Patch-based image reconstruction for PET using prior-image derived dictionaries
NASA Astrophysics Data System (ADS)
Tahaei, Marzieh S.; Reader, Andrew J.
2016-09-01
In PET image reconstruction, regularization is often needed to reduce the noise in the resulting images. Patch-based image processing techniques have recently been successfully used for regularization in medical image reconstruction through a penalized likelihood framework. Re-parameterization within reconstruction is another powerful regularization technique in which the object in the scanner is re-parameterized using coefficients for spatially-extensive basis vectors. In this work, a method for extracting patch-based basis vectors from the subject’s MR image is proposed. The coefficients for these basis vectors are then estimated using the conventional MLEM algorithm. Furthermore, using the alternating direction method of multipliers, an algorithm for optimizing the Poisson log-likelihood while imposing sparsity on the parameters is also proposed. This novel method is then utilized to find sparse coefficients for the patch-based basis vectors extracted from the MR image. The results indicate the superiority of the proposed methods to patch-based regularization using the penalized likelihood framework.
SPECT reconstruction using DCT-induced tight framelet regularization
NASA Astrophysics Data System (ADS)
Zhang, Jiahan; Li, Si; Xu, Yuesheng; Schmidtlein, C. R.; Lipson, Edward D.; Feiglin, David H.; Krol, Andrzej
2015-03-01
Wavelet transforms have been successfully applied in many fields of image processing. Yet, to our knowledge, they have never been directly incorporated to the objective function in Emission Computed Tomography (ECT) image reconstruction. Our aim has been to investigate if the ℓ1-norm of non-decimated discrete cosine transform (DCT) coefficients of the estimated radiotracer distribution could be effectively used as the regularization term for the penalized-likelihood (PL) reconstruction, where a regularizer is used to enforce the image smoothness in the reconstruction. In this study, the ℓ1-norm of 2D DCT wavelet decomposition was used as a regularization term. The Preconditioned Alternating Projection Algorithm (PAPA), which we proposed in earlier work to solve penalized likelihood (PL) reconstruction with non-differentiable regularizers, was used to solve this optimization problem. The DCT wavelet decompositions were performed on the transaxial reconstructed images. We reconstructed Monte Carlo simulated SPECT data obtained for a numerical phantom with Gaussian blobs as hot lesions and with a warm random lumpy background. Reconstructed images using the proposed method exhibited better noise suppression and improved lesion conspicuity, compared with images reconstructed using expectation maximization (EM) algorithm with Gaussian post filter (GPF). Also, the mean square error (MSE) was smaller, compared with EM-GPF. A critical and challenging aspect of this method was selection of optimal parameters. In summary, our numerical experiments demonstrated that the ℓ1-norm of discrete cosine transform (DCT) wavelet frame transform DCT regularizer shows promise for SPECT image reconstruction using PAPA method.
Gang, G J; Siewerdsen, J H; Stayman, J W
2016-02-01
This work applies task-driven optimization to design CT tube current modulation and directional regularization in penalized-likelihood (PL) reconstruction. The relative performance of modulation schemes commonly adopted for filtered-backprojection (FBP) reconstruction were also evaluated for PL in comparison. We adopt a task-driven imaging framework that utilizes a patient-specific anatomical model and information of the imaging task to optimize imaging performance in terms of detectability index ( d' ). This framework leverages a theoretical model based on implicit function theorem and Fourier approximations to predict local spatial resolution and noise characteristics of PL reconstruction as a function of the imaging parameters to be optimized. Tube current modulation was parameterized as a linear combination of Gaussian basis functions, and regularization was based on the design of (directional) pairwise penalty weights for the 8 in-plane neighboring voxels. Detectability was optimized using a covariance matrix adaptation evolutionary strategy algorithm. Task-driven designs were compared to conventional tube current modulation strategies for a Gaussian detection task in an abdomen phantom. The task-driven design yielded the best performance, improving d' by ~20% over an unmodulated acquisition. Contrary to FBP, PL reconstruction using automatic exposure control and modulation based on minimum variance (in FBP) performed worse than the unmodulated case, decreasing d' by 16% and 9%, respectively. This work shows that conventional tube current modulation schemes suitable for FBP can be suboptimal for PL reconstruction. Thus, the proposed task-driven optimization provides additional opportunities for improved imaging performance and dose reduction beyond that achievable with conventional acquisition and reconstruction.
Exponential series approaches for nonparametric graphical models
NASA Astrophysics Data System (ADS)
Janofsky, Eric
Markov Random Fields (MRFs) or undirected graphical models are parsimonious representations of joint probability distributions. This thesis studies high-dimensional, continuous-valued pairwise Markov Random Fields. We are particularly interested in approximating pairwise densities whose logarithm belongs to a Sobolev space. For this problem we propose the method of exponential series which approximates the log density by a finite-dimensional exponential family with the number of sufficient statistics increasing with the sample size. We consider two approaches to estimating these models. The first is regularized maximum likelihood. This involves optimizing the sum of the log-likelihood of the data and a sparsity-inducing regularizer. We then propose a variational approximation to the likelihood based on tree-reweighted, nonparametric message passing. This approximation allows for upper bounds on risk estimates, leverages parallelization and is scalable to densities on hundreds of nodes. We show how the regularized variational MLE may be estimated using a proximal gradient algorithm. We then consider estimation using regularized score matching. This approach uses an alternative scoring rule to the log-likelihood, which obviates the need to compute the normalizing constant of the distribution. For general continuous-valued exponential families, we provide parameter and edge consistency results. As a special case we detail a new approach to sparse precision matrix estimation which has statistical performance competitive with the graphical lasso and computational performance competitive with the state-of-the-art glasso algorithm. We then describe results for model selection in the nonparametric pairwise model using exponential series. The regularized score matching problem is shown to be a convex program; we provide scalable algorithms based on consensus alternating direction method of multipliers (ADMM) and coordinate-wise descent. We use simulations to compare our method to others in the literature as well as the aforementioned TRW estimator.
SMURC: High-Dimension Small-Sample Multivariate Regression With Covariance Estimation.
Bayar, Belhassen; Bouaynaya, Nidhal; Shterenberg, Roman
2017-03-01
We consider a high-dimension low sample-size multivariate regression problem that accounts for correlation of the response variables. The system is underdetermined as there are more parameters than samples. We show that the maximum likelihood approach with covariance estimation is senseless because the likelihood diverges. We subsequently propose a normalization of the likelihood function that guarantees convergence. We call this method small-sample multivariate regression with covariance (SMURC) estimation. We derive an optimization problem and its convex approximation to compute SMURC. Simulation results show that the proposed algorithm outperforms the regularized likelihood estimator with known covariance matrix and the sparse conditional Gaussian graphical model. We also apply SMURC to the inference of the wing-muscle gene network of the Drosophila melanogaster (fruit fly).
Gang, Grace J; Siewerdsen, Jeffrey H; Stayman, J Webster
2017-12-01
This paper presents a joint optimization of dynamic fluence field modulation (FFM) and regularization in quadratic penalized-likelihood reconstruction that maximizes a task-based imaging performance metric. We adopted a task-driven imaging framework for prospective designs of the imaging parameters. A maxi-min objective function was adopted to maximize the minimum detectability index ( ) throughout the image. The optimization algorithm alternates between FFM (represented by low-dimensional basis functions) and local regularization (including the regularization strength and directional penalty weights). The task-driven approach was compared with three FFM strategies commonly proposed for FBP reconstruction (as well as a task-driven TCM strategy) for a discrimination task in an abdomen phantom. The task-driven FFM assigned more fluence to less attenuating anteroposterior views and yielded approximately constant fluence behind the object. The optimal regularization was almost uniform throughout image. Furthermore, the task-driven FFM strategy redistribute fluence across detector elements in order to prescribe more fluence to the more attenuating central region of the phantom. Compared with all strategies, the task-driven FFM strategy not only improved minimum by at least 17.8%, but yielded higher over a large area inside the object. The optimal FFM was highly dependent on the amount of regularization, indicating the importance of a joint optimization. Sample reconstructions of simulated data generally support the performance estimates based on computed . The improvements in detectability show the potential of the task-driven imaging framework to improve imaging performance at a fixed dose, or, equivalently, to provide a similar level of performance at reduced dose.
Liu, Fang; Eugenio, Evercita C
2018-04-01
Beta regression is an increasingly popular statistical technique in medical research for modeling of outcomes that assume values in (0, 1), such as proportions and patient reported outcomes. When outcomes take values in the intervals [0,1), (0,1], or [0,1], zero-or-one-inflated beta (zoib) regression can be used. We provide a thorough review on beta regression and zoib regression in the modeling, inferential, and computational aspects via the likelihood-based and Bayesian approaches. We demonstrate the statistical and practical importance of correctly modeling the inflation at zero/one rather than ad hoc replacing them with values close to zero/one via simulation studies; the latter approach can lead to biased estimates and invalid inferences. We show via simulation studies that the likelihood-based approach is computationally faster in general than MCMC algorithms used in the Bayesian inferences, but runs the risk of non-convergence, large biases, and sensitivity to starting values in the optimization algorithm especially with clustered/correlated data, data with sparse inflation at zero and one, and data that warrant regularization of the likelihood. The disadvantages of the regular likelihood-based approach make the Bayesian approach an attractive alternative in these cases. Software packages and tools for fitting beta and zoib regressions in both the likelihood-based and Bayesian frameworks are also reviewed.
Gang, G J; Siewerdsen, J H; Stayman, J W
2017-02-11
This work presents a task-driven joint optimization of fluence field modulation (FFM) and regularization in quadratic penalized-likelihood (PL) reconstruction. Conventional FFM strategies proposed for filtered-backprojection (FBP) are evaluated in the context of PL reconstruction for comparison. We present a task-driven framework that leverages prior knowledge of the patient anatomy and imaging task to identify FFM and regularization. We adopted a maxi-min objective that ensures a minimum level of detectability index ( d' ) across sample locations in the image volume. The FFM designs were parameterized by 2D Gaussian basis functions to reduce dimensionality of the optimization and basis function coefficients were estimated using the covariance matrix adaptation evolutionary strategy (CMA-ES) algorithm. The FFM was jointly optimized with both space-invariant and spatially-varying regularization strength ( β ) - the former via an exhaustive search through discrete values and the latter using an alternating optimization where β was exhaustively optimized locally and interpolated to form a spatially-varying map. The optimal FFM inverts as β increases, demonstrating the importance of a joint optimization. For the task and object investigated, the optimal FFM assigns more fluence through less attenuating views, counter to conventional FFM schemes proposed for FBP. The maxi-min objective homogenizes detectability throughout the image and achieves a higher minimum detectability than conventional FFM strategies. The task-driven FFM designs found in this work are counter to conventional patterns for FBP and yield better performance in terms of the maxi-min objective, suggesting opportunities for improved image quality and/or dose reduction when model-based reconstructions are applied in conjunction with FFM.
Joint Optimization of Fluence Field Modulation and Regularization in Task-Driven Computed Tomography
Gang, G. J.; Siewerdsen, J. H.; Stayman, J. W.
2017-01-01
Purpose This work presents a task-driven joint optimization of fluence field modulation (FFM) and regularization in quadratic penalized-likelihood (PL) reconstruction. Conventional FFM strategies proposed for filtered-backprojection (FBP) are evaluated in the context of PL reconstruction for comparison. Methods We present a task-driven framework that leverages prior knowledge of the patient anatomy and imaging task to identify FFM and regularization. We adopted a maxi-min objective that ensures a minimum level of detectability index (d′) across sample locations in the image volume. The FFM designs were parameterized by 2D Gaussian basis functions to reduce dimensionality of the optimization and basis function coefficients were estimated using the covariance matrix adaptation evolutionary strategy (CMA-ES) algorithm. The FFM was jointly optimized with both space-invariant and spatially-varying regularization strength (β) - the former via an exhaustive search through discrete values and the latter using an alternating optimization where β was exhaustively optimized locally and interpolated to form a spatially-varying map. Results The optimal FFM inverts as β increases, demonstrating the importance of a joint optimization. For the task and object investigated, the optimal FFM assigns more fluence through less attenuating views, counter to conventional FFM schemes proposed for FBP. The maxi-min objective homogenizes detectability throughout the image and achieves a higher minimum detectability than conventional FFM strategies. Conclusions The task-driven FFM designs found in this work are counter to conventional patterns for FBP and yield better performance in terms of the maxi-min objective, suggesting opportunities for improved image quality and/or dose reduction when model-based reconstructions are applied in conjunction with FFM. PMID:28626290
Joint optimization of fluence field modulation and regularization in task-driven computed tomography
NASA Astrophysics Data System (ADS)
Gang, G. J.; Siewerdsen, J. H.; Stayman, J. W.
2017-03-01
Purpose: This work presents a task-driven joint optimization of fluence field modulation (FFM) and regularization in quadratic penalized-likelihood (PL) reconstruction. Conventional FFM strategies proposed for filtered-backprojection (FBP) are evaluated in the context of PL reconstruction for comparison. Methods: We present a task-driven framework that leverages prior knowledge of the patient anatomy and imaging task to identify FFM and regularization. We adopted a maxi-min objective that ensures a minimum level of detectability index (d') across sample locations in the image volume. The FFM designs were parameterized by 2D Gaussian basis functions to reduce dimensionality of the optimization and basis function coefficients were estimated using the covariance matrix adaptation evolutionary strategy (CMA-ES) algorithm. The FFM was jointly optimized with both space-invariant and spatially-varying regularization strength (β) - the former via an exhaustive search through discrete values and the latter using an alternating optimization where β was exhaustively optimized locally and interpolated to form a spatially-varying map. Results: The optimal FFM inverts as β increases, demonstrating the importance of a joint optimization. For the task and object investigated, the optimal FFM assigns more fluence through less attenuating views, counter to conventional FFM schemes proposed for FBP. The maxi-min objective homogenizes detectability throughout the image and achieves a higher minimum detectability than conventional FFM strategies. Conclusions: The task-driven FFM designs found in this work are counter to conventional patterns for FBP and yield better performance in terms of the maxi-min objective, suggesting opportunities for improved image quality and/or dose reduction when model-based reconstructions are applied in conjunction with FFM.
Likelihood ratio decisions in memory: three implied regularities.
Glanzer, Murray; Hilford, Andrew; Maloney, Laurence T
2009-06-01
We analyze four general signal detection models for recognition memory that differ in their distributional assumptions. Our analyses show that a basic assumption of signal detection theory, the likelihood ratio decision axis, implies three regularities in recognition memory: (1) the mirror effect, (2) the variance effect, and (3) the z-ROC length effect. For each model, we present the equations that produce the three regularities and show, in computed examples, how they do so. We then show that the regularities appear in data from a range of recognition studies. The analyses and data in our study support the following generalization: Individuals make efficient recognition decisions on the basis of likelihood ratios.
ELASTIC NET FOR COX'S PROPORTIONAL HAZARDS MODEL WITH A SOLUTION PATH ALGORITHM.
Wu, Yichao
2012-01-01
For least squares regression, Efron et al. (2004) proposed an efficient solution path algorithm, the least angle regression (LAR). They showed that a slight modification of the LAR leads to the whole LASSO solution path. Both the LAR and LASSO solution paths are piecewise linear. Recently Wu (2011) extended the LAR to generalized linear models and the quasi-likelihood method. In this work we extend the LAR further to handle Cox's proportional hazards model. The goal is to develop a solution path algorithm for the elastic net penalty (Zou and Hastie (2005)) in Cox's proportional hazards model. This goal is achieved in two steps. First we extend the LAR to optimizing the log partial likelihood plus a fixed small ridge term. Then we define a path modification, which leads to the solution path of the elastic net regularized log partial likelihood. Our solution path is exact and piecewise determined by ordinary differential equation systems.
Polarimetric image reconstruction algorithms
NASA Astrophysics Data System (ADS)
Valenzuela, John R.
In the field of imaging polarimetry Stokes parameters are sought and must be inferred from noisy and blurred intensity measurements. Using a penalized-likelihood estimation framework we investigate reconstruction quality when estimating intensity images and then transforming to Stokes parameters (traditional estimator), and when estimating Stokes parameters directly (Stokes estimator). We define our cost function for reconstruction by a weighted least squares data fit term and a regularization penalty. It is shown that under quadratic regularization, the traditional and Stokes estimators can be made equal by appropriate choice of regularization parameters. It is empirically shown that, when using edge preserving regularization, estimating the Stokes parameters directly leads to lower RMS error in reconstruction. Also, the addition of a cross channel regularization term further lowers the RMS error for both methods especially in the case of low SNR. The technique of phase diversity has been used in traditional incoherent imaging systems to jointly estimate an object and optical system aberrations. We extend the technique of phase diversity to polarimetric imaging systems. Specifically, we describe penalized-likelihood methods for jointly estimating Stokes images and optical system aberrations from measurements that contain phase diversity. Jointly estimating Stokes images and optical system aberrations involves a large parameter space. A closed-form expression for the estimate of the Stokes images in terms of the aberration parameters is derived and used in a formulation that reduces the dimensionality of the search space to the number of aberration parameters only. We compare the performance of the joint estimator under both quadratic and edge-preserving regularization. The joint estimator with edge-preserving regularization yields higher fidelity polarization estimates than with quadratic regularization. Under quadratic regularization, using the reduced-parameter search strategy, accurate aberration estimates can be obtained without recourse to regularization "tuning". Phase-diverse wavefront sensing is emerging as a viable candidate wavefront sensor for adaptive-optics systems. In a quadratically penalized weighted least squares estimation framework a closed form expression for the object being imaged in terms of the aberrations in the system is available. This expression offers a dramatic reduction of the dimensionality of the estimation problem and thus is of great interest for practical applications. We have derived an expression for an approximate joint covariance matrix for object and aberrations in the phase diversity context. Our expression for the approximate joint covariance is compared with the "known-object" Cramer-Rao lower bound that is typically used for system parameter optimization. Estimates of the optimal amount of defocus in a phase-diverse wavefront sensor derived from the joint-covariance matrix, the known-object Cramer-Rao bound, and Monte Carlo simulations are compared for an extended scene and a point object. It is found that our variance approximation, that incorporates the uncertainty of the object, leads to an improvement in predicting the optimal amount of defocus to use in a phase-diverse wavefront sensor.
Three regularities of recognition memory: the role of bias.
Hilford, Andrew; Maloney, Laurence T; Glanzer, Murray; Kim, Kisok
2015-12-01
A basic assumption of Signal Detection Theory is that decisions are made on the basis of likelihood ratios. In a preceding paper, Glanzer, Hilford, and Maloney (Psychonomic Bulletin & Review, 16, 431-455, 2009) showed that the likelihood ratio assumption implies that three regularities will occur in recognition memory: (1) the Mirror Effect, (2) the Variance Effect, (3) the normalized Receiver Operating Characteristic (z-ROC) Length Effect. The paper offered formal proofs and computational demonstrations that decisions based on likelihood ratios produce the three regularities. A survey of data based on group ROCs from 36 studies validated the likelihood ratio assumption by showing that its three implied regularities are ubiquitous. The study noted, however, that bias, another basic factor in Signal Detection Theory, can obscure the Mirror Effect. In this paper we examine how bias affects the regularities at the theoretical level. The theoretical analysis shows: (1) how bias obscures the Mirror Effect, not the other two regularities, and (2) four ways to counter that obscuring. We then report the results of five experiments that support the theoretical analysis. The analyses and the experimental results also demonstrate: (1) that the three regularities govern individual, as well as group, performance, (2) alternative explanations of the regularities are ruled out, and (3) that Signal Detection Theory, correctly applied, gives a simple and unified explanation of recognition memory data.
Generalized massive optimal data compression
NASA Astrophysics Data System (ADS)
Alsing, Justin; Wandelt, Benjamin
2018-05-01
In this paper, we provide a general procedure for optimally compressing N data down to n summary statistics, where n is equal to the number of parameters of interest. We show that compression to the score function - the gradient of the log-likelihood with respect to the parameters - yields n compressed statistics that are optimal in the sense that they preserve the Fisher information content of the data. Our method generalizes earlier work on linear Karhunen-Loéve compression for Gaussian data whilst recovering both lossless linear compression and quadratic estimation as special cases when they are optimal. We give a unified treatment that also includes the general non-Gaussian case as long as mild regularity conditions are satisfied, producing optimal non-linear summary statistics when appropriate. As a worked example, we derive explicitly the n optimal compressed statistics for Gaussian data in the general case where both the mean and covariance depend on the parameters.
Estimating Function Approaches for Spatial Point Processes
NASA Astrophysics Data System (ADS)
Deng, Chong
Spatial point pattern data consist of locations of events that are often of interest in biological and ecological studies. Such data are commonly viewed as a realization from a stochastic process called spatial point process. To fit a parametric spatial point process model to such data, likelihood-based methods have been widely studied. However, while maximum likelihood estimation is often too computationally intensive for Cox and cluster processes, pairwise likelihood methods such as composite likelihood, Palm likelihood usually suffer from the loss of information due to the ignorance of correlation among pairs. For many types of correlated data other than spatial point processes, when likelihood-based approaches are not desirable, estimating functions have been widely used for model fitting. In this dissertation, we explore the estimating function approaches for fitting spatial point process models. These approaches, which are based on the asymptotic optimal estimating function theories, can be used to incorporate the correlation among data and yield more efficient estimators. We conducted a series of studies to demonstrate that these estmating function approaches are good alternatives to balance the trade-off between computation complexity and estimating efficiency. First, we propose a new estimating procedure that improves the efficiency of pairwise composite likelihood method in estimating clustering parameters. Our approach combines estimating functions derived from pairwise composite likeli-hood estimation and estimating functions that account for correlations among the pairwise contributions. Our method can be used to fit a variety of parametric spatial point process models and can yield more efficient estimators for the clustering parameters than pairwise composite likelihood estimation. We demonstrate its efficacy through a simulation study and an application to the longleaf pine data. Second, we further explore the quasi-likelihood approach on fitting second-order intensity function of spatial point processes. However, the original second-order quasi-likelihood is barely feasible due to the intense computation and high memory requirement needed to solve a large linear system. Motivated by the existence of geometric regular patterns in the stationary point processes, we find a lower dimension representation of the optimal weight function and propose a reduced second-order quasi-likelihood approach. Through a simulation study, we show that the proposed method not only demonstrates superior performance in fitting the clustering parameter but also merits in the relaxation of the constraint of the tuning parameter, H. Third, we studied the quasi-likelihood type estimating funciton that is optimal in a certain class of first-order estimating functions for estimating the regression parameter in spatial point process models. Then, by using a novel spectral representation, we construct an implementation that is computationally much more efficient and can be applied to more general setup than the original quasi-likelihood method.
ELASTIC NET FOR COX’S PROPORTIONAL HAZARDS MODEL WITH A SOLUTION PATH ALGORITHM
Wu, Yichao
2012-01-01
For least squares regression, Efron et al. (2004) proposed an efficient solution path algorithm, the least angle regression (LAR). They showed that a slight modification of the LAR leads to the whole LASSO solution path. Both the LAR and LASSO solution paths are piecewise linear. Recently Wu (2011) extended the LAR to generalized linear models and the quasi-likelihood method. In this work we extend the LAR further to handle Cox’s proportional hazards model. The goal is to develop a solution path algorithm for the elastic net penalty (Zou and Hastie (2005)) in Cox’s proportional hazards model. This goal is achieved in two steps. First we extend the LAR to optimizing the log partial likelihood plus a fixed small ridge term. Then we define a path modification, which leads to the solution path of the elastic net regularized log partial likelihood. Our solution path is exact and piecewise determined by ordinary differential equation systems. PMID:23226932
Condition Number Regularized Covariance Estimation*
Won, Joong-Ho; Lim, Johan; Kim, Seung-Jean; Rajaratnam, Bala
2012-01-01
Estimation of high-dimensional covariance matrices is known to be a difficult problem, has many applications, and is of current interest to the larger statistics community. In many applications including so-called the “large p small n” setting, the estimate of the covariance matrix is required to be not only invertible, but also well-conditioned. Although many regularization schemes attempt to do this, none of them address the ill-conditioning problem directly. In this paper, we propose a maximum likelihood approach, with the direct goal of obtaining a well-conditioned estimator. No sparsity assumption on either the covariance matrix or its inverse are are imposed, thus making our procedure more widely applicable. We demonstrate that the proposed regularization scheme is computationally efficient, yields a type of Steinian shrinkage estimator, and has a natural Bayesian interpretation. We investigate the theoretical properties of the regularized covariance estimator comprehensively, including its regularization path, and proceed to develop an approach that adaptively determines the level of regularization that is required. Finally, we demonstrate the performance of the regularized estimator in decision-theoretic comparisons and in the financial portfolio optimization setting. The proposed approach has desirable properties, and can serve as a competitive procedure, especially when the sample size is small and when a well-conditioned estimator is required. PMID:23730197
Condition Number Regularized Covariance Estimation.
Won, Joong-Ho; Lim, Johan; Kim, Seung-Jean; Rajaratnam, Bala
2013-06-01
Estimation of high-dimensional covariance matrices is known to be a difficult problem, has many applications, and is of current interest to the larger statistics community. In many applications including so-called the "large p small n " setting, the estimate of the covariance matrix is required to be not only invertible, but also well-conditioned. Although many regularization schemes attempt to do this, none of them address the ill-conditioning problem directly. In this paper, we propose a maximum likelihood approach, with the direct goal of obtaining a well-conditioned estimator. No sparsity assumption on either the covariance matrix or its inverse are are imposed, thus making our procedure more widely applicable. We demonstrate that the proposed regularization scheme is computationally efficient, yields a type of Steinian shrinkage estimator, and has a natural Bayesian interpretation. We investigate the theoretical properties of the regularized covariance estimator comprehensively, including its regularization path, and proceed to develop an approach that adaptively determines the level of regularization that is required. Finally, we demonstrate the performance of the regularized estimator in decision-theoretic comparisons and in the financial portfolio optimization setting. The proposed approach has desirable properties, and can serve as a competitive procedure, especially when the sample size is small and when a well-conditioned estimator is required.
Spectral CT of the extremities with a silicon strip photon counting detector
NASA Astrophysics Data System (ADS)
Sisniega, A.; Zbijewski, W.; Stayman, J. W.; Xu, J.; Taguchi, K.; Siewerdsen, J. H.
2015-03-01
Purpose: Photon counting x-ray detectors (PCXDs) are an important emerging technology for spectral imaging and material differentiation with numerous potential applications in diagnostic imaging. We report development of a Si-strip PCXD system originally developed for mammography with potential application to spectral CT of musculoskeletal extremities, including challenges associated with sparse sampling, spectral calibration, and optimization for higher energy x-ray beams. Methods: A bench-top CT system was developed incorporating a Si-strip PCXD, fixed anode x-ray source, and rotational and translational motions to execute complex acquisition trajectories. Trajectories involving rotation and translation combined with iterative reconstruction were investigated, including single and multiple axial scans and longitudinal helical scans. The system was calibrated to provide accurate spectral separation in dual-energy three-material decomposition of soft-tissue, bone, and iodine. Image quality and decomposition accuracy were assessed in experiments using a phantom with pairs of bone and iodine inserts (3, 5, 15 and 20 mm) and an anthropomorphic wrist. Results: The designed trajectories improved the sampling distribution from 56% minimum sampling of voxels to 75%. Use of iterative reconstruction (viz., penalized likelihood with edge preserving regularization) in combination with such trajectories resulted in a very low level of artifacts in images of the wrist. For large bone or iodine inserts (>5 mm diameter), the error in the estimated material concentration was <16% for (50 mg/mL) bone and <8% for (5 mg/mL) iodine with strong regularization. For smaller inserts, errors of 20-40% were observed and motivate improved methods for spectral calibration and optimization of the edge-preserving regularizer. Conclusion: Use of PCXDs for three-material decomposition in joint imaging proved feasible through a combination of rotation-translation acquisition trajectories and iterative reconstruction with optimized regularization.
Tang, Hongxiu; Cai, Weibin; Wang, Hongjing; Zhang, Qing; Qian, Ling; Shell, Duane F; Newman, Ian M; Yin, Ping
2013-01-01
This study examines the association between cultural orientation and drinking behaviors among university students. Cultural orientation is the measure of how the cultural values of individuals living in their own society are influenced by cultural values introduced from the outside. In 2011, a cross-sectional survey collected data from 1279 university students from six universities in central China. Participants used a likert scale to rank a series of statements reflecting cultural values from the previously validated Chinese Cultural Orientation Scale and answered questions about their drinking behaviors and socio-demographic characteristics. Statistically significant differences in cultural orientation were observed for gender, hometown and type of university attendance. Traditional-oriented students were more likely to be occasional drinkers or nondrinkers, while marginal-oriented students, bicultural-oriented students and western-oriented students were more likely to be regular drinkers. Bicultural orientation (OR = 1.80, P<0.05) and marginal orientation (OR = 1.64, P<0.05) increased the likelihood of the student being regular drinking, compared to students with traditional orientations. Males (OR = 4.40, P<0.05) had a higher likelihood of regular drinking than females, graduate students (OR = 2.59, P<0.05) had a higher likelihood of regular drinking than undergraduates, students from urban areas (OR = 1.79, P<0.05) had a higher likelihood of regular drinking than those from towns/rural areas, and students attending key universities (OR = 0.48, P<0.05) had a lower likelihood of regular drinking than those attending general universities. Cultural orientation influences drinking behaviors. Traditional cultural orientation was associated with less drinking while western cultural orientation, marginal cultural orientation and bicultural orientation were associated with more drinking. The role of gender, hometown and university attendance is partially moderated through the influence of cultural orientation. The relationship between a traditional cultural orientation and alcohol drinking suggests that traditional Chinese cultural values should be examined for their role in possibly reducing alcohol-related risks through education and policy initiatives.
NASA Astrophysics Data System (ADS)
Makeev, Andrey; Ikejimba, Lynda; Lo, Joseph Y.; Glick, Stephen J.
2016-03-01
Although digital mammography has reduced breast cancer mortality by approximately 30%, sensitivity and specificity are still far from perfect. In particular, the performance of mammography is especially limited for women with dense breast tissue. Two out of every three biopsies performed in the U.S. are unnecessary, thereby resulting in increased patient anxiety, pain, and possible complications. One promising tomographic breast imaging method that has recently been approved by the FDA is dedicated breast computed tomography (BCT). However, visualizing lesions with BCT can still be challenging for women with dense breast tissue due to the minimal contrast for lesions surrounded by fibroglandular tissue. In recent years there has been renewed interest in improving lesion conspicuity in x-ray breast imaging by administration of an iodinated contrast agent. Due to the fully 3-D imaging nature of BCT, as well as sub-optimal contrast enhancement while the breast is under compression with mammography and breast tomosynthesis, dedicated BCT of the uncompressed breast is likely to offer the best solution for injected contrast-enhanced x-ray breast imaging. It is well known that use of statistically-based iterative reconstruction in CT results in improved image quality at lower radiation dose. Here we investigate possible improvements in image reconstruction for BCT, by optimizing free regularization parameter in method of maximum likelihood and comparing its performance with clinical cone-beam filtered backprojection (FBP) algorithm.
Tang, Hongxiu; Cai, Weibin; Wang, Hongjing; Zhang, Qing; Qian, Ling; Shell, Duane F.; Newman, Ian M.; Yin, Ping
2013-01-01
Objectives This study examines the association between cultural orientation and drinking behaviors among university students. Cultural orientation is the measure of how the cultural values of individuals living in their own society are influenced by cultural values introduced from the outside. Methods In 2011, a cross-sectional survey collected data from 1279 university students from six universities in central China. Participants used a likert scale to rank a series of statements reflecting cultural values from the previously validated Chinese Cultural Orientation Scale and answered questions about their drinking behaviors and socio-demographic characteristics. Results Statistically significant differences in cultural orientation were observed for gender, hometown and type of university attendance. Traditional-oriented students were more likely to be occasional drinkers or nondrinkers, while marginal-oriented students, bicultural-oriented students and western-oriented students were more likely to be regular drinkers. Bicultural orientation (OR = 1.80, P<0.05) and marginal orientation (OR = 1.64, P<0.05) increased the likelihood of the student being regular drinking, compared to students with traditional orientations. Males (OR = 4.40, P<0.05) had a higher likelihood of regular drinking than females, graduate students (OR = 2.59, P<0.05) had a higher likelihood of regular drinking than undergraduates, students from urban areas (OR = 1.79, P<0.05) had a higher likelihood of regular drinking than those from towns/rural areas, and students attending key universities (OR = 0.48, P<0.05) had a lower likelihood of regular drinking than those attending general universities. Conclusions Cultural orientation influences drinking behaviors. Traditional cultural orientation was associated with less drinking while western cultural orientation, marginal cultural orientation and bicultural orientation were associated with more drinking. The role of gender, hometown and university attendance is partially moderated through the influence of cultural orientation. The relationship between a traditional cultural orientation and alcohol drinking suggests that traditional Chinese cultural values should be examined for their role in possibly reducing alcohol-related risks through education and policy initiatives. PMID:23359611
Yang, Li; Wang, Guobao; Qi, Jinyi
2016-04-01
Detecting cancerous lesions is a major clinical application of emission tomography. In a previous work, we studied penalized maximum-likelihood (PML) image reconstruction for lesion detection in static PET. Here we extend our theoretical analysis of static PET reconstruction to dynamic PET. We study both the conventional indirect reconstruction and direct reconstruction for Patlak parametric image estimation. In indirect reconstruction, Patlak parametric images are generated by first reconstructing a sequence of dynamic PET images, and then performing Patlak analysis on the time activity curves (TACs) pixel-by-pixel. In direct reconstruction, Patlak parametric images are estimated directly from raw sinogram data by incorporating the Patlak model into the image reconstruction procedure. PML reconstruction is used in both the indirect and direct reconstruction methods. We use a channelized Hotelling observer (CHO) to assess lesion detectability in Patlak parametric images. Simplified expressions for evaluating the lesion detectability have been derived and applied to the selection of the regularization parameter value to maximize detection performance. The proposed method is validated using computer-based Monte Carlo simulations. Good agreements between the theoretical predictions and the Monte Carlo results are observed. Both theoretical predictions and Monte Carlo simulation results show the benefit of the indirect and direct methods under optimized regularization parameters in dynamic PET reconstruction for lesion detection, when compared with the conventional static PET reconstruction.
Effect of Low-Dose MDCT and Iterative Reconstruction on Trabecular Bone Microstructure Assessment.
Kopp, Felix K; Holzapfel, Konstantin; Baum, Thomas; Nasirudin, Radin A; Mei, Kai; Garcia, Eduardo G; Burgkart, Rainer; Rummeny, Ernst J; Kirschke, Jan S; Noël, Peter B
2016-01-01
We investigated the effects of low-dose multi detector computed tomography (MDCT) in combination with statistical iterative reconstruction algorithms on trabecular bone microstructure parameters. Twelve donated vertebrae were scanned with the routine radiation exposure used in our department (standard-dose) and a low-dose protocol. Reconstructions were performed with filtered backprojection (FBP) and maximum-likelihood based statistical iterative reconstruction (SIR). Trabecular bone microstructure parameters were assessed and statistically compared for each reconstruction. Moreover, fracture loads of the vertebrae were biomechanically determined and correlated to the assessed microstructure parameters. Trabecular bone microstructure parameters based on low-dose MDCT and SIR significantly correlated with vertebral bone strength. There was no significant difference between microstructure parameters calculated on low-dose SIR and standard-dose FBP images. However, the results revealed a strong dependency on the regularization strength applied during SIR. It was observed that stronger regularization might corrupt the microstructure analysis, because the trabecular structure is a very small detail that might get lost during the regularization process. As a consequence, the introduction of SIR for trabecular bone microstructure analysis requires a specific optimization of the regularization parameters. Moreover, in comparison to other approaches, superior noise-resolution trade-offs can be found with the proposed methods.
Spatial resolution properties of motion-compensated tomographic image reconstruction methods.
Chun, Se Young; Fessler, Jeffrey A
2012-07-01
Many motion-compensated image reconstruction (MCIR) methods have been proposed to correct for subject motion in medical imaging. MCIR methods incorporate motion models to improve image quality by reducing motion artifacts and noise. This paper analyzes the spatial resolution properties of MCIR methods and shows that nonrigid local motion can lead to nonuniform and anisotropic spatial resolution for conventional quadratic regularizers. This undesirable property is akin to the known effects of interactions between heteroscedastic log-likelihoods (e.g., Poisson likelihood) and quadratic regularizers. This effect may lead to quantification errors in small or narrow structures (such as small lesions or rings) of reconstructed images. This paper proposes novel spatial regularization design methods for three different MCIR methods that account for known nonrigid motion. We develop MCIR regularization designs that provide approximately uniform and isotropic spatial resolution and that match a user-specified target spatial resolution. Two-dimensional PET simulations demonstrate the performance and benefits of the proposed spatial regularization design methods.
NASA Astrophysics Data System (ADS)
Coakley, Kevin J.; Vecchia, Dominic F.; Hussey, Daniel S.; Jacobson, David L.
2013-10-01
At the NIST Neutron Imaging Facility, we collect neutron projection data for both the dry and wet states of a Proton-Exchange-Membrane (PEM) fuel cell. Transmitted thermal neutrons captured in a scintillator doped with lithium-6 produce scintillation light that is detected by an amorphous silicon detector. Based on joint analysis of the dry and wet state projection data, we reconstruct a residual neutron attenuation image with a Penalized Likelihood method with an edge-preserving Huber penalty function that has two parameters that control how well jumps in the reconstruction are preserved and how well noisy fluctuations are smoothed out. The choice of these parameters greatly influences the resulting reconstruction. We present a data-driven method that objectively selects these parameters, and study its performance for both simulated and experimental data. Before reconstruction, we transform the projection data so that the variance-to-mean ratio is approximately one. For both simulated and measured projection data, the Penalized Likelihood method reconstruction is visually sharper than a reconstruction yielded by a standard Filtered Back Projection method. In an idealized simulation experiment, we demonstrate that the cross validation procedure selects regularization parameters that yield a reconstruction that is nearly optimal according to a root-mean-square prediction error criterion.
Tian, Yuxi; Schuemie, Martijn J; Suchard, Marc A
2018-06-22
Propensity score adjustment is a popular approach for confounding control in observational studies. Reliable frameworks are needed to determine relative propensity score performance in large-scale studies, and to establish optimal propensity score model selection methods. We detail a propensity score evaluation framework that includes synthetic and real-world data experiments. Our synthetic experimental design extends the 'plasmode' framework and simulates survival data under known effect sizes, and our real-world experiments use a set of negative control outcomes with presumed null effect sizes. In reproductions of two published cohort studies, we compare two propensity score estimation methods that contrast in their model selection approach: L1-regularized regression that conducts a penalized likelihood regression, and the 'high-dimensional propensity score' (hdPS) that employs a univariate covariate screen. We evaluate methods on a range of outcome-dependent and outcome-independent metrics. L1-regularization propensity score methods achieve superior model fit, covariate balance and negative control bias reduction compared with the hdPS. Simulation results are mixed and fluctuate with simulation parameters, revealing a limitation of simulation under the proportional hazards framework. Including regularization with the hdPS reduces commonly reported non-convergence issues but has little effect on propensity score performance. L1-regularization incorporates all covariates simultaneously into the propensity score model and offers propensity score performance superior to the hdPS marginal screen.
Joint image registration and fusion method with a gradient strength regularization
NASA Astrophysics Data System (ADS)
Lidong, Huang; Wei, Zhao; Jun, Wang
2015-05-01
Image registration is an essential process for image fusion, and fusion performance can be used to evaluate registration accuracy. We propose a maximum likelihood (ML) approach to joint image registration and fusion instead of treating them as two independent processes in the conventional way. To improve the visual quality of a fused image, a gradient strength (GS) regularization is introduced in the cost function of ML. The GS of the fused image is controllable by setting the target GS value in the regularization term. This is useful because a larger target GS brings a clearer fused image and a smaller target GS makes the fused image smoother and thus restrains noise. Hence, the subjective quality of the fused image can be improved whether the source images are polluted by noise or not. We can obtain the fused image and registration parameters successively by minimizing the cost function using an iterative optimization method. Experimental results show that our method is effective with transformation, rotation, and scale parameters in the range of [-2.0, 2.0] pixel, [-1.1 deg, 1.1 deg], and [0.95, 1.05], respectively, and variances of noise smaller than 300. It also demonstrated that our method yields a more visual pleasing fused image and higher registration accuracy compared with a state-of-the-art algorithm.
Fast Component Pursuit for Large-Scale Inverse Covariance Estimation.
Han, Lei; Zhang, Yu; Zhang, Tong
2016-08-01
The maximum likelihood estimation (MLE) for the Gaussian graphical model, which is also known as the inverse covariance estimation problem, has gained increasing interest recently. Most existing works assume that inverse covariance estimators contain sparse structure and then construct models with the ℓ 1 regularization. In this paper, different from existing works, we study the inverse covariance estimation problem from another perspective by efficiently modeling the low-rank structure in the inverse covariance, which is assumed to be a combination of a low-rank part and a diagonal matrix. One motivation for this assumption is that the low-rank structure is common in many applications including the climate and financial analysis, and another one is that such assumption can reduce the computational complexity when computing its inverse. Specifically, we propose an efficient COmponent Pursuit (COP) method to obtain the low-rank part, where each component can be sparse. For optimization, the COP method greedily learns a rank-one component in each iteration by maximizing the log-likelihood. Moreover, the COP algorithm enjoys several appealing properties including the existence of an efficient solution in each iteration and the theoretical guarantee on the convergence of this greedy approach. Experiments on large-scale synthetic and real-world datasets including thousands of millions variables show that the COP method is faster than the state-of-the-art techniques for the inverse covariance estimation problem when achieving comparable log-likelihood on test data.
Evaluation of a 3D point cloud tetrahedral tomographic reconstruction method
Pereira, N F; Sitek, A
2011-01-01
Tomographic reconstruction on an irregular grid may be superior to reconstruction on a regular grid. This is achieved through an appropriate choice of the image space model, the selection of an optimal set of points and the use of any available prior information during the reconstruction process. Accordingly, a number of reconstruction-related parameters must be optimized for best performance. In this work, a 3D point cloud tetrahedral mesh reconstruction method is evaluated for quantitative tasks. A linear image model is employed to obtain the reconstruction system matrix and five point generation strategies are studied. The evaluation is performed using the recovery coefficient, as well as voxel- and template-based estimates of bias and variance measures, computed over specific regions in the reconstructed image. A similar analysis is performed for regular grid reconstructions that use voxel basis functions. The maximum likelihood expectation maximization reconstruction algorithm is used. For the tetrahedral reconstructions, of the five point generation methods that are evaluated, three use image priors. For evaluation purposes, an object consisting of overlapping spheres with varying activity is simulated. The exact parallel projection data of this object are obtained analytically using a parallel projector, and multiple Poisson noise realizations of these exact data are generated and reconstructed using the different point generation strategies. The unconstrained nature of point placement in some of the irregular mesh-based reconstruction strategies has superior activity recovery for small, low-contrast image regions. The results show that, with an appropriately generated set of mesh points, the irregular grid reconstruction methods can out-perform reconstructions on a regular grid for mathematical phantoms, in terms of the performance measures evaluated. PMID:20736496
Evaluation of a 3D point cloud tetrahedral tomographic reconstruction method
NASA Astrophysics Data System (ADS)
Pereira, N. F.; Sitek, A.
2010-09-01
Tomographic reconstruction on an irregular grid may be superior to reconstruction on a regular grid. This is achieved through an appropriate choice of the image space model, the selection of an optimal set of points and the use of any available prior information during the reconstruction process. Accordingly, a number of reconstruction-related parameters must be optimized for best performance. In this work, a 3D point cloud tetrahedral mesh reconstruction method is evaluated for quantitative tasks. A linear image model is employed to obtain the reconstruction system matrix and five point generation strategies are studied. The evaluation is performed using the recovery coefficient, as well as voxel- and template-based estimates of bias and variance measures, computed over specific regions in the reconstructed image. A similar analysis is performed for regular grid reconstructions that use voxel basis functions. The maximum likelihood expectation maximization reconstruction algorithm is used. For the tetrahedral reconstructions, of the five point generation methods that are evaluated, three use image priors. For evaluation purposes, an object consisting of overlapping spheres with varying activity is simulated. The exact parallel projection data of this object are obtained analytically using a parallel projector, and multiple Poisson noise realizations of these exact data are generated and reconstructed using the different point generation strategies. The unconstrained nature of point placement in some of the irregular mesh-based reconstruction strategies has superior activity recovery for small, low-contrast image regions. The results show that, with an appropriately generated set of mesh points, the irregular grid reconstruction methods can out-perform reconstructions on a regular grid for mathematical phantoms, in terms of the performance measures evaluated.
Childhood self-regulatory skills predict adolescent smoking behavior.
deBlois, Madeleine E; Kubzansky, Laura D
2016-01-01
Cigarette smoking is the primary preventable cause of premature death. Better self-regulatory capacity is a key psychosocial factor that has been linked with reduced likelihood of tobacco use. Studies point to the importance of multiple forms of self-regulation, in the domains of emotion, attention, behavior, and social regulation, although no work has evaluated all of these domains in a single prospective study. Considering those four self-regulation domains separately and in combination, this study prospectively investigated whether greater self-regulation in childhood is associated with reduced likelihood of either trying cigarettes or becoming a regular smoker. Hypotheses were tested using longitudinal data from a cohort of 1709 US children participating in the Panel Study of Income Dynamics--Child Development Supplement. Self-regulation was assessed at study baseline when children ranged in age from 6 to 14 years, using parent-reported measures derived from the Behavior Problems Index and Positive Behavior Scale. Children ages 12-19 self-reported their cigarette smoking, defined in two ways: (1) trying and (2) regular use. Separate multiple logistic regression models were used to evaluate odds of trying or regularly using cigarettes, taking account of various potential confounders. Over an average of five years of follow-up, 34.5% of children ever tried cigarettes and 10.6% smoked regularly. Higher behavioral self-regulation was the only domain associated with reduced odds of trying cigarettes (odds ratio (OR) = .85, 95% confidence interval (CI) = .73-.99). Effective regulation in each of the domains was associated with reduced likelihood of regular smoking, although the association with social regulation was not statistically significant (ORs range .70-.85). For each additional domain in which a child was able to regulate successfully, the odds of becoming a regular smoker dropped by 18% (95% CI = .70-.97). These findings suggest that effective childhood self-regulatory skills across multiple domains may reduce future health risk behaviors.
Regular examinations for toxic maculopathy in long-term chloroquine or hydroxychloroquine users.
Nika, Melisa; Blachley, Taylor S; Edwards, Paul; Lee, Paul P; Stein, Joshua D
2014-10-01
According to evidence-based, expert recommendations, long-term users of chloroquine or hydroxychloroquine sulfate should undergo regular visits to eye care providers and diagnostic testing to check for maculopathy. To determine whether patients with rheumatoid arthritis (RA) or systemic lupus erythematosus (SLE) taking chloroquine or hydroxychloroquine are regularly visiting eye care providers and being screened for maculopathy. Patients with RA or SLE who were continuously enrolled in a particular managed care network for at least 5 years between January 1, 2001, and December 31, 2011, were studied. Patients' amount of chloroquine or hydroxychloroquine use in the 5 years since the initial RA or SLE diagnosis was calculated, along with their number of eye care visits and diagnostic tests for maculopathy. Those at high risk for maculopathy were identified. Logistic regression was performed to assess potential factors associated with regular eye care visits (annual visits in ≥3 of 5 years) among chloroquine or hydroxychloroquine users, including those at highest risk for maculopathy. Among chloroquine or hydroxychloroquine users and those at high risk for toxic maculopathy, the proportions with regular eye care visits and diagnostic testing, as well as the likelihood of regular eye care visits. Among 18 051 beneficiaries with RA or SLE, 6339 (35.1%) had at least 1 record of chloroquine or hydroxychloroquine use, and 1409 (7.8%) had used chloroquine or hydroxychloroquine for at least 4 years. Among those at high risk for maculopathy, 27.9% lacked regular eye care visits, 6.1% had no visits to eye care providers, and 34.5% had no diagnostic testing for maculopathy during the 5-year period. Among high-risk patients, each additional month of chloroquine or hydroxychloroquine use was associated with a 2.0% increased likelihood of regular eye care (adjusted odds ratio, 1.02; 95% CI, 1.01-1.03). High-risk patients whose SLE or RA was managed by rheumatologists had a 77.4% increased likelihood of regular eye care (adjusted odds ratio, 1.77; 95% CI, 1.27-2.47) relative to other patients. In this insured population, many patients at high risk for maculopathy associated with the use of chloroquine or hydroxychloroquine are not undergoing routine monitoring for this serious adverse effect. Future studies should explore factors contributing to suboptimal adherence to expert guidelines and the potential effect on patients' vision-related outcomes.
Generalized t-statistic for two-group classification.
Komori, Osamu; Eguchi, Shinto; Copas, John B
2015-06-01
In the classic discriminant model of two multivariate normal distributions with equal variance matrices, the linear discriminant function is optimal both in terms of the log likelihood ratio and in terms of maximizing the standardized difference (the t-statistic) between the means of the two distributions. In a typical case-control study, normality may be sensible for the control sample but heterogeneity and uncertainty in diagnosis may suggest that a more flexible model is needed for the cases. We generalize the t-statistic approach by finding the linear function which maximizes a standardized difference but with data from one of the groups (the cases) filtered by a possibly nonlinear function U. We study conditions for consistency of the method and find the function U which is optimal in the sense of asymptotic efficiency. Optimality may also extend to other measures of discriminatory efficiency such as the area under the receiver operating characteristic curve. The optimal function U depends on a scalar probability density function which can be estimated non-parametrically using a standard numerical algorithm. A lasso-like version for variable selection is implemented by adding L1-regularization to the generalized t-statistic. Two microarray data sets in the study of asthma and various cancers are used as motivating examples. © 2014, The International Biometric Society.
Taber, Jennifer M.; Klein, William M. P.; Ferrer, Rebecca A.; Kent, Erin E.; Harris, Peter R.
2016-01-01
Background Optimism and self-affirmation promote adaptive coping, goal achievement, and better health. Purpose To examine the associations of optimism and spontaneous self-affirmation (SSA) with physical, mental, and cognitive health and information seeking among cancer survivors. Methods Cancer survivors (n=326) completed the Health Information National Trends Survey 2013, a national survey of U.S. adults. Participants reported optimism, SSA, cognitive and physical impairment, affect, health status, and information seeking. Results Participants higher in optimism reported better health on nearly all indices examined, even when controlling for SSA. Participants higher in SSA reported lower likelihood of cognitive impairment, greater happiness and hopefulness, and greater likelihood of cancer information seeking. SSA remained significantly associated with greater hopefulness and cancer information seeking when controlling for optimism. Conclusions Optimism and SSA may be associated with beneficial health-related outcomes among cancer survivors. Given the demonstrated malleability of self-affirmation, these findings represent important avenues for future research. PMID:26497697
Taber, Jennifer M; Klein, William M P; Ferrer, Rebecca A; Kent, Erin E; Harris, Peter R
2016-04-01
Optimism and self-affirmation promote adaptive coping, goal achievement, and better health. The aim of this study is to examine the associations of optimism and spontaneous self-affirmation (SSA) with physical, mental, and cognitive health and information seeking among cancer survivors. Cancer survivors (n = 326) completed the Health Information National Trends Survey 2013, a national survey of US adults. Participants reported optimism, SSA, cognitive and physical impairment, affect, health status, and information seeking. Participants higher in optimism reported better health on nearly all indices examined, even when controlling for SSA. Participants higher in SSA reported lower likelihood of cognitive impairment, greater happiness and hopefulness, and greater likelihood of cancer information seeking. SSA remained significantly associated with greater hopefulness and cancer information seeking when controlling for optimism. Optimism and SSA may be associated with beneficial health-related outcomes among cancer survivors. Given the demonstrated malleability of self-affirmation, these findings represent important avenues for future research.
NASA Astrophysics Data System (ADS)
Dang, H.; Wang, A. S.; Sussman, Marc S.; Siewerdsen, J. H.; Stayman, J. W.
2014-09-01
Sequential imaging studies are conducted in many clinical scenarios. Prior images from previous studies contain a great deal of patient-specific anatomical information and can be used in conjunction with subsequent imaging acquisitions to maintain image quality while enabling radiation dose reduction (e.g., through sparse angular sampling, reduction in fluence, etc). However, patient motion between images in such sequences results in misregistration between the prior image and current anatomy. Existing prior-image-based approaches often include only a simple rigid registration step that can be insufficient for capturing complex anatomical motion, introducing detrimental effects in subsequent image reconstruction. In this work, we propose a joint framework that estimates the 3D deformation between an unregistered prior image and the current anatomy (based on a subsequent data acquisition) and reconstructs the current anatomical image using a model-based reconstruction approach that includes regularization based on the deformed prior image. This framework is referred to as deformable prior image registration, penalized-likelihood estimation (dPIRPLE). Central to this framework is the inclusion of a 3D B-spline-based free-form-deformation model into the joint registration-reconstruction objective function. The proposed framework is solved using a maximization strategy whereby alternating updates to the registration parameters and image estimates are applied allowing for improvements in both the registration and reconstruction throughout the optimization process. Cadaver experiments were conducted on a cone-beam CT testbench emulating a lung nodule surveillance scenario. Superior reconstruction accuracy and image quality were demonstrated using the dPIRPLE algorithm as compared to more traditional reconstruction methods including filtered backprojection, penalized-likelihood estimation (PLE), prior image penalized-likelihood estimation (PIPLE) without registration, and prior image penalized-likelihood estimation with rigid registration of a prior image (PIRPLE) over a wide range of sampling sparsity and exposure levels.
Scott, Laura A; Roxburgh, Amanda; Bruno, Raimondo; Matthews, Allison; Burns, Lucy
2012-09-01
Residual effects of ecstasy use induce neurotransmitter changes that make it biologically plausible that extended use of the drug may induce psychological distress. However, there has been only mixed support for this in the literature. The presence of polysubstance use is a confounding factor. The aim of this study was to investigate whether regular cannabis and/or regular methamphetamine use confers additional risk of poor mental health and high levels of psychological distress, beyond regular ecstasy use alone. Three years of data from a yearly, cross-sectional, quantitative survey of Australian regular ecstasy users was examined. Participants were divided into four groups according to whether they regularly (at least monthly) used ecstasy only (n=936), ecstasy and weekly cannabis (n=697), ecstasy and weekly methamphetamine (n=108) or ecstasy, weekly cannabis and weekly methamphetamine (n=180). Self-reported mental health problems and Kessler Psychological Distress Scale (K10) were examined. Approximately one-fifth of participants self-reported at least one mental health problem, most commonly depression and anxiety. The addition of regular cannabis and/or methamphetamine use substantially increases the likelihood of self-reported mental health problems, particularly with regard to paranoia, over regular ecstasy use alone. Regular cannabis use remained significantly associated with self reported mental health problems even when other differences between groups were accounted for. Regular cannabis and methamphetamine use was also associated with earlier initiation to ecstasy use. These findings suggest that patterns of drug use can help identify at risk groups that could benefit from targeted approaches in education and interventions. Given that early initiation to substance use was more common in those with regular cannabis and methamphetamine use and given that this group had a higher likelihood of mental health problems, work around delaying onset of initiation should continue to be a priority. Copyright © 2012 Elsevier Ltd. All rights reserved.
Chiao, P C; Rogers, W L; Fessler, J A; Clinthorne, N H; Hero, A O
1994-01-01
The authors have previously developed a model-based strategy for joint estimation of myocardial perfusion and boundaries using ECT (emission computed tomography). They have also reported difficulties with boundary estimation in low contrast and low count rate situations. Here they propose using boundary side information (obtainable from high resolution MRI and CT images) or boundary regularization to improve both perfusion and boundary estimation in these situations. To fuse boundary side information into the emission measurements, the authors formulate a joint log-likelihood function to include auxiliary boundary measurements as well as ECT projection measurements. In addition, they introduce registration parameters to align auxiliary boundary measurements with ECT measurements and jointly estimate these parameters with other parameters of interest from the composite measurements. In simulated PET O-15 water myocardial perfusion studies using a simplified model, the authors show that the joint estimation improves perfusion estimation performance and gives boundary alignment accuracy of <0.5 mm even at 0.2 million counts. They implement boundary regularization through formulating a penalized log-likelihood function. They also demonstrate in simulations that simultaneous regularization of the epicardial boundary and myocardial thickness gives comparable perfusion estimation accuracy with the use of boundary side information.
Mason, Tyler B; Lewis, Robin J
2017-12-01
Binge eating is a significant concern among college age women-both Caucasian and African-American women. Research has shown that social support, coping, and optimism are associated with engaging in fewer negative health behaviors including binge eating among college students. However, the impact of sources of social support (i.e., support from family, friends, and a special person), rumination, and optimism on binge eating as a function of race/ethnicity has received less attention. The purpose of this study was to examine the association between social support, rumination, and optimism and binge eating among Caucasian and American-American women, separately. Caucasian (n = 100) and African-American (n = 84) women from a university in the Mid-Atlantic US completed an online survey about eating behaviors and psychosocial health. Social support from friends was associated with less likelihood of binge eating among Caucasian women. Social support from family was associated with less likelihood of binge eating among African-American women, but greater likelihood of binge eating among Caucasian women. Rumination was associated with greater likelihood of binge eating among Caucasian and African-American women. Optimism was associated with less likelihood of binge eating among African-American women. These results demonstrate similarities and differences in correlates of binge eating as a function of race/ethnicity.
Religiosity profiles of American youth in relation to substance use, violence, and delinquency.
Salas-Wright, Christopher P; Vaughn, Michael G; Hodge, David R; Perron, Brian E
2012-12-01
Relatively little is known in terms of the relationship between religiosity profiles and adolescents' involvement in substance use, violence, and delinquency. Using a diverse sample of 17,705 (49 % female) adolescents from the 2008 National Survey on Drug Use and Health, latent profile analysis and multinomial regression are employed to examine the relationships between latent religiosity classes and substance use, violence, and delinquency. Results revealed a five class solution. Classes were identified as religiously disengaged (10.76 %), religiously infrequent (23.59 %), privately religious (6.55 %), religious regulars (40.85 %), and religiously devoted (18.25 %). Membership in the religiously devoted class was associated with the decreased likelihood of participation in a variety of substance use behaviors as well as decreases in the likelihood of fighting and theft. To a lesser extent, membership in the religious regulars class was also associated with the decreased likelihood of substance use and fighting. However, membership in the religiously infrequent and privately religious classes was only associated with the decreased likelihood of marijuana use. Findings suggest that private religiosity alone does not serve to buffer youth effectively against involvement in problem behavior, but rather that it is the combination of intrinsic and extrinsic adolescent religiosity factors that is associated with participation in fewer problem behaviors.
Minimal residual method provides optimal regularization parameter for diffuse optical tomography
NASA Astrophysics Data System (ADS)
Jagannath, Ravi Prasad K.; Yalavarthy, Phaneendra K.
2012-10-01
The inverse problem in the diffuse optical tomography is known to be nonlinear, ill-posed, and sometimes under-determined, requiring regularization to obtain meaningful results, with Tikhonov-type regularization being the most popular one. The choice of this regularization parameter dictates the reconstructed optical image quality and is typically chosen empirically or based on prior experience. An automated method for optimal selection of regularization parameter that is based on regularized minimal residual method (MRM) is proposed and is compared with the traditional generalized cross-validation method. The results obtained using numerical and gelatin phantom data indicate that the MRM-based method is capable of providing the optimal regularization parameter.
Minimal residual method provides optimal regularization parameter for diffuse optical tomography.
Jagannath, Ravi Prasad K; Yalavarthy, Phaneendra K
2012-10-01
The inverse problem in the diffuse optical tomography is known to be nonlinear, ill-posed, and sometimes under-determined, requiring regularization to obtain meaningful results, with Tikhonov-type regularization being the most popular one. The choice of this regularization parameter dictates the reconstructed optical image quality and is typically chosen empirically or based on prior experience. An automated method for optimal selection of regularization parameter that is based on regularized minimal residual method (MRM) is proposed and is compared with the traditional generalized cross-validation method. The results obtained using numerical and gelatin phantom data indicate that the MRM-based method is capable of providing the optimal regularization parameter.
NASA Astrophysics Data System (ADS)
Alsing, Justin; Wandelt, Benjamin; Feeney, Stephen
2018-07-01
Many statistical models in cosmology can be simulated forwards but have intractable likelihood functions. Likelihood-free inference methods allow us to perform Bayesian inference from these models using only forward simulations, free from any likelihood assumptions or approximations. Likelihood-free inference generically involves simulating mock data and comparing to the observed data; this comparison in data space suffers from the curse of dimensionality and requires compression of the data to a small number of summary statistics to be tractable. In this paper, we use massive asymptotically optimal data compression to reduce the dimensionality of the data space to just one number per parameter, providing a natural and optimal framework for summary statistic choice for likelihood-free inference. Secondly, we present the first cosmological application of Density Estimation Likelihood-Free Inference (DELFI), which learns a parametrized model for joint distribution of data and parameters, yielding both the parameter posterior and the model evidence. This approach is conceptually simple, requires less tuning than traditional Approximate Bayesian Computation approaches to likelihood-free inference and can give high-fidelity posteriors from orders of magnitude fewer forward simulations. As an additional bonus, it enables parameter inference and Bayesian model comparison simultaneously. We demonstrate DELFI with massive data compression on an analysis of the joint light-curve analysis supernova data, as a simple validation case study. We show that high-fidelity posterior inference is possible for full-scale cosmological data analyses with as few as ˜104 simulations, with substantial scope for further improvement, demonstrating the scalability of likelihood-free inference to large and complex cosmological data sets.
Are Long-Term Chloroquine or Hydroxychloroquine Users Being Checked Regularly for Toxic Maculopathy?
Nika, Melisa; Blachley, Taylor S.; Edwards, Paul; Lee, Paul P.; Stein, Joshua D.
2014-01-01
Importance According to evidence-based, expert recommendations, long-term users of chloroquine (CQ) or hydroxychloroquine (HCQ) should undergo regular visits to eye-care providers and diagnostic testing to check for maculopathy. Objective To determine whether patients with rheumatoid arthritis (RA) or systemic lupus erythematosus (SLE) taking CQ or HCQ are regularly visiting eye-care providers and being screened for maculopathy. Setting, Design and Participants Patients with RA or SLE who were continuously enrolled in a particular managed-care network for ≥5 years during 2001-2011 were studied. Patients' amount of CQ/HCQ use in the 5 years since initial RA/SLE diagnosis was calculated, along with their number of eye-care visits and diagnostic tests for maculopathy. Those at high risk for maculopathy were identified. Visits to eye providers and diagnostic testing for maculopathy were assessed for each enrollee over the study period. Logistic regression was performed to assess potential factors associated with regular eye-care-provider visits (≥3 in 5 years) among CQ/HCQ users, including those at greatest risk for maculopathy. Main Outcome Measures Among CQ/HCQ users and those at high risk for toxic maculopathy, the proportions with regular eye-care visits and diagnostic testing, and the likelihood of regular eye-care visits (odds ratios [ORs] with 95% confidence intervals [CI]). Results Among 18,051 beneficiaries with RA or SLE, 6,339 (35.1%) had ≥1 record of HCQ/CQ use and 1,409 (7.8%) used HCQ/CQ for ≥4 years. Among those at high risk for maculopathy, 27.9% lacked regular eye-provider visits, 6.1% had no visits to eye providers, and 34.5% had no diagnostic testing for maculopathy during the 5-year period. Among high-risk patients, each additional month of HCQ/CQ use was associated with a 2.0%-increased likelihood of regular eye care (adjusted OR=1.02, CI=1.01-1.03). High-risk patients whose SLE/RA were managed by rheumatologists had a 77%-increased likelihood of regular eye care (adjusted OR=1.77, CI=1.27-2.47), relative to other patients. Conclusions and Relevance In this insured population, many patients at high risk for HCQ/CQ-associated maculopathy are not undergoing routine monitoring for this serious side effect. Future studies should explore factors contributing to suboptimal adherence to expert guidelines and the potential impact on patients' vision-related outcomes. PMID:24970348
Regularity of a renewal process estimated from binary data.
Rice, John D; Strawderman, Robert L; Johnson, Brent A
2017-10-09
Assessment of the regularity of a sequence of events over time is important for clinical decision-making as well as informing public health policy. Our motivating example involves determining the effect of an intervention on the regularity of HIV self-testing behavior among high-risk individuals when exact self-testing times are not recorded. Assuming that these unobserved testing times follow a renewal process, the goals of this work are to develop suitable methods for estimating its distributional parameters when only the presence or absence of at least one event per subject in each of several observation windows is recorded. We propose two approaches to estimation and inference: a likelihood-based discrete survival model using only time to first event; and a potentially more efficient quasi-likelihood approach based on the forward recurrence time distribution using all available data. Regularity is quantified and estimated by the coefficient of variation (CV) of the interevent time distribution. Focusing on the gamma renewal process, where the shape parameter of the corresponding interevent time distribution has a monotone relationship with its CV, we conduct simulation studies to evaluate the performance of the proposed methods. We then apply them to our motivating example, concluding that the use of text message reminders significantly improves the regularity of self-testing, but not its frequency. A discussion on interesting directions for further research is provided. © 2017, The International Biometric Society.
Encoding Dissimilarity Data for Statistical Model Building.
Wahba, Grace
2010-12-01
We summarize, review and comment upon three papers which discuss the use of discrete, noisy, incomplete, scattered pairwise dissimilarity data in statistical model building. Convex cone optimization codes are used to embed the objects into a Euclidean space which respects the dissimilarity information while controlling the dimension of the space. A "newbie" algorithm is provided for embedding new objects into this space. This allows the dissimilarity information to be incorporated into a Smoothing Spline ANOVA penalized likelihood model, a Support Vector Machine, or any model that will admit Reproducing Kernel Hilbert Space components, for nonparametric regression, supervised learning, or semi-supervised learning. Future work and open questions are discussed. The papers are: F. Lu, S. Keles, S. Wright and G. Wahba 2005. A framework for kernel regularization with application to protein clustering. Proceedings of the National Academy of Sciences 102, 12332-1233.G. Corrada Bravo, G. Wahba, K. Lee, B. Klein, R. Klein and S. Iyengar 2009. Examining the relative influence of familial, genetic and environmental covariate information in flexible risk models. Proceedings of the National Academy of Sciences 106, 8128-8133F. Lu, Y. Lin and G. Wahba. Robust manifold unfolding with kernel regularization. TR 1008, Department of Statistics, University of Wisconsin-Madison.
Vitamin D deficiency and leisure time activities in the elderly: are all pastimes the same?
De Rui, Marina; Toffanello, Elena Debora; Veronese, Nicola; Zambon, Sabina; Bolzetta, Francesco; Sartori, Leonardo; Musacchio, Estella; Corti, Maria Chiara; Baggio, Giovannella; Crepaldi, Gaetano; Perissinotto, Egle; Manzato, Enzo; Sergi, Giuseppe
2014-01-01
Optimal vitamin D status is important for overall health and well-being, particularly in the elderly. Although vitamin D synthesis in the skin declines with age, exposure to sunlight still seems to help older-aged adults to achieve adequate serum 25-hydroxyvitamin D (25OHD) levels. Elderly people would therefore benefit from outdoor leisure activities, but the effects of different types of pastime on serum 25OHD levels have yet to be thoroughly investigated. To assess the association of different pastimes with 25OHD deficiency in elderly subjects. A sample of 2,349 community-dwelling elderly individuals (1,389 females and 960 males) enrolled in the Progetto Veneto Anziani was analyzed. Brisk walking, cycling, gardening and fishing were classed as outdoor activities, and dancing and gym workouts as indoor pastimes. Any activities undertaken for at least 1 hour/week during the previous month were considered as being practiced regularly. Logistic regression models were used to estimate the association between different pastimes and 25OHD deficiency. Serum 25OHD levels were significantly higher in individuals who engaged in outdoor pastimes (+25% in women, +27.7% in men) compared to those who did not. In particular, subjects regularly practicing gardening or cycling had higher serum 25OHD levels than those who did not, whereas 25OHD levels differed little between subjects who did or did not undertake indoor activities. Among the outdoor pastimes considered, logistic regression analysis confirmed a lower likelihood of vitamin D deficiency (25OHD<50 nmol/L) for cyclists (OR 0.51, 95% CI 0.37-0.69 in women; OR 0.50, 95% CI 0.29-0.87 in men) and gardeners (OR 0.62, 95% CI 0.47-0.83 in women; OR 0.46, 95% CI 0.26-0.80), but not for brisk walkers. Regular cycling and gardening reduce the likelihood of inadequate vitamin D status in Caucasian elderly people, irrespective of their age, BMI and comorbidities, and of the season of the year.
Borderline personality disorder and regularly drinking alcohol before sex.
Thompson, Ronald G; Eaton, Nicholas R; Hu, Mei-Chen; Hasin, Deborah S
2017-07-01
Drinking alcohol before sex increases the likelihood of engaging in unprotected intercourse, having multiple sexual partners and becoming infected with sexually transmitted infections. Borderline personality disorder (BPD), a complex psychiatric disorder characterised by pervasive instability in emotional regulation, self-image, interpersonal relationships and impulse control, is associated with substance use disorders and sexual risk behaviours. However, no study has examined the relationship between BPD and drinking alcohol before sex in the USA. This study examined the association between BPD and regularly drinking before sex in a nationally representative adult sample. Participants were 17 491 sexually active drinkers from Wave 2 of the National Epidemiologic Survey on Alcohol and Related Conditions. Logistic regression models estimated effects of BPD diagnosis, specific borderline diagnostic criteria and BPD criterion count on the likelihood of regularly (mostly or always) drinking alcohol before sex, adjusted for controls. Borderline personality disorder diagnosis doubled the odds of regularly drinking before sex [adjusted odds ratio (AOR) = 2.26; confidence interval (CI) = 1.63, 3.14]. Of nine diagnostic criteria, impulsivity in areas that are self-damaging remained a significant predictor of regularly drinking before sex (AOR = 1.82; CI = 1.42, 2.35). The odds of regularly drinking before sex increased by 20% for each endorsed criterion (AOR = 1.20; CI = 1.14, 1.27) DISCUSSION AND CONCLUSIONS: This is the first study to examine the relationship between BPD and regularly drinking alcohol before sex in the USA. Substance misuse treatment should assess regularly drinking before sex, particularly among patients with BPD, and BPD treatment should assess risk at the intersection of impulsivity, sexual behaviour and substance use. [Thompson Jr RG, Eaton NR, Hu M-C, Hasin DS Borderline personality disorder and regularly drinking alcohol before sex Drug Alcohol Rev 2017;36:540-545]. © 2017 Australasian Professional Society on Alcohol and other Drugs.
Mass Shootings in the United States: Common Characteristics and Predictive Behaviors
2013-06-14
shooting research, evidence supports the theory that workplace and school shootings share common characteristics. First, in neither location does the...While the location did not fit the NYPD categories, from the shooter’s perspective the location represented a workplace and therefore did not...likelihood of female killers in regular murders, women appear more likely to commit regular murders than rampage killings (Fessenden 2000). Next, the
Likelihood testing of seismicity-based rate forecasts of induced earthquakes in Oklahoma and Kansas
Moschetti, Morgan P.; Hoover, Susan M.; Mueller, Charles
2016-01-01
Likelihood testing of induced earthquakes in Oklahoma and Kansas has identified the parameters that optimize the forecasting ability of smoothed seismicity models and quantified the recent temporal stability of the spatial seismicity patterns. Use of the most recent 1-year period of earthquake data and use of 10–20-km smoothing distances produced the greatest likelihood. The likelihood that the locations of January–June 2015 earthquakes were consistent with optimized forecasts decayed with increasing elapsed time between the catalogs used for model development and testing. Likelihood tests with two additional sets of earthquakes from 2014 exhibit a strong sensitivity of the rate of decay to the smoothing distance. Marked reductions in likelihood are caused by the nonstationarity of the induced earthquake locations. Our results indicate a multiple-fold benefit from smoothed seismicity models in developing short-term earthquake rate forecasts for induced earthquakes in Oklahoma and Kansas, relative to the use of seismic source zones.
optBINS: Optimal Binning for histograms
NASA Astrophysics Data System (ADS)
Knuth, Kevin H.
2018-03-01
optBINS (optimal binning) determines the optimal number of bins in a uniform bin-width histogram by deriving the posterior probability for the number of bins in a piecewise-constant density model after assigning a multinomial likelihood and a non-informative prior. The maximum of the posterior probability occurs at a point where the prior probability and the the joint likelihood are balanced. The interplay between these opposing factors effectively implements Occam's razor by selecting the most simple model that best describes the data.
Reduction of Working Time: Does It Lead to a Healthy Lifestyle?
Ahn, Taehyun
2016-08-01
I examine whether working hours have a causal effect on the health behaviors of workers. In assessing the causal relationship, I estimate fixed-effects instrumental variable models by using exogenous variation in adopting a reduced workweek in South Korea as an instrument for work hours. The estimation results reveal that shortening work hours induces individuals to exercise regularly and decreases the likelihood of smoking, with more pronounced effects for heavy smokers. While a work-hour reduction substantially increases the probability of drinking participation, it does not significantly affect the likelihood of frequent or daily drinking habits. In addition, the effect of a work-hour reduction on regular exercise is salient among women and older groups, and the effect on smoking behaviors is more pronounced among men and middle-aged groups. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.
NON-REGULAR MAXIMUM LIKELIHOOD ESTIMATION
Even though a body of data on the environmental occurrence of medicinal, government-approved ("ethical") pharmaceuticals has been growing over the last two decades (the subject of this book), nearly nothing is known about the disposition of illicit (illegal) drugs in th...
Prakash, Jaya; Yalavarthy, Phaneendra K
2013-03-01
Developing a computationally efficient automated method for the optimal choice of regularization parameter in diffuse optical tomography. The least-squares QR (LSQR)-type method that uses Lanczos bidiagonalization is known to be computationally efficient in performing the reconstruction procedure in diffuse optical tomography. The same is effectively deployed via an optimization procedure that uses the simplex method to find the optimal regularization parameter. The proposed LSQR-type method is compared with the traditional methods such as L-curve, generalized cross-validation (GCV), and recently proposed minimal residual method (MRM)-based choice of regularization parameter using numerical and experimental phantom data. The results indicate that the proposed LSQR-type and MRM-based methods performance in terms of reconstructed image quality is similar and superior compared to L-curve and GCV-based methods. The proposed method computational complexity is at least five times lower compared to MRM-based method, making it an optimal technique. The LSQR-type method was able to overcome the inherent limitation of computationally expensive nature of MRM-based automated way finding the optimal regularization parameter in diffuse optical tomographic imaging, making this method more suitable to be deployed in real-time.
Sell, Rebecca E; Sarno, Renee; Lawrence, Brenna; Castillo, Edward M; Fisher, Roger; Brainard, Criss; Dunford, James V; Davis, Daniel P
2010-07-01
The three-phase model of ventricular fibrillation (VF) arrest suggests a period of compressions to "prime" the heart prior to defibrillation attempts. In addition, post-shock compressions may increase the likelihood of return of spontaneous circulation (ROSC). The optimal intervals for shock delivery following cessation of compressions (pre-shock interval) and resumption of compressions following a shock (post-shock interval) remain unclear. To define optimal pre- and post-defibrillation compression pauses for out-of-hospital cardiac arrest (OOHCA). All patients suffering OOHCA from VF were identified over a 1-month period. Defibrillator data were abstracted and analyzed using the combination of ECG, impedance, and audio recording. Receiver-operator curve (ROC) analysis was used to define the optimal pre- and post-shock compression intervals. Multiple logistic regression analysis was used to quantify the relationship between these intervals and ROSC. Covariates included cumulative number of defibrillation attempts, intubation status, and administration of epinephrine in the immediate pre-shock compression cycle. Cluster adjustment was performed due to the possibility of multiple defibrillation attempts for each patient. A total of 36 patients with 96 defibrillation attempts were included. The ROC analysis identified an optimal pre-shock interval of <3s and an optimal post-shock interval of <6s. Increased likelihood of ROSC was observed with a pre-shock interval <3s (adjusted OR 6.7, 95% CI 2.0-22.3, p=0.002) and a post-shock interval of <6s (adjusted OR 10.7, 95% CI 2.8-41.4, p=0.001). Likelihood of ROSC was substantially increased with the optimization of both pre- and post-shock intervals (adjusted OR 13.1, 95% CI 3.4-49.9, p<0.001). Decreasing pre- and post-shock compression intervals increases the likelihood of ROSC in OOHCA from VF.
EIT image regularization by a new Multi-Objective Simulated Annealing algorithm.
Castro Martins, Thiago; Sales Guerra Tsuzuki, Marcos
2015-01-01
Multi-Objective Optimization can be used to produce regularized Electrical Impedance Tomography (EIT) images where the weight of the regularization term is not known a priori. This paper proposes a novel Multi-Objective Optimization algorithm based on Simulated Annealing tailored for EIT image reconstruction. Images are reconstructed from experimental data and compared with images from other Multi and Single Objective optimization methods. A significant performance enhancement from traditional techniques can be inferred from the results.
Optimal boundary regularity for a singular Monge-Ampère equation
NASA Astrophysics Data System (ADS)
Jian, Huaiyu; Li, You
2018-06-01
In this paper we study the optimal global regularity for a singular Monge-Ampère type equation which arises from a few geometric problems. We find that the global regularity does not depend on the smoothness of domain, but it does depend on the convexity of the domain. We introduce (a , η) type to describe the convexity. As a result, we show that the more convex is the domain, the better is the regularity of the solution. In particular, the regularity is the best near angular points.
Characterization of feeding-delaying factors from the silkworm Bombyx mori.
Nagata, Shinji; Morooka, Nobukatsu; Matsumoto, Sumihiro; Nagasawa, Hiromichi
2009-04-01
In several phytophagous insects, feeding behavior occurs regularly. Recently, we demonstrated that feeding behavior in larvae of the silkworm Bombyx mori had a regular frequency. To address the control of the feeding cycle in B. mori, we aimed to characterize factors influencing feeding initiation and termination. Injection of extracts of the midgut, foregut, and fat body into starved Bombyx larvae delayed the initiation of feeding. This result indicates the presence in these tissues of factors capable of decreasing the likelihood of feeding initiation.
Boudreau, Mathieu; Pike, G Bruce
2018-05-07
To develop and validate a regularization approach of optimizing B 1 insensitivity of the quantitative magnetization transfer (qMT) pool-size ratio (F). An expression describing the impact of B 1 inaccuracies on qMT fitting parameters was derived using a sensitivity analysis. To simultaneously optimize for robustness against noise and B 1 inaccuracies, the optimization condition was defined as the Cramér-Rao lower bound (CRLB) regularized by the B 1 -sensitivity expression for the parameter of interest (F). The qMT protocols were iteratively optimized from an initial search space, with and without B 1 regularization. Three 10-point qMT protocols (Uniform, CRLB, CRLB+B 1 regularization) were compared using Monte Carlo simulations for a wide range of conditions (e.g., SNR, B 1 inaccuracies, tissues). The B 1 -regularized CRLB optimization protocol resulted in the best robustness of F against B 1 errors, for a wide range of SNR and for both white matter and gray matter tissues. For SNR = 100, this protocol resulted in errors of less than 1% in mean F values for B 1 errors ranging between -10 and 20%, the range of B 1 values typically observed in vivo in the human head at field strengths of 3 T and less. Both CRLB-optimized protocols resulted in the lowest σ F values for all SNRs and did not increase in the presence of B 1 inaccuracies. This work demonstrates a regularized optimization approach for improving the robustness of auxiliary measurements (e.g., B 1 ) sensitivity of qMT parameters, particularly the pool-size ratio (F). Predicting substantially less B 1 sensitivity using protocols optimized with this method, B 1 mapping could even be omitted for qMT studies primarily interested in F. © 2018 International Society for Magnetic Resonance in Medicine.
How much to trust the senses: Likelihood learning
Sato, Yoshiyuki; Kording, Konrad P.
2014-01-01
Our brain often needs to estimate unknown variables from imperfect information. Our knowledge about the statistical distributions of quantities in our environment (called priors) and currently available information from sensory inputs (called likelihood) are the basis of all Bayesian models of perception and action. While we know that priors are learned, most studies of prior-likelihood integration simply assume that subjects know about the likelihood. However, as the quality of sensory inputs change over time, we also need to learn about new likelihoods. Here, we show that human subjects readily learn the distribution of visual cues (likelihood function) in a way that can be predicted by models of statistically optimal learning. Using a likelihood that depended on color context, we found that a learned likelihood generalized to new priors. Thus, we conclude that subjects learn about likelihood. PMID:25398975
NASA Astrophysics Data System (ADS)
Tichý, Ondřej; Šmídl, Václav; Hofman, Radek; Stohl, Andreas
2016-11-01
Estimation of pollutant releases into the atmosphere is an important problem in the environmental sciences. It is typically formalized as an inverse problem using a linear model that can explain observable quantities (e.g., concentrations or deposition values) as a product of the source-receptor sensitivity (SRS) matrix obtained from an atmospheric transport model multiplied by the unknown source-term vector. Since this problem is typically ill-posed, current state-of-the-art methods are based on regularization of the problem and solution of a formulated optimization problem. This procedure depends on manual settings of uncertainties that are often very poorly quantified, effectively making them tuning parameters. We formulate a probabilistic model, that has the same maximum likelihood solution as the conventional method using pre-specified uncertainties. Replacement of the maximum likelihood solution by full Bayesian estimation also allows estimation of all tuning parameters from the measurements. The estimation procedure is based on the variational Bayes approximation which is evaluated by an iterative algorithm. The resulting method is thus very similar to the conventional approach, but with the possibility to also estimate all tuning parameters from the observations. The proposed algorithm is tested and compared with the standard methods on data from the European Tracer Experiment (ETEX) where advantages of the new method are demonstrated. A MATLAB implementation of the proposed algorithm is available for download.
Maintained Individual Data Distributed Likelihood Estimation (MIDDLE)
Boker, Steven M.; Brick, Timothy R.; Pritikin, Joshua N.; Wang, Yang; von Oertzen, Timo; Brown, Donald; Lach, John; Estabrook, Ryne; Hunter, Michael D.; Maes, Hermine H.; Neale, Michael C.
2015-01-01
Maintained Individual Data Distributed Likelihood Estimation (MIDDLE) is a novel paradigm for research in the behavioral, social, and health sciences. The MIDDLE approach is based on the seemingly-impossible idea that data can be privately maintained by participants and never revealed to researchers, while still enabling statistical models to be fit and scientific hypotheses tested. MIDDLE rests on the assumption that participant data should belong to, be controlled by, and remain in the possession of the participants themselves. Distributed likelihood estimation refers to fitting statistical models by sending an objective function and vector of parameters to each participants’ personal device (e.g., smartphone, tablet, computer), where the likelihood of that individual’s data is calculated locally. Only the likelihood value is returned to the central optimizer. The optimizer aggregates likelihood values from responding participants and chooses new vectors of parameters until the model converges. A MIDDLE study provides significantly greater privacy for participants, automatic management of opt-in and opt-out consent, lower cost for the researcher and funding institute, and faster determination of results. Furthermore, if a participant opts into several studies simultaneously and opts into data sharing, these studies automatically have access to individual-level longitudinal data linked across all studies. PMID:26717128
Maximum-likelihood soft-decision decoding of block codes using the A* algorithm
NASA Technical Reports Server (NTRS)
Ekroot, L.; Dolinar, S.
1994-01-01
The A* algorithm finds the path in a finite depth binary tree that optimizes a function. Here, it is applied to maximum-likelihood soft-decision decoding of block codes where the function optimized over the codewords is the likelihood function of the received sequence given each codeword. The algorithm considers codewords one bit at a time, making use of the most reliable received symbols first and pursuing only the partially expanded codewords that might be maximally likely. A version of the A* algorithm for maximum-likelihood decoding of block codes has been implemented for block codes up to 64 bits in length. The efficiency of this algorithm makes simulations of codes up to length 64 feasible. This article details the implementation currently in use, compares the decoding complexity with that of exhaustive search and Viterbi decoding algorithms, and presents performance curves obtained with this implementation of the A* algorithm for several codes.
Kimura, Akatsuki; Celani, Antonio; Nagao, Hiromichi; Stasevich, Timothy; Nakamura, Kazuyuki
2015-01-01
Construction of quantitative models is a primary goal of quantitative biology, which aims to understand cellular and organismal phenomena in a quantitative manner. In this article, we introduce optimization procedures to search for parameters in a quantitative model that can reproduce experimental data. The aim of optimization is to minimize the sum of squared errors (SSE) in a prediction or to maximize likelihood. A (local) maximum of likelihood or (local) minimum of the SSE can efficiently be identified using gradient approaches. Addition of a stochastic process enables us to identify the global maximum/minimum without becoming trapped in local maxima/minima. Sampling approaches take advantage of increasing computational power to test numerous sets of parameters in order to determine the optimum set. By combining Bayesian inference with gradient or sampling approaches, we can estimate both the optimum parameters and the form of the likelihood function related to the parameters. Finally, we introduce four examples of research that utilize parameter optimization to obtain biological insights from quantified data: transcriptional regulation, bacterial chemotaxis, morphogenesis, and cell cycle regulation. With practical knowledge of parameter optimization, cell and developmental biologists can develop realistic models that reproduce their observations and thus, obtain mechanistic insights into phenomena of interest.
Foster, Sarah E; Jones, Deborah J; Olson, Ardis L; Forehand, Rex; Gaffney, Cecelia A; Zens, Michael S; Bau, J J
2007-05-01
To examine the main and interactive effects of parental history of regular cigarette smoking and parenting style on adolescent self-reported cigarette use. Predictors of adolescent self-reported cigarette use, including parents' history of regular cigarette smoking and two dimensions of parenting behavior, were analyzed in a sample of 934 predominately Caucasian (96.3%) parent-adolescent dyads. Families were drawn from the control group of a randomized control trial aimed at preventing adolescent substance use. In addition to the main effects of parents' history of regular smoking and parental warmth, logistic regression analysis revealed that the interaction of these two variables was associated with adolescent self-reported cigarette use. Parental warmth was associated with a decreased likelihood of the adolescent ever having smoked a cigarette; however, this was true only if neither parent had a history of regular cigarette smoking. Findings suggest that adolescent smoking prevention programs may be more efficacious if they address both parental history of regular smoking and parenting behavior.
Verveer, P. J; Gemkow, M. J; Jovin, T. M
1999-01-01
We have compared different image restoration approaches for fluorescence microscopy. The most widely used algorithms were classified with a Bayesian theory according to the assumed noise model and the type of regularization imposed. We considered both Gaussian and Poisson models for the noise in combination with Tikhonov regularization, entropy regularization, Good's roughness and without regularization (maximum likelihood estimation). Simulations of fluorescence confocal imaging were used to examine the different noise models and regularization approaches using the mean squared error criterion. The assumption of a Gaussian noise model yielded only slightly higher errors than the Poisson model. Good's roughness was the best choice for the regularization. Furthermore, we compared simulated confocal and wide-field data. In general, restored confocal data are superior to restored wide-field data, but given sufficient higher signal level for the wide-field data the restoration result may rival confocal data in quality. Finally, a visual comparison of experimental confocal and wide-field data is presented.
Paruthi, Shalini; Brooks, Lee J; D'Ambrosio, Carolyn; Hall, Wendy A; Kotagal, Suresh; Lloyd, Robin M; Malow, Beth A; Maski, Kiran; Nichols, Cynthia; Quan, Stuart F; Rosen, Carol L; Troester, Matthew M; Wise, Merrill S
2016-11-15
Members of the American Academy of Sleep Medicine developed consensus recommendations for the amount of sleep needed to promote optimal health in children and adolescents using a modified RAND Appropriateness Method. After review of 864 published articles, the following sleep durations are recommended: Infants 4 months to 12 months should sleep 12 to 16 hours per 24 hours (including naps) on a regular basis to promote optimal health. Children 1 to 2 years of age should sleep 11 to 14 hours per 24 hours (including naps) on a regular basis to promote optimal health. Children 3 to 5 years of age should sleep 10 to 13 hours per 24 hours (including naps) on a regular basis to promote optimal health. Children 6 to 12 years of age should sleep 9 to 12 hours per 24 hours on a regular basis to promote optimal health. Teenagers 13 to 18 years of age should sleep 8 to 10 hours per 24 hours on a regular basis to promote optimal health. Sleeping the number of recommended hours on a regular basis is associated with better health outcomes including: improved attention, behavior, learning, memory, emotional regulation, quality of life, and mental and physical health. Regularly sleeping fewer than the number of recommended hours is associated with attention, behavior, and learning problems. Insufficient sleep also increases the risk of accidents, injuries, hypertension, obesity, diabetes, and depression. Insufficient sleep in teenagers is associated with increased risk of self-harm, suicidal thoughts, and suicide attempts. A commentary on this article apears in this issue on page 1439. © 2016 American Academy of Sleep Medicine
NASA Astrophysics Data System (ADS)
Ma, Qian; Xia, Houping; Xu, Qiang; Zhao, Lei
2018-05-01
A new method combining Tikhonov regularization and kernel matrix optimization by multi-wavelength incidence is proposed for retrieving particle size distribution (PSD) in an independent model with improved accuracy and stability. In comparison to individual regularization or multi-wavelength least squares, the proposed method exhibited better anti-noise capability, higher accuracy and stability. While standard regularization typically makes use of the unit matrix, it is not universal for different PSDs, particularly for Junge distributions. Thus, a suitable regularization matrix was chosen by numerical simulation, with the second-order differential matrix found to be appropriate for most PSD types.
Thrall, J S; McCloskey, L; Ettner, S L; Rothman, E; Tighe, J E; Emans, S J
2000-09-01
To examine the relationship between adolescents' perception of the confidentiality of care provided by their regular health care provider and their reported use of this provider for private health information and for pelvic examinations. Anonymous, self-report survey. Thirty-two randomly selected public high schools in Massachusetts. Of 2224 students in systematically selected 9th and 12th grade classrooms, 1715 (50% male) had a regular provider and a checkup within the last year. Of teens surveyed, 76% wanted the ability to obtain confidential health care, but only 45% perceived their regular provider to provide this, and only 28% had discussed it explicitly. Logistic regression analyses revealed strong relationships between confidentiality and all outcomes studied. Among adolescents, the likelihood of having discussed sexually transmitted diseases, pregnancy prevention, and/or facts about sex with their provider was greater among teens who received a confidentiality assurance than that for teens who did not (odds ratio [OR] = 2.7; 95% confidence interval [CI], 2.2-3.4). A similar relationship for teens' likelihood of having discussed substance use with the provider was found (OR = 1.8; 95% CI, 1.4-2.3). Among sexually active females, the likelihood of a recent pelvic examination for those who received a confidentiality assurance was greater than for those who did not (OR = 3.3; 95% CI, 2.1-5.5). This study furthers evidence of an important link between teens' perception of confidentiality and use of health care services and information. Because teens' health risks lie largely in potential risks from health-related behaviors, confidentiality in health care may be a critical factor in disclosure and discussion of risky behaviors, and ultimately in appropriate use of health care services. Efforts should be made to increase teens' access to confidential health care sources.
Holt, Martin; Lee, Evelyn; Prestage, Garrett P; Zablotska, Iryna; de Wit, John; Mao, Limin
2013-01-01
To assess the changing health promotion needs of human immunodeficiency virus (HIV)-positive gay men in Australia, we analysed the social and behavioural characteristics of HIV-positive men in the Australian Gay Community Periodic Surveys. We looked at change over time in the characteristics of HIV-positive men (from 2000-2001 to 2008-2009) and compared HIV-positive men with their HIV-negative peers within each time period. Multivariate logistic regression analysis was used to assess independent changes over time within each HIV status group. A total of 21,620 responses were included in the analyses; 10,537 in 2000-2001 and 11,083 in 2008-2009. Between the two time periods, HIV-positive and HIV-negative men became more similar in the following areas: paid employment, sexual identity, number of male sex partners, the likelihood of having a regular male partner and having a seroconcordant regular male partner. The two groups diverged in these areas: age, ethnicity, educational level, social engagement with gay men, types of relationship with regular male partners, likelihood of unprotected anal intercourse with casual male partners and likelihood of HIV disclosure to casual male partners. Workforce participation and educational attainment have improved among HIV-positive gay men since 2000, but they still lag behind their HIV-negative peers in these areas. Because HIV-positive men are an ageing cohort, support services will need to increasingly address issues of HIV, sexuality and ageing with HIV-positive men. The increase in unprotected anal intercourse and HIV disclosure with casual partners means that education and support services will increasingly need to address effective HIV disclosure and non-condom-based risk reduction strategies with both HIV-positive and HIV-negative gay men.
Regularizing portfolio optimization
NASA Astrophysics Data System (ADS)
Still, Susanne; Kondor, Imre
2010-07-01
The optimization of large portfolios displays an inherent instability due to estimation error. This poses a fundamental problem, because solutions that are not stable under sample fluctuations may look optimal for a given sample, but are, in effect, very far from optimal with respect to the average risk. In this paper, we approach the problem from the point of view of statistical learning theory. The occurrence of the instability is intimately related to over-fitting, which can be avoided using known regularization methods. We show how regularized portfolio optimization with the expected shortfall as a risk measure is related to support vector regression. The budget constraint dictates a modification. We present the resulting optimization problem and discuss the solution. The L2 norm of the weight vector is used as a regularizer, which corresponds to a diversification 'pressure'. This means that diversification, besides counteracting downward fluctuations in some assets by upward fluctuations in others, is also crucial because it improves the stability of the solution. The approach we provide here allows for the simultaneous treatment of optimization and diversification in one framework that enables the investor to trade off between the two, depending on the size of the available dataset.
Yang, Defu; Wang, Lin; Chen, Dongmei; Yan, Chenggang; He, Xiaowei; Liang, Jimin; Chen, Xueli
2018-05-17
The reconstruction of bioluminescence tomography (BLT) is severely ill-posed due to the insufficient measurements and diffuses nature of the light propagation. Predefined permissible source region (PSR) combined with regularization terms is one common strategy to reduce such ill-posedness. However, the region of PSR is usually hard to determine and can be easily affected by subjective consciousness. Hence, we theoretically developed a filtered maximum likelihood expectation maximization (fMLEM) method for BLT. Our method can avoid predefining the PSR and provide a robust and accurate result for global reconstruction. In the method, the simplified spherical harmonics approximation (SP N ) was applied to characterize diffuse light propagation in medium, and the statistical estimation-based MLEM algorithm combined with a filter function was used to solve the inverse problem. We systematically demonstrated the performance of our method by the regular geometry- and digital mouse-based simulations and a liver cancer-based in vivo experiment. Graphical abstract The filtered MLEM-based global reconstruction method for BLT.
Avoiding overstating the strength of forensic evidence: Shrunk likelihood ratios/Bayes factors.
Morrison, Geoffrey Stewart; Poh, Norman
2018-05-01
When strength of forensic evidence is quantified using sample data and statistical models, a concern may be raised as to whether the output of a model overestimates the strength of evidence. This is particularly the case when the amount of sample data is small, and hence sampling variability is high. This concern is related to concern about precision. This paper describes, explores, and tests three procedures which shrink the value of the likelihood ratio or Bayes factor toward the neutral value of one. The procedures are: (1) a Bayesian procedure with uninformative priors, (2) use of empirical lower and upper bounds (ELUB), and (3) a novel form of regularized logistic regression. As a benchmark, they are compared with linear discriminant analysis, and in some instances with non-regularized logistic regression. The behaviours of the procedures are explored using Monte Carlo simulated data, and tested on real data from comparisons of voice recordings, face images, and glass fragments. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.
Pepper, Jessica K; Emery, Sherry L; Ribisl, Kurt M; Rini, Christine M; Brewer, Noel T
2015-04-01
We sought to understand smokers' perceived likelihood of health problems from using cigarettes and four non-cigarette tobacco products (NCTPs: e-cigarettes, snus, dissolvable tobacco, and smokeless tobacco). A US national sample of 6,607 adult smokers completed an online survey in March 2013. Participants viewed e-cigarette use as less likely to cause lung cancer, oral cancer, or heart disease compared to smoking regular cigarettes (all p < .001). This finding was robust for all demographic groups. Participants viewed using NCTPs other than e-cigarettes as more likely to cause oral cancer than smoking cigarettes but less likely to cause lung cancer. The dramatic increase in e-cigarette use may be due in part to the belief that they are less risky to use than cigarettes, unlike the other NCTPs. Future research should examine trajectories in perceived likelihood of harm from e-cigarette use and whether they affect regular and electronic cigarette use.
Emery, Sherry L.; Ribisl, Kurt M.; Rini, Christine M.; Brewer, Noel T.
2015-01-01
We sought to understand smokers’ perceived likelihood of health problems from using cigarettes and four non-cigarette tobacco products (NCTPs: e-cigarettes, snus, dissolvable tobacco, and smokeless tobacco). A US national sample of 6,607 adult smokers completed an online survey in March 2013. Participants viewed e-cigarette use as less likely to cause lung cancer, oral cancer, or heart disease compared to smoking regular cigarettes (all p < .001). This finding was robust for all demographic groups. Participants viewed using NCTPs other than e-cigarettes as more likely to cause oral cancer than smoking cigarettes but less likely to cause lung cancer. The dramatic increase in e-cigarette use may be due in part to the belief that they are less risky to use than cigarettes, unlike the other NCTPs. Future research should examine trajectories in perceived likelihood of harm from e-cigarette use and whether they affect regular and electronic cigarette use. PMID:25348584
Fifty-sixth Christmas Bird Count. 147. Southern Dorchester County, Md
Johnson, F.A.; Williams, B.K.; Nichols, J.D.; Hines, J.E.; Kendall, W.L.; Smith, G.W.; Caithamer, David F.
1956-01-01
Summary and Recommendations: We suggest that managers are approaching the limits of their ability to improve waterfowl harvest management, primarily because the information needed to make better decisions is being sacrificed by the current approach to setting regulations. We propose an actively adaptive management strategy in which regulatory decisions play a dominant role in reducing uncertainty about population dynamics. The proposed strategy recognizes 'value' in acquiring knowledge only to the extent that it contributes to the objective of optimizing harvests. To implement this strategy, managers will need: (1) a set of regulatory options, with possible constraints on their use; (2) quantifiable harvest management objectives; (3) a set of models that represent an array of meaningful hypotheses about the effects of regulations on populations; and (4) a measure of credibility (or likelihood) for each model, which can be updated regularly using information from waterfowl monitoring programs. Adaptive optimization is an iterative process in which the harvest-management policy converges over time to one that maximizes harvest under the most appropriate model. At each time step, an optimal regulatory decision is identified based on the state of the system and the model likelihoods. In the next time step, predicted population changes from the alternative models are compared with the actual changes provided by the monitoring program, The likelihoods are increased or decreased to the extent that predicted and actual population changes correspond. These updated likelihoods then are used in setting regulations in the next cycle and the process begins again. This iterative process produces the most informative regulations when uncertainty is prevalent and produces maximum sustainable yields as uncertainty is eliminated. We see no major obstacles to implementing this adaptive strategy, although there are a number of practical considerations. First and foremost, managers should assess the 'value' of learning. Only when there is a high degree of uncertainty about the effects of hunting regulations on population dynamics will the merit of our proposed strategy be evident. We suggest that this almost always will be true given our current understanding of the relationship between annual regulations, survival and population growth in waterfowl. Nonetheless, careful consideration should be given to formulating the set of alternative models. There is no value in distinguishing between models which differ in their mathematical formulation or biological realism, but which suggest similar harvest strategies. We suspect that 'mechanistic' models (i.e., those that attempt to capture the essence of biological processes) will make better candidates for model sets than so-called 'phenomenological' models. Assuming that all model sets include a good approximation of reality, learning rates will be dependent on the quality of monitoring programs. Fortunately, a variety of high-quality monitoring plans for many duck and goose populations of North America, when used with our adaptive approach, should provide new knowledge about population dynamics and response to hunting, and, thus, lead to improved management.
NASA Technical Reports Server (NTRS)
Peters, B. C., Jr.; Walker, H. F.
1975-01-01
New results and insights concerning a previously published iterative procedure for obtaining maximum-likelihood estimates of the parameters for a mixture of normal distributions were discussed. It was shown that the procedure converges locally to the consistent maximum likelihood estimate as long as a specified parameter is bounded between two limits. Bound values were given to yield optimal local convergence.
Lin, Feng-Chang; Zhu, Jun
2012-01-01
We develop continuous-time models for the analysis of environmental or ecological monitoring data such that subjects are observed at multiple monitoring time points across space. Of particular interest are additive hazards regression models where the baseline hazard function can take on flexible forms. We consider time-varying covariates and take into account spatial dependence via autoregression in space and time. We develop statistical inference for the regression coefficients via partial likelihood. Asymptotic properties, including consistency and asymptotic normality, are established for parameter estimates under suitable regularity conditions. Feasible algorithms utilizing existing statistical software packages are developed for computation. We also consider a simpler additive hazards model with homogeneous baseline hazard and develop hypothesis testing for homogeneity. A simulation study demonstrates that the statistical inference using partial likelihood has sound finite-sample properties and offers a viable alternative to maximum likelihood estimation. For illustration, we analyze data from an ecological study that monitors bark beetle colonization of red pines in a plantation of Wisconsin.
Planck intermediate results. XVI. Profile likelihoods for cosmological parameters
NASA Astrophysics Data System (ADS)
Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Arnaud, M.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Bartlett, J. G.; Battaner, E.; Benabed, K.; Benoit-Lévy, A.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bobin, J.; Bonaldi, A.; Bond, J. R.; Bouchet, F. R.; Burigana, C.; Cardoso, J.-F.; Catalano, A.; Chamballu, A.; Chiang, H. C.; Christensen, P. R.; Clements, D. L.; Colombi, S.; Colombo, L. P. L.; Couchot, F.; Cuttaia, F.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Dickinson, C.; Diego, J. M.; Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.; Dupac, X.; Enßlin, T. A.; Eriksen, H. K.; Finelli, F.; Forni, O.; Frailis, M.; Franceschi, E.; Galeotta, S.; Galli, S.; Ganga, K.; Giard, M.; Giraud-Héraud, Y.; González-Nuevo, J.; Górski, K. M.; Gregorio, A.; Gruppuso, A.; Hansen, F. K.; Harrison, D. L.; Henrot-Versillé, S.; Hernández-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hornstrup, A.; Hovest, W.; Huffenberger, K. M.; Jaffe, A. H.; Jaffe, T. R.; Jones, W. C.; Juvela, M.; Keihänen, E.; Keskitalo, R.; Kisner, T. S.; Kneissl, R.; Knoche, J.; Knox, L.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lähteenmäki, A.; Lamarre, J.-M.; Lasenby, A.; Lawrence, C. R.; Leonardi, R.; Liddle, A.; Liguori, M.; Lilje, P. B.; Linden-Vørnle, M.; López-Caniego, M.; Lubin, P. M.; Macías-Pérez, J. F.; Maffei, B.; Maino, D.; Mandolesi, N.; Maris, M.; Martin, P. G.; Martínez-González, E.; Masi, S.; Massardi, M.; Matarrese, S.; Mazzotta, P.; Melchiorri, A.; Mendes, L.; Mennella, A.; Migliaccio, M.; Mitra, S.; Miville-Deschênes, M.-A.; Moneti, A.; Montier, L.; Morgante, G.; Munshi, D.; Murphy, J. A.; Naselsky, P.; Nati, F.; Natoli, P.; Noviello, F.; Novikov, D.; Novikov, I.; Oxborrow, C. A.; Pagano, L.; Pajot, F.; Paoletti, D.; Pasian, F.; Perdereau, O.; Perotto, L.; Perrotta, F.; Pettorino, V.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski∗, S.; Pointecouteau, E.; Polenta, G.; Popa, L.; Pratt, G. W.; Puget, J.-L.; Rachen, J. P.; Rebolo, R.; Reinecke, M.; Remazeilles, M.; Renault, C.; Ricciardi, S.; Riller, T.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Roudier, G.; Rouillé d'Orfeuil, B.; Rubiño-Martín, J. A.; Rusholme, B.; Sandri, M.; Savelainen, M.; Savini, G.; Spencer, L. D.; Spinelli, M.; Starck, J.-L.; Sureau, F.; Sutton, D.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Umana, G.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Vielva, P.; Villa, F.; Wade, L. A.; Wandelt, B. D.; White, M.; Yvon, D.; Zacchei, A.; Zonca, A.
2014-06-01
We explore the 2013 Planck likelihood function with a high-precision multi-dimensional minimizer (Minuit). This allows a refinement of the ΛCDM best-fit solution with respect to previously-released results, and the construction of frequentist confidence intervals using profile likelihoods. The agreement with the cosmological results from the Bayesian framework is excellent, demonstrating the robustness of the Planck results to the statistical methodology. We investigate the inclusion of neutrino masses, where more significant differences may appear due to the non-Gaussian nature of the posterior mass distribution. By applying the Feldman-Cousins prescription, we again obtain results very similar to those of the Bayesian methodology. However, the profile-likelihood analysis of the cosmic microwave background (CMB) combination (Planck+WP+highL) reveals a minimum well within the unphysical negative-mass region. We show that inclusion of the Planck CMB-lensing information regularizes this issue, and provide a robust frequentist upper limit ∑ mν ≤ 0.26 eV (95% confidence) from the CMB+lensing+BAO data combination.
Bayesian image reconstruction - The pixon and optimal image modeling
NASA Technical Reports Server (NTRS)
Pina, R. K.; Puetter, R. C.
1993-01-01
In this paper we describe the optimal image model, maximum residual likelihood method (OptMRL) for image reconstruction. OptMRL is a Bayesian image reconstruction technique for removing point-spread function blurring. OptMRL uses both a goodness-of-fit criterion (GOF) and an 'image prior', i.e., a function which quantifies the a priori probability of the image. Unlike standard maximum entropy methods, which typically reconstruct the image on the data pixel grid, OptMRL varies the image model in order to find the optimal functional basis with which to represent the image. We show how an optimal basis for image representation can be selected and in doing so, develop the concept of the 'pixon' which is a generalized image cell from which this basis is constructed. By allowing both the image and the image representation to be variable, the OptMRL method greatly increases the volume of solution space over which the image is optimized. Hence the likelihood of the final reconstructed image is greatly increased. For the goodness-of-fit criterion, OptMRL uses the maximum residual likelihood probability distribution introduced previously by Pina and Puetter (1992). This GOF probability distribution, which is based on the spatial autocorrelation of the residuals, has the advantage that it ensures spatially uncorrelated image reconstruction residuals.
Vermunt, Neeltje P C A; Westert, Gert P; Olde Rikkert, Marcel G M; Faber, Marjan J
2018-03-01
To assess the impact of patient characteristics, patient-professional engagement, communication and context on the probability that healthcare professionals will discuss goals or priorities with older patients. Secondary analysis of cross-sectional data from the 2014 Commonwealth Fund International Health Policy Survey of Older Adults. 11 western countries. Community-dwelling adults, aged 55 or older. Assessment of goals and priorities. The final sample size consisted of 17,222 respondents, 54% of whom reported an assessment of their goals and priorities (AGP) by healthcare professionals. In logistic regression model 1, which was used to analyse the entire population, the determinants found to have moderate to large effects on the likelihood of AGP were information exchange on stress, diet or exercise, or both. Country (living in Sweden) and continuity of care (no regular professional or organisation) had moderate to large negative effects on the likelihood of AGP. In model 2, which focussed on respondents who experienced continuity of care, country and information exchange on stress and lifestyle were the main determinants of AGP, with comparable odds ratios to model 1. Furthermore, a professional asking questions also increased the likelihood of AGP. Continuity of care and information exchange is associated with a higher probability of AGP, while people living in Sweden are less likely to experience these assessments. Further study is required to determine whether increasing information exchange and professionals asking more questions may improve goal setting with older patients. Key points A patient goal-oriented approach can be beneficial for older patients with chronic conditions or multimorbidity; however, discussing goals with these patients is not a common practice. The likelihood of discussing goals varies by country, occurring most commonly in the USA, and least often in Sweden. Country-level differences in continuity of care and questions asked by a regularly visited professional affect the goal discussion probability. Patient characteristics, including age, have less impact than expected on the likelihood of sharing goals.
A Maximum-Likelihood Approach to Force-Field Calibration.
Zaborowski, Bartłomiej; Jagieła, Dawid; Czaplewski, Cezary; Hałabis, Anna; Lewandowska, Agnieszka; Żmudzińska, Wioletta; Ołdziej, Stanisław; Karczyńska, Agnieszka; Omieczynski, Christian; Wirecki, Tomasz; Liwo, Adam
2015-09-28
A new approach to the calibration of the force fields is proposed, in which the force-field parameters are obtained by maximum-likelihood fitting of the calculated conformational ensembles to the experimental ensembles of training system(s). The maximum-likelihood function is composed of logarithms of the Boltzmann probabilities of the experimental conformations, calculated with the current energy function. Because the theoretical distribution is given in the form of the simulated conformations only, the contributions from all of the simulated conformations, with Gaussian weights in the distances from a given experimental conformation, are added to give the contribution to the target function from this conformation. In contrast to earlier methods for force-field calibration, the approach does not suffer from the arbitrariness of dividing the decoy set into native-like and non-native structures; however, if such a division is made instead of using Gaussian weights, application of the maximum-likelihood method results in the well-known energy-gap maximization. The computational procedure consists of cycles of decoy generation and maximum-likelihood-function optimization, which are iterated until convergence is reached. The method was tested with Gaussian distributions and then applied to the physics-based coarse-grained UNRES force field for proteins. The NMR structures of the tryptophan cage, a small α-helical protein, determined at three temperatures (T = 280, 305, and 313 K) by Hałabis et al. ( J. Phys. Chem. B 2012 , 116 , 6898 - 6907 ), were used. Multiplexed replica-exchange molecular dynamics was used to generate the decoys. The iterative procedure exhibited steady convergence. Three variants of optimization were tried: optimization of the energy-term weights alone and use of the experimental ensemble of the folded protein only at T = 280 K (run 1); optimization of the energy-term weights and use of experimental ensembles at all three temperatures (run 2); and optimization of the energy-term weights and the coefficients of the torsional and multibody energy terms and use of experimental ensembles at all three temperatures (run 3). The force fields were subsequently tested with a set of 14 α-helical and two α + β proteins. Optimization run 1 resulted in better agreement with the experimental ensemble at T = 280 K compared with optimization run 2 and in comparable performance on the test set but poorer agreement of the calculated folding temperature with the experimental folding temperature. Optimization run 3 resulted in the best fit of the calculated ensembles to the experimental ones for the tryptophan cage but in much poorer performance on the training set, suggesting that use of a small α-helical protein for extensive force-field calibration resulted in overfitting of the data for this protein at the expense of transferability. The optimized force field resulting from run 2 was found to fold 13 of the 14 tested α-helical proteins and one small α + β protein with the correct topologies; the average structures of 10 of them were predicted with accuracies of about 5 Å C(α) root-mean-square deviation or better. Test simulations with an additional set of 12 α-helical proteins demonstrated that this force field performed better on α-helical proteins than the previous parametrizations of UNRES. The proposed approach is applicable to any problem of maximum-likelihood parameter estimation when the contributions to the maximum-likelihood function cannot be evaluated at the experimental points and the dimension of the configurational space is too high to construct histograms of the experimental distributions.
Optimal designs based on the maximum quasi-likelihood estimator
Shen, Gang; Hyun, Seung Won; Wong, Weng Kee
2016-01-01
We use optimal design theory and construct locally optimal designs based on the maximum quasi-likelihood estimator (MqLE), which is derived under less stringent conditions than those required for the MLE method. We show that the proposed locally optimal designs are asymptotically as efficient as those based on the MLE when the error distribution is from an exponential family, and they perform just as well or better than optimal designs based on any other asymptotically linear unbiased estimators such as the least square estimator (LSE). In addition, we show current algorithms for finding optimal designs can be directly used to find optimal designs based on the MqLE. As an illustrative application, we construct a variety of locally optimal designs based on the MqLE for the 4-parameter logistic (4PL) model and study their robustness properties to misspecifications in the model using asymptotic relative efficiency. The results suggest that optimal designs based on the MqLE can be easily generated and they are quite robust to mis-specification in the probability distribution of the responses. PMID:28163359
School Organizational Effectiveness and Chronic Absenteeism: Implications for Accountability
ERIC Educational Resources Information Center
Lenhoff, Sarah Winchell; Pogodzinski, Ben
2018-01-01
Chronic absenteeism in K-12 schools is strongly associated with critical educational outcomes such as student achievement and graduation. Yet, the causes of chronic absenteeism are complex, with environmental, family/individual, and school factors all affecting the likelihood of a student attending school regularly. This exploratory study examines…
Whittle's "Channel One": Effects on Impulsive Preadolescents' Desire for Advertised Products.
ERIC Educational Resources Information Center
Tozzo-Lyles, Teresa A.; Walsh-Childers, Kim
A field experiment tested effects of "Channel One" commercials on impulsive preadolescent students' purchasing preferences, such as product liking and likelihood of buying regularly advertised products. A total of 67 sixth-grade middle school students participated in the field experiment. Students who viewed "Channel One' daily were…
Playing to Win: The Evolution of Athletics and Reform in American Higher Education
ERIC Educational Resources Information Center
Lee, Candice Storey
2012-01-01
Intercollegiate athletics, namely "big-time" athletics, is an enduring feature of American higher education. Its visibility is unmatched by other institutional activities, and its influence reaches far beyond the campus. College athletics' longevity insulates it from the likelihood of elimination, but it regularly earns criticism…
Patte, Karen A; Qian, Wei; Leatherdale, Scott T
2017-05-01
We tested the effect of initiating marijuana and alcohol use at varying frequencies on academic indices. In a sample of 26,475 grade 9-12 students with at least 2 years of linked longitudinal data from year 1 (Y1: 2012-2013), year 2 (Y2: 2013-2014), and year 3 (Y3: 2014-2015) of the COMPASS study, separate multinomial generalized estimating equations models tested the likelihood of responses to measures of academic goals, engagement, preparedness, and performance when shifting from never using alcohol or marijuana at baseline to using them at varying frequencies at follow -up. Students who began using alcohol or marijuana were less likely to attend class regularly, complete their homework, achieve high marks, and value good grades, relative to their abstaining peers. Changing from abstaining to rare/sporadic-to-weekly drinking or rare/sporadic marijuana use predicted aspirations to continue to all levels of higher education, and initiating weekly marijuana use increased the likelihood of college ambitions, while more regular marijuana use reduced the likelihood of wanting to pursue graduate/professional degrees, over high school. The importance of delaying or preventing substance use is evident in associations with student performance and engagement. The influence on academic goals varied by substance and frequency of initiated use. © 2017, American School Health Association.
Maximum-Likelihood Methods for Processing Signals From Gamma-Ray Detectors
Barrett, Harrison H.; Hunter, William C. J.; Miller, Brian William; Moore, Stephen K.; Chen, Yichun; Furenlid, Lars R.
2009-01-01
In any gamma-ray detector, each event produces electrical signals on one or more circuit elements. From these signals, we may wish to determine the presence of an interaction; whether multiple interactions occurred; the spatial coordinates in two or three dimensions of at least the primary interaction; or the total energy deposited in that interaction. We may also want to compute listmode probabilities for tomographic reconstruction. Maximum-likelihood methods provide a rigorous and in some senses optimal approach to extracting this information, and the associated Fisher information matrix provides a way of quantifying and optimizing the information conveyed by the detector. This paper will review the principles of likelihood methods as applied to gamma-ray detectors and illustrate their power with recent results from the Center for Gamma-ray Imaging. PMID:20107527
NASA Astrophysics Data System (ADS)
He, Yi; Liwo, Adam; Scheraga, Harold A.
2015-12-01
Coarse-grained models are useful tools to investigate the structural and thermodynamic properties of biomolecules. They are obtained by merging several atoms into one interaction site. Such simplified models try to capture as much as possible information of the original biomolecular system in all-atom representation but the resulting parameters of these coarse-grained force fields still need further optimization. In this paper, a force field optimization method, which is based on maximum-likelihood fitting of the simulated to the experimental conformational ensembles and least-squares fitting of the simulated to the experimental heat-capacity curves, is applied to optimize the Nucleic Acid united-RESidue 2-point (NARES-2P) model for coarse-grained simulations of nucleic acids recently developed in our laboratory. The optimized NARES-2P force field reproduces the structural and thermodynamic data of small DNA molecules much better than the original force field.
Uncertainty, learning, and the optimal management of wildlife
Williams, B.K.
2001-01-01
Wildlife management is limited by uncontrolled and often unrecognized environmental variation, by limited capabilities to observe and control animal populations, and by a lack of understanding about the biological processes driving population dynamics. In this paper I describe a comprehensive framework for management that includes multiple models and likelihood values to account for structural uncertainty, along with stochastic factors to account for environmental variation, random sampling, and partial controllability. Adaptive optimization is developed in terms of the optimal control of incompletely understood populations, with the expected value of perfect information measuring the potential for improving control through learning. The framework for optimal adaptive control is generalized by including partial observability and non-adaptive, sample-based updating of model likelihoods. Passive adaptive management is derived as a special case of constrained adaptive optimization, representing a potentially efficient suboptimal alternative that nonetheless accounts for structural uncertainty.
Paruthi, Shalini; Brooks, Lee J.; D'Ambrosio, Carolyn; Hall, Wendy A.; Kotagal, Suresh; Lloyd, Robin M.; Malow, Beth A.; Maski, Kiran; Nichols, Cynthia; Quan, Stuart F.; Rosen, Carol L.; Troester, Matthew M.; Wise, Merrill S.
2016-01-01
Members of the American Academy of Sleep Medicine developed consensus recommendations for the amount of sleep needed to promote optimal health in children and adolescents using a modified RAND Appropriateness Method. After review of 864 published articles, the following sleep durations are recommended: Infants 4 months to 12 months should sleep 12 to 16 hours per 24 hours (including naps) on a regular basis to promote optimal health. Children 1 to 2 years of age should sleep 11 to 14 hours per 24 hours (including naps) on a regular basis to promote optimal health. Children 3 to 5 years of age should sleep 10 to 13 hours per 24 hours (including naps) on a regular basis to promote optimal health. Children 6 to 12 years of age should sleep 9 to 12 hours per 24 hours on a regular basis to promote optimal health. Teenagers 13 to 18 years of age should sleep 8 to 10 hours per 24 hours on a regular basis to promote optimal health. Sleeping the number of recommended hours on a regular basis is associated with better health outcomes including: improved attention, behavior, learning, memory, emotional regulation, quality of life, and mental and physical health. Regularly sleeping fewer than the number of recommended hours is associated with attention, behavior, and learning problems. Insufficient sleep also increases the risk of accidents, injuries, hypertension, obesity, diabetes, and depression. Insufficient sleep in teenagers is associated with increased risk of self-harm, suicidal thoughts, and suicide attempts. Commentary: A commentary on this article apears in this issue on page 1439. Citation: Paruthi S, Brooks LJ, D'Ambrosio C, Hall WA, Kotagal S, Lloyd RM, Malow BA, Maski K, Nichols C, Quan SF, Rosen CL, Troester MM, Wise MS. Consensus statement of the American Academy of Sleep Medicine on the recommended amount of sleep for healthy children: methodology and discussion. J Clin Sleep Med 2016;12(11):1549–1561. PMID:27707447
Bayesian Inversion of 2D Models from Airborne Transient EM Data
NASA Astrophysics Data System (ADS)
Blatter, D. B.; Key, K.; Ray, A.
2016-12-01
The inherent non-uniqueness in most geophysical inverse problems leads to an infinite number of Earth models that fit observed data to within an adequate tolerance. To resolve this ambiguity, traditional inversion methods based on optimization techniques such as the Gauss-Newton and conjugate gradient methods rely on an additional regularization constraint on the properties that an acceptable model can possess, such as having minimal roughness. While allowing such an inversion scheme to converge on a solution, regularization makes it difficult to estimate the uncertainty associated with the model parameters. This is because regularization biases the inversion process toward certain models that satisfy the regularization constraint and away from others that don't, even when both may suitably fit the data. By contrast, a Bayesian inversion framework aims to produce not a single `most acceptable' model but an estimate of the posterior likelihood of the model parameters, given the observed data. In this work, we develop a 2D Bayesian framework for the inversion of transient electromagnetic (TEM) data. Our method relies on a reversible-jump Markov Chain Monte Carlo (RJ-MCMC) Bayesian inverse method with parallel tempering. Previous gradient-based inversion work in this area used a spatially constrained scheme wherein individual (1D) soundings were inverted together and non-uniqueness was tackled by using lateral and vertical smoothness constraints. By contrast, our work uses a 2D model space of Voronoi cells whose parameterization (including number of cells) is fully data-driven. To make the problem work practically, we approximate the forward solution for each TEM sounding using a local 1D approximation where the model is obtained from the 2D model by retrieving a vertical profile through the Voronoi cells. The implicit parsimony of the Bayesian inversion process leads to the simplest models that adequately explain the data, obviating the need for explicit smoothness constraints. In addition, credible intervals in model space are directly obtained, resolving some of the uncertainty introduced by regularization. An example application shows how the method can be used to quantify the uncertainty in airborne EM soundings for imaging subglacial brine channels and groundwater systems.
NASA Astrophysics Data System (ADS)
Storm, Emma; Weniger, Christoph; Calore, Francesca
2017-08-01
We present SkyFACT (Sky Factorization with Adaptive Constrained Templates), a new approach for studying, modeling and decomposing diffuse gamma-ray emission. Like most previous analyses, the approach relies on predictions from cosmic-ray propagation codes like GALPROP and DRAGON. However, in contrast to previous approaches, we account for the fact that models are not perfect and allow for a very large number (gtrsim 105) of nuisance parameters to parameterize these imperfections. We combine methods of image reconstruction and adaptive spatio-spectral template regression in one coherent hybrid approach. To this end, we use penalized Poisson likelihood regression, with regularization functions that are motivated by the maximum entropy method. We introduce methods to efficiently handle the high dimensionality of the convex optimization problem as well as the associated semi-sparse covariance matrix, using the L-BFGS-B algorithm and Cholesky factorization. We test the method both on synthetic data as well as on gamma-ray emission from the inner Galaxy, |l|<90o and |b|<20o, as observed by the Fermi Large Area Telescope. We finally define a simple reference model that removes most of the residual emission from the inner Galaxy, based on conventional diffuse emission components as well as components for the Fermi bubbles, the Fermi Galactic center excess, and extended sources along the Galactic disk. Variants of this reference model can serve as basis for future studies of diffuse emission in and outside the Galactic disk.
Shaw, Calvin B; Prakash, Jaya; Pramanik, Manojit; Yalavarthy, Phaneendra K
2013-08-01
A computationally efficient approach that computes the optimal regularization parameter for the Tikhonov-minimization scheme is developed for photoacoustic imaging. This approach is based on the least squares-QR decomposition which is a well-known dimensionality reduction technique for a large system of equations. It is shown that the proposed framework is effective in terms of quantitative and qualitative reconstructions of initial pressure distribution enabled via finding an optimal regularization parameter. The computational efficiency and performance of the proposed method are shown using a test case of numerical blood vessel phantom, where the initial pressure is exactly known for quantitative comparison.
Inverse Ising problem in continuous time: A latent variable approach
NASA Astrophysics Data System (ADS)
Donner, Christian; Opper, Manfred
2017-12-01
We consider the inverse Ising problem: the inference of network couplings from observed spin trajectories for a model with continuous time Glauber dynamics. By introducing two sets of auxiliary latent random variables we render the likelihood into a form which allows for simple iterative inference algorithms with analytical updates. The variables are (1) Poisson variables to linearize an exponential term which is typical for point process likelihoods and (2) Pólya-Gamma variables, which make the likelihood quadratic in the coupling parameters. Using the augmented likelihood, we derive an expectation-maximization (EM) algorithm to obtain the maximum likelihood estimate of network parameters. Using a third set of latent variables we extend the EM algorithm to sparse couplings via L1 regularization. Finally, we develop an efficient approximate Bayesian inference algorithm using a variational approach. We demonstrate the performance of our algorithms on data simulated from an Ising model. For data which are simulated from a more biologically plausible network with spiking neurons, we show that the Ising model captures well the low order statistics of the data and how the Ising couplings are related to the underlying synaptic structure of the simulated network.
Optimal behaviour can violate the principle of regularity.
Trimmer, Pete C
2013-07-22
Understanding decisions is a fundamental aim of behavioural ecology, psychology and economics. The regularity axiom of utility theory holds that a preference between options should be maintained when other options are made available. Empirical studies have shown that animals violate regularity but this has not been understood from a theoretical perspective, such decisions have therefore been labelled as irrational. Here, I use models of state-dependent behaviour to demonstrate that choices can violate regularity even when behavioural strategies are optimal. I also show that the range of conditions over which regularity should be violated can be larger when options do not always persist into the future. Consequently, utility theory--based on axioms, including transitivity, regularity and the independence of irrelevant alternatives--is undermined, because even alternatives that are never chosen by an animal (in its current state) can be relevant to a decision.
Non-Asymptotic Oracle Inequalities for the High-Dimensional Cox Regression via Lasso.
Kong, Shengchun; Nan, Bin
2014-01-01
We consider finite sample properties of the regularized high-dimensional Cox regression via lasso. Existing literature focuses on linear models or generalized linear models with Lipschitz loss functions, where the empirical risk functions are the summations of independent and identically distributed (iid) losses. The summands in the negative log partial likelihood function for censored survival data, however, are neither iid nor Lipschitz.We first approximate the negative log partial likelihood function by a sum of iid non-Lipschitz terms, then derive the non-asymptotic oracle inequalities for the lasso penalized Cox regression using pointwise arguments to tackle the difficulties caused by lacking iid Lipschitz losses.
Non-Asymptotic Oracle Inequalities for the High-Dimensional Cox Regression via Lasso
Kong, Shengchun; Nan, Bin
2013-01-01
We consider finite sample properties of the regularized high-dimensional Cox regression via lasso. Existing literature focuses on linear models or generalized linear models with Lipschitz loss functions, where the empirical risk functions are the summations of independent and identically distributed (iid) losses. The summands in the negative log partial likelihood function for censored survival data, however, are neither iid nor Lipschitz.We first approximate the negative log partial likelihood function by a sum of iid non-Lipschitz terms, then derive the non-asymptotic oracle inequalities for the lasso penalized Cox regression using pointwise arguments to tackle the difficulties caused by lacking iid Lipschitz losses. PMID:24516328
Hincapié, Ana-Sofía; Kujala, Jan; Mattout, Jérémie; Daligault, Sebastien; Delpuech, Claude; Mery, Domingo; Cosmelli, Diego; Jerbi, Karim
2016-01-01
Minimum Norm Estimation (MNE) is an inverse solution method widely used to reconstruct the source time series that underlie magnetoencephalography (MEG) data. MNE addresses the ill-posed nature of MEG source estimation through regularization (e.g., Tikhonov regularization). Selecting the best regularization parameter is a critical step. Generally, once set, it is common practice to keep the same coefficient throughout a study. However, it is yet to be known whether the optimal lambda for spectral power analysis of MEG source data coincides with the optimal regularization for source-level oscillatory coupling analysis. We addressed this question via extensive Monte-Carlo simulations of MEG data, where we generated 21,600 configurations of pairs of coupled sources with varying sizes, signal-to-noise ratio (SNR), and coupling strengths. Then, we searched for the Tikhonov regularization coefficients (lambda) that maximize detection performance for (a) power and (b) coherence. For coherence, the optimal lambda was two orders of magnitude smaller than the best lambda for power. Moreover, we found that the spatial extent of the interacting sources and SNR, but not the extent of coupling, were the main parameters affecting the best choice for lambda. Our findings suggest using less regularization when measuring oscillatory coupling compared to power estimation.
Hincapié, Ana-Sofía; Kujala, Jan; Mattout, Jérémie; Daligault, Sebastien; Delpuech, Claude; Mery, Domingo; Cosmelli, Diego; Jerbi, Karim
2016-01-01
Minimum Norm Estimation (MNE) is an inverse solution method widely used to reconstruct the source time series that underlie magnetoencephalography (MEG) data. MNE addresses the ill-posed nature of MEG source estimation through regularization (e.g., Tikhonov regularization). Selecting the best regularization parameter is a critical step. Generally, once set, it is common practice to keep the same coefficient throughout a study. However, it is yet to be known whether the optimal lambda for spectral power analysis of MEG source data coincides with the optimal regularization for source-level oscillatory coupling analysis. We addressed this question via extensive Monte-Carlo simulations of MEG data, where we generated 21,600 configurations of pairs of coupled sources with varying sizes, signal-to-noise ratio (SNR), and coupling strengths. Then, we searched for the Tikhonov regularization coefficients (lambda) that maximize detection performance for (a) power and (b) coherence. For coherence, the optimal lambda was two orders of magnitude smaller than the best lambda for power. Moreover, we found that the spatial extent of the interacting sources and SNR, but not the extent of coupling, were the main parameters affecting the best choice for lambda. Our findings suggest using less regularization when measuring oscillatory coupling compared to power estimation. PMID:27092179
Emitter Number Estimation by the General Information Theoretic Criterion from Pulse Trains
2002-12-01
negative log likelihood function plus a penalty function. The general information criteria by Yin and Krishnaiah [11] are different from the regular...548-551, Victoria, BC, Canada, March 1999 DRDC Ottawa TR 2002-156 11 11. L. Zhao, P. P. Krishnaiah and Z. Bai, “On some nonparametric methods for
ERIC Educational Resources Information Center
Sinharay, Sandip
2015-01-01
The maximum likelihood estimate (MLE) of the ability parameter of an item response theory model with known item parameters was proved to be asymptotically normally distributed under a set of regularity conditions for tests involving dichotomous items and a unidimensional ability parameter (Klauer, 1990; Lord, 1983). This article first considers…
When Goals Conflict But People Prosper: The Case of Dispositional Optimism
Segerstrom, Suzanne C.; Nes, Lise Solberg
2005-01-01
Optimistic persistence in pursuing goals may have beneficial consequences such as protection against negative affect and greater likelihood of goal attainment, but persistence can also result in greater likelihood of goal conflict, which can have negative consequences. Two studies, one cross-sectional (N = 100) and one longitudinal (N = 77), found that optimism associated with higher goal conflict. However, objectively rated goal conflict did not significantly undermine adjustment, and when balance among goal value, expectancy, and conflict was considered, optimism associated with better balance. In turn, balance accounted for part of optimists’ better goal progress over the course of a semester. Although goal conflict may have costs, these costs appear to be offset by accompanying benefits, particularly for optimists. PMID:17016545
NASA Astrophysics Data System (ADS)
Chen, Shuhong; Tan, Zhong
2007-11-01
In this paper, we consider the nonlinear elliptic systems under controllable growth condition. We use a new method introduced by Duzaar and Grotowski, for proving partial regularity for weak solutions, based on a generalization of the technique of harmonic approximation. We extend previous partial regularity results under the natural growth condition to the case of the controllable growth condition, and directly establishing the optimal Hölder exponent for the derivative of a weak solution.
A composite likelihood approach for spatially correlated survival data
Paik, Jane; Ying, Zhiliang
2013-01-01
The aim of this paper is to provide a composite likelihood approach to handle spatially correlated survival data using pairwise joint distributions. With e-commerce data, a recent question of interest in marketing research has been to describe spatially clustered purchasing behavior and to assess whether geographic distance is the appropriate metric to describe purchasing dependence. We present a model for the dependence structure of time-to-event data subject to spatial dependence to characterize purchasing behavior from the motivating example from e-commerce data. We assume the Farlie-Gumbel-Morgenstern (FGM) distribution and then model the dependence parameter as a function of geographic and demographic pairwise distances. For estimation of the dependence parameters, we present pairwise composite likelihood equations. We prove that the resulting estimators exhibit key properties of consistency and asymptotic normality under certain regularity conditions in the increasing-domain framework of spatial asymptotic theory. PMID:24223450
A composite likelihood approach for spatially correlated survival data.
Paik, Jane; Ying, Zhiliang
2013-01-01
The aim of this paper is to provide a composite likelihood approach to handle spatially correlated survival data using pairwise joint distributions. With e-commerce data, a recent question of interest in marketing research has been to describe spatially clustered purchasing behavior and to assess whether geographic distance is the appropriate metric to describe purchasing dependence. We present a model for the dependence structure of time-to-event data subject to spatial dependence to characterize purchasing behavior from the motivating example from e-commerce data. We assume the Farlie-Gumbel-Morgenstern (FGM) distribution and then model the dependence parameter as a function of geographic and demographic pairwise distances. For estimation of the dependence parameters, we present pairwise composite likelihood equations. We prove that the resulting estimators exhibit key properties of consistency and asymptotic normality under certain regularity conditions in the increasing-domain framework of spatial asymptotic theory.
Automatic Optimism: The Affective Basis of Judgments about the Likelihood of Future Events
ERIC Educational Resources Information Center
Lench, Heather C.
2009-01-01
People generally judge that the future will be consistent with their desires, but the reason for this desirability bias is unclear. This investigation examined whether affective reactions associated with future events are the mechanism through which desires influence likelihood judgments. In 4 studies, affective reactions were manipulated for…
NASA Astrophysics Data System (ADS)
Parekh, Ankit
Sparsity has become the basis of some important signal processing methods over the last ten years. Many signal processing problems (e.g., denoising, deconvolution, non-linear component analysis) can be expressed as inverse problems. Sparsity is invoked through the formulation of an inverse problem with suitably designed regularization terms. The regularization terms alone encode sparsity into the problem formulation. Often, the ℓ1 norm is used to induce sparsity, so much so that ℓ1 regularization is considered to be `modern least-squares'. The use of ℓ1 norm, as a sparsity-inducing regularizer, leads to a convex optimization problem, which has several benefits: the absence of extraneous local minima, well developed theory of globally convergent algorithms, even for large-scale problems. Convex regularization via the ℓ1 norm, however, tends to under-estimate the non-zero values of sparse signals. In order to estimate the non-zero values more accurately, non-convex regularization is often favored over convex regularization. However, non-convex regularization generally leads to non-convex optimization, which suffers from numerous issues: convergence may be guaranteed to only a stationary point, problem specific parameters may be difficult to set, and the solution is sensitive to the initialization of the algorithm. The first part of this thesis is aimed toward combining the benefits of non-convex regularization and convex optimization to estimate sparse signals more effectively. To this end, we propose to use parameterized non-convex regularizers with designated non-convexity and provide a range for the non-convex parameter so as to ensure that the objective function is strictly convex. By ensuring convexity of the objective function (sum of data-fidelity and non-convex regularizer), we can make use of a wide variety of convex optimization algorithms to obtain the unique global minimum reliably. The second part of this thesis proposes a non-linear signal decomposition technique for an important biomedical signal processing problem: the detection of sleep spindles and K-complexes in human sleep electroencephalography (EEG). We propose a non-linear model for the EEG consisting of three components: (1) a transient (sparse piecewise constant) component, (2) a low-frequency component, and (3) an oscillatory component. The oscillatory component admits a sparse time-frequency representation. Using a convex objective function, we propose a fast non-linear optimization algorithm to estimate the three components in the proposed signal model. The low-frequency and oscillatory components are then used to estimate the K-complexes and sleep spindles respectively. The proposed detection method is shown to outperform several state-of-the-art automated sleep spindles detection methods.
NASA Astrophysics Data System (ADS)
Wang, Z.
2015-12-01
For decades, distributed and lumped hydrological models have furthered our understanding of hydrological system. The development of hydrological simulation in large scale and high precision elaborated the spatial descriptions and hydrological behaviors. Meanwhile, the new trend is also followed by the increment of model complexity and number of parameters, which brings new challenges of uncertainty quantification. Generalized Likelihood Uncertainty Estimation (GLUE) has been widely used in uncertainty analysis for hydrological models referring to Monte Carlo method coupled with Bayesian estimation. However, the stochastic sampling method of prior parameters adopted by GLUE appears inefficient, especially in high dimensional parameter space. The heuristic optimization algorithms utilizing iterative evolution show better convergence speed and optimality-searching performance. In light of the features of heuristic optimization algorithms, this study adopted genetic algorithm, differential evolution, shuffled complex evolving algorithm to search the parameter space and obtain the parameter sets of large likelihoods. Based on the multi-algorithm sampling, hydrological model uncertainty analysis is conducted by the typical GLUE framework. To demonstrate the superiority of the new method, two hydrological models of different complexity are examined. The results shows the adaptive method tends to be efficient in sampling and effective in uncertainty analysis, providing an alternative path for uncertainty quantilization.
NASA Technical Reports Server (NTRS)
Clark, R. T.; Mccallister, R. D.
1982-01-01
The particular coding option identified as providing the best level of coding gain performance in an LSI-efficient implementation was the optimal constraint length five, rate one-half convolutional code. To determine the specific set of design parameters which optimally matches this decoder to the LSI constraints, a breadboard MCD (maximum-likelihood convolutional decoder) was fabricated and used to generate detailed performance trade-off data. The extensive performance testing data gathered during this design tradeoff study are summarized, and the functional and physical MCD chip characteristics are presented.
NASA Astrophysics Data System (ADS)
Dai, Meng-Xue; Chen, Jing-Bo; Cao, Jian
2017-07-01
Full-waveform inversion (FWI) is an ill-posed optimization problem which is sensitive to noise and initial model. To alleviate the ill-posedness of the problem, regularization techniques are usually adopted. The ℓ1-norm penalty is a robust regularization method that preserves contrasts and edges. The Orthant-Wise Limited-Memory Quasi-Newton (OWL-QN) method extends the widely-used limited-memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) method to the ℓ1-regularized optimization problems and inherits the efficiency of L-BFGS. To take advantage of the ℓ1-regularized method and the prior model information obtained from sonic logs and geological information, we implement OWL-QN algorithm in ℓ1-regularized FWI with prior model information in this paper. Numerical experiments show that this method not only improve the inversion results but also has a strong anti-noise ability.
Optimal behaviour can violate the principle of regularity
Trimmer, Pete C.
2013-01-01
Understanding decisions is a fundamental aim of behavioural ecology, psychology and economics. The regularity axiom of utility theory holds that a preference between options should be maintained when other options are made available. Empirical studies have shown that animals violate regularity but this has not been understood from a theoretical perspective, such decisions have therefore been labelled as irrational. Here, I use models of state-dependent behaviour to demonstrate that choices can violate regularity even when behavioural strategies are optimal. I also show that the range of conditions over which regularity should be violated can be larger when options do not always persist into the future. Consequently, utility theory—based on axioms, including transitivity, regularity and the independence of irrelevant alternatives—is undermined, because even alternatives that are never chosen by an animal (in its current state) can be relevant to a decision. PMID:23740781
Canales-Rodríguez, Erick J.; Caruyer, Emmanuel; Aja-Fernández, Santiago; Radua, Joaquim; Yurramendi Mendizabal, Jesús M.; Iturria-Medina, Yasser; Melie-García, Lester; Alemán-Gómez, Yasser; Thiran, Jean-Philippe; Sarró, Salvador; Pomarol-Clotet, Edith; Salvador, Raymond
2015-01-01
Spherical deconvolution (SD) methods are widely used to estimate the intra-voxel white-matter fiber orientations from diffusion MRI data. However, while some of these methods assume a zero-mean Gaussian distribution for the underlying noise, its real distribution is known to be non-Gaussian and to depend on many factors such as the number of coils and the methodology used to combine multichannel MRI signals. Indeed, the two prevailing methods for multichannel signal combination lead to noise patterns better described by Rician and noncentral Chi distributions. Here we develop a Robust and Unbiased Model-BAsed Spherical Deconvolution (RUMBA-SD) technique, intended to deal with realistic MRI noise, based on a Richardson-Lucy (RL) algorithm adapted to Rician and noncentral Chi likelihood models. To quantify the benefits of using proper noise models, RUMBA-SD was compared with dRL-SD, a well-established method based on the RL algorithm for Gaussian noise. Another aim of the study was to quantify the impact of including a total variation (TV) spatial regularization term in the estimation framework. To do this, we developed TV spatially-regularized versions of both RUMBA-SD and dRL-SD algorithms. The evaluation was performed by comparing various quality metrics on 132 three-dimensional synthetic phantoms involving different inter-fiber angles and volume fractions, which were contaminated with noise mimicking patterns generated by data processing in multichannel scanners. The results demonstrate that the inclusion of proper likelihood models leads to an increased ability to resolve fiber crossings with smaller inter-fiber angles and to better detect non-dominant fibers. The inclusion of TV regularization dramatically improved the resolution power of both techniques. The above findings were also verified in human brain data. PMID:26470024
Maulidiani; Rudiyanto; Abas, Faridah; Ismail, Intan Safinar; Lajis, Nordin H
2018-06-01
Optimization process is an important aspect in the natural product extractions. Herein, an alternative approach is proposed for the optimization in extraction, namely, the Generalized Likelihood Uncertainty Estimation (GLUE). The approach combines the Latin hypercube sampling, the feasible range of independent variables, the Monte Carlo simulation, and the threshold criteria of response variables. The GLUE method is tested in three different techniques including the ultrasound, the microwave, and the supercritical CO 2 assisted extractions utilizing the data from previously published reports. The study found that this method can: provide more information on the combined effects of the independent variables on the response variables in the dotty plots; deal with unlimited number of independent and response variables; consider combined multiple threshold criteria, which is subjective depending on the target of the investigation for response variables; and provide a range of values with their distribution for the optimization. Copyright © 2018 Elsevier Ltd. All rights reserved.
Explaining the effect of event valence on unrealistic optimism.
Gold, Ron S; Brown, Mark G
2009-05-01
People typically exhibit 'unrealistic optimism' (UO): they believe they have a lower chance of experiencing negative events and a higher chance of experiencing positive events than does the average person. UO has been found to be greater for negative than positive events. This 'valence effect' has been explained in terms of motivational processes. An alternative explanation is provided by the 'numerosity model', which views the valence effect simply as a by-product of a tendency for likelihood estimates pertaining to the average member of a group to increase with the size of the group. Predictions made by the numerosity model were tested in two studies. In each, UO for a single event was assessed. In Study 1 (n = 115 students), valence was manipulated by framing the event either negatively or positively, and participants estimated their own likelihood and that of the average student at their university. In Study 2 (n = 139 students), valence was again manipulated and participants again estimated their own likelihood; additionally, group size was manipulated by having participants estimate the likelihood of the average student in a small, medium-sized, or large group. In each study, the valence effect was found, but was due to an effect on estimates of own likelihood, not the average person's likelihood. In Study 2, valence did not interact with group size. The findings contradict the numerosity model, but are in accord with the motivational explanation. Implications for health education are discussed.
Cosmological parameter estimation using Particle Swarm Optimization
NASA Astrophysics Data System (ADS)
Prasad, J.; Souradeep, T.
2014-03-01
Constraining parameters of a theoretical model from observational data is an important exercise in cosmology. There are many theoretically motivated models, which demand greater number of cosmological parameters than the standard model of cosmology uses, and make the problem of parameter estimation challenging. It is a common practice to employ Bayesian formalism for parameter estimation for which, in general, likelihood surface is probed. For the standard cosmological model with six parameters, likelihood surface is quite smooth and does not have local maxima, and sampling based methods like Markov Chain Monte Carlo (MCMC) method are quite successful. However, when there are a large number of parameters or the likelihood surface is not smooth, other methods may be more effective. In this paper, we have demonstrated application of another method inspired from artificial intelligence, called Particle Swarm Optimization (PSO) for estimating cosmological parameters from Cosmic Microwave Background (CMB) data taken from the WMAP satellite.
NASA Technical Reports Server (NTRS)
Walker, H. F.
1976-01-01
Likelihood equations determined by the two types of samples which are necessary conditions for a maximum-likelihood estimate are considered. These equations, suggest certain successive-approximations iterative procedures for obtaining maximum-likelihood estimates. These are generalized steepest ascent (deflected gradient) procedures. It is shown that, with probability 1 as N sub 0 approaches infinity (regardless of the relative sizes of N sub 0 and N sub 1, i=1,...,m), these procedures converge locally to the strongly consistent maximum-likelihood estimates whenever the step size is between 0 and 2. Furthermore, the value of the step size which yields optimal local convergence rates is bounded from below by a number which always lies between 1 and 2.
Griffin, Kenneth W; Botvin, Gilbert J; Scheier, Lawrence M; Nichols, Tracy R
2002-01-01
The present study investigated whether several behavioral and psychosocial factors measured during early adolescence predicted regular marijuana use 6 years later in a sample of high school students. As part of a school-based survey. 7th-grade students (N = 1,132) reported levels of alcohol, tobacco, and marijuana use, and were assessed on several domains of psychosocial functioning potentially relevant in the etiology of marijuana use. When students were followed-up in the 12th-grade, 14% smoked marijuana on a regular basis (once or more per month). Findings indicated that early cigarette smoking, alcohol use, and alcohol intoxication predicted later regular marijuana use. For boys, early marijuana use increased the odds for later regular marijuana use. Cigarette smoking by friends and siblings during early adolescence also increased the likelihood of later monthly marijuana use. The findings suggest that early prevention programs for adolescent alcohol, tobacco, and/or other drug use may have important preventive effects in terms of potentially more serious levels of marijuana involvement later in adolescence and early adulthood.
The Utility of an Efficient Outcomes Assessment System at University Counseling Centers
ERIC Educational Resources Information Center
Kopta, S. Mark; Petrik, Megan L.; Saunders, Stephen M.; Mond, Michael; Hirsch, Glenn; Kadison, Richard; Raymond, Danielle
2014-01-01
Due to increased demands placed on university counseling centers (UCCs) in recent years, there is a need for these centers to enhance the efficiency and effectiveness of their psychological services. Regularly monitoring client progress is one approach to increase the likelihood of positive clinical outcomes. This article describes the use of the…
Optimal Methods for Classification of Digitally Modulated Signals
2013-03-01
of using a ratio of likelihood functions, the proposed approach uses the Kullback - Leibler (KL) divergence. KL...58 List of Acronyms ALRT Average LRT BPSK Binary Shift Keying BPSK-SS BPSK Spread Spectrum or CDMA DKL Kullback - Leibler Information Divergence...blind demodulation for develop classification algorithms for wider set of signals types. Two methodologies were used : Likelihood Ratio Test
Fast Algorithms for Earth Mover Distance Based on Optimal Transport and L1 Regularization II
2016-09-01
of optimal transport, the EMD problem can be reformulated as a familiar L1 minimization. We use a regularization which gives us a unique solution for...plays a central role in many applications, including image processing, computer vision and statistics etc. [13, 17, 20, 24]. The EMD is a metric defined
Regularization by Functions of Bounded Variation and Applications to Image Enhancement
DOE Office of Scientific and Technical Information (OSTI.GOV)
Casas, E.; Kunisch, K.; Pola, C.
1999-09-15
Optimization problems regularized by bounded variation seminorms are analyzed. The optimality system is obtained and finite-dimensional approximations of bounded variation function spaces as well as of the optimization problems are studied. It is demonstrated that the choice of the vector norm in the definition of the bounded variation seminorm is of special importance for approximating subspaces consisting of piecewise constant functions. Algorithms based on a primal-dual framework that exploit the structure of these nondifferentiable optimization problems are proposed. Numerical examples are given for denoising of blocky images with very high noise.
Singer, Adam J; Thode, Henry C; Peacock, W Frank; Hollander, Judd E; Diercks, Deborah; Birkhahn, Robert; Shapiro, Nathan; Glynn, Ted; Nowack, Richard; Safdar, Basmah; Miller, Chadwick; Lewandrowski, Elizabeth; Nagurney, John
2013-01-01
Regular exercise is thought to be protective against coronary artery disease. As a result, some physicians believe that the likelihood of acute coronary syndrome (ACS) in patients with acute chest pain is reduced in those who exercise regularly. We studied the association between self-reported frequency of exercising and the likelihood of ACS in patients presenting to the Emergency Department (ED) with chest pain. A multi-center prospective, descriptive, cohort study design was used in ED patients to determine whether the risk of ACS was reduced in patients who self-reported regular exercise. There were 1093 patients enrolled. Median (interquartile range) age was 57 (48-67) years; 506 (45.7%) were female. ACS was diagnosed in 248 (22.7%) patients. Patients who did not exercise at least monthly were more likely to be diagnosed with ACS than those who did (129/466 [27.7%] vs. 119/627 [19.0%]; odds ratio 1.63, 95% CI 1.23-2.17). After adjusting for age, gender, body mass index, smoking, and prior history, limited exercise was still associated with ACS (adjusted odds ratio 1.52, 95% CI 1.10-2.10). There was no apparent association between frequency and intensity of exercise and risk of ACS. Although self-reported frequency of exercise was significantly associated with a decrease in ACS in ED patients with chest pain, it should not be used to exclude ACS in symptomatic ED patients. Copyright © 2013 Elsevier Inc. All rights reserved.
Parallelization strategies for continuum-generalized method of moments on the multi-thread systems
NASA Astrophysics Data System (ADS)
Bustamam, A.; Handhika, T.; Ernastuti, Kerami, D.
2017-07-01
Continuum-Generalized Method of Moments (C-GMM) covers the Generalized Method of Moments (GMM) shortfall which is not as efficient as Maximum Likelihood estimator by using the continuum set of moment conditions in a GMM framework. However, this computation would take a very long time since optimizing regularization parameter. Unfortunately, these calculations are processed sequentially whereas in fact all modern computers are now supported by hierarchical memory systems and hyperthreading technology, which allowing for parallel computing. This paper aims to speed up the calculation process of C-GMM by designing a parallel algorithm for C-GMM on the multi-thread systems. First, parallel regions are detected for the original C-GMM algorithm. There are two parallel regions in the original C-GMM algorithm, that are contributed significantly to the reduction of computational time: the outer-loop and the inner-loop. Furthermore, this parallel algorithm will be implemented with standard shared-memory application programming interface, i.e. Open Multi-Processing (OpenMP). The experiment shows that the outer-loop parallelization is the best strategy for any number of observations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Storm, Emma; Weniger, Christoph; Calore, Francesca, E-mail: e.m.storm@uva.nl, E-mail: c.weniger@uva.nl, E-mail: francesca.calore@lapth.cnrs.fr
We present SkyFACT (Sky Factorization with Adaptive Constrained Templates), a new approach for studying, modeling and decomposing diffuse gamma-ray emission. Like most previous analyses, the approach relies on predictions from cosmic-ray propagation codes like GALPROP and DRAGON. However, in contrast to previous approaches, we account for the fact that models are not perfect and allow for a very large number (∼> 10{sup 5}) of nuisance parameters to parameterize these imperfections. We combine methods of image reconstruction and adaptive spatio-spectral template regression in one coherent hybrid approach. To this end, we use penalized Poisson likelihood regression, with regularization functions that aremore » motivated by the maximum entropy method. We introduce methods to efficiently handle the high dimensionality of the convex optimization problem as well as the associated semi-sparse covariance matrix, using the L-BFGS-B algorithm and Cholesky factorization. We test the method both on synthetic data as well as on gamma-ray emission from the inner Galaxy, |ℓ|<90{sup o} and | b |<20{sup o}, as observed by the Fermi Large Area Telescope. We finally define a simple reference model that removes most of the residual emission from the inner Galaxy, based on conventional diffuse emission components as well as components for the Fermi bubbles, the Fermi Galactic center excess, and extended sources along the Galactic disk. Variants of this reference model can serve as basis for future studies of diffuse emission in and outside the Galactic disk.« less
The optimal power puzzle: scrutiny of the monotone likelihood ratio assumption in multiple testing.
Cao, Hongyuan; Sun, Wenguang; Kosorok, Michael R
2013-01-01
In single hypothesis testing, power is a non-decreasing function of type I error rate; hence it is desirable to test at the nominal level exactly to achieve optimal power. The puzzle lies in the fact that for multiple testing, under the false discovery rate paradigm, such a monotonic relationship may not hold. In particular, exact false discovery rate control may lead to a less powerful testing procedure if a test statistic fails to fulfil the monotone likelihood ratio condition. In this article, we identify different scenarios wherein the condition fails and give caveats for conducting multiple testing in practical settings.
Prugger, Christof; Wellmann, Jürgen; Heidrich, Jan; De Bacquer, Dirk; De Smedt, Delphine; De Backer, Guy; Reiner, Željko; Empana, Jean-Philippe; Fras, Zlatko; Gaita, Dan; Jennings, Catriona; Kotseva, Kornelia; Wood, David; Keil, Ulrich
2017-01-01
Regular exercise lowers the risk of cardiovascular death in coronary heart disease (CHD) patients. We aimed to investigate regular exercise behaviour and intention in relation to symptoms of anxiety and depression in CHD patients across Europe. This study was based on a multicentre cross-sectional survey. In the EUROpean Action on Secondary and Primary Prevention through Intervention to Reduce Events (EUROASPIRE) III survey, 8966 CHD patients <80 years of age from 22 European countries were interviewed on average 15 months after hospitalisation. Whether patients exercised or intended to exercise regularly was assessed using the Stages of Change questionnaire in 8330 patients. Symptoms of anxiety and depression were evaluated using the Hospital Anxiety and Depression Scale. Total physical activity was measured by the International Physical Activity Questionnaire in patients from a subset of 14 countries. Overall, 50.3% of patients were not intending to exercise regularly, 15.9% were intending to exercise regularly, and 33.8% were exercising regularly. Patients with severe symptoms of depression less frequently exercised regularly than patients with symptoms in the normal range (20.2%, 95% confidence interval (CI) 14.8-26.8 vs 36.7%, 95% CI 29.8-44.2). Among patients not exercising regularly, patients with severe symptoms of depression were less likely to have an intention to exercise regularly (odds ratio 0.62, 95% CI 0.46-0.85). Symptoms of anxiety did not affect regular exercise intention. In sensitivity analysis, results were consistent when adjusting for total physical activity. Lower frequency of regular exercise and decreased likelihood of exercise intention were observed in CHD patients with severe depressive symptoms. Severe symptoms of depression may preclude CHD patients from performing regular exercise. © The European Society of Cardiology 2016.
The medical geochemistry of dusts, soils, and other Earth materials: Chapter 7
Plumlee, Geoffrey S.; Ziegler, Thomas L.
2003-01-01
A quick scan of newspapers, television, science magazines, or the internet on any given day has a fairly high likelihood of encountering stories (accompanied by headlines such as those above) regarding human health concerns linked to dusts, soils, or other Earth materials. Many such concerns have been recognized and studied for decades, but new concerns arise regularly.
McIntosh, William Alex; Kubena, Karen S; Tolle, Glen; Dean, Wesley R; Jan, Jie-sheng; Anding, Jenna
2010-12-01
Participation in family meals has been associated with benefits for health and social development of children. The objective of the study was to identify the impact of mothers' work of caring through planning regularly scheduled meals, shopping and cooking, on children's participation in family meals. Parents of children aged 9-11 or 13-15 years from 300 Houston families were surveyed about parents' work, meal planning for and scheduling of meals, motivations for food purchases, importance of family meals, and children's frequency of eating dinner with their families. The children were interviewed about the importance of eating family meals. Hypotheses were tested using path analysis to calculate indirect and total effects of variables on the outcome variable of frequency of children eating dinner with their family. Mothers' belief in the importance of family meals increased likelihood of children eating dinner with families by increasing likelihood that mothers planned dinner and that dinners were regularly scheduled. Mothers' perception of time pressures on meal preparation had a negative, indirect effect on the frequency of children's participation in family dinners by reducing mothers' meal planning. Copyright © 2010 Elsevier Ltd. All rights reserved.
Semisupervised Support Vector Machines With Tangent Space Intrinsic Manifold Regularization.
Sun, Shiliang; Xie, Xijiong
2016-09-01
Semisupervised learning has been an active research topic in machine learning and data mining. One main reason is that labeling examples is expensive and time-consuming, while there are large numbers of unlabeled examples available in many practical problems. So far, Laplacian regularization has been widely used in semisupervised learning. In this paper, we propose a new regularization method called tangent space intrinsic manifold regularization. It is intrinsic to data manifold and favors linear functions on the manifold. Fundamental elements involved in the formulation of the regularization are local tangent space representations, which are estimated by local principal component analysis, and the connections that relate adjacent tangent spaces. Simultaneously, we explore its application to semisupervised classification and propose two new learning algorithms called tangent space intrinsic manifold regularized support vector machines (TiSVMs) and tangent space intrinsic manifold regularized twin SVMs (TiTSVMs). They effectively integrate the tangent space intrinsic manifold regularization consideration. The optimization of TiSVMs can be solved by a standard quadratic programming, while the optimization of TiTSVMs can be solved by a pair of standard quadratic programmings. The experimental results of semisupervised classification problems show the effectiveness of the proposed semisupervised learning algorithms.
NASA Astrophysics Data System (ADS)
Burman, Erik; Hansbo, Peter; Larson, Mats G.
2018-03-01
Tikhonov regularization is one of the most commonly used methods for the regularization of ill-posed problems. In the setting of finite element solutions of elliptic partial differential control problems, Tikhonov regularization amounts to adding suitably weighted least squares terms of the control variable, or derivatives thereof, to the Lagrangian determining the optimality system. In this note we show that the stabilization methods for discretely ill-posed problems developed in the setting of convection-dominated convection-diffusion problems, can be highly suitable for stabilizing optimal control problems, and that Tikhonov regularization will lead to less accurate discrete solutions. We consider some inverse problems for Poisson’s equation as an illustration and derive new error estimates both for the reconstruction of the solution from the measured data and reconstruction of the source term from the measured data. These estimates include both the effect of the discretization error and error in the measurements.
Pu, Jia; Zhang, Xiao
2017-11-01
US adolescents are exposed to high levels of advertisements for electronic cigarettes (e-cigarettes). This study aimed to examine the associations between exposure to e-cigarette advertisements and perception, interest, and use of e-cigarettes among US middle school and high school students. Data from the 2014 cross-sectional National Youth Tobacco Survey were used. Logistic regressions were conducted to model four outcomes, including perception of reduced harmfulness compared to regular cigarettes, perception of reduced addictiveness, intention to use, and current use of e-cigarettes. Main predictors were exposure to e-cigarette advertisements via four sources, including Internet, newspaper/magazines, retail stores, and TV. When all the four sources of e-cigarette advertisements exposure were evaluated jointly, exposure via the Internet was associated with elevated likelihood of reporting all four outcomes related to e-cigarettes, while exposure via retail stores was associated with higher likelihood of current e-cigarette use and perception of reduced harmfulness of e-cigarettes compared to regular cigarettes ( p < .05). However, exposure via newspaper/magazines and TV was associated with lower likelihood of perceiving e-cigarettes to be less harmful or addictive ( p < .05). Exposure to e-cigarette advertisements via the Internet and retail stores may play a significant role in adolescents' use and perception of e-cigarettes. The results call for more research on the influence of different sources of advertising exposure on e-cigarette use to help public health programmes curtail the fast growing use of e-cigarette products among youth.
An alternative method to measure the likelihood of a financial crisis in an emerging market
NASA Astrophysics Data System (ADS)
Özlale, Ümit; Metin-Özcan, Kıvılcım
2007-07-01
This paper utilizes an early warning system in order to measure the likelihood of a financial crisis in an emerging market economy. We introduce a methodology, where we can both obtain a likelihood series and analyze the time-varying effects of several macroeconomic variables on this likelihood. Since the issue is analyzed in a non-linear state space framework, the extended Kalman filter emerges as the optimal estimation algorithm. Taking the Turkish economy as our laboratory, the results indicate that both the derived likelihood measure and the estimated time-varying parameters are meaningful and can successfully explain the path that the Turkish economy had followed between 2000 and 2006. The estimated parameters also suggest that overvalued domestic currency, current account deficit and the increase in the default risk increase the likelihood of having an economic crisis in the economy. Overall, the findings in this paper suggest that the estimation methodology introduced in this paper can also be applied to other emerging market economies as well.
Social vulnerability and HIV testing among South African men who have sex with men (MSM)
Knox, Justin; Sandfort, Theo; Yi, Huso; Reddy, Vasu; Maimane, Senkhu
2011-01-01
Summary This study examined whether social vulnerability is associated with HIV testing among South African MSM. A community-based survey was conducted with 300 MSM in Pretoria in 2008. The sample was stratified by age, race, and residential status. Social vulnerability was assessed using measures of demographic characteristics, psychosocial determinants, and indicators of sexual minority stress. Being Black, living in a township and lacking HIV knowledge reduced MSM’s likelihood of ever having tested for HIV. Among those who had tested, lower income and not self-identifying as gay reduced men’s likelihood of having tested more than once. Lower income and internalized homophobia reduced men’s likelihood of having tested recently. Overall, MSM in socially vulnerable positions were less likely to get tested for HIV. Efforts to mitigate the effects of social vulnerability on HIV testing practices are needed in order to encourage regular HIV testing among South African MSM. PMID:22174050
Bayesian image reconstruction for improving detection performance of muon tomography.
Wang, Guobao; Schultz, Larry J; Qi, Jinyi
2009-05-01
Muon tomography is a novel technology that is being developed for detecting high-Z materials in vehicles or cargo containers. Maximum likelihood methods have been developed for reconstructing the scattering density image from muon measurements. However, the instability of maximum likelihood estimation often results in noisy images and low detectability of high-Z targets. In this paper, we propose using regularization to improve the image quality of muon tomography. We formulate the muon reconstruction problem in a Bayesian framework by introducing a prior distribution on scattering density images. An iterative shrinkage algorithm is derived to maximize the log posterior distribution. At each iteration, the algorithm obtains the maximum a posteriori update by shrinking an unregularized maximum likelihood update. Inverse quadratic shrinkage functions are derived for generalized Laplacian priors and inverse cubic shrinkage functions are derived for generalized Gaussian priors. Receiver operating characteristic studies using simulated data demonstrate that the Bayesian reconstruction can greatly improve the detection performance of muon tomography.
Dynamic positioning configuration and its first-order optimization
NASA Astrophysics Data System (ADS)
Xue, Shuqiang; Yang, Yuanxi; Dang, Yamin; Chen, Wu
2014-02-01
Traditional geodetic network optimization deals with static and discrete control points. The modern space geodetic network is, on the other hand, composed of moving control points in space (satellites) and on the Earth (ground stations). The network configuration composed of these facilities is essentially dynamic and continuous. Moreover, besides the position parameter which needs to be estimated, other geophysical information or signals can also be extracted from the continuous observations. The dynamic (continuous) configuration of the space network determines whether a particular frequency of signals can be identified by this system. In this paper, we employ the functional analysis and graph theory to study the dynamic configuration of space geodetic networks, and mainly focus on the optimal estimation of the position and clock-offset parameters. The principle of the D-optimization is introduced in the Hilbert space after the concept of the traditional discrete configuration is generalized from the finite space to the infinite space. It shows that the D-optimization developed in the discrete optimization is still valid in the dynamic configuration optimization, and this is attributed to the natural generalization of least squares from the Euclidean space to the Hilbert space. Then, we introduce the principle of D-optimality invariance under the combination operation and rotation operation, and propose some D-optimal simplex dynamic configurations: (1) (Semi) circular configuration in 2-dimensional space; (2) the D-optimal cone configuration and D-optimal helical configuration which is close to the GPS constellation in 3-dimensional space. The initial design of GPS constellation can be approximately treated as a combination of 24 D-optimal helixes by properly adjusting the ascending node of different satellites to realize a so-called Walker constellation. In the case of estimating the receiver clock-offset parameter, we show that the circular configuration, the symmetrical cone configuration and helical curve configuration are still D-optimal. It shows that the given total observation time determines the optimal frequency (repeatability) of moving known points and vice versa, and one way to improve the repeatability is to increase the rotational speed. Under the Newton's law of motion, the frequency of satellite motion determines the orbital altitude. Furthermore, we study three kinds of complex dynamic configurations, one of which is the combination of D-optimal cone configurations and a so-called Walker constellation composed of D-optimal helical configuration, the other is the nested cone configuration composed of n cones, and the last is the nested helical configuration composed of n orbital planes. It shows that an effective way to achieve high coverage is to employ the configuration composed of a certain number of moving known points instead of the simplex configuration (such as D-optimal helical configuration), and one can use the D-optimal simplex solutions or D-optimal complex configurations in any combination to achieve powerful configurations with flexile coverage and flexile repeatability. Alternately, how to optimally generate and assess the discrete configurations sampled from the continuous one is discussed. The proposed configuration optimization framework has taken the well-known regular polygons (such as equilateral triangle and quadrangular) in two-dimensional space and regular polyhedrons (regular tetrahedron, cube, regular octahedron, regular icosahedron, or regular dodecahedron) into account. It shows that the conclusions made by the proposed technique are more general and no longer limited by different sampling schemes. By the conditional equation of D-optimal nested helical configuration, the relevance issues of GNSS constellation optimization are solved and some examples are performed by GPS constellation to verify the validation of the newly proposed optimization technique. The proposed technique is potentially helpful in maintenance and quadratic optimization of single GNSS of which the orbital inclination and the orbital altitude change under the precession, as well as in optimally nesting GNSSs to perform global homogeneous coverage of the Earth.
Maximum-likelihood block detection of noncoherent continuous phase modulation
NASA Technical Reports Server (NTRS)
Simon, Marvin K.; Divsalar, Dariush
1993-01-01
This paper examines maximum-likelihood block detection of uncoded full response CPM over an additive white Gaussian noise (AWGN) channel. Both the maximum-likelihood metrics and the bit error probability performances of the associated detection algorithms are considered. The special and popular case of minimum-shift-keying (MSK) corresponding to h = 0.5 and constant amplitude frequency pulse is treated separately. The many new receiver structures that result from this investigation can be compared to the traditional ones that have been used in the past both from the standpoint of simplicity of implementation and optimality of performance.
Chen, Shuhang; Liu, Huafeng; Shi, Pengcheng; Chen, Yunmei
2015-01-21
Accurate and robust reconstruction of the radioactivity concentration is of great importance in positron emission tomography (PET) imaging. Given the Poisson nature of photo-counting measurements, we present a reconstruction framework that integrates sparsity penalty on a dictionary into a maximum likelihood estimator. Patch-sparsity on a dictionary provides the regularization for our effort, and iterative procedures are used to solve the maximum likelihood function formulated on Poisson statistics. Specifically, in our formulation, a dictionary could be trained on CT images, to provide intrinsic anatomical structures for the reconstructed images, or adaptively learned from the noisy measurements of PET. Accuracy of the strategy with very promising application results from Monte-Carlo simulations, and real data are demonstrated.
Optimal secondary source position in exterior spherical acoustical holophony
NASA Astrophysics Data System (ADS)
Pasqual, A. M.; Martin, V.
2012-02-01
Exterior spherical acoustical holophony is a branch of spatial audio reproduction that deals with the rendering of a given free-field radiation pattern (the primary field) by using a compact spherical loudspeaker array (the secondary source). More precisely, the primary field is known on a spherical surface surrounding the primary and secondary sources and, since the acoustic fields are described in spherical coordinates, they are naturally subjected to spherical harmonic analysis. Besides, the inverse problem of deriving optimal driving signals from a known primary field is ill-posed because the secondary source cannot radiate high-order spherical harmonics efficiently, especially in the low-frequency range. As a consequence, a standard least-squares solution will overload the transducers if the primary field contains such harmonics. Here, this is avoided by discarding the strongly decaying spherical waves, which are identified through inspection of the radiation efficiency curves of the secondary source. However, such an unavoidable regularization procedure increases the least-squares error, which also depends on the position of the secondary source. This paper deals with the above-mentioned questions in the context of far-field directivity reproduction at low and medium frequencies. In particular, an optimal secondary source position is sought, which leads to the lowest reproduction error in the least-squares sense without overloading the transducers. In order to address this issue, a regularization quality factor is introduced to evaluate the amount of regularization required. It is shown that the optimal position improves significantly the holophonic reconstruction and maximizes the regularization quality factor (minimizes the amount of regularization), which is the main general contribution of this paper. Therefore, this factor can also be used as a cost function to obtain the optimal secondary source position.
Comparisons of neural networks to standard techniques for image classification and correlation
NASA Technical Reports Server (NTRS)
Paola, Justin D.; Schowengerdt, Robert A.
1994-01-01
Neural network techniques for multispectral image classification and spatial pattern detection are compared to the standard techniques of maximum-likelihood classification and spatial correlation. The neural network produced a more accurate classification than maximum-likelihood of a Landsat scene of Tucson, Arizona. Some of the errors in the maximum-likelihood classification are illustrated using decision region and class probability density plots. As expected, the main drawback to the neural network method is the long time required for the training stage. The network was trained using several different hidden layer sizes to optimize both the classification accuracy and training speed, and it was found that one node per class was optimal. The performance improved when 3x3 local windows of image data were entered into the net. This modification introduces texture into the classification without explicit calculation of a texture measure. Larger windows were successfully used for the detection of spatial features in Landsat and Magellan synthetic aperture radar imagery.
DECONV-TOOL: An IDL based deconvolution software package
NASA Technical Reports Server (NTRS)
Varosi, F.; Landsman, W. B.
1992-01-01
There are a variety of algorithms for deconvolution of blurred images, each having its own criteria or statistic to be optimized in order to estimate the original image data. Using the Interactive Data Language (IDL), we have implemented the Maximum Likelihood, Maximum Entropy, Maximum Residual Likelihood, and sigma-CLEAN algorithms in a unified environment called DeConv_Tool. Most of the algorithms have as their goal the optimization of statistics such as standard deviation and mean of residuals. Shannon entropy, log-likelihood, and chi-square of the residual auto-correlation are computed by DeConv_Tool for the purpose of determining the performance and convergence of any particular method and comparisons between methods. DeConv_Tool allows interactive monitoring of the statistics and the deconvolved image during computation. The final results, and optionally, the intermediate results, are stored in a structure convenient for comparison between methods and review of the deconvolution computation. The routines comprising DeConv_Tool are available via anonymous FTP through the IDL Astronomy User's Library.
Health services utilization of people having and not having a regular doctor in Canada.
Thanh, Nguyen Xuan; Rapoport, John
2017-04-01
Canada having a universal health insurance plan that provides hospital and physician benefits offers a natural experiment of whether continuity of care actually provides lower or higher utilization of services. The question we are evaluating is whether Canadians, who have a regular physician, use more health resources than those who do not have one? Using two statistical methods, including propensity score matching and zero-inflated negative binomial regression, we analyzed data from the 2010 and 2007/2008 Canadian Community Health Surveys separately to document differences between people self-reportedly having and not having a regular doctor in the utilization of general practitioner, specialist, and hospital services. The results showed, consistently for all two statistical methods and two datasets used, that people reportedly having a regular doctor used more healthcare services than a matched group of people who was self-reportedly not having a regular doctor. For specialist and hospital utilization, the statistically significant differences were in the likelihood if the service was used but not in the number of specialist visits or hospital nights among users. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Doubova, Svetlana V; Sánchez-García, Sergio; Infante-Castañeda, Claudia; Pérez-Cuevas, Ricardo
2016-09-09
To analyze the factors associated with regular physical exercise and routine consumption of fruits and vegetables, and both healthy behaviors among Mexican older adults. We conducted a secondary data analysis of the baseline data (2014) of the Study on Obesity, Sarcopenia and Fragility in older adults affiliated with the Mexican Institute of Social Security. The study included 948 adults who were ≥60 years of age. Multiple Poisson regression was performed. Routine consumption of fruits and vegetables was reported by 53.8 % of older adults, 42.7 % reported engaging in regular physical exercise and 23.1 % reported participating in both types of healthy behaviors. Women, adults with a stable income, those with a self-perception of good health and those with a history of physical exercise at the age of 50 years had an increased likelihood of engaging in healthy eating and regular physical activity. Many older adults do not routinely consume fruits and vegetables or engage in regular physical exercise despite the fact that most have a fixed income and a social network. It is relevant to conduct research-based interventions that take into account the contextual factors to promote healthy behaviors.
Bayesian source term determination with unknown covariance of measurements
NASA Astrophysics Data System (ADS)
Belal, Alkomiet; Tichý, Ondřej; Šmídl, Václav
2017-04-01
Determination of a source term of release of a hazardous material into the atmosphere is a very important task for emergency response. We are concerned with the problem of estimation of the source term in the conventional linear inverse problem, y = Mx, where the relationship between the vector of observations y is described using the source-receptor-sensitivity (SRS) matrix M and the unknown source term x. Since the system is typically ill-conditioned, the problem is recast as an optimization problem minR,B(y - Mx)TR-1(y - Mx) + xTB-1x. The first term minimizes the error of the measurements with covariance matrix R, and the second term is a regularization of the source term. There are different types of regularization arising for different choices of matrices R and B, for example, Tikhonov regularization assumes covariance matrix B as the identity matrix multiplied by scalar parameter. In this contribution, we adopt a Bayesian approach to make inference on the unknown source term x as well as unknown R and B. We assume prior on x to be a Gaussian with zero mean and unknown diagonal covariance matrix B. The covariance matrix of the likelihood R is also unknown. We consider two potential choices of the structure of the matrix R. First is the diagonal matrix and the second is a locally correlated structure using information on topology of the measuring network. Since the inference of the model is intractable, iterative variational Bayes algorithm is used for simultaneous estimation of all model parameters. The practical usefulness of our contribution is demonstrated on an application of the resulting algorithm to real data from the European Tracer Experiment (ETEX). This research is supported by EEA/Norwegian Financial Mechanism under project MSMT-28477/2014 Source-Term Determination of Radionuclide Releases by Inverse Atmospheric Dispersion Modelling (STRADI).
Ramani, Sathish; Liu, Zhihao; Rosen, Jeffrey; Nielsen, Jon-Fredrik; Fessler, Jeffrey A.
2012-01-01
Regularized iterative reconstruction algorithms for imaging inverse problems require selection of appropriate regularization parameter values. We focus on the challenging problem of tuning regularization parameters for nonlinear algorithms for the case of additive (possibly complex) Gaussian noise. Generalized cross-validation (GCV) and (weighted) mean-squared error (MSE) approaches (based on Stein's Unbiased Risk Estimate— SURE) need the Jacobian matrix of the nonlinear reconstruction operator (representative of the iterative algorithm) with respect to the data. We derive the desired Jacobian matrix for two types of nonlinear iterative algorithms: a fast variant of the standard iterative reweighted least-squares method and the contemporary split-Bregman algorithm, both of which can accommodate a wide variety of analysis- and synthesis-type regularizers. The proposed approach iteratively computes two weighted SURE-type measures: Predicted-SURE and Projected-SURE (that require knowledge of noise variance σ2), and GCV (that does not need σ2) for these algorithms. We apply the methods to image restoration and to magnetic resonance image (MRI) reconstruction using total variation (TV) and an analysis-type ℓ1-regularization. We demonstrate through simulations and experiments with real data that minimizing Predicted-SURE and Projected-SURE consistently lead to near-MSE-optimal reconstructions. We also observed that minimizing GCV yields reconstruction results that are near-MSE-optimal for image restoration and slightly sub-optimal for MRI. Theoretical derivations in this work related to Jacobian matrix evaluations can be extended, in principle, to other types of regularizers and reconstruction algorithms. PMID:22531764
Spatial Prediction and Optimized Sampling Design for Sodium Concentration in Groundwater
Shabbir, Javid; M. AbdEl-Salam, Nasser; Hussain, Tajammal
2016-01-01
Sodium is an integral part of water, and its excessive amount in drinking water causes high blood pressure and hypertension. In the present paper, spatial distribution of sodium concentration in drinking water is modeled and optimized sampling designs for selecting sampling locations is calculated for three divisions in Punjab, Pakistan. Universal kriging and Bayesian universal kriging are used to predict the sodium concentrations. Spatial simulated annealing is used to generate optimized sampling designs. Different estimation methods (i.e., maximum likelihood, restricted maximum likelihood, ordinary least squares, and weighted least squares) are used to estimate the parameters of the variogram model (i.e, exponential, Gaussian, spherical and cubic). It is concluded that Bayesian universal kriging fits better than universal kriging. It is also observed that the universal kriging predictor provides minimum mean universal kriging variance for both adding and deleting locations during sampling design. PMID:27683016
A Framework for Modeling Emerging Diseases to Inform Management
Katz, Rachel A.; Richgels, Katherine L.D.; Walsh, Daniel P.; Grant, Evan H.C.
2017-01-01
The rapid emergence and reemergence of zoonotic diseases requires the ability to rapidly evaluate and implement optimal management decisions. Actions to control or mitigate the effects of emerging pathogens are commonly delayed because of uncertainty in the estimates and the predicted outcomes of the control tactics. The development of models that describe the best-known information regarding the disease system at the early stages of disease emergence is an essential step for optimal decision-making. Models can predict the potential effects of the pathogen, provide guidance for assessing the likelihood of success of different proposed management actions, quantify the uncertainty surrounding the choice of the optimal decision, and highlight critical areas for immediate research. We demonstrate how to develop models that can be used as a part of a decision-making framework to determine the likelihood of success of different management actions given current knowledge. PMID:27983501
A Framework for Modeling Emerging Diseases to Inform Management.
Russell, Robin E; Katz, Rachel A; Richgels, Katherine L D; Walsh, Daniel P; Grant, Evan H C
2017-01-01
The rapid emergence and reemergence of zoonotic diseases requires the ability to rapidly evaluate and implement optimal management decisions. Actions to control or mitigate the effects of emerging pathogens are commonly delayed because of uncertainty in the estimates and the predicted outcomes of the control tactics. The development of models that describe the best-known information regarding the disease system at the early stages of disease emergence is an essential step for optimal decision-making. Models can predict the potential effects of the pathogen, provide guidance for assessing the likelihood of success of different proposed management actions, quantify the uncertainty surrounding the choice of the optimal decision, and highlight critical areas for immediate research. We demonstrate how to develop models that can be used as a part of a decision-making framework to determine the likelihood of success of different management actions given current knowledge.
A framework for modeling emerging diseases to inform management
Russell, Robin E.; Katz, Rachel A.; Richgels, Katherine L. D.; Walsh, Daniel P.; Grant, Evan H. Campbell
2017-01-01
The rapid emergence and reemergence of zoonotic diseases requires the ability to rapidly evaluate and implement optimal management decisions. Actions to control or mitigate the effects of emerging pathogens are commonly delayed because of uncertainty in the estimates and the predicted outcomes of the control tactics. The development of models that describe the best-known information regarding the disease system at the early stages of disease emergence is an essential step for optimal decision-making. Models can predict the potential effects of the pathogen, provide guidance for assessing the likelihood of success of different proposed management actions, quantify the uncertainty surrounding the choice of the optimal decision, and highlight critical areas for immediate research. We demonstrate how to develop models that can be used as a part of a decision-making framework to determine the likelihood of success of different management actions given current knowledge.
Understanding the coherence of the severity effect and optimism phenomena: Lessons from attention.
Harris, Adam J L
2017-04-01
Claims that optimism is a near-universal characteristic of human judgment seem to be at odds with recent results from the judgment and decision making literature suggesting that the likelihood of negative outcomes are overestimated relative to neutral outcomes. In an attempt to reconcile these seemingly contrasting phenomena, inspiration is drawn from the attention literature in which there is evidence that both positive and negative stimuli can have attentional privilege relative to neutral stimuli. This result provides a framework within which I consider three example phenomena that purport to demonstrate that people's likelihood estimates are optimistic: Wishful thinking; Unrealistic comparative optimism and Asymmetric belief updating. The framework clarifies the relationships between these phenomena and stimulates future research questions. Generally, whilst results from the first two phenomena appear reconcilable in this conceptualisation, further research is required in reconciling the third. Copyright © 2016 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Bai, Bing
2012-03-01
There has been a lot of work on total variation (TV) regularized tomographic image reconstruction recently. Many of them use gradient-based optimization algorithms with a differentiable approximation of the TV functional. In this paper we apply TV regularization in Positron Emission Tomography (PET) image reconstruction. We reconstruct the PET image in a Bayesian framework, using Poisson noise model and TV prior functional. The original optimization problem is transformed to an equivalent problem with inequality constraints by adding auxiliary variables. Then we use an interior point method with logarithmic barrier functions to solve the constrained optimization problem. In this method, a series of points approaching the solution from inside the feasible region are found by solving a sequence of subproblems characterized by an increasing positive parameter. We use preconditioned conjugate gradient (PCG) algorithm to solve the subproblems directly. The nonnegativity constraint is enforced by bend line search. The exact expression of the TV functional is used in our calculations. Simulation results show that the algorithm converges fast and the convergence is insensitive to the values of the regularization and reconstruction parameters.
NASA Astrophysics Data System (ADS)
Hernandez, Monica
2017-12-01
This paper proposes a method for primal-dual convex optimization in variational large deformation diffeomorphic metric mapping problems formulated with robust regularizers and robust image similarity metrics. The method is based on Chambolle and Pock primal-dual algorithm for solving general convex optimization problems. Diagonal preconditioning is used to ensure the convergence of the algorithm to the global minimum. We consider three robust regularizers liable to provide acceptable results in diffeomorphic registration: Huber, V-Huber and total generalized variation. The Huber norm is used in the image similarity term. The primal-dual equations are derived for the stationary and the non-stationary parameterizations of diffeomorphisms. The resulting algorithms have been implemented for running in the GPU using Cuda. For the most memory consuming methods, we have developed a multi-GPU implementation. The GPU implementations allowed us to perform an exhaustive evaluation study in NIREP and LPBA40 databases. The experiments showed that, for all the considered regularizers, the proposed method converges to diffeomorphic solutions while better preserving discontinuities at the boundaries of the objects compared to baseline diffeomorphic registration methods. In most cases, the evaluation showed a competitive performance for the robust regularizers, close to the performance of the baseline diffeomorphic registration methods.
Optimal Tikhonov Regularization in Finite-Frequency Tomography
NASA Astrophysics Data System (ADS)
Fang, Y.; Yao, Z.; Zhou, Y.
2017-12-01
The last decade has witnessed a progressive transition in seismic tomography from ray theory to finite-frequency theory which overcomes the resolution limit of the high-frequency approximation in ray theory. In addition to approximations in wave propagation physics, a main difference between ray-theoretical tomography and finite-frequency tomography is the sparseness of the associated sensitivity matrix. It is well known that seismic tomographic problems are ill-posed and regularizations such as damping and smoothing are often applied to analyze the tradeoff between data misfit and model uncertainty. The regularizations depend on the structure of the matrix as well as noise level of the data. Cross-validation has been used to constrain data uncertainties in body-wave finite-frequency inversions when measurements at multiple frequencies are available to invert for a common structure. In this study, we explore an optimal Tikhonov regularization in surface-wave phase-velocity tomography based on minimization of an empirical Bayes risk function using theoretical training datasets. We exploit the structure of the sensitivity matrix in the framework of singular value decomposition (SVD) which also allows for the calculation of complete resolution matrix. We compare the optimal Tikhonov regularization in finite-frequency tomography with traditional tradeo-off analysis using surface wave dispersion measurements from global as well as regional studies.
Lin, Wei; Feng, Rui; Li, Hongzhe
2014-01-01
In genetical genomics studies, it is important to jointly analyze gene expression data and genetic variants in exploring their associations with complex traits, where the dimensionality of gene expressions and genetic variants can both be much larger than the sample size. Motivated by such modern applications, we consider the problem of variable selection and estimation in high-dimensional sparse instrumental variables models. To overcome the difficulty of high dimensionality and unknown optimal instruments, we propose a two-stage regularization framework for identifying and estimating important covariate effects while selecting and estimating optimal instruments. The methodology extends the classical two-stage least squares estimator to high dimensions by exploiting sparsity using sparsity-inducing penalty functions in both stages. The resulting procedure is efficiently implemented by coordinate descent optimization. For the representative L1 regularization and a class of concave regularization methods, we establish estimation, prediction, and model selection properties of the two-stage regularized estimators in the high-dimensional setting where the dimensionality of co-variates and instruments are both allowed to grow exponentially with the sample size. The practical performance of the proposed method is evaluated by simulation studies and its usefulness is illustrated by an analysis of mouse obesity data. Supplementary materials for this article are available online. PMID:26392642
Complex optimization for big computational and experimental neutron datasets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bao, Feng; Oak Ridge National Lab.; Archibald, Richard
Here, we present a framework to use high performance computing to determine accurate solutions to the inverse optimization problem of big experimental data against computational models. We demonstrate how image processing, mathematical regularization, and hierarchical modeling can be used to solve complex optimization problems on big data. We also demonstrate how both model and data information can be used to further increase solution accuracy of optimization by providing confidence regions for the processing and regularization algorithms. Finally, we use the framework in conjunction with the software package SIMPHONIES to analyze results from neutron scattering experiments on silicon single crystals, andmore » refine first principles calculations to better describe the experimental data.« less
Complex optimization for big computational and experimental neutron datasets
Bao, Feng; Oak Ridge National Lab.; Archibald, Richard; ...
2016-11-07
Here, we present a framework to use high performance computing to determine accurate solutions to the inverse optimization problem of big experimental data against computational models. We demonstrate how image processing, mathematical regularization, and hierarchical modeling can be used to solve complex optimization problems on big data. We also demonstrate how both model and data information can be used to further increase solution accuracy of optimization by providing confidence regions for the processing and regularization algorithms. Finally, we use the framework in conjunction with the software package SIMPHONIES to analyze results from neutron scattering experiments on silicon single crystals, andmore » refine first principles calculations to better describe the experimental data.« less
Superfast maximum-likelihood reconstruction for quantum tomography
NASA Astrophysics Data System (ADS)
Shang, Jiangwei; Zhang, Zhengyun; Ng, Hui Khoon
2017-06-01
Conventional methods for computing maximum-likelihood estimators (MLE) often converge slowly in practical situations, leading to a search for simplifying methods that rely on additional assumptions for their validity. In this work, we provide a fast and reliable algorithm for maximum-likelihood reconstruction that avoids this slow convergence. Our method utilizes the state-of-the-art convex optimization scheme, an accelerated projected-gradient method, that allows one to accommodate the quantum nature of the problem in a different way than in the standard methods. We demonstrate the power of our approach by comparing its performance with other algorithms for n -qubit state tomography. In particular, an eight-qubit situation that purportedly took weeks of computation time in 2005 can now be completed in under a minute for a single set of data, with far higher accuracy than previously possible. This refutes the common claim that MLE reconstruction is slow and reduces the need for alternative methods that often come with difficult-to-verify assumptions. In fact, recent methods assuming Gaussian statistics or relying on compressed sensing ideas are demonstrably inapplicable for the situation under consideration here. Our algorithm can be applied to general optimization problems over the quantum state space; the philosophy of projected gradients can further be utilized for optimization contexts with general constraints.
A long-term earthquake rate model for the central and eastern United States from smoothed seismicity
Moschetti, Morgan P.
2015-01-01
I present a long-term earthquake rate model for the central and eastern United States from adaptive smoothed seismicity. By employing pseudoprospective likelihood testing (L-test), I examined the effects of fixed and adaptive smoothing methods and the effects of catalog duration and composition on the ability of the models to forecast the spatial distribution of recent earthquakes. To stabilize the adaptive smoothing method for regions of low seismicity, I introduced minor modifications to the way that the adaptive smoothing distances are calculated. Across all smoothed seismicity models, the use of adaptive smoothing and the use of earthquakes from the recent part of the catalog optimizes the likelihood for tests with M≥2.7 and M≥4.0 earthquake catalogs. The smoothed seismicity models optimized by likelihood testing with M≥2.7 catalogs also produce the highest likelihood values for M≥4.0 likelihood testing, thus substantiating the hypothesis that the locations of moderate-size earthquakes can be forecast by the locations of smaller earthquakes. The likelihood test does not, however, maximize the fraction of earthquakes that are better forecast than a seismicity rate model with uniform rates in all cells. In this regard, fixed smoothing models perform better than adaptive smoothing models. The preferred model of this study is the adaptive smoothed seismicity model, based on its ability to maximize the joint likelihood of predicting the locations of recent small-to-moderate-size earthquakes across eastern North America. The preferred rate model delineates 12 regions where the annual rate of M≥5 earthquakes exceeds 2×10−3. Although these seismic regions have been previously recognized, the preferred forecasts are more spatially concentrated than the rates from fixed smoothed seismicity models, with rate increases of up to a factor of 10 near clusters of high seismic activity.
Optimization of equivalent uniform dose using the L-curve criterion.
Chvetsov, Alexei V; Dempsey, James F; Palta, Jatinder R
2007-10-07
Optimization of equivalent uniform dose (EUD) in inverse planning for intensity-modulated radiation therapy (IMRT) prevents variation in radiobiological effect between different radiotherapy treatment plans, which is due to variation in the pattern of dose nonuniformity. For instance, the survival fraction of clonogens would be consistent with the prescription when the optimized EUD is equal to the prescribed EUD. One of the problems in the practical implementation of this approach is that the spatial dose distribution in EUD-based inverse planning would be underdetermined because an unlimited number of nonuniform dose distributions can be computed for a prescribed value of EUD. Together with ill-posedness of the underlying integral equation, this may significantly increase the dose nonuniformity. To optimize EUD and keep dose nonuniformity within reasonable limits, we implemented into an EUD-based objective function an additional criterion which ensures the smoothness of beam intensity functions. This approach is similar to the variational regularization technique which was previously studied for the dose-based least-squares optimization. We show that the variational regularization together with the L-curve criterion for the regularization parameter can significantly reduce dose nonuniformity in EUD-based inverse planning.
NASA Astrophysics Data System (ADS)
Gang, Grace J.; Siewerdsen, Jeffrey H.; Webster Stayman, J.
2017-06-01
Tube current modulation (TCM) is routinely adopted on diagnostic CT scanners for dose reduction. Conventional TCM strategies are generally designed for filtered-backprojection (FBP) reconstruction to satisfy simple image quality requirements based on noise. This work investigates TCM designs for model-based iterative reconstruction (MBIR) to achieve optimal imaging performance as determined by a task-based image quality metric. Additionally, regularization is an important aspect of MBIR that is jointly optimized with TCM, and includes both the regularization strength that controls overall smoothness as well as directional weights that permits control of the isotropy/anisotropy of the local noise and resolution properties. Initial investigations focus on a known imaging task at a single location in the image volume. The framework adopts Fourier and analytical approximations for fast estimation of the local noise power spectrum (NPS) and modulation transfer function (MTF)—each carrying dependencies on TCM and regularization. For the single location optimization, the local detectability index (d‧) of the specific task was directly adopted as the objective function. A covariance matrix adaptation evolution strategy (CMA-ES) algorithm was employed to identify the optimal combination of imaging parameters. Evaluations of both conventional and task-driven approaches were performed in an abdomen phantom for a mid-frequency discrimination task in the kidney. Among the conventional strategies, the TCM pattern optimal for FBP using a minimum variance criterion yielded a worse task-based performance compared to an unmodulated strategy when applied to MBIR. Moreover, task-driven TCM designs for MBIR were found to have the opposite behavior from conventional designs for FBP, with greater fluence assigned to the less attenuating views of the abdomen and less fluence to the more attenuating lateral views. Such TCM patterns exaggerate the intrinsic anisotropy of the MTF and NPS as a result of the data weighting in MBIR. Directional penalty design was found to reinforce the same trend. The task-driven approaches outperform conventional approaches, with the maximum improvement in d‧ of 13% given by the joint optimization of TCM and regularization. This work demonstrates that the TCM optimal for MBIR is distinct from conventional strategies proposed for FBP reconstruction and strategies optimal for FBP are suboptimal and may even reduce performance when applied to MBIR. The task-driven imaging framework offers a promising approach for optimizing acquisition and reconstruction for MBIR that can improve imaging performance and/or dose utilization beyond conventional imaging strategies.
Optimization of the Hartmann-Shack microlens array
NASA Astrophysics Data System (ADS)
de Oliveira, Otávio Gomes; de Lima Monteiro, Davies William
2011-04-01
In this work we propose to optimize the microlens-array geometry for a Hartmann-Shack wavefront sensor. The optimization makes possible that regular microlens arrays with a larger number of microlenses are replaced by arrays with fewer microlenses located at optimal sampling positions, with no increase in the reconstruction error. The goal is to propose a straightforward and widely accessible numerical method to calculate an optimized microlens array for a known aberration statistics. The optimization comprises the minimization of the wavefront reconstruction error and/or the number of necessary microlenses in the array. We numerically generate, sample and reconstruct the wavefront, and use a genetic algorithm to discover the optimal array geometry. Within an ophthalmological context, as a case study, we demonstrate that an array with only 10 suitably located microlenses can be used to produce reconstruction errors as small as those of a 36-microlens regular array. The same optimization procedure can be employed for any application where the wavefront statistics is known.
Expectation maximization for hard X-ray count modulation profiles
NASA Astrophysics Data System (ADS)
Benvenuto, F.; Schwartz, R.; Piana, M.; Massone, A. M.
2013-07-01
Context. This paper is concerned with the image reconstruction problem when the measured data are solar hard X-ray modulation profiles obtained from the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) instrument. Aims: Our goal is to demonstrate that a statistical iterative method classically applied to the image deconvolution problem is very effective when utilized to analyze count modulation profiles in solar hard X-ray imaging based on rotating modulation collimators. Methods: The algorithm described in this paper solves the maximum likelihood problem iteratively and encodes a positivity constraint into the iterative optimization scheme. The result is therefore a classical expectation maximization method this time applied not to an image deconvolution problem but to image reconstruction from count modulation profiles. The technical reason that makes our implementation particularly effective in this application is the use of a very reliable stopping rule which is able to regularize the solution providing, at the same time, a very satisfactory Cash-statistic (C-statistic). Results: The method is applied to both reproduce synthetic flaring configurations and reconstruct images from experimental data corresponding to three real events. In this second case, the performance of expectation maximization, when compared to Pixon image reconstruction, shows a comparable accuracy and a notably reduced computational burden; when compared to CLEAN, shows a better fidelity with respect to the measurements with a comparable computational effectiveness. Conclusions: If optimally stopped, expectation maximization represents a very reliable method for image reconstruction in the RHESSI context when count modulation profiles are used as input data.
SPOTting model parameters using a ready-made Python package
NASA Astrophysics Data System (ADS)
Houska, Tobias; Kraft, Philipp; Breuer, Lutz
2015-04-01
The selection and parameterization of reliable process descriptions in ecological modelling is driven by several uncertainties. The procedure is highly dependent on various criteria, like the used algorithm, the likelihood function selected and the definition of the prior parameter distributions. A wide variety of tools have been developed in the past decades to optimize parameters. Some of the tools are closed source. Due to this, the choice for a specific parameter estimation method is sometimes more dependent on its availability than the performance. A toolbox with a large set of methods can support users in deciding about the most suitable method. Further, it enables to test and compare different methods. We developed the SPOT (Statistical Parameter Optimization Tool), an open source python package containing a comprehensive set of modules, to analyze and optimize parameters of (environmental) models. SPOT comes along with a selected set of algorithms for parameter optimization and uncertainty analyses (Monte Carlo, MC; Latin Hypercube Sampling, LHS; Maximum Likelihood, MLE; Markov Chain Monte Carlo, MCMC; Scuffled Complex Evolution, SCE-UA; Differential Evolution Markov Chain, DE-MCZ), together with several likelihood functions (Bias, (log-) Nash-Sutcliff model efficiency, Correlation Coefficient, Coefficient of Determination, Covariance, (Decomposed-, Relative-, Root-) Mean Squared Error, Mean Absolute Error, Agreement Index) and prior distributions (Binomial, Chi-Square, Dirichlet, Exponential, Laplace, (log-, multivariate-) Normal, Pareto, Poisson, Cauchy, Uniform, Weibull) to sample from. The model-independent structure makes it suitable to analyze a wide range of applications. We apply all algorithms of the SPOT package in three different case studies. Firstly, we investigate the response of the Rosenbrock function, where the MLE algorithm shows its strengths. Secondly, we study the Griewank function, which has a challenging response surface for optimization methods. Here we see simple algorithms like the MCMC struggling to find the global optimum of the function, while algorithms like SCE-UA and DE-MCZ show their strengths. Thirdly, we apply an uncertainty analysis of a one-dimensional physically based hydrological model build with the Catchment Modelling Framework (CMF). The model is driven by meteorological and groundwater data from a Free Air Carbon Enrichment (FACE) experiment in Linden (Hesse, Germany). Simulation results are evaluated with measured soil moisture data. We search for optimal parameter sets of the van Genuchten-Mualem function and find different equally optimal solutions with some of the algorithms. The case studies reveal that the implemented SPOT methods work sufficiently well. They further show the benefit of having one tool at hand that includes a number of parameter search methods, likelihood functions and a priori parameter distributions within one platform independent package.
Li, Dongming; Sun, Changming; Yang, Jinhua; Liu, Huan; Peng, Jiaqi; Zhang, Lijuan
2017-04-06
An adaptive optics (AO) system provides real-time compensation for atmospheric turbulence. However, an AO image is usually of poor contrast because of the nature of the imaging process, meaning that the image contains information coming from both out-of-focus and in-focus planes of the object, which also brings about a loss in quality. In this paper, we present a robust multi-frame adaptive optics image restoration algorithm via maximum likelihood estimation. Our proposed algorithm uses a maximum likelihood method with image regularization as the basic principle, and constructs the joint log likelihood function for multi-frame AO images based on a Poisson distribution model. To begin with, a frame selection method based on image variance is applied to the observed multi-frame AO images to select images with better quality to improve the convergence of a blind deconvolution algorithm. Then, by combining the imaging conditions and the AO system properties, a point spread function estimation model is built. Finally, we develop our iterative solutions for AO image restoration addressing the joint deconvolution issue. We conduct a number of experiments to evaluate the performances of our proposed algorithm. Experimental results show that our algorithm produces accurate AO image restoration results and outperforms the current state-of-the-art blind deconvolution methods.
Li, Dongming; Sun, Changming; Yang, Jinhua; Liu, Huan; Peng, Jiaqi; Zhang, Lijuan
2017-01-01
An adaptive optics (AO) system provides real-time compensation for atmospheric turbulence. However, an AO image is usually of poor contrast because of the nature of the imaging process, meaning that the image contains information coming from both out-of-focus and in-focus planes of the object, which also brings about a loss in quality. In this paper, we present a robust multi-frame adaptive optics image restoration algorithm via maximum likelihood estimation. Our proposed algorithm uses a maximum likelihood method with image regularization as the basic principle, and constructs the joint log likelihood function for multi-frame AO images based on a Poisson distribution model. To begin with, a frame selection method based on image variance is applied to the observed multi-frame AO images to select images with better quality to improve the convergence of a blind deconvolution algorithm. Then, by combining the imaging conditions and the AO system properties, a point spread function estimation model is built. Finally, we develop our iterative solutions for AO image restoration addressing the joint deconvolution issue. We conduct a number of experiments to evaluate the performances of our proposed algorithm. Experimental results show that our algorithm produces accurate AO image restoration results and outperforms the current state-of-the-art blind deconvolution methods. PMID:28383503
Less-Complex Method of Classifying MPSK
NASA Technical Reports Server (NTRS)
Hamkins, Jon
2006-01-01
An alternative to an optimal method of automated classification of signals modulated with M-ary phase-shift-keying (M-ary PSK or MPSK) has been derived. The alternative method is approximate, but it offers nearly optimal performance and entails much less complexity, which translates to much less computation time. Modulation classification is becoming increasingly important in radio-communication systems that utilize multiple data modulation schemes and include software-defined or software-controlled receivers. Such a receiver may "know" little a priori about an incoming signal but may be required to correctly classify its data rate, modulation type, and forward error-correction code before properly configuring itself to acquire and track the symbol timing, carrier frequency, and phase, and ultimately produce decoded bits. Modulation classification has long been an important component of military interception of initially unknown radio signals transmitted by adversaries. Modulation classification may also be useful for enabling cellular telephones to automatically recognize different signal types and configure themselves accordingly. The concept of modulation classification as outlined in the preceding paragraph is quite general. However, at the present early stage of development, and for the purpose of describing the present alternative method, the term "modulation classification" or simply "classification" signifies, more specifically, a distinction between M-ary and M'-ary PSK, where M and M' represent two different integer multiples of 2. Both the prior optimal method and the present alternative method require the acquisition of magnitude and phase values of a number (N) of consecutive baseband samples of the incoming signal + noise. The prior optimal method is based on a maximum- likelihood (ML) classification rule that requires a calculation of likelihood functions for the M and M' hypotheses: Each likelihood function is an integral, over a full cycle of carrier phase, of a complicated sum of functions of the baseband sample values, the carrier phase, the carrier-signal and noise magnitudes, and M or M'. Then the likelihood ratio, defined as the ratio between the likelihood functions, is computed, leading to the choice of whichever hypothesis - M or M'- is more likely. In the alternative method, the integral in each likelihood function is approximated by a sum over values of the integrand sampled at a number, 1, of equally spaced values of carrier phase. Used in this way, 1 is a parameter that can be adjusted to trade computational complexity against the probability of misclassification. In the limit as 1 approaches infinity, one obtains the integral form of the likelihood function and thus recovers the ML classification. The present approximate method has been tested in comparison with the ML method by means of computational simulations. The results of the simulations have shown that the performance (as quantified by probability of misclassification) of the approximate method is nearly indistinguishable from that of the ML method (see figure).
NASA Technical Reports Server (NTRS)
Peters, B. C., Jr.; Walker, H. F.
1978-01-01
This paper addresses the problem of obtaining numerically maximum-likelihood estimates of the parameters for a mixture of normal distributions. In recent literature, a certain successive-approximations procedure, based on the likelihood equations, was shown empirically to be effective in numerically approximating such maximum-likelihood estimates; however, the reliability of this procedure was not established theoretically. Here, we introduce a general iterative procedure, of the generalized steepest-ascent (deflected-gradient) type, which is just the procedure known in the literature when the step-size is taken to be 1. We show that, with probability 1 as the sample size grows large, this procedure converges locally to the strongly consistent maximum-likelihood estimate whenever the step-size lies between 0 and 2. We also show that the step-size which yields optimal local convergence rates for large samples is determined in a sense by the 'separation' of the component normal densities and is bounded below by a number between 1 and 2.
NASA Technical Reports Server (NTRS)
Peters, B. C., Jr.; Walker, H. F.
1976-01-01
The problem of obtaining numerically maximum likelihood estimates of the parameters for a mixture of normal distributions is addressed. In recent literature, a certain successive approximations procedure, based on the likelihood equations, is shown empirically to be effective in numerically approximating such maximum-likelihood estimates; however, the reliability of this procedure was not established theoretically. Here, a general iterative procedure is introduced, of the generalized steepest-ascent (deflected-gradient) type, which is just the procedure known in the literature when the step-size is taken to be 1. With probability 1 as the sample size grows large, it is shown that this procedure converges locally to the strongly consistent maximum-likelihood estimate whenever the step-size lies between 0 and 2. The step-size which yields optimal local convergence rates for large samples is determined in a sense by the separation of the component normal densities and is bounded below by a number between 1 and 2.
Graph Laplacian Regularization for Image Denoising: Analysis in the Continuous Domain.
Pang, Jiahao; Cheung, Gene
2017-04-01
Inverse imaging problems are inherently underdetermined, and hence, it is important to employ appropriate image priors for regularization. One recent popular prior-the graph Laplacian regularizer-assumes that the target pixel patch is smooth with respect to an appropriately chosen graph. However, the mechanisms and implications of imposing the graph Laplacian regularizer on the original inverse problem are not well understood. To address this problem, in this paper, we interpret neighborhood graphs of pixel patches as discrete counterparts of Riemannian manifolds and perform analysis in the continuous domain, providing insights into several fundamental aspects of graph Laplacian regularization for image denoising. Specifically, we first show the convergence of the graph Laplacian regularizer to a continuous-domain functional, integrating a norm measured in a locally adaptive metric space. Focusing on image denoising, we derive an optimal metric space assuming non-local self-similarity of pixel patches, leading to an optimal graph Laplacian regularizer for denoising in the discrete domain. We then interpret graph Laplacian regularization as an anisotropic diffusion scheme to explain its behavior during iterations, e.g., its tendency to promote piecewise smooth signals under certain settings. To verify our analysis, an iterative image denoising algorithm is developed. Experimental results show that our algorithm performs competitively with state-of-the-art denoising methods, such as BM3D for natural images, and outperforms them significantly for piecewise smooth images.
Seismic waveform inversion best practices: regional, global and exploration test cases
NASA Astrophysics Data System (ADS)
Modrak, Ryan; Tromp, Jeroen
2016-09-01
Reaching the global minimum of a waveform misfit function requires careful choices about the nonlinear optimization, preconditioning and regularization methods underlying an inversion. Because waveform inversion problems are susceptible to erratic convergence associated with strong nonlinearity, one or two test cases are not enough to reliably inform such decisions. We identify best practices, instead, using four seismic near-surface problems, one regional problem and two global problems. To make meaningful quantitative comparisons between methods, we carry out hundreds of inversions, varying one aspect of the implementation at a time. Comparing nonlinear optimization algorithms, we find that limited-memory BFGS provides computational savings over nonlinear conjugate gradient methods in a wide range of test cases. Comparing preconditioners, we show that a new diagonal scaling derived from the adjoint of the forward operator provides better performance than two conventional preconditioning schemes. Comparing regularization strategies, we find that projection, convolution, Tikhonov regularization and total variation regularization are effective in different contexts. Besides questions of one strategy or another, reliability and efficiency in waveform inversion depend on close numerical attention and care. Implementation details involving the line search and restart conditions have a strong effect on computational cost, regardless of the chosen nonlinear optimization algorithm.
Wu, Shuangsheng; Ma, Chunna; Yang, Zuyao; Yang, Peng; Chu, Yanhui; Zhang, Haiyan; Li, Hongjun; Hua, Weiyu; Tang, Yaqing; Li, Chao; Wang, Quanyi
2016-01-01
The objective of this study was to identify possible hygiene behaviors associated with the incidence of ILI among adults in Beijing. In January 2011, we conducted a multi-stage sampling, cross-sectional survey of adults living in Beijing using self-administered anonymous questionnaires. The main outcome variable was self-reported ILI within the past year. Multivariate logistic regression was used to identify factors associated with self-reported ILI. A total of 13003 participants completed the questionnaires. 6068 (46.7%) of all participants reported ILI during the past year. After adjusting for demographic characteristics, the variables significantly associated with a lower likelihood of reporting ILI were regular physical exercise (OR 0.80; 95% CI 0.74-0.87), optimal hand hygiene (OR 0.87; 95% CI 0.80-0.94), face mask use when going to hospitals (OR 0.87; 95% CI 0.80-0.95), and not sharing of towels and handkerchiefs (OR 0.68; 95% CI 0.63-0.73). These results highlight that personal hygiene behaviors were potential preventive factors against the incidence of ILI among adults in Beijing, and future interventions to improve personal hygiene behaviors are needed in Beijing.
The role of multisensory interplay in enabling temporal expectations.
Ball, Felix; Michels, Lara E; Thiele, Carsten; Noesselt, Toemme
2018-01-01
Temporal regularities can guide our attention to focus on a particular moment in time and to be especially vigilant just then. Previous research provided evidence for the influence of temporal expectation on perceptual processing in unisensory auditory, visual, and tactile contexts. However, in real life we are often exposed to a complex and continuous stream of multisensory events. Here we tested - in a series of experiments - whether temporal expectations can enhance perception in multisensory contexts and whether this enhancement differs from enhancements in unisensory contexts. Our discrimination paradigm contained near-threshold targets (subject-specific 75% discrimination accuracy) embedded in a sequence of distractors. The likelihood of target occurrence (early or late) was manipulated block-wise. Furthermore, we tested whether spatial and modality-specific target uncertainty (i.e. predictable vs. unpredictable target position or modality) would affect temporal expectation (TE) measured with perceptual sensitivity (d ' ) and response times (RT). In all our experiments, hidden temporal regularities improved performance for expected multisensory targets. Moreover, multisensory performance was unaffected by spatial and modality-specific uncertainty, whereas unisensory TE effects on d ' but not RT were modulated by spatial and modality-specific uncertainty. Additionally, the size of the temporal expectation effect, i.e. the increase in perceptual sensitivity and decrease of RT, scaled linearly with the likelihood of expected targets. Finally, temporal expectation effects were unaffected by varying target position within the stream. Together, our results strongly suggest that participants quickly adapt to novel temporal contexts, that they benefit from multisensory (relative to unisensory) stimulation and that multisensory benefits are maximal if the stimulus-driven uncertainty is highest. We propose that enhanced informational content (i.e. multisensory stimulation) enables the robust extraction of temporal regularities which in turn boost (uni-)sensory representations. Copyright © 2017 Elsevier B.V. All rights reserved.
Automated model selection in covariance estimation and spatial whitening of MEG and EEG signals.
Engemann, Denis A; Gramfort, Alexandre
2015-03-01
Magnetoencephalography and electroencephalography (M/EEG) measure non-invasively the weak electromagnetic fields induced by post-synaptic neural currents. The estimation of the spatial covariance of the signals recorded on M/EEG sensors is a building block of modern data analysis pipelines. Such covariance estimates are used in brain-computer interfaces (BCI) systems, in nearly all source localization methods for spatial whitening as well as for data covariance estimation in beamformers. The rationale for such models is that the signals can be modeled by a zero mean Gaussian distribution. While maximizing the Gaussian likelihood seems natural, it leads to a covariance estimate known as empirical covariance (EC). It turns out that the EC is a poor estimate of the true covariance when the number of samples is small. To address this issue the estimation needs to be regularized. The most common approach downweights off-diagonal coefficients, while more advanced regularization methods are based on shrinkage techniques or generative models with low rank assumptions: probabilistic PCA (PPCA) and factor analysis (FA). Using cross-validation all of these models can be tuned and compared based on Gaussian likelihood computed on unseen data. We investigated these models on simulations, one electroencephalography (EEG) dataset as well as magnetoencephalography (MEG) datasets from the most common MEG systems. First, our results demonstrate that different models can be the best, depending on the number of samples, heterogeneity of sensor types and noise properties. Second, we show that the models tuned by cross-validation are superior to models with hand-selected regularization. Hence, we propose an automated solution to the often overlooked problem of covariance estimation of M/EEG signals. The relevance of the procedure is demonstrated here for spatial whitening and source localization of MEG signals. Copyright © 2015 Elsevier Inc. All rights reserved.
Relative risk perception for terrorism: implications for preparedness and risk communication.
Caponecchia, Carlo
2012-09-01
Terrorism presents a significant risk that is often approached at public policy, infrastructure, or emergency management level. Public perceptions of the likelihood of terrorist events, and how this may relate to individual preparedness, are not always extensively examined. The tendency to think that negative events are less likely to happen to oneself than to the average person is known as optimism bias. Optimism bias is relevant to perceptions of terrorism, because it is thought to be related to a reduction in precaution use. Using an online survey of 164 participants, this study aimed to determine whether Sydney residents thought they had a lower likelihood of experiencing terrorist events than other Australians. Significant optimism bias was observed for witnessing terrorist events, but not for personally experiencing terrorist events. In addition, Sydney residents tended to think that terrorist attacks were more likely to occur in Sydney than another major Australian city in the next five years. At the same time, household and workplace preparedness for terrorism was quite low, as was awareness of emergency strategies in the central business district. Perceptions of high likelihood of terrorism happening in one's own city, yet low preparedness present a challenge for risk communication and emergency management strategies. The diversity of possible terrorist targets, and the simple plans that can moderate the effects of a disaster may need to be emphasized in future anti-terrorism initiatives. © 2012 Society for Risk Analysis.
NASA Astrophysics Data System (ADS)
Edjlali, Ehsan; Bérubé-Lauzière, Yves
2018-01-01
We present the first Lq -Lp optimization scheme for fluorescence tomographic imaging. This is then applied to small animal imaging. Fluorescence tomography is an ill-posed, and in full generality, a nonlinear problem that seeks to image the 3D concentration distribution of a fluorescent agent inside a biological tissue. Standard candidates for regularization to deal with the ill-posedness of the image reconstruction problem include L1 and L2 regularization. In this work, a general Lq -Lp regularization framework (Lq discrepancy function - Lp regularization term) is introduced for fluorescence tomographic imaging. A method to calculate the gradient for this general framework is developed which allows evaluating the performance of different cost functions/regularization schemes in solving the fluorescence tomographic problem. The simplified spherical harmonics approximation is used to accurately model light propagation inside the tissue. Furthermore, a multigrid mesh is utilized to decrease the dimension of the inverse problem and reduce the computational cost of the solution. The inverse problem is solved iteratively using an lm-BFGS quasi-Newton optimization method. The simulations are performed under different scenarios of noisy measurements. These are carried out on the Digimouse numerical mouse model with the kidney being the target organ. The evaluation of the reconstructed images is performed both qualitatively and quantitatively using several metrics including QR, RMSE, CNR, and TVE under rigorous conditions. The best reconstruction results under different scenarios are obtained with an L1.5 -L1 scheme with premature termination of the optimization process. This is in contrast to approaches commonly found in the literature relying on L2 -L2 schemes.
Identifing Atmospheric Pollutant Sources Using Artificial Neural Networks
NASA Astrophysics Data System (ADS)
Paes, F. F.; Campos, H. F.; Luz, E. P.; Carvalho, A. R.
2008-05-01
The estimation of the area source pollutant strength is a relevant issue for atmospheric environment. This characterizes an inverse problem in the atmospheric pollution dispersion. In the inverse analysis, an area source domain is considered, where the strength of such area source term is assumed unknown. The inverse problem is solved by using a supervised artificial neural network: multi-layer perceptron. The conection weights of the neural network are computed from delta rule - learning process. The neural network inversion is compared with results from standard inverse analysis (regularized inverse solution). In the regularization method, the inverse problem is formulated as a non-linear optimization approach, whose the objective function is given by the square difference between the measured pollutant concentration and the mathematical models, associated with a regularization operator. In our numerical experiments, the forward problem is addressed by a source-receptor scheme, where a regressive Lagrangian model is applied to compute the transition matrix. The second order maximum entropy regularization is used, and the regularization parameter is calculated by the L-curve technique. The objective function is minimized employing a deterministic scheme (a quasi-Newton algorithm) [1] and a stochastic technique (PSO: particle swarm optimization) [2]. The inverse problem methodology is tested with synthetic observational data, from six measurement points in the physical domain. The best inverse solutions were obtained with neural networks. References: [1] D. R. Roberti, D. Anfossi, H. F. Campos Velho, G. A. Degrazia (2005): Estimating Emission Rate and Pollutant Source Location, Ciencia e Natura, p. 131-134. [2] E.F.P. da Luz, H.F. de Campos Velho, J.C. Becceneri, D.R. Roberti (2007): Estimating Atmospheric Area Source Strength Through Particle Swarm Optimization. Inverse Problems, Desing and Optimization Symposium IPDO-2007, April 16-18, Miami (FL), USA, vol 1, p. 354-359.
Heslin, Kevin C; Andersen, Ronald M; Ettner, Susan L; Kominski, Gerald F; Belin, Thomas R; Morgenstern, Hal; Cunningham, William E
2005-10-01
Health insurance policies that require prior authorization for specialty care may be detrimental to persons with HIV, according to evidence that having a regular physician with HIV expertise leads to improved patient outcomes. The objective of this study is to determine whether HIV patients who can self-refer to specialists are more likely to have physicians who mainly treat HIV. The authors analyze cross-sectional survey data from the HIV Costs and Services Utilization Study. At baseline, 67 percent of patients had insurance that permitted self-referral. In multivariate analyses, being able to self-refer was associated with an 8-12 percent increased likelihood of having a physician at a regular source of care that mainly treats patients with HIV. Patients who can self-refer are more likely to have HIV-experienced physicians than are patients who need prior authorization. Insurance policies allowing self-referral to specialists may result in HIV patients seeing physicians with clinical expertise relevant to HIV care.
Volumetric CT with sparse detector arrays (and application to Si-strip photon counters).
Sisniega, A; Zbijewski, W; Stayman, J W; Xu, J; Taguchi, K; Fredenberg, E; Lundqvist, Mats; Siewerdsen, J H
2016-01-07
Novel x-ray medical imaging sensors, such as photon counting detectors (PCDs) and large area CCD and CMOS cameras can involve irregular and/or sparse sampling of the detector plane. Application of such detectors to CT involves undersampling that is markedly different from the commonly considered case of sparse angular sampling. This work investigates volumetric sampling in CT systems incorporating sparsely sampled detectors with axial and helical scan orbits and evaluates performance of model-based image reconstruction (MBIR) with spatially varying regularization in mitigating artifacts due to sparse detector sampling. Volumetric metrics of sampling density and uniformity were introduced. Penalized-likelihood MBIR with a spatially varying penalty that homogenized resolution by accounting for variations in local sampling density (i.e. detector gaps) was evaluated. The proposed methodology was tested in simulations and on an imaging bench based on a Si-strip PCD (total area 5 cm × 25 cm) consisting of an arrangement of line sensors separated by gaps of up to 2.5 mm. The bench was equipped with translation/rotation stages allowing a variety of scanning trajectories, ranging from a simple axial acquisition to helical scans with variable pitch. Statistical (spherical clutter) and anthropomorphic (hand) phantoms were considered. Image quality was compared to that obtained with a conventional uniform penalty in terms of structural similarity index (SSIM), image uniformity, spatial resolution, contrast, and noise. Scan trajectories with intermediate helical width (~10 mm longitudinal distance per 360° rotation) demonstrated optimal tradeoff between the average sampling density and the homogeneity of sampling throughout the volume. For a scan trajectory with 10.8 mm helical width, the spatially varying penalty resulted in significant visual reduction of sampling artifacts, confirmed by a 10% reduction in minimum SSIM (from 0.88 to 0.8) and a 40% reduction in the dispersion of SSIM in the volume compared to the constant penalty (both penalties applied at optimal regularization strength). Images of the spherical clutter and wrist phantoms confirmed the advantages of the spatially varying penalty, showing a 25% improvement in image uniformity and 1.8 × higher CNR (at matched spatial resolution) compared to the constant penalty. The studies elucidate the relationship between sampling in the detector plane, acquisition orbit, sampling of the reconstructed volume, and the resulting image quality. They also demonstrate the benefit of spatially varying regularization in MBIR for scenarios with irregular sampling patterns. Such findings are important and integral to the incorporation of a sparsely sampled Si-strip PCD in CT imaging.
Volumetric CT with sparse detector arrays (and application to Si-strip photon counters)
NASA Astrophysics Data System (ADS)
Sisniega, A.; Zbijewski, W.; Stayman, J. W.; Xu, J.; Taguchi, K.; Fredenberg, E.; Lundqvist, Mats; Siewerdsen, J. H.
2016-01-01
Novel x-ray medical imaging sensors, such as photon counting detectors (PCDs) and large area CCD and CMOS cameras can involve irregular and/or sparse sampling of the detector plane. Application of such detectors to CT involves undersampling that is markedly different from the commonly considered case of sparse angular sampling. This work investigates volumetric sampling in CT systems incorporating sparsely sampled detectors with axial and helical scan orbits and evaluates performance of model-based image reconstruction (MBIR) with spatially varying regularization in mitigating artifacts due to sparse detector sampling. Volumetric metrics of sampling density and uniformity were introduced. Penalized-likelihood MBIR with a spatially varying penalty that homogenized resolution by accounting for variations in local sampling density (i.e. detector gaps) was evaluated. The proposed methodology was tested in simulations and on an imaging bench based on a Si-strip PCD (total area 5 cm × 25 cm) consisting of an arrangement of line sensors separated by gaps of up to 2.5 mm. The bench was equipped with translation/rotation stages allowing a variety of scanning trajectories, ranging from a simple axial acquisition to helical scans with variable pitch. Statistical (spherical clutter) and anthropomorphic (hand) phantoms were considered. Image quality was compared to that obtained with a conventional uniform penalty in terms of structural similarity index (SSIM), image uniformity, spatial resolution, contrast, and noise. Scan trajectories with intermediate helical width (~10 mm longitudinal distance per 360° rotation) demonstrated optimal tradeoff between the average sampling density and the homogeneity of sampling throughout the volume. For a scan trajectory with 10.8 mm helical width, the spatially varying penalty resulted in significant visual reduction of sampling artifacts, confirmed by a 10% reduction in minimum SSIM (from 0.88 to 0.8) and a 40% reduction in the dispersion of SSIM in the volume compared to the constant penalty (both penalties applied at optimal regularization strength). Images of the spherical clutter and wrist phantoms confirmed the advantages of the spatially varying penalty, showing a 25% improvement in image uniformity and 1.8 × higher CNR (at matched spatial resolution) compared to the constant penalty. The studies elucidate the relationship between sampling in the detector plane, acquisition orbit, sampling of the reconstructed volume, and the resulting image quality. They also demonstrate the benefit of spatially varying regularization in MBIR for scenarios with irregular sampling patterns. Such findings are important and integral to the incorporation of a sparsely sampled Si-strip PCD in CT imaging.
Volumetric CT with sparse detector arrays (and application to Si-strip photon counters)
Sisniega, A; Zbijewski, W; Stayman, J W; Xu, J; Taguchi, K; Fredenberg, E; Lundqvist, Mats; Siewerdsen, J H
2016-01-01
Novel x-ray medical imaging sensors, such as photon counting detectors (PCDs) and large area CCD and CMOS cameras can involve irregular and/or sparse sampling of the detector plane. Application of such detectors to CT involves undersampling that is markedly different from the commonly considered case of sparse angular sampling. This work investigates volumetric sampling in CT systems incorporating sparsely sampled detectors with axial and helical scan orbits and evaluates performance of model-based image reconstruction (MBIR) with spatially varying regularization in mitigating artifacts due to sparse detector sampling. Volumetric metrics of sampling density and uniformity were introduced. Penalized-likelihood MBIR with a spatially varying penalty that homogenized resolution by accounting for variations in local sampling density (i.e. detector gaps) was evaluated. The proposed methodology was tested in simulations and on an imaging bench based on a Si-strip PCD (total area 5 cm × 25 cm) consisting of an arrangement of line sensors separated by gaps of up to 2.5 mm. The bench was equipped with translation/rotation stages allowing a variety of scanning trajectories, ranging from a simple axial acquisition to helical scans with variable pitch. Statistical (spherical clutter) and anthropomorphic (hand) phantoms were considered. Image quality was compared to that obtained with a conventional uniform penalty in terms of structural similarity index (SSIM), image uniformity, spatial resolution, contrast, and noise. Scan trajectories with intermediate helical width (~10 mm longitudinal distance per 360° rotation) demonstrated optimal tradeoff between the average sampling density and the homogeneity of sampling throughout the volume. For a scan trajectory with 10.8 mm helical width, the spatially varying penalty resulted in significant visual reduction of sampling artifacts, confirmed by a 10% reduction in minimum SSIM (from 0.88 to 0.8) and a 40% reduction in the dispersion of SSIM in the volume compared to the constant penalty (both penalties applied at optimal regularization strength). Images of the spherical clutter and wrist phantoms confirmed the advantages of the spatially varying penalty, showing a 25% improvement in image uniformity and 1.8 × higher CNR (at matched spatial resolution) compared to the constant penalty. The studies elucidate the relationship between sampling in the detector plane, acquisition orbit, sampling of the reconstructed volume, and the resulting image quality. They also demonstrate the benefit of spatially varying regularization in MBIR for scenarios with irregular sampling patterns. Such findings are important and integral to the incorporation of a sparsely sampled Si-strip PCD in CT imaging. PMID:26611740
Efficient logistic regression designs under an imperfect population identifier.
Albert, Paul S; Liu, Aiyi; Nansel, Tonja
2014-03-01
Motivated by actual study designs, this article considers efficient logistic regression designs where the population is identified with a binary test that is subject to diagnostic error. We consider the case where the imperfect test is obtained on all participants, while the gold standard test is measured on a small chosen subsample. Under maximum-likelihood estimation, we evaluate the optimal design in terms of sample selection as well as verification. We show that there may be substantial efficiency gains by choosing a small percentage of individuals who test negative on the imperfect test for inclusion in the sample (e.g., verifying 90% test-positive cases). We also show that a two-stage design may be a good practical alternative to a fixed design in some situations. Under optimal and nearly optimal designs, we compare maximum-likelihood and semi-parametric efficient estimators under correct and misspecified models with simulations. The methodology is illustrated with an analysis from a diabetes behavioral intervention trial. © 2013, The International Biometric Society.
Micheyl, Christophe; Dai, Huanping
2010-01-01
The equal-variance Gaussian signal-detection-theory (SDT) decision model for the dual-pair change-detection (or “4IAX”) paradigm has been described in earlier publications. In this note, we consider the equal-variance Gaussian SDT model for the related dual-pair AB vs BA identification paradigm. The likelihood ratios, optimal decision rules, receiver operating characteristics (ROCs), and relationships between d' and proportion-correct (PC) are analyzed for two special cases: that of statistically independent observations, which is likely to apply in constant-stimuli experiments, and that of highly correlated observations, which is likely to apply in experiments where stimuli are roved widely across trials or pairs. A surprising outcome of this analysis is that although these two situations lead to different optimal decision rules, the predicted ROCs and proportions of correct responses (PCs) for these two cases are not substantially different, and are either identical or similar to those observed in the basic Yes-No paradigm. PMID:19633356
Modified Newton-Raphson GRAPE methods for optimal control of spin systems
NASA Astrophysics Data System (ADS)
Goodwin, D. L.; Kuprov, Ilya
2016-05-01
Quadratic convergence throughout the active space is achieved for the gradient ascent pulse engineering (GRAPE) family of quantum optimal control algorithms. We demonstrate in this communication that the Hessian of the GRAPE fidelity functional is unusually cheap, having the same asymptotic complexity scaling as the functional itself. This leads to the possibility of using very efficient numerical optimization techniques. In particular, the Newton-Raphson method with a rational function optimization (RFO) regularized Hessian is shown in this work to require fewer system trajectory evaluations than any other algorithm in the GRAPE family. This communication describes algebraic and numerical implementation aspects (matrix exponential recycling, Hessian regularization, etc.) for the RFO Newton-Raphson version of GRAPE and reports benchmarks for common spin state control problems in magnetic resonance spectroscopy.
Approximated mutual information training for speech recognition using myoelectric signals.
Guo, Hua J; Chan, A D C
2006-01-01
A new training algorithm called the approximated maximum mutual information (AMMI) is proposed to improve the accuracy of myoelectric speech recognition using hidden Markov models (HMMs). Previous studies have demonstrated that automatic speech recognition can be performed using myoelectric signals from articulatory muscles of the face. Classification of facial myoelectric signals can be performed using HMMs that are trained using the maximum likelihood (ML) algorithm; however, this algorithm maximizes the likelihood of the observations in the training sequence, which is not directly associated with optimal classification accuracy. The AMMI training algorithm attempts to maximize the mutual information, thereby training the HMMs to optimize their parameters for discrimination. Our results show that AMMI training consistently reduces the error rates compared to these by the ML training, increasing the accuracy by approximately 3% on average.
Methodology and method and apparatus for signaling with capacity optimized constellations
NASA Technical Reports Server (NTRS)
Barsoum, Maged F. (Inventor); Jones, Christopher R. (Inventor)
2011-01-01
Communication systems having transmitter, includes a coder configured to receive user bits and output encoded bits at an expanded output encoded bit rate, a mapper configured to map encoded bits to symbols in a symbol constellation, a modulator configured to generate a signal for transmission via the communication channel using symbols generated by the mapper. In addition, the receiver includes a demodulator configured to demodulate the received signal via the communication channel, a demapper configured to estimate likelihoods from the demodulated signal, a decoder that is configured to estimate decoded bits from the likelihoods generated by the demapper. Furthermore, the symbol constellation is a capacity optimized geometrically spaced symbol constellation that provides a given capacity at a reduced signal-to-noise ratio compared to a signal constellation that maximizes d.sub.min.
Nonconvex Sparse Logistic Regression With Weakly Convex Regularization
NASA Astrophysics Data System (ADS)
Shen, Xinyue; Gu, Yuantao
2018-06-01
In this work we propose to fit a sparse logistic regression model by a weakly convex regularized nonconvex optimization problem. The idea is based on the finding that a weakly convex function as an approximation of the $\\ell_0$ pseudo norm is able to better induce sparsity than the commonly used $\\ell_1$ norm. For a class of weakly convex sparsity inducing functions, we prove the nonconvexity of the corresponding sparse logistic regression problem, and study its local optimality conditions and the choice of the regularization parameter to exclude trivial solutions. Despite the nonconvexity, a method based on proximal gradient descent is used to solve the general weakly convex sparse logistic regression, and its convergence behavior is studied theoretically. Then the general framework is applied to a specific weakly convex function, and a necessary and sufficient local optimality condition is provided. The solution method is instantiated in this case as an iterative firm-shrinkage algorithm, and its effectiveness is demonstrated in numerical experiments by both randomly generated and real datasets.
NASA Astrophysics Data System (ADS)
Hintermüller, Michael; Holler, Martin; Papafitsoros, Kostas
2018-06-01
In this work, we introduce a function space setting for a wide class of structural/weighted total variation (TV) regularization methods motivated by their applications in inverse problems. In particular, we consider a regularizer that is the appropriate lower semi-continuous envelope (relaxation) of a suitable TV type functional initially defined for sufficiently smooth functions. We study examples where this relaxation can be expressed explicitly, and we also provide refinements for weighted TV for a wide range of weights. Since an integral characterization of the relaxation in function space is, in general, not always available, we show that, for a rather general linear inverse problems setting, instead of the classical Tikhonov regularization problem, one can equivalently solve a saddle-point problem where no a priori knowledge of an explicit formulation of the structural TV functional is needed. In particular, motivated by concrete applications, we deduce corresponding results for linear inverse problems with norm and Poisson log-likelihood data discrepancy terms. Finally, we provide proof-of-concept numerical examples where we solve the saddle-point problem for weighted TV denoising as well as for MR guided PET image reconstruction.
On The Dynamics and Design of a Two-body Wave Energy Converter
NASA Astrophysics Data System (ADS)
Liang, Changwei; Zuo, Lei
2016-09-01
A two-body wave energy converter oscillating in heave is studied in this paper. The energy is extracted through the relative motion between the floating and submerged bodies. A linearized model in the frequency domain is adopted to study the dynamics of such a two-body system with consideration of both the viscous damping and the hydrodynamic damping. The closed form solution of the maximum absorption power and corresponding power take-off parameters are obtained. The suboptimal and optimal designs for a two-body system are proposed based on the closed form solution. The physical insight of the optimal design is to have one of the damped natural frequencies of the two body system the same as, or as close as possible to, the excitation frequency. A case study is conducted to investigate the influence of the submerged body on the absorption power of a two-body system subjected to suboptimal and optimal design under regular and irregular wave excitations. It is found that the absorption power of the two-body system can be significantly higher than that of the single body system with the same floating buoy in both regular and irregular waves. In regular waves, it is found that the mass of the submerged body should be designed with an optimal value in order to achieve the maximum absorption power for the given floating buoy. The viscous damping on the submerged body should be as small as possible for a given mass in both regular and irregular waves.
Neural network for nonsmooth pseudoconvex optimization with general convex constraints.
Bian, Wei; Ma, Litao; Qin, Sitian; Xue, Xiaoping
2018-05-01
In this paper, a one-layer recurrent neural network is proposed for solving a class of nonsmooth, pseudoconvex optimization problems with general convex constraints. Based on the smoothing method, we construct a new regularization function, which does not depend on any information of the feasible region. Thanks to the special structure of the regularization function, we prove the global existence, uniqueness and "slow solution" character of the state of the proposed neural network. Moreover, the state solution of the proposed network is proved to be convergent to the feasible region in finite time and to the optimal solution set of the related optimization problem subsequently. In particular, the convergence of the state to an exact optimal solution is also considered in this paper. Numerical examples with simulation results are given to show the efficiency and good characteristics of the proposed network. In addition, some preliminary theoretical analysis and application of the proposed network for a wider class of dynamic portfolio optimization are included. Copyright © 2018 Elsevier Ltd. All rights reserved.
Parameter identification in ODE models with oscillatory dynamics: a Fourier regularization approach
NASA Astrophysics Data System (ADS)
Chiara D'Autilia, Maria; Sgura, Ivonne; Bozzini, Benedetto
2017-12-01
In this paper we consider a parameter identification problem (PIP) for data oscillating in time, that can be described in terms of the dynamics of some ordinary differential equation (ODE) model, resulting in an optimization problem constrained by the ODEs. In problems with this type of data structure, simple application of the direct method of control theory (discretize-then-optimize) yields a least-squares cost function exhibiting multiple ‘low’ minima. Since in this situation any optimization algorithm is liable to fail in the approximation of a good solution, here we propose a Fourier regularization approach that is able to identify an iso-frequency manifold {{ S}} of codimension-one in the parameter space \
Irwin, R John; Irwin, Timothy C
2011-06-01
Making clinical decisions on the basis of diagnostic tests is an essential feature of medical practice and the choice of the decision threshold is therefore crucial. A test's optimal diagnostic threshold is the threshold that maximizes expected utility. It is given by the product of the prior odds of a disease and a measure of the importance of the diagnostic test's sensitivity relative to its specificity. Choosing this threshold is the same as choosing the point on the Receiver Operating Characteristic (ROC) curve whose slope equals this product. We contend that a test's likelihood ratio is the canonical decision variable and contrast diagnostic thresholds based on likelihood ratio with two popular rules of thumb for choosing a threshold. The two rules are appealing because they have clear graphical interpretations, but they yield optimal thresholds only in special cases. The optimal rule can be given similar appeal by presenting indifference curves, each of which shows a set of equally good combinations of sensitivity and specificity. The indifference curve is tangent to the ROC curve at the optimal threshold. Whereas ROC curves show what is feasible, indifference curves show what is desirable. Together they show what should be chosen. Copyright © 2010 European Federation of Internal Medicine. Published by Elsevier B.V. All rights reserved.
Empirical Likelihood in Nonignorable Covariate-Missing Data Problems.
Xie, Yanmei; Zhang, Biao
2017-04-20
Missing covariate data occurs often in regression analysis, which frequently arises in the health and social sciences as well as in survey sampling. We study methods for the analysis of a nonignorable covariate-missing data problem in an assumed conditional mean function when some covariates are completely observed but other covariates are missing for some subjects. We adopt the semiparametric perspective of Bartlett et al. (Improving upon the efficiency of complete case analysis when covariates are MNAR. Biostatistics 2014;15:719-30) on regression analyses with nonignorable missing covariates, in which they have introduced the use of two working models, the working probability model of missingness and the working conditional score model. In this paper, we study an empirical likelihood approach to nonignorable covariate-missing data problems with the objective of effectively utilizing the two working models in the analysis of covariate-missing data. We propose a unified approach to constructing a system of unbiased estimating equations, where there are more equations than unknown parameters of interest. One useful feature of these unbiased estimating equations is that they naturally incorporate the incomplete data into the data analysis, making it possible to seek efficient estimation of the parameter of interest even when the working regression function is not specified to be the optimal regression function. We apply the general methodology of empirical likelihood to optimally combine these unbiased estimating equations. We propose three maximum empirical likelihood estimators of the underlying regression parameters and compare their efficiencies with other existing competitors. We present a simulation study to compare the finite-sample performance of various methods with respect to bias, efficiency, and robustness to model misspecification. The proposed empirical likelihood method is also illustrated by an analysis of a data set from the US National Health and Nutrition Examination Survey (NHANES).
Nathenson, Sophia Lyn; Wen, Ming
2012-01-01
The health behaviors of cancer survivors are an important research agenda in light of mounting evidence that aspects of health such as diet and exercise have salutary effects both mentally and physically for cancer survivors, a rapidly growing population in the United States and elsewhere. This paper analyzes data from the Health and Retirement Study 2000-2010 to determine if religious salience impacts the likelihood of obesity, changes in body mass index, and weekly vigorous activity. Two theories propose different hypotheses about the relationship. The health belief model would suggest the more religious may have the perception that healthy behaviors are positive and will be more likely to have a healthy body weight and get exercise. Conversely, high religious salience may signify a God locus of health control, leading to lesser likelihood of engagement in preventive health behaviors. Using logistic and regression analysis controlling for health behaviors at baseline (2000), these theories are tested, in addition to the explanatory power of lifestyle as a potential mechanism in the relationship of religiousness to body weight. Results show that high levels of religious salience may correspond to greater likelihood of obesity and lesser likelihood of getting regular exercise. Policy implications may include a greater emphasis on diet and physical activity in religious settings that may instead stress other health behaviors such as abstinence from smoking and alcohol.
Turesky, Ted K.; Turkeltaub, Peter E.; Eden, Guinevere F.
2016-01-01
The functional neuroanatomy of finger movements has been characterized with neuroimaging in young adults. However, less is known about the aging motor system. Several studies have contrasted movement-related activity in older versus young adults, but there is inconsistency among their findings. To address this, we conducted an activation likelihood estimation (ALE) meta-analysis on within-group data from older adults and young adults performing regularly paced right-hand finger movement tasks in response to external stimuli. We hypothesized that older adults would show a greater likelihood of activation in right cortical motor areas (i.e., ipsilateral to the side of movement) compared to young adults. ALE maps were examined for conjunction and between-group differences. Older adults showed overlapping likelihoods of activation with young adults in left primary sensorimotor cortex (SM1), bilateral supplementary motor area, bilateral insula, left thalamus, and right anterior cerebellum. Their ALE map differed from that of the young adults in right SM1 (extending into dorsal premotor cortex), right supramarginal gyrus, medial premotor cortex, and right posterior cerebellum. The finding that older adults uniquely use ipsilateral regions for right-hand finger movements and show age-dependent modulations in regions recruited by both age groups provides a foundation by which to understand age-related motor decline and motor disorders. PMID:27799910
Maximal likelihood correspondence estimation for face recognition across pose.
Li, Shaoxin; Liu, Xin; Chai, Xiujuan; Zhang, Haihong; Lao, Shihong; Shan, Shiguang
2014-10-01
Due to the misalignment of image features, the performance of many conventional face recognition methods degrades considerably in across pose scenario. To address this problem, many image matching-based methods are proposed to estimate semantic correspondence between faces in different poses. In this paper, we aim to solve two critical problems in previous image matching-based correspondence learning methods: 1) fail to fully exploit face specific structure information in correspondence estimation and 2) fail to learn personalized correspondence for each probe image. To this end, we first build a model, termed as morphable displacement field (MDF), to encode face specific structure information of semantic correspondence from a set of real samples of correspondences calculated from 3D face models. Then, we propose a maximal likelihood correspondence estimation (MLCE) method to learn personalized correspondence based on maximal likelihood frontal face assumption. After obtaining the semantic correspondence encoded in the learned displacement, we can synthesize virtual frontal images of the profile faces for subsequent recognition. Using linear discriminant analysis method with pixel-intensity features, state-of-the-art performance is achieved on three multipose benchmarks, i.e., CMU-PIE, FERET, and MultiPIE databases. Owe to the rational MDF regularization and the usage of novel maximal likelihood objective, the proposed MLCE method can reliably learn correspondence between faces in different poses even in complex wild environment, i.e., labeled face in the wild database.
A Unified Fisher's Ratio Learning Method for Spatial Filter Optimization.
Li, Xinyang; Guan, Cuntai; Zhang, Haihong; Ang, Kai Keng
To detect the mental task of interest, spatial filtering has been widely used to enhance the spatial resolution of electroencephalography (EEG). However, the effectiveness of spatial filtering is undermined due to the significant nonstationarity of EEG. Based on regularization, most of the conventional stationary spatial filter design methods address the nonstationarity at the cost of the interclass discrimination. Moreover, spatial filter optimization is inconsistent with feature extraction when EEG covariance matrices could not be jointly diagonalized due to the regularization. In this paper, we propose a novel framework for a spatial filter design. With Fisher's ratio in feature space directly used as the objective function, the spatial filter optimization is unified with feature extraction. Given its ratio form, the selection of the regularization parameter could be avoided. We evaluate the proposed method on a binary motor imagery data set of 16 subjects, who performed the calibration and test sessions on different days. The experimental results show that the proposed method yields improvement in classification performance for both single broadband and filter bank settings compared with conventional nonunified methods. We also provide a systematic attempt to compare different objective functions in modeling data nonstationarity with simulation studies.To detect the mental task of interest, spatial filtering has been widely used to enhance the spatial resolution of electroencephalography (EEG). However, the effectiveness of spatial filtering is undermined due to the significant nonstationarity of EEG. Based on regularization, most of the conventional stationary spatial filter design methods address the nonstationarity at the cost of the interclass discrimination. Moreover, spatial filter optimization is inconsistent with feature extraction when EEG covariance matrices could not be jointly diagonalized due to the regularization. In this paper, we propose a novel framework for a spatial filter design. With Fisher's ratio in feature space directly used as the objective function, the spatial filter optimization is unified with feature extraction. Given its ratio form, the selection of the regularization parameter could be avoided. We evaluate the proposed method on a binary motor imagery data set of 16 subjects, who performed the calibration and test sessions on different days. The experimental results show that the proposed method yields improvement in classification performance for both single broadband and filter bank settings compared with conventional nonunified methods. We also provide a systematic attempt to compare different objective functions in modeling data nonstationarity with simulation studies.
Dynamic Histogram Analysis To Determine Free Energies and Rates from Biased Simulations.
Stelzl, Lukas S; Kells, Adam; Rosta, Edina; Hummer, Gerhard
2017-12-12
We present an algorithm to calculate free energies and rates from molecular simulations on biased potential energy surfaces. As input, it uses the accumulated times spent in each state or bin of a histogram and counts of transitions between them. Optimal unbiased equilibrium free energies for each of the states/bins are then obtained by maximizing the likelihood of a master equation (i.e., first-order kinetic rate model). The resulting free energies also determine the optimal rate coefficients for transitions between the states or bins on the biased potentials. Unbiased rates can be estimated, e.g., by imposing a linear free energy condition in the likelihood maximization. The resulting "dynamic histogram analysis method extended to detailed balance" (DHAMed) builds on the DHAM method. It is also closely related to the transition-based reweighting analysis method (TRAM) and the discrete TRAM (dTRAM). However, in the continuous-time formulation of DHAMed, the detailed balance constraints are more easily accounted for, resulting in compact expressions amenable to efficient numerical treatment. DHAMed produces accurate free energies in cases where the common weighted-histogram analysis method (WHAM) for umbrella sampling fails because of slow dynamics within the windows. Even in the limit of completely uncorrelated data, where WHAM is optimal in the maximum-likelihood sense, DHAMed results are nearly indistinguishable. We illustrate DHAMed with applications to ion channel conduction, RNA duplex formation, α-helix folding, and rate calculations from accelerated molecular dynamics. DHAMed can also be used to construct Markov state models from biased or replica-exchange molecular dynamics simulations. By using binless WHAM formulated as a numerical minimization problem, the bias factors for the individual states can be determined efficiently in a preprocessing step and, if needed, optimized globally afterward.
THESEUS: maximum likelihood superpositioning and analysis of macromolecular structures
Theobald, Douglas L.; Wuttke, Deborah S.
2008-01-01
Summary THESEUS is a command line program for performing maximum likelihood (ML) superpositions and analysis of macromolecular structures. While conventional superpositioning methods use ordinary least-squares (LS) as the optimization criterion, ML superpositions provide substantially improved accuracy by down-weighting variable structural regions and by correcting for correlations among atoms. ML superpositioning is robust and insensitive to the specific atoms included in the analysis, and thus it does not require subjective pruning of selected variable atomic coordinates. Output includes both likelihood-based and frequentist statistics for accurate evaluation of the adequacy of a superposition and for reliable analysis of structural similarities and differences. THESEUS performs principal components analysis for analyzing the complex correlations found among atoms within a structural ensemble. PMID:16777907
Advanced Imaging Methods for Long-Baseline Optical Interferometry
NASA Astrophysics Data System (ADS)
Le Besnerais, G.; Lacour, S.; Mugnier, L. M.; Thiebaut, E.; Perrin, G.; Meimon, S.
2008-11-01
We address the data processing methods needed for imaging with a long baseline optical interferometer. We first describe parametric reconstruction approaches and adopt a general formulation of nonparametric image reconstruction as the solution of a constrained optimization problem. Within this framework, we present two recent reconstruction methods, Mira and Wisard, representative of the two generic approaches for dealing with the missing phase information. Mira is based on an implicit approach and a direct optimization of a Bayesian criterion while Wisard adopts a self-calibration approach and an alternate minimization scheme inspired from radio-astronomy. Both methods can handle various regularization criteria. We review commonly used regularization terms and introduce an original quadratic regularization called ldquosoft support constraintrdquo that favors the object compactness. It yields images of quality comparable to nonquadratic regularizations on the synthetic data we have processed. We then perform image reconstructions, both parametric and nonparametric, on astronomical data from the IOTA interferometer, and discuss the respective roles of parametric and nonparametric approaches for optical interferometric imaging.
SU-D-12A-06: A Comprehensive Parameter Analysis for Low Dose Cone-Beam CT Reconstruction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, W; Southern Medical University, Guangzhou; Yan, H
Purpose: There is always a parameter in compressive sensing based iterative reconstruction (IR) methods low dose cone-beam CT (CBCT), which controls the weight of regularization relative to data fidelity. A clear understanding of the relationship between image quality and parameter values is important. The purpose of this study is to investigate this subject based on experimental data and a representative advanced IR algorithm using Tight-frame (TF) regularization. Methods: Three data sets of a Catphan phantom acquired at low, regular and high dose levels are used. For each tests, 90 projections covering a 200-degree scan range are used for reconstruction. Threemore » different regions-of-interest (ROIs) of different contrasts are used to calculate contrast-to-noise ratios (CNR) for contrast evaluation. A single point structure is used to measure modulation transfer function (MTF) for spatial-resolution evaluation. Finally, we analyze CNRs and MTFs to study the relationship between image quality and parameter selections. Results: It was found that: 1) there is no universal optimal parameter. The optimal parameter value depends on specific task and dose level. 2) There is a clear trade-off between CNR and resolution. The parameter for the best CNR is always smaller than that for the best resolution. 3) Optimal parameters are also dose-specific. Data acquired under a high dose protocol require less regularization, yielding smaller optimal parameter values. 4) Comparing with conventional FDK images, TF-based CBCT images are better under a certain optimally selected parameters. The advantages are more obvious for low dose data. Conclusion: We have investigated the relationship between image quality and parameter values in the TF-based IR algorithm. Preliminary results indicate optimal parameters are specific to both the task types and dose levels, providing guidance for selecting parameters in advanced IR algorithms. This work is supported in part by NIH (1R01CA154747-01)« less
PRIFIRA: General regularization using prior-conditioning for fast radio interferometric imaging†
NASA Astrophysics Data System (ADS)
Naghibzadeh, Shahrzad; van der Veen, Alle-Jan
2018-06-01
Image formation in radio astronomy is a large-scale inverse problem that is inherently ill-posed. We present a general algorithmic framework based on a Bayesian-inspired regularized maximum likelihood formulation of the radio astronomical imaging problem with a focus on diffuse emission recovery from limited noisy correlation data. The algorithm is dubbed PRIor-conditioned Fast Iterative Radio Astronomy (PRIFIRA) and is based on a direct embodiment of the regularization operator into the system by right preconditioning. The resulting system is then solved using an iterative method based on projections onto Krylov subspaces. We motivate the use of a beamformed image (which includes the classical "dirty image") as an efficient prior-conditioner. Iterative reweighting schemes generalize the algorithmic framework and can account for different regularization operators that encourage sparsity of the solution. The performance of the proposed method is evaluated based on simulated one- and two-dimensional array arrangements as well as actual data from the core stations of the Low Frequency Array radio telescope antenna configuration, and compared to state-of-the-art imaging techniques. We show the generality of the proposed method in terms of regularization schemes while maintaining a competitive reconstruction quality with the current reconstruction techniques. Furthermore, we show that exploiting Krylov subspace methods together with the proper noise-based stopping criteria results in a great improvement in imaging efficiency.
Zendegui, Elaina A; West, Julia A; Zandberg, Laurie J
2014-04-01
Cognitive behavioral guided self-help (CBTgsh) is an evidence-based, brief, and cost-effective treatment for eating disorders characterized by recurrent binge eating. However, more research is needed to improve patient outcomes and clarify treatment components most associated with symptom change. A main component of CBTgsh is establishing a regular pattern of eating to disrupt dietary restriction, which prior research has implicated in the maintenance of binge eating. The present study used session-by-session assessments of regular eating adherence and weekly binge totals to examine the association between binge frequency and regular eating in a sample of participants (n = 38) receiving 10 sessions of CBTgsh for recurrent binge eating. Analyses were conducted using Hierarchical Linear Modeling (HLM) to allow for data nesting, and a likelihood ratio test determined which out of three regression models best fit the data. Results demonstrated that higher regular eating adherence (3 meals and 2-3 planned snacks daily) was associated with lower weekly binge frequency in this sample, and both the magnitude and direction of the association were maintained after accounting for individual participant differences in binge and adherent day totals. Findings provide additional empirical support for the cognitive behavioral model informing CBTgsh. Possible clinical implications for treatment emphasis and sequencing in CBTgsh are discussed. Copyright © 2014 Elsevier Ltd. All rights reserved.
de la Hunty, Anne; Gibson, Sigrid; Ashwell, Margaret
2013-01-01
Objective To review systematically the evidence on breakfast cereal consumption and obesity in children and adolescents and assess whether the regular consumption of breakfast cereals could help to prevent excessive weight gain. Methods A systematic review and meta-analysis of studies relating breakfast cereal consumption to BMI, BMI z-scores and prevalence of obesity as the outcomes. Results 14 papers met the inclusion criteria. The computed effect size for mean BMI between high consumers and low or non-consumers over all 25 study subgroups was −1.13 kg/m2 (95% CI −0.81, −1.46, p ℋ 0.0001) in the random effects model, which is equivalent to a standardised mean difference of 0.24. Adjustment for age and publication bias attenuated the effect sizes somewhat but they remained statistically significant. The prevalence and risk of overweight was lower in children and adolescents who consume breakfast cereals regularly compared to those who consume them infrequently. Energy intakes tended to be higher in regular breakfast cereal consumers. Conclusion Overall, the evidence reviewed is suggestive that regular consumption of breakfast cereals results in a lower BMI and a reduced likelihood of being overweight in children and adolescents. However, more evidence from long-term trials and investigations into mechanisms is needed to eliminate possible confounding factors and determine causality. PMID:23466487
Upper bounds on sequential decoding performance parameters
NASA Technical Reports Server (NTRS)
Jelinek, F.
1974-01-01
This paper presents the best obtainable random coding and expurgated upper bounds on the probabilities of undetectable error, of t-order failure (advance to depth t into an incorrect subset), and of likelihood rise in the incorrect subset, applicable to sequential decoding when the metric bias G is arbitrary. Upper bounds on the Pareto exponent are also presented. The G-values optimizing each of the parameters of interest are determined, and are shown to lie in intervals that in general have nonzero widths. The G-optimal expurgated bound on undetectable error is shown to agree with that for maximum likelihood decoding of convolutional codes, and that on failure agrees with the block code expurgated bound. Included are curves evaluating the bounds for interesting choices of G and SNR for a binary-input quantized-output Gaussian additive noise channel.
Optimizing human activity patterns using global sensitivity analysis.
Fairchild, Geoffrey; Hickmann, Kyle S; Mniszewski, Susan M; Del Valle, Sara Y; Hyman, James M
2014-12-01
Implementing realistic activity patterns for a population is crucial for modeling, for example, disease spread, supply and demand, and disaster response. Using the dynamic activity simulation engine, DASim, we generate schedules for a population that capture regular (e.g., working, eating, and sleeping) and irregular activities (e.g., shopping or going to the doctor). We use the sample entropy (SampEn) statistic to quantify a schedule's regularity for a population. We show how to tune an activity's regularity by adjusting SampEn, thereby making it possible to realistically design activities when creating a schedule. The tuning process sets up a computationally intractable high-dimensional optimization problem. To reduce the computational demand, we use Bayesian Gaussian process regression to compute global sensitivity indices and identify the parameters that have the greatest effect on the variance of SampEn. We use the harmony search (HS) global optimization algorithm to locate global optima. Our results show that HS combined with global sensitivity analysis can efficiently tune the SampEn statistic with few search iterations. We demonstrate how global sensitivity analysis can guide statistical emulation and global optimization algorithms to efficiently tune activities and generate realistic activity patterns. Though our tuning methods are applied to dynamic activity schedule generation, they are general and represent a significant step in the direction of automated tuning and optimization of high-dimensional computer simulations.
Optimizing human activity patterns using global sensitivity analysis
Hickmann, Kyle S.; Mniszewski, Susan M.; Del Valle, Sara Y.; Hyman, James M.
2014-01-01
Implementing realistic activity patterns for a population is crucial for modeling, for example, disease spread, supply and demand, and disaster response. Using the dynamic activity simulation engine, DASim, we generate schedules for a population that capture regular (e.g., working, eating, and sleeping) and irregular activities (e.g., shopping or going to the doctor). We use the sample entropy (SampEn) statistic to quantify a schedule’s regularity for a population. We show how to tune an activity’s regularity by adjusting SampEn, thereby making it possible to realistically design activities when creating a schedule. The tuning process sets up a computationally intractable high-dimensional optimization problem. To reduce the computational demand, we use Bayesian Gaussian process regression to compute global sensitivity indices and identify the parameters that have the greatest effect on the variance of SampEn. We use the harmony search (HS) global optimization algorithm to locate global optima. Our results show that HS combined with global sensitivity analysis can efficiently tune the SampEn statistic with few search iterations. We demonstrate how global sensitivity analysis can guide statistical emulation and global optimization algorithms to efficiently tune activities and generate realistic activity patterns. Though our tuning methods are applied to dynamic activity schedule generation, they are general and represent a significant step in the direction of automated tuning and optimization of high-dimensional computer simulations. PMID:25580080
NASA Astrophysics Data System (ADS)
Chen, Siyue; Leung, Henry; Dondo, Maxwell
2014-05-01
As computer network security threats increase, many organizations implement multiple Network Intrusion Detection Systems (NIDS) to maximize the likelihood of intrusion detection and provide a comprehensive understanding of intrusion activities. However, NIDS trigger a massive number of alerts on a daily basis. This can be overwhelming for computer network security analysts since it is a slow and tedious process to manually analyse each alert produced. Thus, automated and intelligent clustering of alerts is important to reveal the structural correlation of events by grouping alerts with common features. As the nature of computer network attacks, and therefore alerts, is not known in advance, unsupervised alert clustering is a promising approach to achieve this goal. We propose a joint optimization technique for feature selection and clustering to aggregate similar alerts and to reduce the number of alerts that analysts have to handle individually. More precisely, each identified feature is assigned a binary value, which reflects the feature's saliency. This value is treated as a hidden variable and incorporated into a likelihood function for clustering. Since computing the optimal solution of the likelihood function directly is analytically intractable, we use the Expectation-Maximisation (EM) algorithm to iteratively update the hidden variable and use it to maximize the expected likelihood. Our empirical results, using a labelled Defense Advanced Research Projects Agency (DARPA) 2000 reference dataset, show that the proposed method gives better results than the EM clustering without feature selection in terms of the clustering accuracy.
MITIE: Simultaneous RNA-Seq-based transcript identification and quantification in multiple samples.
Behr, Jonas; Kahles, André; Zhong, Yi; Sreedharan, Vipin T; Drewe, Philipp; Rätsch, Gunnar
2013-10-15
High-throughput sequencing of mRNA (RNA-Seq) has led to tremendous improvements in the detection of expressed genes and reconstruction of RNA transcripts. However, the extensive dynamic range of gene expression, technical limitations and biases, as well as the observed complexity of the transcriptional landscape, pose profound computational challenges for transcriptome reconstruction. We present the novel framework MITIE (Mixed Integer Transcript IdEntification) for simultaneous transcript reconstruction and quantification. We define a likelihood function based on the negative binomial distribution, use a regularization approach to select a few transcripts collectively explaining the observed read data and show how to find the optimal solution using Mixed Integer Programming. MITIE can (i) take advantage of known transcripts, (ii) reconstruct and quantify transcripts simultaneously in multiple samples, and (iii) resolve the location of multi-mapping reads. It is designed for genome- and assembly-based transcriptome reconstruction. We present an extensive study based on realistic simulated RNA-Seq data. When compared with state-of-the-art approaches, MITIE proves to be significantly more sensitive and overall more accurate. Moreover, MITIE yields substantial performance gains when used with multiple samples. We applied our system to 38 Drosophila melanogaster modENCODE RNA-Seq libraries and estimated the sensitivity of reconstructing omitted transcript annotations and the specificity with respect to annotated transcripts. Our results corroborate that a well-motivated objective paired with appropriate optimization techniques lead to significant improvements over the state-of-the-art in transcriptome reconstruction. MITIE is implemented in C++ and is available from http://bioweb.me/mitie under the GPL license.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goodwin, D. L.; Kuprov, Ilya, E-mail: i.kuprov@soton.ac.uk
Quadratic convergence throughout the active space is achieved for the gradient ascent pulse engineering (GRAPE) family of quantum optimal control algorithms. We demonstrate in this communication that the Hessian of the GRAPE fidelity functional is unusually cheap, having the same asymptotic complexity scaling as the functional itself. This leads to the possibility of using very efficient numerical optimization techniques. In particular, the Newton-Raphson method with a rational function optimization (RFO) regularized Hessian is shown in this work to require fewer system trajectory evaluations than any other algorithm in the GRAPE family. This communication describes algebraic and numerical implementation aspects (matrixmore » exponential recycling, Hessian regularization, etc.) for the RFO Newton-Raphson version of GRAPE and reports benchmarks for common spin state control problems in magnetic resonance spectroscopy.« less
NASA Technical Reports Server (NTRS)
Huyse, Luc; Bushnell, Dennis M. (Technical Monitor)
2001-01-01
Free-form shape optimization of airfoils poses unexpected difficulties. Practical experience has indicated that a deterministic optimization for discrete operating conditions can result in dramatically inferior performance when the actual operating conditions are different from the - somewhat arbitrary - design values used for the optimization. Extensions to multi-point optimization have proven unable to adequately remedy this problem of "localized optimization" near the sampled operating conditions. This paper presents an intrinsically statistical approach and demonstrates how the shortcomings of multi-point optimization with respect to "localized optimization" can be overcome. The practical examples also reveal how the relative likelihood of each of the operating conditions is automatically taken into consideration during the optimization process. This is a key advantage over the use of multipoint methods.
WEIGHTED LIKELIHOOD ESTIMATION UNDER TWO-PHASE SAMPLING
Saegusa, Takumi; Wellner, Jon A.
2013-01-01
We develop asymptotic theory for weighted likelihood estimators (WLE) under two-phase stratified sampling without replacement. We also consider several variants of WLEs involving estimated weights and calibration. A set of empirical process tools are developed including a Glivenko–Cantelli theorem, a theorem for rates of convergence of M-estimators, and a Donsker theorem for the inverse probability weighted empirical processes under two-phase sampling and sampling without replacement at the second phase. Using these general results, we derive asymptotic distributions of the WLE of a finite-dimensional parameter in a general semiparametric model where an estimator of a nuisance parameter is estimable either at regular or nonregular rates. We illustrate these results and methods in the Cox model with right censoring and interval censoring. We compare the methods via their asymptotic variances under both sampling without replacement and the more usual (and easier to analyze) assumption of Bernoulli sampling at the second phase. PMID:24563559
Falk, Carl F; Cai, Li
2016-06-01
We present a semi-parametric approach to estimating item response functions (IRF) useful when the true IRF does not strictly follow commonly used functions. Our approach replaces the linear predictor of the generalized partial credit model with a monotonic polynomial. The model includes the regular generalized partial credit model at the lowest order polynomial. Our approach extends Liang's (A semi-parametric approach to estimate IRFs, Unpublished doctoral dissertation, 2007) method for dichotomous item responses to the case of polytomous data. Furthermore, item parameter estimation is implemented with maximum marginal likelihood using the Bock-Aitkin EM algorithm, thereby facilitating multiple group analyses useful in operational settings. Our approach is demonstrated on both educational and psychological data. We present simulation results comparing our approach to more standard IRF estimation approaches and other non-parametric and semi-parametric alternatives.
Methods, systems, and computer program products for network firewall policy optimization
Fulp, Errin W [Winston-Salem, NC; Tarsa, Stephen J [Duxbury, MA
2011-10-18
Methods, systems, and computer program products for firewall policy optimization are disclosed. According to one method, a firewall policy including an ordered list of firewall rules is defined. For each rule, a probability indicating a likelihood of receiving a packet matching the rule is determined. The rules are sorted in order of non-increasing probability in a manner that preserves the firewall policy.
Orlowska-Kowalska, Teresa; Kaminski, Marcin
2014-01-01
The paper deals with the implementation of optimized neural networks (NNs) for state variable estimation of the drive system with an elastic joint. The signals estimated by NNs are used in the control structure with a state-space controller and additional feedbacks from the shaft torque and the load speed. High estimation quality is very important for the correct operation of a closed-loop system. The precision of state variables estimation depends on the generalization properties of NNs. A short review of optimization methods of the NN is presented. Two techniques typical for regularization and pruning methods are described and tested in detail: the Bayesian regularization and the Optimal Brain Damage methods. Simulation results show good precision of both optimized neural estimators for a wide range of changes of the load speed and the load torque, not only for nominal but also changed parameters of the drive system. The simulation results are verified in a laboratory setup.
Psychological Benefits of Regular Physical Activity: Evidence from Emerging Adults
ERIC Educational Resources Information Center
Cekin, Resul
2015-01-01
Emerging adulthood is a transitional stage between late adolescence and young adulthood in life-span development that requires significant changes in people's lives. Therefore, identifying protective factors for this population is crucial. This study investigated the effects of regular physical activity on self-esteem, optimism, and happiness in…
RES: Regularized Stochastic BFGS Algorithm
NASA Astrophysics Data System (ADS)
Mokhtari, Aryan; Ribeiro, Alejandro
2014-12-01
RES, a regularized stochastic version of the Broyden-Fletcher-Goldfarb-Shanno (BFGS) quasi-Newton method is proposed to solve convex optimization problems with stochastic objectives. The use of stochastic gradient descent algorithms is widespread, but the number of iterations required to approximate optimal arguments can be prohibitive in high dimensional problems. Application of second order methods, on the other hand, is impracticable because computation of objective function Hessian inverses incurs excessive computational cost. BFGS modifies gradient descent by introducing a Hessian approximation matrix computed from finite gradient differences. RES utilizes stochastic gradients in lieu of deterministic gradients for both, the determination of descent directions and the approximation of the objective function's curvature. Since stochastic gradients can be computed at manageable computational cost RES is realizable and retains the convergence rate advantages of its deterministic counterparts. Convergence results show that lower and upper bounds on the Hessian egeinvalues of the sample functions are sufficient to guarantee convergence to optimal arguments. Numerical experiments showcase reductions in convergence time relative to stochastic gradient descent algorithms and non-regularized stochastic versions of BFGS. An application of RES to the implementation of support vector machines is developed.
A hybrid inventory management system respondingto regular demand and surge demand
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mohammad S. Roni; Mingzhou Jin; Sandra D. Eksioglu
2014-06-01
This paper proposes a hybrid policy for a stochastic inventory system facing regular demand and surge demand. The combination of two different demand patterns can be observed in many areas, such as healthcare inventory and humanitarian supply chain management. The surge demand has a lower arrival rate but higher demand volume per arrival. The solution approach proposed in this paper incorporates the level crossing method and mixed integer programming technique to optimize the hybrid inventory policy with both regular orders and emergency orders. The level crossing method is applied to obtain the equilibrium distributions of inventory levels under a givenmore » policy. The model is further transformed into a mixed integer program to identify an optimal hybrid policy. A sensitivity analysis is conducted to investigate the impact of parameters on the optimal inventory policy and minimum cost. Numerical results clearly show the benefit of using the proposed hybrid inventory model. The model and solution approach could help healthcare providers or humanitarian logistics providers in managing their emergency supplies in responding to surge demands.« less
Analysis of the Hessian for Aerodynamic Optimization: Inviscid Flow
NASA Technical Reports Server (NTRS)
Arian, Eyal; Ta'asan, Shlomo
1996-01-01
In this paper we analyze inviscid aerodynamic shape optimization problems governed by the full potential and the Euler equations in two and three dimensions. The analysis indicates that minimization of pressure dependent cost functions results in Hessians whose eigenvalue distributions are identical for the full potential and the Euler equations. However the optimization problems in two and three dimensions are inherently different. While the two dimensional optimization problems are well-posed the three dimensional ones are ill-posed. Oscillations in the shape up to the smallest scale allowed by the design space can develop in the direction perpendicular to the flow, implying that a regularization is required. A natural choice of such a regularization is derived. The analysis also gives an estimate of the Hessian's condition number which implies that the problems at hand are ill-conditioned. Infinite dimensional approximations for the Hessians are constructed and preconditioners for gradient based methods are derived from these approximate Hessians.
Galka, Andreas; Siniatchkin, Michael; Stephani, Ulrich; Groening, Kristina; Wolff, Stephan; Bosch-Bayard, Jorge; Ozaki, Tohru
2010-12-01
The analysis of time series obtained by functional magnetic resonance imaging (fMRI) may be approached by fitting predictive parametric models, such as nearest-neighbor autoregressive models with exogeneous input (NNARX). As a part of the modeling procedure, it is possible to apply instantaneous linear transformations to the data. Spatial smoothing, a common preprocessing step, may be interpreted as such a transformation. The autoregressive parameters may be constrained, such that they provide a response behavior that corresponds to the canonical haemodynamic response function (HRF). We present an algorithm for estimating the parameters of the linear transformations and of the HRF within a rigorous maximum-likelihood framework. Using this approach, an optimal amount of both the spatial smoothing and the HRF can be estimated simultaneously for a given fMRI data set. An example from a motor-task experiment is discussed. It is found that, for this data set, weak, but non-zero, spatial smoothing is optimal. Furthermore, it is demonstrated that activated regions can be estimated within the maximum-likelihood framework.
Windschitl, Paul D; Rose, Jason P; Stalkfleet, Michael T; Smith, Andrew R
2008-08-01
People are often egocentric when judging their likelihood of success in competitions, leading to overoptimism about winning when circumstances are generally easy and to overpessimism when the circumstances are difficult. Yet, egocentrism might be grounded in a rational tendency to favor highly reliable information (about the self) more so than less reliable information (about others). A general theory of probability called extended support theory was used to conceptualize and assess the role of egocentrism and its consequences for the accuracy of people's optimism in 3 competitions (Studies 1-3, respectively). Also, instructions were manipulated to test whether people who were urged to avoid egocentrism would show improved or worsened accuracy in their likelihood judgments. Egocentrism was found to have a potentially helpful effect on one form of accuracy, but people generally showed too much egocentrism. Debias instructions improved one form of accuracy but had no impact on another. The advantages of using the EST framework for studying optimism and other types of judgments (e.g., comparative ability judgments) are discussed. (c) 2008 APA, all rights reserved
Using optimal transport theory to estimate transition probabilities in metapopulation dynamics
Nichols, Jonathan M.; Spendelow, Jeffrey A.; Nichols, James D.
2017-01-01
This work considers the estimation of transition probabilities associated with populations moving among multiple spatial locations based on numbers of individuals at each location at two points in time. The problem is generally underdetermined as there exists an extremely large number of ways in which individuals can move from one set of locations to another. A unique solution therefore requires a constraint. The theory of optimal transport provides such a constraint in the form of a cost function, to be minimized in expectation over the space of possible transition matrices. We demonstrate the optimal transport approach on marked bird data and compare to the probabilities obtained via maximum likelihood estimation based on marked individuals. It is shown that by choosing the squared Euclidean distance as the cost, the estimated transition probabilities compare favorably to those obtained via maximum likelihood with marked individuals. Other implications of this cost are discussed, including the ability to accurately interpolate the population's spatial distribution at unobserved points in time and the more general relationship between the cost and minimum transport energy.
Sparse High Dimensional Models in Economics
Fan, Jianqing; Lv, Jinchi; Qi, Lei
2010-01-01
This paper reviews the literature on sparse high dimensional models and discusses some applications in economics and finance. Recent developments of theory, methods, and implementations in penalized least squares and penalized likelihood methods are highlighted. These variable selection methods are proved to be effective in high dimensional sparse modeling. The limits of dimensionality that regularization methods can handle, the role of penalty functions, and their statistical properties are detailed. Some recent advances in ultra-high dimensional sparse modeling are also briefly discussed. PMID:22022635
2010-03-03
obtainable while for the free-decay problem we simply have to include the initial conditions as random variables to be predicted. A different approach that...important and useful properties of MLEs is that, under regularity conditions , they are asymptotically unbiased and possess the minimum possible...becomes pLðzjh;s2G;MiÞ (i.e. the likelihood is conditional on the specified model). However, in this work we will only consider a single model and drop the
Personality patterns and Smoking behavior among students in Tabriz, Iran
Fakharri, Ali; Jahani, Ali; Sadeghi-Bazargani, Homayoun; Farahbakhsh, Mostafa; Asl, Asghar Mohammadpour
2017-01-01
Introduction Psychological factors have always been considered for their role on risk taking behavior such as substance abuse, risky driving and smoking. The aim of this study was to determine the association between smoking behavior and potential personality patterns among high school students in Tabriz, Iran. Methods Through a multistage sampling in a cross-sectional study, 1000 students were enrolled to represent the final grade high school student population of Tabriz, Iran in 2013. The personality patterns along with smoking status and some background information were collected through standard questionnaires along with Millon Clinical Multiaxial Inventory-III (MCMI-III). Fourteen personality patterns and ten clinical syndromes. ANOVA and Kruskal Wallis tests were used to compare numeric scales among the study participants, with respect to their smoking status. Stata version 13 statistical software package was used to analyze the data. Multivariate logistic regression was used to predict likelihood of smoking by personality status. Results Two logistic models were developed in both of whom male sex was identified as a determinant of regular smoking (1st model) and ever-smoking (2nd model). Depressive personality increased the likelihood of being a regular smoker by 2.8 times (OR=2.8, 95% CI: 1.3–6.1). The second personality disorder included in the model was sadistic personality with an odds ratio of 7.9 (96% CI: 1.2–53%). Histrionic personality increased the likelihood of experiencing smoking by 2.2 times (OR=2.2, 95% CI: 1.6–3.1) followed by borderline personality (OR=2.8, 95% CI: 0.97–8.1). Conclusion Histrionic and depressive personalities could be considered as strong associates of smoking, followed by borderline and sadistic personalities. A causal relationship couldn’t be assumed unless well controlled longitudinal studies reached the same findings using psychiatric interviews. PMID:28461869
Leisure-time physical activity patterns by weight control status: 1999-2002 NHANES.
Kruger, Judy; Yore, Michelle M; Kohl, Harold W
2007-05-01
Regular physical activity reduces the risk of hypertension, type 2 diabetes, coronary heart disease, stroke, and some cancers. Physical activity is associated inversely with overweight and obesity prevalence, thus potentially assisting in weight control efforts. The purpose of this paper is to examine the variability of physical activity levels and their patterns by self-reported weight control status in a nationally representative sample. Four years of data from the 1999-2002 National Health and Nutrition Examination Survey (NHANES) were used to examine leisure-time physical activity patterns (regular, irregular, inactive) and the prevalence of weight control practices (trying to lose, trying to maintain, not trying to lose or maintain) among U.S. adults (N = 9496). The prevalence of regular physical activity was 32.6% among people trying to lose weight, 37.9% among people trying to maintain weight, and 21.8% among those not trying to lose or maintain weight. Those trying to lose weight were almost three times as likely to be regularly active (vs inactive), and those trying to maintain weight were over three times more likely to be regularly active (vs inactive) than those not trying to lose or maintain weight. The most commonly reported activities among those trying to lose weight were walking (38.3%), yard work (14.5%), biking (12.5%), and running (11.6%). Despite the importance of physical activity, fewer than half the people trying to lose or maintain weight were regularly active during leisure-time. People trying to lose or maintain weight had a higher likelihood of being regularly active than those not trying to lose or maintain weight. Walking was the most common type of physical activity among all weight control groups. Health promotion efforts should promote increased levels of physical activity among all adults.
Facial Affect Recognition Using Regularized Discriminant Analysis-Based Algorithms
NASA Astrophysics Data System (ADS)
Lee, Chien-Cheng; Huang, Shin-Sheng; Shih, Cheng-Yuan
2010-12-01
This paper presents a novel and effective method for facial expression recognition including happiness, disgust, fear, anger, sadness, surprise, and neutral state. The proposed method utilizes a regularized discriminant analysis-based boosting algorithm (RDAB) with effective Gabor features to recognize the facial expressions. Entropy criterion is applied to select the effective Gabor feature which is a subset of informative and nonredundant Gabor features. The proposed RDAB algorithm uses RDA as a learner in the boosting algorithm. The RDA combines strengths of linear discriminant analysis (LDA) and quadratic discriminant analysis (QDA). It solves the small sample size and ill-posed problems suffered from QDA and LDA through a regularization technique. Additionally, this study uses the particle swarm optimization (PSO) algorithm to estimate optimal parameters in RDA. Experiment results demonstrate that our approach can accurately and robustly recognize facial expressions.
NASA Astrophysics Data System (ADS)
Kamer, Yavor; Ouillon, Guy; Sornette, Didier; Wössner, Jochen
2014-05-01
Latest advances in the instrumentation field have increased the station coverage and lowered event detection thresholds. This has resulted in a vast increase in the number of located events with each year. The abundance of data comes as a double edged sword: while it facilitates more robust statistics and provides better confidence intervals, it also paralyzes computations whose execution times grow exponentially with the number of data points. In this study, we present a novel method that assesses the relative importance of each data point, reduces the size of datasets while preserving the information content. For a given seismic catalog, the goal is to express the same spatial probability density distribution with fewer data points. To achieve this, we exploit the fact that seismic catalogs are not optimally encoded. This coding deficiency is the result of the sequential data entry where new events are added without taking into account previous ones. For instance, if there are several events with identical parameters occurring at the same location, these could be grouped together rather than occupying the same memory space as if they were distinct events. Following this reasoning, the proposed condensation methodology is implemented by grouping all event according to their overall variance, starting from the group with the highest variance (worst location uncertainty), each event is sampled by a number of sample points, these points are then used to calculate which better located events are able to express these probable locations with a higher likelihood. Based on these likelihood comparisons, weights from poorly located events are successively transferred to better located ones. As a result of the process, a large portion of the events (~30%) ends up with zero weights (thus being fully represented by events increasing their weights), while the information content (i.e the sum of all weights) remains preserved. The resulting condensed catalog not only provides more optimally encoding but is also regularized with respect to the local information quality. By investigating the locations of mass enrichment and depletion at different scales, we observe that the areas of increased mass are in good agreement with reported surface fault traces. We also conduct multifractal spatial analysis on condensed catalogs and investigate different spatial scaling regimes made clearer by reducing the effect of location uncertainty.
A maximum likelihood convolutional decoder model vs experimental data comparison
NASA Technical Reports Server (NTRS)
Chen, R. Y.
1979-01-01
This article describes the comparison of a maximum likelihood convolutional decoder (MCD) prediction model and the actual performance of the MCD at the Madrid Deep Space Station. The MCD prediction model is used to develop a subroutine that has been utilized by the Telemetry Analysis Program (TAP) to compute the MCD bit error rate for a given signal-to-noise ratio. The results indicate that that the TAP can predict quite well compared to the experimental measurements. An optimal modulation index also can be found through TAP.
PROBABILISTIC CROSS-IDENTIFICATION IN CROWDED FIELDS AS AN ASSIGNMENT PROBLEM
DOE Office of Scientific and Technical Information (OSTI.GOV)
Budavári, Tamás; Basu, Amitabh, E-mail: budavari@jhu.edu, E-mail: basu.amitabh@jhu.edu
2016-10-01
One of the outstanding challenges of cross-identification is multiplicity: detections in crowded regions of the sky are often linked to more than one candidate associations of similar likelihoods. We map the resulting maximum likelihood partitioning to the fundamental assignment problem of discrete mathematics and efficiently solve the two-way catalog-level matching in the realm of combinatorial optimization using the so-called Hungarian algorithm. We introduce the method, demonstrate its performance in a mock universe where the true associations are known, and discuss the applicability of the new procedure to large surveys.
Probabilistic Cross-identification in Crowded Fields as an Assignment Problem
NASA Astrophysics Data System (ADS)
Budavári, Tamás; Basu, Amitabh
2016-10-01
One of the outstanding challenges of cross-identification is multiplicity: detections in crowded regions of the sky are often linked to more than one candidate associations of similar likelihoods. We map the resulting maximum likelihood partitioning to the fundamental assignment problem of discrete mathematics and efficiently solve the two-way catalog-level matching in the realm of combinatorial optimization using the so-called Hungarian algorithm. We introduce the method, demonstrate its performance in a mock universe where the true associations are known, and discuss the applicability of the new procedure to large surveys.
NASA Astrophysics Data System (ADS)
De Santis, Alberto; Dellepiane, Umberto; Lucidi, Stefano
2012-11-01
In this paper we investigate the estimation problem for a model of the commodity prices. This model is a stochastic state space dynamical model and the problem unknowns are the state variables and the system parameters. Data are represented by the commodity spot prices, very seldom time series of Futures contracts are available for free. Both the system joint likelihood function (state variables and parameters) and the system marginal likelihood (the state variables are eliminated) function are addressed.
Hudson, H M; Ma, J; Green, P
1994-01-01
Many algorithms for medical image reconstruction adopt versions of the expectation-maximization (EM) algorithm. In this approach, parameter estimates are obtained which maximize a complete data likelihood or penalized likelihood, in each iteration. Implicitly (and sometimes explicitly) penalized algorithms require smoothing of the current reconstruction in the image domain as part of their iteration scheme. In this paper, we discuss alternatives to EM which adapt Fisher's method of scoring (FS) and other methods for direct maximization of the incomplete data likelihood. Jacobi and Gauss-Seidel methods for non-linear optimization provide efficient algorithms applying FS in tomography. One approach uses smoothed projection data in its iterations. We investigate the convergence of Jacobi and Gauss-Seidel algorithms with clinical tomographic projection data.
Bayesian Recurrent Neural Network for Language Modeling.
Chien, Jen-Tzung; Ku, Yuan-Chu
2016-02-01
A language model (LM) is calculated as the probability of a word sequence that provides the solution to word prediction for a variety of information systems. A recurrent neural network (RNN) is powerful to learn the large-span dynamics of a word sequence in the continuous space. However, the training of the RNN-LM is an ill-posed problem because of too many parameters from a large dictionary size and a high-dimensional hidden layer. This paper presents a Bayesian approach to regularize the RNN-LM and apply it for continuous speech recognition. We aim to penalize the too complicated RNN-LM by compensating for the uncertainty of the estimated model parameters, which is represented by a Gaussian prior. The objective function in a Bayesian classification network is formed as the regularized cross-entropy error function. The regularized model is constructed not only by calculating the regularized parameters according to the maximum a posteriori criterion but also by estimating the Gaussian hyperparameter by maximizing the marginal likelihood. A rapid approximation to a Hessian matrix is developed to implement the Bayesian RNN-LM (BRNN-LM) by selecting a small set of salient outer-products. The proposed BRNN-LM achieves a sparser model than the RNN-LM. Experiments on different corpora show the robustness of system performance by applying the rapid BRNN-LM under different conditions.
NASA Astrophysics Data System (ADS)
Sumin, M. I.
2015-06-01
A parametric nonlinear programming problem in a metric space with an operator equality constraint in a Hilbert space is studied assuming that its lower semicontinuous value function at a chosen individual parameter value has certain subdifferentiability properties in the sense of nonlinear (nonsmooth) analysis. Such subdifferentiability can be understood as the existence of a proximal subgradient or a Fréchet subdifferential. In other words, an individual problem has a corresponding generalized Kuhn-Tucker vector. Under this assumption, a stable sequential Kuhn-Tucker theorem in nondifferential iterative form is proved and discussed in terms of minimizing sequences on the basis of the dual regularization method. This theorem provides necessary and sufficient conditions for the stable construction of a minimizing approximate solution in the sense of Warga in the considered problem, whose initial data can be approximately specified. A substantial difference of the proved theorem from its classical same-named analogue is that the former takes into account the possible instability of the problem in the case of perturbed initial data and, as a consequence, allows for the inherited instability of classical optimality conditions. This theorem can be treated as a regularized generalization of the classical Uzawa algorithm to nonlinear programming problems. Finally, the theorem is applied to the "simplest" nonlinear optimal control problem, namely, to a time-optimal control problem.
NASA Astrophysics Data System (ADS)
Krestyannikov, E.; Tohka, J.; Ruotsalainen, U.
2008-06-01
This paper presents a novel statistical approach for joint estimation of regions-of-interest (ROIs) and the corresponding time-activity curves (TACs) from dynamic positron emission tomography (PET) brain projection data. It is based on optimizing the joint objective function that consists of a data log-likelihood term and two penalty terms reflecting the available a priori information about the human brain anatomy. The developed local optimization strategy iteratively updates both the ROI and TAC parameters and is guaranteed to monotonically increase the objective function. The quantitative evaluation of the algorithm is performed with numerically and Monte Carlo-simulated dynamic PET brain data of the 11C-Raclopride and 18F-FDG tracers. The results demonstrate that the method outperforms the existing sequential ROI quantification approaches in terms of accuracy, and can noticeably reduce the errors in TACs arising due to the finite spatial resolution and ROI delineation.
Relationship between literacy skills and self-reported health in the Nordic countries.
Lundetræ, Kjersti; Gabrielsen, Egil
2016-12-01
This study investigated the association between literacy skills and self-reported health among Danish ( n = 7284), Finnish ( n = 5454), Norwegian ( n = 4942) and Swedish ( n = 4555) participants aged 16-65 years. Logistic regression models were used to assess the association between literacy skills and self-reported health after adjusting for sex, age and educational level. Nordic participants aged 16-65 years with literacy skills at the lowest level reported sub-optimal health more often (28-37%) than those with literacy skills at the highest level (7-9%). After adjusting for sex, age and educational level, the likelihood of reporting sub-optimal health was 1.99-3.24 times as high for those with literacy skills at the lowest level as for those with literacy skills at the highest level. These results suggest that poor literacy skills increase the likelihood of experiencing poor health in the Nordic countries, even after controlling for educational level.
Multiconstrained gene clustering based on generalized projections
2010-01-01
Background Gene clustering for annotating gene functions is one of the fundamental issues in bioinformatics. The best clustering solution is often regularized by multiple constraints such as gene expressions, Gene Ontology (GO) annotations and gene network structures. How to integrate multiple pieces of constraints for an optimal clustering solution still remains an unsolved problem. Results We propose a novel multiconstrained gene clustering (MGC) method within the generalized projection onto convex sets (POCS) framework used widely in image reconstruction. Each constraint is formulated as a corresponding set. The generalized projector iteratively projects the clustering solution onto these sets in order to find a consistent solution included in the intersection set that satisfies all constraints. Compared with previous MGC methods, POCS can integrate multiple constraints from different nature without distorting the original constraints. To evaluate the clustering solution, we also propose a new performance measure referred to as Gene Log Likelihood (GLL) that considers genes having more than one function and hence in more than one cluster. Comparative experimental results show that our POCS-based gene clustering method outperforms current state-of-the-art MGC methods. Conclusions The POCS-based MGC method can successfully combine multiple constraints from different nature for gene clustering. Also, the proposed GLL is an effective performance measure for the soft clustering solutions. PMID:20356386
GPUs for statistical data analysis in HEP: a performance study of GooFit on GPUs vs. RooFit on CPUs
NASA Astrophysics Data System (ADS)
Pompili, Alexis; Di Florio, Adriano; CMS Collaboration
2016-10-01
In order to test the computing capabilities of GPUs with respect to traditional CPU cores a high-statistics toy Monte Carlo technique has been implemented both in ROOT/RooFit and GooFit frameworks with the purpose to estimate the statistical significance of the structure observed by CMS close to the kinematical boundary of the Jψϕ invariant mass in the three-body decay B +→JψϕK +. GooFit is a data analysis open tool under development that interfaces ROOT/RooFit to CUDA platform on nVidia GPU. The optimized GooFit application running on GPUs hosted by servers in the Bari Tier2 provides striking speed-up performances with respect to the RooFit application parallelised on multiple CPUs by means of PROOF-Lite tool. The considerably resulting speed-up, while comparing concurrent GooFit processes allowed by CUDA Multi Process Service and a RooFit/PROOF-Lite process with multiple CPU workers, is presented and discussed in detail. By means of GooFit it has also been possible to explore the behaviour of a likelihood ratio test statistic in different situations in which the Wilks Theorem may apply or does not apply because its regularity conditions are not satisfied.
Statistical significance estimation of a signal within the GooFit framework on GPUs
NASA Astrophysics Data System (ADS)
Cristella, Leonardo; Di Florio, Adriano; Pompili, Alexis
2017-03-01
In order to test the computing capabilities of GPUs with respect to traditional CPU cores a high-statistics toy Monte Carlo technique has been implemented both in ROOT/RooFit and GooFit frameworks with the purpose to estimate the statistical significance of the structure observed by CMS close to the kinematical boundary of the J/ψϕ invariant mass in the three-body decay B+ → J/ψϕK+. GooFit is a data analysis open tool under development that interfaces ROOT/RooFit to CUDA platform on nVidia GPU. The optimized GooFit application running on GPUs hosted by servers in the Bari Tier2 provides striking speed-up performances with respect to the RooFit application parallelised on multiple CPUs by means of PROOF-Lite tool. The considerable resulting speed-up, evident when comparing concurrent GooFit processes allowed by CUDA Multi Process Service and a RooFit/PROOF-Lite process with multiple CPU workers, is presented and discussed in detail. By means of GooFit it has also been possible to explore the behaviour of a likelihood ratio test statistic in different situations in which the Wilks Theorem may or may not apply because its regularity conditions are not satisfied.
NASA Astrophysics Data System (ADS)
Di Florio, Adriano
2017-10-01
In order to test the computing capabilities of GPUs with respect to traditional CPU cores a high-statistics toy Monte Carlo technique has been implemented both in ROOT/RooFit and GooFit frameworks with the purpose to estimate the statistical significance of the structure observed by CMS close to the kinematical boundary of the J/ψϕ invariant mass in the three-body decay B + → J/ψϕK +. GooFit is a data analysis open tool under development that interfaces ROOT/RooFit to CUDA platform on nVidia GPU. The optimized GooFit application running on GPUs hosted by servers in the Bari Tier2 provides striking speed-up performances with respect to the RooFit application parallelised on multiple CPUs by means of PROOF-Lite tool. The considerable resulting speed-up, evident when comparing concurrent GooFit processes allowed by CUDA Multi Process Service and a RooFit/PROOF-Lite process with multiple CPU workers, is presented and discussed in detail. By means of GooFit it has also been possible to explore the behaviour of a likelihood ratio test statistic in different situations in which the Wilks Theorem may or may not apply because its regularity conditions are not satisfied.
HLA Match Likelihoods for Hematopoietic Stem-Cell Grafts in the U.S. Registry
Gragert, Loren; Eapen, Mary; Williams, Eric; Freeman, John; Spellman, Stephen; Baitty, Robert; Hartzman, Robert; Rizzo, J. Douglas; Horowitz, Mary; Confer, Dennis; Maiers, Martin
2018-01-01
Background Hematopoietic stem-cell transplantation (HSCT) is a potentially lifesaving therapy for several blood cancers and other diseases. For patients without a suitable related HLA-matched donor, unrelated-donor registries of adult volunteers and banked umbilical cord–blood units, such as the Be the Match Registry operated by the National Marrow Donor Program (NMDP), provide potential sources of donors. Our goal in the present study was to measure the likelihood of finding a suitable donor in the U.S. registry. Methods Using human HLA data from the NMDP donor and cord-blood-unit registry, we built population-based genetic models for 21 U.S. racial and ethnic groups to predict the likelihood of identifying a suitable donor (either an adult donor or a cord-blood unit) for patients in each group. The models incorporated the degree of HLA matching, adult-donor availability (i.e., ability to donate), and cord-blood-unit cell dose. Results Our models indicated that most candidates for HSCT will have a suitable (HLA-matched or minimally mismatched) adult donor. However, many patients will not have an optimal adult donor — that is, a donor who is matched at high resolution at HLA-A, HLA-B, HLA-C, and HLA-DRB1. The likelihood of finding an optimal donor varies among racial and ethnic groups, with the highest probability among whites of European descent, at 75%, and the lowest probability among blacks of South or Central American descent, at 16%. Likelihoods for other groups are intermediate. Few patients will have an optimal cord-blood unit — that is, one matched at the antigen level at HLA-A and HLA-B and matched at high resolution at HLA-DRB1. However, cord-blood units mismatched at one or two HLA loci are available for almost all patients younger than 20 years of age and for more than 80% of patients 20 years of age or older, regardless of racial and ethnic background. Conclusions Most patients likely to benefit from HSCT will have a donor. Public investment in donor recruitment and cord-blood banks has expanded access to HSCT. (Funded by the Office of Naval Research, Department of the Navy, and the Health Resources and Services Administration, Department of Health and Human Services.) PMID:25054717
Estimation Methods for Non-Homogeneous Regression - Minimum CRPS vs Maximum Likelihood
NASA Astrophysics Data System (ADS)
Gebetsberger, Manuel; Messner, Jakob W.; Mayr, Georg J.; Zeileis, Achim
2017-04-01
Non-homogeneous regression models are widely used to statistically post-process numerical weather prediction models. Such regression models correct for errors in mean and variance and are capable to forecast a full probability distribution. In order to estimate the corresponding regression coefficients, CRPS minimization is performed in many meteorological post-processing studies since the last decade. In contrast to maximum likelihood estimation, CRPS minimization is claimed to yield more calibrated forecasts. Theoretically, both scoring rules used as an optimization score should be able to locate a similar and unknown optimum. Discrepancies might result from a wrong distributional assumption of the observed quantity. To address this theoretical concept, this study compares maximum likelihood and minimum CRPS estimation for different distributional assumptions. First, a synthetic case study shows that, for an appropriate distributional assumption, both estimation methods yield to similar regression coefficients. The log-likelihood estimator is slightly more efficient. A real world case study for surface temperature forecasts at different sites in Europe confirms these results but shows that surface temperature does not always follow the classical assumption of a Gaussian distribution. KEYWORDS: ensemble post-processing, maximum likelihood estimation, CRPS minimization, probabilistic temperature forecasting, distributional regression models
Chen, Shu-Ling; Hsieh, Pao-Chun; Chou, Chia-Hui; Tzeng, Ya-Ling
2014-11-25
Many Taiwanese women (43.8%) did not participate in regular cervical screening in 2011. An alternative to cervical screening, self-sampling for human papillomavirus (HPV), has been available at no cost under Taiwan's National Health Insurance since 2010, but the extent and likelihood of HPV self-sampling were unknown. A cross-sectional study was performed to explore determinants of women's likelihood of HPV self-sampling. Data were collected by questionnaire from a convenience sample of 500 women attending hospital gynecologic clinics in central Taiwan from June to October 2012. Data were analyzed by descriptive statistics, chi-square test, and logistic regression. Of 500 respondents, 297 (59.4%) had heard of HPV; of these 297 women, 69 (23%) had self-sampled for HPV. Among the 297 women who had heard of HPV, 234 (78.8%) considered cost a priority for HPV self-sampling. Likelihood of HPV self-sampling was determined by previous Pap testing, high perceived risk of cervical cancer, willingness to self-sample for HPV, high HPV knowledge, and cost as a priority consideration. Outreach efforts to increase the acceptability of self-sampling for HPV testing rates should target women who have had a Pap test, perceive themselves at high risk for cervical cancer, are willing to self-sample for HPV, have a high level of HPV knowledge, and for whom the cost of self-sampling covered by health insurance is a priority.
Padial, José M; Grant, Taran; Frost, Darrel R
2014-06-26
Brachycephaloidea is a monophyletic group of frogs with more than 1000 species distributed throughout the New World tropics, subtropics, and Andean regions. Recently, the group has been the target of multiple molecular phylogenetic analyses, resulting in extensive changes in its taxonomy. Here, we test previous hypotheses of phylogenetic relationships for the group by combining available molecular evidence (sequences of 22 genes representing 431 ingroup and 25 outgroup terminals) and performing a tree-alignment analysis under the parsimony optimality criterion using the program POY. To elucidate the effects of alignment and optimality criterion on phylogenetic inferences, we also used the program MAFFT to obtain a similarity-alignment for analysis under both parsimony and maximum likelihood using the programs TNT and GARLI, respectively. Although all three analytical approaches agreed on numerous points, there was also extensive disagreement. Tree-alignment under parsimony supported the monophyly of the ingroup and the sister group relationship of the monophyletic marsupial frogs (Hemiphractidae), while maximum likelihood and parsimony analyses of the MAFFT similarity-alignment did not. All three methods differed with respect to the position of Ceuthomantis smaragdinus (Ceuthomantidae), with tree-alignment using parsimony recovering this species as the sister of Pristimantis + Yunganastes. All analyses rejected the monophyly of Strabomantidae and Strabomantinae as originally defined, and the tree-alignment analysis under parsimony further rejected the recently redefined Craugastoridae and Pristimantinae. Despite the greater emphasis in the systematics literature placed on the choice of optimality criterion for evaluating trees than on the choice of method for aligning DNA sequences, we found that the topological differences attributable to the alignment method were as great as those caused by the optimality criterion. Further, the optimal tree-alignment indicates that insertions and deletions occurred in twice as many aligned positions as implied by the optimal similarity-alignment, confirming previous findings that sequence turnover through insertion and deletion events plays a greater role in molecular evolution than indicated by similarity-alignments. Our results also provide a clear empirical demonstration of the different effects of wildcard taxa produced by missing data in parsimony and maximum likelihood analyses. Specifically, maximum likelihood analyses consistently (81% bootstrap frequency) provided spurious resolution despite a lack of evidence, whereas parsimony correctly depicted the ambiguity due to missing data by collapsing unsupported nodes. We provide a new taxonomy for the group that retains previously recognized Linnaean taxa except for Ceuthomantidae, Strabomantidae, and Strabomantinae. A phenotypically diagnosable superfamily is recognized formally as Brachycephaloidea, with the informal, unranked name terrarana retained as the standard common name for these frogs. We recognize three families within Brachycephaloidea that are currently diagnosable solely on molecular grounds (Brachycephalidae, Craugastoridae, and Eleutherodactylidae), as well as five subfamilies (Craugastorinae, Eleutherodactylinae, Holoadeninae, Phyzelaphryninae, and Pristimantinae) corresponding in large part to previous families and subfamilies. Our analyses upheld the monophyly of all tested genera, but we found numerous subgeneric taxa to be non-monophyletic and modified the taxonomy accordingly.
NASA Astrophysics Data System (ADS)
Li, Gang; Zhao, Qing
2017-03-01
In this paper, a minimum entropy deconvolution based sinusoidal synthesis (MEDSS) filter is proposed to improve the fault detection performance of the regular sinusoidal synthesis (SS) method. The SS filter is an efficient linear predictor that exploits the frequency properties during model construction. The phase information of the harmonic components is not used in the regular SS filter. However, the phase relationships are important in differentiating noise from characteristic impulsive fault signatures. Therefore, in this work, the minimum entropy deconvolution (MED) technique is used to optimize the SS filter during the model construction process. A time-weighted-error Kalman filter is used to estimate the MEDSS model parameters adaptively. Three simulation examples and a practical application case study are provided to illustrate the effectiveness of the proposed method. The regular SS method and the autoregressive MED (ARMED) method are also implemented for comparison. The MEDSS model has demonstrated superior performance compared to the regular SS method and it also shows comparable or better performance with much less computational intensity than the ARMED method.
What's in a Grammar? Modeling Dominance and Optimization in Contact
ERIC Educational Resources Information Center
Sharma, Devyani
2013-01-01
Muysken's article is a timely call for us to seek deeper regularities in the bewildering diversity of language contact outcomes. His model provocatively suggests that most such outcomes can be subsumed under four speaker optimization strategies. I consider two aspects of the proposal here: the formalization in Optimality Theory (OT) and the…
Robust approximate optimal guidance strategies for aeroassisted orbital transfer missions
NASA Astrophysics Data System (ADS)
Ilgen, Marc R.
This thesis presents the application of game theoretic and regular perturbation methods to the problem of determining robust approximate optimal guidance laws for aeroassisted orbital transfer missions with atmospheric density and navigated state uncertainties. The optimal guidance problem is reformulated as a differential game problem with the guidance law designer and Nature as opposing players. The resulting equations comprise the necessary conditions for the optimal closed loop guidance strategy in the presence of worst case parameter variations. While these equations are nonlinear and cannot be solved analytically, the presence of a small parameter in the equations of motion allows the method of regular perturbations to be used to solve the equations approximately. This thesis is divided into five parts. The first part introduces the class of problems to be considered and presents results of previous research. The second part then presents explicit semianalytical guidance law techniques for the aerodynamically dominated region of flight. These guidance techniques are applied to unconstrained and control constrained aeroassisted plane change missions and Mars aerocapture missions, all subject to significant atmospheric density variations. The third part presents a guidance technique for aeroassisted orbital transfer problems in the gravitationally dominated region of flight. Regular perturbations are used to design an implicit guidance technique similar to the second variation technique but that removes the need for numerically computing an optimal trajectory prior to flight. This methodology is then applied to a set of aeroassisted inclination change missions. In the fourth part, the explicit regular perturbation solution technique is extended to include the class of guidance laws with partial state information. This methodology is then applied to an aeroassisted plane change mission using inertial measurements and subject to uncertainties in the initial value of the flight path angle. A summary of performance results for all these guidance laws is presented in the fifth part of this thesis along with recommendations for further research.
On the regularity of the covariance matrix of a discretized scalar field on the sphere
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bilbao-Ahedo, J.D.; Barreiro, R.B.; Herranz, D.
2017-02-01
We present a comprehensive study of the regularity of the covariance matrix of a discretized field on the sphere. In a particular situation, the rank of the matrix depends on the number of pixels, the number of spherical harmonics, the symmetries of the pixelization scheme and the presence of a mask. Taking into account the above mentioned components, we provide analytical expressions that constrain the rank of the matrix. They are obtained by expanding the determinant of the covariance matrix as a sum of determinants of matrices made up of spherical harmonics. We investigate these constraints for five different pixelizationsmore » that have been used in the context of Cosmic Microwave Background (CMB) data analysis: Cube, Icosahedron, Igloo, GLESP and HEALPix, finding that, at least in the considered cases, the HEALPix pixelization tends to provide a covariance matrix with a rank closer to the maximum expected theoretical value than the other pixelizations. The effect of the propagation of numerical errors in the regularity of the covariance matrix is also studied for different computational precisions, as well as the effect of adding a certain level of noise in order to regularize the matrix. In addition, we investigate the application of the previous results to a particular example that requires the inversion of the covariance matrix: the estimation of the CMB temperature power spectrum through the Quadratic Maximum Likelihood algorithm. Finally, some general considerations in order to achieve a regular covariance matrix are also presented.« less
Distillation of secret-key from a class of compound memoryless quantum sources
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boche, H., E-mail: boche@tum.de; Janßen, G., E-mail: gisbert.janssen@tum.de
We consider secret-key distillation from tripartite compound classical-quantum-quantum (cqq) sources with free forward public communication under strong security criterion. We design protocols which are universally reliable and secure in this scenario. These are shown to achieve asymptotically optimal rates as long as a certain regularity condition is fulfilled by the set of its generating density matrices. We derive a multi-letter formula which describes the optimal forward secret-key capacity for all compound cqq sources being regular in this sense. We also determine the forward secret-key distillation capacity for situations where the legitimate sending party has perfect knowledge of his/her marginal statemore » deriving from the source statistics. In this case regularity conditions can be dropped. Our results show that the capacities with and without the mentioned kind of state knowledge are equal as long as the source is generated by a regular set of density matrices. We demonstrate that regularity of cqq sources is not only a technical but also an operational issue. For this reason, we give an example of a source which has zero secret-key distillation capacity without sender knowledge, while achieving positive rates is possible if sender marginal knowledge is provided.« less
Constrained H1-regularization schemes for diffeomorphic image registration
Mang, Andreas; Biros, George
2017-01-01
We propose regularization schemes for deformable registration and efficient algorithms for their numerical approximation. We treat image registration as a variational optimal control problem. The deformation map is parametrized by its velocity. Tikhonov regularization ensures well-posedness. Our scheme augments standard smoothness regularization operators based on H1- and H2-seminorms with a constraint on the divergence of the velocity field, which resembles variational formulations for Stokes incompressible flows. In our formulation, we invert for a stationary velocity field and a mass source map. This allows us to explicitly control the compressibility of the deformation map and by that the determinant of the deformation gradient. We also introduce a new regularization scheme that allows us to control shear. We use a globalized, preconditioned, matrix-free, reduced space (Gauss–)Newton–Krylov scheme for numerical optimization. We exploit variable elimination techniques to reduce the number of unknowns of our system; we only iterate on the reduced space of the velocity field. Our current implementation is limited to the two-dimensional case. The numerical experiments demonstrate that we can control the determinant of the deformation gradient without compromising registration quality. This additional control allows us to avoid oversmoothing of the deformation map. We also demonstrate that we can promote or penalize shear whilst controlling the determinant of the deformation gradient. PMID:29075361
Gauging the likelihood of stable cavitation from ultrasound contrast agents
NASA Astrophysics Data System (ADS)
Bader, Kenneth B.; Holland, Christy K.
2013-01-01
The mechanical index (MI) was formulated to gauge the likelihood of adverse bioeffects from inertial cavitation. However, the MI formulation did not consider bubble activity from stable cavitation. This type of bubble activity can be readily nucleated from ultrasound contrast agents (UCAs) and has the potential to promote beneficial bioeffects. Here, the presence of stable cavitation is determined numerically by tracking the onset of subharmonic oscillations within a population of bubbles for frequencies up to 7 MHz and peak rarefactional pressures up to 3 MPa. In addition, the acoustic pressure rupture threshold of an UCA population was determined using the Marmottant model. The threshold for subharmonic emissions of optimally sized bubbles was found to be lower than the inertial cavitation threshold for all frequencies studied. The rupture thresholds of optimally sized UCAs were found to be lower than the threshold for subharmonic emissions for either single cycle or steady state acoustic excitations. Because the thresholds of both subharmonic emissions and UCA rupture are linearly dependent on frequency, an index of the form ICAV = Pr/f (where Pr is the peak rarefactional pressure in MPa and f is the frequency in MHz) was derived to gauge the likelihood of subharmonic emissions due to stable cavitation activity nucleated from UCAs.
Gauging the likelihood of stable cavitation from ultrasound contrast agents.
Bader, Kenneth B; Holland, Christy K
2013-01-07
The mechanical index (MI) was formulated to gauge the likelihood of adverse bioeffects from inertial cavitation. However, the MI formulation did not consider bubble activity from stable cavitation. This type of bubble activity can be readily nucleated from ultrasound contrast agents (UCAs) and has the potential to promote beneficial bioeffects. Here, the presence of stable cavitation is determined numerically by tracking the onset of subharmonic oscillations within a population of bubbles for frequencies up to 7 MHz and peak rarefactional pressures up to 3 MPa. In addition, the acoustic pressure rupture threshold of an UCA population was determined using the Marmottant model. The threshold for subharmonic emissions of optimally sized bubbles was found to be lower than the inertial cavitation threshold for all frequencies studied. The rupture thresholds of optimally sized UCAs were found to be lower than the threshold for subharmonic emissions for either single cycle or steady state acoustic excitations. Because the thresholds of both subharmonic emissions and UCA rupture are linearly dependent on frequency, an index of the form I(CAV) = P(r)/f (where P(r) is the peak rarefactional pressure in MPa and f is the frequency in MHz) was derived to gauge the likelihood of subharmonic emissions due to stable cavitation activity nucleated from UCAs.
Gauging the likelihood of stable cavitation from ultrasound contrast agents
Bader, Kenneth B; Holland, Christy K
2015-01-01
The mechanical index (MI) was formulated to gauge the likelihood of adverse bioeffects from inertial cavitation. However, the MI formulation did not consider bubble activity from stable cavitation. This type of bubble activity can be readily nucleated from ultrasound contrast agents (UCAs) and has the potential to promote beneficial bioeffects. Here, the presence of stable cavitation is determined numerically by tracking the onset of subharmonic oscillations within a population of bubbles for frequencies up to 7 MHz and peak rarefactional pressures up to 3 MPa. In addition, the acoustic pressure rupture threshold of an UCA population was determined using the Marmottant model. The threshold for subharmonic emissions of optimally sized bubbles was found to be lower than the inertial cavitation threshold for all frequencies studied. The rupture thresholds of optimally sized UCAs were found to be lower than the threshold for subharmonic emissions for either single cycle or steady state acoustic excitations. Because the thresholds of both subharmonic emissions and UCA rupture are linearly dependent on frequency, an index of the form ICAV = Pr/f (where Pr is the peak rarefactional pressure in MPa and f is the frequency in MHz) was derived to gauge the likelihood of subharmonic emissions due to stable cavitation activity nucleated from UCAs. PMID:23221109
On optimal soft-decision demodulation. [in digital communication system
NASA Technical Reports Server (NTRS)
Lee, L.-N.
1976-01-01
A necessary condition is derived for optimal J-ary coherent demodulation of M-ary (M greater than 2) signals. Optimality is defined as maximality of the symmetric cutoff rate of the resulting discrete memoryless channel. Using a counterexample, it is shown that the condition derived is generally not sufficient for optimality. This condition is employed as the basis for an iterative optimization method to find the optimal demodulator decision regions from an initial 'good guess'. In general, these regions are found to be bounded by hyperplanes in likelihood space; the corresponding regions in signal space are found to have hyperplane asymptotes for the important case of additive white Gaussian noise. Some examples are presented, showing that the regions in signal space bounded by these asymptotic hyperplanes define demodulator decision regions that are virtually optimal.
Novel cooperative neural fusion algorithms for image restoration and image fusion.
Xia, Youshen; Kamel, Mohamed S
2007-02-01
To deal with the problem of restoring degraded images with non-Gaussian noise, this paper proposes a novel cooperative neural fusion regularization (CNFR) algorithm for image restoration. Compared with conventional regularization algorithms for image restoration, the proposed CNFR algorithm can relax need of the optimal regularization parameter to be estimated. Furthermore, to enhance the quality of restored images, this paper presents a cooperative neural fusion (CNF) algorithm for image fusion. Compared with existing signal-level image fusion algorithms, the proposed CNF algorithm can greatly reduce the loss of contrast information under blind Gaussian noise environments. The performance analysis shows that the proposed two neural fusion algorithms can converge globally to the robust and optimal image estimate. Simulation results confirm that in different noise environments, the proposed two neural fusion algorithms can obtain a better image estimate than several well known image restoration and image fusion methods.
Penm, Jonathan; Chaar, Betty; Moles, Rebekah
2015-06-01
Clinical pharmacy services have been associated with decreased mortality rates, length of stay, medication errors, adverse drug reactions and total cost of care. Such services have recently been introduced to the Western Pacific Region (WPR), particularly in Asia. A survey to measure clinical pharmacy services that influence prescribing has been validated in the WPR and can be used to explore the implementation of such services. To explore the implementation of clinical pharmacy services that influence prescribing in the WPR and the barriers and facilitators involved in their implementation. Hospital pharmacies in the WPR. Hospital pharmacy directors in the WPR were emailed a link to the validated survey. Surveys were available in English, Japanese, Chinese, Vietnamese, Lao, Khmer, French and Mongolian. (1) Percentage of hospitals offering clinical pharmacy services. (2) Percentage of in-patients receiving a medication history, review or discharge counselling by a pharmacist. In total, 726 responses were received from 31 countries and nations. Nearly all hospitals, 90.6 % (658/726), stated they provided clinical pharmacy services. On average 28 % of their clinical pharmacists attended medical rounds regularly. The median percentage of inpatients receiving a medication history and discharge counselling by a pharmacist was 40 and 30 % respectively. Higher internal facilitator factor scores significantly increased the likelihood of offering clinical services and having pharmacists attend medical rounds regularly. Internal facilitators included individual pharmacist traits and pharmacy departmental structure/resources. Higher environmental facilitator factor scores and having a higher percentage of pharmacists attend medical rounds regularly significantly increased the likelihood of inpatients receiving a medication history, a medication review and discharge counselling by a pharmacist. Environment facilitators included government support, patient and physician expectations. A large proportion of hospitals in the WPR have implemented clinical pharmacy services. Although internal facilitators were shown to be important for initiating such services, the addition of environmental facilitators and ward round participation by pharmacists allowed clinical services to be integrated throughout the hospitals.
Keller, Carmen; Hartmann, Christina
2016-12-01
This longitudinal study was conducted between 2010 (T1) and 2014 (T2) on a random sample from the general Swiss population (N = 2781, 46% male). Results showed that dieters (restrained eaters) who reported lack of success in T2 were overweight in T1, had higher levels of emotional and external eating, overeating, and ambivalence toward eating palatable food in T1, and a significantly increased body mass index (BMI) in the period between T1 and T2. Dieters who reported success in T2 had maintained a normal BMI between T1 and T2, had a higher diet quality in T1 and had maintained regular physical activity for at least one year before T2. The logistic regression revealed that high levels of dispositional self-control provided the most important predictor of being a successful dieter. When controlling for dispositional self-control, high levels of emotional eating, overeating, and ambivalence in T1, together with increases in these levels between T1 and T2, were associated with a decreased likelihood of being a successful dieter in T2. High levels of diet quality in T1 and the maintenance of regular physical activity were associated with an increased likelihood of being a successful dieter in T2. Results suggest that diet success and failure is a long-term phenomenon, partly but not fully explained by dispositional self-control. Independent of self-control persistent patterns of overeating due to emotional eating and ambivalent feelings toward eating palatable food, also explain long-term diet failure. A high diet quality and maintenance of regular physical activity accounted for dieters' long-term success. This is the first study that examined the long-term psychological and behavioral characteristics of successful and unsuccessful restrained eaters. Copyright © 2016 Elsevier Ltd. All rights reserved.
Selection of regularization parameter for l1-regularized damage detection
NASA Astrophysics Data System (ADS)
Hou, Rongrong; Xia, Yong; Bao, Yuequan; Zhou, Xiaoqing
2018-06-01
The l1 regularization technique has been developed for structural health monitoring and damage detection through employing the sparsity condition of structural damage. The regularization parameter, which controls the trade-off between data fidelity and solution size of the regularization problem, exerts a crucial effect on the solution. However, the l1 regularization problem has no closed-form solution, and the regularization parameter is usually selected by experience. This study proposes two strategies of selecting the regularization parameter for the l1-regularized damage detection problem. The first method utilizes the residual and solution norms of the optimization problem and ensures that they are both small. The other method is based on the discrepancy principle, which requires that the variance of the discrepancy between the calculated and measured responses is close to the variance of the measurement noise. The two methods are applied to a cantilever beam and a three-story frame. A range of the regularization parameter, rather than one single value, can be determined. When the regularization parameter in this range is selected, the damage can be accurately identified even for multiple damage scenarios. This range also indicates the sensitivity degree of the damage identification problem to the regularization parameter.
Ursano, Robert J; Wang, Jing; Fullerton, Carol S; Ramsawh, Holly; Gifford, Robert K; Russell, Dale; Cohen, Gregory H; Sampson, Laura; Galea, Sandro
2018-01-01
Given the greater prevalence of post-deployment mental health concerns among reservists, the higher likelihood of deploying without their regular unit, and potentially lower rates of deployment preparedness, we examined associations between deploying with or without one's regular unit (individual augmentee status, IAS), deployment preparedness, and mental health problems including post-traumatic stress disorder (PTSD), depression (MDD), and binge drinking in a nationally representative sample of Reserve Component (RC) Army and Marine-enlisted males (n = 705). A series of multivariate regressions examined the association of mental health with IAS and deployment preparedness, adjusting for demographics. To examine whether deployment preparedness varied by IAS, an IAS × deployment preparedness interaction was included. In an adjusted model, being an individual augmentee and low deployment preparedness were associated with any mental health problem (screening positive for PTSD, MDD, binge drinking, or any combination of the three). There was a significant IAS × deployment preparedness interaction. Mental health problems did not vary by preparedness among individual augmentees. Participants deploying with regular units with low-medium preparedness had greater risk for mental health problems (odds ratio [OR] = 3.69, 95% confidence interval [CI] = 1.78-7.62 and OR = 2.29, 95% CI = 1.12-4.71), than those with high preparedness. RC-enlisted male personnel who deployed without their regular unit were five times more likely to have a mental health problem, and were 61% more likely to report binge drinking. Additionally, those with lower levels of deployment preparedness were up to three times more likely to have a mental health problem and up to six times more likely to report PTSD. The current investigation found that both IAS and deployment preparedness were associated with negative mental health outcomes in a large representative sample of previously deployed RC-enlisted male personnel. In particular, low deployment preparedness was associated with an increased likelihood of PTSD, and deploying without one's regular unit was associated with increased rates of binge drinking. There were also significant main and interaction effects of IAS and deployment preparedness on having a mental health problem. It is possible that limiting the number of RC personnel deploying without their regular unit may help to decrease alcohol misuse among U.S. Armed Services reservists during and after future conflicts. Also, to the extent that deployment preparedness is a modifiable risk factor, future studies should examine whether increasing deployment preparedness could mitigate some of the correlates of deployment-related trauma exposure. Finally, future investigation is needed to explain why those who deploy without their regular unit, but who report high deployment preparedness, remain at elevated risk for mental health problems. It is possible that individual augmentees can benefit from a specific preparation for deployment. Those deploying without their regular unit had higher rates of mental health problems regardless of preparedness. These findings have implications for deployment preparedness training for those deploying without their regular unit. Published by Oxford University Press on behalf of the Association of Military Surgeons of the United States 2017. This work is written by (a) US Government employee(s) and is in the public domain in the US.
NASA Astrophysics Data System (ADS)
Bassrei, A.; Terra, F. A.; Santos, E. T.
2007-12-01
Inverse problems in Applied Geophysics are usually ill-posed. One way to reduce such deficiency is through derivative matrices, which are a particular case of a more general family that receive the name regularization. The regularization by derivative matrices has an input parameter called regularization parameter, which choice is already a problem. It was suggested in the 1970's a heuristic approach later called L-curve, with the purpose to provide the optimum regularization parameter. The L-curve is a parametric curve, where each point is associated to a λ parameter. In the horizontal axis one represents the error between the observed data and the calculated one and in the vertical axis one represents the product between the regularization matrix and the estimated model. The ideal point is the L-curve knee, where there is a balance between the quantities represented in the Cartesian axes. The L-curve has been applied to a variety of inverse problems, also in Geophysics. However, the visualization of the knee is not always an easy task, in special when the L-curve does not the L shape. In this work three methodologies are employed for the search and obtainment of the optimal regularization parameter from the L curve. The first criterion is the utilization of Hansen's tool box which extracts λ automatically. The second criterion consists in to extract visually the optimal parameter. By third criterion one understands the construction of the first derivative of the L-curve, and the posterior automatic extraction of the inflexion point. The utilization of the L-curve with the three above criteria were applied and validated in traveltime tomography and 2-D gravity inversion. After many simulations with synthetic data, noise- free as well as data corrupted with noise, with the regularization orders 0, 1, and 2, we verified that the three criteria are valid and provide satisfactory results. The third criterion presented the best performance, specially in cases where the L-curve has an irregular shape.
Distributed multimodal data fusion for large scale wireless sensor networks
NASA Astrophysics Data System (ADS)
Ertin, Emre
2006-05-01
Sensor network technology has enabled new surveillance systems where sensor nodes equipped with processing and communication capabilities can collaboratively detect, classify and track targets of interest over a large surveillance area. In this paper we study distributed fusion of multimodal sensor data for extracting target information from a large scale sensor network. Optimal tracking, classification, and reporting of threat events require joint consideration of multiple sensor modalities. Multiple sensor modalities improve tracking by reducing the uncertainty in the track estimates as well as resolving track-sensor data association problems. Our approach to solving the fusion problem with large number of multimodal sensors is construction of likelihood maps. The likelihood maps provide a summary data for the solution of the detection, tracking and classification problem. The likelihood map presents the sensory information in an easy format for the decision makers to interpret and is suitable with fusion of spatial prior information such as maps, imaging data from stand-off imaging sensors. We follow a statistical approach to combine sensor data at different levels of uncertainty and resolution. The likelihood map transforms each sensor data stream to a spatio-temporal likelihood map ideally suitable for fusion with imaging sensor outputs and prior geographic information about the scene. We also discuss distributed computation of the likelihood map using a gossip based algorithm and present simulation results.
Hock, Sabrina; Hasenauer, Jan; Theis, Fabian J
2013-01-01
Diffusion is a key component of many biological processes such as chemotaxis, developmental differentiation and tissue morphogenesis. Since recently, the spatial gradients caused by diffusion can be assessed in-vitro and in-vivo using microscopy based imaging techniques. The resulting time-series of two dimensional, high-resolutions images in combination with mechanistic models enable the quantitative analysis of the underlying mechanisms. However, such a model-based analysis is still challenging due to measurement noise and sparse observations, which result in uncertainties of the model parameters. We introduce a likelihood function for image-based measurements with log-normal distributed noise. Based upon this likelihood function we formulate the maximum likelihood estimation problem, which is solved using PDE-constrained optimization methods. To assess the uncertainty and practical identifiability of the parameters we introduce profile likelihoods for diffusion processes. As proof of concept, we model certain aspects of the guidance of dendritic cells towards lymphatic vessels, an example for haptotaxis. Using a realistic set of artificial measurement data, we estimate the five kinetic parameters of this model and compute profile likelihoods. Our novel approach for the estimation of model parameters from image data as well as the proposed identifiability analysis approach is widely applicable to diffusion processes. The profile likelihood based method provides more rigorous uncertainty bounds in contrast to local approximation methods.
Optimizing human activity patterns using global sensitivity analysis
Fairchild, Geoffrey; Hickmann, Kyle S.; Mniszewski, Susan M.; ...
2013-12-10
Implementing realistic activity patterns for a population is crucial for modeling, for example, disease spread, supply and demand, and disaster response. Using the dynamic activity simulation engine, DASim, we generate schedules for a population that capture regular (e.g., working, eating, and sleeping) and irregular activities (e.g., shopping or going to the doctor). We use the sample entropy (SampEn) statistic to quantify a schedule’s regularity for a population. We show how to tune an activity’s regularity by adjusting SampEn, thereby making it possible to realistically design activities when creating a schedule. The tuning process sets up a computationally intractable high-dimensional optimizationmore » problem. To reduce the computational demand, we use Bayesian Gaussian process regression to compute global sensitivity indices and identify the parameters that have the greatest effect on the variance of SampEn. Here we use the harmony search (HS) global optimization algorithm to locate global optima. Our results show that HS combined with global sensitivity analysis can efficiently tune the SampEn statistic with few search iterations. We demonstrate how global sensitivity analysis can guide statistical emulation and global optimization algorithms to efficiently tune activities and generate realistic activity patterns. Finally, though our tuning methods are applied to dynamic activity schedule generation, they are general and represent a significant step in the direction of automated tuning and optimization of high-dimensional computer simulations.« less
Fast Algorithms for Earth Mover’s Distance Based on Optimal Transport and L1 Type Regularization I
2016-09-01
which EMD can be reformulated as a familiar homogeneous degree 1 regularized minimization. The new minimization problem is very similar to problems which...which is also named the Monge problem or the Wasserstein metric, plays a central role in many applications, including image processing, computer vision
NASA Astrophysics Data System (ADS)
Bukhari, Hassan J.
2017-12-01
In this paper a framework for robust optimization of mechanical design problems and process systems that have parametric uncertainty is presented using three different approaches. Robust optimization problems are formulated so that the optimal solution is robust which means it is minimally sensitive to any perturbations in parameters. The first method uses the price of robustness approach which assumes the uncertain parameters to be symmetric and bounded. The robustness for the design can be controlled by limiting the parameters that can perturb.The second method uses the robust least squares method to determine the optimal parameters when data itself is subjected to perturbations instead of the parameters. The last method manages uncertainty by restricting the perturbation on parameters to improve sensitivity similar to Tikhonov regularization. The methods are implemented on two sets of problems; one linear and the other non-linear. This methodology will be compared with a prior method using multiple Monte Carlo simulation runs which shows that the approach being presented in this paper results in better performance.
Hybrid optimization and Bayesian inference techniques for a non-smooth radiation detection problem
Stefanescu, Razvan; Schmidt, Kathleen; Hite, Jason; ...
2016-12-12
In this paper, we propose several algorithms to recover the location and intensity of a radiation source located in a simulated 250 × 180 m block of an urban center based on synthetic measurements. Radioactive decay and detection are Poisson random processes, so we employ likelihood functions based on this distribution. Owing to the domain geometry and the proposed response model, the negative logarithm of the likelihood is only piecewise continuous differentiable, and it has multiple local minima. To address these difficulties, we investigate three hybrid algorithms composed of mixed optimization techniques. For global optimization, we consider simulated annealing, particlemore » swarm, and genetic algorithm, which rely solely on objective function evaluations; that is, they do not evaluate the gradient in the objective function. By employing early stopping criteria for the global optimization methods, a pseudo-optimum point is obtained. This is subsequently utilized as the initial value by the deterministic implicit filtering method, which is able to find local extrema in non-smooth functions, to finish the search in a narrow domain. These new hybrid techniques, combining global optimization and implicit filtering address, difficulties associated with the non-smooth response, and their performances, are shown to significantly decrease the computational time over the global optimization methods. To quantify uncertainties associated with the source location and intensity, we employ the delayed rejection adaptive Metropolis and DiffeRential Evolution Adaptive Metropolis algorithms. Finally, marginal densities of the source properties are obtained, and the means of the chains compare accurately with the estimates produced by the hybrid algorithms.« less
Atta Mills, Ebenezer Fiifi Emire; Yan, Dawen; Yu, Bo; Wei, Xinyuan
2016-01-01
We propose a consolidated risk measure based on variance and the safety-first principle in a mean-risk portfolio optimization framework. The safety-first principle to financial portfolio selection strategy is modified and improved. Our proposed models are subjected to norm regularization to seek near-optimal stable and sparse portfolios. We compare the cumulative wealth of our preferred proposed model to a benchmark, S&P 500 index for the same period. Our proposed portfolio strategies have better out-of-sample performance than the selected alternative portfolio rules in literature and control the downside risk of the portfolio returns.
Laplace Inversion of Low-Resolution NMR Relaxometry Data Using Sparse Representation Methods
Berman, Paula; Levi, Ofer; Parmet, Yisrael; Saunders, Michael; Wiesman, Zeev
2013-01-01
Low-resolution nuclear magnetic resonance (LR-NMR) relaxometry is a powerful tool that can be harnessed for characterizing constituents in complex materials. Conversion of the relaxation signal into a continuous distribution of relaxation components is an ill-posed inverse Laplace transform problem. The most common numerical method implemented today for dealing with this kind of problem is based on L2-norm regularization. However, sparse representation methods via L1 regularization and convex optimization are a relatively new approach for effective analysis and processing of digital images and signals. In this article, a numerical optimization method for analyzing LR-NMR data by including non-negativity constraints and L1 regularization and by applying a convex optimization solver PDCO, a primal-dual interior method for convex objectives, that allows general linear constraints to be treated as linear operators is presented. The integrated approach includes validation of analyses by simulations, testing repeatability of experiments, and validation of the model and its statistical assumptions. The proposed method provides better resolved and more accurate solutions when compared with those suggested by existing tools. © 2013 Wiley Periodicals, Inc. Concepts Magn Reson Part A 42A: 72–88, 2013. PMID:23847452
Laplace Inversion of Low-Resolution NMR Relaxometry Data Using Sparse Representation Methods.
Berman, Paula; Levi, Ofer; Parmet, Yisrael; Saunders, Michael; Wiesman, Zeev
2013-05-01
Low-resolution nuclear magnetic resonance (LR-NMR) relaxometry is a powerful tool that can be harnessed for characterizing constituents in complex materials. Conversion of the relaxation signal into a continuous distribution of relaxation components is an ill-posed inverse Laplace transform problem. The most common numerical method implemented today for dealing with this kind of problem is based on L 2 -norm regularization. However, sparse representation methods via L 1 regularization and convex optimization are a relatively new approach for effective analysis and processing of digital images and signals. In this article, a numerical optimization method for analyzing LR-NMR data by including non-negativity constraints and L 1 regularization and by applying a convex optimization solver PDCO, a primal-dual interior method for convex objectives, that allows general linear constraints to be treated as linear operators is presented. The integrated approach includes validation of analyses by simulations, testing repeatability of experiments, and validation of the model and its statistical assumptions. The proposed method provides better resolved and more accurate solutions when compared with those suggested by existing tools. © 2013 Wiley Periodicals, Inc. Concepts Magn Reson Part A 42A: 72-88, 2013.
Gyre and gimble: a maximum-likelihood replacement for Patterson correlation refinement.
McCoy, Airlie J; Oeffner, Robert D; Millán, Claudia; Sammito, Massimo; Usón, Isabel; Read, Randy J
2018-04-01
Descriptions are given of the maximum-likelihood gyre method implemented in Phaser for optimizing the orientation and relative position of rigid-body fragments of a model after the orientation of the model has been identified, but before the model has been positioned in the unit cell, and also the related gimble method for the refinement of rigid-body fragments of the model after positioning. Gyre refinement helps to lower the root-mean-square atomic displacements between model and target molecular-replacement solutions for the test case of antibody Fab(26-10) and improves structure solution with ARCIMBOLDO_SHREDDER.
PERIODIC AUTOREGRESSIVE-MOVING AVERAGE (PARMA) MODELING WITH APPLICATIONS TO WATER RESOURCES.
Vecchia, A.V.
1985-01-01
Results involving correlation properties and parameter estimation for autogressive-moving average models with periodic parameters are presented. A multivariate representation of the PARMA model is used to derive parameter space restrictions and difference equations for the periodic autocorrelations. Close approximation to the likelihood function for Gaussian PARMA processes results in efficient maximum-likelihood estimation procedures. Terms in the Fourier expansion of the parameters are sequentially included, and a selection criterion is given for determining the optimal number of harmonics to be included. Application of the techniques is demonstrated through analysis of a monthly streamflow time series.
Shuper, Paul A; Joharchi, Narges; Irving, Hyacinth; Fletcher, David; Kovacs, Colin; Loutfy, Mona; Walmsley, Sharon L; Wong, David K H; Rehm, Jürgen
2016-08-01
Although adherence is an important key to the efficacy of antiretroviral therapy (ART), many people living with HIV (PLWH) fail to maintain optimal levels of ART adherence over time. PLWH with the added burden of Hepatitis C virus (HCV) coinfection possess unique challenges that potentially impact their motivation and ability to adhere to ART. The present investigation sought to (1) compare ART adherence levels among a sample of HIV/HCV-coinfected versus HIV-monoinfected patients, and (2) identify whether ART-related clinical and psychosocial correlates differ by HCV status. PLWH receiving ART (N = 215: 105 HIV/HCV-coinfected, 110 HIV-monoinfected) completed a comprehensive survey assessing ART adherence and its potential correlates. Medical chart extraction identified clinical factors, including liver enzymes. Results demonstrated that ART adherence did not differ by HCV status, with 83.7% of coinfected patients and 82.4% of monoinfected patients reporting optimal (i.e., ≥95%) adherence during a four-day recall period (p = .809). Multivariable logistic regression demonstrated that regardless of HCV status, optimal ART adherence was associated with experiencing fewer adherence-related behavioral skills barriers (AOR = 0.56; 95%CI = 0.43-0.73), lower likelihood of problematic drinking (AOR = 0.15; 95%CI = 0.04-0.67), and lower likelihood of methamphetamine use (AOR = 0.14; 95%CI = 0.03-0.69). However, among HIV/HCV-coinfected patients, optimal adherence was additionally associated with experiencing fewer ART adherence-related motivational barriers (AOR = 0.23; 95%CI = 0.08-0.62) and lower likelihood of depression (AOR = 0.06; 95%CI = 0.00-0.84). Findings suggest that although HIV/HCV-coinfected patients may face additional, distinct barriers to ART adherence, levels of adherence commensurate with those demonstrated by HIV-monoinfected patients might be achievable if these barriers are addressed.
Conservation law for self-paced movements.
Huh, Dongsung; Sejnowski, Terrence J
2016-08-02
Optimal control models of biological movements introduce external task factors to specify the pace of movements. Here, we present the dual to the principle of optimality based on a conserved quantity, called "drive," that represents the influence of internal motivation level on movement pace. Optimal control and drive conservation provide equivalent descriptions for the regularities observed within individual movements. For regularities across movements, drive conservation predicts a previously unidentified scaling law between the overall size and speed of various self-paced hand movements in the absence of any external tasks, which we confirmed with psychophysical experiments. Drive can be interpreted as a high-level control variable that sets the overall pace of movements and may be represented in the brain as the tonic levels of neuromodulators that control the level of internal motivation, thus providing insights into how internal states affect biological motor control.
A comparison of optimization algorithms for localized in vivo B0 shimming.
Nassirpour, Sahar; Chang, Paul; Fillmer, Ariane; Henning, Anke
2018-02-01
To compare several different optimization algorithms currently used for localized in vivo B 0 shimming, and to introduce a novel, fast, and robust constrained regularized algorithm (ConsTru) for this purpose. Ten different optimization algorithms (including samples from both generic and dedicated least-squares solvers, and a novel constrained regularized inversion method) were implemented and compared for shimming in five different shimming volumes on 66 in vivo data sets from both 7 T and 9.4 T. The best algorithm was chosen to perform single-voxel spectroscopy at 9.4 T in the frontal cortex of the brain on 10 volunteers. The results of the performance tests proved that the shimming algorithm is prone to unstable solutions if it depends on the value of a starting point, and is not regularized to handle ill-conditioned problems. The ConsTru algorithm proved to be the most robust, fast, and efficient algorithm among all of the chosen algorithms. It enabled acquisition of spectra of reproducible high quality in the frontal cortex at 9.4 T. For localized in vivo B 0 shimming, the use of a dedicated linear least-squares solver instead of a generic nonlinear one is highly recommended. Among all of the linear solvers, the constrained regularized method (ConsTru) was found to be both fast and most robust. Magn Reson Med 79:1145-1156, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.
Topology Optimization for Energy Management in Underwater Sensor Networks
2015-02-01
1 To appear in International Journal of Control as a regular paper Topology Optimization for Energy Management in Underwater Sensor Networks ⋆ Devesh...K. Jha1 Thomas A. Wettergren2 Asok Ray1 Kushal Mukherjee3 Keywords: Underwater Sensor Network , Energy Management, Pareto Optimization, Adaptation...Optimization for Energy Management in Underwater Sensor Networks 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d
A New Continuous-Time Equality-Constrained Optimization to Avoid Singularity.
Quan, Quan; Cai, Kai-Yuan
2016-02-01
In equality-constrained optimization, a standard regularity assumption is often associated with feasible point methods, namely, that the gradients of constraints are linearly independent. In practice, the regularity assumption may be violated. In order to avoid such a singularity, a new projection matrix is proposed based on which a feasible point method to continuous-time, equality-constrained optimization is developed. First, the equality constraint is transformed into a continuous-time dynamical system with solutions that always satisfy the equality constraint. Second, a new projection matrix without singularity is proposed to realize the transformation. An update (or say a controller) is subsequently designed to decrease the objective function along the solutions of the transformed continuous-time dynamical system. The invariance principle is then applied to analyze the behavior of the solution. Furthermore, the proposed method is modified to address cases in which solutions do not satisfy the equality constraint. Finally, the proposed optimization approach is applied to three examples to demonstrate its effectiveness.
NASA Technical Reports Server (NTRS)
Stepner, D. E.; Mehra, R. K.
1973-01-01
A new method of extracting aircraft stability and control derivatives from flight test data is developed based on the maximum likelihood cirterion. It is shown that this new method is capable of processing data from both linear and nonlinear models, both with and without process noise and includes output error and equation error methods as special cases. The first application of this method to flight test data is reported for lateral maneuvers of the HL-10 and M2/F3 lifting bodies, including the extraction of stability and control derivatives in the presence of wind gusts. All the problems encountered in this identification study are discussed. Several different methods (including a priori weighting, parameter fixing and constrained parameter values) for dealing with identifiability and uniqueness problems are introduced and the results given. The method for the design of optimal inputs for identifying the parameters of linear dynamic systems is also given. The criterion used for the optimization is the sensitivity of the system output to the unknown parameters. Several simple examples are first given and then the results of an extensive stability and control dervative identification simulation for a C-8 aircraft are detailed.
An optimal algorithm for reconstructing images from binary measurements
NASA Astrophysics Data System (ADS)
Yang, Feng; Lu, Yue M.; Sbaiz, Luciano; Vetterli, Martin
2010-01-01
We have studied a camera with a very large number of binary pixels referred to as the gigavision camera [1] or the gigapixel digital film camera [2, 3]. Potential advantages of this new camera design include improved dynamic range, thanks to its logarithmic sensor response curve, and reduced exposure time in low light conditions, due to its highly sensitive photon detection mechanism. We use maximum likelihood estimator (MLE) to reconstruct a high quality conventional image from the binary sensor measurements of the gigavision camera. We prove that when the threshold T is "1", the negative loglikelihood function is a convex function. Therefore, optimal solution can be achieved using convex optimization. Base on filter bank techniques, fast algorithms are given for computing the gradient and the multiplication of a vector and Hessian matrix of the negative log-likelihood function. We show that with a minor change, our algorithm also works for estimating conventional images from multiple binary images. Numerical experiments with synthetic 1-D signals and images verify the effectiveness and quality of the proposed algorithm. Experimental results also show that estimation performance can be improved by increasing the oversampling factor or the number of binary images.
NASA Astrophysics Data System (ADS)
Mahaboob, B.; Venkateswarlu, B.; Sankar, J. Ravi; Balasiddamuni, P.
2017-11-01
This paper uses matrix calculus techniques to obtain Nonlinear Least Squares Estimator (NLSE), Maximum Likelihood Estimator (MLE) and Linear Pseudo model for nonlinear regression model. David Pollard and Peter Radchenko [1] explained analytic techniques to compute the NLSE. However the present research paper introduces an innovative method to compute the NLSE using principles in multivariate calculus. This study is concerned with very new optimization techniques used to compute MLE and NLSE. Anh [2] derived NLSE and MLE of a heteroscedatistic regression model. Lemcoff [3] discussed a procedure to get linear pseudo model for nonlinear regression model. In this research article a new technique is developed to get the linear pseudo model for nonlinear regression model using multivariate calculus. The linear pseudo model of Edmond Malinvaud [4] has been explained in a very different way in this paper. David Pollard et.al used empirical process techniques to study the asymptotic of the LSE (Least-squares estimation) for the fitting of nonlinear regression function in 2006. In Jae Myung [13] provided a go conceptual for Maximum likelihood estimation in his work “Tutorial on maximum likelihood estimation
Optimal usage of de-icing chemicals when scraping ice.
DOT National Transportation Integrated Search
2003-11-01
One of the challenges that faces the winter maintainer is how much chemical to : apply to the road under given conditions. Insufficient chemical can lead to the road : surface becoming slick, and the road thus becoming unsafe. In all likelihood, addi...
Validation of DNA-based identification software by computation of pedigree likelihood ratios.
Slooten, K
2011-08-01
Disaster victim identification (DVI) can be aided by DNA-evidence, by comparing the DNA-profiles of unidentified individuals with those of surviving relatives. The DNA-evidence is used optimally when such a comparison is done by calculating the appropriate likelihood ratios. Though conceptually simple, the calculations can be quite involved, especially with large pedigrees, precise mutation models etc. In this article we describe a series of test cases designed to check if software designed to calculate such likelihood ratios computes them correctly. The cases include both simple and more complicated pedigrees, among which inbred ones. We show how to calculate the likelihood ratio numerically and algebraically, including a general mutation model and possibility of allelic dropout. In Appendix A we show how to derive such algebraic expressions mathematically. We have set up these cases to validate new software, called Bonaparte, which performs pedigree likelihood ratio calculations in a DVI context. Bonaparte has been developed by SNN Nijmegen (The Netherlands) for the Netherlands Forensic Institute (NFI). It is available free of charge for non-commercial purposes (see www.dnadvi.nl for details). Commercial licenses can also be obtained. The software uses Bayesian networks and the junction tree algorithm to perform its calculations. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.
Signal optimization and analysis using PASSER V-07 : training workshop: code IPR006.
DOT National Transportation Integrated Search
2011-01-01
The objective of this project was to conduct one pilot workshop and five regular workshops to teach the effective use of the enhanced PASSER V-07 arterial signal timing optimization software. PASSER V-07 and materials for conducting a one-day trainin...
Sugiyama, Takemi; Giles-Corti, Billie; Summers, Jacqui; du Toit, Lorinne; Leslie, Eva; Owen, Neville
2013-09-01
This study examined prospective relationships of green space attributes with adults initiating or maintaining recreational walking. Postal surveys were completed by 1036 adults living in Adelaide, Australia, at baseline (two time points in 2003-04) and follow-up (2007-08). Initiating or maintaining recreational walking was determined using self-reported walking frequency. Green space attributes examined were perceived presence, quality, proximity, and the objectively measured area (total and largest) and number of green spaces within a 1.6 km buffer drawn from the center of each study neighborhood. Multilevel regression analyses examined the odds of initiating or maintaining walking separately for each green space attribute. At baseline, participants were categorized into non-regular (n = 395), regular (n = 286), and irregular walkers (n = 313). Among non-regular walkers, 30% had initiated walking, while 70% of regular walkers had maintained walking at follow-up. No green space attributes were associated with initiating walking. However, positive perceptions of the presence of and proximity to green spaces and the total and largest areas of green space were significantly associated with a higher likelihood of walking maintenance over four years. Neighborhood green spaces may not assist adults to initiate walking, but their presence and proximity may facilitate them to maintain recreational walking over time. Copyright © 2013 Elsevier Inc. All rights reserved.
Mack, Jennifer W; Cook, E Francis; Wolfe, Joanne; Grier, Holcombe E; Cleary, Paul D; Weeks, Jane C
2007-04-10
Patients often overestimate their chances of surviving cancer. Factors that contribute to accurate understanding of prognosis are not known. We assessed understanding of likelihood of cure and functional outcome among parents of children with cancer and sought to identify factors that place parents at risk for overly optimistic beliefs about prognosis. We conducted a cross-sectional survey of 194 parents of children with cancer (response rate, 70%) who were treated at the Dana-Farber Cancer Institute and Children's Hospital in Boston, MA, and the children's physicians. Parent and physician expectations for likelihood of cure and functional outcome were compared. In 152 accurate or optimistic parents, we determined factors associated with accurate understanding of likelihood of cure compared with optimism. The majority of parents (61%) were more optimistic than physicians about the likelihood of cure. Parents' beliefs about other outcomes of cancer treatment were similar (quality-of-life impairment, P = .70) or more pessimistic (physical impairment, P = .01; intellectual impairment, P = .01) than physicians' beliefs. Parents and physicians were more likely to agree about chances of cure when physicians had confidence in knowledge of prognosis (odds ratio [OR] = 2.55, P = .004) and allowed parents to take their preferred decision-making role (OR = 1.89, P = .019). Parents of children with cancer are overly optimistic about chances of cure but not about other outcomes of cancer therapy. Parents tend to be overly optimistic about cure when physicians have little confidence and when the decision-making process does not meet parents' preferences. These findings suggest that physicians are partly responsible for parents' unrealistic expectations about cure.
NASA Astrophysics Data System (ADS)
Cai, Ailong; Li, Lei; Zheng, Zhizhong; Zhang, Hanming; Wang, Linyuan; Hu, Guoen; Yan, Bin
2018-02-01
In medical imaging many conventional regularization methods, such as total variation or total generalized variation, impose strong prior assumptions which can only account for very limited classes of images. A more reasonable sparse representation frame for images is still badly needed. Visually understandable images contain meaningful patterns, and combinations or collections of these patterns can be utilized to form some sparse and redundant representations which promise to facilitate image reconstructions. In this work, we propose and study block matching sparsity regularization (BMSR) and devise an optimization program using BMSR for computed tomography (CT) image reconstruction for an incomplete projection set. The program is built as a constrained optimization, minimizing the L1-norm of the coefficients of the image in the transformed domain subject to data observation and positivity of the image itself. To solve the program efficiently, a practical method based on the proximal point algorithm is developed and analyzed. In order to accelerate the convergence rate, a practical strategy for tuning the BMSR parameter is proposed and applied. The experimental results for various settings, including real CT scanning, have verified the proposed reconstruction method showing promising capabilities over conventional regularization.
NASA Astrophysics Data System (ADS)
Wang, Ershen; Jia, Chaoying; Tong, Gang; Qu, Pingping; Lan, Xiaoyu; Pang, Tao
2018-03-01
The receiver autonomous integrity monitoring (RAIM) is one of the most important parts in an avionic navigation system. Two problems need to be addressed to improve this system, namely, the degeneracy phenomenon and lack of samples for the standard particle filter (PF). However, the number of samples cannot adequately express the real distribution of the probability density function (i.e., sample impoverishment). This study presents a GPS receiver autonomous integrity monitoring (RAIM) method based on a chaos particle swarm optimization particle filter (CPSO-PF) algorithm with a log likelihood ratio. The chaos sequence generates a set of chaotic variables, which are mapped to the interval of optimization variables to improve particle quality. This chaos perturbation overcomes the potential for the search to become trapped in a local optimum in the particle swarm optimization (PSO) algorithm. Test statistics are configured based on a likelihood ratio, and satellite fault detection is then conducted by checking the consistency between the state estimate of the main PF and those of the auxiliary PFs. Based on GPS data, the experimental results demonstrate that the proposed algorithm can effectively detect and isolate satellite faults under conditions of non-Gaussian measurement noise. Moreover, the performance of the proposed novel method is better than that of RAIM based on the PF or PSO-PF algorithm.
Nair, Harish; Verma, Vasundhara R; Theodoratou, Evropi; Zgaga, Lina; Huda, Tanvir; Simões, Eric A F; Wright, Peter F; Rudan, Igor; Campbell, Harry
2011-04-13
Respiratory Syncytial Virus (RSV) is the leading cause of acute lower respiratory infections (ALRI) in children. It is estimated to cause approximately 33.8 million new episodes of ALRI in children annually, 96% of these occurring in developing countries. It is also estimated to result in about 53,000 to 199,000 deaths annually in young children. Currently there are several vaccine and immunoprophylaxis candidates against RSV in the developmental phase targeting active and passive immunization. We used a modified CHNRI methodology for setting priorities in health research investments. This was done in two stages. In Stage I, we systematically reviewed the literature related to emerging vaccines against RSV relevant to 12 criteria of interest. In Stage II, we conducted an expert opinion exercise by inviting 20 experts (leading basic scientists, international public health researchers, international policy makers and representatives of pharmaceutical companies). The policy makers and industry representatives accepted our invitation on the condition of anonymity, due to the sensitive nature of their involvement in such exercises. They answered questions from the CHNRI framework and their "collective optimism" towards each criterion was documented on a scale from 0 to 100%. In the case of candidate vaccines for active immunization of infants against RSV, the experts expressed very low levels of optimism for low product cost, affordability and low cost of development; moderate levels of optimism regarding the criteria of answerability, likelihood of efficacy, deliverability, sustainability and acceptance to end users for the interventions; and high levels of optimism regarding impact on equity and acceptance to health workers. While considering the candidate vaccines targeting pregnant women, the panel expressed low levels of optimism for low product cost, affordability, answerability and low development cost; moderate levels of optimism for likelihood of efficacy, deliverability, sustainability and impact on equity; high levels of optimism regarding acceptance to end users and health workers. The group also evaluated immunoprophylaxis against RSV using monoclonal antibodies and expressed no optimism towards low product cost; very low levels of optimism regarding deliverability, affordability, sustainability, low implementation cost and impact on equity; moderate levels of optimism against the criteria of answerability, likelihood of efficacy, acceptance to end-users and health workers; and high levels of optimism regarding low development cost. They felt that either of these vaccines would have a high impact on reducing burden of childhood ALRI due to RSV and reduce the overall childhood ALRI burden by a maximum of about 10%. Although monoclonal antibodies have proven to be effective in providing protection to high-risk infants, their introduction in resource poor settings might be limited by high cost associated with them. Candidate vaccines for active immunization of infants against RSV hold greatest promise. Introduction of a low cost vaccine against RSV would reduce the inequitable distribution of burden due to childhood ALRI and will most likely have a high impact on morbidity and mortality due to severe ALRI.
Control of the transition between regular and mach reflection of shock waves
NASA Astrophysics Data System (ADS)
Alekseev, A. K.
2012-06-01
A control problem was considered that makes it possible to switch the flow between stationary Mach and regular reflection of shock waves within the dual solution domain. The sensitivity of the flow was computed by solving adjoint equations. A control disturbance was sought by applying gradient optimization methods. According to the computational results, the transition from regular to Mach reflection can be executed by raising the temperature. The transition from Mach to regular reflection can be achieved by lowering the temperature at moderate Mach numbers and is impossible at large numbers. The reliability of the numerical results was confirmed by verifying them with the help of a posteriori analysis.
Hussein, Mohamed Ali
2014-01-01
Women's relative lack of decision-making power and their unequal access to employment, finances, education, basic health care, and other resources are considered to be the root causes of their ill-health and that of their children. The main purpose of this paper is to examine the interactive relation between women's empowerment and the use of maternal health care. Two model specifications are tested. One assumes no correlation between empowerment and antenatal care while the second specification allows for correlation. Both the univariate and the recursive bivariate probit models are tested. The data used in this study is EDHS 2008. Factor Analysis Technique is also used to construct some of the explanatory variables such as the availability and quality of health services indicators. The findings show that women's empowerment and receiving regular antenatal care are simultaneously determined and the recursive bivariate probit is a better approximation to the relationship between them. Women's empowerment has significant and positive impact on receiving regular antenatal care. The availability and quality of health services do significantly increase the likelihood of receiving regular antenatal care. PMID:25140310
THESEUS: maximum likelihood superpositioning and analysis of macromolecular structures.
Theobald, Douglas L; Wuttke, Deborah S
2006-09-01
THESEUS is a command line program for performing maximum likelihood (ML) superpositions and analysis of macromolecular structures. While conventional superpositioning methods use ordinary least-squares (LS) as the optimization criterion, ML superpositions provide substantially improved accuracy by down-weighting variable structural regions and by correcting for correlations among atoms. ML superpositioning is robust and insensitive to the specific atoms included in the analysis, and thus it does not require subjective pruning of selected variable atomic coordinates. Output includes both likelihood-based and frequentist statistics for accurate evaluation of the adequacy of a superposition and for reliable analysis of structural similarities and differences. THESEUS performs principal components analysis for analyzing the complex correlations found among atoms within a structural ensemble. ANSI C source code and selected binaries for various computing platforms are available under the GNU open source license from http://monkshood.colorado.edu/theseus/ or http://www.theseus3d.org.
Accounting for informatively missing data in logistic regression by means of reassessment sampling.
Lin, Ji; Lyles, Robert H
2015-05-20
We explore the 'reassessment' design in a logistic regression setting, where a second wave of sampling is applied to recover a portion of the missing data on a binary exposure and/or outcome variable. We construct a joint likelihood function based on the original model of interest and a model for the missing data mechanism, with emphasis on non-ignorable missingness. The estimation is carried out by numerical maximization of the joint likelihood function with close approximation of the accompanying Hessian matrix, using sharable programs that take advantage of general optimization routines in standard software. We show how likelihood ratio tests can be used for model selection and how they facilitate direct hypothesis testing for whether missingness is at random. Examples and simulations are presented to demonstrate the performance of the proposed method. Copyright © 2015 John Wiley & Sons, Ltd.
Optical tomography by means of regularized MLEM
NASA Astrophysics Data System (ADS)
Majer, Charles L.; Urbanek, Tina; Peter, Jörg
2015-09-01
To solve the inverse problem involved in fluorescence mediated tomography a regularized maximum likelihood expectation maximization (MLEM) reconstruction strategy is proposed. This technique has recently been applied to reconstruct galaxy clusters in astronomy and is adopted here. The MLEM algorithm is implemented as Richardson-Lucy (RL) scheme and includes entropic regularization and a floating default prior. Hence, the strategy is very robust against measurement noise and also avoids converging into noise patterns. Normalized Gaussian filtering with fixed standard deviation is applied for the floating default kernel. The reconstruction strategy is investigated using the XFM-2 homogeneous mouse phantom (Caliper LifeSciences Inc., Hopkinton, MA) with known optical properties. Prior to optical imaging, X-ray CT tomographic data of the phantom were acquire to provide structural context. Phantom inclusions were fit with various fluorochrome inclusions (Cy5.5) for which optical data at 60 projections over 360 degree have been acquired, respectively. Fluorochrome excitation has been accomplished by scanning laser point illumination in transmission mode (laser opposite to camera). Following data acquisition, a 3D triangulated mesh is derived from the reconstructed CT data which is then matched with the various optical projection images through 2D linear interpolation, correlation and Fourier transformation in order to assess translational and rotational deviations between the optical and CT imaging systems. Preliminary results indicate that the proposed regularized MLEM algorithm, when driven with a constant initial condition, yields reconstructed images that tend to be smoother in comparison to classical MLEM without regularization. Once the floating default prior is included this bias was significantly reduced.
Bian, Liheng; Suo, Jinli; Chung, Jaebum; Ou, Xiaoze; Yang, Changhuei; Chen, Feng; Dai, Qionghai
2016-06-10
Fourier ptychographic microscopy (FPM) is a novel computational coherent imaging technique for high space-bandwidth product imaging. Mathematically, Fourier ptychographic (FP) reconstruction can be implemented as a phase retrieval optimization process, in which we only obtain low resolution intensity images corresponding to the sub-bands of the sample's high resolution (HR) spatial spectrum, and aim to retrieve the complex HR spectrum. In real setups, the measurements always suffer from various degenerations such as Gaussian noise, Poisson noise, speckle noise and pupil location error, which would largely degrade the reconstruction. To efficiently address these degenerations, we propose a novel FP reconstruction method under a gradient descent optimization framework in this paper. The technique utilizes Poisson maximum likelihood for better signal modeling, and truncated Wirtinger gradient for effective error removal. Results on both simulated data and real data captured using our laser-illuminated FPM setup show that the proposed method outperforms other state-of-the-art algorithms. Also, we have released our source code for non-commercial use.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Hao; Mey, Antonia S. J. S.; Noé, Frank
2014-12-07
We propose a discrete transition-based reweighting analysis method (dTRAM) for analyzing configuration-space-discretized simulation trajectories produced at different thermodynamic states (temperatures, Hamiltonians, etc.) dTRAM provides maximum-likelihood estimates of stationary quantities (probabilities, free energies, expectation values) at any thermodynamic state. In contrast to the weighted histogram analysis method (WHAM), dTRAM does not require data to be sampled from global equilibrium, and can thus produce superior estimates for enhanced sampling data such as parallel/simulated tempering, replica exchange, umbrella sampling, or metadynamics. In addition, dTRAM provides optimal estimates of Markov state models (MSMs) from the discretized state-space trajectories at all thermodynamic states. Under suitablemore » conditions, these MSMs can be used to calculate kinetic quantities (e.g., rates, timescales). In the limit of a single thermodynamic state, dTRAM estimates a maximum likelihood reversible MSM, while in the limit of uncorrelated sampling data, dTRAM is identical to WHAM. dTRAM is thus a generalization to both estimators.« less
Optimal Implementations for Reliable Circadian Clocks
NASA Astrophysics Data System (ADS)
Hasegawa, Yoshihiko; Arita, Masanori
2014-09-01
Circadian rhythms are acquired through evolution to increase the chances for survival through synchronizing with the daylight cycle. Reliable synchronization is realized through two trade-off properties: regularity to keep time precisely, and entrainability to synchronize the internal time with daylight. We find by using a phase model with multiple inputs that achieving the maximal limit of regularity and entrainability entails many inherent features of the circadian mechanism. At the molecular level, we demonstrate the role sharing of two light inputs, phase advance and delay, as is well observed in mammals. At the behavioral level, the optimal phase-response curve inevitably contains a dead zone, a time during which light pulses neither advance nor delay the clock. We reproduce the results of phase-controlling experiments entrained by two types of periodic light pulses. Our results indicate that circadian clocks are designed optimally for reliable clockwork through evolution.
The quasi-optimality criterion in the linear functional strategy
NASA Astrophysics Data System (ADS)
Kindermann, Stefan; Pereverzyev, Sergiy, Jr.; Pilipenko, Andrey
2018-07-01
The linear functional strategy for the regularization of inverse problems is considered. For selecting the regularization parameter therein, we propose the heuristic quasi-optimality principle and some modifications including the smoothness of the linear functionals. We prove convergence rates for the linear functional strategy with these heuristic rules taking into account the smoothness of the solution and the functionals and imposing a structural condition on the noise. Furthermore, we study these noise conditions in both a deterministic and stochastic setup and verify that for mildly-ill-posed problems and Gaussian noise, these conditions are satisfied almost surely, where on the contrary, in the severely-ill-posed case and in a similar setup, the corresponding noise condition fails to hold. Moreover, we propose an aggregation method for adaptively optimizing the parameter choice rule by making use of improved rates for linear functionals. Numerical results indicate that this method yields better results than the standard heuristic rule.
Adaptive eigenspace method for inverse scattering problems in the frequency domain
NASA Astrophysics Data System (ADS)
Grote, Marcus J.; Kray, Marie; Nahum, Uri
2017-02-01
A nonlinear optimization method is proposed for the solution of inverse scattering problems in the frequency domain, when the scattered field is governed by the Helmholtz equation. The time-harmonic inverse medium problem is formulated as a PDE-constrained optimization problem and solved by an inexact truncated Newton-type iteration. Instead of a grid-based discrete representation, the unknown wave speed is projected to a particular finite-dimensional basis of eigenfunctions, which is iteratively adapted during the optimization. Truncating the adaptive eigenspace (AE) basis at a (small and slowly increasing) finite number of eigenfunctions effectively introduces regularization into the inversion and thus avoids the need for standard Tikhonov-type regularization. Both analytical and numerical evidence underpins the accuracy of the AE representation. Numerical experiments demonstrate the efficiency and robustness to missing or noisy data of the resulting adaptive eigenspace inversion method.
Heger, Dominic; Herff, Christian; Schultz, Tanja
2014-01-01
In this paper, we show that multiple operations of the typical pattern recognition chain of an fNIRS-based BCI, including feature extraction and classification, can be unified by solving a convex optimization problem. We formulate a regularized least squares problem that learns a single affine transformation of raw HbO(2) and HbR signals. We show that this transformation can achieve competitive results in an fNIRS BCI classification task, as it significantly improves recognition of different levels of workload over previously published results on a publicly available n-back data set. Furthermore, we visualize the learned models and analyze their spatio-temporal characteristics.
NASA Astrophysics Data System (ADS)
Zhang, Wenkun; Zhang, Hanming; Wang, Linyuan; Cai, Ailong; Li, Lei; Yan, Bin
2018-02-01
Limited angle computed tomography (CT) reconstruction is widely performed in medical diagnosis and industrial testing because of the size of objects, engine/armor inspection requirements, and limited scan flexibility. Limited angle reconstruction necessitates usage of optimization-based methods that utilize additional sparse priors. However, most of conventional methods solely exploit sparsity priors of spatial domains. When CT projection suffers from serious data deficiency or various noises, obtaining reconstruction images that meet the requirement of quality becomes difficult and challenging. To solve this problem, this paper developed an adaptive reconstruction method for limited angle CT problem. The proposed method simultaneously uses spatial and Radon domain regularization model based on total variation (TV) and data-driven tight frame. Data-driven tight frame being derived from wavelet transformation aims at exploiting sparsity priors of sinogram in Radon domain. Unlike existing works that utilize pre-constructed sparse transformation, the framelets of the data-driven regularization model can be adaptively learned from the latest projection data in the process of iterative reconstruction to provide optimal sparse approximations for given sinogram. At the same time, an effective alternating direction method is designed to solve the simultaneous spatial and Radon domain regularization model. The experiments for both simulation and real data demonstrate that the proposed algorithm shows better performance in artifacts depression and details preservation than the algorithms solely using regularization model of spatial domain. Quantitative evaluations for the results also indicate that the proposed algorithm applying learning strategy performs better than the dual domains algorithms without learning regularization model
Manifold regularized discriminative nonnegative matrix factorization with fast gradient descent.
Guan, Naiyang; Tao, Dacheng; Luo, Zhigang; Yuan, Bo
2011-07-01
Nonnegative matrix factorization (NMF) has become a popular data-representation method and has been widely used in image processing and pattern-recognition problems. This is because the learned bases can be interpreted as a natural parts-based representation of data and this interpretation is consistent with the psychological intuition of combining parts to form a whole. For practical classification tasks, however, NMF ignores both the local geometry of data and the discriminative information of different classes. In addition, existing research results show that the learned basis is unnecessarily parts-based because there is neither explicit nor implicit constraint to ensure the representation parts-based. In this paper, we introduce the manifold regularization and the margin maximization to NMF and obtain the manifold regularized discriminative NMF (MD-NMF) to overcome the aforementioned problems. The multiplicative update rule (MUR) can be applied to optimizing MD-NMF, but it converges slowly. In this paper, we propose a fast gradient descent (FGD) to optimize MD-NMF. FGD contains a Newton method that searches the optimal step length, and thus, FGD converges much faster than MUR. In addition, FGD includes MUR as a special case and can be applied to optimizing NMF and its variants. For a problem with 165 samples in R(1600), FGD converges in 28 s, while MUR requires 282 s. We also apply FGD in a variant of MD-NMF and experimental results confirm its efficiency. Experimental results on several face image datasets suggest the effectiveness of MD-NMF.
NASA Astrophysics Data System (ADS)
Sakata, Ayaka; Xu, Yingying
2018-03-01
We analyse a linear regression problem with nonconvex regularization called smoothly clipped absolute deviation (SCAD) under an overcomplete Gaussian basis for Gaussian random data. We propose an approximate message passing (AMP) algorithm considering nonconvex regularization, namely SCAD-AMP, and analytically show that the stability condition corresponds to the de Almeida-Thouless condition in spin glass literature. Through asymptotic analysis, we show the correspondence between the density evolution of SCAD-AMP and the replica symmetric (RS) solution. Numerical experiments confirm that for a sufficiently large system size, SCAD-AMP achieves the optimal performance predicted by the replica method. Through replica analysis, a phase transition between replica symmetric and replica symmetry breaking (RSB) region is found in the parameter space of SCAD. The appearance of the RS region for a nonconvex penalty is a significant advantage that indicates the region of smooth landscape of the optimization problem. Furthermore, we analytically show that the statistical representation performance of the SCAD penalty is better than that of \
Regularized Filters for L1-Norm-Based Common Spatial Patterns.
Wang, Haixian; Li, Xiaomeng
2016-02-01
The l1 -norm-based common spatial patterns (CSP-L1) approach is a recently developed technique for optimizing spatial filters in the field of electroencephalogram (EEG)-based brain computer interfaces. The l1 -norm-based expression of dispersion in CSP-L1 alleviates the negative impact of outliers. In this paper, we further improve the robustness of CSP-L1 by taking into account noise which does not necessarily have as large a deviation as with outliers. The noise modelling is formulated by using the waveform length of the EEG time course. With the noise modelling, we then regularize the objective function of CSP-L1, in which the l1-norm is used in two folds: one is the dispersion and the other is the waveform length. An iterative algorithm is designed to resolve the optimization problem of the regularized objective function. A toy illustration and the experiments of classification on real EEG data sets show the effectiveness of the proposed method.
Physical activity in prevention and treatment of the metabolic syndrome.
Lakka, Timo A; Laaksonen, David E
2007-02-01
Randomised controlled trials have shown that exercise training has a mild or moderate favourable effect on many metabolic and cardiovascular risk factors that constitute or are related to the metabolic syndrome (MetS). Epidemiological studies suggest that regular physical activity prevents type 2 diabetes, cardiovascular disease, and premature mortality in large part through these risk factors. Although randomized controlled trials with the prevention or treatment of the MetS as the main outcome have not been published, several large randomized controlled trials provide strong evidence that favourable lifestyle changes, including regular physical activity, are effective in the prevention of type 2 diabetes in individuals who are overweight and have impaired glucose tolerance. Compliance with the current recommendations to increase the total volume of moderate-intensity physical activity and to maintain good cardiorespiratory and muscular fitness appears to markedly decrease the likelihood of developing the MetS, especially in high-risk groups. Walking is the most common form of physical activity--it improves health in many ways and is generally safe. Therefore, brisk walking for at least 30 min daily can be recommended as the principal form of physical activity at the population level. If there are no contraindications, more vigorous physical exercise or resistance training should also be considered to obtain additional health benefits. Unstructured and low-intensity physical activity may also decrease the likelihood of developing the MetS, especially when substituted for sedentary behaviours such as watching television. The measurement of maximal oxygen consumption may provide an efficient means to target even individuals with relatively few metabolic risk factors who may benefit from more intensive intervention.
Gubelmann, Cédric; Heinzer, Raphael; Haba-Rubio, José; Vollenweider, Peter; Marques-Vidal, Pedro
2018-03-30
To evaluate the association of objective physical activity (PA) and sedentary behaviour (SB) with sleep duration and quality. Cross-sectional study including 2649 adults (53.5% women, 45-86 years) from the general population. Proportions of time spent in PA and SB were measured using 14-day accelerometry. Low PA and high SB status were defined as the lowest and highest tertile of each behaviour. 'Inactive', 'Weekend warrior' and 'Regularly active' weekly patterns were also defined. Sleep parameters were derived from the accelerometer and validated questionnaires. High PA, relative to low PA, was associated with higher sleep efficiency [76.6 vs. 73.8%, p<0.01] and lower likelihood of evening chronotype [relative-risk ratio (RR) and 95%CI: 0.71 (0.52; 0.97)]. Similar associations were found for low SB relative to high SB. 'Weekend warriors', relative to 'Inactives', had higher sleep efficiency [76.4 vs. 73.9%, p<0.01] and lower likelihood of evening chronotype [RR: 0.63 (0.43; 0.93)]. 'Regularly actives', relative to 'Inactives', had higher sleep efficiency [76.7 vs. 73.9%, p<0.01] and tended to have less frequently an evening chronotype [RR: 0.75 (0.54; 1.04), p=0.09]. No associations were found for PA and SB with sleep duration, daytime sleepiness, insomnia, and risk of sleep apnea (after adjustment for body mass index). High PA and low SB individuals, even if they do not sleep longer, have higher sleep efficiency and have less frequently an evening chronotype.
Automatic Constraint Detection for 2D Layout Regularization.
Jiang, Haiyong; Nan, Liangliang; Yan, Dong-Ming; Dong, Weiming; Zhang, Xiaopeng; Wonka, Peter
2016-08-01
In this paper, we address the problem of constraint detection for layout regularization. The layout we consider is a set of two-dimensional elements where each element is represented by its bounding box. Layout regularization is important in digitizing plans or images, such as floor plans and facade images, and in the improvement of user-created contents, such as architectural drawings and slide layouts. To regularize a layout, we aim to improve the input by detecting and subsequently enforcing alignment, size, and distance constraints between layout elements. Similar to previous work, we formulate layout regularization as a quadratic programming problem. In addition, we propose a novel optimization algorithm that automatically detects constraints. We evaluate the proposed framework using a variety of input layouts from different applications. Our results demonstrate that our method has superior performance to the state of the art.
Estimation After a Group Sequential Trial.
Milanzi, Elasma; Molenberghs, Geert; Alonso, Ariel; Kenward, Michael G; Tsiatis, Anastasios A; Davidian, Marie; Verbeke, Geert
2015-10-01
Group sequential trials are one important instance of studies for which the sample size is not fixed a priori but rather takes one of a finite set of pre-specified values, dependent on the observed data. Much work has been devoted to the inferential consequences of this design feature. Molenberghs et al (2012) and Milanzi et al (2012) reviewed and extended the existing literature, focusing on a collection of seemingly disparate, but related, settings, namely completely random sample sizes, group sequential studies with deterministic and random stopping rules, incomplete data, and random cluster sizes. They showed that the ordinary sample average is a viable option for estimation following a group sequential trial, for a wide class of stopping rules and for random outcomes with a distribution in the exponential family. Their results are somewhat surprising in the sense that the sample average is not optimal, and further, there does not exist an optimal, or even, unbiased linear estimator. However, the sample average is asymptotically unbiased, both conditionally upon the observed sample size as well as marginalized over it. By exploiting ignorability they showed that the sample average is the conventional maximum likelihood estimator. They also showed that a conditional maximum likelihood estimator is finite sample unbiased, but is less efficient than the sample average and has the larger mean squared error. Asymptotically, the sample average and the conditional maximum likelihood estimator are equivalent. This previous work is restricted, however, to the situation in which the the random sample size can take only two values, N = n or N = 2 n . In this paper, we consider the more practically useful setting of sample sizes in a the finite set { n 1 , n 2 , …, n L }. It is shown that the sample average is then a justifiable estimator , in the sense that it follows from joint likelihood estimation, and it is consistent and asymptotically unbiased. We also show why simulations can give the false impression of bias in the sample average when considered conditional upon the sample size. The consequence is that no corrections need to be made to estimators following sequential trials. When small-sample bias is of concern, the conditional likelihood estimator provides a relatively straightforward modification to the sample average. Finally, it is shown that classical likelihood-based standard errors and confidence intervals can be applied, obviating the need for technical corrections.
Revision of an automated microseismic location algorithm for DAS - 3C geophone hybrid array
NASA Astrophysics Data System (ADS)
Mizuno, T.; LeCalvez, J.; Raymer, D.
2017-12-01
Application of distributed acoustic sensing (DAS) has been studied in several areas in seismology. One of the areas is microseismic reservoir monitoring (e.g., Molteni et al., 2017, First Break). Considering the present limitations of DAS, which include relatively low signal-to-noise ratio (SNR) and no 3C polarization measurements, a DAS - 3C geophone hybrid array is a practical option when using a single monitoring well. Considering the large volume of data from distributed sensing, microseismic event detection and location using a source scanning type algorithm is a reasonable choice, especially for real-time monitoring. The algorithm must handle both strain rate along the borehole axis for DAS and particle velocity for 3C geophones. Only a small quantity of large SNR events will be detected throughout a large aperture encompassing the hybrid array; therefore, the aperture is to be optimized dynamically to eliminate noisy channels for a majority of events. For such hybrid array, coalescence microseismic mapping (CMM) (Drew et al., 2005, SPE) was revised. CMM forms a likelihood function of location of event and its origin time. At each receiver, a time function of event arrival likelihood is inferred using an SNR function, and it is migrated to time and space to determine hypocenter and origin time likelihood. This algorithm was revised to dynamically optimize such a hybrid array by identifying receivers where a microseismic signal is possibly detected and using only those receivers to compute the likelihood function. Currently, peak SNR is used to select receivers. To prevent false results due to small aperture, a minimum aperture threshold is employed. The algorithm refines location likelihood using 3C geophone polarization. We tested this algorithm using a ray-based synthetic dataset. Leaney (2014, PhD thesis, UBC) is used to compute particle velocity at receivers. Strain rate along the borehole axis is computed from particle velocity as DAS microseismic synthetic data. The likelihood function formed by both DAS and geophone behaves as expected with the aperture dynamically selected depending on the SNR of the event. We conclude that this algorithm can be successfully applied for such hybrid arrays to monitor microseismic activity. A study using a recently acquired dataset is planned.
TH-AB-BRA-02: Automated Triplet Beam Orientation Optimization for MRI-Guided Co-60 Radiotherapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nguyen, D; Thomas, D; Cao, M
2016-06-15
Purpose: MRI guided Co-60 provides daily and intrafractional MRI soft tissue imaging for improved target tracking and adaptive radiotherapy. To remedy the low output limitation, the system uses three Co-60 sources at 120° apart, but using all three sources in planning is considerably unintuitive. We automate the beam orientation optimization using column generation, and then solve a novel fluence map optimization (FMO) problem while regularizing the number of MLC segments. Methods: Three patients—1 prostate (PRT), 1 lung (LNG), and 1 head-and-neck boost plan (H&NBoost)—were evaluated. The beamlet dose for 180 equally spaced coplanar beams under 0.35 T magnetic field wasmore » calculated using Monte Carlo. The 60 triplets were selected utilizing the column generation algorithm. The FMO problem was formulated using an L2-norm minimization with anisotropic total variation (TV) regularization term, which allows for control over the number of MLC segments. Our Fluence Regularized and Optimized Selection of Triplets (FROST) plans were compared against the clinical treatment plans (CLN) produced by an experienced dosimetrist. Results: The mean PTV D95, D98, and D99 differ by −0.02%, +0.12%, and +0.44% of the prescription dose between planning methods, showing same PTV dose coverage. The mean PTV homogeneity (D95/D5) was at 0.9360 (FROST) and 0.9356 (CLN). R50 decreased by 0.07 with FROST. On average, FROST reduced Dmax and Dmean of OARs by 6.56% and 5.86% of the prescription dose. The manual CLN planning required iterative trial and error runs which is very time consuming, while FROST required minimal human intervention. Conclusions: MRI guided Co-60 therapy needs the output of all sources yet suffers from unintuitive and laborious manual beam selection processes. Automated triplet orientation optimization is shown essential to overcome the difficulty and improves the dosimetry. A novel FMO with regularization provides additional controls over the number of MLC segments and treatment time. Varian Medical Systems; NIH grant R01CA188300; NIH grant R43CA183390.« less
Optimal thresholds for the estimation of area rain-rate moments by the threshold method
NASA Technical Reports Server (NTRS)
Short, David A.; Shimizu, Kunio; Kedem, Benjamin
1993-01-01
Optimization of the threshold method, achieved by determination of the threshold that maximizes the correlation between an area-average rain-rate moment and the area coverage of rain rates exceeding the threshold, is demonstrated empirically and theoretically. Empirical results for a sequence of GATE radar snapshots show optimal thresholds of 5 and 27 mm/h for the first and second moments, respectively. Theoretical optimization of the threshold method by the maximum-likelihood approach of Kedem and Pavlopoulos (1991) predicts optimal thresholds near 5 and 26 mm/h for lognormally distributed rain rates with GATE-like parameters. The agreement between theory and observations suggests that the optimal threshold can be understood as arising due to sampling variations, from snapshot to snapshot, of a parent rain-rate distribution. Optimal thresholds for gamma and inverse Gaussian distributions are also derived and compared.
NASA Astrophysics Data System (ADS)
Li, Lei; Yu, Long; Yang, Kecheng; Li, Wei; Li, Kai; Xia, Min
2018-04-01
The multiangle dynamic light scattering (MDLS) technique can better estimate particle size distributions (PSDs) than single-angle dynamic light scattering. However, determining the inversion range, angular weighting coefficients, and scattering angle combination is difficult but fundamental to the reconstruction for both unimodal and multimodal distributions. In this paper, we propose a self-adapting regularization method called the wavelet iterative recursion nonnegative Tikhonov-Phillips-Twomey (WIRNNT-PT) algorithm. This algorithm combines a wavelet multiscale strategy with an appropriate inversion method and could self-adaptively optimize several noteworthy issues containing the choices of the weighting coefficients, the inversion range and the optimal inversion method from two regularization algorithms for estimating the PSD from MDLS measurements. In addition, the angular dependence of the MDLS for estimating the PSDs of polymeric latexes is thoroughly analyzed. The dependence of the results on the number and range of measurement angles was analyzed in depth to identify the optimal scattering angle combination. Numerical simulations and experimental results for unimodal and multimodal distributions are presented to demonstrate both the validity of the WIRNNT-PT algorithm and the angular dependence of MDLS and show that the proposed algorithm with a six-angle analysis in the 30-130° range can be satisfactorily applied to retrieve PSDs from MDLS measurements.
Manifold optimization-based analysis dictionary learning with an ℓ1∕2-norm regularizer.
Li, Zhenni; Ding, Shuxue; Li, Yujie; Yang, Zuyuan; Xie, Shengli; Chen, Wuhui
2018-02-01
Recently there has been increasing attention towards analysis dictionary learning. In analysis dictionary learning, it is an open problem to obtain the strong sparsity-promoting solutions efficiently while simultaneously avoiding the trivial solutions of the dictionary. In this paper, to obtain the strong sparsity-promoting solutions, we employ the ℓ 1∕2 norm as a regularizer. The very recent study on ℓ 1∕2 norm regularization theory in compressive sensing shows that its solutions can give sparser results than using the ℓ 1 norm. We transform a complex nonconvex optimization into a number of one-dimensional minimization problems. Then the closed-form solutions can be obtained efficiently. To avoid trivial solutions, we apply manifold optimization to update the dictionary directly on the manifold satisfying the orthonormality constraint, so that the dictionary can avoid the trivial solutions well while simultaneously capturing the intrinsic properties of the dictionary. The experiments with synthetic and real-world data verify that the proposed algorithm for analysis dictionary learning can not only obtain strong sparsity-promoting solutions efficiently, but also learn more accurate dictionary in terms of dictionary recovery and image processing than the state-of-the-art algorithms. Copyright © 2017 Elsevier Ltd. All rights reserved.
Munoz, Francisco D.; Watson, Jean -Paul; Hobbs, Benjamin F.
2015-06-04
In this study, the anticipated magnitude of needed investments in new transmission infrastructure in the U.S. requires that these be allocated in a way that maximizes the likelihood of achieving society's goals for power system operation. The use of state-of-the-art optimization tools can identify cost-effective investment alternatives, extract more benefits out of transmission expansion portfolios, and account for the huge economic, technology, and policy uncertainties that the power sector faces over the next several decades.
Exact one-sided confidence limits for the difference between two correlated proportions.
Lloyd, Chris J; Moldovan, Max V
2007-08-15
We construct exact and optimal one-sided upper and lower confidence bounds for the difference between two probabilities based on matched binary pairs using well-established optimality theory of Buehler. Starting with five different approximate lower and upper limits, we adjust them to have coverage probability exactly equal to the desired nominal level and then compare the resulting exact limits by their mean size. Exact limits based on the signed root likelihood ratio statistic are preferred and recommended for practical use.
Optimal estimates of free energies from multistate nonequilibrium work data.
Maragakis, Paul; Spichty, Martin; Karplus, Martin
2006-03-17
We derive the optimal estimates of the free energies of an arbitrary number of thermodynamic states from nonequilibrium work measurements; the work data are collected from forward and reverse switching processes and obey a fluctuation theorem. The maximum likelihood formulation properly reweights all pathways contributing to a free energy difference and is directly applicable to simulations and experiments. We demonstrate dramatic gains in efficiency by combining the analysis with parallel tempering simulations for alchemical mutations of model amino acids.
Deng, Yongbo; Korvink, Jan G
2016-05-01
This paper develops a topology optimization procedure for three-dimensional electromagnetic waves with an edge element-based finite-element method. In contrast to the two-dimensional case, three-dimensional electromagnetic waves must include an additional divergence-free condition for the field variables. The edge element-based finite-element method is used to both discretize the wave equations and enforce the divergence-free condition. For wave propagation described in terms of the magnetic field in the widely used class of non-magnetic materials, the divergence-free condition is imposed on the magnetic field. This naturally leads to a nodal topology optimization method. When wave propagation is described using the electric field, the divergence-free condition must be imposed on the electric displacement. In this case, the material in the design domain is assumed to be piecewise homogeneous to impose the divergence-free condition on the electric field. This results in an element-wise topology optimization algorithm. The topology optimization problems are regularized using a Helmholtz filter and a threshold projection method and are analysed using a continuous adjoint method. In order to ensure the applicability of the filter in the element-wise topology optimization version, a regularization method is presented to project the nodal into an element-wise physical density variable.
Multimaterial topology optimization of contact problems using phase field regularization
NASA Astrophysics Data System (ADS)
Myśliński, Andrzej
2018-01-01
The numerical method to solve multimaterial topology optimization problems for elastic bodies in unilateral contact with Tresca friction is developed in the paper. The displacement of the elastic body in contact is governed by elliptic equation with inequality boundary conditions. The body is assumed to consists from more than two distinct isotropic elastic materials. The materials distribution function is chosen as the design variable. Since high contact stress appears during the contact phenomenon the aim of the structural optimization problem is to find such topology of the domain occupied by the body that the normal contact stress along the boundary of the body is minimized. The original cost functional is regularized using the multiphase volume constrained Ginzburg-Landau energy functional rather than the perimeter functional. The first order necessary optimality condition is recalled and used to formulate the generalized gradient flow equations of Allen-Cahn type. The optimal topology is obtained as the steady state of the phase transition governed by the generalized Allen-Cahn equation. As the interface width parameter tends to zero the transition of the phase field model to the level set model is studied. The optimization problem is solved numerically using the operator splitting approach combined with the projection gradient method. Numerical examples confirming the applicability of the proposed method are provided and discussed.
Korvink, Jan G.
2016-01-01
This paper develops a topology optimization procedure for three-dimensional electromagnetic waves with an edge element-based finite-element method. In contrast to the two-dimensional case, three-dimensional electromagnetic waves must include an additional divergence-free condition for the field variables. The edge element-based finite-element method is used to both discretize the wave equations and enforce the divergence-free condition. For wave propagation described in terms of the magnetic field in the widely used class of non-magnetic materials, the divergence-free condition is imposed on the magnetic field. This naturally leads to a nodal topology optimization method. When wave propagation is described using the electric field, the divergence-free condition must be imposed on the electric displacement. In this case, the material in the design domain is assumed to be piecewise homogeneous to impose the divergence-free condition on the electric field. This results in an element-wise topology optimization algorithm. The topology optimization problems are regularized using a Helmholtz filter and a threshold projection method and are analysed using a continuous adjoint method. In order to ensure the applicability of the filter in the element-wise topology optimization version, a regularization method is presented to project the nodal into an element-wise physical density variable. PMID:27279766
Coordinated and uncoordinated optimization of networks
NASA Astrophysics Data System (ADS)
Brede, Markus
2010-06-01
In this paper, we consider spatial networks that realize a balance between an infrastructure cost (the cost of wire needed to connect the network in space) and communication efficiency, measured by average shortest path length. A global optimization procedure yields network topologies in which this balance is optimized. These are compared with network topologies generated by a competitive process in which each node strives to optimize its own cost-communication balance. Three phases are observed in globally optimal configurations for different cost-communication trade offs: (i) regular small worlds, (ii) starlike networks, and (iii) trees with a center of interconnected hubs. In the latter regime, i.e., for very expensive wire, power laws in the link length distributions P(w)∝w-α are found, which can be explained by a hierarchical organization of the networks. In contrast, in the local optimization process the presence of sharp transitions between different network regimes depends on the dimension of the underlying space. Whereas for d=∞ sharp transitions between fully connected networks, regular small worlds, and highly cliquish periphery-core networks are found, for d=1 sharp transitions are absent and the power law behavior in the link length distribution persists over a much wider range of link cost parameters. The measured power law exponents are in agreement with the hypothesis that the locally optimized networks consist of multiple overlapping suboptimal hierarchical trees.
Pixel-based OPC optimization based on conjugate gradients.
Ma, Xu; Arce, Gonzalo R
2011-01-31
Optical proximity correction (OPC) methods are resolution enhancement techniques (RET) used extensively in the semiconductor industry to improve the resolution and pattern fidelity of optical lithography. In pixel-based OPC (PBOPC), the mask is divided into small pixels, each of which is modified during the optimization process. Two critical issues in PBOPC are the required computational complexity of the optimization process, and the manufacturability of the optimized mask. Most current OPC optimization methods apply the steepest descent (SD) algorithm to improve image fidelity augmented by regularization penalties to reduce the complexity of the mask. Although simple to implement, the SD algorithm converges slowly. The existing regularization penalties, however, fall short in meeting the mask rule check (MRC) requirements often used in semiconductor manufacturing. This paper focuses on developing OPC optimization algorithms based on the conjugate gradient (CG) method which exhibits much faster convergence than the SD algorithm. The imaging formation process is represented by the Fourier series expansion model which approximates the partially coherent system as a sum of coherent systems. In order to obtain more desirable manufacturability properties of the mask pattern, a MRC penalty is proposed to enlarge the linear size of the sub-resolution assistant features (SRAFs), as well as the distances between the SRAFs and the main body of the mask. Finally, a projection method is developed to further reduce the complexity of the optimized mask pattern.
Ivanov, J.; Miller, R.D.; Markiewicz, R.D.; Xia, J.
2008-01-01
We apply the P-wave refraction-tomography method to seismic data collected with a landstreamer. Refraction-tomography inversion solutions were determined using regularization parameters that provided the most realistic near-surface solutions that best matched the dipping layer structure of nearby outcrops. A reasonably well matched solution was obtained using an unusual set of optimal regularization parameters. In comparison, the use of conventional regularization parameters did not provide as realistic results. Thus, we consider that even if there is only qualitative a-priori information about a site (i.e., visual) - in the case of the East Canyon Dam, Utah - it might be possible to minimize the refraction nonuniqueness by estimating the most appropriate regularization parameters.
Fisher, Michael B; Shields, Katherine F; Chan, Terence U; Christenson, Elizabeth; Cronk, Ryan D; Leker, Hannah; Samani, Destina; Apoya, Patrick; Lutz, Alexandra; Bartram, Jamie
2015-10-01
Safe drinking water is critical to human health and development. In rural sub-Saharan Africa, most improved water sources are boreholes with handpumps; studies suggest that up to one third of these handpumps are nonfunctional at any given time. This work presents findings from a secondary analysis of cross-sectional data from 1509 water sources in 570 communities in the rural Greater Afram Plains (GAP) region of Ghana; one of the largest studies of its kind. 79.4% of enumerated water sources were functional when visited; in multivariable regressions, functionality depended on source age, management, tariff collection, the number of other sources in the community, and the district. A Bayesian network (BN) model developed using the same data set found strong dependencies of functionality on implementer, pump type, management, and the availability of tools, with synergistic effects from management determinants on functionality, increasing the likelihood of a source being functional from a baseline of 72% to more than 97% with optimal management and available tools. We suggest that functionality may be a dynamic equilibrium between regular breakdowns and repairs, with management a key determinant of repair rate. Management variables may interact synergistically in ways better captured by BN analysis than by logistic regressions. These qualitative findings may prove generalizable beyond the study area, and may offer new approaches to understanding and increasing handpump functionality and safe water access.
DECISION-MAKING ALIGNED WITH RAPID-CYCLE EVALUATION IN HEALTH CARE.
Schneeweiss, Sebastian; Shrank, William H; Ruhl, Michael; Maclure, Malcolm
2015-01-01
Availability of real-time electronic healthcare data provides new opportunities for rapid-cycle evaluation (RCE) of health technologies, including healthcare delivery and payment programs. We aim to align decision-making processes with stages of RCE to optimize the usefulness and impact of rapid results. Rational decisions about program adoption depend on program effect size in relation to externalities, including implementation cost, sustainability, and likelihood of broad adoption. Drawing on case studies and experience from drug safety monitoring, we examine how decision makers have used scientific evidence on complex interventions in the past. We clarify how RCE alters the nature of policy decisions; develop the RAPID framework for synchronizing decision-maker activities with stages of RCE; and provide guidelines on evidence thresholds for incremental decision-making. In contrast to traditional evaluations, RCE provides early evidence on effectiveness and facilitates a stepped approach to decision making in expectation of future regularly updated evidence. RCE allows for identification of trends in adjusted effect size. It supports adapting a program in midstream in response to interim findings, or adapting the evaluation strategy to identify true improvements earlier. The 5-step RAPID approach that utilizes the cumulating evidence of program effectiveness over time could increase policy-makers' confidence in expediting decisions. RCE enables a step-wise approach to HTA decision-making, based on gradually emerging evidence, reducing delays in decision-making processes after traditional one-time evaluations.
Disability and sleep duration: evidence from the American Time Use Survey.
Shandra, Carrie L; Kruger, Allison; Hale, Lauren
2014-07-01
Regular short and long sleep durations are associated with increased mortality and morbidity. While previous research shows significant sleep disparities between people with and without disabilities, less is known about the association between different types of disability and high-risk sleep using nationally representative data. We examine the association between short and long sleep durations and having a work disability or an impairment in sensory, cognitive, or physical functioning among a nationally representative sample of working-age adults in the United States. We estimate multinomial logistic regression models using data from the 2003-2012 American Time Use Survey to identify how different types of disabling conditions--net of other sociodemographic factors--relate to the likelihood of reporting short (6 h or fewer) or long (9 h or more) sleep, versus mid-range (between 6 and 9 h) sleep. For respondents with work disabilities versus those without work disabilities, the relative risk of short and long sleep is 1.4 and 1.5 times (respectively) that of those with mid-range sleep. The risk of short and long sleep durations is also higher among respondents with cognitive, physical, or multiple impairments. Individuals with disabilities are less likely than those without disabilities to have optimal sleep durations. These results demonstrate the importance of health promotion services among this population, with specific attention to sleep hygiene interventions. Copyright © 2014 Elsevier Inc. All rights reserved.
2016-04-30
Proceedings Magazine , 138/7/7, 313. Holtta-Otto, K., & de Weck, O. (2007). Degree of modularity in engineering systems and products with technical and...ve ls (S T A N A G ) S elect adaptable system S elect optimized system S elect adaptable system if confident in a <= X% likelihood this
USDA-ARS?s Scientific Manuscript database
The optimal defense theory (ODT) predicts that plants allocate defense compounds to their tissues depending on its value and the likelihood of herbivore attack. Whereas ODT has been confirmed for static damage levels it remains poorly understood if ODT holds true for defense organization of inducibl...
Inference of the sparse kinetic Ising model using the decimation method
NASA Astrophysics Data System (ADS)
Decelle, Aurélien; Zhang, Pan
2015-05-01
In this paper we study the inference of the kinetic Ising model on sparse graphs by the decimation method. The decimation method, which was first proposed in Decelle and Ricci-Tersenghi [Phys. Rev. Lett. 112, 070603 (2014), 10.1103/PhysRevLett.112.070603] for the static inverse Ising problem, tries to recover the topology of the inferred system by setting the weakest couplings to zero iteratively. During the decimation process the likelihood function is maximized over the remaining couplings. Unlike the ℓ1-optimization-based methods, the decimation method does not use the Laplace distribution as a heuristic choice of prior to select a sparse solution. In our case, the whole process can be done auto-matically without fixing any parameters by hand. We show that in the dynamical inference problem, where the task is to reconstruct the couplings of an Ising model given the data, the decimation process can be applied naturally into a maximum-likelihood optimization algorithm, as opposed to the static case where pseudolikelihood method needs to be adopted. We also use extensive numerical studies to validate the accuracy of our methods in dynamical inference problems. Our results illustrate that, on various topologies and with different distribution of couplings, the decimation method outperforms the widely used ℓ1-optimization-based methods.
CALIBRATION OF SEMI-ANALYTIC MODELS OF GALAXY FORMATION USING PARTICLE SWARM OPTIMIZATION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ruiz, Andrés N.; Domínguez, Mariano J.; Yaryura, Yamila
2015-03-10
We present a fast and accurate method to select an optimal set of parameters in semi-analytic models of galaxy formation and evolution (SAMs). Our approach compares the results of a model against a set of observables applying a stochastic technique called Particle Swarm Optimization (PSO), a self-learning algorithm for localizing regions of maximum likelihood in multidimensional spaces that outperforms traditional sampling methods in terms of computational cost. We apply the PSO technique to the SAG semi-analytic model combined with merger trees extracted from a standard Lambda Cold Dark Matter N-body simulation. The calibration is performed using a combination of observedmore » galaxy properties as constraints, including the local stellar mass function and the black hole to bulge mass relation. We test the ability of the PSO algorithm to find the best set of free parameters of the model by comparing the results with those obtained using a MCMC exploration. Both methods find the same maximum likelihood region, however, the PSO method requires one order of magnitude fewer evaluations. This new approach allows a fast estimation of the best-fitting parameter set in multidimensional spaces, providing a practical tool to test the consequences of including other astrophysical processes in SAMs.« less
Regular Deployment of Wireless Sensors to Achieve Connectivity and Information Coverage
Cheng, Wei; Li, Yong; Jiang, Yi; Yin, Xipeng
2016-01-01
Coverage and connectivity are two of the most critical research subjects in WSNs, while regular deterministic deployment is an important deployment strategy and results in some pattern-based lattice WSNs. Some studies of optimal regular deployment for generic values of rc/rs were shown recently. However, most of these deployments are subject to a disk sensing model, and cannot take advantage of data fusion. Meanwhile some other studies adapt detection techniques and data fusion to sensing coverage to enhance the deployment scheme. In this paper, we provide some results on optimal regular deployment patterns to achieve information coverage and connectivity as a variety of rc/rs, which are all based on data fusion by sensor collaboration, and propose a novel data fusion strategy for deployment patterns. At first the relation between variety of rc/rs and density of sensors needed to achieve information coverage and connectivity is derived in closed form for regular pattern-based lattice WSNs. Then a dual triangular pattern deployment based on our novel data fusion strategy is proposed, which can utilize collaborative data fusion more efficiently. The strip-based deployment is also extended to a new pattern to achieve information coverage and connectivity, and its characteristics are deduced in closed form. Some discussions and simulations are given to show the efficiency of all deployment patterns, including previous patterns and the proposed patterns, to help developers make more impactful WSN deployment decisions. PMID:27529246
Simple Penalties on Maximum-Likelihood Estimates of Genetic Parameters to Reduce Sampling Variation
Meyer, Karin
2016-01-01
Multivariate estimates of genetic parameters are subject to substantial sampling variation, especially for smaller data sets and more than a few traits. A simple modification of standard, maximum-likelihood procedures for multivariate analyses to estimate genetic covariances is described, which can improve estimates by substantially reducing their sampling variances. This is achieved by maximizing the likelihood subject to a penalty. Borrowing from Bayesian principles, we propose a mild, default penalty—derived assuming a Beta distribution of scale-free functions of the covariance components to be estimated—rather than laboriously attempting to determine the stringency of penalization from the data. An extensive simulation study is presented, demonstrating that such penalties can yield very worthwhile reductions in loss, i.e., the difference from population values, for a wide range of scenarios and without distorting estimates of phenotypic covariances. Moreover, mild default penalties tend not to increase loss in difficult cases and, on average, achieve reductions in loss of similar magnitude to computationally demanding schemes to optimize the degree of penalization. Pertinent details required for the adaptation of standard algorithms to locate the maximum of the likelihood function are outlined. PMID:27317681
Non-Cartesian MRI Reconstruction With Automatic Regularization Via Monte-Carlo SURE
Weller, Daniel S.; Nielsen, Jon-Fredrik; Fessler, Jeffrey A.
2013-01-01
Magnetic resonance image (MRI) reconstruction from undersampled k-space data requires regularization to reduce noise and aliasing artifacts. Proper application of regularization however requires appropriate selection of associated regularization parameters. In this work, we develop a data-driven regularization parameter adjustment scheme that minimizes an estimate (based on the principle of Stein’s unbiased risk estimate—SURE) of a suitable weighted squared-error measure in k-space. To compute this SURE-type estimate, we propose a Monte-Carlo scheme that extends our previous approach to inverse problems (e.g., MRI reconstruction) involving complex-valued images. Our approach depends only on the output of a given reconstruction algorithm and does not require knowledge of its internal workings, so it is capable of tackling a wide variety of reconstruction algorithms and nonquadratic regularizers including total variation and those based on the ℓ1-norm. Experiments with simulated and real MR data indicate that the proposed approach is capable of providing near mean squared-error (MSE) optimal regularization parameters for single-coil undersampled non-Cartesian MRI reconstruction. PMID:23591478
Yadav, Ram Bharos; Srivastava, Subodh; Srivastava, Rajeev
2016-01-01
The proposed framework is obtained by casting the noise removal problem into a variational framework. This framework automatically identifies the various types of noise present in the magnetic resonance image and filters them by choosing an appropriate filter. This filter includes two terms: the first term is a data likelihood term and the second term is a prior function. The first term is obtained by minimizing the negative log likelihood of the corresponding probability density functions: Gaussian or Rayleigh or Rician. Further, due to the ill-posedness of the likelihood term, a prior function is needed. This paper examines three partial differential equation based priors which include total variation based prior, anisotropic diffusion based prior, and a complex diffusion (CD) based prior. A regularization parameter is used to balance the trade-off between data fidelity term and prior. The finite difference scheme is used for discretization of the proposed method. The performance analysis and comparative study of the proposed method with other standard methods is presented for brain web dataset at varying noise levels in terms of peak signal-to-noise ratio, mean square error, structure similarity index map, and correlation parameter. From the simulation results, it is observed that the proposed framework with CD based prior is performing better in comparison to other priors in consideration.
DOE Office of Scientific and Technical Information (OSTI.GOV)
West, R. Derek; Gunther, Jacob H.; Moon, Todd K.
In this study, we derive a comprehensive forward model for the data collected by stripmap synthetic aperture radar (SAR) that is linear in the ground reflectivity parameters. It is also shown that if the noise model is additive, then the forward model fits into the linear statistical model framework, and the ground reflectivity parameters can be estimated by statistical methods. We derive the maximum likelihood (ML) estimates for the ground reflectivity parameters in the case of additive white Gaussian noise. Furthermore, we show that obtaining the ML estimates of the ground reflectivity requires two steps. The first step amounts tomore » a cross-correlation of the data with a model of the data acquisition parameters, and it is shown that this step has essentially the same processing as the so-called convolution back-projection algorithm. The second step is a complete system inversion that is capable of mitigating the sidelobes of the spatially variant impulse responses remaining after the correlation processing. We also state the Cramer-Rao lower bound (CRLB) for the ML ground reflectivity estimates.We show that the CRLB is linked to the SAR system parameters, the flight path of the SAR sensor, and the image reconstruction grid.We demonstrate the ML image formation and the CRLB bound for synthetically generated data.« less
West, R. Derek; Gunther, Jacob H.; Moon, Todd K.
2016-12-01
In this study, we derive a comprehensive forward model for the data collected by stripmap synthetic aperture radar (SAR) that is linear in the ground reflectivity parameters. It is also shown that if the noise model is additive, then the forward model fits into the linear statistical model framework, and the ground reflectivity parameters can be estimated by statistical methods. We derive the maximum likelihood (ML) estimates for the ground reflectivity parameters in the case of additive white Gaussian noise. Furthermore, we show that obtaining the ML estimates of the ground reflectivity requires two steps. The first step amounts tomore » a cross-correlation of the data with a model of the data acquisition parameters, and it is shown that this step has essentially the same processing as the so-called convolution back-projection algorithm. The second step is a complete system inversion that is capable of mitigating the sidelobes of the spatially variant impulse responses remaining after the correlation processing. We also state the Cramer-Rao lower bound (CRLB) for the ML ground reflectivity estimates.We show that the CRLB is linked to the SAR system parameters, the flight path of the SAR sensor, and the image reconstruction grid.We demonstrate the ML image formation and the CRLB bound for synthetically generated data.« less
Optimal Tikhonov regularization for DEER spectroscopy
NASA Astrophysics Data System (ADS)
Edwards, Thomas H.; Stoll, Stefan
2018-03-01
Tikhonov regularization is the most commonly used method for extracting distance distributions from experimental double electron-electron resonance (DEER) spectroscopy data. This method requires the selection of a regularization parameter, α , and a regularization operator, L. We analyze the performance of a large set of α selection methods and several regularization operators, using a test set of over half a million synthetic noisy DEER traces. These are generated from distance distributions obtained from in silico double labeling of a protein crystal structure of T4 lysozyme with the spin label MTSSL. We compare the methods and operators based on their ability to recover the model distance distributions from the noisy time traces. The results indicate that several α selection methods perform quite well, among them the Akaike information criterion and the generalized cross validation method with either the first- or second-derivative operator. They perform significantly better than currently utilized L-curve methods.
Image deblurring based on nonlocal regularization with a non-convex sparsity constraint
NASA Astrophysics Data System (ADS)
Zhu, Simiao; Su, Zhenming; Li, Lian; Yang, Yi
2018-04-01
In recent years, nonlocal regularization methods for image restoration (IR) have drawn more and more attention due to the promising results obtained when compared to the traditional local regularization methods. Despite the success of this technique, in order to obtain computational efficiency, a convex regularizing functional is exploited in most existing methods, which is equivalent to imposing a convex prior on the nonlocal difference operator output. However, our conducted experiment illustrates that the empirical distribution of the output of the nonlocal difference operator especially in the seminal work of Kheradmand et al. should be characterized with an extremely heavy-tailed distribution rather than a convex distribution. Therefore, in this paper, we propose a nonlocal regularization-based method with a non-convex sparsity constraint for image deblurring. Finally, an effective algorithm is developed to solve the corresponding non-convex optimization problem. The experimental results demonstrate the effectiveness of the proposed method.
Numerical and analytical bounds on threshold error rates for hypergraph-product codes
NASA Astrophysics Data System (ADS)
Kovalev, Alexey A.; Prabhakar, Sanjay; Dumer, Ilya; Pryadko, Leonid P.
2018-06-01
We study analytically and numerically decoding properties of finite-rate hypergraph-product quantum low density parity-check codes obtained from random (3,4)-regular Gallager codes, with a simple model of independent X and Z errors. Several nontrivial lower and upper bounds for the decodable region are constructed analytically by analyzing the properties of the homological difference, equal minus the logarithm of the maximum-likelihood decoding probability for a given syndrome. Numerical results include an upper bound for the decodable region from specific heat calculations in associated Ising models and a minimum-weight decoding threshold of approximately 7 % .
White, G W; Mathews, R M; Fawcett, S B
1989-01-01
People who use wheelchairs are at risk for developing pressure sores. Regular pressure relief, in the form of a wheelchair push-up, is one way to reduce the likelihood of pressure sores. We examined the effects of antecedent (i.e., instructions, audible prompts) and consequent (i.e., alarm avoidance) events on wheelchair push-ups, using a multiple baseline analysis with 2 participants with spina bifida. Results suggest that the combined procedure was more effective than either antecedent or consequent events alone, and there is some evidence suggesting maintenance of effects over time. PMID:2793635
A Projection free method for Generalized Eigenvalue Problem with a nonsmooth Regularizer.
Hwang, Seong Jae; Collins, Maxwell D; Ravi, Sathya N; Ithapu, Vamsi K; Adluru, Nagesh; Johnson, Sterling C; Singh, Vikas
2015-12-01
Eigenvalue problems are ubiquitous in computer vision, covering a very broad spectrum of applications ranging from estimation problems in multi-view geometry to image segmentation. Few other linear algebra problems have a more mature set of numerical routines available and many computer vision libraries leverage such tools extensively. However, the ability to call the underlying solver only as a "black box" can often become restrictive. Many 'human in the loop' settings in vision frequently exploit supervision from an expert, to the extent that the user can be considered a subroutine in the overall system. In other cases, there is additional domain knowledge, side or even partial information that one may want to incorporate within the formulation. In general, regularizing a (generalized) eigenvalue problem with such side information remains difficult. Motivated by these needs, this paper presents an optimization scheme to solve generalized eigenvalue problems (GEP) involving a (nonsmooth) regularizer. We start from an alternative formulation of GEP where the feasibility set of the model involves the Stiefel manifold. The core of this paper presents an end to end stochastic optimization scheme for the resultant problem. We show how this general algorithm enables improved statistical analysis of brain imaging data where the regularizer is derived from other 'views' of the disease pathology, involving clinical measurements and other image-derived representations.
Optimal design of FIR triplet halfband filter bank and application in image coding.
Kha, H H; Tuan, H D; Nguyen, T Q
2011-02-01
This correspondence proposes an efficient semidefinite programming (SDP) method for the design of a class of linear phase finite impulse response triplet halfband filter banks whose filters have optimal frequency selectivity for a prescribed regularity order. The design problem is formulated as the minimization of the least square error subject to peak error constraints and regularity constraints. By using the linear matrix inequality characterization of the trigonometric semi-infinite constraints, it can then be exactly cast as a SDP problem with a small number of variables and, hence, can be solved efficiently. Several design examples of the triplet halfband filter bank are provided for illustration and comparison with previous works. Finally, the image coding performance of the filter bank is presented.
Long-Time Behavior and Critical Limit of Subcritical SQG Equations in Scale-Invariant Sobolev Spaces
NASA Astrophysics Data System (ADS)
Coti Zelati, Michele
2018-02-01
We consider the subcritical SQG equation in its natural scale-invariant Sobolev space and prove the existence of a global attractor of optimal regularity. The proof is based on a new energy estimate in Sobolev spaces to bootstrap the regularity to the optimal level, derived by means of nonlinear lower bounds on the fractional Laplacian. This estimate appears to be new in the literature and allows a sharp use of the subcritical nature of the L^∞ bounds for this problem. As a by-product, we obtain attractors for weak solutions as well. Moreover, we study the critical limit of the attractors and prove their stability and upper semicontinuity with respect to the strength of the diffusion.
Thermal depth profiling of vascular lesions: automated regularization of reconstruction algorithms
NASA Astrophysics Data System (ADS)
Verkruysse, Wim; Choi, Bernard; Zhang, Jenny R.; Kim, Jeehyun; Nelson, J. Stuart
2008-03-01
Pulsed photo-thermal radiometry (PPTR) is a non-invasive, non-contact diagnostic technique used to locate cutaneous chromophores such as melanin (epidermis) and hemoglobin (vascular structures). Clinical utility of PPTR is limited because it typically requires trained user intervention to regularize the inversion solution. Herein, the feasibility of automated regularization was studied. A second objective of this study was to depart from modeling port wine stain PWS, a vascular skin lesion frequently studied with PPTR, as strictly layered structures since this may influence conclusions regarding PPTR reconstruction quality. Average blood vessel depths, diameters and densities derived from histology of 30 PWS patients were used to generate 15 randomized lesion geometries for which we simulated PPTR signals. Reconstruction accuracy for subjective regularization was compared with that for automated regularization methods. The objective regularization approach performed better. However, the average difference was much smaller than the variation between the 15 simulated profiles. Reconstruction quality depended more on the actual profile to be reconstructed than on the reconstruction algorithm or regularization method. Similar, or better, accuracy reconstructions can be achieved with an automated regularization procedure which enhances prospects for user friendly implementation of PPTR to optimize laser therapy on an individual patient basis.
Concern for Others Leads to Vicarious Optimism
Kappes, Andreas; Faber, Nadira S.; Kahane, Guy; Savulescu, Julian; Crockett, Molly J.
2018-01-01
An optimistic learning bias leads people to update their beliefs in response to better-than-expected good news but neglect worse-than-expected bad news. Because evidence suggests that this bias arises from self-concern, we hypothesized that a similar bias may affect beliefs about other people’s futures, to the extent that people care about others. Here, we demonstrated the phenomenon of vicarious optimism and showed that it arises from concern for others. Participants predicted the likelihood of unpleasant future events that could happen to either themselves or others. In addition to showing an optimistic learning bias for events affecting themselves, people showed vicarious optimism when learning about events affecting friends and strangers. Vicarious optimism for strangers correlated with generosity toward strangers, and experimentally increasing concern for strangers amplified vicarious optimism for them. These findings suggest that concern for others can bias beliefs about their future welfare and that optimism in learning is not restricted to oneself. PMID:29381448
Concern for Others Leads to Vicarious Optimism.
Kappes, Andreas; Faber, Nadira S; Kahane, Guy; Savulescu, Julian; Crockett, Molly J
2018-03-01
An optimistic learning bias leads people to update their beliefs in response to better-than-expected good news but neglect worse-than-expected bad news. Because evidence suggests that this bias arises from self-concern, we hypothesized that a similar bias may affect beliefs about other people's futures, to the extent that people care about others. Here, we demonstrated the phenomenon of vicarious optimism and showed that it arises from concern for others. Participants predicted the likelihood of unpleasant future events that could happen to either themselves or others. In addition to showing an optimistic learning bias for events affecting themselves, people showed vicarious optimism when learning about events affecting friends and strangers. Vicarious optimism for strangers correlated with generosity toward strangers, and experimentally increasing concern for strangers amplified vicarious optimism for them. These findings suggest that concern for others can bias beliefs about their future welfare and that optimism in learning is not restricted to oneself.
Algorithms for bilevel optimization
NASA Technical Reports Server (NTRS)
Alexandrov, Natalia; Dennis, J. E., Jr.
1994-01-01
General multilevel nonlinear optimization problems arise in design of complex systems and can be used as a means of regularization for multi-criteria optimization problems. Here, for clarity in displaying our ideas, we restrict ourselves to general bi-level optimization problems, and we present two solution approaches. Both approaches use a trust-region globalization strategy, and they can be easily extended to handle the general multilevel problem. We make no convexity assumptions, but we do assume that the problem has a nondegenerate feasible set. We consider necessary optimality conditions for the bi-level problem formulations and discuss results that can be extended to obtain multilevel optimization formulations with constraints at each level.
Hoffman, Leah; Nguyen, Ha Thi Thu; Kershaw, Trace S; Niccolai, Linda M
2011-10-01
Research indicates female sex workers use condoms more consistently with their clients than with regular, non-commercial partners (partners). The purpose of this study was to better understand the relationship between couple communication and HIV risk behavior by examining (1) sex worker-partner divergence on communication measures and (2) the association between intra-couple communication divergence and consistent condom use. In this cross-sectional study, 50 sex workers and their partners in Hai Phong, Viet Nam were separately asked about their relationships and condom use. When asked about HIV risk communication in their relationship, sex workers reported significantly higher HIV communication content than their partners (p < 0.001). Higher communication divergence between partners was associated with a decreased likelihood of consistent condom use (OR 0.54 95% CI 0.30, 0.97). Sex workers urgently need interventions that build their communication skills and address their risk behavior in non-commercial relationships.
Lee, Chien-Ti; McClernon, F. Joseph; Kollins, Scott H.; Prybol, Kevin
2013-01-01
Objective To examine the influence of childhood economic strains on substance use in young adulthood and to assess the mediating roles of self-control as well as positive parenting during adolescence in a nationally representative longitudinal cohort. Methods The study included data from participants (n = 1,285) in the Panel Study of Income Dynamics, Child Development Supplement, and Transition to Adult. Structural equation modeling was used to evaluate the associations among risk factors during childhood and adolescence that predicted substance use in early adulthood. Results Conditions of economic strains, especially poverty, during childhood were associated with an increased likelihood of regular smoking in adulthood, which was partially mediated by poorer self-control during adolescence. Conclusions Self-control is negatively affected by economic strains and serves as a mediator between poverty and risk of regular smoking. Additional research is needed to better understand how economic strains effect the development of self-control. PMID:23899658
NASA Astrophysics Data System (ADS)
Li, N.; Yue, X. Y.
2018-03-01
Macroscopic root water uptake models proportional to a root density distribution function (RDDF) are most commonly used to model water uptake by plants. As the water uptake is difficult and labor intensive to measure, these models are often calibrated by inverse modeling. Most previous inversion studies assume RDDF to be constant with depth and time or dependent on only depth for simplification. However, under field conditions, this function varies with type of soil and root growth and thus changes with both depth and time. This study proposes an inverse method to calibrate both spatially and temporally varying RDDF in unsaturated water flow modeling. To overcome the difficulty imposed by the ill-posedness, the calibration is formulated as an optimization problem in the framework of the Tikhonov regularization theory, adding additional constraint to the objective function. Then the formulated nonlinear optimization problem is numerically solved with an efficient algorithm on the basis of the finite element method. The advantage of our method is that the inverse problem is translated into a Tikhonov regularization functional minimization problem and then solved based on the variational construction, which circumvents the computational complexity in calculating the sensitivity matrix involved in many derivative-based parameter estimation approaches (e.g., Levenberg-Marquardt optimization). Moreover, the proposed method features optimization of RDDF without any prior form, which is applicable to a more general root water uptake model. Numerical examples are performed to illustrate the applicability and effectiveness of the proposed method. Finally, discussions on the stability and extension of this method are presented.
Simulated annealing in orbital flight planning
NASA Technical Reports Server (NTRS)
Soller, Jeffrey
1990-01-01
Simulated annealing is used to solve a minimum fuel trajectory problem in the space station environment. The environment is unique because the space station will define the first true multivehicle environment in space. The optimization yields surfaces which are potentially complex, with multiple local minima. Because of the likelihood of these local minima, descent techniques are unable to offer robust solutions. Other deterministic optimization techniques were explored without success. The simulated annealing optimization is capable of identifying a minimum-fuel, two-burn trajectory subject to four constraints. Furthermore, the computational efforts involved in the optimization are such that missions could be planned on board the space station. Potential applications could include the on-site planning of rendezvous with a target craft of the emergency rescue of an astronaut. Future research will include multiwaypoint maneuvers, using a knowledge base to guide the optimization.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Si; Xu, Yuesheng, E-mail: yxu06@syr.edu; Zhang, Jiahan
Purpose: The authors have recently developed a preconditioned alternating projection algorithm (PAPA) with total variation (TV) regularizer for solving the penalized-likelihood optimization model for single-photon emission computed tomography (SPECT) reconstruction. This algorithm belongs to a novel class of fixed-point proximity methods. The goal of this work is to investigate how PAPA performs while dealing with realistic noisy SPECT data, to compare its performance with more conventional methods, and to address issues with TV artifacts by proposing a novel form of the algorithm invoking high-order TV regularization, denoted as HOTV-PAPA, which has been explored and studied extensively in the present work.more » Methods: Using Monte Carlo methods, the authors simulate noisy SPECT data from two water cylinders; one contains lumpy “warm” background and “hot” lesions of various sizes with Gaussian activity distribution, and the other is a reference cylinder without hot lesions. The authors study the performance of HOTV-PAPA and compare it with PAPA using first-order TV regularization (TV-PAPA), the Panin–Zeng–Gullberg one-step-late method with TV regularization (TV-OSL), and an expectation–maximization algorithm with Gaussian postfilter (GPF-EM). The authors select penalty-weights (hyperparameters) by qualitatively balancing the trade-off between resolution and image noise separately for TV-PAPA and TV-OSL. However, the authors arrived at the same penalty-weight value for both of them. The authors set the first penalty-weight in HOTV-PAPA equal to the optimal penalty-weight found for TV-PAPA. The second penalty-weight needed for HOTV-PAPA is tuned by balancing resolution and the severity of staircase artifacts. The authors adjust the Gaussian postfilter to approximately match the local point spread function of GPF-EM and HOTV-PAPA. The authors examine hot lesion detectability, study local spatial resolution, analyze background noise properties, estimate mean square errors (MSEs), and report the convergence speed and computation time. Results: HOTV-PAPA yields the best signal-to-noise ratio, followed by TV-PAPA and TV-OSL/GPF-EM. The local spatial resolution of HOTV-PAPA is somewhat worse than that of TV-PAPA and TV-OSL. Images reconstructed using HOTV-PAPA have the lowest local noise power spectrum (LNPS) amplitudes, followed by TV-PAPA, TV-OSL, and GPF-EM. The LNPS peak of GPF-EM is shifted toward higher spatial frequencies than those for the three other methods. The PAPA-type methods exhibit much lower ensemble noise, ensemble voxel variance, and image roughness. HOTV-PAPA performs best in these categories. Whereas images reconstructed using both TV-PAPA and TV-OSL are degraded by severe staircase artifacts; HOTV-PAPA substantially reduces such artifacts. It also converges faster than the other three methods and exhibits the lowest overall reconstruction error level, as measured by MSE. Conclusions: For high-noise simulated SPECT data, HOTV-PAPA outperforms TV-PAPA, GPF-EM, and TV-OSL in terms of hot lesion detectability, noise suppression, MSE, and computational efficiency. Unlike TV-PAPA and TV-OSL, HOTV-PAPA does not create sizable staircase artifacts. Moreover, HOTV-PAPA effectively suppresses noise, with only limited loss of local spatial resolution. Of the four methods, HOTV-PAPA shows the best lesion detectability, thanks to its superior noise suppression. HOTV-PAPA shows promise for clinically useful reconstructions of low-dose SPECT data.« less
Li, Si; Zhang, Jiahan; Krol, Andrzej; Schmidtlein, C. Ross; Vogelsang, Levon; Shen, Lixin; Lipson, Edward; Feiglin, David; Xu, Yuesheng
2015-01-01
Purpose: The authors have recently developed a preconditioned alternating projection algorithm (PAPA) with total variation (TV) regularizer for solving the penalized-likelihood optimization model for single-photon emission computed tomography (SPECT) reconstruction. This algorithm belongs to a novel class of fixed-point proximity methods. The goal of this work is to investigate how PAPA performs while dealing with realistic noisy SPECT data, to compare its performance with more conventional methods, and to address issues with TV artifacts by proposing a novel form of the algorithm invoking high-order TV regularization, denoted as HOTV-PAPA, which has been explored and studied extensively in the present work. Methods: Using Monte Carlo methods, the authors simulate noisy SPECT data from two water cylinders; one contains lumpy “warm” background and “hot” lesions of various sizes with Gaussian activity distribution, and the other is a reference cylinder without hot lesions. The authors study the performance of HOTV-PAPA and compare it with PAPA using first-order TV regularization (TV-PAPA), the Panin–Zeng–Gullberg one-step-late method with TV regularization (TV-OSL), and an expectation–maximization algorithm with Gaussian postfilter (GPF-EM). The authors select penalty-weights (hyperparameters) by qualitatively balancing the trade-off between resolution and image noise separately for TV-PAPA and TV-OSL. However, the authors arrived at the same penalty-weight value for both of them. The authors set the first penalty-weight in HOTV-PAPA equal to the optimal penalty-weight found for TV-PAPA. The second penalty-weight needed for HOTV-PAPA is tuned by balancing resolution and the severity of staircase artifacts. The authors adjust the Gaussian postfilter to approximately match the local point spread function of GPF-EM and HOTV-PAPA. The authors examine hot lesion detectability, study local spatial resolution, analyze background noise properties, estimate mean square errors (MSEs), and report the convergence speed and computation time. Results: HOTV-PAPA yields the best signal-to-noise ratio, followed by TV-PAPA and TV-OSL/GPF-EM. The local spatial resolution of HOTV-PAPA is somewhat worse than that of TV-PAPA and TV-OSL. Images reconstructed using HOTV-PAPA have the lowest local noise power spectrum (LNPS) amplitudes, followed by TV-PAPA, TV-OSL, and GPF-EM. The LNPS peak of GPF-EM is shifted toward higher spatial frequencies than those for the three other methods. The PAPA-type methods exhibit much lower ensemble noise, ensemble voxel variance, and image roughness. HOTV-PAPA performs best in these categories. Whereas images reconstructed using both TV-PAPA and TV-OSL are degraded by severe staircase artifacts; HOTV-PAPA substantially reduces such artifacts. It also converges faster than the other three methods and exhibits the lowest overall reconstruction error level, as measured by MSE. Conclusions: For high-noise simulated SPECT data, HOTV-PAPA outperforms TV-PAPA, GPF-EM, and TV-OSL in terms of hot lesion detectability, noise suppression, MSE, and computational efficiency. Unlike TV-PAPA and TV-OSL, HOTV-PAPA does not create sizable staircase artifacts. Moreover, HOTV-PAPA effectively suppresses noise, with only limited loss of local spatial resolution. Of the four methods, HOTV-PAPA shows the best lesion detectability, thanks to its superior noise suppression. HOTV-PAPA shows promise for clinically useful reconstructions of low-dose SPECT data. PMID:26233214
Singular optimal control and the identically non-regular problem in the calculus of variations
NASA Technical Reports Server (NTRS)
Menon, P. K. A.; Kelley, H. J.; Cliff, E. M.
1985-01-01
A small but interesting class of optimal control problems featuring a scalar control appearing linearly is equivalent to the class of identically nonregular problems in the Calculus of Variations. It is shown that a condition due to Mancill (1950) is equivalent to the generalized Legendre-Clebsch condition for this narrow class of problems.
The Contributions of Physical Activity and Fitness to Optimal Health and Wellness
ERIC Educational Resources Information Center
Ohuruogu, Ben
2016-01-01
The paper examined the role of physical activity and fitness more especially in the area of disease prevention and control by looking at the major ways by which regular physical activity and fitness contributes to optimal health and wellness. The Surgeor General's Report (1996), stressed that physical inactivity is a national problem which…
Control of functional differential equations to target sets in function space
NASA Technical Reports Server (NTRS)
Banks, H. T.; Kent, G. A.
1971-01-01
Optimal control of systems governed by functional differential equations of retarded and neutral type is considered. Problems with function space initial and terminal manifolds are investigated. Existence of optimal controls, regularity, and bang-bang properties are discussed. Necessary and sufficient conditions are derived, and several solved examples which illustrate the theory are presented.
Nonparametric probability density estimation by optimization theoretic techniques
NASA Technical Reports Server (NTRS)
Scott, D. W.
1976-01-01
Two nonparametric probability density estimators are considered. The first is the kernel estimator. The problem of choosing the kernel scaling factor based solely on a random sample is addressed. An interactive mode is discussed and an algorithm proposed to choose the scaling factor automatically. The second nonparametric probability estimate uses penalty function techniques with the maximum likelihood criterion. A discrete maximum penalized likelihood estimator is proposed and is shown to be consistent in the mean square error. A numerical implementation technique for the discrete solution is discussed and examples displayed. An extensive simulation study compares the integrated mean square error of the discrete and kernel estimators. The robustness of the discrete estimator is demonstrated graphically.
Characterization, parameter estimation, and aircraft response statistics of atmospheric turbulence
NASA Technical Reports Server (NTRS)
Mark, W. D.
1981-01-01
A nonGaussian three component model of atmospheric turbulence is postulated that accounts for readily observable features of turbulence velocity records, their autocorrelation functions, and their spectra. Methods for computing probability density functions and mean exceedance rates of a generic aircraft response variable are developed using nonGaussian turbulence characterizations readily extracted from velocity recordings. A maximum likelihood method is developed for optimal estimation of the integral scale and intensity of records possessing von Karman transverse of longitudinal spectra. Formulas for the variances of such parameter estimates are developed. The maximum likelihood and least-square approaches are combined to yield a method for estimating the autocorrelation function parameters of a two component model for turbulence.
Deterministic quantum annealing expectation-maximization algorithm
NASA Astrophysics Data System (ADS)
Miyahara, Hideyuki; Tsumura, Koji; Sughiyama, Yuki
2017-11-01
Maximum likelihood estimation (MLE) is one of the most important methods in machine learning, and the expectation-maximization (EM) algorithm is often used to obtain maximum likelihood estimates. However, EM heavily depends on initial configurations and fails to find the global optimum. On the other hand, in the field of physics, quantum annealing (QA) was proposed as a novel optimization approach. Motivated by QA, we propose a quantum annealing extension of EM, which we call the deterministic quantum annealing expectation-maximization (DQAEM) algorithm. We also discuss its advantage in terms of the path integral formulation. Furthermore, by employing numerical simulations, we illustrate how DQAEM works in MLE and show that DQAEM moderate the problem of local optima in EM.
Method and system for diagnostics of apparatus
NASA Technical Reports Server (NTRS)
Gorinevsky, Dimitry (Inventor)
2012-01-01
Proposed is a method, implemented in software, for estimating fault state of an apparatus outfitted with sensors. At each execution period the method processes sensor data from the apparatus to obtain a set of parity parameters, which are further used for estimating fault state. The estimation method formulates a convex optimization problem for each fault hypothesis and employs a convex solver to compute fault parameter estimates and fault likelihoods for each fault hypothesis. The highest likelihoods and corresponding parameter estimates are transmitted to a display device or an automated decision and control system. The obtained accurate estimate of fault state can be used to improve safety, performance, or maintenance processes for the apparatus.
NASA Astrophysics Data System (ADS)
Zhang, Ye; Gong, Rongfang; Cheng, Xiaoliang; Gulliksson, Mårten
2018-06-01
This study considers the inverse source problem for elliptic partial differential equations with both Dirichlet and Neumann boundary data. The unknown source term is to be determined by additional boundary conditions. Unlike the existing methods found in the literature, which usually employ the first-order in time gradient-like system (such as the steepest descent methods) for numerically solving the regularized optimization problem with a fixed regularization parameter, we propose a novel method with a second-order in time dissipative gradient-like system and a dynamical selected regularization parameter. A damped symplectic scheme is proposed for the numerical solution. Theoretical analysis is given for both the continuous model and the numerical algorithm. Several numerical examples are provided to show the robustness of the proposed algorithm.
Pregnancy in chronic dialysis, late diagnosis, and other problems
NASA Astrophysics Data System (ADS)
Ramadani, S.; Nasution, A. T.; Nasution, S.; Lubis, H. R.
2018-03-01
The incidence of pregnancy in patients with chronic kidney disease (CKD) undergoing hemodialysis is rare. Forpregnant patients with CKD undergoing regular hemodialysis, the effects of renal disease on the fetus should be noted and require specific strategies. A 30-year-old woman had no menstruation for 4 months. Abdominal ultrasound showed single fetus within 16 weeks of pregnancy. She had previously been in regular hemodialysis twice a week since 2015, then the frequency of hemodialysis was increased to thrice a week for 4 hours/dialysis. During pregnancy, she was given erythropoiesis stimulating agent, controlled protein nutrition (0.6-1.5g/kg/day) and routine pregnancy controls to an obstetrician. After 31-32 weeks gestation, thebaby was born alive with low birth weight (1800g). Maintaining pregnancy in women with regular hemodialysis is still challenging and difficult. Prolonged/intensive dialysis during pregnancy results in longer gestational periods, higher fetal weights, and a higher likelihood of survival. Based on a dialysis guideline for pregnancy in CKD, hemodialysis is performed at least 20 hours/week to maintain pre-dialysis of BUN≤50mg/dl hemoglobin should be at least 10-11g/dL. We reported a case of pregnancy in dialysis CKD patient undergoing hemodialysis thricea week (4 hours/dialysis). The baby was born alive with low birth weight (1800 g).
Hybrid pairwise likelihood analysis of animal behavior experiments.
Cattelan, Manuela; Varin, Cristiano
2013-12-01
The study of the determinants of fights between animals is an important issue in understanding animal behavior. For this purpose, tournament experiments among a set of animals are often used by zoologists. The results of these tournament experiments are naturally analyzed by paired comparison models. Proper statistical analysis of these models is complicated by the presence of dependence between the outcomes of fights because the same animal is involved in different contests. This paper discusses two different model specifications to account for between-fights dependence. Models are fitted through the hybrid pairwise likelihood method that iterates between optimal estimating equations for the regression parameters and pairwise likelihood inference for the association parameters. This approach requires the specification of means and covariances only. For this reason, the method can be applied also when the computation of the joint distribution is difficult or inconvenient. The proposed methodology is investigated by simulation studies and applied to real data about adult male Cape Dwarf Chameleons. © 2013, The International Biometric Society.
Washing when the sun is shining! How users interact with a household energy management system.
Kobus, Charlotte B A; Mugge, Ruth; Schoormans, Jan P L
2013-01-01
To make optimal use of sustainable energy, domestic electricity consumption should shift to match local supply conditions. Energy management systems (EMS) are a new sustainable technology that can help to disrupt consumers' habits concerning electricity consumption, whilst reinforcing desired behaviours. This research examined the factors that influence the likelihood that people will shift their electricity consumption to match sustainable supply. Twenty-one interviews were conducted with households who had used the EMS 'Smart Wash' for several months. The findings showed that the likelihood of behaviour change is influenced by a combination of the user's motivation, specific contextual factors and the design of the EMS. Based on these results, several recommendations are given for the future design of EMSs. Energy management systems (EMS) are a new technology that encourages people to shift electricity consumption to match local solar supply. Interviews among users of an EMS showed that the likelihood of behaviour change is influenced by the combination of the user's motivation, contextual factors and the EMS design.
Automatic optimism: the affective basis of judgments about the likelihood of future events.
Lench, Heather C
2009-05-01
People generally judge that the future will be consistent with their desires, but the reason for this desirability bias is unclear. This investigation examined whether affective reactions associated with future events are the mechanism through which desires influence likelihood judgments. In 4 studies, affective reactions were manipulated for initially neutral events. Compared with a neutral condition, events associated with positive reactions were judged as likely to occur, and events associated with negative reactions were judged as unlikely to occur. Desirability biases were reduced when participants could misattribute affective reactions to a source other than future events, and the relationship between affective reactions and judgments was influenced when approach and avoidance motivations were independently manipulated. Together, these findings demonstrate that positive and negative affective reactions to potential events cause the desirability bias in likelihood judgments and suggest that this effect occurs because of a tendency to approach positive possibilities and avoid negative possibilities. (c) 2009 APA, all rights reserved.
Clinical Evaluation and Physical Exam Findings in Patients with Anterior Shoulder Instability.
Lizzio, Vincent A; Meta, Fabien; Fidai, Mohsin; Makhni, Eric C
2017-12-01
The goal of this paper is to provide an overview in evaluating the patient with suspected or known anteroinferior glenohumeral instability. There is a high rate of recurrent subluxations or dislocations in young patients with history of anterior shoulder dislocation, and recurrent instability will increase likelihood of further damage to the glenohumeral joint. Proper identification and treatment of anterior shoulder instability can dramatically reduce the rate of recurrent dislocation and prevent subsequent complications. Overall, the anterior release or surprise test demonstrates the best sensitivity and specificity for clinically diagnosing anterior shoulder instability, although other tests also have favorable sensitivities, specificities, positive likelihood ratios, negative likelihood ratios, and inter-rater reliabilities. Anterior shoulder instability is a relatively common injury in the young and athletic population. The combination of history and performing apprehension, relocation, release or surprise, anterior load, and anterior drawer exam maneuvers will optimize sensitivity and specificity for accurately diagnosing anterior shoulder instability in clinical practice.
Memory-efficient decoding of LDPC codes
NASA Technical Reports Server (NTRS)
Kwok-San Lee, Jason; Thorpe, Jeremy; Hawkins, Jon
2005-01-01
We present a low-complexity quantization scheme for the implementation of regular (3,6) LDPC codes. The quantization parameters are optimized to maximize the mutual information between the source and the quantized messages. Using this non-uniform quantized belief propagation algorithm, we have simulated that an optimized 3-bit quantizer operates with 0.2dB implementation loss relative to a floating point decoder, and an optimized 4-bit quantizer operates less than 0.1dB quantization loss.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goreac, Dan, E-mail: Dan.Goreac@u-pem.fr; Kobylanski, Magdalena, E-mail: Magdalena.Kobylanski@u-pem.fr; Martinez, Miguel, E-mail: Miguel.Martinez@u-pem.fr
2016-10-15
We study optimal control problems in infinite horizon whxen the dynamics belong to a specific class of piecewise deterministic Markov processes constrained to star-shaped networks (corresponding to a toy traffic model). We adapt the results in Soner (SIAM J Control Optim 24(6):1110–1122, 1986) to prove the regularity of the value function and the dynamic programming principle. Extending the networks and Krylov’s “shaking the coefficients” method, we prove that the value function can be seen as the solution to a linearized optimization problem set on a convenient set of probability measures. The approach relies entirely on viscosity arguments. As a by-product,more » the dual formulation guarantees that the value function is the pointwise supremum over regular subsolutions of the associated Hamilton–Jacobi integrodifferential system. This ensures that the value function satisfies Perron’s preconization for the (unique) candidate to viscosity solution.« less
2016-11-22
structure of the graph, we replace the ℓ1- norm by the nonconvex Capped -ℓ1 norm , and obtain the Generalized Capped -ℓ1 regularized logistic regression...X. M. Yuan. Linearized augmented lagrangian and alternating direction methods for nuclear norm minimization. Mathematics of Computation, 82(281):301...better approximations of ℓ0- norm theoretically and computationally beyond ℓ1- norm , for example, the compressive sensing (Xiao et al., 2011). The
A genetic algorithm approach to estimate glacier mass variations from GRACE data
NASA Astrophysics Data System (ADS)
Reimond, Stefan; Klinger, Beate; Krauss, Sandro; Mayer-Gürr, Torsten
2017-04-01
The application of a genetic algorithm (GA) to the inference of glacier mass variations with a point-mass modeling method is described. GRACE K-band ranging data (available since April 2002) processed at the Graz University of Technology serve as input for this study. The reformulation of the point-mass inversion method in terms of an optimization problem is motivated by two reasons: first, an improved choice of the positions of the modeled point-masses (with a particular focus on the depth parameter) is expected to increase the signal-to-noise ratio. Considering these coordinates as additional unknown parameters (besides from the mass change magnitudes) results in a highly non-linear optimization problem. The second reason is that the mass inversion from satellite tracking data is an ill-posed problem, and hence regularization becomes necessary. The main task in this context is the determination of the regularization parameter, which is typically done by means of heuristic selection rules like, e.g., the L-curve criterion. In this study, however, the challenge of selecting a suitable balancing parameter (or even a matrix) is tackled by introducing regularization to the overall optimization problem. Based on this novel approach, estimations of ice-mass changes in various alpine glacier systems (e.g. Svalbard) are presented and compared to existing results and alternative inversion methods.
Mieres, Jennifer H; Shaw, Leslee J; Hendel, Robert C; Heller, Gary V
2009-01-01
Coronary artery disease remains the leading cause of morbidity and mortality in women. The optimal non-invasive test for evaluation of ischemic heart disease in women is unknown. Although current guidelines support the choice of the exercise tolerance test (ETT) as a first line test for women with a normal baseline ECG and adequate exercise capabilities, supportive data for this recommendation are controversial. The what is the optimal method for ischemia evaluation in women? (WOMEN) study was designed to determine the optimal non-invasive strategy for CAD risk detection of intermediate and high risk women presenting with chest pain or equivalent symptoms suggestive of ischemic heart disease. The study will prospectively compare the 2-year event rates in women capable of performing exercise treadmill testing or Tc-99 m tetrofosmin SPECT myocardial perfusion imaging (MPI). The study will enroll women presenting for the evaluation of chest pain or anginal equivalent symptoms who are capable of performing >5 METs of exercise while at intermediate-high pretest risk for ischemic heart disease who will be randomized to either ETT testing alone or with Tc-99 m tetrofosmin SPECT MPI. The null hypothesis for this project is that the exercise ECG has the same negative predictive value for risk detection as gated myocardial perfusion SPECT in women. The primary aim is to compare 2-year cardiac event rates in women randomized to SPECT MPI to those randomized to ETT. The WOMEN study seeks to provide objective information for guidelines for the evaluation of symptomatic women with an intermediate-high likelihood for CAD.
Mass and Volume Optimization of Space Flight Medical Kits
NASA Technical Reports Server (NTRS)
Keenan, A. B.; Foy, Millennia Hope; Myers, Jerry
2014-01-01
Resource allocation is a critical aspect of space mission planning. All resources, including medical resources, are subject to a number of mission constraints such a maximum mass and volume. However, unlike many resources, there is often limited understanding in how to optimize medical resources for a mission. The Integrated Medical Model (IMM) is a probabilistic model that estimates medical event occurrences and mission outcomes for different mission profiles. IMM simulates outcomes and describes the impact of medical events in terms of lost crew time, medical resource usage, and the potential for medically required evacuation. Previously published work describes an approach that uses the IMM to generate optimized medical kits that maximize benefit to the crew subject to mass and volume constraints. We improve upon the results obtained previously and extend our approach to minimize mass and volume while meeting some benefit threshold. METHODS We frame the medical kit optimization problem as a modified knapsack problem and implement an algorithm utilizing dynamic programming. Using this algorithm, optimized medical kits were generated for 3 mission scenarios with the goal of minimizing the medical kit mass and volume for a specified likelihood of evacuation or Crew Health Index (CHI) threshold. The algorithm was expanded to generate medical kits that maximize likelihood of evacuation or CHI subject to mass and volume constraints. RESULTS AND CONCLUSIONS In maximizing benefit to crew health subject to certain constraints, our algorithm generates medical kits that more closely resemble the unlimited-resource scenario than previous approaches which leverage medical risk information generated by the IMM. Our work here demonstrates that this algorithm provides an efficient and effective means to objectively allocate medical resources for spaceflight missions and provides an effective means of addressing tradeoffs in medical resource allocations and crew mission success parameters.
The Regularity of Optimal Irrigation Patterns
NASA Astrophysics Data System (ADS)
Morel, Jean-Michel; Santambrogio, Filippo
2010-02-01
A branched structure is observable in draining and irrigation systems, in electric power supply systems, and in natural objects like blood vessels, the river basins or the trees. Recent approaches of these networks derive their branched structure from an energy functional whose essential feature is to favor wide routes. Given a flow s in a river, a road, a tube or a wire, the transportation cost per unit length is supposed in these models to be proportional to s α with 0 < α < 1. The aim of this paper is to prove the regularity of paths (rivers, branches,...) when the irrigated measure is the Lebesgue density on a smooth open set and the irrigating measure is a single source. In that case we prove that all branches of optimal irrigation trees satisfy an elliptic equation and that their curvature is a bounded measure. In consequence all branching points in the network have a tangent cone made of a finite number of segments, and all other points have a tangent. An explicit counterexample disproves these regularity properties for non-Lebesgue irrigated measures.
The regular general practitioner and sickness absence--a register-based study.
Winde, Lee; Haukenes, Inger; Hetlevik, Øystein; Gjesdal, Sturla
2013-01-08
Undertaking research on the role of regular GPs with regard to rates of sickness absence is methodologically challenging, and existing results show a wide divergence. We investigated how long-term sickness absence is affected by the characteristics of doctors and their patient lists. The study encompassed all those vocationally active residents of Oslo and Bergen in 2005-2006 who had the same regular GP throughout 2006 (N = 298,039). Encrypted data on sickness absence for each individual in 2006, as well their age, gender and level of education were merged with data on the regular GPs (N = 568) and their patient lists, and subsequently analysed with the aid of logistic regression. The outcome variable was at least one period of sickness absence which had been paid for by the Norwegian Labour and Welfare Administration (NLWA). The explanatory variables included the age, gender, list length and list status (open/closed) of the regular GPs, as well as variables that characterised the composition of the patient lists. The analyses were stratified by gender and controlled for individual age and education. The age, gender and list length of the regular GPs were not associated with sickness absence paid for by the NLWA. The odds ratio for sickness absence > 16 days was reduced for both women and men when the list contained many highly educated patients, a high proportion of elderly people and few disability pensioners. Men on lists with a high proportion of men and lists with a high proportion of vocationally active patients also had lower odds rates for sickness absence > 16 days. Among women, the rate of sickness absence was lower for those on open lists than for those on closed lists. In addition to well-known individual factors, the study shows that the likelihood of sickness absence is affected by the socio-demographic composition of the patient list to which one belongs.
Evaluating spatially explicit burn probabilities for strategic fire management planning
C. Miller; M.-A. Parisien; A. A. Ager; M. A. Finney
2008-01-01
Spatially explicit information on the probability of burning is necessary for virtually all strategic fire and fuels management planning activities, including conducting wildland fire risk assessments, optimizing fuel treatments, and prevention planning. Predictive models providing a reliable estimate of the annual likelihood of fire at each point on the landscape have...
Depaoli, Sarah
2013-06-01
Growth mixture modeling (GMM) represents a technique that is designed to capture change over time for unobserved subgroups (or latent classes) that exhibit qualitatively different patterns of growth. The aim of the current article was to explore the impact of latent class separation (i.e., how similar growth trajectories are across latent classes) on GMM performance. Several estimation conditions were compared: maximum likelihood via the expectation maximization (EM) algorithm and the Bayesian framework implementing diffuse priors, "accurate" informative priors, weakly informative priors, data-driven informative priors, priors reflecting partial-knowledge of parameters, and "inaccurate" (but informative) priors. The main goal was to provide insight about the optimal estimation condition under different degrees of latent class separation for GMM. Results indicated that optimal parameter recovery was obtained though the Bayesian approach using "accurate" informative priors, and partial-knowledge priors showed promise for the recovery of the growth trajectory parameters. Maximum likelihood and the remaining Bayesian estimation conditions yielded poor parameter recovery for the latent class proportions and the growth trajectories. (PsycINFO Database Record (c) 2013 APA, all rights reserved).
Efficient Bayesian experimental design for contaminant source identification
NASA Astrophysics Data System (ADS)
Zhang, Jiangjiang; Zeng, Lingzao; Chen, Cheng; Chen, Dingjiang; Wu, Laosheng
2015-01-01
In this study, an efficient full Bayesian approach is developed for the optimal sampling well location design and source parameters identification of groundwater contaminants. An information measure, i.e., the relative entropy, is employed to quantify the information gain from concentration measurements in identifying unknown parameters. In this approach, the sampling locations that give the maximum expected relative entropy are selected as the optimal design. After the sampling locations are determined, a Bayesian approach based on Markov Chain Monte Carlo (MCMC) is used to estimate unknown parameters. In both the design and estimation, the contaminant transport equation is required to be solved many times to evaluate the likelihood. To reduce the computational burden, an interpolation method based on the adaptive sparse grid is utilized to construct a surrogate for the contaminant transport equation. The approximated likelihood can be evaluated directly from the surrogate, which greatly accelerates the design and estimation process. The accuracy and efficiency of our approach are demonstrated through numerical case studies. It is shown that the methods can be used to assist in both single sampling location and monitoring network design for contaminant source identifications in groundwater.
NASA Astrophysics Data System (ADS)
Darmon, David
2018-03-01
In the absence of mechanistic or phenomenological models of real-world systems, data-driven models become necessary. The discovery of various embedding theorems in the 1980s and 1990s motivated a powerful set of tools for analyzing deterministic dynamical systems via delay-coordinate embeddings of observations of their component states. However, in many branches of science, the condition of operational determinism is not satisfied, and stochastic models must be brought to bear. For such stochastic models, the tool set developed for delay-coordinate embedding is no longer appropriate, and a new toolkit must be developed. We present an information-theoretic criterion, the negative log-predictive likelihood, for selecting the embedding dimension for a predictively optimal data-driven model of a stochastic dynamical system. We develop a nonparametric estimator for the negative log-predictive likelihood and compare its performance to a recently proposed criterion based on active information storage. Finally, we show how the output of the model selection procedure can be used to compare candidate predictors for a stochastic system to an information-theoretic lower bound.
Optimizing Likelihood Models for Particle Trajectory Segmentation in Multi-State Systems.
Young, Dylan Christopher; Scrimgeour, Jan
2018-06-19
Particle tracking offers significant insight into the molecular mechanics that govern the behav- ior of living cells. The analysis of molecular trajectories that transition between different motive states, such as diffusive, driven and tethered modes, is of considerable importance, with even single trajectories containing significant amounts of information about a molecule's environment and its interactions with cellular structures. Hidden Markov models (HMM) have been widely adopted to perform the segmentation of such complex tracks. In this paper, we show that extensive analysis of hidden Markov model outputs using data derived from multi-state Brownian dynamics simulations can be used both for the optimization of the likelihood models used to describe the states of the system and for characterization of the technique's failure mechanisms. This analysis was made pos- sible by the implementation of parallelized adaptive direct search algorithm on a Nvidia graphics processing unit. This approach provides critical information for the visualization of HMM failure and successful design of particle tracking experiments where trajectories contain multiple mobile states. © 2018 IOP Publishing Ltd.
Calibration of two complex ecosystem models with different likelihood functions
NASA Astrophysics Data System (ADS)
Hidy, Dóra; Haszpra, László; Pintér, Krisztina; Nagy, Zoltán; Barcza, Zoltán
2014-05-01
The biosphere is a sensitive carbon reservoir. Terrestrial ecosystems were approximately carbon neutral during the past centuries, but they became net carbon sinks due to climate change induced environmental change and associated CO2 fertilization effect of the atmosphere. Model studies and measurements indicate that the biospheric carbon sink can saturate in the future due to ongoing climate change which can act as a positive feedback. Robustness of carbon cycle models is a key issue when trying to choose the appropriate model for decision support. The input parameters of the process-based models are decisive regarding the model output. At the same time there are several input parameters for which accurate values are hard to obtain directly from experiments or no local measurements are available. Due to the uncertainty associated with the unknown model parameters significant bias can be experienced if the model is used to simulate the carbon and nitrogen cycle components of different ecosystems. In order to improve model performance the unknown model parameters has to be estimated. We developed a multi-objective, two-step calibration method based on Bayesian approach in order to estimate the unknown parameters of PaSim and Biome-BGC models. Biome-BGC and PaSim are a widely used biogeochemical models that simulate the storage and flux of water, carbon, and nitrogen between the ecosystem and the atmosphere, and within the components of the terrestrial ecosystems (in this research the developed version of Biome-BGC is used which is referred as BBGC MuSo). Both models were calibrated regardless the simulated processes and type of model parameters. The calibration procedure is based on the comparison of measured data with simulated results via calculating a likelihood function (degree of goodness-of-fit between simulated and measured data). In our research different likelihood function formulations were used in order to examine the effect of the different model goodness metric on calibration. The different likelihoods are different functions of RMSE (root mean squared error) weighted by measurement uncertainty: exponential / linear / quadratic / linear normalized by correlation. As a first calibration step sensitivity analysis was performed in order to select the influential parameters which have strong effect on the output data. In the second calibration step only the sensitive parameters were calibrated (optimal values and confidence intervals were calculated). In case of PaSim more parameters were found responsible for the 95% of the output data variance than is case of BBGC MuSo. Analysis of the results of the optimized models revealed that the exponential likelihood estimation proved to be the most robust (best model simulation with optimized parameter, highest confidence interval increase). The cross-validation of the model simulations can help in constraining the highly uncertain greenhouse gas budget of grasslands.
Großschädl, Franziska; Titze, Sylvia; Burkert, Nathalie; Stronegger, Willibald J
2013-05-01
Regular physical activity leads to a number of physiological benefits, such as reduced risk of coronary heart disease, diabetes mellitus and obesity. In Austria, there is little information about the prevalence of physically inactive people, as well as about who is more likely to belong to the inactive or irregularly active groups. The aim of this study is to describe the socio-demographic distributions across the stages of behavioural change for moderate- and vigorous-intensity physical activity, according to the Transtheoretical Model, and to identify associations with smoking and body mass index (BMI). Data were collected in a standardised procedure using a self-report questionnaire from 489 adults who attended a health check in an outpatient clinic in southern Austria. Height and weight were measured by physicians. The subjects were categorised into the five stages of change (pre-contemplation, contemplation, preparation, action, maintenance), separately assessed for moderate- and vigorous-intensity physical activity. The likelihood of being in the stage of maintenance of moderate-intensity physical activity was highest in older subjects (p < 0.05). Participants of a high educational level showed the highest likelihood of being physically active in vigorous-intensity physical activity (p < 0.05). Furthermore, the lowest stages of change behaviour were associated with higher BMI levels for vigorous-intensity physical activity (p < 0.05). Smokers were significantly (p < 0.05) more likely not to perform vigorous-intensity physical activity than non-smokers. Our findings contribute to a better understanding of behavioural correlates of regular physical activity. The results may prove useful for developing promotion programmes for physical activity, allowing targeting of the identified risk groups.
Grandparenting Roles and Volunteer Activity
Jendrek, Margaret Platt
2016-01-01
Objectives. We examine whether grandparenting roles are related to formal volunteering among older adults. Method. Logistic regression is used to examine the likelihood of volunteering based on grandchild care using data from the 2004 wave of the Health and Retirement Study (n = 13,785). Longitudinal analyses utilize treatment effects models to examine changes in volunteering for grandparents who begin nonresidential grandchild care between the 2004 and 2008 waves (n = 10,811). Results. Results show that grandparents raising coresidential grandchildren have lower odds of volunteering than grandparents providing no regular grandchild care. However, grandparents who provide nonresidential grandchild care are more likely to volunteer than grandparents not providing grandchild care and those raising a coresidential grandchild. Grandparents who provide nonresidential care for grandchildren engage in more volunteering before assuming grandchild care, and their volunteerism increases after becoming a caregiver for a grandchild. Discussion. Consistent with resource theory and the accumulation of roles, providing nonresidential grandchild care may draw grandparents into formal volunteer activity. The lower human capital resources evidenced by grandparents raising coresidential grandchildren may play a role in their lower likelihood of formal volunteering. PMID:24721748
Factors associated with participation in physical activity among adolescents in Malaysia.
Cheah, Yong Kang; Lim, Hock Kuang; Kee, Chee Cheong; Ghazali, Sumarni Mohd
2016-11-01
The rising prevalence of non-communicable diseases (NCDs) has become a serious public health issue. Among the multi-factorial drivers behind NCDs are modifiable health risk factors, most notably, physical inactivity. In response to the nearly global policy priority of encouraging regular participation in physical activity, the objective of the present study is to examine the factors that determine participation in physical activity among Malaysian adolescents. Nationally representative data consisting of a large sample size was used. A censored regression model was developed to estimate the likelihood of participation and time spent on physical activity. There are significant relationships between physical activity and gender, ethnicity, self-rated academic performance, maternal education, household size and time spent on physical education. The present study provides new insights into the factors affecting physical activity participation among adolescents. Specifically, self-rated excellent academic performance, household size and physical education can increase the likelihood of being physically active. Evidence of the present study implies that policy makers should pay special attention to females, Chinese, adolescents with self-rated poor academic performance and adolescents who have low maternal education.
Jacob, Laurent; Combes, Florence; Burger, Thomas
2018-06-18
We propose a new hypothesis test for the differential abundance of proteins in mass-spectrometry based relative quantification. An important feature of this type of high-throughput analyses is that it involves an enzymatic digestion of the sample proteins into peptides prior to identification and quantification. Due to numerous homology sequences, different proteins can lead to peptides with identical amino acid chains, so that their parent protein is ambiguous. These so-called shared peptides make the protein-level statistical analysis a challenge and are often not accounted for. In this article, we use a linear model describing peptide-protein relationships to build a likelihood ratio test of differential abundance for proteins. We show that the likelihood ratio statistic can be computed in linear time with the number of peptides. We also provide the asymptotic null distribution of a regularized version of our statistic. Experiments on both real and simulated datasets show that our procedures outperforms state-of-the-art methods. The procedures are available via the pepa.test function of the DAPAR Bioconductor R package.
An adaptive regularization parameter choice strategy for multispectral bioluminescence tomography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feng Jinchao; Qin Chenghu; Jia Kebin
2011-11-15
Purpose: Bioluminescence tomography (BLT) provides an effective tool for monitoring physiological and pathological activities in vivo. However, the measured data in bioluminescence imaging are corrupted by noise. Therefore, regularization methods are commonly used to find a regularized solution. Nevertheless, for the quality of the reconstructed bioluminescent source obtained by regularization methods, the choice of the regularization parameters is crucial. To date, the selection of regularization parameters remains challenging. With regards to the above problems, the authors proposed a BLT reconstruction algorithm with an adaptive parameter choice rule. Methods: The proposed reconstruction algorithm uses a diffusion equation for modeling the bioluminescentmore » photon transport. The diffusion equation is solved with a finite element method. Computed tomography (CT) images provide anatomical information regarding the geometry of the small animal and its internal organs. To reduce the ill-posedness of BLT, spectral information and the optimal permissible source region are employed. Then, the relationship between the unknown source distribution and multiview and multispectral boundary measurements is established based on the finite element method and the optimal permissible source region. Since the measured data are noisy, the BLT reconstruction is formulated as l{sub 2} data fidelity and a general regularization term. When choosing the regularization parameters for BLT, an efficient model function approach is proposed, which does not require knowledge of the noise level. This approach only requests the computation of the residual and regularized solution norm. With this knowledge, we construct the model function to approximate the objective function, and the regularization parameter is updated iteratively. Results: First, the micro-CT based mouse phantom was used for simulation verification. Simulation experiments were used to illustrate why multispectral data were used rather than monochromatic data. Furthermore, the study conducted using an adaptive regularization parameter demonstrated our ability to accurately localize the bioluminescent source. With the adaptively estimated regularization parameter, the reconstructed center position of the source was (20.37, 31.05, 12.95) mm, and the distance to the real source was 0.63 mm. The results of the dual-source experiments further showed that our algorithm could localize the bioluminescent sources accurately. The authors then presented experimental evidence that the proposed algorithm exhibited its calculated efficiency over the heuristic method. The effectiveness of the new algorithm was also confirmed by comparing it with the L-curve method. Furthermore, various initial speculations regarding the regularization parameter were used to illustrate the convergence of our algorithm. Finally, in vivo mouse experiment further illustrates the effectiveness of the proposed algorithm. Conclusions: Utilizing numerical, physical phantom and in vivo examples, we demonstrated that the bioluminescent sources could be reconstructed accurately with automatic regularization parameters. The proposed algorithm exhibited superior performance than both the heuristic regularization parameter choice method and L-curve method based on the computational speed and localization error.« less
On optimal soft-decision demodulation
NASA Technical Reports Server (NTRS)
Lee, L. N.
1975-01-01
Wozencraft and Kennedy have suggested that the appropriate demodulator criterion of goodness is the cut-off rate of the discrete memoryless channel created by the modulation system; the criterion of goodness adopted in this note is the symmetric cut-off rate which differs from the former criterion only in that the signals are assumed equally likely. Massey's necessary condition for optimal demodulation of binary signals is generalized to M-ary signals. It is shown that the optimal demodulator decision regions in likelihood space are bounded by hyperplanes. An iterative method is formulated for finding these optimal decision regions from an initial good quess. For additive white Gaussian noise, the corresponding optimal decision regions in signal space are bounded by hypersurfaces with hyperplane asymptotes; these asymptotes themselves bound the decision regions of a demodulator which, in several examples, is shown to be virtually optimal. In many cases, the necessary condition for demodulator optimality is also sufficient, but a counter example to its general sufficiency is given.
Regularized Embedded Multiple Kernel Dimensionality Reduction for Mine Signal Processing.
Li, Shuang; Liu, Bing; Zhang, Chen
2016-01-01
Traditional multiple kernel dimensionality reduction models are generally based on graph embedding and manifold assumption. But such assumption might be invalid for some high-dimensional or sparse data due to the curse of dimensionality, which has a negative influence on the performance of multiple kernel learning. In addition, some models might be ill-posed if the rank of matrices in their objective functions was not high enough. To address these issues, we extend the traditional graph embedding framework and propose a novel regularized embedded multiple kernel dimensionality reduction method. Different from the conventional convex relaxation technique, the proposed algorithm directly takes advantage of a binary search and an alternative optimization scheme to obtain optimal solutions efficiently. The experimental results demonstrate the effectiveness of the proposed method for supervised, unsupervised, and semisupervised scenarios.
Schaap, Jeroen; Kauling, Robert M; Boekholdt, S Matthijs; Post, Martijn C; Van der Heyden, Jan A; de Kroon, Thom L; van Es, H Wouter; Rensing, Benno J W M; Verzijlbergen, J Fred
2013-03-01
Coronary calcium scoring (CCS) adds to the diagnostic performance of myocardial perfusion single-photon emission computed tomography (SPECT) to assess the presence of significant coronary artery disease (CAD). Patients with a high pre-test likelihood are expected to have a high CCS which potentially could enhance the diagnostic performance of myocardial perfusion SPECT in this specific patient group. We evaluated the added value of CCS to SPECT in the diagnosis of significant CAD in patients with an intermediate to high pre-test likelihood. In total, 129 patients (mean age 62.7 ± 9.7 years, 65 % male) with stable anginal complaints and intermediate to high pre-test likelihood of CAD (median 87 %, range 22-95) were prospectively included in this study. All patients received SPECT and CCS imaging preceding invasive coronary angiography (CA). Fractional flow reserve (FFR) measurements were acquired from patients with angiographically estimated 50-95 % obstructive CAD. For SPECT a SSS > 3 was defined significant CAD. For CCS the optimal cut-off value for significant CAD was determined by ROC curve analysis. The reference standard for significant CAD was a FFR of <0.80 acquired by CA. Significant CAD was demonstrated in 64 patients (49.6 %). Optimal CCS cut-off value for significant CAD was >182.5. ROC curve analysis for prediction of the presence of significant CAD for SPECT, CCS and the combination of CCS and SPECT resulted in an area under the curve (AUC) of 0.88 (95 % CI 81-94), 0.75 (95 % CI 66-83 %) and 0.92 (95 % CI 87-97 %) respectively. The difference of the AUC between SPECT and the combination of CCS and SPECT was 0.05 (P = 0.12). The addition of CCS did not significantly improve the diagnostic performance of SPECT in the evaluation of patients with a predominantly high pre-test likelihood of CAD.
NASA Astrophysics Data System (ADS)
Hiemer, S.; Woessner, J.; Basili, R.; Danciu, L.; Giardini, D.; Wiemer, S.
2014-08-01
We present a time-independent gridded earthquake rate forecast for the European region including Turkey. The spatial component of our model is based on kernel density estimation techniques, which we applied to both past earthquake locations and fault moment release on mapped crustal faults and subduction zone interfaces with assigned slip rates. Our forecast relies on the assumption that the locations of past seismicity is a good guide to future seismicity, and that future large-magnitude events occur more likely in the vicinity of known faults. We show that the optimal weighted sum of the corresponding two spatial densities depends on the magnitude range considered. The kernel bandwidths and density weighting function are optimized using retrospective likelihood-based forecast experiments. We computed earthquake activity rates (a- and b-value) of the truncated Gutenberg-Richter distribution separately for crustal and subduction seismicity based on a maximum likelihood approach that considers the spatial and temporal completeness history of the catalogue. The final annual rate of our forecast is purely driven by the maximum likelihood fit of activity rates to the catalogue data, whereas its spatial component incorporates contributions from both earthquake and fault moment-rate densities. Our model constitutes one branch of the earthquake source model logic tree of the 2013 European seismic hazard model released by the EU-FP7 project `Seismic HAzard haRmonization in Europe' (SHARE) and contributes to the assessment of epistemic uncertainties in earthquake activity rates. We performed retrospective and pseudo-prospective likelihood consistency tests to underline the reliability of our model and SHARE's area source model (ASM) using the testing algorithms applied in the collaboratory for the study of earthquake predictability (CSEP). We comparatively tested our model's forecasting skill against the ASM and find a statistically significant better performance for testing periods of 10-20 yr. The testing results suggest that our model is a viable candidate model to serve for long-term forecasting on timescales of years to decades for the European region.
NASA Astrophysics Data System (ADS)
Weerathunga, Thilina Shihan
2017-08-01
Gravitational waves are a fundamental prediction of Einstein's General Theory of Relativity. The first experimental proof of their existence was provided by the Nobel Prize winning discovery by Taylor and Hulse of orbital decay in a binary pulsar system. The first detection of gravitational waves incident on earth from an astrophysical source was announced in 2016 by the LIGO Scientific Collaboration, launching the new era of gravitational wave (GW) astronomy. The signal detected was from the merger of two black holes, which is an example of sources called Compact Binary Coalescences (CBCs). Data analysis strategies used in the search for CBC signals are derivatives of the Maximum-Likelihood (ML) method. The ML method applied to data from a network of geographically distributed GW detectors--called fully coherent network analysis--is currently the best approach for estimating source location and GW polarization waveforms. However, in the case of CBCs, especially for lower mass systems (O(1M solar masses)) such as double neutron star binaries, fully coherent network analysis is computationally expensive. The ML method requires locating the global maximum of the likelihood function over a nine dimensional parameter space, where the computation of the likelihood at each point requires correlations involving O(104) to O(106) samples between the data and the corresponding candidate signal waveform template. Approximations, such as semi-coherent coincidence searches, are currently used to circumvent the computational barrier but incur a concomitant loss in sensitivity. We explored the effectiveness of Particle Swarm Optimization (PSO), a well-known algorithm in the field of swarm intelligence, in addressing the fully coherent network analysis problem. As an example, we used a four-detector network consisting of the two LIGO detectors at Hanford and Livingston, Virgo and Kagra, all having initial LIGO noise power spectral densities, and show that PSO can locate the global maximum with less than 240,000 likelihood evaluations for a component mass range of 1.0 to 10.0 solar masses at a realistic coherent network signal to noise ratio of 9.0. Our results show that PSO can successfully deliver a fully-coherent all-sky search with < (1/10 ) the number of likelihood evaluations needed for a grid-based search. Used as a follow-up step, the savings in the number of likelihood evaluations may also reduce latency in obtaining ML estimates of source parameters in semi-coherent searches.
On the regularization for nonlinear tomographic absorption spectroscopy
NASA Astrophysics Data System (ADS)
Dai, Jinghang; Yu, Tao; Xu, Lijun; Cai, Weiwei
2018-02-01
Tomographic absorption spectroscopy (TAS) has attracted increased research efforts recently due to the development in both hardware and new imaging concepts such as nonlinear tomography and compressed sensing. Nonlinear TAS is one of the emerging modality that bases on the concept of nonlinear tomography and has been successfully demonstrated both numerically and experimentally. However, all the previous demonstrations were realized using only two orthogonal projections simply for ease of implementation. In this work, we examine the performance of nonlinear TAS using other beam arrangements and test the effectiveness of the beam optimization technique that has been developed for linear TAS. In addition, so far only smoothness prior has been adopted and applied in nonlinear TAS. Nevertheless, there are also other useful priors such as sparseness and model-based prior which have not been investigated yet. This work aims to show how these priors can be implemented and included in the reconstruction process. Regularization through Bayesian formulation will be introduced specifically for this purpose, and a method for the determination of a proper regularization factor will be proposed. The comparative studies performed with different beam arrangements and regularization schemes on a few representative phantoms suggest that the beam optimization method developed for linear TAS also works for the nonlinear counterpart and the regularization scheme should be selected properly according to the available a priori information under specific application scenarios so as to achieve the best reconstruction fidelity. Though this work is conducted under the context of nonlinear TAS, it can also provide useful insights for other tomographic modalities.
A Bayesian Alternative for Multi-objective Ecohydrological Model Specification
NASA Astrophysics Data System (ADS)
Tang, Y.; Marshall, L. A.; Sharma, A.; Ajami, H.
2015-12-01
Process-based ecohydrological models combine the study of hydrological, physical, biogeochemical and ecological processes of the catchments, which are usually more complex and parametric than conceptual hydrological models. Thus, appropriate calibration objectives and model uncertainty analysis are essential for ecohydrological modeling. In recent years, Bayesian inference has become one of the most popular tools for quantifying the uncertainties in hydrological modeling with the development of Markov Chain Monte Carlo (MCMC) techniques. Our study aims to develop appropriate prior distributions and likelihood functions that minimize the model uncertainties and bias within a Bayesian ecohydrological framework. In our study, a formal Bayesian approach is implemented in an ecohydrological model which combines a hydrological model (HyMOD) and a dynamic vegetation model (DVM). Simulations focused on one objective likelihood (Streamflow/LAI) and multi-objective likelihoods (Streamflow and LAI) with different weights are compared. Uniform, weakly informative and strongly informative prior distributions are used in different simulations. The Kullback-leibler divergence (KLD) is used to measure the dis(similarity) between different priors and corresponding posterior distributions to examine the parameter sensitivity. Results show that different prior distributions can strongly influence posterior distributions for parameters, especially when the available data is limited or parameters are insensitive to the available data. We demonstrate differences in optimized parameters and uncertainty limits in different cases based on multi-objective likelihoods vs. single objective likelihoods. We also demonstrate the importance of appropriately defining the weights of objectives in multi-objective calibration according to different data types.
NASA Astrophysics Data System (ADS)
Murillo, Sergio; Pattichis, Marios; Soliz, Peter; Barriga, Simon; Loizou, C. P.; Pattichis, C. S.
2010-03-01
Motion estimation from digital video is an ill-posed problem that requires a regularization approach. Regularization introduces a smoothness constraint that can reduce the resolution of the velocity estimates. The problem is further complicated for ultrasound videos (US), where speckle noise levels can be significant. Motion estimation using optical flow models requires the modification of several parameters to satisfy the optical flow constraint as well as the level of imposed smoothness. Furthermore, except in simulations or mostly unrealistic cases, there is no ground truth to use for validating the velocity estimates. This problem is present in all real video sequences that are used as input to motion estimation algorithms. It is also an open problem in biomedical applications like motion analysis of US of carotid artery (CA) plaques. In this paper, we study the problem of obtaining reliable ultrasound video motion estimates for atherosclerotic plaques for use in clinical diagnosis. A global optimization framework for motion parameter optimization is presented. This framework uses actual carotid artery motions to provide optimal parameter values for a variety of motions and is tested on ten different US videos using two different motion estimation techniques.
A Novel Multiobjective Evolutionary Algorithm Based on Regression Analysis
Song, Zhiming; Wang, Maocai; Dai, Guangming; Vasile, Massimiliano
2015-01-01
As is known, the Pareto set of a continuous multiobjective optimization problem with m objective functions is a piecewise continuous (m − 1)-dimensional manifold in the decision space under some mild conditions. However, how to utilize the regularity to design multiobjective optimization algorithms has become the research focus. In this paper, based on this regularity, a model-based multiobjective evolutionary algorithm with regression analysis (MMEA-RA) is put forward to solve continuous multiobjective optimization problems with variable linkages. In the algorithm, the optimization problem is modelled as a promising area in the decision space by a probability distribution, and the centroid of the probability distribution is (m − 1)-dimensional piecewise continuous manifold. The least squares method is used to construct such a model. A selection strategy based on the nondominated sorting is used to choose the individuals to the next generation. The new algorithm is tested and compared with NSGA-II and RM-MEDA. The result shows that MMEA-RA outperforms RM-MEDA and NSGA-II on the test instances with variable linkages. At the same time, MMEA-RA has higher efficiency than the other two algorithms. A few shortcomings of MMEA-RA have also been identified and discussed in this paper. PMID:25874246
A spatially adaptive total variation regularization method for electrical resistance tomography
NASA Astrophysics Data System (ADS)
Song, Xizi; Xu, Yanbin; Dong, Feng
2015-12-01
The total variation (TV) regularization method has been used to solve the ill-posed inverse problem of electrical resistance tomography (ERT), owing to its good ability to preserve edges. However, the quality of the reconstructed images, especially in the flat region, is often degraded by noise. To optimize the regularization term and the regularization factor according to the spatial feature and to improve the resolution of reconstructed images, a spatially adaptive total variation (SATV) regularization method is proposed. A kind of effective spatial feature indicator named difference curvature is used to identify which region is a flat or edge region. According to different spatial features, the SATV regularization method can automatically adjust both the regularization term and regularization factor. At edge regions, the regularization term is approximate to the TV functional to preserve the edges; in flat regions, it is approximate to the first-order Tikhonov (FOT) functional to make the solution stable. Meanwhile, the adaptive regularization factor determined by the spatial feature is used to constrain the regularization strength of the SATV regularization method for different regions. Besides, a numerical scheme is adopted for the implementation of the second derivatives of difference curvature to improve the numerical stability. Several reconstruction image metrics are used to quantitatively evaluate the performance of the reconstructed results. Both simulation and experimental results indicate that, compared with the TV (mean relative error 0.288, mean correlation coefficient 0.627) and FOT (mean relative error 0.295, mean correlation coefficient 0.638) regularization methods, the proposed SATV (mean relative error 0.259, mean correlation coefficient 0.738) regularization method can endure a relatively high level of noise and improve the resolution of reconstructed images.
A novel approach of ensuring layout regularity correct by construction in advanced technologies
NASA Astrophysics Data System (ADS)
Ahmed, Shafquat Jahan; Vaderiya, Yagnesh; Gupta, Radhika; Parthasarathy, Chittoor; Marin, Jean-Claude; Robert, Frederic
2017-03-01
In advanced technology nodes, layout regularity has become a mandatory prerequisite to create robust designs less sensitive to variations in manufacturing process in order to improve yield and minimizing electrical variability. In this paper we describe a method for designing regular full custom layouts based on design and process co-optimization. The method includes various design rule checks that can be used on-the-fly during leaf-cell layout development. We extract a Layout Regularity Index (LRI) from the layouts based on the jogs, alignments and pitches used in the design for any given metal layer. Regularity Index of a layout is the direct indicator of manufacturing yield and is used to compare the relative health of different layout blocks in terms of process friendliness. The method has been deployed for 28nm and 40nm technology nodes for Memory IP and is being extended to other IPs (IO, standard-cell). We have quantified the gain of layout regularity with the deployed method on printability and electrical characteristics by process-variation (PV) band simulation analysis and have achieved up-to 5nm reduction in PV band.
Kaczmarek, Maria; Stawińska-Witoszyńska, Barbara; Krzyżaniak, Alicja; Krzywińska-Wiewiorowska, Małgorzata; Siwińska, Aldona
2015-11-01
In Poland, there is no data on parental socioeconomic status (SES) as a potent risk factor in adolescent elevated blood pressure, although social differences in somatic growth and maturation of children and adolescents have been recorded since the 1980s. This study aimed to evaluate the association between parental SES and blood pressure levels of their adolescent offspring. A cross-sectional survey was carried out between 2009 and 2010 on a sample of 4941 students (2451 boys and 2490 girls) aged 10-18, participants in the ADOPOLNOR study. The depended outcome variable was the level of blood pressure (optimal, pre- and hypertension) and explanatory variables included place of residence and indicators of parental SES: family size, parental educational attainments and occupation status, income adequacy and family wealth. The final selected model of the multiple multinomial logistic regression analysis (MLRA) with backward elimination procedure revealed the multifactorial dependency of blood pressure levels on maternal educational attainment, paternal occupation and income adequacy interrelated to urbanization category of the place of residence after controlling for family history of hypertension, an adolescent's sex, age and weight status. Consistent rural-to-urban and socioeconomic gradients were found in prevalence of elevated blood pressure, which increased with continuous lines from large cities through small- to medium-sized cities to villages and from high-SES to low-SES familial environments. The adjusted likelihood of developing systolic and diastolic hypertension decreased with each step increase in maternal educational attainment and increased urbanization category. The likelihood of developing prehypertension decreased with increased urbanization category, maternal education, paternal employment status and income adequacy. Weight status appeared to be the strongest confounder of adolescent blood pressure level and, at the same time, a mediator between their blood pressure and parental SES. The findings of the present study confirmed socioeconomic disparities in blood pressure levels among adolescents. This calls for regularly performed blood pressure assessment and monitoring in the adolescent population. It is recommended to focus on obesity prevention and socioeconomic health inequalities by further trying to improve living and working conditions in adverse rural environments.
Optimism as a Prior Belief about the Probability of Future Reward
Kalra, Aditi; Seriès, Peggy
2014-01-01
Optimists hold positive a priori beliefs about the future. In Bayesian statistical theory, a priori beliefs can be overcome by experience. However, optimistic beliefs can at times appear surprisingly resistant to evidence, suggesting that optimism might also influence how new information is selected and learned. Here, we use a novel Pavlovian conditioning task, embedded in a normative framework, to directly assess how trait optimism, as classically measured using self-report questionnaires, influences choices between visual targets, by learning about their association with reward progresses. We find that trait optimism relates to an a priori belief about the likelihood of rewards, but not losses, in our task. Critically, this positive belief behaves like a probabilistic prior, i.e. its influence reduces with increasing experience. Contrary to findings in the literature related to unrealistic optimism and self-beliefs, it does not appear to influence the iterative learning process directly. PMID:24853098
An overview of unconstrained free boundary problems
Figalli, Alessio; Shahgholian, Henrik
2015-01-01
In this paper, we present a survey concerning unconstrained free boundary problems of type where B1 is the unit ball, Ω is an unknown open set, F1 and F2 are elliptic operators (admitting regular solutions), and is a functions space to be specified in each case. Our main objective is to discuss a unifying approach to the optimal regularity of solutions to the above matching problems, and list several open problems in this direction. PMID:26261367
Nested Conjugate Gradient Algorithm with Nested Preconditioning for Non-linear Image Restoration.
Skariah, Deepak G; Arigovindan, Muthuvel
2017-06-19
We develop a novel optimization algorithm, which we call Nested Non-Linear Conjugate Gradient algorithm (NNCG), for image restoration based on quadratic data fitting and smooth non-quadratic regularization. The algorithm is constructed as a nesting of two conjugate gradient (CG) iterations. The outer iteration is constructed as a preconditioned non-linear CG algorithm; the preconditioning is performed by the inner CG iteration that is linear. The inner CG iteration, which performs preconditioning for outer CG iteration, itself is accelerated by an another FFT based non-iterative preconditioner. We prove that the method converges to a stationary point for both convex and non-convex regularization functionals. We demonstrate experimentally that proposed method outperforms the well-known majorization-minimization method used for convex regularization, and a non-convex inertial-proximal method for non-convex regularization functional.
Prosocial Bystander Behavior in Bullying Dynamics: Assessing the Impact of Social Capital.
Evans, Caroline B R; Smokowski, Paul R
2015-12-01
Individuals who observe a bullying event, but are not directly involved as a bully or victim, are referred to as bystanders. Prosocial bystanders are those individuals who actively intervene in bullying dynamics to support the victim and this prosocial behavior often ends the bullying. The current study examines how social capital in the form of social support, community engagement, mental health functioning, and positive school experiences and characteristics is associated with the likelihood of engaging in prosocial bystander behavior in a large sample (N = 5752; 51.03% female) of racially/ethnically diverse rural youth. It was hypothesized that social capital would be associated with an increased likelihood of engaging in prosocial bystander behavior. Following multiple imputation, an ordered logistic regression with robust standard errors was run. The hypothesis was partially supported and results indicated that social capital in the form of friend and teacher support, ethnic identity, religious orientation, and future optimism were significantly associated with an increased likelihood of engaging in prosocial bystander behavior. Contrary to the hypothesis, a decreased rate of self-esteem was significantly associated with an increased likelihood of engaging in prosocial bystander behavior. The findings highlight the importance of positive social relationships and community engagement in increasing prosocial bystander behavior and ultimately decreasing school bullying. Implications were discussed.
A comparative review of methods for comparing means using partially paired data.
Guo, Beibei; Yuan, Ying
2017-06-01
In medical experiments with the objective of testing the equality of two means, data are often partially paired by design or because of missing data. The partially paired data represent a combination of paired and unpaired observations. In this article, we review and compare nine methods for analyzing partially paired data, including the two-sample t-test, paired t-test, corrected z-test, weighted t-test, pooled t-test, optimal pooled t-test, multiple imputation method, mixed model approach, and the test based on a modified maximum likelihood estimate. We compare the performance of these methods through extensive simulation studies that cover a wide range of scenarios with different effect sizes, sample sizes, and correlations between the paired variables, as well as true underlying distributions. The simulation results suggest that when the sample size is moderate, the test based on the modified maximum likelihood estimator is generally superior to the other approaches when the data is normally distributed and the optimal pooled t-test performs the best when the data is not normally distributed, with well-controlled type I error rates and high statistical power; when the sample size is small, the optimal pooled t-test is to be recommended when both variables have missing data and the paired t-test is to be recommended when only one variable has missing data.
Experimental Design for Parameter Estimation of Gene Regulatory Networks
Timmer, Jens
2012-01-01
Systems biology aims for building quantitative models to address unresolved issues in molecular biology. In order to describe the behavior of biological cells adequately, gene regulatory networks (GRNs) are intensively investigated. As the validity of models built for GRNs depends crucially on the kinetic rates, various methods have been developed to estimate these parameters from experimental data. For this purpose, it is favorable to choose the experimental conditions yielding maximal information. However, existing experimental design principles often rely on unfulfilled mathematical assumptions or become computationally demanding with growing model complexity. To solve this problem, we combined advanced methods for parameter and uncertainty estimation with experimental design considerations. As a showcase, we optimized three simulated GRNs in one of the challenges from the Dialogue for Reverse Engineering Assessment and Methods (DREAM). This article presents our approach, which was awarded the best performing procedure at the DREAM6 Estimation of Model Parameters challenge. For fast and reliable parameter estimation, local deterministic optimization of the likelihood was applied. We analyzed identifiability and precision of the estimates by calculating the profile likelihood. Furthermore, the profiles provided a way to uncover a selection of most informative experiments, from which the optimal one was chosen using additional criteria at every step of the design process. In conclusion, we provide a strategy for optimal experimental design and show its successful application on three highly nonlinear dynamic models. Although presented in the context of the GRNs to be inferred for the DREAM6 challenge, the approach is generic and applicable to most types of quantitative models in systems biology and other disciplines. PMID:22815723
Growing optimal scale-free networks via likelihood
NASA Astrophysics Data System (ADS)
Small, Michael; Li, Yingying; Stemler, Thomas; Judd, Kevin
2015-04-01
Preferential attachment, by which new nodes attach to existing nodes with probability proportional to the existing nodes' degree, has become the standard growth model for scale-free networks, where the asymptotic probability of a node having degree k is proportional to k-γ. However, the motivation for this model is entirely ad hoc. We use exact likelihood arguments and show that the optimal way to build a scale-free network is to attach most new links to nodes of low degree. Curiously, this leads to a scale-free network with a single dominant hub: a starlike structure we call a superstar network. Asymptotically, the optimal strategy is to attach each new node to one of the nodes of degree k with probability proportional to 1/N +ζ (γ ) (k+1 ) γ (in a N node network): a stronger bias toward high degree nodes than exhibited by standard preferential attachment. Our algorithm generates optimally scale-free networks (the superstar networks) as well as randomly sampling the space of all scale-free networks with a given degree exponent γ . We generate viable realization with finite N for 1 ≪γ <2 as well as γ >2 . We observe an apparently discontinuous transition at γ ≈2 between so-called superstar networks and more treelike realizations. Gradually increasing γ further leads to reemergence of a superstar hub. To quantify these structural features, we derive a new analytic expression for the expected degree exponent of a pure preferential attachment process and introduce alternative measures of network entropy. Our approach is generic and can also be applied to an arbitrary degree distribution.
Towards adjoint-based inversion for rheological parameters in nonlinear viscous mantle flow
NASA Astrophysics Data System (ADS)
Worthen, Jennifer; Stadler, Georg; Petra, Noemi; Gurnis, Michael; Ghattas, Omar
2014-09-01
We address the problem of inferring mantle rheological parameter fields from surface velocity observations and instantaneous nonlinear mantle flow models. We formulate this inverse problem as an infinite-dimensional nonlinear least squares optimization problem governed by nonlinear Stokes equations. We provide expressions for the gradient of the cost functional of this optimization problem with respect to two spatially-varying rheological parameter fields: the viscosity prefactor and the exponent of the second invariant of the strain rate tensor. Adjoint (linearized) Stokes equations, which are characterized by a 4th order anisotropic viscosity tensor, facilitates efficient computation of the gradient. A quasi-Newton method for the solution of this optimization problem is presented, which requires the repeated solution of both nonlinear forward Stokes and linearized adjoint Stokes equations. For the solution of the nonlinear Stokes equations, we find that Newton’s method is significantly more efficient than a Picard fixed point method. Spectral analysis of the inverse operator given by the Hessian of the optimization problem reveals that the numerical eigenvalues collapse rapidly to zero, suggesting a high degree of ill-posedness of the inverse problem. To overcome this ill-posedness, we employ Tikhonov regularization (favoring smooth parameter fields) or total variation (TV) regularization (favoring piecewise-smooth parameter fields). Solution of two- and three-dimensional finite element-based model inverse problems show that a constant parameter in the constitutive law can be recovered well from surface velocity observations. Inverting for a spatially-varying parameter field leads to its reasonable recovery, in particular close to the surface. When inferring two spatially varying parameter fields, only an effective viscosity field and the total viscous dissipation are recoverable. Finally, a model of a subducting plate shows that a localized weak zone at the plate boundary can be partially recovered, especially with TV regularization.
NASA Astrophysics Data System (ADS)
Zhong, Qiu-Xiang; Wu, Chuan-Sheng; Shu, Qiao-Ling; Liu, Ryan Wen
2018-04-01
Image deblurring under impulse noise is a typical ill-posed problem which requires regularization methods to guarantee high-quality imaging. L1-norm data-fidelity term and total variation (TV) regularizer have been combined to contribute the popular regularization method. However, the TV-regularized variational image deblurring model often suffers from the staircase-like artifacts leading to image quality degradation. To enhance image quality, the detailpreserving total generalized variation (TGV) was introduced to replace TV to eliminate the undesirable artifacts. The resulting nonconvex optimization problem was effectively solved using the alternating direction method of multipliers (ADMM). In addition, an automatic method for selecting spatially adapted regularization parameters was proposed to further improve deblurring performance. Our proposed image deblurring framework is able to remove blurring and impulse noise effects while maintaining the image edge details. Comprehensive experiments have been conducted to demonstrate the superior performance of our proposed method over several state-of-the-art image deblurring methods.
New regularization scheme for blind color image deconvolution
NASA Astrophysics Data System (ADS)
Chen, Li; He, Yu; Yap, Kim-Hui
2011-01-01
This paper proposes a new regularization scheme to address blind color image deconvolution. Color images generally have a significant correlation among the red, green, and blue channels. Conventional blind monochromatic deconvolution algorithms handle each color image channels independently, thereby ignoring the interchannel correlation present in the color images. In view of this, a unified regularization scheme for image is developed to recover edges of color images and reduce color artifacts. In addition, by using the color image properties, a spectral-based regularization operator is adopted to impose constraints on the blurs. Further, this paper proposes a reinforcement regularization framework that integrates a soft parametric learning term in addressing blind color image deconvolution. A blur modeling scheme is developed to evaluate the relevance of manifold parametric blur structures, and the information is integrated into the deconvolution scheme. An optimization procedure called alternating minimization is then employed to iteratively minimize the image- and blur-domain cost functions. Experimental results show that the method is able to achieve satisfactory restored color images under different blurring conditions.
Framework for adaptive multiscale analysis of nonhomogeneous point processes.
Helgason, Hannes; Bartroff, Jay; Abry, Patrice
2011-01-01
We develop the methodology for hypothesis testing and model selection in nonhomogeneous Poisson processes, with an eye toward the application of modeling and variability detection in heart beat data. Modeling the process' non-constant rate function using templates of simple basis functions, we develop the generalized likelihood ratio statistic for a given template and a multiple testing scheme to model-select from a family of templates. A dynamic programming algorithm inspired by network flows is used to compute the maximum likelihood template in a multiscale manner. In a numerical example, the proposed procedure is nearly as powerful as the super-optimal procedures that know the true template size and true partition, respectively. Extensions to general history-dependent point processes is discussed.
Koletsi-Kounari, H; Tzavara, C; Tountas, Y
2011-03-01
To investigate the association between certain socio-demographic characteristics, health-related lifestyle behaviors and the use of dental services in Greek adult population. A total of 1,005 adults from all the geographical areas of Greece were randomly selected and interviewed. Gender, age, place of residence, marital and socioeconomic status, educational level, obesity, smoking, physical inactivity, adherence to Mediterranean diet were recorded and associated with the use of dental services. Almost one half of the participants (47%) visited a dentist during the past 12 months. Only 31.7% of the visits were for a regular dental check up. Subjects belonging to high socioeconomic status were 1.86 times more likely to visit a dentist in the past 12 months, while those aged more than 56 years and with low educational level were less likely to visit a dentist in the past 12 months with odds ratios equal to 0.63 and 0.73, respectively. Physically inactive (OR = 0.59; 95% CI: 0.38-0.93) and obese subjects (OR = 0.48; 95% CI: 0.24-0.97) were less likely to visit the dentist for a regular dental check up. Additionally, high socioeconomic status and healthier diet were associated with greater likelihood for visiting the dentist for a regular dental check up. Socio-demographic factors including age, education and social status are strong determinants of dental health services utilization in Greece. In addition, health-related lifestyle behaviors and conditions such as healthy diet, physical activity and obesity might be good predictors of regular check up or symptomatic dental visits.
Marchica, Loredana; Zhao, Yaxi; Derevensky, Jeffrey; Ivoska, William
2017-06-01
Fantasy sports is a growing industry with a reported 56.8 million individuals participating in the United States and Canada alone in 2015. Whereas this activity has attracted considerable public attention, little research has examined its impact on adolescents in spite of their high rates of gambling. The current study examined the relationship between regular participation (more than once a month) in sport-relevant gambling activities among adolescents and those identified as being at-risk for a gambling problem. Questionnaire responses were collected from high school students (N = 6818; 49 % male) in Wood County, Ohio, United States. Statistical analyses revealed that regular involvement in sports betting, fantasy sports betting, and daily fantasy sports betting among adolescents was associated with a higher risk of gambling problems. Further, although males participate more frequently in these activities, females who participate have a stronger likelihood of being at-risk. Students aged 16-19 years old are at a higher risk for developing a gambling problem compared to younger adolescents when regularly engaging in sports-related gambling. Moreover, regularly participating in daily fantasy sports is the strongest predictor of at-risk gambling behavior in 13-15 year old students. A hierarchical logistic regression supports that controlling for gender and age, all forms of sport-relevant gambling activities are significant predictors of at-risk gambling. This study contributes to a more comprehensive understanding of the impact of sports betting and fantasy sports on adolescents and establishes an initial step for future studies to further investigate these relationships.
NASA Technical Reports Server (NTRS)
Lennington, R. K.; Rassbach, M. E.
1979-01-01
Discussed in this report is the clustering algorithm CLASSY, including detailed descriptions of its general structure and mathematical background and of the various major subroutines. The report provides a development of the logic and equations used with specific reference to program variables. Some comments on timing and proposed optimization techniques are included.
Optimal and Most Exact Confidence Intervals for Person Parameters in Item Response Theory Models
ERIC Educational Resources Information Center
Doebler, Anna; Doebler, Philipp; Holling, Heinz
2013-01-01
The common way to calculate confidence intervals for item response theory models is to assume that the standardized maximum likelihood estimator for the person parameter [theta] is normally distributed. However, this approximation is often inadequate for short and medium test lengths. As a result, the coverage probabilities fall below the given…
Optimizing Assurance: The Risk Regulation System in Relationships
ERIC Educational Resources Information Center
Murray, Sandra L.; Holmes, John G.; Collins, Nancy L.
2006-01-01
A model of risk regulation is proposed to explain how people balance the goal of seeking closeness to a romantic partner against the opposing goal of minimizing the likelihood and pain of rejection. The central premise is that confidence in a partner's positive regard and caring allows people to risk seeking dependence and connectedness. The risk…
Optimal allocation of invasive species surveillance with the maximum expected coverage concept
Denys Yemshanov; Robert G. Haight; Frank H. Koch; Bo Lu; Robert Venette; D. Barry Lyons; Taylor Scarr; Krista Ryall; Brian. Leung
2015-01-01
We address the problem of geographically allocating scarce survey resources to detect pests in their pathways of introduction given information about their likelihood of movement between origins and destinations. We introduce a model for selecting destination sites for survey that departs from the aim of reducing propagule pressure (PP) in pest destinations and instead...
Policy Implications Analysis: A Methodological Advancement for Policy Research and Evaluation.
ERIC Educational Resources Information Center
Madey, Doren L.; Stenner, A. Jackson
Policy Implications Analysis (PIA) is a tool designed to maximize the likelihood that an evaluation report will have an impact on decision-making. PIA was designed to help people planning and conducting evaluations tailor their information so that it has optimal potential for being used and acted upon. This paper describes the development and…
de Groot, Marius; Vernooij, Meike W; Klein, Stefan; Ikram, M Arfan; Vos, Frans M; Smith, Stephen M; Niessen, Wiro J; Andersson, Jesper L R
2013-08-01
Anatomical alignment in neuroimaging studies is of such importance that considerable effort is put into improving the registration used to establish spatial correspondence. Tract-based spatial statistics (TBSS) is a popular method for comparing diffusion characteristics across subjects. TBSS establishes spatial correspondence using a combination of nonlinear registration and a "skeleton projection" that may break topological consistency of the transformed brain images. We therefore investigated feasibility of replacing the two-stage registration-projection procedure in TBSS with a single, regularized, high-dimensional registration. To optimize registration parameters and to evaluate registration performance in diffusion MRI, we designed an evaluation framework that uses native space probabilistic tractography for 23 white matter tracts, and quantifies tract similarity across subjects in standard space. We optimized parameters for two registration algorithms on two diffusion datasets of different quality. We investigated reproducibility of the evaluation framework, and of the optimized registration algorithms. Next, we compared registration performance of the regularized registration methods and TBSS. Finally, feasibility and effect of incorporating the improved registration in TBSS were evaluated in an example study. The evaluation framework was highly reproducible for both algorithms (R(2) 0.993; 0.931). The optimal registration parameters depended on the quality of the dataset in a graded and predictable manner. At optimal parameters, both algorithms outperformed the registration of TBSS, showing feasibility of adopting such approaches in TBSS. This was further confirmed in the example experiment. Copyright © 2013 Elsevier Inc. All rights reserved.
A DATA-DRIVEN MODEL FOR SPECTRA: FINDING DOUBLE REDSHIFTS IN THE SLOAN DIGITAL SKY SURVEY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsalmantza, P.; Hogg, David W., E-mail: vivitsal@mpia.de
2012-07-10
We present a data-driven method-heteroscedastic matrix factorization, a kind of probabilistic factor analysis-for modeling or performing dimensionality reduction on observed spectra or other high-dimensional data with known but non-uniform observational uncertainties. The method uses an iterative inverse-variance-weighted least-squares minimization procedure to generate a best set of basis functions. The method is similar to principal components analysis (PCA), but with the substantial advantage that it uses measurement uncertainties in a responsible way and accounts naturally for poorly measured and missing data; it models the variance in the noise-deconvolved data space. A regularization can be applied, in the form of a smoothnessmore » prior (inspired by Gaussian processes) or a non-negative constraint, without making the method prohibitively slow. Because the method optimizes a justified scalar (related to the likelihood), the basis provides a better fit to the data in a probabilistic sense than any PCA basis. We test the method on Sloan Digital Sky Survey (SDSS) spectra, concentrating on spectra known to contain two redshift components: these are spectra of gravitational lens candidates and massive black hole binaries. We apply a hypothesis test to compare one-redshift and two-redshift models for these spectra, utilizing the data-driven model trained on a random subset of all SDSS spectra. This test confirms 129 of the 131 lens candidates in our sample and all of the known binary candidates, and turns up very few false positives.« less
Shields, Katherine F.; Chan, Terence U.; Christenson, Elizabeth; Cronk, Ryan D.; Leker, Hannah; Samani, Destina; Apoya, Patrick; Lutz, Alexandra
2015-01-01
Abstract Safe drinking water is critical to human health and development. In rural sub‐Saharan Africa, most improved water sources are boreholes with handpumps; studies suggest that up to one third of these handpumps are nonfunctional at any given time. This work presents findings from a secondary analysis of cross‐sectional data from 1509 water sources in 570 communities in the rural Greater Afram Plains (GAP) region of Ghana; one of the largest studies of its kind. 79.4% of enumerated water sources were functional when visited; in multivariable regressions, functionality depended on source age, management, tariff collection, the number of other sources in the community, and the district. A Bayesian network (BN) model developed using the same data set found strong dependencies of functionality on implementer, pump type, management, and the availability of tools, with synergistic effects from management determinants on functionality, increasing the likelihood of a source being functional from a baseline of 72% to more than 97% with optimal management and available tools. We suggest that functionality may be a dynamic equilibrium between regular breakdowns and repairs, with management a key determinant of repair rate. Management variables may interact synergistically in ways better captured by BN analysis than by logistic regressions. These qualitative findings may prove generalizable beyond the study area, and may offer new approaches to understanding and increasing handpump functionality and safe water access. PMID:27667863
NASA Astrophysics Data System (ADS)
Mjachina, Ksenya; Hu, Zhiyong; Chibilyev, Alexander
2018-01-01
Oil production in a steppe region disturbs the landscape and damages the steppe ecosystem. The objective of this research was to detect areas damaged by oil production in an oil field within the Russian Volga-Ural steppe region using winter Landsat imagery. We developed a practicable and effective approach using winter snow season multispectral Landsat satellite imagery. To this end, we applied seven algorithms of spectral or texture-based transformation: K-means, maximum likelihood estimation, topsoil grain size index, soil brightness, normalized differential snow index, tasselled cap, and co-occurrence measures. The co-occurrence texture measure variance shows the optimal result of identifying damaged areas. The unique feature of our method is that it can differentiate damaged areas from the bare soil of cropland within a cold steppe region where the area damaged by oil production is mixed with bare (fallow) croplands that have a polygonal shape similar to well pads. Such similarities can lead to confusion in object-based classification. Using the co-occurrence measures, we found that from 1988 to 2015, damaged area is nearly three times as big in the peak period of the oil field development (2001 and 2009) as in 1988. Landscape fragmentation also peaked in 2001 and 2009. Our approach for this project is useful and cost effective regular monitoring of damages from oil production for both the Volga-Ural steppe region and other cold steppe regions.
NASA Astrophysics Data System (ADS)
Fisher, Michael B.; Shields, Katherine F.; Chan, Terence U.; Christenson, Elizabeth; Cronk, Ryan D.; Leker, Hannah; Samani, Destina; Apoya, Patrick; Lutz, Alexandra; Bartram, Jamie
2015-10-01
Safe drinking water is critical to human health and development. In rural sub-Saharan Africa, most improved water sources are boreholes with handpumps; studies suggest that up to one third of these handpumps are nonfunctional at any given time. This work presents findings from a secondary analysis of cross-sectional data from 1509 water sources in 570 communities in the rural Greater Afram Plains (GAP) region of Ghana; one of the largest studies of its kind. 79.4% of enumerated water sources were functional when visited; in multivariable regressions, functionality depended on source age, management, tariff collection, the number of other sources in the community, and the district. A Bayesian network (BN) model developed using the same data set found strong dependencies of functionality on implementer, pump type, management, and the availability of tools, with synergistic effects from management determinants on functionality, increasing the likelihood of a source being functional from a baseline of 72% to more than 97% with optimal management and available tools. We suggest that functionality may be a dynamic equilibrium between regular breakdowns and repairs, with management a key determinant of repair rate. Management variables may interact synergistically in ways better captured by BN analysis than by logistic regressions. These qualitative findings may prove generalizable beyond the study area, and may offer new approaches to understanding and increasing handpump functionality and safe water access. This article was corrected on 11 Nov 2015. See the end of the full text for details.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumagai, Tomo'omi; Mudd, Ryan; Miyazawa, Yoshiyuki
We developed a soil-vegetation-atmosphere transfer (SVAT) model applicable to simulating CO2 and H2O fluxes from the canopies of rubber plantations, which are characterized by distinct canopy clumping produced by regular spacing of plantation trees. Rubber (Hevea brasiliensis Müll. Arg.) plantations, which are rapidly expanding into both climatically optimal and sub-optimal environments throughout mainland Southeast Asia, potentially change the partitioning of water, energy, and carbon at multiple scales, compared with traditional land covers it is replacing. Describing the biosphere-atmosphere exchange in rubber plantations via SVAT modeling is therefore essential to understanding the impacts on environmental processes. The regular spacing of plantationmore » trees creates a peculiar canopy structure that is not well represented in most SVAT models, which generally assumes a non-uniform spacing of vegetation. Herein we develop a SVAT model applicable to rubber plantation and an evaluation method for its canopy structure, and examine how the peculiar canopy structure of rubber plantations affects canopy CO2 and H2O exchanges. Model results are compared with measurements collected at a field site in central Cambodia. Our findings suggest that it is crucial to account for intensive canopy clumping in order to reproduce observed rubber plantation fluxes. These results suggest a potentially optimal spacing of rubber trees to produce high productivity and water use efficiency.« less
Consedine, Nathan S
2012-08-01
Disparities in breast screening are well documented. Less clear are differences within groups of immigrant and non-immigrant minority women or differences in adherence to mammography guidelines over time. A sample of 1,364 immigrant and non-immigrant women (African American, English Caribbean, Haitian, Dominican, Eastern European, and European American) were recruited using a stratified cluster-sampling plan. In addition to measuring established predictors of screening, women reported mammography frequency in the last 10 years and were (per ACS guidelines at the time) categorized as never, sub-optimal (<1 screen/year), or adherent (1+ screens/year) screeners. Multinomial logistic regression showed that while ethnicity infrequently predicted the never versus sub-optimal comparison, English Caribbean, Haitian, and Eastern European women were less likely to screen systematically over time. Demographics did not predict the never versus sub-optimal distinction; only regular physician, annual exam, physician recommendation, and cancer worry showed effects. However, the adherent categorization was predicted by demographics, was less likely among women without insurance, a regular physician, or an annual exam, and more likely among women reporting certain patterns of emotion (low embarrassment and greater worry). Because regular screening is crucial to breast health, there is a clear need to consider patterns of screening among immigrant and non-immigrant women as well as whether the variables predicting the initiation of screening are distinct from those predicting systematic screening over time.
Liu, Kevin; Warnow, Tandy J; Holder, Mark T; Nelesen, Serita M; Yu, Jiaye; Stamatakis, Alexandros P; Linder, C Randal
2012-01-01
Highly accurate estimation of phylogenetic trees for large data sets is difficult, in part because multiple sequence alignments must be accurate for phylogeny estimation methods to be accurate. Coestimation of alignments and trees has been attempted but currently only SATé estimates reasonably accurate trees and alignments for large data sets in practical time frames (Liu K., Raghavan S., Nelesen S., Linder C.R., Warnow T. 2009b. Rapid and accurate large-scale coestimation of sequence alignments and phylogenetic trees. Science. 324:1561-1564). Here, we present a modification to the original SATé algorithm that improves upon SATé (which we now call SATé-I) in terms of speed and of phylogenetic and alignment accuracy. SATé-II uses a different divide-and-conquer strategy than SATé-I and so produces smaller more closely related subsets than SATé-I; as a result, SATé-II produces more accurate alignments and trees, can analyze larger data sets, and runs more efficiently than SATé-I. Generally, SATé is a metamethod that takes an existing multiple sequence alignment method as an input parameter and boosts the quality of that alignment method. SATé-II-boosted alignment methods are significantly more accurate than their unboosted versions, and trees based upon these improved alignments are more accurate than trees based upon the original alignments. Because SATé-I used maximum likelihood (ML) methods that treat gaps as missing data to estimate trees and because we found a correlation between the quality of tree/alignment pairs and ML scores, we explored the degree to which SATé's performance depends on using ML with gaps treated as missing data to determine the best tree/alignment pair. We present two lines of evidence that using ML with gaps treated as missing data to optimize the alignment and tree produces very poor results. First, we show that the optimization problem where a set of unaligned DNA sequences is given and the output is the tree and alignment of those sequences that maximize likelihood under the Jukes-Cantor model is uninformative in the worst possible sense. For all inputs, all trees optimize the likelihood score. Second, we show that a greedy heuristic that uses GTR+Gamma ML to optimize the alignment and the tree can produce very poor alignments and trees. Therefore, the excellent performance of SATé-II and SATé-I is not because ML is used as an optimization criterion for choosing the best tree/alignment pair but rather due to the particular divide-and-conquer realignment techniques employed.
Liu, Tao; Djordjevic, Ivan B
2014-12-29
In this paper, we first describe an optimal signal constellation design algorithm suitable for the coherent optical channels dominated by the linear phase noise. Then, we modify this algorithm to be suitable for the nonlinear phase noise dominated channels. In optimization procedure, the proposed algorithm uses the cumulative log-likelihood function instead of the Euclidian distance. Further, an LDPC coded modulation scheme is proposed to be used in combination with signal constellations obtained by proposed algorithm. Monte Carlo simulations indicate that the LDPC-coded modulation schemes employing the new constellation sets, obtained by our new signal constellation design algorithm, outperform corresponding QAM constellations significantly in terms of transmission distance and have better nonlinearity tolerance.
Axillary Lymph Node Evaluation Utilizing Convolutional Neural Networks Using MRI Dataset.
Ha, Richard; Chang, Peter; Karcich, Jenika; Mutasa, Simukayi; Fardanesh, Reza; Wynn, Ralph T; Liu, Michael Z; Jambawalikar, Sachin
2018-04-25
The aim of this study is to evaluate the role of convolutional neural network (CNN) in predicting axillary lymph node metastasis, using a breast MRI dataset. An institutional review board (IRB)-approved retrospective review of our database from 1/2013 to 6/2016 identified 275 axillary lymph nodes for this study. Biopsy-proven 133 metastatic axillary lymph nodes and 142 negative control lymph nodes were identified based on benign biopsies (100) and from healthy MRI screening patients (42) with at least 3 years of negative follow-up. For each breast MRI, axillary lymph node was identified on first T1 post contrast dynamic images and underwent 3D segmentation using an open source software platform 3D Slicer. A 32 × 32 patch was then extracted from the center slice of the segmented tumor data. A CNN was designed for lymph node prediction based on each of these cropped images. The CNN consisted of seven convolutional layers and max-pooling layers with 50% dropout applied in the linear layer. In addition, data augmentation and L2 regularization were performed to limit overfitting. Training was implemented using the Adam optimizer, an algorithm for first-order gradient-based optimization of stochastic objective functions, based on adaptive estimates of lower-order moments. Code for this study was written in Python using the TensorFlow module (1.0.0). Experiments and CNN training were done on a Linux workstation with NVIDIA GTX 1070 Pascal GPU. Two class axillary lymph node metastasis prediction models were evaluated. For each lymph node, a final softmax score threshold of 0.5 was used for classification. Based on this, CNN achieved a mean five-fold cross-validation accuracy of 84.3%. It is feasible for current deep CNN architectures to be trained to predict likelihood of axillary lymph node metastasis. Larger dataset will likely improve our prediction model and can potentially be a non-invasive alternative to core needle biopsy and even sentinel lymph node evaluation.
Implicit Regularization for Reconstructing 3D Building Rooftop Models Using Airborne LiDAR Data
Jung, Jaewook; Jwa, Yoonseok; Sohn, Gunho
2017-01-01
With rapid urbanization, highly accurate and semantically rich virtualization of building assets in 3D become more critical for supporting various applications, including urban planning, emergency response and location-based services. Many research efforts have been conducted to automatically reconstruct building models at city-scale from remotely sensed data. However, developing a fully-automated photogrammetric computer vision system enabling the massive generation of highly accurate building models still remains a challenging task. One the most challenging task for 3D building model reconstruction is to regularize the noises introduced in the boundary of building object retrieved from a raw data with lack of knowledge on its true shape. This paper proposes a data-driven modeling approach to reconstruct 3D rooftop models at city-scale from airborne laser scanning (ALS) data. The focus of the proposed method is to implicitly derive the shape regularity of 3D building rooftops from given noisy information of building boundary in a progressive manner. This study covers a full chain of 3D building modeling from low level processing to realistic 3D building rooftop modeling. In the element clustering step, building-labeled point clouds are clustered into homogeneous groups by applying height similarity and plane similarity. Based on segmented clusters, linear modeling cues including outer boundaries, intersection lines, and step lines are extracted. Topology elements among the modeling cues are recovered by the Binary Space Partitioning (BSP) technique. The regularity of the building rooftop model is achieved by an implicit regularization process in the framework of Minimum Description Length (MDL) combined with Hypothesize and Test (HAT). The parameters governing the MDL optimization are automatically estimated based on Min-Max optimization and Entropy-based weighting method. The performance of the proposed method is tested over the International Society for Photogrammetry and Remote Sensing (ISPRS) benchmark datasets. The results show that the proposed method can robustly produce accurate regularized 3D building rooftop models. PMID:28335486
Implicit Regularization for Reconstructing 3D Building Rooftop Models Using Airborne LiDAR Data.
Jung, Jaewook; Jwa, Yoonseok; Sohn, Gunho
2017-03-19
With rapid urbanization, highly accurate and semantically rich virtualization of building assets in 3D become more critical for supporting various applications, including urban planning, emergency response and location-based services. Many research efforts have been conducted to automatically reconstruct building models at city-scale from remotely sensed data. However, developing a fully-automated photogrammetric computer vision system enabling the massive generation of highly accurate building models still remains a challenging task. One the most challenging task for 3D building model reconstruction is to regularize the noises introduced in the boundary of building object retrieved from a raw data with lack of knowledge on its true shape. This paper proposes a data-driven modeling approach to reconstruct 3D rooftop models at city-scale from airborne laser scanning (ALS) data. The focus of the proposed method is to implicitly derive the shape regularity of 3D building rooftops from given noisy information of building boundary in a progressive manner. This study covers a full chain of 3D building modeling from low level processing to realistic 3D building rooftop modeling. In the element clustering step, building-labeled point clouds are clustered into homogeneous groups by applying height similarity and plane similarity. Based on segmented clusters, linear modeling cues including outer boundaries, intersection lines, and step lines are extracted. Topology elements among the modeling cues are recovered by the Binary Space Partitioning (BSP) technique. The regularity of the building rooftop model is achieved by an implicit regularization process in the framework of Minimum Description Length (MDL) combined with Hypothesize and Test (HAT). The parameters governing the MDL optimization are automatically estimated based on Min-Max optimization and Entropy-based weighting method. The performance of the proposed method is tested over the International Society for Photogrammetry and Remote Sensing (ISPRS) benchmark datasets. The results show that the proposed method can robustly produce accurate regularized 3D building rooftop models.
Dense motion estimation using regularization constraints on local parametric models.
Patras, Ioannis; Worring, Marcel; van den Boomgaard, Rein
2004-11-01
This paper presents a method for dense optical flow estimation in which the motion field within patches that result from an initial intensity segmentation is parametrized with models of different order. We propose a novel formulation which introduces regularization constraints between the model parameters of neighboring patches. In this way, we provide the additional constraints for very small patches and for patches whose intensity variation cannot sufficiently constrain the estimation of their motion parameters. In order to preserve motion discontinuities, we use robust functions as a regularization mean. We adopt a three-frame approach and control the balance between the backward and forward constraints by a real-valued direction field on which regularization constraints are applied. An iterative deterministic relaxation method is employed in order to solve the corresponding optimization problem. Experimental results show that the proposed method deals successfully with motions large in magnitude, motion discontinuities, and produces accurate piecewise-smooth motion fields.
An improved genetic algorithm for designing optimal temporal patterns of neural stimulation
NASA Astrophysics Data System (ADS)
Cassar, Isaac R.; Titus, Nathan D.; Grill, Warren M.
2017-12-01
Objective. Electrical neuromodulation therapies typically apply constant frequency stimulation, but non-regular temporal patterns of stimulation may be more effective and more efficient. However, the design space for temporal patterns is exceedingly large, and model-based optimization is required for pattern design. We designed and implemented a modified genetic algorithm (GA) intended for design optimal temporal patterns of electrical neuromodulation. Approach. We tested and modified standard GA methods for application to designing temporal patterns of neural stimulation. We evaluated each modification individually and all modifications collectively by comparing performance to the standard GA across three test functions and two biophysically-based models of neural stimulation. Main results. The proposed modifications of the GA significantly improved performance across the test functions and performed best when all were used collectively. The standard GA found patterns that outperformed fixed-frequency, clinically-standard patterns in biophysically-based models of neural stimulation, but the modified GA, in many fewer iterations, consistently converged to higher-scoring, non-regular patterns of stimulation. Significance. The proposed improvements to standard GA methodology reduced the number of iterations required for convergence and identified superior solutions.
Hierarchical image segmentation via recursive superpixel with adaptive regularity
NASA Astrophysics Data System (ADS)
Nakamura, Kensuke; Hong, Byung-Woo
2017-11-01
A fast and accurate segmentation algorithm in a hierarchical way based on a recursive superpixel technique is presented. We propose a superpixel energy formulation in which the trade-off between data fidelity and regularization is dynamically determined based on the local residual in the energy optimization procedure. We also present an energy optimization algorithm that allows a pixel to be shared by multiple regions to improve the accuracy and appropriate the number of segments. The qualitative and quantitative evaluations demonstrate that our algorithm, combining the proposed energy and optimization, outperforms the conventional k-means algorithm by up to 29.10% in F-measure. We also perform comparative analysis with state-of-the-art algorithms in the hierarchical segmentation. Our algorithm yields smooth regions throughout the hierarchy as opposed to the others that include insignificant details. Our algorithm overtakes the other algorithms in terms of balance between accuracy and computational time. Specifically, our method runs 36.48% faster than the region-merging approach, which is the fastest of the comparing algorithms, while achieving a comparable accuracy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Akiyama, Kazunori; Fish, Vincent L.; Doeleman, Sheperd S.
We propose a new imaging technique for radio and optical/infrared interferometry. The proposed technique reconstructs the image from the visibility amplitude and closure phase, which are standard data products of short-millimeter very long baseline interferometers such as the Event Horizon Telescope (EHT) and optical/infrared interferometers, by utilizing two regularization functions: the ℓ {sub 1}-norm and total variation (TV) of the brightness distribution. In the proposed method, optimal regularization parameters, which represent the sparseness and effective spatial resolution of the image, are derived from data themselves using cross-validation (CV). As an application of this technique, we present simulated observations of M87more » with the EHT based on four physically motivated models. We confirm that ℓ {sub 1} + TV regularization can achieve an optimal resolution of ∼20%–30% of the diffraction limit λ / D {sub max}, which is the nominal spatial resolution of a radio interferometer. With the proposed technique, the EHT can robustly and reasonably achieve super-resolution sufficient to clearly resolve the black hole shadow. These results make it promising for the EHT to provide an unprecedented view of the event-horizon-scale structure in the vicinity of the supermassive black hole in M87 and also the Galactic center Sgr A*.« less
An experimental comparison of various methods of nearfield acoustic holography
Chelliah, Kanthasamy; Raman, Ganesh; Muehleisen, Ralph T.
2017-05-19
An experimental comparison of four different methods of nearfield acoustic holography (NAH) is presented in this study for planar acoustic sources. The four NAH methods considered in this study are based on: (1) spatial Fourier transform, (2) equivalent sources model, (3) boundary element methods and (4) statistically optimized NAH. Two dimensional measurements were obtained at different distances in front of a tonal sound source and the NAH methods were used to reconstruct the sound field at the source surface. Reconstructed particle velocity and acoustic pressure fields presented in this study showed that the equivalent sources model based algorithm along withmore » Tikhonov regularization provided the best localization of the sources. Reconstruction errors were found to be smaller for the equivalent sources model based algorithm and the statistically optimized NAH algorithm. Effect of hologram distance on the performance of various algorithms is discussed in detail. The study also compares the computational time required by each algorithm to complete the comparison. Four different regularization parameter choice methods were compared. The L-curve method provided more accurate reconstructions than the generalized cross validation and the Morozov discrepancy principle. Finally, the performance of fixed parameter regularization was comparable to that of the L-curve method.« less
An experimental comparison of various methods of nearfield acoustic holography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chelliah, Kanthasamy; Raman, Ganesh; Muehleisen, Ralph T.
An experimental comparison of four different methods of nearfield acoustic holography (NAH) is presented in this study for planar acoustic sources. The four NAH methods considered in this study are based on: (1) spatial Fourier transform, (2) equivalent sources model, (3) boundary element methods and (4) statistically optimized NAH. Two dimensional measurements were obtained at different distances in front of a tonal sound source and the NAH methods were used to reconstruct the sound field at the source surface. Reconstructed particle velocity and acoustic pressure fields presented in this study showed that the equivalent sources model based algorithm along withmore » Tikhonov regularization provided the best localization of the sources. Reconstruction errors were found to be smaller for the equivalent sources model based algorithm and the statistically optimized NAH algorithm. Effect of hologram distance on the performance of various algorithms is discussed in detail. The study also compares the computational time required by each algorithm to complete the comparison. Four different regularization parameter choice methods were compared. The L-curve method provided more accurate reconstructions than the generalized cross validation and the Morozov discrepancy principle. Finally, the performance of fixed parameter regularization was comparable to that of the L-curve method.« less
Effects of marijuana smoking on the lung.
Tashkin, Donald P
2013-06-01
Regular smoking of marijuana by itself causes visible and microscopic injury to the large airways that is consistently associated with an increased likelihood of symptoms of chronic bronchitis that subside after cessation of use. On the other hand, habitual use of marijuana alone does not appear to lead to significant abnormalities in lung function when assessed either cross-sectionally or longitudinally, except for possible increases in lung volumes and modest increases in airway resistance of unclear clinical significance. Therefore, no clear link to chronic obstructive pulmonary disease has been established. Although marijuana smoke contains a number of carcinogens and cocarcinogens, findings from a limited number of well-designed epidemiological studies do not suggest an increased risk for the development of either lung or upper airway cancer from light or moderate use, although evidence is mixed concerning possible carcinogenic risks of heavy, long-term use. Although regular marijuana smoking leads to bronchial epithelial ciliary loss and impairs the microbicidal function of alveolar macrophages, evidence is inconclusive regarding possible associated risks for lower respiratory tract infection. Several case reports have implicated marijuana smoking as an etiologic factor in pneumothorax/pneumomediastinum and bullous lung disease, although evidence of a possible causal link from epidemiologic studies is lacking. In summary, the accumulated weight of evidence implies far lower risks for pulmonary complications of even regular heavy use of marijuana compared with the grave pulmonary consequences of tobacco.
Modeling Adversaries in Counterterrorism Decisions Using Prospect Theory.
Merrick, Jason R W; Leclerc, Philip
2016-04-01
Counterterrorism decisions have been an intense area of research in recent years. Both decision analysis and game theory have been used to model such decisions, and more recently approaches have been developed that combine the techniques of the two disciplines. However, each of these approaches assumes that the attacker is maximizing its utility. Experimental research shows that human beings do not make decisions by maximizing expected utility without aid, but instead deviate in specific ways such as loss aversion or likelihood insensitivity. In this article, we modify existing methods for counterterrorism decisions. We keep expected utility as the defender's paradigm to seek for the rational decision, but we use prospect theory to solve for the attacker's decision to descriptively model the attacker's loss aversion and likelihood insensitivity. We study the effects of this approach in a critical decision, whether to screen containers entering the United States for radioactive materials. We find that the defender's optimal decision is sensitive to the attacker's levels of loss aversion and likelihood insensitivity, meaning that understanding such descriptive decision effects is important in making such decisions. © 2014 Society for Risk Analysis.
A New Monte Carlo Method for Estimating Marginal Likelihoods.
Wang, Yu-Bo; Chen, Ming-Hui; Kuo, Lynn; Lewis, Paul O
2018-06-01
Evaluating the marginal likelihood in Bayesian analysis is essential for model selection. Estimators based on a single Markov chain Monte Carlo sample from the posterior distribution include the harmonic mean estimator and the inflated density ratio estimator. We propose a new class of Monte Carlo estimators based on this single Markov chain Monte Carlo sample. This class can be thought of as a generalization of the harmonic mean and inflated density ratio estimators using a partition weighted kernel (likelihood times prior). We show that our estimator is consistent and has better theoretical properties than the harmonic mean and inflated density ratio estimators. In addition, we provide guidelines on choosing optimal weights. Simulation studies were conducted to examine the empirical performance of the proposed estimator. We further demonstrate the desirable features of the proposed estimator with two real data sets: one is from a prostate cancer study using an ordinal probit regression model with latent variables; the other is for the power prior construction from two Eastern Cooperative Oncology Group phase III clinical trials using the cure rate survival model with similar objectives.
Optimal control of underactuated mechanical systems: A geometric approach
NASA Astrophysics Data System (ADS)
Colombo, Leonardo; Martín De Diego, David; Zuccalli, Marcela
2010-08-01
In this paper, we consider a geometric formalism for optimal control of underactuated mechanical systems. Our techniques are an adaptation of the classical Skinner and Rusk approach for the case of Lagrangian dynamics with higher-order constraints. We study a regular case where it is possible to establish a symplectic framework and, as a consequence, to obtain a unique vector field determining the dynamics of the optimal control problem. These developments will allow us to develop a new class of geometric integrators based on discrete variational calculus.
Optimized extreme learning machine for urban land cover classification using hyperspectral imagery
NASA Astrophysics Data System (ADS)
Su, Hongjun; Tian, Shufang; Cai, Yue; Sheng, Yehua; Chen, Chen; Najafian, Maryam
2017-12-01
This work presents a new urban land cover classification framework using the firefly algorithm (FA) optimized extreme learning machine (ELM). FA is adopted to optimize the regularization coefficient C and Gaussian kernel σ for kernel ELM. Additionally, effectiveness of spectral features derived from an FA-based band selection algorithm is studied for the proposed classification task. Three sets of hyperspectral databases were recorded using different sensors, namely HYDICE, HyMap, and AVIRIS. Our study shows that the proposed method outperforms traditional classification algorithms such as SVM and reduces computational cost significantly.
TRANSPOSABLE REGULARIZED COVARIANCE MODELS WITH AN APPLICATION TO MISSING DATA IMPUTATION
Allen, Genevera I.; Tibshirani, Robert
2015-01-01
Missing data estimation is an important challenge with high-dimensional data arranged in the form of a matrix. Typically this data matrix is transposable, meaning that either the rows, columns or both can be treated as features. To model transposable data, we present a modification of the matrix-variate normal, the mean-restricted matrix-variate normal, in which the rows and columns each have a separate mean vector and covariance matrix. By placing additive penalties on the inverse covariance matrices of the rows and columns, these so called transposable regularized covariance models allow for maximum likelihood estimation of the mean and non-singular covariance matrices. Using these models, we formulate EM-type algorithms for missing data imputation in both the multivariate and transposable frameworks. We present theoretical results exploiting the structure of our transposable models that allow these models and imputation methods to be applied to high-dimensional data. Simulations and results on microarray data and the Netflix data show that these imputation techniques often outperform existing methods and offer a greater degree of flexibility. PMID:26877823
TRANSPOSABLE REGULARIZED COVARIANCE MODELS WITH AN APPLICATION TO MISSING DATA IMPUTATION.
Allen, Genevera I; Tibshirani, Robert
2010-06-01
Missing data estimation is an important challenge with high-dimensional data arranged in the form of a matrix. Typically this data matrix is transposable , meaning that either the rows, columns or both can be treated as features. To model transposable data, we present a modification of the matrix-variate normal, the mean-restricted matrix-variate normal , in which the rows and columns each have a separate mean vector and covariance matrix. By placing additive penalties on the inverse covariance matrices of the rows and columns, these so called transposable regularized covariance models allow for maximum likelihood estimation of the mean and non-singular covariance matrices. Using these models, we formulate EM-type algorithms for missing data imputation in both the multivariate and transposable frameworks. We present theoretical results exploiting the structure of our transposable models that allow these models and imputation methods to be applied to high-dimensional data. Simulations and results on microarray data and the Netflix data show that these imputation techniques often outperform existing methods and offer a greater degree of flexibility.
Synchronization in Random Pulse Oscillator Networks
NASA Astrophysics Data System (ADS)
Brown, Kevin; Hermundstad, Ann
Motivated by synchronization phenomena in neural systems, we study synchronization of random networks of coupled pulse oscillators. We begin by considering binomial random networks whose nodes have intrinsic linear dynamics. We quantify order in the network spiking dynamics using a new measure: the normalized Lev-Zimpel complexity (LZC) of the nodes' spike trains. Starting from a globally-synchronized state, we see two broad classes of behaviors. In one (''temporally random''), the LZC is high and nodes spike independently with no coherent pattern. In another (''temporally regular''), the network does not globally synchronize but instead forms coherent, repeating population firing patterns with low LZC. No topological feature of the network reliably predicts whether an individual network will show temporally random or regular behavior; however, we find evidence that degree heterogeneity in binomial networks has a strong effect on the resulting state. To confirm these findings, we generate random networks with independently-adjustable degree mean and variance. We find that the likelihood of temporally-random behavior increases as degree variance increases. Our results indicate the subtle and complex relationship between network structure and dynamics.
Fast Quantitative Susceptibility Mapping with L1-Regularization and Automatic Parameter Selection
Bilgic, Berkin; Fan, Audrey P.; Polimeni, Jonathan R.; Cauley, Stephen F.; Bianciardi, Marta; Adalsteinsson, Elfar; Wald, Lawrence L.; Setsompop, Kawin
2014-01-01
Purpose To enable fast reconstruction of quantitative susceptibility maps with Total Variation penalty and automatic regularization parameter selection. Methods ℓ1-regularized susceptibility mapping is accelerated by variable-splitting, which allows closed-form evaluation of each iteration of the algorithm by soft thresholding and FFTs. This fast algorithm also renders automatic regularization parameter estimation practical. A weighting mask derived from the magnitude signal can be incorporated to allow edge-aware regularization. Results Compared to the nonlinear Conjugate Gradient (CG) solver, the proposed method offers 20× speed-up in reconstruction time. A complete pipeline including Laplacian phase unwrapping, background phase removal with SHARP filtering and ℓ1-regularized dipole inversion at 0.6 mm isotropic resolution is completed in 1.2 minutes using Matlab on a standard workstation compared to 22 minutes using the Conjugate Gradient solver. This fast reconstruction allows estimation of regularization parameters with the L-curve method in 13 minutes, which would have taken 4 hours with the CG algorithm. Proposed method also permits magnitude-weighted regularization, which prevents smoothing across edges identified on the magnitude signal. This more complicated optimization problem is solved 5× faster than the nonlinear CG approach. Utility of the proposed method is also demonstrated in functional BOLD susceptibility mapping, where processing of the massive time-series dataset would otherwise be prohibitive with the CG solver. Conclusion Online reconstruction of regularized susceptibility maps may become feasible with the proposed dipole inversion. PMID:24259479
3D first-arrival traveltime tomography with modified total variation regularization
NASA Astrophysics Data System (ADS)
Jiang, Wenbin; Zhang, Jie
2018-02-01
Three-dimensional (3D) seismic surveys have become a major tool in the exploration and exploitation of hydrocarbons. 3D seismic first-arrival traveltime tomography is a robust method for near-surface velocity estimation. A common approach for stabilizing the ill-posed inverse problem is to apply Tikhonov regularization to the inversion. However, the Tikhonov regularization method recovers smooth local structures while blurring the sharp features in the model solution. We present a 3D first-arrival traveltime tomography method with modified total variation (MTV) regularization to preserve sharp velocity contrasts and improve the accuracy of velocity inversion. To solve the minimization problem of the new traveltime tomography method, we decouple the original optimization problem into two following subproblems: a standard traveltime tomography problem with the traditional Tikhonov regularization and a L2 total variation problem. We apply the conjugate gradient method and split-Bregman iterative method to solve these two subproblems, respectively. Our synthetic examples show that the new method produces higher resolution models than the conventional traveltime tomography with Tikhonov regularization. We apply the technique to field data. The stacking section shows significant improvements with static corrections from the MTV traveltime tomography.
Nonsmooth, nonconvex regularizers applied to linear electromagnetic inverse problems
NASA Astrophysics Data System (ADS)
Hidalgo-Silva, H.; Gomez-Trevino, E.
2017-12-01
Tikhonov's regularization method is the standard technique applied to obtain models of the subsurface conductivity distribution from electric or electromagnetic measurements by solving UT (m) = | F (m) - d |2 + λ P(m). The second term correspond to the stabilizing functional, with P (m) = | ∇ m |2 the usual approach, and λ the regularization parameter. Due to the roughness penalizer inclusion, the model developed by Tikhonov's algorithm tends to smear discontinuities, a feature that may be undesirable. An important requirement for the regularizer is to allow the recovery of edges, and smooth the homogeneous parts. As is well known, Total Variation (TV) is now the standard approach to meet this requirement. Recently, Wang et.al. proved convergence for alternating direction method of multipliers in nonconvex, nonsmooth optimization. In this work we present a study of several algorithms for model recovering of Geosounding data based on Infimal Convolution, and also on hybrid, TV and second order TV and nonsmooth, nonconvex regularizers, observing their performance on synthetic and real data. The algorithms are based on Bregman iteration and Split Bregman method, and the geosounding method is the low-induction numbers magnetic dipoles. Non-smooth regularizers are considered using the Legendre-Fenchel transform.
THE SHELF LIFE OF BIRD EGGS: TESTING EGG VIABILITY USING A TROPICAL CLIMATE GRADIENT
STEVEN R. BEISSINGER; MARK I. COOK; WAYNE J. ARENDT
2005-01-01
Avian parents influence the onset of development, hatching synchrony, and likelihood of brood reduction through the onset of incubation. Studies testing adaptive functions of brood reduction assume that eggs are protected by their shells and waiting for parents to initiate incubation in a manner that creates optimal hatching patterns, but the viability of early laid...
Optimal feedback control infinite dimensional parabolic evolution systems: Approximation techniques
NASA Technical Reports Server (NTRS)
Banks, H. T.; Wang, C.
1989-01-01
A general approximation framework is discussed for computation of optimal feedback controls in linear quadratic regular problems for nonautonomous parabolic distributed parameter systems. This is done in the context of a theoretical framework using general evolution systems in infinite dimensional Hilbert spaces. Conditions are discussed for preservation under approximation of stabilizability and detectability hypotheses on the infinite dimensional system. The special case of periodic systems is also treated.
The 2-D magnetotelluric inverse problem solved with optimization
NASA Astrophysics Data System (ADS)
van Beusekom, Ashley E.; Parker, Robert L.; Bank, Randolph E.; Gill, Philip E.; Constable, Steven
2011-02-01
The practical 2-D magnetotelluric inverse problem seeks to determine the shallow-Earth conductivity structure using finite and uncertain data collected on the ground surface. We present an approach based on using PLTMG (Piecewise Linear Triangular MultiGrid), a special-purpose code for optimization with second-order partial differential equation (PDE) constraints. At each frequency, the electromagnetic field and conductivity are treated as unknowns in an optimization problem in which the data misfit is minimized subject to constraints that include Maxwell's equations and the boundary conditions. Within this framework it is straightforward to accommodate upper and lower bounds or other conditions on the conductivity. In addition, as the underlying inverse problem is ill-posed, constraints may be used to apply various kinds of regularization. We discuss some of the advantages and difficulties associated with using PDE-constrained optimization as the basis for solving large-scale nonlinear geophysical inverse problems. Combined transverse electric and transverse magnetic complex admittances from the COPROD2 data are inverted. First, we invert penalizing size and roughness giving solutions that are similar to those found previously. In a second example, conventional regularization is replaced by a technique that imposes upper and lower bounds on the model. In both examples the data misfit is better than that obtained previously, without any increase in model complexity.
Acoustic and elastic waveform inversion best practices
NASA Astrophysics Data System (ADS)
Modrak, Ryan T.
Reaching the global minimum of a waveform misfit function requires careful choices about the nonlinear optimization, preconditioning and regularization methods underlying an inversion. Because waveform inversion problems are susceptible to erratic convergence, one or two test cases are not enough to reliably inform such decisions. We identify best practices instead using two global, one regional and four near-surface acoustic test problems. To obtain meaningful quantitative comparisons, we carry out hundreds acoustic inversions, varying one aspect of the implementation at a time. Comparing nonlinear optimization algorithms, we find that L-BFGS provides computational savings over nonlinear conjugate gradient methods in a wide variety of test cases. Comparing preconditioners, we show that a new diagonal scaling derived from the adjoint of the forward operator provides better performance than two conventional preconditioning schemes. Comparing regularization strategies, we find that projection, convolution, Tikhonov regularization, and total variation regularization are effective in different contexts. Besides these issues, reliability and efficiency in waveform inversion depend on close numerical attention and care. Implementation details have a strong effect on computational cost, regardless of the chosen material parameterization or nonlinear optimization algorithm. Building on the acoustic inversion results, we carry out elastic experiments with four test problems, three objective functions, and four material parameterizations. The choice of parameterization for isotropic elastic media is found to be more complicated than previous studies suggests, with "wavespeed-like'' parameters performing well with phase-based objective functions and Lame parameters performing well with amplitude-based objective functions. Reliability and efficiency can be even harder to achieve in transversely isotropic elastic inversions because rotation angle parameters describing fast-axis direction are difficult to recover. Using Voigt or Chen-Tromp parameters avoids the need to include rotation angles explicitly and provides an effective strategy for anisotropic inversion. The need for flexible and portable workflow management tools for seismic inversion also poses a major challenge. In a final chapter, the software used to the carry out the above experiments is described and instructions for reproducing experimental results are given.
Optimal guidance law development for an advanced launch system
NASA Technical Reports Server (NTRS)
Calise, Anthony J.; Leung, Martin S. K.
1995-01-01
The objective of this research effort was to develop a real-time guidance approach for launch vehicles ascent to orbit injection. Various analytical approaches combined with a variety of model order and model complexity reduction have been investigated. Singular perturbation methods were first attempted and found to be unsatisfactory. The second approach based on regular perturbation analysis was subsequently investigated. It also fails because the aerodynamic effects (ignored in the zero order solution) are too large to be treated as perturbations. Therefore, the study demonstrates that perturbation methods alone (both regular and singular perturbations) are inadequate for use in developing a guidance algorithm for the atmospheric flight phase of a launch vehicle. During a second phase of the research effort, a hybrid analytic/numerical approach was developed and evaluated. The approach combines the numerical methods of collocation and the analytical method of regular perturbations. The concept of choosing intelligent interpolating functions is also introduced. Regular perturbation analysis allows the use of a crude representation for the collocation solution, and intelligent interpolating functions further reduce the number of elements without sacrificing the approximation accuracy. As a result, the combined method forms a powerful tool for solving real-time optimal control problems. Details of the approach are illustrated in a fourth order nonlinear example. The hybrid approach is then applied to the launch vehicle problem. The collocation solution is derived from a bilinear tangent steering law, and results in a guidance solution for the entire flight regime that includes both atmospheric and exoatmospheric flight phases.
NASA Technical Reports Server (NTRS)
DeYoung, J. A.; McKinley, A.; Davis, J. A.; Hetzel, P.; Bauch, A.
1996-01-01
Eight laboratories are participating in an international two-way satellite time and frequency transfer (TWSTFT) experiment. Regular time and frequency transfers have been performed over a period of almost two years, including both European and transatlantic time transfers. The performance of the regular TWSTFT sessions over an extended period has demonstrated conclusively the usefulness of the TWSTFT method for routine international time and frequency comparisons. Regular measurements are performed three times per week resulting in a regular but unevenly spaced data set. A method is presented that allows an estimate of the values of delta (sub y)(gamma) to be formed from these data. In order to maximize efficient use of paid satellite time an investigation to determine the optimal length of a single TWSTFT session is presented. The optimal experiment length is determined by evaluating how long white phase modulation (PM) instabilities are the dominant noise source during the typical 300-second sampling times currently used. A detailed investigation of the frequency transfers realized via the transatlantic TWSTFT links UTC(USNO)-UTC(NPL), UTC(USNO)-UTC(PTB), and UTC(PTB)-UTC(NPL) is presented. The investigation focuses on the frequency instabilities realized, a three cornered hat resolution of the delta (sub y) (gamma) values, and a comparison of the transatlantic and inter-European determination of UTC(PTB)-UTC(NPL). Future directions of this TWSTFT experiment are outlined.
The Joker: A custom Monte Carlo sampler for binary-star and exoplanet radial velocity data
NASA Astrophysics Data System (ADS)
Price-Whelan, Adrian M.; Hogg, David W.; Foreman-Mackey, Daniel; Rix, Hans-Walter
2017-01-01
Given sparse or low-quality radial-velocity measurements of a star, there are often many qualitatively different stellar or exoplanet companion orbit models that are consistent with the data. The consequent multimodality of the likelihood function leads to extremely challenging search, optimization, and MCMC posterior sampling over the orbital parameters. The Joker is a custom-built Monte Carlo sampler that can produce a posterior sampling for orbital parameters given sparse or noisy radial-velocity measurements, even when the likelihood function is poorly behaved. The method produces correct samplings in orbital parameters for data that include as few as three epochs. The Joker can therefore be used to produce proper samplings of multimodal pdfs, which are still highly informative and can be used in hierarchical (population) modeling.
IMNN: Information Maximizing Neural Networks
NASA Astrophysics Data System (ADS)
Charnock, Tom; Lavaux, Guilhem; Wandelt, Benjamin D.
2018-04-01
This software trains artificial neural networks to find non-linear functionals of data that maximize Fisher information: information maximizing neural networks (IMNNs). As compressing large data sets vastly simplifies both frequentist and Bayesian inference, important information may be inadvertently missed. Likelihood-free inference based on automatically derived IMNN summaries produces summaries that are good approximations to sufficient statistics. IMNNs are robustly capable of automatically finding optimal, non-linear summaries of the data even in cases where linear compression fails: inferring the variance of Gaussian signal in the presence of noise, inferring cosmological parameters from mock simulations of the Lyman-α forest in quasar spectra, and inferring frequency-domain parameters from LISA-like detections of gravitational waveforms. In this final case, the IMNN summary outperforms linear data compression by avoiding the introduction of spurious likelihood maxima.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ranganathan, V; Kumar, P; Bzdusek, K
Purpose: We propose a novel data-driven method to predict the achievability of clinical objectives upfront before invoking the IMRT optimization. Methods: A new metric called “Geometric Complexity (GC)” is used to estimate the achievability of clinical objectives. Here, GC is the measure of the number of “unmodulated” beamlets or rays that intersect the Region-of-interest (ROI) and the target volume. We first compute the geometric complexity ratio (GCratio) between the GC of a ROI (say, parotid) in a reference plan and the GC of the same ROI in a given plan. The GCratio of a ROI indicates the relative geometric complexitymore » of the ROI as compared to the same ROI in the reference plan. Hence GCratio can be used to predict if a defined clinical objective associated with the ROI can be met by the optimizer for a given case. Basically a higher GCratio indicates a lesser likelihood for the optimizer to achieve the clinical objective defined for a given ROI. Similarly, a lower GCratio indicates a higher likelihood for the optimizer to achieve the clinical objective defined for the given ROI. We have evaluated the proposed method on four Head and Neck cases using Pinnacle3 (version 9.10.0) Treatment Planning System (TPS). Results: Out of the total of 28 clinical objectives from four head and neck cases included in the study, 25 were in agreement with the prediction, which implies an agreement of about 85% between predicted and obtained results. The Pearson correlation test shows a positive correlation between predicted and obtained results (Correlation = 0.82, r2 = 0.64, p < 0.005). Conclusion: The study demonstrates the feasibility of the proposed method in head and neck cases for predicting the achievability of clinical objectives with reasonable accuracy.« less
He, Xin; Frey, Eric C
2006-08-01
Previously, we have developed a decision model for three-class receiver operating characteristic (ROC) analysis based on decision theory. The proposed decision model maximizes the expected decision utility under the assumption that incorrect decisions have equal utilities under the same hypothesis (equal error utility assumption). This assumption reduced the dimensionality of the "general" three-class ROC analysis and provided a practical figure-of-merit to evaluate the three-class task performance. However, it also limits the generality of the resulting model because the equal error utility assumption will not apply for all clinical three-class decision tasks. The goal of this study was to investigate the optimality of the proposed three-class decision model with respect to several other decision criteria. In particular, besides the maximum expected utility (MEU) criterion used in the previous study, we investigated the maximum-correctness (MC) (or minimum-error), maximum likelihood (ML), and Nyman-Pearson (N-P) criteria. We found that by making assumptions for both MEU and N-P criteria, all decision criteria lead to the previously-proposed three-class decision model. As a result, this model maximizes the expected utility under the equal error utility assumption, maximizes the probability of making correct decisions, satisfies the N-P criterion in the sense that it maximizes the sensitivity of one class given the sensitivities of the other two classes, and the resulting ROC surface contains the maximum likelihood decision operating point. While the proposed three-class ROC analysis model is not optimal in the general sense due to the use of the equal error utility assumption, the range of criteria for which it is optimal increases its applicability for evaluating and comparing a range of diagnostic systems.
Efficient Bayesian experimental design for contaminant source identification
NASA Astrophysics Data System (ADS)
Zhang, J.; Zeng, L.
2013-12-01
In this study, an efficient full Bayesian approach is developed for the optimal sampling well location design and source parameter identification of groundwater contaminants. An information measure, i.e., the relative entropy, is employed to quantify the information gain from indirect concentration measurements in identifying unknown source parameters such as the release time, strength and location. In this approach, the sampling location that gives the maximum relative entropy is selected as the optimal one. Once the sampling location is determined, a Bayesian approach based on Markov Chain Monte Carlo (MCMC) is used to estimate unknown source parameters. In both the design and estimation, the contaminant transport equation is required to be solved many times to evaluate the likelihood. To reduce the computational burden, an interpolation method based on the adaptive sparse grid is utilized to construct a surrogate for the contaminant transport. The approximated likelihood can be evaluated directly from the surrogate, which greatly accelerates the design and estimation process. The accuracy and efficiency of our approach are demonstrated through numerical case studies. Compared with the traditional optimal design, which is based on the Gaussian linear assumption, the method developed in this study can cope with arbitrary nonlinearity. It can be used to assist in groundwater monitor network design and identification of unknown contaminant sources. Contours of the expected information gain. The optimal observing location corresponds to the maximum value. Posterior marginal probability densities of unknown parameters, the thick solid black lines are for the designed location. For comparison, other 7 lines are for randomly chosen locations. The true values are denoted by vertical lines. It is obvious that the unknown parameters are estimated better with the desinged location.
Laser-Based Slam with Efficient Occupancy Likelihood Map Learning for Dynamic Indoor Scenes
NASA Astrophysics Data System (ADS)
Li, Li; Yao, Jian; Xie, Renping; Tu, Jinge; Feng, Chen
2016-06-01
Location-Based Services (LBS) have attracted growing attention in recent years, especially in indoor environments. The fundamental technique of LBS is the map building for unknown environments, this technique also named as simultaneous localization and mapping (SLAM) in robotic society. In this paper, we propose a novel approach for SLAMin dynamic indoor scenes based on a 2D laser scanner mounted on a mobile Unmanned Ground Vehicle (UGV) with the help of the grid-based occupancy likelihood map. Instead of applying scan matching in two adjacent scans, we propose to match current scan with the occupancy likelihood map learned from all previous scans in multiple scales to avoid the accumulation of matching errors. Due to that the acquisition of the points in a scan is sequential but not simultaneous, there unavoidably exists the scan distortion at different extents. To compensate the scan distortion caused by the motion of the UGV, we propose to integrate a velocity of a laser range finder (LRF) into the scan matching optimization framework. Besides, to reduce the effect of dynamic objects such as walking pedestrians often existed in indoor scenes as much as possible, we propose a new occupancy likelihood map learning strategy by increasing or decreasing the probability of each occupancy grid after each scan matching. Experimental results in several challenged indoor scenes demonstrate that our proposed approach is capable of providing high-precision SLAM results.
2010-01-01
Background Irregularly shaped spatial clusters are difficult to delineate. A cluster found by an algorithm often spreads through large portions of the map, impacting its geographical meaning. Penalized likelihood methods for Kulldorff's spatial scan statistics have been used to control the excessive freedom of the shape of clusters. Penalty functions based on cluster geometry and non-connectivity have been proposed recently. Another approach involves the use of a multi-objective algorithm to maximize two objectives: the spatial scan statistics and the geometric penalty function. Results & Discussion We present a novel scan statistic algorithm employing a function based on the graph topology to penalize the presence of under-populated disconnection nodes in candidate clusters, the disconnection nodes cohesion function. A disconnection node is defined as a region within a cluster, such that its removal disconnects the cluster. By applying this function, the most geographically meaningful clusters are sifted through the immense set of possible irregularly shaped candidate cluster solutions. To evaluate the statistical significance of solutions for multi-objective scans, a statistical approach based on the concept of attainment function is used. In this paper we compared different penalized likelihoods employing the geometric and non-connectivity regularity functions and the novel disconnection nodes cohesion function. We also build multi-objective scans using those three functions and compare them with the previous penalized likelihood scans. An application is presented using comprehensive state-wide data for Chagas' disease in puerperal women in Minas Gerais state, Brazil. Conclusions We show that, compared to the other single-objective algorithms, multi-objective scans present better performance, regarding power, sensitivity and positive predicted value. The multi-objective non-connectivity scan is faster and better suited for the detection of moderately irregularly shaped clusters. The multi-objective cohesion scan is most effective for the detection of highly irregularly shaped clusters. PMID:21034451
Optimal design and use of retry in fault tolerant real-time computer systems
NASA Technical Reports Server (NTRS)
Lee, Y. H.; Shin, K. G.
1983-01-01
A new method to determin an optimal retry policy and for use in retry of fault characterization is presented. An optimal retry policy for a given fault characteristic, which determines the maximum allowable retry durations to minimize the total task completion time was derived. The combined fault characterization and retry decision, in which the characteristics of fault are estimated simultaneously with the determination of the optimal retry policy were carried out. Two solution approaches were developed, one based on the point estimation and the other on the Bayes sequential decision. The maximum likelihood estimators are used for the first approach, and the backward induction for testing hypotheses in the second approach. Numerical examples in which all the durations associated with faults have monotone hazard functions, e.g., exponential, Weibull and gamma distributions are presented. These are standard distributions commonly used for modeling analysis and faults.
Force sensing using 3D displacement measurements in linear elastic bodies
NASA Astrophysics Data System (ADS)
Feng, Xinzeng; Hui, Chung-Yuen
2016-07-01
In cell traction microscopy, the mechanical forces exerted by a cell on its environment is usually determined from experimentally measured displacement by solving an inverse problem in elasticity. In this paper, an innovative numerical method is proposed which finds the "optimal" traction to the inverse problem. When sufficient regularization is applied, we demonstrate that the proposed method significantly improves the widely used approach using Green's functions. Motivated by real cell experiments, the equilibrium condition of a slowly migrating cell is imposed as a set of equality constraints on the unknown traction. Our validation benchmarks demonstrate that the numeric solution to the constrained inverse problem well recovers the actual traction when the optimal regularization parameter is used. The proposed method can thus be applied to study general force sensing problems, which utilize displacement measurements to sense inaccessible forces in linear elastic bodies with a priori constraints.
Rank-Optimized Logistic Matrix Regression toward Improved Matrix Data Classification.
Zhang, Jianguang; Jiang, Jianmin
2018-02-01
While existing logistic regression suffers from overfitting and often fails in considering structural information, we propose a novel matrix-based logistic regression to overcome the weakness. In the proposed method, 2D matrices are directly used to learn two groups of parameter vectors along each dimension without vectorization, which allows the proposed method to fully exploit the underlying structural information embedded inside the 2D matrices. Further, we add a joint [Formula: see text]-norm on two parameter matrices, which are organized by aligning each group of parameter vectors in columns. This added co-regularization term has two roles-enhancing the effect of regularization and optimizing the rank during the learning process. With our proposed fast iterative solution, we carried out extensive experiments. The results show that in comparison to both the traditional tensor-based methods and the vector-based regression methods, our proposed solution achieves better performance for matrix data classifications.
NASA Astrophysics Data System (ADS)
Saadat, S. A.; Safari, A.; Needell, D.
2016-06-01
The main role of gravity field recovery is the study of dynamic processes in the interior of the Earth especially in exploration geophysics. In this paper, the Stabilized Orthogonal Matching Pursuit (SOMP) algorithm is introduced for sparse reconstruction of regional gravity signals of the Earth. In practical applications, ill-posed problems may be encountered regarding unknown parameters that are sensitive to the data perturbations. Therefore, an appropriate regularization method needs to be applied to find a stabilized solution. The SOMP algorithm aims to regularize the norm of the solution vector, while also minimizing the norm of the corresponding residual vector. In this procedure, a convergence point of the algorithm that specifies optimal sparsity-level of the problem is determined. The results show that the SOMP algorithm finds the stabilized solution for the ill-posed problem at the optimal sparsity-level, improving upon existing sparsity based approaches.
Comparison of SIRT and SQS for Regularized Weighted Least Squares Image Reconstruction
Gregor, Jens; Fessler, Jeffrey A.
2015-01-01
Tomographic image reconstruction is often formulated as a regularized weighted least squares (RWLS) problem optimized by iterative algorithms that are either inherently algebraic or derived from a statistical point of view. This paper compares a modified version of SIRT (Simultaneous Iterative Reconstruction Technique), which is of the former type, with a version of SQS (Separable Quadratic Surrogates), which is of the latter type. We show that the two algorithms minimize the same criterion function using similar forms of preconditioned gradient descent. We present near-optimal relaxation for both based on eigenvalue bounds and include a heuristic extension for use with ordered subsets. We provide empirical evidence that SIRT and SQS converge at the same rate for all intents and purposes. For context, we compare their performance with an implementation of preconditioned conjugate gradient. The illustrative application is X-ray CT of luggage for aviation security. PMID:26478906
Tang, Weiming; Liu, Chuncheng; Cao, Bolin; Pan, Stephen W; Zhang, Ye; Ong, Jason; Fu, Hongyun; Ma, Baoli; Fu, Rong; Yang, Bin; Ma, Wei; Wei, Chongyi; Tucker, Joseph D
2018-02-22
HIV serostatus disclosure before sex can facilitate serosorting, condom use and potentially decrease the risk of HIV acquisition. However, few studies have evaluated HIV serostatus disclosure from partners before sex. We examined the rate and correlates of receiving HIV serostatus disclosure from regular and casual male partners before sex among an online sample of men who have sex with men (MSM) in China. An online cross-sectional study was conducted among MSM in eight Chinese cities in July 2016. Participants completed questions covering sociodemographic information, sexual behaviors, HIV testing (including HIV self-testing) history, self-reported HIV status, and post-test violence. In addition, participants were asked whether they received HIV serostatus disclosure from their most recent partners before sex. Overall, 2105 men completed the survey. Among them, 85.9% were never married, and 35.4% had high school or less education. A minority (20.6%, 346/1678; 17.8%, 287/1608) of men received HIV serostatus disclosure from their most recent regular and casual male partners, respectively. Multivariate analysis indicated that participants who ever self-tested for HIV were more likely to have received HIV status disclosure from regular [adjusted OR (aOR) = 1.92, 95% CI 1.50-2.44] and casual (aOR = 2.34, 95% CI 1.80-3.04) male partners compared to never self-tested participants. Compared to participants who had not received HIV status disclosure from regular partners, participants who received disclosure from regular male partners had higher likelihood in experiencing post-test violence (aOR = 5.18, 95% CI 1.53-17.58). Similar results were also found for receiving HIV serostatus disclosure from casual partners. This study showed that HIV serostatus disclosure from partners was uncommon among Chinese MSM. Interventions and further implementation research to facilitate safe disclosure are urgently needed for MSM.
NASA Astrophysics Data System (ADS)
Arroyo, Orlando; Gutiérrez, Sergio
2017-07-01
Several seismic optimization methods have been proposed to improve the performance of reinforced concrete framed (RCF) buildings; however, they have not been widely adopted among practising engineers because they require complex nonlinear models and are computationally expensive. This article presents a procedure to improve the seismic performance of RCF buildings based on eigenfrequency optimization, which is effective, simple to implement and efficient. The method is used to optimize a 10-storey regular building, and its effectiveness is demonstrated by nonlinear time history analyses, which show important reductions in storey drifts and lateral displacements compared to a non-optimized building. A second example for an irregular six-storey building demonstrates that the method provides benefits to a wide range of RCF structures and supports the applicability of the proposed method.
Adaptive time-sequential binary sensing for high dynamic range imaging
NASA Astrophysics Data System (ADS)
Hu, Chenhui; Lu, Yue M.
2012-06-01
We present a novel image sensor for high dynamic range imaging. The sensor performs an adaptive one-bit quantization at each pixel, with the pixel output switched from 0 to 1 only if the number of photons reaching that pixel is greater than or equal to a quantization threshold. With an oracle knowledge of the incident light intensity, one can pick an optimal threshold (for that light intensity) and the corresponding Fisher information contained in the output sequence follows closely that of an ideal unquantized sensor over a wide range of intensity values. This observation suggests the potential gains one may achieve by adaptively updating the quantization thresholds. As the main contribution of this work, we propose a time-sequential threshold-updating rule that asymptotically approaches the performance of the oracle scheme. With every threshold mapped to a number of ordered states, the dynamics of the proposed scheme can be modeled as a parametric Markov chain. We show that the frequencies of different thresholds converge to a steady-state distribution that is concentrated around the optimal choice. Moreover, numerical experiments show that the theoretical performance measures (Fisher information and Craḿer-Rao bounds) can be achieved by a maximum likelihood estimator, which is guaranteed to find globally optimal solution due to the concavity of the log-likelihood functions. Compared with conventional image sensors and the strategy that utilizes a constant single-photon threshold considered in previous work, the proposed scheme attains orders of magnitude improvement in terms of sensor dynamic ranges.
Energy drink consumption in children and early adolescents.
Gallimberti, Luigi; Buja, Alessandra; Chindamo, Sonia; Vinelli, Angela; Lazzarin, Gianna; Terraneo, Alberto; Scafato, Emauele; Baldo, Vincenzo
2013-10-01
The aim of this study was to investigate the prevalence of energy drink consumption in children and very young adolescents and to study the sociodemographic and environmental-behavioral factors associated with regular, at least once a week, energy drink consumption in early adolescence. This survey was conducted during the 2011-2012 school year in the Province of Rovigo, in the Veneto Region (northeastern Italy), and involved a sample of 916 students. The usage of energy drinks increased significantly with age, from 17.8 % among sixth graders to 56.2 % among eighth graders. Among the male student population, 16.5 % of those in the eighth grade and 6.21 % of those in the sixth grade, respectively, drank them at least once a week. The independent variables conferring a higher likelihood of being at least once-a-week energy drink consumers were smoking and alcohol consumption. Awareness of the damage caused by energy drinks emerged as a protective factor that reduced the likelihood of young students consuming such drinks. This study showed that energy drink consumption is rising steadily in children and early adolescents. Energy drink consumption was found associated with the abuse of other substances, such as tobacco and alcohol.
Yap, John Stephen; Fan, Jianqing; Wu, Rongling
2009-12-01
Estimation of the covariance structure of longitudinal processes is a fundamental prerequisite for the practical deployment of functional mapping designed to study the genetic regulation and network of quantitative variation in dynamic complex traits. We present a nonparametric approach for estimating the covariance structure of a quantitative trait measured repeatedly at a series of time points. Specifically, we adopt Huang et al.'s (2006, Biometrika 93, 85-98) approach of invoking the modified Cholesky decomposition and converting the problem into modeling a sequence of regressions of responses. A regularized covariance estimator is obtained using a normal penalized likelihood with an L(2) penalty. This approach, embedded within a mixture likelihood framework, leads to enhanced accuracy, precision, and flexibility of functional mapping while preserving its biological relevance. Simulation studies are performed to reveal the statistical properties and advantages of the proposed method. A real example from a mouse genome project is analyzed to illustrate the utilization of the methodology. The new method will provide a useful tool for genome-wide scanning for the existence and distribution of quantitative trait loci underlying a dynamic trait important to agriculture, biology, and health sciences.
Singularities in Optimal Structural Design
NASA Technical Reports Server (NTRS)
Patnaik, S. N.; Guptill, J. D.; Berke, L.
1992-01-01
Singularity conditions that arise during structural optimization can seriously degrade the performance of the optimizer. The singularities are intrinsic to the formulation of the structural optimization problem and are not associated with the method of analysis. Certain conditions that give rise to singularities have been identified in earlier papers, encompassing the entire structure. Further examination revealed more complex sets of conditions in which singularities occur. Some of these singularities are local in nature, being associated with only a segment of the structure. Moreover, the likelihood that one of these local singularities may arise during an optimization procedure can be much greater than that of the global singularity identified earlier. Examples are provided of these additional forms of singularities. A framework is also given in which these singularities can be recognized. In particular, the singularities can be identified by examination of the stress displacement relations along with the compatibility conditions and/or the displacement stress relations derived in the integrated force method of structural analysis.
Singularities in optimal structural design
NASA Technical Reports Server (NTRS)
Patnaik, S. N.; Guptill, J. D.; Berke, L.
1992-01-01
Singularity conditions that arise during structural optimization can seriously degrade the performance of the optimizer. The singularities are intrinsic to the formulation of the structural optimization problem and are not associated with the method of analysis. Certain conditions that give rise to singularities have been identified in earlier papers, encompassing the entire structure. Further examination revealed more complex sets of conditions in which singularities occur. Some of these singularities are local in nature, being associated with only a segment of the structure. Moreover, the likelihood that one of these local singularities may arise during an optimization procedure can be much greater than that of the global singularity identified earlier. Examples are provided of these additional forms of singularities. A framework is also given in which these singularities can be recognized. In particular, the singularities can be identified by examination of the stress displacement relations along with the compatibility conditions and/or the displacement stress relations derived in the integrated force method of structural analysis.
Kaleta, Dorota; Makowiec-Dąbrowska, Teresa; Dziankowska-Zaborszczyk, Elżbieta; Fronczak, Adam
2013-01-01
Improving the access to information on determinants of the smoking epidemic is essential for increasing the effectiveness of tobacco control policies. While the statistics of smoking prevalence in Poland are available, data on smoking initiation and its social correlates are still poorly described. To investigate the association of socio-demographic indicators with regular smoking initiation among adults. Data from the Global Adult Tobacco Survey (GATS) on socio-demographic and smoking-related characteristics of respondents were used. GATS is a nationally representative household survey. GATS provided data on a representative sample of 7,840 adult individuals--2,207 male and 1,321 female ever smokers. Logistic regression analysis was performed and the χ2 test for relevant calculations. Among males, the regular smoking initiation rate was significantly higher compared to females (59.2% vs. 34.2%; p<0.01). Mean age of smoking initiation was lower in men compared to women (18.4±3.6 vs. 20.0± 4.7 p < 0.01). Lack of awareness on smoking health consequences was strongly associated with initiating of regular smoking among both genders (unaware vs. aware respondents: OR = 3.0 CI 2.3-4.0; p < 0.001 in men and OR = 3.07 CI 2.3-3.9; p<0.001 in women). Older age, vocational education and unemployment were associated with regular smoking initiation among men and women. Also, not being religious considerably contributed to increased likelihood of smoking initiation in women (OR = 4.4 CI 2.5-7.7; p<0.001). The results indicate that policies focused on preventing smoking onset among Poles are needed to reduce tobacco epidemic, with the ultimate goal of translating evidence into policy.
Does Full Insurance Increase the Demand for Health Care?
Boes, Stefan; Gerfin, Michael
2016-11-01
We estimate the causal impact of having full health insurance on healthcare expenditures. We take advantage of a unique quasi-experimental setup in which deductibles and co-payments were zero in a managed care plan and nonzero in regular insurance, until a policy change forced all individuals with an active plan to cover a minimum amount of their expenses. Using panel data and a nonlinear difference-in-differences strategy, we find a demand elasticity of about -0.14 comparing full insurance with the cost-sharing model and a significant upward shift in the likelihood to generate costs. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.
On meeting capital requirements with a chance-constrained optimization model.
Atta Mills, Ebenezer Fiifi Emire; Yu, Bo; Gu, Lanlan
2016-01-01
This paper deals with a capital to risk asset ratio chance-constrained optimization model in the presence of loans, treasury bill, fixed assets and non-interest earning assets. To model the dynamics of loans, we introduce a modified CreditMetrics approach. This leads to development of a deterministic convex counterpart of capital to risk asset ratio chance constraint. We pursue the scope of analyzing our model under the worst-case scenario i.e. loan default. The theoretical model is analyzed by applying numerical procedures, in order to administer valuable insights from a financial outlook. Our results suggest that, our capital to risk asset ratio chance-constrained optimization model guarantees banks of meeting capital requirements of Basel III with a likelihood of 95 % irrespective of changes in future market value of assets.
Estimation of reflectance from camera responses by the regularized local linear model.
Zhang, Wei-Feng; Tang, Gongguo; Dai, Dao-Qing; Nehorai, Arye
2011-10-01
Because of the limited approximation capability of using fixed basis functions, the performance of reflectance estimation obtained by traditional linear models will not be optimal. We propose an approach based on the regularized local linear model. Our approach performs efficiently and knowledge of the spectral power distribution of the illuminant and the spectral sensitivities of the camera is not needed. Experimental results show that the proposed method performs better than some well-known methods in terms of both reflectance error and colorimetric error. © 2011 Optical Society of America
Statistical inference methods for sparse biological time series data.
Ndukum, Juliet; Fonseca, Luís L; Santos, Helena; Voit, Eberhard O; Datta, Susmita
2011-04-25
Comparing metabolic profiles under different biological perturbations has become a powerful approach to investigating the functioning of cells. The profiles can be taken as single snapshots of a system, but more information is gained if they are measured longitudinally over time. The results are short time series consisting of relatively sparse data that cannot be analyzed effectively with standard time series techniques, such as autocorrelation and frequency domain methods. In this work, we study longitudinal time series profiles of glucose consumption in the yeast Saccharomyces cerevisiae under different temperatures and preconditioning regimens, which we obtained with methods of in vivo nuclear magnetic resonance (NMR) spectroscopy. For the statistical analysis we first fit several nonlinear mixed effect regression models to the longitudinal profiles and then used an ANOVA likelihood ratio method in order to test for significant differences between the profiles. The proposed methods are capable of distinguishing metabolic time trends resulting from different treatments and associate significance levels to these differences. Among several nonlinear mixed-effects regression models tested, a three-parameter logistic function represents the data with highest accuracy. ANOVA and likelihood ratio tests suggest that there are significant differences between the glucose consumption rate profiles for cells that had been--or had not been--preconditioned by heat during growth. Furthermore, pair-wise t-tests reveal significant differences in the longitudinal profiles for glucose consumption rates between optimal conditions and heat stress, optimal and recovery conditions, and heat stress and recovery conditions (p-values <0.0001). We have developed a nonlinear mixed effects model that is appropriate for the analysis of sparse metabolic and physiological time profiles. The model permits sound statistical inference procedures, based on ANOVA likelihood ratio tests, for testing the significance of differences between short time course data under different biological perturbations.
Analyzing Personalized Policies for Online Biometric Verification
Sadhwani, Apaar; Yang, Yan; Wein, Lawrence M.
2014-01-01
Motivated by India’s nationwide biometric program for social inclusion, we analyze verification (i.e., one-to-one matching) in the case where we possess similarity scores for 10 fingerprints and two irises between a resident’s biometric images at enrollment and his biometric images during his first verification. At subsequent verifications, we allow individualized strategies based on these 12 scores: we acquire a subset of the 12 images, get new scores for this subset that quantify the similarity to the corresponding enrollment images, and use the likelihood ratio (i.e., the likelihood of observing these scores if the resident is genuine divided by the corresponding likelihood if the resident is an imposter) to decide whether a resident is genuine or an imposter. We also consider two-stage policies, where additional images are acquired in a second stage if the first-stage results are inconclusive. Using performance data from India’s program, we develop a new probabilistic model for the joint distribution of the 12 similarity scores and find near-optimal individualized strategies that minimize the false reject rate (FRR) subject to constraints on the false accept rate (FAR) and mean verification delay for each resident. Our individualized policies achieve the same FRR as a policy that acquires (and optimally fuses) 12 biometrics for each resident, which represents a five (four, respectively) log reduction in FRR relative to fingerprint (iris, respectively) policies previously proposed for India’s biometric program. The mean delay is sec for our proposed policy, compared to 30 sec for a policy that acquires one fingerprint and 107 sec for a policy that acquires all 12 biometrics. This policy acquires iris scans from 32–41% of residents (depending on the FAR) and acquires an average of 1.3 fingerprints per resident. PMID:24787752
Gould, G S; Stevenson, Leah; Bovill, Michelle; Oliva, Dora; Keen, Jennifer; Dimer, Lyn; Gruppetta, Maree
2018-06-02
Tobacco is a major risk factor contributing to Indigenous health disparities. Art may be a powerful and transformative tool to enable health providers to develop targeted messages for tobacco control. Indigenous and non-Indigenous staff, working in Indigenous tobacco control, attended a two-hour workshop, and were led through a process to create individual artworks. Participants completed surveys before and after the workshop. Scales compared understandings of how art can be used in tobacco control, and the likelihood of utilising arts in future programs. Three pairs of Indigenous and non-Indigenous researchers analysed the artworks, using the Four Frames (New South Wales Board of Studies), explored themes, and developed a model. Nineteen participants completed both surveys; 17 artworks were analysed. Pre- to post-workshop increases in "understanding" about the use of arts (p<0.00001) for tobacco control, and "likelihood" of use of arts in the next six months (p<0.006) were significant. Participants expressed personal and professional benefits from the workshop. Artworks demonstrated themes of optimism, the strength of family and culture, smoking as a barrier, resilience, recovery and urgency. The workshop increased the understanding and likelihood of using the arts for tobacco control. Artworks revealed contemporary challenges impacting on equity; health staff expressed optimism for being engaged in their work. SO WHAT?: The Framework Convention for Tobacco Control supports novel techniques to increase the reach and relevance of health messages for diverse populations. This study successfully demonstrated how a novel, positively-framed art-based technique proved to be advantageous for health professionals, working in an area of Indigenous tobacco control, where behavioural change can be complex. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Analyzing personalized policies for online biometric verification.
Sadhwani, Apaar; Yang, Yan; Wein, Lawrence M
2014-01-01
Motivated by India's nationwide biometric program for social inclusion, we analyze verification (i.e., one-to-one matching) in the case where we possess similarity scores for 10 fingerprints and two irises between a resident's biometric images at enrollment and his biometric images during his first verification. At subsequent verifications, we allow individualized strategies based on these 12 scores: we acquire a subset of the 12 images, get new scores for this subset that quantify the similarity to the corresponding enrollment images, and use the likelihood ratio (i.e., the likelihood of observing these scores if the resident is genuine divided by the corresponding likelihood if the resident is an imposter) to decide whether a resident is genuine or an imposter. We also consider two-stage policies, where additional images are acquired in a second stage if the first-stage results are inconclusive. Using performance data from India's program, we develop a new probabilistic model for the joint distribution of the 12 similarity scores and find near-optimal individualized strategies that minimize the false reject rate (FRR) subject to constraints on the false accept rate (FAR) and mean verification delay for each resident. Our individualized policies achieve the same FRR as a policy that acquires (and optimally fuses) 12 biometrics for each resident, which represents a five (four, respectively) log reduction in FRR relative to fingerprint (iris, respectively) policies previously proposed for India's biometric program. The mean delay is [Formula: see text] sec for our proposed policy, compared to 30 sec for a policy that acquires one fingerprint and 107 sec for a policy that acquires all 12 biometrics. This policy acquires iris scans from 32-41% of residents (depending on the FAR) and acquires an average of 1.3 fingerprints per resident.
Gabriel, Meghan Hufstader; Smith, Jaime Y; Sow, Max; Charles, Dustin; Joseph, Seth; Wilkins, Tricia Lee
2016-05-01
To document national trends of electronic medication history use in the ambulatory setting and describe the characteristics and predicting factors of providers who regularly use medication history transaction capabilities through their e-prescribing systems. The study used provider-initiated medication history data requests, electronically sent over an e-prescribing network from all 50 states and the District of Columbia. Data from 138,000 prescribers were evaluated using multivariate analyses from 2007 to 2013. Medication history use showed significant growth, increasing from 8 to 850 million history requests during the study period. Prescribers on the network for <5 years had a lower likelihood of requests than those on the network for 5 or more years. Although descriptive analyses showed that prescribers in rural areas were alongside e-prescribing, and requesting medication histories more often than those in large and small cities, these findings were not significant in multivariate analyses. Providers in orthopedic surgery and internal medicine had a higher likelihood of more requests than family practice prescribers, with 12% and 7% higher likelihood, respectively. Early adopters of e-prescribing have remained medication history users and have continually increased their volume of requests for medication histories. Despite the fact that the use of medication histories through e-prescribing networks in the ambulatory care setting has not been encouraged through federal incentive programs, there has been substantial growth in the use of medication histories offered through e-prescribing networks. © The Author 2015. Published by Oxford University Press on behalf of the American Medical Informatics Association. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Adolescent romantic relationships and change in smoking status.
Kennedy, David P; Tucker, Joan S; Pollard, Michael S; Go, Myong-Hyun; Green, Harold D
2011-04-01
Although smoking rates have decreased, smoking among adolescents continues to be a problem. Previous research has shown the importance of peer influences on adolescent smoking behavior but has mostly neglected the impact of adolescent romantic relationships. This study examines the influence of romantic relationships with smokers and non-smokers on smoking initiation and cessation over a one-year period using data from the National Longitudinal Study of Adolescent Health (Add Health). For initial non-smokers, we examined whether the total length of time in romantic relationships with smokers and non-smokers at Wave I, as well as amount of exposure to smoking through romantic partners, predicted smoking initiation at Wave II. Among initial regular smokers, we examined whether these same relationship characteristics predicted smoking cessation at Wave II. These analyses were conducted separately for respondents in any type of romantic relationship, as well as just those respondents in close romantic relationships. Results indicated that, for close romantic relationships, cessation was more likely among smokers with more time in relationships with non-smoking partners. Greater exposure to smoking through romantic partners at Wave I significantly decreased the likelihood of cessation among initial smokers and increased the likelihood of initiation among initial non-smokers. For all relationships, greater exposure to smoking through romantic partners at Wave I significantly reduced the likelihood of cessation. These associations held when controlling for best friend smoking, as well as demographic factors and school-level smoking, suggesting that peer-based smoking programs aimed at adolescents should incorporate a focus on romantic relationships. Copyright © 2010 Elsevier B.V. All rights reserved.
The importance of system band broadening in modern size exclusion chromatography.
Goyon, Alexandre; Guillarme, Davy; Fekete, Szabolcs
2017-02-20
In the last few years, highly efficient UHP-SEC columns packed with sub-3μm particles were commercialized by several providers. Besides the particle size reduction, the dimensions of modern SEC stationary phases (150×4.6mm) was also modified compared to regular SEC columns (300×6 or 300×8mm). Because the analytes are excluded from the pores in SEC, the retention factors are very low, ranging from -1
Boden, Lauren M; Boden, Stephanie A; Premkumar, Ajay; Gottschalk, Michael B; Boden, Scott D
2018-02-09
Retrospective analysis of prospectively collected data. To create a data-driven triage system stratifying patients by likelihood of undergoing spinal surgery within one year of presentation. Low back pain (LBP) and radicular lower extremity (LE) symptoms are common musculoskeletal problems. There is currently no standard data-derived triage process based on information that can be obtained prior to the initial physician-patient encounter to direct patients to the optimal physician type. We analyzed patient-reported data from 8006 patients with a chief complaint of LBP and/or LE radicular symptoms who presented to surgeons at a large multidisciplinary spine center between September 1, 2005 and June 30, 2016. Univariate and multivariate analysis identified independent risk factors for undergoing spinal surgery within one year of initial visit. A model incorporating these risk factors was created using a random sample of 80% of the total patients in our cohort, and validated on the remaining 20%. The baseline one-year surgery rate within our cohort was 39% for all patients and 42% for patients with LE symptoms. Those identified as high likelihood by the center's existing triage process had a surgery rate of 45%. The new triage scoring system proposed in this study was able to identify a high likelihood group in which 58% underwent surgery, which is a 46% higher surgery rate than in non-triaged patients and a 29% improvement from our institution's existing triage system. The data-driven triage model and scoring system derived and validated in this study (Spine Surgery Likelihood model [SSL-11]), significantly improved existing processes in predicting the likelihood of undergoing spinal surgery within one year of initial presentation. This triage system will allow centers to more selectively screen for surgical candidates and more effectively direct patients to surgeons or non-operative spine specialists. 4.
Modeling gene expression measurement error: a quasi-likelihood approach
Strimmer, Korbinian
2003-01-01
Background Using suitable error models for gene expression measurements is essential in the statistical analysis of microarray data. However, the true probabilistic model underlying gene expression intensity readings is generally not known. Instead, in currently used approaches some simple parametric model is assumed (usually a transformed normal distribution) or the empirical distribution is estimated. However, both these strategies may not be optimal for gene expression data, as the non-parametric approach ignores known structural information whereas the fully parametric models run the risk of misspecification. A further related problem is the choice of a suitable scale for the model (e.g. observed vs. log-scale). Results Here a simple semi-parametric model for gene expression measurement error is presented. In this approach inference is based an approximate likelihood function (the extended quasi-likelihood). Only partial knowledge about the unknown true distribution is required to construct this function. In case of gene expression this information is available in the form of the postulated (e.g. quadratic) variance structure of the data. As the quasi-likelihood behaves (almost) like a proper likelihood, it allows for the estimation of calibration and variance parameters, and it is also straightforward to obtain corresponding approximate confidence intervals. Unlike most other frameworks, it also allows analysis on any preferred scale, i.e. both on the original linear scale as well as on a transformed scale. It can also be employed in regression approaches to model systematic (e.g. array or dye) effects. Conclusions The quasi-likelihood framework provides a simple and versatile approach to analyze gene expression data that does not make any strong distributional assumptions about the underlying error model. For several simulated as well as real data sets it provides a better fit to the data than competing models. In an example it also improved the power of tests to identify differential expression. PMID:12659637
Hybrid Stochastic Models for Remaining Lifetime Prognosis
2004-08-01
literature for techniques and comparisons. Os- ogami and Harchol-Balter [70], Perros [73], Johnson [36], and Altiok [5] provide excellent summaries of...and type of PH-distribution approximation for c2 > 0.5 is not as obvious. In order to use the minimum distance estimation, Perros [73] indicated that...moment-matching techniques. Perros [73] indicated that the maximum likelihood and minimum distance techniques require nonlinear optimization. Johnson
Ensemble Learning Method for Hidden Markov Models
2014-12-01
Ensemble HMM landmine detector Mine signatures vary according to the mine type, mine size , and burial depth. Similarly, clutter signatures vary with soil ...approaches for the di erent K groups depending on their size and homogeneity. In particular, we investigate the maximum likelihood (ML), the minimum...propose using and optimizing various training approaches for the different K groups depending on their size and homogeneity. In particular, we
NASA Technical Reports Server (NTRS)
Wing, David J.; Ballin, Mark G.; Koczo, Stefan, Jr.; Vivona, Robert A.; Henderson, Jeffrey M.
2013-01-01
The concept of Traffic Aware Strategic Aircrew Requests (TASAR) combines Automatic Dependent Surveillance Broadcast (ADS-B) IN and airborne automation to enable user-optimal in-flight trajectory replanning and to increase the likelihood of Air Traffic Control (ATC) approval for the resulting trajectory change request. TASAR is designed as a near-term application to improve flight efficiency or other user-desired attributes of the flight while not impacting and potentially benefiting ATC. Previous work has indicated the potential for significant benefits for each TASAR-equipped aircraft. This paper will discuss the approach to minimizing TASAR's cost for implementation and accelerating readiness for near-term implementation.
Weak value amplification considered harmful
NASA Astrophysics Data System (ADS)
Ferrie, Christopher; Combes, Joshua
2014-03-01
We show using statistically rigorous arguments that the technique of weak value amplification does not perform better than standard statistical techniques for the tasks of parameter estimation and signal detection. We show that using all data and considering the joint distribution of all measurement outcomes yields the optimal estimator. Moreover, we show estimation using the maximum likelihood technique with weak values as small as possible produces better performance for quantum metrology. In doing so, we identify the optimal experimental arrangement to be the one which reveals the maximal eigenvalue of the square of system observables. We also show these conclusions do not change in the presence of technical noise.
Preference mapping of lemon lime carbonated beverages with regular and diet beverage consumers.
Leksrisompong, P P; Lopetcharat, K; Guthrie, B; Drake, M A
2013-02-01
The drivers of liking of lemon-lime carbonated beverages were investigated with regular and diet beverage consumers. Ten beverages were selected from a category survey of commercial beverages using a D-optimal procedure. Beverages were subjected to consumer testing (n = 101 regular beverage consumers, n = 100 diet beverage consumers). Segmentation of consumers was performed on overall liking scores followed by external preference mapping of selected samples. Diet beverage consumers liked 2 diet beverages more than regular beverage consumers. There were no differences in the overall liking scores between diet and regular beverage consumers for other products except for a sparkling beverage sweetened with juice which was more liked by regular beverage consumers. Three subtle but distinct consumer preference clusters were identified. Two segments had evenly distributed diet and regular beverage consumers but one segment had a greater percentage of regular beverage consumers (P < 0.05). The 3 preference segments were named: cluster 1 (C1) sweet taste and carbonation mouthfeel lovers, cluster 2 (C2) carbonation mouthfeel lovers, sweet and bitter taste acceptors, and cluster 3 (C3) bitter taste avoiders, mouthfeel and sweet taste lovers. User status (diet or regular beverage consumers) did not have a large impact on carbonated beverage liking. Instead, mouthfeel attributes were major drivers of liking when these beverages were tested in a blind tasting. Preference mapping of lemon-lime carbonated beverage with diet and regular beverage consumers allowed the determination of drivers of liking of both populations. The understanding of how mouthfeel attributes, aromatics, and basic tastes impact liking or disliking of products was achieved. Preference drivers established in this study provide product developers of carbonated lemon-lime beverages with additional information to develop beverages that may be suitable for different groups of consumers. © 2013 Institute of Food Technologists®
Time-Optimized High-Resolution Readout-Segmented Diffusion Tensor Imaging
Reishofer, Gernot; Koschutnig, Karl; Langkammer, Christian; Porter, David; Jehna, Margit; Enzinger, Christian; Keeling, Stephen; Ebner, Franz
2013-01-01
Readout-segmented echo planar imaging with 2D navigator-based reacquisition is an uprising technique enabling the sampling of high-resolution diffusion images with reduced susceptibility artifacts. However, low signal from the small voxels and long scan times hamper the clinical applicability. Therefore, we introduce a regularization algorithm based on total variation that is applied directly on the entire diffusion tensor. The spatially varying regularization parameter is determined automatically dependent on spatial variations in signal-to-noise ratio thus, avoiding over- or under-regularization. Information about the noise distribution in the diffusion tensor is extracted from the diffusion weighted images by means of complex independent component analysis. Moreover, the combination of those features enables processing of the diffusion data absolutely user independent. Tractography from in vivo data and from a software phantom demonstrate the advantage of the spatially varying regularization compared to un-regularized data with respect to parameters relevant for fiber-tracking such as Mean Fiber Length, Track Count, Volume and Voxel Count. Specifically, for in vivo data findings suggest that tractography results from the regularized diffusion tensor based on one measurement (16 min) generates results comparable to the un-regularized data with three averages (48 min). This significant reduction in scan time renders high resolution (1×1×2.5 mm3) diffusion tensor imaging of the entire brain applicable in a clinical context. PMID:24019951
Regularized Dual Averaging Image Reconstruction for Full-Wave Ultrasound Computed Tomography.
Matthews, Thomas P; Wang, Kun; Li, Cuiping; Duric, Neb; Anastasio, Mark A
2017-05-01
Ultrasound computed tomography (USCT) holds great promise for breast cancer screening. Waveform inversion-based image reconstruction methods account for higher order diffraction effects and can produce high-resolution USCT images, but are computationally demanding. Recently, a source encoding technique has been combined with stochastic gradient descent (SGD) to greatly reduce image reconstruction times. However, this method bundles the stochastic data fidelity term with the deterministic regularization term. This limitation can be overcome by replacing SGD with a structured optimization method, such as the regularized dual averaging method, that exploits knowledge of the composition of the cost function. In this paper, the dual averaging method is combined with source encoding techniques to improve the effectiveness of regularization while maintaining the reduced reconstruction times afforded by source encoding. It is demonstrated that each iteration can be decomposed into a gradient descent step based on the data fidelity term and a proximal update step corresponding to the regularization term. Furthermore, the regularization term is never explicitly differentiated, allowing nonsmooth regularization penalties to be naturally incorporated. The wave equation is solved by the use of a time-domain method. The effectiveness of this approach is demonstrated through computer simulation and experimental studies. The results suggest that the dual averaging method can produce images with less noise and comparable resolution to those obtained by the use of SGD.
The Effect of Post-Resistance Exercise Amino Acids on Plasma MCP-1 and CCR2 Expression
Wells, Adam J.; Hoffman, Jay R.; Jajtner, Adam R.; Varanoske, Alyssa N.; Church, David D.; Gonzalez, Adam M.; Townsend, Jeremy R.; Boone, Carleigh H.; Baker, Kayla M.; Beyer, Kyle S.; Mangine, Gerald T.; Oliveira, Leonardo P.; Fukuda, David H.; Stout, Jeffrey R.
2016-01-01
The recruitment and infiltration of classical monocytes into damaged muscle is critical for optimal tissue remodeling. This study examined the effects of an amino acid supplement on classical monocyte recruitment following an acute bout of lower body resistance exercise. Ten resistance-trained men (24.7 ± 3.4 years; 90.1 ± 11.3 kg; 176.0 ± 4.9 cm) ingested supplement (SUPP) or placebo (PL) immediately post-exercise in a randomized, cross-over design. Blood samples were obtained at baseline (BL), immediately (IP), 30-min (30P), 1-h (1H), 2-h (2H), and 5-h (5H) post-exercise to assess plasma concentrations of monocyte chemoattractant protein 1 (MCP-1), myoglobin, cortisol and insulin concentrations; and expressions of C-C chemokine receptor-2 (CCR2), and macrophage-1 antigen (CD11b) on classical monocytes. Magnitude-based inferences were used to provide inferences on the true effects of SUPP compared to PL. Changes in myoglobin, cortisol, and insulin concentrations were similar between treatments. Compared to PL, plasma MCP-1 was “very likely greater” (98.1% likelihood effect) in SUPP at 2H. CCR2 expression was “likely greater” at IP (84.9% likelihood effect), “likely greater” at 1H (87.7% likelihood effect), “very likely greater” at 2H (97.0% likelihood effect), and “likely greater” at 5H (90.1% likelihood effect) in SUPP, compared to PL. Ingestion of SUPP did not influence CD11b expression. Ingestion of an amino acid supplement immediately post-exercise appears to help maintain plasma MCP-1 concentrations and augment CCR2 expression in resistance trained men. PMID:27384580
Co-Optimization of Fuels & Engines: Misfueling Mitigation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sluder, C. Scott; Moriarty, Kristi; Jehlik, Forrest
This report examines diesel/gasoline misfueling, leaded/unleaded gasoline misfueling, E85/E15/E10 misfueling, and consumer selection of regular grade fuel over premium grade fuel in an effort to evaluate misfueling technologies that may be needed to support the introduction of vehicles optimized for a new fuel in the marketplace. This is one of a series of reports produced as a result of the Co-Optimization of Fuels & Engines (Co-Optima) project, a Department of Energy-sponsored multi-agency project to accelerate the introduction of affordable, scalable, and sustainable biofuels and high-efficiency, low-emission vehicle engines.
Design of a multiple kernel learning algorithm for LS-SVM by convex programming.
Jian, Ling; Xia, Zhonghang; Liang, Xijun; Gao, Chuanhou
2011-06-01
As a kernel based method, the performance of least squares support vector machine (LS-SVM) depends on the selection of the kernel as well as the regularization parameter (Duan, Keerthi, & Poo, 2003). Cross-validation is efficient in selecting a single kernel and the regularization parameter; however, it suffers from heavy computational cost and is not flexible to deal with multiple kernels. In this paper, we address the issue of multiple kernel learning for LS-SVM by formulating it as semidefinite programming (SDP). Furthermore, we show that the regularization parameter can be optimized in a unified framework with the kernel, which leads to an automatic process for model selection. Extensive experimental validations are performed and analyzed. Copyright © 2011 Elsevier Ltd. All rights reserved.
Phase retrieval using regularization method in intensity correlation imaging
NASA Astrophysics Data System (ADS)
Li, Xiyu; Gao, Xin; Tang, Jia; Lu, Changming; Wang, Jianli; Wang, Bin
2014-11-01
Intensity correlation imaging(ICI) method can obtain high resolution image with ground-based low precision mirrors, in the imaging process, phase retrieval algorithm should be used to reconstituted the object's image. But the algorithm now used(such as hybrid input-output algorithm) is sensitive to noise and easy to stagnate. However the signal-to-noise ratio of intensity interferometry is low especially in imaging astronomical objects. In this paper, we build the mathematical model of phase retrieval and simplified it into a constrained optimization problem of a multi-dimensional function. New error function was designed by noise distribution and prior information using regularization method. The simulation results show that the regularization method can improve the performance of phase retrieval algorithm and get better image especially in low SNR condition
Body weight gain induced by a newer antipsychotic agent reversed as negative symptoms improved.
Koga, M; Nakayama, K
2005-07-01
We describe a patient in whom improvement in negative symptoms contributed to early weight loss and subsequent long-term improvement in weight management. Case report. A 26-year-old woman with schizophrenia gained 7 kg over the course of 1 year after starting treatment with olanzapine. However, as negative symptoms gradually improved with treatment, she became motivated to diet and exercise regularly. She quickly lost 9 kg and subsequently maintained optimal weight (55 kg; body mass index, 24.1 kg/m(2) ). Important strategies for minimizing weight gain in patients taking antipsychotic agents include improving negative symptoms of avolition and apathy, regular monitoring of body weight and potential medical consequences of overweight and obesity, and educating the patient about the importance of diet and regular exercise.
NASA Astrophysics Data System (ADS)
Karimi, Milad; Moradlou, Fridoun; Hajipour, Mojtaba
2018-10-01
This paper is concerned with a backward heat conduction problem with time-dependent thermal diffusivity factor in an infinite "strip". This problem is drastically ill-posed which is caused by the amplified infinitely growth in the frequency components. A new regularization method based on the Meyer wavelet technique is developed to solve the considered problem. Using the Meyer wavelet technique, some new stable estimates are proposed in the Hölder and Logarithmic types which are optimal in the sense of given by Tautenhahn. The stability and convergence rate of the proposed regularization technique are proved. The good performance and the high-accuracy of this technique is demonstrated through various one and two dimensional examples. Numerical simulations and some comparative results are presented.
The Role of Physical Activity in Preconception, Pregnancy and Postpartum Health.
Harrison, Cheryce L; Brown, Wendy J; Hayman, Melanie; Moran, Lisa J; Redman, Leanne M
2016-03-01
The rise in obesity and associated morbidity is currently one of our greatest public health challenges. Women represent a high risk group for weight gain with associated metabolic, cardiovascular, reproductive and psychological health impacts. Regular physical activity is fundamental for health and well-being with protective benefits across the spectrum of women's health. Preconception, pregnancy and the early postpartum period represent opportune windows to engage women in regular physical activity to optimize health and prevent weight gain with added potential to transfer behavior change more broadly to children and families. This review summarizes the current evidence for the role of physical activity for women in relation to preconception (infertility, assisted reproductive therapy, polycystic ovary syndrome, weight gain prevention and psychological well-being) pregnancy (prevention of excess gestational weight gain, gestational diabetes and preeclampsia as well as labor and neonatal outcomes) and postpartum (lactation and breastfeeding, postpartum weight retention and depression) health. Beneficial outcomes validate the importance of regular physical activity, yet key methodological gaps highlight the need for large, high-quality studies to clarify the optimal type, frequency, duration and intensity of physical activity required for beneficial health outcomes during preconception, pregnancy and postpartum. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.
Spectral turning bands for efficient Gaussian random fields generation on GPUs and accelerators
NASA Astrophysics Data System (ADS)
Hunger, L.; Cosenza, B.; Kimeswenger, S.; Fahringer, T.
2015-11-01
A random field (RF) is a set of correlated random variables associated with different spatial locations. RF generation algorithms are of crucial importance for many scientific areas, such as astrophysics, geostatistics, computer graphics, and many others. Current approaches commonly make use of 3D fast Fourier transform (FFT), which does not scale well for RF bigger than the available memory; they are also limited to regular rectilinear meshes. We introduce random field generation with the turning band method (RAFT), an RF generation algorithm based on the turning band method that is optimized for massively parallel hardware such as GPUs and accelerators. Our algorithm replaces the 3D FFT with a lower-order, one-dimensional FFT followed by a projection step and is further optimized with loop unrolling and blocking. RAFT can easily generate RF on non-regular (non-uniform) meshes and efficiently produce fields with mesh sizes bigger than the available device memory by using a streaming, out-of-core approach. Our algorithm generates RF with the correct statistical behavior and is tested on a variety of modern hardware, such as NVIDIA Tesla, AMD FirePro and Intel Phi. RAFT is faster than the traditional methods on regular meshes and has been successfully applied to two real case scenarios: planetary nebulae and cosmological simulations.
Learning-dependent plasticity with and without training in the human brain.
Zhang, Jiaxiang; Kourtzi, Zoe
2010-07-27
Long-term experience through development and evolution and shorter-term training in adulthood have both been suggested to contribute to the optimization of visual functions that mediate our ability to interpret complex scenes. However, the brain plasticity mechanisms that mediate the detection of objects in cluttered scenes remain largely unknown. Here, we combine behavioral and functional MRI (fMRI) measurements to investigate the human-brain mechanisms that mediate our ability to learn statistical regularities and detect targets in clutter. We show two different routes to visual learning in clutter with discrete brain plasticity signatures. Specifically, opportunistic learning of regularities typical in natural contours (i.e., collinearity) can occur simply through frequent exposure, generalize across untrained stimulus features, and shape processing in occipitotemporal regions implicated in the representation of global forms. In contrast, learning to integrate discontinuities (i.e., elements orthogonal to contour paths) requires task-specific training (bootstrap-based learning), is stimulus-dependent, and enhances processing in intraparietal regions implicated in attention-gated learning. We propose that long-term experience with statistical regularities may facilitate opportunistic learning of collinear contours, whereas learning to integrate discontinuities entails bootstrap-based training for the detection of contours in clutter. These findings provide insights in understanding how long-term experience and short-term training interact to shape the optimization of visual recognition processes.
Gaitanis, Anastasios; Kastis, George A; Vlastou, Elena; Bouziotis, Penelope; Verginis, Panayotis; Anagnostopoulos, Constantinos D
2017-08-01
The Tera-Tomo 3D image reconstruction algorithm (a version of OSEM), provided with the Mediso nanoScan® PC (PET8/2) small-animal positron emission tomograph (PET)/x-ray computed tomography (CT) scanner, has various parameter options such as total level of regularization, subsets, and iterations. Also, the acquisition time in PET plays an important role. This study aims to assess the performance of this new small-animal PET/CT scanner for different acquisition times and reconstruction parameters, for 2-deoxy-2-[ 18 F]fluoro-D-glucose ([ 18 F]FDG) and Ga-68, under the NEMA NU 4-2008 standards. Various image quality metrics were calculated for different realizations of [ 18 F]FDG and Ga-68 filled image quality (IQ) phantoms. [ 18 F]FDG imaging produced improved images over Ga-68. The best compromise for the optimization of all image quality factors is achieved for at least 30 min acquisition and image reconstruction with 52 iteration updates combined with a high regularization level. A high regularization level at 52 iteration updates and 30 min acquisition time were found to optimize most of the figures of merit investigated.
Boundary Regularity for the Porous Medium Equation
NASA Astrophysics Data System (ADS)
Björn, Anders; Björn, Jana; Gianazza, Ugo; Siljander, Juhana
2018-05-01
We study the boundary regularity of solutions to the porous medium equation {u_t = Δ u^m} in the degenerate range {m > 1} . In particular, we show that in cylinders the Dirichlet problem with positive continuous boundary data on the parabolic boundary has a solution which attains the boundary values, provided that the spatial domain satisfies the elliptic Wiener criterion. This condition is known to be optimal, and it is a consequence of our main theorem which establishes a barrier characterization of regular boundary points for general—not necessarily cylindrical—domains in {{R}^{n+1}} . One of our fundamental tools is a new strict comparison principle between sub- and superparabolic functions, which makes it essential for us to study both nonstrict and strict Perron solutions to be able to develop a fruitful boundary regularity theory. Several other comparison principles and pasting lemmas are also obtained. In the process we obtain a rather complete picture of the relation between sub/superparabolic functions and weak sub/supersolutions.
Gopi, Varun P; Palanisamy, P; Wahid, Khan A; Babyn, Paul; Cooper, David
2013-01-01
Micro-computed tomography (micro-CT) plays an important role in pre-clinical imaging. The radiation from micro-CT can result in excess radiation exposure to the specimen under test, hence the reduction of radiation from micro-CT is essential. The proposed research focused on analyzing and testing an alternating direction augmented Lagrangian (ADAL) algorithm to recover images from random projections using total variation (TV) regularization. The use of TV regularization in compressed sensing problems makes the recovered image quality sharper by preserving the edges or boundaries more accurately. In this work TV regularization problem is addressed by ADAL which is a variant of the classic augmented Lagrangian method for structured optimization. The per-iteration computational complexity of the algorithm is two fast Fourier transforms, two matrix vector multiplications and a linear time shrinkage operation. Comparison of experimental results indicate that the proposed algorithm is stable, efficient and competitive with the existing algorithms for solving TV regularization problems. Copyright © 2013 Elsevier Ltd. All rights reserved.