable strategy for choosing a regularization parameter. In the present study we discuss an approach, which is based on the idea of a linear combination of regularized rankers corresponding to different values of the regularization parameter. The coefficients of the linear combination are estimated by means of the so-called linear functional strategy. We provide a theoretical justification of the proposed approach and illustrate them by numerical experiments. Some of them are related with ranking the risk of nocturnal hypoglycemia of diabetes patients.

  10. On regularizations of the Dirac delta distribution

    NASA Astrophysics Data System (ADS)

    Hosseini, Bamdad; Nigam, Nilima; Stockie, John M.

    2016-01-01

    In this article we consider regularizations of the Dirac delta distribution with applications to prototypical elliptic and hyperbolic partial differential equations (PDEs). We study the convergence of a sequence of distributions SH to a singular term S as a parameter H (associated with the support size of SH) shrinks to zero. We characterize this convergence in both the weak-* topology of distributions and a weighted Sobolev norm. These notions motivate a framework for constructing regularizations of the delta distribution that includes a large class of existing methods in the literature. This framework allows different regularizations to be compared. The convergence of solutions of PDEs with these regularized source terms is then studied in various topologies such as pointwise convergence on a deleted neighborhood and weighted Sobolev norms. We also examine the lack of symmetry in tensor product regularizations and effects of dissipative error in hyperbolic problems.

  11. Method of forming oriented block copolymer line patterns, block copolymer line patterns formed thereby, and their use to form patterned articles

    DOEpatents

    Russell, Thomas P.; Hong, Sung Woo; Lee, Doug Hyun; Park, Soojin; Xu, Ting

    2015-10-13

    A block copolymer film having a line pattern with a high degree of long-range order is formed by a method that includes forming a block copolymer film on a substrate surface with parallel facets, and annealing the block copolymer film to form an annealed block copolymer film having linear microdomains parallel to the substrate surface and orthogonal to the parallel facets of the substrate. The line-patterned block copolymer films are useful for the fabrication of magnetic storage media, polarizing devices, and arrays of nanowires.

  12. Method of forming oriented block copolymer line patterns, block copolymer line patterns formed thereby, and their use to form patterned articles

    DOEpatents

    Russell, Thomas P.; Hong, Sung Woo; Lee, Dong Hyun; Park, Soojin; Xu, Ting

    2017-08-01

    A block copolymer film having a line pattern with a high degree of long-range order is formed by a method that includes forming a block copolymer film on a substrate surface with parallel facets, and annealing the block copolymer film to form an annealed block copolymer film having linear microdomains parallel to the substrate surface and orthogonal to the parallel facets of the substrate. The line-patterned block copolymer films are useful for the fabrication of magnetic storage media, polarizing devices, and arrays of nanowires.

  13. Quantitative regularities in floodplain formation

    NASA Astrophysics Data System (ADS)

    Nevidimova, O.

    2009-04-01

    Quantitative regularities in floodplain formation Modern methods of the theory of complex systems allow to build mathematical models of complex systems where self-organizing processes are largely determined by nonlinear effects and feedback. However, there exist some factors that exert significant influence on the dynamics of geomorphosystems, but hardly can be adequately expressed in the language of mathematical models. Conceptual modeling allows us to overcome this difficulty. It is based on the methods of synergetic, which, together with the theory of dynamic systems and classical geomorphology, enable to display the dynamics of geomorphological systems. The most adequate for mathematical modeling of complex systems is the concept of model dynamics based on equilibrium. This concept is based on dynamic equilibrium, the tendency to which is observed in the evolution of all geomorphosystems. As an objective law, it is revealed in the evolution of fluvial relief in general, and in river channel processes in particular, demonstrating the ability of these systems to self-organization. Channel process is expressed in the formation of river reaches, rifts, meanders and floodplain. As floodplain is a periodically flooded surface during high waters, it naturally connects river channel with slopes, being one of boundary expressions of the water stream activity. Floodplain dynamics is inseparable from the channel dynamics. It is formed at simultaneous horizontal and vertical displacement of the river channel, that is at Y=Y(x, y), where х, y - horizontal and vertical coordinates, Y - floodplain height. When dу/dt=0 (for not lowering river channel), the river, being displaced in a horizontal plane, leaves behind a low surface, which flooding during high waters (total duration of flooding) changes from the maximum during the initial moment of time t0 to zero in the moment tn. In a similar manner changed is the total amount of accumulated material on the floodplain surface

  14. Synthesis, morphologies and applications of polyoxometalate-containing diblock copolymers

    NASA Astrophysics Data System (ADS)

    Chakraborty, Sanjiban

    Block copolymers by virtue of their ability to self assemble and microphase-separation due to the contrast in chemical and physical properties of the covalently linked blocks constitute the essential building blocks towards various nano or micro sized architectures. Polyoxometalates (POM), on the other hand, being an interesting class of metal-oxygen nanometer-sized anionic clusters, are regarded highly due to their excellent electron accepting capability. Combining POM clusters with diblock copolymers can lead to a fascinating class of hybrid materials where the POM cluster not only affect the self-assembly process of various diblock copolymers but also brings its unique electronic properties into the hybrid system. Herein we report the detailed synthesis and characterizations of two hybrid coil-coil diblock copolymers along with two hybrid rod-coil diblock copolymers through polymerization-hybridization approach. The coil-coil diblocks were synthesized via atom transfer radial polymerization (ATRP) of styryl-type monomers and 4-vinylpyridine in sequence. For rod-coil diblock copolymers, the coil block was synthesized through ATRP, followed by the conversion of the terminal bromide to an azide. Ethynyl terminated poly (p-phenylenevinylene) (PPV) and poly (3-hexylthiophene) (P3HT) were prepared separately as the rod blocks. The rod block and the coil block were connected through click chemistry to yield rod-coil diblock copolymers. After removing the phthalimide protecting groups to regenerate aryl amines, POM clusters were finally linked to the coil block of all diblock copolymers to yield the targeted hybrid diblock copolymers. The covalent cluster attachment was confirmed by UV-Vis spectroscopy, FTIR and cyclovoltammetry measurements. The structures, solution and film optical properties, self-assembled morphologies and solar cell performances of these hybrids have been studied. It has been found that solar cell devices based on hybrid P3HT exhibited rather poor

  15. Shape memory rubber bands & supramolecular ionic copolymers

    NASA Astrophysics Data System (ADS)

    Brostowitz, Nicole

    subject covered in this dissertation is supra-molecular ionic copolymers. Supramolecular interactions are non-covalent; e.g. hydrogen bonding, ionic interactions, van der Waals forces. Supramolecular interactions in polymers can be used to tailor the thermo-mechanical properties by controlling bond association and dissociation. Recent research has focused on hydrogen bonded systems due to established synthesis mechanisms. Reversibility of the supramolecular interactions can be triggered by environmental changes. Ionic interactions would provide greater bond strength and more control over operating conditions. Research has been limited on ionic copolymers due to complicated synthesis methods needed to include functionalization. Low molecular weight polymers were synthesized by atom transfer radical polymerization with post polymerization conversion to phosphonium end-groups. Both polystyrene and poly(methyl acrylate) were investigated with similar reaction conditions. Chromatography measured the molecular weight and indicated a low polydispersity consistent with controlled reactions. Copolymers were formed by interfacial mixing of the cationic polymers with multifunctional, anionic oligomers. Oligomers containing sulfonate groups were used to create linear or three-dimensional polymer networks. NMR and rheology was used to characterize the presence and effect of ionic groups when compared to the neat polymer.

  16. Ion Transport in Nanostructured Block Copolymer/Ionic Liquid Membranes

    NASA Astrophysics Data System (ADS)

    Hoarfrost, Megan Lane

    Incorporating an ionic liquid into one block copolymer microphase provides a platform for combining the outstanding electrochemical properties of ionic liquids with a number of favorable attributes provided by block copolymers. In particular, block copolymers thermodynamically self-assemble into well-ordered nanostructures, which can be engineered to provide a durable mechanical scaffold and template the ionic liquid into continuous ion-conducting nanochannels. Understanding how the addition of an ionic liquid affects the thermodynamic self-assembly of block copolymers, and how the confinement of ionic liquids to block copolymer nanodomains affects their ion-conducting properties is essential for predictable structure-property control. The lyotropic phase behavior of block copolymer/ionic liquid mixtures is shown to be reminiscent of mixtures of block copolymers with selective molecular solvents. A variety of ordered microstructures corresponding to lamellae, hexagonally close-packed cylinders, body-centered cubic, and face-centered cubic oriented micelles are observed in a model system composed of mixtures of imidazolium bis(trifluoromethylsulfonyl)imide ([Im][TFSI]) and poly(styrene- b-2-vinyl pyridine) (PS-b-P2VP). In contrast to block copolymer/molecular solvent mixtures, the interfacial area occupied by each PS-b-P2VP chain decreases upon the addition of [Im][TFSI], indicating a considerable increase in the effective segregation strength of the PS-b-P2VP copolymer with ionic liquid addition. The relationship between membrane structure and ionic conductivity is illuminated through the development of scaling relationships that describe the ionic conductivity of block copolymer/ionic liquid mixtures as a function of membrane composition and temperature. It is shown that the dominant variable influencing conductivity is the overall volume fraction of ionic liquid in the mixture, which means there

  17. Functional MRI using regularized parallel imaging acquisition.

    PubMed

    Lin, Fa-Hsuan; Huang, Teng-Yi; Chen, Nan-Kuei; Wang, Fu-Nien; Stufflebeam, Steven M; Belliveau, John W; Wald, Lawrence L; Kwong, Kenneth K

    2005-08-01

    Parallel MRI techniques reconstruct full-FOV images from undersampled k-space data by using the uncorrelated information from RF array coil elements. One disadvantage of parallel MRI is that the image signal-to-noise ratio (SNR) is degraded because of the reduced data samples and the spatially correlated nature of multiple RF receivers. Regularization has been proposed to mitigate the SNR loss originating due to the latter reason. Since it is necessary to utilize static prior to regularization, the dynamic contrast-to-noise ratio (CNR) in parallel MRI will be affected. In this paper we investigate the CNR of regularized sensitivity encoding (SENSE) acquisitions. We propose to implement regularized parallel MRI acquisitions in functional MRI (fMRI) experiments by incorporating the prior from combined segmented echo-planar imaging (EPI) acquisition into SENSE reconstructions. We investigated the impact of regularization on the CNR by performing parametric simulations at various BOLD contrasts, acceleration rates, and sizes of the active brain areas. As quantified by receiver operating characteristic (ROC) analysis, the simulations suggest that the detection power of SENSE fMRI can be improved by regularized reconstructions, compared to unregularized reconstructions. Human motor and visual fMRI data acquired at different field strengths and array coils also demonstrate that regularized SENSE improves the detection of functionally active brain regions.

  18. Functional MRI Using Regularized Parallel Imaging Acquisition

    PubMed Central

    Lin, Fa-Hsuan; Huang, Teng-Yi; Chen, Nan-Kuei; Wang, Fu-Nien; Stufflebeam, Steven M.; Belliveau, John W.; Wald, Lawrence L.; Kwong, Kenneth K.

    2013-01-01

    Parallel MRI techniques reconstruct full-FOV images from undersampled k-space data by using the uncorrelated information from RF array coil elements. One disadvantage of parallel MRI is that the image signal-to-noise ratio (SNR) is degraded because of the reduced data samples and the spatially correlated nature of multiple RF receivers. Regularization has been proposed to mitigate the SNR loss originating due to the latter reason. Since it is necessary to utilize static prior to regularization, the dynamic contrast-to-noise ratio (CNR) in parallel MRI will be affected. In this paper we investigate the CNR of regularized sensitivity encoding (SENSE) acquisitions. We propose to implement regularized parallel MRI acquisitions in functional MRI (fMRI) experiments by incorporating the prior from combined segmented echo-planar imaging (EPI) acquisition into SENSE reconstructions. We investigated the impact of regularization on the CNR by performing parametric simulations at various BOLD contrasts, acceleration rates, and sizes of the active brain areas. As quantified by receiver operating characteristic (ROC) analysis, the simulations suggest that the detection power of SENSE fMRI can be improved by regularized reconstructions, compared to unregularized reconstructions. Human motor and visual fMRI data acquired at different field strengths and array coils also demonstrate that regularized SENSE improves the detection of functionally active brain regions. PMID:16032694

  19. Regularity detection by haptics and vision.

    PubMed

    Cecchetto, Stefano; Lawson, Rebecca

    2017-01-01

    For vision, mirror-reflectional symmetry is usually easier to detect when it occurs within 1 object than when it occurs across 2 objects. The opposite pattern has been found for a different regularity, repetition. We investigated whether these results generalize to our sense of active touch (haptics). This was done to examine whether the interaction observed in vision results from intrinsic properties of the environment, or whether it is a consequence of how that environment is perceived and explored. In 4 regularity detection experiments, we haptically presented novel, planar shapes and then visually presented images of the same shapes. In addition to modality (haptics, vision), we varied regularity-type (symmetry, repetition), objectness (1, 2) and alignment of the axis of regularity with respect to the body midline (aligned, across). For both modalities, performance was better overall for symmetry than repetition. For vision, we replicated the previously reported regularity-type by objectness interaction for both stereoscopic and pictorial presentation, and for slanted and frontoparallel views. In contrast, for haptics, there was a 1-object advantage for repetition, as well as for symmetry when stimuli were explored with 1 hand, and no effect of objectness was found for 2-handed exploration. These results suggest that regularity is perceived differently in vision and in haptics, such that regularity detection does not just reflect modality-invariant, physical properties of our environment. (PsycINFO Database Record

  20. The hypergraph regularity method and its applications

    PubMed Central

    Rödl, V.; Nagle, B.; Skokan, J.; Schacht, M.; Kohayakawa, Y.

    2005-01-01

    Szemerédi's regularity lemma asserts that every graph can be decomposed into relatively few random-like subgraphs. This random-like behavior enables one to find and enumerate subgraphs of a given isomorphism type, yielding the so-called counting lemma for graphs. The combined application of these two lemmas is known as the regularity method for graphs and has proved useful in graph theory, combinatorial geometry, combinatorial number theory, and theoretical computer science. Here, we report on recent advances in the regularity method for k-uniform hypergraphs, for arbitrary k ≥ 2. This method, purely combinatorial in nature, gives alternative proofs of density theorems originally due to E. Szemerédi, H. Furstenberg, and Y. Katznelson. Further results in extremal combinatorics also have been obtained with this approach. The two main components of the regularity method for k-uniform hypergraphs, the regularity lemma and the counting lemma, have been obtained recently: Rödl and Skokan (based on earlier work of Frankl and Rödl) generalized Szemerédi's regularity lemma to k-uniform hypergraphs, and Nagle, Rödl, and Schacht succeeded in proving a counting lemma accompanying the Rödl–Skokan hypergraph regularity lemma. The counting lemma is proved by reducing the counting problem to a simpler one previously investigated by Kohayakawa, Rödl, and Skokan. Similar results were obtained independently by W. T. Gowers, following a different approach. PMID:15919821

  1. Multiple graph regularized protein domain ranking

    PubMed Central

    2012-01-01

    Background Protein domain ranking is a fundamental task in structural biology. Most protein domain ranking methods rely on the pairwise comparison of protein domains while neglecting the global manifold structure of the protein domain database. Recently, graph regularized ranking that exploits the global structure of the graph defined by the pairwise similarities has been proposed. However, the existing graph regularized ranking methods are very sensitive to the choice of the graph model and parameters, and this remains a difficult problem for most of the protein domain ranking methods. Results To tackle this problem, we have developed the Multiple Graph regularized Ranking algorithm, MultiG-Rank. Instead of using a single graph to regularize the ranking scores, MultiG-Rank approximates the intrinsic manifold of protein domain distribution by combining multiple initial graphs for the regularization. Graph weights are learned with ranking scores jointly and automatically, by alternately minimizing an objective function in an iterative algorithm. Experimental results on a subset of the ASTRAL SCOP protein domain database demonstrate that MultiG-Rank achieves a better ranking performance than single graph regularized ranking methods and pairwise similarity based ranking methods. Conclusion The problem of graph model and parameter selection in graph regularized protein domain ranking can be solved effectively by combining multiple graphs. This aspect of generalization introduces a new frontier in applying multiple graphs to solving protein domain ranking applications. PMID:23157331

  2. Disulfide-Functionalized Diblock Copolymer Worm Gels.

    PubMed

    Warren, Nicholas J; Rosselgong, Julien; Madsen, Jeppe; Armes, Steven P

    2015-08-10

    Two strategies for introducing disulfide groups at the outer surface of RAFT-synthesized poly(glycerol monomethacrylate)-poly(2-hydroxypropyl methacrylate) (PGMA-PHPMA, or Gx-Hy for brevity) diblock copolymer worms are investigated. The first approach involved statistical copolymerization of GMA with a small amount of disulfide dimethacrylate (DSDMA, or D) comonomer to afford a G54-D0.50 macromolecular chain transfer agent (macro-CTA); this synthesis was conducted in relatively dilute solution in order to ensure mainly intramolecular cyclization and hence the formation of linear chains. Alternatively, a new disulfide-based bifunctional RAFT agent (DSDB) was used to prepare a G45-S-S-G45 (or (G45-S)2) macro-CTA. A binary mixture of a non-functionalized G55 macro-CTA was utilized with each of these two disulfide-based macro-CTAs in turn for the RAFT aqueous dispersion polymerization of 2-hydroxypropyl methacrylate (HPMA). By targeting a PHPMA DP of 130 and systematically varying the molar ratio of the two macro-CTAs, a series of disulfide-functionalized diblock copolymer worm gels were obtained. For both formulations, oscillatory rheology studies confirmed that higher disulfide contents led to stronger gels, presumably as a result of inter-worm covalent bond formation via disulfide/thiol exchange. Using the DSDB-based macro-CTA led to the strongest worm gels, and this formulation also proved to be more effective in suppressing the thermosensitive behavior that is observed for the nondisulfide-functionalized control worm gel. However, macroscopic precipitation occurred when the proportion of DSDB-based macro-CTA was increased to 50 mol %, whereas the DSDMA-based macro-CTA could be utilized at up to 80 mol %. Finally, the worm gel modulus could be reduced to that of a nondisulfide-containing worm gel by reductive cleavage of the inter-worm disulfide bonds using excess tris(2-carboxyethyl)phosphine (TCEP) to yield thiol groups. These new biomimetic worm gels are

  3. New adhesive systems based on functionalized block copolymers

    SciTech Connect

    Kent, M.; Saunders, R.; Hurst, M.; Small, J.; Emerson, J.; Zamora, D.

    1997-05-01

    The goal of this work was to evaluate chemically-functionalized block copolymers as adhesion promoters for metal/thermoset resin interfaces. Novel block copolymers were synthesized which contain pendant functional groups reactive toward copper and epoxy resins. In particular, imidazole and triazole functionalities that chelate with copper were incorporated onto one block, while secondary amines were incorporated onto the second block. These copolymers were found to self-assemble from solution onto copper surfaces to form monolayers. The structure of the adsorbed monolayers were studied in detail by neutron reflection and time-of-flight secondary ion mass spectrometry. The monolayer structure was found to vary markedly with the solution conditions and adsorption protocol. Appropriate conditions were found for which the two blocks form separate layers on the surface with the amine functionalized block exposed at the air surface. Adhesion testing of block copolymer-coated copper with epoxy resins was performed in both lap shear and peel modes. Modest enhancements in bond strengths were observed with the block copolymer applied to the native oxide. However, it was discovered that the native oxide is the weak link, and that by simply removing the native oxide, and then applying an epoxy resin before the native oxide can reform, excellent bond strength in the as-prepared state as well as excellent retention of bond strength after exposure to solder in ambient conditions are obtained. It is recommended that long term aging studies be performed with and without the block copolymer. In addition, the functionalized block copolymer method should be evaluated for another system that has inherently poor bonding, such as the nickel/silicone interface, and for systems involving metals and alloys which form oxides very rapidly, such as aluminum and stainless steel, where bonding strategies involve stabilizing the native oxide.

  4. Theory of the Miscibility of Fullerenes in Random Copolymer Melts

    SciTech Connect

    Dadmun, Mark D; Sumpter, Bobby G; Schweizer, Kenneth; Banerjee, Debapriya

    2013-01-01

    We combine polymer integral equation theory and computational chemistry methods to study the interfacial structure, effective interactions, miscibility and spatial dispersion mechanism of fullerenes dissolved in specific random AB copolymer melts characterized by strong non-covalent electron donor-acceptor interactions with the nanofiller. A statistical mechanical basis is developed for designing random copolymers to optimize fullerene dispersion at intermediate copolymer compositions. Pair correlation calculations reveal a strong sensitivity of interfacial packing near the fullerene to copolymer composition and adsorption energy mismatch. The potential of mean force between fullerenes displays rich trends, often non-monotonic with copolymer composition, reflecting a non-additive competition between direct filler attractions and polymer-mediated bridging and steric stabilization. The spinodal phase diagrams are in qualitative agreement with recent solubility limit experimental observations on three systems, and testable predictions are made for other random copolymers. The distinctive non-monotonic variation of miscibility with copolymer composition is found to be primarily a consequence of composition-dependent, spatially short-range attractions between the A and B monomers with the fullerene. A remarkably rich, polymer-specific temperature dependence of the spinodal diagram is predicted which reflects the thermal sensitivity of spatial correlations which can result in fullerene miscibility either increasing or decreasing with cooling. The calculations are contrasted with a simpler effective homopolymer model and the random structure Flory-Huggins model. The former appears to be qualitatively reasonable but can incur large quantitative errors since it misses preferential packing of monomers near nanoparticles, while the latter appears to fail qualitatively due to its neglect of all spatial correlations.

  5. Completeness and regularity of generalized fuzzy graphs.

    PubMed

    Samanta, Sovan; Sarkar, Biswajit; Shin, Dongmin; Pal, Madhumangal

    2016-01-01

    Fuzzy graphs are the backbone of many real systems like networks, image, scheduling, etc. But, due to some restriction on edges, fuzzy graphs are limited to represent for some systems. Generalized fuzzy graphs are appropriate to avoid such restrictions. In this study generalized fuzzy graphs are introduced. In this study, matrix representation of generalized fuzzy graphs is described. Completeness and regularity are two important parameters of graph theory. Here, regular and complete generalized fuzzy graphs are introduced. Some properties of them are discussed. After that, effective regular graphs are exemplified.

  6. Partitioning of regular computation on multiprocessor systems

    NASA Technical Reports Server (NTRS)

    Lee, Fung Fung

    1988-01-01

    Problem partitioning of regular computation over two dimensional meshes on multiprocessor systems is examined. The regular computation model considered involves repetitive evaluation of values at each mesh point with local communication. The computational workload and the communication pattern are the same at each mesh point. The regular computation model arises in numerical solutions of partial differential equations and simulations of cellular automata. Given a communication pattern, a systematic way to generate a family of partitions is presented. The influence of various partitioning schemes on performance is compared on the basis of computation to communication ratio.

  7. Partitioning of regular computation on multiprocessor systems

    NASA Technical Reports Server (NTRS)

    Lee, Fung F.

    1990-01-01

    Problem partitioning of regular computation over two dimensional meshes on multiprocessor systems is examined. The regular computation model considered involves repetitive evaluation of values at each mesh point with local communication. The computational workload and the communication pattern are the same at each mesh point. The regular computation model arises in numerical solutions of partial differential equations and simulations of cellular automata. Given a communication pattern, a systematic way to generate a family of partitions is presented. The influence of various partitioning schemes on performance is compared on the basis of computation to communication ratio.

  8. Regular subalgebras of affine Kac Moody algebras

    NASA Astrophysics Data System (ADS)

    Felikson, Anna; Retakh, Alexander; Tumarkin, Pavel

    2008-09-01

    We classify regular subalgebras of Kac-Moody algebras in terms of their root systems. In the process, we establish that a root system of a subalgebra is always an intersection of the root system of the algebra with a sublattice of its root lattice. We also discuss applications to investigations of regular subalgebras of hyperbolic Kac-Moody algebras and conformally invariant subalgebras of affine Kac-Moody algebras. In particular, we provide explicit formulae for determining all Virasoro charges in coset constructions that involve regular subalgebras.

  9. Partitioning of regular computation on multiprocessor systems

    SciTech Connect

    Lee, F. . Computer Systems Lab.)

    1990-07-01

    Problem partitioning of regular computation over two-dimensional meshes on multiprocessor systems is examined. The regular computation model considered involves repetitive evaluation of values at each mesh point with local communication. The computational workload and the communication pattern are the same at each mesh point. The regular computation model arises in numerical solutions of partial differential equations and simulations of cellular automata. Given a communication pattern, a systematic way to generate a family of partitions is presented. The influence of various partitioning schemes on performance is compared on the basis of computation to communication ratio.

  10. Continuum regularization of gauge theory with fermions

    SciTech Connect

    Chan, H.S.

    1987-03-01

    The continuum regularization program is discussed in the case of d-dimensional gauge theory coupled to fermions in an arbitrary representation. Two physically equivalent formulations are given. First, a Grassmann formulation is presented, which is based on the two-noise Langevin equations of Sakita, Ishikawa and Alfaro and Gavela. Second, a non-Grassmann formulation is obtained by regularized integration of the matter fields within the regularized Grassmann system. Explicit perturbation expansions are studied in both formulations, and considerable simplification is found in the integrated non-Grassmann formalism.

  11. Structure-property relationships in multilayered polymeric system and olefinic block copolymers

    NASA Astrophysics Data System (ADS)

    Khariwala, Devang

    blocky and statistical copolymers become progressively more apparent as the total comonomer content increases. Chapter 4. Blocky ethylene-octene copolymers synthesized by chain shuttling polymerization differ from statistical copolymers in their rapid rate of crystallization and in the formation of space-filling spherulites even when the crystallinity is as low as 7 %. The bulk crystallization rate, as measured with DSC, was rapid even in copolymers with a relatively large fraction of non-crystallizable soft block and only slowed somewhat as the amount of crystallizable hard block decreased from 100 to 18 wt%. As measured with the polarized optical microscope, the linear spherulite growth rate exhibited the same dependence on soft block content as the bulk crystallization rate. The fold surface energy was extracted from an analysis of the growth rate according to the Lauritzen-Hoffman theory. A gradual increase in the fold surface energy with soft block content reflected some increasing disorder of the fold surface. In contrast, even a small amount of statistically distributed comonomer was very effective in disrupting the fold surface regularity as demonstrated by the high fold surface energy.

  12. Directed self-assembly of poly(styrene)-block-poly(acrylic acid) copolymers for sub-20nm pitch patterning

    NASA Astrophysics Data System (ADS)

    Cheng, Jing; Lawson, Richard A.; Yeh, Wei-Ming; Jarnagin, Nathan D.; Peters, Andrew; Tolbert, Laren M.; Henderson, Clifford L.

    2012-03-01

    Directed self-assembly (DSA) of block copolymers is a promising technology for extending the patterning capability of current lithographic exposure tools. For example, production of sub-40 nm pitch features using 193nm exposure technologies is conceivably possible using DSA methods without relying on time consuming, challenging, and expensive multiple patterning schemes. Significant recent work has focused on demonstration of the ability to produce large areas of regular grating structures with low numbers of defects using self-assembly of poly(styrene)-b-poly(methyl methacrylate) copolymers (PS-b-PMMA). While these recent results are promising and have shown the ability to print pitches approaching 20 nm using DSA, the ability to advance to even smaller pitches will be dependent upon the ability to develop new block copolymers with higher χ values and the associated alignment and block removal processes required to achieve successful DSA with these new materials. This paper reports on work focused on identifying higher χ block copolymers and their associated DSA processes for sub-20 nm pitch patterning. In this work, DSA using polystyrene-b-polyacid materials has been explored. Specifically, it is shown that poly(styrene)-b-poly(acrylic acid) copolymers (PS-b-PAA) is one promising material for achieving substantially smaller pitch patterns than those possible with PS-b-PMMA while still utilizing simple hydrocarbon polymers. In fact, it is anticipated that much of the learning that has been done with the PS-b-PMMA system, such as development of highly selective plasma etch block removal procedures, can be directly leveraged or transferred to the PS-b-PAA system. Acetone vapor annealing of PS-b-PAA (Mw=16,000 g/mol with 50:50 mole ratio of PS:PAA) and its self-assembly into a lamellar morphology is demonstrated to generate a pattern pitch size (L0) of 21 nm. The χ value for PS-b-PAA was estimated from fingerprint pattern pitch data to be approximately 0.18 which

  13. Ionic Block Copolymers for Anion Exchange Membranes

    NASA Astrophysics Data System (ADS)

    Tsai, Tsung-Han; Herbst, Dan; Giffin, Guinevere A.; di Noto, Vito; Witten, Tom; Coughlin, E. Bryan

    2013-03-01

    Anion exchange membrane (AEM) fuel cells have regained interest because it allows the use of non-noble metal catalysts. Until now, most of the studies on AEM were based on random polyelectrolytes. In this work, Poly(vinylbenzyltrimethylammonium bromide)-b- (methylbutylene) ([PVBTMA][Br]-b-PMB) was studied by SAXS, TEM and dielectric spectroscopy to understand the fundamental structure-conductivity relationship of ion transport mechanisms within well-ordered block copolymers. The ionic conductivity and the formation of order structure were dependent on the casting solvent. Higher ion exchange capacity (IEC) of the membranes showed higher conductivity at as IEC values below 1.8mmol/g, as above this, the ionic conductivity decreases due to more water uptake leading to dilution of charge density. The humidity dependence of morphology exhibited the shifting of d-spacing to higher value and the alteration in higher characteristic peak of SAXS plot as the humidity increase from the dry to wet state. This phenomenon can be further explained by a newly developed polymer brush theory. Three ionic conduction pathways with different conduction mechanism within the membranes can be confirmed by broadband electric spectroscopy. US Army MURI (W911NF1010520)

  14. Tough and Sustainable Graft Block Copolymer Thermoplastics

    SciTech Connect

    Zhang, Jiuyang; Li, Tuoqi; Mannion, Alexander M.; Schneiderman, Deborah K.; Hillmyer, Marc A.; Bates, Frank S.

    2016-03-15

    Fully sustainable poly[HPMC-g-(PMVL-b-PLLA)] graft block copolymer thermoplastics were prepared from hydroxypropyl methylcellulose (HPMC), β-methyl-δ-valerolactone (MVL), and l-lactide (LLA) using a facile two-step sequential addition approach. In these materials, rubbery PMVL functions as a bridge between the semirigid HPMC backbone and the hard PLLA end blocks. This specific arrangement facilitates PLLA crystallization, which induces microphase separation and physical cross-linking. By changing the backbone molar mass or side chain composition, these thermoplastic materials can be easily tailored to access either plastic or elastomeric behavior. Moreover, the graft block architecture can be utilized to overcome the processing limitations inherent to linear block polymers. Good control over molar mass and composition enables the deliberate design of HPMC-g-(PMVL-b-PLLA) samples that are incapable of microphase separation in the melt state. These materials are characterized by relatively low zero shear viscosities in the melt state, an indication of easy processability. The simple and scalable synthetic procedure, use of inexpensive and renewable precursors, and exceptional rheological and mechanical properties make HPMC-g-(PMVL-b-PLLA) polymers attractive for a broad range of applications.

  15. Tunable Morphologies from Charged Block Copolymers

    SciTech Connect

    Goswami, Monojoy; Sumpter, Bobby G; Mays, Jimmy; Messman, Jamie M

    2010-01-01

    The bulk morphologies formed by a new class of charged block copolymers, 75 vol % fluorinated polyisoprene (FPI) 25 vol% sulfonated polystyrene (PSS) with 50% sulfonation, are characterized, and the fundamental underlying forces that promote the self-assembly processes are elucidated. The results show how the bulk morphologies are substantially different from their uncharged diblock counterparts (PS-PI) and also how morphology can be tuned with volume fraction of the charged block and the casting solvent. A physical understanding based on the underlying strong electrostatic interactions between the charged block and counterions is obtained using Monte Carlo (MC) and Molecular Dynamics (MD) simulations. The 75/25 FPI-PSS shows hexagonal morphologies with the minority blocks (PSS) forming the continuous phase due to charge percolation and the FPI blocks arranged in hexagonal cylinders. Some long-range order can be sustained even if lipophobicity is increased (addition of water), albeit with lower dimensional structures. However, thermal annealing provides sufficient energy to disrupt the percolated charges and promotes aggregation of ionic sites which leads to a disordered system. Diverse and atypical morphologies are readily accessible by simply changing the number distribution of the charges on PSS block.

  16. Molecular Transfer Printing Using Block Copolymers

    NASA Astrophysics Data System (ADS)

    Ji, Shengxiang; Liu, Chi-Chun; Liu, Guoliang; Nealey, Paul

    2009-03-01

    We report a new parallel patterning technique, molecular transfer printing (MTP), for replicating geometrically complex patterns over macroscopic areas with sub-15 nm feature dimensions, and the ability to replicate the same pattern multiple times. In MTP, inks are mixed with block copolymers (BCPs) and deposited as films on a substrate. The inks are compatible with only one block of the BCP, and sequestered into domains of nanometer scale dimensions after microphase separation. A second substrate is then placed in contact with the surface of the film. By designing the inks to react, adsorb, or otherwise interact with the second substrate, inks are transferred to the second substrate in the exact pattern of domains present at the surface of the ``master'' BCP film. Here we demonstrate high degrees of perfection on both line and dot patterns. We also show that 1) the master template can be regenerated, 2) the resultant replica can be used to direct the assembly of BCPs and as a daughter master for MTP, and 3) the master and daughter templates can be reused tens of times.

  17. Regularization of B-Spline Objects.

    PubMed

    Xu, Guoliang; Bajaj, Chandrajit

    2011-01-01

    By a d-dimensional B-spline object (denoted as ), we mean a B-spline curve (d = 1), a B-spline surface (d = 2) or a B-spline volume (d = 3). By regularization of a B-spline object we mean the process of relocating the control points of such that they approximate an isometric map of its definition domain in certain directions and is shape preserving. In this paper we develop an efficient regularization method for , d = 1, 2, 3 based on solving weak form L(2)-gradient flows constructed from the minimization of certain regularizing energy functionals. These flows are integrated via the finite element method using B-spline basis functions. Our experimental results demonstrate that our new regularization method is very effective.

  18. Regular Sleep Makes for Happier College Students

    MedlinePlus

    ... https://medlineplus.gov/news/fullstory_166856.html Regular Sleep Makes for Happier College Students When erratic snoozers ... studying and socializing, college students often have crazy sleep schedules, and new research suggests that a lack ...

  19. [Serum ferritin in donors with regular plateletpheresis].

    PubMed

    Ma, Chun-Hui; Guo, Ru-Hua; Wu, Wei-Jian; Yan, Jun-Xiong; Yu, Jin-Lin; Zhu, Ye-Hua; He, Qi-Tong; Luo, Yi-Hong; Huang, Lu; Ye, Rui-Yun

    2011-04-01

    This study was aimed to evaluate the impact of regular donating platelets on serum ferritin (SF) of donors. A total of 93 male blood donors including 24 initial plateletpheresis donors and 69 regular plateletpheresis donors were selected randomly. Their SF level was measured by ELISA. The results showed that the SF level of initial plateletpheresis donors and regular plateletpheresis donors were 91.08 ± 23.38 µg/L and 57.16 ± 35.48 µg/L respectively, and all were in normal levels, but there was significant difference between the 2 groups (p < 0.05). The SF level decreased when the donation frequency increased, there were no significant differences between the groups with different donation frequency. Correlation with lifetime donations of platelets was not found. It is concluded that regular plateletpheresis donors may have lower SF level.

  20. Epigenetic adaptation to regular exercise in humans.

    PubMed

    Ling, Charlotte; Rönn, Tina

    2014-07-01

    Regular exercise has numerous health benefits, for example, it reduces the risk of cardiovascular disease and cancer. It has also been shown that the risk of type 2 diabetes can be halved in high-risk groups through nonpharmacological lifestyle interventions involving exercise and diet. Nevertheless, the number of people living a sedentary life is dramatically increasing worldwide. Researchers have searched for molecular mechanisms explaining the health benefits of regular exercise for decades and it is well established that exercise alters the gene expression pattern in multiple tissues. However, until recently it was unknown that regular exercise can modify the genome-wide DNA methylation pattern in humans. This review will focus on recent progress in the field of regular exercise and epigenetics.

  1. The Volume of the Regular Octahedron

    ERIC Educational Resources Information Center

    Trigg, Charles W.

    1974-01-01

    Five methods are given for computing the area of a regular octahedron. It is suggested that students first construct an octahedron as this will aid in space visualization. Six further extensions are left for the reader to try. (LS)

  2. On a class of coedge regular graphs

    NASA Astrophysics Data System (ADS)

    Makhnev, A. A.; Paduchikh, D. V.

    2005-12-01

    We study graphs in which \\lambda(a,b)=\\lambda_1,\\lambda_2 for every edge \\{a,b\\} and all \\mu-subgraphs are 2-cocliques. We give a description of connected edge-regular graphs for k\\ge (b_1^2+3b_1-4)/2. In particular, the following examples confirm that the inequality k>b_1(b_1+3)/2 is a sharp bound for strong regularity: the n-gon, the icosahedron graph, the graph in \\mathrm{MP}(6) and the distance-regular graph of diameter 4 with intersection massive \\{x,x-1,4,1;1,2,x-1,x\\}, which is an antipodal 3-covering of the strongly regular graph with parameters ((x+2)(x+3)/6,x,0,6).

  3. Copolymers for Drag Reduction in Marie Propulsion: New Molecular Structures with Enhanced Effectiveness

    DTIC Science & Technology

    1991-05-31

    the in the solution viscosity is observed due to repulsive neutral sulfonic acid moiety to the charged sodium sulfonate electrostatic interactions...34Water-Soluble Copolymers. 26. Fluorescence Probe Studies of Hydrophobically- Modified Maleic Acid -Ethyl Vinyl Ether Copolymers," Charles. L...Chem., A27(5), 539 (1990). "Water-Soluble Copolymers. XXXV. Photophysical and Rheological Studies of the Copolymer of Methacrylic Acid with 2-(1

  4. Impact of copolymer ratio on drug distribution in styrene-isobutylene-styrene block copolymers.

    PubMed

    McDermott, Martin K; Kim, Chang-Soo; Saylor, David M; Patwardhan, Dinesh V

    2013-10-01

    Drug-polymer composite coatings, composed of styrene-isobutylene-styrene (SIBS) tri-block copolymers, are frequently used in controlled drug release biomedical device applications. In this work, we used atomic force microscopy to characterize the effects of different drug loadings and polymer chemistries (i.e., block copolymer ratio) on the variation of surface structures and compositions of SIBS-tetracycline (SIBS-TC) cast composites including tetracycline (TC) drug amount, drug phase size distribution, and drug and polymer phase morphologies. We tested the structural variations by fabricating and characterizing two types of composite specimens, that is, SIBS15 and SIBS30, composed of 15 and 30 Wt % of polystyrene (PS), respectively. The differences in the distribution of TC drug, PS, and polyisobutylene (PIB) polymer phase structures observed in SIBS15 and SIBS30 resulted in more drug at the surface of SIBS30 compared to SIBS15. To support the experimental findings, we have determined the Hildebrand solubility parameter of TC using molecular dynamics (MD) computation and compared it to the polymer components, PS and PIB. The MD results show that the solubility parameter of TC is much closer to that of PS than PIB, which demonstrates a higher thermodynamic stability of TC-PS mixtures. Copyright © 2013 Wiley Periodicals, Inc., a Wiley Company.

  5. Wavelet Characterizations of Multi-Directional Regularity

    NASA Astrophysics Data System (ADS)

    Slimane, Mourad Ben

    2011-05-01

    The study of d dimensional traces of functions of m several variables leads to directional behaviors. The purpose of this paper is two-fold. Firstly, we extend the notion of one direction pointwise Hölder regularity introduced by Jaffard to multi-directions. Secondly, we characterize multi-directional pointwise regularity by Triebel anisotropic wavelet coefficients (resp. leaders), and also by Calderón anisotropic continuous wavelet transform.

  6. Probabilistic regularization in inverse optical imaging.

    PubMed

    De Micheli, E; Viano, G A

    2000-11-01

    The problem of object restoration in the case of spatially incoherent illumination is considered. A regularized solution to the inverse problem is obtained through a probabilistic approach, and a numerical algorithm based on the statistical analysis of the noisy data is presented. Particular emphasis is placed on the question of the positivity constraint, which is incorporated into the probabilistically regularized solution by means of a quadratic programming technique. Numerical examples illustrating the main steps of the algorithm are also given.

  7. Perpendicularly Aligned, Anion Conducting Nanochannels in Block Copolymer Electrolyte Films

    SciTech Connect

    Arges, Christopher G.; Kambe, Yu; Suh, Hyo Seon; Ocola, Leonidas E.; Nealey, Paul F.

    2016-03-08

    Connecting structure and morphology to bulk transport properties, such as ionic conductivity, in nanostructured polymer electrolyte materials is a difficult proposition because of the challenge to precisely and accurately control order and the orientation of the ionic domains in such polymeric films. In this work, poly(styrene-block-2-vinylpyridine) (PSbP2VP) block copolymers were assembled perpendicularly to a substrate surface over large areas through chemical surface modification at the substrate and utilizing a versatile solvent vapor annealing (SVA) technique. After block copolymer assembly, a novel chemical vapor infiltration reaction (CVIR) technique selectively converted the 2-vinylpyridine block to 2-vinyl n-methylpyridinium (NMP+ X-) groups, which are anion charge carriers. The prepared block copolymer electrolytes maintained their orientation and ordered nanostructure upon the selective introduction of ion moieties into the P2VP block and post ion-exchange to other counterion forms (X- = chloride, hydroxide, etc.). The prepared block copolymer electrolyte films demonstrated high chloride ion conductivities, 45 mS cm(-1) at 20 degrees C in deionized water, the highest chloride ion conductivity for anion conducting polymer electrolyte films. Additionally, straight-line lamellae of block copolymer electrolytes were realized using chemoepitaxy and density multiplication. The devised scheme allowed for precise and accurate control of orientation of ionic domains in nanostructured polymer electrolyte films and enables a platform for future studies that examines the relationship between polymer electrolyte structure and ion transport.

  8. Plastic Deformation and Morphological Evolution of Precise Acid Copolymers

    NASA Astrophysics Data System (ADS)

    Middleton, L. Robert; Azoulay, Jason; Murtagh, Dustin; Cordaro, Joseph; Winey, Karen

    2014-03-01

    Acid- and ion-containing polymers have specific interactions that produce complex and hierarchical morphologies that provide remarkable mechanical properties. Historically, correlating the hierarchical structure and the mechanical properties of these polymers has been challenging due to the random arrangements of the polar groups along the backbone, ex situ characterization and the difficulty in deconvolution the effects of crystalline and amorphous regions along with secondary interactions between polymer chains. We address these challenges through in situ deformation of precise acid copolymers and relate the structural evolution to bulk properties by considering a series of copolymers with 9, 15 or 21 carbons between acid groups. Simultaneous synchrotron X-ray scattering and room temperature uniaxial tensile experiments of these precise acid copolymers were conducted. The different deformation mechanisms are compared and the microstructural evolution during deformation is discussed. For example, the liquid-like distribution of acid aggregates within the bulk copolymer transitions into a layered structure concurrent to a dramatic increase in tensile strength. Overall, we evaluate the effect and control of introducing acid groups on mechanical deformation of the bulk copolymers.

  9. Drug release from pH-responsive thermogelling pentablock copolymers.

    PubMed

    Determan, Michael D; Cox, James P; Mallapragada, Surya K

    2007-05-01

    A novel pH-dependent injectable sustained delivery system was developed by utilizing a cationic pentablock copolymer that exhibits a thermoreversible sol-gel transition. Aqueous solutions of the pentablock copolymer, consisting of poly(2-diethylaminoethyl-methyl methacrylate)-poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide)-poly(2-diethylaminoethyl-methyl methacrylate) (PDEAEM(25)-PEO(100)-PPO(65)-PEO(100)-PDEAEM(25)) exhibit temperature and pH dependent micellization due to the lower critical solution temperature of the PPO blocks and the polyelectrolyte character of the PDEAEM blocks, respectively. Aqueous solutions of the copolymers above 12 wt % are free flowing liquids at room temperature and form elastic physical hydrogels reversibly above 37 degrees C. Hydrophobic probe absorbance studies indicate that pentablock copolymer micelles increase the solubility of sparingly soluble drugs. Solutions of the pentablock copolymer that form gels at body temperature exhibit sustained zero-order release in in vitro experiments. The release rates of model drugs and proteins were significantly influenced by the pH of the release media, thereby making these polymers ideal candidates for modulated drug delivery.

  10. Ion Transport in Polymerized Ionic Liquid Block and Random Copolymers

    NASA Astrophysics Data System (ADS)

    Elabd, Yossef; Ye, Yuesheng; Choi, Jae-Hong; Winey, Karen

    2012-02-01

    Polymerized ionic liquid (PIL) block copolymers, a new type of solid-state polymer electrolyte, are of interest for energy conversion and storage devices, such as fuel cells, batteries, supercapacitors, and solar cells. In this study, a series of PIL diblock and random copolymers with various PIL compositions were synthesized. These consisted of an IL monomer and a non-ionic monomer, 1-[(2-methacryloyloxy)ethyl]-3-butylimidazolium bis(trifluoromethanesulfonyl)imide (MEBIm-TFSI) and methyl methacrylate (MMA), and 1-[(2-acryloyloxy)ethyl]-3-butylimidazolium bis(trifluoromethanesulfonyl)imide (AEBIm-TFSI) and styrene (S), respectively, were synthesized. The anion conductivity (ion transport) and morphology were measured in all of the polymers with EIS, SAXS/WAXS, and TEM. Ion transport in block copolymers are significantly higher than random copolymers at the same PIL composition and are highly dependent on the block copolymer nanostructure. The relationship between ion transport mechanisms and the phase behavior of these materials will be discussed.

  11. Self-Assembly of a Selectively Modified Fluorinated Block Copolymer

    NASA Astrophysics Data System (ADS)

    Davidock, Drew; Hillmyer, Marc; Lodge, Timothy

    2002-03-01

    Selective modification can be used to systematically tune the strength of the thermodynamic interaction between the two segments of a block copolymer. It also offers an effective method for the preparation of model fluorinated block copolymers, which are difficult to synthesize directly. In this study, the effect of controlled difluorocarbene (CF_2) addition to the polyisoprene block on the self-assembly of a series of poly(ethylethylene)-b-polyisoprene (PEE-b-PI) copolymers was investigated. Equilibrium morphologies were determined by small-angle X-ray scattering (SAXS). An effective interaction parameter (\\chi_eff) between the PEE and FPI-s-PI was calculated from the domain spacing, and is found to increase by a factor of ~400 upon complete CF2 modification. The resulting materials also offer an opportunity to examine the phase behavior all the way from weak to strong segregation with one parent copolymer. Using a binary interaction model originally developed for homopolymer/copolymer blends, we were able to model the dependence of \\chi_eff on the extent of fluorination in a quantitative manner and obtain values for the three pairwise interaction parameters.

  12. Perfluorocyclobutyl Aryl Ether-Based ABC Amphiphilic Triblock Copolymer

    PubMed Central

    Xu, Binbin; Yao, Wenqiang; Li, Yongjun; Zhang, Sen; Huang, Xiaoyu

    2016-01-01

    A series of fluorine-containing amphiphilic ABC triblock copolymers comprising hydrophilic poly(ethylene glycol) (PEG) and poly(methacrylic acid) (PMAA), and hydrophobic poly(p-(2-(4-biphenyl)perfluorocyclobutoxy)phenyl methacrylate) (PBPFCBPMA) segments were synthesized by successive atom transfer radical polymerization (ATRP). First, PEG-Br macroinitiators bearing one terminal ATRP initiating group were prepared by chain-end modification of monohydroxy-terminated PEG via esterification reaction. PEG-b-PBPFCBPMA-Br diblock copolymers were then synthesized via ATRP of BPFCBPMA monomer initiated by PEG-Br macroinitiator. ATRP polymerization of tert-butyl methacrylate (tBMA) was directly initiated by PEG-b-PBPFCBPMA-Br to provide PEG-b-PBPFCBPMA-b-PtBMA triblock copolymers with relatively narrow molecular weight distributions (Mw/Mn ≤ 1.43). The pendant tert-butyoxycarbonyls were hydrolyzed to carboxyls in acidic environment without affecting other functional groups for affording PEG-b-PBPFCBPMA-b-PMAA amphiphilic triblock copolymers. The critical micelle concentrations (cmc) were determined by fluorescence spectroscopy using N-phenyl-1-naphthylamine as probe and the self-assembly behavior in aqueous media were investigated by transmission electron microscopy. Large compound micelles and bowl-shaped micelles were formed in neutral aqueous solution. Interestingly, large compound micelles formed by triblock copolymers can separately or simultaneously encapsulate hydrophilic Rhodamine 6G and hydrophobic pyrene agents. PMID:28000757

  13. Perfluorocyclobutyl Aryl Ether-Based ABC Amphiphilic Triblock Copolymer

    NASA Astrophysics Data System (ADS)

    Xu, Binbin; Yao, Wenqiang; Li, Yongjun; Zhang, Sen; Huang, Xiaoyu

    2016-12-01

    A series of fluorine-containing amphiphilic ABC triblock copolymers comprising hydrophilic poly(ethylene glycol) (PEG) and poly(methacrylic acid) (PMAA), and hydrophobic poly(p-(2-(4-biphenyl)perfluorocyclobutoxy)phenyl methacrylate) (PBPFCBPMA) segments were synthesized by successive atom transfer radical polymerization (ATRP). First, PEG-Br macroinitiators bearing one terminal ATRP initiating group were prepared by chain-end modification of monohydroxy-terminated PEG via esterification reaction. PEG-b-PBPFCBPMA-Br diblock copolymers were then synthesized via ATRP of BPFCBPMA monomer initiated by PEG-Br macroinitiator. ATRP polymerization of tert-butyl methacrylate (tBMA) was directly initiated by PEG-b-PBPFCBPMA-Br to provide PEG-b-PBPFCBPMA-b-PtBMA triblock copolymers with relatively narrow molecular weight distributions (Mw/Mn ≤ 1.43). The pendant tert-butyoxycarbonyls were hydrolyzed to carboxyls in acidic environment without affecting other functional groups for affording PEG-b-PBPFCBPMA-b-PMAA amphiphilic triblock copolymers. The critical micelle concentrations (cmc) were determined by fluorescence spectroscopy using N-phenyl-1-naphthylamine as probe and the self-assembly behavior in aqueous media were investigated by transmission electron microscopy. Large compound micelles and bowl-shaped micelles were formed in neutral aqueous solution. Interestingly, large compound micelles formed by triblock copolymers can separately or simultaneously encapsulate hydrophilic Rhodamine 6G and hydrophobic pyrene agents.

  14. Effects of copolymer component on the properties of phosphorylcholine micelles.

    PubMed

    Wu, Zhengzhong; Cai, Mengtan; Cao, Jun; Zhang, Jiaxing; Luo, Xianglin

    2017-01-01

    Zwitterionic polymers have unique features, such as good compatibility, and show promise in the application of drug delivery. In this study, the zwitterionic copolymers, poly(ε-caprolactone)-b-poly(2-methacryloyloxyethyl phosphorylcholine) with disulfide (PCL-ss-PMPC) or poly(ε-caprolactone)-b-poly(2-methacryloyloxyethyl phosphorylcholine) or without disulfide (PCL-PMPC) and with different block lengths in PCL-ss-PMPC, were designed. The designed copolymers were obtained by a combination of ring-opening polymerization and atom transferring radical polymerization. The crystallization properties of these polymers were investigated. The micelles were prepared based on the obtained copolymers with zwitterionic phosphorylcholine as the hydrophilic shell and PCL as the hydrophobic core. The size distributions of the blank micelles and the doxorubicin (DOX)-loaded micelles were uniform, and the micelle diameters were <100 nm. In vitro drug release and intracellular drug release results showed that DOX-loaded PCL-ss-PMPC micelles could release drugs faster responding to the reduction condition and the intracellular microenvironment in contrast to PCL-PMPC micelles. Moreover, in vitro cytotoxicity evaluation revealed that the designed copolymers possessed low cell toxicity, and the inhibiting effect of DOX-loaded phosphorylcholine micelles to tumor cells was related to the components of these copolymers. These results reveal that the reduction-responsive phosphorylcholine micelles with a suitable ratio of hydrophilic/hydrophobic units can serve as promising drug carriers.

  15. Effects of copolymer component on the properties of phosphorylcholine micelles

    PubMed Central

    Wu, Zhengzhong; Cai, Mengtan; Cao, Jun; Zhang, Jiaxing; Luo, Xianglin

    2017-01-01

    Zwitterionic polymers have unique features, such as good compatibility, and show promise in the application of drug delivery. In this study, the zwitterionic copolymers, poly(ε-caprolactone)-b-poly(2-methacryloyloxyethyl phosphorylcholine) with disulfide (PCL-ss-PMPC) or poly(ε-caprolactone)-b-poly(2-methacryloyloxyethyl phosphorylcholine) or without disulfide (PCL-PMPC) and with different block lengths in PCL-ss-PMPC, were designed. The designed copolymers were obtained by a combination of ring-opening polymerization and atom transferring radical polymerization. The crystallization properties of these polymers were investigated. The micelles were prepared based on the obtained copolymers with zwitterionic phosphorylcholine as the hydrophilic shell and PCL as the hydrophobic core. The size distributions of the blank micelles and the doxorubicin (DOX)-loaded micelles were uniform, and the micelle diameters were <100 nm. In vitro drug release and intracellular drug release results showed that DOX-loaded PCL-ss-PMPC micelles could release drugs faster responding to the reduction condition and the intracellular microenvironment in contrast to PCL-PMPC micelles. Moreover, in vitro cytotoxicity evaluation revealed that the designed copolymers possessed low cell toxicity, and the inhibiting effect of DOX-loaded phosphorylcholine micelles to tumor cells was related to the components of these copolymers. These results reveal that the reduction-responsive phosphorylcholine micelles with a suitable ratio of hydrophilic/hydrophobic units can serve as promising drug carriers. PMID:28138244

  16. Nanostructured Amphiphilic Star-Hyperbranched Block Copolymers for Drug Delivery.

    PubMed

    Seleci, Muharrem; Seleci, Didem Ag; Ciftci, Mustafa; Demirkol, Dilek Odaci; Stahl, Frank; Timur, Suna; Scheper, Thomas; Yagci, Yusuf

    2015-04-21

    A robust drug delivery system based on nanosized amphiphilic star-hyperbranched block copolymer, namely, poly(methyl methacrylate-block-poly(hydroxylethyl methacrylate) (PMMA-b-PHEMA) is described. PMMA-b-PHEMA was prepared by sequential visible light induced self-condensing vinyl polymerization (SCVP) and conventional vinyl polymerization. All of the synthesis and characterization details of the conjugates are reported. To accomplish tumor cell targeting property, initially cell-targeting (arginylglycylaspactic acid; RGD) and penetrating peptides (Cys-TAT) were binding to each other via the well-known EDC/NHS chemistry. Then, the resulting peptide was further incorporated to the surface of the amphiphilic hyperbranched copolymer via a coupling reaction between the thiol (-SH) group of the peptide and the hydroxyl group of copolymer by using N-(p-maleinimidophenyl) isocyanate as a heterolinker. The drug release property and targeting effect of the anticancer drug (doxorobucin; DOX) loaded nanostructures to two different cell lines were evaluated in vitro. U87 and MCF-7 were chosen as integrin αvβ3 receptor positive and negative cells for the comparison of the targeting efficiency, respectively. The data showed that drug-loaded copolymers exhibited enhanced cell inhibition toward U87 cells in compared to MCF-7 cells because targeting increased the cytotoxicity of drug-loaded copolymers against integrin αvβ3 receptor expressing tumor cells.

  17. A Solid-State NMR Investigation of MQ Silicone Copolymers.

    PubMed

    Vasil'ev, Sergey G; Volkov, Vitaly I; Tatarinova, Elena A; Muzafarov, Aziz M

    2013-01-01

    The structure of MQ copolymers of the general chemical formula [(CH3)3SiO0.5]m [SiO2]n was characterized by means of solid-state magic angle spinning (MAS) nuclear magnetic resonance (NMR) spectroscopy. The MQ copolymers are highly branched polycyclic compounds (densely cross-linked nanosized networks). MQ copolymers were prepared by hydrolytic polycondensation in active medium. (29)Si NMR spectra were obtained by single pulse excitation (or direct polarization, DP) and cross-polarization (CP) (29)Si{(1)H} techniques in concert with MAS. It was shown that material consist of monofunctional M (≡SiO Si (CH3)3) and two types of tetrafunctional Q units: Q(4) ((≡SiO)4Si) and Q(3) ((≡SiO)3SiOH). Spin-lattice relaxation times T1 measurements of (29)Si nuclei and analysis of (29)Si{(1)H} variable contact time signal intensities allowed us to obtain quantitative data on the relative content of different sites in copolymers. These investigations indicate that MQ copolymers represent dense structure with core and shell.

  18. Chain bridging in a model of semicrystalline multiblock copolymers

    NASA Astrophysics Data System (ADS)

    Shah, Manas; Ganesan, Venkat

    2009-02-01

    Recent experimental observations have suggested an intimate connection between the chain conformations and mechanical properties of semicrystalline multiblock copolymers. Motivated by these studies, we present a theoretical study evaluating the bridging/looping fractions in a model of semicrystalline multiblock copolymers. We model the noncrystalline block (A) as a flexible Gaussian chain and the crystalline block (B) as a semiflexible chain with a temperature dependent rigidity and interactions that favor the formation of parallel oriented bonds. Using self-consistent field theory, the bridging fractions of the various domains in different multiblock copolymers (ABA, BAB, ABABA, and BABAB) are evaluated and compared with their flexible counterparts. In general, we observe that for both triblock and pentablock copolymers, rendering one of the blocks crystallizable promotes bridging in that component while reducing the bridging in the other noncrystallizable component. Moreover, the bridging fractions in tri- and pentablock copolymers were seen to be quantitatively similar except insofar as being normalized by the volume fraction of bridgeable units.

  19. Controlling block copolymer phase behavior using ionic surfactant

    SciTech Connect

    Ray, D.; Aswal, V. K.

    2016-05-23

    The phase behavior of poly(ethylene oxide)-poly(propylene oxide-poly(ethylene oxide) PEO-PPO-PEO triblock copolymer [P85 (EO{sub 26}PO{sub 39}EO{sub 26})] in presence of anionic surfactant sodium dodecyl sulfate (SDS) in aqueous solution as a function of temperature has been studied using dynamic light scattering (DLS) and small-angle neutron scattering (SANS). The measurements have been carried out for fixed concentrations (1 wt%) of block copolymer and surfactants. Each of the individual components (block copolymer and surfactant) and the nanoparticle–surfactant mixed system have been examined at varying temperature. The block copolymer P85 forms spherical micelles at room temperature whereas shows sphere-to-rod like micelle transition at higher temperatures. On the other hand, SDS surfactant forms ellipsoidal micelles over a wide temperature range. Interestingly, it is found that phase behavior of mixed micellar system (P85 + SDS) as a function of temperature is drastically different from that of P85, giving the control over the temperature-dependent phase behavior of block copolymers.

  20. Relaxation processes in a lower disorder order transition diblock copolymer.

    PubMed

    Sanz, Alejandro; Ezquerra, Tiberio A; Hernández, Rebeca; Sprung, Michael; Nogales, Aurora

    2015-02-14

    The dynamics of lower disorder-order temperature diblock copolymer leading to phase separation has been observed by X ray photon correlation spectroscopy. Two different modes have been characterized. A non-diffusive mode appears at temperatures below the disorder to order transition, which can be associated to compositional fluctuations, that becomes slower as the interaction parameter increases, in a similar way to the one observed for diblock copolymers exhibiting phase separation upon cooling. At temperatures above the disorder to order transition TODT, the dynamics becomes diffusive, indicating that after phase separation in Lower Disorder-Order Transition (LDOT) diblock copolymers, the diffusion of chain segments across the interface is the governing dynamics. As the segregation is stronger, the diffusive process becomes slower. Both observed modes have been predicted by the theory describing upper order-disorder transition systems, assuming incompressibility. However, the present results indicate that the existence of these two modes is more universal as they are present also in compressible diblock copolymers exhibiting a lower disorder-order transition. No such a theory describing the dynamics in LDOT block copolymers is available, and these experimental results may offer some hints to understanding the dynamics in these systems. The dynamics has also been studied in the ordered state, and for the present system, the non-diffusive mode disappears and only a diffusive mode is observed. This mode is related to the transport of segment in the interphase, due to the weak segregation on this system.

  1. Controlling block copolymer phase behavior using ionic surfactant

    NASA Astrophysics Data System (ADS)

    Ray, D.; Aswal, V. K.

    2016-05-01

    The phase behavior of poly(ethylene oxide)-poly(propylene oxide-poly(ethylene oxide) PEO-PPO-PEO triblock copolymer [P85 (EO26PO39EO26)] in presence of anionic surfactant sodium dodecyl sulfate (SDS) in aqueous solution as a function of temperature has been studied using dynamic light scattering (DLS) and small-angle neutron scattering (SANS). The measurements have been carried out for fixed concentrations (1 wt%) of block copolymer and surfactants. Each of the individual components (block copolymer and surfactant) and the nanoparticle-surfactant mixed system have been examined at varying temperature. The block copolymer P85 forms spherical micelles at room temperature whereas shows sphere-to-rod like micelle transition at higher temperatures. On the other hand, SDS surfactant forms ellipsoidal micelles over a wide temperature range. Interestingly, it is found that phase behavior of mixed micellar system (P85 + SDS) as a function of temperature is drastically different from that of P85, giving the control over the temperature-dependent phase behavior of block copolymers.

  2. Relaxation processes in a lower disorder order transition diblock copolymer

    SciTech Connect

    Sanz, Alejandro; Ezquerra, Tiberio A.; Nogales, Aurora

    2015-02-14

    The dynamics of lower disorder-order temperature diblock copolymer leading to phase separation has been observed by X ray photon correlation spectroscopy. Two different modes have been characterized. A non-diffusive mode appears at temperatures below the disorder to order transition, which can be associated to compositional fluctuations, that becomes slower as the interaction parameter increases, in a similar way to the one observed for diblock copolymers exhibiting phase separation upon cooling. At temperatures above the disorder to order transition T{sub ODT}, the dynamics becomes diffusive, indicating that after phase separation in Lower Disorder-Order Transition (LDOT) diblock copolymers, the diffusion of chain segments across the interface is the governing dynamics. As the segregation is stronger, the diffusive process becomes slower. Both observed modes have been predicted by the theory describing upper order-disorder transition systems, assuming incompressibility. However, the present results indicate that the existence of these two modes is more universal as they are present also in compressible diblock copolymers exhibiting a lower disorder-order transition. No such a theory describing the dynamics in LDOT block copolymers is available, and these experimental results may offer some hints to understanding the dynamics in these systems. The dynamics has also been studied in the ordered state, and for the present system, the non-diffusive mode disappears and only a diffusive mode is observed. This mode is related to the transport of segment in the interphase, due to the weak segregation on this system.

  3. Chitosan-glutaraldehyde copolymers and their sorption properties.

    PubMed

    Poon, Louis; Wilson, Lee D; Headley, John V

    2014-08-30

    This study reports the preparation of chitosan-glutaraldehyde (Chi-Glu) copolymers at modified reaction conditions such as the temperature prior to gelation, pH, and reagent ratios. The chitosan copolymers were characterized using infrared spectroscopy (FT-IR), CHN elemental analysis, and thermal gravimetric analysis (TGA). Evidence of self-polymerized glutaraldehyde was supported by CHN and TGA results. The sorption properties of Chi-Glu copolymers were evaluated in aqueous solutions containing p-nitrophenol at variable pH (4.6, 6.6, and 9.0). The sorption properties of the copolymers correlated with the level of the accessibility of the sorption sites in accordance with the relative cross-linker content. The relative sorption capacity of the Chi-Glu copolymers increases as the level of cross-linking increases. Chitosan displays the lowest sorptive uptake while an optimal sorption capacity was concluded at the 4:1 glutaraldehyde:chitosan monomer mole ratio, in close agreement with the three reactive sites (i.e. OH/NH) per glucosamine monomer. The PNP dye probe was determined to bind to chitosan through an electrostatic interaction due to the increased sorption capacity of the phenolate anion, as evidenced by the change in pH from 4.6 to 9.0.

  4. Heat Capacity of Spider Silk-like Block Copolymers.

    PubMed

    Huang, Wenwen; Krishnaji, Sreevidhya; Hu, Xiao; Kaplan, David; Cebe, Peggy

    2011-07-12

    We synthesized and characterized a new family of di-block copolymers based on the amino acid sequences of Nephila clavipes major ampulate dragline spider silk, having the form HABn and HBAn (n=1-3), comprising an alanine-rich hydrophobic block, A, a glycine-rich hydrophilic block, B, and a histidine tag, H. The reversing heat capacities, Cp(T), for temperatures below and above the glass transition, Tg, were measured by temperature modulated differential scanning calorimetry. For the solid state, we then calculated the heat capacities of our novel block copolymers based on the vibrational motions of the constituent poly(amino acid)s, whose heat capacities are known or can be estimated from the ATHAS Data Bank. For the liquid state, the heat capacity was estimated by using the rotational and translational motions in the polymer chain. Excellent agreement was found between the measured and calculated values of the heat capacity, showing that this method can serve as a standard by which to assess the Cp for other biologically inspired block copolymers. The fraction of beta sheet crystallinity of spider silk block copolymers was also determined by using the predicted Cp, and was verified by wide angle X-ray diffraction and Fourier transform infrared spectroscopy. The glass transition temperatures of spider silk block copolymer were fitted by Kwei's equation and the results indicate that attractive interaction exists between the A-block and B-block.

  5. Preparation and icephobic properties of polymethyltrifluoropropylsiloxane-polyacrylate block copolymers

    NASA Astrophysics Data System (ADS)

    Li, Xiaohui; Zhao, Yunhui; Li, Hui; Yuan, Xiaoyan

    2014-10-01

    Five polymethyltrifluoropropylsiloxane (PMTFPS)-polyacrylate block copolymers (PMTFPS-b-polyacrylate) were synthesized by free radical polymerization of methyl methacrylate, n-butyl acrylate and hydroxyethyl methacrylate using PMTFPS macroazoinitiator (PMTFPS-MAI) in range of 10-50 mass percentages. The morphology, surface chemical composition and wettability of the prepared copolymer films were investigated by transmission electron microscopy, atomic force microscopy, X-ray photoelectron spectroscopy, and water contact angle measurement. Delayed icing time and ice shear strength of the films were also detected for the icephobic purpose. The surface morphologies of the copolymers were different from those of the bulk because of the migration of the PMTFPS segments to the air interface during the film formation. Maximal delayed icing time (186 s at -15 °C) and reduction of the ice shear strength (301 ± 10 kPa) which was significantly lower than that of polyacrylates (804 ± 37 kPa) were achieved when the content of PMTFPS-MAI was 20 wt%. The icephobicity of the copolymers was attributed primarily to the enrichment of PMTFPS on the film surface and synergistic effect of both silicone and fluorine. Thus, the results show that the PMTFPS-b-polyacrylate copolymer can be used as icephobic coating materials potentially.

  6. Responsive copolymers for enhanced petroleum recovery. Quarterly technical progress report, March 22, 1993--June 22, 1993

    SciTech Connect

    McCormick, C.; Hester, R.

    1993-08-01

    The overall goal of this research is the development of advanced water-soluble copolymers for use in enhanced oil recovery which rely on reversible microheterogeneous associations for mobility control and reservoir conformance. Technical progress for the quarter is summarized for the following tasks: advanced copolymer syntheses; characterization of molecular structure of copolymers; and polymer solution rheology.

  7. 40 CFR 721.10419 - Tetrafluoroethylene chlorotrifluoroethylene copolymer (generic) (P-11-561).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... chlorotrifluoroethylene copolymer (generic) (P-11-561). 721.10419 Section 721.10419 Protection of Environment... chlorotrifluoroethylene copolymer (generic) (P-11-561). (a) Chemical substance and significant new uses subject to... copolymer (PMN P-11-561) is subject to reporting under this section for the significant new uses...

  8. 40 CFR 721.10419 - Tetrafluoroethylene chlorotrifluoroethylene copolymer (generic) (P-11-561).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... chlorotrifluoroethylene copolymer (generic) (P-11-561). 721.10419 Section 721.10419 Protection of Environment... chlorotrifluoroethylene copolymer (generic) (P-11-561). (a) Chemical substance and significant new uses subject to... copolymer (PMN P-11-561) is subject to reporting under this section for the significant new uses...

  9. 40 CFR 721.10419 - Tetrafluoroethylene chlorotrifluoroethylene copolymer (generic) (P-11-561).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... chlorotrifluoroethylene copolymer (generic) (P-11-561). 721.10419 Section 721.10419 Protection of Environment... chlorotrifluoroethylene copolymer (generic) (P-11-561). (a) Chemical substance and significant new uses subject to... copolymer (PMN P-11-561) is subject to reporting under this section for the significant new uses...

  10. Water-soluble graft copolymers of starch-acrylamide and uses therefor

    DOEpatents

    Butler, G.B.; Hogen-Esch, T.E.; Meister, J.J.; Pledger, H. Jr.

    1983-08-23

    Graft copolymers having starch as the central chain with grafted side chains of acrylamide or acrylamide-acrylic acid, and a process for preparation of such copolymers in the presence of Ce[sup +4] or other redox initiators are disclosed. These copolymers are employed in preparing highly viscous aqueous solutions that are particularly useful in oil recovery from subterranean wells. 2 figs.

  11. Water-soluble graft copolymers of starch-acrylamide and uses therefor

    DOEpatents

    Butler, George B.; Hogen-Esch, Thieo E.; Meister, John J.; Pledger, Jr., Huey

    1983-08-23

    Graft copolymers having starch as the central chain with grafted side chains of acrylamide or acrylamide-acrylic acid, and a process for preparation of such copolymers in the presence of Ce.sup.+4 or other redox initiators. These copolymers are employed in preparing highly viscous aqueous solutions that are particularly useful in oil recovery from subterranean wells.

  12. 40 CFR 721.338 - Salt of an acrylate copolymer (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Salt of an acrylate copolymer (generic... Substances § 721.338 Salt of an acrylate copolymer (generic). Link to an amendment published at 79 FR 34636... substances identified generically as salt of an acrylate copolymer (PMNs P-00-0333 and P-00-0334) are...

  13. 21 CFR 175.350 - Vinyl acetate/crotonic acid copolymer.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Vinyl acetate/crotonic acid copolymer. 175.350... COATINGS Substances for Use as Components of Coatings § 175.350 Vinyl acetate/crotonic acid copolymer. A copolymer of vinyl acetate and crotonic acid may be safely used as a coating or as a component of a...

  14. Responsive copolymers for enhanced petroleum recovery. Quarterly technical progress report, March 22, 1994--June 21, 1994

    SciTech Connect

    McCormick, C.; Hester, R.

    1994-09-01

    In this report, the authors consider the synthesis of copolymers of interest in the enhanced recovery of petroleum. Acrylamide and N,N-dimethyl-N-dodecyl-N-(2-amidoethyl) ammonium bromide copolymers were synthesized and characterized by various instrumental methods. The rheological properties of this copolymer were investigated using a porous media elongation rheometer.

  15. 40 CFR 180.1162 - Acrylate polymers and copolymers; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Acrylate polymers and copolymers... RESIDUES IN FOOD Exemptions From Tolerances § 180.1162 Acrylate polymers and copolymers; exemption from the requirement of a tolerance. (a) Acrylate polymers and copolymers are exempt from the requirement of...

  16. 21 CFR 177.1020 - Acrylonitrile/butadiene/sty-rene co-polymer.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Acrylonitrile/butadiene/sty-rene co-polymer. 177... SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) INDIRECT FOOD ADDITIVES: POLYMERS Substances.../butadiene/sty-rene co-polymer. Acrylonitrile/butadiene/styrene copolymer identified in this section may...

  17. 21 CFR 177.1020 - Acrylonitrile/butadiene/sty-rene co-polymer.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Acrylonitrile/butadiene/sty-rene co-polymer. 177... SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) INDIRECT FOOD ADDITIVES: POLYMERS Substances.../butadiene/sty-rene co-polymer. Acrylonitrile/butadiene/styrene copolymer identified in this section may...

  18. 40 CFR 180.1162 - Acrylate polymers and copolymers; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 24 2011-07-01 2011-07-01 false Acrylate polymers and copolymers... RESIDUES IN FOOD Exemptions From Tolerances § 180.1162 Acrylate polymers and copolymers; exemption from the requirement of a tolerance. (a) Acrylate polymers and copolymers are exempt from the requirement of...

  19. 40 CFR 721.10179 - Copolymers of phenol and aromatic hydocarbon (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Copolymers of phenol and aromatic... Specific Chemical Substances § 721.10179 Copolymers of phenol and aromatic hydocarbon (generic). (a... generically as copolymers of phenol and aromatic hydocarbon (PMNs P-04-346 and P-04-347) are subject...

  20. 40 CFR 180.1162 - Acrylate polymers and copolymers; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 25 2013-07-01 2013-07-01 false Acrylate polymers and copolymers... RESIDUES IN FOOD Exemptions From Tolerances § 180.1162 Acrylate polymers and copolymers; exemption from the requirement of a tolerance. (a) Acrylate polymers and copolymers are exempt from the requirement of...

  1. 21 CFR 177.1360 - Ethylene-vinyl acetate-vinyl alcohol copolymers.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Ethylene-vinyl acetate-vinyl alcohol copolymers... for Use as Basic Components of Single and Repeated Use Food Contact Surfaces § 177.1360 Ethylene-vinyl acetate-vinyl alcohol copolymers. Ethylene-vinyl acetate-vinyl alcohol copolymers (CAS Reg. No....

  2. 21 CFR 177.1340 - Ethylene-methyl acrylate copolymer resins.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Ethylene-methyl acrylate copolymer resins. 177.1340... Basic Components of Single and Repeated Use Food Contact Surfaces § 177.1340 Ethylene-methyl acrylate copolymer resins. Ethylene-methyl acrylate copolymer resins may be safely used as articles or components...

  3. 21 CFR 177.1360 - Ethylene-vinyl acetate-vinyl alcohol copolymers.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Ethylene-vinyl acetate-vinyl alcohol copolymers... for Use as Basic Components of Single and Repeated Use Food Contact Surfaces § 177.1360 Ethylene-vinyl acetate-vinyl alcohol copolymers. Ethylene-vinyl acetate-vinyl alcohol copolymers (CAS Reg. No....

  4. 21 CFR 177.1360 - Ethylene-vinyl acetate-vinyl alcohol copolymers.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Ethylene-vinyl acetate-vinyl alcohol copolymers... for Use as Basic Components of Single and Repeated Use Food Contact Surfaces § 177.1360 Ethylene-vinyl acetate-vinyl alcohol copolymers. Ethylene-vinyl acetate-vinyl alcohol copolymers (CAS Reg. No....

  5. 21 CFR 177.1340 - Ethylene-methyl acrylate copolymer resins.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Ethylene-methyl acrylate copolymer resins. 177... for Use as Basic Components of Single and Repeated Use Food Contact Surfaces § 177.1340 Ethylene-methyl acrylate copolymer resins. Ethylene-methyl acrylate copolymer resins may be safely used...

  6. 21 CFR 177.1340 - Ethylene-methyl acrylate copolymer resins.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Ethylene-methyl acrylate copolymer resins. 177... for Use as Basic Components of Single and Repeated Use Food Contact Surfaces § 177.1340 Ethylene-methyl acrylate copolymer resins. Ethylene-methyl acrylate copolymer resins may be safely used...

  7. 21 CFR 177.1360 - Ethylene-vinyl acetate-vinyl alcohol copolymers.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Ethylene-vinyl acetate-vinyl alcohol copolymers... Repeated Use Food Contact Surfaces § 177.1360 Ethylene-vinyl acetate-vinyl alcohol copolymers. Ethylene... conditions: (a) Ethylene-vinyl acetate-vinyl alcohol copolymers are produced by the partial or...

  8. 21 CFR 177.1360 - Ethylene-vinyl acetate-vinyl alcohol copolymers.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Ethylene-vinyl acetate-vinyl alcohol copolymers... for Use as Basic Components of Single and Repeated Use Food Contact Surfaces § 177.1360 Ethylene-vinyl acetate-vinyl alcohol copolymers. Ethylene-vinyl acetate-vinyl alcohol copolymers (CAS Reg. No....

  9. 21 CFR 177.1340 - Ethylene-methyl acrylate copolymer resins.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Ethylene-methyl acrylate copolymer resins. 177... for Use as Basic Components of Single and Repeated Use Food Contact Surfaces § 177.1340 Ethylene-methyl acrylate copolymer resins. Ethylene-methyl acrylate copolymer resins may be safely used...

  10. 21 CFR 172.808 - Copolymer condensates of ethylene oxide and propylene oxide.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Copolymer condensates of ethylene oxide and... CONSUMPTION Multipurpose Additives § 172.808 Copolymer condensates of ethylene oxide and propylene oxide. Copolymer condensates of ethylene oxide and propylene oxide may be safely used in food under the...

  11. Visible light-responsive micelles formed from dialkoxyanthracene-containing block copolymers.

    PubMed

    Yan, Qiang; Hu, Jun; Zhou, Rong; Ju, Yong; Yin, Yingwu; Yuan, Jinying

    2012-02-11

    A class of dialkoxyanthracene-containing diblock copolymers is synthesized which possesses visible light-responsivity. These copolymers can self-assemble into a micellar structure in water. Green visible light (540 nm) is able to scissor these anthracene species and cleave the diblock copolymer into two fragments, inducing disassembly of the self-assembled micelles.

  12. 21 CFR 177.1020 - Acrylonitrile/butadiene/sty-rene co-polymer.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Acrylonitrile/butadiene/sty-rene co-polymer. 177... SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) INDIRECT FOOD ADDITIVES: POLYMERS Substances.../butadiene/sty-rene co-polymer. Acrylonitrile/butadiene/styrene copolymer identified in this section may be...

  13. 40 CFR 180.1162 - Acrylate polymers and copolymers; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 24 2014-07-01 2014-07-01 false Acrylate polymers and copolymers... RESIDUES IN FOOD Exemptions From Tolerances § 180.1162 Acrylate polymers and copolymers; exemption from the requirement of a tolerance. (a) Acrylate polymers and copolymers are exempt from the requirement of a...

  14. 21 CFR 177.1020 - Acrylonitrile/butadiene/sty-rene co-polymer.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Acrylonitrile/butadiene/sty-rene co-polymer. 177... SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) INDIRECT FOOD ADDITIVES: POLYMERS Substances.../butadiene/sty-rene co-polymer. Acrylonitrile/butadiene/styrene copolymer identified in this section may be...

  15. 40 CFR 180.1162 - Acrylate polymers and copolymers; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 25 2012-07-01 2012-07-01 false Acrylate polymers and copolymers... RESIDUES IN FOOD Exemptions From Tolerances § 180.1162 Acrylate polymers and copolymers; exemption from the requirement of a tolerance. (a) Acrylate polymers and copolymers are exempt from the requirement of a...

  16. Synthesis of imide/arylene ether copolymers for adhesives and composite matrices

    NASA Technical Reports Server (NTRS)

    Jensen, B. J.; Hergenrother, P. M.; Bass, R. G.

    1991-01-01

    A series of imide/arylene ether copolymers were prepared from the reaction of an amorphous arylene ether oligomer and a semi-crystalline imide oligomer. These copolymers were thermally characterized and mechanical properties were measured. One block copolymer was endcapped and the molecular weight was controlled to provide a material that displayed good compression moldability and attractive adhesion and composite properties.

  17. Injectable biodegradable temperature-responsive PLGA-PEG-PLGA copolymers: synthesis and effect of copolymer composition on the drug release from the copolymer-based hydrogels.

    PubMed

    Qiao, Mingxi; Chen, Dawei; Ma, Xichen; Liu, Yanjun

    2005-04-27

    Injectable biodegradable temperature-responsive poly(DL-lactide-co-glycolide-b-ethylene glycol-b-DL-lactide-co-glycolide) (PLGA-PEG-PLGA) triblock copolymers with DL-lactide/glycolide molar ratio ranging from 6/1 to 15/l were synthesized from monomers of DL-lactide, glycolide and polyethylene glycol and characterized by 1H NMR. The resulting copolymers are soluble in water to form free flowing fluid at room temperature but become hydrogels at body temperature. The hydrophobicity of the copolymer increased with the increasing of DL-lactide/glycolide molar ratio. In vitro dissolution studies with two different hydrophobic drugs (5-fluorouracil and indomethacin) were performed to study the effect of DL-lactide/glycolide molar ratio on drug release and to elucidate drug release mechanism. The release mechanism for hydrophilic 5-fluorouracil was diffusion-controlled, while hydrophobic indomethacin showed an biphasic profile comprising of an initial diffusion-controlled stage followed by the hydrogel erosion-dominated stage. The effect of DL-lactide/glycolide molar ratio on drug release seemed to be dependent on the drug release mechanism. It has less effect on the drug release during the diffusion-controlled stage, but significantly affected drug release during the hydrogel erosion-controlled stage. Compared with ReGel system, the synthesized copolymers showed a higher gelation temperature and longer period of drug release. The copolymers can solubilize the hydrophobic indomethacin and the solubility (13.7 mg/ml) was increased 3425-fold compared to that in water (4 microg/ml, 25 degrees C). Two methods of physical mixing method and solvent evaporation method were used for drug solubilization and the latter method showed higher solubilization efficiency.

  18. Usual Source of Care in Preventive Service Use: A Regular Doctor versus a Regular Site

    PubMed Central

    Xu, K Tom

    2002-01-01

    Objective To compare the effects of having a regular doctor and having a regular site on five preventive services, controlling for the endogeneity of having a usual source of care. Data Source The Medical Expenditure Panel Survey 1996 conducted by the Agency for Healthcare Research and Quality and the National Center for Health Statistics. Study Design Mammograms, pap smears, blood pressure checkups, cholesterol level checkups, and flu shots were examined. A modified behavioral model framework was presented, which controlled for the endogeneity of having a usual source of care. Based on this framework, a two-equation empirical model was established to predict the probabilities of having a regular doctor and having a regular site, and use of each type of preventive service. Principal Findings Having a regular doctor was found to have a greater impact than having a regular site on discretional preventive services, such as blood pressure and cholesterol level checkups. No statistically significant differences were found between the effects a having a regular doctor and having a regular site on the use of flu shots, pap smears, and mammograms. Among the five preventive services, having a usual source of care had the greatest impact on cholesterol level checkups and pap smears. Conclusions Promoting a stable physician–patient relationship can improve patients’ timely receipt of clinical prevention. For certain preventive services, having a regular doctor is more effective than having a regular site. PMID:12546284

  19. Copolymerization of Metal Nanoparticles: A Route to Colloidal Plasmonic Copolymers**

    PubMed Central

    Lukach, Ariella; Sugikawa, Kota; Chung, Siyon; Vickery, Jemma; Therien-Aubin, Heloise; Yang, Bai; Rubinstein, Michael

    2014-01-01

    The resemblance between colloidal and molecular polymerization reactions has been recognized as a powerful tool for the fundamental studies of polymerization reactions, as well as a platform for the development of new nanoscale systems with desired properties. Future applications of colloidal polymers will require nanoparticle (NP) ensembles with a high degree of complexity that can be realized by hetero-assembly of NPs with different dimensions, shapes and compositions. In the present work, we have developed a method to apply strategies from molecular copolymerization to the co-assembly of gold nanorods with different dimensions into random and block copolymer structures (plasmonic copolymers). The approach was extended to the co-assembly of random copolymers of gold and palladium nanorods. A kinetic model validated and further expanded the kinetic theories developed for molecular copolymerization reactions. PMID:24520012

  20. Performance behavior of modified cellulosic fabrics using polyurethane acrylate copolymer.

    PubMed

    Zuber, Mohammad; Shah, Sayyed Asim Ali; Jamil, Tahir; Asghar, Muhammad Irfan

    2014-06-01

    The surface of the cellulosic fabrics was modified using self-prepared emulsions of polyurethane acrylate copolymers (PUACs). PUACs were prepared by varying the molecular weight of polycaprolactone diol (PCL). The PCL was reacted with isophorone diisocyanate (IPDI) and chain was extended with 2-hydroxy ethyl acrylate (HEA) to form vinyl terminated polyurethane (VTPU) preploymer. The VTPU was further co-polymerized through free radical polymerization with butyl acrylate in different proportions. The FT-IR spectra of monomers, prepolymers and copolymers assured the formation of proposed PUACs structure. The various concentrations of prepared PUACs were applied onto the different fabric samples using dip-padding techniques. The results revealed that the application of polyurethane butyl acrylate copolymer showed a pronounced effect on the tear strength and pilling resistance of the treated fabrics.

  1. Ordered nanoscale domains by infiltration of block copolymers

    DOEpatents

    Darling, Seth B.; Elam, Jeffrey; Tseng, Yu-Chih; Peng, Qing

    2016-11-08

    A method of preparing tunable inorganic patterned nanofeatures by infiltration of a block copolymer scaffold having a plurality of self-assembled periodic polymer microdomains. The method may be used sequential infiltration synthesis (SIS), related to atomic layer deposition (ALD). The method includes selecting a metal precursor that is configured to selectively react with the copolymer unit defining the microdomain but is substantially non-reactive with another polymer unit of the copolymer. A tunable inorganic features is selectively formed on the microdomain to form a hybrid organic/inorganic composite material of the metal precursor and a co-reactant. The organic component may be optionally removed to obtain an inorganic features with patterned nanostructures defined by the configuration of the microdomain.

  2. Patterned silica films using microphase separation of a block copolymer

    NASA Astrophysics Data System (ADS)

    Kataoka, Sho; Takeuchi, Yasutaka; Endo, Akira

    2014-11-01

    Block copolymers exhibit various nanoscale ordered morphologies induced by microphase separation. Here, we present a method for providing two types of patterned silica films on Si wafer substrates simply by shifting the phase equilibrium of a block copolymer, polystyrene-block-poly(4-vinylpyridine) (PS-P4VP). In this method, siloxane is adsorbed onto poly(4-vinylpyridine) blocks of PS-P4VP whose structure varies with solvent polarity and is calcined to remove the block copolymer. Siloxane is in a dispersed phase with toluene as a solvent resulting in silica nanoparticle arrays, while siloxane is in a continuous phase with N, N-dimethylformamide (DMF) resulting in silica films with ordered mesopores. Since the pore size of silica films prepared in DMF is approximately 20 nm, the film has the ability to serve as a support for enzymes such as laccase.

  3. Nanoscale arrangement of diblock copolymer micelles with Au nanorods

    NASA Astrophysics Data System (ADS)

    Kim, Hwan; Lim, Yirang; Kim, Sehee; Kim, Sung-Soo; Sohn, Byeong-Hyeok

    2014-11-01

    We fabricated a single-layered film consisting of spherical micelles of diblock copolymers and one-dimensional Au nanorods that were surface modified with the same polymer as the corona block of the copolymers. When the diameters of micelles were larger than the lengths of the nanorods, spherical micelles arranged in a hexagonal configuration surrounded by nanorods with their long axes perpendicular to the radial direction of the micelles. This arrangement provided selective organization of the Au nanorods and Ag nanoparticles which were selectively synthesized within the cores of the copolymer micelles. Thus, position-selective arrangement of Au nanorods and Ag nanoparticles was demonstrated at the nanometer scale such that a homogenous distribution of two different nanomaterials over a large area without aggregation was achieved.

  4. Non-native three-dimensional block copolymer morphologies

    SciTech Connect

    Rahman, Atikur; Majewski, Pawel W.; Doerk, Gregory; Black, Charles T.; Yager, Kevin G.

    2016-12-22

    Self-assembly is a powerful paradigm, wherein molecules spontaneously form ordered phases exhibiting well-defined nanoscale periodicity and shapes. However, the inherent energy-minimization aspect of self-assembly yields a very limited set of morphologies, such as lamellae or hexagonally packed cylinders. Here, we show how soft self-assembling materials—block copolymer thin films—can be manipulated to form a diverse library of previously unreported morphologies. In this iterative assembly process, each polymer layer acts as both a structural component of the final morphology and a template for directing the order of subsequent layers. Specifically, block copolymer films are immobilized on surfaces, and template successive layers through subtle surface topography. As a result, this strategy generates an enormous variety of three-dimensional morphologies that are absent in the native block copolymer phase diagram.

  5. Reordering transitions during annealing of block copolymer cylinder phases

    SciTech Connect

    Majewski, Pawel W.; Yager, Kevin G.

    2015-10-06

    While equilibrium block-copolymer morphologies are dictated by energy-minimization effects, the semi-ordered states observed experimentally often depend on the details of ordering pathways and kinetics. In this study, we explore reordering transitions in thin films of block-copolymer cylinder-forming polystyrene-block-poly(methyl methacrylate). We observe several transient states as films order towards horizontally-aligned cylinders. In particular, there is an early-stage reorganization from randomly-packed cylinders into hexagonally-packed vertically-aligned cylinders; followed by a reorientation transition from vertical to horizontal cylinder states. These transitions are thermally activated. The growth of horizontal grains within an otherwise vertical morphology proceeds anisotropically, resulting in anisotropic grains in the final horizontal state. The size, shape, and anisotropy of grains are influenced by ordering history; for instance, faster heating rates reduce grain anisotropy. These results help elucidate aspects of pathway-dependent ordering in block-copolymer thin films.

  6. Universality between Experiment and Simulation of a Diblock Copolymer Melt

    NASA Astrophysics Data System (ADS)

    Beardsley, Thomas M.; Matsen, Mark W.

    2016-11-01

    The equivalent behavior among analogous block copolymer systems involving chemically distinct molecules or mathematically different models has long hinted at an underlying universality, but only recently has it been rigorously demonstrated by matching results from different simulations. The profound implication of universality is that simple coarse-grained models can be calibrated so as to provide quantitatively accurate predictions to experiment. Here, we provide the first compelling demonstration of this by simulating a polyisoprene-polylactide diblock copolymer melt using a previously calibrated lattice model. The simulation successfully predicts the peak in the disordered-state structure function, the position of the order-disorder transition, and the latent heat of the transition in excellent quantitative agreement with experiment. This could mark a new era of precision in the field of block copolymer research.

  7. BLOCK COPOLYMER THIN FILMS: Physics and Applications1

    NASA Astrophysics Data System (ADS)

    Fasolka, Michael J.; Mayes, Anne M.

    2001-08-01

    A two-part review of research concerning block copolymer thin films is presented. The first section summarizes experimental and theoretical studies of the fundamental physics of these systems, concentrating upon the forces that govern film morphology. The role of film thickness and surface energetics on the morphology of compositionally symmetric, amorphous diblock copolymer films is emphasized, including considerations of boundary condition symmetry, so-called hybrid structures, and surface chemical expression. Discussions of compositionally asymmetric systems and emerging research areas, e.g., liquid-crystalline and A-B-C triblock systems, are also included. In the second section, technological applications of block copolymer films, e.g., as lithographic masks and photonic materials, are considered. Particular attention is paid to means by which microphase domain order and orientation can be controlled, including exploitation of thickness and surface effects, the application of external fields, and the use of patterned substrates.

  8. Characterization of Lithium Polysulfide Salts in Homopolymers and Block Copolymers

    NASA Astrophysics Data System (ADS)

    Wang, Dunyang; Wujcik, Kevin; Balsara, Nitash

    Ion-conducting polymers are important for solid-state batteries due to the promise of better safety and the potential to produce higher energy density batteries. Nanostructured block copolymer electrolytes can provide high ionic conductivity and mechanical strength through microphase separation. One of the potential use of block copolymer electrolytes is in lithium-sulfur batteries, a system that has high theoretical energy density wherein the reduction of sulfur leads to the formation of lithium polysulfide intermediates. In this study we investigate the effect of block copolymer morphology on the speciation and transport properties of the polysulfides. The morphology and conductivities of polystyrene-b-poly(ethylene oxide) (SEO) containing lithium polysulfides were studies using small-angle X-ray scattering and ac impedance spectroscopy. UV-vis spectroscopy is being used to determine nature of the polysulfide species in poly(ethylene oxide) and SEO. Department of Energy, Soft Matter Electron Microscopy Program and Battery Materials Research Program.

  9. Studies on N-vinylformamide cross-linked copolymers

    NASA Astrophysics Data System (ADS)

    Świder, Joanna; Tąta, Agnieszka; Sokołowska, Katarzyna; Witek, Ewa; Proniewicz, Edyta

    2015-12-01

    Copolymers of N-vinylformamide (NVF) cross-linked with three multifunctional monomers, including divinylbenzene (DVB), ethylene glycol dimethacrylate (EGDMA), and N,N‧-methylenebisacrylamide (MBA) were synthetized by a three-dimensional free radical polymerization in inverse suspension using 2,2‧-azobis(2-methylpropionamide) dihydrochloride (AIBA) as an initiator. Methyl silicon oil was used as the continuous phase during the polymerization processes. Fourier-transform adsorption infrared (FT-IR) spectra revealed the presence of silicone oil traces and suggested that silicone oil strongly interacted with the copolymers surface. Purification procedure allowed to completely remove the silicon oil traces from P(NVF-co-DVB) only. The morphology and the structure of the investigated copolymers were examined by optical microscopy, FT-IR, and FT-Raman (Fourier-transform Raman spectroscopy) methods.

  10. Monte Carlo Simulations of Nano-Confined Block Copolymers

    NASA Astrophysics Data System (ADS)

    Wang, Qiang

    Block copolymers consist of chemically distinct polymer chains (blocks) covalently bonded together. Unlike polymer blends exhibiting phase separation on a macroscopic scale, block copolymers spontaneously self-assemble into ordered microdomains on the length scale of tens of nanometers, a phenomenon known as microphase separation [1, 2]. Due to the uniformity and periodicity of these microdomains, block copolymers have great potential applications in nanotechnology (e.g., templates for nanolithography, nanowires, high-density storage devices, quantum dots, photonic crystals, nanostructured membranes, etc.) [3-5], where the size, shape and spatial arrangement of the microdomains (morphology) are utilized. Understanding, predicting and controlling the selfassembled morphology of block copolymers are therefore of paramount interest. For the simplest architecture of linear diblock copolymers AB, four morphologies have been determined to be thermodynamically stable in the bulk, depending on the temperature and the volume fractions of the two blocks: lamellae of alternating A-rich and B-rich layers, hexagonally packed cylinders of the minority component (A) in the matrix of the other component (B), A-spheres packed on a body-centered cubic lattice in the B-matrix, and bicontinuous gyroid phase [6,7]. For more complex molecular architectures such as linear triblock copolymers ABC, many other morphologies have been observed in experiments and their bulk phase behavior is not fully understood yet [2, 8]. In many applications, a solution of block copolymers is spin-coated on a supporting substrate (e.g., silicon wafer) to form a thin film of tens to hundreds of nanometers thick, and the copolymers microphase separate in the film upon solvent evaporation and/or annealing. Under such nano-confinement, the tendency to resemble the bulk morphology with its characteristic period L0, the surface-block interactions (surface preference) and the surface con- finement all have

  11. Mechanism for Rapid Self-Assembly of Block Copolymer Nanoparticles

    NASA Astrophysics Data System (ADS)

    Johnson, Brian K.; Prud'Homme, Robert K.

    2003-09-01

    Amphiphilic block copolymers in solution spontaneously self-assemble when the solvent quality for one block is selectively decreased. We demonstrate that, for supersaturation ratio changes [d(S)/dt] over 105 per second from equilibrium, nanoparticles are obtained with a formation mechanism and size dependent on the jumping rate and magnitude. The threshold rate for homogeneous precipitation is determined by the induction time of a particle, equivalent to the diffusion limited fusion of copolymer chains to form a corona of overlapping soluble brushes. Via determination of the induction time with a novel confined impinging jets mixer and use of a scaling relation, the interfacial free energy of a block copolymer nanoparticle was measured for the first time.

  12. Reactive block copolymer vesicles with an epoxy wall.

    PubMed

    Zhu, Hui; Liu, Qingchun; Chen, Yongming

    2007-01-16

    Recently, block copolymer vesicles have attracted considerable attention because of their properties in encapsulation and release. To explore their applications in biorelated fields, functionalization of the polymer vesicle is necessary. Herein, a reactive unilamellar vesicle is reported by self-assembly of poly(ethylene oxide)-block-poly(glycidyl methacrylate) copolymer (PEO-b-PGMA) in solution. When water was added into the PEO-b-PGMA solution in THF, unilamellar vesicles were produced. If hydrophobic primary amine additives, such as hexamethylenediamine (HDA) and dodecylamine (DA), were introduced during block copolymer assembling, the vesicular morphology remained unchanged; instead, the amines reacted with the epoxys and the vesicles were fixed by cross-linking. Furthermore, when 3-aminopropyl trimethoxysilane (APS) was applied, the organic/inorganic hybrid vesicles were obtained, which were stable against the solvent change. Therefore, this research not only supplies a new way to fix the vesicular morphology but also a reactive vesicle scaffold for introducing functional species.

  13. Universality between Experiment and Simulation of a Diblock Copolymer Melt.

    PubMed

    Beardsley, Thomas M; Matsen, Mark W

    2016-11-18

    The equivalent behavior among analogous block copolymer systems involving chemically distinct molecules or mathematically different models has long hinted at an underlying universality, but only recently has it been rigorously demonstrated by matching results from different simulations. The profound implication of universality is that simple coarse-grained models can be calibrated so as to provide quantitatively accurate predictions to experiment. Here, we provide the first compelling demonstration of this by simulating a polyisoprene-polylactide diblock copolymer melt using a previously calibrated lattice model. The simulation successfully predicts the peak in the disordered-state structure function, the position of the order-disorder transition, and the latent heat of the transition in excellent quantitative agreement with experiment. This could mark a new era of precision in the field of block copolymer research.

  14. Synthesis of graft copolymers onto starch and its semiconducting properties

    NASA Astrophysics Data System (ADS)

    Çankaya, Nevin

    Literature review has revealed that, although there are studies about grafting on natural polymers, especially on starch, few of them are about electrical properties of graft polymers. Starch methacrylate (St.met) was obtained by esterification of OH groups on natural starch polymer for this purpose. Grafting of synthesized N-cyclohexyl acrylamide (NCA) and commercial methyl methacrylate (MMA) monomers with St.met was done by free radical polymerization method. The graft copolymers were characterized with FT-IR spectra, thermal and elemental analysis. Thermal stabilities of the graft copolymers were determined by TGA (thermo gravimetric analysis) method and thermal stability of the copolymers is decreased via grafting. The electrical conductivity of the polymers was measured as a function of temperature and it has been observed that electrical conductivity increases with increasing temperature. The absorbance and transmittance versus wavelength of the polymers have been measured.

  15. Polarized Raman study of random copolymers of propylene with olefins

    NASA Astrophysics Data System (ADS)

    Gen, D. E.; Chernyshov, K. B.; Prokhorov, K. A.; Nikolaeva, G. Yu.; Sagitova, E. A.; Pashinin, P. P.; Kovalchuk, A. A.; Klyamkina, A. N.; Nedorezova, P. M.; Optov, V. A.; Shklyaruk, B. F.

    2010-06-01

    The polarized Raman spectroscopy is employed in the study of structural modifications in the films of isotactic polypropylene (PP) whose chain contains ethylene, 1-butene, 1-hexene, 1-octene, and 4-metyl-pentene-1, which represents an isomer of 1-hexene. It is demonstrated that the phase and conformational compositions of copolymer molecules depend on the comonomer content and the side-chain length of the second monomer. The content of the PP molecules in the helical conformation in the crystalline and amorphous phases of the copolymers monotonically decreases with increasing content of the second monomer. The decrease in the content of helical macromolecules in the crystalline phase is faster than the decrease in the amorphous phase. At a certain content of comonomers, the total content of the helical fragments decreases with increasing length of the side chain of the second monomer. The structures and Raman spectra of the copolymers of propylene with 1-hexene and 4-methyl-1-pentene are similar.

  16. Non-native three-dimensional block copolymer morphologies

    PubMed Central

    Rahman, Atikur; Majewski, Pawel W.; Doerk, Gregory; Black, Charles T.; Yager, Kevin G.

    2016-01-01

    Self-assembly is a powerful paradigm, wherein molecules spontaneously form ordered phases exhibiting well-defined nanoscale periodicity and shapes. However, the inherent energy-minimization aspect of self-assembly yields a very limited set of morphologies, such as lamellae or hexagonally packed cylinders. Here, we show how soft self-assembling materials—block copolymer thin films—can be manipulated to form a diverse library of previously unreported morphologies. In this iterative assembly process, each polymer layer acts as both a structural component of the final morphology and a template for directing the order of subsequent layers. Specifically, block copolymer films are immobilized on surfaces, and template successive layers through subtle surface topography. This strategy generates an enormous variety of three-dimensional morphologies that are absent in the native block copolymer phase diagram. PMID:28004774

  17. Non-native three-dimensional block copolymer morphologies

    NASA Astrophysics Data System (ADS)

    Rahman, Atikur; Majewski, Pawel W.; Doerk, Gregory; Black, Charles T.; Yager, Kevin G.

    2016-12-01

    Self-assembly is a powerful paradigm, wherein molecules spontaneously form ordered phases exhibiting well-defined nanoscale periodicity and shapes. However, the inherent energy-minimization aspect of self-assembly yields a very limited set of morphologies, such as lamellae or hexagonally packed cylinders. Here, we show how soft self-assembling materials--block copolymer thin films--can be manipulated to form a diverse library of previously unreported morphologies. In this iterative assembly process, each polymer layer acts as both a structural component of the final morphology and a template for directing the order of subsequent layers. Specifically, block copolymer films are immobilized on surfaces, and template successive layers through subtle surface topography. This strategy generates an enormous variety of three-dimensional morphologies that are absent in the native block copolymer phase diagram.

  18. Non-native three-dimensional block copolymer morphologies

    DOE PAGES

    Rahman, Atikur; Majewski, Pawel W.; Doerk, Gregory; ...

    2016-12-22

    Self-assembly is a powerful paradigm, wherein molecules spontaneously form ordered phases exhibiting well-defined nanoscale periodicity and shapes. However, the inherent energy-minimization aspect of self-assembly yields a very limited set of morphologies, such as lamellae or hexagonally packed cylinders. Here, we show how soft self-assembling materials—block copolymer thin films—can be manipulated to form a diverse library of previously unreported morphologies. In this iterative assembly process, each polymer layer acts as both a structural component of the final morphology and a template for directing the order of subsequent layers. Specifically, block copolymer films are immobilized on surfaces, and template successive layers throughmore » subtle surface topography. As a result, this strategy generates an enormous variety of three-dimensional morphologies that are absent in the native block copolymer phase diagram.« less

  19. On the Melting Behavior of Ethylene/alpha-olefin Copolymers

    NASA Astrophysics Data System (ADS)

    Marand, Herve; Alizadeh, Azar; Subramaniam, Chitra; Richardson, Ley

    1998-03-01

    The melting behavior of ethylene/a-olefin copolymers of well controlled microstructure and narrow molecular weight distribution will be discussed. Specifically, we will report results of investigations of the effect of crystallization temperature and time on the multiple melting behavior of ethylene copolymers of various contents in butene, pentene, hexene and octene comonomers. More importantly, it will be shown that the location of the low endotherm is independent of previous thermal history and initial degree of crystallinity at the beginning of the crystallization/annealing process which leads to that endotherm. The low endotherm is furthermore independent of the copolymer composition as long as the crystallization process leads to a fringed micellar crystal morphology. Implications of these new results and comparison of the effect of the nature of the short chain branches on the evolution of the melting behavior with crystallization time provides new venues to the understanding of the multiple endothermic behavior of semicrystalline polymers in general.

  20. Formation of ordered microphase-separated pattern during spin coating of ABC triblock copolymer.

    PubMed

    Huang, Weihuan; Luo, Chunxia; Zhang, Jilin; Han, Yanchun

    2007-03-14

    In this paper, the authors have systematically studied the microphase separation and crystallization during spin coating of an ABC triblock copolymer, polystyrene-b-poly(2-vinylpyridine)-b-poly(ethylene oxide) (PS-b-P2VP-b-PEO). The microphase separation of PS-b-P2VP-b-PEO and the crystallization of PEO blocks can be modulated by the types of the solvent and the substrate, the spinning speed, and the copolymer concentration. Ordered microphase-separated pattern, where PEO and P2VP blocks adsorbed to the substrate and PS blocks protrusions formed hexagonal dots above the P2VP domains, can only be obtained when PS-b-P2VP-b-PEO is dissolved in N,N-dimethylformamide and the films are spin coated onto the polar substrate, silicon wafers or mica. The mechanism of the formation of regular pattern by microphase separation is found to be mainly related to the inducement of the substrate (middle block P2VP wetting the polar substrate), the quick vanishment of the solvent during the early stage of the spin coating, and the slow evaporation of the remaining solvent during the subsequent stage. On the other hand, the probability of the crystallization of PEO blocks during spin coating decreases with the reduced film thickness. When the film thickness reaches a certain value (3.0 nm), the extensive crystallization of PEO is effectively prohibited and ordered microphase-separated pattern over large areas can be routinely prepared. When the film thickness exceeds another definite value (12.0 nm), the crystallization of PEO dominates the surface morphology. For films with thickness between these two values, microphase separation and crystallization can simultaneously occur.