Uysal, Nazan; Yuksel, Oguz; Kizildag, Servet; Yuce, Zeynep; Gumus, Hikmet; Karakilic, Aslı; Guvendi, Guven; Koc, Basar; Kandis, Sevim; Ates, Mehmet
2018-05-29
We have recently shown that regular voluntary aerobic exercised rats have low levels of anxiety. Irisin is an exercise-induced myokine that is produced by many tissues; and the role it plays in anxiolytic behavior is unknown. In this study we aimed to investigate the correlation between anxiety like behavior and irisin levels following regular voluntary aerobic exercise in male mice. We've have shown that anxiety levels decreased in exercised mice, while irisin levels increased in the brain, brown adipose tissue, white adipose tissue, kidney, and pancreas tissues. No significant difference of irisin levels in the liver, muscle and serum were detected in the exercise group, when compared to controls. In addition, there was a strong positive correlation between brain irisin levels and activity in middle area of open field test and in the open arms of elevated plus maze test; both which are indicators of low anxiety levels. Our results suggest that decrease in anxiolytic behavior due to regular voluntary exercise may be associated with locally produced brain irisin. White adipose tissue irisin levels also correlated very strongly with low anxiety. However, no serum irisin increase was detected, ruling out the possibility of increased peripheral irisin levels affecting the brain via the bloodstream. Further research is necessary to explain the mechanisms of which peripheral and central irisin effects anxiety and the brain region affected. Copyright © 2018 Elsevier B.V. All rights reserved.
Nakajima, Sanae; Ohsawa, Ikuroh; Ohta, Shigeo; Ohno, Makoto; Mikami, Toshio
2010-08-25
Chronic stress impairs cognitive function and hippocampal neurogenesis. This impairment is attributed to increases in oxidative stress, which result in the accumulation of lipid peroxide. On the other hand, voluntary exercise enhances cognitive function, hippocampal neurogenesis, and antioxidant capacity in normal animals. However, the effects of voluntary exercise on cognitive function, neurogenesis, and antioxidants in stressed mice are unclear. This study was designed to investigate whether voluntary exercise cures stress-induced impairment of cognitive function accompanied by improvement of hippocampal neurogenesis and increases in antioxidant capacity. Stressed mice were exposed to chronic restraint stress (CRS), which consisted of 12h immobilization daily and feeding in a small cage, for 8 weeks. Exercised mice were allowed free access to a running wheel during their exposure to CRS. At the 6th week, cognitive function was examined using the Morris water maze (MWM) test. Daily voluntary exercise restored stress-induced impairment of cognitive function and the hippocampal cell proliferation of newborn cells but not cell survival. Voluntary exercise increased insulin-like growth factor 1 (IGF-1) protein and mRNA expression in the cerebral cortex and liver, respectively. In addition, CRS resulted in a significant increase in the number of 4-hydrosynonenal (4-HNE)-positive cells in the hippocampal dentate gyrus; whereas, voluntary exercise inhibited it and enhanced glutathione s-transferases (GST) activity in the brain. These findings suggest that voluntary exercise attenuated the stress-induced impairment of cognitive function accompanied by improvement of cell proliferation in the dentate gyrus. This exercise-induced improvement was attributed to exercise-induced enhancement of IGF-1 protein and GST activity in the brain. Copyright 2010 Elsevier B.V. All rights reserved.
Fadaei, Atefeh; Gorji, Hossein Miladi; Hosseini, Shahrokh Makvand
2015-01-15
Previous studies have indicated that voluntary exercise decreases the severity of the anxiogenic-like behaviors in both morphine-dependent and withdrawn rats. This study examined the effects of regular swimming exercise during the development of dependency and spontaneous morphine withdrawal on the anxiety-depression profile and voluntary morphine consumption in morphine dependent rats. The rats were chronically treated with bi-daily doses (10 mg/kg, at 12h intervals) of morphine over a period of 14 days. The exercising rats were allowed to swim (45 min/d, five days per a week, for 14 or 21 days) during the development of morphine dependence and withdrawal. Then, rats were tested for the severity of morphine dependence, the elevated plus-maze (EPM), sucrose preference test (SPT) and voluntary morphine consumption using a two-bottle choice paradigm in animal models of craving. The results showed that withdrawal signs were decreased in swimmer morphine dependent rats than sedentary rats (P<0.05). Also, the swimmer morphine-dependent and withdrawn rats exhibited an increase in EPM open arm time and entries (P<0.05), higher levels of sucrose preference (P<0.001) than sedentary rats. Voluntary consumption of oral morphine was less in the swimmer morphine-withdrawn rats than the sedentary groups during four periods of the intake of drug (P<0.01). We conclude that regular swimming exercise reduces the severity of morphine dependence and voluntary morphine consumption with reducing anxiety and depression in morphine-dependent and withdrawn rats. Thus, swimming exercise may be a potential method to ameliorate some of the deleterious behavioral consequences of morphine dependence. Copyright © 2014 Elsevier B.V. All rights reserved.
Kolb, Erik M; Kelly, Scott A; Garland, Theodore
2013-03-15
Exercise is known to be rewarding and have positive effects on mental and physical health. Excessive exercise, however, can be the result of an underlying behavioral/physiological addiction. Both humans who exercise regularly and rodent models of exercise addiction sometimes display behavioral withdrawal symptoms, including depression and anxiety, when exercise is denied. However, few studies have examined the physiological state that occurs during this withdrawal period. Alterations in blood pressure (BP) are common physiological indicators of withdrawal in a variety of addictions. In this study, we examined exercise withdrawal in four replicate lines of mice selectively bred for high voluntary wheel running (HR lines). Mice from the HR lines run almost 3-fold greater distances on wheels than those from non-selected control lines, and have altered brain activity as well as increased behavioral despair when wheel access is removed. We tested the hypothesis that male HR mice have an altered cardiovascular response (heart rate, systolic, diastolic, and mean arterial pressure [MAP]) during exercise withdrawal. Measurements using an occlusion tail-cuff system were taken during 8 days of baseline, 6 days of wheel access, and 2 days of withdrawal (wheel access blocked). During withdrawal, HR mice had significantly lower systolic BP, diastolic BP, and MAP than controls, potentially indicating a differential dependence on voluntary wheel running in HR mice. This is the first characterization of a cardiovascular withdrawal response in an animal model of high voluntary exercise. Copyright © 2013. Published by Elsevier Inc.
Smeda, Marta; Przyborowski, Kamil; Proniewski, Bartosz; Zakrzewska, Agnieszka; Kaczor, Dawid; Stojak, Marta; Buczek, Elzbieta; Nieckarz, Zenon; Zoladz, Jerzy A; Wietrzyk, Joanna; Chlopicki, Stefan
2017-01-01
It has been repeatedly shown that regular aerobic exercise exerts beneficial effects on incidence and progression of cancer. However, the data regarding effects of exercise on metastatic dissemination remain conflicting. Therefore, in the present study the possible preventive effects of voluntary wheel running on primary tumor growth and metastases formation in the model of spontaneous pulmonary metastasis were analyzed after orthotopic injection of 4T1 breast cancer cells into mammary fat pads of female Balb/C mice. This study identified that in the mice injected with 4T1 breast cancer cells and running on the wheels (4T1 ex) the volume and size of the primary tumor were not affected, but the number of secondary nodules formed in the lungs was significantly increased compared to their sedentary counterparts (4T1 sed). This effect was associated with decreased NO production in the isolated aorta of exercising mice (4T1 ex), suggesting deterioration of endothelial function that was associated with lower platelet count without their overactivation. This was evidenced by comparable selectin P, active GPIIb/IIIa expression, fibrinogen and vWF binding on the platelet surface. In conclusion, voluntary wheel running appeared to impair, rather than improve endothelial function, and to promote, but not decrease metastasis in the murine orthotopic model of metastatic breast cancer. These results call for revising the notion of the persistent beneficial effects of voluntary exercise on breast cancer progression, though further studies are needed to elucidate mechanisms involved in pro-metastatic effects of voluntary exercise.
Acute moderate exercise improves mnemonic discrimination in young adults.
Suwabe, Kazuya; Hyodo, Kazuki; Byun, Kyeongho; Ochi, Genta; Yassa, Michael A; Soya, Hideaki
2017-03-01
Increasing evidence suggests that regular moderate exercise increases neurogenesis in the dentate gyrus (DG) of the hippocampus and improves memory functions in both humans and animals. The DG is known to play a role in pattern separation, which is the ability to discriminate among similar experiences, a fundamental component of episodic memory. While long-term voluntary exercise improves pattern separation, there is little evidence of alterations in DG function after an acute exercise session. Our previous studies showing acute moderate exercise-enhanced DG activation in rats, and acute moderate exercise-enhanced prefrontal activation and executive function in humans, led us to postulate that acute moderate exercise may also activate the hippocampus, including more specifically the DG, thus improving pattern separation. We thus investigated the effects of a 10-min moderate exercise (50% V̇O 2peak ) session, the recommended intensity for health promotion, on mnemonic discrimination (a behavioral index of pattern separation) in young adults. An acute bout of moderate exercise improved mnemonic discrimination performance in high similarity lures. These results support our hypothesis that acute moderate exercise improves DG-mediated pattern separation in humans, proposing a useful human acute-exercise model for analyzing the neuronal substrate underlying acute and regular exercise-enhanced episodic memory based on the hippocampus. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Acute Moderate Exercise Improves Mnemonic Discrimination in Young Adults
Suwabe, Kazuya; Hyodo, Kazuki; Byun, Kyeongho; Ochi, Genta; Yassa, Michael A.; Soya, Hideaki
2018-01-01
Increasing evidence suggests that regular moderate exercise increases neurogenesis in the dentate gyrus (DG) of the hippocampus and improves memory functions in both humans and animals. The DG is known to play a role in pattern separation, which is the ability to discriminate among similar experiences, a fundamental component of episodic memory. While long-term voluntary exercise improves pattern separation, there is little evidence of alterations in DG function after an acute exercise session. Our previous studies showing acute moderate exercise-enhanced DG activation in rats, and acute moderate exercise-enhanced prefrontal activation and executive function in humans, led us to postulate that acute moderate exercise may also activate the hippocampus, including more specifically the DG, thus improving pattern separation. We thus investigated the effects of a 10-min moderate exercise (50% V̇O2peak) session, the recommended intensity for health promotion, on mnemonic discrimination (a behavioral index of pattern separation) in young adults. An acute bout of moderate exercise improved mnemonic discrimination performance in high similarity lures. These results support our hypothesis that acute moderate exercise improves DG-mediated pattern separation in humans, proposing a useful human acute-exercise model for analyzing the neuronal substrate underlying acute and regular exercise-enhanced episodic memory based on the hippocampus. PMID:27997992
Platt, Kristen M; Charnigo, Richard J; Shertzer, Howard G; Pearson, Kevin J
2016-01-01
Exercise is an inexpensive intervention that may be used to reduce obesity and its consequences. In addition, many individuals who regularly exercise utilize dietary supplements to enhance their exercise routine and to accelerate fat loss or increase lean mass. Branched-chain amino acids (BCAAs) are a popular supplement and have been shown to produce a number of beneficial effects in rodent models and humans. Therefore, we hypothesized that BCAA supplementation would protect against high fat diet (HFD)-induced glucose intolerance and obesity in mice with and without access to exercise. We subjected 80 female C57BL/6 mice to a paradigm of HFD feeding, exercise in the form of voluntary wheel running, and BCAA supplementation in the drinking water for 16 weeks (n = 10 per group). Body weight was monitored weekly, while food and water consumption were recorded twice weekly. During the 5th, 10th, and 15th weeks of treatment, glucose tolerance and body composition were analyzed. Exercise significantly improved glucose tolerance in both control-fed and HFD-fed mice. BCAA supplementation, however, did not significantly alter glucose tolerance in any treatment group. While BCAA supplements did not improve lean to fat mass ratio in sedentary mice, it significantly augmented the effects of exercise on this parameter.
Langbein, Heike; Hofmann, Anja; Brunssen, Coy; Goettsch, Winfried; Morawietz, Henning
2015-05-01
Obesity and physical inactivity are important cardiovascular risk factors. Regular physical exercise has been shown to mediate beneficial effects in the prevention of cardiovascular diseases. However, the impact of physical exercise on endothelial function in proatherosclerotic low-density lipoprotein receptor deficient (LDLR(-/-)) mice has not been studied so far. Six-week-old male LDLR(-/-) mice were fed a standard diet or a high-fat diet (39 kcal% fat diet) for 20 weeks. The impact of high-fat diet and voluntary running on body weight and amount of white adipose tissue was monitored. Basal tone and endothelial function was investigated in aortic rings using a Mulvany myograph. LDLR(-/-) mice on high-fat diet had increased cumulative food energy intake, but also higher physical activity compared to mice on control diet. Body weight and amount of visceral and retroperitoneal white adipose tissue of LDLR(-/-) mice were significantly increased by high-fat diet and partially reduced by voluntary running. Endothelial function in aortae of LDLR(-/-) mice was impaired after 20 weeks on standard and high-fat diet and could not be improved by voluntary running. Basal tone showed a trend to be increased by high-fat diet. Voluntary running reduced body weight and amount of white adipose tissue in LDLR(-/-) mice. Endothelial dysfunction in LDLR(-/-) mice could not be improved by voluntary running. In a clinical context, physical exercise alone might not have an influence on functional parameters and LDL-C levels in patients with familial hypercholesterolemia. However, physical activity in these patients may be in general beneficial and should be performed. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Pedersen, Line; Idorn, Manja; Olofsson, Gitte H; Lauenborg, Britt; Nookaew, Intawat; Hansen, Rasmus Hvass; Johannesen, Helle Hjorth; Becker, Jürgen C; Pedersen, Katrine S; Dethlefsen, Christine; Nielsen, Jens; Gehl, Julie; Pedersen, Bente K; Thor Straten, Per; Hojman, Pernille
2016-03-08
Regular exercise reduces the risk of cancer and disease recurrence. Yet the mechanisms behind this protection remain to be elucidated. In this study, tumor-bearing mice randomized to voluntary wheel running showed over 60% reduction in tumor incidence and growth across five different tumor models. Microarray analysis revealed training-induced upregulation of pathways associated with immune function. NK cell infiltration was significantly increased in tumors from running mice, whereas depletion of NK cells enhanced tumor growth and blunted the beneficial effects of exercise. Mechanistic analyses showed that NK cells were mobilized by epinephrine, and blockade of β-adrenergic signaling blunted training-dependent tumor inhibition. Moreover, epinephrine induced a selective mobilization of IL-6-sensitive NK cells, and IL-6-blocking antibodies blunted training-induced tumor suppression, intratumoral NK cell infiltration, and NK cell activation. Together, these results link exercise, epinephrine, and IL-6 to NK cell mobilization and redistribution, and ultimately to control of tumor growth. Copyright © 2016 Elsevier Inc. All rights reserved.
Gibson, Christine; Nielsen, Cory; Alex, Ramona; Cooper, Kimbal; Farney, Michael; Gaufin, Douglas; Cui, Jason Z; van Breemen, Cornelis; Broderick, Tom L; Vallejo-Elias, Johana; Esfandiarei, Mitra
2017-07-01
Regular low-impact physical activity is generally allowed in patients with Marfan syndrome, a connective tissue disorder caused by heterozygous mutations in the fibrillin-1 gene. However, being above average in height encourages young adults with this syndrome to engage in high-intensity contact sports, which unfortunately increases the risk for aortic aneurysm and rupture, the leading cause of death in Marfan syndrome. In this study, we investigated the effects of voluntary (cage-wheel) or forced (treadmill) aerobic exercise at different intensities on aortic function and structure in a mouse model of Marfan syndrome. Four-week-old Marfan and wild-type mice were subjected to voluntary and forced exercise regimens or sedentary lifestyle for 5 mo. Thoracic aortic tissue was isolated and subjected to structural and functional studies. Our data showed that exercise improved aortic wall structure and function in Marfan mice and that the beneficial effect was biphasic, with an optimum at low intensity exercise (55-65% V̇o 2max ) and tapering off at a higher intensity of exercise (85% V̇o 2max ). The mechanism underlying the reduced elastin fragmentation in Marfan mice involved reduction of the expression of matrix metalloproteinases 2 and 9 within the aortic wall. These findings present the first evidence of potential beneficial effects of mild exercise on the structural integrity of the aortic wall in Marfan syndrome associated aneurysm. Our finding that moderate, but not strenuous, exercise protects aortic structure and function in a mouse model of Marfan syndrome could have important implications for the medical care of young Marfan patients. NEW & NOTEWORTHY The present study provides conclusive scientific evidence that daily exercise can improve aortic health in a mouse model of Marfan syndrome associated aortic aneurysm, and it establishes the threshold for the exercise intensity beyond which exercise may not be as protective. These findings establish a platform for a new focus on promoting regular exercise in Marfan patients at an optimum intensity and create a paradigm shift in clinical care of Marfan patients suffering from aortic aneurysm complications. Copyright © 2017 the American Physiological Society.
Forced and voluntary exercise differentially affect brain and behavior.
Leasure, J L; Jones, M
2008-10-15
The potential of physical exercise to decrease body weight, alleviate depression, combat aging and enhance cognition has been well-supported by research studies. However, exercise regimens vary widely across experiments, raising the question of whether there is an optimal form, intensity and duration of exertion that would produce maximal benefits. In particular, a comparison of forced and voluntary exercise is needed, since the results of several prior studies suggest that they may differentially affect brain and behavior. In the present study, we employed a novel 8-week exercise paradigm that standardized the distance, pattern, equipment and housing condition of forced and voluntary exercisers. Exercising rats were then compared with sedentary controls on measures previously shown to be influenced by physical activity. Our results indicate that although the distance covered by both exercise groups was the same, voluntary exercisers ran at higher speed and for less total time than forced exercisers. When compared with sedentary controls, forced but not voluntary exercise was found to increase anxiety-like behaviors in the open field. Both forms of exercise increased the number of surviving bromodeoxyuridine (BrdU)+ cells in the dentate gyrus after 8 weeks of exercise, although forced exercisers had significantly more than voluntary exercisers. Phenotypic analysis of BrdU+ cells showed no difference between groups in the percentage of newborn cells that became neurons, however, because forced exercise maximally increased the number of BrdU+ cells, it ultimately produced more neurons than voluntary exercise. Our results indicate that forced and voluntary exercise are inherently different: voluntary wheel running is characterized by rapid pace and short duration, whereas forced exercise involves a slower, more consistent pace for longer periods of time. This basic difference between the two forms of exercise is likely responsible for their differential effects on brain and behavior.
Platt, Kristen M.; Charnigo, Richard J.; Shertzer, Howard G.; Pearson, Kevin J.
2016-01-01
Exercise is an inexpensive intervention that may be used to reduce obesity and its consequences. In addition, many individuals who regularly exercise utilize dietary supplements to enhance their exercise routine and to accelerate fat loss or increase lean mass. Branched-chain amino acids (BCAAs) are a popular supplement and have been shown to produce a number of beneficial effects in rodent models and humans. Therefore, we hypothesized that BCAA supplementation would protect against high fat diet (HFD)-induced glucose intolerance and obesity in mice with and without access to exercise. We subjected 80 female C57BL/6 mice to a paradigm of HFD feeding, exercise in the form of voluntary wheel running, and BCAA supplementation in the drinking water for 16 weeks (n = 10 per group). Body weight was monitored weekly, while food and water consumption were recorded twice weekly. During the 5th, 10th, and 15th weeks of treatment, glucose tolerance and body composition were analyzed. Exercise significantly improved glucose tolerance in both control-fed and HFD-fed mice. BCAA supplementation, however, did not significantly alter glucose tolerance in any treatment group. While BCAA supplements did not improve lean to fat mass ratio in sedentary mice, it significantly augmented the effects of exercise on this parameter. PMID:26716948
Smith, Andrew M.; Spiegler, Kevin M.; Sauce, Bruno; Wass, Christopher D.; Sturzoiu, Tudor; Matzel, Louis D.
2013-01-01
Increases in performance on tests of attention and learning are often observed shortly after a period of aerobic exercise, and evidence suggests that humans who engage in regular exercise are partially protected from age-related cognitive decline. However, the cognitive benefits of exercise are typically short-lived, limiting the practical application of these observations. We explored whether physical exercise would induce lasting changes in general cognitive ability if that exercise was combined with working memory training, which is purported to broadly impact on cognitive performance. Mice received either exercise (six weeks of voluntary running wheel access), working memory training, both treatments, or various control treatments. Near the completion of this period of exercise, working memory training (in a dual radial-arm maze) was initiated (alternating with days of exercise), and was continued for several weeks. Upon completion of these treatments, animals were assessed (2–4 weeks later) for performance on four diverse learning tasks, and the aggregate performance of individual animals across all four learning tasks was estimated. Working memory training alone promoted small increases in general cognitive performance, although any beneficial effects of exercise alone had dissipated by the time of learning assessments. However, the two treatments in combination more than doubled the improvement in general cognitive performance supported by working memory training alone. Unlike the transient effects that acute aerobic exercise can have on isolated learning tasks, these results indicate that an acute period of exercise combined with working memory training can have synergistic and lasting impact on general cognitive performance. PMID:24036169
Ghorbanzadeh, V; Mohammadi, M; Dariushnejad, H; Chodari, L; Mohaddes, G
2016-10-01
Hyperglycemia is the main risk factor for microvascular complications in type 2 diabetes. Crocin and voluntary exercise have anti-hyperglycemic effects in diabetes. In this research, we evaluated the effects of crocin and voluntary exercise alone or combined on glycemia control and heart level of VEGF-A. Animals were divided into eight groups as: control (con), diabetes (Dia), crocin (Cro), voluntary exercise (Exe), crocin and voluntary exercise (Cro-Exe), diabetic-crocin (Dia-Cro), diabetic-voluntary exercise (Dia-Exe), diabetic-crocin-voluntary exercise (Dia-Cro-Exe). Type 2 diabetes was induced by a high-fat diet (4 weeks) and injection of streptozotocin (STZ) (i.p, 35 mg/kg). Animals received oral administration of crocin (50 mg/kg) or performed voluntary exercise alone or together for 8 weeks. Oral glucose tolerance test (OGTT) was performed on overnight fasted control, diabetic and treated rats after 8 weeks of treatment. Then, serum insulin and heart VEGF-A protein levels were measured. Crocin combined with voluntary exercise significantly decreased blood glucose levels (p < 0.001) and insulin resistance (HOMA-IR) (p < 0.001) compared to diabetic group. VEGF-A level was significantly (p < 0.01) lower in Dia group compared to control group. The combination of crocin and voluntary exercise significantly enhanced VEGF-A protein levels in Dia-Cro-Exe and Cro-Exe group compared to diabetic and control groups, respectively; p < 0.001 and p < 0.05. Crocin combined with voluntary exercise improved insulin resistance (HOMA-IR) and reduced glucose levels in diabetic rats. Since both crocin and voluntary exercise can increase VEGF-A protein expression in heart tissue, they probably are able to increase angiogenesis in diabetic animals.
Eucapnic voluntary hyperventilation in diagnosing exercise-induced laryngeal obstructions.
Christensen, Pernille M; Rasmussen, Niels
2013-11-01
Exercise-induced laryngeal obstructions (EILOs) cause exercise-related respiratory symptoms (ERRS) and are important differential diagnoses to exercise-induced asthma. The diagnostic method for EILOs includes provocation to induce the obstruction followed by a verification of the obstruction and the degree thereof. The objective of the present study was to examine if a eucapnic voluntary hyperventilation (EVH) test could induce laryngeal obstructions laryngoscopically identical in subtypes and development as seen during an exercise test. EVH and exercise testing with continuous laryngoscopy were performed during a screening of two national athletic teams (n = 67). The laryngoscopic recordings were examined for usability, abnormalities and maximal supraglottic and glottic obstruction using two currently available methods (Eilomea and CLE-score). The participants were asked questions on ERRS, and whether the symptoms experienced during each provocation matched those experienced during regular training. A total of 39 completed both tests. There were no significant differences in subtypes and development thereof, the experience of symptoms, and specificity and sensitivity between the methods. Significantly more recordings obtained during the exercise test were usable for evaluation primarily due to resilient mucus on the tip of the fiber-laryngoscope in the EVH test. Only recordings of six athletes from both provocation methods were usable for evaluation using the Eilomea method (high-quality demand). Amongst these, a linear correlation was found for the glottic obstruction. EVH tests can induce EILOs. However, the present test protocol needs adjustments to secure better visualisation of the larynx during provocation.
Lapmanee, Sarawut; Charoenphandhu, Jantarima; Charoenphandhu, Narattaphol
2013-08-01
Rodents exposed to mild but repetitive stress may develop anxiety- and depression-like behaviors. Whether this stress response could be alleviated by pharmacological treatments or exercise interventions, such as wheel running, was unknown. Herein, we determined anxiety- and depression-like behaviors in restraint stressed rats (2h/day, 5 days/week for 4 weeks) subjected to acute diazepam treatment (30min prior to behavioral test), chronic treatment with fluoxetine, reboxetine or venlafaxine (10mg/kg/day for 4 weeks), and/or 4-week voluntary wheel running. In elevated plus-maze (EPM) and forced swimming tests (FST), stressed rats spent less time in the open arms and had less swimming duration than the control rats, respectively, indicating the presence of anxiety- and depression-like behaviors. Stressed rats also developed learned fear as evaluated by elevated T-maze test (ETM). Although wheel running could reduce anxiety-like behaviors in both EPM and ETM, only diazepam was effective in the EPM, while fluoxetine, reboxetine, and venlafaxine were effective in the ETM. Fluoxetine, reboxetine, and wheel running, but not diazepam and venlafaxine, also reduced depression-like behavior in FST. Combined pharmacological treatment and exercise did not further reduce anxiety-like behavior in stressed rats. However, stressed rats treated with wheel running plus reboxetine or venlafaxine showed an increase in climbing duration in FST. In conclusion, regular exercise (voluntary wheel running) and pharmacological treatments, especially fluoxetine and reboxetine, could alleviate anxiety- and depression-like behaviors in stressed male rats. Copyright © 2013 Elsevier B.V. All rights reserved.
Voluntary exercise promotes beneficial anti-aging mechanisms in SAMP8 female brain.
Bayod, Sergi; Guzmán-Brambila, Carolina; Sanchez-Roige, Sandra; Lalanza, Jaume F; Kaliman, Perla; Ortuño-Sahagun, Daniel; Escorihuela, Rosa M; Pallàs, Mercè
2015-02-01
Regular physical exercise mediates health and longevity promotion involving Sirtuin 1 (SIRT1)-regulated pathways. The anti-aging activity of SIRT1 is achieved, at least in part, by means of fine-tuning the adenosine monophosphate (AMP)-activated protein kinase (AMPK) pathway by preventing the transition of an originally pro-survival program into a pro-aging mechanism. Additionally, SIRT1 promotes mitochondrial function and reduces the production of reactive oxygen species (ROS) through regulating peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α), the master controller of mitochondrial biogenesis. Here, by using senescence-accelerated mice prone 8 (SAMP8) as a model for aging, we determined the effect of wheel-running as a paradigm for long-term voluntary exercise on SIRT1-AMPK pathway and mitochondrial functionality measured by oxidative phosphorylation (OXPHOS) complex content in the hippocampus and cortex. We found differential activation of SIRT1 in both tissues and hippocampal-specific activation of AMPK. These findings correlated well with significant changes in OXPHOS in the hippocampal, but not in the cerebral cortex, area. Collectively, the results revealed greater benefits of the exercise in the wheel-running intervention in a murine model of senescence, which was directly related with mitochondrial function and which was mediated through the modulation of SIRT1 and AMPK pathways.
Ratkevicius, A; Skurvydas, A; Povilonis, E; Quistorff, B; Lexell, J
1998-04-01
The aims of this study were to investigate if low-frequency fatigue (LFF) dependent on the duration of repeated muscle contractions and to compare LFF in voluntary and electrically induced exercise. Male subjects performed three 9-min periods of repeated isometric knee extensions at 40% maximal voluntary contraction with contraction plus relaxation periods of 30 plus 60 s, 15 plus 30 s and 5 plus 10 s in protocols 1, 2 and 3, respectively. The same exercise protocols were repeated using feedback-controlled electrical stimulation at 40% maximal tetanic torque. Before and 15 min after each exercise period, knee extension torque at 1, 7, 10, 15, 20, 50 and 100 Hz was assessed. During voluntary exercise, electromyogram root mean square (EMGrms) of the vastus lateralis muscle was evaluated. The 20-Hz torque:100-Hz torque (20:100 Hz torque) ratio was reduced more after electrically induced than after voluntary exercise (P < 0.05). During electrically induced exercise, the decrease in 20:100 Hz torque ratio was gradually (P < 0.05) reduced as the individual contractions shortened. During voluntary exercise, the decrease in 20:100 Hz torque ratio and the increase in EMGrms were greater in protocol 1 (P < 0.01) than in protocols 2 and 3, which did not differ from each other. In conclusion, our results showed that LFF is dependent on the duration of individual muscle contractions during repetitive isometric exercise and that the electrically induced exercise produced a more pronounced LFF compared to voluntary exercise of submaximal intensity. It is suggested that compensatory recruitment of faster-contracting motor units is an additional factor affecting the severity of LFF during voluntary exercise.
Campbell, Jonathan E; Király, Michael A; Atkinson, Daniel J; D'souza, Anna M; Vranic, Mladen; Riddell, Michael C
2010-07-01
We determined the effects of voluntary wheel running on the hypothalamic-pituitary-adrenal (HPA) axis, and the peripheral determinants of glucocorticoids action, in male Zucker diabetic fatty (ZDF) rats. Six-week-old euglycemic ZDF rats were divided into Basal, Sedentary, and Exercise groups (n = 8-9 per group). Basal animals were immediately killed, whereas Sedentary and Exercising rats were monitored for 10 wk. Basal (i.e., approximately 0900 AM in the resting state) glucocorticoid levels increased 2.3-fold by week 3 in Sedentary rats where they remained elevated for the duration of the study. After an initial elevation in basal glucocorticoid levels at week 1, Exercise rats maintained low glucocorticoid levels from week 3 through week 10. Hyperglycemia was evident in Sedentary animals by week 7, whereas Exercising animals maintained euglycemia throughout. At the time of death, the Sedentary group had approximately 40% lower glucocorticoid receptor (GR) content in the hippocampus, compared with the Basal and Exercise groups (P < 0.05), suggesting that the former group had impaired negative feedback regulation of the HPA axis. Both Sedentary and Exercise groups had elevated ACTH compared with Basal rats, indicating that central drive of the axis was similar between groups. However, Sedentary, but not Exercise, animals had elevated adrenal ACTH receptor and steroidogenic acute regulatory protein content compared with the Basal animals, suggesting that regular exercise protects against elevations in glucocorticoids by a downregulation of adrenal sensitivity to ACTH. GR and 11beta-hydroxysteroid dehydrogenase type 1 content in skeletal muscle and liver were similar between groups, however, GR content in adipose tissue was elevated in the Sedentary groups compared with the Basal and Exercise (P < 0.05) groups. Thus, the gradual elevations in glucocorticoid levels associated with the development of insulin resistance in male ZDF rats can be prevented with regular exercise, likely because of adaptations that occur primarily in the adrenal glands.
Physiotherapy Maneuver Is Critical to Recover Mouth Opening After Pediatric Trauma.
Khalifa, Ghada Amin; El-Kilani, Naglaa Shawki; Shokier, Hanan Mohamed
2016-12-01
A restricted mouth opening (MO) is predominantly a complication of maxillofacial trauma in pediatric patients and develops in 4 to 26.2% of cases. The purpose of the present study was to quantitatively investigate the influence of patient demographic data, fracture characteristics, and regular vigorous physiotherapy, with either voluntary or forcible MO exercises, on the recovery of a post-traumatic restricted MO in pediatric patients. A prospective cohort study was performed of pediatric patients with maxillofacial injuries who had been referred to Al-Zahraa and El-Fayoum Hospitals from 2013 to 2015. The predictive variables were patient demographic data, fracture characteristics, and regular vigorous physiotherapy. The patients were treated with a closed technique. The MO measurements were the clinical outcome variables and were recorded at the first week and then monthly for 12 months. Regular vigorous physiotherapy was performed until the patients had returned to their preoperative MO. The data were tabulated and statistically analyzed. Eighty-six patients were enrolled in the present study. Males predominated. Falls were the most common cause of fracture. Condylar fractures had the greatest incidence. A restricted MO occurred in 81 patients. The results showed no interaction between MO recovery and age, gender, etiology, or fracture site. After physiotherapy, the patients had returned to their preoperative MO at the fourth month, with the measurements fixed at normal values at the sixth month. The recovery rate was nonlinear, with faster improvement in the months closest to the injury. Physiotherapy is more critical in the recovery of the MO and prevention of bony ankylosis than patient data or fracture characteristics in pediatric trauma. We highly advocate the performance of voluntary mouth exercises, even in the absence of fracture. Forcible MO exercises are mandatory to recover a restricted MO. These exercises should be performed under close supervision of the patient's surgeon with the parents motivated to cooperate for at least 6 months. Copyright © 2016 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.
Maternal exercise during pregnancy promotes physical activity in adult offspring
USDA-ARS?s Scientific Manuscript database
Previous rodent studies have shown that maternal voluntary exercise during pregnancy leads to metabolic changes in adult offspring. We set out to test whether maternal voluntary exercise during pregnancy also induces persistent changes in voluntary physical activity in the offspring. Adult C57BL/6J ...
Alomari, Mahmoud A; Khabour, Omar F; Alzoubi, Karem H; Alzubi, Mohammad A
2013-06-15
Multiple evidence suggest the importance of exercise for cognitive and brain functions. Few studies however, compared the behavioral and neural adaptations to force versus voluntary exercise training. Therefore, spatial learning and memory formation and brain-derived neurotrophic factor (BDNF) were examined in Wister male rats after 6 weeks of either daily forced swimming, voluntary running exercises, or sedentary. Learning capabilities and short, 5-hour, and long term memories improved (p<0.05) similarly in the exercise groups, without changes (p>0.05) in the sedentary. Likewise, both exercises resulted in increased (p<0.05) hippocampal BDNF level. The results suggest that forced and voluntary exercises can similarly enhance cognitive- and brain-related tasks, seemingly vie the BDNF pathway. These data further confirm the health benefits of exercise and advocate both exercise modalities to enhance behavioral and neural functions. Copyright © 2013 Elsevier B.V. All rights reserved.
Roemers, P; Mazzola, P N; De Deyn, P P; Bossers, W J; van Heuvelen, M J G; van der Zee, E A
2018-04-15
Voluntary strength training methods for rodents are necessary to investigate the effects of strength training on cognition and the brain. However, few voluntary methods are available. The current study tested functional and muscular effects of two novel voluntary strength training methods, burrowing (digging a substrate out of a tube) and unloaded tower climbing, in male C57Bl6 mice. To compare these two novel methods with existing exercise methods, resistance running and (non-resistance) running were included. Motor coordination, grip strength and muscle fatigue were measured at baseline, halfway through and near the end of a fourteen week exercise intervention. Endurance was measured by an incremental treadmill test after twelve weeks. Both burrowing and resistance running improved forelimb grip strength as compared to controls. Running and resistance running increased endurance in the treadmill test and improved motor skills as measured by the balance beam test. Post-mortem tissue analyses revealed that running and resistance running induced Soleus muscle hypertrophy and reduced epididymal fat mass. Tower climbing elicited no functional or muscular changes. As a voluntary strength exercise method, burrowing avoids the confounding effects of stress and positive reinforcers elicited in forced strength exercise methods. Compared to voluntary resistance running, burrowing likely reduces the contribution of aerobic exercise components. Burrowing qualifies as a suitable voluntary strength training method in mice. Furthermore, resistance running shares features of strength training and endurance (aerobic) exercise and should be considered a multi-modal aerobic-strength exercise method in mice. Copyright © 2017 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Wei-Xin, E-mail: weixinliu@yahoo.com; Wang, Ting; Zhou, Feng
Obesity is associated with increased colonic inflammation, which elevates the risk of colon cancer. Although exercise exerts anti-inflammatory actions in multiple chronic diseases associated with inflammation, it is unknown whether this strategy prevents colonic inflammation in obesity. We hypothesized that voluntary exercise would suppress colonic inflammation in high-fat diet (HFD)-induced obesity by modulation of peroxisome proliferator-activated receptor (PPAR)-γ. Male C57Bl/6J mice fed either a control diet (6.5% fat, CON) or a high-fat diet (24% fat, HFD) were divided into sedentary, voluntary exercise or voluntary exercise with PPAR-γ antagonist GW9662 (10 mg/kg/day). All interventions took place for 12 weeks. Compared with CON-sedentarymore » group, HFD-sedentary mice gained significantly more body weight and exhibited metabolic disorders. Molecular studies revealed that HFD-sedentary mice had increased expression of inflammatory mediators and activation of nuclear factor (NF)-κB in the colons, which were associated with decreased expression and activity of PPAR-γ. Voluntary exercise markedly attenuated body weight gain, improved metabolic disorders, and normalized the expression of inflammatory mediators and activation of NF-κB in the colons in HFD-mice while having no effects in CON-animals. Moreover, voluntary exercise significantly increased expression and activity of PPAR-γ in the colons in both HFD- and CON-animals. However, all of these beneficial effects induced by voluntary exercise were abolished by GW9662, which inhibited expression and activity of PPAR-γ. The results suggest that decreased PPAR-γ activity in the colon of HFD-induced obesity may facilitate the inflammatory response and colon carcinogenesis. Voluntary exercise prevents colonic inflammation in HFD-induced obesity by up-regulating PPAR-γ activity. - Highlights: • Obesity down-regulates PPAR-γ in the colon. • Down-regulated colonic PPAR-γ may facilitate inflammatory response. • Exercise prevents colonic inflammation in obesity by up-regulating PPAR-γ.« less
Martin, Stephen A.; Dantzer, Robert; Kelley, Keith W.; Woods, Jeffrey A.
2014-01-01
Peripheral stimulation of the innate immune system with lipopolysaccharide (LPS) causes prolonged depressive-like behavior in aged mice that is dependent on indoleamine 2,3 dioxygenase (IDO) activation. Regular moderate intensity exercise training has been shown to exert neuroprotective effects that might reduce depressive-like behavior in aged mice. The purpose of this study was to test the hypothesis that voluntary wheel running would attenuate LPS-induced depressive-like behavior and brain IDO gene expression in 4-month-old and 22-month-old C57BL/6J mice. Mice were housed with a running wheel (Voluntary Wheel Running, VWR) or no wheel (Standard) for 30 days (young adult mice) or 70 days (aged mice), after which they were intraperitoneally injected with LPS (young adult mice: 0.83 mg/kg; aged mice: 0.33 mg/kg). Young adult VWR mice ran on average 6.9 km/day, while aged VWR mice ran on average 3.4 km/day. Both young adult and aged VWR mice increased their forced exercise tolerance compared to their respective Standard control groups. VWR had no effect on LPS-induced anorexia, weight-loss, increased immobility in the tail suspension test, and decreased sucrose preference in either young adult or aged mice. Four (young adult mice) and twenty-four (aged mice) hours after injection of LPS transcripts for TNF-α, IL-1β, IL-6, and IDO were upregulated in the whole brain independently of VWR. These results indicate that prolonged physical exercise has no effect on the neuroinflammatory response to LPS and its behavioral consequences. PMID:24281669
Costa, Sebastiano; Cuzzocrea, Francesca; Hausenblas, Heather A; Larcan, Rosalba; Oliva, Patrizia
2012-12-01
Background and aims The purpose of this study was to verify the factorial structure, internal validity, reliability, and criterion validity of the 21-item Exercise Dependence Scale-Revised (EDS-R) in an Italian sample. Methods Italian voluntary (N = 519) users of gyms who had a history of regular exercise for over a year completed the EDS-R and measures of exercise frequency. Results and conclusions Confirmatory factor analyses demonstrated a good fit to the hypothesized 7-factor model, and adequate internal consistency for the scale was evidenced. Criterion validity was evidenced by significant correlations among all the subscale of the EDS and exercise frequency. Finally, individuals at risk for exercise dependence reported more exercise behavior compared to the nondependent-symptomatic and nondependent-asymptomatic groups. These results suggest that the seven subscales of the Italian version of the EDS are measuring the construct of exercise dependence as defined by the DSM-IV criteria for substance dependence and also confirm previous research using the EDS-R in other languages. More research is needed to examine the psychometric properties of the EDS-R in diverse populations with various research designs.
Pitcher, Mark H; Tarum, Farid; Rauf, Imran Z; Low, Lucie A; Bushnell, Catherine
2017-06-01
Aerobic exercise improves outcomes in a variety of chronic health conditions, yet the support for exercise-induced effects on chronic pain in humans is mixed. Although many rodent studies have examined the effects of exercise on persistent hypersensitivity, the most used forced exercise paradigms that are known to be highly stressful. Because stress can also produce analgesic effects, we studied how voluntary exercise, known to reduce stress in healthy subjects, alters hypersensitivity, stress, and swelling in a rat model of persistent hind paw inflammation. Our data indicate that voluntary exercise rapidly and effectively reduces hypersensitivity as well as stress-related outcomes without altering swelling. Moreover, the level of exercise is unrelated to the analgesic and stress-reducing effects, suggesting that even modest amounts of exercise may impart significant benefit in persistent inflammatory pain states. Modest levels of voluntary exercise reduce pain- and stress-related outcomes in a rat model of persistent inflammatory pain, independently of the amount of exercise. As such, consistent, self-regulated activity levels may be more relevant to health improvement in persistent pain states than standardized exercise goals. Published by Elsevier Inc.
A preliminary investigation of lumbar tactile acuity in yoga practitioners.
Flaherty, Mary; Connolly, Martin
2014-01-01
Tactile acuity in the back relates to voluntary lumbo-pelvic control and is lower in chronic low back pain (CLBP) patients. Two-point discrimination (TPD) thresholds are higher, indicating decreased tactile acuity in patients with CLBP. Yoga has been shown to help relieve CLBP. This study investigated the hypothesis that regular practitioners of yoga have increased tactile acuity (i.e., lower TPD thresholds) when compared to matched controls who regularly perform gym-based (resistance training or aerobic-type) exercise. Tactile acuity in the low back was assessed using TPD in 16 long-term practitioners of yoga (5 Ashtanga, 5 Bikram, and 6 Iyengar practitioners) and 16 age- and gender-matched healthy controls who exercise (with weights and aerobic exercise). The yoga practitioners' TPD was lower than that of the exercisers, indicating greater tactile acuity in the low back. While there was no difference between the TPD of the practitioners of different yoga styles, the TPD of the Ashtanga yoga participants were significantly lower than those of the exercisers. The yogis whose main reasons to practice yoga were for "meditation or increased mindfulness" and for "well-being" showed a nonsignificant trend of higher tactile acuity than those who did yoga for "physical exercise." There was no association between TPD threshold and cumulative amount of yoga practice in terms of hours per week and years of experience. However, increased hours of exercise per week correlated with higher TPD. The findings suggest that there may be a relationship between yoga practice and enhanced tactile acuity in the low back.
Mifune, Hiroharu; Tajiri, Yuji; Nishi, Yoshihiro; Hara, Kento; Iwata, Shimpei; Tokubuchi, Ichiro; Mitsuzono, Ryouichi; Yamada, Kentaro; Kojima, Masayasu
2015-09-01
In the present study, effects of voluntary exercise in an obese animal model were investigated in relation to the rhythm of daily activity and ghrelin production. Male Sprague-Dawley rats were fed either a high fat diet (HFD) or a chow diet (CD) from four to 16 weeks old. They were further subdivided into either an exercise group (HFD-Ex, CD-Ex) with a running wheel for three days of every other week or sedentary group (HFD-Se, CD-Se). At 16 weeks old, marked increases in body weight and visceral fat were observed in the HFD-Se group, together with disrupted rhythms of feeding and locomotor activity. The induction of voluntary exercise brought about an effective reduction of weight and fat, and ameliorated abnormal rhythms of activity and feeding in the HFD-Ex rats. Wheel counts as voluntary exercise was greater in HFD-Ex rats than those in CD-Ex rats. The HFD-obese had exhibited a deterioration of ghrelin production, which was restored by the induction of voluntary exercise. These findings demonstrated that abnormal rhythms of feeding and locomotor activity in HFD-obese rats were restored by infrequent voluntary exercise with a concomitant amelioration of the ghrelin production and weight reduction. Because ghrelin is related to food anticipatory activity, it is plausible that ghrelin participates in the circadian rhythm of daily activity including eating behavior. A beneficial effect of voluntary exercise has now been confirmed in terms of the amelioration of the daily rhythms in eating behavior and physical activity in an animal model of obesity. Copyright © 2015 Elsevier Inc. All rights reserved.
Sasse, Sarah K.; Nyhuis, Tara J.; Masini, Cher V.; Day, Heidi E. W.; Campeau, Serge
2013-01-01
Accumulating evidence indicates that regular physical exercise benefits health in part by counteracting some of the negative physiological impacts of stress. While some studies identified reductions in some measures of acute stress responses with prior exercise, limited data were available concerning effects on cardiovascular function, and reported effects on hypothalamic-pituitary-adrenocortical (HPA) axis responses were largely inconsistent. Given that exposure to repeated or prolonged stress is strongly implicated in the precipitation and exacerbation of illness, we proposed the novel hypothesis that physical exercise might facilitate adaptation to repeated stress, and subsequently demonstrated significant enhancement of both HPA axis (glucocorticoid) and cardiovascular (tachycardia) response habituation to repeated noise stress in rats with long-term access to running wheels compared to sedentary controls. Stress habituation has been attributed to modifications of brain circuits, but the specific sites of adaptation and the molecular changes driving its expression remain unclear. Here, in situ hybridization histochemistry was used to examine regulation of select stress-associated signaling systems in brain regions representing likely candidates to underlie exercise-enhanced stress habituation. Analyzed brains were collected from active (6 weeks of wheel running) and sedentary rats following control, acute, or repeated noise exposures that induced a significantly faster rate of glucocorticoid response habituation in active animals but preserved acute noise responsiveness. Nearly identical experimental manipulations also induce a faster rate of cardiovascular response habituation in exercised, repeatedly stressed rats. The observed regulation of the corticotropin-releasing factor and brain-derived neurotrophic factor systems across several brain regions suggests widespread effects of voluntary exercise on central functions and related adaptations to stress across multiple response modalities. PMID:24324441
Neuromuscular fatigue following constant versus variable-intensity endurance cycling in triathletes.
Lepers, R; Theurel, J; Hausswirth, C; Bernard, T
2008-07-01
The aim of this study was to determine whether or not variable power cycling produced greater neuromuscular fatigue of knee extensor muscles than constant power cycling at the same mean power output. Eight male triathletes (age: 33+/-5 years, mass: 74+/-4 kg, VO2max: 62+/-5 mL kg(-1) min(-1), maximal aerobic power: 392+/-17 W) performed two 30 min trials on a cycle ergometer in a random order. Cycling exercise was performed either at a constant power output (CP) corresponding to 75% of the maximal aerobic power (MAP) or a variable power output (VP) with alternating +/-15%, +/-5%, and +/-10% of 75% MAP approximately every 5 min. Maximal voluntary contraction (MVC) torque, maximal voluntary activation level and excitation-contraction coupling process of knee extensor muscles were evaluated before and immediately after the exercise using the technique of electrically evoked contractions (single and paired stimulations). Oxygen uptake, ventilation and heart rate were also measured at regular intervals during the exercise. Averaged metabolic variables were not significantly different between the two conditions. Similarly, reductions in MVC torque (approximately -11%, P<0.05) after cycling were not different (P>0.05) between CP and VP trials. The magnitude of central and peripheral fatigue was also similar at the end of the two cycling exercises. It is concluded that, following 30 min of endurance cycling, semi-elite triathletes experienced no additional neuromuscular fatigue by varying power (from +/-5% to 15%) compared with a protocol that involved a constant power.
Haydari, Sakineh; Miladi-Gorji, Hossein; Mokhtari, Amin; Safari, Manouchehr
2014-08-22
Exposure to morphine during pregnancy produced long-term effects in offspring behaviors. Recent studies have shown that voluntary exercise decreases the severity of anxiety behaviors in both morphine-dependent and withdrawn rats. Thus, the aims of the present study were to examine whether maternal exercise decreases prenatal dependence-induced anxiety and also, voluntary consumption of morphine in animal models of craving in rat pups. Pregnant rats were made dependent by chronic administration of morphine in drinking water simultaneously with access to a running wheel that lasted at least 21 days. Then, anxiety-like behaviors using the elevated plus-maze (EPM) and voluntary consumption of morphine using a two-bottle choice paradigm (TBC) were tested in male rat pups. The results showed that the rat pups borne from exercising morphine-dependent mothers exhibited an increase in EPM open arm time (P<0.0001) and entries (P<0.05) as compared with the sedentary groups. In animal models of craving showed that voluntary consumption of morphine in the rat pups borne from exercising morphine-dependent mothers was less in the second (P<0.032) and third (P<0.014) periods of intake as compared with the sedentary group. This study showed that maternal exercise decreases the severity of the anxiogenic-like behaviors and voluntary consumption of morphine in rat pups. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Behavioral Effects of Enrichment and Nicotine in Male Sprague Dawley Rats
2008-10-01
activity, increased habituation to a novel environment, decreased voluntary exercise. Rats in the physically-enriched group had increased voluntary ... voluntary exercise. Environmental enrichment prolonged nicotine’s effects through nicotine cessation. Enrichment’s effects on body weight could not...68 Euthanasia ................................................................................................... 68 DATA ANALYTIC STRATEGY FOR
Voluntary exercise increases resilience to social defeat stress in Syrian hamsters.
Kingston, Rody C; Smith, Michael; Lacey, Tiara; Edwards, Malcolm; Best, Janae N; Markham, Chris M
2018-05-01
Exposure to social stressors can cause profound changes in an individual's well-being and can be an underlying factor in the etiology of a variety of psychopathologies, such as post-traumatic stress disorder (PTSD). In Syrian hamsters, a single social defeat experience results in behavioral changes collectively known as conditioned defeat (CD), and includes an abolishment of territorial aggression and the emergence of high levels of defensive behaviors. In contrast, voluntary exercise has been shown to promote stress resilience and can also have anxiolytic-like effects. Although several studies have investigated the resilience-inducing effects of voluntary exercise after exposure to physical stressors, such as restraint and electric shock, few studies have examined whether exercise can impart resilience in response to ethologically-based stressors, such as social defeat. In Experiment 1, we tested the hypothesis that voluntary exercise can have anxiolytic-like effects in socially defeated hamsters. In the elevated plus maze, the exercise group exhibited a significant reduction in risk assessment, a commonly used index of anxiety, compared to the no-exercise group. In the open-field test, animals in the exercise group exhibited a significant reduction in locomotor behavior and rearing, also an indication of an anxiolytic-like effect of exercise. In Experiment 2, we examined whether exercise can reverse the defeat-induced potentiation of defensive behaviors using the CD model. Socially defeated hamsters in the exercise group exhibited significantly lower levels of defensive/submissive behaviors compared to the no-exercise group upon exposure to the resident aggressor. Taken together, these results are among the first to suggest that voluntary exercise may promote resilience to social defeat stress in Syrian hamsters. Copyright © 2018 Elsevier Inc. All rights reserved.
Forced Aerobic Exercise Preceding Task Practice Improves Motor Recovery Poststroke.
Linder, Susan M; Rosenfeldt, Anson B; Dey, Tanujit; Alberts, Jay L
To understand how two types of aerobic exercise affect upper-extremity motor recovery post-stroke. Our aims were to (1) evaluate the feasibility of having people who had a stroke complete an aerobic exercise intervention and (2) determine whether forced or voluntary exercise differentially facilitates upper-extremity recovery when paired with task practice. Seventeen participants with chronic stroke completed twenty-four 90-min sessions over 8 wk. Aerobic exercise was immediately followed by task practice. Participants were randomized to forced or voluntary aerobic exercise groups or to task practice only. Improvement on the Fugl-Meyer Assessment exceeded the minimal clinically important difference: 12.3, 4.8, and 4.4 for the forced exercise, voluntary exercise, and repetitive task practice-only groups, respectively. Only the forced exercise group exhibited a statistically significant improvement. People with chronic stroke can safely complete intensive aerobic exercise. Forced aerobic exercise may be optimal in facilitating motor recovery associated with task practice. Copyright © 2017 by the American Occupational Therapy Association, Inc.
Griesbach, Grace S; Tio, Delia L; Vincelli, Jennifer; McArthur, David L; Taylor, Anna N
2012-05-01
Voluntary exercise increases levels of brain-derived neurotrophic factor (BDNF) after traumatic brain injury (TBI) when it occurs during a delayed time window. In contrast, acute post-TBI exercise does not increase BDNF. It is well known that increases in glucocorticoids suppress levels of BDNF. Moreover, recent work from our laboratory showed that there is a heightened stress response after fluid percussion injury (FPI). In order to determine if a heightened stress response is also observed with acute exercise, at post-injury days 0-4 and 7-11, corticosterone (CORT) and adrenocorticotropic hormone (ACTH) release were measured in rats running voluntarily or exposed to two daily 20-min periods of forced running wheel exercise. Forced, but not voluntary exercise, continuously elevated CORT. ACTH levels were initially elevated with forced exercise, but decreased by post-injury day 7 in the control, but not the FPI animals. As previously reported, voluntary exercise did not increase BDNF in the FPI group as it did in the control animals. Forced exercise did not increase levels of BDNF in any group. It did, however, decrease hippocampal glucocorticoid receptors in the control group. The results suggest that exercise regimens with strong stress responses may not be beneficial during the early post-injury period.
Exercise is medicine for patients with major depressive disorders: but only if the “pill” is taken!
Gerber, Markus; Holsboer-Trachsler, Edith; Pühse, Uwe; Brand, Serge
2016-01-01
Major depressive disorders (MDDs) are a widespread and burdensome mental illness associated with a high comorbidity with other conditions and a significantly reduced life expectancy compared to the general population. Therefore, targeted actions are needed to improve physical health in people with MDDs, in addition to ongoing efforts to enhance psychological well-being. Meanwhile, the positive effects of exercise training on the treatment of MDDs are well documented, while compelling evidence exists that exercise interventions can improve cardiorespiratory fitness in clinically meaningful ways. On the flipside, the long-term effects of exercise therapy are still not well documented, and recent studies suggest that initial improvements in MDDs dissipate if regular exercise participation is discontinued after the end of interventions. A recent survey among Swiss psychiatric hospitals further shows that all institutions provide some form of physical activity and exercise program. However, only a limited number of patients participate in these programs, mainly because participation is voluntary and no particular efforts are undertaken to engage patients with the lowest physical activity levels. We argue that more systematic efforts are needed to fully exploit the potential of physical activity and exercise programs in psychiatric care. We also emphasize that initiating and maintaining regular physical activity among psychiatric patients is a major challenge because specific dysfunctional cognitive–emotional processes might interfere with their capacity to self-regulate health-related behaviors. Specifically, we claim that behavioral skill training should be used to support patients with MDDs in overcoming barriers to initiating and maintaining physical activity. Moreover, we suggest that the assessment of physical activity and cardiorespiratory fitness should become routine in psychiatric practice. PMID:27540294
Biscarini, Andrea; Contemori, Samuele; Busti, Daniele; Botti, Fabio M; Pettorossi, Vito E
2016-12-08
Quadriceps strengthening exercises designed for the early phase of anterior cruciate ligament (ACL) rehabilitation should limit the anterior tibial translation developed by quadriceps contraction near full knee extension, in order to avoid excessive strain on the healing tissue. We hypothesize that knee-flexion exercises with simultaneous voluntary contraction of quadriceps (voluntary quadriceps cocontraction) can yield considerable levels of quadriceps activation while preventing the tibia from translating forward relative to the femur. Electromyographic activity in quadriceps and hamstring muscles was measured in 20 healthy males during isometric knee-flexion exercises executed near full knee extension with maximal voluntary effort of quadriceps cocontraction and external resistance (R) ranging from 0% to 60% of the 1-repetition maximum (1RM). Biomechanical modeling was applied to derive the shear (anterior/posterior) tibiofemoral force developed in each exercise condition. Isometric knee-flexion exercises with small external resistance (R=10% 1RM) and maximal voluntary effort of quadriceps cocontraction yielded a net posterior (ACL-unloading) tibial pull (P=0.005) and levels of activation of 32%, 50%, and 45% of maximum voluntary isometric contraction, for the rectus femoris, vastus medialis, and vastus lateralis, respectively. This exercise might potentially rank as one of the most appropriate quadriceps strengthening interventions in the early phase of ACL rehabilitation. Copyright © 2016 Elsevier Ltd. All rights reserved.
Ravier, Gilles; Bouzigon, Romain; Beliard, Samuel; Tordi, Nicolas; Grappe, Frederic
2018-04-04
Ravier, G, Bouzigon, R, Beliard, S, Tordi, N, and Grappe, F. Benefits of compression garments worn during handball-specific circuit on short-term fatigue in professional players. J Strength Cond Res XX(X): 000-000, 2016-The purpose of this study was to investigate the benefits of full-leg length compression garments (CGs) worn during a handball-specific circuit exercises on athletic performance and acute fatigue-induced changes in strength and muscle soreness in professional handball players. Eighteen men (mean ± SD: age 23.22 ± 4.97 years; body mass: 82.06 ± 9.69 kg; height: 184.61 ± 4.78 cm) completed 2 identical sessions either wearing regular gym short or CGs in a randomized crossover design. Exercise circuits of explosive activities included 3 periods of 12 minutes of sprints, jumps, and agility drills every 25 seconds. Before, immediately after and 24 hours postexercise, maximal voluntary knee extension (maximal voluntary contraction, MVC), rate of force development (RFD), and muscle soreness were assessed. During the handball-specific circuit sprint and jump performances were unchanged in both conditions. Immediately after performing the circuit exercises MVC, RFD, and PPT decreased significantly compared with preexercise with CGs and noncompression clothes. Decrement was similar in both conditions for RFD (effect size, ES = 0.40) and PPT for the soleus (ES = 0.86). However, wearing CGs attenuated decrement in MVC (p < 0.001) with a smaller decrease (ES = 1.53) in CGs compared with regular gym shorts condition (-5.4 vs. -18.7%, respectively). Full recovery was observed 24 hours postexercise in both conditions for muscle soreness, MVC, and RFD. These findings suggest that wearing CGs during a handball-specific circuit provides benefits on the impairment of the maximal muscle force characteristics and is likely to be worthwhile for handball players involved in activities such as tackles.
Sasaki, Hiroyuki; Hattori, Yuta; Ikeda, Yuko; Kamagata, Mayo; Iwami, Shiho; Yasuda, Shinnosuke; Tahara, Yu; Shibata, Shigenobu
2016-01-01
Exercise during the inactive period can entrain locomotor activity and peripheral circadian clock rhythm in mice; however, mechanisms underlying this entrainment are yet to be elucidated. Here, we showed that the bioluminescence rhythm of peripheral clocks in PER2::LUC mice was strongly entrained by forced treadmill and forced wheel-running exercise rather than by voluntary wheel-running exercise at middle time during the inactivity period. Exercise-induced entrainment was accompanied by increased levels of serum corticosterone and norepinephrine in peripheral tissues, similar to the physical stress-induced response. Adrenalectomy with norepinephrine receptor blockers completely blocked the treadmill exercise-induced entrainment. The entrainment of the peripheral clock by exercise is independent of the suprachiasmatic nucleus clock, the main oscillator in mammals. The present results suggest that the response of forced exercise, but not voluntary exercise, may be similar to that of stress, and possesses the entrainment ability of peripheral clocks through the activation of the adrenal gland and the sympathetic nervous system. PMID:27271267
ERIC Educational Resources Information Center
Eddy, Meghan C.; Stansfield, Katherine J.; Green, John T.
2014-01-01
We have previously demonstrated that voluntary exercise facilitates discrimination learning in a modified T-maze. There is evidence implicating the dorsolateral striatum (DLS) as the substrate for this task. The present experiments examined whether changes in DLS dopamine receptors might underlie the exercise-associated facilitation. Infusing a…
Hsueh, Shih-Chang; Lai, Jing-Huei; Wu, Chung-Che; Yu, Yu-Wen; Luo, Yu; Hsieh, Tsung-Hsun; Chiang, Yung-Hsiao
2018-01-01
Background: Parkinson’s disease (PD) is typically characterized by impairment of motor function. Gait disturbances similar to those observed in patients with PD can be observed in animals after injection of neurotoxin 6-hydroxydopamine (6-OHDA) to induce unilateral nigrostriatal dopamine depletion. Exercise has been shown to be a promising non-pharmacological approach to reduce the risk of neurodegenerative disease. Methods: In this study, we investigated the long-term effects of voluntary running wheel exercise on gait phenotypes, depression, cognitive, rotational behaviors as well as histology in a 6-OHDA-lesioned rat model of PD. Results: We observed that, when compared with the non-exercise controls, five-week voluntary exercise alleviated and postponed the 6-OHDA-induced gait deficits, including a significantly improved walking speed, step/stride length, base of support and print length. In addition, we found that the non-motor functions, such as novel object recognition and forced swim test, were also ameliorated by voluntary exercise. However, the rotational behavior of the exercise group did not show significant differences when compared with the non-exercise group. Conclusions: We first analyzed the detailed spatiotemporal changes of gait pattern to investigate the potential benefits after long-term exercise in the rat model of PD, which could be useful for future objective assessment of locomotor function in PD or other neurological animal models. Furthermore, these results suggest that short-term voluntary exercise is sufficient to alleviate cognition deficits and depressive behavior in 6-OHDA lesioned rats and long-term treatment reduces the progression of motor symptoms and elevates tyrosine hydroxylase (TH), Brain-derived neurotrophic factor (BDNF), bone marrow tyrosine kinase in chromosome X (BMX) protein expression level without affecting dopaminergic (DA) neuron loss in this PD rat model. PMID:29419747
Voluntary Wheel Running Induces Exercise-Seeking Behavior in Male Rats: A Behavioral Study.
Naghshvarian, Mojtaba; Zarrindast, Mohammad-Reza; Sajjadi, Seyedeh Fatemeh
2017-12-01
Research evidence shows that exercise is associated with positive physical and mental health. Moreover, exercise and wheel running in rats activate overlapping neural systems and reward system. The most commonly used models for the study of rewarding and aversive effects of exercise involve using treadmill and wheel running paradigms in mice or rats. The purpose of our experiment was to study the influence of continuous voluntary exercise on exercise-seeking behavior. In this experimental study, we used 24 adult male Sprague-Dawley rats weighing 275-300 g on average. Rats were divided into 3 experimental groups for 4 weeks of voluntary wheel running. Each rat ran in the cage equipped with a wheel during 24 hours. A within-subject repeated measure design was employed to evaluate the trend of running and running rates. We found that time and higher levels of exercise will increase exercise tendency. Our results also show that the interaction of exercise within 4 weeks and different levels of exercise can significantly promote rats' exercise-seeking behavior (F = 5.440; df = 2.08; P < 0.001). Our data suggest that voluntary wheel running can increase the likelihood of extreme and obsessive exercising which is a form of non-drug addiction. 2017 The Author(s). This is an open-access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Kirk, Ben; Mitchell, Jade; Jackson, Matthew; Amirabdollahian, Farzad; Alizadehkhaiyat, Omid; Clifford, Tom
2017-01-28
Hyperaminoacidemia following ingestion of cows-milk may stimulate muscle anabolism and attenuate exercise-induced muscle damage (EIMD). However, as dairy-intolerant athletes do not obtain the reported benefits from milk-based products, A2 milk may offer a suitable alternative as it lacks the A1-protein. This study aimed to determine the effect of A2 milk on recovery from a sports-specific muscle damage model. Twenty-one male team sport players were allocated to three independent groups: A2 milk ( n = 7), regular milk ( n = 7), and placebo (PLA) ( n = 7). Immediately following muscle-damaging exercise, participants consumed either A2 milk, regular milk or PLA (500 mL each). Visual analogue scale (muscle soreness), maximal voluntary isometric contraction (MVIC), countermovement jump (CMJ) and 20-m sprint were measured prior to and 24, 48, and 72 h post EIMD. At 48 h post-EIMD, CMJ and 20-m sprint recovered quicker in A2 (33.4 ± 6.6 and 3.3 ± 0.1, respectively) and regular milk (33.1 ± 7.1 and 3.3 ± 0.3, respectively) vs. PLA (29.2 ± 3.6 and 3.6 ± 0.3, respectively) ( p < 0.05). Relative to baseline, decrements in 48 h CMJ and 20-m sprint were minimised in A2 (by 7.2 and 5.1%, respectively) and regular milk (by 6.3 and 5.2%, respectively) vs. PLA. There was a trend for milk treatments to attenuate decrements in MVIC, however statistical significance was not reached ( p = 0.069). Milk treatments had no apparent effect on muscle soreness ( p = 0.152). Following muscle-damaging exercise, ingestion of 500 mL of A2 or regular milk can limit decrements in dynamic muscle function in male athletes, thus hastening recovery and improving subsequent performance. The findings propose A2 milk as an ergogenic aid following EIMD, and may offer an alternative to athletes intolerant to the A1 protein.
Anxiety profile in morphine-dependent and withdrawn rats: effect of voluntary exercise.
Miladi-Gorji, Hossein; Rashidy-Pour, Ali; Fathollahi, Yaghoub
2012-01-18
Withdrawal from chronic opiates is associated with an increase in anxiogenic-like behaviours, but the anxiety profile in the morphine-dependent animals is not clear. Thus, one of the aims of the present study was to examine whether morphine-dependent rats would increase the expression of anxiogenic-like behaviours in novel and stressful conditions. Additionally, recent studies have shown that voluntary exercise can reduce anxiety levels in rodents. Therefore, another aim of this study was to examine the effect of voluntary exercise on the anxiety profile in both morphine-dependent animals and animals experiencing withdrawal. Rats were injected with bi-daily doses (10 mg/kg, at 12 h intervals) of morphine over a period of 10 days in which they were also allowed voluntary exercise. Following these injections, anxiety-like behaviours were tested in the elevated plus-maze (EPM) model and the light/dark (L/D) box. We found reductions in time spent in, and entries into, the EPM open arms and reductions in time spent in the lit side of the L/D box for both sedentary morphine-dependent and withdrawn rats as compared to the sedentary control groups. The exercising morphine-dependent and withdrawn rats exhibited an increase in EPM open arm time and entries and L/D box lit side time as compared with the sedentary control groups. We conclude that voluntary exercise decreases the severity of the anxiogenic-like behaviours in both morphine-dependent and withdrawn rats. Thus, voluntary exercise could be a potential natural method to ameliorate some of the deleterious behavioural consequences of opiate abuse. Copyright © 2011 Elsevier Inc. All rights reserved.
Bone marrow fat accumulation accelerated by high fat diet is suppressed by exercise
Styner, Maya; Thompson, William R.; Galior, Kornelia; Uzer, Gunes; Wu, Xin; Kadari, Sanjay; Case, Natasha; Xie, Zhihui; Sen, Buer; Romaine, Andrew; Pagnotti, Gabriel M.; Rubin, Clinton T.; Styner, Martin A.; Horowitz, Mark C.; Rubin, Janet
2014-01-01
Marrow adipose tissue (MAT), associated with skeletal fragility and hematologic insufficiency, remains poorly understood and difficult to quantify. We tested the response of MAT to high fat diet (HFD) and exercise using a novel volumetric analysis, and compared it to measures of bone quantity. We hypothesized that HFD would increase MAT and diminish bone quantity, while exercise would slow MAT acquisition and promote bone formation. Eight week-old female C57BL/6 mice were fed a regular (RD) or HFD, and exercise groups were provided voluntary access to running wheels (RD-E, HFD-E). Femoral MAT was assessed by μCT (lipid binder osmium) using a semi-automated approach employing rigid co-alignment, regional bone masks and was normalized for total femoral volume (TV) of the bone compartment. MAT was 2.6-fold higher in HFD relative to RD mice. Exercise suppressed MAT in RD-E mice by more than half compared with RD. Running similarly inhibited MAT acquisition in HFD mice. Exercise significantly increased bone quantity in both diet groups. Thus, HFD caused significant accumulation of MAT; importantly running exercise limited MAT acquisition while promoting bone formation during both diets. That MAT is exquisitely responsive to diet and exercise, and its regulation by exercise appears to be inversely proportional to effects on exercise induced bone formation, is relevant for an aging and sedentary population. PMID:24709686
Packer, Nicholas; Hoffman-Goetz, Laurie
2012-06-01
Aging is associated with increased intestinal inflammation and elevated risk of chronic diseases including inflammatory bowel diseases and colon cancer; many epidemiologic studies show that regular exercise reduces risk. This study examined the effects of long-term voluntary exercise on inflammatory mediators expressed in the intestine of older (15-16 months), healthy C57BL/6 mice. Animals were assigned to four months of freewheel running (WR; n = 20) or to a "sedentary" no wheel running (NWR; n = 20) control group. Intestinal lymphocytes were harvested and analysed for expression of (1) pro-inflammatory (TNF-α, IL-1β) and pleiotropic (IL-6) cytokines, and (2) pro-(caspase-3/-7) and anti-(Bcl-2) apoptotic proteins. Training was confirmed by skeletal muscle enzyme activity; stress was assessed by plasma 8-iso-PGF(2α) and corticosterone. The WR mice had a lower expression of TNF-α, caspase-7, and 8-isoprostanes (p < .05) compared to sedentary controls, suggesting that long-term exercise may "protect" the bowel by reducing inflammatory cytokine and apoptotic protein expression.
Homa, Lori D; Burger, Laura L; Cuttitta, Ashley J; Michele, Daniel E; Moenter, Suzanne M
2015-12-01
Prenatal androgen (PNA) exposure in mice produces a phenotype resembling lean polycystic ovary syndrome. We studied effects of voluntary exercise on metabolic and reproductive parameters in PNA vs vehicle (VEH)-treated mice. Mice (8 wk of age) were housed individually and estrous cycles monitored. At 10 weeks of age, mice were divided into groups (PNA, PNA-run, VEH, VEH-run, n = 8-9/group); those in the running groups received wheels allowing voluntary running. Unexpectedly, PNA mice ran less distance than VEH mice; ovariectomy eliminated this difference. In ovary-intact mice, there was no difference in glucose tolerance, lower limb muscle fiber types, weight, or body composition among groups after 16 weeks of running, although some mitochondrial proteins were mildly up-regulated by exercise in PNA mice. Before running, estrous cycles in PNA mice were disrupted with most days in diestrus. There was no change in cycles during weeks 1-6 of running (10-15 wk of age). In contrast, from weeks 11 to 16 of running, cycles in PNA mice improved with more days in proestrus and estrus and fewer in diestrus. PNA programs reduced voluntary exercise, perhaps mediated in part by ovarian secretions. Exercise without weight loss improved estrous cycles, which if translated could be important for fertility in and counseling of lean women with polycystic ovary syndrome.
Voluntary running rescues adult hippocampal neurogenesis after irradiation of the young mouse brain
Naylor, Andrew S.; Bull, Cecilia; Nilsson, Marie K. L.; Zhu, Changlian; Björk-Eriksson, Thomas; Eriksson, Peter S.; Blomgren, Klas; Kuhn, H. Georg
2008-01-01
Cranial radiation therapy is commonly used in the treatment of childhood cancers. It is associated with cognitive impairments tentatively linked to the hippocampus, a neurogenic region of the brain important in memory function and learning. Hippocampal neurogenesis is positively regulated by voluntary exercise, which is also known to improve hippocampal-dependent cognitive functions. In this work, we irradiated the brains of C57/BL6 mice on postnatal day 9 and evaluated both the acute effects of irradiation and the effects of voluntary running on hippocampal neurogenesis and behavior 3 months after irradiation. Voluntary running significantly restored precursor cell and neurogenesis levels after a clinically relevant, moderate dose of irradiation. We also found that irradiation perturbed the structural integration of immature neurons in the hippocampus and that this was reversed by voluntary exercise. Furthermore, irradiation-induced behavior alterations observed in the open-field test were ameliorated. Together, these results clearly demonstrate the usefulness of physical exercise for functional and structural recovery from radiation-induced injury to the juvenile brain, and they suggest that exercise should be evaluated in rehabilitation therapy of childhood cancer survivors. PMID:18765809
Alizadeh, Maryam; Zahedi-Khorasani, Mahdi; Miladi-Gorji, Hossein
2018-05-30
This study was designed to examine whether treadmill exercise would attenuate the severity of physical dependence, methadone-induced anxiety, depression and voluntary morphine consumption in morphine withdrawn rats receiving methadone maintenance treatment (MMT). The rats were chronically treated with bi-daily doses (10 mg/kg, at 12 h intervals) of morphine for 14 days. The exercising rats receiving MMT were forced to run on a motorized treadmill for 30 days during morphine withdrawal. Then, rats were tested for the severity of morphine dependence, the elevated plus-maze (EPM), sucrose preference test (SPT) and voluntary morphine consumption using a two-bottle choice (TBC) paradigm. The results showed that naloxone- precipitated opioid withdrawal signs were decreased in exercising morphine-dependent rats receiving MMT than sedentary rats. Also, the exercising morphine-dependent rats receiving MMT exhibited an increased time on open arms, preference for sucrose and a lower morphine preference ratio than sedentary rats. We conclude that treadmill exercise decreased the severity of physical dependence, anxiety/depressive-like behaviors and also the voluntary morphine consumption in morphine withdrawn rats receiving MMT. Thus, exercise may benefit in the treatment of addicts during MMT. Copyright © 2018. Published by Elsevier B.V.
Jones, Alexis B; Gupton, Rebecca; Curtis, Kathleen S
2016-09-15
The beneficial effects of physical exercise to reduce anxiety and depression and to alleviate stress are increasingly supported in research studies. The role of ovarian hormones in interactions between exercise and anxiety/stress has important implications for women's health, given that women are at increased risk of developing anxiety-related disorders, particularly during and after the menopausal transition. In these experiments, we tested the hypothesis that estrogen enhances the positive impact of exercise on stress responses by investigating the combined effects of exercise and estrogen on anxiety-like behaviors and stress hormone levels in female rats after an acute stressor. Ovariectomized female rats with or without estrogen were given access to running wheels for one or three days of voluntary running immediately after or two days prior to being subjected to restraint stress. We found that voluntary running was not effective at reducing anxiety-like behaviors, whether or not rats were subjected to restraint stress. In contrast, stress-induced elevations of stress hormone levels were attenuated by exercise experience in estrogen-treated rats, but were increased in rats without estrogen. These results suggest that voluntary exercise may be more effective at reducing stress hormone levels if estrogen is present. Additionally, exercise experience, or the distance run, may be important in reducing stress. Copyright © 2016 Elsevier B.V. All rights reserved.
Robinson, Austin T; Fancher, Ibra S; Sudhahar, Varadarajan; Bian, Jing Tan; Cook, Marc D; Mahmoud, Abeer M; Ali, Mohamed M; Ushio-Fukai, Masuko; Brown, Michael D; Fukai, Tohru; Phillips, Shane A
2017-05-01
High blood pressure has been shown to elicit impaired dilation in the vasculature. The purpose of this investigation was to elucidate the mechanisms through which high pressure may elicit vascular dysfunction and determine the mechanisms through which regular aerobic exercise protects arteries against high pressure. Male C57BL/6J mice were subjected to 2 wk of voluntary running (~6 km/day) for comparison with sedentary controls. Hindlimb adipose resistance arteries were dissected from mice for measurements of flow-induced dilation (FID; with or without high intraluminal pressure exposure) or protein expression of NADPH oxidase II (NOX II) and superoxide dismutase (SOD). Microvascular endothelial cells were subjected to high physiological laminar shear stress (20 dyn/cm 2 ) or static condition and treated with ANG II + pharmacological inhibitors. Cells were analyzed for the detection of ROS or collected for Western blot determination of NOX II and SOD. Resistance arteries from exercised mice demonstrated preserved FID after high pressure exposure, whereas FID was impaired in control mouse arteries. Inhibition of ANG II or NOX II restored impaired FID in control mouse arteries. High pressure increased superoxide levels in control mouse arteries but not in exercise mouse arteries, which exhibited greater ability to convert superoxide to H 2 O 2 Arteries from exercised mice exhibited less NOX II protein expression, more SOD isoform expression, and less sensitivity to ANG II. Endothelial cells subjected to laminar shear stress exhibited less NOX II subunit expression. In conclusion, aerobic exercise prevents high pressure-induced vascular dysfunction through an improved redox environment in the adipose microvasculature. NEW & NOTEWORTHY We describe potential mechanisms contributing to aerobic exercise-conferred protection against high intravascular pressure. Subcutaneous adipose microvessels from exercise mice express less NADPH oxidase (NOX) II and more superoxide dismutase (SOD) and demonstrate less sensitivity to ANG II. In microvascular endothelial cells, shear stress reduced NOX II but did not influence SOD expression.
Age-specific effects of voluntary exercise on memory and the older brain.
Siette, Joyce; Westbrook, R Frederick; Cotman, Carl; Sidhu, Kuldip; Zhu, Wanlin; Sachdev, Perminder; Valenzuela, Michael J
2013-03-01
Physical exercise in early adulthood and mid-life improves cognitive function and enhances brain plasticity, but the effects of commencing exercise in late adulthood are not well-understood. We investigated the effects of voluntary exercise in the restoration of place recognition memory in aged rats and examined hippocampal changes of synaptic density and neurogenesis. We found a highly selective age-related deficit in place recognition memory that is stable across retest sessions and correlates strongly with loss of hippocampal synapses. Additionally, 12 weeks of voluntary running at 20 months of age removed the deficit in the hippocampally dependent place recognition memory. Voluntary running restored presynaptic density in the dentate gyrus and CA3 hippocampal subregions in aged rats to levels beyond those observed in younger animals, in which exercise had no functional or synaptic effects. By contrast, hippocampal neurogenesis, a possible memory-related mechanism, increased in both young and aged rats after physical exercise but was not linked with performance in the place recognition task. We used graph-based network analysis based on synaptic covariance patterns to characterize efficient intrahippocampal connectivity. This analysis revealed that voluntary running completely reverses the profound degradation of hippocampal network efficiency that accompanies sedentary aging. Furthermore, at an individual animal level, both overall hippocampal presynaptic density and subregional connectivity independently contribute to prediction of successful place recognition memory performance. Our findings emphasize the unique synaptic effects of exercise on the aged brain and their specific relevance to a hippocampally based memory system for place recognition. Copyright © 2013 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.
Sossdorf, Maik; Fischer, Jacqueline; Meyer, Stefan; Dahlke, Katja; Wissuwa, Bianka; Seidel, Carolin; Schrepper, Andrea; Bockmeyer, Clemens L; Lupp, Amelie; Neugebauer, Sophie; Schmerler, Diana; Rödel, Jürgen; Claus, Ralf A; Otto, Gordon P
2013-10-01
High physical activity levels are associated with wide-ranging health benefits, disease prevention, and longevity. In the present study, we examined the impact of regular physical exercise on the severity of organ injury and survival probability, as well as characteristics of the systemic immune and metabolic response during severe polymicrobial sepsis. Animal study. University laboratory. Male C57BL/6N mice. Mice were trained for 6 weeks by treadmill and voluntary wheel running or housed normally. Polymicrobial sepsis in mice was induced by injection of fecal slurry. Subsequently, mice were randomized into the following groups: healthy controls, 6 hours postsepsis, and 24 hours postsepsis. Blood and organ samples were collected and investigated by measuring clinical chemistry variables, cytokines, plasma metabolites, and bacterial clearance. Organ morphology and damage were characterized by histological staining. Physical exercise improved survival and the ability of bacterial clearance in blood and organs. The release of pro- and anti-inflammatory cytokines, including interleukin-6 and interleukin-10, was diminished in trained compared to untrained mice during sepsis. The sepsis-associated acute kidney tubular damage was less pronounced in pretrained animals. By metabolic profiling and regression analysis, we detected lysophosphatidylcholine 14:0, tryptophan, as well as pimelylcarnitine linked with levels of neutrophil gelatinase-associated lipocalin representing acute tubular injury (corrected R=0.910; p<0.001). We identified plasma lysophosphatidylcholine 16:0, lysophosphatidylcholine 17:0, and lysophosphatidylcholine 18:0 as significant metabolites discriminating between trained and untrained mice during sepsis. Regular physical exercise reduces sepsis-associated acute kidney injury and death. As a specific mechanism of exercise-induced adaptation, we identified various lysophosphatidylcholines that might function as surrogate for improved outcome in sepsis.
Exercise attenuates the metabolic effects of dim light at night.
Fonken, Laura K; Meléndez-Fernández, O Hecmarie; Weil, Zachary M; Nelson, Randy J
2014-01-30
Most organisms display circadian rhythms that coordinate complex physiological and behavioral processes to optimize energy acquisition, storage, and expenditure. Disruptions to the circadian system with environmental manipulations such as nighttime light exposure alter metabolic energy homeostasis. Exercise is known to strengthen circadian rhythms and to prevent weight gain. Therefore, we hypothesized providing mice a running wheel for voluntary exercise would buffer against the effects of light at night (LAN) on weight gain. Mice were maintained in either dark (LD) or dim (dLAN) nights and provided either a running wheel or a locked wheel. Mice exposed to dim, rather than dark, nights increased weight gain. Access to a functional running wheel prevented body mass gain in mice exposed to dLAN. Voluntary exercise appeared to limit weight gain independently of rescuing changes to the circadian system caused by dLAN; increases in daytime food intake induced by dLAN were not diminished by increased voluntary exercise. Furthermore, although all of the LD mice displayed a 24h rhythm in wheel running, nearly half (4 out of 9) of the dLAN mice did not display a dominant 24h rhythm in wheel running. These results indicate that voluntary exercise can prevent weight gain induced by dLAN without rescuing circadian rhythm disruptions. © 2013.
Impact of Blood Flow Restriction Exercise on Muscle Fatigue Development and Recovery.
Husmann, Florian; Mittlmeier, Thomas; Bruhn, Sven; Zschorlich, Volker; Behrens, Martin
2018-03-01
The present study was designed to provide mechanistic insight into the time course and etiology of muscle fatigue development and recovery during and after low-intensity exercise when it is combined with blood flow restriction (BFR). Seventeen resistance-trained males completed four sets of low-intensity isotonic resistance exercise under two experimental conditions: knee extension exercise (i) with BFR and (ii) without BFR (CON). Neuromuscular tests were performed before, during (immediately after each set of knee extension exercise), and 1, 2, 4, and 8 min after each experimental condition. Maximal voluntary torque, quadriceps twitch torque in response to paired electrical stimuli at 10 Hz (PS10) and 100 Hz (PS100), PS10·PS100 ratio as an index of low-frequency fatigue, and voluntary activation were measured under isometric conditions. Perceptual and EMG data were recorded during each exercise condition. After the first set of exercise, BFR induced significantly greater reductions in maximal voluntary torque, PS100, and PS10·PS100 ratio compared with CON. These parameters progressively declined throughout the BFR protocol but recovered substantially within 2 min postexercise when blood flow was restored. Neither a progressive decline in the course of the exercise protocol nor a substantial recovery of these parameters occurred during and after CON. Only at exercise termination, voluntary activation differed significantly between BFR and CON with greater reductions during BFR. At the early stage of exercise, BFR exacerbated the development of muscle fatigue mainly due to a pronounced impairment in contractile function. Despite the high level of muscle fatigue during BFR exercise, the effect of BFR on muscle fatigue was diminished after 2 min of reperfusion, suggesting that BFR has a strong but short-lasting effect on neuromuscular function.
Biscarini, Andrea; Benvenuti, Paolo; Botti, Fabio M; Brunetti, Antonella; Brunetti, Orazio; Pettorossi, Vito E
2014-09-01
A number of research studies provide evidence that hamstring cocontraction during open kinetic chain knee extension exercises enhances tibiofemoral (TF) stability and reduces the strain on the anterior cruciate ligament. To determine the possible increase in hamstring muscle coactivation caused by a voluntary cocontraction effort during open kinetic chain leg-extension exercises, and to assess whether an intentional hamstring cocontraction can completely suppress the anterior TF shear force during these exercises. Descriptive laboratory study. Knee kinematics as well as electromyographic activity in the semitendinosus (ST), semimembranosus (SM), biceps femoris (BF), and quadriceps femoris muscles were measured in 20 healthy men during isotonic leg extension exercises with resistance (R) ranging from 10% to 80% of the 1-repetition maximum (1RM). The same exercises were also performed while the participants attempted to enhance hamstring coactivation through a voluntary cocontraction effort. The data served as input parameters for a model to calculate the shear and compressive TF forces in leg extension exercises for any set of coactivation patterns of the different hamstring muscles. For R≤ 40% 1RM, the peak coactivation levels obtained with intentional cocontraction (l) were significantly higher (P < 10(-3)) than those obtained without intentional cocontraction (l 0). For each hamstring muscle, maximum level l was reached at R = 30% 1RM, corresponding to 9.2%, 10.5%, and 24.5% maximum voluntary isometric contraction (MVIC) for the BF, ST, and SM, respectively, whereas the ratio l/l 0 reached its maximum at R = 20% 1RM and was approximately 2, 3, and 4 for the BF, SM, and ST, respectively. The voluntary enhanced coactivation level l obtained for R≤ 30% 1RM completely suppressed the anterior TF shear force developed by the quadriceps during the exercise. In leg extension exercises with resistance R≤ 40% 1RM, coactivation of the BF, SM, and ST can be significantly enhanced (up to 2, 3, and 4 times, respectively) by a voluntary hamstring cocontraction effort. The enhanced coactivation levels obtained for R≤ 30% 1RM can completely suppress the anterior TF shear force developed by the quadriceps during the exercise. This laboratory study suggests that leg extension exercise with intentional hamstring cocontraction may have the potential to be a safe and effective quadriceps-strengthening intervention in the early stages of rehabilitation programs for anterior cruciate ligament injury or reconstruction recovery. Further studies, including clinical trials, are needed to investigate the relevance of this therapeutic exercise in clinical practice. © 2014 The Author(s).
Effects of acute voluntary loaded wheel running on BDNF expression in the rat hippocampus.
Lee, Minchul; Soya, Hideaki
2017-12-31
Voluntary loaded wheel running involves the use of a load during a voluntary running activity. A muscle-strength or power-type activity performed at a relatively high intensity and a short duration may cause fewer apparent metabolic adaptations but may still elicit muscle fiber hypertrophy. This study aimed to determine the effects of acute voluntary wheel running with an additional load on brain-derived neurotrophic factor (BDNF) expression in the rat hippocampus. Ten-week old male Wistar rats were assigned randomly to a (1) sedentary (Control) group; (2) voluntary exercise with no load (No-load) group; or (3) voluntary exercise with an additional load (Load) group for 1-week (acute period). The expression of BDNF genes was quantified by real-time PCR. The average distance levels were not significantly different in the No-load and Load groups. However, the average work levels significantly increased in the Load group. The relative soleus weights were greater in the No-load group. Furthermore, loaded wheel running up-regulated the BDNF mRNA level compared with that in the Control group. The BDNF mRNA levels showed a positive correlation with workload levels (r=0.75), suggesting that the availability of multiple workload levels contributes to the BDNF-related benefits of loaded wheel running noted in this study. This novel approach yielded the first set of findings showing that acute voluntary loaded wheel running, which causes muscular adaptation, enhanced BDNF expression, suggesting a possible role of high-intensity short-term exercise in hippocampal BDNF activity. ©2017 The Korean Society for Exercise Nutrition
Mokhtari-Zaer, Amin; Ghodrati-Jaldbakhan, Shahrbanoo; Vafaei, Abbas Ali; Miladi-Gorji, Hossein; Akhavan, Maziar M; Bandegi, Ahmad Reza; Rashidy-Pour, Ali
2014-09-01
Chronic exposure to morphine results in cognitive deficits and alterations of apoptotic proteins in favor of cell death in the hippocampus, a brain region critically involved in learning and memory. Physical activity has been shown to have beneficial effects on brain health. In the current work, we examined the effects of voluntary and treadmill exercise on spontaneous withdrawal signs, the associated cognitive defects, and changes of apoptotic proteins in morphine-dependent rats. Morphine dependence was induced through bi-daily administrations of morphine (10mg/kg) for 10 days. Then, the rats were trained under two different exercise protocols: mild treadmill exercise or voluntary wheel exercise for 10 days. After exercise training, their spatial learning and memory and aversive memory were examined by a water maze and by an inhibitory avoidance task, respectively. The expression of the pro-apoptotic protein Bax and the anti-apoptotic protein Bcl-2 in the hippocampus were determined by immunoblotting. We found that chronic exposure to morphine impaired spatial and aversive memory and remarkably suppressed the expression of Bcl-2, but Bax expression remained constant. Both voluntary and treadmill exercise alleviated memory impairment, increased the expression of Bcl-2 protein, and only the later suppressed the expression of Bax protein in morphine-dependent animals. Moreover, both exercise protocols diminished the occurrence of spontaneous morphine withdrawal signs. Our findings showed that exercise reduces the spontaneous morphine-withdrawal signs, blocks the associated impairment of cognitive performance, and overcomes morphine-induced alterations in apoptotic proteins in favor of cell death. Thus, exercise may be a useful therapeutic strategy for cognitive and behavioral deficits in addict individuals. Copyright © 2014 Elsevier B.V. All rights reserved.
Conditioned taste avoidance induced by forced and voluntary wheel running in rats.
Forristall, J R; Hookey, B L; Grant, V L
2007-03-01
Voluntary exercise by rats running in a freely rotating wheel (free wheel) produces conditioned taste avoidance (CTA) of a flavored solution consumed before running [e.g., Lett, B.T., Grant, V.L., 1996. Wheel running induces conditioned taste aversion in rats trained while hungry and thirsty. Physiol. Behav. 59, 699-702]. Forced exercise, swimming or running, also produces CTA in rats [e.g., Masaki, T., Nakajima, S., 2006. Taste aversion induced by forced swimming, voluntary running, forced running, and lithium chloride injection treatments. Physiol. Behav. 88, 411-416]. Energy expenditure may be the critical factor in producing such CTA. If so, forced running in a motorized running wheel should produce CTA equivalent to that produced by a similar amount of voluntary running. In two experiments, we compared forced running in a motorized wheel with voluntary running in a free wheel. Mean distance run over 30 min was equated as closely as possible in the two apparatuses. Both types of exercise produced CTA relative to sedentary, locked-wheel controls. However, voluntary running produced greater CTA than forced running. We consider differences between running in the free and motorized wheels that may account for the differences in strength of CTA.
Prugger, Christof; Wellmann, Jürgen; Heidrich, Jan; De Bacquer, Dirk; De Smedt, Delphine; De Backer, Guy; Reiner, Željko; Empana, Jean-Philippe; Fras, Zlatko; Gaita, Dan; Jennings, Catriona; Kotseva, Kornelia; Wood, David; Keil, Ulrich
2017-01-01
Regular exercise lowers the risk of cardiovascular death in coronary heart disease (CHD) patients. We aimed to investigate regular exercise behaviour and intention in relation to symptoms of anxiety and depression in CHD patients across Europe. This study was based on a multicentre cross-sectional survey. In the EUROpean Action on Secondary and Primary Prevention through Intervention to Reduce Events (EUROASPIRE) III survey, 8966 CHD patients <80 years of age from 22 European countries were interviewed on average 15 months after hospitalisation. Whether patients exercised or intended to exercise regularly was assessed using the Stages of Change questionnaire in 8330 patients. Symptoms of anxiety and depression were evaluated using the Hospital Anxiety and Depression Scale. Total physical activity was measured by the International Physical Activity Questionnaire in patients from a subset of 14 countries. Overall, 50.3% of patients were not intending to exercise regularly, 15.9% were intending to exercise regularly, and 33.8% were exercising regularly. Patients with severe symptoms of depression less frequently exercised regularly than patients with symptoms in the normal range (20.2%, 95% confidence interval (CI) 14.8-26.8 vs 36.7%, 95% CI 29.8-44.2). Among patients not exercising regularly, patients with severe symptoms of depression were less likely to have an intention to exercise regularly (odds ratio 0.62, 95% CI 0.46-0.85). Symptoms of anxiety did not affect regular exercise intention. In sensitivity analysis, results were consistent when adjusting for total physical activity. Lower frequency of regular exercise and decreased likelihood of exercise intention were observed in CHD patients with severe depressive symptoms. Severe symptoms of depression may preclude CHD patients from performing regular exercise. © The European Society of Cardiology 2016.
Wang, Xinrui; Fitts, Robert H
2017-08-01
Regular exercise training is known to affect the action potential duration (APD) and improve heart function, but involvement of β-adrenergic receptor (β-AR) subtypes and/or the ATP-sensitive K + (K ATP ) channel is unknown. To address this, female and male Sprague-Dawley rats were randomly assigned to voluntary wheel-running or control groups; they were anesthetized after 6-8 wk of training, and myocytes were isolated. Exercise training significantly increased APD of apex and base myocytes at 1 Hz and decreased APD at 10 Hz. Ca 2+ transient durations reflected the changes in APD, while Ca 2+ transient amplitudes were unaffected by wheel running. The nonselective β-AR agonist isoproterenol shortened the myocyte APD, an effect reduced by wheel running. The isoproterenol-induced shortening of APD was largely reversed by the selective β 1 -AR blocker atenolol, but not the β 2 -AR blocker ICI 118,551, providing evidence that wheel running reduced the sensitivity of the β 1 -AR. At 10 Hz, the K ATP channel inhibitor glibenclamide prolonged the myocyte APD more in exercise-trained than control rats, implicating a role for this channel in the exercise-induced APD shortening at 10 Hz. A novel finding of this work was the dual importance of altered β 1 -AR responsiveness and K ATP channel function in the training-induced regulation of APD. Of physiological importance to the beating heart, the reduced response to adrenergic agonists would enhance cardiac contractility at resting rates, where sympathetic drive is low, by prolonging APD and Ca 2+ influx; during exercise, an increase in K ATP channel activity would shorten APD and, thus, protect the heart against Ca 2+ overload or inadequate filling. NEW & NOTEWORTHY Our data demonstrated that regular exercise prolonged the action potential and Ca 2+ transient durations in myocytes isolated from apex and base regions at 1-Hz and shortened both at 10-Hz stimulation. Novel findings were that wheel running shifted the β-adrenergic receptor agonist dose-response curve rightward compared with controls by reducing β 1 -adrenergic receptor responsiveness and that, at the high activation rate, myocytes from trained animals showed higher K ATP channel function. Copyright © 2017 the American Physiological Society.
Voluntary chronic exercise augments in vivo natural immunity in rats.
Jonsdottir, I H; Asea, A; Hoffmann, P; Dahlgren, U I; Andersson, B; Hellstrand, K; Thorén, P
1996-05-01
The effect of chronic voluntary exercise on the immune response was studied in spontaneously hypertensive rats. Exercise consisted of voluntary running in wheels for 5 wk, and the mean running distance was 4.2 km/24 h. In vivo cytotoxicity was measured as clearance of injected 51Cr-labeled YAC-1 lymphoma cells from the lungs. The clearance of YAC-1 cells in vivo was significantly increased in runners compared with sedentary controls (P < 0.001). The total number of mononuclear cells in the spleen was significantly decreased in runners compared with controls. Analysis of splenic lymphocyte phenotypes revealed a significantly increased fraction of OX52+/CD5- natural killer cells in runners compared with sedentary controls. In contrast to changes in natural immunity, immunoglobulins G and M levels in serum, the antibody response to antigen in vivo, and the proliferation of splenic T cells in vitro were unchanged. Our data suggest that chronic voluntary exercise augments natural cytotoxicity mechanisms in vivo, whereas splenic T-cell proliferation and the antibody-mediated immune response remain unchanged.
Cold application for neuromuscular recovery following intense lower-body exercise.
Pointon, Monique; Duffield, Rob; Cannon, Jack; Marino, Frank E
2011-12-01
This study examined the effects of cold therapy (COLD) on recovery of voluntary and evoked contractile properties following high-intensity, muscle-damaging and fatiguing exercise. Ten resistance-trained males performed 6 × 25 maximal concentric/eccentric muscle contractions of the dominant knee extensors (KE) followed by a 20-min recovery (COLD v control) in a randomized cross-over design. Voluntary and evoked neuromuscular properties of the right KE, ratings of perceived muscle soreness (MS) and pain, and blood markers for muscle damage were measured pre- and post-exercise, and immediately post-recovery, 2, 24 and 48-h post-recovery. Exercise resulted in decrements in voluntary and evoked torque, increased MS and elevated muscle damage markers (p < 0.05). Measures of maximal voluntary contraction (MVC) or voluntary activation (VA) were not significantly enhanced by COLD (p > 0.05). Activation of right KE decreased post-exercise with increased activation of biceps femoris (BF) (p < 0.05). However, no significant differences were evident between conditions of activation of KE and hamstrings at any time point (p > 0.05). No significant differences were observed between conditions for creatine kinase or asparate aminotransferase (p > 0.05). However, perceptual ratings of pain were significantly (p < 0.05) lower following COLD compared to control. In conclusion, following damage to the contractile apparatus, COLD did not significantly hasten the recovery of peripheral contractile trauma. Despite no beneficial effect of COLD on recovery of MVC, perceptions of pain were reduced following COLD.
Skurvydas, Albertas; Mamkus, Gediminas; Kamandulis, Sigitas; Dudoniene, Vilma; Valanciene, Dovile; Westerblad, Håkan
2016-12-01
Force production frequently remains depressed for several hours or even days after various types of strenuous physical exercise. We hypothesized that the pattern of force changes during the first hour after exercise can be used to reveal muscular mechanisms likely to underlie the decline in muscle performance during exercise as well as factors involved in the triggering the prolonged force depression after exercise. Nine groups of recreationally active male volunteers performed one of the following types of exercise: single prolonged or repeated short maximum voluntary contractions (MVCs); single or repeated all-out cycling bouts; repeated drop jumps. The isometric force of the right quadriceps muscle was measured during stimulation with brief 20 and 100 Hz trains of electrical pulses given before and at regular intervals for 60 min after exercise. All exercises resulted in a prolonged force depression, which was more marked at 20 Hz than at 100 Hz. Short-lasting (≤2 min) MVC and all-out cycling exercises showed an initial force recovery (peak after ~ 5 min) followed by a secondary force depression. The repeated drop jumps, which involve eccentric contractions, resulted in a stable force depression with the 20 Hz force being markedly more decreased after 100 than 10 jumps. In accordance with our hypothesis, the results propose at least three different mechanisms that influence force production after exercise: (1) a transiently recovering process followed by (2) a prolonged force depression after metabolically demanding exercise, and (3) a stable force depression after mechanically demanding contractions.
Meissner, Maxi; Lombardo, Elisa; Havinga, Rick; Tietge, Uwe J F; Kuipers, Folkert; Groen, Albert K
2011-10-01
Regular physical activity decreases the risk for atherosclerosis but underlying mechanisms are not fully understood. We questioned whether voluntary wheel running provokes specific modulations in cholesterol turnover that translate into a decreased atherosclerotic burden in hypercholesterolemic mice. Male LDLR-deficient mice (8 weeks old) had either access to a voluntary running wheel for 12 weeks (RUN) or remained sedentary (CONTROL). Both groups were fed a western-type/high cholesterol diet. Running activity and food intake were recorded. At 12 weeks of intervention, feces, bile and plasma were collected to determine fecal, biliary and plasma parameters of cholesterol metabolism and plasma cytokines. Atherosclerotic lesion size was determined in the aortic root. RUN weighed less (∼13%) while food consumption was increased by 17% (p=0.004). Plasma cholesterol levels were decreased by 12% (p=0.035) and plasma levels of pro-atherogenic lipoproteins decreased in RUN compared to control. Running modulated cholesterol catabolism by enhancing cholesterol turnover: RUN displayed an increased biliary bile acid secretion (68%, p=0.007) and increased fecal bile acid (93%, p=0.009) and neutral sterol (33%, p=0.002) outputs compared to control indicating that reverse cholesterol transport was increased in RUN. Importantly, aortic lesion size was decreased by ∼33% in RUN (p=0.033). Voluntary wheel running reduces atherosclerotic burden in hypercholesterolemic mice. An increased cholesterol turnover, specifically its conversion into bile acids, may underlie the beneficial effect of voluntary exercise in mice. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
Hicks, Jasmin A; Hatzidis, Aikaterini; Arruda, Nicole L; Gelineau, Rachel R; De Pina, Isabella Monteiro; Adams, Kenneth W; Seggio, Joseph A
2016-09-01
It is widely accepted that lifestyle plays a crucial role on the quality of life in individuals, particularly in western societies where poor diet is correlated to alterations in behavior and the increased possibility of developing type-2 diabetes. While exercising is known to produce improvements to overall health, there is conflicting evidence on how much of an effect exercise has staving off the development of type-2 diabetes or counteracting the effects of diet on anxiety. Thus, this study investigated the effects of voluntary wheel-running access on the progression of diabetes-like symptoms and open field and light-dark box behaviors in C57BL/6J mice fed a high-fat diet. C57BL/6J mice were placed into either running-wheel cages or cages without a running-wheel, given either regular chow or a high-fat diet, and their body mass, food consumption, glucose tolerance, insulin and c-peptide levels were measured. Mice were also exposed to the open field and light-dark box tests for anxiety-like behaviors. Access to a running-wheel partially attenuated the obesity and hyperinsulinemia associated with high-fat diet consumption in these mice, but did not affect glucose tolerance or c-peptide levels. Wheel-running strongly increased anxiety-like and decreased explorative-like behaviors in the open field and light-dark box, while high-fat diet consumption produced smaller increases in anxiety. These results suggest that voluntary wheel-running can assuage some, but not all, of the physiological problems associated with high-fat diet consumption, and can modify anxiety-like behaviors regardless of diet consumed. Copyright © 2016 Elsevier B.V. All rights reserved.
Castilla-Ortega, Estela; Rosell-Valle, Cristina; Blanco, Eduardo; Pedraza, Carmen; Chun, Jerold; de Fonseca, Fernando Rodríguez; Estivill-Torrús, Guillermo; Santín, Luis J.
2014-01-01
This work was aimed to assess whether voluntary exercise rescued behavioral and hippocampal alterations in mice lacking the lysophosphatidic acid LPA1 receptor (LPA1-null mice), studying the potential relationship between the amount of exercise performed and its effects. Normal and LPA1-null mice underwent 23 days of free wheel running and were tested for open-field behavior and adult hippocampal neurogenesis (cell proliferation, immature neurons, cell survival). Running decreased anxiety-like behavior in both genotypes but increased exploration only in the normal mice. While running affected all neurogenesis-related measures in normal mice (especially in the suprapyramidal blade of the dentate gyrus), only a moderate increase in cell survival was found in the mutants. Importantly, the LPA1-nulls showed notably reduced running. Analysis suggested that defective running in the LPA1-null mice could contribute to explain the scarce benefit of the voluntary exercise treatment. On the other hand, a literature review revealed that voluntary exercise is frequently used to modulate behavior and the hippocampus in transgenic mice, but half of the studies did not assess the quantity of running, overlooking any potential running impairments. This study adds evidence to the relevance of the quantity of exercise performed, emphasizing the importance of its assessment in transgenic mice research. PMID:24055600
SASSE, SARAH K.; GREENWOOD, BENJAMIN N.; MASINI, CHER V.; NYHUIS, TARA J.; FLESHNER, MONIKA; DAY, HEIDI E. W.; CAMPEAU, SERGE
2008-01-01
Voluntary exercise is associated with the prevention and treatment of numerous physical and psychological illnesses, yet the mechanisms by which it confers this protection remain unclear. In contrast, stress, particularly under conditions of prolonged or repeated exposure when glucocorticoid levels are consistently elevated, can have a devastating impact on health. It has been suggested that the benefits of physical exercise may lie in an ability to reduce some of the more deleterious health effects of stress and stress hormones. The present series of experiments provides evidence that voluntary exercise facilitates habituation of corticosterone but not adrenocorticotropin hormone responses to repeated stress presentations. After 6 weeks of running wheel access or sedentary housing conditions, rats were exposed to 11 consecutive daily 30 min presentations of 98 dB noise stress. Similar corticosterone responses in exercised rats and sedentary controls were observed following the first, acute stress presentation. While both groups demonstrated habituation of corticosterone secretory responses with repeated noise stress exposures, the rate of habituation was significantly facilitated in exercised animals. These results suggest that voluntary exercise may reduce the negative impact of prolonged or repeated stress on health by enhancing habituation of hypothalamo-pituitary–adrenocortical axis responses at the level of the adrenal cortex, ultimately reducing the amount of glucocorticoids the body and brain are exposed to. PMID:19065456
Voluntary exercise and its effects on body composition depend on genetic selection history.
Nehrenberg, Derrick L; Hua, Kunjie; Estrada-Smith, Daria; Garland, Theodore; Pomp, Daniel
2009-07-01
Little is known about how genetic variation affects the capacity for exercise to change body composition. We examined the extent to which voluntary exercise alters body composition in several lines of selectively bred mice compared to controls. Lines studied included high runner (HR) (selected for high wheel running), M16 (selected for rapid weight gain), Institute of Cancer Research (ICR) (randomly bred as control for M16), M16i (an inbred line derived from M16), HE (selected for high percentage of body fat while holding body weight constant), LF (selected for low percentage of body fat), C57BL/6J (common inbred line), and the F1 between HR and C57BL/6J. Body weight and body fat were recorded before and after 6 days of free access to running wheels in males and females that were individually caged. Total food intake was measured during this 6-day period. All pre- and postexercise measures showed significant strain effects. While HR mice predictably exercised at higher levels, all other selection lines had decreased levels of wheel running relative to ICR. The HR x B6 F1 ran at similar levels to HR demonstrating complete dominance for voluntary exercise. Also, all strains lost body fat after exercise, but the relationships between exercise and changes in percent body were not uniform across genotypes. These results indicate that there is significant genetic variation for voluntary exercise and its effects on body composition. It is important to carefully consider genetic background and/or selection history when using mice to model effects of exercise on body composition, and perhaps, other complex traits as well.
Skeletal muscle strength and endurance are maintained during moderate dehydration.
Périard, J D; Tammam, A H; Thompson, M W
2012-08-01
This study investigated the effects of moderate dehydration (~2.5% body weight) on muscle strength and endurance using percutaneous electrical stimulation to quantify central and peripheral fatigue, and isolate the combined effects of exercise-heat stress and dehydration, vs. the effect of dehydration alone. Force production and voluntary activation were calculated in 10 males during 1 brief and 15 repeated maximal voluntary isometric contractions performed prior to (control) walking in the heat (35°C), immediately following exercise, and the next morning (dehydration). The protocol was also performed in a euhydrated state. During the brief contractions, force production and voluntary activation were maintained in all trials. In contrast, force production decreased throughout the repeated contractions, regardless of hydration status (P<0.001). The decline in force was greater immediately following exercise-heat stress dehydration compared with control and euhydration (P<0.001). When dehydration was isolated from acute post-exercise dehydration, force production was maintained similarly to control and euhydration. Despite the progressive decline in force production and the increased fatigability observed during the repeated contractions, voluntary activation remained elevated throughout each muscle function test. Therefore, moderate dehydration, isolated from acute exercise-heat stress, does not appear to influence strength during a single contraction or enhance fatigability. © Georg Thieme Verlag KG Stuttgart · New York.
NASA Astrophysics Data System (ADS)
Petri, Ines; Scherbarth, Frank; Steinlechner, Stephan
2010-09-01
Energy demands of gestation and lactation represent a severe challenge for small mammals. Therefore, additional energetic burdens may compromise successful breeding. In small rodents, food restriction, cold exposure (also in combination) and wheel running to obtain food have been shown to diminish reproductive outcome. Although exhibited responses such as lower incidence of pregnancy, extended lactation periods and maternal infanticide were species dependent, their common function is to adjust energetic costs to the metabolic state reflecting the trade-off between maternal investment and self-maintenance. In the present study, we sought to examine whether voluntary exercise affects reproduction in Djungarian hamsters ( Phodopus sungorus), which are known for their high motivation to run in a wheel. Voluntary exercise resulted in two different effects on reproduction; in addition to increased infanticide and cannibalism, which was evident across all experiments, the results of one experiment provided evidence that free access to a running wheel may prevent successful pregnancy. It seems likely that the impact of voluntary wheel running on reproduction was associated with a reduction of internal energy resources evoked by extensive exercise. Since the hamsters were neither food-restricted nor forced to run in the present study, an energetic deficit as reason for infanticide in exercising dams would emphasise the particularly high motivation to run in a wheel.
Neurochemical and behavioral indices of exercise reward are independent of exercise controllability
Herrera, Jonathan J; Fedynska, Sofiya; Ghasem, Parsa R; Wieman, Tyler; Clark, Peter J; Gray, Nathan; Loetz, Esteban; Campeau, Serge; Fleshner, Monika; Greenwood, Benjamin N
2016-01-01
Brain reward circuits are implicated in stress-related psychiatric disorders. Exercise reduces the incidence of stress-related disorders, but the contribution of exercise reward to stress resistance is unknown. Exercise-induced stress resistance is independent of exercise controllability; both voluntary and forced wheel running protect rats against anxiety- and depression-like behavioral consequences of stress. Voluntary exercise is a natural reward, but whether rats find forced wheel running rewarding is unknown. Moreover, the contribution of dopamine (DA) and striatal reward circuits to exercise reward is not well characterized. Adult, male rats were assigned to locked wheels, voluntary running (VR), or forced running (FR) groups. FR rats were forced to run in a pattern resembling rats' natural wheel running behavior. Both VR and FR increased the reward-related plasticity marker ΔFosB in the dorsal striatum (DS) and nucleus accumbens (NAc), and increased activity of DA neurons in the lateral ventral tegmental area (VTA), as revealed by immunohistochemistry for tyrosine hydroxylase (TH) and pCREB. Both VR and FR rats developed conditioned place preference (CPP) to the side of a CPP chamber paired with exercise. Re-exposure to the exercise-paired side of the CPP chamber elicited conditioned increases in cfos mRNA in direct pathway (dynorphin-positive) neurons in the DS and NAc in both VR and FR rats, and in TH-positive neurons in the lateral VTA of VR rats only. Results suggest that the rewarding effects of exercise are independent of exercise controllability and provide insight into the DA and striatal circuitries involved in exercise reward and exercise-induced stress resistance. PMID:26833814
Voluntary exercise impact on cognitive impairments in sleep-deprived intact female rats.
Rajizadeh, Mohammad Amin; Esmaeilpour, Khadijeh; Masoumi-Ardakani, Yaser; Bejeshk, Mohammad Abbas; Shabani, Mohammad; Nakhaee, Nouzar; Ranjbar, Mohammad Pour; Borzadaran, Fatemeh Mohtashami; Sheibani, Vahid
2018-05-01
Sleep loss is a common problem in modern societies affecting different aspects of individuals' lives. Many studies have reported that sleep deprivation (SD) leads to impairments in various types of learning and memory. Physical exercise has been suggested to attenuate the cognitive impairments induced by sleep deprivation in male rats. Our previous studies have shown that forced exercise by treadmill improved learning and memory impairments following SD. The aim of the current study was to investigate the effects of voluntary exercise by running wheel on cognitive, motor and anxiety-like behavior functions of female rats following 72 h SD. Intact female rats were used in the present study. The multiple platform method was applied for the induction of 72 h SD. The exercise protocol was 4 weeks of running wheel and the cognitive function was evaluated using Morris water maze (MWM), passive avoidance and novel object recognition tests. Open field test and measurement of plasma corticosterone level were performed for evaluation of anxiety-like behaviors. Motor balance evaluation was surveyed by rotarod test. In this study, remarkable learning and long-term memory impairments were observed in sleep deprived rats in comparison to the other groups. Running wheel exercise ameliorated the SD-induced learning and memory impairments. Voluntary and mandatory locomotion and balance situation were not statistically significant among the different groups. Our study confirmed the negative effects of SD on cognitive function and approved protective effects of voluntary exercise on these negative effects. Copyright © 2018 Elsevier Inc. All rights reserved.
Schroeder, Mariana; Shbiro, Liat; Gelber, Vered; Weller, Aron
2010-04-01
Given the alarming increase in childhood, adolescent and adult obesity there is an imperative need for understanding the early factors affecting obesity and for treatments that may help prevent or at least moderate it. Exercise is frequently considered as an effective treatment for obesity however the empirical literature includes many conflicting findings. In the present study, we used the OLETF rat model of early-onset hyperphagia-induced obesity to examine the influence of early exercise on peripheral adiposity-related parameters in both males and females. Rats were provided voluntary access to running wheels from postnatal day (PND) 22 until PND45. We examined fat pad weight (brown, retroperitoneal, inguinal and epididymal); inguinal adipocyte size and number; and leptin, adiponectin, corticosterone and creatinine levels. We also examined body weight, feeding efficiency and spontaneous intake. Early voluntary exercise reduced intake, adiposity and leptin in the OLETF males following a sharp reduction in adipocyte size despite a significant increase in fat cell number. Exercising males from the lean LETO control strain presented stable intake, but reduced body fat, feeding efficiency and increased plasma creatinine, suggesting an increment in muscle mass. OLETF females showed reduced feeding efficiency and liver fat, and a significant increase in brown fat. Exercising LETO control females increased intake, body weight and creatinine, but no changes in body fat. Overall, OLETF rats presented higher adiponectin levels than controls in both basal and post-exercise conditions. The results suggest an effective early time frame, when OLETF males can be successfully "re-programmed" through voluntary exercise; in OLETF females the effect is much more moderate. Findings expose sex-dependent peripheral mechanisms in coping with energy challenges. Copyright 2010 Elsevier Inc. All rights reserved.
Morris, David M; Huot, Joshua R; Jetton, Adam M; Collier, Scott R; Utter, Alan C
2015-10-01
Dehydration has been shown to hinder performance of sustained exercise in the heat. Consuming fluids before exercise can result in hyperhydration, delay the onset of dehydration during exercise and improve exercise performance. However, humans normally drink only in response to thirst, which does not result in hyperhydration. Thirst and voluntary fluid consumption have been shown to increase following oral ingestion or infusion of sodium into the bloodstream. We measured the effects of acute sodium ingestion on voluntary water consumption and retention during a 2-hr hydration period before exercise. Subjects then performed a 60-min submaximal dehydration ride (DR) followed immediately by a 200 kJ performance time trial (PTT) in a warm (30 °C) environment. Water consumption and retention during the hydration period was greater following sodium ingestion (1380 ± 580 mL consumed, 821 ± 367 ml retained) compared with placebo (815 ± 483 ml consumed, 244 ± 402 mL retained) and no treatment (782 ± 454 ml consumed, 148 ± 289 mL retained). Dehydration levels following the DR were significantly less after sodium ingestion (0.7 ± 0.6%) compared with placebo (1.3 ± 0.7%) and no treatment (1.6 ± 0.4%). Time to complete the PTT was significantly less following sodium consumption (773 ± 158 s) compared with placebo (851 ± 156 s) and no treatment (872 ± 190 s). These results suggest that voluntary hyperhydration can be induced by acute consumption of sodium and has a favorable effect on hydration status and performance during subsequent exercise in the heat.
Kim, Chun-Ja; Kim, Bom-Taeck; Chae, Sun-Mi
2010-01-01
Although regular exercise has been recommended to reduce the risk of cardiovascular disease (CVD) among people with metabolic syndrome, little information is available about psychobehavioral strategies in this population. The purpose of this study was to identify the stages, processes of change, decisional balance, and self-efficacy of exercise behavior and to determine the significant predictors explaining regular exercise behavior in adults with metabolic syndrome. This descriptive, cross-sectional survey design enrolled a convenience sample of 210 people with metabolic syndrome at a university hospital in South Korea. Descriptive statistics were used to analyze demographic characteristics, metabolic syndrome risk factors, and transtheoretical model-related variables. A multivariate logistic regression analysis was used to determine the most important predictors of regular exercise stages. Action and maintenance stages comprised 51.9% of regular exercise stages, whereas 48.1% of non-regular exercise stages were precontemplation, contemplation, and preparation stages. Adults with regular exercise stages displayed increased high-density lipoprotein cholesterol level, were more likely to use consciousness raising, self-reevaluation, and self-liberation strategies, and were less likely to evaluate the merits/disadvantages of exercise, compared with those in non-regular exercise stages. In this study of regular exercise behavior and transtheoretical model-related variables, consciousness raising, self-reevaluation, and self-liberation were associated with a positive effect on regular exercise behavior in adults with metabolic syndrome. Our findings could be used to develop strategies and interventions to maintain regular exercise behavior directed at Korean adults with metabolic syndrome to reduce CVD risk. Further prospective intervention studies are needed to investigate the effect of regular exercise program on the prevention and/or reduction of CVD risk among this population. Health care providers, especially nurses, are optimally positioned to help their clients initiate and maintain regular exercise behavior in clinical and community settings.
Greenwood, Benjamin N.; Foley, Teresa E.; Le, Tony V.; Strong, Paul V.; Loughridge, Alice B.; Day, Heidi E.W.; Fleshner, Monika
2011-01-01
The mesolimbic reward pathway is implicated in stress-related psychiatric disorders and is a potential target of plasticity underlying the stress resistance produced by repeated voluntary exercise. It is unknown, however, whether rats find long-term access to running wheels rewarding, or if repeated voluntary exercise reward produces plastic changes in mesolimbic reward neurocircuitry. In the current studies, young adult, male Fischer 344 rats allowed voluntary access to running wheels for 6 weeks, but not 2 weeks, found wheel running rewarding, as measured by conditioned place preference (CPP). Consistent with prior reports and the behavioral data, 6 weeks of wheel running increased ΔFosB/FosB immunoreactivity in the nucleus accumbens (Acb). In addition, semi quantitative in situ hybridization revealed that 6 weeks of wheel running, compared to sedentary housing, increased tyrosine hydroxylase (TH) mRNA levels in the ventral tegmental area (VTA), increased delta opioid receptor (DOR) mRNA levels in the Acb shell, and reduced levels of dopamine receptor (DR)-D2 mRNA in the Acb core. Results indicate that repeated voluntary exercise is rewarding and alters gene transcription in mesolimbic reward neurocircuitry. The duration-dependent effects of wheel running on CPP suggest that as the weeks of wheel running progress, the rewarding effects of a night of voluntary wheel running might linger longer into the inactive cycle thus providing stronger support for CPP. The observed plasticity could contribute to the mechanisms by which exercise reduces the incidence and severity of substance abuse disorders, changes the rewarding properties of drugs of abuse, and facilitates successful coping with stress. PMID:21070820
Kusumoto, Yasuaki; Nitta, Osamu; Takaki, Kenji
2016-10-01
In the present study, we aimed to determine whether similarly loaded sit-to-stand exercises at different speeds improve the physiological cost of walking in children with spastic diplegia. This design was a single-blind randomized clinical trial. Sixteen children with cerebral palsy (CP), aged 12-18 years, with a diagnosis of spastic diplegia, were randomly allocated to a slow loaded sit-to-stand exercise group (n=8) and a self-paced loaded sit-to-stand exercise group (n=8). Loaded sit-to-stand exercise was conducted at home for 15min, 4 sets per day, 3-4days per week, for 6 weeks. The patients were evaluated immediately before the intervention and after the training. Lower limb muscle strength using a hand-held dynamometer, selective voluntary motor control using SCALE, 6-min walk distance (6MWD), and Physiological Cost Index (PCI) were measured. The 6MWD showed a significant difference before and after intervention. PCI showed a significant difference between the two groups and the two time points. 6MWD and the PCI improved after intervention in the slow sit-to-stand exercise group. Compared to loaded sit-to-stand exercise at a regular speed, slow low-loaded sit-to-stand exercise improved the 6MWD and PCI in children with CP, suggesting that this decrease in speed during exercise improves the physiological cost of walking in these children. Copyright © 2016 Elsevier Ltd. All rights reserved.
Muscle Damage following Maximal Eccentric Knee Extensions in Males and Females
2016-01-01
Aim To investigate whether there is a sex difference in exercise induced muscle damage. Materials and Method Vastus Lateralis and patella tendon properties were measured in males and females using ultrasonography. During maximal voluntary eccentric knee extensions (12 reps x 6 sets), Vastus Lateralis fascicle lengthening and maximal voluntary eccentric knee extensions torque were recorded every 10° of knee joint angle (20–90°). Isometric torque, Creatine Kinase and muscle soreness were measured pre, post, 48, 96 and 168 hours post damage as markers of exercise induced muscle damage. Results Patella tendon stiffness and Vastus Lateralis fascicle lengthening were significantly higher in males compared to females (p<0.05). There was no sex difference in isometric torque loss and muscle soreness post exercise induced muscle damage (p>0.05). Creatine Kinase levels post exercise induced muscle damage were higher in males compared to females (p<0.05), and remained higher when maximal voluntary eccentric knee extension torque, relative to estimated quadriceps anatomical cross sectional area, was taken as a covariate (p<0.05). Conclusion Based on isometric torque loss, there is no sex difference in exercise induced muscle damage. The higher Creatine Kinase in males could not be explained by differences in maximal voluntary eccentric knee extension torque, Vastus Lateralis fascicle lengthening and patella tendon stiffness. Further research is required to understand the significant sex differences in Creatine Kinase levels following exercise induced muscle damage. PMID:26986066
Gioscia-Ryan, Rachel A; Battson, Micah L; Cuevas, Lauren M; Zigler, Melanie C; Sindler, Amy L; Seals, Douglas R
2016-11-22
Mitochondrial dysregulation and associated excessive reactive oxygen species (mtROS) production is a key source of oxidative stress in aging arteries that reduces baseline function and may influence resilience (ability to withstand stress). We hypothesized that voluntary aerobic exercise would increase arterial resilience in old mice. An acute mitochondrial stressor (rotenone) caused greater (further) impairment in peak carotid EDD in old (~27 mo., OC, n=12; -32.5±-10.5%) versus young (~7 mo., YC n=11; -5.4±- 3.7%) control male mice, whereas arteries from young and old exercising (YVR n=10 and OVR n=11, 10-wk voluntary running; -0.8±-2.1% and -8.0±4.9%, respectively) mice were protected. Ex-vivo simulated Western diet (WD, high glucose and palmitate) caused greater impairment in EDD in OC (-28.5±8.6%) versus YC (-16.9±5.2%) and YVR (-15.3±2.3%), whereas OVR (-8.9±3.9%) were more resilient (not different versus YC). Simultaneous ex-vivo treatment with mitochondria-specific antioxidant MitoQ attenuated WD-induced impairments in YC and OC, but not YVR or OVR, suggesting that exercise improved resilience to mtROS-mediated stress. Exercise normalized age-related alterations in aortic mitochondrial protein markers PGC-1α, SIRT-3 and Fis1 and augmented cellular antioxidant and stress response proteins. Our results indicate that arterial aging is accompanied by reduced resilience and mitochondrial health, which are restored by voluntary aerobic exercise.
Castilla-Ortega, Estela; Rosell-Valle, Cristina; Blanco, Eduardo; Pedraza, Carmen; Chun, Jerold; Rodríguez de Fonseca, Fernando; Estivill-Torrús, Guillermo; Santín, Luis J
2013-11-01
This work was aimed to assess whether voluntary exercise rescued behavioral and hippocampal alterations in mice lacking the lysophosphatidic acid LPA1 receptor (LPA1-null mice), studying the potential relationship between the amount of exercise performed and its effects. Normal and LPA1-null mice underwent 23 days of free wheel running and were tested for open-field behavior and adult hippocampal neurogenesis (cell proliferation, immature neurons, cell survival). Running decreased anxiety-like behavior in both genotypes but increased exploration only in the normal mice. While running affected all neurogenesis-related measures in normal mice (especially in the suprapyramidal blade of the dentate gyrus), only a moderate increase in cell survival was found in the mutants. Importantly, the LPA1-nulls showed notably reduced running. Analysis suggested that defective running in the LPA1-null mice could contribute to explain the scarce benefit of the voluntary exercise treatment. On the other hand, a literature review revealed that voluntary exercise is frequently used to modulate behavior and the hippocampus in transgenic mice, but half of the studies did not assess the quantity of running, overlooking any potential running impairments. This study adds evidence to the relevance of the quantity of exercise performed, emphasizing the importance of its assessment in transgenic mice research. Copyright © 2013 Elsevier Ireland Ltd and the Japan Neuroscience Society. All rights reserved.
Human behavioral thermoregulation during exercise in the heat.
Flouris, A D; Schlader, Z J
2015-06-01
The human capacity to perform prolonged exercise is impaired in hot environments. To address this issue, a number of studies have investigated behavioral aspects of thermoregulation that are recognized as important factors in determining performance. In this review, we evaluated and interpreted the available knowledge regarding the voluntary control of exercise work rate in hot environments. Our analysis indicated that: (a) Voluntary reductions in exercise work rate in uncompensable heat aid thermoregulation and are, therefore, thermoregulatory behaviors. (b) Unlike thermal behavior during rest, the role of thermal comfort as the ultimate mediator of thermal behavior during exercise in the heat remains uncertain. By contrast, the rating of perceived exertion appears to be the key perceptual controller under such conditions, with thermal perception playing a more modulatory role. (c) Prior to increases in core temperature (when only skin temperature is elevated), reductions in self-selected exercise work rate in the heat are likely mediated by thermal perception (thermal comfort and sensation) and its influence on the rating of perceived exertion. (d) However, when both core and skin temperatures are elevated, factors associated with cardiovascular strain likely dictate the rate of perceived exertion response, thereby mediating such voluntary reductions in exercise work rate. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Greenwood, Benjamin N.; Spence, Katie G.; Crevling, Danielle M.; Clark, Peter J.; Craig, Wendy C.; Fleshner, Monika
2014-01-01
Exercise increases resistance against stress-related disorders such as anxiety and depression. Similarly, the perception of control is a powerful predictor of neurochemical and behavioral responses to stress, but whether the experience of choosing to exercise, and exerting control over that exercise, is a critical factor in producing exercise-induced stress resistance is unknown. The current studies investigated whether the protective effects of exercise against the anxiety- and depression-like consequences of stress are dependent on exercise controllability and a brain region implicated in the protective effects of controllable experiences, the medial prefrontal cortex. Adult male Fischer 344 rats remained sedentary, were forced to run on treadmills or motorised running wheels, or had voluntary access to wheels for 6 weeks. Three weeks after exercise onset, rats received sham surgery or excitotoxic lesions of the medial prefrontal cortex. Rats were exposed to home cage or uncontrollable tail shock treatment three weeks later. Shock-elicited fear conditioning and shuttle box escape testing occurred the next day. Both forced and voluntary wheel running, but not treadmill training, prevented the exaggerated fear conditioning and interference with escape learning produced by uncontrollable stress. Lesions of the medial prefrontal cortex failed to eliminate the protective effects of forced or voluntary wheel running. These data suggest that exercise controllability and the medial prefrontal cortex are not critical factors in conferring the protective effects of exercise against the affective consequences of stressor exposure, and imply that exercise perceived as forced may still benefit affect and mental health. PMID:23121339
A Rat Model of Sytemic Chemotherapy for Breast Cancer to Evaluate and Treat Chemobrain
2007-09-01
conditioning was performed last, just prior to animal euthanasia . 34 Results: Fear Conditioning While there was no statistically significant...learning and neuroprotection. Nat Med 9:1173-1179. Epub 2003 Aug 1117. Eadie BD, Redila VA, Christie BR (2005) Voluntary exercise alters the...enrichment and voluntary exercise massively increase neurogenesis in the adult hippocampus via dissociable pathways. Hippocampus 16:250-260. Overstreet
Voluntary Group Participation by Third Age Australians.
ERIC Educational Resources Information Center
Mayhew, Claire; Swindell, Rick
A study investigated characteristics of retirees and types of voluntary groups they joined after retirement. Data were collected through face-to-face interviews and completed questionnaires of 206 Australians over age 50. Five categories of voluntary organizations were studied: intellectually challenging, sporting/exercise, social, helping others,…
Zhao, Zaorui; Sabirzhanov, Boris; Wu, Junfang; Faden, Alan I.
2015-01-01
Abstract Physical activity can attenuate neuronal loss, reduce neuroinflammation, and facilitate recovery after brain injury. However, little is known about the mechanisms of exercise-induced neuroprotection after traumatic brain injury (TBI) or its modulation of post-traumatic neuronal cell death. Voluntary exercise, using a running wheel, was conducted for 4 weeks immediately preceding (preconditioning) moderate-level controlled cortical impact (CCI), a well-established experimental TBI model in mice. Compared to nonexercised controls, exercise preconditioning (pre-exercise) improved recovery of sensorimotor performance in the beam walk task, as well as cognitive/affective functions in the Morris water maze, novel object recognition, and tail-suspension tests. Further, pre-exercise reduced lesion size, attenuated neuronal loss in the hippocampus, cortex, and thalamus, and decreased microglial activation in the cortex. In addition, exercise preconditioning activated the brain-derived neurotrophic factor pathway before trauma and amplified the injury-dependent increase in heat shock protein 70 expression, thus attenuating key apoptotic pathways. The latter include reduction in CCI-induced up-regulation of proapoptotic B-cell lymphoma 2 (Bcl-2)-homology 3–only Bcl-2 family molecules (Bid, Puma), decreased mitochondria permeabilization with attenuated release of cytochrome c and apoptosis-inducing factor (AIF), reduced AIF translocation to the nucleus, and attenuated caspase activation. Given these neuroprotective actions, voluntary physical exercise may serve to limit the consequences of TBI. PMID:25419789
Gratuze, Maud; Julien, Jacinthe; Morin, Françoise; Marette, André; Planel, Emmanuel
2017-10-03
Tau is a microtubule-associated protein that becomes pathological when it undergoes hyperphosphorylation and aggregation as seen in Alzheimer's disease (AD). AD is mostly sporadic, with environmental, biological and/or genetic risks factors, interacting together to promote the disease. In the past decade, reports have suggested that obesity in midlife could be one of these risk factors. On the other hand, caloric restriction and physical exercise have been reported to reduce the incidence and outcome of obesity as well as AD. We evaluated the impact of voluntary physical exercise and caloric restriction on tau pathology during 2months in hTau mice under high caloric diet in order to evaluate if these strategies could prevent AD-like pathology in obese conditions. We found no effects of obesity induced by Western diet on both Tau phosphorylation and aggregation compared to controls. However, exercise reduced tau phosphorylation while caloric restriction exacerbated its aggregation in the brains of obese hTau mice. We then examined the mechanisms underlying changes in tau phosphorylation and aggregation by exploring major tau kinases and phosphatases and key proteins involved in autophagy. However, there were no significant effects of voluntary exercise and caloric restriction on these proteins in hTau mice that could explain our results. In this study, we report differential effects of voluntary treadmill exercise and caloric restriction on tau pathogenesis in our obese mice, namely beneficial effect of exercise on tau phosphorylation and deleterious effect of caloric restriction on tau aggregation. Our results suggest that lifestyle strategies used to reduce metabolic disorders and AD must be selected and studied carefully to avoid exacerbation of pathologies. Copyright © 2017. Published by Elsevier Inc.
Greenwood, Benjamin N; Foley, Teresa E; Le, Tony V; Strong, Paul V; Loughridge, Alice B; Day, Heidi E W; Fleshner, Monika
2011-03-01
The mesolimbic reward pathway is implicated in stress-related psychiatric disorders and is a potential target of plasticity underlying the stress resistance produced by repeated voluntary exercise. It is unknown, however, whether rats find long-term access to running wheels rewarding, or if repeated voluntary exercise reward produces plastic changes in mesolimbic reward neurocircuitry. In the current studies, young adult, male Fischer 344 rats allowed voluntary access to running wheels for 6 weeks, but not 2 weeks, found wheel running rewarding, as measured by conditioned place preference (CPP). Consistent with prior reports and the behavioral data, 6 weeks of wheel running increased ΔFosB/FosB immunoreactivity in the nucleus accumbens (Acb). In addition, semi quantitative in situ hybridization revealed that 6 weeks of wheel running, compared to sedentary housing, increased tyrosine hydroxylase (TH) mRNA levels in the ventral tegmental area (VTA), increased delta opioid receptor (DOR) mRNA levels in the Acb shell, and reduced levels of dopamine receptor (DR)-D2 mRNA in the Acb core. Results indicate that repeated voluntary exercise is rewarding and alters gene transcription in mesolimbic reward neurocircuitry. The duration-dependent effects of wheel running on CPP suggest that as the weeks of wheel running progress, the rewarding effects of a night of voluntary wheel running might linger longer into the inactive cycle thus providing stronger support for CPP. The observed plasticity could contribute to the mechanisms by which exercise reduces the incidence and severity of substance abuse disorders, changes the rewarding properties of drugs of abuse, and facilitates successful coping with stress. Copyright © 2010 Elsevier B.V. All rights reserved.
Brouwers, Bram; Stephens, Natalie A.; Costford, Sheila R.; Hopf, Meghan E.; Ayala, Julio E.; Yi, Fanchao; Xie, Hui; Li, Jian-Liang; Gardell, Stephen J.; Sparks, Lauren M.; Smith, Steven R.
2018-01-01
Mice overexpressing NAMPT in skeletal muscle (NamptTg mice) develop higher exercise endurance and maximal aerobic capacity (VO2max) following voluntary exercise training compared to wild-type (WT) mice. Here, we aimed to investigate the mechanisms underlying by determining skeletal muscle mitochondrial respiratory capacity in NamptTg and WT mice. Body weight and body composition, tissue weight (gastrocnemius, quadriceps, soleus, heart, liver, and epididymal white adipose tissue), skeletal muscle and liver glycogen content, VO2max, skeletal muscle mitochondrial respiratory capacity (measured by high-resolution respirometry), skeletal muscle gene expression (measured by microarray and qPCR), and skeletal muscle protein content (measured by Western blot) were determined following 6 weeks of voluntary exercise training (access to running wheel) in 13-week-old male NamptTg (exercised NamptTg) mice and WT (exercised WT) mice. Daily running distance and running time during the voluntary exercise training protocol were recorded. Daily running distance (p = 0.51) and running time (p = 0.85) were not significantly different between exercised NamptTg mice and exercised WT mice. VO2max was higher in exercised NamptTg mice compared to exercised WT mice (p = 0.02). Body weight (p = 0.92), fat mass (p = 0.49), lean mass (p = 0.91), tissue weight (all p > 0.05), and skeletal muscle (p = 0.72) and liver (p = 0.94) glycogen content were not significantly different between exercised NamptTg mice and exercised WT mice. Complex I oxidative phosphorylation (OXPHOS) respiratory capacity supported by fatty acid substrates (p < 0.01), maximal (complex I+II) OXPHOS respiratory capacity supported by glycolytic (p = 0.02) and fatty acid (p < 0.01) substrates, and maximal uncoupled respiratory capacity supported by fatty acid substrates (p < 0.01) was higher in exercised NamptTg mice compared to exercised WT mice. Transcriptomic analyses revealed differential expression for genes involved in oxidative metabolism in exercised NamptTg mice compared to exercised WT mice, specifically, enrichment for the gene set related to the SIRT3-mediated signaling pathway. SIRT3 protein content correlated with NAMPT protein content (r = 0.61, p = 0.04). In conclusion, NamptTg mice develop higher exercise capacity following voluntary exercise training compared to WT mice, which is paralleled by higher mitochondrial respiratory capacity in skeletal muscle. The changes in SIRT3 targets suggest that these effects are due to remodeling of mitochondrial function. PMID:29942262
Chia, Eevon; Cannon, Jack; Marino, Frank E
2015-10-01
The combined effects of age and training on the regulation of exercise performance may be confounded by the additional challenge of thermoregulation. Thus, the objective of this study was to compare the pacing strategy of older men who have recently completed 12 weeks of exercise training (acute) to men who have been regularly (>3 times/week) training for at least 6 months (chronic) in a hot, humid environment and to observe disparity, if any, between acute and chronic exercise training on thermoregulation. Eleven chronically trained men (OT) completed a familiarisation trial before returning after 7-10 days to repeat the protocol. Similarly, eight untrained men (OU-PRE) were familiarised and repeated the protocol before completing 12 weeks of exercise training. Post-training, the eight acutely trained men (OU-POST) returned to the laboratory for a third trial. All trials were conducted on a cycle ergometer at the same time of the day in a climate controlled chamber with a mean dry bulb temperature and relative humidity of 32.0°C and 68%, respectively. OT consumed more water than OU-POST and OU-PRE (P<0.01) whilst no differences were observed in the OU with training. Voluntary activation of the knee extensors decreased by 11.3% (P<0.05) in the OU-PRE after the cycling time trial. However, the decrease in voluntary activation observed in the OU-POST and OT after the cycling time trial were not significant. The OT maintained a higher power output compared with the OU-POST and OU-PRE except for the last sprint, whilst no significant differences in power output were observed between the OU-PRE and OU-POST. The rate of rise in core temperature was significantly higher in the OT compared with OU-POST (P<0.001) and OU-PRE (P<0.001). With more experience in training, the OT used an alternative hydration strategy compared with the OU-POST and OU-PRE to mitigate the effects of possible exercise hyperthermia, ultimately attaining a higher, but non-critical core temperature at the end of the cycling time trial. Twelve weeks of exercise training may not manifest in improved exercise performance per se, but could translate to improved performance of activities of daily and independent living. Copyright © 2015 Elsevier Ltd. All rights reserved.
Voluntary aerobic exercise increases arterial resilience and mitochondrial health with aging in mice
Gioscia-Ryan, Rachel A.; Battson, Micah L.; Cuevas, Lauren M.; Zigler, Melanie C.; Sindler, Amy L.; Seals, Douglas R.
2016-01-01
Mitochondrial dysregulation and associated excessive reactive oxygen species (mtROS) production is a key source of oxidative stress in aging arteries that reduces baseline function and may influence resilience (ability to withstand stress). We hypothesized that voluntary aerobic exercise would increase arterial resilience in old mice. An acute mitochondrial stressor (rotenone) caused greater (further) impairment in peak carotid EDD in old (~27 mo., OC, n=12;−32.5±-10.5%) versus young (~7 mo., YC n=11;−5.4±- 3.7%) control male mice, whereas arteries from young and old exercising (YVR n=10 and OVR n=11, 10-wk voluntary running;−0.8±-2.1% and −8.0±4.9%, respectively) mice were protected. Ex-vivo simulated Western diet (WD, high glucose and palmitate) caused greater impairment in EDD in OC (-28.5±8.6%) versus YC (-16.9±5.2%) and YVR (-15.3±2.3%), whereas OVR (-8.9±3.9%) were more resilient (not different versus YC). Simultaneous ex-vivo treatment with mitochondria-specific antioxidant MitoQ attenuated WD-induced impairments in YC and OC, but not YVR or OVR, suggesting that exercise improved resilience to mtROS-mediated stress. Exercise normalized age-related alterations in aortic mitochondrial protein markers PGC-1α, SIRT-3 and Fis1 and augmented cellular antioxidant and stress response proteins. Our results indicate that arterial aging is accompanied by reduced resilience and mitochondrial health, which are restored by voluntary aerobic exercise. PMID:27875805
Krause, Neal
2013-01-01
Linear growth curve modeling was used to compare rates of change in functional status between three groups of older adults: Individuals holding voluntary lay leadership positions in a church, regular church attenders who were not leaders, and those not regularly attending church. Functional status was tracked longitudinally over a 4-year period in a national sample of 1,152 Black and White older adults whose religious backgrounds were either Christian or unaffiliated. Leaders had significantly slower trajectories of increase in both the number of physical impairments and the severity of those impairments. Although regular church attenders who were not leaders had lower mean levels of impairment on both measures, compared with those not regularly attending church, the two groups of non-leaders did not differ from one another in their rates of impairment increase. Leadership roles may contribute to longer maintenance of physical ability in late life, and opportunities for voluntary leadership may help account for some of the health benefits of religious participation. PMID:23606309
Daily Bicycling in Older Adults May Be Effective to Reduce Fall Risks - A Case Control Study.
Batcir, Shani; Melzer, Itshak
2018-01-18
Older adults gain many health benefits from riding bicycles regularly. We aimed to explore whether older persons who ride bicycles regularly have better balance than controls. Balance control and voluntary stepping were assessed in 20 older adults aged 65 to 85 who live in an agricultural community village who regularly ride bicycles (BR), and 30 age- and gender-matched non-bicycle riders (NBR). Self-reported function and fear of fall were also assessed. Bicycle riders showed significantly better balance, faster voluntary stepping, and better self-reported advanced lower extremity function compared with NBR. The results might suggest that bicycling regularly preserves balance control and speed of voluntary stepping in older adults because bicycling might maintain specific balance coordination patterns. The results should be treated with caution since BR were older adults who selected an active life style (i.e., bicycling as well as living in an agricultural village) that may bias the results.
The effect of exercise on carbohydrate preference in female rats.
Keeley, R J; Zelinski, E L; Fehr, L; McDonald, R J
2014-02-01
Exercise has a myriad of health benefits, including positive effects against heart disease, diabetes, and dementia. Cognitive performance improves following chronic exercise, both in animal models and humans. Studies have examined the effect of exercise on feeding, demonstrating a preference towards increased food consumption. Further, sex differences exist such that females tend to prefer carbohydrates over other macronutrients following exercise. However, no clear effect of exercise on macronutrient or carbohydrate selection has been described in animal or human studies. This research project sought to determine the effect of voluntary exercise on carbohydrate selection in female rats. Preference for a complex (starch) versus a simple (dextrose) carbohydrate was assessed using a discriminative preference to context paradigm in non-exercising and voluntarily exercising female rats. In addition, fasting blood glucose and performance in the Morris water task was examined in order to verify the effects of exercise on performance in this task. Female rats given access to running wheels preferred a context previously associated with starch, whereas females with no running wheel access preferred a context previously associated with dextrose. No changes in blood glucose were observed. However, cognitive differences in the Morris water task were observed such that voluntary exercise allowed rats to find a new location of a hidden platform following 4 days of training to an old platform location. These results suggest that voluntary exercise may decrease preservative behaviors in a spatial navigation task through the facilitation of plasticity mechanisms. This study is the first of its kind to demonstrate the influence of exercise on taste preference for complex and simple carbohydrates with this context conditioning paradigm. Copyright © 2014 Elsevier Inc. All rights reserved.
Minett, G M; Duffield, R; Billaut, F; Cannon, J; Portus, M R; Marino, F E
2014-08-01
This study examined the effects of post-exercise cooling on recovery of neuromuscular, physiological, and cerebral hemodynamic responses after intermittent-sprint exercise in the heat. Nine participants underwent three post-exercise recovery trials, including a control (CONT), mixed-method cooling (MIX), and cold-water immersion (10 °C; CWI). Voluntary force and activation were assessed simultaneously with cerebral oxygenation (near-infrared spectroscopy) pre- and post-exercise, post-intervention, and 1-h and 24-h post-exercise. Measures of heart rate, core temperature, skin temperature, muscle damage, and inflammation were also collected. Both cooling interventions reduced heart rate, core, and skin temperature post-intervention (P < 0.05). CWI hastened the recovery of voluntary force by 12.7 ± 11.7% (mean ± SD) and 16.3 ± 10.5% 1-h post-exercise compared to MIX and CONT, respectively (P < 0.01). Voluntary force remained elevated by 16.1 ± 20.5% 24-h post-exercise after CWI compared to CONT (P < 0.05). Central activation was increased post-intervention and 1-h post-exercise with CWI compared to CONT (P < 0.05), without differences between conditions 24-h post-exercise (P > 0.05). CWI reduced cerebral oxygenation compared to MIX and CONT post-intervention (P < 0.01). Furthermore, cooling interventions reduced cortisol 1-h post-exercise (P < 0.01), although only CWI blunted creatine kinase 24-h post-exercise compared to CONT (P < 0.05). Accordingly, improvements in neuromuscular recovery after post-exercise cooling appear to be disassociated with cerebral oxygenation, rather reflecting reductions in thermoregulatory demands to sustain force production. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Feelings of energy, exercise-related self-efficacy, and voluntary exercise participation.
Yoon, Seok; Buckworth, Janet; Focht, Brian; Ko, Bomna
2013-12-01
This study used a path analysis approach to examine the relationship between feelings of energy, exercise-related self-efficacy beliefs, and exercise participation. A cross-sectional mailing survey design was used to measure feelings of physical and mental energy, task and scheduling self-efficacy beliefs, and voluntary moderate and vigorous exercise participation in 368 healthy, full-time undergraduate students (mean age = 21.43 ± 2.32 years). The path analysis revealed that the hypothesized path model had a strong fit to the study data. The path model showed that feelings of physical energy had significant direct effects on task and scheduling self-efficacy beliefs as well as exercise behaviors. In addition, scheduling self-efficacy had direct effects on moderate and vigorous exercise participation. However, there was no significant direct relationship between task self-efficacy and exercise participation. The path model also revealed that scheduling self-efficacy partially mediated the relationship between feelings of physical energy and exercise participation.
Water temperature, voluntary drinking and fluid balance in dehydrated taekwondo athletes.
Khamnei, Saeed; Hosseinlou, Abdollah; Zamanlu, Masumeh
2011-01-01
Voluntary drinking is one of the major determiners of rehydration, especially as regards exercise or workout in the heat. The present study undertakes to search for the effect of voluntary intake of water with different temperatures on fluid balance in Taekwondo athletes. Six young healthy male Taekwondo athletes were dehydrated by moderate exercise in a chamber with ambient temperature at 38-40°C and relative humidity between 20-30%. On four separate days they were allowed to drink ad libitum plane water with the four temperatures of 5, 16, 26, and 58°C, after dehydration. The volume of voluntary drinking and weight change was measured; then the primary percentage of dehydration, sweat loss, fluid deficit and involuntary dehydration were calculated. Voluntary drinking of water proved to be statistically different in the presented temperatures. Water at 16°C involved the greatest intake, while fluid deficit and involuntary dehydration were the lowest. Intake of water in the 5°C trial significantly correlated with the subject's plasma osmolality change after dehydration, yet it showed no significant correlation with weight loss. In conclusion, by way of achieving more voluntary intake of water and better fluid state, recommending cool water (~16°C) for athletes is in order. Unlike the publicly held view, drinking cold water (~5°C) does not improve voluntary drinking and hydration status. Key pointsFor athletes dehydrated in hot environments, maximum voluntary drinking and best hydration state occurs with 16°C water.Provision of fluid needs and thermal needs could be balanced using 16°C water.Drinking 16°C water (nearly the temperature of cool tap water) could be recommended for exercise in the heat.
Voluntary exercise improves high-fat diet-induced leptin resistance independent of adiposity.
Krawczewski Carhuatanta, Kimberly A; Demuro, Giovanna; Tschöp, Matthias H; Pfluger, Paul T; Benoit, Stephen C; Obici, Silvana
2011-07-01
The efficacy of exercise as primary prevention of obesity is the subject of intense investigation. Here, we show that voluntary exercise in a mouse strain susceptible to diet-induced obesity (C57B6J) decreases fat mass and increases energy expenditure. In addition, exercise attenuates obesity in mice fed a high-fat diet (HFD). Using FosB immunoreactivity as a marker of chronic neuronal activation, we found that exercise activates leptin receptor-positive neurons in the ventromedial hypothalamic nucleus, involved in homeostatic control of energy balance. FosB immunoreactivity in the ventromedial hypothalamic nucleus is decreased in sedentary mice exposed to HFD but is increased in exercised mice independent of adiposity. To determine whether the antiobesity effects of voluntary exercise improve central nervous system (CNS) leptin action, we measured the anorectic and weight reducing effects of intracerebroventricular (ICV) leptin in sedentary and exercised mice exposed to HFD (EH), as well as in sedentary mice that have been calorie restricted (SR) to match the fat mass of EH mice. ICV leptin was ineffective in lowering food intake and body weight (BW) in sedentary mice exposed to HFD mice. The anorectic potency of leptin was partially restored in EH and SR groups. However, ICV leptin significantly lowered BW in EH but not SR mice. Thus, exercise leads to the maintenance of a lower BW and leaner composition, as well as to improved CNS leptin action, independent of fat mass. These results support the notion that physical exercise directly influences the responsiveness of the CNS circuits involved in energy homeostasis by allowing the defense of a lowered BW.
Neuromuscular changes and the rapid adaptation following a bout of damaging eccentric exercise.
Goodall, S; Thomas, K; Barwood, M; Keane, K; Gonzalez, J T; St Clair Gibson, A; Howatson, G
2017-08-01
An initial bout of eccentric exercise is known to protect against muscle damage following a repeated bout of the same exercise; however, the neuromuscular adaptations owing to this phenomenon are unknown. To determine whether neuromuscular disturbances are modulated following a repeated bout of eccentric exercise. Following eccentric exercise performed with the elbow flexors, we measured maximal voluntary force, resting twitch force, muscle soreness, creatine kinase (CK) and voluntary activation (VA) using motor point and motor cortex stimulation at baseline, immediately post-exercise and at 1, 2, 3, 4 and 7 days post-exercise on two occasions, separated by 3 weeks. Significant muscle damage and fatigue were evident following the first exercise bout; maximal voluntary contraction (MVC) was reduced immediately by 35% and remained depressed at 7 days post-exercise. Soreness and CK release peaked at 3 and 4 days post-exercise respectively. Resting twitch force remained significantly reduced at 7 days (-48%), whilst VA measured with motor point and motor cortex stimulation was reduced until 2 and 3 days respectively. A repeated bout effect (RBE) was observed with attenuated soreness and CK release and a quicker recovery of MVC and resting twitch force. A similar decrement in VA was observed following both bouts; however, following the repeated bout there was a significantly smaller reduction in, and a faster recovery of, VA measured using motor cortical stimulation. Our data suggest that the RBE may be explained, partly, by a modification in motor corticospinal drive. © 2016 Scandinavian Physiological Society. Published by John Wiley & Sons Ltd.
Maternal exercise during pregnancy promotes physical activity in adult offspring
Eclarinal, Jesse D.; Zhu, Shaoyu; Baker, Maria S.; Piyarathna, Danthasinghe B.; Coarfa, Cristian; Fiorotto, Marta L.; Waterland, Robert A.
2016-01-01
Previous rodent studies have shown that maternal voluntary exercise during pregnancy leads to metabolic changes in adult offspring. We set out to test whether maternal voluntary exercise during pregnancy also induces persistent changes in voluntary physical activity in the offspring. Adult C57BL/6J female mice were randomly assigned to be caged with an unlocked (U) or locked (L) running wheel before and during pregnancy. Maternal running behavior was monitored during pregnancy, and body weight, body composition, food intake, energy expenditure, total cage activity, and running wheel activity were measured in the offspring at various ages. U offspring were slightly heavier at birth, but no group differences in body weight or composition were observed at later ages (when mice were caged without access to running wheels). Consistent with our hypothesis, U offspring were more physically active as adults. This effect was observed earlier in female offspring (at sexual maturation). Remarkably, at 300 d of age, U females achieved greater fat loss in response to a 3-wk voluntary exercise program. Our findings show for the first time that maternal physical activity during pregnancy affects the offspring’s lifelong propensity for physical activity and may have important implications for combating the worldwide epidemic of physical inactivity and obesity.—Eclarinal, J. D., Zhu, S., Baker, M. S., Piyarathna, D. B., Coarfa, C., Fiorotto, M. L., Waterland, R. A. Maternal exercise during pregnancy promotes physical activity in adult offspring. PMID:27033262
Sarmento, Adriana de Oliveira; Santos, Amilton da Cruz; Trombetta, Ivani Credidio; Dantas, Marciano Moacir; Oliveira Marques, Ana Cristina; do Nascimento, Leone Severino; Barbosa, Bruno Teixeira; Dos Santos, Marcelo Rodrigues; Andrade, Maria do Amparo; Jaguaribe-Lima, Anna Myrna; Brasileiro-Santos, Maria do Socorro
2017-01-01
The objective of this study was to evaluate cardiac autonomic control and muscle vasodilation response during isometric exercise in sedentary and physically active older adults. Twenty healthy participants, 10 sedentary and 10 physically active older adults, were evaluated and paired by gender, age, and body mass index. Sympathetic and parasympathetic cardiac activity (spectral and symbolic heart rate analysis) and muscle blood flow (venous occlusion plethysmography) were measured for 10 minutes at rest (baseline) and during 3 minutes of isometric handgrip exercise at 30% of the maximum voluntary contraction (sympathetic excitatory maneuver). Variables were analyzed at baseline and during 3 minutes of isometric exercise. Cardiac autonomic parameters were analyzed by Wilcoxon and Mann-Whitney tests. Muscle vasodilatory response was analyzed by repeated-measures analysis of variance followed by Tukey's post hoc test. Sedentary older adults had higher cardiac sympathetic activity compared to physically active older adult subjects at baseline (63.13±3.31 vs 50.45±3.55 nu, P =0.02). The variance (heart rate variability index) was increased in active older adults (1,438.64±448.90 vs 1,402.92±385.14 ms, P =0.02), and cardiac sympathetic activity (symbolic analysis) was increased in sedentary older adults (5,660.91±1,626.72 vs 4,381.35±1,852.87, P =0.03) during isometric handgrip exercise. Sedentary older adults showed higher cardiac sympathetic activity (spectral analysis) (71.29±4.40 vs 58.30±3.50 nu, P =0.03) and lower parasympathetic modulation (28.79±4.37 vs 41.77±3.47 nu, P =0.03) compared to physically active older adult subjects during isometric handgrip exercise. Regarding muscle vasodilation response, there was an increase in the skeletal muscle blood flow in the second (4.1±0.5 vs 3.7±0.4 mL/min per 100 mL, P =0.01) and third minute (4.4±0.4 vs 3.9±0.3 mL/min per 100 mL, P =0.03) of handgrip exercise in active older adults. The results indicate that regular physical activity improves neurovascular control of muscle blood flow and cardiac autonomic response during isometric handgrip exercise in healthy older adult subjects.
Sarmento, Adriana de Oliveira; Santos, Amilton da Cruz; Trombetta, Ivani Credidio; Dantas, Marciano Moacir; Oliveira Marques, Ana Cristina; do Nascimento, Leone Severino; Barbosa, Bruno Teixeira; Dos Santos, Marcelo Rodrigues; Andrade, Maria do Amparo; Jaguaribe-Lima, Anna Myrna; Brasileiro-Santos, Maria do Socorro
2017-01-01
The objective of this study was to evaluate cardiac autonomic control and muscle vasodilation response during isometric exercise in sedentary and physically active older adults. Twenty healthy participants, 10 sedentary and 10 physically active older adults, were evaluated and paired by gender, age, and body mass index. Sympathetic and parasympathetic cardiac activity (spectral and symbolic heart rate analysis) and muscle blood flow (venous occlusion plethysmography) were measured for 10 minutes at rest (baseline) and during 3 minutes of isometric handgrip exercise at 30% of the maximum voluntary contraction (sympathetic excitatory maneuver). Variables were analyzed at baseline and during 3 minutes of isometric exercise. Cardiac autonomic parameters were analyzed by Wilcoxon and Mann–Whitney tests. Muscle vasodilatory response was analyzed by repeated-measures analysis of variance followed by Tukey’s post hoc test. Sedentary older adults had higher cardiac sympathetic activity compared to physically active older adult subjects at baseline (63.13±3.31 vs 50.45±3.55 nu, P=0.02). The variance (heart rate variability index) was increased in active older adults (1,438.64±448.90 vs 1,402.92±385.14 ms, P=0.02), and cardiac sympathetic activity (symbolic analysis) was increased in sedentary older adults (5,660.91±1,626.72 vs 4,381.35±1,852.87, P=0.03) during isometric handgrip exercise. Sedentary older adults showed higher cardiac sympathetic activity (spectral analysis) (71.29±4.40 vs 58.30±3.50 nu, P=0.03) and lower parasympathetic modulation (28.79±4.37 vs 41.77±3.47 nu, P=0.03) compared to physically active older adult subjects during isometric handgrip exercise. Regarding muscle vasodilation response, there was an increase in the skeletal muscle blood flow in the second (4.1±0.5 vs 3.7±0.4 mL/min per 100 mL, P=0.01) and third minute (4.4±0.4 vs 3.9±0.3 mL/min per 100 mL, P=0.03) of handgrip exercise in active older adults. The results indicate that regular physical activity improves neurovascular control of muscle blood flow and cardiac autonomic response during isometric handgrip exercise in healthy older adult subjects. PMID:28721030
Rosa, B V; Blair, H T; Vickers, M H; Morel, P C; Cockrem, J F; Firth, E C
2012-12-01
The objectives of this study were to examine the effects of voluntary exercise during pregnancy on maternal post-lactation bone parameters and offspring growth. Pregnant Wistar rats were housed in conventional cages (control), or were housed in raised cages requiring them to rise to an erect, bipedal stance to obtain food/water, throughout pregnancy. Dual energy X-ray absorptiometry and peripheral quantitative computed tomography scans were performed pre-mating and post-weaning. Maternal stress was assessed by fecal corticosterone measurement. Offspring weights were assessed at postnatal days 1 and 25 (weaning). Changes in bone mineral over the pregnancy/lactation period were site-specific. Exercise did not affect loss of bone mineral from the lumbar spine, but did attenuate the loss of trabecular bone mineral from the tibial metaphysis and enhance the strength strain index and cross-sectional moment of inertia at the tibial diaphysis (P≤0.05) in dams in the exercised group. Fecal corticosterone did not differ between dam groups. There were no significant differences in offspring weight between the exercised and control group at either time point. Voluntary exercise in the pregnant rat can improve some post-lactation bone parameters and does not adversely affect early postnatal outcomes of the offspring.
[Physical exercise versus exercise program using electrical stimulation devices for home use].
Santos, F M; Rodrigues, R G S; Trindade-Filho, E M
2008-02-01
To evaluate the effects of electrical muscle stimulation with devices for home use on neuromuscular conditioning. The study sample comprised 20 sedentary, right-handed, voluntary women aged from 18 to 25 years in the city of Maceió, Northeastern Brazil, in 2006. Subjects were randomly divided into two groups: group A included women who underwent muscle stimulation using commercial electrical devices; group B included those women who performed physical activities with loads. The training program for both groups consisted of two weekly sessions for two months, in a total of 16 sessions. Comparisons of body weight, cirtometry, fleximetry, and muscle strength before and after exercise were determined using the paired t-test. For the comparisons between both groups, Student's t-test was used and a 5% significance level was adopted. Muscle strength subjectively assessed before and after each intervention was increased in both groups. Significant increases in muscle mass and strength were seen only in those subjects who performed voluntary physical activity. Resisted knee flexion and extension exercises effectively increased muscle mass and strength when compared to electrical stimulation at 87 Hz which did not produce a similar effect. The study results showed that electrical stimulation devices for passive physical exercising commercially available are less effective than voluntary physical exercise.
Portela, Luis V; Brochier, Andressa W; Haas, Clarissa B; de Carvalho, Afonso Kopczynski; Gnoato, Jussania A; Zimmer, Eduardo R; Kalinine, Eduardo; Pellerin, Luc; Muller, Alexandre P
2017-10-01
Hyperpalatable diets (HP) impair brain metabolism, and regular physical exercise has an apparent opposite effect. Here, we combined a prior long-term exposure to HP diet followed by physical exercise and evaluated the impact on some neuroenergetic components and on cognitive performance. We assessed the extracellular lactate concentration, expression of monocarboxylate transporters (MCTs), pyruvate dehydrogenase (PDH), and mitochondrial function in the hippocampus. Male C57BL/6J mice were fed 4 months with HP or a control diet. Subsequently, they were divided in the following groups: control diet sedentary (CDS), control diet exercise (CDE), HP diet sedentary (HPS), and HP diet exercise (HPE) (n = 15 per group) and were engaged for an additional 30-day period of voluntary exercise and HP diet. Relative to the control situation, exercise increased MCT1, MCT4, and PDH protein levels, while the HP diet increased MCT1 and MCT4 protein levels. The production of hydrogen peroxide (H 2 O 2 ) and the mitochondrial membrane potential (∆Ѱ m ) stimulated by succinate in hippocampal homogenates were not significantly different between groups. ADP phosphorylation and the maximal respiratory rate induced by FCCP showed similar responses between groups, implying a normal mitochondrial function. Also, extracellular brain lactate levels were increased in the HPE group compared to other groups soon after performing the Y-maze task. However, such enhanced lactate levels were not associated with improved memory performance. In summary, hippocampal protein expression levels of MCT1 and 4 were increased by physical exercise and HP diet, whereas PDH was only increased by exercise. These observations indicate that a hippocampal metabolic reprogramming takes place in response to these environmental factors.
Exploiting significance of physical exercise in prevention of gastrointestinal disorders.
Bilski, Jan; Mazur-Bialy, Agnieszka; Magierowski, Marcin; Kwiecien, Slawomir; Wojcik, Dagmara; Ptak-Belowska, Agata; Surmiak, Marcin; Targosz, Aneta; Magierowska, Katarzyna; Brzozowski, Tomasz
2018-05-21
Physical activity can be involved in the prevention of gastrointestinal (GI)-tract diseases, however, the results regarding the volume and the intensity of exercise considered as beneficial for protection of gastrointestinal organs are conflicting. The main objective of this review is to provide a comprehensive and updated overview on the beneficial and harmful effects of physical activity on the gastrointestinal tract. We attempted to discuss recent evidence regarding the association between different modes and intensity levels of exercise and physiological functions of the gut and gut pathology. The regular, moderate exercise can exert a beneficial effect on GI-tract disorders such as reflux esophagitis, peptic ulcers, cholelithiasis, constipation and inflammatory bowel disease (IBD) leading to the attenuation of the symptoms. This voluntary exercise has been shown to reduce the risk of colorectal cancer. On the other hand, there is considerable evidence that the high-intensity training or prolonged endurance training can exert a negative influence on GI-tract resulting in the exacerbation of symptoms. Physical activity can exhibit a beneficial effect on a variety of gastrointestinal diseases, however, this effect depends upon the exercise mode, duration and intensity. The accumulated evidence indicate that management of gastrointestinal problems and their relief by the exercise seems to be complicated and require adjustments of physical activity training, dietary measures and medical monitoring of symptoms. More experimental and clinical studies on the effects of physical activity on GI-tract disorders are warranted. Especially, the association between the exercise intensity and data addressing the underlying mechanism(s) of the exercise as the complementary therapy in the treatment of gastrointestinal disorders, require further determination in animal models and humans. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Voluntary running enhances glymphatic influx in awake behaving, young mice.
von Holstein-Rathlou, Stephanie; Petersen, Nicolas Caesar; Nedergaard, Maiken
2018-01-01
Vascular pathology and protein accumulation contribute to cognitive decline, whereas exercise can slow vascular degeneration and improve cognitive function. Recent investigations suggest that glymphatic clearance measured in aged mice while anesthetized is enhanced following exercise. We predicted that exercise would also stimulate glymphatic activity in awake, young mice with higher baseline glymphatic function. Therefore, we assessed glymphatic function in young female C57BL/6J mice following five weeks voluntary wheel running and in sedentary mice. The active mice ran a mean distance of 6km daily. We injected fluorescent tracers in cisterna magna of awake behaving mice and in ketamine/xylazine anesthetized mice, and later assessed tracer distribution in coronal brain sections. Voluntary exercise consistently increased CSF influx during wakefulness, primarily in the hypothalamus and ventral parts of the cortex, but also in the middle cerebral artery territory. While glymphatic activity was higher under ketamine/xylazine anesthesia, we saw a decrease in glymphatic function during running in awake mice after five weeks of wheel running. In summary, daily running increases CSF flux in widespread areas of the mouse brain, which may contribute to the pro-cognitive effects of exercise. Copyright © 2017 Elsevier B.V. All rights reserved.
Kamiya, Atsunori; Michikami, Daisaku; Shiozawa, Tomoki; Iwase, Satoshi; Hayano, Junichiro; Kawada, Toru; Sunagawa, Kenji; Mano, Tadaaki
2004-05-01
Although spaceflight and bed rest are known to cause muscular atrophy in the antigravity muscles of the legs, the changes in sympathetic and cardiovascular responses to exercises using the atrophied muscles remain unknown. We hypothesized that bed rest would augment sympathetic responses to isometric exercise using antigravity leg muscles in humans. Ten healthy male volunteers were subjected to 14-day 6 degrees head-down bed rest. Before and after bed rest, they performed isometric exercises using leg (plantar flexion) and forearm (handgrip) muscles, followed by 2-min postexercise muscle ischemia (PEMI) that continues to stimulate the muscle metaboreflex. These exercises were sustained to fatigue. We measured muscle sympathetic nerve activity (MSNA) in the contralateral resting leg by microneurography. In both pre- and post-bed-rest exercise tests, exercise intensities were set at 30 and 70% of the maximum voluntary force measured before bed rest. Bed rest attenuated the increase in MSNA in response to fatiguing plantar flexion by approximately 70% at both exercise intensities (both P < 0.05 vs. before bed rest) and reduced the maximal voluntary force of plantar flexion by 15%. In contrast, bed rest did not alter the increase in MSNA response to fatiguing handgrip and had no effects on the maximal voluntary force of handgrip. Although PEMI sustained MSNA activation before bed rest in all trials, bed rest entirely eliminated the PEMI-induced increase in MSNA in leg exercises but partially attenuated it in forearm exercises. These results do not support our hypothesis but indicate that bed rest causes a reduction in isometric exercise-induced sympathetic activation in (probably atrophied) antigravity leg muscles.
Voluntary wheel running improves recovery from a moderate spinal cord injury.
Engesser-Cesar, Christie; Anderson, Aileen J; Basso, D Michele; Edgerton, V R; Cotman, Carl W
2005-01-01
Recently, locomotor training has been shown to improve overground locomotion in patients with spinal cord injury (SCI). This has triggered renewed interest in the role of exercise in rehabilitation after SCI. However, there are no mouse models for voluntary exercise and recovery of function following SCI. Here, we report voluntary wheel running improves recovery from a SCI in mice. C57Bl/10 female mice received a 60-kdyne T9 contusion injury with an IH impactor after 3 weeks of voluntary wheel running or 3 weeks of standard single housing conditions. Following a 7-day recovery period, running mice were returned to their running wheels. Weekly open-field behavior measured locomotor recovery using the Basso, Beattie and Bresnahan (BBB) locomotor rating scale and the Basso Mouse Scale (BMS) locomotor rating scale, a scale recently developed specifically for mice. Initial experiments using standard rung wheels show that wheel running impaired recovery, but subsequent experiments using a modified flat-surface wheel show improved recovery with exercise. By 14 days post SCI, the modified flat-surface running group had significantly higher BBB and BMS scores than the sedentary group. A repeated measures ANOVA shows locomotor recovery of modified flat-surface running mice was significantly improved compared to sedentary animals (p < 0.05). Locomotor assessment using a ladder beam task also shows a significant improvement in the modified flat-surface runners (p < 0.05). Finally, fibronectin staining shows no significant difference in lesion size between the two groups. These data represent the first mouse model showing voluntary exercise improves recovery after SCI.
Bull, Cecilia; Cooper, Christiana; Lindahl, Veronica; Fitting, Sylvia; Persson, Anders I; Grandér, Rita; Alborn, Ann-Marie; Björk-Eriksson, Thomas; Kuhn, H Georg; Blomgren, Klas
2017-10-01
Cranial radiation severely affects brain health and function, including glial cell production and myelination. Recent studies indicate that voluntary exercise has beneficial effects on oligodendrogenesis and myelination. Here, we hypothesized that voluntary running would increase oligodendrocyte numbers in the corpus callosum after irradiation of the juvenile mouse brain. The brains of C57Bl/6J male mice were 6 Gy irradiated on postnatal day 9 during the main gliogenic developmental phase, resulting in a loss of oligodendrocyte precursor cells. Upon adulthood, the mice were injected with bromodeoxyuridine and allowed to exercise on a running wheel for four weeks. Cell proliferation and survival, Ascl1 + oligodendrocyte precursor and Olig2 + oligodendrocyte cell numbers as well as CC1 + mature oligodendrocytes were quantified using immunohistology. Radiation induced a reduction in the number of Olig2 + oligodendrocytes by nearly 50% without affecting production or survival of new Olig2 + cells. Ascl1 + cells earlier in the oligodendroglial cell lineage were also profoundly affected, with numbers reduced by half. By three weeks of age, Olig2 + cell numbers had not recovered, and this was paralleled by a volumetric loss in the corpus callosum. The deficiency of Olig2 + oligodendrocytes persisted into adulthood. Additionally, the depletion of Ascl1 + progenitor cells was irreversible, and was even more pronounced at 12 weeks postirradiation compared to day 2 postirradiation. Furthermore, the overall number of CC1 + mature oligodendrocytes decreased by 28%. The depletion of Olig2 + cells in irradiated animals was reversed by 4 weeks of voluntary exercise. Moreover, voluntary exercise also increased the number of Ascl1 + progenitor cells in irradiated animals. Taken together, these results demonstrate that exercise in adulthood significantly ameliorates the profound and long-lasting effects of moderate exposure to immature oligodendrocytes during postnatal development.
Capsaicinoids improve consequences of physical activity.
Sahin, Kazim; Orhan, Cemal; Tuzcu, Mehmet; Sahin, Nurhan; Erten, Fusun; Juturu, Vijaya
2018-01-01
The purpose of this study was to investigate the effects of capsaicinoids (CAPs) on lipid metabolism, inflammation, antioxidant status and the changes in gene products involved in these metabolic functions in exercised rats. A total of 28 male Wistar albino rats were randomly divided into four groups (n = 7) (i) No exercise and no CAPs, (ii) No exercise + CAPs (iii) Regular exercise, (iv) Regular exercise + CAPs. Rats were administered as 0.2 mg capsaicinoids from 10 mg/kg BW/day Capsimax ® daily for 8 weeks. A significant decrease in lactate and malondialdehyde (MDA) levels and increase in activities of antioxidant enzymes were observed in the combination of regular exercise and CAPs group ( P < 0.0001). Regular exercise + CAPs treated rats had greater nuclear factor-E2-related factor-2 (Nrf2) and heme oxygenase-1 (HO-1) levels in muscle than regular exercise and no exercise rats ( P < 0.001). Nevertheless, regular exercise + CAPs treated had lower nuclear factor kappa B (NF-κB) and IL-10 levels in muscle than regular exercise and control rats ( P < 0.001). Muscle sterol regulatory element-binding protein 1c (SREBP-1c), liver X receptors (LXR), ATP citrate lyase (ACLY) and fatty acid synthase (FAS) levels in the regular exercise + CAPs group were lower than all groups ( P < 0.05). However, muscle PPAR-γ level was higher in the regular exercise and CAPs alone than the no exercise rats. These results suggest CAPs with regular exercise may enhance lipid metabolism by regulation of gene products involved in lipid and antioxidant metabolism including SREBP-1c, PPAR-γ, and Nrf2 pathways in rats.
Central and peripheral cardiovascular responses to electrically induced and voluntary leg exercise
NASA Technical Reports Server (NTRS)
Saltin, B.; Strange, S.; Bangsbo, J.; Kim, C. K.; Duvoisin, M.; Hargens, A.; Gollnick, P. D.
1990-01-01
With long missions in space countermeasures have to be used to secure safe operations in space and a safe return to Earth. Exercises of various forms have been used, but the question has arisen whether electrically induced contractions of muscle especially sensitive to weightlessness and crucial for man's performance would aid in maintaining their optimal function. The physiological responses both to short term and prolonged dynamic exercise performed either voluntarily or induced by electrical stimulation were considered. The local and systemic circulatory responses were similar for the voluntary and electrically induced contractions. The metabolic response was slightly more pronounced with electrical stimulation. This could be a reflection of not only slow twitch (type 1) but also fast twitch (type 2) fibers being recruited when the contractions were induced electrically. Intramuscular pressure recordings indicated that the dominant fraction of the muscle group was engaged regardless of mode of activation. Some 70 percent of the short term peak voluntary exercise capacity could be attained with electrical stimulation. Thus, electrically induced contractions of specific muscle groups should indeed be considered as an efficient countermeasure.
Osteoporosis. The Effects of Exercise Variables.
ERIC Educational Resources Information Center
Brodigan, Diane E.
1992-01-01
Reports a study of postmenopausal women's practice of exercise after age 30. Subjects (n=111) were studied with regard to their practice of weight-bearing, aerobic, regular, and area specific exercise. Findings indicated that regular practice (at least 90 minutes weekly) of weight-bearing, aerobic, and regular exercise affected the development of…
NASA Astrophysics Data System (ADS)
Lu, Xuecong; Moeini, Mohammad; Li, Baoqiang; Sakadžić, Sava; Lesage, Frédéric
2018-02-01
Alzheimer's disease (AD) is a neurodegenerative disease characterized by short-term memory loss and cognitive inabilities. This work seeks to study the effects of voluntary exercise on the change in oxygen delivery in awake mice models of Alzheimer's disease by monitoring brain tissue oxygenation. Experiments were performed on Young (AD_Y, 3-4 months, n=8), Old (AD_O, 6-7 months, n=8), and Old with exercise (AD_OEX, 6-7 months, n=8) transgenic APPPS1 mice and their controls. Brain tissue oxygenation was measured by two photon phosphorescence lifetime microscopy on the left sensory motor cortex. We found that the average tissue PO2 decreased with age but were regulated by exercise. The results suggest a potential for exercise to improve brain function with age and AD.
Correlates of regular exercise during pregnancy: the Norwegian Mother and Child Cohort Study.
Owe, K M; Nystad, W; Bø, K
2009-10-01
The aims of this study were to describe the level of exercise during pregnancy and to assess factors associated with regular exercise. Using data from the Norwegian Mother and Child Cohort Study conducted by the Norwegian Institute of Public Health, 34 508 pregnancies were included in the present study. Data were collected by self-completed questionnaires in gestational weeks 17 and 30, and analyzed by logistic regression analysis. The results are presented as adjusted odds ratios (aOR) with a 95% confidence interval. The proportion of women exercising regularly was 46.4% before pregnancy and decreased to 28.0 and 20.4% in weeks 17 and 30, respectively. Walking and bicycling were the most frequently reported activities before and during pregnancy. The prevalence of swimming tended to increase from prepregnancy to week 30. Exercising regularly prepregnancy was highly related to regular exercise in week 17, aOR=18.4 (17.1-19.7) and 30, aOR 4.3 (4.1-4.6). Low gestational weight gain was positively associated with regular exercise in week 30, aOR=1.2 (1.1-1.4), whereas being overweight before pregnancy was inversely associated with regular exercise in week 17, aOR=0.8 (0.7-0.8) and 30, aOR=0.7 (0.6-0.7). Also, women experiencing a multiple pregnancy, pelvic girdle pain, or nausea were less likely to exercise regularly.
EPA Finalizes Voluntary Quality Assurance Plan for Renewable Fuel Standard Program
The rule finalizes a voluntary third-party quality assurance program option for RINs that regulated parties may exercise as a supplement to the “buyer beware” liability as prescribed under existing regulations.
Trunk muscle activation during moderate- and high-intensity running.
Behm, David G; Cappa, Dario; Power, Geoffrey A
2009-12-01
Time constraints are cited as a barrier to regular exercise. If particular exercises can achieve multiple training functions, the number of exercises and the time needed to achieve a training goal may be decreased. It was the objective of this study to compare the extent of trunk muscle electromyographic (EMG) activity during running and callisthenic activities. EMG activity of the external obliques, lower abdominals (LA), upper lumbar erector spinae (ULES), and lumbosacral erector spinae (LSES) was monitored while triathletes and active nonrunners ran on a treadmill for 30 min at 60% and 80% of their maximum heart rate (HR) reserve, as well as during 30 repetitions of a partial curl-up and 3 min of a modified Biering-Sørensen back extension exercise. The mean root mean square (RMS) amplitude of the EMG signal was monitored over 10-s periods with measures normalized to a maximum voluntary contraction rotating curl-up (external obliques), hollowing exercise (LA), or back extension (ULES and LSES). A main effect for group was that triathletes had greater overall activation of the external obliques (p < 0.05), LA (p = 0.01), and LSES (p < 0.05) than did nonrunners. Main effects for exercise type showed that the external obliques had less EMG activity during 60% and 80% runs, respectively, than with the curl-ups (p = 0.001). The back extension exercise provided less ULES (p = 0.009) and LSES (p = 0.0001) EMG activity than the 60% and 80% runs, respectively. In conclusion, triathletes had greater trunk activation than nonrunners did while running, which could have contributed to their better performance. Back-stabilizing muscles can be activated more effectively with running than with a prolonged back extension activity. Running can be considered as an efficient, multifunctional exercise combining cardiovascular and trunk endurance benefits.
Enhanced voluntary wheel running in GPRC6A receptor knockout mice.
Clemmensen, Christoffer; Pehmøller, Christian; Klein, Anders B; Ratner, Cecilia; Wojtaszewski, Jørgen F P; Bräuner-Osborne, Hans
2013-06-13
GPRC6A is an amino acid-sensing receptor highly expressed in the brain and in skeletal muscle. Although recent evidence suggests that genetically engineered GPRC6A receptor knockout (KO) mice are susceptible to develop subtle endocrine and metabolic disturbances, the underlying disruptions in energy metabolism are largely unexplored. Based on GPRC6A's expression pattern and ligand preferences, we hypothesize that the receptor may impact energy metabolism via regulating physical activity levels. Thus, in the present study, we exposed GPRC6A receptor KO mice and their wild-type (WT) littermates to voluntary wheel running and forced treadmill exercise. Moreover, we assessed energy expenditure in the basal state, and evaluated the effects of wheel running on food intake, body composition, and a range of exercise-induced central and peripheral biomarkers. We found that adaptation to voluntary wheel running is affected by GPRC6A, as ablation of the receptor significantly enhances wheel running in KO relative to WT mice. Both genotypes responded to voluntary exercise by increasing food intake and improving body composition to a similar degree. In conclusion, these data demonstrate that the GPRC6A receptor is involved in regulating exercise behaviour. Future studies are highly warranted to delineate the underlying molecular details and to assess if these findings hold any translational value. Copyright © 2013 Elsevier Inc. All rights reserved.
Physical training programs for public safety personnel.
Moulson-Litchfield, M; Freedson, P S
1986-07-01
The nature of public safety jobs often reflects sudden strenuous exertion at a moment's notice. In the 1970s, police and fire departments became acutely aware of high numbers of on-the-job injuries and illnesses related to coronary heart disease. Disability payments for premature cardiovascular problems were being linked to cardiovascular risk factors accrued while on the job. This prompted public safety departments to initiate fitness programs for their employees. The fitness level of public safety personnel is not high. Job-related benefits have been linked to consistent physical training; high aerobic capacity, high muscular strength and endurance, above-average lean body weight, and minimal body fat are necessary for efficient job performance. In light of the physical benefits gained through regular exercise, pioneer departments began exercise programs for their personnel. These included the fire departments in Lawrence, Kansas, Alexandria, Virginia and Los Angeles, and the Dallas police department. Mealey documents psychologic improvements with exercise. Pioneer fitness programs such as that of the Los Angeles fire department have noted evidence of risk-factor reduction following institution of a mandatory program. The Alexandria department has instituted mandatory entrance requirements for their recruits, such as a no-smoking policy while on the job and mandatory exercise participation. Many community departments are not able to justify the institution of fitness programs. They may cite cost, lack of space, or lack of administrative support for the inability to initiate these programs. Legal and union ramifications may also deter the effort of program implementation. Considerations when implementing programs should involve cost of equipment, space, employee input, and determination of mandatory versus voluntary status. Preliminary medical screening and fitness evaluations should reliably evaluate an employee's physical ability to perform job-related tasks. The tests should be performed on a regular basis during employment. It is important, therefore, to convey the benefits of exercise to administrators. Frequent exercise testing should record progress of participants during exercise training and goals should be constantly updated. Pioneer programs should be used as models to follow when implementing a public safety physical training program. However, individual departments should evaluate the needs of their own personnel with respect to equipment, exercise schedule and type, and place of training.(ABSTRACT TRUNCATED AT 400 WORDS)
Asahara, Ryota; Endo, Kana; Liang, Nan; Matsukawa, Kanji
2018-05-31
We have reported using near-infrared spectroscopy that an increase in prefrontal oxygenated-hemoglobin concentration (Oxy-Hb) at the start of cycling exercise has relation to central command, defined as a feedforward signal descending from higher brain centers. The final output of central command evokes the exercise effort-dependent cardiovascular responses. If the prefrontal cortex may output the final signal of central command toward the autonomic nervous system, the prefrontal oxygenation should increase depending on exercise effort. To test the hypothesis, we investigated the effects of exercise intensity and muscle mass on prefrontal oxygenation in 13 subjects. The subjects performed one- or two-legged cycling at various relative intensities for 1 min. The prefrontal Oxy-Hb and cardiovascular variables were simultaneously measured during exercise. The increase in cardiac output and the decrease in total peripheral resistance at the start of one- and two-legged cycling were augmented in proportion to exercise intensity and muscle mass recruitment. The prefrontal Oxy-Hb increased at the start of voluntary cycling, while such increase was not developed during passive cycling. Mental imagery of cycling also increased the prefrontal Oxy-Hb, concomitantly with peripheral muscle vasodilatation. However, the increase in prefrontal Oxy-Hb at the start of voluntary cycling seemed independent of exercise intensity and muscle mass recruitment. It is likely that the increased prefrontal activity at the start of cycling exercise is not representative of the final output signal of central command itself toward the autonomic nervous system but may trigger neuronal activity in the caudal brain responsible for the generation of central command.
Desensitization of the cough reflex by exercise and voluntary isocapnic hyperpnea.
Lavorini, Federico; Fontana, Giovanni A; Chellini, Elisa; Magni, Chiara; Duranti, Roberto; Widdicombe, John
2010-05-01
Little is known about the effects of exercise on the sensory and cognitive aspects of coughing evoked by inhalation of tussigenic agents. The threshold for the cough reflex induced by inhalation of increasing nebulizer outputs of ultrasonically nebulized distilled water (fog), an index of cough reflex sensitivity, was assessed in twelve healthy humans in control conditions, during exercise and during voluntary isocapnic hyperpnea (VIH) at the same ventilatory level as the exercise. The intensity of the urge to cough (UTC), a cognitive component of coughing, was recorded throughout the trials on a linear scale. The relationships between inhaled fog nebulizer outputs and the correspondingly evoked UTC values, an index of the perceptual magnitude of the UTC sensitivity, were also calculated. Cough appearance was always assessed audiovisually. At an exercise level of 80% of anaerobic threshold, the median cough threshold was increased from a control value of 0.73 to 2.22 ml/min (P<0.01), i.e., cough sensitivity was downregulated. With VIH, the threshold increased from 0.73 to 2.22 ml/min (P<0.01), a similar downregulation. With exercise and VIH compared with control, mean UTC values at cough threshold were unchanged, i.e., control, 3.83 cm; exercise, 3.12 cm; VIH, 4.08 cm. The relationship of the fog nebulizer output/UTC value was linear in control conditions and logarithmic during both exercise and VIH. The perception of the magnitude of the UTC seems to be influenced by signals or sensations arising from exercising limb and thoracic muscles and/or by higher nervous (cortical) mechanisms. The results indicate that the adjustments brought into action by exercise-induced or voluntary hyperpnea exert inhibitory influences on the sensory and cognitive components of fog-induced cough.
Wang, Ching-Yi; Yeh, Chih-Jung; Wang, Chia-Wei; Wang, Chun-Feng; Lin, Yen-Ling
2011-03-01
To examine the effect of regular ongoing exercise lifestyle on mental and physical health in a group of independent community-dwelling Taiwanese older adults over a 2-year period. 197 older adults (mean age 72.5 years; 106 men and 91 women) who were independent in walking, instrumental and basic activities of daily living completed the baseline and a 2-year follow-up assessment. Older adults regularly performing exercises during the 2-year study period were grouped into regular exercise group; otherwise in the irregular exercise group. Baseline and follow-up assessments included a face-to-face interview and a battery of performance tests. The regular exercise group showed significantly less depression (P = 0.03) and tended to regress less on the performance tests (P = 0.025-0.410) across 2 years compared to the irregular exercise group. Regular exercise is important for maintaining or even improving mental and functional health, even for independent community-dwelling older adults. © 2010 The Authors. Australasian Journal on Ageing © 2010 ACOTA.
Voluntary Wheel Running in Mice.
Goh, Jorming; Ladiges, Warren
2015-12-02
Voluntary wheel running in the mouse is used to assess physical performance and endurance and to model exercise training as a way to enhance health. Wheel running is a voluntary activity in contrast to other experimental exercise models in mice, which rely on aversive stimuli to force active movement. This protocol consists of allowing mice to run freely on the open surface of a slanted, plastic saucer-shaped wheel placed inside a standard mouse cage. Rotations are electronically transmitted to a USB hub so that frequency and rate of running can be captured via a software program for data storage and analysis for variable time periods. Mice are individually housed so that accurate recordings can be made for each animal. Factors such as mouse strain, gender, age, and individual motivation, which affect running activity, must be considered in the design of experiments using voluntary wheel running. Copyright © 2015 John Wiley & Sons, Inc.
Voluntary Wheel Running in Mice
Goh, Jorming; Ladiges, Warren
2015-01-01
Voluntary wheel running in the mouse is used to assess physical performance and endurance and to model exercise training as a way to enhance health. Wheel running is a voluntary activity in contrast to other experimental exercise models in mice, which rely on aversive stimuli to force active movement. The basic protocol consists of allowing mice to run freely on the open surface of a slanted plastic saucer-shaped wheel placed inside a standard mouse cage. Rotations are electronically transmitted to a USB hub so that frequency and rate of running can be captured to a software program for data storage and analysis for variable time periods. Mice are individually housed so that accurate recordings can be made for each animal. Factors such as mouse strain, gender, age, and individual motivation, which affect running activity, must be considered in the design of experiments using voluntary wheel running. PMID:26629772
Torabi, Masoumeh; Pooriamehr, Alireza; Bigdeli, Imanollah; Miladi-Gorji, Hossein
2017-10-17
This study was designed to examine whether maternal swimming exercise during pregnancy would attenuate prenatally morphine-induced anxiety, depression and voluntary consumption of morphine in the pubertal male and female rat offspring. Pregnant rats during the development of morphine dependence were allowed to swim (30-45min/d, 3days per a week) on gestational days 11-18. Then, the pubertal male and female rat offspring were tested for the elevated plus-maze (EPM), sucrose preference test (SPT) and voluntary morphine consumption using a two-bottle choice (TBC) paradigm. The results showed that male and female rat offspring born of the swimmer morphine-dependent mothers exhibited an increase in EPM open arm time and entries, higher levels of sucrose preference than their sedentary control mothers. Voluntary consumption of morphine was less in the male and female rat offspring born of the swimmer morphine-dependent mothers as compared with their sedentary control mothers during three periods of the intake of drug. Thus, swimming exercise in pregnant morphine dependent mothers decreased anxiety, depressive-like behavior and also the voluntary morphine consumption in the pubertal male and female offspring, which may prevent prenatally morphine-induced behavioral sensitization in offspring. Copyright © 2017 Elsevier B.V. All rights reserved.
Zheng, Fei; Zhang, Ming; Ding, Qi; Sethna, Ferzin; Yan, Lily; Moon, Changjong; Yang, Miyoung
2016-01-01
Mental health and cognitive functions are influenced by both genetic and environmental factors. Although having active lifestyle with physical exercise improves learning and memory, how it interacts with the specific key molecular regulators of synaptic plasticity is largely unknown. Here, we examined the effects of voluntary running on long-term potentiation (LTP) and memory formation in mice lacking type 1 adenylyl cyclase (AC1), a neurospecific synaptic enzyme that contributes to Ca2+-stimulated cAMP production. Following 1 mo of voluntary running-wheel exercise, the impaired LTP and object recognition memory in AC1 knockout (KO) mice were significantly attenuated. Running up-regulated exon II mRNA level of BDNF (brain-derived neurotrophic factor), though it failed to increase exon I and IV mRNAs in the hippocampus of AC1 KO mice. Intrahippocampal infusion of recombinant BDNF was sufficient to rescue LTP and object recognition memory defects in AC1 KO mice. Therefore, voluntary running and exogenous BDNF application overcome the defective Ca2+-stimulated cAMP signaling. Our results also demonstrate that alteration in Ca2+-stimulated cAMP can affect the molecular outcome of physical exercise. PMID:27421897
Otsuka, Airi; Shiuchi, Tetsuya; Chikahisa, Sachiko; Shimizu, Noriyuki; Séi, Hiroyoshi
2015-11-01
It is well-established that exercise can influence psychological conditions, cognitive function, and energy metabolism in peripheral tissues including the skeletal muscle. However, it is not clear whether exercise can influence social interaction with others and alleviate defeat stress. This study investigated the effect of voluntary wheel running on impaired social interaction induced by chronic social defeat stress (SDS) using the resident-intruder social defeat model. Mice were divided into three groups: control, stress alone, and stress+exercise. SDS was performed by exposing C57BL/6 mice to retired ICR mice for 2.5 min. The C57BL/6 mice were continuously defeated by these resident (aggressor) mice and, following 5 days of SDS, experienced 2 days of rest with no SDS. Mice in the stress+exercise group were allowed to voluntarily run on a wheel for 2h after every SDS exposure. Two weeks later, compared to the control group, the stress group showed a higher ratio of time spent in the corner zone of a social interaction paradigm even though SDS did not elicit depressive- and anxiety-like behaviors. We also observed that voluntary exercise, which did not affect muscle weight and gene expression, decreased social avoidance behavior of stressed mice without clear changes in brain monoamine levels. Interestingly, food intake in the stress+exercise group was the greatest among the three groups. To test the effect of the exercise-induced increase in food intake on social behavior, we set up a pair-fed group where food intake was restricted. We then compared these mice to mice in the stress alone group. We found that the ratio of time spent in the corner zone of the social interaction test was not different between ad libitum- and pair-fed groups, although pair-fed mice spent more time in the corner zone when an aggressor mouse was present than when it was absent. In addition, pair-feeding did not show exercise-induced reductions of adrenal gland weight and enhanced the loss of body fat. Our findings indicate that voluntary exercise reduces social avoidance behavior induced by SDS. Further, we determined that SDS and exercise-induced increases in food intake partially influence energy metabolism and social avoidance behavior. Copyright © 2015 Elsevier Inc. All rights reserved.
Neuromuscular Fatigue during Prolonged Exercise in Hypoxia.
Jubeau, Marc; Rupp, Thomas; Temesi, John; Perrey, Stéphane; Wuyam, Bernard; Millet, Guillaume Y; Verges, Samuel
2017-03-01
Prolonged cycling exercise performance in normoxia is limited because of both peripheral and central neuromuscular impairments. It has been reported that cerebral perturbations are greater during short-duration exercise in hypoxia compared with normoxia. The purpose of this study was to test the hypothesis that central deficits are accentuated in hypoxia compared with normoxia during prolonged (three bouts of 80 min separated by 25 min) whole-body exercise at the same relative intensity. Ten subjects performed two sessions consisting of three 80-min cycling bouts at 45% of their relative maximal aerobic power in normoxia and hypoxia (FiO2 = 0.12). Before exercise and after each bout, maximal voluntary force, voluntary activation assessed with nerve stimulation and transcranial magnetic stimulation, corticospinal excitability (motor evoked potential), intracortical inhibition (cortical silent period), and electrical (M-wave) and contractile (twitch and doublet peak forces) properties of the knee extensors were measured. Prefrontal and motor cortical oxygenation was also recorded during each cycling bout in both conditions. A significant but similar force reduction (≈-22%) was observed at the end of exercise in normoxia and hypoxia. The modifications of voluntary activation assessed with transcranial magnetic stimulation and nerve stimulation, motor evoked potential, cortical silent period, and M-wave were also similar in both conditions. However, cerebral oxygenation was reduced in hypoxia compared with normoxia. These findings show that when performed at the same relative low intensity, prolonged exercise does not induce greater supraspinal fatigue in hypoxia compared with normoxia. Despite lower absolute exercise intensities in hypoxia, reduced brain O2 availability might contribute to similar amounts of central fatigue compared with normoxia.
Ishikawa, J; Ishikawa, A
2013-01-29
The axonal development of serotonin (5-HT)-, noradrenaline (NA)-, or tyrosine hydroxylase (TH)-containing monoaminergic neurons is affected by rearing conditions during the juvenile period. Impaired monoaminergic axonal development is implicated in the pathophysiology of emotional and cognitive dysfunction. On the other hand, exercise may have beneficial effects on emotional and learning performance in adults. We have examined whether voluntary running exercise during social isolation after early weaning (early weaning/social isolation; EI) from postnatal day (PD) 14-28 could prevent the impaired monoaminergic axonal development associated with EI. Compared with control animals reared with their dam and siblings until PD28, the EI animals showed lower density of 5-HT and NA axons in the dorsal-medial prefrontal cortex (mPFC) and basolateral nucleus of the amygdala and of NA- and TH-containing axons in the ventral-mPFC. These adverse effects of EI were not observed in rats taking part in voluntary running (EI+R) when these animals were compared to controls. The 5-HT axon density in the ventral-mPFC was significantly higher in the EI+R rats than that in the EI rats, although both these values were significantly lower than those in the control rats. The density of monoaminergic axons in the dentate gyrus and CA3 of the hippocampus was not affected by either EI or EI+R. These results suggest that the beneficial effects of voluntary running may be because of the modulation of monoaminergic axonal morphology. Our findings will hopefully provide the basis for future research into the beneficial effects of voluntary exercise during the juvenile period on brain development and emotional and cognitive performance. Copyright © 2012 IBRO. Published by Elsevier Ltd. All rights reserved.
Lee, Jada Chia-Di; Yau, Suk-Yu; Lee, Tatia M C; Lau, Benson Wui-Man; So, Kwok-Fai
2016-11-01
Adult neurogenesis within the dentate gyrus (DG) of the hippocampus can be increased by voluntary exercise but is suppressed under stress, such as with corticosterone (CORT). However, the effects of exercise and CORT on the cell proliferation of the other traditional neurogenic site, the subventricular zone (SVZ), have been reported with controversial results. In addition, the cotreatment effects of voluntary exercise and CORT have not been investigated. This study aims to determine whether CORT can suppress cell proliferation in the SVZ and whether this can be reversed by voluntary exercise. In the present study, the effect of chronic (4 weeks) CORT treatment and wheel running simultaneously on the SVZ cell proliferation of adult Sprague-Dawley rats was examined. The results showed that cell proliferation indicated by bromodeoxyuridine (BrdU) was increased by voluntary wheel running, whereas it was decreased by CORT treatment within the SVZ of the rats without running. For the rats with both CORT treatment and wheel running, it was found that the number of BrdU-labeled cells was approximately at the same level as the vehicle control group. Furthermore, these proliferating cells expressed doublecortin (DCX), a migrating neuroblast marker. Wheel running increased the percentage of BrdU-labeled cells expressing DCX in the SVZ, whereas CORT treatment decreased this percentage. Thus, chronic injection of CORT can decrease the number of proliferating cells, while wheel running can reverse the decrease in cell proliferation within the SVZ to normal levels. In addition, CORT can suppress the cell differentiation within the SVZ, and this was alleviated by wheel running as indicated by the double labeling of BrdU and DCX.
Gerrits, K. H. L.; Rittweger, J.; Felsenberg, D.; Stegeman, D. F.; de Haan, A.
2008-01-01
The contractile characteristics of fast voluntary and electrically evoked unilateral isometric knee extensions were followed in 16 healthy men during 56 days of horizontal bed rest and assessed at bed rest days 4, 7, 10, 17, 24, 38 and 56. Subjects were randomized to either an inactive control group (Ctrl, n = 8) or a resistive vibration exercise countermeasure group (RVE, n = 8). No changes were observed in neural activation, indicated by the amplitude of the surface electromyogram, or the initial rate of voluntary torque development in either group during bed rest. In contrast, for Ctrl, the force oscillation amplitude at 10 Hz stimulation increased by 48% (P < 0.01), the time to reach peak torque at 300 Hz stimulation decreased by 7% (P < 0.01), and the half relaxation time at 150 Hz stimulation tended to be slightly reduced by 3% (P = 0.056) after 56 days of bed rest. No changes were observed for RVE. Torque production at 10 Hz stimulation relative to maximal (150 Hz) stimulation was increased after bed rest for both Ctrl (15%; P < 0.05) and RVE (41%; P < 0.05). In conclusion, bed rest without exercise countermeasure resulted in intrinsic speed properties of a faster knee extensor group, which may have partly contributed to the preserved ability to perform fast voluntary contractions. The changes in intrinsic contractile properties were prevented by resistive vibration exercise, and voluntary motor performance remained unaltered for RVE subjects as well. PMID:18386049
Kangas, Julie L.; Baldwin, Austin S.; Rosenfield, David; Smits, Jasper A. J.; Rethorst, Chad D.
2016-01-01
Objective People with depressive symptoms typically report lower levels of exercise self-efficacy and are more likely to discontinue regular exercise than others, but it is unclear how depressive symptoms affect people’s exercise self-efficacy. Among potential sources of self-efficacy, engaging in the relevant behavior is the strongest (Bandura, 1997). Thus, we sought to clarify how depressive symptoms affect the same-day relation between engaging in exercise and self-efficacy during the initiation of regular exercise. Methods Participants (N=116) were physically inactive adults (35% reported clinically significant depressive symptoms at baseline) who initiated regular exercise and completed daily assessments of exercise minutes and self-efficacy for four weeks. We tested whether (a) self-efficacy differed on days when exercise did and did not occur, and (b) the difference was moderated by depressive symptoms. Mixed linear models were used to examine these relations. Results An interaction between exercise occurrence and depressive symptoms (p<.001) indicated that self-efficacy was lower on days when no exercise occurred, but this difference was significantly larger for people with high depressive symptoms. People with high depressive symptoms had lower self-efficacy than those with low depressive symptoms on days when no exercise occurred (p=.03), but self-efficacy did not differ on days when exercise occurred (p=.34). Conclusions During the critical period of initiating regular exercise, daily self-efficacy for people with high depressive symptoms is more sensitive to whether they exercised than for people with low depressive symptoms. This may partially explain why people with depression tend to have difficulty maintaining regular exercise. PMID:25110850
Hagberg, James M.; Rankinen, Tuomo; Loos, Ruth J. F.; Pérusse, Louis; Roth, Stephen M.; Wolfarth, Bernd; Bouchard, Claude
2014-01-01
This review of the exercise genomics literature emphasizes the strongest papers published in 2010 as defined by sample size, quality of phenotype measurements, quality of the exercise program or physical activity exposure, study design, adjustment for multiple testing, quality of genotyping, and other related study characteristics. One study on voluntary running wheel behavior was performed in 448 mice from 41 inbred strains. Several quantitative trait loci for running distance, speed, and duration were identified. Several studies on the alpha-3 actinin (ACTN3) R577X nonsense polymorphism and the angiotensin converting enzyme (ACE) I/D polymorphism were reported with no clear evidence for a joint effect, but the studies were generally underpowered. Skeletal muscle RNA abundance at baseline for 29 transcripts and 11 single nucleotide polymorphisms (SNPs) were both found to be predictive of the VO2max response to exercise training in one report from multiple laboratories. None of the 50 loci associated with adiposity traits is known to influence physical activity behavior. However, physical activity appears to reduce the obesity-promoting effects of at least 12 of these loci. Evidence continues to be strong for a role of gene-exercise interaction effects on the improvement in insulin sensitivity following exposure to regular exercise. SNPs in the cAMP responsive element binding position 1 (CREB1) gene were associated with training-induced heart rate response, in the C-reactive protein (CRP) gene with training-induced changes in left ventricular mass, and in the methylenetetrahydrofolate reductase (MTHFR) gene with carotid stiffness in low-fit individuals. We conclude that progress is being made but that high-quality research designs and replication studies with large sample sizes are urgently needed. PMID:21499051
PROGRESSIVE RESISTANCE VOLUNTARY WHEEL RUNNING IN THE mdx MOUSE
Call, Jarrod A.; McKeehen, James N.; Novotny, Susan A.; Lowe, Dawn A.
2012-01-01
Exercise training has been minimally explored as a therapy to mitigate the loss of muscle strength for individuals with Duchenne muscular dystrophy (DMD). Voluntary wheel running is known to elicit beneficial adaptations in the mdx mouse model for DMD. The aim of this study was to examine progressive resistance wheel running in mdx mice by comprehensively testing muscle function before, during, and after a 12-week training period. Male mdx mice at ~4 weeks age were randomized into three groups: Sedentary, Free Wheel, and Resist Wheel. Muscle strength was assessed via in vivo dorsiflexion torque, grip strength, and whole body tension intermittently throughout the training period. Contractility of isolated soleus muscles was analyzed at the study’s conclusion. Both Free and Resist Wheel mice had greater grip strength (~22%) and soleus muscle specific tetanic force (26%) compared with Sedentary mice. This study demonstrates that two modalities of voluntary exercise are beneficial to dystrophic muscle and may help establish parameters for an exercise prescription for DMD. PMID:21104862
ERIC Educational Resources Information Center
Quinn, Mary Ellen; Guion, W. Kent
2010-01-01
The health benefits of regular exercise are well documented, yet there has been limited success in the promotion of regular exercise in older African American women. Based on theoretical and evidence-based findings, the authors recommend a behavioral self-efficacy approach to guide exercise interventions in this high-risk population. Interventions…
Factors associated with exercise adherence among older adults. An individual perspective.
Rhodes, R E; Martin, A D; Taunton, J E; Rhodes, E C; Donnelly, M; Elliot, J
1999-12-01
This paper reviews the literature concerning factors at the individual level associated with regular exercise among older adults. Twenty-seven cross-sectional and 14 prospective/longitudinal studies met the inclusion criteria of a mean participant age of 65 years or older. The findings are summarised by demographics, exercise experience, exercise knowledge, physiological factors, psychological factors, activity preferences and perceived social influences. In general, education and exercise history correlate positively with regular exercise, while perceived physical frailty and poor health may provide the greatest barrier to exercise adoption and adherence in the elderly. Social-cognitive theories identify several constructs that correlate with the regular exercise behaviour of older adults, such as exercise attitude, perceived behavioural control/self-efficacy, perceived social support and perceived benefits/barriers to continued activity. As well, stage modelling may provide additional information about the readiness for regular exercise behaviour among older adults. However, relatively few studies among older adults exist compared with middle-aged and younger adults. Further, the majority of current research consists of cross-sectional designs or short prospective exercise trials among motivated volunteers that may lack external validity. Future research utilising longitudinal and prospective designs with representative samples of older adults will provide a better understanding of significant causal associations between individual factors and regular exercise behaviour.
Edwards, Thomas; Motl, Robert W; Pilutti, Lara A
2018-01-01
Exercise training is one strategy for improving cardiorespiratory fitness (CRF) in multiple sclerosis (MS); however, few modalities are accessible for those with severe mobility impairment. Functional electrical stimulation (FES) cycling is an adapted exercise modality with the potential for improving CRF in people with severe MS. The objective of this study was to characterize the cardiorespiratory response of acute voluntary cycling with FES in people with MS with severe mobility impairment, and to compare this response to passive leg cycling. Eleven participants with MS that required assistance for ambulation completed a single bout of voluntary cycling with FES or passive leg cycling. Oxygen consumption, heart rate (HR), work rate (WR), and ratings of perceived exertion (RPE) were recorded throughout the session. For the FES group, mean exercising oxygen consumption was 8.7 ± 1.8 mL/(kg·min) -1 , or 63.5% of peak oxygen consumption. Mean HR was 102 ± 9.7 bpm, approximately 76.4% of peak HR. Mean WR was 27.0 ± 9.2 W, or 57.3% of peak WR, and median RPE was 13.5 (interquartile range = 5.5). Active cycling with FES was significantly (p < 0.05) more intense than passive leg cycling based on oxygen consumption, HR, WR, and RPE during exercise. In conclusion, voluntary cycling with FES elicited an acute response that corresponded with moderate-to vigorous-intensity activity, suggesting that active cycling with FES can elicit a sufficient stimulus for improving CRF.
Beneficial effects of voluntary wheel running on the properties of dystrophic mouse muscle.
Hayes, A; Williams, D A
1996-02-01
Effects of voluntary exercise on the isometric contractile, fatigue, and histochemical properties of hindlimb dystrophic (mdx and 129ReJ dy/dy) skeletal muscles were investigated. Mice were allowed free access to a voluntary running wheel at 4 wk of age for a duration of 16 (mdx) or 5 (dy/dy) wk. Running performance of mdx mice (approximately 4 km/day at 1.6 km/h) was inferior to normal mice (approximately 6.5 km/day at 2.1 km/h). However, exercise improved the force output (approximately 15%) and the fatigue resistance of both C57BL/10 and mdx soleus muscles. These changes coincided with increased proportions of smaller type I fibers and decreased proportions of larger type IIa fibers in the mdx soleus. The extensor digitorum longus of mdx, but not of normal, mice also exhibited improved resistance to fatigue and conversion towards oxidative fiber types. The dy/dy animals were capable of exercising, yet ran significantly less than normal animals (approximately 0.5 km/day). Despite this, running increased the force output of the plantaris muscle (approximately 50%). Taken together, the results showed that exercise can have beneficial effects on dystrophic skeletal muscles.
Lee, Keon-Joo; Cho, Joo-Youn; Lee, Soon-Tae; Kim, Hwa Suk; Shim, Jun Hwa; Lee, Sang Kun; Kim, Manho
2017-01-01
Tryptophan metabolites regulate a variety of physiological processes, and their downstream metabolites enter the kynurenine pathway. Age-related changes of metabolites and activities of associated enzymes in this pathway are suggestable and would be potential intervention targets. Blood levels of serum tryptophan metabolites in C57BL/6 mice of different ages, ranging from 6 weeks to 10 months, were assessed using high-performance liquid chromatography, and the enzyme activities for each metabolic step were estimated using the ratio of appropriate metabolite levels. Mice were subjected to voluntary chronic aerobic exercise or high-fat diet to assess their ability to rescue age-related alterations in the kynurenine pathway. The ratio of serum kynurenic acid (KYNA) to 3-hydroxylkynurenine (3-HK) decreased with advancing age. Voluntary chronic aerobic exercise and high-fat diet rescued the decreased KYNA/3-HK ratio in the 6-month-old and 8-month-old mice groups. Tryptophan metabolites and their associated enzyme activities were significantly altered during aging, and the KYNA/3-HK ratio was a meaningful indicator of aging. Exercise and high-fat diet could potentially recover the reduction of the KYNA/3-HK ratio in the elderly. PMID:28680298
García-Capdevila, Sílvia; Portell-Cortés, Isabel; Torras-Garcia, Meritxell; Coll-Andreu, Margalida; Costa-Miserachs, David
2009-09-14
The effect of long-term voluntary exercise (running wheel) on anxiety-like behaviour (plus maze and open field) and learning and memory processes (object recognition and two-way active avoidance) was examined on Wistar rats. Because major individual differences in running wheel behaviour were observed, the data were analysed considering the exercising animals both as a whole and grouped according to the time spent in the running wheel (low, high, and very-high running). Although some variables related to anxiety-like behaviour seem to reflect an anxiogenic compatible effect, the view of the complete set of variables could be interpreted as an enhancement of defensive and risk assessment behaviours in exercised animals, without major differences depending on the exercise level. Effects on learning and memory processes were dependent on task and level of exercise. Two-way avoidance was not affected either in the acquisition or in the retention session, while the retention of object recognition task was affected. In this latter task, an enhancement in low running subjects and impairment in high and very-high running animals were observed.
Effects of voluntary wheel running on LPS-induced sickness behavior in aged mice.
Martin, Stephen A; Pence, Brandt D; Greene, Ryan M; Johnson, Stephanie J; Dantzer, Robert; Kelley, Keith W; Woods, Jeffrey A
2013-03-01
Peripheral stimulation of the innate immune system with LPS causes exaggerated neuroinflammation and prolonged sickness behavior in aged mice. Regular moderate intensity exercise has been shown to exert anti-inflammatory effects that may protect against inappropriate neuroinflammation and sickness in aged mice. The purpose of this study was to test the hypothesis that voluntary wheel running would attenuate LPS-induced sickness behavior and proinflammatory cytokine gene expression in ~22-month-old C57BL/6J mice. Mice were housed with a running wheel (VWR), locked-wheel (Locked), or no wheel (Standard) for 10 weeks, after which they were intraperitoneally injected with LPS across a range of doses (0.02, 0.08, 0.16, 0.33 mg/kg). VWR mice ran on average 3.5 km/day and lost significantly more body weight and body fat, and increased their forced exercise tolerance compared to Locked and Shoebox mice. VWR had no effect on LPS-induced anorexia, adipsia, weight-loss, or reductions in locomotor activity at any LPS dose when compared to Locked and Shoebox groups. LPS induced sickness behavior in a dose-dependent fashion (0.33>0.02 mg/kg). Twenty-four hours post-injection (0.33 mg/kg LPS or Saline) we found a LPS-induced upregulation of whole brain TNFα, IL-1β, and IL-10 mRNA, and increased IL-1β and IL-6 in the spleen and liver; these effects were not attenuated by VWR. We conclude that VWR does not reduce LPS-induced exaggerated or prolonged sickness behavior in aged animals, or 24h post-injection (0.33 mg/kg LPS or Saline) brain and peripheral proinflammatory cytokine gene expression. The necessity of the sickness response is critical for survival and may outweigh the subtle benefits of exercise training in aged animals. Copyright © 2012 Elsevier Inc. All rights reserved.
Sadeghi, Mahsa; Peeri, Maghsoud; Hosseini, Mir-Jamal
2016-09-01
Early life stressful events have detrimental effects on the brain and behavior, which are associated with the development of depression. Immune-inflammatory responses have been reported to contribute in the pathophysiology of depression. Many studies have reported on the beneficial effects of exercise against stress. However, underlying mechanisms through which exercise exerts its effects were poorly studied. Therefore, it applied maternal separation (MS), as a valid animal model of early-life adversity, in rats from postnatal day (PND) 2 to 14 for 180min per day. At PND 28, male Wistar albino rats were subjected to 5 experimental groups; 1) controls 2) MS rats 3) MS rats treated with fluoxetine 5mg/kg to PND 60, 4) MS rats that were subjected to voluntary running wheel (RW) exercise and 5) MS rats that were subjected to mandatory treadmill (TM) exercise until adulthood. At PND 60, depressive-like behaviors were assessed by using forced swimming test (FST), splash test, and sucrose preference test (SPT). Our results revealed that depressive-like behaviors following MS stress were associated with an increase in expression of toll-like receptor 4 (Tlr-4) and its main signaling protein, Myd88, in the hippocampal formation. Also, we found that voluntary (and not mandatory) physical exercise during adolescence is protected against depressant effects of early-life stress at least partly through mitigating the innate immune responses in the hippocampus. Copyright © 2016. Published by Elsevier Inc.
Tal-Krivisky, Katy; Kronfeld-Schor, Noga; Einat, Haim
2015-11-01
Physical exercise is a non-pharmacological treatment for affective disorders. The mechanisms of its effects are unknown although some suggest a relationship to synchronization of circadian rhythms. One way to explore mechanisms is to utilize animal models. We previously demonstrated that the diurnal fat sand rat is an advantageous model for studying the interactions between photoperiods and mood. The current study was designed to evaluate the effects of voluntary exercise on activity rhythms and anxiety and depression-like behaviors in sand rats as a step towards better understanding of the underlying mechanisms. Male sand rats were housed in short photoperiod (SP; 5h light/19 h dark) or neutral light (NP; 12h light/12h dark) regimens for 3 weeks and divided into subgroups with or without running wheels. Activity was monitored for 3 additional weeks and then animals were tested in the elevated plus-maze, the forced swim test and the social interaction test. Activity rhythms were enhanced by the running wheels. As hypothesized, voluntary exercise had significant effects on SP animals' anxiety- and depression-like behaviors but not on NP animals. Results are discussed in the context of interactions between physical exercise, circadian rhythms and mood. We suggest that the sand rat model can be used to explore the underlying mechanism of the effects of physical exercise for mood disorders. Copyright © 2015 Elsevier Inc. All rights reserved.
Belarbi, Karim; Burnouf, Sylvie; Fernandez-Gomez, Francisco-Jose; Laurent, Cyril; Lestavel, Sophie; Figeac, Martin; Sultan, Audrey; Troquier, Laetitia; Leboucher, Antoine; Caillierez, Raphaëlle; Grosjean, Marie-Eve; Demeyer, Dominique; Obriot, Hélène; Brion, Ingrid; Barbot, Bérangère; Galas, Marie-Christine; Staels, Bart; Humez, Sandrine; Sergeant, Nicolas; Schraen-Maschke, Susanna; Muhr-Tailleux, Anne; Hamdane, Malika; Buée, Luc; Blum, David
2011-08-01
Tau pathology is encountered in many neurodegenerative disorders known as tauopathies, including Alzheimer's disease. Physical activity is a lifestyle factor affecting processes crucial for memory and synaptic plasticity. Whether long-term voluntary exercise has an impact on Tau pathology and its pathophysiological consequences is currently unknown. To address this question, we investigated the effects of long-term voluntary exercise in the THY-Tau22 transgenic model of Alzheimer's disease-like Tau pathology, characterized by the progressive development of Tau pathology, cholinergic alterations and subsequent memory impairments. Three-month-old THY-Tau22 mice and wild-type littermates were assigned to standard housing or housing supplemented with a running wheel. After 9 months of exercise, mice were evaluated for memory performance and examined for hippocampal Tau pathology, cholinergic defects, inflammation and genes related to cholesterol metabolism. Exercise prevented memory alterations in THY-Tau22 mice. This was accompanied by a decrease in hippocampal Tau pathology and a prevention of the loss of expression of choline acetyltransferase within the medial septum. Whereas the expression of most cholesterol-related genes remained unchanged in the hippocampus of running THY-Tau22 mice, we observed a significant upregulation in mRNA levels of NPC1 and NPC2, genes involved in cholesterol trafficking from the lysosomes. Our data support the view that long-term voluntary physical exercise is an effective strategy capable of mitigating Tau pathology and its pathophysiological consequences. Copyright © 2011 Elsevier Inc. All rights reserved.
Downregulation of cough by exercise and voluntary hyperpnea.
Fontana, Giovanni A
2010-01-01
No information exists on the effects of hyperpnea on the sensory and cognitive aspects of coughing evoked by inhalation of tussigenic agents. The threshold for the cough reflex induced by inhalation of increasing concentrations of ultrasonically nebulized distilled water (fog), and the index of cough reflex sensitivity, was assessed in 12 healthy humans in control conditions, during exercise, and during voluntary isocapnic hyperventilation (VIH) to the same level as the exercise. The intensity of the urge-to-cough (UTC), a cognitive component of coughing, was also recorded throughout the trials. The log-log relationship between inhaled fog concentrations and the correspondingly evoked UTC values, an index of the perceptual magnitude of the UTC sensitivity, was also calculated. Cough appearance was always assessed audiovisually. At an exercise level of 80% of anaerobic threshold, the mean cough threshold was increased from a control value of 1.03 +/- 0.65 to 2.25 +/- 1.14 ml/min (p < 0.01), i.e., cough sensitivity was downregulated. With VIH, the mean (+/-SD) threshold increased from 1.03 +/- 0.65 to 2.42 +/- 1.16 ml/min (p < 0.01), a similar downregulation. With exercise and VIH compared with control, mean UTC values at cough threshold were not significantly changed: control, 3.83 +/- 1.11 cm; exercise, 3.12 +/- 0.82 cm; VIH, 4.08 +/- 1.67 cm. Since the slopes of the log fog concentration/log UTC value were approximately halved during exercise and VIH compared with control, the UTC sensitivity to fog was depressed (p < 0.01). The results indicate that the adjustments brought into action by exercise-induced or voluntary hyperventilation exert inhibitory influences on the sensory and cognitive components of fog-induced cough.
O'dell, Steven J; Marshall, John F
2014-09-01
Repeated administration of methamphetamine (mAMPH) to rodents in a single-day "binge" dosing regimen produces long-lasting damage to forebrain dopaminergic nerve terminals as measured by decreases in tissue dopamine (DA) content and levels of the plasmalemmal DA transporter (DAT). However, the midbrain cell bodies from which the DA terminals arise survive, and previous reports show that striatal DA markers return to control levels by 12 months post-mAMPH, suggesting long-term repair or regrowth of damaged DA terminals. We previously showed that when rats engaged in voluntary aerobic exercise for 3 weeks before and 3 weeks after a binge regimen of mAMPH, exercise significantly ameliorated mAMPH-induced decreases in striatal DAT. However, these data left unresolved the question of whether exercise protected against the initial neurotoxicity from the mAMPH binge or accelerated the repair of the damaged DA terminals. The present experiments were designed to test whether exercise protects against the mAMPH-induced injury. Adult male Sprague-Dawley rats were allowed to run in wheels for 3 weeks before an acute binge regimen of mAMPH or saline, then placed into nonwheel cages for an additional week before autoradiographic determination of striatal DAT binding. The autoradiographic findings showed that prior exercise provided no protection against mAMPH-induced damage to striatal DA terminals. These results, together with analyses from our previous experiments, suggest that voluntary exercise may accelerate the repair of mAMPH-damaged DA terminals and that voluntary exercise may be useful as therapeutic adjunct in the treatment mAMPH addicts. © 2014 Wiley Periodicals, Inc.
Bieuzen, François; Pournot, Hervé; Roulland, Rémy; Hausswirth, Christophe
2012-01-01
Electric muscle stimulation has been suggested to enhance recovery after exhaustive exercise by inducing an increase in blood flow to the stimulated area. Previous studies have failed to support this hypothesis. We hypothesized that the lack of effect shown in previous studies could be attributed to the technique or device used. To investigate the effectiveness of a recovery intervention using an electric blood-flow stimulator on anaerobic performance and muscle damage in professional soccer players after intermittent, exhaustive exercise. Randomized controlled clinical trial. National Institute of Sport, Expertise, and Performance (INSEP). Twenty-six healthy professional male soccer players. The athletes performed an intermittent fatiguing exercise followed by a 1-hour recovery period, either passive or using an electric blood-flow stimulator (VEINOPLUS). Participants were randomly assigned to a group before the experiment started. Performances during a 30-second all-out exercise test, maximal vertical countermovement jump, and maximal voluntary contraction of the knee extensor muscles were measured at rest, immediately after the exercise, and 1 hour and 24 hours later. Muscle enzymes indicating muscle damage (creatine kinase, lactate dehydrogenase) and hematologic profiles were analyzed before and 1 hour and 24 hours after the intermittent fatigue exercise. The electric-stimulation group had better 30-second all-out performances at 1 hour after exercise (P = .03) in comparison with the passive-recovery group. However, no differences were observed in muscle damage markers, maximal vertical countermovement jump, or maximal voluntary contraction between groups (P > .05). Compared with passive recovery, electric stimulation using this blood-flow stimulator improved anaerobic performance at 1 hour postintervention. No changes in muscle damage markers or maximal voluntary contraction were detected. These responses may be considered beneficial for athletes engaged in sports with successive rounds interspersed with short, passive recovery periods.
A comparative study of the aerobic fitness of 421 healthy adult males in Singapore.
Ong, T C
1993-02-01
The maximum oxygen consumption (VO2 max) of 421 healthy adult males from three ethnic groups (Chinese, Malay and Indian), aged 25-54 years, was assessed from direct analyses of their expired respiratory gases during all-out runs on a treadmill as a measure of aerobic fitness. The subjects were divided into three age groups: group 1, 25-34 years; group 2, 35-44 years; group 3, 45-54 years. Each group was further subdivided into non-exercisers (NE), non-regular exercisers (NRE) and regular exercisers (RE). Consistently within each age group, regular exercisers produced significantly higher VO2 max values compared to non-regular exercisers and non-exercisers. They also met the VO2 max requirements for heavy physical work and compared favourably with the standards of the National Physical Fitness Award of Singapore and Cooper's aerobic fitness classification standards based on North American males. Non-regular exercisers and non-exercisers only met the VO2 max requirements for moderate physical work and compared poorly in both of the aerobic fitness standards.
Torelli, Luiza; de Jarmy Di Bella, Zsuzsanna Ilona Katalin; Rodrigues, Claudinei Alves; Stüpp, Liliana; Girão, Manoel João Batista Castello; Sartori, Marair Gracio Ferreira
2016-11-01
The purpose of this study was to evaluate the effectiveness of adding voluntary pelvic floor muscle contraction (PFMC) to a Pilates exercise program in sedentary nulliparous women. Fifty-seven healthy nulliparous and physically inactive women were randomized to a Pilates exercise program (PEP) with or without PFMC. Forty-eight women concluded this study (24 participants for each group). Each woman was evaluated before and after the PEP, by a physiotherapist and an urogynecologist (UG). Neither of the professionals was revealed to them. This physiotherapist measured their pelvic floor muscle strength by using both a perineometer (Peritron) and vaginal palpation (Oxford Scale). The UG, who performed 3D perineal ultrasound examinations, collected their data and evaluated the results for pubovisceral muscle thickness and the levator hiatus area (LA). Both professionals were blinded to the group allocation. The protocol for both groups consisted of 24 bi-weekly 1-h individual sessions of Pilates exercises, developed by another physiotherapist who specializes in PFM rehabilitation and the Pilates technique. The PEP+ PFMC group showed significantly greater strength improvements than the PEP group when comparing the Oxford scale, vaginal pressure and pubovisceral muscle thickness during contraction measurements at baseline and post-treatment. Our findings suggest that adding a voluntary PFMC to a Pilates exercise program is more effective than Pilates alone in improving PFM strength in sedentary nulliparous women.
Core Muscle Activation in Suspension Training Exercises.
Cugliari, Giovanni; Boccia, Gennaro
2017-02-01
A quantitative observational laboratory study was conducted to characterize and classify core training exercises executed in a suspension modality on the base of muscle activation. In a prospective single-group repeated measures design, seventeen active male participants performed four suspension exercises typically associated with core training (roll-out, bodysaw, pike and knee-tuck). Surface electromyographic signals were recorded from lower and upper parts of rectus abdominis, external oblique, internal oblique, lower and upper parts of erector spinae muscles using concentric bipolar electrodes. The average rectified values of electromyographic signals were normalized with respect to individual maximum voluntary isometric contraction of each muscle. Roll-out exercise showed the highest activation of rectus abdominis and oblique muscles compared to the other exercises. The rectus abdominis and external oblique reached an activation higher than 60% of the maximal voluntary contraction (or very close to that threshold, 55%) in roll-out and bodysaw exercises. Findings from this study allow the selection of suspension core training exercises on the basis of quantitative information about the activation of muscles of interest. Roll-out and bodysaw exercises can be considered as suitable for strength training of rectus abdominis and external oblique muscles.
Dobashi, Kohei; Fujii, Naoto; Watanabe, Kazuhito; Tsuji, Bun; Sasaki, Yosuke; Fujimoto, Tomomi; Tanigawa, Satoru; Nishiyasu, Takeshi
2017-08-01
To investigate the effect of voluntary hypocapnic hyperventilation or moderate hypoxia on metabolic and heart rate responses during high-intensity intermittent exercise. Ten males performed three 30-s bouts of high-intensity cycling [Ex1 and Ex2: constant-workload at 80% of the power output in the Wingate anaerobic test (WAnT), Ex3: WAnT] interspaced with 4-min recovery periods under normoxic (Control), hypocapnic or hypoxic (2500 m) conditions. Hypocapnia was developed through voluntary hyperventilation for 20 min prior to Ex1 and during each recovery period. End-tidal CO 2 pressure was lower before each exercise in the hypocapnia than control trials. Oxygen uptake ([Formula: see text]) was lower in the hypocapnia than control trials (822 ± 235 vs. 1645 ± 245 mL min -1 ; mean ± SD) during Ex1, but not Ex2 or Ex3, without a between-trial difference in the power output during the exercises. Heart rates (HRs) during Ex1 (127 ± 8 vs. 142 ± 10 beats min -1 ) and subsequent post-exercise recovery periods were lower in the hypocapnia than control trials, without differences during or after Ex2, except at 4 min into the second recovery period. [Formula: see text] did not differ between the control and hypoxia trials throughout. These results suggest that during three 30-s bouts of high-intensity intermittent cycling, (1) hypocapnia reduces the aerobic metabolic rate with a compensatory increase in the anaerobic metabolic rate during the first but not subsequent exercises; (2) HRs during the exercise and post-exercise recovery periods are lowered by hypocapnia, but this effect is diminished with repeated exercise bouts, and (3) moderate hypoxia (2500 m) does not affect the metabolic response during exercise.
Advances in exercise, fitness, and performance genomics in 2010.
Hagberg, James M; Rankinen, Tuomo; Loos, Ruth J F; Pérusse, Louis; Roth, Stephen M; Wolfarth, Bernd; Bouchard, Claude
2011-05-01
This review of the exercise genomics literature emphasizes the strongest articles published in 2010 as defined by sample size, quality of phenotype measurements, quality of the exercise program or physical activity exposure, study design, adjustment for multiple testing, quality of genotyping, and other related study characteristics. One study on voluntary running wheel behavior was performed in 448 mice from 41 inbred strains. Several quantitative trait loci for running distance, speed, and duration were identified. Several studies on the alpha-3 actinin (ACTN3) R577X nonsense polymorphism and the angiotensin-converting enzyme (ACE) I/D polymorphism were reported with no clear evidence for a joint effect, but the studies were generally underpowered. Skeletal muscle RNA abundance at baseline for 29 transcripts and 11 single nucleotide polymorphisms (SNPs) were both found to be predictive of the V˙O2max response to exercise training in one report from multiple laboratories. None of the 50 loci associated with adiposity traits are known to influence physical activity behavior. However, physical activity seems to reduce the obesity-promoting effects of at least 12 of these loci. Evidence continues to be strong for a role of gene-exercise interaction effects on the improvement in insulin sensitivity after exposure to regular exercise. SNPs in the cAMP-responsive element binding position 1 (CREB1) gene were associated with training-induced HR response, in the C-reactive protein (CRP) gene with training-induced changes in left ventricular mass, and in the methylenetetrahydrofolate reductase (MTHFR) gene with carotid stiffness in low-fit individuals. We conclude that progress is being made but that high-quality research designs and replication studies with large sample sizes are urgently needed. © 2011 by the American College of Sports Medicine
Kirkby, Stephen E; Hayes, Don; Parsons, Jonathan P; Wisely, Clayton E; Kopp, Ben; McCoy, Karen S; Mastronarde, John G
2015-10-01
Exercise-induced bronchoconstriction (EIB) has not been well studied in cystic fibrosis (CF), and eucapnic voluntary hyperventilation (EVH) testing has not been used as an objective assessment of EIB in CF to date. A prospective cohort pilot study was completed where standard EVH testing was completed by 10 CF patients with forced expiratory volume in 1 s (FEV1) ≥70% of predicted. All patients also completed a cardiopulmonary exercise test (CPET) with pre- and post-CPET spirometry as a comparative method of detecting EIB. No adverse events occurred with EVH testing. A total of 20% (2/10) patients were diagnosed with EIB by means of EVH. Both patients had clinical symptoms consistent with EIB. No patient had a CPET-based exercise challenge consistent with EIB. EVH testing was safe and effective in the objective assessment for EIB in patients with CF who had well-preserved lung function. It may be a more sensitive method of detecting EIB then exercise challenge.
Claghorn, Gerald C; Fonseca, Ivana A T; Thompson, Zoe; Barber, Curtis; Garland, Theodore
2016-07-01
Serotonin (5-hydroxytryptamine; 5-HT) is implicated in central fatigue, and 5-HT1A pharmaceuticals are known to influence locomotor endurance in both rodents and humans. We studied the effects of a 5-HT1A agonist and antagonist on both forced and voluntary exercise in the same set of mice. This cohort of mice was taken from 4 replicate lines of mice that have been selectively bred for high levels of voluntary wheel running (HR) as compared with 4 non-selected control (C) lines. HR mice run voluntarily on wheels about 3× as many revolutions per day as compared with C, and have greater endurance during forced treadmill exercise. We hypothesized that drugs targeting serotonin receptors would have differential effects on locomotor behavior of HR and C mice. Subcutaneous injections of a 5-HT1A antagonist (WAY-100,635), a combination of 5-HT1A agonist and a 5-HT1A/1B partial agonist (8-OH-DPAT+pindolol), or physiological saline were given to separate groups of male mice before the start of each of three treadmill trials. The same manipulations were used later during voluntary wheel running on three separate nights. WAY-100,635 decreased treadmill endurance in HR but not C mice (dose by linetype interaction, P=0.0014). 8-OH-DPAT+pindolol affected treadmill endurance (P<0.0001) in a dose-dependent manner, with no dose by linetype interaction. Wheel running was reduced in HR but not C mice at the highest dose of 8-OH-DPAT+pindolol (dose by linetype, P=0.0221), but was not affected by WAY-100,635 treatment. These results provide further evidence that serotonin signaling is an important determinant of performance during both forced and voluntary exercise. Although the elevated wheel running of HR mice does not appear related to alterations in serotonin signaling, their enhanced endurance capacity does. More generally, our results indicate that both forced and voluntary exercise can be affected by an intervention that acts (primarily) centrally. Copyright © 2016 Elsevier Inc. All rights reserved.
Garland, Theodore; Schutz, Heidi; Chappell, Mark A.; Keeney, Brooke K.; Meek, Thomas H.; Copes, Lynn E.; Acosta, Wendy; Drenowatz, Clemens; Maciel, Robert C.; van Dijk, Gertjan; Kotz, Catherine M.; Eisenmann, Joey C.
2011-01-01
Mammals expend energy in many ways, including basic cellular maintenance and repair, digestion, thermoregulation, locomotion, growth and reproduction. These processes can vary tremendously among species and individuals, potentially leading to large variation in daily energy expenditure (DEE). Locomotor energy costs can be substantial for large-bodied species and those with high-activity lifestyles. For humans in industrialized societies, locomotion necessary for daily activities is often relatively low, so it has been presumed that activity energy expenditure and DEE are lower than in our ancestors. Whether this is true and has contributed to a rise in obesity is controversial. In humans, much attention has centered on spontaneous physical activity (SPA) or non-exercise activity thermogenesis (NEAT), the latter sometimes defined so broadly as to include all energy expended due to activity, exclusive of volitional exercise. Given that most people in Western societies engage in little voluntary exercise, increasing NEAT may be an effective way to maintain DEE and combat overweight and obesity. One way to promote NEAT is to decrease the amount of time spent on sedentary behaviours (e.g. watching television). The effects of voluntary exercise on other components of physical activity are highly variable in humans, partly as a function of age, and have rarely been studied in rodents. However, most rodent studies indicate that food consumption increases in the presence of wheels; therefore, other aspects of physical activity are not reduced enough to compensate for the energetic cost of wheel running. Most rodent studies also show negative effects of wheel access on body fat, especially in males. Sedentary behaviours per se have not been studied in rodents in relation to obesity. Several lines of evidence demonstrate the important role of dopamine, in addition to other neural signaling networks (e.g. the endocannabinoid system), in the control of voluntary exercise. A largely separate literature points to a key role for orexins in SPA and NEAT. Brain reward centers are involved in both types of physical activities and eating behaviours, likely leading to complex interactions. Moreover, voluntary exercise and, possibly, eating can be addictive. A growing body of research considers the relationships between personality traits and physical activity, appetite, obesity and other aspects of physical and mental health. Future studies should explore the neurobiology, endocrinology and genetics of physical activity and sedentary behaviour by examining key brain areas, neurotransmitters and hormones involved in motivation, reward and/or the regulation of energy balance. PMID:21177942
The Effects of Regular Exercise on the Physical Fitness Levels
ERIC Educational Resources Information Center
Kirandi, Ozlem
2016-01-01
The purpose of the present research is investigating the effects of regular exercise on the physical fitness levels among sedentary individuals. The total of 65 sedentary male individuals between the ages of 19-45, who had never exercises regularly in their lives, participated in the present research. Of these participants, 35 wanted to be…
Haskell-Luevano, Carrie; Schaub, Jay W; Andreasen, Amy; Haskell, Kim R; Moore, Marcus C; Koerper, Lorraine M; Rouzaud, Francois; Baker, Henry V; Millard, William J; Walter, Glenn; Litherland, S A; Xiang, Zhimin
2009-02-01
Exercise is a mechanism for maintenance of body weight in humans. Morbidly obese human patients have been shown to possess single nucleotide polymorphisms in the melanocortin-4 receptor (MC4R). MC4R knockout mice have been well characterized as a genetic model that possesses phenotypic metabolic disorders, including obesity, hyperphagia, hyperinsulinemia, and hyperleptinemia, similar to those observed in humans possessing dysfunctional hMC4Rs. Using this model, we examined the effect of voluntary exercise of MC4R knockout mice that were allowed access to a running wheel for a duration of 8 wk. Physiological parameters that were measured included body weight, body composition of fat and lean mass, food consumption, body length, and blood levels of cholesterol and nonfasted glucose, insulin, and leptin. At the termination of the experiment, hypothalamic mRNA expression levels of neuropeptide Y (NPY), agouti-related protein (AGRP), proopiomelanocortin (POMC), cocaine- and amphetamine-regulated transcript (CART), orexin, brain-derived neurotropic factor (BDNF), phosphatase with tensin homology (Pten), melanocortin-3 receptor (MC3R), and NPY-Y1R were determined. In addition, islet cell distribution and function in the pancreas were examined. In the exercising MC4R knockout mice, the pancreatic islet cell morphology and other physiological parameters resembled those observed in the wild-type littermate controls. Gene expression profiles identified exercise as having a significant effect on hypothalamic POMC, orexin, and MC3R levels. Genotype had a significant effect on AGRP, POMC, CART, and NPY-Y1R, with an exercise and genotype interaction effect on NPY gene expression. These data support the hypothesis that voluntary exercise can prevent the genetic predisposition of melanocortin-4 receptor-associated obesity and diabetes.
Duffield, Rob; King, Monique; Skein, Melissa
2009-06-01
This study investigated the effects of hot conditions on the acute recovery of voluntary and evoked muscle performance and physiological responses following intermittent exercise. Seven youth male and six female team-sport athletes performed two sessions separated by 7 d, involving a 30-min exercise protocol and 60-min passive recovery in either 22 degrees C or 33 degrees C and 40% relative humidity. The exercise protocol involved a 20-s maximal sprint every 5 min, separated by constant-intensity exercise at 100 W on a cycle ergometer. Maximal voluntary contraction (MVC) and a resting evoked twitch (Pf) of the right knee extensors were assessed before and immediately following exercise and again 15, 30, and 60 min postexercise, and capillary blood was obtained at the same time points to measure lactate, pH, and HCO3. During and following exercise, core temperature, heart rate and rating of perceived exertion (RPE) were also measured. No differences (P=0.73 to 0.95) in peak power during repeated sprints were present between conditions. Postexercise MVC was reduced (P<.05) in both conditions and a moderate effect size (d=0.60) indicated a slower percentage MVC recovered by 60 min in the heat (83+/-10 vs 74+/-11% recovered). Both heart rate and core temperature were significantly higher (P<.05) during recovery in the heat. Capillary blood values did not differ between conditions at any time point, whereas sessional RPE was higher 60 min postexercise in the heat. The current data suggests that passive recovery in warm temperatures not only delays cardiovascular and thermal recovery, but may also slow the recovery of MVC and RPE.
Voluntary Running-Wheel Exercise Decreases the Threshold for Rewarding Intracranial Self-Stimulation
Morris, Michael J.; Na, Elisa S.; Johnson, Alan Kim
2015-01-01
Physical exercise has mood-enhancing and antidepressant properties although the mechanisms underlying these effects are not known. The present experiment investigated the effects of prolonged access to a running wheel on electrical self-stimulation of the lateral hypothalamus (LHSS), a measure of hedonic state, in rats. Rats with continuous voluntary access to a running wheel for either 2 or 5 weeks exhibited dramatic leftward shifts in the effective current 50 (ECu50; current value that supports half of maximum responding) of their LHSS current-response functions compared to their baselines, indicating a decrease in reward threshold, whereas control rats current-response functions after 2 or 5 weeks were not significantly different from baseline. An inverse correlation existed between the change in ECu50 from baseline and the amount an animal had run in the day prior to LHSS testing, indicating that animals that exhibited higher levels of running showed a more robust decrease in LHSS threshold. We conclude that long-term voluntary exercise increases sensitivity to rewarding stimuli, which may contribute to its antidepressant properties. PMID:22845707
Morris, Michael J; Na, Elisa S; Johnson, Alan Kim
2012-08-01
Physical exercise has mood-enhancing and antidepressant properties although the mechanisms underlying these effects are not known. The present experiment investigated the effects of prolonged access to a running wheel on electrical self-stimulation of the lateral hypothalamus (LHSS), a measure of hedonic state, in rats. Rats with continuous voluntary access to a running wheel for either 2 or 5 weeks exhibited dramatic leftward shifts in the effective current 50 (ECu50; current value that supports half of maximum responding) of their LHSS current-response functions compared to their baselines, indicating a decrease in reward threshold, whereas control rats current-response functions after 2 or 5 weeks were not significantly different from baseline. An inverse correlation existed between the change in ECu50 from baseline and the amount an animal had run in the day prior to LHSS testing, indicating that animals that exhibited higher levels of running showed a more robust decrease in LHSS threshold. We conclude that long-term voluntary exercise increases sensitivity to rewarding stimuli, which may contribute to its antidepressant properties.
Hopkins, Michael E; Sharma, Mita; Evans, Gretchen C; Bucci, David J
2009-06-01
The effects of voluntary physical exercise on attentional function and social behavior were examined in male and female spontaneously hypertensive rats (SHR), a commonly used animal model of attention-deficit/hyperactivity disorder (ADHD). Rats in the exercise groups had free access to a running wheel for 2 weeks and then all rats received nonreinforced presentations of a visual stimulus (light) during the 1st training session, followed by daily sessions in which the light was paired with food. Nonexercising male and female SHR rats exhibited more unconditioned orienting behavior than Wistar-Kyoto rats. SHRs also exhibited impaired conditioning when the light was paired with food. Exercise reduced orienting in female SHRs but not in male SHRs. In the social interaction task, nonexercising male and female SHRs interacted more with an unfamiliar rat than Wistar-Kyoto rats. Exercise reduced the number of social interactions in female SHRs but not male SHRs. There were no differences in general locomotor activity observed between the nonexercising and exercising SHRs. These data indicate that exercise may preferentially benefit female SHRs, and has implications for using exercise as an intervention for ADHD and for understanding sex differences in the effects of exercise on behavior. Copyright (c) 2009 APA, all rights reserved.
Cholewa, Jason; Guimarães-Ferreira, Lucas; da Silva Teixeira, Tamiris; Naimo, Marshall Alan; Zhi, Xia; de Sá, Rafaele Bis Dal Ponte; Lodetti, Alice; Cardozo, Mayara Quadros; Zanchi, Nelo Eidy
2014-09-01
Human muscle hypertrophy brought about by voluntary exercise in laboratorial conditions is the most common way to study resistance exercise training, especially because of its reliability, stimulus control and easy application to resistance training exercise sessions at fitness centers. However, because of the complexity of blood factors and organs involved, invasive data is difficult to obtain in human exercise training studies due to the integration of several organs, including adipose tissue, liver, brain and skeletal muscle. In contrast, studying skeletal muscle remodeling in animal models are easier to perform as the organs can be easily obtained after euthanasia; however, not all models of resistance training in animals displays a robust capacity to hypertrophy the desired muscle. Moreover, some models of resistance training rely on voluntary effort, which complicates the results observed when animal models are employed since voluntary capacity is something theoretically impossible to measure in rodents. With this information in mind, we will review the modalities used to simulate resistance training in animals in order to present to investigators the benefits and risks of different animal models capable to provoke skeletal muscle hypertrophy. Our second objective is to help investigators analyze and select the experimental resistance training model that best promotes the research question and desired endpoints. © 2013 Wiley Periodicals, Inc.
Lark, Daniel S; Kwan, Jamie R; McClatchey, P Mason; James, Merrygay N; James, Freyja D; Lighton, John R B; Lantier, Louise; Wasserman, David H
2018-05-01
Exercise alone is often ineffective for treating obesity despite the associated increase in metabolic requirements. Decreased nonexercise physical activity has been implicated in this resistance to weight loss, but the mechanisms responsible are unclear. We quantified the metabolic cost of nonexercise activity, or "off-wheel" activity (OWA), and voluntary wheel running (VWR) and examined whether changes in OWA during VWR altered energy balance in chow-fed C57BL/6J mice ( n = 12). Energy expenditure (EE), energy intake, and behavior (VWR and OWA) were continuously monitored for 4 days with locked running wheels followed by 9 days with unlocked running wheels. Unlocking the running wheels increased EE as a function of VWR distance. The metabolic cost of exercise (kcal/m traveled) decreased with increasing VWR speed. Unlocking the wheel led to a negative energy balance but also decreased OWA, which was predicted to mitigate the expected change in energy balance by ∼45%. A novel behavioral circuit involved repeated bouts of VWR, and roaming was discovered and represented novel predictors of VWR behavior. The integrated analysis described here reveals that the weight loss effects of voluntary exercise can be countered by a reduction in nonexercise activity. © 2018 by the American Diabetes Association.
Kennedy, David S; Fitzpatrick, Siobhan C; Gandevia, Simon C; Taylor, Janet L
2015-02-15
During fatiguing upper limb exercise, maintained firing of group III/IV muscle afferents can limit voluntary drive to muscles within the same limb. It is not known if this effect occurs in the lower limb. We investigated the effects of group III/IV muscle afferent firing from fatigued ipsilateral and contralateral extensor muscles and ipsilateral flexor muscles of the knee on voluntary activation of the knee extensors. In three experiments, we examined voluntary activation of the knee extensors by measuring changes in superimposed twitches evoked by femoral nerve stimulation. Subjects attended on 2 days for each experiment. On one day a sphygmomanometer cuff occluded blood flow of the fatigued muscles to maintain firing of group III/IV muscle afferents. After a 2-min extensor contraction (experiment 1; n = 9), mean voluntary activation was lower with than without maintained ischemia (47 ± 19% vs. 87 ± 8%, respectively; P < 0.001). After a 2-min knee flexor maximal voluntary contraction (MVC) (experiment 2; n = 8), mean voluntary activation was also lower with than without ischemia (59 ± 21% vs. 79 ± 9%; P < 0.01). After the contralateral (left) MVC (experiment 3; n = 8), mean voluntary activation of the right leg was similar with or without ischemia (92 ± 6% vs. 93 ± 4%; P = 0.65). After fatiguing exercise, activity in group III/IV muscle afferents reduces voluntary activation of the fatigued muscle and nonfatigued antagonist muscles in the same leg. However, group III/IV muscle afferents from the fatigued left leg had no effect on the unfatigued right leg. This suggests that any "crossover" of central fatigue in the lower limbs is not mediated by group III/IV muscle afferents. Copyright © 2015 the American Physiological Society.
Rava, Anni; Pihlak, Anu; Ereline, Jaan; Gapeyeva, Helena; Kums, Tatjana; Purge, Priit; Jürimäe, Jaak; Pääsuke, Mati
2017-01-01
The purpose of this study was to evaluate the differences in body composition, neuromuscular performance, and mobility in healthy, regularly exercising and inactive older women, and examine the relationship between skeletal muscle indices and mobility. Overall, 32 healthy older women participated. They were divided into groups according to their physical activity history as regularly exercising (n = 22) and inactive (n = 10) women. Body composition, hand grip strength, leg extensor muscle strength, rapid force development, power output, and mobility indices were assessed. Regularly exercising women had lower fat mass and higher values for leg extensor muscle strength and muscle quality, and also for mobility. Leg extensor muscle strength and power output during vertical jumping and appendicular lean mass per unit of body mass were associated with mobility in healthy older women. It was concluded that long-term regular exercising may have beneficial effects on body composition and physical function in older women.
Engi, Sheila A.; Planeta, Cleopatra S.; Crestani, Carlos C.
2016-01-01
This study evaluated the effects of voluntary ethanol consumption combined with testosterone treatment on cardiovascular function in rats. Moreover, we investigated the influence of exercise training on these effects. To this end, male rats were submitted to low-intensity training on a treadmill or kept sedentary while concurrently being treated with ethanol for 6 weeks. For voluntary ethanol intake, rats were given access to two bottles, one containing ethanol and other containing water, three 24-hour sessions per week. In the last two weeks (weeks 5 and 6), animals underwent testosterone treatment concurrently with exercise training and exposure to ethanol. Ethanol consumption was not affected by either testosterone treatment or exercise training. Also, drug treatments did not influence the treadmill performance improvement evoked by training. However, testosterone alone, but not in combination with ethanol, reduced resting heart rate. Moreover, combined treatment with testosterone and ethanol reduced the pressor response to the selective α1-adrenoceptor agonist phenylephrine. Treatment with either testosterone or ethanol alone also affected baroreflex activity and enhanced depressor response to acetylcholine, but these effects were inhibited when drugs were coadministrated. Exercise training restored most cardiovascular effects evoked by drug treatments. Furthermore, both drugs administrated alone increased pressor response to phenylephrine in trained animals. Also, drug treatments inhibited the beneficial effects of training on baroreflex function. In conclusion, the present results suggest a potential interaction between toxic effects of testosterone and ethanol on cardiovascular function. Data also indicate that exercise training is an important factor influencing the effects of these substances. PMID:26760038
Regular aquatic exercise for chronic kidney disease patients: a 10-year follow-up study.
Pechter, Ülle; Raag, Mait; Ots-Rosenberg, Mai
2014-09-01
Chronic kidney disease (CKD) patients not yet in dialysis can benefit from increased physical activity; however, the safety and outcomes of aquatic exercise have not been investigated in observational studies. The aim of this study was to analyze association of 10 years of regularly performed aquatic exercise with the study endpoint--that is, all-cause death or start of dialysis. Consecutive CKD patients were included in the study in January 2002. The exercise group (n=7) exercised regularly under the supervision of physiotherapist for 10 years; the control group (n=9), matched in terms of age and clinical parameters, remained sedentary. Low-intensity aerobic aquatic exercise was performed regularly twice a week; 32 weeks or more of exercise therapy sessions were conducted annually. None of the members of the aquatic exercise group reached dialysis or died in 10 years. In the sedentary control group, 55% reached the study endpoint--renal replacement therapy (n=2) or all-cause death (n=3). Occurrence of the study endpoint, compared using the exact multinomial test with unconditional margins, was statistically significantly different (P-value: 0.037) between the study groups. Regular supervised aquatic exercise arrested CKD progression. There was a statistically significant difference between the sedentary group and the exercise group in reaching renal replacement therapy or all-cause death in a follow-up time of 10 years.
Kennedy, David S; McNeil, Chris J; Gandevia, Simon C; Taylor, Janet L
2014-02-15
With fatiguing exercise, firing of group III/IV muscle afferents reduces voluntary activation and force of the exercised muscles. These afferents can also act across agonist/antagonist pairs, reducing voluntary activation and force in nonfatigued muscles. We hypothesized that maintained firing of group III/IV muscle afferents after a fatiguing adductor pollicis (AP) contraction would decrease voluntary activation and force of AP and ipsilateral elbow flexors. In two experiments (n = 10) we examined voluntary activation of AP and elbow flexors by measuring changes in superimposed twitches evoked by ulnar nerve stimulation and transcranial magnetic stimulation of the motor cortex, respectively. Inflation of a sphygmomanometer cuff after a 2-min AP maximal voluntary contraction (MVC) blocked circulation of the hand for 2 min and maintained firing of group III/IV muscle afferents. After a 2-min AP MVC, maximal AP voluntary activation was lower with than without ischemia (56.2 ± 17.7% vs. 76.3 ± 14.6%; mean ± SD; P < 0.05) as was force (40.3 ± 12.8% vs. 57.1 ± 13.8% peak MVC; P < 0.05). Likewise, after a 2-min AP MVC, elbow flexion voluntary activation was lower with than without ischemia (88.3 ± 7.5% vs. 93.6 ± 3.9%; P < 0.05) as was torque (80.2 ± 4.6% vs. 86.6 ± 1.0% peak MVC; P < 0.05). Pain during ischemia was reported as Moderate to Very Strong. Postfatigue firing of group III/IV muscle afferents from the hand decreased voluntary drive and force of AP. Moreover, this effect decreased voluntary drive and torque of proximal unfatigued muscles, the elbow flexors. Fatigue-sensitive group III/IV muscle nociceptors act to limit voluntary drive not only to fatigued muscles but also to unfatigued muscles within the same limb.
Sahafi, Ehtramolsadat; Peeri, Maghsoud; Hosseini, Mir-Jamal; Azarbyjani, Mohammad Ali
2018-01-01
Early life stress (ELS) is known as a risk factor for the development of depression and its associated comorbidities, such as cardiomyopathy in depressed patients. Mitochondrial dysfunction plays a critical role in the pathophysiology of depression and cardiovascular diseases. Evidence indicates that regular physical activity has therapeutic effects on both mood and cardiovascular disorders. Therefore, the voluntary running wheel exercise (RW) during adolescence may be able to attenuate the negative impact of maternal separation stress (MS) as a valid animal model of depression on the behavior and cardiac mitochondrial function of adult rats. To do this, we applied MS to rat pups by separating them from their mothers for 180min during the postnatal day (PND) 2 to PND 14. Next, the animals were randomly divided into different treatment groups (fluoxetine [FLX] and RW) and received the treatments during adolescence, between PND 28 to PND 60. Then, we evaluated the effects of MS on the rat behaviors test, and finally, we assessed reactive oxygen species, mitochondrial glutathione, ATP and cytochrome c release in the cardiac tissue of animals. Our results showed that depressive-like behaviors following MS in adult male rats were associated with oxidative stress in cardiac tissue. Further, we found that treating animals with chronic FLX or RW during adolescence improved animal's behavior as well as cardiac mitochondrial function. The results of this study highlight the importance of adolescence as a period during which treating animals with non-pharmacological agents has significant protective effects against the negative influence of ELS on mood and cardiac energy hemostasis. Copyright © 2017 Elsevier Inc. All rights reserved.
Ghorbanzadeh, Vajihe; Mohammadi, Mustafa; Dariushnejad, Hassan; Abhari, Alireza; Chodari, Leila; Mohaddes, Gisou
2017-07-01
Crocin is reported to have a wide range of biological activities such as cardiovascular protection. Recent epidemiologic studies have shown that exercise reduces cardiovascular morbidity and mortality in the general population. The aim of this study was to evaluate the effect of crocin and voluntary exercise on miR-126 and miR-210 expression levels and angiogenesis in the heart tissue. Animals were divided into 4 groups: control, exercise, crocin, and exercise-crocin. Animals received oral administration of crocin (50 mg/kg) or performed voluntary exercise alone or together for 8 weeks. Akt, ERK1/2 protein levels, miR-126 and miR-210 expression were measured in the heart tissue. Immunohistochemical method was used to detect CD31 in the heart tissue. Akt and ERK1/2 levels of the heart tissue were higher in crocin treated group and voluntary exercise trained group after 8 weeks. Combination of crocin and exercise also significantly enhanced Akt and ERK1/2 levels in the heart tissue. MiR-126, miR-210 expression and CD31 in the heart increased in both crocin and voluntary exercise groups compared with control group. In addition, combination of exercise and crocin amplified their effect on miR-126 and miR-210 expression, and angiogenesis. Crocin and voluntary exercise improve heart angiogenesis possibly through enhancement of miR-126 and miR-210 expression. Voluntary exercise and diet supplementation with crocin could have beneficial effects in prevention of cardiovascular disease. A crocina tem uma vasta gama de atividades biológicas, tais como a proteção cardiovascular. Estudos epidemiológicos recentes demonstraram que o exercício reduz a morbidade e a mortalidade cardiovasculares na população em geral. O objetivo deste estudo foi avaliar o efeito da crocina e do exercício voluntário nos níveis de expressão miR-126 e miR-210 e na angiogênese no tecido cardíaco. Os animais foram divididos em 4 grupos: controle, exercício, crocina e exercício-crocina. Os animais receberam a administração oral de crocina (50 mg/kg) ou realizaram exercício voluntário sozinhos ou em conjunto durante 8 semanas. Os níveis de proteína Akt, ERK1/2, e a expressão de miR-126 e miR-210 foram medidos no tecido cardíaco. O método imunohistoquímico foi utilizado para detectar CD31 no tecido cardíaco. Os níveis de Akt e ERK1/2 do tecido cardíaco foram maiores no grupo tratado com crocina e no grupo de exercício voluntário após 8 semanas. A combinação de crocina e exercício também aumentou significativamente os níveis de Akt e ERK1/2 no tecido cardíaco. A expressão de MiR-126, miR-210 e CD31 no coração aumentou tanto em no grupo de crocina como no grupo de exercício voluntário em comparação com o grupo de controle. Além disso, a combinação de exercício e crocina amplificou seu efeito na expressão de miR-126 e miR-210 e angiogênese. A Crocina e o exercício voluntário melhoram a angiogênese cardíaca possivelmente através do aumento da expressão de miR-126 e miR-210. O exercício voluntário e a suplementação dietética com crocina podem ter efeitos benéficos na prevenção de doenças cardiovasculares.
Oguh, O; Eisenstein, A; Kwasny, M; Simuni, T
2014-11-01
There is a substantial interest in the impact of exercise on reduction of disability and rate of progression of Parkinson's disease (PD). The primary aim was to describe exercise habits of PD patients and factors associated with greater levels of exercise. The secondary aim was to explore whether regular exercise is associated with a slower decline of function, disease-related quality of life, and caregiver burden. The National Parkinson's Foundation (NPF) QII Registry data was used to analyze variables that correlate with levels of exercise in PD patients across disease severity. Subjects were categorized into three groups: non-exercisers (0 min/week), low exercisers (1-150 min/week), and regular exercisers (>150 min/week). Health related outcomes, disease metrics, and demographic factors associated with exercise were examined using bivariate analyses. Multiple regression models controlled for disease duration, severity, and cognitive function. An exploratory analysis was completed on the association of baseline level of exercise with health outcomes at one year follow up. 4866 subjects were included in the baseline analysis and 2252 subjects who had second visits were included in the longitudinal data. Regular exercisers at baseline were associated with better QOL, mobility, and physical function, less progression of disease, less caregiver burden and less cognitive decline one year later, after controlling for demographic and disease severity variables. This study provides important preliminary evidence of the beneficial effects of regular exercise in a large PD cohort. Longitudinal studies will be essential to confirm findings. Copyright © 2014 Elsevier Ltd. All rights reserved.
Exercise Prescriptions for Active Seniors: A Team Approach for Maximizing Adherence.
ERIC Educational Resources Information Center
Brennan, Fred H., Jr.
2002-01-01
Exercise is an important "medication" that healthcare providers can prescribe for their geriatric patients. Increasing physical fitness by participating in regular exercise can reduce the effects of aging that lead to functional declines and poor health. Modest regular exercise can substantially lower the risk of death from coronary…
NASA Technical Reports Server (NTRS)
Greenleaf, John E.
1998-01-01
After growth during adolesence, total body water decreases progressively with aging from 65% of body weight to about 53% of body weight in the 70th decade; a majority of the loss occurs from the extracellular volume, from 42% to about 25%, respectively. Cellular volume also reaches equilibrium in the 70th decade at about 25% of body weight. Various stresses such as exercise, heat and attitude exposure, ad prior dehydration attenuate voluntary fluid intake (involuntary dehydration). Voluntary fluid intake appears to decrease with aging (involuntary dehydration in this sense aging can be considered as a stress. Kidney function and muscle mass (80% water) decrease somewhat with aging, and voluntary fluid intake (thirst) is also attenuated. Thirst is stimulated by increasing osmolality (hypernatremia) of the extracellular fluid and by decreased extracellular volume (mainly plasma volume) which act to increase intracellular fluid volume osmolality to activiate drinking. The latter decreases fluid compartment osmolality which ' It terminates drinking. However, this drinking mechanism seems to be attenuated with aging such that increasing plasma osmolality no longer stimulates fluid intake appropriately. Hypernatremia in the elderly has been associated all too frequently with greater incidence of bacterial infection and increased mortality. Involuntary dehydration can be overcome in young men by acclimation to an intermittent exercise-in-heat training program. Perhaps exercise training in the elderly would also increase voluntary fluid intake and increase muscle mass to enhance retention of water.
Muscle deoxygenation and neural drive to the muscle during repeated sprint cycling.
Racinais, Sébastien; Bishop, David; Denis, Romain; Lattier, Grégory; Mendez-Villaneuva, Alberto; Perrey, Stéphane
2007-02-01
To investigate muscle deoxygenation and neural drive-related changes during repeated cycling sprints in a fatiguing context. Nine healthy male subjects performed a repeated-sprint test (consisting of 10 x 6-s maximal sprints interspaced by 30 s of recovery). Oxygen uptake was measured breath-by-breath; muscle deoxygenation of the vastus lateralis was assessed continuously using the near-infrared spectroscopy technique. Surface electromyograms (RMS) of both vastus lateralis and biceps femoris were also recorded. Furthermore, before and after the repeated-sprint test, the percentage of muscle activation by voluntary drive (twitch-interpolated method) was measured during a maximal voluntary contraction. Consistent with previous research, our data showed a significant power decrement during repeated-sprint exercise. There was also a progressive muscle deoxygenation, but our data showed that the ability of the subjects to use available O2 throughout the entire repeated-sprint test was well preserved. Our data displayed a significant decrement in the RMS activity during the acceleration phase of each sprint across the repeated-sprint exercise. Moreover, decrement in motor drive was confirmed after exercise by a significant decrease in both percentage of voluntary activation and RMS/M-wave ratio during a maximal voluntary contraction. In this experimental design, our findings suggest that the ability to repeat short-duration (6 s) sprints was associated with the occurrence of both peripheral and central fatigue.
Peacock, Oliver J; Thompson, Dylan; Stokes, Keith A
2012-02-01
This study investigated the effects of drink composition on voluntary intake, hydration status, selected physiological responses and affective states during simulated gymnasium-based exercise. In a randomised counterbalanced design, 12 physically active adults performed three 20-min intervals of cardiovascular exercise at 75% heart rate maximum, one 20-min period of resistance exercise and 20 min of recovery with ad libitum access to water (W), a carbohydrate-electrolyte solution (CES) or with no access to fluids (NF). Fluid intake was greater with CES than W (1706±157 vs. 1171±152 mL; P<0.01) and more adequate hydration was achieved in CES trials (NF vs. W vs. CES: -1668±73 vs. -700±99 vs. -273±78 g; P<0.01). Plasma glucose concentrations were highest with CES (CES vs. NF vs. W: 4.26±0.12 vs. 4.06±0.08 vs. 3.97±0.10 mmol/L; P<0.05). Pleasure ratings were better maintained with ad libitum intake of CES (CES vs. NF vs. W: 2.72±0.23 vs. 1.09±0.20 vs. 1.74±0.33; P<0.01). Under conditions of voluntary drinking, CES resulted in more adequate hydration and a better maintenance of affective states than W or NF during gymnasium-based exercise. Copyright © 2011 Elsevier Ltd. All rights reserved.
A meta-analytic review of the effects of exercise on brain-derived neurotrophic factor.
Szuhany, Kristin L; Bugatti, Matteo; Otto, Michael W
2015-01-01
Consistent evidence indicates that exercise improves cognition and mood, with preliminary evidence suggesting that brain-derived neurotrophic factor (BDNF) may mediate these effects. The aim of the current meta-analysis was to provide an estimate of the strength of the association between exercise and increased BDNF levels in humans across multiple exercise paradigms. We conducted a meta-analysis of 29 studies (N = 1111 participants) examining the effect of exercise on BDNF levels in three exercise paradigms: (1) a single session of exercise, (2) a session of exercise following a program of regular exercise, and (3) resting BDNF levels following a program of regular exercise. Moderators of this effect were also examined. Results demonstrated a moderate effect size for increases in BDNF following a single session of exercise (Hedges' g = 0.46, p < 0.001). Further, regular exercise intensified the effect of a session of exercise on BDNF levels (Hedges' g = 0.59, p = 0.02). Finally, results indicated a small effect of regular exercise on resting BDNF levels (Hedges' g = 0.27, p = 0.005). When analyzing results across paradigms, sex significantly moderated the effect of exercise on BDNF levels, such that studies with more women showed less BDNF change resulting from exercise. Effect size analysis supports the role of exercise as a strategy for enhancing BDNF activity in humans, but indicates that the magnitude of these effects may be lower in females relative to males. Copyright © 2014 Elsevier Ltd. All rights reserved.
A meta-analytic review of the effects of exercise on brain-derived neurotrophic factor
Szuhany, Kristin L.; Bugatti, Matteo; Otto, Michael W.
2014-01-01
Consistent evidence indicates that exercise improves cognition and mood, with preliminary evidence suggesting that brain-derived neurotrophic factor (BDNF) may mediate these effects. The aim of the current meta-analysis was to provide an estimate of the strength of the association between exercise and increased BDNF levels in humans across multiple exercise paradigms. We conducted a meta-analysis of 29 studies (N = 1,111 participants) examining the effect of exercise on BDNF levels in three exercise paradigms: (1) a single session of exercise, (2) a session of exercise following a program of regular exercise, and (3) resting BDNF levels following a program of regular exercise. Moderators of this effect were also examined. Results demonstrated a moderate effect size for increases in BDNF following a single session of exercise (Hedges’ g = 0.46, p < 0.001). Further, regular exercise intensified the effect of a session of exercise on BDNF levels (Hedges’ g = 0.58, p = 0.02). Finally, results indicated a small effect of regular exercise on resting BDNF levels (Hedges’ g = 0.28, p = 0.005). When analyzing results across paradigms, sex significantly moderated the effect of exercise on BDNF levels, such that studies with more women showed less BDNF change resulting from exercise. Effect size analysis supports the role of exercise as a strategy for enhancing BDNF activity in humans, but indicates that the magnitude of these effects may be lower in females relative to males. PMID:25455510
Knowledge and practice of physical exercise among the inhabitants of Bangkok.
Dajpratham, Piyapat; Chadchavalpanichaya, Navaporn
2007-11-01
To study the knowledge and practice of physical exercise among the inhabitants of Bangkok. The factors correlated with knowledge and the practice of physical exercise, were also explored. A self-administered questionnaire was designed to survey 1200 inhabitants in Bangkok and the vicinity aged more than 18 years old. One thousand one hundred and seven people aged ranging from 18-81 years old completed the questionnaires (response rate 92.25%). Six hundred and forty people (58.4%) exercised regularly. The exercise was performed 1-2 days per week with varied duration. They performed exercises alone, in their homes, in the evening. They did not report any expenditure on the exercises. Common types of exercise reported were walking, jogging, attending an aerobic exercise class, using an exercise machine, and callisthenic exercise. Two hundred and seven people (18.9%) did not perform exercise at all because of the lack of time. The factors correlated with regular exercise were the increasing age, the high level of education, the amount of free time per day, and the enjoyment of exercise. With relation to knowledge of exercise, most people lacked knowledge of the benefits of exercise rather than how to do exercise and when to stop exercising. People who had a higher educational level than secondary school and a high income, practiced exercise everyday. They acquired their knowledge of exercise from attending an exercise course. People living in Bangkok usually performed regular exercises of 1-2 days per week with varied duration. The majority lacked knowledge of the benefits of exercise. Educational level of the samples was the only factor correlated with both regular exercise and knowledge of exercise.
Health impact of sport and exercise in emerging adult men: a prospective study.
Henchoz, Yves; Baggio, Stéphanie; N'Goran, Alexandra A; Studer, Joseph; Deline, Stéphane; Mohler-Kuo, Meichun; Daeppen, Jean-Bernard; Gmel, Gerhard
2014-10-01
Health benefits of sport and exercise are well documented in children, adolescents and adults, but little is known about emerging adulthood-a period of life characterized by significant demographic and developmental changes. The present study aimed to assess the health impact of changes in sport and exercise levels during that specific period of life. The analysis used baseline and 15-month follow-up data (N = 4,846) from the cohort study on substance use risk factors. Associations between baseline exercise levels or changes in exercise levels and health indicators (i.e., health-related quality of life, depression, body mass index, alcohol dependence, nicotine dependence and cannabis use disorder) were measured using chi-squared tests and ANOVA. Direction of effects was tested using cross-lagged analysis. At baseline, all health indicator scores were observed to be better for regular exercisers than for other exercise levels. At follow-up, participants who had maintained regular exercise over time had better scores than those who had remained irregular exercisers or had discontinued, but their scores for health-related quality of life and depression were close to those of participants who had adopted regular exercise after the baseline questionnaire. Cross-lagged analysis indicated that regular exercise at baseline was a significant predictor of health-related quality of life and substance use dependence at follow-up, but was itself predicted only by health-related quality of life. From a health promotion perspective, this study emphasizes how important it is for emerging adult men to maintain, or adopt, regular sport and exercise.
Inflammatory modulation of exercise salience: using hormesis to return to a healthy lifestyle
2010-01-01
Most of the human population in the western world has access to unlimited calories and leads an increasingly sedentary lifestyle. The propensity to undertake voluntary exercise or indulge in spontaneous physical exercise, which might be termed "exercise salience", is drawing increased scientific attention. Despite its genetic aspects, this complex behaviour is clearly modulated by the environment and influenced by physiological states. Inflammation is often overlooked as one of these conditions even though it is known to induce a state of reduced mobility. Chronic subclinical inflammation is associated with the metabolic syndrome; a largely lifestyle-induced disease which can lead to decreased exercise salience. The result is a vicious cycle that increases oxidative stress and reduces metabolic flexibility and perpetuates the disease state. In contrast, hormetic stimuli can induce an anti-inflammatory phenotype, thereby enhancing exercise salience, leading to greater biological fitness and improved functional longevity. One general consequence of hormesis is upregulation of mitochondrial function and resistance to oxidative stress. Examples of hormetic factors include calorie restriction, extreme environmental temperatures, physical activity and polyphenols. The hormetic modulation of inflammation, and thus, exercise salience, may help to explain the highly heterogeneous expression of voluntary exercise behaviour and therefore body composition phenotypes of humans living in similar obesogenic environments. PMID:21143891
Metabolic and exercise endurance effects of coffee and caffeine ingestion.
Graham, T E; Hibbert, E; Sathasivam, P
1998-09-01
Caffeine (Caf) ingestion increases plasma epinephrine (Epi) and exercise endurance; these results are frequently transferred to coffee (Cof) consumption. We examined the impact of ingestion of the same dose of Caf in Cof or in water. Nine healthy, fit, young adults performed five trials after ingesting (double blind) either a capsule (Caf or placebo) with water or Cof (decaffeinated Cof, decaffeinated with Caf added, or regular Cof). In all three Caf trials, the Caf dose was 4.45 mg/kg body wt and the volume of liquid was 7.15 ml/kg. After 1 h of rest, the subject ran at 85% of maximal O2 consumption until voluntary exhaustion (approximately 32 min in the placebo and decaffeinated Cof tests). In the three Caf trials, the plasma Caf and paraxanthine concentrations were very similar. After 1 h of rest, the plasma Epi was increased (P < 0.05) by Caf ingestion, but the increase was greater (P < 0.05) with Caf capsules than with Cof. During the exercise there were no differences in Epi among the three Caf trials, and the Epi values were all greater (P < 0.05) than in the other tests. Endurance was only increased (P < 0. 05) in the Caf capsule trial; there were no differences among the other four tests. One cannot extrapolate the effects of Caf to Cof; there must be a component(s) of Cof that moderates the actions of Caf.
Santos-Soto, Iván J.; Chorna, Nataliya; Carballeira, Néstor M.; Vélez-Bartolomei, José G.; Méndez-Merced, Ana T.; Chornyy, Anatoliy P.; de Ortiz, Sandra Peña
2013-01-01
Combinatorial therapies using voluntary exercise and diet supplementation with polyunsaturated fatty acids have synergistic effects benefiting brain function and behavior. Here, we assessed the effects of voluntary exercise on anxiety-like behavior and on total FA accumulation within three brain regions: cortex, hippocampus, and cerebellum of running versus sedentary young adult male C57/BL6J mice. The running group was subjected to one month of voluntary exercise in their home cages, while the sedentary group was kept in their home cages without access to a running wheel. Elevated plus maze (EPM), several behavioral postures and two risk assessment behaviors (RABs) were then measured in both animal groups followed immediately by blood samplings for assessment of corticosterone levels. Brains were then dissected for non-targeted lipidomic analysis of selected brain regions using gas chromatography coupled to mass spectrometry (GC/MS). Results showed that mice in the running group, when examined in the EPM, displayed significantly lower anxiety-like behavior, higher exploratory and risky behaviors, compared to sedentary mice. Notably, we found no differences in blood corticosterone levels between the two groups, suggesting that the different EPM and RAB behaviors were not related to reduced physiological stress in the running mice. Lipidomics analysis revealed a region-specific cortical decrease of the saturated FA: palmitate (C16:0) and a concomitant increase of polyunsaturated FA, arachidonic acid (AA, omega 6-C20: 4) and docosahexaenoic acid (DHA, omega 3-C22: 6), in running mice compared to sedentary controls. Finally, we found that running mice, as opposed to sedentary animals, showed significantly enhanced cortical expression of phospholipase A2 (PLA2) protein, a signaling molecule required in the production of both AA and DHA. In summary, our data support the anxiolytic effects of exercise and provide insights into the molecular processes modulated by exercise that may lead to its beneficial effects on mood. PMID:24349072
42 CFR 3.108 - Correction of deficiencies, revocation, and voluntary relinquishment.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 42 Public Health 1 2010-10-01 2010-10-01 false Correction of deficiencies, revocation, and voluntary relinquishment. 3.108 Section 3.108 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND... the PSO may exercise its opportunity to be heard in writing to respond to the deficiencies specified...
He, Xiao-fei; Liu, Dong-xu; Zhang, Qun; Liang, Feng-ying; Dai, Guang-yan; Zeng, Jin-sheng; Pei, Zhong; Xu, Guang-qing; Lan, Yue
2017-01-01
Age is characterized by chronic inflammation, leading to synaptic dysfunction and dementia because the clearance of protein waste is reduced. The clearance of proteins depends partly on the permeation of the blood–brain barrier (BBB) or on the exchange of water and soluble contents between the cerebrospinal fluid (CSF) and the interstitial fluid (ISF). A wealth of evidence indicates that physical exercise improves memory and cognition in neurodegenerative diseases during aging, such as Alzheimer’s disease (AD), but the influence of physical training on glymphatic clearance, BBB permeability and neuroinflammation remains unclear. In this study, glymphatic clearance and BBB permeability were evaluated in aged mice using in vivo two-photon imaging. The mice performed voluntary wheel running exercise and their water-maze cognition was assessed; the expression of the astrocytic water channel aquaporin 4 (AQP4), astrocyte and microglial activation, and the accumulation of amyloid beta (Aβ) were evaluated with immunofluorescence or an enzyme-linked immunosorbent assay (ELISA); synaptic function was investigated with Thy1–green fluorescent protein (GFP) transgenic mice and immunofluorescent staining. Voluntary wheel running significantly improved water-maze cognition in the aged mice, accelerated the efficiency of glymphatic clearance, but which did not affect BBB permeability. The numbers of activated astrocytes and microglia decreased, AQP4 expression increased, and the distribution of astrocytic AQP4 was rearranged. Aβ accumulation decreased, whereas dendrites, dendritic spines and postsynaptic density protein (PSD95) increased. Our study suggests that voluntary wheel running accelerated glymphatic clearance but not BBB permeation, improved astrocytic AQP4 expression and polarization, attenuated the accumulation of amyloid plaques and neuroinflammation, and ultimately protected mice against synaptic dysfunction and a decline in spatial cognition. These data suggest possible mechanisms for exercise-induced neuroprotection in the aging brain. PMID:28579942
Bieuzen, François; Pournot, Hervé; Roulland, Rémy; Hausswirth, Christophe
2012-01-01
Context Electric muscle stimulation has been suggested to enhance recovery after exhaustive exercise by inducing an increase in blood flow to the stimulated area. Previous studies have failed to support this hypothesis. We hypothesized that the lack of effect shown in previous studies could be attributed to the technique or device used. Objective To investigate the effectiveness of a recovery intervention using an electric blood-flow stimulator on anaerobic performance and muscle damage in professional soccer players after intermittent, exhaustive exercise. Design Randomized controlled clinical trial. Setting National Institute of Sport, Expertise, and Performance (INSEP). Patients or Other Participants Twenty-six healthy professional male soccer players. Intervention(s) The athletes performed an intermittent fatiguing exercise followed by a 1-hour recovery period, either passive or using an electric blood-flow stimulator (VEINOPLUS). Participants were randomly assigned to a group before the experiment started. Main Outcome Measures(s) Performances during a 30-second all-out exercise test, maximal vertical countermovement jump, and maximal voluntary contraction of the knee extensor muscles were measured at rest, immediately after the exercise, and 1 hour and 24 hours later. Muscle enzymes indicating muscle damage (creatine kinase, lactate dehydrogenase) and hematologic profiles were analyzed before and 1 hour and 24 hours after the intermittent fatigue exercise. Results The electric-stimulation group had better 30-second all-out performances at 1 hour after exercise (P = .03) in comparison with the passive-recovery group. However, no differences were observed in muscle damage markers, maximal vertical countermovement jump, or maximal voluntary contraction between groups (P > .05). Conclusions Compared with passive recovery, electric stimulation using this blood-flow stimulator improved anaerobic performance at 1 hour postintervention. No changes in muscle damage markers or maximal voluntary contraction were detected. These responses may be considered beneficial for athletes engaged in sports with successive rounds interspersed with short, passive recovery periods. PMID:23068586
Didier, Kaylin D; Ederer, Austin K; Reiter, Landon K; Brown, Michael; Hardy, Rachel; Caldwell, Jacob; Black, Christopher; Bemben, Michael G; Ade, Carl J
2017-02-07
Adjuvant cancer treatments have been shown to decrease cardiac function. In addition to changes in cardiovascular risk, there are several additional functional consequences including decreases in exercise capacity and increased incidence of cancer-related fatigue. However, the effects of adjuvant cancer treatment on peripheral vascular function during exercise in cancer survivors have not been well documented. We investigated the vascular responses to exercise in cancer survivors previously treated with adjuvant cancer therapies. Peripheral vascular responses were investigated in 11 cancer survivors previously treated with adjuvant cancer therapies (age 58±6 years, 34±30 months from diagnosis) and 9 healthy controls group matched for age, sex, and maximal voluntary contraction. A dynamic handgrip exercise test at 20% maximal voluntary contraction was performed with simultaneous measurements of forearm blood flow and mean arterial pressure. Forearm vascular conductance was calculated from forearm blood flow and mean arterial pressure. Left ventricular ejection time index (LVETi) was derived from the arterial pressure wave form. Forearm blood flow was attenuated in cancer therapies compared to control at 20% maximal voluntary contraction (189.8±53.8 vs 247.9±80.3 mL·min -1 , respectively). Forearm vascular conductance was not different between groups at rest or during exercise. Mean arterial pressure response to exercise was attenuated in cancer therapies compared to controls (107.8±10.8 vs 119.2±16.2 mm Hg). LEVTi was lower in cancer therapies compared to controls. These data suggest an attenuated exercise blood flow response in cancer survivors ≈34 months following adjuvant cancer therapy that may be attributed to an attenuated increase in mean arterial pressure. © 2017 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley Blackwell.
Ohyama, Kana; Nogusa, Yoshihito; Suzuki, Katsuya; Shinoda, Kosaku; Kajimura, Shingo
2014-01-01
Exercise effectively prevents the development of obesity and obesity-related diseases such as type 2 diabetes. Capsinoids (CSNs) are capsaicin analogs found in a nonpungent pepper that increase whole body energy expenditure. Although both exercise and CSNs have antiobesity functions, the effectiveness of exercise with CSN supplementation has not yet been investigated. Here, we examined whether the beneficial effects of exercise could be further enhanced by CSN supplementation in mice. Mice were randomly assigned to four groups: 1) high-fat diet (HFD, Control), 2) HFD containing 0.3% CSNs, 3) HFD with voluntary running wheel exercise (Exercise), and 4) HFD containing 0.3% CSNs with voluntary running wheel exercise (Exercise + CSN). After 8 wk of ingestion, blood and tissues were collected and analyzed. Although CSNs significantly suppressed body weight gain under the HFD, CSN supplementation with exercise additively decreased body weight gain and fat accumulation and increased whole body energy expenditure compared with exercise alone. Exercise together with CSN supplementation robustly improved metabolic profiles, including the plasma cholesterol level. Furthermore, this combination significantly prevented diet-induced liver steatosis and decreased the size of adipocyte cells in white adipose tissue. Exercise and CSNs significantly increased cAMP levels and PKA activity in brown adipose tissue (BAT), indicating an increase of lipolysis. Moreover, they significantly activated both the oxidative phosphorylation gene program and fatty acid oxidation in skeletal muscle. These results indicate that CSNs efficiently promote the antiobesity effect of exercise, in part by increasing energy expenditure via the activation of fat oxidation in skeletal muscle and lipolysis in BAT. PMID:25516550
Hulmi, Juha J; Oliveira, Bernardo M; Silvennoinen, Mika; Hoogaars, Willem M H; Pasternack, Arja; Kainulainen, Heikki; Ritvos, Olli
2013-07-15
The importance of adequate levels of muscle size and function and physical activity is widely recognized. Myostatin/activin blocking increases skeletal muscle mass but may decrease muscle oxidative capacity and can thus be hypothesized to affect voluntary physical activity. Soluble activin receptor IIB (sActRIIB-Fc) was produced to block myostatin/activins. Modestly dystrophic mdx mice were injected with sActRIIB-Fc or PBS with or without voluntary wheel running exercise for 7 wk. Healthy mice served as controls. Running for 7 wk attenuated the sActRIIB-Fc-induced increase in body mass by decreasing fat mass. Running also enhanced/restored the markers of muscle oxidative capacity and autophagy in mdx mice to or above the levels of healthy mice. Voluntary running activity was decreased by sActRIIB-Fc during the first 3-4 wk correlating with increased body mass. Home cage physical activity of mice, quantified from the force plate signal, was decreased by sActRIIB-Fc the whole 7-wk treatment in sedentary mice. To understand what happens during the first weeks after sActRIIB-Fc administration, when mice are less active, healthy mice were injected with sActRIIB-Fc or PBS for 2 wk. During the sActRIIB-Fc-induced rapid 2-wk muscle growth period, oxidative capacity and autophagy were reduced, which may possibly explain the decreased running activity. These results show that increased muscle size and decreased markers of oxidative capacity and autophagy during the first weeks of myostatin/activin blocking are associated with decreased voluntary activity levels. Voluntary exercise in dystrophic mice enhances the markers of oxidative capacity and autophagy to or above the levels of healthy mice.
Kizaki, Takako; Maegawa, Taketeru; Sakurai, Takuya; Ogasawara, Jun-etsu; Ookawara, Tomomi; Oh-ishi, Shuji; Izawa, Tetsuya; Haga, Shukoh; Ohno, Hideki
2011-09-30
Chronic low-level inflammation is associated with obesity and a sedentary lifestyle, causing metabolic disturbances such as insulin resistance. Exercise training has been shown to decrease chronic low-level systemic inflammation in high-fat diet (HFD)-induced obesity. However, the molecular mechanisms mediating its beneficial effects are not fully understood. Ghrelin is a peptide hormone predominantly produced in the stomach that stimulates appetite and induces growth hormone release. In addition to these well-known functions, recent studies suggest that ghrelin localizes to immune cells and exerts an anti-inflammatory effect. The purpose of the current study was to investigate the role of ghrelin expressed in macrophages in the anti-inflammatory effects of voluntary exercise training. Expression of tumor necrosis factor-α (TNF-α), monocyte chemotactic protein (MCP)-1 and F4/80 was increased in adipose tissue from mice fed a HFD (HFD mice) compared with mice fed a standard diet (SD mice), whereas the expression of these inflammatory cytokines was markedly decreased in mice performing voluntary wheel running during the feeding of a HFD (HFEx mice). The expression of TNF-α was also increased in peritoneal macrophages by a HFD and exercise training inhibited the increase of TNF-α expression. Interestingly, expression of ghrelin in peritoneal macrophages was decreased by a HFD and recovered by exercise training. Suppression of ghrelin expression by siRNA increased TNF-α expression and LPS-stimulated NF-κB activation in RAW264 cells, which is a macrophage cell line. TNF-α expression by stimulation with LPS was significantly suppressed in RAW264 cells cultured in the presence of ghrelin. These results suggest that ghrelin exerts potent anti-inflammatory effects in macrophages and functions as a mediator of the beneficial effects of exercise training. Copyright © 2011 Elsevier Inc. All rights reserved.
Voluntary post weaning exercise restores metabolic homeostasis in offspring of obese rats.
Rajia, S; Chen, H; Morris, M J
2013-06-01
Physical exercise reduces obesity, insulin resistance and dyslipidemia. We previously found that maternal obesity alters central appetite circuits and contributes to increased adiposity, glucose intolerance and metabolic disease in offspring. Here we hypothesized that voluntary exercise would ameliorate the adverse metabolic effects of maternal obesity on offspring. Sprague-Dawley females fed chow (C) or high-fat diet HFD (H) were mated. Female offspring from C dams were weaned onto chow (CC); those from H dams recieved chow (HC) or HFD (HH). Half of each group was provided with running wheels (CC(EX), HC(EX), HH(EX); n=10-12). Maternal obesity increased body weight (12%), adiposity, plasma lipids and induced glucose intolerance (HC vs CC; P<0.05). These were exaggerated by postweaning HFD (HH vs HC; P<0.01), showed doubled energy intake, a 37% increase in body weight, insulin resistance and glucose intolerance (HH vs HC; P<0.01). Exercise reduced fat mass, plasma lipids, HOMA and fasting glucose in HC(EX) (vs HC; P<0.05) and HH(EX) (vs HH; P<0.01). Values in HC(EX) were indistinguishable from CC, however in HH(EX) these metabolic parameters remained higher than the sedentary HC and CC rats (P<0.01). mRNA expression of hypothalamic pro-opiomelanocortin, and adipose tumour necrosis factor α and 11β-hydroxysteroid dehydrogenase type 1 were reduced by exercise in HH(EX) (vs HH; P<0.05). While voluntary exercise almost completely reversed the metabolic effects of maternal obesity in chow fed offspring, it did not fully attenuate the increased adiposity, glucose intolerance and insulin resistance in offspring weaned onto HFD. Crown Copyright © 2011. Published by Elsevier B.V. All rights reserved.
Exercise Protects against PCB-Induced Inflammation and Associated Cardiovascular Risk Factors
Murphy, Margaret O.; Petriello, Michael C.; Han, Sung Gu; Sunkara, Manjula; Morris, Andrew J; Esser, Karyn; Hennig, Bernhard
2015-01-01
Polychlorinated biphenyls (PCBs) are persistent environmental pollutants that contribute to the initiation of cardiovascular disease. Exercise has been shown to reduce the risk of cardiovascular disease; however, whether exercise can modulate PCB-induced vascular endothelial dysfunction and associated cardiovascular risk factors is unknown. We examined the effects of exercise on coplanar PCB- induced cardiovascular risk factors including oxidative stress, inflammation, impaired glucose tolerance, hypercholesteremia, and endothelium-dependent relaxation. Male ApoE−/− mice were divided into sedentary and exercise groups (voluntary wheel running) over a 12 week period. Half of each group was exposed to vehicle or PCB 77 at weeks 1, 2, 9, and 10. For ex vivo studies, male C57BL/6 mice exercised via voluntary wheel training for 5 weeks and then were administered with vehicle or PCB 77 24 hours before vascular reactivity studies were performed. Exposure to coplanar PCB increased risk factors associated with cardiovascular disease, including oxidative stress and systemic inflammation, glucose intolerance, and hypercholesteremia. The 12 week exercise intervention significantly reduced these pro-atherogenic parameters. Exercise also upregulated antioxidant enzymes including phase II detoxification enzymes. Sedentary animals exposed to PCB 77 exhibited endothelial dysfunction as demonstrated by significant impairment of endothelium-dependent relaxation, which was prevented by exercise. Lifestyle modifications such as aerobic exercise could be utilized as a therapeutic approach for the prevention of adverse cardiovascular health effects induced by environmental pollutants such as PCBs. Keywords: exercise, polychlorinated biphenyl, endothelial function, antioxidant response, cardiovascular disease, inflammation, oxidative stress PMID:25586614
Spring, Jérôme Nicolas; Place, Nicolas; Borrani, Fabio; Kayser, Bengt; Barral, Jérôme
2016-01-01
Exercise-induced fatigue affects the motor control and the ability to generate a given force or power. Surface electroencephalography allows researchers to investigate movement-related cortical potentials (MRCP), which reflect preparatory brain activity 1.5 s before movement onset. Although the MRCP amplitude appears to increase after repetitive single-joint contractions, the effects of large-muscle group dynamic exercise on such pre-motor potential remain to be described. Sixteen volunteers exercised 30 min at 60% of the maximal aerobic power on a cycle ergometer, followed by a 10-km all-out time trial. Before and after each of these tasks, knee extensor neuromuscular function was investigated using maximal voluntary contractions (MVC) combined with electrical stimulations of the femoral nerve. MRCP was recorded during 60 knee extensions after each neuromuscular sequence. The exercise resulted in a significant decrease in the knee extensor MVC force after the 30-min exercise (−10 ± 8%) and the time trial (−21 ± 9%). The voluntary activation level (VAL; −6 ± 8 and −12 ± 10%), peak twitch (Pt; −21 ± 16 and −32 ± 17%), and paired stimuli (P100 Hz; −7 ± 11 and −12 ± 13%) were also significantly reduced after the 30-min exercise and the time trial. The first exercise was followed by a decrease in the MRCP, mainly above the mean activity measured at electrodes FC1-FC2, whereas the reduction observed after the time trial was related to the FC1-FC2 and C2 electrodes. After both exercises, the reduction in the late MRCP component above FC1-FC2 was significantly correlated with the reduction in P100 Hz (r = 0.61), and the reduction in the same component above C2 was significantly correlated with the reduction in VAL (r = 0.64). In conclusion, large-muscle group exercise induced a reduction in pre-motor potential, which was related to muscle alterations and resulted in the inability to produce a maximal voluntary contraction. PMID:27313522
Sack, Markus; Lenz, Jenny N; Jakovcevski, Mira; Biedermann, Sarah V; Falfán-Melgoza, Claudia; Deussing, Jan; Bielohuby, Maximilian; Bidlingmaier, Martin; Pfister, Frederik; Stalla, Günter K; Sartorius, Alexander; Gass, Peter; Weber-Fahr, Wolfgang; Fuss, Johannes; Auer, Matthias K
2017-10-01
Excessive intake of high-caloric diets as well as subsequent development of obesity and diabetes mellitus may exert a wide range of unfavorable effects on the central nervous system (CNS) in the long-term. The potentially harmful effects of such diets were suggested to be mitigated by physical exercise. Here, we conducted a study investigating early effects of a cafeteria-diet on gray and white brain matter volume by means of voxel-based morphometry (VBM) and region-of-interest (ROI) analysis. Half of the mice performed voluntary wheel running to study if regular physical exercise prevents unfavorable effects of a cafeteria-diet. In addition, histological analyses for myelination and neurogenesis were performed. As expected, wheel running resulted in a significant increase of gray matter volume in the CA1-3 areas, the dentate gyrus and stratum granulosum of the hippocampus in the VBM analysis, while a positive effect of the cafeteria-diet was shown for the whole hippocampal CA1-3 area only in the ROI analysis, indicating a regional volume effect. It was earlier found that hippocampal neurogenesis may be related to volume increases after exercise. Interestingly, while running resulted in a significant increase in neurogenesis assessed by doublecortin (DCX)-labeling, this was not true for cafeteria diet. This indicates different underlying mechanisms for gray matter increase. Moreover, animals receiving cafeteria diet only showed mild deficits in long-term memory assessed by the puzzle-box paradigm, while executive functioning and short term memory were not affected. Our data therefore highlight that high caloric diet impacts on the brain and behavior. Physical exercise seems not to interact with these mechanisms.
Exercise, Stress Resistance, and Central Serotonergic Systems
Greenwood, Benjamin N.; Fleshner, Monika
2015-01-01
Voluntary exercise reduces the incidence of stress-related psychiatric disorders in humans and prevents serotonin-dependent behavioral consequences of stress in rodents. Evidence reviewed herein is consistent with the hypothesis that exercise increases stress resistance by producing neuroplasticity at multiple sites of the central serotonergic system, which all help to limit the behavioral impact of acute increases in serotonin during stressor exposure. PMID:21508844
Oxidative stress and inflammation: liver responses and adaptations to acute and regular exercise.
Pillon Barcelos, Rômulo; Freire Royes, Luiz Fernando; Gonzalez-Gallego, Javier; Bresciani, Guilherme
2017-02-01
The liver is remarkably important during exercise outcomes due to its contribution to detoxification, synthesis, and release of biomolecules, and energy supply to the exercising muscles. Recently, liver has been also shown to play an important role in redox status and inflammatory modulation during exercise. However, while several studies have described the adaptations of skeletal muscles to acute and chronic exercise, hepatic changes are still scarcely investigated. Indeed, acute intense exercise challenges the liver with increased reactive oxygen species (ROS) and inflammation onset, whereas regular training induces hepatic antioxidant and anti-inflammatory improvements. Acute and regular exercise protocols in combination with antioxidant and anti-inflammatory supplementation have been also tested to verify hepatic adaptations to exercise. Although positive results have been reported in some acute models, several studies have shown an increased exercise-related stress upon liver. A similar trend has been observed during training: while synergistic effects of training and antioxidant/anti-inflammatory supplementations have been occasionally found, others reported a blunting of relevant adaptations to exercise, following the patterns described in skeletal muscles. This review discusses current data regarding liver responses and adaptation to acute and regular exercise protocols alone or combined with antioxidant and anti-inflammatory supplementation. The understanding of the mechanisms behind these modulations is of interest for both exercise-related health and performance outcomes.
Effects of regular exercise on asthma control in young adults.
Heikkinen, Sirpa A M; Mäkikyrö, Elina M S; Hugg, Timo T; Jaakkola, Maritta S; Jaakkola, Jouni J K
2017-08-28
According to our systematic literature review, no previous study has assessed potential effects of regular exercise on asthma control among young adults. We hypothesized that regular exercise improves asthma control among young adults. We studied 162 subjects with current asthma recruited from a population-based cohort study of 1,623 young adults 20-27 years of age. Asthma control was assessed by the occurrence of asthma-related symptoms, including wheezing, shortness of breath, cough, and phlegm production, during the past 12 months. Asthma symptom score was calculated based on reported frequencies of these symptoms (range: 0-12). Exercise was assessed as hours/week. In Poisson regression, adjusting for gender, age, smoking, environmental tobacco smoke exposure, and education, the asthma symptom score reduced by 0.09 points per 1 hour of exercise/week (95% CI: 0.00 to 0.17). Applying the "Low exercise" quartile as the reference, "Medium exercise" reduced the asthma symptom score by 0.66 (-0.39 to 1.72), and "High exercise" reduced it significantly by 1.13 (0.03 to 2.22). The effect was strongest among overweight subjects. Our results provide new evidence that regular exercising among young adults improves their asthma control. Thus, advising about exercise should be included as an important part of asthma self-management in clinical practice.
Wheel running decreases the positive reinforcing effects of heroin.
Smith, Mark A; Pitts, Elizabeth G
2012-01-01
The purpose of this study was to examine the effects of voluntary wheel running on the positive reinforcing effects of heroin in rats with an established history of drug self-administration. Rats were assigned to sedentary (no wheel) and exercise (wheel) conditions and trained to self-administer cocaine under positive reinforcement contingencies. Rats acquiring cocaine self-administration were then tested with various doses of heroin during daily test sessions. Sedentary rats self-administered more heroin than exercising rats, and this effect was greatest at low and moderate doses of heroin. These data suggest that voluntary wheel running decreases the positive reinforcing effects of heroin.
Ridgel, Angela L.; Abdar, Hassan Mohammadi; Alberts, Jay L.; Discenzo, Fred M.; Loparo, Kenneth A.
2014-01-01
Variability in severity and progression of Parkinson’s disease symptoms makes it challenging to design therapy interventions that provide maximal benefit. Previous studies showed that forced cycling, at greater pedaling rates, results in greater improvements in motor function than voluntary cycling. The precise mechanism for differences in function following exercise is unknown. We examined the complexity of biomechanical and physiological features of forced and voluntary cycling and correlated these features to improvements in motor function as measured by the Unified Parkinson’s Disease Rating Scale (UPDRS). Heart rate, cadence, and power were analyzed using entropy signal processing techniques. Pattern variability in heart rate and power were greater in the voluntary group when compared to forced group. In contrast, variability in cadence was higher during forced cycling. UPDRS Motor III scores predicted from the pattern variability data were highly correlated to measured scores in the forced group. This study shows how time series analysis methods of biomechanical and physiological parameters of exercise can be used to predict improvements in motor function. This knowledge will be important in the development of optimal exercise-based rehabilitation programs for Parkinson’s disease. PMID:23144045
Kelly, Scott A; Rezende, Enrico L; Chappell, Mark A; Gomes, Fernando R; Kolb, Erik M; Malisch, Jessica L; Rhodes, Justin S; Mitchell, Gordon S; Garland, Theodore
2014-02-01
What is the central question of this study? We used experimental evolution to determine how selective breeding for high voluntary wheel running and exercise training (7-11 weeks) affect ventilatory chemoreflexes of laboratory mice at rest. What is the main finding and its importance? Selective breeding, although significantly affecting some traits, did not systematically alter ventilation across gas concentrations. As with most human studies, our findings support the idea that endurance training attenuates resting ventilation. However, little evidence was found for a correlation between ventilatory chemoreflexes and the amount of individual voluntary wheel running. We conclude that exercise 'training' alters respiratory behaviours, but these changes may not be necessary to achieve high levels of wheel running. Ventilatory control is affected by genetics, the environment and gene-environment and gene-gene interactions. Here, we used an experimental evolution approach to test whether 37 generations of selective breeding for high voluntary wheel running (genetic effects) and/or long-term (7-11 weeks) wheel access (training effects) alter acute respiratory behaviour of mice resting in normoxic, hypoxic and hypercapnic conditions. As the four replicate high-runner (HR) lines run much more than the four non-selected control (C) lines, we also examined whether the amount of exercise among individual mice was a quantitative predictor of ventilatory chemoreflexes at rest. Selective breeding and/or wheel access significantly affected several traits. In normoxia, HR mice tended to have lower mass-adjusted rates of oxygen consumption and carbon dioxide production. Chronic wheel access increased oxygen consumption and carbon dioxide production in both HR and C mice during hypercapnia. Breathing frequency and minute ventilation were significantly reduced by chronic wheel access in both HR and C mice during hypoxia. Selection history, while significantly affecting some traits, did not systematically alter ventilation across all gas concentrations. As with most human studies, our findings support the idea that endurance training (access to wheel running) attenuates resting ventilation. However, little evidence was found for a correlation at the level of the individual variation between ventilatory chemoreflexes and performance (amount of individual voluntary wheel running). We tentatively conclude that exercise 'training' alters respiratory behaviours, but these changes may not be necessary to achieve high levels of wheel running.
Exercise and older women's wellbeing.
Martin, Pamela; McCann, Terence V
2005-12-01
Older women are one of the most inactive groups in the population despite being at an age where they are at greater risk of health problems. Knowing what influences these women to exercise regularly may help the development of strategies to assist sedentary women in this age group to become active. This paper reports the findings of a study that explored why a group of older women attending a fitness centre participate in regular exercise activities. The study used a qualitative approach to data collection and analysis. Data were collected using in-depth interviews from ten women over 50 years of age who exercised on a regular basis. The findings revealed four themes relating to the maintenance of general wellbeing: exercise as a socially supportive activity, exercising to maintain wellbeing, exercising to maintain independence, and exercise as liberating. The implications of the findings for nursing education, clinical practice and research are discussed.
Bouchard, Claude; Antunes-Correa, Ligia M.; Ashley, Euan A.; Franklin, Nina; Hwang, Paul M.; Mattsson, C. Mikael; Negrao, Carlos E.; Phillips, Shane A.; Sarzynski, Mark A.; Wang, Ping-yuan; Wheeler, Matthew T.
2014-01-01
Regular exercise and a physically active lifestyle have favorable effects on health. Several issues related to this theme are addressed in this report. A comment on the requirements of personalized exercise medicine and in-depth biological profiling along with the opportunities that they offer is presented. This is followed by a brief overview of the evidence for the contributions of genetic differences to the ability to benefit from regular exercise. Subsequently, studies showing that mutations in TP53 influence exercise capacity in mice and humans are succinctly described. The evidence for effects of exercise on endothelial function in health and disease also is covered. Finally, changes in cardiac and skeletal muscle in response to exercise and their implications for patients with cardiac disease are summarized. Innovative research strategies are needed to define the molecular mechanisms involved in adaptation to exercise and to translate them into useful clinical and public health applications. PMID:25559061
Perinatal exercise improves glucose homeostasis in adult offspring
Carter, Lindsay G.; Lewis, Kaitlyn N.; Wilkerson, Donald C.; Tobia, Christine M.; Ngo Tenlep, Sara Y.; Shridas, Preetha; Garcia-Cazarin, Mary L.; Wolff, Gretchen; Andrade, Francisco H.; Charnigo, Richard J.; Esser, Karyn A.; Egan, Josephine M.; de Cabo, Rafael
2012-01-01
Emerging research has shown that subtle factors during pregnancy and gestation can influence long-term health in offspring. In an attempt to be proactive, we set out to explore whether a nonpharmacological intervention, perinatal exercise, might improve offspring health. Female mice were separated into sedentary or exercise cohorts, with the exercise cohort having voluntary access to a running wheel prior to mating and during pregnancy and nursing. Offspring were weaned, and analyses were performed on the mature offspring that did not have access to running wheels during any portion of their lives. Perinatal exercise caused improved glucose disposal following an oral glucose challenge in both female and male adult offspring (P < 0.05 for both). Blood glucose concentrations were reduced to lower values in response to an intraperitoneal insulin tolerance test for both female and male adult offspring of parents with access to running wheels (P < 0.05 and P < 0.01, respectively). Male offspring from exercised dams showed increased percent lean mass and decreased fat mass percent compared with male offspring from sedentary dams (P < 0.01 for both), but these parameters were unchanged in female offspring. These data suggest that short-term maternal voluntary exercise prior to and during healthy pregnancy and nursing can enhance long-term glucose homeostasis in offspring. PMID:22932781
The Effect of Voluntary Ventilation on Acid-base Responses to a Moo Duk Tkow Form.
ERIC Educational Resources Information Center
Hetzler, Ronald K.; And Others
1989-01-01
Results are reported from a study that investigated the acid-base and lactate reponses to voluntary integration of breathing and exercise movements during beginning level form Ki Cho I, performed at competitive intensities. Findings suggest that respiratory compensation does not occur and that respiratory acidosis may contribute to metabolic…
Exercise and food compensation: exploring diet-related beliefs and behaviors of regular exercisers.
Dohle, Simone; Wansink, Brian; Zehnder, Lorena
2015-03-01
The goal of this qualitative study is to identify common beliefs and behaviors related to exercise and diet. Data were collected in focus group discussions with regular exercisers who were physically active between 1 and 5 h per week. Exercise objectives, beliefs and behaviors regarding food intake before, during, and after exercise, consumption of sport supplements, and dietary patterns on sedentary days were explored. All focus groups were audio-taped and transcribed verbatim. Transcripts were analyzed using a grounded theory approach. Participants reported that they reward themselves for being active by consuming food. Other exercisers had specific beliefs about dietary needs and how to compensate for exercise-induced losses along with exercise-related food likes and dislikes. The participants' food intake also depended on their personal exercise objectives, such as the goal of performing well in competitions. External and physiological factors also played a role in determining participants' dietary patterns. Results of this study show that exercising and dietary patterns are closely intertwined. In addition, we articulate new hypotheses and outline a research agenda that can help improve how regular exercisers eat.
Effects of regular exercise in management of chronic idiopathic constipation.
Meshkinpour, H; Selod, S; Movahedi, H; Nami, N; James, N; Wilson, A
1998-11-01
Regular physical exercise has long been considered in the management of chronic constipation. This recommendation is probably based on the assumption that exercise shortens the transit time through the gastrointestinal tract. However, on the basis of previous studies, the effect of exercise on the transit remains controversial at best. Therefore, it was the goal of the present study to assess the influence of regular physical exercise, what average people may consider routine exercise, in the management of chronic idiopathic constipation. The study population consisted of eight patients, seven women and a man, with chronic idiopathic constipation. They were studied for six weeks, including two weeks of rest and four weeks of regular exercise. Patients had a submaximal exercise test, before and after the exercise period, to determine their rate of perceived exertion (RPE), the target heart rate, and the intensity of exercise they can perform. In addition to their routine daily activities, they exercised 1 hr a day, five days a week according to their performance at the initial exercise tolerance test. They kept a daily activity log and maintained their normal dietary intake during this period. The patients overall physical activity was assessed by a pedometer. They also maintained a diary of the number and consistency of their bowel movements and the amount of straining required for defecation. The impact of exercise on constipation was assessed by utilizing an index that took into consideration all three parameters of bowel function. Results of the study revealed that patients covered 1.8+/-0.33 and 3.24+/-0.28 miles/day in the rest period and during the exercise period, respectively (P = 0.007). The intensity of exercise may have improved the level of training as reflected on the mean maximum time before and after exercise period (P = 0.039). This level of exercise did not improve their constipation indices, which were 9.11+/-0.65 and 8.57+/-1.08 in the rest and exercise periods, respectively (P = 0.68). In conclusion, physical activity, to the extent that people consider "regular exercise," does not play a role in the management of chronic idiopathic constipation.
Lapole, Thomas; Ahmaidi, Said; Gaillien, Benjamin; Leprêtre, Pierre-Marie
2013-07-01
Dorsiflexion shoes could be useful to increase jumping performance. The aim of the present study was to investigate the impact of wearing shoes inducing moderate dorsiflexion (2°) on neuromuscular fatigue induced by volleyball exercises involving multiple stretch-shortening cycles. Squat jump (SJ) and countermovement jump (CMJ) performance, and plantar flexors isometric voluntary and evoked contractile properties were assessed in 10 unfamiliarized trained volleyball players before and after a 10-minute intensive combined tapping-jumping volleyball exercise performed, in blinded randomized conditions, with neutral (0°) or moderate dorsiflexion (2°). No significant difference was observed on SJ performance in neutral and moderate dorsiflexion conditions. However, CMJ height was initially lower with 2° dorsiflexion compared with 0° (p < 0.05). Height in CMJ was increased after exercise with 2° dorsiflexion shoes and remained unchanged in neutral 0° condition. Combined tapping-jumping volleyball exercise also induced a significant decrease in maximal voluntary contraction (p < 0.001), peak-twitch torque (p = 0.009), contraction time (p < 0.001) and twitch relaxation rate (p = 0.001) values without any significant difference between neutral and dorsiflexion conditions. Voluntary activation level (p = 0.014) and rate of force development (p = 0.05) were also decreased in both conditions. In conclusion, acute moderate dorsiflexion had no effect on jumping performance and neuromuscular fatigue in unfamiliarized trained subjects and altered the elastic energy store in plyometric condition (CMJ). Future studies are necessary to investigate the chronic effect of moderate dorsiflexion on jumping performance and neuromuscular fatigue in trained volleyball players.
Lee, JuHee; Park, Chang Gi; Choi, Moonki
2016-05-01
This study was conducted to identify risk factors that influence regular exercise among patients with Parkinson's disease in Korea. Parkinson's disease is prevalent in the elderly, and may lead to a sedentary lifestyle. Exercise can enhance physical and psychological health. However, patients with Parkinson's disease are less likely to exercise than are other populations due to physical disability. A secondary data analysis and cross-sectional descriptive study were conducted. A convenience sample of 106 patients with Parkinson's disease was recruited at an outpatient neurology clinic of a tertiary hospital in Korea. Demographic characteristics, disease-related characteristics (including disease duration and motor symptoms), self-efficacy for exercise, balance, and exercise level were investigated. Negative binomial regression and zero-inflated negative binomial regression for exercise count data were utilized to determine factors involved in exercise. The mean age of participants was 65.85 ± 8.77 years, and the mean duration of Parkinson's disease was 7.23 ± 6.02 years. Most participants indicated that they engaged in regular exercise (80.19%). Approximately half of participants exercised at least 5 days per week for 30 min, as recommended (51.9%). Motor symptoms were a significant predictor of exercise in the count model, and self-efficacy for exercise was a significant predictor of exercise in the zero model. Severity of motor symptoms was related to frequency of exercise. Self-efficacy contributed to the probability of exercise. Symptom management and improvement of self-efficacy for exercise are important to encourage regular exercise in patients with Parkinson's disease. Copyright © 2015 Elsevier Inc. All rights reserved.
Estimation of skeletal muscle interstitial adenosine during forearm dynamic exercise in humans
NASA Technical Reports Server (NTRS)
Costa, F.; Heusinkveld, J.; Ballog, R.; Davis, S.; Biaggioni, I.
2000-01-01
It has been proposed that adenosine is a metabolic signal that triggers activation of muscle afferents involved in the exercise pressor reflex. Furthermore, exogenous adenosine induces sympathetic activation that mimics the exercise pressor reflex, and blockade of adenosine receptors inhibits sympathetic activation induced by exercise. Thus, we hypothesize that adenosine is released locally by the muscle during exercise. We used microdialysis probes, placed in the flexor digitorium superficialis muscle, to estimate muscle interstitial adenosine levels in humans. We estimated resting in vivo muscle interstitial adenosine concentrations (0.292+/-0.058 micromol/L, n=4) by perfusing increasing concentrations of adenosine to determine the gradient produced in the dialysate. Muscle interstitial adenosine concentrations increased from 0.23+/-0.04 to 0.82+/-0.14 micromol/L (n=14, P<0.001) during intermittent dynamic exercise at 50% of maximal voluntary contraction. Lactate increased from 0.8+/-0.1 to 2.3+/-0.3 mmol/L (P<0.001). Lower intensity (15% maximal voluntary contraction) intermittent dynamic exercise increased adenosine concentrations from 0.104+/-0.02 to 0.42+/-0.16 micromol/L (n=7). The addition of ischemia to this low level of exercise produced a greater increase in adenosine (from 0.095+/-0.02 to 0.48+/-0.2 micromol/L) compared with nonischemic exercise (0. 095+/-0.02 to 0.25+/-0.12 micromol/L). These results indicate that microdialysis is useful in estimating adenosine concentrations and in reflecting changes in muscle interstitial adenosine during dynamic exercise in humans.
Bouchet, Courtney A; Lloyd, Brian A; Loetz, Esteban C; Farmer, Caroline E; Ostrovskyy, Mykola; Haddad, Natalie; Foright, Rebecca M; Greenwood, Benjamin N
2017-08-01
Fear extinction-based exposure therapy is the most common behavioral therapy for anxiety and trauma-related disorders, but fear extinction memories are labile and fear tends to return even after successful extinction. The relapse of fear contributes to the poor long-term efficacy of exposure therapy. A single session of voluntary exercise can enhance the acquisition and consolidation of fear extinction in male rats, but the effects of exercise on relapse of fear after extinction are not well understood. Here, we characterized the effects of 2 h of voluntary exercise during the consolidation phase of contextual or auditory fear extinction learning on long-term fear extinction memory and renewal in adult, male and female, Long-Evans rats. Results indicate that exercise enhances consolidation of fear extinction memory and reduces fear relapse after extinction in a sex-dependent manner. These data suggest that brief bouts of exercise could be used as an augmentation strategy for exposure therapy, even in previously sedentary subjects. Fear memories of discrete cues, rather than of contextual ones, may be most susceptible to exercise-augmented extinction, especially in males. Additionally, exercise seems to have the biggest impact on fear relapse phenomena, even if fear extinction memories themselves are only minimally enhanced. © 2017 Bouchet et al.; Published by Cold Spring Harbor Laboratory Press.
Association of Physical Exercise on Anxiety and Depression Amongst Adults.
Khanzada, Faizan Jameel; Soomro, Nabila; Khan, Shahidda Zakir
2015-07-01
This study was done to determine the frequency of anxiety, depression among those who exercise regularly and those who do not. Across-sectional study was conducted at different gymnasiums of Karachi in July-August 2013. A total 269 individual's ages were 18 - 45 years completed a self-administered questionnaire to assess the data using simple descriptive statistics. One hundred and thirty four individuals were those who did not perform exercise which included females (55.0%) being more frequently anxious than male (46.4%). Females (39.9%) were more frequently depressed as compared to males (26.4%) less depressed. Chi-square test showed association between anxiety levels and exercise was significantly increased in non-exercisers compared to regular exercisers found to be significant (p=0.015). Individuals who performed regular exercise had a lower frequency of depression (28.9%) than non-exercisers (41.8%). Physical exercise was significantly associated with lower anxiety and depression frequency amongst the studied adult population.
Martins, Caroline Curry; Bagatini, Margarete Dulce; Cardoso, Andréia Machado; Zanini, Daniela; Abdalla, Fátima Husein; Baldissarelli, Jucimara; Dalenogare, Diéssica Padilha; Farinha, Juliano Boufleur; Schetinger, Maria Rosa Chitolina; Morsch, Vera Maria
2016-02-15
Alterations in the activity of ectonucleotidase enzymes have been implicated in cardiovascular diseases, whereas regular exercise training has been shown to prevent these alterations. However, nothing is known about it relating to metabolic syndrome (MetS). We investigated the effect of exercise training on platelet ectonucleotidase enzymes and on the aggregation profile of MetS patients. We studied 38 MetS patients who performed regular concurrent exercise training for 30 weeks. Anthropometric measurements, biochemical profiles, hydrolysis of adenine nucleotides in platelets and platelet aggregation were collected from patients before and after the exercise intervention as well as from individuals of the control group. An increase in the hydrolysis of adenine nucleotides (ATP, ADP and AMP) and a decrease in adenosine deamination in the platelets of MetS patients before the exercise intervention were observed (P<0.001). However, these alterations were reversed by exercise training (P<0.001). Additionally, an increase in platelet aggregation was observed in the MetS patients (P<0.001) and the exercise training prevented platelet hyperaggregation in addition to decrease the classic cardiovascular risks. An alteration of ectonucleotidase enzymes occurs during MetS, whereas regular exercise training had a protective effect on these enzymes and on platelet aggregation. Copyright © 2016 Elsevier B.V. All rights reserved.
Exercise behavior and related factors in career women - the case of a bank in Taipei City.
Chen, Chen-Mei; Chang, Mei
2004-09-01
With the trend of premature aging of physiological functions on the rise and a variety of chronic diseases continuing to spread, health promotion has become the top concern among public health experts. Regular exercise plays a pivotal role in both health promotion and disease prevention. This study aims to investigate the exercise behavior of career women and related factors. The samples were drawn from the female employees of a bank in Taipei, totaling 361 persons, all aged between 20 and 56. The result shows that only 8.6 % of the respondents exercise regularly and that among the reasons for not doing any exercise, " Don ' t have time for it " tops the list. Self-efficacy in exercise is found to be the common factor for predicting both exercise regularity and total exercise amount. Exercise intervention programs thus must be developed on the basis of female self-efficacy with a " family-oriented " activity design. It is therefore suggested that employers promote exercise and encourage exercise behaviors to help enhance employee self-efficacy as well as employee health.
O'Dell, S J; Gross, N B; Fricks, A N; Casiano, B D; Nguyen, T B; Marshall, J F
2007-02-09
Forced use of the forelimb contralateral to a unilateral injection of the dopaminergic neurotoxin 6-hydroxydopamine can promote recovery of motor function in that limb and can significantly decrease damage to dopamine terminals. The present study was conducted to determine (1) whether a form of voluntary exercise, wheel running, would improve motor performance in rats with such lesions, and (2) whether any beneficial effects of wheel running are attributable to ameliorating the dopaminergic damage. In experiment 1, rats were allowed to run in exercise wheels or kept in home cages for 2 1/2 weeks, then given stereotaxic infusions of 6-hydroxydopamine into the left striatum. The rats were replaced into their original environments (wheels or home cages) for four additional weeks, and asymmetries in forelimb use were quantified at 3, 10, 17, and 24 days postoperatively. After killing, dopaminergic damage was assessed by both quantifying 3 beta-(4-iodophenyl)tropan-2 beta-carboxylic acid methyl ester ([(125)I]RTI-55) binding to striatal dopamine transporters and counting tyrosine hydroxylase-positive cells in the substantia nigra. Exercised 6-hydroxydopamine-infused rats showed improved motor outcomes relative to sedentary lesioned controls, effects that were most apparent at postoperative days 17 and 24. Despite this behavioral improvement, 6-hydroxydopamine-induced loss of striatal dopamine transporters and tyrosine hydroxylase-positive nigral cells in exercised and sedentary groups did not differ. Since prior studies suggested that forced limb use improves motor performance by sparing nigrostriatal dopaminergic neurons from 6-hydroxydopamine damage, experiment 2 used a combined regimen of forced plus voluntary wheel running. Again, we found that the motor performance of exercised rats improved more rapidly than that of sedentary controls, but that there were no differences between these groups in the damage produced by 6-hydroxydopamine. It appears that voluntary exercise can facilitate recovery from partial nigrostriatal injury, but it does so without evident sparing of dopamine nerve terminals.
Cold water immersion recovery after simulated collision sport exercise.
Pointon, Monique; Duffield, Rob
2012-02-01
This investigation examined the effects of cold water immersion (CWI) recovery after simulated collision sport exercise. Ten male rugby athletes performed three sessions consisting of a 2 × 30-min intermittent-sprint exercise (ISE) protocol with either tackling (T) or no tackling (CONT), followed by a 20-min CWI intervention (TCWI) or passive recovery (TPASS and CONT) in a randomized order. The ISE consisted of a 15-m sprint every minute separated by self-paced bouts of hard running, jogging, and walking for the remainder of the minute. Every sixth rotation, participants performed 5 × 10-m runs, receiving a shoulder-led tackle to the lower body on each effort. Sprint time and distance covered during ISE were recorded, with voluntary (maximal voluntary contraction; MVC) and evoked neuromuscular function (voluntary activation; VA), electromyogram (root mean square (RMS)), ratings of perceived muscle soreness (MS), capillary and venous blood markers for metabolites and muscle damage, respectively measured before and after exercise, immediately after recovery, and 2 and 24 h after recovery. Total distance covered during exercise was significantly greater in CONT (P = 0.01), without differences between TPASS and TCWI (P > 0.05). TCWI resulted in increased MVC, VA, and RMS immediately after recovery (P < 0.05). M-wave amplitude and peak twitch were significantly increased after recovery and 2 h after recovery, respectively, in TCWI (P < 0.05). Although TCWI had no effect on the elevation in blood markers for muscle damage (P > 0.05), lactate was significantly reduced after recovery compared with TPASS (P = 0.04). CWI also resulted in reduced MS 2 h after recovery compared with TPASS (P < 0.05). The introduction of body contact reduces exercise performance, whereas the use of CWI results in a faster recovery of MVC, VA, and RMS and improves muscle contractile properties and perceptions of soreness after collision-based exercise.
Jonsdottir, I H; Johansson, C; Asea, A; Johansson, P; Hellstrand, K; Thorén, P; Hoffmann, P
1997-08-01
We have recently shown that in vivo natural cytotoxicity is enhanced after chronic exercise in spontaneously hypertensive rats (SHRs). In the present report, we have studied the duration of this augmentation and some possible mechanisms involved. Exercise consisted of voluntary running for 4-5 weeks, with the running distance ranging from 2.7-15.6 km day(-1) during the last week of running. In vivo cytotoxicity was measured as clearance of injected 51Cr-labelled YAC-1 lymphoma cells from the lungs. The in vivo natural cytotoxicity was increased in running SHRs, and also in SHRs that had their running wheel locked for 24 and 48 h prior to the experiment, and was still present after 96 h. The enhancement of in vivo cytotoxicity after 5 weeks of exercise was abolished after an acute injection of the beta-adrenergic receptor antagonist timolol (0.5 mg kg(-1) i.v.), indicating that catecholamines are involved in this augmentation. Interestingly, 24 h after the last exercise bout, the increased natural cytotoxicity could be blocked by timolol. The opioid receptor antagonist naloxone given subcutaneously for 7 days by osmotic pumps (6 mg kg(-1) h(-1)) could not reverse the increased in vivo cytotoxicity seen in the running SHRs, suggesting that opioid receptor mechanisms are not involved, or at least not the naloxone-sensitive mu-receptor. Natural immunity was not influenced by the histamine H2 receptor antagonist ranitidine, either in controls or in runners, indicating that the natural killer cell-regulatory effect of histamine is not present in SHRs and does not seem to be involved in the exercise-induced changes in natural immune function. We conclude that the augmentation of in vivo natural cytotoxicity after voluntary chronic exercise in rats is long-lasting and that the augmentation is partly mediated by beta-adrenergic receptors.
Regular exercisers have stronger pelvic floor muscles than nonregular exercisers at midpregnancy.
Bø, Kari; Ellstrøm Engh, Marie; Hilde, Gunvor
2018-04-01
Today all healthy pregnant women are encouraged to be physically active throughout pregnancy, with recommendations to participate in at least 30 minutes of aerobic activity on most days of the week in addition to performing strength training of the major muscle groups 2-3 days per week and also pelvic floor muscle training. There is, however, an ongoing debate whether general physical activity enhances or declines pelvic floor muscle function. The objectives of the study were to compare vaginal resting pressure, pelvic floor muscle strength, and endurance in regular exercisers (exercise ≥30 minutes 3 or more times per week) and nonexercisers at midpregnancy. Furthermore, another objective was to assess whether regular general exercise or pelvic floor muscle strength was associated with urinary incontinence. This was a cross-sectional study at mean gestational week 20.9 (±1.4) including 218 nulliparous pregnant women, with a mean age of 28.6 years (range, 19-40 years) and prepregnancy body mass index of 23.9 kg/m 2 (SD, 4.0). Vaginal resting pressure, pelvic floor muscle strength, and pelvic floor muscle endurance were measured by a high-precision pressure transducer connected to a vaginal balloon. The International Consultation on Incontinence Questionnaire Urinary Incontinence Short Form was used to assess urinary incontinence. Differences between groups were analyzed using an independent-sample Student t test. Linear regression analysis was conducted to adjust for prepregnancy body mass index, age, smoking during pregnancy, and regular pelvic floor muscle training during pregnancy. The significance value was set to P ≤ .05. Regular exercisers had statistically significant stronger (mean 6.4 cm H 2 O [95% confidence interval, 1.7-11.2]) and more enduring (mean 39.9 cm H 2 Osec [95% confidence interval, 42.2-75.7]) pelvic floor muscles. Only pelvic floor muscle strength remained statistically significant, when adjusting for possible confounders. Pelvic floor muscle strength and not regular general exercise was associated with urinary continence (adjusted B, -6.4 [95% confidence interval, -11.5 to -1.4]). Regular exercisers at midpregnancy have stronger pelvic floor muscles than their sedentary counterparts. However, pelvic floor muscle strength and not regular general exercise was associated with urinary incontinence. There is a need for additional studies in elite athletes and women performing more strenuous exercise regimens. Copyright © 2017 Elsevier Inc. All rights reserved.
Ohyama, Kana; Nogusa, Yoshihito; Suzuki, Katsuya; Shinoda, Kosaku; Kajimura, Shingo; Bannai, Makoto
2015-02-15
Exercise effectively prevents the development of obesity and obesity-related diseases such as type 2 diabetes. Capsinoids (CSNs) are capsaicin analogs found in a nonpungent pepper that increase whole body energy expenditure. Although both exercise and CSNs have antiobesity functions, the effectiveness of exercise with CSN supplementation has not yet been investigated. Here, we examined whether the beneficial effects of exercise could be further enhanced by CSN supplementation in mice. Mice were randomly assigned to four groups: 1) high-fat diet (HFD, Control), 2) HFD containing 0.3% CSNs, 3) HFD with voluntary running wheel exercise (Exercise), and 4) HFD containing 0.3% CSNs with voluntary running wheel exercise (Exercise + CSN). After 8 wk of ingestion, blood and tissues were collected and analyzed. Although CSNs significantly suppressed body weight gain under the HFD, CSN supplementation with exercise additively decreased body weight gain and fat accumulation and increased whole body energy expenditure compared with exercise alone. Exercise together with CSN supplementation robustly improved metabolic profiles, including the plasma cholesterol level. Furthermore, this combination significantly prevented diet-induced liver steatosis and decreased the size of adipocyte cells in white adipose tissue. Exercise and CSNs significantly increased cAMP levels and PKA activity in brown adipose tissue (BAT), indicating an increase of lipolysis. Moreover, they significantly activated both the oxidative phosphorylation gene program and fatty acid oxidation in skeletal muscle. These results indicate that CSNs efficiently promote the antiobesity effect of exercise, in part by increasing energy expenditure via the activation of fat oxidation in skeletal muscle and lipolysis in BAT. Copyright © 2015 the American Physiological Society.
Regular exercise during haemodialysis promotes an anti-inflammatory leucocyte profile
Dungey, Maurice; Young, Hannah M L; Churchward, Darren R; Burton, James O; Smith, Alice C
2017-01-01
Abstract Background Cardiovascular disease is the most common cause of mortality in haemodialysis (HD) patients and is highly predicted by markers of chronic inflammation. Regular exercise may have beneficial anti-inflammatory effects, but this is unclear in HD patients. This study assessed the effect of regular intradialytic exercise on soluble inflammatory factors and inflammatory leucocyte phenotypes. Methods Twenty-two HD patients from a centre where intradialytic cycling was offered thrice weekly and 16 HD patients receiving usual care volunteered. Exercising patients aimed to cycle for 30 min at rating of perceived exertion of ‘somewhat hard’. Baseline characteristics were compared with 16 healthy age-matched individuals. Physical function, soluble inflammatory markers and leucocyte phenotypes were assessed again after 6 months of regular exercise. Results Patients were less active than their healthy counterparts and had significant elevations in measures of inflammation [interleukin-6 (IL-6), C-reactive protein (CRP), tumour necrosis factor-α (TNF-α), intermediate and non-classical monocytes; all P < 0.001]. Six months of regular intradialytic exercise improved physical function (sit-to-stand 60). After 6 months, the proportion of intermediate monocytes in the exercising patients reduced compared with non-exercisers (7.58 ± 1.68% to 6.38 ± 1.81% versus 6.86 ± 1.45% to 7.88 ± 1.66%; P < 0.01). Numbers (but not proportion) of regulatory T cells decreased in the non-exercising patients only (P < 0.05). Training had no significant effect on circulating IL-6, CRP or TNF-α concentrations. Conclusions These findings suggest that regular intradialytic exercise is associated with an anti-inflammatory effect at a circulating cellular level but not in circulating cytokines. This may be protective against the increased risk of cardiovascular disease and mortality that is associated with chronic inflammation and elevated numbers of intermediate monocytes. PMID:29225811
ERIC Educational Resources Information Center
Merrill, Ray M.; Chatterley, Amanda; Shields, Eric C.
2005-01-01
This study explored the effectiveness of selected statistical measures at motivating or maintaining regular exercise among college students. The study also considered whether ease in understanding these statistical measures was associated with perceived effectiveness at motivating or maintaining regular exercise. Analyses were based on a…
Rafferty, Miriam R; Schmidt, Peter N; Luo, Sheng T; Li, Kan; Marras, Connie; Davis, Thomas L; Guttman, Mark; Cubillos, Fernando; Simuni, Tanya
2017-01-01
Research-based exercise interventions improve health-related quality of life (HRQL) and mobility in people with Parkinson's disease (PD). To examine whether exercise habits were associated with changes in HRQL and mobility over two years. We identified a cohort of National Parkinson Foundation Quality Improvement Initiative (NPF-QII) participants with three visits. HRQL and mobility were measured with the Parkinson's Disease Questionnaire (PDQ-39) and Timed Up and Go (TUG). We compared self-reported regular exercisers (≥2.5 hours/week) with people who did not exercise 2.5 hours/week. Then we quantified changes in HRQL and mobility associated with 30-minute increases in exercise, across PD severity, using mixed effects regression models. Participants with three observational study visits (n = 3408) were younger, with milder PD, than participants with fewer visits. After 2 years, consistent exercisers and people who started to exercise regularly after their baseline visit had smaller declines in HRQL and mobility than non-exercisers (p < 0.05). Non-exercisers worsened by 1.37 points on the PDQ-39 and a 0.47 seconds on the TUG per year. Increasing exercise by 30 minutes/week was associated with slower declines in HRQL (-0.16 points) and mobility (-0.04 sec). The benefit of exercise on HRQL was greater in advanced PD (-0.41 points) than mild PD (-0.14 points; p < 0.02). Consistently exercising and starting regular exercise after baseline were associated with small but significant positive effects on HRQL and mobility changes over two years. The greater association of exercise with HRQL in advanced PD supports improving encouragement and facilitation of exercise in advanced PD.
Rafferty, Miriam R.; Schmidt, Peter N.; Luo, Sheng T.; Li, Kan; Marras, Connie; Davis, Thomas L.; Guttman, Mark; Cubillos, Fernando; Simuni, Tanya
2017-01-01
Background Research-based exercise interventions improve health-related quality of life (HRQL) and mobility in people with Parkinson’s disease (PD). Objective To examine whether exercise habits were associated with changes in HRQL and mobility over two years. Methods We identified a cohort of National Parkinson Foundation Quality Improvement Initiative (NPF-QII) participants with three visits. HRQL and mobility were measured with the Parkinson’s Disease Questionnaire (PDQ-39) and Timed Up and Go (TUG). We compared self-reported regular exercisers (≥2.5 hours/week) with people who did not exercise 2.5 hours/week. Then we quantified changes in HRQL and mobility associated with 30-minute increases in exercise, across PD severity, using mixed effects regression models. Results Participants with three observational study visits (n = 3408) were younger, with milder PD, than participants with fewer visits. After 2 years, consistent exercisers and people who started to exercise regularly after their baseline visit had smaller declines in HRQL and mobility than non-exercisers (p < 0.05). Non-exercisers worsened by 1.37 points on the PDQ-39 and a 0.47 seconds on the TUG per year. Increasing exercise by 30 minutes/week was associated with slower declines in HRQL (−0.16 points) and mobility (−0.04 sec). The benefit of exercise on HRQL was greater in advanced PD (−0.41 points) than mild PD (−0.14 points; p < 0.02). Conclusions Consistently exercising and starting regular exercise after baseline were associated with small but significant positive effects on HRQL and mobility changes over two years. The greater association of exercise with HRQL in advanced PD supports improving encouragement and facilitation of exercise in advanced PD. PMID:27858719
Basta, Maria; Lin, Hung-Mo; Pejovic, Slobodanka; Sarrigiannidis, Alexios; Bixler, Edward; Vgontzas, Alexandros N
2008-02-15
Apnea, depression, and metabolic abnormalities are independent predictors of excessive daytime sleepiness (EDS) in patients with sleep apnea. Exercise is beneficial for apnea, depression, and metabolic abnormalities; however, its association with EDS is not known. To evaluate the contribution of lack of regular exercise, depression, and apnea severity on daytime sleepiness in patients with sleep apnea. One thousand one hundred six consecutive patients (741 men and 365 women) referred to the sleep disorders clinic for symptoms consistent with sleep apnea. Daytime sleepiness was assessed with the Epworth Sleepiness Scale and activity was evaluated with a quantifiable Physical Activity Questionnaire. Compared with women, men had a higher apnea hypopnea index (AHI) (40.4 +/- 1.2 vs 31.0 +/- 1.8), lower body mass index (BMI) (35.3 +/- 0.3 kg/m2 vs 39.6 +/- 0.5 kg/m2), and higher rate of regular exercise (39.1% vs 28.8%) ( p < 0.05). Linear regression analysis of the total sample after adjusting for age, BMI, sex, central nervous system medication, and diabetes showed that logAHI, depression, and lack of regular exercise were significant predictors of sleepiness. Predictors of mild or moderate sleepiness for both sexes were depression and logAHI, whereas predictors of severe sleepiness for men were lack of regular exercise, depression, and minimum SaO2 and, for women, logAHI. In obese apneic patients, lack of regular exercise (only in men), depression, and degree of apnea are significant predictors of EDS. This association is modified by sex and degree of sleepiness. Assessment and management of depression and physical exercise should be part of a thorough evaluation of patients with sleep apnea.
ERIC Educational Resources Information Center
Zheng, Fei; Zhang, Ming; Ding, Qi; Sethna, Ferzin; Yan, Lily; Moon, Changjong; Yang, Miyoung; Wang, Hongbing
2016-01-01
Mental health and cognitive functions are influenced by both genetic and environmental factors. Although having active lifestyle with physical exercise improves learning and memory, how it interacts with the specific key molecular regulators of synaptic plasticity is largely unknown. Here, we examined the effects of voluntary running on long-term…
Exercise starts and ends in the brain.
Kayser, Bengt
2003-10-01
Classically the limit to endurance of exercise is explained in terms of metabolic capacity. Cardio-respiratory capacity and muscle fatigue are thought to set the limit and the majority of studies on factors limiting endurance exercise discuss issues such as maximal oxygen uptake (VO2max), aerobic enzyme capacity, cardiac output, glycogen stores, etc. However, this paradigm does not explain the limitation to endurance exercise with large muscle groups at altitude, when at exhaustion exercise is ended without limb locomotor muscle fatigue and with sub-maximal cardiac output. A simple fact provides a basis for an explanation. Voluntary exercise starts and ends in the brain. It starts with spatial and temporal recruitment of motor units and ends with their de-recruitment. A conscious decision precedes a voluntary effort. The end of effort is again volitional and a forced conscious decision to stop precedes it, but it is unknown what forces the off-switch of recruitment at exhaustion although sensation of exertion certainly plays a role. An alternative model explaining the limitation of exercise endurance thus proposes that the central nervous system integrates input from various sources all related to the exercise and limits the intensity and duration of recruitment of limb skeletal muscle to prevent jeopardizing the integrity of the organism. This model acknowledges the cardio-respiratory and muscle metabolic capacities as prime actors on the performance scene, while crediting the central nervous system for its pivotal role as the ultimate site where exercise starts and ends.
Regular Exercise and Depressive Symptoms in Community-Dwelling Elders in Northern Taiwan.
Chang, Shu-Hung; Chien, Nai-Hui; Chen, Miao-Chuan
2016-12-01
According to World Health Organization, depressive disorder will be a Top 2 disease in the world by 2020. In light of Taiwan's rapidly increasing elderly population, elderly psychological health is expected to become an increasingly important issue in healthcare. This study examines the association between regular exercise and depressive symptoms in community-dwelling older adults by gender in northern Taiwan. The participants were selected using a probability-proportional-to-size procedure from community-dwelling adults who were aged 65 years or older and living in northern Taiwan. A cross-sectional study and interviews were used to collect information about their exercise behaviors, depressive symptoms, and the factors influencing the depressive symptoms. Percentage, chi-square, t test, and logistic regression were used to analyze the data. One thousand twenty elderly individuals completed the questionnaires. Among the participants with the average age of 73.5 years, 44.5% were men, and 55.5% were women. Two hundred seventeen of the participants (21.3%) had depressive symptoms. Five hundred eighty-five of the participants (57.4%) exercised regularly. The result of logistic regression showed that regular exercise was a significant predictor of depressive symptoms in elderly individuals (odds ratio = 3.54, 95% confidence interval [1.76, 7.12]). Other factors such as gender, chronicle diseases, and health status were not related to depressive symptoms. Moreover, both for male and female individuals, regular exercise was a significant predictor of depressive symptoms (odds ratio = 4.76, 95% confidence interval [1.65, 13.72] and odds ratio = 3.03, 95% confidence interval [1.18, 7.69], respectively). Other factors were not related to depressive symptoms. This study shows regular exercise to be a significant predictor of depressive symptoms in both men and women. Therefore, senior citizens should be encouragedto exercise regularly as a way to promote good mental health.
Liao, Lin Yu; Chung, Wei Sheng; Chen, Kuei Min
2017-01-01
The aim of this study was to pilot test the effects of regular senior elastic band exercises on the generation of free radicals and antioxidant enzyme activities in older adults. Long-term regular exercises have positive health promotion outcomes. On the contrary, high-intensity, high-speed and short-term exercises in older adults may increase free radicals and cause chronic disease and ageing effect. A prospective randomized controlled pilot study. Data were collected during 2012. Twenty-five older adults were recruited from a community care centre, southern Taiwan and were randomly assigned to either an experimental or control group. Twenty-two participants completed the study: experimental group (n = 10) and control group (n = 12). The experimental group performed 6-month senior elastic band exercises while the control group kept regular daily routines. Both groups received blood tests (thiobarbituric acid-reacting substances and glutathione peroxidase) 30 minutes before the study began and 1 hour after the final intervention treatment. At the end of the 6-month senior elastic band exercises, no statistically significant differences in thiobarbituric acid-reacting substances and glutathione peroxidase values between the experimental and control groups. No significant differences existed in both thiobarbituric acid-reacting substances and glutathione peroxidase values before and after the 6-month senior elastic band exercises either. Regular senior elastic band exercises did not increase the generation of free radicals and antioxidant enzyme activities. Senior elastic band exercises have the potential to be promoted among older adults in the community as an exercise option without adverse effects on free radicals and have potential for mitigating ageing and increasing disease control. © 2016 John Wiley & Sons Ltd.
Lorenz, Tierney Ahrold; Meston, Cindy May
2014-01-01
Background In laboratory studies, exercise immediately before sexual stimuli improved sexual arousal of women taking antidepressants [1]. We evaluated if exercise improves sexual desire, orgasm, and global sexual functioning in women experiencing antidepressant-induced sexual side effects. Methods Fifty-two women who were reporting antidepressant sexual side effects were followed for 3 weeks of sexual activity only. They were randomized to complete either three weeks of exercise immediately before sexual activity (3×/week) or 3 weeks of exercise separate from sexual activity (3×/week). At the end of the first exercise arm, participants crossed to the other. We measured sexual functioning, sexual satisfaction, depression, and physical health. Results Exercise immediately prior to sexual activity significantly improved sexual desire and, for women with sexual dysfunction at baseline, global sexual function. Scheduling regular sexual activity significantly improved orgasm function; exercise did not increase this benefit. Neither regular sexual activity nor exercise significantly changed sexual satisfaction. Conclusions Scheduling regular sexual activity and exercise may be an effective tool for the behavioral management of sexual side effects of antidepressants. PMID:24754044
Lorenz, Tierney Ahrold; Meston, Cindy May
2014-03-01
In laboratory studies, exercise immediately before sexual stimuli improved sexual arousal of women taking antidepressants [1]. We evaluated if exercise improves sexual desire, orgasm, and global sexual functioning in women experiencing antidepressant-induced sexual side effects. Fifty-two women who were reporting antidepressant sexual side effects were followed for 3 weeks of sexual activity only. They were randomized to complete either three weeks of exercise immediately before sexual activity (3×/week) or 3 weeks of exercise separate from sexual activity (3×/week). At the end of the first exercise arm, participants crossed to the other. We measured sexual functioning, sexual satisfaction, depression, and physical health. Exercise immediately prior to sexual activity significantly improved sexual desire and, for women with sexual dysfunction at baseline, global sexual function. Scheduling regular sexual activity significantly improved orgasm function; exercise did not increase this benefit. Neither regular sexual activity nor exercise significantly changed sexual satisfaction. Scheduling regular sexual activity and exercise may be an effective tool for the behavioral management of sexual side effects of antidepressants
Gregg, Vanessa H; Ferguson, James E
2017-10-01
Routine exercise should be recommended to healthy pregnant women after consultation with an obstetric provider. Even pregnant women who have not been exercising regularly can gradually increase their exercise during pregnancy. Regular exercise during pregnancy promotes overall wellness and helps maintain appropriate gestational weight gain and appropriate fetal weight gain. Exercise in pregnancy may also reduce hypertensive disorders of pregnancy and gestational diabetes, and may be associated with shorter first stage of labor and decreased risk for cesarean section. Exercise in pregnancy is safe for pregnant women and their fetuses and can have multiple health benefits. Copyright © 2017 Elsevier Inc. All rights reserved.
Speed- and Circuit-Based High-Intensity Interval Training on Recovery Oxygen Consumption
SCHLEPPENBACH, LINDSAY N.; EZER, ANDREAS B.; GRONEMUS, SARAH A.; WIDENSKI, KATELYN R.; BRAUN, SAORI I.; JANOT, JEFFREY M.
2017-01-01
Due to the current obesity epidemic in the United States, there is growing interest in efficient, effective ways to increase energy expenditure and weight loss. Research has shown that high-intensity exercise elicits a higher Excess Post-Exercise Oxygen Consumption (EPOC) throughout the day compared to steady-state exercise. Currently, there is no single research study that examines the differences in Recovery Oxygen Consumption (ROC) resulting from high-intensity interval training (HIIT) modalities. The purpose of this study is to review the impact of circuit training (CT) and speed interval training (SIT), on ROC in both regular exercising and sedentary populations. A total of 26 participants were recruited from the UW-Eau Claire campus and divided into regularly exercising and sedentary groups, according to self-reported exercise participation status. Oxygen consumption was measured during and after two HIIT sessions and was used to estimate caloric expenditure. There was no significant difference in caloric expenditure during and after exercise among individuals who regularly exercise and individuals who are sedentary. There was also no significant difference in ROC between regular exercisers and sedentary or between SIT and CT. However, there was a significantly higher caloric expenditure in SIT vs. CT regardless of exercise status. It is recommended that individuals engage in SIT vs. CT when the goal is to maximize overall caloric expenditure. With respect to ROC, individuals can choose either modalities of HIIT to achieve similar effects on increased oxygen consumption post-exercise. PMID:29170696
Speed- and Circuit-Based High-Intensity Interval Training on Recovery Oxygen Consumption.
Schleppenbach, Lindsay N; Ezer, Andreas B; Gronemus, Sarah A; Widenski, Katelyn R; Braun, Saori I; Janot, Jeffrey M
2017-01-01
Due to the current obesity epidemic in the United States, there is growing interest in efficient, effective ways to increase energy expenditure and weight loss. Research has shown that high-intensity exercise elicits a higher Excess Post-Exercise Oxygen Consumption (EPOC) throughout the day compared to steady-state exercise. Currently, there is no single research study that examines the differences in Recovery Oxygen Consumption (ROC) resulting from high-intensity interval training (HIIT) modalities. The purpose of this study is to review the impact of circuit training (CT) and speed interval training (SIT), on ROC in both regular exercising and sedentary populations. A total of 26 participants were recruited from the UW-Eau Claire campus and divided into regularly exercising and sedentary groups, according to self-reported exercise participation status. Oxygen consumption was measured during and after two HIIT sessions and was used to estimate caloric expenditure. There was no significant difference in caloric expenditure during and after exercise among individuals who regularly exercise and individuals who are sedentary. There was also no significant difference in ROC between regular exercisers and sedentary or between SIT and CT. However, there was a significantly higher caloric expenditure in SIT vs. CT regardless of exercise status. It is recommended that individuals engage in SIT vs. CT when the goal is to maximize overall caloric expenditure. With respect to ROC, individuals can choose either modalities of HIIT to achieve similar effects on increased oxygen consumption post-exercise.
Coping with Stress. Research Notes.
ERIC Educational Resources Information Center
Jordan, Debra J.
1995-01-01
Research related to the impact of exercise on stress indicates that a regular aerobic exercise program is important to control the negative effects of stress. It was also reported that those who are physically fit have higher levels of self-esteem. Implications for camp staff involve starting a regular exercise program to offset job-related…
Lee, Yang-Chool; Yi, Eun-Surk; Choi, Won-Ho; Lee, Byung-Mun; Cho, Sung-Bo; Kim, Ji-Youn
2015-01-01
The purpose of this study was to design a repeatable universal rehabilitation program in which patients with hemiplegia can participate voluntarily, complementing physical and occupational therapies to increase voluntary exercise practice rate. Also, this study attempted to identify the relationship between psychological resilience due to the implementation of self-bedside exercise and functional recovery of activity of daily living (ADL). 12 patients with hemiplegia voluntarily participated in 8 weeks of self-bedside exercise 5 times a day and more than 5 days a week. Their program implementation, resilience, activities of daily living (MBI), upper limb motor functions (MFT), and balance ability (BBS) were analyzed and compared before and after the program. Compared to before implementing the program, significant increases were found in resilience, MBI, BBS, and MFT in the affected side after the implementation, and the resilience scores showed statistically positive correlation in MBI and MFT. Also, the change in resilience before and after the program implementation showed a statistically positive correlation. Therefore, it can be concluded that the self-bedside exercise developed in this study had a positive effect on voluntary participation in exercise as well as resilience and ADL. However, many studies which complement the psychological aspects of hemiparetic patients with stroke are still needed. PMID:25830141
Pigna, Eva; Berardi, Emanuele; Aulino, Paola; Rizzuto, Emanuele; Zampieri, Sandra; Carraro, Ugo; Kern, Helmut; Merigliano, Stefano; Gruppo, Mario; Mericskay, Mathias; Li, Zhenlin; Rocchi, Marco; Barone, Rosario; Macaluso, Filippo; Di Felice, Valentina; Adamo, Sergio; Coletti, Dario; Moresi, Viviana
2016-01-01
Recent studies have correlated physical activity with a better prognosis in cachectic patients, although the underlying mechanisms are not yet understood. In order to identify the pathways involved in the physical activity-mediated rescue of skeletal muscle mass and function, we investigated the effects of voluntary exercise on cachexia in colon carcinoma (C26)-bearing mice. Voluntary exercise prevented loss of muscle mass and function, ultimately increasing survival of C26-bearing mice. We found that the autophagic flux is overloaded in skeletal muscle of both colon carcinoma murine models and patients, but not in running C26-bearing mice, thus suggesting that exercise may release the autophagic flux and ultimately rescue muscle homeostasis. Treatment of C26-bearing mice with either AICAR or rapamycin, two drugs that trigger the autophagic flux, also rescued muscle mass and prevented atrogene induction. Similar effects were reproduced on myotubes in vitro, which displayed atrophy following exposure to C26-conditioned medium, a phenomenon that was rescued by AICAR or rapamycin treatment and relies on autophagosome-lysosome fusion (inhibited by chloroquine). Since AICAR, rapamycin and exercise equally affect the autophagic system and counteract cachexia, we believe autophagy-triggering drugs may be exploited to treat cachexia in conditions in which exercise cannot be prescribed. PMID:27244599
Revilla, Susana; Suñol, Cristina; García-Mesa, Yoelvis; Giménez-Llort, Lydia; Sanfeliu, Coral; Cristòfol, Rosa
2014-06-01
Physical exercise has become a potentially beneficial therapy for reducing neurodegeneration symptoms in Alzheimer's disease. Previous studies have shown that cognitive deterioration, anxiety and the startle response observed in 7-month-old 3xTg-AD mice were ameliorated after 6 months of free access to a running wheel. Also, alterations in synaptic response to paired-pulse stimulation were improved. The present study further investigated some molecular mechanisms underlying the beneficial effects of 6 months of voluntary exercise on synaptic plasticity in 7-month-old 3xTg-AD mice. Changes in binding parameters of [(3)H]-flunitrazepam to GABAA receptor and of [(3)H]-MK-801 to NMDA receptor in cerebral cortex of 3xTgAD mice were restored by voluntary exercise. In addition, reduced expression levels of NMDA receptor NR2B subunit were reestablished. The synaptic proteins synaptophysin and PSD-95 and the neuroprotective proteins GDNF and SIRT1 were downregulated in 3xTgAD mice and were recovered by exercise treatment. Overall, in this paper we highlight the fact that different interrelated mechanisms are involved in the beneficial effects of exercise on synaptic plasticity alterations in the 3xTg-AD mouse model. Copyright © 2014 Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
Teramoto, Masaru; Golding, Lawrence A.
2009-01-01
We investigated the effects of regular exercise on the plasma lipid levels that contribute to coronary heart disease (CHD), of 20 sedentary men who participated in an exercise program over 20 consecutive years. The men, whose initial ages ranged from 30-51 years, participated in the University of Nevada-based exercise program for an average of 45…
Air Force Fitness Program. Case Studies on the Impact on Aircraft Maintenance
2009-04-01
reduced or avoided pain after childbirth if one is muscularly fit. Also, in menopausal women, exercise reduces the effects of osteoporosis. Post ...workforce, show that exercise and increased productivity are directly linked. The first case, covered in the New Zealand Dominion Post , directly...menopausal depression has shown to greatly reduce with participation in a regular exercise program.20 While benefits of regular exercise and healthy
Pósa, Anikó; Kupai, Krisztina; Szalai, Zita; Veszelka, Médea; Török, Szilvia; Varga, Csaba
2015-01-01
The estrogen deficiency after menopause leads to overweight or obesity, and physical exercise is one of the important modulators of this body weight gain. Female Wistar rats underwent ovariectomy surgery (OVX) or sham operation (SO). OVX and SO groups were randomized into new groups based on the voluntary physical activity (with or without running) and the type of diet for 12 weeks. Rats were fed standard chow (CTRL), high triglyceride diet (HT), or restricted diet (CR). The metabolic syndrome was assessed by measuring the body weight gain, the glucose sensitivity, and the levels of insulin, triglyceride, leptin, and aspartate aminotransferase transaminase (AST) and alanine aminotransferase (ALT). The exercise training combined with the CR resulted in improvements in the glucose tolerance and the insulin sensitivity. Plasma TG, AST, and ALT levels were significantly higher in OVX rats fed with HT but these high values were suppressed by exercise and CR. Compared to SO animals, estrogen deprivation with HT caused a significant increase in leptin level. Our data provide evidence that CR combined with voluntary physical exercise can be a very effective strategy to prevent the development of a metabolic syndrome induced by high calorie diet. PMID:25874022
Effect of fluid ingestion on neuromuscular function during prolonged cycling exercise.
Vallier, J-M; Grego, F; Basset, F; Lepers, R; Bernard, T; Brisswalter, J
2005-04-01
To investigate the effects of fluid ingestion on neuromuscular function during prolonged cycling exercise. Eight well trained subjects exercised for 180 minutes in a moderate environment at a workload requiring approximately 60% maximal oxygen uptake. Two conditions, fluid (F) and no fluid (NF) ingestion, were investigated. During maximal voluntary isometric contraction (MVC), prolonged cycling exercise reduced (p<0.05) the maximal force generating capacity of quadriceps muscles (after three hours of cycling) and root mean square (RMS) values (after two hours of cycling) with no difference between the two conditions despite greater body weight loss (p<0.05) in NF. The mean power frequency (MPF) for vastus lateralis muscle was reduced (p<0.05) and the rate of force development (RFD) was increased (p<0.05) only during NF. During cycling exercise, integrated electromyographic activity and perceived exertion were increased in both conditions (p<0.05) with no significant effect of fluid ingestion. The results suggest that fluid ingestion did not prevent the previously reported decrease in maximal force with exercise duration, but seems to have a positive effect on some indicators of neuromuscular fatigue such as mean power frequency and rate of force development during maximal voluntary contraction. Further investigations are needed to assess the effect of change in hydration on neural mechanisms linked to the development of muscular fatigue during prolonged exercise.
Soffe, Z; Radley-Crabb, H G; McMahon, C; Grounds, M D; Shavlakadze, T
2016-02-01
This study compared the capacity of young and old male C57Bl/6J mice to exercise with increasing resistance over 10 weeks, and its impact on muscle mass. Young mice (aged 15-25 weeks) were subjected to low (LR) and high (HR) resistance exercise, whereas only LR was used for old mice (107-117 weeks). Weekly patterns of voluntary wheel activity, food consumption and body weights were measured. Running patterns changed over time and with age, with two peaks of activity detected for young, but only one for old mice: speed and distance run was also less for old mice. The mass for six limb muscles was measured at the end of the experiment. The most pronounced increase in mass in response to exercise was for the soleus in young and old mice, and also quadriceps and gastrocnemius in young mice. Soleus and quadriceps muscles were analyzed histologically for myofiber number and size. A striking feature was the many small myofibers in response to exercise in young (but not old) soleus, whereas these were not present after exercise in young or old quadriceps. Overall, there was a striking difference in response to exercise between muscles and this was influenced by age. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Aerobic exercise and respiratory muscle strength in patients with cystic fibrosis.
Dassios, Theodore; Katelari, Anna; Doudounakis, Stavros; Dimitriou, Gabriel
2013-05-01
The beneficial role of exercise in maintaining health in patients with cystic fibrosis (CF) is well described. Few data exist on the effect of exercise on respiratory muscle function in patients with CF. Our objective was to compare respiratory muscle function indices in CF patients that regularly exercise with those CF patients that do not. This cross-sectional study assessed nutrition, pulmonary function and respiratory muscle function in 37 CF patients that undertook regular aerobic exercise and in a control group matched for age and gender which consisted of 44 CF patients that did not undertake regular exercise. Respiratory muscle function in CF was assessed by maximal inspiratory pressure (Pimax), maximal expiratory pressure (Pemax) and pressure-time index of the respiratory muscles (PTImus). Median Pimax and Pemax were significantly higher in the exercise group compared to the control group (92 vs. 63 cm H2O and 94 vs. 64 cm H2O respectively). PTImus was significantly lower in the exercise group compared to the control group (0.089 vs. 0.121). Upper arm muscle area (UAMA) and mid-arm muscle circumference were significantly increased in the exercise group compared to the control group (2608 vs. 2178 mm2 and 23 vs. 21 cm respectively). UAMA was significantly related to Pimax in the exercising group. These results suggest that CF patients that undertake regular aerobic exercise maintain higher indices of respiratory muscle strength and lower PTImus values, while increased UAMA values in exercising patients highlight the importance of muscular competence in respiratory muscle function in this population. Copyright © 2013 Elsevier Ltd. All rights reserved.
The value of electrical stimulation as an exercise training modality
NASA Technical Reports Server (NTRS)
Currier, Dean P.; Ray, J. Michael; Nyland, John; Noteboom, Tim
1994-01-01
Voluntary exercise is the traditional way of improving performance of the human body in both the healthy and unhealthy states. Physiological responses to voluntary exercise are well documented. It benefits the functions of bone, joints, connective tissue, and muscle. In recent years, research has shown that neuromuscular electrical stimulation (NMES) simulates voluntary exercise in many ways. Generically, NMES can perform three major functions: suppression of pain, improve healing of soft tissues, and produce muscle contractions. Low frequency NMES may gate or disrupt the sensory input to the central nervous system which results in masking or control of pain. At the same time NMES may contribute to the activation of endorphins, serotonin, vasoactive intestinal polypeptides, and ACTH which control pain and may even cause improved athletic performances. Soft tissue conditions such as wounds and inflammations have responded very favorably to NMES. NMES of various amplitudes can induce muscle contractions ranging from weak to intense levels. NMES seems to have made its greatest gains in rehabilitation where directed muscle contractions may improve joint ranges of motion correct joint contractures that result from shortening muscles; control abnormal movements through facilitating recruitment or excitation into the alpha motoneuron in orthopedically, neurologically, or healthy subjects with intense sensory, kinesthetic, and proprioceptive information; provide a conservative approach to management of spasticity in neurological patients; by stimulation of the antagonist muscle to a spastic muscle stimulation of the agonist muscle, and sensory habituation; serve as an orthotic substitute to conventional bracing used with stroke patients in lieu of dorsiflexor muscles in preventing step page gait and for shoulder muscles to maintain glenohumeral alignment to prevent subluxation; and of course NMES is used in maintaining or improving the performance or torque producing capability of muscle. NMES in exercise training is our major concern.
Baeßler, Kaven; Junginger, Bärbel
2017-01-01
Background The aims of physiotherapy in stress incontinent women are to improve pelvic floor function and the continence mechanism including bladder neck support and urethral closure pressure. In Germany, traditional conservative treatment often includes gymnastic exercises with unclear effects on the bladder neck. The aim of this study was to sonographically assess bladder neck movements during selected exercises. Methods Fifteen healthy, continent women without previous vaginal births, who were able to voluntarily contract their pelvic floor muscels performed the shoulder bridge, the abdominal press, tiptoe and the Pilates clam exercises. The first set was performed without any additional instructions. During the second set directions were given to activate the pelvic floor before beginning each exercise and to maintain the contraction throughout the exercise. Bladder neck movement was measured on perineal ultrasound using a validated method with the pubic symphysis as a reference point. Results The median age of participants was 32 years, median BMI was 23. Eight women were nulliparous and seven had given birth to 1 – 2 children via caesarean section. When exercises were performed without voluntary pelvic floor contraction the bladder neck descended on average between 2.3 and 4.4 mm, and with pelvic floor contraction prior to the exercise only between 0.5 and 2.1 mm (p > 0.05 except for abdominal press p = 0.007). The Pilates clam exercise and toe stand stabilised the bladder neck most effectively. Discussion Bladder neck descent often occurs during pelvic floor gymnastic exercises as traditionally performed in Germany, and a voluntary pelvic floor contraction during the exercises does not necessarily prevent this. PMID:28757655
Banner, N; Guz, A; Heaton, R; Innes, J A; Murphy, K; Yacoub, M
1988-01-01
1. Ventilatory and cardiovascular responses to the onset of voluntary and electrically induced leg exercise were studied in six patients following heart transplantation and five following heart-lung transplantation; the results were compared between the patient groups and also with responses from a group of normal subjects. 2. Oxygen consumption, carbon dioxide production and ventilation and its components were measured over two 30 s periods prior to, and two 30 s periods following, the onset of exercise. Relative changes in stroke volume and cardiac output were derived from ensemble-averaged Doppler measurements of ascending aortic blood velocity over the same 30 s periods. 3. None of the groups of subjects showed any significant differences in responses to voluntary exercise compared to electrically induced exercise of similar work pattern and intensity. 4. Compared to normal controls, the transplanted subjects showed higher resting heart rates which did not increase at the onset of exercise; stroke volume increased, but less than in the normal subjects. The resulting cardiac output increases in the transplanted subjects were minimal compared to the normal subjects. 5. Ventilation and oxygen uptake increased immediately and with similar magnitude in all three groups. 6. These results show that in the same individual it is possible to have an appropriate ventilatory response to the onset of exercise in the presumed absence of a normal corticospinal input to the exercising muscles (electrically induced exercise) and afferent neural information from the lungs and heart, and in the absence of a normal circulatory response to exercise. The mechanisms underlying this ventilatory response remain undetermined. PMID:3136247
Onakomaiya, Marie M.; Porter, Donna M.; Oberlander, Joseph G.; Henderson, Leslie P.
2014-01-01
Anabolic androgenic steroids (AAS) are taken by both sexes to enhance athletic performance and body image, nearly always in conjunction with an exercise regime. Although taken to improve physical attributes, chronic AAS use can promote negative behavior, including anxiety. Few studies have directly compared the impact of AAS use in males versus females or assessed the interaction of exercise and AAS. We show that AAS increase anxiety-like behaviors in female but not male mice and that voluntary exercise accentuates these sex-specific differences. We also show that levels of the anxiogenic peptide corticotrophin releasing factor (CRF) are significantly greater in males, but that AAS selectively increase CRF levels in females, thus abrogating this sex-specific difference. Exercise did not ameliorate AAS-induced anxiety or alter CRF levels in females. Exercise was anxiolytic in males, but this behavioral outcome did not correlate with CRF levels. Brain-derived neurotrophic factor (BDNF) has also been implicated in the expression of anxiety. As with CRF, levels of hippocampal BDNF mRNA were significantly greater in males than females. AAS and exercise were without effect on BDNF mRNA in females. In males, anxiolytic effects of exercise correlated with increased BDNF mRNA, however AAS-induced changes in BDNF mRNA and anxiety did not. In sum, we find that AAS elicit sex-specific differences in anxiety and that voluntary exercise accentuates these differences. In addition, our data suggest that these behavioral outcomes may reflect convergent actions of AAS and exercise on a sexually differentiated CRF signaling system within the extended amygdala. PMID:24768711
Electrical stimulation superimposed onto voluntary muscular contraction.
Paillard, Thierry; Noé, Frédéric; Passelergue, Philippe; Dupui, Philippe
2005-01-01
Electrical stimulation (ES) reverses the order of recruitment of motor units (MU) observed with voluntary muscular contraction (VOL) since under ES, large MU are recruited before small MU. The superimposition of ES onto VOL (superimposed technique: application of an electrical stimulus during a voluntary muscle action) can theoretically activate more motor units than VOL performed alone, which can engender an increase of the contraction force. Two superimposed techniques can be used: (i) the twitch interpolation technique (ITT), which consists of interjecting an electrical stimulus onto the muscle nerve; and (ii) the percutaneous superimposed electrical stimulation technique (PST), where the stimulation is applied to the muscle belly. These two superimposed techniques can be used to evaluate the ability to fully activate a muscle. They can thus be employed to distinguish the central or peripheral nature of fatigue after exhausting exercise. In general, whatever the technique employed, the superimposition of ES onto volitional exercise does not recruit more MU than VOL, except with eccentric actions. Nevertheless, the neuromuscular response associated with the use of the superimposed technique (ITT and PST) depends on the parameter of the superimposed current. The sex and the training level of the subjects can also modify the physiological impact of the superimposed technique. Although the motor control differs drastically between training with ES and VOL, the integration of the superimposed technique in training programmes with healthy subjects does not reveal significant benefits compared with programmes performed only with voluntary exercises. Nevertheless, in a therapeutic context, training programmes using ES superimposition compensate volume and muscle strength deficit with more efficiency than programmes using VOL or ES separately.
Effects of voluntary exercise on structure and function of cortical microvasculature.
Dorr, Adrienne; Thomason, Lynsie Am; Koletar, Margaret M; Joo, Illsung L; Steinman, Joe; Cahill, Lindsay S; Sled, John G; Stefanovic, Bojana
2017-03-01
Aerobic activity has been shown highly beneficial to brain health, yet much uncertainty still surrounds the effects of exercise on the functioning of cerebral microvasculature. This study used two-photon fluorescence microscopy to examine cerebral hemodynamic alterations as well as accompanying geometric changes in the cortical microvascular network following five weeks of voluntary exercise in transgenic mice endogenously expressing tdTomato in vascular endothelial cells to allow visualization of microvessels irrespective of their perfusion levels. We found a diminished microvascular response to a hypercapnic challenge (10% FiCO 2 ) in running mice when compared to that in nonrunning controls despite commensurate increases in transcutaneous CO 2 tension. The flow increase to hypercapnia in runners was 70% lower than that in nonrunners (p = 0.0070) and the runners' arteriolar red blood cell speed changed by only half the amount seen in nonrunners (p = 0.0085). No changes were seen in resting hemodynamics or in the systemic physiological parameters measured. Although a few unperfused new vessels were observed on visual inspection, running did not produce significant morphological differences in the microvascular morphometric parameters, quantified following semiautomated tracking of the microvascular networks. We propose that voluntary running led to increased cortical microvascular efficiency and desensitization to CO 2 elevation.
Masini, Cher V; Nyhuis, Tara J; Sasse, Sarah K; Day, Heidi E W; Campeau, Serge
2011-05-01
Stress often negatively impacts physical and mental health but it has been suggested that voluntary physical activity may benefit health by reducing some of the effects of stress. The present experiments tested whether voluntary exercise can reduce heart rate, core body temperature and locomotor activity responses to acute (novelty or loud noise) or repeated stress (loud noise). After 6 weeks of running-wheel access, rats exposed to a novel environment had reduced heart rate, core body temperature, and locomotor activity responses compared to rats housed under sedentary conditions. In contrast, none of these measures were different between exercised and sedentary rats following acute 30-min noise exposures, at either 85 or 98 dB. Following 10 weeks of running-wheel access, both groups displayed significant habituation of all these responses to 10 consecutive daily 30-min presentations of 98 dB noise stress. However, the extent of habituation of all three responses was significantly enhanced in exercised compared to sedentary animals on the last exposure to noise. These results suggest that in physically active animals, under some conditions, acute responses to stress exposure may be reduced, and response habituation to repeated stress may be enhanced, which ultimately may reduce the negative and cumulative impact of stress.
MASINI, CHER V.; NYHUIS, TARA J.; SASSE, SARAH K.; DAY, HEIDI E. W.; CAMPEAU, SERGE
2015-01-01
Stress often negatively impacts physical and mental health but it has been suggested that voluntary physical activity may benefit health by reducing some of the effects of stress. The present experiments tested whether voluntary exercise can reduce heart rate, core body temperature and locomotor activity responses to acute (novelty or loud noise) or repeated stress (loud noise). After 6 weeks of running-wheel access, rats exposed to a novel environment had reduced heart rate, core body temperature, and locomotor activity responses compared to rats housed under sedentary conditions. In contrast, none of these measures were different between exercised and sedentary rats following acute 30-min noise exposures, at either 85 or 98 dB. Following 10 weeks of running-wheel access, both groups displayed significant habituation of all these responses to 10 consecutive daily 30-min presentations of 98 dB noise stress. However, the extent of habituation of all three responses was significantly enhanced in exercised compared to sedentary animals on the last exposure to noise. These results suggest that in physically active animals, under some conditions, acute responses to stress exposure may be reduced, and response habituation to repeated stress may be enhanced, which ultimately may reduce the negative and cumulative impact of stress. PMID:21438772
The exercise prescription for enhancing overall health of midlife and older women.
Woodward, Miriam J; Lu, Chi Wei; Levandowski, Richard; Kostis, John; Bachmann, Gloria
2015-09-01
For midlife and older women, this period of their life is associated with an increase in risk factors for the development of chronic medical conditions. Data confirms the importance of regular exercise for both prevention and management of cardiovascular and other non-communicable diseases, unwanted weight gain, worsening metabolic profile and osteoporosis. However, in most clinical practices, midlife and older women patients are not offered specific exercise guidance. This review assessed the current environment of what exercise advice is being offered to women at clinical encounters and suggests ways of incorporating an exercise prescription into clinical practice. A PubMed review of the literature from the past 20 years was conducted. A universal template for an exercise prescription for aging women does not exist. Globally, there are scant programs that offer exercise advice and interventions to patients at the end of clinical encounters. Although most aging women know the benefits of engaging in a regular exercise program, many do not establish a regular routine. By the clinician offering an exercise prescription, this not only reinforces the importance of exercise but also provides simple guidelines on how women can commence an exercise routine in their life. Copyright © 2015. Published by Elsevier Ireland Ltd.
Ishii, Kei; Matsukawa, Kanji; Asahara, Ryota; Liang, Nan; Endo, Kana; Idesako, Mitsuhiro; Michioka, Kensuke; Sasaki, Yu; Hamada, Hironobu; Yamashita, Kaori; Watanabe, Tae; Kataoka, Tsuyoshi; Takahashi, Makoto
2017-04-01
This study aimed to examine whether central command increases oxygenation in non-contracting arm muscles during contralateral one-armed cranking and whether the oxygenation response caused by central command differs among skeletal muscles of the non-exercising upper limb. In 13 male subjects, the relative changes in oxygenated-hemoglobin concentration (Oxy-Hb) of the non-contracting arm muscles [the anterior deltoid, triceps brachii, biceps brachii, and extensor carpi radialis (ECR)] were measured during voluntary one-armed cranking (intensity, 35-40% of maximal voluntary effort) and mental imagery of the one-armed exercise for 1 min. Voluntary one-armed cranking increased ( P < 0.05) the Oxy-Hb of the triceps, biceps, and ECR muscles to the same extent (15 ± 4% of the baseline level, 17 ± 5%, and 16 ± 4%, respectively). The greatest increase in the Oxy-Hb was observed in the deltoid muscle. Intravenous injection of atropine (10-15 μ g/kg) and/or propranolol (0.1 mg/kg) revealed that the increased Oxy-Hb of the arm muscles consisted of the rapid atropine-sensitive and delayed propranolol-sensitive components. Mental imagery of the exercise increased the Oxy-Hb of the arm muscles. Motor-driven passive one-armed cranking had little influence on the Oxy-Hb of the arm muscles. It is likely that central command plays a role in the initial increase in oxygenation in the non-contracting arm muscles via sympathetic cholinergic vasodilatation at the early period of one-armed cranking. The centrally induced increase in oxygenation may not be different among the distal arm muscles but may augment in the deltoid muscle. © 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.
Fujii, Naoto; Tsuchiya, Sho-Ichiro; Tsuji, Bun; Watanabe, Kazuhito; Sasaki, Yosuke; Nishiyasu, Takeshi
2015-09-01
We evaluated whether hypocapnia achieved through voluntary hyperventilation diminishes the increases in oxygen uptake elicited by short-term (e.g., ~30 s) all-out exercise without affecting exercise performance. Nine subjects performed 30-s Wingate anaerobic tests (WAnT) in control and hypocapnia trials on separate days in a counterbalanced manner. During the 20-min rest prior to the 30-s WAnT, the subjects in the hypocapnia trial performed voluntary hyperventilation (minute ventilation = 31 L min(-1)), while the subjects in the control trial continued breathing spontaneously (minute ventilation = 14 L min(-1)). The hyperventilation in the hypocapnia trial reduced end-tidal CO2 pressure from 34.8 ± 2.5 mmHg at baseline rest to 19.3 ± 1.0 mmHg immediately before the 30-s WAnT. In the control trial, end-tidal CO2 pressure at baseline rest (35.9 ± 2.5 mmHg) did not differ from that measured immediately before the 30-s WAnT (35.9 ± 3.3 mmHg). Oxygen uptake during the 30-s WAnT was lower in the hypocapnia than the control trial (1.55 ± 0.52 vs. 1.95 ± 0.44 L min(-1)), while the postexercise peak blood lactate concentration was higher in the hypocapnia than control trial (10.4 ± 1.9 vs. 9.6 ± 1.9 mmol L(-1)). In contrast, there was no difference in the 5-s peak (842 ± 111 vs. 850 ± 107 W) or mean (626 ± 74 vs. 639 ± 80 W) power achieved during the 30-s WAnT between the control and hypocapnia trials. These results suggest that during short-period all-out exercise (e.g., 30-s WAnT), hypocapnia induced by voluntary hyperventilation reduces the aerobic metabolic rate without affecting exercise performance. This implies a compensatory elevation in the anaerobic metabolic rate.
Exercise in children with common congenital heart lesions: balancing benefits with risks.
Halliday, Melanie; Selvadurai, Hiran; Sherwood, Megan; Fitzgerald, Dominic A
2013-10-01
Children with corrected common congenital heart lesions are often withheld from regular exercise by their parents. While there are some modest risks with exercise, they should be seen in perspective, and the life-long benefits of regular exercise on general health, mood and well-being should be emphasised. © 2013 The Authors. Journal of Paediatrics and Child Health © 2013 Paediatrics and Child Health Division (Royal Australasian College of Physicians).
Exercise Prevents Amyloid-β-Induced Hippocampal Network Disruption by Inhibiting GSK3β Activation.
Isla, Arturo G; Vázquez-Cuevas, Francisco Gabriel; Peña-Ortega, Fernando
2016-03-16
Exercise is becoming a promising therapeutic approach to prevent alterations both in Alzheimer's disease (AD) patients and in transgenic models of AD. This neuroprotection has been associated with changes in hippocampal structure and function, as well as with the reduction of amyloid-β (Aβ) production and accumulation. However, whether exercise produces lasting changes in hippocampal population activity and renders it resistant to Aβ-induced network dysfunction is still unknown. Thus, we tested whether voluntary exercise changes hippocampal population activity and prevents its alteration in the presence of Aβ, which has been associated to glycogen synthase kinase-3β (GSK3β) activation. We found that the hippocampal population activity recorded in slices obtained from mice that exercised voluntarily (with free access to a running wheel for 21 days) exhibits higher power and faster frequency composition than slices obtained from sedentary animals. Moreover, the hippocampal network of mice that exercised becomes insensitive to Aβ-induced inhibition of spontaneous population activity. This protective effect correlates with the inability of Aβ to activate GSK3β, is mimicked by GSK3β inhibition with SB126763 (in slices obtained from sedentary mice), and is abolished by the inhibition of PI3K with LY294002 (in slices obtained from mice that exercised). We conclude that voluntary exercise produces a lasting protective state in the hippocampus, maintained in hippocampal slices by a PI3K-dependent mechanism that precludes its functional disruption in the presence of Aβ by avoiding GSK3β activation.
Doubova, Svetlana V; Sánchez-García, Sergio; Infante-Castañeda, Claudia; Pérez-Cuevas, Ricardo
2016-09-09
To analyze the factors associated with regular physical exercise and routine consumption of fruits and vegetables, and both healthy behaviors among Mexican older adults. We conducted a secondary data analysis of the baseline data (2014) of the Study on Obesity, Sarcopenia and Fragility in older adults affiliated with the Mexican Institute of Social Security. The study included 948 adults who were ≥60 years of age. Multiple Poisson regression was performed. Routine consumption of fruits and vegetables was reported by 53.8 % of older adults, 42.7 % reported engaging in regular physical exercise and 23.1 % reported participating in both types of healthy behaviors. Women, adults with a stable income, those with a self-perception of good health and those with a history of physical exercise at the age of 50 years had an increased likelihood of engaging in healthy eating and regular physical activity. Many older adults do not routinely consume fruits and vegetables or engage in regular physical exercise despite the fact that most have a fixed income and a social network. It is relevant to conduct research-based interventions that take into account the contextual factors to promote healthy behaviors.
Factors Associated With Exercise Behavior in People With Parkinson Disease
Cavanaugh, James T.; Earhart, Gammon M.; Ford, Matthew P.; Foreman, K. Bo; Fredman, Lisa; Boudreau, Jennifer K.; Dibble, Leland E.
2011-01-01
Background The benefits of exercise for reducing disability in people with Parkinson disease (PD) are becoming more evident. Optimal benefit, however, requires regular and sustained participation. Factors associated with engaging in regular exercise have received little scientific scrutiny in people with PD. Objective The purpose of this study was to explore factors associated with exercise behavior in patients with PD using the International Classification of Functioning, Disability and Health (ICF) as a guiding framework. Design This was a cross-sectional study. Methods The participants in this study were 260 patients with PD from 4 institutions. Participants were designated as “exercisers” or “nonexercisers” based on responses to the Stages of Readiness to Exercise Questionnaire. Exercise status was validated using the Physical Activity Scale for the Elderly and an activity monitor. Factors potentially associated with exercise behavior included measures of body structure and function, activity, participation, environmental factors, and personal factors. Their relative contributions were analyzed using logistic regression and quantified with odds ratios. Results One hundred sixty-four participants (63%) were designated as exercisers. Participants with high self-efficacy were more than twice as likely to engage in regular exercise than those with low self-efficacy (adjusted odds ratio=2.34, 95% confidence interval=1.30–4.23). College educated and older participants also were more likely to exercise. Disabling influences of impairments, activity limitations, and participation restrictions were not associated with exercise behavior. Limitations The cross-sectional nature of the study limited the ability to make causal inferences. Conclusions Self-efficacy, rather than disability, appears to be strongly associated with whether ambulatory, community-dwelling people with PD exercise regularly. The results of this study suggest that physical therapists should include strategies to increase exercise self-efficacy when designing patient intervention programs for patients with PD. PMID:22003171
Exercise: the data on its role in health, mental health, disease prevention, and productivity.
Diehl, Jason J; Choi, Haemi
2008-12-01
How would you define exercise? If you look up exercise in the dictionary, it is defined as physical activity used for the purpose of conditioning any part of the body. Exercise is an important topic because in the United States less than 50% of the total population exercises on a regular basis. The lack of regular physical activity is linked to an increased rate of obesity, development of chronic diseases, and an overall decline in health. This article uses an evidence-based approach to demonstrate how exercise affects health, mental health, disease prevention, and productivity.
Thompson, Zoe; Argueta, Donovan; Garland, Theodore; DiPatrizio, Nicholas
2017-01-01
The endocannabinoid system serves many physiological roles, including in the regulation of energy balance, food reward, and voluntary locomotion. Signaling at the cannabinoid type 1 receptor has been specifically implicated in motivation for rodent voluntary exercise on wheels. We studied four replicate lines of high runner (HR) mice that have been selectively bred for 81 generations based on average number of wheel revolutions on days five and six of a six-day period of wheel access. Four additional replicate lines are bred without regard to wheel running, and serve as controls (C) for random genetic effects that may cause divergence among lines. On average, mice from HR lines voluntarily run on wheels three times more than C mice on a daily basis. We tested the general hypothesis that circulating levels of endocannabinoids (i.e., 2-arachidonoylglycerol [2-AG] and anandamide [AEA]) differ between HR and C mice in a sex-specific manner. Fifty male and 50 female mice were allowed access to wheels for six days, while another 50 males and 50 females were kept without access to wheels (half HR, half C for all groups). Blood was collected by cardiac puncture during the time of peak running on the sixth night of wheel access or no wheel access, and later analyzed for 2-AG and AEA content by ultra-performance liquid chromatography coupled to tandem mass spectrometry. We observed a significant three-way interaction among sex, linetype, and wheel access for 2-AG concentrations, with females generally having lower levels than males and wheel access lowering 2-AG levels in some but not all subgroups. The number of wheel revolutions in the minutes or hours immediately prior to sampling did not quantitatively predict plasma 2-AG levels within groups. We also observed a trend for a linetype-by-wheel access interaction for AEA levels, with wheel access lowering plasma concentrations of AEA in HR mice, while raising them in C mice. In addition, females tended to have higher AEA concentrations than males. For mice housed with wheels, the amount of running during the 30 minutes before sampling was a significant positive predictor of plasma AEA within groups, and HR mice had significantly lower levels of AEA than C mice. Our results suggest that voluntary exercise alters circulating levels of endocannabinoids, and further demonstrate that selective breeding for voluntary exercise is associated with evolutionary changes in the endocannabinoid system. PMID:28017680
Thompson, Zoe; Argueta, Donovan; Garland, Theodore; DiPatrizio, Nicholas
2017-03-01
The endocannabinoid system serves many physiological roles, including in the regulation of energy balance, food reward, and voluntary locomotion. Signaling at the cannabinoid type 1 receptor has been specifically implicated in motivation for rodent voluntary exercise on wheels. We studied four replicate lines of high runner (HR) mice that have been selectively bred for 81 generations based on average number of wheel revolutions on days five and six of a six-day period of wheel access. Four additional replicate lines are bred without regard to wheel running, and serve as controls (C) for random genetic effects that may cause divergence among lines. On average, mice from HR lines voluntarily run on wheels three times more than C mice on a daily basis. We tested the general hypothesis that circulating levels of endocannabinoids (i.e., 2-arachidonoylglycerol [2-AG] and anandamide [AEA]) differ between HR and C mice in a sex-specific manner. Fifty male and 50 female mice were allowed access to wheels for six days, while another 50 males and 50 females were kept without access to wheels (half HR, half C for all groups). Blood was collected by cardiac puncture during the time of peak running on the sixth night of wheel access or no wheel access, and later analyzed for 2-AG and AEA content by ultra-performance liquid chromatography coupled to tandem mass spectrometry. We observed a significant three-way interaction among sex, linetype, and wheel access for 2-AG concentrations, with females generally having lower levels than males and wheel access lowering 2-AG levels in some but not all subgroups. The number of wheel revolutions in the minutes or hours immediately prior to sampling did not quantitatively predict plasma 2-AG levels within groups. We also observed a trend for a linetype-by-wheel access interaction for AEA levels, with wheel access lowering plasma concentrations of AEA in HR mice, while raising them in C mice. In addition, females tended to have higher AEA concentrations than males. For mice housed with wheels, the amount of running during the 30min before sampling was a significant positive predictor of plasma AEA within groups, and HR mice had significantly lower levels of AEA than C mice. Our results suggest that voluntary exercise alters circulating levels of endocannabinoids, and further demonstrate that selective breeding for voluntary exercise is associated with evolutionary changes in the endocannabinoid system. Copyright © 2016 Elsevier Inc. All rights reserved.
Leong, In-Tyng; Moghadam, Sedigheh; Hashim, Hairul A
2015-02-01
Regular aerobic exercise and milk consumption have been found to have positive effects on certain cognitive functions such as short-term memory and sustained attention. However, aggregated effects of combining these modalities have not been explored. This study examined the combined effects of milk supplementation and aerobic exercise on the short-term memory and sustained attention of female students aged 16 yr. (N = 81). The intervention involved serving of 250 ml of regular milk during school days and/or a 1-hr. aerobic exercise period twice per week for 6 weeks. The Digit Span Test and Digit Vigilance Test were used to measure short-term memory and sustained attention, respectively. The combination group (milk and exercise) and exercise group performed significantly better than did the milk and control groups in terms of short-term memory. No significant interaction or group differences were found for sustained attention. The results suggest benefits of regular exercise for students' short-term memory.
Effect of Robot-Assisted and Unassisted Exercise on Functional Reaching in Chronic Hemiparesis
2001-10-25
EFFECT OF ROBOT-ASSISTED AND UNASSISTED EXERCISE ON FUNCTIONAL REACHING IN CHRONIC HEMIPARESIS L. E. Kahn1,2, M. L. Zygman1, W. Z. Rymer1,2, D...Abstract – A common therapeutic approach for the rehabilitation of patients with hemiparesis involves repetitive voluntary movements with manual...of subjects with chronic hemiparesis (N = 7) performed the same repetitive exercises without the aid of the robotic device. Each group performed 24
Effects of the homeopathic remedy arnica on attenuating symptoms of exercise-induced muscle soreness
Plezbert, Julie A.; Burke, Jeanmarie R.
2005-01-01
Abstract Objective To evaluate the clinical efficacy of Arnica at a high potency (200c), on moderating delayed onset muscle soreness and accompanying symptoms of muscle dysfunction. Methods Twenty subjects completed a maximal eccentric exercise protocol with the non-dominate elbow flexors to induce delayed onset muscle soreness. Either Arnica or placebo tablets were administered in a random, double- blinded fashion immediately after exercise and at 24 hours and 72 hours after exercise. Before exercise, immediately post-exercise, and at 24, 48, 72, and 96 hours post-exercise, assessments of delayed onset muscle soreness and muscle function included: 1) muscle soreness and functional impairment; 2) maximum voluntary contraction torque; 3) muscle swelling; and 4) range of motion tests to document spontaneous muscle shortening and muscle shortening ability. Blood samples drawn before exercise and at 24, 48, and 96 hours after exercise were used to measure muscle enzymes as indirect indices of muscle damage. Results Regardless of the intervention, the extent of delayed onset muscle soreness and elevations in muscle enzymes were similar on the days following the eccentric exercise protocol. The post-exercise time profiles of decreases in maximum voluntary contraction torque and muscle shortening ability and increases in muscle swelling and spontaneous muscle shortening were similar for each treatment intervention. Conclusions The results of this study did not substantiate the clinical efficacy of Arnica at a high potency on moderating delayed onset muscle soreness and accompanying symptoms of muscle dysfunction. Despite the findings of this study, future investigations on the clinical efficacy of homeopathic interventions should consider incorporating research strategies that emphasize differential therapeutics for each patient rather than treating a specific disease or symptom complex, such as DOMS, with a single homeopathic remedy. PMID:19674657
Baeßler, Kaven; Junginger, Bärbel
2017-07-01
The aims of physiotherapy in stress incontinent women are to improve pelvic floor function and the continence mechanism including bladder neck support and urethral closure pressure. In Germany, traditional conservative treatment often includes gymnastic exercises with unclear effects on the bladder neck. The aim of this study was to sonographically assess bladder neck movements during selected exercises. Fifteen healthy, continent women without previous vaginal births, who were able to voluntarily contract their pelvic floor muscels performed the shoulder bridge, the abdominal press, tiptoe and the Pilates clam exercises. The first set was performed without any additional instructions. During the second set directions were given to activate the pelvic floor before beginning each exercise and to maintain the contraction throughout the exercise. Bladder neck movement was measured on perineal ultrasound using a validated method with the pubic symphysis as a reference point. The median age of participants was 32 years, median BMI was 23. Eight women were nulliparous and seven had given birth to 1 - 2 children via caesarean section. When exercises were performed without voluntary pelvic floor contraction the bladder neck descended on average between 2.3 and 4.4 mm, and with pelvic floor contraction prior to the exercise only between 0.5 and 2.1 mm (p > 0.05 except for abdominal press p = 0.007). The Pilates clam exercise and toe stand stabilised the bladder neck most effectively. Bladder neck descent often occurs during pelvic floor gymnastic exercises as traditionally performed in Germany, and a voluntary pelvic floor contraction during the exercises does not necessarily prevent this.
Sciolino, Natale R.; Dishman, Rodney K.; Holmes, Philip V.
2012-01-01
Although exercise improves anxiety in humans, it is controversial whether exercise is anxiolytic in rodents. We tested the hypothesis that stress influences the effect of exercise on anxiety-like and defensive behaviors. To explore the neurobiological mechanisms of exercise, we also examined whether exercise alters gene expression for the stress-related peptide galanin. Rats were housed in the presence or absence of a running wheel for 21 d. A subset of these rats were (1) not injected or received a single high, dose of the β-carboline FG7142 (inverse agonist at the benzodiazepine receptor site) immediately prior to testing or (2) were injected repeatedly with vehicle or FG7142 during the last 10 d of exercise. On day 22, anxiety-like and defensive behaviors were measured in the elevated plus maze, shock probe defensive burying, and defensive withdrawal tests. Locus coeruleus prepro-galanin mRNA was measured by in situ hybridization. Exercise and sedentary rats that were not injected exhibited similar behavior in all tests, whereas FG7142 injected immediately prior to the test battery produced intense avoidance and immobility consistent with an anxiety-like response. However, exercise produced anxiolytic-like and active defensive behaviors in the test battery relative to the sedentary condition in rats injected repeatedly with vehicle or FG7142. Exercise also increased prepro-galanin mRNA in the locus coeruleus relative to sedentary controls. These data suggest that the emergence of enhanced adaptive behavior after chronic voluntary exercise is influenced by stress. Our data support a role for galanin in the beneficial consequences of wheel running. PMID:22580167
Beneficial effects of exercise and its molecular mechanisms on depression in rats
Zheng, Hang; Liu, Yanyou; Li, Wei; Yang, Bo; Chen, Dengbang; Wang, Xiaojia; Jiang, Zhou; Wang, Hongxing; Wang, Zhengrong; Cornelisson, G.; Halberg, F.
2008-01-01
Exercise showed the beneficial effects on mental health in depressed sufferers, whereas, its underlying mechanisms remained unresolved. This study utilized the chronic unpredictable stress (CNS) animal model of depression to evaluate the effects of exercise on depressive behaviors and spatial performance in rats. Furthermore, we tested the hypothesis that the capacity of exercise to reverse the harmful effects of CNS was relative to the hypothalamo–pituitary–adrenal (HPA) system and brain-derived neurotrophic factor (BDNF) in the hippocampus. Animal groups were exposed to CNS for 4 weeks with and without access to voluntary wheel running. Stressed rats consumed significantly less of a 1% sucrose solution during CNS and exhibited a significant decrease in open field behavior. On the other hand, they showed impaired spatial performance in Morris water maze test 2 weeks after the end of CNS. Further, CNS significantly decreased hippocampal BDNF mRNA levels. However, voluntary exercise improved or even reversed these harmful behavioral effects in stressed rats. Furthermore, exercise counteracted a decrease in hippocampal BDNF mRNA caused by CNS. In addition, we also found that CMS alone increased circulating corticosterone (CORT) significantly and decreased hippocampal glucocorticoid receptor (GR) mRNA. At the same time, exercise alone increased CORT moderately and did not affect hippocampal GR mRNA levels. While, when both CNS and exercise were combined, exercise reduced the increase of CORT and the decrease of GR caused by CMS. The results demonstrated that: (1) exercise reversed the harmful effects of CNS on mood and spatial performance in rats and (2) the behavioral changes induced by exercise and/or CNS might be associated with hippocampal BDNF levels, and in addition, the HPA system might play different roles in the two different processes. PMID:16290283
Fujii, Naoto; Honda, Yasushi; Komura, Ken; Tsuji, Bun; Sugihara, Akira; Watanabe, Kazuhito; Kondo, Narihiko; Nishiyasu, Takeshi
2014-12-01
Two thermolytic thermoregulatory responses, cutaneous vasodilation and sweating, begin when core temperature reaches a critical threshold, after which response magnitudes increase linearly with increasing core temperature; thus the slope indicates response sensitivity. We evaluated the influence of hypocapnia induced by voluntary hyperventilation on the core temperature threshold and sensitivity of thermoregulatory responses. Ten healthy males performed 15 min of cycling at 117 W (29.5°C, 50% RH) under three breathing conditions: 1) spontaneous ventilation, 2) voluntary normocapnic hyperventilation, and 3) voluntary hypocapnic hyperventilation. In the hypocapnic hyperventilation trial, end-tidal CO2 pressure was reduced throughout the exercise, whereas it was maintained around the normocapnic level in the other two trials. Cutaneous vascular conductances at the forearm and forehead were evaluated as laser-Doppler signal/mean arterial blood pressure, and the forearm sweat rate was measured using the ventilated capsule method. Esophageal temperature threshold was higher for the increase in cutaneous vascular conductance in the hypocapnic than normocapnic hyperventilation trial at the forearm (36.88 ± 0.36 vs. 36.68 ± 0.34°C, P < 0.05) and forehead (36.89 ± 0.31 vs. 36.75 ± 0.31°C, P < 0.05). The slope relating esophageal temperature to cutaneous vascular conductance was decreased in the hypocapnic than normocapnic hyperventilation trial at the forearm (302 ± 177 vs. 420 ± 178% baseline/°C, P < 0.05) and forehead (236 ± 164 vs. 358 ± 221% baseline/°C, P < 0.05). Neither the threshold nor the slope for the forearm sweat rate differed significantly between the hypocapnic or normocapnic hyperventilation trials. These findings indicate that in exercising humans, hypocapnia induced by voluntary hyperventilation does not influence sweating, but it attenuates the cutaneous vasodilatory response by increasing its threshold and reducing its sensitivity. Copyright © 2014 the American Physiological Society.
Regular group exercise contributes to balanced health in older adults in Japan: a qualitative study.
Komatsu, Hiroko; Yagasaki, Kaori; Saito, Yoshinobu; Oguma, Yuko
2017-08-22
While community-wide interventions to promote physical activity have been encouraged in older adults, evidence of their effectiveness remains limited. We conducted a qualitative study among older adults participating in regular group exercise to understand their perceptions of the physical, mental, and social changes they underwent as a result of the physical activity. We conducted a qualitative study with purposeful sampling to explore the experiences of older adults who participated in regular group exercise as part of a community-wide physical activity intervention. Four focus group interviews were conducted between April and June of 2016 at community halls in Fujisawa City. The participants in the focus group interviews were 26 older adults with a mean age of 74.69 years (range: 66-86). The interviews were analysed using the constant comparative method in the grounded theory approach. We used qualitative research software NVivo10® to track the coding and manage the data. The finding 'regular group exercise contributes to balanced health in older adults' emerged as an overarching theme with seven categories (regular group exercise, functional health, active mind, enjoyment, social connectedness, mutual support, and expanding communities). Although the participants perceived that they were aging physically and cognitively, the regular group exercise helped them to improve or maintain their functional health and enjoy their lives. They felt socially connected and experienced a sense of security in the community through caring for others and supporting each other. As the older adults began to seek value beyond individuals, they gradually expanded their communities beyond geographical and generational boundaries. The participants achieved balanced health in the physical, mental, and social domains through regular group exercise as part of a community-wide physical activity intervention and contributed to expanding communities through social connectedness and mutual support. Health promotion through physical activity is being increasingly emphasized. The study results can help to develop effective physical activity programs for older adults in the community.
Robbins, Patrick J.; Ramos, Meghan T.; Zanghi, Brian M.; Otto, Cynthia M.
2017-01-01
This IACUC approved study was performed to evaluate the environmental, physiological, and hematological components that contribute to stamina following successive bouts of exercise that included searching (5-min), agility (5-min), and ball retrieve (<10-min). Regularly exercised dogs (N = 12) were evaluated on five separate occasions. The population consisted of eight males and four females ranging in age from 8 to 23 months, which included six Labrador retrievers, three German shepherds, and one each English springer spaniel, German wirehaired pointer, and Dutch shepherd. The exercise period was up to 30 min with 5 min of intermittent rest between the exercise bouts or until a designated trainer determined that the dog appeared fatigued (e.g., curled tongue while panting, seeking shade, or voluntary reluctance to retrieve). At the end of the exercise period, pulse rate (PR), core temperature, blood lactate, and venous blood gas were collected. The median outdoor temperature was 28.9°C (84°F) (IQR; 27.2–30°C/81–86°F) and median humidity was 47% (IQR; 40–57%). Median duration of exercise was 27 min (IQR; 25–29). No dog showed signs of heat stress that required medical intervention. The components used to measure stamina in this study were total activity, post-exercise core body temperature (CBT), and increase in CBT. When controlling for breed, total activity, as measured by omnidirectional accelerometer device, could be predicted from a linear combination of the independent variables: pre-exercise activity (p = 0.008), post-exercise activity (p < 0.001), outdoor temperature (p = 0.005), reduction in base excess in extracellular fluid compartment (BEecf) (p = 0.044), and decrease in TCO2 (p = 0.005). When controlling for breed and sex, increase in CBT could be predicted from a linear combination of the independent variables: study day (p = 0.005), increase in PR (p < 0.001), increase in lactate (p = 0.001), reduction in BEecf (p = 0.031), increase in glucose (p = 0.044), increase in hematocrit (p = 0.032), and increase in hemoglobin (p = 0.038). This study suggests that the influence of outdoor temperature, pre- and post-exercise activity, and the metabolic parameters are important components of stamina associated with exertion. PMID:28955711
Benefits of regular aerobic exercise for executive functioning in healthy populations.
Guiney, Hayley; Machado, Liana
2013-02-01
Research suggests that regular aerobic exercise has the potential to improve executive functioning, even in healthy populations. The purpose of this review is to elucidate which components of executive functioning benefit from such exercise in healthy populations. In light of the developmental time course of executive functions, we consider separately children, young adults, and older adults. Data to date from studies of aging provide strong evidence of exercise-linked benefits related to task switching, selective attention, inhibition of prepotent responses, and working memory capacity; furthermore, cross-sectional fitness data suggest that working memory updating could potentially benefit as well. In young adults, working memory updating is the main executive function shown to benefit from regular exercise, but cross-sectional data further suggest that task-switching and post error performance may also benefit. In children, working memory capacity has been shown to benefit, and cross-sectional data suggest potential benefits for selective attention and inhibitory control. Although more research investigating exercise-related benefits for specific components of executive functioning is clearly needed in young adults and children, when considered across the age groups, ample evidence indicates that regular engagement in aerobic exercise can provide a simple means for healthy people to optimize a range of executive functions.
Influence of Upper-Body Exercise on the Fatigability of Human Respiratory Muscles
TILLER, NICHOLAS B.; CAMPBELL, IAN G.; ROMER, LEE M.
2017-01-01
ABSTRACT Purpose Diaphragm and abdominal muscles are susceptible to contractile fatigue in response to high-intensity, whole-body exercise. This study assessed whether the ventilatory and mechanical loads imposed by high-intensity, upper-body exercise would be sufficient to elicit respiratory muscle fatigue. Methods Seven healthy men (mean ± SD; age = 24 ± 4 yr, peak O2 uptake [V˙O2peak] = 31.9 ± 5.3 mL·kg−1·min−1) performed asynchronous arm-crank exercise to exhaustion at work rates equivalent to 30% (heavy) and 60% (severe) of the difference between gas exchange threshold and V˙O2peak. Contractile fatigue of the diaphragm and abdominal muscles was assessed by measuring pre- to postexercise changes in potentiated transdiaphragmatic and gastric twitch pressures (Pdi,tw and Pga,tw) evoked by supramaximal magnetic stimulation of the cervical and thoracic nerves, respectively. Results Exercise time was 24.5 ± 5.8 min for heavy exercise and 9.8 ± 1.8 min for severe exercise. Ventilation over the final minute of heavy exercise was 73 ± 20 L·min−1 (39% ± 11% maximum voluntary ventilation) and 99 ± 19 L·min−1 (53% ± 11% maximum voluntary ventilation) for severe exercise. Mean Pdi,tw did not differ pre- to postexercise at either intensity (P > 0.05). Immediately (5–15 min) after severe exercise, mean Pga,tw was significantly lower than pre-exercise values (41 ± 13 vs 53 ± 15 cm H2O, P < 0.05), with the difference no longer significant after 25–35 min. Abdominal muscle fatigue (defined as ≥15% reduction in Pga,tw) occurred in 1/7 subjects after heavy exercise and 5/7 subjects after severe exercise. Conclusions High-intensity, upper-body exercise elicits significant abdominal, but not diaphragm, muscle fatigue in healthy men. The increased magnitude and prevalence of fatigue during severe-intensity exercise is likely due to additional (nonrespiratory) loading of the thorax. PMID:28288012
Influence of Upper-Body Exercise on the Fatigability of Human Respiratory Muscles.
Tiller, Nicholas B; Campbell, Ian G; Romer, Lee M
2017-07-01
Diaphragm and abdominal muscles are susceptible to contractile fatigue in response to high-intensity, whole-body exercise. This study assessed whether the ventilatory and mechanical loads imposed by high-intensity, upper-body exercise would be sufficient to elicit respiratory muscle fatigue. Seven healthy men (mean ± SD; age = 24 ± 4 yr, peak O2 uptake [V˙O2peak] = 31.9 ± 5.3 mL·kg·min) performed asynchronous arm-crank exercise to exhaustion at work rates equivalent to 30% (heavy) and 60% (severe) of the difference between gas exchange threshold and V˙O2peak. Contractile fatigue of the diaphragm and abdominal muscles was assessed by measuring pre- to postexercise changes in potentiated transdiaphragmatic and gastric twitch pressures (Pdi,tw and Pga,tw) evoked by supramaximal magnetic stimulation of the cervical and thoracic nerves, respectively. Exercise time was 24.5 ± 5.8 min for heavy exercise and 9.8 ± 1.8 min for severe exercise. Ventilation over the final minute of heavy exercise was 73 ± 20 L·min (39% ± 11% maximum voluntary ventilation) and 99 ± 19 L·min (53% ± 11% maximum voluntary ventilation) for severe exercise. Mean Pdi,tw did not differ pre- to postexercise at either intensity (P > 0.05). Immediately (5-15 min) after severe exercise, mean Pga,tw was significantly lower than pre-exercise values (41 ± 13 vs 53 ± 15 cm H2O, P < 0.05), with the difference no longer significant after 25-35 min. Abdominal muscle fatigue (defined as ≥15% reduction in Pga,tw) occurred in 1/7 subjects after heavy exercise and 5/7 subjects after severe exercise. High-intensity, upper-body exercise elicits significant abdominal, but not diaphragm, muscle fatigue in healthy men. The increased magnitude and prevalence of fatigue during severe-intensity exercise is likely due to additional (nonrespiratory) loading of the thorax.
Callréus, M; McGuigan, F; Ringsberg, K; Akesson, K
2012-10-01
Recreational physical activity in 25-year-old women in Sweden increases bone mineral density (BMD) in the trochanter by 5.5% when combining regularity and impact. Jogging and spinning were especially beneficial for hip BMD (6.4-8.5%). Women who enjoyed physical education in school maintained their higher activity level at age 25. The aims of this study were to evaluate the effects of recreational exercise on BMD and describe how exercise patterns change with time in a normal population of young adult women. In a population-based study of 1,061 women, age 25 (±0.2), BMD was measured at total body (TB-BMD), femoral neck (FN-BMD), trochanter (TR-BMD), and spine (LS-BMD). Self-reported physical activity status was assessed by questionnaire. Regularity of exercise was expressed as recreational activity level (RAL) and impact load as peak strain score (PSS). A permutation (COMB-RP) was used to evaluate combined endurance and impacts on bone mass. More than half of the women reported exercising on a regular basis and the most common activities were running, strength training, aerobics, and spinning. Seventy percent participated in at least one activity during the year. Women with high RAL or PSS had higher BMD in the hip (2.6-3.5%) and spine (1.5-2.1%), with the greatest differences resulting from PSS (p < 0.001-0.02). Combined regularity and impact (high-COMB-RP) conferred the greatest gains in BMD (FN 4.7%, TR 5.5%, LS 3.1%; p < 0.001) despite concomitant lower body weight. Jogging and spinning were particularly beneficial for hip BMD (+6.4-8.5%). Women with high-COMB-RP scores enjoyed physical education in school more and maintained higher activity levels throughout compared to those with low scores. Self-reported recreational levels of physical activity positively influence BMD in young adult women but to maximize BMD gains, regular, high-impact exercise is required. Enjoyment of exercise contributes to regularity of exercising which has short- and long-term implications for bone health.
Near infrared reactance for the estimation of body fatness in regularly exercising individuals.
Evans, J; Lambert, M I; Micklesfield, L K; Goedecke, J H; Jennings, C L; Savides, L; Claassen, A; Lambert, E V
2013-07-01
Near infrared reactance (NIR) is used to measure body fat percentage (BF%), but there is little data on its use in non-obese, regularly exercising individuals. Therefore, this study aimed to examine the limits of agreement between NIR compared to dual x-ray absorptiometry (DXA) for the measurement of BF% in 2 cohorts of regularly exercising individuals. BF% was measured using DXA and NIR in a regular exercising (≥3 sessions/week), healthy active cohort (HA; n=57), and in a regularly exercising and resistance trained (≥2 sessions/week) cohort (RT; n=59). The RT cohort had lower BF% than the HA cohort (15.3±5.5% and 25.8±7.1%, P<0.001). In the HA and RT cohorts, NIR BF% was associated with DXA BF% (R2=0.72, SEE=3.7, p<0.001 and R2=0.50, SEE=4.1 p<0.001, respectively). In the HA cohort, NIR tended to under-predict BF% (mean difference: - 1.3%; 95% limits of agreement (LOA); - 8.8 to 6.2%) whereas in the RT cohort, NIR tended to over-predict BF% compared to DXA (mean difference: 1.1; 95% LOA; - 8.1 to 10.3%). In conclusion, NIR and DXA yield similar average BF% measurements in 2 cohorts of non-obese regularly exercising individuals. However, the rather broad LOA of NIR need to be considered when using NIR to screen for overweight and obesity, or measure and track changes in body composition. © Georg Thieme Verlag KG Stuttgart · New York.
Tapia-Rojas, Cheril; Aranguiz, Florencia; Varela-Nallar, Lorena; Inestrosa, Nibaldo C
2016-01-01
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by loss of memory and cognitive abilities, and the appearance of amyloid plaques composed of the amyloid-β peptide (Aβ) and neurofibrillary tangles formed of tau protein. It has been suggested that exercise might ameliorate the disease; here, we evaluated the effect of voluntary running on several aspects of AD including amyloid deposition, tau phosphorylation, inflammatory reaction, neurogenesis and spatial memory in the double transgenic APPswe/PS1ΔE9 mouse model of AD. We report that voluntary wheel running for 10 weeks decreased Aβ burden, Thioflavin-S-positive plaques and Aβ oligomers in the hippocampus. In addition, runner APPswe/PS1ΔE9 mice showed fewer phosphorylated tau protein and decreased astrogliosis evidenced by lower staining of GFAP. Further, runner APPswe/PS1ΔE9 mice showed increased number of neurons in the hippocampus and exhibited increased cell proliferation and generation of cells positive for the immature neuronal protein doublecortin, indicating that running increased neurogenesis. Finally, runner APPswe/PS1ΔE9 mice showed improved spatial memory performance in the Morris water maze. Altogether, our findings indicate that in APPswe/PS1ΔE9 mice, voluntary running reduced all the neuropathological hallmarks of AD studied, reduced neuronal loss, increased hippocampal neurogenesis and reduced spatial memory loss. These findings support that voluntary exercise might have therapeutic value on AD. © 2015 International Society of Neuropathology.
Chronic exercise is considered one of the most effective means of countering symptoms of the metabolic syndrome (MS) such as obesity and hyperglycemia. Rodent models of forced or voluntary exercise are often used to study the mechanisms of MS and type 2 diabetes. However, there ...
Central and peripheral quadriceps fatigue in congestive heart failure☆
Hopkinson, Nicholas S.; Dayer, Mark J.; Antoine-Jonville, Sophie; Swallow, Elisabeth B.; Porcher, Raphael; Vazir, Ali; Poole-Wilson, Philip; Polkey, Michael I.
2013-01-01
Aims The clinical syndrome of heart failure includes exercise limitation that is not directly linked to measures of cardiac function. Quadriceps fatigability may be an important component of this and this may arise from peripheral or central factors. Methods and results We studied 10 men with CHF and 10 healthy age-matched controls. Compared with a rest condition, 10 min after incremental maximal cycle exercise, twitch quadriceps force in response to supramaximal magnetic femoral nerve stimulation fell in both groups (CHF 14.1% ± 18.1%, p = 0.037; Control: 20.8 ± 11.0%, p < 0.001; no significant difference between groups). There was no significant change in quadriceps maximum voluntary contraction voluntary force. The difference in the motor evoked potential (MEP) response to transcranial magnetic stimulation of the motor cortex between rest and exercise conditions at 10 min, normalised to the peripheral action potential, also fell significantly in both groups (CHF: 27.3 ± 38.7%, p = 0.037; Control: 41.1 ± 47.7%, p = 0.024). However, the fall in MEP was sustained for a longer period in controls than in patients (p = 0.048). Conclusions The quadriceps is more susceptible to fatigue, with a similar fall in TwQ occurring in CHF patients at lower levels of exercise. This is associated with no change in voluntary activation but a lesser degree of depression of quadriceps motor evoked potential. PMID:22795722
Aikawa, Yuki; Agata, Umon; Kakutani, Yuya; Kato, Shoyo; Noma, Yuichi; Hattori, Satoshi; Ogata, Hitomi; Ezawa, Ikuko; Omi, Naomi
2016-01-01
Increasing calcium (Ca) intake is important for female athletes with a risk of weak bone caused by inadequate food intake. The aim of the present study was to examine the preventive effect of Ca supplementation on low bone strength in young female athletes with inadequate food intake, using the rats as an experimental model. Seven-week-old female Sprague-Dawley rats were divided into four groups: the sedentary and ad libitum feeding group (SED), voluntary running exercise and ad libitum feeding group (EX), voluntary running exercise and 30% food restriction group (EX-FR), and a voluntary running exercise, 30% food-restricted and high-Ca diet group (EX-FR+Ca). To Ca supplementation, we used 1.2% Ca diet as "high-Ca diet" that contains two-fold Ca of normal Ca diet. The experiment lasted for 12 weeks. As a result, the energy availability, internal organ weight, bone strength, bone mineral density, and Ca absorption in the EX-FR group were significantly lower than those in the EX group. The bone strength and Ca absorption in the EX-FR+Ca group were significantly higher than those in the EX-FR group. However, the bone strength in the EX-FR+Ca group did not reach that in the EX group. These results suggested that Ca supplementation had a positive effect on bone strength, but the effect was not sufficient to prevent lower bone strength caused by food restriction in young female athletes.
Snieckus, Audrius; Kamandulis, Sigitas; Venckūnas, Tomas; Brazaitis, Marius; Volungevičius, Gintautas; Skurvydas, Albertas
2013-03-01
Here, we test the hypothesis that continuous concentric exercise training renders skeletal muscles more susceptible to damage in response to eccentric exercise. Elite road cyclists (CYC; n = 10, training experience 8.1 ± 2.0 years, age 22.9 ± 3.7 years), long-distance runners (LDR; n = 10, 9.9 ± 2.3 years, 24.4 ± 2.5 years), and healthy untrained (UT) men (n = 10; 22.4 ± 1.7 years) performed 100 submaximal eccentric contractions at constant angular velocity of 60° s(-1). Concentric isokinetic peak torque, isometric maximal voluntary contraction (MVC), and electrically induced knee extension torque were measured at baseline and immediately and 48 h after an eccentric exercise bout. Muscle soreness was assessed and plasma creatine kinase (CK) activity was measured at baseline and 48 h after exercise. Voluntary and electrically stimulated knee extension torque reduction were significantly greater (p < 0.05) in UT than in LDR and CYC. Immediately and 48 h after exercise, MVC decreased by 32 % and 20 % in UT, 20 % and 5 % in LDR, and 25 % and 6 % in CYC. Electrically induced 20 Hz torque decreased at the same times by 61 and 29 % in UT, 40 and 17 % in LDR, and 26 and 14 % in CYC. Muscle soreness and plasma CK activity 48 h after exercise did not differ significantly between athletes and UT subjects. In conclusion, even though elite endurance athletes are more resistant to eccentric exercise-induced muscle damage than are UT people, stretch-shortening exercise-trained LDR have no advantage over concentrically trained CYC.
Martins, C C; Bagatini, M D; Cardoso, A M; Zanini, D; Abdalla, F H; Baldissarelli, J; Dalenogare, D P; Dos Santos, D L; Schetinger, M R C; Morsch, V M M
2016-11-01
In this study, we investigated the cardiovascular risk factors as well as ectonucleotidase activities in lymphocytes of metabolic syndrome (MetS) patients before and after an exercise intervention. 20 MetS patients, who performed regular concurrent exercise training for 30 weeks, 3 times/week, were studied. Anthropometric, biochemical, inflammatory and hepatic parameters and hydrolysis of adenine nucleotides and nucleoside in lymphocytes were collected from patients before and after 15 and 30 weeks of the exercise intervention as well as from participants of the control group. An increase in the hydrolysis of ATP and ADP, and a decrease in adenosine deamination in lymphocytes of MetS patients before the exercise intervention were observed (P<0.001). However, these alterations were reversed by exercise training after 30 weeks of intervention. Additionally, exercise training reduced the inflammatory and hepatic markers to baseline levels after 30 weeks of exercise. Our results clearly indicated alteration in ectonucleotidase enzymes in lymphocytes in the MetS, whereas regular exercise training had a protective effect on the enzymatic alterations and on inflammatory and hepatic parameters, especially if it is performed regularly and for a long period. © Georg Thieme Verlag KG Stuttgart · New York.
Voluntary Running Aids to Maintain High Body Temperature in Rats Bred for High Aerobic Capacity
Karvinen, Sira M.; Silvennoinen, Mika; Ma, Hongqiang; Törmäkangas, Timo; Rantalainen, Timo; Rinnankoski-Tuikka, Rita; Lensu, Sanna; Koch, Lauren G.; Britton, Steven L.; Kainulainen, Heikki
2016-01-01
The production of heat, i.e., thermogenesis, is a significant component of the metabolic rate, which in turn affects weight gain and health. Thermogenesis is linked to physical activity (PA) level. However, it is not known whether intrinsic exercise capacity, aging, and long-term voluntary running affect core body temperature. Here we use rat models selectively bred to differ in maximal treadmill endurance running capacity (Low capacity runners, LCR and High capacity Runners, HCR), that as adults are divergent for aerobic exercise capacity, aging, and metabolic disease risk to study the connection between PA and body temperature. Ten high capacity runner (HCR) and ten low capacity runner (LCR) female rats were studied between 9 and 21 months of age. Rectal body temperature of HCR and LCR rats was measured before and after 1-year voluntary running/control intervention to explore the effects of aging and PA. Also, we determined whether injected glucose and spontaneous activity affect the body temperature differently between LCR and HCR rats at 9 vs. 21 months of age. HCRs had on average 1.3°C higher body temperature than LCRs (p < 0.001). Aging decreased the body temperature level of HCRs to similar levels with LCRs. The opportunity to run voluntarily had a significant impact on the body temperature of HCRs (p < 0.001) allowing them to maintain body temperature at a similar level as when at younger age. Compared to LCRs, HCRs were spontaneously more active, had higher relative gastrocnemius muscle mass and higher UCP2, PGC-1α, cyt c, and OXPHOS levels in the skeletal muscle (p < 0.050). These results suggest that higher PA level together with greater relative muscle mass and higher mitochondrial content/function contribute to the accumulation of heat in the HCRs. Interestingly, neither aging nor voluntary training had a significant impact on core body temperature of LCRs. However, glucose injection resulted in a lowering of the body temperature of LCRs (p < 0.050), but not that of HCRs. In conclusion, rats born with high intrinsic capacity for aerobic exercise and better health have higher body temperature compared to rats born with low exercise capacity and disease risk. Voluntary running allowed HCRs to maintain high body temperature during aging, which suggests that high PA level was crucial in maintaining the high body temperature of HCRs. PMID:27504097
Voluntary Running Aids to Maintain High Body Temperature in Rats Bred for High Aerobic Capacity.
Karvinen, Sira M; Silvennoinen, Mika; Ma, Hongqiang; Törmäkangas, Timo; Rantalainen, Timo; Rinnankoski-Tuikka, Rita; Lensu, Sanna; Koch, Lauren G; Britton, Steven L; Kainulainen, Heikki
2016-01-01
The production of heat, i.e., thermogenesis, is a significant component of the metabolic rate, which in turn affects weight gain and health. Thermogenesis is linked to physical activity (PA) level. However, it is not known whether intrinsic exercise capacity, aging, and long-term voluntary running affect core body temperature. Here we use rat models selectively bred to differ in maximal treadmill endurance running capacity (Low capacity runners, LCR and High capacity Runners, HCR), that as adults are divergent for aerobic exercise capacity, aging, and metabolic disease risk to study the connection between PA and body temperature. Ten high capacity runner (HCR) and ten low capacity runner (LCR) female rats were studied between 9 and 21 months of age. Rectal body temperature of HCR and LCR rats was measured before and after 1-year voluntary running/control intervention to explore the effects of aging and PA. Also, we determined whether injected glucose and spontaneous activity affect the body temperature differently between LCR and HCR rats at 9 vs. 21 months of age. HCRs had on average 1.3°C higher body temperature than LCRs (p < 0.001). Aging decreased the body temperature level of HCRs to similar levels with LCRs. The opportunity to run voluntarily had a significant impact on the body temperature of HCRs (p < 0.001) allowing them to maintain body temperature at a similar level as when at younger age. Compared to LCRs, HCRs were spontaneously more active, had higher relative gastrocnemius muscle mass and higher UCP2, PGC-1α, cyt c, and OXPHOS levels in the skeletal muscle (p < 0.050). These results suggest that higher PA level together with greater relative muscle mass and higher mitochondrial content/function contribute to the accumulation of heat in the HCRs. Interestingly, neither aging nor voluntary training had a significant impact on core body temperature of LCRs. However, glucose injection resulted in a lowering of the body temperature of LCRs (p < 0.050), but not that of HCRs. In conclusion, rats born with high intrinsic capacity for aerobic exercise and better health have higher body temperature compared to rats born with low exercise capacity and disease risk. Voluntary running allowed HCRs to maintain high body temperature during aging, which suggests that high PA level was crucial in maintaining the high body temperature of HCRs.
Exercise: A Good Way to Fight Aging and Smoking | Smokefree 60+
Learn how to start an exercise routine that can help you feel and look younger AND stay quit! Health benefits of exercising No matter how old you are, regular physical activity can help you look younger and stay more fit than people who aren't active. Regular exercise can also be good medicine in your fight to stay off cigarettes. You will sleep better, be less likely to gain weight, and have more energy. Physical activity also helps to:
Regular Exercise Reduces Endothelial Cortical Stiffness in Western Diet-Fed Female Mice.
Padilla, Jaume; Ramirez-Perez, Francisco I; Habibi, Javad; Bostick, Brian; Aroor, Annayya R; Hayden, Melvin R; Jia, Guanghong; Garro, Mona; DeMarco, Vincent G; Manrique, Camila; Booth, Frank W; Martinez-Lemus, Luis A; Sowers, James R
2016-11-01
We recently showed that Western diet-induced obesity and insulin resistance promotes endothelial cortical stiffness in young female mice. Herein, we tested the hypothesis that regular aerobic exercise would attenuate the development of endothelial and whole artery stiffness in female Western diet-fed mice. Four-week-old C57BL/6 mice were randomized into sedentary (ie, caged confined, n=6) or regular exercise (ie, access to running wheels, n=7) conditions for 16 weeks. Exercise training improved glucose tolerance in the absence of changes in body weight and body composition. Compared with sedentary mice, exercise-trained mice exhibited reduced endothelial cortical stiffness in aortic explants (sedentary 11.9±1.7 kPa versus exercise 5.5±1.0 kPa; P<0.05), as assessed by atomic force microscopy. This effect of exercise was not accompanied by changes in aortic pulse wave velocity (P>0.05), an in vivo measure of aortic stiffness. In comparison, exercise reduced femoral artery stiffness in isolated pressurized arteries and led to an increase in femoral internal artery diameter and wall cross-sectional area (P<0.05), indicative of outward hypertrophic remodeling. These effects of exercise were associated with an increase in femoral artery elastin content and increased number of fenestrae in the internal elastic lamina (P<0.05). Collectively, these data demonstrate for the first time that the aortic endothelium is highly plastic and, thus, amenable to reductions in stiffness with regular aerobic exercise in the absence of changes in in vivo whole aortic stiffness. Comparatively, the same level of exercise caused destiffening effects in peripheral muscular arteries, such as the femoral artery, that perfuse the working limbs. © 2016 American Heart Association, Inc.
Beutler, Anthony I.; Cooper, Leslie W.; Kirkendall, Don T.; Garrett, William E.
2002-01-01
Objective: Many knee rehabilitation studies have examined open and closed kinetic chain exercises. However, most studies focus on 2-legged, closed chain exercise. The purpose of our study was to characterize 1-legged, closed chain exercise in young, healthy subjects. Subjects: Eighteen normal subjects (11 men, 7 women; age, 24.6 ± 1.6 years) performed unsupported, 1-legged squats and step-ups to approximately tibial height. Measurements: Knee angle data and surface electromyographic activity from the thigh muscles were recorded. Results: The maximum angle of knee flexion was 111 ± 23° for squats and 101 ± 16° for step-ups. The peak quadriceps activation was 201 ± 66% maximum voluntary isometric contraction, occurring at an angle of 96 ± 16° for squats. Peak quadriceps activation was 207 ± 50% maximum voluntary isometric contraction and occurred at 83 ± 12° for step-ups. Conclusions: The high and sustained levels of quadriceps activation indicate that 1-legged squats and step-ups would be effective in muscle rehabilitation. As functional, closed chain activities, they may also be protective of anterior cruciate ligament grafts. Because these exercises involve no weights or training equipment, they may prove more cost effective than traditional modes of rehabilitation. PMID:12937438
Walker, Jennifer M; Klakotskaia, Diana; Ajit, Deepa; Weisman, Gary A; Wood, W Gibson; Sun, Grace Y; Serfozo, Peter; Simonyi, Agnes; Schachtman, Todd R
2015-01-01
Alzheimer's disease (AD) is a progressive, age-dependent neurodegenerative disorder affecting specific brain regions that control memory and cognitive functions. Epidemiological studies suggest that exercise and dietary antioxidants are beneficial in reducing AD risk. To date, botanical flavonoids are consistently associated with the prevention of age-related diseases. The present study investigated the effects of 4 months of wheel-running exercise, initiated at 2-months of age, in conjunction with the effects of the green tea catechin (-)-epigallocatechin-3-gallate (EGCG) administered orally in the drinking water (50 mg/kg daily) on: (1) behavioral measures: learning and memory performance in the Barnes maze, nest building, open-field, anxiety in the light-dark box; and (2) soluble amyloid-β (Aβ) levels in the cortex and hippocampus in TgCRND8 (Tg) mice. Untreated Tg mice showed hyperactivity, relatively poor nest building behaviors, and deficits in spatial learning in the Barnes maze. Both EGCG and voluntary exercise, separately and in combination, were able to attenuate nest building and Barnes maze performance deficits. Additionally, these interventions lowered soluble Aβ1-42 levels in the cortex and hippocampus. These results, together with epidemiological and clinical studies in humans, suggest that dietary polyphenols and exercise may have beneficial effects on brain health and slow the progression of AD.
Smoking Status and Exercise in relation to PTSD Symptoms: A Test among Trauma-Exposed Adults
Vujanovic, Anka A.; Farris, Samantha G.; Harte, Christopher B.; Smits, Jasper A. J.; Zvolensky, Michael J.
2013-01-01
The present investigation examined the interactive effect of cigarette smoking status (i.e., regular smoking versus non-smoking) and weekly exercise (i.e., weekly metabolic equivalent) in terms of posttraumatic stress (PTSD) symptom severity among a community sample of trauma-exposed adults. Participants included 86 trauma-exposed adults (58.1% female; Mage = 24.3). Approximately 59.7% of participants reported regular (≥ 10 cigarettes per day) daily smoking over the past year. The interactive effect of smoking status by weekly exercise was significantly associated with hyperarousal and avoidance symptom cluster severity (p ≤ .05). These effects were evident above and beyond number of trauma types and gender, as well as the respective main effects of smoking status and weekly exercise. Follow-up tests indicated support for the moderating role of exercise on the association between smoking and PTSD symptoms, such that the highest levels of PTSD symptoms were observed among regular smokers reporting low weekly exercise levels. Theoretical and clinical implications of the findings are discussed. PMID:24273598
Voluntary exercise improves murine dermal connective tissue status in high-fat diet-induced obesity.
Lőrincz, Kende; Haluszka, Dóra; Kiss, Norbert; Gyöngyösi, Nóra; Bánvölgyi, András; Szipőcs, Róbert; Wikonkál, Norbert M
2017-04-01
Obesity is a risk factor for several cardiovascular and metabolic diseases. Its influence on the skin is less obvious, yet certain negative effects of adipose tissue inflammation on the dermis have been suggested. Excess weight is closely associated with sedentary behavior, so any increase in physical activity is considered beneficial against obesity. To investigate the effects of obesity and physical exercise on the skin, we established a mouse model in which mice were kept either on a high-fat diet or received standard chow. After the two groups achieved a significant weight difference, physical exercise was introduced to both. Animals were given the opportunity to perform voluntary exercise for 40 min daily in a hamster wheel for a period of 8 weeks. We evaluated the status of the dermis at the beginning and at the end of the exercise period by in vivo nonlinear microscopy. Obese mice kept on high-fat diet lost weight steadily after they started to exercise. In the high-fat diet group, we could detect significantly larger adipocytes and a thicker layer of subcutaneous tissue; both changes started to normalize after exercise. Nonlinear microscopy revealed an impaired collagen structure in obese mice that improved considerably after physical activity was introduced. With the ability to detect damage on collagen structure, we set out to address the question whether this process is reversible. With the use of a novel imaging method, we were able to show the reversibility of connective tissue deterioration as a benefit of physical exercise.
Zheng, Xi; Cui, Xiao-Xing; Huang, Mou-Tuan; Liu, Yue; Wagner, George C; Lin, Yong; Shih, Weichung Joe; Lee, Mao-Jung; Yang, Chung S; Conney, Allan H
2012-01-01
The effect of oral caffeine or voluntary running wheel exercise (RW) alone or in combination on the progression of human androgen-dependent LNCaP prostate tumors to androgen independence in male severe combined immunodeficiency mice was determined. The mice were injected subcutaneously with LNCaP cells, and when the tumors reached a moderate size, the mice were surgically castrated and treated with caffeine (0.40 mg/ml drinking water) or RW alone or in combination for 42 days. We found that caffeine administration or RW inhibited the progression and growth of androgen-dependent LNCaP tumors to androgen independence, and a combination of the 2 regimens was more effective than the individual regimens alone. The ratios of the percent mitotic cells/caspase-3 positive cells in tumors from the caffeine-treated, RW-treated, or combination-treated mice were decreased by 34%, 38%, and 52%, respectively. Caffeine treatment increased the percentage of mitotic tumor cells undergoing apoptosis (lethal mitosis) whereas RW inhibited the increase in interleukin-6 that occurred during the progression of LNCaP tumors from androgen dependence to androgen independence. Our results indicate that oral administration of caffeine in combination with voluntary exercise may be an effective strategy for the prevention of prostate cancer progression from androgen dependence to androgen independence.
Biedermann, Sarah; Fuss, Johannes; Zheng, Lei; Sartorius, Alexander; Falfán-Melgoza, Claudia; Demirakca, Traute; Gass, Peter; Ende, Gabriele; Weber-Fahr, Wolfgang
2012-07-16
Voluntary exercise has tremendous effects on adult hippocampal plasticity and metabolism and thus sculpts the hippocampal structure of mammals. High-field (1)H magnetic resonance (MR) investigations at 9.4 T of metabolic and structural changes can be performed non-invasively in the living rodent brain. Numerous molecular and cellular mechanisms mediating the effects of exercise on brain plasticity and behavior have been detected in vitro. However, in vivo attempts have been rare. In this work a method for voxel based morphometry (VBM) was developed with automatic tissue segmentation in mice using a 9.4 T animal scanner equipped with a (1)H-cryogenic coil. The thus increased signal to noise ratio enabled the acquisition of high resolution T2-weighted images of the mouse brain in vivo and the creation of group specific tissue class maps for the segmentation and normalization with SPM. The method was used together with hippocampal single voxel (1)H MR spectroscopy to assess the structural and metabolic differences in the mouse brain due to voluntary wheel running. A specific increase of hippocampal volume with a concomitant decrease of hippocampal glutamate levels in voluntary running mice was observed. An inverse correlation of hippocampal gray matter volume and glutamate concentration indicates a possible implication of the glutamatergic system for hippocampal volume. Copyright © 2012 Elsevier Inc. All rights reserved.
Sun, Yi; Cui, Di; Zhang, Zhe; Zhang, Qiang; Ji, Liu; Ding, Shuzhe
2016-12-01
The discovery of miRNAs has brought the focus of physiologists to post-transcriptional regulation of the skeletal muscle. However, the field of how miRNAs are involved in regulating mitochondrial biogenesis and apoptosis of the skeletal muscle following endurance training is still in its infancy. Twelve male C57BL/6 mice were randomly assigned to either control group (Group C) or voluntary wheel running group (Group E). The Group C was housed in cages mounted with fixed wheels, while mice of Group E were allowed to run on wheels freely for 8weeks. It was found that miR-494 and miR-696 were significantly decreased in the gastrocnemius muscle after 8week voluntary wheel exercise, accompanied with an increase in the mRNA expression of NRF1, BIM and Bcl-XL, an increase in the protein content of PGC-1α, and a decrease in the protein content BIM. The lack of correlation between miR-494 and TFAM and BIM, as well as between miR-696 and PGC-1α suggests that even though miR-494 and miR-696 are sensitive miRNAs in response to exercise training, other factors or miRNAs might also be important during the regulation of mitochondrial biogenesis and apoptosis. Copyright © 2016. Published by Elsevier Inc.
2009-01-01
Background Preeclampsia (PE) is a common maternal disease that complicates 5 to 10% of pregnancies and remains as the major cause of maternal and neonatal mortality. Cost-effective interventions aimed at preventing the development of preeclampsia are urgently needed. However, the pathogenesis of PE is not well known. Multiple mechanisms such as oxidative stress, endothelial dysfunction and insulin resistance may contribute to its development. Regular aerobic exercise recovers endothelial function; improves insulin resistance and decreases oxidative stress. Therefore the purpose of this clinical trial is to determine the effect of regular aerobic exercise on endothelial function, on insulin resistance and on pregnancy outcome. Methods and design 64 pregnant women will be included in a blind, randomized clinical trial, and parallel assignment. The exercise group will do regular aerobic physical exercise: walking (10 minutes), aerobic exercise (30 minutes), stretching (10 minutes) and relaxation exercise (10 minutes) in three sessions per week. Control group will do the activities of daily living (bathing, dressing, eating, and walking) without counselling from a physical therapist. Trial registration NCT00741312. PMID:19919718
[The 18F-FDG myocardial metabolic imaging in twenty seven pilots with regular aerobic training].
Fang, Ting-Zheng; Zhu, Jia-Rui; Chuan, Ling; Zhao, Wen-Rui; Xu, Gen-Xiang; Yang, Min-Fu; He, Zuo-Xiang
2009-02-01
To evaluate the characteristics of myocardial (18)F-FDG imaging in pilots with regular aerobic exercise training. Twenty seven healthy male pilots with regular aerobic exercise training were included in this study. The subjects were divided into fasting (n = 17) or non-fasting group (n = 10). Fluorine-18-labeled deoxyglucose and Tc-99m-sestamibi dual-nuclide myocardial imaging were obtained at rest and at target heart rate during bicycle ergometer test. The exercise and rest myocardial perfusion imaging were analyzed for myocardial ischemia presence. The myocardial metabolism imaging was analyzed with the visual semi-quantitative analyses model of seventeen segments. The secondary-extreme heart rate (195-age) was achieved in all subjects. There was no myocardial ischemia in all perfusion imaging. In the visual qualitative analyses, four myocardial metabolism imaging failed in the fasting group while one failed in the non-fasting group (P > 0.05). In the visual semi-quantitative analyses, myocardial metabolism imaging scores at rest or exercise in all segments were similar between two groups (P > 0.05). In the fasting group, the myocardial metabolism imaging scores during exercise were significantly higher than those at rest in 6 segments (P < 0.05). In the non-fasting group, the scores of 3 exercise myocardial metabolism imaging were significantly higher than those at rest (P < 0.05). Satisfactory high-quality myocardial metabolism imaging could be obtained at fasting and exercise situations in subjects with regular aerobic exercise.
Park, Sok; Kim, Chan-Sik; Lee, Jin; Suk Kim, Jung; Kim, Junghyun
2013-01-01
Renal lipid accumulation exhibits slowly developing chronic kidney disease and is associated with increased oxidative stress. The impact of exercise on the obese- and oxidative stress-related renal disease is not well understood. The purpose of this study was to investigate whether a high-fat diet (HFD) would accelerate d-galactose-induced aging process in rat kidney and to examine the preventive effect of regular exercise on the obese- and oxidative stress-related renal disease. Oxidative stress was induced by an administration of d-galactose (100 mg/kg intraperitoneally injected) for 9 weeks, and d-galactose-treated rats were also fed with a high-fat diet (60% kcal as fat) for 9 weeks to induce obesity. We investigated the efficacy of regular exercise in reducing renal injury by analyzing Nε-carboxymethyllysine (CML), 8-hydroxygluanine (8-OHdG) and apoptosis. When rats were fed with a HFD for 9 weeks in d-galactose-treated rats, an increased CML accumulation, oxidative DNA damage and renal podocyte loss were observed in renal glomerular cells and tubular epithelial cells. However, the regular exercise restored all these renal changes in HFD plus d-galactose-treated rats. Our data suggested that long-term HFD may accelerate the deposition of lipoxidation adducts and oxidative renal injury in d-galactose-treated rats. The regular exercise protects against obese- and oxidative stress-related renal injury by inhibiting this lipoxidation burden. PMID:24023395
Exercise prescription for the elderly: current recommendations.
Mazzeo, R S; Tanaka, H
2001-01-01
The benefits for elderly individuals of regular participation in both cardiovascular and resistance-training programmes are great. Health benefits include a significant reduction in risk of coronary heart disease, diabetes mellitus and insulin resistance, hypertension and obesity as well as improvements in bone density, muscle mass, arterial compliance and energy metabolism. Additionally, increases in cardiovascular fitness (maximal oxygen consumption and endurance), muscle strength and overall functional capacity are forthcoming allowing elderly individuals to maintain their independence, increase levels of spontaneous physical activity and freely participate in activities associated with daily living. Taken together, these benefits associated with involvement in regular exercise can significantly improve the quality of life in elderly populations. It is noteworthy that the quality and quantity of exercise necessary to elicit important health benefits will differ from that needed to produce significant gains in fitness. This review describes the current recommendations for exercise prescriptions for the elderly for both cardiovascular and strength/resistance-training programmes. However, it must be noted that the benefits described are of little value if elderly individuals do not become involved in regular exercise regimens. Consequently, the major challenges facing healthcare professionals today concern: (i) the implementation of educational programmes designed to inform elderly individuals of the health and functional benefits associated with regular physical activity as well as how safe and effective such programmes can be; and (ii) design interventions that will both increase involvement in regular exercise as well as improve adherence and compliance to such programmes.
Haynes, Andrew; Linden, Matthew D; Robey, Elisa; Naylor, Louise H; Ainslie, Philip N; Cox, Kay L; Lautenschlager, Nicola T; Green, Daniel J
2018-04-12
Platelet activation, including the formation of monocyte platelet aggregates (MPAs), contributes to atherosclerosis, thrombus formation and acute coronary syndromes. Regular participation in exercise can lower cardiovascular risk, but little is known regarding the impact of exercise training on platelet function. We investigated the effect of 6 months of walking exercise on platelet function in sedentary older adults without significant cardiovascular disease. Twenty-seven participants were randomly allocated to 6 months of either: no-exercise (n=13) or 3 x 50 mins/wk of supervised centre-based walking (n=14). Circulating and agonist induced MPAs were assessed using flow cytometry before (month 0 0M) and after (month 6 6M) the intervention. Circulating MPAs increased from 0M (3.7 {plus minus} 1.0%) to 6M (4.7 {plus minus} 1.6%) in the no-exercise group (P = 0.009), whereas a non-significant decrease was observed in the walking group (0M 4.3 {plus minus} 1.7% vs 6M 3.7 {plus minus} 1.2, P = 0.052). The change in MPAs between groups was significant (P = 0.001). There were no differences between groups in platelet responses to agonists across the interventions (all P > 0.05). Collectively, these data suggest that the absence of regular exercise may increase MPAs, which are cellular mediators involved in atherosclerosis, whilst regular walking inhibits such increases. The thrombotic function of platelets appear to be relatively unaltered by exercise training. This study provides novel data related to the cardio-protective effects associated with participation in exercise.
Narita-Ohtaki, Ryoko; Hori, Hiroaki; Itoh, Mariko; Lin, Mingming; Niwa, Madoka; Ino, Keiko; Imai, Risa; Ogawa, Sei; Sekiguchi, Atsushi; Matsui, Mie; Kunugi, Hiroshi; Kamo, Toshiko; Kim, Yoshiharu
2018-08-15
Posttraumatic stress disorder (PTSD) has been associated with cognitive impairments, yet little is documented on the cognitive function of PTSD patients in Asian countries. It is shown that regular exercise can reduce PTSD symptoms, while no study has investigated the association between exercise and cognition in PTSD patients. This study aimed to examine cognitive functions of Japanese women with PTSD, and to explore the association between regular exercise and cognitive functions. Forty-two women with DSM-IV PTSD and 66 demographically matched healthy control women participated in this study. Most of the patients developed PTSD after experiencing interpersonal violence. Cognitive functions were assessed by the Repeatable Battery for the Assessment of Neuropsychological Status (RBANS). Regular exercise habit was assessed by a self-reported questionnaire. Compared to controls, PTSD patients performed significantly more poorly in all cognitive domains examined, including immediate memory, visuospatial construction, language, attention, delayed memory, as well as the total score of RBANS (all p < 0.001). Compared to PTSD patients without the habit of exercise, those who habitually exercised showed significantly better performance on delayed memory (p = 0.006), which survived after controlling for potentially confounding variables in a multiple regression model. The cross-sectional design and relatively small sample size limited our findings. PTSD in Japanese women is associated with pervasively impaired cognitive functions, including notable impairments in verbal memory. Such memory deficits might be improved by regular exercise, although further studies are needed to investigate the causal relationship between exercise and cognition in PTSD. Copyright © 2018 Elsevier B.V. All rights reserved.
Older adults' exercise behavior: roles of selected constructs of social-cognitive theory.
Umstattd, M Renée; Hallam, Jeffrey
2007-04-01
Exercise is consistently related to physical and psychological health benefits in older adults. Bandura's social-cognitive theory (SCT) is one theoretical perspective on understanding and predicting exercise behavior. Thus, the authors examined whether three SCT variables-self-efficacy, self-regulation, and outcome-expectancy value-predicted older adults' (N = 98) exercise behavior. Bivariate analyses revealed that regular exercise was associated with being male, White, and married; having higher income, education, and self-efficacy; using self-regulation skills; and having favorable outcome-expectancy values (p < .05). In a simultaneous multivariate model, however, self-regulation (p = .0097) was the only variable independently associated with regular exercise. Thus, exercise interventions targeting older adults should include components aimed at increasing the use of self-regulation strategies.
Do parents' exercise habits predict 13-18-year-old adolescents' involvement in sport?
Sukys, Saulius; Majauskienė, Daiva; Cesnaitiene, Vida J; Karanauskiene, Diana
2014-09-01
This study examined links between parents' exercise habits and adolescents' participation in sports activities, considering the aspects of gender and age. It was hypothesized that regular exercise by both parents would be related to children's involvement in sport regardless of their gender and age. Moreover, it was hypothesized that children's sports activities would be more strongly related to their father's exercise activities. The study also examined the links between parents' exercise habits and children's motivation for sports. It was hypothesized that competition motives would be more important for children whose parents exercised regularly. The research sample included 2335 students from the seventh (n = 857), ninth (n = 960) and eleventh (n = 518) grades of various Lithuanian schools. The study used a questionnaire survey method, which revealed the links between parents' exercise habits and their children's participation in sport. Assessment of data for girls and boys showed that daughters' participation in sport could be predicted by both their fathers' and mothers' exercise habits, but sons' sports activities could be predicted only by the regular physical activities of their fathers. The assessment of children's sporting activities according to age revealed links between parental exercising and the engagement of older (15-16 years old), but not younger adolescents (13-14 years old). Analysis of sports motivation showed that competition motives were more important for boys than for girls. Fitness, well-being and appearance motives were more important for older adolescents (15-18 years old), while competition motives were more important for younger adolescents (13-14 years old). Research revealed the relationship between children's sport motives and fathers' exercise habits, while examination of mothers' exercise revealed no difference. Key pointsParental exercising significantly predicts adolescents' engagement in sport. Daughter's engagement in sport is related to both parents whereas son's involvement in sport is related only to father's exercise habits.Regular exercising of both mother and father predicts 13 - 14-year-old adolescents' engagement in sport. However, mother exercising is not related to older adolescents' involvement in sport.Research revealed the relation of adolescents' sport motives and father's exercising, and no differences were established depending on mother's exercise habits.
Ebada, Mohamed Elsaed; Kendall, David A; Pardon, Marie-Christine
2016-09-15
Physical exercise can improve cognition but whether this is related to motivation levels is unknown. Voluntary wheel running is a rewarding activity proposed as a model of motivation to exercise. To question the potential effects of exercise motivation on subsequent behaviour, we used a pharmacological approach targeting some reward mechanisms. The stress hormone corticosterone has rewarding effects mediated by activation of low affinity glucocorticoid receptors (GR). To investigate whether corticosterone synthesis motivates exercise via activation of GRs and subsequently, impacts on behaviour, we treated C57BL/6J mice acutely with the inhibitor of corticosterone synthesis metyrapone (35mg/kg) or repeatedly with the GR antagonist mifepristone (30mg/kg) prior to 1-h running wheel sessions. To investigate whether reducing motivation to exercise impacts on behaviour, we antagonised running-induced dopamine D2/D3 receptors activation with sulpiride (25 or 50mg/kg) and assessed locomotor, anxiety-related and memory performance after 20 running sessions over 4 weeks. We found that corticosterone synthesis contributes to running levels, but the maintenance of running behaviour was not mediated by activation of GRs. Intermittent exercise was not associated with changes in behavioural or cognitive performance. The persistent reduction in exercise levels triggered by sulpiride also had limited impact on behavioural performance, although the level of performance for some behaviours was related to the level of exercise. Altogether, these findings indicate that corticosterone and dopamine D2/D3 receptor activation contribute to the motivation for wheel running, but suggest that motivation for exercise is not a sufficient factor to alter behaviour in healthy mice. Copyright © 2016 Elsevier B.V. All rights reserved.
Can exercise affect the course of inflammatory bowel disease? Experimental and clinical evidence.
Bilski, Jan; Mazur-Bialy, Agnieszka; Brzozowski, Bartosz; Magierowski, Marcin; Zahradnik-Bilska, Janina; Wójcik, Dagmara; Magierowska, Katarzyna; Kwiecien, Slawomir; Mach, Tomasz; Brzozowski, Tomasz
2016-08-01
The inflammatory bowel disease (IBD) consisting of Crohn's disease (CD) and ulcerative colitis (UC) are defined as idiopathic, chronic and relapsing intestinal disorders occurring in genetically predisposed individuals exposed to environmental risk factors such as diet and microbiome changes. Since conventional drug therapy is expensive and not fully efficient, there is a need for alternative remedies that can improve the outcome in patients suffering from IBD. Whether exercise, which has been proposed as adjunct therapy in IBD, can be beneficial in patients with IBD remains an intriguing question. In this review, we provide an overview of the effects of exercise on human IBD and experimental colitis in animal models that mimic human disease, although the information on exercise in human IBD are sparse and poorly understood. Moderate exercise can exert a beneficial ameliorating effect on IBD and improve the healing of experimental animal colitis due to the activity of protective myokines such as irisin released from working skeletal muscles. CD patients with higher levels of exercise were significantly less likely to develop active disease at six months. Moreover, voluntary exercise has been shown to exert a positive effect on IBD patients' mood, weight maintenance and osteoporosis. On the other hand, depending on its intensity and duration, exercise can evoke transient mild systemic inflammation and enhances pro-inflammatory cytokine release, thereby exacerbating the gastrointestinal symptoms. We discuss recent advances in the mechanism of voluntary and strenuous exercise affecting the outcome of IBD in patients and experimental animal models. Copyright © 2016 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.
Nock, Nora L; Dimitropoulos, Anastasia; Rao, Stephen M; Flask, Chris A; Schluchter, Mark; Zanotti, Kristine M; Rose, Peter G; Kirwan, John P; Alberts, Jay
2014-11-01
Obesity is a leading risk factor for endometrial cancer (EC), particularly Type I forms, which are increasing in the U.S. Although death rates from most cancers have been decreasing, overall mortality in EC is increasing in the U.S. EC survivors' poor fitness combined with their surgical treatments may make weight loss particularly challenging. High intensity exercise increases neurotrophins and neurological reward via altered striatal dopamine in animals, and, in humans, chronic high intensity exercise enhances meal-induced satiety and may reduce hedonic eating. "Assisted" exercise, a mode of exercise whereby a patient's voluntary exercise rate is augmented mechanically, may modulate brain dopamine levels in Parkinson's Disease patients but has not been previously evaluated as a treatment for obesity. We describe the rationale and design of the REWARD trial, which has the overarching goal of randomizing 120 obese EC survivors to "assisted" or voluntary rate cycling to evaluate the efficacy of "assisted" exercise in enhancing and sustaining weight loss. Patients in both arms will receive 3 days/week of supervised exercise and 1 day/week of a group dietary behavioral intervention for 16 weeks and, then, will be followed for 6 months. The primary outcome is weight loss. Secondary outcomes include measures for body composition, fitness, eating behavior, exercise motivation and, quality of life as well as cognition and food reward and motivation as assessed by functional magnetic resonance imaging (fMRI) tasks. If successful, the REWARD program could be extended to help sustain weight loss in obese cancer and non-cancer patients. Copyright © 2014 Elsevier Inc. All rights reserved.
McBride, Jeffrey M; Porcari, John P; Scheunke, Mark D
2004-11-01
This investigation was designed to determine if vibration during fatiguing resistance exercise would alter associated patterns of muscle activity. A cross-over design was employed with 8 subjects completing a resistance exercise bout once with a vibrating dumbbell (V) (44 Hz, 3 mm displacement) and once without vibration (NV). For both exercise bouts, 10 sets were performed with a load that induced concentric muscle failure during the 10th repetition. The appropriate load for each set was determined during a pretest. Each testing session was separated by 1 week. Electromyography (EMG) was obtained from the biceps brachii muscle at 12 different time points during a maximum voluntary contraction (MVC) at a 170 degrees elbow angle after each set of the dumbbell exercise. The time points were as follows: pre (5 minutes before the resistance exercise bout), T1-T10 (immediately following each set of resistance exercise), and post (15 minutes after the resistance exercise bout). EMG was analyzed for median power frequency (MPF) and maximum (mEMG). NV resulted in a significant decrease in MPF at T1-T4 (p < or 0.05) and a significant increase in mEMG at T2 during the MVC. V had an overall trend of lower mEMG in comparison to NV. The mEMG and MPF values associated with NV were similar to previously reported investigations. The lower mEMG values and the higher MPF of V in comparison to NV are undocumented. The EMG patterns observed with vibration may indicate a more efficient and effective recruitment of high threshold motor units during fatiguing contractions. This may indicate the usage of vibration with resistance exercise as an effective tool for strength training athletes.
Sumiyoshi, Akira; Taki, Yasuyuki; Nonaka, Hiroi; Takeuchi, Hikaru; Kawashima, Ryuta
2014-09-01
The effects of physical exercise on brain morphology in rodents have been well documented in histological studies. However, to further understand when and where morphological changes occur in the whole brain, a noninvasive neuroimaging method allowing an unbiased, comprehensive, and longitudinal investigation of brain morphology should be used. In this study, we investigated the effects of 7days of voluntary wheel running exercise on regional gray matter volume (rGMV) using longitudinal voxel-based morphometry (VBM) in rats. Eighteen pairs of adult male naïve Wistar rats were randomized to the exercise or control condition (one rat for each condition from each pair). Each rat was scanned in a 7.0-T MRI scanner at three time points: before exercise, after 7days of exercise, and after 7days of follow-up. The T2-weighted MRI images were segmented using the rat brain tissue priors that were recently published by our laboratory, and the intra- and inter-subject template creation steps were followed. Longitudinal VBM analysis revealed significant increases in rGMV in the motor, somatosensory, association, and visual cortices in the exercise group. Among these brain regions, rGMV changes in the motor cortex were positively correlated with the total distance that was run during the 7days of exercise. In addition, the effects of 7days of exercise on rGMV persisted after 7days of follow-up. These results support the utility of a longitudinal VBM study in rats and provide new insights into experience-dependent structural brain plasticity in naïve adult animals. Copyright © 2014 Elsevier Inc. All rights reserved.
Popovic, Ljiljana M; Mitic, Nebojsa R; Miric, Dijana; Bisevac, Boban; Miric, Mirjana; Popovic, Brankica
2015-01-01
Exercise induces a multitude of physiological and biochemical changes in blood affecting its redox status. Tissue damage resulting from exercise induces activation of inflammatory cells followed by the increased activity of myeloperoxidase (MPO) in circulation. Vitamin C readily scavenges free radicals and may thereby prevent oxidative damage of important biological macromolecules. The aim of this study was to examine the effect of vitamin C supplementation on oxidative stress and neutrophil inflammatory response induced by acute and regular exercise. Experiment was conducted on acute exercise group (performing Bruce Treadmill Protocol (BTP)) and regular training group. Markers of lipid peroxidation, malondialdehyde (MDA), MPO activity, and vitamin C status were estimated at rest and after BTP (acute exercise group) and before and after vitamin C supplementation in both groups. Our results showed increased postexercise Asc in serum independently of vitamin supplementation. They also showed that vitamin C can significantly decrease postexercise MDA level in both experimental groups. Increased postexercise MPO activity has been found in both groups and was not affected by vitamin C supplementation. We concluded that vitamin C supplementation can suppress lipid peroxidation process during exercise but cannot affect neutrophil inflammatory response in either exercise group.
Dinçer, Şensu; Altan, Mehmet; Terzioğlu, Duygu; Uslu, Ezel; Karşidağ, Kubilay; Batu, Şule; Metin, Gökhan
2016-11-01
We aimed to investigate the effects of a regular exercise program on exercise capacity, blood biochemical profiles, certain antioxidant and oxidative stress parameters of type 2 Diabetes mellitus (DM) patients. Thirty one type 2 DM patients (ages ranging from 42-65 years) who have hemoglobin A1c (HbA1c) levels ≥7.5% and ≤9.5% were included to study and performed two cardiopulmonary exercise tests (CPET) before and after the exercise program. Subjects performed aerobic exercise training for 90 minutes a day; 3 days a week during 12 weeks. Blood samples were collected to analyze certain oxidant and antioxidant parameters (advanced oxidation protein products [AOPP], ferric reducing ability of plasma [FRAP], malondialdehyde [MDA], and sialic acid [SA]), blood lipid profile, fasting blood glucose (FBG) and HbA1c. At the end of the program HbA1c and FBG, triglyceride (TG) and very-low-density lipoprotein (VLDL) levels decreased and high-density lipoprotein (HDL) increased significantly (P=0.000, P=0.001, P=0.008, P=0,001 and P=0.02, respectively). AOPP, FRAP, SA levels of the patients increased significantly following first CPET (P=0.000, P=0.049, P=0.014 respectively). At the end of the exercise program AOPP level increased significantly following last CPET. Baseline SA level increased significantly following exercise program (P=0.002). We suggest that poor glycemic control which plays the major role in the pathogenesis of DM and its complications would be improved by 12 weeks of a regular exercise program. Whereas the acute exercise induces protein oxidation, regularly aerobic training may enhance the antioxidant status of type 2 DM patients.
Muscular activity and its relationship to biomechanics and human performance
NASA Technical Reports Server (NTRS)
Ariel, Gideon
1994-01-01
The purpose of this manuscript is to address the issue of muscular activity, human motion, fitness, and exercise. Human activity is reviewed from the historical perspective as well as from the basics of muscular contraction, nervous system controls, mechanics, and biomechanical considerations. In addition, attention has been given to some of the principles involved in developing muscular adaptations through strength development. Brief descriptions and findings from a few studies are included. These experiments were conducted in order to investigate muscular adaptation to various exercise regimens. Different theories of strength development were studied and correlated to daily human movements. All measurement tools used represent state of the art exercise equipment and movement analysis. The information presented here is only a small attempt to understand the effects of exercise and conditioning on Earth with the objective of leading to greater knowledge concerning human responses during spaceflight. What makes life from nonliving objects is movement which is generated and controlled by biochemical substances. In mammals. the controlled activators are skeletal muscles and this muscular action is an integral process composed of mechanical, chemical, and neurological processes resulting in voluntary and involuntary motions. The scope of this discussion is limited to voluntary motion.
42 CFR 423.664 - Authority of hearing officer.
Code of Federal Regulations, 2010 CFR
2010-10-01
... (CONTINUED) MEDICARE PROGRAM VOLUNTARY MEDICARE PRESCRIPTION DRUG BENEFIT Medicare Contract Determinations and Appeals § 423.664 Authority of hearing officer. In exercising his or her authority, the hearing...
Kangas, Julie L; Baldwin, Austin S; Rosenfield, David; Smits, Jasper A J; Rethorst, Chad D
2015-05-01
People with depressive symptoms report lower levels of exercise self-efficacy and are more likely to discontinue regular exercise than others, but it is unclear how depressive symptoms affect the relation between exercise and self-efficacy. We sought to clarify whether depressive symptoms moderate the relations between exercise and same-day self-efficacy, and between self-efficacy and next-day exercise. Participants (n = 116) were physically inactive adults (35% reported clinically significant depressive symptoms) who initiated regular exercise and completed daily assessments for 4 weeks. Mixed linear models were used to test whether (a) self-efficacy differed on days when exercise did and did not occur, (b) self-efficacy predicted next-day exercise, and (c) these relations were moderated by depressive symptoms. First, self-efficacy was lower on days when no exercise occurred, but this difference was larger for people with high depressive symptoms (p < .001). They had lower self-efficacy than people with low depressive symptoms on days when no exercise occurred (p = .03), but self-efficacy did not differ on days when exercise occurred (p = .34). Second, self-efficacy predicted greater odds of next-day exercise, OR = 1.12, 95% [1.04, 1.21], but depressive symptoms did not moderate this relation, OR = 1.00, 95% CI [.99, 1.01]. During exercise initiation, daily self-efficacy is more strongly related to exercise occurrence for people with high depressive symptoms than those with low depressive symptoms, but self-efficacy predicts next-day exercise regardless of depressive symptoms. The findings specify how depressive symptoms affect the relations between exercise and self-efficacy and underscore the importance of targeting self-efficacy in exercise interventions, particularly among people with depressive symptoms. (PsycINFO Database Record (c) 2015 APA, all rights reserved).
Mears, Stephen A; Shirreffs, Susan M
2013-10-01
Water intake occurs following a period of high-intensity intermittent exercise (HIIE) due to sensations of thirst yet this does not always appear to be caused by body water losses. Thu.s, the aim was to assess voluntary water intake following HIIE. Ten healthy males (22 ± 2 y, 75.6 ± 6.9 kg, VO2(peak) 57.3 ± 11.4 m · kg(-1) · min(-1); mean ± SD) completed two trials (7-14 d apart). Subjects sat for 30 min then completed an exercise period involving 2 min of rest followed by 1 min at 100% VO2(peak repeated for 60 min (HIIE) or 60 min continuously at 33% VO2(peak) (LO). Subjects then sat for 60 min and were allowed ad libitum water intake. Body )mass was measured at start and end of trials. Serum osmolality, blood lactate, and sodium concentrations, sensations of thirst and mouth dryness were measured at baseline, postexercise and after 5, 15, 30, and 60 min of recovery. Vasopressin concentration was measured at baseline, postexercise, 5 min, and 30 min. Body mass loss over the whole trial was similar (HIIE: 0.77 ± 0.50; LO: 0.85 ± 0.55%; p = .124). Sweat lost during exercise (0.78 ± 0.22 vs. 0.66 ± 0.26 L) and voluntary water intake during recovery (0.416 ± 0.299 vs. 0.294 ± 0.295 L; p < .05) were greater in HIIE. Serum osmolality (297 ± 3 vs. 288 ± 4 mOsmol · kg(-1)), blood lactate (8.5 ± 2.7 vs. 0.7 ± 0.4 mmol · L(-1)), serum sodium (146 ± 1 vs. 143 ± 1 mmol · L(-1)) and vasopressin (9.91 ± 3.36 vs. 4.43 ± 0.86 pg · ml(-1)) concentrations were higher after HIIE (p < .05) and thirst (84 ± 7 vs. 60 ± 21) and mouth dryness (87 ± 7 vs. 64 ± 23) also tended to be higher (p = .060). Greater voluntary water intake after HIIE was mainly caused by increased sweat loss and the consequences of increased serum osmolality mainly resulting from higher blood lactate concentrations.
American College of Sports Medicine position stand. Exercise and physical activity for older adults.
Chodzko-Zajko, Wojtek J; Proctor, David N; Fiatarone Singh, Maria A; Minson, Christopher T; Nigg, Claudio R; Salem, George J; Skinner, James S
2009-07-01
The purpose of this Position Stand is to provide an overview of issues critical to understanding the importance of exercise and physical activity in older adult populations. The Position Stand is divided into three sections: Section 1 briefly reviews the structural and functional changes that characterize normal human aging, Section 2 considers the extent to which exercise and physical activity can influence the aging process, and Section 3 summarizes the benefits of both long-term exercise and physical activity and shorter-duration exercise programs on health and functional capacity. Although no amount of physical activity can stop the biological aging process, there is evidence that regular exercise can minimize the physiological effects of an otherwise sedentary lifestyle and increase active life expectancy by limiting the development and progression of chronic disease and disabling conditions. There is also emerging evidence for significant psychological and cognitive benefits accruing from regular exercise participation by older adults. Ideally, exercise prescription for older adults should include aerobic exercise, muscle strengthening exercises, and flexibility exercises. The evidence reviewed in this Position Stand is generally consistent with prior American College of Sports Medicine statements on the types and amounts of physical activity recommended for older adults as well as the recently published 2008 Physical Activity Guidelines for Americans. All older adults should engage in regular physical activity and avoid an inactive lifestyle.
Cardiorespiratory fitness and muscle strength in pancreatic cancer patients.
Clauss, Dorothea; Tjaden, Christine; Hackert, Thilo; Schneider, Lutz; Ulrich, Cornelia M; Wiskemann, Joachim; Steindorf, Karen
2017-09-01
Cancer patients frequently experience reduced physical fitness due to the disease itself as well as treatment-related side effects. However, studies on physical fitness in pancreatic cancer patients are missing. Therefore, we assessed cardiorespiratory fitness and muscle strength of pancreatic cancer patients. We included 65 pancreatic cancer patients, mostly after surgical resection. Cardiorespiratory fitness was assessed using cardiopulmonary exercise testing (CPET) and 6-min walk test (6MWT). Hand-held dynamometry was used to evaluate isometric muscle strength. Physical fitness values were compared to reference values of a healthy population. Associations between sociodemographic and clinical variables with patients' physical fitness were analyzed using multiple regression models. Cardiorespiratory fitness (VO 2 peak, 20.5 ± 6.9 ml/min/kg) was significantly lower (-24%) compared to healthy reference values. In the 6MWT pancreatic cancer patients nearly reached predicted values (555 vs. 562 m). Maximal voluntary isometric contraction (MVIC) of the upper (-4.3%) and lower extremities (-13.8%) were significantly lower compared to reference values. Overall differences were larger in men than those in women. Participating in regular exercise in the year before diagnosis was associated with greater VO 2 peak (p < .05) and MVIC of the knee extensors (p < .05). Pancreatic cancer patients had significantly impaired physical fitness with regard to both cardiorespiratory function and isometric muscle strength, already in the early treatment phase (median 95 days after surgical resection). Our findings underline the need to investigate exercise training in pancreatic cancer patients to counteract the loss of physical fitness.
Diane, Abdoulaye; Kupreeva, Maria; Borthwick, Faye; Proctor, Spencer D; Pierce, W David; Vine, Donna F
2015-09-01
Polycystic ovary syndrome (PCOS) is one of the most common endocrine-metabolic disorders in women of reproductive age characterized by ovulatory dysfunction, hyperandrogenism and cardiometabolic risk. The overweight-obese PCOS phenotype appears to have exacerbated reproductive dysfunction and cardiometabolic risk. In overweight-obese adult women with PCOS, exercise and energy restricted diets have shown limited and inconsistent effects on both cardiometabolic indices and reproductive outcomes. We hypothesized that an early lifestyle intervention involving exercise and dietary energy restriction to prevent or reduce the propensity for adiposity would modulate reproductive indices and cardiometabolic risk in an obese PCOS-prone rodent model. Weanling obese PCOS-prone and Lean-Control JCR:LA-cp rodents were given a chow diet ad libitum or an energy-restricted diet combined with or without voluntary exercise (4 h/day) for 8 weeks. Dietary energy restriction and exercise lowered total body weight gain and body fat mass by 30% compared to free-fed sedentary or exercising obese PCOS-prone animals (P<0.01). Energy restriction induced an increase in exercise intensity compared to free-feeding plus exercise conditions. Energy restriction and exercise decreased fasting plasma triglycerides and apoB48 concentrations in obese PCOS-prone animals compared to free-fed and exercise or sedentary groups. The energy restriction and exercise combination in obese PCOS-prone animals significantly increased plasma sex-hormone binding globulin, hypothalamic cocaine-and amphetamine-regulated transcript (CART) and Kisspeptin mRNA expression to levels of the Lean-Control group, and this was further associated with improvements in estrous cyclicity. The combination of exercise and dietary energy restriction when initiated in early life exerts beneficial effects on cardiometabolic and reproductive indices in an obese PCOS-prone rodent model, and this may be associated with normalization of the hypothalamic neuropeptides, Kisspeptin and CART. © 2015 Society for Endocrinology.
Caffeine stimulates voluntary wheel running in mice without increasing aerobic capacity.
Claghorn, Gerald C; Thompson, Zoe; Wi, Kristianna; Van, Lindsay; Garland, Theodore
2017-03-01
The "energy drink" Red Bull and the "sports drink" Gatorade are often marketed to athletes, with claims that they cause performance gains. However, both are high in sugars, and also consumed by non-athletes. Few studies have addressed the effects of these drinks or their biologically active components in rodent exercise models. We used three experiments to test effects on both voluntary exercise behavior and maximal aerobic capacity in lines of mice known to differ in "athletic" traits. Mice from four replicate High Runner (HR) lines have been selectively bred for voluntary running on wheels, and run approximately three times as many revolutions per day as do mice from four non-selected Control (C) lines. HR mice also have higher endurance and maximal oxygen consumption (VO 2 max) during forced treadmill exercise. In Experiment 1, we tested the hypothesis that Gatorade or Red Bull might cause or allow mice to increase their voluntary wheel running. On days 5 and 6 of 6days of wheel access, as is used to select breeders, HR mice ran 3.3-fold more than C, and females ran 1.2-fold more than males, with no linetype by sex interaction. On day 7, mice were administered Gatorade, Red Bull or tap water. During the subsequent 19-hour period, Gatorade had no statistical effect on running, but Red Bull significantly increased distance run by both sexes and in both HR and C lines. The increase in distance run caused by Red Bull was attributable to time spent running, not an increase in mean (or maximum) speed. As previous studies have found that sucrose alone does not generally increase wheel running, we tested two other active ingredients in Red Bull, caffeine and taurine, in Experiment 2. With a similar testing protocol, caffeine alone and caffeine+taurine increased running by about half the magnitude of Red Bull. In Experiment 3, we tested the hypothesis that Red Bull or caffeine alone can increase physiological performance ability during aerobic exercise, measured as VO 2 max. In a repeated-measures design spanning 6days, females were housed with water bottles containing Red Bull, caffeine or water in a randomized order, and tested for VO 2 max twice while receiving each fluid (6 total trials). Neither Red Bull nor caffeine significantly affected either VO 2 max or a measure of trial cooperativity (rated on a scale of 1-5), but both treatments significantly reduced tiredness (rated on a scale of 1-3) scored at the end of trials for both HR and C lines. Taken together, our results suggest that caffeine increases voluntary exercise levels of mice by delaying fatigue, rather than increasing aerobic capacity. Copyright © 2017 Elsevier Inc. All rights reserved.
Exercisers achieve greater acute exercise-induced mood enhancement than nonexercisers.
Hoffman, Martin D; Hoffman, Debi Rufi
2008-02-01
To determine whether a single session of exercise of appropriate intensity and duration for aerobic conditioning has a different acute effect on mood for nonexercisers than regular exercisers. Repeated-measures design. Research laboratory. Adult nonexercisers, moderate exercisers, and ultramarathon runners (8 men, 8 women in each group). Treadmill exercise at self-selected speeds to induce a rating of perceived exertion (RPE) of 13 (somewhat hard) for 20 minutes, preceded and followed by 5 minutes at an RPE of 9 (very light). Profile of Mood States before and 5 minutes after exercise. Vigor increased by a mean +/- standard deviation of 8+/-7 points (95% confidence interval [CI], 5-12) among the ultramarathon runners and 5+/-4 points (95% CI, 2-9) among the moderate exercisers, with no improvement among the nonexercisers. Fatigue decreased by 5+/-6 points (95% CI, 2-8) for the ultramarathon runners and 4+/-4 points (95% CI, 1-7) for the moderate exercisers, with no improvement among the nonexercisers. Postexercise total mood disturbance decreased by a mean of 21+/-16 points (95% CI, 12-29) among the ultramarathon runners, 16+/-10 points (95% CI, 7-24) among the moderate exercisers, and 9+/-13 points (95% CI, 1-18) among the nonexercisers. A single session of moderate aerobic exercise improves vigor and decreases fatigue among regular exercisers but causes no change in these scores for nonexercisers. Although total mood disturbance improves postexercise in exercisers and nonexercisers, regular exercisers have approximately twice the effect as nonexercisers. This limited postexercise mood improvement among nonexercisers may be an important deterrent for persistence with an exercise program.
Infection, inflammation and exercise in cystic fibrosis
2013-01-01
Regular exercise is positively associated with health. It has also been suggested to exert anti-inflammatory effects. In healthy subjects, a single exercise session results in immune cell activation, which is characterized by production of immune modulatory peptides (e.g. IL-6, IL-8), a leukocytosis and enhanced immune cell functions. Upon cessation of exercise, immune activation is followed by a tolerizing phase, characterized by a reduced responsiveness of immune cells. Regular exercise of moderate intensity and duration has been shown to exert anti-inflammatory effects and is associated with a reduced disease incidence and viral infection susceptibility. Specific exercise programs may therefore be used to modify the course of chronic inflammatory and infectious diseases such as cystic fibrosis (CF). Patients with CF suffer from severe and chronic pulmonary infections and inflammation, leading to obstructive and restrictive pulmonary disease, exercise intolerance and muscle cachexia. Inflammation is characterized by a hyper-inflammatory phenotype. Patients are encouraged to engage in exercise programs to maintain physical fitness, quality of life, pulmonary function and health. In this review, we present an overview of available literature describing the association between regular exercise, inflammation and infection susceptibility and discuss the implications of these observations for prevention and treatment of inflammation and infection susceptibility in patients with CF. PMID:23497303
Rezende, Enrico L; Chappell, Mark A; Gomes, Fernando R; Malisch, Jessica L; Garland, Theodore
2005-06-01
Selective breeding for high wheel-running activity has generated four lines of laboratory house mice (S lines) that run about 170% more than their control counterparts (C lines) on a daily basis, mostly because they run faster. We tested whether maximum aerobic metabolic rates (V(O2max)) have evolved in concert with wheel-running, using 48 females from generation 35. Voluntary activity and metabolic rates were measured on days 5+6 of wheel access (mimicking conditions during selection), using wheels enclosed in metabolic chambers. Following this, V(O2max) was measured twice on a motorized treadmill and twice during cold-exposure in a heliox atmosphere (HeO2). Almost all measurements, except heliox V(O2max), were significantly repeatable. After accounting for differences in body mass (S < C) and variation in age at testing, S and C did not differ in V(O2max) during forced exercise or in heliox, nor in maximal running speeds on the treadmill. However, running speeds and V(O2max) during voluntary exercise were significantly higher in S lines. Nevertheless, S mice never voluntarily achieved the V(O2max) elicited during their forced treadmill trials, suggesting that aerobic capacity per se is not limiting the evolution of even higher wheel-running speeds in these lines. Our results support the hypothesis that S mice have genetically higher motivation for wheel-running and they demonstrate that behavior can sometimes evolve independently of performance capacities. We also discuss the possible importance of domestication as a confounding factor to extrapolate results from this animal model to natural populations.
Janzen, Natalie R; Hight, Robert E; Patel, Darshit S; Campbell, Jason A; Larson, Rebecca D; Black, Christopher D
2018-05-02
Characterization of critical power/torque (CP/CT) during voluntary exercise requires maximal effort, making difficult for those with neuromuscular impairments. To address this issue we sought to determine if electrically stimulated intermittent isometric exercise resulted in a critical end-test torque (ETT) that behaved similar to voluntary CT. In the first experiment participants (n = 9) completed four bouts of stimulated exercise at a 3:2 duty cycle, at frequencies of 100, 50, 25 Hz, and a low frequency below ETT (Sub-ETT; ≤ 15 Hz). The second experiment (n = 20) consisted of four bouts at a 2:2 duty cycle-two bouts at 100 Hz, one at an intermediate frequency (15-30 Hz), and one at Sub-ETT. The third experiment (n = 12) consisted of two bouts at 50 Hz at a 3:2 duty* cycle with proximal blood flow occlusion during one of the bouts. ETT torque was similar (p ≥ 0.43) within and among stimulation frequencies in experiment 1. No fatigue was observed during the Sub-ETT bouts (p > 0.05). For experiment 2, ETT was similar at 100 Hz and at the intermediate frequency (p ≥ 0.29). Again, Sub-ETT stimulation did not result in fatigue (p > 0.05). Altering oxygen delivery by altering the duty cycle (3:2 vs. 2:2; p = 0.02) and by occlusion (p < 0.001) resulted in lower ETT values. Stimulated exercise resulted in an ETT that was consistent from day-to-day and similar regardless of initial torque, as long as that torque exceeded ETT, and was sensitive to oxygen delivery. As such we propose it represents a parameter similar to voluntary CT.
Fleig, Lena; Kerschreiter, Rudolf; Schwarzer, Ralf; Pomp, Sarah; Lippke, Sonia
2014-01-01
Long-term rehabilitation success depends on regular exercise and healthy nutrition. The present study introduces a new framework to explain this association on a psychosocial level. The exercise-nutrition relationship was investigated by exploring the sequential mediation of habit strength and transfer cognitions. Analyses were performed at two measurement points in time (at 12 and 18 months after rehabilitation), involving 470 medical rehabilitation patients who participated in an exercise intervention. Patients filled in paper-pencil questionnaires assessing exercise (t1) and habit strength, transfer cognitions and healthy nutrition at follow-up (t2). Habit strength and transfer cognitions mediated the relationship between exercise and nutrition. Findings suggest that habit strength and transfer cognitions are important factors underlying the relationship between exercise and nutrition.
Hackett, Daniel A.; Baker, Michael K.
2016-01-01
The purpose of this study was to examine the effect of regular exercise training on insulin sensitivity in adults with type 2 diabetes mellitus (T2DM) using the pooled data available from randomised controlled trials. In addition, we sought to determine whether short-term periods of physical inactivity diminish the exercise-induced improvement in insulin sensitivity. Eligible trials included exercise interventions that involved ≥3 exercise sessions, and reported a dynamic measurement of insulin sensitivity. There was a significant pooled effect size (ES) for the effect of exercise on insulin sensitivity (ES, –0.588; 95% confidence interval [CI], –0.816 to –0.359; P<0.001). Of the 14 studies included for meta-analyses, nine studies reported the time of data collection from the last exercise bout. There was a significant improvement in insulin sensitivity in favour of exercise versus control between 48 and 72 hours after exercise (ES, –0.702; 95% CI, –1.392 to –0.012; P=0.046); and this persisted when insulin sensitivity was measured more than 72 hours after the last exercise session (ES, –0.890; 95% CI, –1.675 to –0.105; P=0.026). Regular exercise has a significant benefit on insulin sensitivity in adults with T2DM and this may persist beyond 72 hours after the last exercise session. PMID:27535644
Does exercise improve symptoms in fibromyalgia?
Rain, Carmen; Seguel, Willy; Vergara, Luis
2015-12-14
It has been proposed that fibromyalgia could be managed by pharmacological and non-pharmacological interventions. Regular physical exercise is commonly used as a non-pharmacological intervention. Searching in Epistemonikos database, which is maintained by screening 30 databases, we identified 14 systematic reviews including 25 randomized trials. We combined the evidence using meta-analysis and generated a summary of findings table following the GRADE approach. We conclude that regular physical exercise probably reduces pain in patients with fibromyalgia.
Mazur-Bialy, Agnieszka Irena; Bilski, Jan; Wojcik, Dagmara; Brzozowski, Bartosz; Surmiak, Marcin; Hubalewska-Mazgaj, Magdalena; Chmura, Anna; Magierowski, Marcin; Magierowska, Katarzyna; Mach, Tomasz; Brzozowski, Tomasz
2017-04-20
Inflammatory bowel diseases (IBDs) are a heterogeneous group of disorders exhibited by two major phenotypic forms: Crohn's disease and ulcerative colitis. Although the aetiology of IBD is unknown, several factors coming from the adipose tissue and skeletal muscles, such as cytokines, adipokines and myokines, were suggested in the pathogenesis of ulcerative colitis; however, it has not been extensively studied whether voluntary exercise can ameliorate that disorder. We explored the effect of moderate exercise (i.e., voluntary wheel running) on the disease activity index (DAI), colonic blood flow (CBF), plasma irisin and adiponectin levels and real-time PCR expression of proinflammatory markers in mesenteric fat in mice with 2,4,6-trinitrobenzenesulfonic acid (TNBS) colitis fed a high-fat diet (HFD) compared to those on a standard chow diet (SD). Macroscopic and microscopic colitis in sedentary SD mice was accompanied by a significant fall in CBF, some increase in colonic tissue weight and a significant increase in the plasma levels of tumour necrosis factor-alpha (TNF-α), IL-6, monocyte chemotactic protein 1 (MCP-1) and IL-13 ( p < 0.05). In sedentary HFD mice, colonic lesions were aggravated, colonic tissue weight increased and the plasma TNF-α, IL-6, MCP-1, IL-1β and leptin levels significantly increased. Simultaneously, a significant decrease in the plasma irisin and adiponectin levels was observed in comparison with SD mice ( p < 0.05). Exercise significantly decreased macroscopic and microscopic colitis, substantially increased CBF and attenuated the plasma TNF-α, IL-6, MCP-1, IL-1β and leptin levels while raising the plasma irisin and the plasma and WAT concentrations of adiponectin in HFD mice ( p < 0.05). We conclude that: (1) experimental colitis is exacerbated in HFD mice, possibly due to a fall in colonic microcirculation and an increase in the plasma and mesenteric fat content of proinflammatory biomarkers; and (2) voluntary physical activity can attenuate the severity of colonic damage in mice fed a HFD through the release of protective irisin and restoration of plasma adiponectin.
Mazur-Bialy, Agnieszka Irena; Bilski, Jan; Wojcik, Dagmara; Brzozowski, Bartosz; Surmiak, Marcin; Hubalewska-Mazgaj, Magdalena; Chmura, Anna; Magierowski, Marcin; Magierowska, Katarzyna; Mach, Tomasz; Brzozowski, Tomasz
2017-01-01
Inflammatory bowel diseases (IBDs) are a heterogeneous group of disorders exhibited by two major phenotypic forms: Crohn‘s disease and ulcerative colitis. Although the aetiology of IBD is unknown, several factors coming from the adipose tissue and skeletal muscles, such as cytokines, adipokines and myokines, were suggested in the pathogenesis of ulcerative colitis; however, it has not been extensively studied whether voluntary exercise can ameliorate that disorder. We explored the effect of moderate exercise (i.e., voluntary wheel running) on the disease activity index (DAI), colonic blood flow (CBF), plasma irisin and adiponectin levels and real-time PCR expression of proinflammatory markers in mesenteric fat in mice with 2,4,6-trinitrobenzenesulfonic acid (TNBS) colitis fed a high-fat diet (HFD) compared to those on a standard chow diet (SD). Macroscopic and microscopic colitis in sedentary SD mice was accompanied by a significant fall in CBF, some increase in colonic tissue weight and a significant increase in the plasma levels of tumour necrosis factor-alpha (TNF-α), IL-6, monocyte chemotactic protein 1 (MCP-1) and IL-13 (p < 0.05). In sedentary HFD mice, colonic lesions were aggravated, colonic tissue weight increased and the plasma TNF-α, IL-6, MCP-1, IL-1β and leptin levels significantly increased. Simultaneously, a significant decrease in the plasma irisin and adiponectin levels was observed in comparison with SD mice (p < 0.05). Exercise significantly decreased macroscopic and microscopic colitis, substantially increased CBF and attenuated the plasma TNF-α, IL-6, MCP-1, IL-1β and leptin levels while raising the plasma irisin and the plasma and WAT concentrations of adiponectin in HFD mice (p < 0.05). We conclude that: (1) experimental colitis is exacerbated in HFD mice, possibly due to a fall in colonic microcirculation and an increase in the plasma and mesenteric fat content of proinflammatory biomarkers; and (2) voluntary physical activity can attenuate the severity of colonic damage in mice fed a HFD through the release of protective irisin and restoration of plasma adiponectin. PMID:28425943
Rao, Shailaja Kishan; Ross, Jordan M; Harrison, Fiona E; Bernardo, Alexandra; Reiserer, Randall S; Reiserer, Ronald S; Mobley, James A; McDonald, Michael P
2015-06-01
Physical exercise may provide protection against the cognitive decline and neuropathology associated with Alzheimer's disease, although the mechanisms are not clear. In the present study, APP/PSEN1 double-transgenic and wild-type mice were allowed unlimited voluntary exercise for 7months. Consistent with previous reports, wheel-running improved cognition in the double-transgenic mice. Interestingly, the average daily distance run was strongly correlated with spatial memory in the water maze in wild-type mice (r(2)=.959), but uncorrelated in transgenics (r(2)=.013). Proteomics analysis showed that sedentary transgenic mice differed significantly from sedentary wild-types with respect to proteins involved in synaptic transmission, cytoskeletal regulation, and neurogenesis. When given an opportunity to exercise, the transgenics' deficiencies in cytoskeletal regulation and neurogenesis largely normalized, but abnormal synaptic proteins did not change. In contrast, exercise enhanced proteins associated with cytoskeletal regulation, oxidative phosphorylation, and synaptic transmission in wild-type mice. Soluble and insoluble Aβ40 and Aβ42 levels were significantly decreased in both cortex and hippocampus of active transgenics, suggesting that this may have played a role in the cognitive improvement in APP/PSEN1 mice. β-secretase was significantly reduced in active APP/PSEN1 mice compared to sedentary controls, suggesting a mechanism for reduced Aβ. Taken together, these data illustrate that exercise improves memory in wild-type and APP-overexpressing mice in fundamentally different ways. Copyright © 2015 Elsevier Inc. All rights reserved.
Chronic wheel running affects cocaine-induced c-Fos expression in brain reward areas in rats.
Zlebnik, Natalie E; Hedges, Valerie L; Carroll, Marilyn E; Meisel, Robert L
2014-03-15
Emerging evidence from human and animal studies suggests that exercise is a highly effective treatment for drug addiction. However, most work has been done in behavioral models, and the effects of exercise on the neurobiological substrates of addiction have not been identified. Specifically, it is unknown whether prior exercise exposure alters neuronal activation of brain reward circuitry in response to drugs of abuse. To investigate this hypothesis, rats were given 21 days of daily access to voluntary wheel running in a locked or unlocked running wheel. Subsequently, they were challenged with a saline or cocaine (15 mg/kg, i.p.) injection and sacrificed for c-Fos immunohistochemistry. The c-Fos transcription factor is a measure of cellular activity and was used to quantify cocaine-induced activation of reward-processing areas of the brain: nucleus accumbens (NAc), caudate putamen (CPu), medial prefrontal cortex (mPFC), and orbitofrontal cortex (OFC). The mean fold change in cocaine-induced c-Fos cell counts relative to saline-induced c-Fos cell counts was significantly higher in exercising compared to control rats in the NAc core, dorsomedial and dorsolateral CPu, the prelimbic area, and the OFC, indicating differential cocaine-specific cellular activation of brain reward circuitry between exercising and control animals. These results suggest neurobiological mechanisms by which voluntary wheel running attenuates cocaine-motivated behaviors and provide support for exercise as a novel treatment for drug addiction. Copyright © 2013 Elsevier B.V. All rights reserved.
Hart, Joseph M.; Kuenze, Christopher M.; Diduch, David R.; Ingersoll, Christopher D.
2014-01-01
Context: Persistent muscle weakness after anterior cruciate ligament (ACL) reconstruction may be due to underlying activation failure and arthrogenic muscle inhibition (AMI). Knee-joint cryotherapy has been shown to improve quadriceps function transiently in those with AMI, thereby providing an opportunity to improve quadriceps muscle activation and strength in patients with a reconstructed ACL. Objective: To compare quadriceps muscle function in patients with a reconstructed ACL who completed a 2-week intervention including daily cryotherapy (ice bag), daily exercises, or both. Design: Cross-sectional study. Setting: Laboratory. Patients or Other Participants: A total of 30 patients with reconstructed ACLs who were at least 6 months post-index surgery and had measurable quadriceps AMI. Intervention(s): The patients attended 4 supervised visits over a 2-week period. They were randomly assigned to receive 20 minutes of knee-joint cryotherapy, 1 hour of therapeutic rehabilitation exercises, or cryotherapy followed by exercises. Main Outcome Measure(s): We measured quadriceps Hoffmann reflex, normalized maximal voluntary isometric contraction torque, central activation ratio using the superimposed-burst technique, and patient-reported outcomes before and after the intervention period. Results: After the 2-week intervention period, patients who performed rehabilitation exercises immediately after cryotherapy had higher normalized maximal voluntary isometric contraction torques (P = .002, Cohen d effect size = 1.4) compared with those who received cryotherapy alone (P = .16, d = 0.58) or performed exercise alone (P = .16, d = 0.30). Conclusions: After ACL reconstruction, patients with AMI who performed rehabilitation exercises immediately after cryotherapy experienced greater strength gains than those who performed cryotherapy or exercises alone. PMID:25299442
Thompson, Andrew B; Stolyarova, Alexandra; Ying, Zhe; Zhuang, Yumei; Gómez-Pinilla, Fernando; Izquierdo, Alicia
2015-12-01
Exposure to drugs of abuse can produce many neurobiological changes which may lead to increased valuation of rewards and decreased sensitivity to their costs. Many of these behavioral alterations are associated with activity of D2-expressing medium spiny neurons in the striatum. Additionally, Bdnf in the striatum has been shown to play a role in flexible reward-seeking behavior. Given that voluntary aerobic exercise can affect the expression of these proteins in healthy subjects, and that exercise has shown promise as an anti-addictive therapy, we set out to quantify changes in D2 and Bdnf expression in methamphetamine-exposed rats given access to running wheels. Sixty-four rats were treated for two weeks with an escalating dose of methamphetamine or saline, then either sacrificed, housed in standard cages, or given free access to a running wheel for 6 weeks prior to sacrifice. Rats treated with methamphetamine ran significantly greater distances than saline-treated rats, suggesting an augmentation in the reinforcement value of voluntary wheel running. Transcription of Drd2 and Bdnf was assessed via RT-qPCR. Protein expression levels of D2 and phosphorylation of the TrkB receptor were measured via western blot. Drd2 and Bdnf mRNA levels were impacted independently by exercise and methamphetamine, but exposure to methamphetamine prior to the initiation of exercise blocked the exercise-induced changes seen in rats treated with saline. Expression levels of both proteins were elevated immediately after methamphetamine, but returned to baseline after six weeks, regardless of exercise status. Copyright © 2015 Elsevier Ltd. All rights reserved.
Physical Educators' Habitual Physical Activity and Self-Efficacy for Regular Exercise
ERIC Educational Resources Information Center
Zhu, Xihe; Haegele, Justin A.; Davis, Summer
2018-01-01
The purpose of this study was to examine physical education teachers' habitual physical activity and self-efficacy for regular exercise. In-service physical education teachers (N = 168) voluntarily completed an online questionnaire that included items to collect demographic information (gender, race/ethnicity, years of teaching experience, and…
Exercise, fitness, and the gut.
Cronin, Owen; Molloy, Michael G; Shanahan, Fergus
2016-03-01
Exercise and gut symptomatology have long been connected. The possibility that regular exercise fosters intestinal health and function has been somewhat overlooked in the scientific literature. In this review, we summarize current knowledge and discuss a selection of recent, relevant, and innovative studies, hypotheses and reviews that elucidate a complex topic. The multiorgan benefits of regular exercise are extensive. When taken in moderation, these benefits transcend improved cardio-respiratory fitness and likely reach the gut in a metabolic, immunological, neural, and microbial manner. This is applicable in both health and disease. However, further work is required to provide safe, effective recommendations on physical activity in specific gastrointestinal conditions. Challenging methodology investigating the relationship between exercise and gut health should not deter from exploring exercise in the promotion of gastrointestinal health.
Benefits of regular walking exercise in advanced pre-dialysis chronic kidney disease.
Kosmadakis, George C; John, Stephen G; Clapp, Emma L; Viana, Joao L; Smith, Alice C; Bishop, Nicolette C; Bevington, Alan; Owen, Paul J; McIntyre, Christopher W; Feehally, John
2012-03-01
There is increasing evidence of the benefit of regular physical exercise in a number of long-term conditions including chronic kidney disease (CKD). In CKD, this evidence has mostly come from studies in end stage patients receiving regular dialysis. There is little evidence in pre-dialysis patients with CKD Stages 4 and 5. A prospective study compared the benefits of 6 months regular walking in 40 pre-dialysis patients with CKD Stages 4 and 5. Twenty of them were the exercising group and were compared to 20 patients who were continuing with usual physical activity. In addition, the 40 patients were randomized to receive additional oral sodium bicarbonate (target venous bicarbonate 29 mmol/L) or continue with previous sodium bicarbonate treatment (target 24 mmol/L). Improvements noted after 1 month were sustained to 6 months in the 18 of 20 who completed the exercise study. These included improvements in exercise tolerance (reduced exertion to achieve the same activity), weight loss, improved cardiovascular reactivity, avoiding an increase in blood pressure medication and improvements in quality of health and life and uraemic symptom scores assessed by questionnaire. Sodium bicarbonate supplementation did not produce any significant alterations. This study provides further support for the broad benefits of aerobic physical exercise in CKD. More studies are needed to understand the mechanisms of these benefits, to study whether resistance exercise will add to the benefit and to evaluate strategies to promote sustained lifestyle changes, that could ensure continued increase in habitual daily physical activity levels.
ERIC Educational Resources Information Center
Bouchet, Courtney A.; Lloyd, Brian A.; Loetz, Esteban C.; Farmer, Caroline E.; Ostrovskyy, Mykola; Haddad, Natalie; Foright, Rebecca M.; Greenwood, Benjamin N.
2017-01-01
Fear extinction-based exposure therapy is the most common behavioral therapy for anxiety and trauma-related disorders, but fear extinction memories are labile and fear tends to return even after successful extinction. The relapse of fear contributes to the poor long-term efficacy of exposure therapy. A single session of voluntary exercise can…
ERIC Educational Resources Information Center
Ringenbach, S. D. R.; Holzapfel, S. D.; Mulvey, G. M.; Jimenez, A.; Benson, A.; Richter, M.
2016-01-01
Background: Reports of positive effects of aerobic exercise on cognitive function in persons with Down syndrome are extremely limited. However, a novel exercise intervention, termed assisted cycling therapy (ACT), has resulted in acutely improved cognitive planning ability and reaction times as well as improved cognitive planning after 8 weeks of…
Cold water immersion recovery following intermittent-sprint exercise in the heat.
Pointon, Monique; Duffield, Rob; Cannon, Jack; Marino, Frank E
2012-07-01
This study examined the effects of cold water immersion (CWI) on recovery of neuromuscular function following simulated team-sport exercise in the heat. Ten male team-sport athletes performed two sessions of a 2 × 30-min intermittent-sprint exercise (ISE) in 32°C and 52% humidity, followed by a 20-min CWI intervention or passive recovery (CONT) in a randomized, crossover design. The ISE involved a 15-m sprint every minute separated by bouts of hard running, jogging and walking. Voluntary and evoked neuromuscular function, ratings of perceived muscle soreness (MS) and blood markers for muscle damage were measured pre- and post-exercise, immediately post-recovery, 2-h and 24-h post-recovery. Measures of core temperature (Tcore), heart rate (HR), capillary blood and perceptions of exertion, thermal strain and thirst were also recorded at the aforementioned time points. Post-exercise maximal voluntary contraction (MVC) and activation (VA) were reduced in both conditions and remained below pre-exercise values for the 24-h recovery (P < 0.05). Increased blood markers of muscle damage were observed post-exercise in both conditions and remained elevated for the 24-h recovery period (P < 0.05). Comparative to CONT, the post-recovery rate of reduction in Tcore, HR and MS was enhanced with CWI whilst increasing MVC and VA (P < 0.05). In contrast, 24-h post-recovery MVC and activation were significantly higher in CONT compared to CWI (P = 0.05). Following exercise in the heat, CWI accelerated the reduction in thermal and cardiovascular load, and improved MVC alongside increased central activation immediately and 2-h post-recovery. However, despite improved acute recovery CWI resulted in an attenuated MVC 24-h post-recovery.
Lindinger, Michael I; Ecker, Gayle L
2013-01-01
Horses lose considerably more electrolytes through sweating during prolonged exercise than can be readily replaced through feeds. The present study tested an oral electrolyte supplement (ES) designed to replace sweat electrolyte losses. We measured gastric emptying of 3 litres of ES (using gamma imaging of (99)Tc-sulfide colloid), the absorption of Na(+) and K(+) from the gastrointestinal tract using (24)Na(+) and (42)K(+), and the distribution of these ions in the body by measuring radioactivity within plasma and sweat during exercise. Three litres of ES emptied from the stomach as fast as water, with a half-time of 47 min, and appeared in plasma by 10 min after administration (n = 4 horses). Peak values of plasma (24)Na(+) and (42)K(+) radioactivity occurred at 20-40 min, and a more rapid disappearance of K(+) radioactivity from plasma was indicative of movement of K(+) into cells (n = 3 horses). In a randomized crossover experiment (n = 4 horses), 1 h after administration of placebo (water), 1 or 3 litres of ES containing (24)Na(+), horses exercised on a treadmill at 30% of peak oxygen uptake until voluntary fatigue. The (24)Na(+) appeared in sweat at 10 min of exercise, and when horses received 3 litres of ES the duration to voluntary fatigue was increased in all horses by 33 ± 10%. It is concluded that an oral ES designed to replace sweat ion losses was rapidly emptied from the gastrointestinal tract, rapidly absorbed in the upper intestinal tract and rapidly distributed within the body. The ES clearly served as a reservoir to replace sweat ion losses during exercise, and administration of ES prior to exercise resulted in increased duration of submaximal exercise.
Marchianti, Ancah Caesarina Novi; Arimura, Emi; Ushikai, Miharu; Horiuchi, Masahisa
2014-09-01
Exercise is effective for preventing the onset and development of type 2 diabetes mellitus (T2DM) in human cases; however, the effect of exercise on the pathophysiology using animal models of T2DM has not been fully evaluated. We applied voluntary exercise under pair-fed (P) conditions in db mice, an animal model of T2DM. Exercising (Ex) and sedentary (Se) mice were placed in a cage, equipped with a free or locked running wheel, for 4 weeks, respectively. The amount of food consumed by ad libitum-fed wild-type mice under the Se condition (ad-WT) was supplied to all mice, except ad libitum db mice (ad-db). Blood parameters and expression of the genes involved in nutrient metabolism were analyzed. PEx-db (pair-fed and exercising) mice showed significantly lower HbA1c, body weight and liver weight than PSe-db and ad-db mice. Decreased hepatic triglycerides in PEx-db mice corresponded to a lower expression of lipogenic enzyme genes in the liver. Moreover, PEx-db mice showed significantly lower plasma branched-chain amino acids (BCAA), arginine, proline, and tyrosine, in addition to increased skeletal muscle (SM) weight, than PSe-db and ad-db mice, in spite of little influence on the expression of the BCAA transaminase gene, in SM and WAT. We found that exercise under a food restriction condition decreases several amino acids, including BCAA, and may improve insulin sensitivity more than mere food restriction. We propose that the decreased concentration of blood amino acids may be a valuable marker evaluating the effects of exercise on diabetic conditions.
Ogbonmwan, Yvonne E; Schroeder, Jason P; Holmes, Philip V; Weinshenker, David
2015-04-01
Voluntary aerobic exercise has shown promise as a treatment for substance abuse, reducing relapse in cocaine-dependent people. Wheel running also attenuates drug-primed and cue-induced reinstatement of cocaine seeking in rats, an animal model of relapse. However, in most of these studies, wheel access was provided throughout cocaine self-administration and/or extinction and had effects on several parameters of drug seeking. Moreover, the effects of exercise on footshock stress-induced reinstatement have not been investigated. The purposes of this study were to isolate and specifically examine the protective effect of exercise on relapse-like behavior elicited by a drug prime or stress. Rats were trained to self-administer cocaine at a stable level, followed by extinction training. Once extinction criteria were met, rats were split into exercise (24 h, continuous access to running wheel) and sedentary groups for 3 weeks, after which, drug-seeking behavior was assessed following a cocaine prime or footshock. We also measured galanin messenger RNA (mRNA) in the locus coeruleus and A2 noradrenergic nucleus. Exercising rats ran ∼4-6 km/day, comparable to levels previously reported for rats without a history of cocaine self-administration. Post-extinction exercise significantly attenuated cocaine-primed, but not footshock stress-induced, reinstatement of cocaine seeking, and increased galanin mRNA expression in the LC but not A2. These results indicate that chronic wheel running can attenuate some forms of reinstatement, even when initiated after the cessation of cocaine self-administration, supporting the idea that voluntary exercise programs may help maintain abstinence in clinical populations.
Váczi, Márk; Tollár, József; Meszler, Balázs; Juhász, Ivett; Karsai, István
2013-01-01
The aim of the present study was to investigate the effects of a short-term in-season plyometric training program on power, agility and knee extensor strength. Male soccer players from a third league team were assigned into an experimental and a control group. The experimental group, beside its regular soccer training sessions, performed a periodized plyometric training program for six weeks. The program included two training sessions per week, and maximal intensity unilateral and bilateral plyometric exercises (total of 40 – 100 foot contacts/session) were executed. Controls participated only in the same soccer training routine, and did not perform plyometrics. Depth vertical jump height, agility (Illinois Agility Test, T Agility Test) and maximal voluntary isometric torque in knee extensors using Multicont II dynamometer were evaluated before and after the experiment. In the experimental group small but significant improvements were found in both agility tests, while depth jump height and isometric torque increments were greater. The control group did not improve in any of the measures. Results of the study indicate that plyometric training consisting of high impact unilateral and bilateral exercises induced remarkable improvements in lower extremity power and maximal knee extensor strength, and smaller improvements in soccer-specific agility. Therefore, it is concluded that short-term plyometric training should be incorporated in the in-season preparation of lower level players to improve specific performance in soccer. PMID:23717351
Váczi, Márk; Tollár, József; Meszler, Balázs; Juhász, Ivett; Karsai, István
2013-03-01
The aim of the present study was to investigate the effects of a short-term in-season plyometric training program on power, agility and knee extensor strength. Male soccer players from a third league team were assigned into an experimental and a control group. The experimental group, beside its regular soccer training sessions, performed a periodized plyometric training program for six weeks. The program included two training sessions per week, and maximal intensity unilateral and bilateral plyometric exercises (total of 40 - 100 foot contacts/session) were executed. Controls participated only in the same soccer training routine, and did not perform plyometrics. Depth vertical jump height, agility (Illinois Agility Test, T Agility Test) and maximal voluntary isometric torque in knee extensors using Multicont II dynamometer were evaluated before and after the experiment. In the experimental group small but significant improvements were found in both agility tests, while depth jump height and isometric torque increments were greater. The control group did not improve in any of the measures. Results of the study indicate that plyometric training consisting of high impact unilateral and bilateral exercises induced remarkable improvements in lower extremity power and maximal knee extensor strength, and smaller improvements in soccer-specific agility. Therefore, it is concluded that short-term plyometric training should be incorporated in the in-season preparation of lower level players to improve specific performance in soccer.
Neuromuscular response differences to power vs strength back squat exercise in elite athletes.
Brandon, R; Howatson, G; Strachan, F; Hunter, A M
2015-10-01
The study's aim was to establish the neuromuscular responses in elite athletes during and following maximal 'explosive' regular back squat exercise at heavy, moderate, and light loads. Ten elite track and field athletes completed 10 sets of five maximal squat repetitions on three separate days. Knee extension maximal isometric voluntary contraction (MIVC), rate of force development (RFD) and evoked peak twitch force (Pt) assessments were made pre- and post-session. Surface electromyography [root mean square (RMS)] and mechanical measurements were recorded during repetitions. The heavy session resulted in the greatest repetition impulse in comparison to moderate and light sessions (P < 0.001), while the latter showed highest repetition power (P < 0.001). MIVC, RFD, and Pt were significantly reduced post-session (P < 0.01), with greatest reduction observed after the heavy, followed by the moderate and light sessions accordingly. Power significantly reduced during the heavy session only (P < 0.001), and greater increases in RMS occurred during heavy session (P < 0.001), followed by moderate, with no change during light session. In conclusion, this study has shown in elite athletes that the moderate load is optimal for providing a neuromuscular stimulus but with limited fatigue. This type of intervention could be potentially used in the development of both strength and power in elite athletic populations. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
The effects of exercise on the lipoprotein subclass profile: a meta-analysis of 10 interventions
Sarzynski, Mark A.; Burton, Jeffrey; Rankinen, Tuomo; Blair, Steven N.; Church, Timothy S.; Després, Jean-Pierre; Hagberg, James M.; Landers-Ramos, Rian; Leon, Arthur S.; Mikus, Catherine R.; Rao, D.C.; Seip, Richard L.; Skinner, James S.; Slentz, Cris A.; Thompson, Paul D.; Wilund, Kenneth R.; Kraus, William E.; Bouchard, Claude
2015-01-01
Objective The goal was to examine lipoprotein subclass responses to regular exercise as measured in 10 exercise interventions derived from six cohorts. Methods Nuclear magnetic resonance spectroscopy was used to quantify average particle size, total and subclass concentrations of very low-density lipoprotein, low-density lipoprotein, and high-density lipoprotein particles (VLDL-P, LDL-P, and HDL-P, respectively) before and after an exercise intervention in 1,555 adults from six studies, encompassing 10 distinct exercise programs: APOE (N=106), DREW (N=385), GERS (N=79), HERITAGE (N=715), STRRIDE I (N=168) and II (N=102). Random-effects meta-analyses were performed to evaluate the overall estimate of mean change across the unadjusted and adjusted mean change values from each exercise group. Results Meta-analysis of unadjusted data showed that regular exercise induced significant decreases in the concentration of large VLDL-P, small LDL-P, and medium HDL-P and mean VLDL-P size, with significant increases in the concentration of large LDL-P and large HDL-P and mean LDL-P size. These changes remained significant in meta-analysis with adjustment for age, sex, race, baseline body mass index, and baseline trait value. Conclusions Despite differences in exercise programs and study populations, regular exercise produced putatively beneficial changes in the lipoprotein subclass profile across 10 exercise interventions. Further research is needed to examine how exercise-induced changes in lipoprotein subclasses may be associated with (concomitant changes in) cardiovascular disease risk. PMID:26520888
Physical and immunological aspects of exercise in chronic diseases.
Apostolopoulos, Vasso; Borkoles, Erika; Polman, Remco; Stojanovska, Lily
2014-01-01
Physical inactivity and sedentary lifestyles are believed to be independent risk factors for the occurrence of numerous diseases, including, obesity, Type 2 diabetes, metabolic syndrome, cardiovascular disease, cancer and mental health, all leading to substantial morbidity and/or premature death. It has been found that regular exercise, is associated with better quality of life and health outcomes, and reduces the risk of cardiovascular disease and cancer. Here, we review the effects regular exercise has on mental health and well-being, on the immune system and in cancer, cardiovascular disease, autoimmunity and metabolic syndrome. Is exercise the new immunotherapy to treat diseases?
Do Parents’ Exercise Habits Predict 13–18-Year-Old Adolescents’ Involvement in Sport?
Sukys, Saulius; Majauskienė, Daiva; Cesnaitiene, Vida J.; Karanauskiene, Diana
2014-01-01
This study examined links between parents’ exercise habits and adolescents’ participation in sports activities, considering the aspects of gender and age. It was hypothesized that regular exercise by both parents would be related to children’s involvement in sport regardless of their gender and age. Moreover, it was hypothesized that children’s sports activities would be more strongly related to their father’s exercise activities. The study also examined the links between parents’ exercise habits and children’s motivation for sports. It was hypothesized that competition motives would be more important for children whose parents exercised regularly. The research sample included 2335 students from the seventh (n = 857), ninth (n = 960) and eleventh (n = 518) grades of various Lithuanian schools. The study used a questionnaire survey method, which revealed the links between parents’ exercise habits and their children’s participation in sport. Assessment of data for girls and boys showed that daughters’ participation in sport could be predicted by both their fathers’ and mothers’ exercise habits, but sons’ sports activities could be predicted only by the regular physical activities of their fathers. The assessment of children’s sporting activities according to age revealed links between parental exercising and the engagement of older (15–16 years old), but not younger adolescents (13–14 years old). Analysis of sports motivation showed that competition motives were more important for boys than for girls. Fitness, well-being and appearance motives were more important for older adolescents (15–18 years old), while competition motives were more important for younger adolescents (13–14 years old). Research revealed the relationship between children’s sport motives and fathers’ exercise habits, while examination of mothers’ exercise revealed no difference. Key points Parental exercising significantly predicts adolescents’ engagement in sport. Daughter’s engagement in sport is related to both parents whereas son’s involvement in sport is related only to father’s exercise habits. Regular exercising of both mother and father predicts 13 - 14-year-old adolescents’ engagement in sport. However, mother exercising is not related to older adolescents’ involvement in sport. Research revealed the relation of adolescents’ sport motives and father’s exercising, and no differences were established depending on mother’s exercise habits. PMID:25177177
Hoffman, Robert D; Golan, Ron; Vinker, Shlomo
2016-01-01
It has become clear in recent years that a healthy lifestyle, including physical exercise is crucial for health maintenance. Nevertheless, most people do not exercise regularly. Physician intervention is beneficial in increasing patient exercise. In Israel, the 1994 "Sports Law" regarding exercising in a gymnasium requires a physician's written authorization, but does not direct the physicians what they should ascertain before issuing the certificate. This pre-exercise certificate has been widely discussed in Israel over the last year as the law is to be revised to enable using a modification of the PAR-Q+ (Physical Activity Readiness questionnaire) patient questionnaire as a screening tool. This will leave the requirement for a pre-exercise certificate for a less healthy population, yet without clear instructions to the primary care physician on criteria for ascertaining fitness. Our aim was to evaluate how primary care physicians deal with the ambiguity of defining health criteria for issuing exercise authorization/certificate. We used an anonymous ten-item attitude/knowledge multiple choice questionnaire with an additional 13 personal/education and employment questions. We assessed each potential predictor of physician attitude and knowledge in univariate models. 135 useable questionnaires were collected. Of these, 43.7 % of the doctors will provide the pre-exercise certificate to all their patients; 63 % were aware of their HMO/employers guidelines for issuing certificates; 62 % stated they complied with these guidelines, and 16 % stated they did not follow them. In addition, 70 % of the physicians reported regular exercise themselves, an average of 4.12 h/week. These physicians tended to provide the pre-exercise certificate to all patients unconditionally, as compared to physicians that did not exercise regularly. (46 % vs. 14.5 %, p < 0.01). Most Israeli primary care physicians will provide the required certificate allowing their patients to exercise in the gym. There is a wide variation as to what physicians check before providing the certificate. The modification of the law has made the need for standardization of the nature of what is expected of primary care physicians more urgent. A large portion of physicians exercise on a regular basis - and exercising physicians are more positive regarding pre-exercise certificates. Our study clearly shows a gap in knowledge transfer; and we call for a standardized approach to pre-exercise certificates utilizing computerized patient medical files.
Robbins, Patrick J; Ramos, Meghan T; Zanghi, Brian M; Otto, Cynthia M
2017-01-01
This IACUC approved study was performed to evaluate the environmental, physiological, and hematological components that contribute to stamina following successive bouts of exercise that included searching (5-min), agility (5-min), and ball retrieve (<10-min). Regularly exercised dogs ( N = 12) were evaluated on five separate occasions. The population consisted of eight males and four females ranging in age from 8 to 23 months, which included six Labrador retrievers, three German shepherds, and one each English springer spaniel, German wirehaired pointer, and Dutch shepherd. The exercise period was up to 30 min with 5 min of intermittent rest between the exercise bouts or until a designated trainer determined that the dog appeared fatigued (e.g., curled tongue while panting, seeking shade, or voluntary reluctance to retrieve). At the end of the exercise period, pulse rate (PR), core temperature, blood lactate, and venous blood gas were collected. The median outdoor temperature was 28.9°C (84°F) (IQR; 27.2-30°C/81-86°F) and median humidity was 47% (IQR; 40-57%). Median duration of exercise was 27 min (IQR; 25-29). No dog showed signs of heat stress that required medical intervention. The components used to measure stamina in this study were total activity, post-exercise core body temperature (CBT), and increase in CBT. When controlling for breed, total activity, as measured by omnidirectional accelerometer device, could be predicted from a linear combination of the independent variables: pre-exercise activity ( p = 0.008), post-exercise activity ( p < 0.001), outdoor temperature ( p = 0.005), reduction in base excess in extracellular fluid compartment (BEecf) ( p = 0.044), and decrease in TCO 2 ( p = 0.005). When controlling for breed and sex, increase in CBT could be predicted from a linear combination of the independent variables: study day ( p = 0.005), increase in PR ( p < 0.001), increase in lactate ( p = 0.001), reduction in BEecf ( p = 0.031), increase in glucose ( p = 0.044), increase in hematocrit ( p = 0.032), and increase in hemoglobin ( p = 0.038). This study suggests that the influence of outdoor temperature, pre- and post-exercise activity, and the metabolic parameters are important components of stamina associated with exertion.
Dairy cows welfare quality in tie-stall housing system with or without access to exercise.
Popescu, Silvana; Borda, Cristin; Diugan, Eva Andrea; Spinu, Marina; Groza, Ioan Stefan; Sandru, Carmen Dana
2013-06-01
Tie-stall housing of dairy cows is used extensively worldwide, despite of the welfare concerns regarding the restriction of voluntary movement and limitation of expression of the cows' natural behaviour. The aim of this study was to compare the welfare quality of dairy cows kept in two types of tie-stall housing systems: with regular outdoor exercise and without access to exercise. In addition, the study investigated the relationship between different welfare measures of dairy cows kept in tie-stalls. 3,192 lactating cows were assessed using the Welfare Quality® assessment protocol for cattle in 80 commercial dairy farms, half of the farms providing outdoor access for the animals to exercise. The descriptive statistical indicators were determined for the assessed measures and for the welfare criteria and principle scores. The data obtained in the two housing types were compared and the correlation coefficients were calculated between the different welfare measures. The significant differences found between the two housing systems for the majority of the animal based measures indicate the positive effect of exercise on the welfare of tethered cows. Many of the animal welfare parameters correlated with each other. For the farms allowing the cows' turnout in a paddock, pasture or both, the mean scores for the welfare criteria and principles were higher than for the farms with permanent tethering of the cows, except the criteria absence of prolonged hunger and expression of social behaviours. The lowest scores were obtained for the criterion positive emotional state, in both housing systems. With regard to the overall classification, none of the farms were considered excellent. In the not classified category were only farms with all-year-round tethering of the animals and in the enhanced category only farms where the cows had outdoor access. The welfare quality of the investigated dairy cows was significantly better in the tie-stall farms which allow exercise for cows (paddocks, pasture or both) than in those which do not. In the light of our results we consider that dairy cattle welfare is not necessarily poor in tie-stall housing systems, its quality depending on the management practices.
Dairy cows welfare quality in tie-stall housing system with or without access to exercise
2013-01-01
Background Tie-stall housing of dairy cows is used extensively worldwide, despite of the welfare concerns regarding the restriction of voluntary movement and limitation of expression of the cows’ natural behaviour. The aim of this study was to compare the welfare quality of dairy cows kept in two types of tie-stall housing systems: with regular outdoor exercise and without access to exercise. In addition, the study investigated the relationship between different welfare measures of dairy cows kept in tie-stalls. Methods 3,192 lactating cows were assessed using the Welfare Quality® assessment protocol for cattle in 80 commercial dairy farms, half of the farms providing outdoor access for the animals to exercise. The descriptive statistical indicators were determined for the assessed measures and for the welfare criteria and principle scores. The data obtained in the two housing types were compared and the correlation coefficients were calculated between the different welfare measures. Results The significant differences found between the two housing systems for the majority of the animal based measures indicate the positive effect of exercise on the welfare of tethered cows. Many of the animal welfare parameters correlated with each other. For the farms allowing the cows’ turnout in a paddock, pasture or both, the mean scores for the welfare criteria and principles were higher than for the farms with permanent tethering of the cows, except the criteria absence of prolonged hunger and expression of social behaviours. The lowest scores were obtained for the criterion positive emotional state, in both housing systems. With regard to the overall classification, none of the farms were considered excellent. In the not classified category were only farms with all-year-round tethering of the animals and in the enhanced category only farms where the cows had outdoor access. Conclusions The welfare quality of the investigated dairy cows was significantly better in the tie-stall farms which allow exercise for cows (paddocks, pasture or both) than in those which do not. In the light of our results we consider that dairy cattle welfare is not necessarily poor in tie-stall housing systems, its quality depending on the management practices. PMID:23724804
Addiction: Choice or Compulsion?
Henden, Edmund; Melberg, Hans Olav; Røgeberg, Ole Jørgen
2013-01-01
Normative thinking about addiction has traditionally been divided between, on the one hand, a medical model which sees addiction as a disease characterized by compulsive and relapsing drug use over which the addict has little or no control and, on the other, a moral model which sees addiction as a choice characterized by voluntary behavior under the control of the addict. Proponents of the former appeal to evidence showing that regular consumption of drugs causes persistent changes in the brain structures and functions known to be involved in the motivation of behavior. On this evidence, it is often concluded that becoming addicted involves a transition from voluntary, chosen drug use to non-voluntary compulsive drug use. Against this view, proponents of the moral model provide ample evidence that addictive drug use involves voluntary chosen behavior. In this article we argue that although they are right about something, both views are mistaken. We present a third model that neither rules out the view of addictive drug use as compulsive, nor that it involves voluntary chosen behavior. PMID:23966955
Exercise-related hypoglycemia in diabetes mellitus
Younk, Lisa M; Mikeladze, Maia; Tate, Donna; Davis, Stephen N
2011-01-01
Current recommendations are that people with Type 1 and Type 2 diabetes mellitus exercise regularly. However, in cases in which insulin or insulin secretagogues are used to manage diabetes, patients have an increased risk of developing hypoglycemia, which is amplified during and after exercise. Repeated episodes of hypoglycemia blunt autonomic nervous system, neuroendocrine and metabolic defenses (counter-regulatory responses) against subsequent episodes of falling blood glucose levels during exercise. Likewise, antecedent exercise blunts counter-regulatory responses to subsequent hypoglycemia. This can lead to a vicious cycle, by which each episode of either exercise or hypoglycemia further blunts counter-regulatory responses. Although contemporary insulin therapies cannot fully mimic physiologic changes in insulin secretion, people with diabetes have several management options to avoid hypoglycemia during and after exercise, including regularly monitoring blood glucose, reducing basal and/or bolus insulin, and consuming supplemental carbohydrates. PMID:21339838
Exercise training in children and adolescents with cystic fibrosis: theory into practice.
Williams, Craig A; Benden, Christian; Stevens, Daniel; Radtke, Thomas
2010-01-01
Physical activity and exercise training play an important role in the clinical management of patients with cystic fibrosis (CF). Exercise training is more common and recognized as an essential part of rehabilitation programmes and overall CF care. Regular exercise training is associated with improved aerobic and anaerobic capacity, higher pulmonary function, and enhanced airway mucus clearance. Furthermore, patients with higher aerobic fitness have an improved survival. Aerobic and anaerobic training may have different effects, while the combination of both have been reported to be beneficial in CF. However, exercise training remains underutilised and not always incorporated into routine CF management. We provide an update on aerobic and anaerobic responses to exercise and general training recommendations in children and adolescents with CF. We propose that an active lifestyle and exercise training are an efficacious part of regular CF patient management.
Webel, Allison R.; Barkley, Jacob; Longenecker, Chris T.; Mittelsteadt, Alison; Gripshover, Barbara; Salata, Robert A
2014-01-01
People living with HIV (PLWH) are living longer and are at greater risk for chronic comorbidities (e.g., cardiovascular disease, cancer) compared to those not living with HIV. Regular, sustained exercise can prevent and/or mitigate the severity of these comorbidities. Our purpose was to describe patterns of planned exercise implemented in the home setting (i.e., free-living exercise) in PLWH by gender and age. PLWH (n = 102) completed a sociodemographic survey and a 7-day exercise diary documenting daily exercise duration, frequency, and intensity. Women exercised an average of 2.4 (IQR: 0.5, 6.0) hours per week compared to men who exercised 3.5 (IQR: 0.5, 7.5) hours per week (p = 0.18). This relationship was particularly evident during middle adulthood for women versus for men (p = 0.05). PLWH exercised regularly but at less than recommended levels. This is among the first evidence describing free-living exercise patterns of PLWH. PMID:25249267
Free Access to Running Wheels Abolishes Hyperphagia in Human Growth Hormone Transgenic Rats
KOMATSUDA, Mugiko; YAMANOUCHI, Keitaro; MATSUWAKI, Takashi; NISHIHARA, Masugi
2014-01-01
ABSTRACT Obesity is a major health problem, and increased food intake and decreased physical activity are considered as two major factors causing obesity. Previous studies show that voluntary exercise in a running wheel decreases not only body weight but also food intake of rats. We previously produced human growth hormone transgenic (TG) rats, which are characterized by severe hyperphagia and obesity. To gain more insight into the effects on physical activity to food consumption and obesity, we examined whether voluntary running wheel exercise causes inhibition of hyperphagia and alteration of body composition in TG rats. Free access to running wheels completely abolished hyperphagia in TG rats, and this effect persisted for many weeks as far as the running wheel is accessible. Unexpectedly, though the running distances of TG rats were significantly less than those of wild type rats, it was sufficient to normalize their food consumption. This raises the possibility that rearing environment, which enables them to access to a running wheel freely, rather than the amounts of physical exercises is more important for the maintenance of proper food intake. PMID:24717416
Free access to running wheels abolishes hyperphagia in human growth hormone transgenic rats.
Komatsuda, Mugiko; Yamanouchi, Keitaro; Matsuwaki, Takashi; Nishihara, Masugi
2014-07-01
Obesity is a major health problem, and increased food intake and decreased physical activity are considered as two major factors causing obesity. Previous studies show that voluntary exercise in a running wheel decreases not only body weight but also food intake of rats. We previously produced human growth hormone transgenic (TG) rats, which are characterized by severe hyperphagia and obesity. To gain more insight into the effects on physical activity to food consumption and obesity, we examined whether voluntary running wheel exercise causes inhibition of hyperphagia and alteration of body composition in TG rats. Free access to running wheels completely abolished hyperphagia in TG rats, and this effect persisted for many weeks as far as the running wheel is accessible. Unexpectedly, though the running distances of TG rats were significantly less than those of wild type rats, it was sufficient to normalize their food consumption. This raises the possibility that rearing environment, which enables them to access to a running wheel freely, rather than the amounts of physical exercises is more important for the maintenance of proper food intake.
A Mindfulness-Based Health Wellness Program for an Adolescent with Prader-Willi Syndrome
ERIC Educational Resources Information Center
Singh, Nirbhay N.; Lancioni, Giulio E.; Singh, Ashvind N.; Winton, Alan S. W.; Singh, Judy; McAleavey, Kristen M.; Adkins, Angela D.
2008-01-01
Individuals with Prader-Willi syndrome have hyperphagia, a characteristic eating disorder defined by a marked delay in the satiety response when compared to controls. This eating disorder has been particularly difficult to control. The authors taught and evaluated effectiveness of regular exercise alone, regular exercise plus healthy eating, and…
Lundberg Slingsby, M H; Nyberg, M; Egelund, J; Mandrup, C M; Frikke-Schmidt, R; Kirkby, N S; Hellsten, Y
2017-12-01
Essentials It is unknown how regular exercise affects platelet function after menopause. We studied the effect of 3-months of high-intensity exercise in pre- and postmenopausal women. Platelet sensitivity to the inhibitory effect of arterially infused prostacyclin was increased. Reduced basal platelet reactivity was seen in the premenopausal women only. Background The risk of atherothrombotic events increases after the menopause. Regular physical activity has been shown to reduce platelet reactivity in younger women, but it is unknown how regular exercise affects platelet function after the menopause. Objectives To examine the effects of regular aerobic exercise in late premenopausal and recent postmenopausal women by testing basal platelet reactivity and platelet sensitivity to prostacyclin and nitric oxide. Methods Twenty-five sedentary, but healthy, late premenopausal and 24 matched recently postmenopausal women, mean (95% confidence interval) 49.1 (48.2-49.9) and 53.7 (52.5-55.0) years old, participated in an intervention study: 3-month high-intensity supervised aerobic spinning-cycle training (1 h, × 3/week). Basal platelet reactivity was analyzed in platelet-rich plasma from venous blood as agonist-induced % aggregation. In a subgroup of 13 premenopausal and 14 postmenopausal women, platelet reactivity was tested ex vivo after femoral arterial infusion of prostacyclin, acetylcholine, a cyclooxygenase inhibitor, and after acute one-leg knee extensor exercise. Results Basal platelet reactivity (%aggregation) to TRAP-6 (1 μm) was higher in the postmenopausal, 59% (50-68), than the premenopausal women, 45% (35-55). Exercise training reduced basal platelet reactivity to collagen (1 μg mL -1 ) in the premenopausal women only: from 63% (55-71%) to 51% (41-62%). After the training intervention, platelet aggregation was more inhibited by the arterial prostacyclin infusion and the acute exercise in both premenopausal and postmenopausal women. Conclusions These results highlight previously unknown cardioprotective aspects of regular aerobic exercise in premenopausal and postmenopausal women, improving their regulation of platelet reactivity through an increased platelet sensitivity to prostacyclin, which may counterbalance the increased atherothrombotic risk associated with the menopause. © 2017 International Society on Thrombosis and Haemostasis.
Kurban, Sevil; Mehmetoglu, Idris; Yerlikaya, Hümeyra F; Gönen, Sait; Erdem, Sami
2011-01-01
Objectives. Our aim was to determine the effect of chronic regular exercise on ischemia-modified albumin (IMA) levels and oxidative stress in type 2 diabetes mellitus (DM). Design and methods. Sixty patients with type 2 DM were randomly divided into two groups as exercise (17 M, 13 F) and non-exercise (12 M, 18 F) groups, each consisting of 30 patients. The exercise group underwent a 3-month aerobic regular exercise consisting of moderate-intensity power walking. The non-exercise subjects remained sedentary throughout the study period. Serum total antioxidant status (TAS), total oxidant status (TOS), and IMA levels of the groups were determined at baseline and 3 months later. Results. There was no significant change in TOS and IMA levels of exercise group but TAS levels were significantly increased (p < 0.05). Also, postexercise systolic (p < 0.001) and diastolic (p < 0.05) blood pressures of the exercise group were significantly lower than the baseline values. In addition, there was no significant change in TAS and TOS levels of the non-exercise group; however, IMA levels were significantly increased (p < 0.01). Conclusion. We have shown, for the first time, that exercise prevents increase in IMA levels in type 2 DM which might have resulted from increased levels of TAS and reduces the risk of ischemia in these patients. These findings show that chronic exercise is beneficial in the prevention of oxidative stress in patients with type 2 DM as documented by decreased IMA levels.
A study on the relationship between compulsive exercise, depression and anxiety
Weinstein, Aviv; Maayan, Gavriel; Weinstein, Yitzhak
2015-01-01
Background and Aims Exercise and physical activity are beneficial both physically and psychologically but a few individuals use exercise excessively resulting in physical and even psychological damage. There is evidence for bi-directional relationship between exercise with depression and anxiety showing that exercise can reduce anxiety and depression, whereas a lack of exercise is associated with higher levels of anxiety and depression. Methods This study used questionnaires assessing compulsive exercise, anxiety and depression among 20 professional regular exercisers and 51 recreational regular exercisers. Results Results showed that ratings of compulsive exercise were associated with ratings of anxiety and depression among individuals who exercise for professional and recreational purpose. Secondly, individuals who exercise for professional purpose were more depressed than individuals who exercise for recreational purpose, but did not exhibit higher trait anxiety ratings. Thirdly, individuals who exercise for recreational purpose showed an association between ratings of compulsive exercise and depression but not with ratings of trait anxiety. Discussion Individuals who exercise for professional and recreational purpose may use it as a means for alleviating depression and anxiety although this small sample of recreational and professional sportsmen showed clinical levels of anxiety and depression that may require further clinical treatment. PMID:26690627
A study on the relationship between compulsive exercise, depression and anxiety.
Weinstein, Aviv; Maayan, Gavriel; Weinstein, Yitzhak
2015-12-01
Exercise and physical activity are beneficial both physically and psychologically but a few individuals use exercise excessively resulting in physical and even psychological damage. There is evidence for bi-directional relationship between exercise with depression and anxiety showing that exercise can reduce anxiety and depression, whereas a lack of exercise is associated with higher levels of anxiety and depression. This study used questionnaires assessing compulsive exercise, anxiety and depression among 20 professional regular exercisers and 51 recreational regular exercisers. Results showed that ratings of compulsive exercise were associated with ratings of anxiety and depression among individuals who exercise for professional and recreational purpose. Secondly, individuals who exercise for professional purpose were more depressed than individuals who exercise for recreational purpose, but did not exhibit higher trait anxiety ratings. Thirdly, individuals who exercise for recreational purpose showed an association between ratings of compulsive exercise and depression but not with ratings of trait anxiety. Individuals who exercise for professional and recreational purpose may use it as a means for alleviating depression and anxiety although this small sample of recreational and professional sportsmen showed clinical levels of anxiety and depression that may require further clinical treatment.
Bolduc, Virginie; Thorin-Trescases, Nathalie; Thorin, Eric
2013-09-01
Cognitive performances are tightly associated with the maximal aerobic exercise capacity, both of which decline with age. The benefits on mental health of regular exercise, which slows the age-dependent decline in maximal aerobic exercise capacity, have been established for centuries. In addition, the maintenance of an optimal cerebrovascular endothelial function through regular exercise, part of a healthy lifestyle, emerges as one of the key and primary elements of successful brain aging. Physical exercise requires the activation of specific brain areas that trigger a local increase in cerebral blood flow to match neuronal metabolic needs. In this review, we propose three ways by which exercise could maintain the cerebrovascular endothelial function, a premise to a healthy cerebrovascular function and an optimal regulation of cerebral blood flow. First, exercise increases blood flow locally and increases shear stress temporarily, a known stimulus for endothelial cell maintenance of Akt-dependent expression of endothelial nitric oxide synthase, nitric oxide generation, and the expression of antioxidant defenses. Second, the rise in circulating catecholamines during exercise not only facilitates adequate blood and nutrient delivery by stimulating heart function and mobilizing energy supplies but also enhances endothelial repair mechanisms and angiogenesis. Third, in the long term, regular exercise sustains a low resting heart rate that reduces the mechanical stress imposed to the endothelium of cerebral arteries by the cardiac cycle. Any chronic variation from a healthy environment will perturb metabolism and thus hasten endothelial damage, favoring hypoperfusion and neuronal stress.
Martín-Cordero, L; García, J J; Hinchado, M D; Bote, E; Ortega, E
2013-03-01
Regular physical exercise is recognized as a nonpharmacological therapeutic strategy in the treatment of metabolic syndrome, and has been proposed for improving obesity, diabetic status, insulin resistance, and immune response. The aim of the present study was to evaluate the effect of a regular exercise program (treadmill running, 5 days/week for 14 weeks at 35 cm/s for 35 min in the last month) on the release of the pro-inflammatory cytokine interferon gamma (IFNγ) by peritoneal cells (macrophages and lymphocytes) from obese Zucker rats (fa/fa) in response to noradrenaline (NA) and heat shock proteins of 72 kDa (Hsp72), and the possible adaptation due to training for a bout acute exercise (a single session of 25-35 min at 35 cm/s). In healthy (lean Fa/fa) and obese animals, peritoneal cells released greater concentrations of IFNγ in response to Hsp72 and lower concentrations in response to NA. The regular exercise training protocol, evaluated in the obese animals, produced a clear change in the regulation of the release of IFNγ. Peritoneal immune cells from trained animals released more IFNγ in response to NA, but there was a reduction in the release of IFNγ in response to Hsp72. In the obese animals, regular exercise caused a change in the inhibitory effect of NA (which now becomes stimulatory) and the stimulatory effect of Hsp72e (which now becomes inhibitory) in relation to the release of IFNγ. This reflects that Hsp72, induced by the prior release of NA following exercise-induced stress, plays a role in the homeostatic balance of release of IFNγ by peritoneal immune cells in obese animals during exercise.
Tsai, Jen-Chen; Yang, Hung-Yu; Wang, Wei-Hsin; Hsieh, Ming-Hsiung; Chen, Pei-Ti; Kao, Ching-Chiu; Kao, Pai-Feng; Wang, Chia-Hui; Chan, Paul
2004-04-01
Regular aerobic exercise can reduce blood pressure and is recommended as part of the lifestyle modification to reduce high blood pressure and cardiovascular risk. Hypertension itself, or/and pharmacological treatment for hypertension is associated with adverse effects on some aspects of quality of life. This study was performed to evaluate the effects of regular endurance exercise training on quality of life and blood pressure. Patients with mild to moderate hypertension (systolic blood pressure 140-180 or diastolic blood pressure 90-110 mm Hg) were randomized to a moderate-intensity aerobic exercise group training for 3 sessions/week over 10 weeks or to a non-exercising control group. Health-related quality of life was assessed with the Short Form 36-item Health Survey (SF-36) at baseline and after 6 and 10 weeks. In the 102 subjects (47 male, mean age 47 years) who completed the study, reductions in blood pressure in the exercise group at 10 weeks (-13.1/-6.3 mm Hg) were significant (P < 0.001) compared to baseline and to the control group (-1.5/+6.0 mm Hg). Unlike the control group, the exercise group showed an increase in exercise capacity from 8.2 +/- 1.6 to 10.8 +/- 2.2 METS (P < 0.01) and showed higher scores on 7 out of 8 subscales (P < 0.05) of the SF-36. Improvement in bodily pain and general health sub-scores correlated with reduction in systolic blood pressure. Regular endurance training improves both blood pressure and quality of life in hypertensive patients and should be encouraged more widely.
... activity into your life. To get the most benefit, you should try to get the recommended amount ... likely even live longer. What are the health benefits of exercise? Regular exercise and physical activity may ...
Bø, Kari; Hilde, Gunvor; Staer-Jensen, Jette; Siafarikas, Franziska; Tennfjord, Merete Kolberg; Engh, Marie Ellstrøm
2015-02-01
It has been suggested that women who are regular exercisers have a tighter pelvic floor and thereby have more difficulty during childbirth than non-exercising women. We investigated whether women exercising before and during pregnancy have a narrower levator hiatus (LH) area than their sedentary counterparts. We also studied whether regular exercise at gestational week 37 influences delivery outcome. Cohort study of 274 nulliparous pregnant women assessed at mid-pregnancy and gestational week 37 by three-dimensional/four-dimensional transperineal ultrasonography of the LH area. Exercisers were defined as those exercising ≥30 min three times per week and non-exercisers as not exercising. Exercise data were collected via electronic questionnaire at mean gestational weeks 21 and 37. Labour and delivery outcomes were collected from the women's electronic medical birth records. Differences between exercisers and non-exercisers were analysed using independent sample t test or χ(2) test. p Value was set to ≤0.05. At gestational week 37, exercisers had a significantly larger LH area than non-exercisers at rest and during PFM contraction (mean difference -1.6 cm(2) (95% CI -3.0 to -0.3), p=0.02 and -1.1 cm(2) (95% CI -2.0 to -0.1), p=0.04, respectively). No significant differences were found between exercisers and non-exercisers at week 37 in any labour or delivery outcomes. The results of the present study do not support the hypothesis that women exercising regularly before or during pregnancy have a narrower LH area or more complicated childbirths than non-exercising women. ClinicalTrials.gov: NCT01045135. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
Exercise: When to Check with Your Doctor First
... check with your doctor before you start to exercise. By Mayo Clinic Staff Regular exercise can help you control your weight, reduce your ... talk to your doctor before starting a new exercise routine. Although moderate physical activity such as brisk ...
Acute and Chronic Exercise in Animal Models.
Thu, Vu Thi; Kim, Hyoung Kyu; Han, Jin
2017-01-01
Numerous animal cardiac exercise models using animal subjects have been established to uncover the cardiovascular physiological mechanism of exercise or to determine the effects of exercise on cardiovascular health and disease. In most cases, animal-based cardiovascular exercise modalities include treadmill running, swimming, and voluntary wheel running with a series of intensities, times, and durations. Those used animals include small rodents (e.g., mice and rats) and large animals (e.g., rabbits, dogs, goats, sheep, pigs, and horses). Depending on the research goal, each experimental protocol should also describe whether its respective exercise treatment can produce the anticipated acute or chronic cardiovascular adaptive response. In this chapter, we will briefly describe the most common kinds of animal models of acute and chronic cardiovascular exercises that are currently being conducted and are likely to be chosen in the near future. Strengths and weakness of animal-based cardiac exercise modalities are also discussed.
USDA-ARS?s Scientific Manuscript database
The Training Interventions and Genetics of Exercise Response (TIGER) study is an exercise program designed to introduce sedentary college students to regular physical activity and to identify genetic factors that influence response to exercise. A multiracial/ethnic cohort (N = 1,567; 39% male), age ...
Nolte, Heinrich W; Noakes, Timothy D; van Vuuren, Bernard
2011-11-01
The extent to which humans need to replace fluid losses during exercise remains contentious despite years of focused research. The primary objective was to evaluate ad libitum drinking on hydration status to determine whether body mass loss can be used as an accurate surrogate for changes in total body water (TBW) during exercise. Data were collected during a 14.6-km route march (wet bulb globe temperature of 14.1°C ). 18 subjects with an average age of 26 ± 2.5 (SD) years participated. Their mean ad libitum total fluid intake was 2.1 ± 1.4 litres during the exercise. Predicted sweat rate was 1.289 ± 0.530 l/h. There were no significant changes (p>0.05) in TBW, urine specific gravity or urine osmolality despite an average body mass loss (p<0.05) of 1.3 ± 0.45 kg during the march. Core temperature rose as a function of marching speed and was unrelated to the % change in body mass. This suggests that changes in mass do not accurately predict changes in TBW (r=-0.16) because either the body mass loss during exercise includes losses other than water or there is an endogenous body water source that is released during exercise not requiring replacement during exercise, or both. Ad libitum water replacement between 65% and 70% of sweat losses maintained safe levels of hydration during the experiment. The finding that TBW was protected by ad libitum drinking despite approximately 2% body mass loss suggests that the concept of 'voluntary dehydration' may require revision.
Carmont, Michael R; Highland, Adrian M; Blundell, Christopher M; Davies, Mark B
2009-11-01
Ruptures of the Achilles tendon are common however simultaneous ruptures occur less frequently. Eccentric loading exercise programmes have been used to successfully treat Achilles tendinopathy. We report a case of simultaneous bilateral Achilles tendon rupture in a patient predisposed to rupture due to longstanding raised serum lipoprotein and recently introduced therapeutic statin medication. The patient was also a keen rock climber and had regularly undertaken loading exercise. This case illustrates that the therapeutic effect of mixed loading exercises for the Achilles tendon may not be adequate to overcome the predisposition to rupture caused by hyperlipidaemia and statin medication.
The Health Benefits of Exercise (Part 1 of 2).
ERIC Educational Resources Information Center
Physician and Sportsmedicine, 1987
1987-01-01
A panel of eight experts discuss the cardiovascular, lipoprotein, weight control, and psychological benefits of exercise on health. The challenge of motivating people to exercise regularly is explored. (Author/MT)
Exercise and Depression: Swapping Sweat for Serenity?
ERIC Educational Resources Information Center
Monahan, Terry
1986-01-01
Individuals who engage in regular exercise of varying intensity report significant reduction in anxiety and depression. While most evidence is anecdotal, research has provided support for exercise in depression therapy. (Author/MT)
38 CFR 21.4001 - Delegations of authority.
Code of Federal Regulations, 2010 CFR
2010-07-01
... (CONTINUED) VOCATIONAL REHABILITATION AND EDUCATION Administration of Educational Assistance Programs... exercise the functions required of the Secretary for: (1) Waiver of penalties for conflicting interests as... Benefits is delegated responsibility for obtaining evidence of voluntary compliance for vocational...
77 FR 2017 - Safety Zone; Ice Rescue Exercise; Green Bay, Dyckesville, WI
Federal Register 2010, 2011, 2012, 2013, 2014
2012-01-13
.... Discussion of Rule With the aforementioned hazards in mind, the Captain of the Port Sector Lake Michigan has... are developed or adopted by voluntary consensus standards bodies. This rule does not use technical...
Intermittent-sprint performance and muscle glycogen after 30 h of sleep deprivation.
Skein, Melissa; Duffield, Rob; Edge, Johann; Short, Michael J; Mündel, Toby
2011-07-01
The aim of this study was to determine the effects of 30 h of sleep deprivation on consecutive-day intermittent-sprint performance and muscle glycogen content. Ten male, team-sport athletes performed a single-day "baseline" session and two consecutive-day experimental trials separated either by a normal night's sleep (CONT1 and CONT2) or no sleep (SDEP1 and SDEP2). Each session included a 30-min graded exercise run and 50-min intermittent-sprint exercise protocol, including a 15-m maximal sprint every minute and self-paced exercise bouts of varying intensities. Muscle biopsies were extracted before and after exercise during the baseline session and before exercise on day 2 during experimental trials. Voluntary force and activation of the right quadriceps, nude mass, HR, core temperature, capillary blood lactate and glucose, RPE, and a modified POMS were recorded before, after, and during the exercise protocols. Mean sprint times were slower on SDEP2 (2.78±0.17 s) compared with SDEP1 (2.70±0.16 s) and CONT2 (2.74±0.15 s, P<0.05). Distance covered during self-paced exercise was reduced during SDEP2 during the initial 10 min compared with SDEP1 and during the final 10 min compared with CONT2 (P<0.05). Muscle glycogen concentration was lower before exercise on SDEP2 (209±60 mmol·kg dry weight) compared with CONT2 (274±54 mmol·kg dry weight, P=0.05). Voluntary force and activation were reduced on day 2 of both conditions; however, both were lower in SDEP2 compared with CONT2 (P<0.05). Sleep loss did not affect RPE but negatively affected POMS ratings (P<0.05). Sleep loss and associated reductions in muscle glycogen and perceptual stress reduced sprint performance and slowed pacing strategies during intermittent-sprint exercise for male team-sport athletes.
Effects of voluntary running exercise on bone histology in type 2 diabetic rats.
Takamine, Yuri; Ichinoseki-Sekine, Noriko; Tsuzuki, Takamasa; Yoshihara, Toshinori; Naito, Hisashi
2018-01-01
The incidence of obesity in children and adolescents, which may lead to type 2 diabetes, is increasing. Exercise is recommended to prevent and improve diabetes. However, little is known about the bone marrow environment at the onset of diabetes in the young, and it is unclear whether exercise training is useful for maintaining bone homeostasis, such as mechanical and histological properties. Thus, this study clarified the histological properties of bone and whether exercise contributes to maintaining bone homeostasis at the onset of type 2 diabetes in rats. Four-week-old male Otsuka Long-Evans Tokushima Fatty (OLETF; n = 21) rats as a diabetic model and Long-Evans Tokushima Otsuka (LETO; n = 18) rats as a control were assigned randomly to four groups: the OLETF sedentary group (O-Sed; n = 11), OLETF exercise group (O-Ex; n = 10), LETO sedentary group (L-Sed; n = 9), and LETO exercise group (L-Ex; n = 9). All rats in the exercise group were allowed free access to a steel running wheel for 20 weeks (5-25 weeks of age). In the glucose tolerance test, blood glucose level was higher in the O-Sed group than that in the L-Sed and L-Ex groups, and was markedly suppressed by the voluntary running exercise of O-Ex rats. The energy to fracture and the two-dimensional bone volume at 25 weeks of age did not differ significantly among the groups, though the maximum breaking force and stiffness were lower in OLETF rats. However, bone marrow fat volume was greater in O-Sed than that in L-Sed and L-Ex rats, and was markedly suppressed by wheel running in the O-Ex rats. Our results indicate that exercise has beneficial effects not only for preventing diabetes but also on normal bone remodeling at an early age.
Singer, Adam J; Thode, Henry C; Peacock, W Frank; Hollander, Judd E; Diercks, Deborah; Birkhahn, Robert; Shapiro, Nathan; Glynn, Ted; Nowack, Richard; Safdar, Basmah; Miller, Chadwick; Lewandrowski, Elizabeth; Nagurney, John
2013-01-01
Regular exercise is thought to be protective against coronary artery disease. As a result, some physicians believe that the likelihood of acute coronary syndrome (ACS) in patients with acute chest pain is reduced in those who exercise regularly. We studied the association between self-reported frequency of exercising and the likelihood of ACS in patients presenting to the Emergency Department (ED) with chest pain. A multi-center prospective, descriptive, cohort study design was used in ED patients to determine whether the risk of ACS was reduced in patients who self-reported regular exercise. There were 1093 patients enrolled. Median (interquartile range) age was 57 (48-67) years; 506 (45.7%) were female. ACS was diagnosed in 248 (22.7%) patients. Patients who did not exercise at least monthly were more likely to be diagnosed with ACS than those who did (129/466 [27.7%] vs. 119/627 [19.0%]; odds ratio 1.63, 95% CI 1.23-2.17). After adjusting for age, gender, body mass index, smoking, and prior history, limited exercise was still associated with ACS (adjusted odds ratio 1.52, 95% CI 1.10-2.10). There was no apparent association between frequency and intensity of exercise and risk of ACS. Although self-reported frequency of exercise was significantly associated with a decrease in ACS in ED patients with chest pain, it should not be used to exclude ACS in symptomatic ED patients. Copyright © 2013 Elsevier Inc. All rights reserved.
Wang, D; Zhai, X; Chen, P; Yang, M; Zhao, J; Dong, J; Liu, H
2014-09-26
Uncoupling protein-2 (UCP2) reduces oxidative stress by facilitating the influx of protons into mitochondrial matrix, thus dissociating mitochondrial oxidation from ATP synthesis. UCP2 is expressed abundantly in brain areas and plays a key role in neuroprotection. Here, we sought to determine if UCP2 deficiency produces cognitive impairment and anxiety in young mice, and to determine if hippocampal UCP2 is essential for the beneficial effects of voluntary exercise. Antisense oligonucleotide (ASO) was used to produce UCP2 knockdown in mice. Our results firstly showed that UCP2-targeted ASO significantly reduced UCP2 mRNA and protein expression in the hippocampus. ASO treatment impaired learning and memory of the mice in Y-maze, T-maze, and object recognition tests (ORT). ASO-treated mice exhibited more anxiously in OPT, light/dark box test, and elevated plus maze (EPM) than the control mice. We also found that wheel running ameliorated cognitive dysfunction and anxiety-like behaviors in ASO-treated mice. Furthermore, voluntary exercise reversed ASO-induced changes in hippocampal levels of serotonin (5-HT), dopamine (DA), and norepinephrine (NE). However, UCP2 protein in the hippocampus was not correlated with cognitive and anxiolytic benefits of exercise. These findings suggest that hippocampal UCP2 is essential for cognitive function and the resistance to anxiety of mice, but not required for the beneficial effects of exercise. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.
Fatigue and muscle-tendon stiffness after stretch-shortening cycle and isometric exercise.
Toumi, Hechmi; Poumarat, Georges; Best, Thomas M; Martin, Alain; Fairclough, John; Benjamin, Mike
2006-10-01
The purpose of the present study was to compare vertical jump performance after 2 different fatigue protocols. In the first protocol, subjects performed consecutive sets of 10 repetitions of stretch-shortening cycle (SSC) contractions. In the second protocol, successive sets of 10 repetitions of isometric contractions were performed for 10 s with the knee at 90 degrees of flexion. The exercises were stopped when the subjects failed to reach 50% of their maximum voluntary isometric contractions. Maximal isometric force and maximal concentric power were assessed by performing supine leg presses, squat jumps, and drop jumps. Surface EMG was used to determine changes in muscle activation before and after fatigue. In both groups, the fatigue exercises reduced voluntary isometric force, maximal concentric power, and drop jump performance. Kinematic data showed a decrease in knee muscle-tendon stiffness accompanied by a lengthened ground contact time. EMG analysis showed that the squat and drop jumps were performed similarly before and after the fatigue exercise for both groups. Although it was expected that the stiffness would decrease more after SSC than after isometric fatigue (as a result of a greater alteration of the reflex sensitivity SSC), our results showed that both protocols had a similar effect on knee muscle stiffness during jumping exercises. Both fatigue protocols induced muscle fatigue, and the decrease in jump performance was linked to a decrease in the strength and stiffness of the knee extensor muscles.
Antonini Philippe, Roberta; Guglielmo, Luiz Guilherme A.
2018-01-01
Purpose The aim of this study was to investigate whether hypnotic suggestions can alter knee extensor neuromuscular function at rest and during exercise. Methods Thirteen healthy volunteers (8 men and 5 women, 27 ± 3 years old) took part in this counterbalanced, crossover study including two experimental (hypnosis and control) sessions. Knee extensor neuromuscular function was tested before and after hypnosis suggestion by using a combination of voluntary contraction, transcutaneous femoral nerve electrical stimulation and transcranial magnetic stimulation (TMS). A fatiguing exercise (sustained submaximal contraction at 20% maximal voluntary contraction (MVC) force) was also performed to evaluate the potential influence of hypnosis on the extent and origin of neuromuscular adjustments. Results Hypnosis did not (p>0.05) alter MVC force or knee extensor neural properties. Corticospinal excitability, assessed with the amplitude of knee extensor motor evoked potentials, was also unchanged (p>0.05), as was the level of intracortical inhibition assessed with paired pulse TMS (short-interval intracortical inhibition, SICI). Time to task failure (~300 s) was not different (p>0.05) between the two sessions; accordingly, hypnosis did not influence neuromuscular adjustments measured during exercise and at task failure (p>0.05). Conclusion Hypnotic suggestions did not alter neuromuscular properties of the knee extensor muscles under resting condition or during/after exercise, suggesting that hypnosis-induced improvement in exercise performance and enhanced corticospinal excitability might be limited to highly susceptible participants. PMID:29684047
Chorna, Nataliya E.; Santos-Soto, Iván J.; Carballeira, Nestor M.; Morales, Joan L.; de la Nuez, Janneliz; Cátala-Valentin, Alma; Chornyy, Anatoliy P.; Vázquez-Montes, Adrinel; De Ortiz, Sandra Peña
2013-01-01
Voluntary running is a robust inducer of adult hippocampal neurogenesis. Given that fatty acid synthase (FASN), the key enzyme for de novo fatty acid biosynthesis, is critically involved in proliferation of embryonic and adult neural stem cells, we hypothesized that FASN could mediate both exercise-induced cell proliferation in the subgranular zone (SGZ) of the dentate gyrus (DG) and enhancement of spatial learning and memory. In 20 week-old male mice, voluntary running-induced hippocampal-specific upregulation of FASN was accompanied also by hippocampal-specific accumulation of palmitate and stearate saturated fatty acids. In experiments addressing the functional role of FASN in our experimental model, chronic intracerebroventricular (i.c.v.) microinfusions of C75, an irreversible FASN inhibitor, and significantly impaired exercise-mediated improvements in spatial learning and memory in the Barnes maze. Unlike the vehicle-injected mice, the C75 group adopted a non-spatial serial escape strategy and displayed delayed escape latencies during acquisition and memory tests. Furthermore, pharmacologic blockade of FASN function with C75 resulted in a significant reduction, compared to vehicle treated controls, of the number of proliferative cells in the DG of running mice as measured by immunoreactive to Ki-67 in the SGZ. Taken together, our data suggest that FASN plays an important role in exercise-mediated cognitive enhancement, which might be associated to its role in modulating exercise-induced stimulation of neurogenesis. PMID:24223732
Oxidation and metabolic effects of fructose or glucose ingested before exercise.
Décombaz, J; Sartori, D; Arnaud, M J; Thélin, A L; Schürch, P; Howald, H
1985-10-01
The aim of this study was to compare the effects of fructose (F) and glucose (G) intake before exercise on oxidation of the ingested substrate, glycogen utilization, work output, and metabolic changes. Ten trained subjects ingested F or G (1 g/kg), both of which were naturally enriched in 13C. After 1 h of rest, they exercised on an ergometer at 61% of their maximal oxygen uptake (VO2 max) for 45 min, which was immediately followed by 15 min at their maximal voluntary output. During the resting hour, blood insulin and glucose were lower (p less than 0.05) and respiratory quotient and blood lactate higher (p less than 0.01) after F. During exercise, the differences disappeared, apart from a transient but moderate (4.3 mmol/l) hypoglycemia after G compared to F. No difference between F and G was observed for uric acid, glycerol, FFA, and glucagon. Glycogen decrements in the vastus lateralis muscle were 67 +/- 9 (F) and 97 +/- 15 (G) mmol/kg, values not significantly different from each other (P greater than 0.05). The maximal voluntary work produced during the last 15 min did not differ between treatments. During the 2 h after sugar ingestion, 30 +/- 3 g of F and 26 +/- 3 g of G were oxidized to 13CO2. These findings indicate that fructose ingested before exercise was utilized at least as well as glucose, allowed a more stable glycemia, and did not modify performance.
Brief submaximal isometric exercise improves cold pressor pain tolerance.
Foxen-Craft, Emily; Dahlquist, Lynnda M
2017-10-01
Exercise-induced hypoalgesia (EIH), or the inhibition of pain following physical exercise, has been demonstrated in adults, but its mechanisms have remained unclear due to variations in methodology. This study aimed to address methodological imitations of past studies and contribute to the literature demonstrating the generalizability of EIH to brief submaximal isometric exercise and cold pressor pain. Young adults (n = 134) completed a baseline cold pressor trial, maximal voluntary contraction (hand grip strength) assessment, 10-min rest, and either a 2-min submaximal isometric handgrip exercise or a sham exercise in which no force was exerted, followed by a cold pressor posttest. Results indicated that cold pressor pain tolerance significantly increased during the exercise condition, but not during the sham exercise condition. Exercise did not affect pain intensity and marginally affected pain unpleasantness ratings. These findings suggest that submaximal isometric exercise can improve cold pressor pain tolerance but may have an inconsistent analgesic effect on ratings of cold pressor pain.
Exercise, an Active Lifestyle, and Obesity. Making the Exercise Prescription Work.
ERIC Educational Resources Information Center
Andersen, Ross E.
1999-01-01
An active lifestyle is important in helping overweight people both lose and manage their weight. Exercise has many health benefits beyond weight control. The traditional exercise prescription of regular bouts of continuous vigorous exercise may need modification to increase rates of adoption and compliance, with people needing encouragement to…
Effects of Exercise on Bone Mineral Content in Postmenopausal Women.
ERIC Educational Resources Information Center
Rikli, Roberta E.; McManis, Beth G.
1990-01-01
Study tested the effect of exercise programs on bone mineral content (BMC) and BMC/bone width in 31 postmenopausal women. Subjects were placed in groups with aerobic exercise, aerobics plus upper-body weight training, or no exercise. Results indicate that regular exercise programs positively affect bone mineral maintenance in postmenopausal women.…
O'Connell, Megan E; Dal Bello-Haas, Vanina; Crossley, Margaret; Morgan, Debra G
2015-01-01
Regular physical activity and exercise (PA&E) reduces cognitive aging, may delay dementia onset, and for persons with dementia, may slow progression and improve quality of life. Memory clinic patients and caregivers described their PA&E and completed the Older Persons' Attitudes Toward Physical Activity and Exercise Questionnaire (OPAPAEQ). Caregivers and patients differed in their PA&E attitudes: patients were less likely to believe in the importance of PA&E for health promotion. PA&E attitudes were explored as predictors of self-reported exercise habits. Belief in the importance of high intensity exercise for health maintenance was the only variable that significantly predicted engagement in regular PA&E. Moreover, caregivers' attitudes toward high intensity exercise predicted memory patients' participation in PA&E. These findings may aid in development of exercise interventions for people with memory problems, and suggest that modification of specific attitudes toward exercise is an important component to ensure maximum participation and engagement in PA&E.
Fediuc, Sergiu; Campbell, Jonathan E; Riddell, Michael C
2006-06-01
Adaptations of the hypothalamic-pituitary-adrenal (HPA) axis to voluntary exercise in rodents are not clear, because most investigations use forced-exercise protocols, which are associated with psychological stress. In the present study, we examined the effects of voluntary wheel running on the circadian corticosterone (Cort) rhythm as well as HPA axis responsiveness to, and recovery from, restraint stress. Male Sprague-Dawley rats were divided into exercise (E) and sedentary (S) groups, with E rats having 24-h access to running wheels for 5 wk. Circadian plasma Cort levels were measured at the end of each week, except for week 5 when rats were exposed to 20 min of restraint stress, followed by 95 min of recovery. Measurements of glucocorticoid receptor content in the hippocampus and anterior pituitary were performed using Western blotting at the termination of the restraint protocol. In week 1, circadian Cort levels were twofold higher in E compared with S animals, but the levels progressively decreased in the E group throughout the training protocol to reach similar values observed in S by week 4. During restraint stress and recovery, Cort values were similar between E and S, as was glucocorticoid receptor content in the hippocampus and pituitary gland after death. Compared with E, S animals had higher plasma ACTH levels during restraint. Taken together, these data indicate that 5 wk of wheel running are associated with normal circadian Cort activity and normal negative-feedback inhibition of the HPA axis, as well as with increased adrenal sensitivity to ACTH after restraint stress.
Yano, Michiko; Minegishi, Yoshihiko; Sugita, Satoshi; Ota, Noriyasu
2017-10-15
Age-related loss of skeletal muscle mass and function attenuates physical performance, and maintaining fine muscle innervation is known to play an important role in its prevention. We had previously shown that consumption of milk fat globule membrane (MFGM) with habitual exercise improves the muscle mass and motor function in humans and mice. Improvement of neuromuscular junction (NMJ) was suggested as one of the mechanisms underlying these effects. In this study, we evaluated the effect of MFGM intake combined with voluntary running (MFGM-VR) on morphological changes of NMJ and motor function in aging mice. Seven months following the intervention, the MFGM-VR group showed a significantly improved motor coordination in the rotarod test and muscle force in the grip strength test compared with the control group at 13 and 14months of age, respectively. In 14-month old control mice, the extensor digitorum longus muscle showed increased abnormal NMJs, such as fragmentation and denervation, compared with 6-month old young mice. However, such age-related deteriorations of NMJs were significantly suppressed in the MFGM-VR group. Increase in the expression of NMJ formation-related genes, such as agrin and LDL Receptor Related Protein 4 (LRP4), might contribute to this beneficial effect. Rotarod performance and grip strength showed significant negative correlation with the status of denervation and fragmentation of NMJs. These results suggest that MFGM intake with voluntary running exercise effectively suppresses age-related morphological deterioration of NMJ, thus contributing to improvement of motor function. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Steenstrup, B; Giralte, F; Bakker, E; Grise, P
2014-12-01
The aim of this work was to evaluate the effect of postural awareness by using the Wii Fit Plus© on the quality of the baseline (automatic) activity of the pelvic floor muscles (PFM) measured by intravaginal surface electromyography (sEMG). Four healthy continent female subjects, all able to perform a voluntary contraction, undertook 2 sets of 3 various exercises offered by the software Wii Fit Plus© using the Wii balance board© (WBB): one set without any visual control and the second set with postural control and sEMG visual feedback. Simultaneously, we recorded the sEMG activity of the PFM. Mean baseline activity of PFM in standing position at start was 2.87 mV, at submaximal voluntary contraction the sEMG activity raised at a mean of 14.43 mV (7.87-21.89). In the first set of exercises on the WBB without any visual feedback, the automatic activity of the PFM increased from 2.87 mV to 8.75 mV (7.96-9.59). In the second set, with visual postural and sEMG control, mean baseline sEMG activity even raised at 11.39 mV (10.17-11.58). Among women able of a voluntary contraction of PFM, visualisation of posture with the help of the WBB and of sEMG activity of the PFM during static and dynamic Wii Fit Plus© activities, may improve the automatic activation of the PFMs. 4. Copyright © 2014 Elsevier Masson SAS. All rights reserved.
Forced, not voluntary, exercise improves motor function in Parkinson's disease patients.
Ridgel, Angela L; Vitek, Jerrold L; Alberts, Jay L
2009-01-01
Animal studies indicate forced exercise (FE) improves overall motor function in Parkinsonian rodents. Global improvements in motor function following voluntary exercise (VE) are not widely reported in human Parkinson's disease (PD) patients. The aim of this study was to compare the effects of VE and FE on PD symptoms, motor function, and bimanual dexterity. Ten patients with mild to moderate PD were randomly assigned to complete 8 weeks of FE or VE. With the assistance of a trainer, patients in the FE group pedaled at a rate 30% greater than their preferred voluntary rate, whereas patients in the VE group pedaled at their preferred rate. Aerobic intensity for both groups was identical, 60% to 80% of their individualized training heart rate. Aerobic fitness improved for both groups. Following FE, Unified Parkinson's Disease Rating Scale (UPDRS) motor scores improved 35%, whereas patients completing VE did not exhibit any improvement. The control and coordination of grasping forces during the performance of a functional bimanual dexterity task improved significantly for patients in the FE group, whereas no changes in motor performance were observed following VE. Improvements in clinical measures of rigidity and bradykinesia and biomechanical measures of bimanual dexterity were maintained 4 weeks after FE cessation. Aerobic fitness can be improved in PD patients following both VE and FE interventions. However, only FE results in significant improvements in motor function and bimanual dexterity. Biomechanical data indicate that FE leads to a shift in motor control strategy, from feedback to a greater reliance on feedforward processes, which suggests FE may be altering central motor control processes.
Motivating Visually Impaired and Deaf-Blind People to Perform Regular Physical Exercises
ERIC Educational Resources Information Center
Surakka, Airi; Kivela, Tero
2008-01-01
The aim of this study was to examine the different ways in which visually impaired and deaf-blind people can be motivated to perform regular physical exercises through the use of a physical training programme. The programme was designed for visually impaired and deaf-blind people with the aim of reducing their most common physical problems: those…
ERIC Educational Resources Information Center
Suija, Kadri; Pechter, Ulle; Kalda, Ruth; Tahepold, Heli; Maaroos, Jaak; Maaroos, Heidi-Ingrid
2009-01-01
The objectives of this study were to find out how motivated depressed patients are to exercise regularly, to measure the physical activity of depressed patients and to find out how regular Nordic Walking affects the mood and physical fitness of depressed patients. A cross-sectional study was carried out. Three years after the Prediction of Primary…
Chung, Jun Sub; Park, Seol; Kim, JiYoung; Park, Ji Won
2015-07-01
[Purpose] The purpose of this study was to assess the effects of flexi-bar exercises and non-flexi-bar exercises on trunk muscle activity in different postures in healthy adults. [Subjects] Twenty healthy right-hand dominant adults (10 males and 10 females) were selected for this study. None of the participants had experienced any orthopedic problems in the spine or in the upper and lower extremities in the previous six months. [Methods] The subjects were instructed to adopt three exercise postures: posture 1, quadruped; posture 2, side-bridge; and posture 3, standing. Surface electromyography of selected trunk muscles was normalized to maximum voluntary isometric contraction. [Results] The external oblique, internal oblique, and erector spinae muscle activity showed significant differences between flexi-bar exercises and non-flexi-bar exercises. [Conclusion] The results of this study suggest that flexi-bar exercises are useful in the activation of trunk muscles.
A survey of sexual risk behavior for HIV infection in Nakhonsawan, Thailand, 2001.
Lertpiriyasuwat, Cheewanan; Plipat, Tanarak; Jenkins, Richard A
2003-09-05
To determine the prevalence of sexual risk behaviors for HIV in the general population aged 15-44 years in Nakhonsawan province, Thailand. Cross-sectional survey. A two-stage cluster sampling technique was used to select 630 participants aged 15-44 years from the general population. Tape-recorders with earphones provided questions to the respondents, who used self-administered answer sheets to record their responses. Most participants were rural, married and educated at the primary school level. The mean age was 31.5 years. Seventy-eight percent of all participants had ever had sexual intercourse. The prevalence of premarital sex among married participants was 41%. In the previous year, 20% of the participants had had sex with commercial or non-regular partners. Sex with non-regular partners occurred more frequently than sex with commercial partners. Sixty-one percent had used condoms the last time they had sex with a commercial partner and 46% had used condoms the last time they had sex with non-regular partners. Consistent condom use with non-regular partners was lower than with commercial partners. Voluntary HIV testing during the previous year was reported by 24% of the participants who had had sex with commercial or non-regular partners. The results suggest that Nakhonsawan needs to strengthen implementation of the 100% condom programme, address condom use with non-commercial partners, promote awareness of personal risk rather than identification of risk groups and increase voluntary HIV testing among people who engage in risky behaviors.
Rosa-Caldwell, Megan E; Brown, Jacob L; Lee, David E; Blackwell, Thomas A; Turner, Kyle W; Brown, Lemuel A; Perry, Richard A; Haynie, Wesley S; Washington, Tyrone A; Greene, Nicholas P
2017-09-01
What is the central question of this study? What are the individual and combined effects of muscle-specific peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α) overexpression and physical activity during high-fat feeding on glucose and exercise tolerance? What is the main finding and its importance? Our main finding is that muscle-specific PGC-1α overexpression provides no protection against lipid-overload pathologies nor does it enhance exercise adaptations. Instead, physical activity, regardless of PGC-1α content, protects against high-fat diet-induced detriments. Activation of muscle autophagy was correlated with exercise protection, suggesting that autophagy might be a mediating factor for exercise-induced protection from lipid overload. The prevalence of glucose intolerance is alarmingly high. Efforts to promote mitochondrial biogenesis through peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α) to mitigate glucose intolerance have been controversial. However, physical activity remains a primary means to alleviate the condition. The aim of this study was to determine the combined effects of muscle-specific overexpression of PGC-1α and physical activity on glucose handling during diet-induced obesity. Wild-type (WT, ∼20) and PGC-1α muscle transgenic (MCK-PGC-1α, ∼20) mice were given a Western diet (WD) at 8 weeks age and allowed to consume food ab libitum throughout the study. At 12 weeks of age, all animals were divided into sedentary (SED) or voluntary wheel running (VWR) interventions. At 7, 11 and 15 weeks of age, animals underwent glucose tolerance tests (GTT) and graded exercise tests (GXT). At 16 weeks of age, tissues were collected. At 11 weeks, the MCK-PGC-1α animals had 50% greater glucose tolerance integrated area under the curve compared with WT. However, at 15 weeks, SED animals also had greater GTT integrated area under the curve compared with VWR, regardless of genotype; furthermore, SED animals demonstrated reduced exercise capacity compared with earlier time points, which was not seen in VWR animals. Voluntary distance run per day was correlated with GTT in VWR-WT, but not VWR-MCK-PGC-1α mice. Voluntary wheel running and genotype independently resulted in a greater LC3II/LC3I ratio, suggesting enhanced autophagosome formation, which was correlated with exercise-induced improvements in GTT. In conclusion, artificially increasing mitochondrial content does not protect from lipid-induced pathologies nor does it augment exercise adaptations. Physical activity ameliorates the effects of lipid overload-induced glucose intolerance, an effect that appears to be related to enhanced activation of autophagy. © 2017 The Authors. Experimental Physiology © 2017 The Physiological Society.
Neuparth, Maria João; Proença, Jorge Brandão; Santos-Silva, Alice; Coimbra, Susana
2014-02-01
Physical exercise intervention is known to be crucial in the management of type 2 diabetes mellitus (T2DM). We aimed to evaluate, in patients with T2DM, the effect of regular moderate walking exercise on markers of oxidative stress, lipid metabolism, and inflammation. We studied 30 patients with T2DM who walked regularly during the last year and 53 patients with T2DM who did not perform any type of exercise. The patients were evaluated for chemerin, adiponectin, leptin, oxidized low-density lipoprotein, and C-reactive protein (CRP) levels. The active T2DM patients showed significantly lower body mass index, as compared with the inactive patients. The active T2DM patients showed significantly lower levels of chemerin and CRP than those of the inactive T2DM patients (CRP lost significance after adjustment for body mass index). The active patients, compared with the inactive, presented a trend toward higher levels of adiponectin and lower values of oxidized low-density lipoprotein. Leptin differed significantly between sexes, and the active women presented a trend toward lower levels as compared with the inactive women. In the patients with T2DM, the practice of moderate walking in a regular basis was sufficient to reduce chemerin levels, which suggests that practice of regular physical exercise should be encouraged.
Cancer and Exercise: Warburg Hypothesis, Tumour Metabolism and High-Intensity Anaerobic Exercise.
Hofmann, Peter
2018-01-31
There is ample evidence that regular moderate to vigorous aerobic physical activity is related to a reduced risk for various forms of cancer to suggest a causal relationship. Exercise is associated with positive changes in fitness, body composition, and physical functioning as well as in patient-reported outcomes such as fatigue, sleep quality, or health-related quality of life. Emerging evidence indicates that exercise may also be directly linked to the control of tumour biology through direct effects on tumour-intrinsic factors. Beside a multitude of effects of exercise on the human body, one underscored effect of exercise training is to target the specific metabolism of tumour cells, namely the Warburg-type highly glycolytic metabolism. Tumour metabolism as well as the tumour⁻host interaction may be selectively influenced by single bouts as well as regularly applied exercise, dependent on exercise intensity, duration, frequency and mode. High-intensity anaerobic exercise was shown to inhibit glycolysis and some studies in animals showed that effects on tumour growth might be stronger compared with moderate-intensity aerobic exercise. High-intensity exercise was shown to be safe in patients; however, it has to be applied carefully with an individualized prescription of exercise.
Badalzadeh, Reza; Shaghaghi, Mehrnoush; Mohammadi, Mustafa; Dehghan, Gholamreza; Mohammadi, Zeynab
2014-12-01
Regular training is suggested to offer a host of benefits especially on cardiovascular system. In addition, medicinal plants can attenuate oxidative stress-mediated damages induced by stressor insults. In this study, we investigated the concomitant effect of cinnamon extract and long-term aerobic training on cardiac function, biochemical alterations and lipid profile following exhaustive exercise. Male Wistar rats (250-300 g) were divided into five groups depending on receiving regular training, cinnamon bark extraction, none or both of them, and then encountered with an exhausted exercise in last session. An 8-week endurance training program was designed with a progressive increase in training speed and time. Myocardial hemodynamics was monitored using a balloon-tipped catheter inserted into left ventricles. Blood samples were collected for analyzing biochemical markers, lipid profiles and lipid-peroxidation marker, malondealdehyde (MDA). Trained animals showed an enhanced cardiac force and contractility similar to cinnamon-treated rats. Co-application of regular training and cinnamon had additive effect in cardiac hemodynamic (P<0.05). Both regular training and supplementation with cinnamon significantly decreased serum levels of total cholesterol, low-density lipoprotein (LDL), and increased high-density lipoprotein (HDL) level and HDL/LDL ratio as compared to control group (P<0.01). Furthermore, pre-treatment with cinnamon extract and/or regular training significantly reduced MDA level elevation induced by exhausted exercise (P<0.01). Long-term treatment of rats with cinnamon and regular training improved cardiac hemodynamic through an additive effect. The positive effects of cinnamon and regular training on cardiac function were associated with a reduced serum MDA level and an improved blood lipid profile.
Marillier, Mathieu; Arnal, Pierrick J; Le Roux Mallouf, Thibault; Rupp, Thomas; Millet, Guillaume Y; Verges, Samuel
2017-08-01
While acute hypoxic exposure enhances exercise-induced central fatigue and can alter corticospinal excitability and inhibition, the effect of prolonged hypoxic exposure on these parameters remains to be clarified. We hypothesized that 5 days of altitude exposure would (i) normalize exercise-induced supraspinal fatigue during isolated muscle exercise to sea level (SL) values and (ii) increase corticospinal excitability and inhibition. Eleven male subjects performed intermittent isometric elbow flexions at 50% of maximal voluntary contraction to task failure at SL and after 1 (D1) and 5 (D5) days at 4350 m. Transcranial magnetic stimulation and peripheral electrical stimulation were used to assess supraspinal and peripheral fatigues. Pre-frontal cortex and biceps brachii oxygenation was monitored by near-infrared spectroscopy. Exercise duration was not statistically different between SL (1095 ± 562 s), D1 (1132 ± 516 s), and D5 (1440 ± 689 s). No significant differences were found between the three experimental conditions in maximal voluntary activation declines at task failure (SL -16.8 ± 9.5%; D1 -25.5 ± 11.2%; D5 -21.8 ± 7.0%; p > 0.05). Exercise-induced peripheral fatigue was larger at D5 versus SL (100 Hz doublet at task failure: -58.8 ± 16.6 versus -41.8 ± 20.1%; p < 0.05). Corticospinal excitability at 50% maximal voluntary contraction was lower at D5 versus SL (brachioradialis p < 0.05, biceps brachii p = 0.055). Cortical silent periods were shorter at SL versus D1 and D5 (p < 0.05). The present results show similar patterns of supraspinal fatigue development during isometric elbow flexions at SL and after 1 and 5 days at high altitude, despite larger amount of peripheral fatigue at D5, lowered corticospinal excitability and enhanced corticospinal inhibition at altitude.
Muscle blood flow at onset of dynamic exercise in humans.
Rådegran, G; Saltin, B
1998-01-01
To evaluate the temporal relationship between blood flow, blood pressure, and muscle contractions, we continuously measured femoral arterial inflow with ultrasound Doppler at onset of passive exercise and voluntary, one-legged, dynamic knee-extensor exercise in humans. Blood velocity and inflow increased (P < 0.006) with the first relaxation of passive and voluntary exercise, whereas the arterial-venous pressure difference was unaltered [P = not significant (NS)]. During steady-state exercise, and with arterial pressure as a superimposed influence, blood velocity was affected by the muscle pump, peaking (P < 0.001) at approximately 2.5 +/- 0.3 m/s as the relaxation coincided with peak systolic arterial blood pressure; blood velocity decreased (P < 0.001) to 44.2 +/- 8.6 and 28.5 +/- 5.5% of peak velocity at the second dicrotic and diastolic blood pressure notches, respectively. Mechanical hindrance occurred (P < 0.001) during the contraction phase at blood pressures less than or equal to that at the second dicrotic notch. The increase in blood flow (Q) was characterized by a one-component (approximately 15% of peak power output), two-component (approximately 40-70% of peak power output), or three-component exponential model (> or = 75% of peak power output), where Q(t) = Qpassive + delta Q1.[1 - e-(t - TD1/tau 1)]+ delta Q2.[1 - e-(t - TD2/tau 2)]+ delta Q3.[1 - e-(t - TD3/tau 3)]; Qpassive, the blood flow during passive leg movement, equals 1.17 +/- 0.11 l/min; TD is the onset latency; tau is the time constant; delta Q is the magnitude of blood flow rise; and subscripts 1-3 refer to the first, second, and third components of the exponential model, respectively. The time to reach 50% of the difference between passive and voluntary asymptotic blood flow was approximately 2.2-8.9 s. The blood flow leveled off after approximately 10-150 s, related to the power outputs. It is concluded that the elevation in blood flow with the first duty cycle(s) is due to muscle mechanical factors, but vasodilators initiate a more potent amplification within the second to fourth contraction.
A Practitioner's Guide to Exercise Motivation.
ERIC Educational Resources Information Center
Kimiecik, Jay C.; And Others
1991-01-01
Three articles help practitioners better understand exercise behavior motivation, providing guidelines and techniques for motivating children, adults, and older adults to adopt physically active lifestyles. The articles offer pertinent exercise motivation concepts and show how the concepts can be used to help people of all ages exercise regularly.…
Examining Exercise Addiction: A Depth Interview Approach.
ERIC Educational Resources Information Center
Sachs, Michael L.; Pargman, David
Exercise addiction may be defined as psychological and/or physiological dependence upon a regular regimen of physical activity. Additionally, exercise addiction is characterized by recognizable withdrawal symptoms when the need to exercise remains unfulfilled after 24 to 36 hours. These withdrawal symptoms may encompass both psychological and…
How Will Astronauts Stay Fit during Long Spaceflights?
ERIC Educational Resources Information Center
Pine, Devera
1989-01-01
Astronauts on lengthy spaceflights must exercise regularly to forestall muscle atrophy and bone loss, but exercise presents unique problems in a weightless environment. All exercise equipment must have a harness or seat belt. Soviet and NASA space exercise plans and experimental ideas are discussed. (Author/SM)
Effect of Yoga Practice on Levels of Inflammatory Markers After Moderate and Strenuous Exercise
Doreswamy, Venkatesh; Narasipur, Omkar Subbaramajois; Kunnavil, Radhika; Srinivasamurthy, Nandagudi
2015-01-01
Background and Objectives To evaluate the effect of yoga practice and exercise challenge on Tumour Necrosis Factor alpha (TNF-α), Interleukin-6 (IL-6) levels and lipid profile. Materials and Methods Two hundred and eighteen subjects participated in the study. One hundred and nine volunteers (51 males and 58 females) in the age group of 20 to 60 years, who practiced yoga regularly for over five years for a period of one hour daily, performed a bout of moderate exercise and a bout of strenuous exercise as per Standardized Shuttle Walk test protocol. Anthropometrically matched, age matched and gender matched subjects, who did not practice yoga (non-yoga group) were chosen as controls (non-yoga, n=109). The non-yoga group also performed similar exercises. The blood samples of both the groups were collected before and after the exercises. TNF-α and IL-6 was analysed before and after the exercise by Sandwich ELISA (Enzyme Linked Immunosorbent Assay). Results Resting plasma TNF-α concentration was significantly higher in non-yoga group when compared to yoga group (p<0.05). There was an increase in TNF-α levels in both the groups in response to strenuous exercise. There was no gender difference in TNF-α and IL-6 levels before and after exercise in yoga and non-yoga groups. Conclusion Regular practice of yoga lowers basal TNF-α and IL-6 levels. It also reduces the extent of increase of TNF-α and IL-6 to a physical challenge of moderate exercise and strenuous exercise. There is no significant gender difference in the TNF-α and IL-6 levels. Regular practice of yoga can protect the individual against inflammatory diseases by favourably altering pro-inflammatory cytokine levels. PMID:26266115
Kalogeraki, Evgenia; Pielecka-Fortuna, Justyna; Löwel, Siegrid
2017-01-01
In standard cage (SC) raised mice, experience-dependent ocular dominance (OD) plasticity in the primary visual cortex (V1) rapidly declines with age: in postnatal day 25-35 (critical period) mice, 4 days of monocular deprivation (MD) are sufficient to induce OD-shifts towards the open eye; thereafter, 7 days of MD are needed. Beyond postnatal day 110, even 14 days of MD failed to induce OD-plasticity in mouse V1. In contrast, mice raised in a so-called "enriched environment" (EE), exhibit lifelong OD-plasticity. EE-mice have more voluntary physical exercise (running wheels), and experience more social interactions (bigger housing groups) and more cognitive stimulation (regularly changed labyrinths or toys). Whether experience-dependent shifts of V1-activation happen faster in EE-mice and how long the plasticity promoting effect would persist after transferring EE-mice back to SCs has not yet been investigated. To this end, we used intrinsic signal optical imaging to visualize V1-activation i) before and after MD in EE-mice of different age groups (from 1-9 months), and ii) after transferring mice back to SCs after postnatal day 130. Already after 2 days of MD, and thus much faster than in SC-mice, EE-mice of all tested age groups displayed a significant OD-shift towards the open eye. Transfer of EE-mice to SCs immediately abolished OD-plasticity: already after 1 week of SC-housing and MD, OD-shifts could no longer be visualized. In an attempt to rescue abolished OD-plasticity of these mice, we either administered the anti-depressant fluoxetine (in drinking water) or supplied a running wheel in the SCs. OD-plasticity was only rescued for the running wheel- mice. Altogether our results show that raising mice in less deprived environments like large EE-cages strongly accelerates experience-dependent changes in V1-activation compared to the impoverished SC-raising. Furthermore, preventing voluntary physical exercise of EE-mice in adulthood immediately precludes OD-shifts in V1.
Pielecka-Fortuna, Justyna; Löwel, Siegrid
2017-01-01
In standard cage (SC) raised mice, experience-dependent ocular dominance (OD) plasticity in the primary visual cortex (V1) rapidly declines with age: in postnatal day 25–35 (critical period) mice, 4 days of monocular deprivation (MD) are sufficient to induce OD-shifts towards the open eye; thereafter, 7 days of MD are needed. Beyond postnatal day 110, even 14 days of MD failed to induce OD-plasticity in mouse V1. In contrast, mice raised in a so-called “enriched environment” (EE), exhibit lifelong OD-plasticity. EE-mice have more voluntary physical exercise (running wheels), and experience more social interactions (bigger housing groups) and more cognitive stimulation (regularly changed labyrinths or toys). Whether experience-dependent shifts of V1-activation happen faster in EE-mice and how long the plasticity promoting effect would persist after transferring EE-mice back to SCs has not yet been investigated. To this end, we used intrinsic signal optical imaging to visualize V1-activation i) before and after MD in EE-mice of different age groups (from 1–9 months), and ii) after transferring mice back to SCs after postnatal day 130. Already after 2 days of MD, and thus much faster than in SC-mice, EE-mice of all tested age groups displayed a significant OD-shift towards the open eye. Transfer of EE-mice to SCs immediately abolished OD-plasticity: already after 1 week of SC-housing and MD, OD-shifts could no longer be visualized. In an attempt to rescue abolished OD-plasticity of these mice, we either administered the anti-depressant fluoxetine (in drinking water) or supplied a running wheel in the SCs. OD-plasticity was only rescued for the running wheel- mice. Altogether our results show that raising mice in less deprived environments like large EE-cages strongly accelerates experience-dependent changes in V1-activation compared to the impoverished SC-raising. Furthermore, preventing voluntary physical exercise of EE-mice in adulthood immediately precludes OD-shifts in V1. PMID:29073219
Merritt, Jennifer; Rhodes, Justin S.
2014-01-01
Moderate levels of aerobic exercise broadly enhance cognition throughout the lifespan. One hypothesized contributing mechanism is increased adult hippocampal neurogenesis. Recently, we measured the effects of voluntary wheel running on adult hippocampal neurogenesis in 12 different mouse strains, and found increased neurogenesis in all strains, ranging from 2 to 5 fold depending on the strain. The purpose of this study was to determine the extent to which increased neurogenesis from wheel running is associated with enhanced performance on the water maze for 5 of the 12 strains, chosen based on their levels of neurogenesis observed in the previous study (C57BL/6J, 129S1/SvImJ, B6129SF1/J, DBA/2J, and B6D2F1/J). Mice were housed with or without a running wheels for 30 days then tested for learning and memory on the plus water maze, adapted for multiple strains, and rotarod test of motor performance. The first 10 days, animals were injected with BrdU to label dividing cells. After behavioral testing animals were euthanized to measure adult hippocampal neurogenesis using standard methods. Levels of neurogenesis depended on strain but all mice had a similar increase in neurogenesis in response to exercise. All mice acquired the water maze but performance depended on strain. Exercise improved water maze performance in all strains to a similar degree. Rotarod performance depended on strain. Exercise improved rotarod performance only in DBA/2J and B6D2F1/J mice. Taken together, results demonstrate that despite different levels of neurogenesis, memory performance and motor coordination in these mouse strains, all strains have the capacity to increase neurogenesis and improve learning on the water maze through voluntary wheel running. PMID:25435316
Kanamori, Satoru; Takamiya, Tomoko; Inoue, Shigeru; Kai, Yuko; Kawachi, Ichiro; Kondo, Katsunori
2016-01-01
Although exercising with others may have extra health benefits compared to exercising alone, few studies have examined the differences. We sought to examine whether the association of regular exercise to subjective health status differs according to whether people exercise alone and/or with others, adjusting for frequency of exercise. The study was based on the Japan Gerontological Evaluation Study (JAGES) Cohort Study data. Participants were 21,684 subjects aged 65 or older. Multivariable logistic regression models were used to examine the association. The adjusted odds ratios (ORs) for poor self-rated health were significantly lower for people who exercised compared to non-exercisers. In analyses restricted to regular exercisers the ORs for poor health were 0.69 (95% confidence intervals: 0.60–0.79) for individuals exercising alone more often than with others, 0.74 (0.64–0.84) for people who were equally likely to exercise alone as with others, 0.57 (0.43–0.75) for individuals exercising with others more frequently than alone, and 0.79 (0.64–0.97) for individuals only exercising with others compared to individuals only exercising alone. Although exercising alone and exercising with others both seem to have health benefits, increased frequency of exercise with others has important health benefits regardless of the total frequency of exercise. PMID:27974855
Kanamori, Satoru; Takamiya, Tomoko; Inoue, Shigeru; Kai, Yuko; Kawachi, Ichiro; Kondo, Katsunori
2016-12-15
Although exercising with others may have extra health benefits compared to exercising alone, few studies have examined the differences. We sought to examine whether the association of regular exercise to subjective health status differs according to whether people exercise alone and/or with others, adjusting for frequency of exercise. The study was based on the Japan Gerontological Evaluation Study (JAGES) Cohort Study data. Participants were 21,684 subjects aged 65 or older. Multivariable logistic regression models were used to examine the association. The adjusted odds ratios (ORs) for poor self-rated health were significantly lower for people who exercised compared to non-exercisers. In analyses restricted to regular exercisers the ORs for poor health were 0.69 (95% confidence intervals: 0.60-0.79) for individuals exercising alone more often than with others, 0.74 (0.64-0.84) for people who were equally likely to exercise alone as with others, 0.57 (0.43-0.75) for individuals exercising with others more frequently than alone, and 0.79 (0.64-0.97) for individuals only exercising with others compared to individuals only exercising alone. Although exercising alone and exercising with others both seem to have health benefits, increased frequency of exercise with others has important health benefits regardless of the total frequency of exercise.
ERIC Educational Resources Information Center
Sailors, Mary H.; Jackson, Andrew S.; McFarlin, Brian K.; Turpin, Ian; Ellis, Kenneth J.; Foreyt, John P.; Hoelscher, Deanna M.; Bray, Molly S.
2010-01-01
Objective: The Training Interventions and Genetics of Exercise Response (TIGER) study is an exercise program designed to introduce sedentary college students to regular physical activity and to identify genetic factors that influence response to exercise. Participants: A multiracial/ethnic cohort (N = 1,567; 39% male), age 18 to 35 years,…
Insulin Management Strategies for Exercise in Diabetes.
Zaharieva, Dessi P; Riddell, Michael C
2017-10-01
There is no question that regular exercise can be beneficial and lead to improvements in overall cardiovascular health. However, for patients with diabetes, exercise can also lead to challenges in maintaining blood glucose balance, particularly if patients are prescribed insulin or certain oral hypoglycemic agents. Hypoglycemia is the most common adverse event associated with exercise and insulin therapy, and the fear of hypoglycemia is also the greatest barrier to exercise for many patients. With the appropriate insulin dose adjustments and, in some cases, carbohydrate supplementation, blood glucose levels can be better managed during exercise and in recovery. In general, insulin strategies that help facilitate weight loss with regular exercise and recommendations around exercise adjustments to prevent hypoglycemia and hyperglycemia are often not discussed with patients because the recommendations can be complex and may differ from one individual to the next. This is a review of the current published literature on insulin dose adjustments and starting-point strategies for patients with diabetes in preparation for safe exercise. Copyright © 2017 Diabetes Canada. Published by Elsevier Inc. All rights reserved.
Accuracy of Physical Self-Description Among Chronic Exercisers and Non-Exercisers.
Berning, Joseph M; DeBeliso, Mark; Sevene, Trish G; Adams, Kent J; Salmon, Paul; Stamford, Bryant A
2014-11-06
This study addressed the role of chronic exercise to enhance physical self-description as measured by self-estimated percent body fat. Accuracy of physical self-description was determined in normal-weight, regularly exercising and non-exercising males with similar body mass index (BMI)'s and females with similar BMI's (n=42 males and 45 females of which 23 males and 23 females met criteria to be considered chronic exercisers). Statistical analyses were conducted to determine the degree of agreement between self-estimated percent body fat and actual laboratory measurements (hydrostatic weighing). Three statistical techniques were employed: Pearson correlation coefficients, Bland and Altman plots, and regression analysis. Agreement between measured and self-estimated percent body fat was superior for males and females who exercised chronically, compared to non-exercisers. The clinical implications are as follows. Satisfaction with one's body can be influenced by several factors, including self-perceived body composition. Dissatisfaction can contribute to maladaptive and destructive weight management behaviors. The present study suggests that regular exercise provides a basis for more positive weight management behaviors by enhancing the accuracy of self-assessed body composition.
Diet and exercise regimens to improve breast carcinoma prognosis.
Stoll, B A
1996-12-15
Clinical studies agree that obesity worsens the prognosis of breast carcinoma in both pre- and postmenopausal women. There is considerable evidence that free estrogen levels are raised in obese women, especially in those with abdominal (visceral) obesity and hyperinsulinemic insulin resistance. It has been postulated that estrogen may synergize with the concomitants of hyperinsulinemia in stimulating breast carcinoma growth. Reduction of estrogen and insulin levels may slow this growth. A current clinical trial in the U.S. is examining the effect of dietary fat reduction on recurrence and survival rates after primary treatment of early stage breast carcinoma in postmenopausal women. Recent research suggests that a high fiber/fat ratio in the diet and regular physical exercise may help to reduce estrogen and insulin levels. Regular exercise may also help to maintain long term weight loss. A second-generation trial is proposed of a high fiber, low fat diet associated with regular physical exercise in women with early breast carcinoma. Changes in circulating levels of estrogen and insulin will be monitored in relation to timing of tumor recurrence and second primary breast carcinoma rates. Weight and fat distribution will be monitored in relation to measurements of dietary compliance. Breast carcinoma patients wishing to change their lifestyle are likely to benefit from a higher dietary fiber/fat ratio combined with regular physical exercise. If the trial shows an improved prognosis from intervention correlated with changes in biomarkers, a similar trial model could be used to identify specific fiber supplements, micronutrients, and exercise regimens that may improve survival rates in patients with breast carcinoma.
Can Exercise Help Women with PMS?
ERIC Educational Resources Information Center
Cowart, Virginia S.
1989-01-01
Various treatments for premenstrual syndrome (PMS) are described, focusing on the role of exercise. Some physicians prefer to try exercise and others, lifestyle changes before turning to such treatment as psychoactive drugs, vitamin B complex, dopamine agonists, and immunotherapy. Regular exercise has been shown to relieve symptoms of PMS. (SM)
Zdziarski, Laura Ann; Wasser, Joseph G; Vincent, Heather K
2015-01-01
In obese persons, general and specific musculoskeletal pain is common. Emerging evidence suggests that obesity modulates pain via several mechanisms such as mechanical loading, inflammation, and psychological status. Pain in obesity contributes to deterioration of physical ability, health-related quality of life, and functional dependence. We present the accumulating evidence showing the interrelationships of mechanical stress, inflammation, and psychological characteristics on pain. While acute exercise may transiently exacerbate pain symptoms, regular participation in exercise can lower pain severity or prevalence. Aerobic exercise, resistance exercise, or multimodal exercise programs (combination of the two types) can reduce joint pain in young and older obese adults in the range of 14%–71.4% depending on the study design and intervention used. While published attrition rates with regular exercise are high (∼50%), adherence to exercise may be enhanced with modification to exercise including the accumulation of several exercise bouts rather than one long session, reducing joint range of motion, and replacing impact with nonimpact activity. This field would benefit from rigorous comparative efficacy studies of exercise intensity, frequency, and mode on specific and general musculoskeletal pain in young and older obese persons. PMID:25709495
Tucci, Helga T; Ciol, Marcia A; de Araújo, Rodrigo C; de Andrade, Rodrigo; Martins, Jaqueline; McQuade, Kevin J; Oliveira, Anamaria S
2011-07-01
Controlled laboratory study. To assess the activation of 7 shoulder muscles under 2 closed kinetic chain (CKC) tasks for the upper extremity using submaximal isometric effort, thus providing relative quantification of muscular isometric effort for these muscles across the CKC exercises, which may be applied to rehabilitation protocols for individuals with shoulder weakness. CKC exercises favor joint congruence, reduce shear load, and promote joint dynamic stability. Additionally, knowledge about glenohumeral and periscapular muscle activity elicited during CKC exercises may help clinicians to design protocols for shoulder rehabilitation. Using surface electromyography, activation level was measured across 7 shoulder muscles in 20 healthy males, during the performance of a submaximal isometric wall press and bench press. Signals were normalized to the maximal voluntary isometric contraction, and, using paired t tests, data were analyzed between the exercises for each muscle. Compared to the wall press, the bench press elicited higher activity for most muscles, except for the upper trapezius. Levels of activity were usually low but were above 20% maximal voluntary isometric contraction for the serratus anterior on both tasks, and for the long head triceps brachii on the bench press. Both the bench press and wall press, as performed in this study, led to relatively low EMG activation levels for the muscles measured and may be considered for use in the early phases of rehabilitation.
Schreiber, Saskia; Klaus, Susanne; Kanzleiter, Isabel
2017-01-01
Scope We investigated the long-term effects of maternal high-fat consumption and post-weaning exercise on offspring obesity susceptibility and insulin resistance. Methods C57BL/6J dams were fed either a high-fat (HFD, 40% kcal fat) or low-fat (LFD, 10% kcal fat) semi-synthetic diet during pregnancy and lactation. After weaning, male offspring of both maternal diet groups (mLFD; mHFD) received a LFD. At week 7, half of the mice got access to a running wheel (+RW) as voluntary exercise training. To induce obesity, all offspring groups (mLFD +/-RW and mHFD +/-RW) received HFD from week 15 until week 25. Results Compared to mLFD, mHFD offspring were more prone to HFD-induced body fat gain and exhibited an increased liver mass which was not due to increased hepatic triglyceride levels. RW improved the endurance capacity in mLFD, but not in mHFD offspring. Additionally, mHFD offspring +RW exhibited higher plasma insulin levels during glucose tolerance test and an elevated basal pancreatic insulin production compared to mLFD offspring. Conclusion Taken together, maternal HFD reduced offspring responsiveness to the beneficial effects of voluntary exercise training regarding the improvement of endurance capacity, reduction of fat mass gain, and amelioration of HFD-induced insulin resistance. PMID:28235071
Analysis of the Hamstring Muscle Activation During two Injury Prevention Exercises
Monajati, Alireza; Larumbe-Zabala, Eneko; Goss-Sampson, Mark
2017-01-01
Abstract The aim of this study was to perform an electromyographic and kinetic comparison of two commonly used hamstring eccentric strengthening exercises: Nordic Curl and Ball Leg Curl. After determining the maximum isometric voluntary contraction of the knee flexors, ten female athletes performed 3 repetitions of both the Nordic Curl and Ball Leg Curl, while knee angular displacement and electromyografic activity of the biceps femoris and semitendinosus were monitored. No significant differences were found between biceps femoris and semitendinosus activation in both the Nordic Curl and Ball Leg Curl. However, comparisons between exercises revealed higher activation of both the biceps femoris (74.8 ± 20 vs 50.3 ± 25.7%, p = 0.03 d = 0.53) and semitendinosus (78.3 ± 27.5 vs 44.3 ± 26.6%, p = 0.012, d = 0.63) at the closest knee angles in the Nordic Curl vs Ball Leg Curl, respectively. Hamstring muscles activation during the Nordic Curl increased, remained high (>70%) between 60 to 40° of the knee angle and then decreased to 27% of the maximal isometric voluntary contraction at the end of movement. Overall, the biceps femoris and semitendinosus showed similar patterns of activation. In conclusion, even though the hamstring muscle activation at open knee positions was similar between exercises, the Nordic Curl elicited a higher hamstring activity compared to the Ball Leg Curl. PMID:29339983
Søgaard, K; Christensen, H; Fallentin, N; Mizuno, M; Quistorff, B; Sjøgaard, G
1998-10-01
Muscle activity was recorded from the flexor carpi radialis muscle during static and dynamic-concentric wrist flexion in six subjects, who had exhibited large differences in histochemically identified muscle fibre composition. Motor unit recruitment patterns were identified by sampling 310 motor units and counting firing rates in pulses per second (pps). During concentric wrist flexion at 30% of maximal exercise intensity the mean firing rate was 27 (SD 13) pps. This was around twice the value of 12 (SD 5) pps recorded during sustained static contraction at 30% of maximal voluntary contraction, despite a larger absolute force level during the static contraction. A similar pattern of higher firing rates during dynamic exercise was seen when concentric wrist flexion at 60% of maximal exercise intensity [30 (SD 14) pps] was compared with sustained static contraction at 60% of maximal voluntary contraction [19 (SD 8) pps]. The increase in dynamic exercise intensity was accomplished by recruitment of additional motor units rather than by increasing the firing rate as during static contractions. No difference in mean firing rates was found among subjects with different muscle fibre composition, who had previously exhibited marked differences in metabolic response during corresponding dynamic contractions. It was concluded that during submaximal dynamic contractions motor unit firing rate cannot be deduced from observations during static contractions and that muscle fibre composition may play a minor role.
ERIC Educational Resources Information Center
Tekin, Ali; Tekin, Gülcan; Çalisir, Melih
2017-01-01
The aim of this study is to determine the locus of control (LC) and sensation seeking (SS) levels of university female students according to regular exercise participation (REP) and gender (G). This descriptive study was initiated in 2016 and finished in 2017. A total of 623 students, 306 females and 317 males, from different academic departments…
Lee, Sung Soo; Kang, Sunghwun
2015-01-01
[Purpose] The aim of the study was to clarify the effects of regular exercise on lipid profiles and serum adipokines in Korean children. [Subjects and Methods] Subjects were divided into controls (n=10), children who were obese (n=10), and children with type 2 diabetes mellitus (n=10). Maximal oxygen uptake (VO2max), body composition, lipid profiles, glucagon, insulin and adipokines (leptin, resistin, visfatin and retinol binding protein 4) were measured before to and after a 12-week exercise program. [Results] Body weight, body mass index, and percentage body fat were significantly higher in the obese and diabetes groups compared with the control group. Total cholesterol, triglycerides, low-density lipoprotein cholesterol and glycemic control levels were significantly decreased after the exercise program in the obese and diabetes groups, while high-density lipoprotein cholesterol levels were significantly increased. Adipokines were higher in the obese and diabetes groups compared with the control group prior to the exercise program, and were significantly lower following completion. [Conclusion] These results suggest that regular exercise has positive effects on obesity and type 2 diabetes mellitus in Korean children by improving glycemic control and reducing body weight, thereby lowering cardiovascular risk factors and adipokine levels. PMID:26180345
Effect of drink flavor and NaCL on voluntary drinking and hydration in boys exercising in the heat.
Wilk, B; Bar-Or, O
1996-04-01
This study was intended to assess the influence of drink flavor and composition on voluntary drinking and hydration status in children exercising intermittently at 35 +/- 1 degrees C and 45-50% relative humidity. Twelve boys (9-12 yr) performed three 3-h identical sessions (four 20-min cycling bouts at 50% maximal O2 uptake followed by 25-min rest). One of three beverages (chilled to 8-10 degrees C) was assigned to each session in a Latin-square sequence: unflavored water (W), grape-flavored water (FW), and grape-flavored water plus 6% carbohydrate and 18 mmol/l NaCl (CNa). Drinking was ad libitum. Body weight, heart rate, rectal and skin temperatures, and thirst and stomach fullness perceptions were monitored periodically. Total intake was 610, 882, and 1,157 g in W, FW, and CNa, respectively (CNa-W and CNa-FW; P < 0.05). Hypohydration was observed with W (-0.65% body wt) and FW (-0.32% body wt), but drinking CNa resulted in slight overhydration (+0.47% body wt, CNa-W, CNa-FW; P < 0.05). Other physiological and all perceptual variables were insignificantly different among trails. In conclusion, while flavoring of water reduces children's voluntary dehydration, further addition of 6% carbohydrates and 18 mmol/l NaCl prevents it altogether.
Florida's Fit to Achieve Program.
ERIC Educational Resources Information Center
Sander, Allan N.; And Others
1993-01-01
Describes Florida's "Fit to Achieve," a cardiovascular fitness education program for elementary students. Children are taught responsibility for their own cardiovascular fitness through proper exercise, personal exercise habits, and regular aerobic exercise. The program stresses collaborative effort between physical educators and…
Seo, KyoChul
2017-08-01
[Purpose] The purpose of this study was to examine the effect of a dance music jump rope exercise on changes Pulmonary Function and body mass index in female overweight subjects in their 20's. [Subjects and Methods] The subjects were randomly assigned to the dance music jump rope exercise group and the stationary cycle exercise group. All subjects have conducted the exercises three times a week for four weeks. Pulmonary function was evaluated using a spirometer, and body mass index was evaluated using an InBody 3.0. [Results] The findings of this study showed significant improvements in the voluntary capacity and body mass index of the experimental groups. Vital capacity was higher in the music jump rope exercise group than the stationary cycle exercise group, and body mass index was lower in the music jump rope exercise group than the stationary cycle exercise group. [Conclusion] This study showed that the dance music jump rope exercise can be used to improve vital capacity and body mass index.
Wakabayashi, Ichiro; Daimon, Takashi
Hypo-HDL cholesterolemia is a potent cardiovascular risk factor, and HDL cholesterol level is influenced by lifestyles including alcohol drinking, smoking and regular exercise. The aim of this study was to clarify the relationships between hypo-HDL cholesterolemia and cardiovascular risk factors and to determine whether or not these relationships depend on the above-mentioned lifestyles. The subjects were 3456 men and 2510 women (35-60 years of age) showing low HDL cholesterol levels (<40mg/dl for men and <50mg/dl for women) and their age-matched control subjects showing normal HDL cholesterol levels. Each cardiometabolic risk factor was compared between the groups with and without hypo-HDL cholesterolemia. Data for hypo-HDL cholesterolemic subjects not having habits of alcohol drinking, smoking and regular exercise (men, n=333; women, n=1410) and their age-matched control subjects were also analysed. Both in men and in women of overall subjects and subjects without histories of alcohol drinking, smoking and regular exercise, odds ratios of subjects with hypo-HDL cholesterolemia vs. subjects with normo-HDL cholesterolemia for high body mass index, high waist-to-height ratio, high triglycerides, high lipid accumulation product and multiple risk factors (three or more out of obesity, hypertension, dyslipidaemia and diabetes) were significantly higher than the reference level of 1.00. These associations in overall subjects were found when the above habits were adjusted. Hypo-HDL cholesterolemic men and women have adverse cardiovascular profiles, such as obesity, hypertriglyceridemia and multiple risk factors, independently of age, alcohol drinking, smoking and regular exercise. Copyright © 2016 Asia Oceania Association for the Study of Obesity. Published by Elsevier Ltd. All rights reserved.
Go, Tohshin; Mitani, Asako
2009-01-01
Patients with Rett syndrome are known to respond well to music irrespective of their physical and verbal disabilities. Therefore, the relationship between auditory rhythm and their behavior was investigated employing a two-dimensional motion analysis system. Ten female patients aged from three to 17 years were included. When music with a simple regular rhythm started, body rocking appeared automatically in a back and forth direction in all four patients who showed the same rocking motion as their stereotyped movement. Through this body rocking, voluntary movement of the hand increased gradually, and finally became sufficient to beat a tambourine. However, the induction of body rocking by music was not observed in the other six patients who did not show stereotyped body rocking in a back and forth direction. When the music stopped suddenly, voluntary movement of the hand disappeared. When the music changed from a simple regular rhythm to a continuous tone without an auditory rhythm, the periodic movement of both the hand and body prolonged. Auditory rhythm shows a close relationship with body movement and facilitates synchronized body movement. This mechanism was demonstrated to be preserved in some patients with Rett syndrome, and stimulation with music could be utilized for their rehabilitation. PMID:19851517
Go, Tohshin; Mitani, Asako
2009-01-01
Patients with Rett syndrome are known to respond well to music irrespective of their physical and verbal disabilities. Therefore, the relationship between auditory rhythm and their behavior was investigated employing a two-dimensional motion analysis system. Ten female patients aged from three to 17 years were included. When music with a simple regular rhythm started, body rocking appeared automatically in a back and forth direction in all four patients who showed the same rocking motion as their stereotyped movement. Through this body rocking, voluntary movement of the hand increased gradually, and finally became sufficient to beat a tambourine. However, the induction of body rocking by music was not observed in the other six patients who did not show stereotyped body rocking in a back and forth direction. When the music stopped suddenly, voluntary movement of the hand disappeared. When the music changed from a simple regular rhythm to a continuous tone without an auditory rhythm, the periodic movement of both the hand and body prolonged. Auditory rhythm shows a close relationship with body movement and facilitates synchronized body movement. This mechanism was demonstrated to be preserved in some patients with Rett syndrome, and stimulation with music could be utilized for their rehabilitation.
American College of Sports Medicine Position Stand. Exercise and physical activity for older adults.
1998-06-01
ACSM Position Stand on Exercise and Physical Activity for Older Adults. Med. Sci. Sports. Exerc., Vol. 30, No. 6, pp. 992-1008, 1998. By the year 2030, the number of individuals 65 yr and over will reach 70 million in the United States alone; persons 85 yr and older will be the fastest growing segment of the population. As more individuals live longer, it is imperative to determine the extent and mechanisms by which exercise and physical activity can improve health, functional capacity, quality of life, and independence in this population. Aging is a complex process involving many variables (e.g., genetics, lifestyle factors, chronic diseases) that interact with one another, greatly influencing the manner in which we age. Participation in regular physical activity (both aerobic and strength exercises) elicits a number of favorable responses that contribute to healthy aging. Much has been learned recently regarding the adaptability of various biological systems, as well as the ways that regular exercise can influence them. Participation in a regular exercise program is an effective intervention/ modality to reduce/prevent a number of functional declines associated with aging. Further, the trainability of older individuals (including octo- and nonagenarians) is evidenced by their ability to adapt and respond to both endurance and strength training. Endurance training can help maintain and improve various aspects of cardiovascular function (as measured by maximal VO2, cardiac output, and arteriovenous O2 difference), as well as enhance submaximal performance. Importantly, reductions in risk factors associated with disease states (heart disease, diabetes, etc.) improve health status and contribute to an increase in life expectancy. Strength training helps offset the loss in muscle mass and strength typically associated with normal aging. Additional benefits from regular exercise include improved bone health and, thus, reduction in risk for osteoporosis; improved postural stability, thereby reducing the risk of falling and associated injuries and fractures; and increased flexibility and range of motion. While not as abundant, the evidence also suggests that involvement in regular exercise can also provide a number of psychological benefits related to preserved cognitive function, alleviation of depression symptoms and behavior, and an improved concept of personal control and self-efficacy. It is important to note that while participation in physical activity may not always elicit increases in the traditional markers of physiological performance and fitness (e.g., VO2max, mitochondrial oxidative capacity, body composition) in older adults, it does improve health (reduction in disease risk factors) and functional capacity. Thus, the benefits associated with regular exercise and physical activity contribute to a more healthy, independent lifestyle, greatly improving the functional capacity and quality of life in this population.
[Health behaviors by job stress level in large-sized company with male and female workers].
Park, Hyunju; Jung, Hye-Sun
2010-12-01
This study was done to investigate differences in health behaviors by job stress level in male and female workers in a large-sized company. Participants were 576 male and 228 female workers who completed questionnaires. Job stress was measured using the 'Short Form Korean Occupational Stress Scale (SF-KOSS)'. Health behaviors included smoking, alcohol consumption, regular exercise, and diet. Frequency, mean, SD, chi-square test, and multivariate logistic regression using SAS version 9.1 were used to analyze data. Smoking, drinking and regular exercise rates were not different by job stress level in male or female workers. Only regular diet was significantly different by job stress level in male and female workers. From multivariate analysis, the alcohol consumption rates for female workers differed by marital status. Regular exercise rate was significantly related to age for male workers and type of employment for female workers. After adjusting for demographic and work-related characteristics, regular diet significantly differed by shift work for male workers and marital status and shift work for female workers. The findings of the study indicate that nursing interventions should be developed to manage job stress to improve diet habits for male and female workers in large-sized companies.
Exercise Attenuates the Major Hallmarks of Aging
Garatachea, Nuria; Pareja-Galeano, Helios; Santos-Lozano, Alejandro; Fiuza-Luces, Carmen; Morán, María; Emanuele, Enzo; Joyner, Michael J.; Lucia, Alejandro
2015-01-01
Abstract Regular exercise has multi-system anti-aging effects. Here we summarize how exercise impacts the major hallmarks of aging. We propose that, besides searching for novel pharmaceutical targets of the aging process, more research efforts should be devoted to gaining insights into the molecular mediators of the benefits of exercise and to implement effective exercise interventions for elderly people. PMID:25431878
[Exercise addiction: an emergent behavioral disorder].
Márquez, Sara; de la Vega, Ricardo
2015-06-01
Regular physical activity plays a relevant role in health maintenance and disease prevention. However, excess exercise may generate adverse effects both on physical and mental activity. To provide a state-of-the-art overview on exercise addiction, considering its concept, symptoms, diagnosis, epidemiological aspects, etiological factors, and potential interventions. Articles related to the topic were reviewed through Pubmed, Sportdiscus, PsycINFO, Scopus and Web of Science databases, using combinations of the following keywords: "exercise", "addiction" and "dependence". Regular exercise taken into excess may result in adverse health consequences and quality of life impairment. Diagnosis of exercise addiction requires the employment of questionnaires such as the Exercise Dependence Scale (EDS) and the Exercise Addiction Inventory (EAI). These instruments have allowed the estimation of a 3% prevalence among exercise practitioners. Proposed hypotheses to explain the etiology of this disorder include both physiological and psychological mechanisms. Treatment is based on the cognitive-behavioral approach, but effectiveness needs to be evaluated. Although different hypotheses have been proposed to explain exercise dependence, integrative models are still necessary. A clinical validation of diagnostic instruments and a deepening into the relationship with behavioral eating disorders are also required. Copyright AULA MEDICA EDICIONES 2014. Published by AULA MEDICA. All rights reserved.
2010-01-01
Background This study's purpose investigated the impact of different macronutrient distributions and varying caloric intakes along with regular exercise for metabolic and physiological changes related to weight loss. Methods One hundred forty-one sedentary, obese women (38.7 ± 8.0 yrs, 163.3 ± 6.9 cm, 93.2 ± 16.5 kg, 35.0 ± 6.2 kg•m-2, 44.8 ± 4.2% fat) were randomized to either no diet + no exercise control group (CON) a no diet + exercise control (ND), or one of four diet + exercise groups (high-energy diet [HED], very low carbohydrate, high protein diet [VLCHP], low carbohydrate, moderate protein diet [LCMP] and high carbohydrate, low protein [HCLP]) in addition to beginning a 3x•week-1 supervised resistance training program. After 0, 1, 10 and 14 weeks, all participants completed testing sessions which included anthropometric, body composition, energy expenditure, fasting blood samples, aerobic and muscular fitness assessments. Data were analyzed using repeated measures ANOVA with an alpha of 0.05 with LSD post-hoc analysis when appropriate. Results All dieting groups exhibited adequate compliance to their prescribed diet regimen as energy and macronutrient amounts and distributions were close to prescribed amounts. Those groups that followed a diet and exercise program reported significantly greater anthropometric (waist circumference and body mass) and body composition via DXA (fat mass and % fat) changes. Caloric restriction initially reduced energy expenditure, but successfully returned to baseline values after 10 weeks of dieting and exercising. Significant fitness improvements (aerobic capacity and maximal strength) occurred in all exercising groups. No significant changes occurred in lipid panel constituents, but serum insulin and HOMA-IR values decreased in the VLCHP group. Significant reductions in serum leptin occurred in all caloric restriction + exercise groups after 14 weeks, which were unchanged in other non-diet/non-exercise groups. Conclusions Overall and over the entire test period, all diet groups which restricted their caloric intake and exercised experienced similar responses to each other. Regular exercise and modest caloric restriction successfully promoted anthropometric and body composition improvements along with various markers of muscular fitness. Significant increases in relative energy expenditure and reductions in circulating leptin were found in response to all exercise and diet groups. Macronutrient distribution may impact circulating levels of insulin and overall ability to improve strength levels in obese women who follow regular exercise. PMID:21092228
The Relationship between Meditation and/or Exercise and Three Measures of Self-Actualization.
ERIC Educational Resources Information Center
Brown, Lynn L.; Robinson, Sharon E.
1993-01-01
Investigated relationship between regular meditation and/or physical exercise and dimensions of self-actualization (inner-directedness, living in present, lowered anxiety) of 103 graduate counseling students. Students who meditated or who meditated and exercised had significantly greater inner-directedness than did those who only exercised or who…
USDA-ARS?s Scientific Manuscript database
The joint goals of the Training Interventions and Genetics of Exercise Response (TIGER) study are to introduce sedentary college-age individuals to regular exercise and identify genetic factors that influence physiologic response to aerobic exercise training. The purpose of the study was to examine ...
Exercise as a remedy for sarcopenia.
Landi, Francesco; Marzetti, Emanuele; Martone, Anna M; Bernabei, Roberto; Onder, Graziano
2014-01-01
Although prolongation of life is a significant public health aim, at the same time the extended life should involve preservation of the capacity to live independently. Consequently, the identification of cost-effectiveness interventions to prevent frailty is one of the most important public health challenges. In the present review, we present the available evidence regarding the impact of physical exercise on the components of frailty syndrome and, in particular, as a remedy for sarcopenia. Resistance exercise training is more effective in increasing muscle mass and strength, whereas endurance exercises training is superior for maintaining and improving maximum aerobic power. Based on these evidences, recommendations for adult and frail older people should include a balanced program of both endurance and strength exercises, performed on a regular schedule (at least 3 days a week). Regular exercise is the only strategy found to consistently prevent frailty and improve sarcopenia and physical function in older adults. Physical exercises increase aerobic capacity, muscle strength and endurance, by ameliorating aerobic conditioning and/or strength. In older patients, exercise and physical activity produce at least the same beneficial effects observed in younger individuals.
ERIC Educational Resources Information Center
Jessor, Richard; Turbin, Mark S.; Costa, Frances M.
2010-01-01
This article reports a cross-national study of developmental change in health-enhancing behavior--healthy eating and regular exercise--among adolescents in China and the United States. The application of a conceptual framework comprising psychosocial and behavioral protective and risk factors--both proximal and distal and at both the individual…
Campbell, John P; Turner, James E
2018-01-01
Epidemiological evidence indicates that regular physical activity and/or frequent structured exercise reduces the incidence of many chronic diseases in older age, including communicable diseases such as viral and bacterial infections, as well as non-communicable diseases such as cancer and chronic inflammatory disorders. Despite the apparent health benefits achieved by leading an active lifestyle, which imply that regular physical activity and frequent exercise enhance immune competency and regulation, the effect of a single bout of exercise on immune function remains a controversial topic. Indeed, to this day, it is perceived by many that a vigorous bout of exercise can temporarily suppress immune function. In the first part of this review, we deconstruct the key pillars which lay the foundation to this theory-referred to as the "open window" hypothesis-and highlight that: (i) limited reliable evidence exists to support the claim that vigorous exercise heightens risk of opportunistic infections; (ii) purported changes to mucosal immunity, namely salivary IgA levels, after exercise do not signpost a period of immune suppression; and (iii) the dramatic reductions to lymphocyte numbers and function 1-2 h after exercise reflects a transient and time-dependent redistribution of immune cells to peripheral tissues, resulting in a heightened state of immune surveillance and immune regulation, as opposed to immune suppression. In the second part of this review, we provide evidence that frequent exercise enhances-rather than suppresses-immune competency, and highlight key findings from human vaccination studies which show heightened responses to bacterial and viral antigens following bouts of exercise. Finally, in the third part of this review, we highlight that regular physical activity and frequent exercise might limit or delay aging of the immune system, providing further evidence that exercise is beneficial for immunological health. In summary, the over-arching aim of this review is to rebalance opinion over the perceived relationships between exercise and immune function. We emphasize that it is a misconception to label any form of acute exercise as immunosuppressive, and, instead, exercise most likely improves immune competency across the lifespan.
Exercise and Health-Related Risks of Physical Deconditioning After Spinal Cord Injury
McMillan, David W.; Nash, Mark S.
2017-01-01
A sedentary lifestyle occurring soon after spinal cord injury (SCI) may be in contrast to a preinjury history of active physical engagement and is thereafter associated with profound physical deconditioning sustained throughout the lifespan. This physical deconditioning contributes in varying degrees to lifelong medical complications, including accelerated cardiovascular disease, insulin resistance, osteopenia, and visceral obesity. Unlike persons without disability for whom exercise is readily available and easily accomplished, exercise options for persons with SCI are more limited. Depending on the level of injury, the metabolic responses to acute exercise may also be less robust than those accompanying exercise in persons without disability, the training benefits more difficult to achieve, and the risks of ill-considered exercise both greater and potentially irreversible. For exercise to ultimately promote benefit and not impose additional impairment, an understanding of exercise opportunities and risks if exercise is undertaken by those with SCI is important. The following monograph will thus address common medical challenges experienced by persons with SCI and typical modes and benefits of voluntary exercise conditioning. PMID:29339894
2006-07-01
and methamphetamine Our basic assumption is that protective treatments alter both post-translational and translational events so as to reduce the...impact of voluntary running on trophic factor levels and the neurotoxic effects of 6-OHDA. Reportable Outcomes: • Like exercise, GDNF protects DA...also protects against the increased vulnerability to toxins caused by other stressors; and (4) the generality of our results with 6-OHDA to other
Lapmanee, Sarawut; Teerapornpuntakit, Jarinthorn; Krishnamra, Nateetip; Charoenphandhu, Narattaphol
2017-01-01
Several severe stressful situations, e.g., natural disaster, infectious disease out break, and mass casualty, are known to cause anxiety, depression and cognitive impairment, and preventive intervention for these stress complications is worth exploring. We have previously reported that the serotonin-norepinephrine-dopamine reuptake inhibitor, venlafaxine, as well as voluntary wheel running are effective in the treatment of anxiety- and depression-like behaviors in stressed rats. But whether they are able to prevent deleterious consequences of restraint stress in rats, such as anxiety/depression-like behaviors and memory impairment that occur afterward, was not known. Herein, male Wistar rats were pre-treated for 4 weeks with anti-anxiety/anti-depressive drugs, agomelatine and venlafaxine, or voluntary wheel running, followed by 4 weeks of restraint-induced stress. During the stress period, rats received neither drug nor exercise intervention. Our results showed that restraint stress induced mixed anxiety- and depression-like behaviors, and memory impairment as determined by elevated plus-maze, elevated T-maze, open field test (OFT), forced swimming test (FST), and Morris water maze (MWM). Both pharmacological pre-treatments and running successfully prevented the anxiety-like behavior, especially learned fear, in stressed rats. MWM test suggested that agomelatine, venlafaxine, and running could prevent stress-induced memory impairment, but only pharmacological treatments led to better novel object recognition behavior and positive outcome in FST. Moreover, western blot analysis demonstrated that venlafaxine and running exercise upregulated brain-derived neurotrophic factor (BDNF) expression in the hippocampus. In conclusion, agomelatine, venlafaxine as well as voluntary wheel running had beneficial effects, i.e., preventing the restraint stress-induced anxiety/depression-like behaviors and memory impairment. PMID:29099859
Lapmanee, Sarawut; Charoenphandhu, Jantarima; Teerapornpuntakit, Jarinthorn; Krishnamra, Nateetip; Charoenphandhu, Narattaphol
2017-01-01
Several severe stressful situations, e.g., natural disaster, infectious disease out break, and mass casualty, are known to cause anxiety, depression and cognitive impairment, and preventive intervention for these stress complications is worth exploring. We have previously reported that the serotonin-norepinephrine-dopamine reuptake inhibitor, venlafaxine, as well as voluntary wheel running are effective in the treatment of anxiety- and depression-like behaviors in stressed rats. But whether they are able to prevent deleterious consequences of restraint stress in rats, such as anxiety/depression-like behaviors and memory impairment that occur afterward, was not known. Herein, male Wistar rats were pre-treated for 4 weeks with anti-anxiety/anti-depressive drugs, agomelatine and venlafaxine, or voluntary wheel running, followed by 4 weeks of restraint-induced stress. During the stress period, rats received neither drug nor exercise intervention. Our results showed that restraint stress induced mixed anxiety- and depression-like behaviors, and memory impairment as determined by elevated plus-maze, elevated T-maze, open field test (OFT), forced swimming test (FST), and Morris water maze (MWM). Both pharmacological pre-treatments and running successfully prevented the anxiety-like behavior, especially learned fear, in stressed rats. MWM test suggested that agomelatine, venlafaxine, and running could prevent stress-induced memory impairment, but only pharmacological treatments led to better novel object recognition behavior and positive outcome in FST. Moreover, western blot analysis demonstrated that venlafaxine and running exercise upregulated brain-derived neurotrophic factor (BDNF) expression in the hippocampus. In conclusion, agomelatine, venlafaxine as well as voluntary wheel running had beneficial effects, i.e., preventing the restraint stress-induced anxiety/depression-like behaviors and memory impairment.
Wong-Goodrich, Sarah J.E.; Pfau, Madeline L.; Flores, Catherine T.; Fraser, Jennifer A.; Williams, Christina L.; Jones, Lee W.
2010-01-01
Whole-brain irradiation (WBI) therapy produces progressive learning and memory deficits in patients with primary or secondary brain tumors. Exercise enhances memory and adult hippocampal neurogenesis in the intact brain, so we hypothesized that exercise may be an effective treatment to alleviate consequences of WBI. Previous studies using animal models to address this issue have yielded mixed results and have not examined potential molecular mechanisms. We investigated the short- and long-term effects of WBI on spatial learning and memory retention, and determined whether voluntary running after WBI aids recovery of brain and cognitive function. Forty adult female C57Bl/6 mice given a single dose of 5 Gy or sham WBI were trained 2.5 weeks and up to four months after WBI in a Barnes maze. Half of the mice received daily voluntary wheel access starting one month after sham- or WBI. Daily running following WBI prevented the marked decline in spatial memory retention observed months after irradiation. Bromodeoxyuridine (BrdU) immunolabeling and ELISA indicated that this behavioral rescue was accompanied by a partial restoration of newborn BrdU+/NeuN+ neurons in the dentate gyrus and increased hippocampal expression of brain-derived vascular endothelial growth factor and insulin-like growth factor, and occurred despite irradiation-induced elevations in hippocampal pro-inflammatory cytokines. WBI in adult mice produced a progressive memory decline consistent with what has been reported in cancer patients receiving WBI therapy. Our findings show that running can abrogate this memory decline and aid recovery of adult hippocampal plasticity, thus highlighting exercise as a potential therapeutic intervention. PMID:20884629
Neese, Steven L.; Korol, Donna L.; Schantz, Susan L.
2013-01-01
Estrogens differentially modulate behavior in the adult female rodent. Voluntary exercise can also impact behavior, often reversing age associated decrements in memory processes. Our research group has published a series of papers reporting a deficit in the acquisition of an operant working memory task, delayed spatial alternation (DSA), following 17β-estradiol treatment to middle-aged ovariectomized (OVX) rats. The current study examined if voluntary exercise could attenuate the 17β-estradiol induced deficits on DSA performance. OVX 12-month old Long- Evans rats were implanted with a Silastic capsule containing 17β-estradiol (10% in cholesterol: low physiological range) or with a blank capsule. A subset of the 17β-estradiol and OVX untreated rats were given free access to a running wheel in their home cage. All rats were tested for 40 sessions on the DSA task. Surprisingly, we found running wheel access to impair initial acquisition of the DSA task in 17β-estradiol treated rats, an effect not seen in OVX untreated rats given running wheel access. This deficit was driven by an increase in perseverative responding on a lever no longer associated with reinforcement. We also report for the first time a 17β-estradiol induced impairment on the DSA task following a long intertrial delay (18-sec), an effect revealed following more extended testing than in our previous studies (15 additional sessions). Overall, running wheel access increased initial error rate on the DSA task in 17β-estradiol treated middle-aged OVX rats, and failed to prevent the 17β-estradiol induced deficits in performance of the operant DSA task in later testing sessions. PMID:24013039
... therapy are generally the best treatment for persistent insomnia. Sleeping on a regular schedule, exercising regularly, avoiding caffeine and daytime naps, and keeping stress in check also are likely to help. But ...
Code of Federal Regulations, 2010 CFR
2010-07-01
... outside of the employee's regular working hours; (b) Attendance is in fact voluntary; (c) The course... to Labor (Continued) WAGE AND HOUR DIVISION, DEPARTMENT OF LABOR STATEMENTS OF GENERAL POLICY OR INTERPRETATION NOT DIRECTLY RELATED TO REGULATIONS HOURS WORKED Application of Principles Lectures, Meetings and...
Cardiovascular Fitness Education for Elementary Students
ERIC Educational Resources Information Center
Jenkins, David
1978-01-01
This cardiovascular fitness program for grades 1-6 (with emphasis on grades 5 and 6) consists of (1) discussion classes and exercise experiments, (2) discussion of exercise effects during regular activity sessions, (3) required cardiovascular warmup exercises, and (4) evaluation of cardiovascular fitness. (Author/MJB)
Exercise Adherence. ERIC Digest.
ERIC Educational Resources Information Center
Sullivan, Pat
This digest discusses exercise adherence, noting its vital role in maximizing the benefits associated with physical activity. Information is presented on the following: (1) factors that influence adherence to self-monitored programs of regular exercise (childhood eating habits, and psychological, physical, social, and situational factors); (2)…
ERIC Educational Resources Information Center
Stuhr, Robyn M.
2002-01-01
Menopause is associated with many different health effects and symptoms. This paper explains that regular exercise can play a critical role in protecting health and battling the increased risk of cardiovascular disease, osteoporosis, pelvic floor atrophy, and joint stiffness associated with menopause. Exercise programs for menopausal women should…
Kwan, Bethany M.; Bryan, Angela D.
2009-01-01
Problem: A positive affective response is associated with increased participation in voluntary exercise, but the mechanisms by which this occurs are not well known. Consistent with a Theory of Planned Behaviour perspective, we tested whether affective response to exercise leads to greater motivation in terms of attitudes, subjective norms, self-efficacy and intentions to exercise. We were also specifically interested in whether a positive affective response leads to more temporally stable intentions. Method: Participants (N = 127) self-reported Theory of Planned Behaviour constructs and exercise behavior at baseline and three months later, and provided reports of exercise-related affect during a 30-minute bout of moderate intensity treadmill exercise at baseline. Results: We show that participants who experience greater improvements in positive affect, negative affect and fatigue during exercise tended to report more positive attitudes, exercise self-efficacy and intentions to exercise three months later. Affective response was not predictive of subjective norms. As hypothesized, positive affective response was associated with more stable intentions over time. Conclusions: We conclude that a positive affective response to acute bouts of exercise can aid in building and sustaining exercise motivation over time. PMID:20161385
ERIC Educational Resources Information Center
Leenders, Nicole Y. J. M.; Silver, Lorraine Wallace; White, Susan L.; Buckworth, Janet; Sherman, W. Michael
2002-01-01
Used a street-based survey to assess college students' physical activity level, exercise self-efficacy, and stages of change for exercise behavior. A large proportion of respondents were not regularly active. Exercise self-efficacy was an important variable in exercise behavior. The low cost, ease of data collection, and short turnaround for…
Dehydration-induced drinking in humans
NASA Technical Reports Server (NTRS)
Greenleaf, J. E.
1982-01-01
The human tendency to experience a delay in rehydration (involuntary dehydration) after fluid loss is considered. The two primary factors contributing to involuntary dehydration are probably upright posture, and extracellular fluid and electrolyte loss by sweating from exercise and heat exposure. First, as the plasma sodium and osmotic concentrations remain virtually unchanged for supine to upright postural changes, the major stimuli for drinking appear to be associated with the hypovolemia and increase in the renin-angiotension system. Second, voluntary drinking during the heat experiments was 146% greater than in cool experiments; drinking increased by 109% with prior dehydration as opposed to normal hydration conditions; and drinking was increased by 41% after exercise as compared with the resting condition. Finally, it is concluded that the rate of sweating and the rate of voluntary fluid intake are highly correlated, and that the dispogenic factors of plasma volume, osmolality, and plasma renin activity are unrelated to sweat rate, but are likely to induce drinking in humans.
Fermented soymilk increases voluntary wheel running activity and sexual behavior in male rats.
Sato, Takuya; Shinohara, Yasutomo; Kaneko, Daisuke; Nishimura, Ikuko; Matsuyama, Asahi
2010-12-01
Wheel running by rodents is thought to reflect voluntary exercise in humans. The present study examined the effect of fermented soymilk (FSM) on voluntary wheel running in rats. FSM was prepared from soymilk (SM) using the bacteria Leuconostoc pseudomesenteroides. The rats were fed a normal diet for 3 weeks followed by a 3-week administration of diet containing FSM or SM (5% w/w), and then the diets were switched back to a normal diet for 3 weeks. The voluntary wheel running activity was increased by FSM administration, although no changes were observed by SM administration. This effect was observed 2 weeks after FSM administration and lasted 1 week after deprivation of FSM. Then we evaluated the effect of FSM on sexual behavior in male rats. FSM administration for 10 days significantly increased the number of mounts. The protein expression of tyrosine hydroxylase (TH) increased in the hippocampus by FSM administration and it is suggested that FSM may change norepinephrine or dopamine signaling in the brain. Our study provides the first evidence that FSM increases voluntary wheel running activity and sexual behavior and suggests that TH may be involved in these effects.
Motor unit recruitment during neuromuscular electrical stimulation: a critical appraisal.
Bickel, C Scott; Gregory, Chris M; Dean, Jesse C
2011-10-01
Neuromuscular electrical stimulation (NMES) is commonly used in clinical settings to activate skeletal muscle in an effort to mimic voluntary contractions and enhance the rehabilitation of human skeletal muscles. It is also used as a tool in research to assess muscle performance and/or neuromuscular activation levels. However, there are fundamental differences between voluntary- and artificial-activation of motor units that need to be appreciated before NMES protocol design can be most effective. The unique effects of NMES have been attributed to several mechanisms, most notably, a reversal of the voluntary recruitment pattern that is known to occur during voluntary muscle contractions. This review outlines the assertion that electrical stimulation recruits motor units in a nonselective, spatially fixed, and temporally synchronous pattern. Additionally, it synthesizes the evidence that supports the contention that this recruitment pattern contributes to increased muscle fatigue when compared with voluntary actions and provides some commentary on the parameters of electrical stimulation as well as emerging technologies being developed to facilitate NMES implementation. A greater understanding of how electrical stimulation recruits motor units, as well as the benefits and limitations of its use, is highly relevant when using this tool for testing and training in rehabilitation, exercise, and/or research.
The acute effects of bodyweight suspension exercise on muscle activation and muscular fatigue.
Cayot, Trent E; Lauver, Jakob D; Scheuermann, Barry W
2017-07-01
This investigation examined effects of two exercise modes (barbell, BB; bodyweight suspension, BWS) on muscle activation, resistance load, and fatigue. During session one, nine resistance-trained males completed an elbow flexion one-repetition maximum (1RM). During sessions two and three, subjects completed standing biceps curls to fatigue at 70% 1RM utilizing a randomized exercise mode. Surface electromyography (sEMG) recorded muscle activation of the biceps brachii, triceps brachii, anterior deltoid, posterior deltoid, rectus abdominis, and erector spinae. BWS resistance load was measured using a force transducer. Standing maximal voluntary isometric contractions of the elbow flexors recorded at 90° were used to determine the isometric force decrement and rate of fatigue (ROF) during exercise. sEMG and resistance load data were divided into 25% contraction duration bins throughout the concentric phase. BWS resulted in a 67.7 ± 7.4% decline in resistance load throughout the concentric phase (p ≤ 0.05). As a result, BB elicited higher mean resistance loads (31.4 ± 4.0 kg) and biceps brachii sEMG (84.7 ± 27.8% maximal voluntary isometric contractions, MVIC) compared with BWS (20.4 ± 3.4 kg, 63.4 ± 21.6% MVIC). No difference in rectus abdominis or erector spinae sEMG was detected between exercise modes. Isometric force decrement was greater during BWS (-21.7 ± 7.0 kg) compared with BB (-14.9 ± 4.7 kg); however, BB (-3.0 ± 0.8 kg/set) resulted in a steeper decline in ROF compared with BWS (-1.7 ± 0.6 kg/set). The variable resistance loading and greater isometric force decrement observed suggest that select BWS exercises may resemble variable resistance exercise more than previously considered.
Forearm training attenuates sympathetic responses to prolonged rhythmic forearm exercise
NASA Technical Reports Server (NTRS)
Sinoway, L.; Shenberger, J.; Leaman, G.; Zelis, R.; Gray, K.; Baily, R.; Leuenberger, U.
1996-01-01
We previously demonstrated that nonfatiguing rhythmic forearm exercise at 25% maximal voluntary contraction (12 2-s contractions/min) evokes sympathoexcitation without significant engagement of metabolite-sensitive muscle afferents (B.A. Batman, J.C. Hardy, U.A. Leuenberger, M.B. Smith, Q.X. Yang and L.I. Sinoway. J. Appl. Physiol. 76: 1077-1081, 1994). This is in contrast to the sympathetic nervous system responses observed during fatiguing static forearm exercise where metabolite-sensitive afferents are the key determinants of sympathetic activation. In this report we examined whether forearm exercise training would attenuate sympathetic nervous system responses to rhythmic forearm exercise. We measured heart rate, mean arterial blood pressure (MAP), muscle sympathetic nerve activity (microneurography), plasma norepinephrine (NE), and NE spillover and clearance (tritiated NE kinetics) during nonfatiguing rhythmic forearm exercise before and after a 4-wk unilateral forearm training paradigm. Training had no effect on forearm mass, maximal voluntary contraction, or heart rate but did attenuate the increase in MAP (increase in MAP: from 15.2 +/- 1.8 before training to 11.4 +/- 1.4 mmHg after training; P < 0.017), muscle sympathetic nerve activity (increase in bursts: from 10.8 +/- 1.4 before training to 6.2 +/- 1.1 bursts/min after training; P < 0.030), and the NE spillover (increases in arterial spillover: from 1.3 +/- 0.2 before training to 0.6 +/- 0.2 nmol.min-1.m-2 after training, P < 0.014; increase in venous spillover: from 2.0 +/- 0.6 before training to 1.0 +/- 0.5 nmol.min-1.m-2 after training, P < 0.037) seen in response to exercise performed by the trained forearm. Thus forearm training reduces sympathetic responses during a nonfatiguing rhythmic handgrip paradigm that does not engage muscle metaboreceptors. We speculate that this effect is due to a conditioning-induced reduction in mechanically sensitive muscle afferent discharge.
Tsuji, Bun; Honda, Yasushi; Ikebe, Yusuke; Fujii, Naoto; Kondo, Narihiko; Nishiyasu, Takeshi
2015-04-15
Hyperthermia during prolonged exercise leads to hyperventilation, which can reduce arterial CO2 pressure (PaCO2 ) and, in turn, cerebral blood flow (CBF) and thermoregulatory response. We investigated 1) whether humans can voluntarily suppress hyperthermic hyperventilation during prolonged exercise and 2) the effects of voluntary breathing control on PaCO2 , CBF, sweating, and skin blood flow. Twelve male subjects performed two exercise trials at 50% of peak oxygen uptake in the heat (37°C, 50% relative humidity) for up to 60 min. Throughout the exercise, subjects breathed normally (normal-breathing trial) or they tried to control their minute ventilation (respiratory frequency was timed with a metronome, and target tidal volumes were displayed on a monitor) to the level reached after 5 min of exercise (controlled-breathing trial). Plotting ventilatory and cerebrovascular responses against esophageal temperature (Tes) showed that minute ventilation increased linearly with rising Tes during normal breathing, whereas controlled breathing attenuated the increased ventilation (increase in minute ventilation from the onset of controlled breathing: 7.4 vs. 1.6 l/min at +1.1°C Tes; P < 0.001). Normal breathing led to decreases in estimated PaCO2 and middle cerebral artery blood flow velocity (MCAV) with rising Tes, but controlled breathing attenuated those reductions (estimated PaCO2 -3.4 vs. -0.8 mmHg; MCAV -10.4 vs. -3.9 cm/s at +1.1°C Tes; P = 0.002 and 0.011, respectively). Controlled breathing had no significant effect on chest sweating or forearm vascular conductance (P = 0.67 and 0.91, respectively). Our results indicate that humans can voluntarily suppress hyperthermic hyperventilation during prolonged exercise, and this suppression mitigates changes in PaCO2 and CBF. Copyright © 2015 the American Physiological Society.
Liu, Tzu-Wen; Park, Young-Min; Holscher, Hannah D.; Padilla, Jaume; Scroggins, Rebecca J.; Welly, Rebecca; Britton, Steven L.; Koch, Lauren G.; Vieira-Potter, Victoria J.; Swanson, Kelly S.
2015-01-01
The gut microbiota is considered a relevant factor in obesity and associated metabolic diseases, for which postmenopausal women are particularly at risk. Increasing physical activity has been recognized as an efficacious approach to prevent or treat obesity, yet the impact of physical activity on the microbiota remains under-investigated. We examined the impacts of voluntary exercise on host metabolism and gut microbiota in ovariectomized (OVX) high capacity (HCR) and low capacity running (LCR) rats. HCR and LCR rats (age = 27wk) were OVX and fed a high-fat diet (45% kcal fat) ad libitum and housed in cages equipped with (exercise, EX) or without (sedentary, SED) running wheels for 11wk (n = 7-8/group). We hypothesized that increased physical activity would hinder weight gain, increase metabolic health and shift the microbiota of LCR rats, resulting in populations more similar to that of HCR rats. Animals were compared for characteristic metabolic parameters including body composition, lipid profile and energy expenditure; whereas cecal digesta were collected for DNA extraction. 16S rRNA gene-based amplicon Illumina MiSeq sequencing was performed, followed by analysis using QIIME 1.8.0 to assess cecal microbiota. Voluntary exercise decreased body and fat mass, and normalized fasting NEFA concentrations of LCR rats, despite only running one-third the distance of HCR rats. Exercise, however, increased food intake, weight gain and fat mass of HCR rats. Exercise clustered the gut microbial community of LCR rats, which separated them from the other groups. Assessments of specific taxa revealed significant (p<0.05) line by exercise interactions including shifts in the abundances of Firmicutes, Proteobacteria, and Cyanobacteria. Relative abundance of Christensenellaceae family was higher (p = 0.026) in HCR than LCR rats, and positively correlated (p<0.05) with food intake, body weight and running distance. These findings demonstrate that exercise differentially impacts host metabolism and gut microbial communities of female HCR and LCR rats without ovarian function. PMID:26301712
Tsuji, Bun; Honda, Yasushi; Ikebe, Yusuke; Fujii, Naoto; Kondo, Narihiko
2015-01-01
Hyperthermia during prolonged exercise leads to hyperventilation, which can reduce arterial CO2 pressure (PaCO2) and, in turn, cerebral blood flow (CBF) and thermoregulatory response. We investigated 1) whether humans can voluntarily suppress hyperthermic hyperventilation during prolonged exercise and 2) the effects of voluntary breathing control on PaCO2, CBF, sweating, and skin blood flow. Twelve male subjects performed two exercise trials at 50% of peak oxygen uptake in the heat (37°C, 50% relative humidity) for up to 60 min. Throughout the exercise, subjects breathed normally (normal-breathing trial) or they tried to control their minute ventilation (respiratory frequency was timed with a metronome, and target tidal volumes were displayed on a monitor) to the level reached after 5 min of exercise (controlled-breathing trial). Plotting ventilatory and cerebrovascular responses against esophageal temperature (Tes) showed that minute ventilation increased linearly with rising Tes during normal breathing, whereas controlled breathing attenuated the increased ventilation (increase in minute ventilation from the onset of controlled breathing: 7.4 vs. 1.6 l/min at +1.1°C Tes; P < 0.001). Normal breathing led to decreases in estimated PaCO2 and middle cerebral artery blood flow velocity (MCAV) with rising Tes, but controlled breathing attenuated those reductions (estimated PaCO2 −3.4 vs. −0.8 mmHg; MCAV −10.4 vs. −3.9 cm/s at +1.1°C Tes; P = 0.002 and 0.011, respectively). Controlled breathing had no significant effect on chest sweating or forearm vascular conductance (P = 0.67 and 0.91, respectively). Our results indicate that humans can voluntarily suppress hyperthermic hyperventilation during prolonged exercise, and this suppression mitigates changes in PaCO2 and CBF. PMID:25632021
Skeletal muscle power and fatigue at the tolerable limit of ramp-incremental exercise in COPD.
Cannon, Daniel T; Coelho, Ana Claudia; Cao, Robert; Cheng, Andrew; Porszasz, Janos; Casaburi, Richard; Rossiter, Harry B
2016-12-01
Muscle fatigue (a reduced power for a given activation) is common following exercise in chronic obstructive pulmonary disease (COPD). Whether muscle fatigue, and reduced maximal voluntary locomotor power, are sufficient to limit whole body exercise in COPD is unknown. We hypothesized in COPD: 1) exercise is terminated with a locomotor muscle power reserve; 2) reduction in maximal locomotor power is related to ventilatory limitation; and 3) muscle fatigue at intolerance is less than age-matched controls. We used a rapid switch from hyperbolic to isokinetic cycling to measure the decline in peak isokinetic power at the limit of incremental exercise ("performance fatigue") in 13 COPD patients (FEV 1 49 ± 17%pred) and 12 controls. By establishing the baseline relationship between muscle activity and isokinetic power, we apportioned performance fatigue into the reduction in muscle activation and muscle fatigue. Peak isokinetic power at intolerance was ~130% of peak incremental power in controls (274 ± 73 vs. 212 ± 84 W, P < 0.05), but ~260% in COPD patients (187 ± 141 vs. 72 ± 34 W, P < 0.05), greater than controls (P < 0.05). Muscle fatigue as a fraction of baseline peak isokinetic power was not different in COPD patients vs. controls (0.11 ± 0.20 vs. 0.19 ± 0.11). Baseline to intolerance, the median frequency of maximal isokinetic muscle activity, was unchanged in COPD patients but reduced in controls (+4.3 ± 11.6 vs. -5.5 ± 7.6%, P < 0.05). Performance fatigue as a fraction of peak incremental power was greater in COPD vs. controls and related to resting (FEV 1 /FVC) and peak exercise (V̇ E /maximal voluntary ventilation) pulmonary function (r 2 = 0.47 and 0.55, P < 0.05). COPD patients are more fatigable than controls, but this fatigue is insufficient to constrain locomotor power and define exercise intolerance. Copyright © 2016 the American Physiological Society.
Brisk walking reduces ad libitum snacking in regular chocolate eaters during a workplace simulation.
Oh, Hwajung; Taylor, Adrian H
2012-02-01
Workplace snacking can contribute to obesity. Exercise reduces chocolate cravings but effects on chocolate consumption are unknown. This study investigated the effect of brief exercise on ad libitum consumption during breaks in a computerised task. Seventy-eight regular chocolate eaters, age: 24.90±8.15 years, BMI: 23.56±3.78 kg/m(2) abstained for 2 days. They were randomly assigned to one of four conditions, in a 2 × 2 factorial design, involving either a 15 min brisk walk or quiet rest, and then computerised Stroop tasks with low or high demanding conditions, in three 180 s blocks with a 90 s interval. Throughout, a pre-weighed bowl of chocolates was available for ad libitum eating. A two-way ANOVA revealed no interaction effect of exercise and stress on total chocolate consumption, or main effect of stress, but a main effect of exercise [F(1, 74)=7.12, p<.01]. Mean (SD) chocolate consumption was less (t(73.5)=2.69, 95% CI for difference 3.4-22.9, ES=0.61) for the exercise (15.6 g) than control (28.8 g) group. Exercise also increased affective activation, but there was no mediating effect of change in affect on chocolate consumption. A brief walk may help to reduce ad libitum snacking in regular chocolate eaters. Crown Copyright © 2011. Published by Elsevier Ltd. All rights reserved.
Leicht, Anthony; Crowther, Robert; Golledge, Jonathan
2015-05-18
This study examined the impact of regular supervised exercise on body fat, assessed via anthropometry, and eating patterns of peripheral arterial disease patients with intermittent claudication (IC). Body fat, eating patterns and walking ability were assessed in 11 healthy adults (Control) and age- and mass-matched IC patients undertaking usual care (n = 10; IC-Con) or supervised exercise (12-months; n = 10; IC-Ex). At entry, all groups exhibited similar body fat and eating patterns. Maximal walking ability was greatest for Control participants and similar for IC-Ex and IC-Con patients. Supervised exercise resulted in significantly greater improvements in maximal walking ability (IC-Ex 148%-170% vs. IC-Con 29%-52%) and smaller increases in body fat (IC-Ex -2.1%-1.4% vs. IC-Con 8.4%-10%). IC-Con patients exhibited significantly greater increases in body fat compared with Control at follow-up (8.4%-10% vs. -0.6%-1.4%). Eating patterns were similar for all groups at follow-up. The current study demonstrated that regular, supervised exercise significantly improved maximal walking ability and minimised increase in body fat amongst IC patients without changes in eating patterns. The study supports the use of supervised exercise to minimize cardiovascular risk amongst IC patients. Further studies are needed to examine the additional value of other lifestyle interventions such as diet modification.
A new curriculum for fitness education.
Boone, J L
1983-01-01
Regular exercise is important in a preventive approach to health care because it exerts a beneficial effect on many risk factors in the development of coronary heart disease. However, many Americans lack the skills required to devise and carry out a safe and effective exercise program appropriate for a life-time of fitness. This inability is partly due to the lack of fitness education during their school years. School programs in physical education tend to neglect training in the health-related aspects of fitness. Therefore, a new curriculum for fitness education is proposed that would provide seventh, eighth, and ninth grade students with (a) a basic knowledge of their physiological response to exercise, (b) the means to develop their own safe and effective physical fitness program, and (c) the motivation to incorporate regular exercise into their lifestyle. This special 4-week segment of primarily academic study is designed to be inserted into the physical education curriculum. Daily lessons cover health-related fitness, cardiovascular fitness, body fitness, and care of the back. A final written examination covering major areas of information is given to emphasize this academic approach to exercise. Competition in athletic ability is deemphasized, and motivational awards are given based on health-related achievements. The public's present lack of knowledge about physical fitness, coupled with the numerous anatomical and physiological benefits derived from regular, vigorous exercise, mandate an intensified curriculum of fitness education for school children. PMID:6414039
Goodall, S; Twomey, R; Amann, M; Ross, E Z; Lovering, A T; Romer, L M; Subudhi, A W; Roach, R C
2014-04-01
We asked whether acclimatization to chronic hypoxia (CH) attenuates the level of supraspinal fatigue that is observed after locomotor exercise in acute hypoxia (AH). Seven recreationally active participants performed identical bouts of constant-load cycling (131 ± 39 W, 10.1 ± 1.4 min) on three occasions: (i) in normoxia (N, PI O2 , 147.1 mmHg); (ii) in AH (FI O2 , 0.105; PI O2 , 73.8 mmHg); and (iii) after 14 days in CH (5260 m; PI O2 , 75.7 mmHg). Throughout trials, prefrontal-cortex tissue oxygenation and middle cerebral artery blood velocity (MCAV) were assessed using near-infrared-spectroscopy and transcranial Doppler sonography. Pre- and post-exercise twitch responses to femoral nerve stimulation and transcranial magnetic stimulation were obtained to assess neuromuscular and corticospinal function. In AH, prefrontal oxygenation declined at rest (Δ7 ± 5%) and end-exercise (Δ26 ± 13%) (P < 0.01); the degree of deoxygenation in AH was greater than N and CH (P < 0.05). The cerebral O2 delivery index (MCAV × Ca O2 ) was 19 ± 14% lower during the final minute of exercise in AH compared to N (P = 0.013) and 20 ± 12% lower compared to CH (P = 0.040). Maximum voluntary and potentiated twitch force were decreased below baseline after exercise in AH and CH, but not N. Cortical voluntary activation decreased below baseline after exercise in AH (Δ11%, P = 0.014), but not CH (Δ6%, P = 0.174) or N (Δ4%, P = 0.298). A twofold greater increase in motor-evoked potential amplitude was evident after exercise in CH compared to AH and N. These data indicate that exacerbated supraspinal fatigue after exercise in AH is attenuated after 14 days of acclimatization to altitude. The reduced development of supraspinal fatigue in CH may have been attributable to increased corticospinal excitability, consequent to an increased cerebral O2 delivery. © 2014 Scandinavian Physiological Society. Published by John Wiley & Sons Ltd.
ERIC Educational Resources Information Center
Weinkauff Duranso, Christine M.
2017-01-01
There is evidence that participating in physical exercise reduces stress and the risk of many physical maladies. Exercise is also correlated with higher levels of approach motivation, or a tendency to approach challenge as an opportunity for growth or improvement instead of an opportunity for failure. To date, most research on this relationship…
ERIC Educational Resources Information Center
Taunton, Jack E.; McCargar, Linda
1995-01-01
Diabetes control involves the appropriate balance of exercise, diet, and medication. Regular exercise has many benefits for people with diabetes. Physicians can educate patients about ways to regulate and monitor blood glucose before, during, and after workouts. Patients need to understand the effects of exercise and diet on insulin requirements.…
Exercise Motivation and Exercise Attribution of Recreational Athletes
ERIC Educational Resources Information Center
Jaurigue, Jerson Jalandoni
2011-01-01
This descriptive study determined the exercise motivation and exercise attribution of recreational athletes in one of the major cities in Panay Island. A total of 75 purposively selected respondents who are regular members in a particular club for at least a year and have finished at least a college degree participated in the study. To gather data…
ERIC Educational Resources Information Center
Boyll, Jeffery R.
Although positive physiological and psychological changes may occur as a result of exercise, many people do not exercise regularly. Either different methods to ensure exercise adherence must be examined or new ways of acquiring the desired changes must be found. The effectiveness of one alternative method, electronic muscle stimulation, was…
Sigrist, Lori D; Anderson, Jennifer E; Auld, Garry W
2005-10-01
The increasing trend of overweight in the military, the high cost of health care associated with overweight, and the failure to meet some Healthy People 2000 objectives related to diet identify the need for more appropriate nutrition and fitness education for military personnel. The purpose of this study was to assess senior military officers' concerns on various health topics, educational preferences for nutrition and health topics, eating habits, and barriers and motivators for eating healthfully and exercising regularly. The survey was completed by 52 resident students at the U.S. Army War College. Fitness, weight, and blood cholesterol were top health concerns, and respondents wanted to know more about eating healthfully on the run. The primary barrier to eating healthfully and exercising regularly was lack of time, whereas health and appearance were top motivators. Health interventions for this population should include their topics of concern and should address perceived barriers and motivators.
Verbickas, Vaidas; Kamandulis, Sigitas; Snieckus, Audrius; Venckunas, Tomas; Baranauskiene, Neringa; Brazaitis, Marius; Satkunskiene, Danguole; Unikauskas, Alvydas; Skurvydas, Albertas
2018-01-01
The aim of this study was to follow circulating brain-derived neurotrophic factor (BDNF) and interleukin-6 (IL-6) levels in response to severe muscle-damaging exercise. Young healthy men (N = 10) performed a bout of mechanically demanding stretch-shortening cycle exercise consisting of 200 drop jumps. Voluntary and electrically induced knee extension torque, serum BDNF levels, and IL-6 levels were measured before and for up to 7 days after exercise. Muscle force decreased by up to 40% and did not recover by 24 hours after exercise. Serum BDNF was decreased 1 hour and 24 hours after exercise, whereas IL-6 increased immediately and 1 hour after but recovered to baseline by 24 hours after exercise. IL-6 and 100-Hz stimulation torque were correlated (r = -0.64, P < 0.05) 24 hours after exercise. In response to acute, severe muscle-damaging exercise, serum BDNF levels decrease, whereas IL-6 levels increase and are associated with peripheral fatigue. Muscle Nerve 57: E46-E51, 2018. © 2017 Wiley Periodicals, Inc.
Transient Receptor Potential Vanilloid 2 Regulates Myocardial Response to Exercise
Naticchioni, Mindi; Karani, Rajiv; Smith, Margaret A.; Onusko, Evan; Robbins, Nathan; Jiang, Min; Radzyukevich, Tatiana; Fulford, Logan; Gao, Xu; Apel, Ryan; Heiny, Judith; Rubinstein, Jack; Koch, Sheryl E.
2015-01-01
The myocardial response to exercise is an adaptive mechanism that permits the heart to maintain cardiac output via improved cardiac function and development of hypertrophy. There are many overlapping mechanisms via which this occurs with calcium handling being a crucial component of this process. Our laboratory has previously found that the stretch sensitive TRPV2 channels are active regulators of calcium handling and cardiac function under baseline conditions based on our observations that TRPV2-KO mice have impaired cardiac function at baseline. The focus of this study was to determine the cardiac function of TRPV2-KO mice under exercise conditions. We measured skeletal muscle at baseline in WT and TRPV2-KO mice and subjected them to various exercise protocols and measured the cardiac response using echocardiography and molecular markers. Our results demonstrate that the TRPV2-KO mouse did not tolerate forced exercise although they became increasingly exercise tolerant with voluntary exercise. This occurs as the cardiac function deteriorates further with exercise. Thus, our conclusion is that TRPV2-KO mice have impaired cardiac functional response to exercise. PMID:26356305
... vulnerable to infection, your doctor may also prescribe antibacterial, antiviral and antifungal medications. After transplant, skin checkups ... other fluids each day Exercise Exercise and physical activity should be a regular part of your life ...
Development and practical implications of the Exercise Resourcefulness Inventory.
Fast, Hilary V; Kennett, Deborah J
2015-05-01
To determine the validity and reliability of the Exercise Resourcefulness Inventory (ERI) designed to assess the self-regulatory strategies used to promote regular exercise. In Study 1, the inventory's relationship with other established scales in the exercise behavior change field was examined. In Study 2, the test-retest reliability and predictive validity of the ERI was established by having participants from Study 1 complete the inventory a second time. Internal consistency, and convergent, discriminant, and concurrent validity were supported in both studies. The test-retest correlation of the ERI was .80. As well, participants scoring higher on the ERI in Study 1 were more likely to be at a higher stage of change in Study 2, and greater increases in exercise resourcefulness over time were predictive of advancement to higher stages of change. ERI is a reliable and valid measure to assess the self-regulatory strategies used to promote regular exercise. Facilitators may want to tailor exercise programs for individuals scoring lower in resourcefulness to prevent them from relapsing. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Factors Influencing Amount of Weekly Exercise Time in Colorectal Cancer Survivors.
Chou, Yun-Jen; Lai, Yeur-Hur; Lin, Been-Ren; Liang, Jin-Tung; Shun, Shiow-Ching
Performing regular exercise of at least 150 minutes weekly has benefits for colorectal cancer survivors. However, barriers inhibit these survivors from performing regular exercise. The aim of this study was to explore exercise behaviors and significant factors influencing weekly exercise time of more than 150 minutes in colorectal cancer survivors. A cross-sectional study design was used to recruit participants in Taiwan. Guided by the ecological model of health behavior, exercise barriers were assessed including intrapersonal, interpersonal, and environment-related barriers. A multiple logistic regression was used to explore the factors associated with the amount of weekly exercise. Among 321 survivors, 57.0% of them had weekly exercise times of more than 150 minutes. The results identified multiple levels of significant factors related to weekly exercise times including intrapersonal factors (occupational status, functional status, pain, interest in exercise, and beliefs about the importance of exercise) and exercise barriers related to environmental factors (lack of time and bad weather). No interpersonal factors were found to be significant. Colorectal cancer survivors experienced low levels of physical and psychological distress. Multiple levels of significant factors related to exercise time including intrapersonal factors as well as exercise barriers related to environmental factors should be considered. Healthcare providers should discuss with their patients how to perform exercise programs; the discussion should address multiple levels of the ecological model such as any pain problems, functional status, employment status, and time limitations, as well as community environment.
Exercise in muscle glycogen storage diseases.
Preisler, Nicolai; Haller, Ronald G; Vissing, John
2015-05-01
Glycogen storage diseases (GSD) are inborn errors of glycogen or glucose metabolism. In the GSDs that affect muscle, the consequence of a block in skeletal muscle glycogen breakdown or glucose use, is an impairment of muscular performance and exercise intolerance, owing to 1) an increase in glycogen storage that disrupts contractile function and/or 2) a reduced substrate turnover below the block, which inhibits skeletal muscle ATP production. Immobility is associated with metabolic alterations in muscle leading to an increased dependence on glycogen use and a reduced capacity for fatty acid oxidation. Such changes may be detrimental for persons with GSD from a metabolic perspective. However, exercise may alter skeletal muscle substrate metabolism in ways that are beneficial for patients with GSD, such as improving exercise tolerance and increasing fatty acid oxidation. In addition, a regular exercise program has the potential to improve general health and fitness and improve quality of life, if executed properly. In this review, we describe skeletal muscle substrate use during exercise in GSDs, and how blocks in metabolic pathways affect exercise tolerance in GSDs. We review the studies that have examined the effect of regular exercise training in different types of GSD. Finally, we consider how oral substrate supplementation can improve exercise tolerance and we discuss the precautions that apply to persons with GSD that engage in exercise.
Dent, Emma
2007-09-20
Around 150 wards are participating in the voluntary Star Wards scheme to provide mental health inpatients with more activities with therapeutic value. Suggested activities range from a library, to horse riding Internet access and comedy. Service users are particularly keen to have more exercise, which can be a challenge in inpatient settings.
NASA Astrophysics Data System (ADS)
Hashimoto, Sayuri; Munakata, Tsunestugu; Hashimoto, Nobuyuki; Okunaka, Jyunzo; Koga, Tatsuzo
2006-01-01
Our research showed that a high degree of life-stress has a negative mental health effect that may interrupt regular exercise. We used an internet based, remotely conducted, face to face, preventive counseling program using video monitors to reduce the source of life-stresses that interrupts regular exercise and evaluated the preventative effects of the program in elderly people. NTSC Video signals were converted to the IP protocol and facial images were transmitted to a PC display using the exclusive optical network lines of JGN2. Participants were 22 elderly people in Hokkaido, Japan, who regularly played table tennis. A survey was conducted before the intervention in August 2003. IT remote counseling was conducted on two occasions for one hour on each occasion. A post intervention survey was conducted in February 2004 and a follow-up survey was conducted in March 2005. Network quality was satisfactory with little data loss and high display quality. Results indicated that self-esteem increased significantly, trait anxiety decreased significantly, cognition of emotional support by people other than family members had a tendency to increase, and source of stress had a tendency to decrease after the intervention. Follow-up results indicated that cognition of emotional support by family increased significantly, and interpersonal dependency decreased significantly compared to before the intervention. These results suggest that face to face IT remote counseling using video monitors is useful to keep elderly people from feeling anxious and to make them confident to continue exercising regularly. Moreover, it has a stress management effect.
Exercisers' identities and exercise dependence: the mediating effect of exercise commitment.
Lu, Frank Jing-Horng; Hsu, Eva Ya-Wen; Wang, Junn-Ming; Huang, Mei-Yao; Chang, Jo-Ning; Wang, Chien-Hsin
2012-10-01
The purpose of this study was to examine the associations of exercise identity, exercise commitment, exercise dependence, and, particularly, the mediating effects of exercise commitment on the relationship between exercise identity and exercise dependence. 253 Taiwanese regular exercisers completed measures, including the Exercise Dependence Scale-Revised, the Exercise Identity Scale, the Exercise Commitment Scale, and the Godin Leisure Time Exercise Questionnaire. Results showed that exercise identity, exercise dependence, and two types of exercise commitment were moderately to highly correlated. Furthermore, structural equation modelling indicated that a "have to" commitment partially mediated the relationship between exercise identity and exercise dependence. Based on the mediating role of a "have to" commitment, the findings are particularly informative to exercise instructors and for exercise program managers.
Gondin, Julien; Cozzone, Patrick J; Bendahan, David
2011-10-01
We aimed at providing an overview of the currently acknowledged benefits and limitations of neuromuscular electrical stimulation (NMES) training programs in both healthy individuals and in recreational and competitive athletes regarding muscle performance. Typical NMES resistance exercises are performed under isometric conditions and involve the application of electrical stimuli delivered as intermittent high frequencies trains (>40-50 Hz) through surface electrodes. NMES has been acknowledged as an efficient modality leading to significant improvements in isometric maximal voluntary strength. However, the resulting changes in dynamic strength, motor performance skills and explosive movements (i.e., jump performance, sprint ability) are still ambiguous and could only be obtained when NMES is combined with voluntary dynamic exercise such as plyometrics. Additionally, the effects of NMES on muscle fatigability are still poorly understood and required further investigations. While NMES effectiveness could be partially related to several external adjustable factors such as training intensity, current characteristics (e.g., intensity, pulse duration…) or the design of training protocols (number of contractions per session, number of sessions per week…), anatomical specificities (e.g., morphological organization of the axonal branches within the muscle) appear as the main factor accounting for the differences in NMES response. Overall, NMES cannot be considered as a surrogate training method, but rather as an adjunct to voluntary resistance training. The combination of these two training modalities should optimally improve muscle function.
Hsu, Yun-Wei A.; Wang, Si D.; Wang, Shirong; Morton, Glenn; Zariwala, Hatim A.; de la Iglesia, Horacio O.
2014-01-01
The habenular complex in the epithalamus consists of distinct regions with diverse neuronal populations. Past studies have suggested a role for the habenula in voluntary exercise motivation and reinforcement of intracranial self-stimulation but have not assigned these effects to specific habenula subnuclei. Here, we have developed a genetic model in which neurons of the dorsal medial habenula (dMHb) are developmentally eliminated, via tissue-specific deletion of the transcription factor Pou4f1 (Brn3a). Mice with dMHb lesions perform poorly in motivation-based locomotor behaviors, such as voluntary wheel running and the accelerating rotarod, but show only minor abnormalities in gait and balance and exhibit normal levels of basal locomotion. These mice also show deficits in sucrose preference, but not in the forced swim test, two measures of depression-related phenotypes in rodents. We have also used Cre recombinase-mediated expression of channelrhodopsin-2 and halorhodopsin to activate dMHb neurons or silence their output in freely moving mice, respectively. Optical activation of the dMHb in vivo supports intracranial self-stimulation, showing that dMHb activity is intrinsically reinforcing, whereas optical silencing of dMHb outputs is aversive. Together, our findings demonstrate that the dMHb is involved in exercise motivation and the regulation of hedonic state, and is part of an intrinsic reinforcement circuit. PMID:25143617
Dow, Caitlin A; Stauffer, Brian L; Brunjes, Danielle L; Greiner, Jared J; DeSouza, Christopher A
2017-09-01
What is the central question of this study? Does aerobic exercise training reduce endothelin-1 (ET-1)-mediated vasoconstrictor tone in overweight/obese adults? And, if so, does lower ET-1 vasoconstriction underlie the exercise-related enhancement in endothelium-dependent vasodilatation in overweight/obese adults? What is the main finding and its importance? Regular aerobic exercise reduces ET-1-mediated vasoconstrictor tone in previously sedentary overweight/obese adults, independent of weight loss. Decreased ET-1 vasoconstriction is an important mechanism underlying the aerobic exercise-induced improvement in endothelium-dependent vasodilator function in overweight/obese adults. Endothelin-1 (ET-1)-mediated vasoconstrictor tone is elevated in overweight and obese adults, contributing to vasomotor dysfunction and increased cardiovascular disease risk. Although the effects of habitual aerobic exercise on endothelium-dependent vasodilatation in overweight/obese adults have been studied, little is known regarding ET-1-mediated vasoconstriction. Accordingly, the aims of the present study were to determine the following: (i) whether regular aerobic exercise training reduces ET-1-mediated vasoconstrictor tone in overweight and obese adults; and, if so, (ii) whether the reduction in ET-1-mediated vasoconstriction contributes to exercise-induced improvement in endothelium-dependent vasodilatation in this population. Forearm blood flow (FBF) in response to intra-arterial infusion of selective ET A receptor blockade (BQ-123, 100 nmol min -1 for 60 min), acetylcholine [4.0, 8.0 and 16.0 μg (100 ml tissue) -1 min -1 ] in the absence and presence of ET A receptor blockade and sodium nitroprusside [1.0, 2.0 and 4.0 μg (100 ml tissue) -1 min -1 ] were determined before and after a 3 month aerobic exercise training intervention in 25 (16 men and nine women) overweight/obese (body mass index 30.1 ± 0.5 kg m -2 ) adults. The vasodilator response to BQ-123 was significantly lower (∼25%) and the FBF responses to acetylcholine were ∼35% higher after exercise training. Before the exercise intervention, the co-infusion of acetylcholine plus BQ-123 resulted in a greater vasodilator response than acetylcholine alone; however, after the exercise intervention the FBF response to acetylcholine was not significantly increased by ET A receptor blockade. These results demonstrate that regular aerobic exercise reduces ET-1-mediated vasoconstrictor tone in previously sedentary overweight and obese adults. Moreover, decreased ET-1-mediated vasoconstriction is an important mechanism underlying the aerobic exercise-induced improvement in endothelium-dependent vasodilator function in overweight/obese adults. © 2017 The Authors. Experimental Physiology © 2017 The Physiological Society.
Personal lifestyle as a resource for work engagement
Nishi, Daisuke; Suzuki, Yuriko; Nishida, Junko; Mishima, Kazuo; Yamanouchi, Yoshio
2016-01-01
Objectives: Personal lifestyle, including diet, exercise, and sleep, might have an impact on work engagement, though previous studies have not focused on these relationships. The aim of this study was to examine whether dietary intake of fish, regular exercise, sufficient sleep, abstinence from alcohol, and abstinence from tobacco were positively associated with work engagement. Methods: We recruited adults aged 40-74 years who attended the health checkups with a particular focus on the metabolic syndrome in central Tokyo. In December 2015, 797 people responded to a questionnaire and 592 (74.3%) who had regular jobs were selected for this study. Work engagement was assessed on the 9-item Utrecht Work Engagement Scale (UWES-9). Bivariate and multivariate regression analyses were performed to examine the relationships between lifestyle and UWES-9. Results: Dietary intake of fish, regular exercise, sufficient sleep, and abstinence from tobacco were significantly correlated with the total UWES-9 score, even after adjusting for age, sex, and depressive and anxiety symptoms. The results suggested a dose-response relationship between dietary fish intake and work engagement. Conclusions: Dietary fish intake, regular exercise, sufficient sleep, and abstinence from tobacco might be lifestyle factors that can serve as resources for work engagement. These findings could be useful in motivating employees to make lifestyle improvements and convincing employers and managers that lifestyle is important not only for health but also for productivity. PMID:27885245
Personal lifestyle as a resource for work engagement.
Nishi, Daisuke; Suzuki, Yuriko; Nishida, Junko; Mishima, Kazuo; Yamanouchi, Yoshio
2017-01-24
Personal lifestyle, including diet, exercise, and sleep, might have an impact on work engagement, though previous studies have not focused on these relationships. The aim of this study was to examine whether dietary intake of fish, regular exercise, sufficient sleep, abstinence from alcohol, and abstinence from tobacco were positively associated with work engagement. We recruited adults aged 40-74 years who attended the health checkups with a particular focus on the metabolic syndrome in central Tokyo. In December 2015, 797 people responded to a questionnaire and 592 (74.3%) who had regular jobs were selected for this study. Work engagement was assessed on the 9-item Utrecht Work Engagement Scale (UWES-9). Bivariate and multivariate regression analyses were performed to examine the relationships between lifestyle and UWES-9. Dietary intake of fish, regular exercise, sufficient sleep, and abstinence from tobacco were significantly correlated with the total UWES-9 score, even after adjusting for age, sex, and depressive and anxiety symptoms. The results suggested a dose-response relationship between dietary fish intake and work engagement. Dietary fish intake, regular exercise, sufficient sleep, and abstinence from tobacco might be lifestyle factors that can serve as resources for work engagement. These findings could be useful in motivating employees to make lifestyle improvements and convincing employers and managers that lifestyle is important not only for health but also for productivity.
... a better outlook on life Besides enjoying the health benefits of regular exercise, fit kids sleep better. They' ... Can I Get My Kids to Be Active Outdoors? Strength Training What If I Don't Like ...
Drinking and water balance during exercise and heat acclimation
NASA Technical Reports Server (NTRS)
Greenleaf, J. E.; Brock, P. J.; Keil, L. C.; Morse, J. T.
1983-01-01
The interactions between fluid intake and balance, and plasma ion, osmotic, and endocrine responses during dehydration produced by exercise in cool and warm environments during acclimation are explored. Two groups of five male subjects performed 8 days of ergometer exercise in hot and thermoneutral conditions, respectively. The exercise trials lasted 2 hr each. Monitoring was carried out on the PV, osmotic, sodium, and endocrine concentrations, voluntary fluid intake, fluid balances, and fluid deficits. A negative correlation was observed between the plasma sodium and osmolality during acclimation. The presence of hypervolemia during acclimation is suggested as a cause of drinking, while the vasopressin concentration was not found to be a significant factor stimulating drinking. Finally, the predominant mechanism in fluid intake during exercise and heat exposure is concluded to be the renin-angiotensin II system in the presence of reductions in total body water and extracellular plasma volumes.
Prescribing exercise to help your patients lose weight.
Higgins, John P; Higgins, Christopher L
2016-02-01
Exercise, in conjunction with diet, is critical to losing weight and maintaining health in obese patients. While it can be challenging for an obese person to transition to a healthy lifestyle, the physical and emotional benefits of a regular exercise program make it worth the effort. Copyright © 2016 Cleveland Clinic.
Personal Motivation, Exercise, and Smoking Behaviors among Young Adults
ERIC Educational Resources Information Center
Scioli, Erica Rose; Biller, Henry; Rossi, Joseph; Riebe, Deborah
2009-01-01
This study explored the motivational factors that influence individuals across the stages of change for exercise. The authors compared physically active nonsmokers with physically active smokers in a college student population. Half of regular exercisers identified themselves as smokers. Compared with their nonsmoking peers, young smokers have…
Leal Junior, Ernesto Cesar Pinto; Lopes-Martins, Rodrigo Alvaro Brandão; Frigo, Lucio; De Marchi, Thiago; Rossi, Rafael Paolo; de Godoi, Vanessa; Tomazoni, Shaiane Silva; Silva, Daniela Perin; Basso, Maira; Filho, Pedro Lotti; de Valls Corsetti, Francisco; Iversen, Vegard V; Bjordal, Jan Magnus
2010-08-01
Randomized crossover double-blinded placebo-controlled trial. To investigate if low-level laser therapy (LLLT) can affect biceps muscle performance, fatigue development, and biochemical markers of postexercise recovery. Cell and animal studies have suggested that LLLT can reduce oxidative stress and inflammatory responses in muscle tissue. But it remains uncertain whether these findings can translate into humans in sport and exercise situations. Nine healthy male volleyball players participated in the study. They received either active LLLT (cluster probe with 5 laser diodes; lambda = 810 nm; 200 mW power output; 30 seconds of irradiation, applied in 2 locations over the biceps of the nondominant arm; 60 J of total energy) or placebo LLLT using an identical cluster probe. The intervention or placebo were applied 3 minutes before the performance of exercise. All subjects performed voluntary elbow flexion repetitions with a workload of 75% of their maximal voluntary contraction force until exhaustion. Active LLLT increased the number of repetitions by 14.5% (mean +/- SD, 39.6 +/- 4.3 versus 34.6 +/- 5.6; P = .037) and the elapsed time before exhaustion by 8.0% (P = .034), when compared to the placebo treatment. The biochemical markers also indicated that recovery may be positively affected by LLLT, as indicated by postexercise blood lactate levels (P<.01), creatine kinase activity (P = .017), and C-reactive protein levels (P = .047), showing a faster recovery with LLLT application prior to the exercise. We conclude that pre-exercise irradiation of the biceps with an LLLT dose of 6 J per application location, applied in 2 locations, increased endurance for repeated elbow flexion against resistance and decreased postexercise levels of blood lactate, creatine kinase, and C-reactiveprotein. Performance enhancement, level 1b.
White, Zoe; Terrill, Jessica; White, Robert B; McMahon, Christopher; Sheard, Phillip; Grounds, Miranda D; Shavlakadze, Tea
2016-12-13
There is much interest in the capacity of resistance exercise to prevent the age-related loss of skeletal muscle mass and function, known as sarcopenia. This study investigates the molecular basis underlying the benefits of resistance exercise in aging C57BL/6J mice of both sexes. This study is the first to demonstrate that long-term (34 weeks) voluntary resistance wheel exercise (RWE) initiated at middle age, from 15 months, prevents sarcopenia in selected hindlimb muscles and causes hypertrophy in soleus, by 23 months of age in both male and female C57BL/6J mice. Compared with 23-month-old sedentary (SED) controls, RWE (0-6 g of resistance) increased intramuscular mitochondrial density and oxidative capacity (measured by citrate synthase and NADH-TR) and increased LC3II/I ratios (a marker of autophagy) in exercised mice of both sexes. RWE also reduced mRNA expression of Gadd45α (males only) and Runx1 (females only) but had no effect on other markers of denervation including Chrng, Chrnd, Musk, and Myog. RWE increased heart mass in all mice, with a more pronounced increase in females. Significant sex differences were also noted among SED mice, with Murf1 mRNA levels increasing in male, but decreasing in old female mice between 15 and 23 months. Overall, long-term RWE initiated from 15 month of age significantly improved some markers of the mitochondrial and autophagosomal pathways and prevented age-related muscle wasting.
2014-01-01
Cardiovascular diseases (CVD) remain the leading cause of morbidity and mortality in modern societies, and advancing age is the major risk factor for CVD. Arterial dysfunction, characterized by large elastic artery stiffening and endothelial dysfunction, is the key event leading to age-associated CVD. Our work shows that regular aerobic exercise inhibits large elastic artery stiffening with aging (optimizes arterial compliance) and preserves endothelial function. Importantly, among previously sedentary late middle-aged and older adults, aerobic exercise improves arterial stiffness and enhances endothelial function in most groups and, therefore, also can be considered a treatment for age-associated arterial dysfunction. The mechanisms by which regular aerobic exercise destiffens large elastic arteries are incompletely understood, but existing evidence suggests that reductions in oxidative stress associated with decreases in both adventitial collagen (fibrosis) and advanced glycation end-products (structural protein cross-linking molecules), play a key role. Aerobic exercise preserves endothelial function with aging by maintaining nitric oxide bioavailability via suppression of excessive superoxide-associated oxidative stress, and by inhibiting the development of chronic low-grade vascular inflammation. Recent work from our laboratory supports the novel hypothesis that aerobic exercise may exert these beneficial effects by directly inducing protection to aging arteries against multiple adverse factors to which they are chronically exposed. Regular aerobic exercise should be viewed as a “first line” strategy for prevention and treatment of arterial aging and a vital component of a contemporary public health approach for reducing the projected increase in population CVD burden. PMID:24855137
Seals, Douglas R
2014-09-01
Cardiovascular diseases (CVD) remain the leading cause of morbidity and mortality in modern societies, and advancing age is the major risk factor for CVD. Arterial dysfunction, characterized by large elastic artery stiffening and endothelial dysfunction, is the key event leading to age-associated CVD. Our work shows that regular aerobic exercise inhibits large elastic artery stiffening with aging (optimizes arterial compliance) and preserves endothelial function. Importantly, among previously sedentary late middle-aged and older adults, aerobic exercise improves arterial stiffness and enhances endothelial function in most groups and, therefore, also can be considered a treatment for age-associated arterial dysfunction. The mechanisms by which regular aerobic exercise destiffens large elastic arteries are incompletely understood, but existing evidence suggests that reductions in oxidative stress associated with decreases in both adventitial collagen (fibrosis) and advanced glycation end-products (structural protein cross-linking molecules), play a key role. Aerobic exercise preserves endothelial function with aging by maintaining nitric oxide bioavailability via suppression of excessive superoxide-associated oxidative stress, and by inhibiting the development of chronic low-grade vascular inflammation. Recent work from our laboratory supports the novel hypothesis that aerobic exercise may exert these beneficial effects by directly inducing protection to aging arteries against multiple adverse factors to which they are chronically exposed. Regular aerobic exercise should be viewed as a "first line" strategy for prevention and treatment of arterial aging and a vital component of a contemporary public health approach for reducing the projected increase in population CVD burden. Copyright © 2014 the American Physiological Society.
Langhammer, Birgitta; Stanghelle, Johan K; Lindmark, Birgitta
2008-02-01
To evaluate the impact of two different physiotherapy exercise regimes in patients after acute stroke on health-related quality of life (HRQoL) and to investigate how the degree of motor and balance function, gait capacity, activities of daily living and instrumental activities of daily living influenced HRQoL. A longitudinal randomized controlled stratified trial of two interventions: the intensive exercise groups with scheduled intensive training during four periods of the first year after stroke and the regular exercise group with self-initiated training. There was a tendency of better HRQoL in the regular exercise group on NHP total score (p = 0.05). Patients with low scores in activities of daily living, balance and motor function and inability to perform 6-minute walk test on admission, scored lower on self-perceived health than patients with high scores and ability to perform the walking test. At 1 year post-stroke, total scores on NHP were moderately associated with motor function (r = -0.63), balance (r = -0.56), gait (r = -0.57), activities of daily living (r = -0.57) and instrumental activities of daily living (r = -0.49-0.58). The physical mobility sub-scale of NHP had the strongest association ranging from r = -0.47-0.82. The regular exercise group with self-initiated training seemed to enhance HRQoL more than the intensive exercise group with scheduled intensive training. The degree of motor function, balance, walking capacity and independence in activities of daily living is of importance for perceived HRQoL.
The importance of non-exercise physical activity for cardiovascular health and longevity.
Ekblom-Bak, Elin; Ekblom, Björn; Vikström, Max; de Faire, Ulf; Hellénius, Mai-Lis
2014-02-01
Sedentary time is increasing in all societies and results in limited non-exercise physical activity (NEPA) of daily life. The importance of low NEPA for cardiovascular health and longevity is limited, especially in elderly. To examine the association between NEPA and cardiovascular health at baseline as well as the risk of a first cardiovascular disease (CVD) event and total mortality after 12.5 years. Cohort study. Every third 60-year-old man and woman in Stockholm County was invited to a health screening study; 4232 individuals participated (78% response rate). At baseline, NEPA and exercise habits were assessed from a self-administrated questionnaire and cardiovascular health was established through physical examinations and laboratory tests. The participants were followed for an average of 12.5 years for the assessment of CVD events and mortality. At baseline, high NEPA was, regardless of regular exercise and compared with low NEPA, associated with more preferable waist circumference, high-density lipoprotein cholesterol and triglycerides in both sexes and with lower insulin, glucose and fibrinogen levels in men. Moreover, the occurrence of the metabolic syndrome was significantly lower in those with higher NEPA levels in non-exercising and regularly exercising individuals. Furthermore, reporting a high NEPA level, compared with low, was associated with a lower risk of a first CVD event (HR=0.73; 95% CI 0.57 to 0.94) and lower all-cause mortality (0.70; 0.53 to 0.98). A generally active daily life was, regardless of exercising regularly or not, associated with cardiovascular health and longevity in older adults.
Bote, M E; García, J J; Hinchado, M D; Ortega, E
2014-07-01
Fibromyalgia (FM) syndrome is associated with elevated systemic inflammatory and stress biomarkers, and an elevated innate cellular response mediated by monocytes and neutrophils. Exercise is accepted as a good non-pharmacological therapy for FM. We have previously found that regular aquatic exercise decreases the release of inflammatory cytokines by monocytes from FM patients. However, its effects on the functional capacity of neutrophils have not been studied. The aim of the present exploratory study was to evaluate, in 10 women diagnosed with FM, the effect of an aquatic exercise program (8months, 2sessions/week, 60min/session) on their neutrophils' function (phagocytic process), and on IL-8 and NA as potential inflammatory and stress mediators, respectively. A control group of 10 inactive FM patients was included in the study. After 4months of the exercise program, no significant changes were observed in neutrophil function (chemotaxis, phagocytosis, or fungicidal capacity) or in IL-8 and NA. However, at the end of the exercise program (8months), a neuro-immuno-endocrine adaptation was observed, manifested by a significant decrease to values below those in the basal state in neutrophil chemotaxis, IL-8, and NA. No significant seasonal changes in these parameters were observed during the same period in the group of non-exercised FM patients. After the 8months of the exercise program, the FM patients had lower concentrations of IL-8 and NA together with reduced chemotaxis of neutrophils compared with the values determined in the same month in the control group of non-exercised FM women. These results suggest that "anti-inflammatory" and "anti-stress" adaptations may be contributing to the symptomatic benefits that have been attributed to regular aquatic exercise in FM syndrome, as was corroborated in the present study by the scores on the Fibromyalgia Impact Questionnaire. Copyright © 2013 Elsevier Inc. All rights reserved.
Abera, Bayeh; Mohammed, Beyan; Betela, Wendmagegn; Yimam, Reshid; Oljira, Adam; Ahmed, Merhab; Tsega, Wubet; Mulu, Wondemagegn; Yizengaw, Endalew
2017-06-01
Like other sub-Saharan Africa, in Ethiopia there is a shortage of adequate and safe blood supplies. Health care providers are potential resource and promoter of voluntary blood donation. This study was conducted to determine the knowledge, attitude and practice towards blood donation among health care providers in Bahir Dar City, Ethiopia. Paper based questionnaire was distributed to 276 health care providers from May 01 to June 30, 2016. Overall, 42.8% had donated blood at least once. Of these, males accounted for 60%. The median age of blood donors was 26 years. Voluntary-unpaid donation was 21.2%. Overall, 75.5% health care providers were knowledgeable. The levels of knowledge were significantly different among different disciplines (One-way ANOVA; F=69.7; P=0.004). Males were more knowledgeable than females (P<0.05). The overall favorable attitude was 78.6%. Previous practice of blood donation determined the odds of favorable attitude to be a future regular voluntary-unpaid blood donor (OR: 5.7, 95% CI: 3.2-10.4). Majority of health care providers had adequate knowledge and favorable attitude. However, voluntary-unpaid donation practice (21.1%) was lower compared to 100% target of voluntary-unpaid donation. There should be motivation packages to enhance voluntary-unpaid blood donation among health care professionals. Copyright © 2017 Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
Heijerman, Harry G. M.; And Others
1992-01-01
This study, with 10 adult patients with cystic fibrosis, found that the improvement in lung function and ergometry parameters obtained by a short in-patient training program could be maintained on an out-patient basis through a voluntary self-treatment program. (DB)
A sedentary (SED) lifestyle may contribute to increased susceptibility to air pollutants. Active (ACT), leaner individuals with improved cardiopulmonary fitness are thought to be less susceptible. It is important to develop animal models to study relationships between level of e...
ERIC Educational Resources Information Center
Solberg, Mary
1982-01-01
Many El Salvador refugees who have sought asylum in the United States have been sent back, only to succumb to violence. Justice demands that the United States deal with the unfortunate consequences of violence by exercising such policy options as providing extended voluntary departure status to refugees or suspending military aid to the junta.…
Minett, Geoffrey M; Duffield, Rob; Marino, Frank E; Portus, Marc
2012-10-01
This study examined the effects of pre-cooling duration on performance and neuromuscular function for self-paced intermittent-sprint shuttle running in the heat. Eight male, team-sport athletes completed two 35-min bouts of intermittent-sprint shuttle running separated by a 15-min recovery on three separate occasions (33°C, 34% relative humidity). Mixed-method pre-cooling was completed for 20 min (COOL20), 10-min (COOL10) or no cooling (CONT) and reapplied for 5-min mid-exercise. Performance was assessed via sprint times, percentage decline and shuttle-running distance covered. Maximal voluntary contractions (MVC), voluntary activation (VA) and evoked twitch properties were recorded pre- and post-intervention and mid- and post-exercise. Core temperature (T (c)), skin temperature, heart rate, capillary blood metabolites, sweat losses, perceptual exertion and thermal stress were monitored throughout. Venous blood draws pre- and post-exercise were analyzed for muscle damage and inflammation markers. Shuttle-running distances covered were increased 5.2 ± 3.3% following COOL20 (P < 0.05), with no differences observed between COOL10 and CONT (P > 0.05). COOL20 aided in the maintenance of mid- and post-exercise MVC (P < 0.05; d > 0.80), despite no conditional differences in VA (P > 0.05). Pre-exercise T (c) was reduced by 0.15 ± 0.13°C with COOL20 (P < 0.05; d > 1.10), and remained lower throughout both COOL20 and COOL10 compared to CONT (P < 0.05; d > 0.80). Pre-cooling reduced sweat losses by 0.4 ± 0.3 kg (P < 0.02; d > 1.15), with COOL20 0.2 ± 0.4 kg less than COOL10 (P = 0.19; d = 1.01). Increased pre-cooling duration lowered physiological demands during exercise heat stress and facilitated the maintenance of self-paced intermittent-sprint performance in the heat. Importantly, the dose-response interaction of pre-cooling and sustained neuromuscular responses may explain the improved exercise performance in hot conditions.
Veldhuijzen van Zanten, Jet J C S; Rouse, Peter C; Hale, Elizabeth D; Ntoumanis, Nikos; Metsios, George S; Duda, Joan L; Kitas, George D
2015-10-01
Rheumatoid arthritis (RA) is an autoimmune disease, which not only affects the joints but can also impact on general well-being and risk for cardiovascular disease. Regular physical activity and exercise in patients with RA have numerous health benefits. Nevertheless, the majority of patients with RA are physically inactive. This indicates that people with RA might experience additional or more severe barriers to physical activity or exercise than the general population. This narrative review provides an overview of perceived barriers, benefits and facilitators of physical activity and exercise in RA. Databases were searched for articles published until September 2014 using the terms 'rheumatoid arthritis', 'physical activity', 'exercise', 'barriers', 'facilitators', 'benefits', 'motivation', 'motivators' and 'enablers'. Similarities were found between disease-specific barriers and benefits of physical activity and exercise, e.g. pain and fatigue are frequently mentioned as barriers, but reductions in pain and fatigue are perceived benefits of physical activity and exercise. Even though exercise does not influence the existence of barriers, physically active patients appear to be more capable of overcoming them. Therefore, exercise programmes should enhance self-efficacy for exercise in order to achieve long-term physical activity and exercise behaviour. Encouragement from health professionals and friends/family are facilitators for physical activity and exercise. There is a need for interventions that support RA patients in overcoming barriers to physical activity and exercise and help sustain this important health behaviour.
Induction and prevention of low-T3 syndrome in exercising women.
Loucks, A B; Callister, R
1993-05-01
To investigate the influence of exercise on thyroid metabolism, 46 healthy young regularly menstruating sedentary women were randomly assigned to a 3 x 2 experimental design of aerobic exercise and energy availability treatments. Energy availability was defined as dietary energy intake minus energy expenditure during exercise. After 4 days of treatments, low energy availability (8 vs. 30 kcal.kg body wt-1.day-1) had reduced 3,5,3'-triiodothyronine (T3) by 15% and free T3 (fT3) by 18% and had increased thyroxine (T4) by 7% and reverse T3 (rT3) by 24% (all P < 0.01), whereas free T4 (fT4) was unchanged (P = 0.08). Exercise quantity (0 vs. 1,300 kcal/day) and intensity (40 vs. 70% of aerobic capacity) did not affect any thyroid hormone (all P > 0.10). That is, low-T3 syndrome was induced by the energy cost of exercise and was prevented in exercising women by increasing dietary energy intake. Selective observation of low-T3 syndrome in amenorrheic and not in regularly menstruating athletes suggests that exercise may compromise the availability of energy for reproductive function in humans. If so, athletic amenorrhea might be prevented or reversed through dietary reform without reducing exercise quantity or intensity.
[Exercise contacts in the treatment of substance dependence and mental disorders].
Skrede, Atle; Munkvold, Harald; Watne, Øyvind; Martinsen, Egil W
2006-08-10
Physical exercise is useful for individuals with mental disorders with additional substance dependency or abuse. Many exercise actively while in institution, but a major challenge is to continue after discharge. Many patients are isolated and lonely and find it hard to motivate themselves to exercise on their own. In Sogn og Fjordane county, Norway, the problem was dealt with through a training program of exercise contacts. These are social support persons who were thus assigned a new function. By way of a 40-hour course that covered physical activity, psychological problems, and substance abuse and dependency, lay people were trained to help people in their home environment. By the end of 2005, almost 300 exercise contacts, living in 25 of the 26 municipalities in the county, had passed the course exam. Their expertise is highly demanded and more courses have been requested. The course evaluations have been quite positive. In particular, the practical instructions about how to exercise, in combination with updated theory on substance abuse/dependence and mental disorders, were highly appreciated. Clients were helped to continue with regular physical activity and they have appreciated the improved physical and mental health that was associated with regular exercise. Moreover, the exercise contacts help clients break social isolation and have given them access to the common social arenas.
Voluntary water intake during and following moderate exercise in the cold.
Mears, Stephen A; Shirreffs, Susan M
2014-02-01
Exercising in cold environments results in water losses, yet examination of resultant voluntary water intake has focused on warm conditions. The purpose of the study was to assess voluntary water intake during and following exercise in a cold compared with a warm environment. Ten healthy males (22 ± 2 years, 67.8 ± 7.0 kg, 1.77 ± 0.06 m, VO₂peak 60.5 ± 8.9 ml·kg⁻¹·min⁻¹) completed two trials (7-8 days). In each trial subjects sat for 30 min before cycling at 70% VO₂peak (162 ± 27W) for 60 min in 25.0 ± 0.1 °C, 50.8 ± 1.5% relative humidity (RH; warm) or 0.4 ± 1.0 °C, 68.8 ± 7.5% RH (cold). Subjects then sat for 120 min at 22.2 ± 1.2 °C, 50.5 ± 8.0% RH. Ad libitum drinking was allowed during the exercise and recovery periods. Urine volume, body mass, serum osmolality, and sensations of thirst were measured at baseline, postexercise and after 60 and 120 min of the recovery period. Sweat loss was greater in the warm trial (0.96 ± 0.18 l v 0.48 ± 0.15 l; p < .0001) but body mass losses over the trials were similar (1.15 ± 0.34% (cold) v 1.03 ± 0.26% (warm)). More water was consumed throughout the duration of the warm trial (0.81 ± 0.42 l v 0.50 ± 0.49 l; p = .001). Cumulative urine output was greater in the cold trial (0.81 ± 0.46 v 0.54 ± 0.31 l; p = .036). Postexercise serum osmolality was higher compared with baseline in the cold (292 ± 2 v 287 ± 3 mOsm.kg⁻¹, p < .0001) and warm trials (288 ± 5 v 285 ± 4 mOsm·kg⁻¹; p = .048). Thirst sensations were similar between trials (p > .05). Ad libitum water intake adjusted so that similar body mass losses occurred in both trials. In the cold there appeared to a blunted thirst response.