Dimensional regularization in configuration space
Bollini, C.G. |; Giambiagi, J.J.
1996-05-01
Dimensional regularization is introduced in configuration space by Fourier transforming in {nu} dimensions the perturbative momentum space Green functions. For this transformation, the Bochner theorem is used; no extra parameters, such as those of Feynman or Bogoliubov and Shirkov, are needed for convolutions. The regularized causal functions in {ital x} space have {nu}-dependent moderated singularities at the origin. They can be multiplied together and Fourier transformed (Bochner) without divergence problems. The usual ultraviolet divergences appear as poles of the resultant analytic functions of {nu}. Several examples are discussed. {copyright} {ital 1996 The American Physical Society.}
Regular Decompositions for H(div) Spaces
Kolev, Tzanio; Vassilevski, Panayot
2012-01-01
We study regular decompositions for H(div) spaces. In particular, we show that such regular decompositions are closely related to a previously studied “inf-sup” condition for parameter-dependent Stokes problems, for which we provide an alternative, more direct, proof.
Prox-regular functions in Hilbert spaces
NASA Astrophysics Data System (ADS)
Bernard, Frédéric; Thibault, Lionel
2005-03-01
This paper studies the prox-regularity concept for functions in the general context of Hilbert space. In particular, a subdifferential characterization is established as well as several other properties. It is also shown that the Moreau envelopes of such functions are continuously differentiable.
Model Spaces of Regularity Structures for Space-Fractional SPDEs
NASA Astrophysics Data System (ADS)
Berglund, Nils; Kuehn, Christian
2017-07-01
We study model spaces, in the sense of Hairer, for stochastic partial differential equations involving the fractional Laplacian. We prove that the fractional Laplacian is a singular kernel suitable to apply the theory of regularity structures. Our main contribution is to study the dependence of the model space for a regularity structure on the three-parameter problem involving the spatial dimension, the polynomial order of the nonlinearity, and the exponent of the fractional Laplacian. The goal is to investigate the growth of the model space under parameter variation. In particular, we prove several results in the approaching subcriticality limit leading to universal growth exponents of the regularity structure. A key role is played by the viewpoint that model spaces can be identified with families of rooted trees. Our proofs are based upon a geometrical construction similar to Newton polygons for classical Taylor series and various combinatorial arguments. We also present several explicit examples listing all elements with negative homogeneity by implementing a new symbolic software package to work with regularity structures. We use this package to illustrate our analytical results and to obtain new conjectures regarding coarse-grained network measures for model spaces.
Improved Efficacy of Temporally Non-Regular Deep Brain Stimulation in Parkinson's Disease
Brocker, David T; Swan, Brandon D; Turner, Dennis A; Gross, Robert E; Tatter, Stephen B; Koop, Mandy Miller; Bronte-Stewart, Helen; Grill, Warren M
2012-01-01
High frequency deep brain stimulation is an effective therapy for motor symptoms in Parkinson's disease. However, the relative clinical efficacy of regular versus non-regular temporal patterns of stimulation in Parkinson's disease remains unclear. To determine the temporal characteristics of non-regular temporal patterns of stimulation important for treatment of Parkinson's disease, we compared the efficacy of temporally regular stimulation with four non-regular patterns of stimulation in subjects with Parkinson's disease using an alternating finger tapping task. The patterns of stimulation were also evaluated in a biophysical model of the parkinsonian basal ganglia that exhibited prominent oscillatory activity in the beta frequency range. The temporal patterns of stimulation differentially improved motor task performance. Three of the non-regular patterns of stimulation improved performance of the finger tapping task more than temporally regular stimulation. In the computational model all patterns of deep brain stimulation suppressed beta band oscillatory activity, and the degree of suppression was strongly correlated with the clinical efficacy across stimulation patterns. The three non-regular patterns of stimulation that improved motor performance over regular stimulation also suppressed beta band oscillatory activity in the computational model more effectively than regular stimulation. These data demonstrate that the temporal pattern of stimulation is an important consideration for the clinical efficacy of deep brain stimulation in Parkinson's disease. Furthermore, non-regular patterns of stimulation may ameliorate motor symptoms and suppress pathological rhythmic activity in the basal ganglia more effectively than regular stimulation. Therefore, non-regular patterns of deep brain stimulation may have useful clinical and experimental applications. PMID:23022917
Semisupervised Support Vector Machines With Tangent Space Intrinsic Manifold Regularization.
Sun, Shiliang; Xie, Xijiong
2016-09-01
Semisupervised learning has been an active research topic in machine learning and data mining. One main reason is that labeling examples is expensive and time-consuming, while there are large numbers of unlabeled examples available in many practical problems. So far, Laplacian regularization has been widely used in semisupervised learning. In this paper, we propose a new regularization method called tangent space intrinsic manifold regularization. It is intrinsic to data manifold and favors linear functions on the manifold. Fundamental elements involved in the formulation of the regularization are local tangent space representations, which are estimated by local principal component analysis, and the connections that relate adjacent tangent spaces. Simultaneously, we explore its application to semisupervised classification and propose two new learning algorithms called tangent space intrinsic manifold regularized support vector machines (TiSVMs) and tangent space intrinsic manifold regularized twin SVMs (TiTSVMs). They effectively integrate the tangent space intrinsic manifold regularization consideration. The optimization of TiSVMs can be solved by a standard quadratic programming, while the optimization of TiTSVMs can be solved by a pair of standard quadratic programmings. The experimental results of semisupervised classification problems show the effectiveness of the proposed semisupervised learning algorithms.
On a space-frequency regularization for source reconstruction
NASA Astrophysics Data System (ADS)
Aucejo, Mathieu; De Smet, Olivier
2016-09-01
To identify mechanical sources acting on a structure, Tikhonov-like regularizations are generally used. These approaches, referred to as additive regularizations, require the calculation of a regularization parameter from adapted selection procedures such as the L- curve method. However, such selection procedures can be computationally intensive. In this contribution, a space-frequency multiplicative regularization is introduced. The proposed strategy has the merit of avoiding the need for the determination of a regularization parameter beforehand, while taking advantage of one's prior knowledge of the type of the sources as well as the nature of the excitation signal. By construction, the regularized solution is computed in an iterative manner, which allows adapting the importance of the regularization term all along the resolution process. The validity of the proposed approach is illustrated numerically on a simply supported beam.
On almost regularity and π-normality of topological spaces
NASA Astrophysics Data System (ADS)
Saad Thabit, Sadeq Ali; Kamarulhaili, Hailiza
2012-05-01
π-Normality is a weaker version of normality. It was introduced by Kalantan in 2008. π-Normality lies between normality and almost normality (resp. quasi-normality). The importance of this topological property is that it behaves slightly different from normality and almost normality (quasi-normality). π-Normality is neither a productive nor a hereditary property in general. In this paper, some properties of almost regular spaces are presented. In particular, a few results on almost regular spaces are improved. Some relationships between almost regularity and π-normality are presented. π-Generalized closed sets are used to obtain a characterization and preservation theorems of π-normal spaces. Also, we investigate that an almost regular Lindelöf space (resp. with σ-locally finite base) is not necessarily π-normal by giving two counterexamples. An almost normality of the Rational Sequence topology is proved.
Maximal regularity for perturbed integral equations on periodic Lebesgue spaces
NASA Astrophysics Data System (ADS)
Lizama, Carlos; Poblete, Verónica
2008-12-01
We characterize the maximal regularity of periodic solutions for an additive perturbed integral equation with infinite delay in the vector-valued Lebesgue spaces. Our method is based on operator-valued Fourier multipliers. We also study resonances, characterizing the existence of solutions in terms of a compatibility condition on the forcing term.
Baumbauer, Kyle M.; Lee, Kuan H.; Puga, Denise A.; Woller, Sarah A.; Hughes, Abbey J.; Grau, James W.
2012-01-01
Nociceptive plasticity and central sensitization within the spinal cord depend on neurobiological mechanisms implicated in learning and memory in higher neural systems, suggesting that the factors that impact brain-mediated learning and memory could modulate how stimulation affects spinal systems. One such factor is temporal regularity (predictability). The present paper shows that intermittent hindleg shock has opposing effects in spinally transected rats depending upon whether shock is presented in a regular or irregular (variable) manner. Variable intermittent legshock (900 shocks) enhanced mechanical reactivity to von Frey stimuli (hyperreactivity), whereas 900 fixed spaced legshocks produced hyporeactivity. The impact of fixed spaced shock depended upon the duration of exposure; a brief exposure (36 shocks) induced hyperreactivity whereas an extended exposure (900 shocks) produced hyporeactivity. The enhanced reactivity observed after variable shock was most evident 60–180 min after treatment. Fixed and variable intermittent stimulation applied to the sciatic nerve, or the tail, yielded a similar pattern of results. Stimulation had no effect on thermal reactivity. Exposure to fixed spaced shock, but not variable shock, attenuated the enhanced mechanical reactivity (EMR) produced by treatment with hindpaw capsaicin. The effect of fixed spaced stimulation lasted 24 hr. Treatment with fixed spaced shock also attenuated the maintenance of capsaicin-induced EMR. The results show that variable intermittent shock enhances mechanical reactivity, while an extended exposure to fixed spaced shock has the opposite effect on mechanical reactivity and attenuates capsaicin-induced EMR. PMID:23036621
Low thrust space vehicle trajectory optimization using regularized variables
NASA Technical Reports Server (NTRS)
Schwenzfeger, K. J.
1974-01-01
Optimizing the trajectory of a low thrust space vehicle usually means solving a nonlinear two point boundary value problem. In general, accuracy requirements necessitate extensive computation times. In celestial mechanics, regularizing transformations of the equations of motion are used to eliminate computational and analytical problems that occur during close approaches to gravitational force centers. It was shown in previous investigations that regularization in the formulation of the trajectory optimization problem may reduce the computation time. In this study, a set of regularized equations describing the optimal trajectory of a continuously thrusting space vehicle is derived. The computational characteristics of the set are investigated and compared to the classical Newtonian unregularized set of equations. The comparison is made for low thrust, minimum time, escape trajectories and numerical calculations of Keplerian orbits. The comparison indicates that in the cases investigated for bad initial guesses of the known boundary values a remarkable reduction in the computation time was achieved. Furthermore, the investigated set of regularized equations shows high numerical stability even for long duration flights and is less sensitive to errors in the guesses of the unknown boundary values.
Couto, João; Grill, Warren M
2016-01-01
Deep brain stimulation (DBS) is an established therapy for movement disorders, including tremor, dystonia, and Parkinson's disease, but the mechanisms of action are not well understood. Symptom suppression by DBS typically requires stimulation frequencies ≥100 Hz, but when the frequency is increased above ~2 kHz, the effectiveness in tremor suppression declines (Benabid et al., 1991). We sought to test the hypothesis that the decline in efficacy at high frequencies is associated with desynchronization of the activity generated within a population of stimulated neurons. Regularization of neuronal firing is strongly correlated with tremor suppression by DBS, and desynchronization would disrupt the regularization of neuronal activity. We implemented computational models of CNS axons with either deterministic or stochastic membrane dynamics, and quantified the response of populations of model nerve fibers to extracellular stimulation at different frequencies and amplitudes. As stimulation frequency was increased from 2 to 80 Hz the regularity of neuronal firing increased (as assessed with direct estimates of entropy), in accord with the clinical effects on tremor of increasing stimulation frequency (Kuncel et al., 2006). Further, at frequencies between 80 and 500 Hz, increasing the stimulation amplitude (i.e., the proportion of neurons activated by the stimulus) increased the regularity of neuronal activity across the population, in accord with the clinical effects on tremor of stimulation amplitude (Kuncel et al., 2007). However, at stimulation frequencies above 1 kHz the regularity of neuronal firing declined due to irregular patterns of action potential generation and conduction block. The reductions in neuronal regularity that occurred at high frequencies paralleled the previously reported decline in tremor reduction and may be responsible for the loss of efficacy of DBS at very high frequencies. This analysis provides further support for the hypothesis that
Couto, João; Grill, Warren M.
2016-01-01
Deep brain stimulation (DBS) is an established therapy for movement disorders, including tremor, dystonia, and Parkinson's disease, but the mechanisms of action are not well understood. Symptom suppression by DBS typically requires stimulation frequencies ≥100 Hz, but when the frequency is increased above ~2 kHz, the effectiveness in tremor suppression declines (Benabid et al., 1991). We sought to test the hypothesis that the decline in efficacy at high frequencies is associated with desynchronization of the activity generated within a population of stimulated neurons. Regularization of neuronal firing is strongly correlated with tremor suppression by DBS, and desynchronization would disrupt the regularization of neuronal activity. We implemented computational models of CNS axons with either deterministic or stochastic membrane dynamics, and quantified the response of populations of model nerve fibers to extracellular stimulation at different frequencies and amplitudes. As stimulation frequency was increased from 2 to 80 Hz the regularity of neuronal firing increased (as assessed with direct estimates of entropy), in accord with the clinical effects on tremor of increasing stimulation frequency (Kuncel et al., 2006). Further, at frequencies between 80 and 500 Hz, increasing the stimulation amplitude (i.e., the proportion of neurons activated by the stimulus) increased the regularity of neuronal activity across the population, in accord with the clinical effects on tremor of stimulation amplitude (Kuncel et al., 2007). However, at stimulation frequencies above 1 kHz the regularity of neuronal firing declined due to irregular patterns of action potential generation and conduction block. The reductions in neuronal regularity that occurred at high frequencies paralleled the previously reported decline in tremor reduction and may be responsible for the loss of efficacy of DBS at very high frequencies. This analysis provides further support for the hypothesis that
Regularity and Predictability of Human Mobility in Personal Space
Austin, Daniel; Cross, Robin M.; Hayes, Tamara; Kaye, Jeffrey
2014-01-01
Fundamental laws governing human mobility have many important applications such as forecasting and controlling epidemics or optimizing transportation systems. These mobility patterns, studied in the context of out of home activity during travel or social interactions with observations recorded from cell phone use or diffusion of money, suggest that in extra-personal space humans follow a high degree of temporal and spatial regularity – most often in the form of time-independent universal scaling laws. Here we show that mobility patterns of older individuals in their home also show a high degree of predictability and regularity, although in a different way than has been reported for out-of-home mobility. Studying a data set of almost 15 million observations from 19 adults spanning up to 5 years of unobtrusive longitudinal home activity monitoring, we find that in-home mobility is not well represented by a universal scaling law, but that significant structure (predictability and regularity) is uncovered when explicitly accounting for contextual data in a model of in-home mobility. These results suggest that human mobility in personal space is highly stereotyped, and that monitoring discontinuities in routine room-level mobility patterns may provide an opportunity to predict individual human health and functional status or detect adverse events and trends. PMID:24587302
Regularity and predictability of human mobility in personal space.
Austin, Daniel; Cross, Robin M; Hayes, Tamara; Kaye, Jeffrey
2014-01-01
Fundamental laws governing human mobility have many important applications such as forecasting and controlling epidemics or optimizing transportation systems. These mobility patterns, studied in the context of out of home activity during travel or social interactions with observations recorded from cell phone use or diffusion of money, suggest that in extra-personal space humans follow a high degree of temporal and spatial regularity - most often in the form of time-independent universal scaling laws. Here we show that mobility patterns of older individuals in their home also show a high degree of predictability and regularity, although in a different way than has been reported for out-of-home mobility. Studying a data set of almost 15 million observations from 19 adults spanning up to 5 years of unobtrusive longitudinal home activity monitoring, we find that in-home mobility is not well represented by a universal scaling law, but that significant structure (predictability and regularity) is uncovered when explicitly accounting for contextual data in a model of in-home mobility. These results suggest that human mobility in personal space is highly stereotyped, and that monitoring discontinuities in routine room-level mobility patterns may provide an opportunity to predict individual human health and functional status or detect adverse events and trends.
Validity and Regularization of Classical Half-Space Equations
NASA Astrophysics Data System (ADS)
Li, Qin; Lu, Jianfeng; Sun, Weiran
2017-01-01
Recent result (Wu and Guo in Commun Math Phys 336(3):1473-1553, 2015) has shown that over the 2D unit disk, the classical half-space equation (CHS) for the neutron transport does not capture the correct boundary layer behaviour as long believed. In this paper we develop a regularization technique for CHS to any arbitrary order and use its first-order regularization to show that in the case of the 2D unit disk, although CHS misrepresents the boundary layer behaviour, it does give the correct boundary condition for the interior macroscopic (Laplace) equation. Therefore CHS is still a valid equation to recover the correct boundary condition for the interior Laplace equation over the 2D unit disk.
NASA Astrophysics Data System (ADS)
Inose, Yuta; Ema, Kazuhiro; Kishino, Katsumi
2017-08-01
We report the dependence of randomness in sample configuration on stimulated emission phenomena in two-dimensional nanocolumn arrays. From the wavelength selectivity of the photoluminescence, we found that the stimulated emission is apparently related to a distributed feedback mechanism. By comparing the emission behavior between two regularly arranged InGaN/GaN nanocolumn samples with different degrees of randomness, we found that localization effects become prominent if the sample array has any randomness, even in an almost perfect sample. Several modes are localized at different areas in the nanostructures and partially overlap in space, and they compete with each other, especially in a slightly imperfect sample. In addition to the randomness dependence, by observing the wave number space images of the photoluminescence, we confirmed that the stimulated emission phenomena in the crystal arrays are generated by Bragg diffraction at photonic band edges, though the modes have some degree of variability via the sample randomness.
Aeroacoustoelasticity in state-space format using CHIEF regularization
NASA Astrophysics Data System (ADS)
Gennaretti, M.; Iemma, U.
2003-06-01
This paper deals with aeroacoustoelastic modeling for analysis of the acoustic field inside an aircraft cabin. The aim is the identification of a state-space format for aeroacoustoelasticity equations applicable, for instance, for synthesis of an active control law devoted to cabin noise abatement. Specifically, attention is focused on the development of the aeroelastic operator, starting from a boundary integral equation method for the exterior compressible-aerodynamics solution. As is well known, in such a type of application of the boundary integral equation method, singularities occur in the algebraic equations resulting from discretization of the integral operator. Here, the discretized aerodynamic operator is regularized by using the CHIEF technique, that consists of augmenting the algebraic problem with homogeneous conditions at points in the interior domain (the cabin space, in our problem). Then, in order to obtain the state-space format model of the aeroacoustoelastic operator, the resulting trascendental aerodynamic transfer functions between structural Lagrangean variables and generalized aerodynamic forces are approximated through rational polynomials, and the additional aerodynamic states induced by their poles are included in the set of state-space variables.
Spherically Symmetric Space Time with Regular de Sitter Center
NASA Astrophysics Data System (ADS)
Dymnikova, Irina
We formulate the requirements which lead to the existence of a class of globally regular solutions of the minimally coupled GR equations asymptotically de Sitter at the center.
Mathematical strategies for filtering complex systems: Regularly spaced sparse observations
Harlim, J. Majda, A.J.
2008-05-01
Real time filtering of noisy turbulent signals through sparse observations on a regularly spaced mesh is a notoriously difficult and important prototype filtering problem. Simpler off-line test criteria are proposed here as guidelines for filter performance for these stiff multi-scale filtering problems in the context of linear stochastic partial differential equations with turbulent solutions. Filtering turbulent solutions of the stochastically forced dissipative advection equation through sparse observations is developed as a stringent test bed for filter performance with sparse regular observations. The standard ensemble transform Kalman filter (ETKF) has poor skill on the test bed and even suffers from filter divergence, surprisingly, at observable times with resonant mean forcing and a decaying energy spectrum in the partially observed signal. Systematic alternative filtering strategies are developed here including the Fourier Domain Kalman Filter (FDKF) and various reduced filters called Strongly Damped Approximate Filter (SDAF), Variance Strongly Damped Approximate Filter (VSDAF), and Reduced Fourier Domain Kalman Filter (RFDKF) which operate only on the primary Fourier modes associated with the sparse observation mesh while nevertheless, incorporating into the approximate filter various features of the interaction with the remaining modes. It is shown below that these much cheaper alternative filters have significant skill on the test bed of turbulent solutions which exceeds ETKF and in various regimes often exceeds FDKF, provided that the approximate filters are guided by the off-line test criteria. The skill of the various approximate filters depends on the energy spectrum of the turbulent signal and the observation time relative to the decorrelation time of the turbulence at a given spatial scale in a precise fashion elucidated here.
Regularization methods for a class of variational inequalities in banach spaces
NASA Astrophysics Data System (ADS)
Buong, Nguyen; Phuong, Nguyen Thi Hong
2012-11-01
In this paper, we introduce two regularization methods, based on the Browder-Tikhonov and iterative regularizations, for finding a solution of variational inequalities over the set of common fixed points of an infinite family of nonexpansive mappings on real reflexive and strictly convex Banach spaces with a uniformly Gateaux differentiate norm.
New properties of BK-spaces defined by using regular matrix of Fibonacci numbers
NASA Astrophysics Data System (ADS)
Ercan, Sinan; Bektaş, ćiǧdem A.
2016-06-01
In the present paper, we studied the new properties of BK-spaces which were defined using regular matrix of Fibonacci numbers in [1]. We computed alpha-, beta-, gamma- duals of these spaces and obtained Schauder basis. We also derived some topological properties of these spaces.
Visualization of Sound Waves Using Regularly Spaced Soap Films
ERIC Educational Resources Information Center
Elias, F.; Hutzler, S.; Ferreira, M. S.
2007-01-01
We describe a novel demonstration experiment for the visualization and measurement of standing sound waves in a tube. The tube is filled with equally spaced soap films whose thickness varies in response to the amplitude of the sound wave. The thickness variations are made visible based on optical interference. The distance between two antinodes is…
Visualization of Sound Waves Using Regularly Spaced Soap Films
ERIC Educational Resources Information Center
Elias, F.; Hutzler, S.; Ferreira, M. S.
2007-01-01
We describe a novel demonstration experiment for the visualization and measurement of standing sound waves in a tube. The tube is filled with equally spaced soap films whose thickness varies in response to the amplitude of the sound wave. The thickness variations are made visible based on optical interference. The distance between two antinodes is…
2016-03-13
SECURITY CLASSIFICATION OF: The goal of this project is to fully develop Banach space methods for kernel-based machine learning that extend the Hilbert... space framework of regularized learning. We proposed to study Reproducing Kernel Banach Spaces (RKBS) by the semi-inner-product, develop the theory...of vector-valued RKBS with applications of RKBS to manifold learning, study frames and Riesz bases for sequence spaces , and construct RKBS with the l1
Besov Space Regularity Conditions for Weak Solutions of the Navier-Stokes Equations
NASA Astrophysics Data System (ADS)
Farwig, Reinhard; Sohr, Hermann; Varnhorn, Werner
2014-06-01
Consider a bounded domain with smooth boundary, some initial value , and a weak solution u of the Navier-Stokes system in . Our aim is to develop regularity and uniqueness conditions for u which are based on the Besov space with ; here A denotes the Stokes operator. This space, introduced by Farwig et al. (Ann. Univ. Ferrara 55:89-110,
NASA Astrophysics Data System (ADS)
Wang, Min
2017-06-01
This paper aims to establish the Tikhonov regularization method for generalized mixed variational inequalities in Banach spaces. For this purpose, we firstly prove a very general existence result for generalized mixed variational inequalities, provided that the mapping involved has the so-called mixed variational inequality property and satisfies a rather weak coercivity condition. Finally, we establish the Tikhonov regularization method for generalized mixed variational inequalities. Our findings extended the results for the generalized variational inequality problem (for short, GVIP( F, K)) in R^n spaces (He in Abstr Appl Anal, 2012) to the generalized mixed variational inequality problem (for short, GMVIP(F,φ , K)) in reflexive Banach spaces. On the other hand, we generalized the corresponding results for the generalized mixed variational inequality problem (for short, GMVIP(F,φ ,K)) in R^n spaces (Fu and He in J Sichuan Norm Univ (Nat Sci) 37:12-17, 2014) to reflexive Banach spaces.
NASA Astrophysics Data System (ADS)
Wang, Min
2016-04-01
This paper aims to establish the Tikhonov regularization method for generalized mixed variational inequalities in Banach spaces. For this purpose, we firstly prove a very general existence result for generalized mixed variational inequalities, provided that the mapping involved has the so-called mixed variational inequality property and satisfies a rather weak coercivity condition. Finally, we establish the Tikhonov regularization method for generalized mixed variational inequalities. Our findings extended the results for the generalized variational inequality problem (for short, GVIP(F, K)) in R^n spaces (He in Abstr Appl Anal, 2012) to the generalized mixed variational inequality problem (for short, GMVIP(F,φ , K) ) in reflexive Banach spaces. On the other hand, we generalized the corresponding results for the generalized mixed variational inequality problem (for short, GMVIP(F,φ ,K) ) in R^n spaces (Fu and He in J Sichuan Norm Univ (Nat Sci) 37:12-17, 2014) to reflexive Banach spaces.
14 CFR 1259.201 - Types of Space Grant program and project awards-regular and special.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 5 2012-01-01 2012-01-01 false Types of Space Grant program and project awards-regular and special. 1259.201 Section 1259.201 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION NATIONAL SPACE GRANT COLLEGE AND FELLOWSHIP PROGRAM Space Grant Program and Project Awards § 1259.201 Types of Space Grant progra...
NASA Astrophysics Data System (ADS)
Wunderli, Thomas
2008-03-01
Here we examine the partial regularity of minimizers of a functional used for image restoration in BV space. This functional is a combination of a regularized p-Laplacian for the part of the image with small gradient and a total variation functional for the part with large gradient. This model was originally introduced in Chambolle and Lions using the Laplacian. Due to the singular nature of the p-Laplacian we study a regularized p-Laplacian. We show that where the gradient is small, the regularized p-Laplacian smooths the image u, in the sense that u[set membership, variant]C1,[alpha] for some 0<[alpha]<1. This functional thus anisotropically smooths the image where the gradient is small and preserves edges via total variation where the gradient is large.
On Landweber-Kaczmarz methods for regularizing systems of ill-posed equations in Banach spaces
NASA Astrophysics Data System (ADS)
Leitão, A.; Marques Alves, M.
2012-10-01
In this paper, iterative regularization methods of Landweber-Kaczmarz type are considered for solving systems of ill-posed equations modeled (finitely many) by operators acting between Banach spaces. Using assumptions of uniform convexity and smoothness on the parameter space, we are able to prove a monotony result for the proposed method, as well as to establish convergence (for exact data) and stability results (in the noisy data case).
Dimensional regularization in position space and a Forest Formula for Epstein-Glaser renormalization
NASA Astrophysics Data System (ADS)
Dütsch, Michael; Fredenhagen, Klaus; Keller, Kai Johannes; Rejzner, Katarzyna
2014-12-01
We reformulate dimensional regularization as a regularization method in position space and show that it can be used to give a closed expression for the renormalized time-ordered products as solutions to the induction scheme of Epstein-Glaser. This closed expression, which we call the Epstein-Glaser Forest Formula, is analogous to Zimmermann's Forest Formula for BPH renormalization. For scalar fields, the resulting renormalization method is always applicable, we compute several examples. We also analyze the Hopf algebraic aspects of the combinatorics. Our starting point is the Main Theorem of Renormalization of Stora and Popineau and the arising renormalization group as originally defined by Stückelberg and Petermann.
Nonstationary iterated Tikhonov regularization for ill-posed problems in Banach spaces
NASA Astrophysics Data System (ADS)
Jin, Qinian; Stals, Linda
2012-10-01
Nonstationary iterated Tikhonov regularization is an efficient method for solving ill-posed problems in Hilbert spaces. However, this method may not produce good results in some situations since it tends to oversmooth solutions and hence destroy special features such as sparsity and discontinuity. By making use of duality mappings and Bregman distance, we propose an extension of this method to the Banach space setting and establish its convergence. We also present numerical simulations which indicate that the method in Banach space setting can produce better results.
Food and intracranial stimulation responding suppressed with regular-interval shock.
Schmidt, E; McCaleb, M; Merrill, H K
1977-01-01
Attenuation of conditioned suppression during intracranial stimulation was compared with that during food reinforcement. Response rates controlled by food and by brain stimulation were equalized on a multiple schedule by adjusting the stimulating current. When foot shock was delivered during timeout periods separating response components, responding for food was significantly more suppressed than responding for brain stimulation. When components were shortened from 10 to 2 minutes, responding maintained by either food or brain stimulation showed a similar temporal pattern of suppression preceding each shock, but responding in the component involving food remained significantly more suppressed. Explanations for the attenuated suppression during brain stimulation based on neural disruption, stimulus blocking, and analgesic properties were questioned. The increased responding during brain stimulation seemed to reflect greater response strength relative to food reinforced responding. PMID:299877
Two regularization methods for solving a Riesz-Feller space-fractional backward diffusion problem
NASA Astrophysics Data System (ADS)
Zheng, G. H.; Wei, T.
2010-11-01
In this paper, a backward diffusion problem for a space-fractional diffusion equation (SFDE) in a strip is investigated. Such a problem is obtained from the classical diffusion equation in which the second-order space derivative is replaced with a Riesz-Feller derivative of order β in (0, 2]. We show that such a problem is severely ill-posed and further propose a new regularization method and apply a spectral regularization method to solve it based on the solution given by the Fourier method. Convergence estimates are presented under a priori bound assumptions for the exact solution. Finally, numerical examples are given to show that the proposed numerical methods are effective.
General regular charged space-times in teleparallel equivalent of general relativity
NASA Astrophysics Data System (ADS)
Nashed, G. G. L.
2007-07-01
Using a non-linear version of electrodynamics coupled to the teleparallel equivalent of general relativity (TEGR), we obtain new regular exact solutions. The non-linear theory reduces to the Maxwell one in the weak limit with the tetrad fields corresponding to a charged space-time. We then apply the energy-momentum tensor of the gravitational field, established in the Hamiltonian structure of the TEGR, to the solutions obtained.
14 CFR § 1259.201 - Types of Space Grant program and project awards-regular and special.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 5 2014-01-01 2014-01-01 false Types of Space Grant program and project awards-regular and special. Â§ 1259.201 Section Â§ 1259.201 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION NATIONAL SPACE GRANT COLLEGE AND FELLOWSHIP PROGRAM Space Grant Program and Project Awards § 1259.201 Types of Space Grant...
Baumbauer, Kyle M; Turtle, Joel D; Grau, James W
2017-02-24
Prior work has shown that neurons within the spinal cord are sensitive to temporal relations and that stimulus regularity impacts nociceptive processing and adaptive plasticity. Application of brief (80ms) shocks (180-900) in a variable manner induces a form of maladaptive plasticity that inhibits spinally-mediated learning and enhances nociceptive reactivity. In contrast, an extended exposure (720-900) to stimuli given at regular (fixed spaced) intervals has a restorative effect that counters nociceptive sensitization and enables learning. The present paper explores the stimulus parameters under which this therapeutic effect of fixed spaced stimulation emerges. Spinally transected rats received variably spaced stimulation (180 shocks) to the sciatic nerve at an intensity (40-V) that recruits pain (C) fibers, producing a form of maladaptive plasticity that impairs spinal learning. As previously shown, exposure to 720 fixed spaced shocks had a therapeutic effect that restored adaptive learning. This therapeutic effect was most robust at a lower shock intensity (20V) and was equally strong irrespective of pulse duration (20-80ms). A restorative effect was observed when stimuli were given at a frequency between 0.5 and 5Hz, but not at a higher (50Hz) or lower (0.05Hz) rate. The results are consistent with prior work implicating neural systems related to the central pattern generator that drives stepping behavior. Clinical implications are discussed.
Radio stimulation and diagnostics of space plasmas
NASA Technical Reports Server (NTRS)
Lee, Min-Chang
1993-01-01
We have investigated the small-scale topside ionospheric plasma structures first observed at Millstone Hill, Massachusetts with the 440 MHz incoherent scatter radar. These small-scale obliquely propagating plasma modes occurring in the vicinity of the midlatitude ionospheric trough, have large radar cross-sections and narrow spectral widths. They have, until recently, been dismissed solely as hard target contamination of the incoherent scatter radar. The geophysical conditions associated with the ionospheric trough, such as the field-aligned current activity and steep plasma density gradients, suggest that these recently discovered small-scale topside ionospheric plasmas may also appear in the auroral and polar ionosphere. In fact, this speculation has been corroborated by the preliminary experiments and data analyses at Tromso, Norway and Sondrestromfjord, Greenland. The primary research results are highlighted. Described in Section 3 are the experiments conducted at Arecibo, Puerto Rico in the past summer for simulating the geophysical conditions of generating these topside ionospheric plasma structures. Recommendation for the future research is finally given. Attached as the appendix of this report are several chapters which present the detailed results of research in the concerned topside ionospheric clutter. Highlights of the research results include: (1) causes of the enhanced radar backscatter (ERB) phenomenon; (2) occurrence of the ERB phenomenon; (3) altitudes of the ERB phenomenon; (4) strength of the ERB returns; (5) range of altitudes of the ERB returns; (6) occurrence frequency of the ERB phenomenon; (7) Doppler effect of the ERB phenomenon; (8) persistency of the ERB; and (9) distinction between ERB phenomenon and space object signatures.
Dias, Nuno Costa; de Gosson, Maurice; Luef, Franz; Prata, João Nuno
2011-11-01
The usual Weyl calculus is intimately associated with the choice of the standard symplectic structure on [Formula: see text]. In this paper we will show that the replacement of this structure by an arbitrary symplectic structure leads to a pseudo-differential calculus of operators acting on functions or distributions defined, not on [Formula: see text] but rather on [Formula: see text]. These operators are intertwined with the standard Weyl pseudo-differential operators using an infinite family of partial isometries of [Formula: see text] indexed by [Formula: see text]. This allows us to obtain spectral and regularity results for our operators using Shubin's symbol classes and Feichtinger's modulation spaces.
NASA Astrophysics Data System (ADS)
Wichmann, A.; Jung, J.; Sohn, G.; Kada, M.; Ehlers, M.
2015-09-01
Recent approaches for the automatic reconstruction of 3D building models from airborne point cloud data integrate prior knowledge of roof shapes with the intention to improve the regularization of the resulting models without lessening the flexibility to generate all real-world occurring roof shapes. In this paper, we present a method to integrate building knowledge into the data-driven approach that uses binary space partitioning (BSP) for modeling the 3D building geometry. A retrospective regularization of polygons that emerge from the BSP tree is not without difficulty because it has to deal with the 2D BSP subdivision itself and the plane definitions of the resulting partition regions to ensure topological correctness. This is aggravated by the use of hyperplanes during the binary subdivision that often splits planar roof regions into several parts that are stored in different subtrees of the BSP tree. We therefore introduce the use of hyperpolylines in the generation of the BSP tree to avoid unnecessary spatial subdivisions, so that the spatial integrity of planar roof regions is better maintained. The hyperpolylines are shown to result from basic building roof knowledge that is extracted based on roof topology graphs. An adjustment of the underlying point segments ensures that the positions of the extracted hyperpolylines result in regularized 2D partitions as well as topologically correct 3D building models. The validity and limitations of the approach are demonstrated on real-world examples.
A convergence rates result for an iteratively regularized Gauss-Newton-Halley method in Banach space
NASA Astrophysics Data System (ADS)
Kaltenbacher, B.
2015-01-01
The use of second order information on the forward operator often comes at a very moderate additional computational price in the context of parameter identification problems for differential equation models. On the other hand the use of general (non-Hilbert) Banach spaces has recently found much interest due to its usefulness in many applications. This motivates us to extend the second order method from Kaltenbacher (2014 Numer. Math. at press), (see also Hettlich and Rundell 2000 SIAM J. Numer. Anal. 37 587620) to a Banach space setting and analyze its convergence. We here show rates results for a particular source condition and different exponents in the formulation of Tikhonov regularization in each step. This includes a complementary result on the (first order) iteratively regularized Gauss-Newton method in case of a one-homogeneous data misfit term, which corresponds to exact penalization. The results clearly show the possible advantages of using second order information, which get most pronounced in this exact penalization case. Numerical simulations for an inverse source problem for a nonlinear elliptic PDE illustrate the theoretical findings.
NASA Astrophysics Data System (ADS)
Cappa, G.; Ferrari, S.
2016-12-01
Let X be a separable Banach space endowed with a non-degenerate centered Gaussian measure μ. The associated Cameron-Martin space is denoted by H. Let ν =e-U μ, where U : X → R is a sufficiently regular convex and continuous function. In this paper we are interested in the W 2 , 2 regularity of the weak solutions of elliptic equations of the type
Non-parametric graphnet-regularized representation of dMRI in space and time.
Fick, Rutger H J; Petiet, Alexandra; Santin, Mathieu; Philippe, Anne-Charlotte; Lehericy, Stephane; Deriche, Rachid; Wassermann, Demian
2017-09-14
Effective representation of the four-dimensional diffusion MRI signal - varying over three-dimensional q-space and diffusion time τ - is a sought-after and still unsolved challenge in diffusion MRI (dMRI). We propose a functional basis approach that is specifically designed to represent the dMRI signal in this qτ-space. Following recent terminology, we refer to our qτ-functional basis as "qτ-dMRI". qτ-dMRI can be seen as a time-dependent realization of q-space imaging by Paul Callaghan and colleagues. We use GraphNet regularization - imposing both signal smoothness and sparsity - to drastically reduce the number of diffusion-weighted images (DWIs) that is needed to represent the dMRI signal in the qτ-space. As the main contribution, qτ-dMRI provides the framework to - without making biophysical assumptions - represent the qτ-space signal and estimate time-dependent q-space indices (qτ-indices), providing a new means for studying diffusion in nervous tissue. We validate our method on both in-silico generated data using Monte-Carlo simulations and an in-vivo test-retest study of two C57Bl6 wild-type mice, where we found good reproducibility of estimated qτ-index values and trends. In the hopes of opening up new τ-dependent venues of studying nervous tissues, qτ-dMRI is the first of its kind in being specifically designed to provide open interpretation of the qτ-diffusion signal. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Huber, Florian; Strehle, Dan; Schnauß, Jörg; Käs, Josef
2015-04-01
Biopolymer networks contribute mechanical integrity as well as functional organization to living cells. One of their major constituents, the protein actin, is present in a large variety of different network architectures, ranging from extensive networks to densely packed bundles. The shape of the network is directly linked to its mechanical properties and essential physiological functions. However, a profound understanding of architecture-determining mechanisms and their physical constraints remains elusive. We use experimental bottom-up systems to study the formation of confined actin networks by entropic forces. Experiments based on molecular crowding as well as counterion condensation reveal a generic tendency of homogeneous filament solutions to aggregate into regular actin bundle networks connected by aster-like centers. The network architecture is found to critically rely on network formation history. Starting from identical biochemical compositions, we observe drastic changes in network architecture as a consequence of initially biased filament orientation or mixing-induced perturbations. Our experiments suggest that the tendency to form regularly spaced bundle networks is a rather general feature of isotropic, homogeneous filament solutions subject to uniform attractive interactions. Due to the fundamental nature of the considered interactions, we expect that the investigated type of network formation further implies severe physical constraints for cytoskeleton self-organization on the more complex level of living cells.
Learning an L1-regularized Gaussian Bayesian network in the equivalence class space.
Vidaurre, Diego; Bielza, Concha; Larrañaga, Pedro
2010-10-01
Learning the structure of a graphical model from data is a common task in a wide range of practical applications. In this paper, we focus on Gaussian Bayesian networks, i.e., on continuous data and directed acyclic graphs with a joint probability density of all variables given by a Gaussian. We propose to work in an equivalence class search space, specifically using the k-greedy equivalence search algorithm. This, combined with regularization techniques to guide the structure search, can learn sparse networks close to the one that generated the data. We provide results on some synthetic networks and on modeling the gene network of the two biological pathways regulating the biosynthesis of isoprenoids for the Arabidopsis thaliana plant.
NASA Astrophysics Data System (ADS)
Schöpfer, F.; Schuster, T.; Louis, A. K.
2008-10-01
The split feasibility problem (SFP) consists of finding a common point in the intersection of finitely many convex sets, where some of the sets arise by imposing convex constraints in the range of linear operators. We are concerned with its solution in Banach spaces. To this end we generalize the CQ algorithm of Byrne with Bregman and metric projections to obtain an iterative solution method. In case the sets projected onto are contaminated with noise we show that a discrepancy principle renders this algorithm a regularization method. We measure the distance between convex sets by local versions of the Hausdorff distance, which in contrast to the standard Hausdorff distance allow us to measure the distance between unbounded sets. Hereby we prove a uniform continuity result for both kind of projections. The performance of the algorithm is demonstrated with some numerical experiments.
Fast ℓ1-regularized space-time adaptive processing using alternating direction method of multipliers
NASA Astrophysics Data System (ADS)
Qin, Lilong; Wu, Manqing; Wang, Xuan; Dong, Zhen
2017-04-01
Motivated by the sparsity of filter coefficients in full-dimension space-time adaptive processing (STAP) algorithms, this paper proposes a fast ℓ1-regularized STAP algorithm based on the alternating direction method of multipliers to accelerate the convergence and reduce the calculations. The proposed algorithm uses a splitting variable to obtain an equivalent optimization formulation, which is addressed with an augmented Lagrangian method. Using the alternating recursive algorithm, the method can rapidly result in a low minimum mean-square error without a large number of calculations. Through theoretical analysis and experimental verification, we demonstrate that the proposed algorithm provides a better output signal-to-clutter-noise ratio performance than other algorithms.
Dias, Nuno Costa; de Gosson, Maurice; Luef, Franz; Prata, João Nuno
2011-01-01
The usual Weyl calculus is intimately associated with the choice of the standard symplectic structure on Rn⊕Rn. In this paper we will show that the replacement of this structure by an arbitrary symplectic structure leads to a pseudo-differential calculus of operators acting on functions or distributions defined, not on Rn but rather on Rn⊕Rn. These operators are intertwined with the standard Weyl pseudo-differential operators using an infinite family of partial isometries of L2(Rn)→L2(R2n) indexed by S(Rn). This allows us to obtain spectral and regularity results for our operators using Shubinʼs symbol classes and Feichtingerʼs modulation spaces. PMID:22158824
NASA Astrophysics Data System (ADS)
Koroteev, A. A.; Bondareva, N. V.; Nagel, Yu. A.; Filatov, N. I.; Baidenko, I. V.
2016-11-01
The regularities of interaction of drops of ultra-high vacuum liquid working media of space drop emitters with surfaces of trapping devices were considered. Their comparison with the characteristics of the interaction of drops of distilled water was performed. The achievability of trapping regimes without secondary drop formation in space was justified.
Regular structures of the lunar Orientale Basin: ring spacing and beads-like collars
NASA Astrophysics Data System (ADS)
Kochemasov, G. G.
2013-09-01
The NASA's GRAIL mission produced unprecedented detailed gravity maps of the lunar subsurface as its measurements (from very low orbits - 55 -23 kilometers) included some depths of the satellite (down to the core?). However, one might say that these maps have repeated in some aspects the principal gravity pattern acquired earlier by Clementine [1] and Kaguya missions (Fig. 3), which shows the surface densely "peppered" by evensized "craters" about 100 km in diameter. The wave planetology admits that many of them are of an impact origin but a bulk is due to an intersection of standing waves produced by the two elliptical orbit of the body (Fig. 2). The lunar community should realize that one of bases of the Moon's geology - crater size -frequency curve is of a complex nature. Impacts surely contribute to this curve but a significant part of it is due to ring structures of non-impact origin. Ring structures can be produced by an interference of standing inertiagravity waves of four directions (ortho- and diagonal) warping any rotating celestial body moving in an elliptical orbit (Fig. 2) [2]. Many ring structures observed on solid and gaseous planetary spheres are of such profound nature. They form regular grids of shoulder-to-shoulder even ring structures (Fig. 1-3). Their sizes depend on orbiting frequencies: the higher frequency- the smaller "rings", and vice versa. Satellites having two orbiting frequencies in the Solar system are particularly "peppered" with rings as a low frequency modulates a high one producing along with the main ring populations the side populations [3]. Recent MOONKAM lunar images (GRAIL mission) at the first time show so clearly intersecting planetary scale lineations (imprint of standing waves) producing chains and grids of ring features (Fig. 5-6; a theoretical model-Fig. 2). This wave woven pattern with spacing and beads has to be compared with a real gravity pattern of Fig. 1. Multi-ring spacing with the factor of √ 2 and collars
Stimulation of cardiovascular adaptability during prolonged space exposure
NASA Technical Reports Server (NTRS)
Gorman, H. A.
1971-01-01
The deconditioning effects of weightlessness on the cardiovascular system of astronauts are discussed. It is believed that man cannot tolerate indefinite exposure to weightlessness without considerable circulatory deterioration. Analyses of data collected from space flights to date substantiate these beliefs, and confirm the fact that some form of compensation must be provided to keep the cardiovascular system of space travelers properly conditioned. Sequential pulsatile devices were investigated to produce periodic hydrostatic pressure gradients in the venous system of eight subhuman primates. Intermittent venous pooling of blood in the extremities triggers and stimulates the vascular reflex mechanisms of the cardiovascular system that may have significant benefits in maintaining the circulatory system in proper tone under weightless conditions. Electrocardiograms, blood pressure measurements, cardiac output and stroke volume determinations were used to evaluate the efficiency of the described technique. Results were amazingly consistent to indicate an efficient system for intermittently exercising the heart within safe and medically acceptable limits.
A statistical approach to SENSE regularization with arbitrary k-space trajectories.
Ying, Leslie; Liu, Bo; Steckner, Michael C; Wu, Gaohong; Wu, Min; Li, Shi-Jiang
2008-08-01
SENSE reconstruction suffers from an ill-conditioning problem, which increasingly lowers the signal-to-noise ratio (SNR) as the reduction factor increases. Ill-conditioning also degrades the convergence behavior of iterative conjugate gradient reconstructions for arbitrary trajectories. Regularization techniques are often used to alleviate the ill-conditioning problem. Based on maximum a posteriori statistical estimation with a Huber Markov random field prior, this study presents a new method for adaptive regularization using the image and noise statistics. The adaptive Huber regularization addresses the blurry edges in Tikhonov regularization and the blocky effects in total variation (TV) regularization. Phantom and in vivo experiments demonstrate improved image quality and convergence speed over both the unregularized conjugate gradient method and Tikhonov regularization method, at no increase in total computation time. (c) 2008 Wiley-Liss, Inc.
Hasegawa, Takanori; Yamaguchi, Rui; Nagasaki, Masao; Miyano, Satoru; Imoto, Seiya
2014-01-01
Comprehensive understanding of gene regulatory networks (GRNs) is a major challenge in the field of systems biology. Currently, there are two main approaches in GRN analysis using time-course observation data, namely an ordinary differential equation (ODE)-based approach and a statistical model-based approach. The ODE-based approach can generate complex dynamics of GRNs according to biologically validated nonlinear models. However, it cannot be applied to ten or more genes to simultaneously estimate system dynamics and regulatory relationships due to the computational difficulties. The statistical model-based approach uses highly abstract models to simply describe biological systems and to infer relationships among several hundreds of genes from the data. However, the high abstraction generates false regulations that are not permitted biologically. Thus, when dealing with several tens of genes of which the relationships are partially known, a method that can infer regulatory relationships based on a model with low abstraction and that can emulate the dynamics of ODE-based models while incorporating prior knowledge is urgently required. To accomplish this, we propose a method for inference of GRNs using a state space representation of a vector auto-regressive (VAR) model with L1 regularization. This method can estimate the dynamic behavior of genes based on linear time-series modeling constructed from an ODE-based model and can infer the regulatory structure among several tens of genes maximizing prediction ability for the observational data. Furthermore, the method is capable of incorporating various types of existing biological knowledge, e.g., drug kinetics and literature-recorded pathways. The effectiveness of the proposed method is shown through a comparison of simulation studies with several previous methods. For an application example, we evaluated mRNA expression profiles over time upon corticosteroid stimulation in rats, thus incorporating corticosteroid
Stimulated coherent emission from short electron bunches in free space
Robb, G.R.M.; Phelps, A.D.R.; Ginzburg, N.S.
1995-12-31
In previous papers stimulated coherent emission of short electron bunches (superradiance-SR) was considered in the frame of 1-D models. In the present work we study superradiance of an electron bunch which has a finite transverse size in the frame of a 2-D model. This model include effects of optical guiding as well as transverse electromagnetic energy escaping and diffraction. Using a nonstationary parabolic equation we described SR of a sheet shaped electron bunch in free space. It is shown that the radiation is composed of a sequence of e.m. pulses which are diffracted after escaping from the channel formed by the electron beam. This process is accompanied by a progressive increase of the electron efficiency. This enhancement is caused by the phenomenon of permanent self supporting resonance due to the variation of the radiation angle and frequency.
Plasma instabilities stimulated by HF transmitters in space
Benson, R.F.; Vinas, A.F.
1988-08-01
Diffuse incoherent signal returns are often observed on Alouette and ISIS topside ionograms in addition to coherent echoes of electromagnetic and electrostatic waves. These diffuse signals, which at times can be the dominant features on topside ionograms, have been attributed to sounder-induced temperature anisotropies which drive the Harris instability. Previous theoretical investigations were based on the electrostatic approximation to the dispersion equation. The present paper will present calculations indicating that when the electromagnetic terms are retained in the dispersion equation and when the sounder-stimulated perpendicular electron temperature approaches 1 keV, then the whistler mode can have a temporal growth rate larger than the electrostatic electron cyclotron harmonic wave mode central to the diffuse resonance problem. Present sounders lack the power and antenna lengths to generate whistler mode waves in this manner. In addition, such waves would have large group velocities and would quickly leave the vicinity of the sounder. Experiments to investigate the wave growth, propagation, and damping of such stimulated waves are planned for the 1990s using a highly flexible sounder on the Space Shuttle and a receiver on a subsatellite. 30 references.
Plasma instabilities stimulated by HF transmitters in space
NASA Technical Reports Server (NTRS)
Benson, Robert F.; Vinas, Adolfo F.
1988-01-01
Diffuse incoherent signal returns are often observed on Alouette and ISIS topside ionograms in addition to coherent echoes of electromagnetic and electrostatic waves. These diffuse signals, which at times can be the dominant features on topside ionograms, have been attributed to sounder-induced temperature anisotropies which drive the Harris instability. Previous theoretical investigations were based on the electrostatic approximation to the dispersion equation. The present paper will present calculations indicating that when the electromagnetic terms are retained in the dispersion equation and when the sounder-stimulated perpendicular electron temperature approaches 1 keV, then the whistler mode can have a temporal growth rate larger than the electrostatic electron cyclotron harmonic wave mode central to the diffuse resonance problem. Present sounders lack the power and antenna lengths to generate whistler mode waves in this manner. In addition, such waves would have large group velocities and would quickly leave the vicinity of the sounder. Experiments to investigate the wave growth, propagation, and damping of such stimulated waves are planned for the 1990s using a highly flexible sounder on the Space Shuttle and a receiver on a subsatellite.
NASA Astrophysics Data System (ADS)
Aketagawa, Masato; Honda, Hiroshi; Ishige, Masashi; Patamaporn, Chaikool
2007-02-01
A two-dimensional (2D) encoder with picometre resolution using multi-tunnelling-probes scanning tunnelling microscope (MTP-STM) as detector units and a regular crystalline lattice as a reference is proposed. In experiments to demonstrate the method, a highly oriented pyrolytic graphite (HOPG) crystal is utilized as the reference. The MTP-STM heads, which are set upon a sample stage, observe multi-points which satisfy some relationship on the HOPG crystalline surface on the sample stage, and the relative 2D displacement between the MTP-STM heads and the sample stage can be determined from the multi-current signals of the multi-points. Two unit lattice vectors on the HOPG crystalline surface with length and intersection angle of 0.246 nm and 60°, respectively, are utilized as 2D displacement references. 2D displacement of the sample stage on which the HOPG crystal is placed can be calculated using the linear sum of the two unit lattice vectors, derived from a linear operation of the multi-current signals. Displacement interpolation less than the lattice spacing of the HOPG crystal can also be performed. To determine the linear sum of the two unit vectors as the 2D displacement, the multi-points to be observed with the MTP-STM must be properly positioned according to the 2D atomic structure of the HOPG crystal. In the experiments, the proposed method is compared with a capacitance sensor whose resolution is improved to approximately 0.1 nm by limiting the sensor's bandwidth to 300 Hz. In order to obtain suitable multi-current signals of the properly positioned multi-points in semi-real-time, lateral dither modulations are applied to the STM probes. The results show that the proposed method has the capability to measure 2D lateral displacements with a resolution on the order of 10 pm with a maximum measurement speed of 100 nm s-1 or more.
Paparo, M.; Benko, J. M.; Hareter, M.; ...
2016-05-11
In this study, a sequence search method was developed to search the regular frequency spacing in δ Scuti stars through visual inspection and an algorithmic search. We searched for sequences of quasi-equally spaced frequencies, containing at least four members per sequence, in 90 δ Scuti stars observed by CoRoT. We found an unexpectedly large number of independent series of regular frequency spacing in 77 δ Scuti stars (from one to eight sequences) in the non-asymptotic regime. We introduce the sequence search method presenting the sequences and echelle diagram of CoRoT 102675756 and the structure of the algorithmic search. Four sequencesmore » (echelle ridges) were found in the 5–21 d–1 region where the pairs of the sequences are shifted (between 0.5 and 0.59 d–1) by twice the value of the estimated rotational splitting frequency (0.269 d–1). The general conclusions for the whole sample are also presented in this paper. The statistics of the spacings derived by the sequence search method, by FT (Fourier transform of the frequencies), and the statistics of the shifts are also compared. In many stars more than one almost equally valid spacing appeared. The model frequencies of FG Vir and their rotationally split components were used to formulate the possible explanation that one spacing is the large separation while the other is the sum of the large separation and the rotational frequency. In CoRoT 102675756, the two spacings (2.249 and 1.977 d–1) are in better agreement with the sum of a possible 1.710 d–1 large separation and two or one times, respectively, the value of the rotational frequency.« less
NASA Astrophysics Data System (ADS)
Paparó, M.; Benkő, J. M.; Hareter, M.; Guzik, J. A.
2016-05-01
A sequence search method was developed to search the regular frequency spacing in δ Scuti stars through visual inspection and an algorithmic search. We searched for sequences of quasi-equally spaced frequencies, containing at least four members per sequence, in 90 δ Scuti stars observed by CoRoT. We found an unexpectedly large number of independent series of regular frequency spacing in 77 δ Scuti stars (from one to eight sequences) in the non-asymptotic regime. We introduce the sequence search method presenting the sequences and echelle diagram of CoRoT 102675756 and the structure of the algorithmic search. Four sequences (echelle ridges) were found in the 5-21 d-1 region where the pairs of the sequences are shifted (between 0.5 and 0.59 d-1) by twice the value of the estimated rotational splitting frequency (0.269 d-1). The general conclusions for the whole sample are also presented in this paper. The statistics of the spacings derived by the sequence search method, by FT (Fourier transform of the frequencies), and the statistics of the shifts are also compared. In many stars more than one almost equally valid spacing appeared. The model frequencies of FG Vir and their rotationally split components were used to formulate the possible explanation that one spacing is the large separation while the other is the sum of the large separation and the rotational frequency. In CoRoT 102675756, the two spacings (2.249 and 1.977 d-1) are in better agreement with the sum of a possible 1.710 d-1 large separation and two or one times, respectively, the value of the rotational frequency.
NASA Astrophysics Data System (ADS)
Zou, Yong; Donner, Reik V.; Thiel, Marco; Kurths, Jürgen
2016-02-01
Recurrence in the phase space of complex systems is a well-studied phenomenon, which has provided deep insights into the nonlinear dynamics of such systems. For dissipative systems, characteristics based on recurrence plots have recently attracted much interest for discriminating qualitatively different types of dynamics in terms of measures of complexity, dynamical invariants, or even structural characteristics of the underlying attractor's geometry in phase space. Here, we demonstrate that the latter approach also provides a corresponding distinction between different co-existing dynamical regimes of the standard map, a paradigmatic example of a low-dimensional conservative system. Specifically, we show that the recently developed approach of recurrence network analysis provides potentially useful geometric characteristics distinguishing between regular and chaotic orbits. We find that chaotic orbits in an intermittent laminar phase (commonly referred to as sticky orbits) have a distinct geometric structure possibly differing in a subtle way from those of regular orbits, which is highlighted by different recurrence network properties obtained from relatively short time series. Thus, this approach can help discriminating regular orbits from laminar phases of chaotic ones, which presents a persistent challenge to many existing chaos detection techniques.
An image space approach to Cartesian based parallel MR imaging with total variation regularization.
Keeling, Stephen L; Clason, Christian; Hintermüller, Michael; Knoll, Florian; Laurain, Antoine; von Winckel, Gregory
2012-01-01
The Cartesian parallel magnetic imaging problem is formulated variationally using a high-order penalty for coil sensitivities and a total variation like penalty for the reconstructed image. Then the optimality system is derived and numerically discretized. The objective function used is non-convex, but it possesses a bilinear structure that allows the ambiguity among solutions to be resolved technically by regularization and practically by normalizing a pre-estimated norm of the reconstructed image. Since the objective function is convex in each single argument, convex analysis is used to formulate the optimality condition for the image in terms of a primal-dual system. To solve the optimality system, a nonlinear Gauss-Seidel outer iteration is used in which the objective function is minimized with respect to one variable after the other using an inner generalized Newton iteration. Computational results for in vivo MR imaging data show that a significant improvement in reconstruction quality can be obtained by using the proposed regularization methods in relation to alternative approaches.
Space-time fractional diffusion equation using a derivative with nonsingular and regular kernel
NASA Astrophysics Data System (ADS)
Gómez-Aguilar, J. F.
2017-01-01
In this paper, using the fractional operators with Mittag-Leffler kernel in Caputo and Riemann-Liouville sense the space-time fractional diffusion equation is modified, the fractional equation will be examined separately; with fractional spatial derivative and fractional temporal derivative. For the study cases, the order considered is 0 < β , γ ≤ 1 respectively. In this alternative representation we introduce the appropriate fractional dimensional parameters which characterize consistently the existence of the fractional space-time derivatives into the fractional diffusion equation, these parameters related to equation results in a fractal space-time geometry provide a new family of solutions for the diffusive processes. The proposed mathematical representation can be useful to understand electrochemical phenomena, propagation of energy in dissipative systems, viscoelastic materials, material heterogeneities and media with different scales.
The IVP for the Benjamin-Ono-Zakharov-Kuznetsov equation in low regularity Sobolev spaces
NASA Astrophysics Data System (ADS)
Cunha, Alysson; Pastor, Ademir
2016-08-01
In this paper we study the initial-value problem associated with the Benjamin-Ono-Zakharov-Kuznetsov equation. Such equation appears as a two-dimensional generalization of the Benjamin-Ono equation when transverse effects are included via weak dispersion of Zakharov-Kuznetsov type. We prove that the initial-value problem is locally well-posed in the usual L2 (R2)-based Sobolev spaces Hs (R2), s > 11 / 8, and in some weighted Sobolev spaces. To obtain our results, most of the arguments are accomplished taking into account the ones for the Benjamin-Ono equation.
Maximal regularity in lp spaces for discrete time fractional shifted equations
NASA Astrophysics Data System (ADS)
Lizama, Carlos; Murillo-Arcila, Marina
2017-09-01
In this paper, we are presenting a new method based on operator-valued Fourier multipliers to characterize the existence and uniqueness of ℓp-solutions for discrete time fractional models in the form where A is a closed linear operator defined on a Banach space X and Δα denotes the Grünwald-Letnikov fractional derivative of order α > 0. If X is a UMD space, we provide this characterization only in terms of the R-boundedness of the operator-valued symbol associated to the abstract model. To illustrate our results, we derive new qualitative properties of nonlinear difference equations with shiftings, including fractional versions of the logistic and Nagumo equations.
Regularity properties and pathologies of position-space renormalization-group transformations
NASA Astrophysics Data System (ADS)
van Enter, Aernout C. D.; Fernández, Roberto; Sokal, Alan D.
1991-05-01
We consider the conceptual foundations of the renormalization-group (RG) formalism. We show that the RG map, defined on a suitable space of interactions, is always single-valued and Lipschitz continuous on its domain of definition. This rules out a recently proposed scenario for the RG description of first-order phase transitions. On the other hand, we prove in several cases that near a first-order phase transition the renormalized measure is not a Gibbs measure for any reasonable interaction. It follows that the conventional RG description of first-order transitions is not universally valid.
NASA Astrophysics Data System (ADS)
Rerkkumsup, Pongpun; Aketagawa, Masato; Takada, Koji; Watanabe, Tomonori; Sadakata, Shin
2003-03-01
An instrument for direct measurement of the lattice spacing on regular crystalline surfaces, which incorporates a scanning tunneling microscope (STM) and a phase modulation homodyne interferometer (PMHI), was developed. Our aim was to verify the applicability of the length measurement method in which the lattice spacing on the crystalline surface obtained with the STM is used as a fine scale and the optical interference fringe, i.e., wavelength λ, of the PMHI is used as a coarse scale. The instrument consists of a STM head with a YZ axes tip scanner, a precise X-axis sample stage with flexure springs, and the PMHI with a four-path differential configuration. Combining the movements of the YZ-axes tip scanner and the X-axis sample stage, the instrument can perform long atomic STM imaging of the crystalline surface along the X axis, which is also the fast scanning axis for eliminating thermal drift. The relative displacement of the X-axis sample stage between optical interference dark fringes (=null points) of the PMHI, which is λ/16 times the integer value in the design, can be measured with a resolution of 10 pm or less using the phase modulation technique. The lattice spacing on a highly oriented pyrolytic graphite (HOPG) crystalline surface was measured by comparing the number of atoms in the atomic STM image of 100 nm length with the optical fringes of the PMHI. The mean and expanded uncertainty (k=2) of the lattice spacing between α sites of the HOPG surface were 0.246 nm and 7 pm, respectively. The mean value was very close to that reported by Park and Quate [Sang-II Park and C. F. Quate, Appl. Phys. Lett. 48, 112 (1986)]. The experimental results also show the feasibility of realizing length measurement using the lattice spacing on the crystalline surface and the PMHI.
Abbasi, Maryam; Mohammadi, Eesa; Sheaykh Rezayi, Abdoreza
2009-06-01
The purpose of this study was to determine the effect of a regular family visiting program, as an auditory, affective, and tactile stimulation, on the consciousness level of comatose head injury patients. A randomized controlled trial design was used. Fifty comatose head injury patients were randomly allocated into a control group or an intervention group. The consciousness level of the patients in both groups was evaluated and recorded by the Glasgow Coma Scale, before and 30 min after the visiting program. The independent t-test results demonstrated that the means of the consciousness level at the first day before intervention had no significant difference in both groups. The repeated measured ANOVA results demonstrated that the consciousness level alterations were significant between the two groups over the 6 days of intervention. The results of the present study provided evidence to support that a regular family visiting program could induce the stimulation of comatose patients. Therefore, it can be considered as a potential nursing intervention.
GraphSpace: stimulating interdisciplinary collaborations in network biology.
Bharadwaj, Aditya; Singh, Divit P; Ritz, Anna; Tegge, Allison N; Poirel, Christopher L; Kraikivski, Pavel; Adames, Neil; Luther, Kurt; Kale, Shiv D; Peccoud, Jean; Tyson, John J; Murali, T M
2017-10-01
Networks have become ubiquitous in systems biology. Visualization is a crucial component in their analysis. However, collaborations within research teams in network biology are hampered by software systems that are either specific to a computational algorithm, create visualizations that are not biologically meaningful, or have limited features for sharing networks and visualizations. We present GraphSpace, a web-based platform that fosters team science by allowing collaborating research groups to easily store, interact with, layout and share networks. Anyone can upload and share networks at http://graphspace.org. In addition, the GraphSpace code is available at http://github.com/Murali-group/graphspace if a user wants to run his or her own server. murali@cs.vt.edu. Supplementary data are available at Bioinformatics online.
NASA Astrophysics Data System (ADS)
van Enter, Aernout C. D.; Fernández, Roberto; Sokal, Alan D.
1993-09-01
We reconsider the conceptual foundations of the renormalization-group (RG) formalism, and prove some rigorous theorems on the regularity properties and possible pathologies of the RG map. Our main results apply to local (in position space) RG maps acting on systems of bounded spins (compact single-spin space). Regarding regularity, we show that the RG map, defined on a suitable space of interactions (=formal Hamiltonians), is always single-valued and Lipschitz continuous on its domain of definition. This rules out a recently proposed scenario for the RG description of first-order phase transitions. On the pathological side, we make rigorous some arguments of Griffiths, Pearce, and Israel, and prove in several cases that the renormalized measure is not a Gibbs measure for any reasonable interaction. This means that the RG map is ill-defined, and that the conventional RG description of first-order phase transitions is not universally valid. For decimation or Kadanoff transformations applied to the Ising model in dimension d⩾3, these pathologies occur in a full neighborhood { β> β 0, ¦h¦< ɛ( β)} of the low-temperature part of the first-order phase-transition surface. For block-averaging transformations applied to the Ising model in dimension d⩾2, the pathologies occur at low temperatures for arbitrary magnetic field strength. Pathologies may also occur in the critical region for Ising models in dimension d⩾4. We discuss the heuristic and numerical evidence on RG pathologies in the light of our rigorous theorems. In addition, we discuss critically the concept of Gibbs measure, which is at the heart of present-day classical statistical mechanics. We provide a careful, and, we hope, pedagogical, overview of the theory of Gibbsian measures as well as (the less familiar) non-Gibbsian measures, emphasizing the distinction between these two objects and the possible occurrence of the latter in different physical situations. We give a rather complete catalogue of
Global Positioning System-Based Stimulation for Robo-Pigeons in Open Space
Yang, Junqing; Huai, Ruituo; Wang, Hui; Li, Wenyuan; Wang, Zhigong; Sui, Meie; Su, Xuecheng
2017-01-01
An evaluation method is described that will enable researchers to study fight control characteristics of robo-pigeons in fully open space. It is not limited by the experimental environment and overcomes environmental interference with flight control in small experimental spaces using a compact system. The system consists of two components: a global positioning system (GPS)-based stimulator with dimensions of 38 mm × 26 mm × 8 mm and a weight of 18 g that can easily be carried by a pigeon as a backpack and a PC-based program developed in Virtual C++. The GPS-based stimulator generates variable stimulation and automatically records the GPS data and stimulus parameters. The PC-based program analyzes the recorded data and displays the flight trajectory of the tested robo-pigeon on a digital map. This method enables quick and clear evaluation of the flight control characteristics of a robo-pigeon in open space based on its visual trajectory, as well as further optimization of the microelectric stimulation parameters to improve the design of robo-pigeons. The functional effectiveness of the method was investigated and verified by performing flight control experiments using a robo-pigeon in open space. PMID:28855869
Peeraer, Karen; Couck, Isabelle; Debrock, Sophie; De Neubourg, Diane; De Loecker, Peter; Tomassetti, Carla; Laenen, Annouschka; Welkenhuysen, Myriam; Meeuwis, Luc; Pelckmans, Sofie; Meuleman, Christel; D'Hooghe, Thomas
2015-11-01
Can ovarian stimulation with low dose hMG improve the implantation rate (IR) per frozen-thawed embryo transferred (FET) when compared with natural cycle in an FET programme in women with a regular ovulatory cycle? Both IR and live birth rate (LBR) per FET were similar in the group with mild ovarian stimulation and the natural cycle group. Different cycle regimens for endometrial preparation are used prior to FET: spontaneous ovulatory cycles, cycles with artificial endometrial preparation using estrogen and progesterone hormones, and cycles stimulated with gonadotrophins or clomiphene citrate. At present, it is not clear which regimen results in the highest IR or LBR. More specifically, there are no RCTs in ovulatory women comparing reproductive outcome after FET during a natural cycle and during a hormonally stimulated cycle. A total of 410 women scheduled for FET during 579 cycles (December 2003-September 2013) were enrolled in an open-label RCT to natural cycle (NC FET group, n = 291) or to a cycle hormonally stimulated with s.c. gonadotrophins (hMG FET group, 37.5-75 IU per day, n = 288). A total of 672 embryos were transferred during 434 cycles (332 embryos and 213 cycles in the NC FET group; 340 embryos and 221 cycles in the hMG FET group). Assuming a = 0.05 and 80% power, it was calculated that 219 frozen-thawed embryos were required for transfer in each group to demonstrate a difference of 10% in IR. Women were eligible according to the following inclusion criteria: regular ovulatory cycle, female age ≥21 years and ≤45 years, informed consent. FET cycles with preimplantation genetic screening were excluded. The primary outcome was IR per embryo transferred. Secondary outcomes included IR with fetal heart beat (FHB), LBR per embryo transferred and endometrial thickness on the day of hCG administration. Statistical analysis was by intention to treat and controlled for the presence of multiple measures, as eligible women could be randomized in more than
Baumbauer, K M; Hoy, K C; Huie, J R; Hughes, A J; Woller, S A; Puga, D A; Setlow, B; Grau, J W
2008-09-09
Rats with complete spinal transections are capable of acquiring a simple instrumentally trained response. If rats receive shock to one hind limb when the limb is extended (controllable shock), the spinal cord will learn to hold the leg in a flexed position that minimizes shock exposure. If shock is delivered irrespective of leg position, subjects do not exhibit an increase in flexion duration and subsequently fail to learn when tested with controllable shock (learning deficit). Just 6 min of variable intermittent shock produces a learning deficit that lasts 24 h. Evidence suggests that the neural mechanisms underlying the learning deficit may be related to those involved in other instances of spinal plasticity (e.g. windup, long-term potentiation). The present paper begins to explore these relations by demonstrating that direct stimulation of the sciatic nerve also impairs instrumental learning. Six minutes of electrical stimulation (mono- or biphasic direct current [DC]) of the sciatic nerve in spinally transected rats produced a voltage-dependent learning deficit that persisted for 24 h (experiments 1-2) and was dependent on C-fiber activation (experiment 7). Exposure to continuous stimulation did not produce a deficit, but intermittent burst or single pulse (as short as 0.1 ms) stimulation (delivered at a frequency of 0.5 Hz) did, irrespective of the pattern (fixed or variable) of stimulus delivery (experiments 3-6, 8). When the duration of stimulation was extended from 6 to 30 min, a surprising result emerged; shocks applied in a random (variable) fashion impaired subsequent learning whereas shocks given in a regular pattern (fixed spacing) did not (experiments 9-10). The results imply that spinal neurons are sensitive to temporal relations and that stimulation at regular intervals can have a restorative effect.
Baumbauer, Kyle M.; Hoy, Kevin C.; Huie, John R.; Hughes, Abbey J.; Woller, Sarah A.; Puga, Denise A.; Setlow, Barry; Grau, James W.
2008-01-01
Rats with complete spinal transections are capable of acquiring a simple instrumentally trained response. If rats receive shock to one hindlimb when the limb is extended (controllable shock), the spinal cord will learn to hold the leg in a flexed position that minimizes shock exposure. If shock is delivered irrespective of leg position, subjects do not exhibit an increase in flexion duration and subsequently fail to learn when tested with controllable shock (learning deficit). Just 6 min of variable intermittent shock produces a learning deficit that lasts 24 hrs. Evidence suggests that the neural mechanisms underlying the learning deficit may be related to those involved in other instances of spinal plasticity (e.g., wind-up, long-term potentiation). The present paper begins to explore these relations by demonstrating that direct stimulation of the sciatic nerve also impairs instrumental learning. Six minutes of electrical stimulation (mono- or biphasic direct current [DC]) of the sciatic nerve in spinally transected rats produced a voltage-dependent learning deficit that persisted for 24 hr (Experiments 1–2) and was dependent on C-fiber activation (Experiment 7). Exposure to continuous stimulation did not produce a deficit, but intermittent burst or single pulse (as short as 0.1 ms) stimulation (delivered at a frequency of 0.5 Hz) did, irrespective of the pattern (fixed or variable) of stimulus delivery (Experiments 3–6, 8). When the duration of stimulation was extended from 6 to 30 min, a surprising result emerged; shocks applied in a random (variable) fashion impaired subsequent learning whereas shocks given in a regular pattern (fixed spacing) did not (Experiments 9–10). The results imply that spinal neurons are sensitive to temporal relations and that stimulation at regular intervals can have a restorative effect. PMID:18674601
Zhou, Zhongxing; Gao, Feng; Zhao, Huijuan; Zhang, Lixin
2012-11-21
New x-ray phase contrast imaging techniques without using synchrotron radiation confront a common problem from the negative effects of finite source size and limited spatial resolution. These negative effects swamp the fine phase contrast fringes and make them almost undetectable. In order to alleviate this problem, deconvolution procedures should be applied to the blurred x-ray phase contrast images. In this study, three different deconvolution techniques, including Wiener filtering, Tikhonov regularization and Fourier-wavelet regularized deconvolution (ForWaRD), were applied to the simulated and experimental free space propagation x-ray phase contrast images of simple geometric phantoms. These algorithms were evaluated in terms of phase contrast improvement and signal-to-noise ratio. The results demonstrate that the ForWaRD algorithm is most appropriate for phase contrast image restoration among above-mentioned methods; it can effectively restore the lost information of phase contrast fringes while reduce the amplified noise during Fourier regularization.
Gaubin, Y.; Pianezzi, B.; Gasset, G.; Plannel, H.; Kovalev, E.E.
1986-06-01
The Artemia cyst, a gastrula in dormant state, is a very suitable material to investigate the individual effects of HZE cosmic particles. Monolayers of Artemia cysts, sandwiched with nuclear emulsions, flew aboard the Soviet biosatellite Cosmos 1129. The space flight stimulated the developmental capacity expressed by higher percentages of emergence, hatching, and alive nauplii at day 4-5. A greater mean life span was reported in Artemias developed from Artemia cysts hit by the cosmic heavy ions. On Earth, Artemia cysts were exposed to 1, 10, 100, 200 and 400 Gy of gamma (gamma) rays. A stimulating effect on developmental capacity was observed for 10 Gy; the mean life span was significantly increased for this dose. These results are discussed in comparison with previous investigations performed on Earth and in space.
Paparo, M.; Benko, J. M.; Hareter, M.; Guzik, J. A.
2016-06-17
A sequence search method was developed for searching for regular frequency spacing in δ Scuti stars by visual inspection (VI) and algorithmic search. The sample contains 90 δ Scuti stars observed by CoRoT. An example is given to represent the VI. The algorithm (SSA) is described in detail. The data treatment of the CoRoT light curves, the criteria for frequency filtering, and the spacings derived by two methods (i.e., three approaches: VI, SSA, and FT) are given for each target. Echelle diagrams are presented for 77 targets for which at least one sequence of regular spacing was identified. Comparing the spacing and the shifts between pairs of echelle ridges revealed that at least one pair of echelle ridges is shifted to midway between the spacing for 22 stars. The estimated rotational frequencies compared to the shifts revealed rotationally split doublets, triplets, and multiplets not only for single frequencies, but for the complete echelle ridges in 31 δ Scuti stars. Furthermore, using several possible assumptions for the origin of the spacings, we derived the large separation (${\\rm{\\Delta }}\
Paparo, M.; Benko, J. M.; Hareter, M.; ...
2016-06-17
A sequence search method was developed for searching for regular frequency spacing in δ Scuti stars by visual inspection (VI) and algorithmic search. The sample contains 90 δ Scuti stars observed by CoRoT. An example is given to represent the VI. The algorithm (SSA) is described in detail. The data treatment of the CoRoT light curves, the criteria for frequency filtering, and the spacings derived by two methods (i.e., three approaches: VI, SSA, and FT) are given for each target. Echelle diagrams are presented for 77 targets for which at least one sequence of regular spacing was identified. Comparing the spacing and the shifts between pairs of echelle ridges revealed that at least one pair of echelle ridges is shifted to midway between the spacing for 22 stars. The estimated rotational frequencies compared to the shifts revealed rotationally split doublets, triplets, and multiplets not only for single frequencies, but for the complete echelle ridges in 31 δ Scuti stars. Furthermore, using several possible assumptions for the origin of the spacings, we derived the large separation (more » $${\\rm{\\Delta }}\
Paparo, M.; Benko, J. M.; Hareter, M.; Guzik, J. A.
2016-06-17
A sequence search method was developed for searching for regular frequency spacing in δ Scuti stars by visual inspection (VI) and algorithmic search. The sample contains 90 δ Scuti stars observed by CoRoT. An example is given to represent the VI. The algorithm (SSA) is described in detail. The data treatment of the CoRoT light curves, the criteria for frequency filtering, and the spacings derived by two methods (i.e., three approaches: VI, SSA, and FT) are given for each target. Echelle diagrams are presented for 77 targets for which at least one sequence of regular spacing was identified. Comparing the spacing and the shifts between pairs of echelle ridges revealed that at least one pair of echelle ridges is shifted to midway between the spacing for 22 stars. The estimated rotational frequencies compared to the shifts revealed rotationally split doublets, triplets, and multiplets not only for single frequencies, but for the complete echelle ridges in 31 δ Scuti stars. Furthermore, using several possible assumptions for the origin of the spacings, we derived the large separation (${\\rm{\\Delta }}\
NASA Astrophysics Data System (ADS)
Paparó, M.; Benkő, J. M.; Hareter, M.; Guzik, J. A.
2016-06-01
A sequence search method was developed for searching for regular frequency spacing in δ Scuti stars by visual inspection (VI) and algorithmic search. The sample contains 90 δ Scuti stars observed by CoRoT. An example is given to represent the VI. The algorithm (SSA) is described in detail. The data treatment of the CoRoT light curves, the criteria for frequency filtering, and the spacings derived by two methods (i.e., three approaches: VI, SSA, and FT) are given for each target. Echelle diagrams are presented for 77 targets for which at least one sequence of regular spacing was identified. Comparing the spacing and the shifts between pairs of echelle ridges revealed that at least one pair of echelle ridges is shifted to midway between the spacing for 22 stars. The estimated rotational frequencies compared to the shifts revealed rotationally split doublets, triplets, and multiplets not only for single frequencies, but for the complete echelle ridges in 31 δ Scuti stars. Using several possible assumptions for the origin of the spacings, we derived the large separation ({{Δ }}ν ) that are distributed along the mean density versus large separations relation derived from stellar models.
Toschi, Nicola; Keck, Martin E; Welt, Tobias; Guerrisi, Maria
2012-01-01
Transcranial Magnetic Stimulation offers enormous potential for noninvasive brain stimulation. While it is known that brain tissue significantly "reshapes" induced field and charge distributions, most modeling investigations to-date have focused on single-subject data with limited generality. Further, the effects of the significant uncertainties which exist in the simulation (i.e. brain conductivity distributions) and stimulation (e.g. coil positioning and orientations) setup have not been quantified. In this study, we construct a high-resolution anisotropic head model in standard ICBM space, which can be used as a population-representative standard for bioelectromagnetic simulations. Further, we employ Monte-Carlo simulations in order to quantify how uncertainties in conductivity values propagate all the way to induced field and currents, demonstrating significant, regionally dependent dispersions in values which are commonly assumed "ground truth". This framework can be leveraged in order to quantify the effect of any type of uncertainty in noninvasive brain stimulation and bears relevance in all applications of TMS, both investigative and therapeutic.
Kumagai, Tomo'omi; Mudd, Ryan; Miyazawa, Yoshiyuki; Liu, Wen; Giambelluca, Thomas; Kobayashi, N.; Lim, Tiva Khan; Jomura, Mayuko; Matsumoto, Kazuho; Huang, Maoyi; Chen, Qi; Ziegler, Alan; Yin, Song
2013-09-10
We developed a soil-vegetation-atmosphere transfer (SVAT) model applicable to simulating CO2 and H2O fluxes from the canopies of rubber plantations, which are characterized by distinct canopy clumping produced by regular spacing of plantation trees. Rubber (Hevea brasiliensis Müll. Arg.) plantations, which are rapidly expanding into both climatically optimal and sub-optimal environments throughout mainland Southeast Asia, potentially change the partitioning of water, energy, and carbon at multiple scales, compared with traditional land covers it is replacing. Describing the biosphere-atmosphere exchange in rubber plantations via SVAT modeling is therefore essential to understanding the impacts on environmental processes. The regular spacing of plantation trees creates a peculiar canopy structure that is not well represented in most SVAT models, which generally assumes a non-uniform spacing of vegetation. Herein we develop a SVAT model applicable to rubber plantation and an evaluation method for its canopy structure, and examine how the peculiar canopy structure of rubber plantations affects canopy CO2 and H2O exchanges. Model results are compared with measurements collected at a field site in central Cambodia. Our findings suggest that it is crucial to account for intensive canopy clumping in order to reproduce observed rubber plantation fluxes. These results suggest a potentially optimal spacing of rubber trees to produce high productivity and water use efficiency.
Paparo, M.; Benko, J. M.; Hareter, M.; Guzik, J. A.
2016-05-11
In this study, a sequence search method was developed to search the regular frequency spacing in δ Scuti stars through visual inspection and an algorithmic search. We searched for sequences of quasi-equally spaced frequencies, containing at least four members per sequence, in 90 δ Scuti stars observed by CoRoT. We found an unexpectedly large number of independent series of regular frequency spacing in 77 δ Scuti stars (from one to eight sequences) in the non-asymptotic regime. We introduce the sequence search method presenting the sequences and echelle diagram of CoRoT 102675756 and the structure of the algorithmic search. Four sequences (echelle ridges) were found in the 5–21 d^{–1} region where the pairs of the sequences are shifted (between 0.5 and 0.59 d^{–1}) by twice the value of the estimated rotational splitting frequency (0.269 d^{–1}). The general conclusions for the whole sample are also presented in this paper. The statistics of the spacings derived by the sequence search method, by FT (Fourier transform of the frequencies), and the statistics of the shifts are also compared. In many stars more than one almost equally valid spacing appeared. The model frequencies of FG Vir and their rotationally split components were used to formulate the possible explanation that one spacing is the large separation while the other is the sum of the large separation and the rotational frequency. In CoRoT 102675756, the two spacings (2.249 and 1.977 d^{–1}) are in better agreement with the sum of a possible 1.710 d^{–1} large separation and two or one times, respectively, the value of the rotational frequency.
Paparo, M.; Benko, J. M.; Hareter, M.; Guzik, J. A.
2016-05-11
In this study, a sequence search method was developed to search the regular frequency spacing in δ Scuti stars through visual inspection and an algorithmic search. We searched for sequences of quasi-equally spaced frequencies, containing at least four members per sequence, in 90 δ Scuti stars observed by CoRoT. We found an unexpectedly large number of independent series of regular frequency spacing in 77 δ Scuti stars (from one to eight sequences) in the non-asymptotic regime. We introduce the sequence search method presenting the sequences and echelle diagram of CoRoT 102675756 and the structure of the algorithmic search. Four sequences (echelle ridges) were found in the 5–21 d^{–1} region where the pairs of the sequences are shifted (between 0.5 and 0.59 d^{–1}) by twice the value of the estimated rotational splitting frequency (0.269 d^{–1}). The general conclusions for the whole sample are also presented in this paper. The statistics of the spacings derived by the sequence search method, by FT (Fourier transform of the frequencies), and the statistics of the shifts are also compared. In many stars more than one almost equally valid spacing appeared. The model frequencies of FG Vir and their rotationally split components were used to formulate the possible explanation that one spacing is the large separation while the other is the sum of the large separation and the rotational frequency. In CoRoT 102675756, the two spacings (2.249 and 1.977 d^{–1}) are in better agreement with the sum of a possible 1.710 d^{–1} large separation and two or one times, respectively, the value of the rotational frequency.
Augmenting LTP-Like Plasticity in Human Motor Cortex by Spaced Paired Associative Stimulation.
Müller-Dahlhaus, Florian; Lücke, Caroline; Lu, Ming-Kuei; Arai, Noritoshi; Fuhl, Anna; Herrmann, Eva; Ziemann, Ulf
2015-01-01
Paired associative stimulation (PASLTP) of the human primary motor cortex (M1) can induce LTP-like plasticity by increasing corticospinal excitability beyond the stimulation period. Previous studies showed that two consecutive PASLTP protocols interact by homeostatic metaplasticity, but animal experiments provided evidence that LTP can be augmented by repeated stimulation protocols spaced by ~30 min. Here we tested in twelve healthy selected PASLTP responders the possibility that LTP-like plasticity can be augmented in the human M1 by systematically varying the interval between two consecutive PASLTP protocols. The first PASLTP protocol (PAS1) induced strong LTP-like plasticity lasting for 30-60 min. The effect of a second identical PASLTP protocol (PAS2) critically depended on the time between PAS1 and PAS2. At 10 min, PAS2 prolonged the PAS1-induced LTP-like plasticity. At 30 min, PAS2 augmented the LTP-like plasticity induced by PAS1, by increasing both magnitude and duration. At 60 min and 180 min, PAS2 had no effect on corticospinal excitability. The cumulative LTP-like plasticity after PAS1 and PAS2 at 30 min exceeded significantly the effect of PAS1 alone, and the cumulative PAS1 and PAS2 effects at 60 min and 180 min. In summary, consecutive PASLTP protocols interact in human M1 in a time-dependent manner. If spaced by 30 min, two consecutive PASLTP sessions can augment LTP-like plasticity in human M1. Findings may inspire further research on optimized therapeutic applications of non-invasive brain stimulation in neurological and psychiatric diseases.
NASA Astrophysics Data System (ADS)
Tze, Chia-Hsiung
We present an alternative formulation of Polyakov’s regularization of Gauss’ integral formula for a single closed Feynman path. A key element in his proof of the D=3 fermi-bose transmutations induced by topological gauge fields, this regularization is linked here with the existence and properties of a nontrivial topological invariant for a closed space ribbon. This self-linking coefficient, an integer, is the sum of two differential characteristics of the ribbon, its twisting and writhing numbers. These invariants form the basis for a physical interpretation of our regularization. Their connection to Polyakov’s spinorization is discussed. We further generalize our construction to the self-linking, twisting and writhing of higher dimensional d=n (odd) submanifolds in D=(2n+1) space-time. Our comprehensive analysis intends to supplement Polyakov’s work as it identifies a natural path to its higher dimensional mathematical and physical generalizations. Combining the theorems of White on self-linking of manifolds and of Adams on nontrivial Hopf fibre bundles and the four composition-division algebras, we argue that besides Polyakov’s case where (d, D)=(1, 3) tied to complex numbers, the potentially interesting extensions are two chiral models with (d, D)=(3, 7) and (7, 15) uniquely linked to quaternions and octonions. In Memoriam Richard P. Feynman
Unusual visual stimulation in dynamic balance conditions: proposal for a space motion sickness test
NASA Astrophysics Data System (ADS)
Séverac, Alexandra; Bessou, Paul; Pagès, Bernard
1994-08-01
We previously demonstrated the efficiency of normal vision/unusual vestibular cues conflict to induce motion sickness. In the present study, we investigate whether, inversely, unusual visual information/normal vestibular function conflict also elicited motion sickness. The experiments were again carried out in dynamic balance conditions to increase proprioceptive input. Circular translation of the visual field with diplopia were produced by rotating Fresnel prismatic glasses. The stimulation triggered SMS-like symptoms and dynamic balance disturbance. A positive relationship was found between discomfort and balance disturbance. Unusual visual information should therefore be included in Space Motion Sickness susceptibility testing.
NASA Astrophysics Data System (ADS)
Scales, W. A.
2016-02-01
Investigation of stimulated radiation, commonly known as stimulated electromagnetic emissions (SEE), produced by the interaction of high-power, high-frequency HF radiowaves with the ionospheric plasma has been a vibrant area of research since the early 1980s. Substantial diagnostic information about ionospheric plasma characteristics, dynamics, and turbulence can be obtained from the frequency spectrum of the stimulated radiation. During the past several decades, so-called wideband SEE which exists in a frequency band of ±100 kHz or so of the transmit wave frequency (which is several MHz) has been investigated relatively thoroughly. Recent upgrades both in transmitter power and diagnostic receiver frequency sensitivity at major ionosphere interaction facilities in Alaska and Norway have allowed new breakthroughs in the ability to study a plethora of processes associated with the ionospheric plasma during these experiments. A primary advance is in observations of so-called narrowband SEE (NSEE) which exists roughly within ±1 kHz of the transmit wave frequency. An overview of several important new results associated with NSEE are discussed as well as implications to new diagnostics of space plasma physics occurring during ionospheric interaction experiments.
ERIC Educational Resources Information Center
Stevenson, Blair
2015-01-01
This paper explores the use of video-stimulated recall as a reflective approach for supporting the development of third spaces in action research. The concept of third spaces is used as a conceptual descriptor of the specific intercultural context and relations between the researcher and participants present within the project. The paper…
ERIC Educational Resources Information Center
Stevenson, Blair
2015-01-01
This paper explores the use of video-stimulated recall as a reflective approach for supporting the development of third spaces in action research. The concept of third spaces is used as a conceptual descriptor of the specific intercultural context and relations between the researcher and participants present within the project. The paper…
Linear regularity and [phi]-regularity of nonconvex sets
NASA Astrophysics Data System (ADS)
Ng, Kung Fu; Zang, Rui
2007-04-01
In this paper, we discuss some sufficient conditions for the linear regularity and bounded linear regularity (and their variations) of finitely many closed (not necessarily convex) sets in a normed vector space. The accompanying necessary conditions are also given in the setting of Asplund spaces.
Sparsity regularized image reconstruction
NASA Astrophysics Data System (ADS)
Hero, Alfred
2015-03-01
Most image reconstruction problems are under-determined: there are far more pixels to be resolved than there are measurements available. This means that the image space has more degrees of freedom than the measurement space. To make headway in such under-determined image reconstruction problems one must either incorporate domain knowledge or regularize. Domain knowledge restricts the size of the image space while regularization introduces bias, e.g., by forcing the reconstructed image to be smooth or have limited support. Both approaches are equivalent and can be interpreted as making the image sparse in some domain. This paper will provide a selective overview of some of the principal methods of sparsity regularized image reconstruction.
NASA Astrophysics Data System (ADS)
Moustakas, Aristides; Wiegand, Kerstin; Getzin, Stephan; Ward, David; Meyer, Katrin M.; Guenther, Matthias; Mueller, Karl-Heinz
2008-05-01
Nearest tree neighbour distances and the tree spatial formation on a large scale over time and space replicates were examined. The study was conducted in a natural savanna ecosystem in the Southern Kalahari, South Africa. Nearest tree neighbour and point pattern analysis methods were used to investigate changes in the spatial pattern of trees in two plots. Trees larger than 2 m canopy diameter were mapped. We used aerial photographs of the study area from 1940, 1964, 1984, 1993, and a satellite image from 2001 to follow two plots over time. Field work was carried out too for classification accuracy. We were able to identify and individually follow over 2400 individual trees from 1940 until 2001. Nearest neighbour analysis results indicate that dead trees were on average closer to their nearest neighbouring trees than living trees were to their neighbours. Most dead trees were on average 6 m from their nearest neighbours, while most living trees were about 20 m apart. Point pattern analysis results show a cyclical transition from clumped to random and sequentially to regular tree spacing. These transitions were not correlated across two plots. Generally, decreases in small-scale clumping coincided with periods of high mortality. Our findings show that regular, clumped, and random tree pattern can occur, pending on time, location, and scale within the location.
Alpha stimulation of the human parietal cortex attunes tactile perception to external space.
Ruzzoli, Manuela; Soto-Faraco, Salvador
2014-02-03
An intriguing question in neuroscience concerns how somatosensory events on the skin are represented in the human brain. Since Head and Holmes' [1] neuropsychological dissociation between localizing touch on the skin and localizing body parts in external space, touch is considered to operate in a variety of spatial reference frames [2]. At least two representations of space are in competition during orienting to touch: a somatotopic one, reflecting the organization of the somatosensory cortex (S1) [3], and a more abstract, external reference frame that factors postural changes in relation to body parts and/or external space [4, 5]. Previous transcranial magnetic stimulation (TMS) studies suggest that the posterior parietal cortex (PPC) plays a key role in supporting representations as well as orienting attention in an external reference frame [4, 6]. Here, we capitalized on the TMS entrainment approach [7, 8], targeting the intraparietal sulcus (IPS). We found that frequency-specific (10 Hz) tuning of the PPC induced spatially specific enhancement of tactile detection that was expressed in an external reference frame. This finding establishes a tight causal link between a concrete form of brain activity (10 Hz oscillation) and a specific type of spatial representation, revealing a fundamental property of how the parietal cortex encodes information. Copyright © 2014 Elsevier Ltd. All rights reserved.
Coles, J A; Orkand, R K
1985-05-01
Ion-selective micro-electrodes were used to measure Na+ activity, aNa, in the two types of cell, photoreceptors and glial cells, and in the extracellular space, in superfused slices of the retina of the honey-bee drone, Apis mellifera male. Movements of Na+ were induced by light stimulation, or by increasing [K+] in the superfusate. In the dark, aNa in the photoreceptors was 10 mM (S.E. of the mean = 1 mM); in the glial cells it was higher: 37 +/- 2 mM. We estimate that in this preparation about 2/3 of the free Na+ in the tissue is in the glial cells. Stimulation with a train of light flashes, 1 s-1 for 90 s caused aNa in the photoreceptors to increase by 16 +/- 2 mM. K+ activity, aK, decreased by 21 +/- 3 mM. During the standard train of light flashes, aNa in glial cells decreased by only 1.5 +/- 0.3 mM, much less than the increase in aK (7 +/- 2 mM). One possible interpretation of this result is that most of the increase in aK is due to K+ uptake by a mechanism other than Na+-K+ exchange. In extracellular fluid, stimulation caused aNa to fall to a relatively steady value in about 10 s. Unlike aK, there was no tendency for aNa to return to the base line during the remainder of the 90 s stimulation. The fall in aNa was 14 +/- 1 mM: a greater fall is prevented by extracellular electric currents and a decrease in extracellular volume. When [K+] in the superfusate was increased from 7.5 to 18 mM, aNa decreased in the glial cells but not in the photoreceptors. In this tissue, stimulation causes changes in aNa in the neurones that might be large enough to modify the biochemistry of the cells. But in the glia, the fractional changes are small.
Perceptual Spaces Induced by Cochlear Implant All-Polar Stimulation Mode
McKay, Colette M.
2016-01-01
It has been argued that a main limitation of the cochlear implant is the spread of current induced by each electrode, which activates an inappropriately large range of sensory neurons. To reduce this spread, an alternative stimulation mode, the all-polar mode, was tested with five participants. It was designed to activate all the electrodes simultaneously with appropriate current levels and polarities to recruit narrower regions of auditory nerves at specific intracochlear electrode positions (denoted all-polar electrodes). In this study, the all-polar mode was compared with the current commercial stimulation mode: the monopolar mode. The participants were asked to judge the sound dissimilarity between pairs of two-electrode pulse-train stimuli that differed in the electrode positions and were presented in either monopolar or all-polar mode with pulses on the two electrodes presented either sequentially or simultaneously. The dissimilarity ratings were analyzed using a multidimensional scaling technique and three-dimensional stimulus perceptual spaces were produced. For all the conditions (mode and simultaneity), the first perceptual dimension was highly correlated with the position of the most apical activated electrode of the electrical stimulation and the second dimension with the position of the most basal electrode. In both sequential and simultaneous conditions, the monopolar and all-polar stimuli were significantly separated by a third dimension, which may indicate that all-polar stimuli have a perceptual quality that differs from monopolar stimuli. Overall, the results suggest that both modes might successfully represent spectral information in a sound processing strategy. PMID:27604784
NASA Astrophysics Data System (ADS)
Ohkitani, Koji
2017-01-01
We make a detailed comparison between the Navier-Stokes equations and their dynamically scaled counterpart, the so-called Leray equations. The Navier-Stokes equations are invariant under static scaling transforms, but are not generally invariant under dynamic scaling transforms. We will study how closely they can be brought together using the critical dependent variables and discuss the implications on the regularity problems. Assuming that the Navier-Stokes equations written in the vector potential have a solution that blows up at t = 1, we derive the Leray equations by dynamic scaling. We observe: (1) the Leray equations have only one term extra on top of those of the Navier-Stokes equations (2) we can recast the Navier-Stokes equations as a Wiener path integral and the Leray equations as another Ornstein-Uhlenbeck path integral. Using the Maruyama-Girsanov theorem, both equations take the identical form modulo the Maruyama-Girsanov density, which is valid up to t=2\\sqrt{2} by the Novikov condition (3) the global solution of the Leray equations is given by a finite-dimensional projection {\\boldsymbol{R}} of a functional of an Ornstein-Uhlenbeck process and a probability measure. If {\\boldsymbol{R}} remains smooth beyond t = 1 under an absolute continuous change of the probability measure, we can rule out finite-time blowup by contradiction. There are two cases: (A) {\\boldsymbol{R}} given by a finite number of Wiener integrals, and (B) otherwise. Ruling out blowup in (A) is straightforward. For (B), a condition based on a limit passage in the Picard iterations is identified for such a contradiction to come out. The whole argument equally holds in {{{R}}}d for any d≥slant 2.
Geometry of spinor regularization
NASA Technical Reports Server (NTRS)
Hestenes, D.; Lounesto, P.
1983-01-01
The Kustaanheimo theory of spinor regularization is given a new formulation in terms of geometric algebra. The Kustaanheimo-Stiefel matrix and its subsidiary condition are put in a spinor form directly related to the geometry of the orbit in physical space. A physically significant alternative to the KS subsidiary condition is discussed. Derivations are carried out without using coordinates.
Sidtis, John J; Alken, Amy G; Tagliati, Michele; Alterman, Ron; Van Lancker Sidtis, Diana
2016-03-19
Stimulation of the subthalamic nuclei (STN) is an effective treatment for Parkinson's disease, but complaints of speech difficulties after surgery have been difficult to quantify. Speech measures do not convincingly account for such reports. This study examined STN stimulation effects on vowel production, in order to probe whether DBS affects articulatory posturing. The objective was to compare positioning during the initiation phase with the steady prolongation phase by measuring vowel spaces for three "corner" vowels at these two time frames. Vowel space was measured over the initial 0.25 sec of sustained productions of high front (/i/), high back (/u/) and low vowels (/a/), and again during a 2 sec segment at the midpoint. Eight right-handed male subjects with bilateral STN stimulation and seven age-matched male controls were studied based on their participation in a larger study that included functional imaging. Mean values: age = 57±4.6 yrs; PD duration = 12.3±2.7 yrs; duration of DBS = 25.6±21.2 mos, and UPDRS III speech score = 1.6±0.7. STN subjects were studied off medication at their therapeutic DBS settings and again with their stimulators off, counter-balanced order. Vowel space was larger in the initiation phase compared to the midpoint for both the control and the STN subjects off stimulation. With stimulation on, however, the initial vowel space was significantly reduced to the area measured at the mid-point. For the three vowels, the acoustics were differentially affected, in accordance with expected effects of front versus back position in the vocal tract. STN stimulation appears to constrain initial articulatory gestures for vowel production, raising the possibility that articulatory positions normally used in speech are similarly constrained.
Goelman, Gadi; Pelled, Galit; Dodd, Steve; Koretsky, Alan
2008-09-01
A unique method to map the effect of crusher gradients in space and time on the gradient echo blood oxygen level dependent (BOLD) signal is introduced. Using the Radial Correlation Contrast (RCC) analysis method, amplitude-RCC maps at different time segments and different gradient strengths were obtained. The ratio of amplitude-RCC cluster volumes, with and without crusher gradients, showed a temporal dependency with stronger volume reduction for stimulation-onset versus stimulation-decline. Aside from signal-to-noise ratio reduction in diffusion weighted images, the average temporal patterns were equal. Comparison of the data with and without crushers showed a stronger reduction in local coherence for stimulation-onset times. We hypothesize that the stimulation decline was weighted by extravascular effects originating in expanded veins due to their larger volume and long range susceptibility which couples neighboring voxels. The ratio of amplitude-RCC with and without crushers calculated for each voxel at each time segment yielded a spatial-temporal mapping of the crusher effect. These maps suggest that early stimulation-onset ( approximately 9 s) is weighted by flow; later a dynamic steady-state between intra- and extravascular effects is obtained. Stimulation-decline was dominated by extravascular effects, and at late stimulation decline as well as at early stimulation onset, clusters were small and localized to expected site of neuronal activity.
Karnath, Hans-Otto; Himmelbach, Marc; Perenin, Marie-Thérèse
2003-11-01
Evidence has been reported favoring the view of a dual mode of space representation for action and spatial cognition. While the dorsal system seems to be mainly involved in direct coding of space for action by means of several effector-specific representations, the ventral system appears to be responsible for more enduring and conscious representations underlying spatial cognition and awareness. In accordance with this view are recent studies documenting dissociations between exploratory and goal-directed movements in patients with brain damage. Patients with neglect exhibit a spatial bias of exploratory movements to the ipsilesional side, while goal-directed movements land precisely on target. The exploratory bias was found susceptible to asymmetric sensory stimulation such as caloric vestibular stimulation, inducing transient reduction of contralateral neglect. The present study compared exploratory and goal-directed hand movements in healthy subjects following cold caloric stimulation of the right vestibular organ. We observed a rightward shift of tactile exploration, while goal-directed pointing remained unaffected. Asymmetric vestibular stimulation in healthy subjects thus produced a neglect-like behavior with a similar dissociation between impaired exploratory and nonimpaired goal-directed hand movements. The stimulation provoked a further, very characteristic symptom of neglect patients: a deviation of spontaneous head orientation toward the right. The present observations strengthen substantially the assumption of different modes of space representation for action and spatial cognition in humans.
Manifold Regularized Reinforcement Learning.
Li, Hongliang; Liu, Derong; Wang, Ding
2017-01-27
This paper introduces a novel manifold regularized reinforcement learning scheme for continuous Markov decision processes. Smooth feature representations for value function approximation can be automatically learned using the unsupervised manifold regularization method. The learned features are data-driven, and can be adapted to the geometry of the state space. Furthermore, the scheme provides a direct basis representation extension for novel samples during policy learning and control. The performance of the proposed scheme is evaluated on two benchmark control tasks, i.e., the inverted pendulum and the energy storage problem. Simulation results illustrate the concepts of the proposed scheme and show that it can obtain excellent performance.
NASA Astrophysics Data System (ADS)
Gaza, Ramona
Scope and method of study. The purpose of this study was to investigate Al2O3:C as a potential optically stimulated luminescence (OSL) radiation detector for Low-Earth Orbit. The OSL response of Al2O3:C was characterized in terms of its luminescence efficiency for a variety of heavy charged particles (HCPs) with features similar to those found in space. The HCP irradiations were performed using the HIMAC accelerator at Chiba (Japan), the proton facility at Loma Linda (CA) and the NSRL facility at Brookhaven (NY). The OSL curves were further investigated to obtain information about the 'mean efficiency' and 'mean LET', parameters that needed to assess the absorbed dose and the dose equivalent. This analysis was applied for simulated mixed radiation fields (ICCHIBAN) and actual space radiation exposures (i.e., STS-105, BRADOS, and TRACER). In parallel, the thermoluminescence response of dosimetry materials LiF:Mg,Ti and CaF2:Tm was also studied. Findings and conclusions. The OSL efficiency of Al2O 3:C exposed to HCPs was found to decrease with increasing linear energy transfer (LET) for the investigated LET range (i.e., from 0.4 keV/mum to 459 keV/mum). For simulated mixed radiation fields with a strong low-LET component, the results indicated that the OSL calibration methods (i.e., tau-method and R-method) can be used with good accuracy to obtain information about the absorbed dose and the dose equivalent. Nevertheless, for mixed fields with a strong high-LET component these methods will give larger errors when estimating the absorbed dose and the dose equivalent. For actual space radiation exposures, the results indicated that different materials/calibration methods (i.e., the LiF:Mg,Ti/HTR-method and the CaF2:Tm/peak 5 + 6/peak 3-method) give different results in terms of 'mean efficiency' and 'mean LET'. This was explained by suggesting that none of the above calibration methods can give information about the true average LET of the incident radiation, but rather
Forghan, B. Takook, M.V.; Zarei, A.
2012-09-15
In this paper, the electron self-energy, photon self-energy and vertex functions are explicitly calculated in Krein space quantization including quantum metric fluctuation. The results are automatically regularized or finite. The magnetic anomaly and Lamb shift are also calculated in the one loop approximation in this method. Finally, the obtained results are compared to conventional QED results. - Highlights: Black-Right-Pointing-Pointer Krein regularization yields finite values for photon and electron self-energies and vertex function. Black-Right-Pointing-Pointer The magnetic anomaly is calculated and is exactly the same as the conventional result. Black-Right-Pointing-Pointer The Lamb shift is calculated and is approximately the same as in Hilbert space.
Sivashanmugam, P.; Suresh, S.
2007-02-15
Experimental investigation of heat transfer and friction factor characteristics of circular tube fitted with full-length helical screw element of different twist ratio, and helical screw inserts with spacer length 100, 200, 300 and 400mm have been studied with uniform heat flux under laminar flow condition. The experimental data obtained are verified with those obtained from plain tube published data. The effect of spacer length on heat transfer augmentation and friction factor, and the effect of twist ratio on heat transfer augmentation and friction factor have been presented separately. The decrease in Nusselt number for the helical twist with spacer length is within 10% for each subsequent 100mm increase in spacer length. The decrease in friction factor is nearly two times lower than the full length helical twist at low Reynolds number, and four times lower than the full length helical twist at high Reynolds number for all twist ratio. The regularly spaced helical screw inserts can safely be used for heat transfer augmentation without much increase in pressure drop than full length helical screw inserts. (author)
Chen, Ying; Cai, Congbo; Zhong, Jianhui; Chen, Zhong
2015-04-01
To present a new high-resolution single-point water-fat separation algorithm based on the spatiotemporally encoded chemical shift imaging technique. Identifying water and fat peaks on the ensemble of the nominal k-space profiles of all spatiotemporally encoded lines enables evaluation of the mean off-resonance frequencies of the two components. With utilization of the spatial smoothness and filtering regularizations, the water/fat profiles can be discriminated with twice joint linear least squares estimations line-by-line. The effectiveness of the proposed algorithm was assessed by experiments on oil-water phantoms and in vivo in rats at 7T using a spatiotemporally encoded variant of the multishot spin-echo sequence. The results were compared with those obtained from previously proposed 1-point Dixon, 2-point Dixon, and 3-point IDEAL methods. The results demonstrate that the new technique can achieve high-quality water-fat separations, comparable in signal-to-noise ratio and contrast to the multipoint methods and is more robust in cases when large areas of low signals or motion artifacts jeopardize the results from the 1-point Dixon method. The proposed technique is potentially a new viable alternative for single-point water-fat separation. © 2014 Wiley Periodicals, Inc.
2002-03-01
Tikhonov and V. Y. Arsenin . Solutions of Ill - posed Problems . W. H. Winston, Washington, D.C... solutions f to an appropriately small hypothesis space3. Within the universe of ill - posed problems , the problem of learning theory has a specific need — the...originates from Tikhonov’s classical approach for solving ill - posed problems . Existence, uniqueness and especially stability2 can be restored via
Flexible sparse regularization
NASA Astrophysics Data System (ADS)
Lorenz, Dirk A.; Resmerita, Elena
2017-01-01
The seminal paper of Daubechies, Defrise, DeMol made clear that {{\\ell }}p spaces with p\\in [1,2) and p-powers of the corresponding norms are appropriate settings for dealing with reconstruction of sparse solutions of ill-posed problems by regularization. It seems that the case p = 1 provides the best results in most of the situations compared to the cases p\\in (1,2). An extensive literature gives great credit also to using {{\\ell }}p spaces with p\\in (0,1) together with the corresponding quasi-norms, although one has to tackle challenging numerical problems raised by the non-convexity of the quasi-norms. In any of these settings, either superlinear, linear or sublinear, the question of how to choose the exponent p has been not only a numerical issue, but also a philosophical one. In this work we introduce a more flexible way of sparse regularization by varying exponents. We introduce the corresponding functional analytic framework, that leaves the setting of normed spaces but works with so-called F-norms. One curious result is that there are F-norms which generate the ℓ 1 space, but they are strictly convex, while the ℓ 1-norm is just convex.
Johnson, Will L.; Jindrich, Devin L.; Zhong, Hui; Roy, Roland R.
2011-01-01
A device to generate standing or locomotion through chronically placed electrodes has not been fully developed due in part to limitations of clinical experimentation and the high number of muscle activation inputs of the leg. We investigated the feasibility of functional electrical stimulation paradigms that minimize the input dimensions for controlling the limbs by stimulating at nerve fascicles, utilizing a model of the rat hindlimb which combined previously collected morphological data with muscle physiological parameters presented herein. As validation of the model we investigated the suitability of a lumped-parameter model for prediction of muscle activation during dynamic tasks. Using the validated model we found that the space of forces producible through activation of muscle groups sharing common nerve fascicles was nonlinearly dependent on the number of discrete muscle groups that could be individually activated (equivalently, the neuroanatomical level of activation). Seven commonly innervated muscle groups were sufficient to produce 78% of the force space producible through individual activation of the 42 modeled hindlimb muscles. This novel, neuroanatomically derived reduction in input dimension emphasizes the potential to simplify controllers for functional electrical stimulation to improve functional recovery after a neuromuscular injury. PMID:21244999
NASA Astrophysics Data System (ADS)
Lu, Jinying; Liu, Min; Pan, Yi; Li, Huasheng
We carried out whole-genome microarray to screen the transcript profile of Arabidopsis thaliana seedlings after three treatment: space microgravity condition( Seedlings grown in microgravity state of space flight of SIMBOX on Shenzhou-8), 1g centrifugal force in space(Seedlings grown in 1g centrifugal force state of space flight of SIMBOX on Shenzhou-8) and ground control. The result of microarray analysis is as followed: There were 368 genes significantly differentially expressed in space microgravity condition compared with that in 1g centrifuge space condition. Space radiation caused 246 genes significantly differentially expressed between seedlings in 1g centrifuge space condition and ground control. Space conditions (including microgravity and radiation) caused 621 genes significantly differentially expressed between seedlings in space microgravity condition and ground control. Microgravity and radiation as a single factor can cause plant gene expression change, but two factors synergism can produce some new effects on plant gene expression. The function of differential expression genes were analyst by bioinformatics, and we found the expression of genes related with stress were more different, such as the dehydration of protein (dehydrin Xero2) expression is up-regulated 57 times; low-temperature-induced protein expression is up-regulated in 49 times; heat shock protein expression is up-regulated 20 times; transcription factor DREB2A expression increase 25 times; protein phosphatase 2C expression is up-regulated 14 times; transcription factor NAM-like protein expression is up-regulated 13 times; cell wall metabolism related genes (xyloglucan, endo-1, 4-beta-D-glucanase) expression is down-regulated in 15 times. The results provide scientific data for the mechanism of space mutation.
Mahayana, Indra T; Liu, Chia-Lun; Chang, Chi Fu; Hung, Daisy L; Tzeng, Ovid J L; Juan, Chi-Hung; Muggleton, Neil G
2014-02-01
Near- and far-space coding in the human brain is a dynamic process. Areas in dorsal, as well as ventral visual association cortex, including right posterior parietal cortex (rPPC), right frontal eye field (rFEF), and right ventral occipital cortex (rVO), have been shown to be important in visuospatial processing, but the involvement of these areas when the information is in near or far space remains unclear. There is a need for investigations of these representations to help explain the pathophysiology of hemispatial neglect, and the role of near and far space is crucial to this. We used a conjunction visual search task using an elliptical array to investigate the effects of transcranial magnetic stimulation delivered over rFEF, rPPC, and rVO on the processing of targets in near and far space and at a range of horizontal eccentricities. As in previous studies, we found that rVO was involved in far-space search, and rFEF was involved regardless of the distance to the array. It was found that rPPC was involved in search only in far space, with a neglect-like effect when the target was located in the most eccentric locations. No effects were seen for any site for a feature search task. As the search arrays had higher predictability with respect to target location than is often the case, these data may form a basis for clarifying both the role of PPC in visual search and its contribution to neglect, as well as the importance of near and far space in these.
Studies of plant gene expression and function stimulated by space microgravity
NASA Astrophysics Data System (ADS)
Lu, Jinying; Liu, Min; Li, Huasheng; Zhao, Hui
2016-07-01
One of the important questions in space biology is how plants respond to an outer space environment i.e., how genetic expression is altered in space microgravity. In this study, the transcriptome of Arabidopsis thaliana seedlings was analyzed as part of the Germany SIMBOX (Science in Microgravity Box) spaceflight experiment on Shenzhou 8. A gene chip was used to screen gene expression differences in Arabidopsis thaliana seedlings between microgravity and 1g centrifugal force in space. Microarray analysis revealed that 368 genes were differentially expressed. Gene Ontology (GO) analysis indicated that these genes were involved in the plant's response to stress, secondary metabolism, hormone metabolism, transcription, protein phosphorylation, lipid metabolism, transport and cell wall metabolism processes. Real time PCR was used to analyzed the miRNA expression including Arabidopsis miR160,miR161, miR394, miR402, miR403, and miR408. MiR408 was significantly upregulated. An overexpression vector of Arabidopsis miR408 was constructed and transferred to Arabidopsis plant. The roots of plants over expressing miR408 exhibited a slower reorientation upon gravistimulation in comparison with those of wild-type. This result indicated that miR408 could play a role in root gravitropic response.
Regular connections among generalized connections
NASA Astrophysics Data System (ADS)
Fleischhack, Christian
2003-09-01
The properties of the space A of regular connections as a subset of the space Ā of generalized connections in the Ashtekar framework are studied. For every choice of compact structure group and smoothness category for the paths, it is determined whether A is dense in Ā or not. Moreover, it is proven that A has Ashtekar-Lewandowski measure zero for every non-trivial structure group and every smoothness category. The analogous results hold for gauge orbits instead of connections.
NASA Technical Reports Server (NTRS)
Baisch, F.; Beck, L.; Blomqvist, G.; Wolfram, G.; Drescher, J.; Rome, J. L.; Drummer, C.
2000-01-01
BACKGROUND: It is well known that space travel cause post-flight orthostatic hypotension and it was assumed that autonomic cardiovascular control deteriorates in space. Lower body negative pressure (LBNP) was used to assess autonomic function of the cardiovascular system. METHODS: LBNP tests were performed on six crew-members before and on the first days post-flight in a series of three space missions. Additionally, two of the subjects performed LBNP tests in-flight. LBNP mimics fluid distribution of upright posture in a gravity independent way. It causes an artificial sequestration of blood, reduces preload, and filtrates plasma into the lower part of the body. Fluid distribution was assessed by bioelectrical impedance and anthropometric measurements. RESULTS: Heart rate, blood pressure, and total peripheral resistance increased significantly during LBNP experiments in-flight. The decrease in stroke volume, the increased pooling of blood, and the increased filtration of plasma into the lower limbs during LBNP indicated that a plasma volume reduction and a deficit of the interstitial volume of lower limbs rather than a change in cardiovascular control was responsible for the in-flight response. Post-flight LBNP showed no signs of cardiovascular deterioration. The still more pronounced haemodynamic changes during LBNP reflected the expected behaviour of cardiovascular control faced with less intravascular volume. In-flight, the status of an intra-and extravascular fluid deficit increases sympathetic activity, the release of vasoactive substances and consequently blood pressure. Post-flight, blood pressure decreases significantly below pre-flight values after restoration of volume deficits. CONCLUSION: We conclude that the cardiovascular changes in-flight are a consequence of a fluid deficit rather than a consequence of changes in autonomic signal processing.
Baisch, F; Beck, L; Blomqvist, G; Wolfram, G; Drescher, J; Rome, J L; Drummer, C
2000-12-01
It is well known that space travel cause post-flight orthostatic hypotension and it was assumed that autonomic cardiovascular control deteriorates in space. Lower body negative pressure (LBNP) was used to assess autonomic function of the cardiovascular system. LBNP tests were performed on six crew-members before and on the first days post-flight in a series of three space missions. Additionally, two of the subjects performed LBNP tests in-flight. LBNP mimics fluid distribution of upright posture in a gravity independent way. It causes an artificial sequestration of blood, reduces preload, and filtrates plasma into the lower part of the body. Fluid distribution was assessed by bioelectrical impedance and anthropometric measurements. Heart rate, blood pressure, and total peripheral resistance increased significantly during LBNP experiments in-flight. The decrease in stroke volume, the increased pooling of blood, and the increased filtration of plasma into the lower limbs during LBNP indicated that a plasma volume reduction and a deficit of the interstitial volume of lower limbs rather than a change in cardiovascular control was responsible for the in-flight response. Post-flight LBNP showed no signs of cardiovascular deterioration. The still more pronounced haemodynamic changes during LBNP reflected the expected behaviour of cardiovascular control faced with less intravascular volume. In-flight, the status of an intra-and extravascular fluid deficit increases sympathetic activity, the release of vasoactive substances and consequently blood pressure. Post-flight, blood pressure decreases significantly below pre-flight values after restoration of volume deficits. We conclude that the cardiovascular changes in-flight are a consequence of a fluid deficit rather than a consequence of changes in autonomic signal processing.
NASA Technical Reports Server (NTRS)
Baisch, F.; Beck, L.; Blomqvist, G.; Wolfram, G.; Drescher, J.; Rome, J. L.; Drummer, C.
2000-01-01
BACKGROUND: It is well known that space travel cause post-flight orthostatic hypotension and it was assumed that autonomic cardiovascular control deteriorates in space. Lower body negative pressure (LBNP) was used to assess autonomic function of the cardiovascular system. METHODS: LBNP tests were performed on six crew-members before and on the first days post-flight in a series of three space missions. Additionally, two of the subjects performed LBNP tests in-flight. LBNP mimics fluid distribution of upright posture in a gravity independent way. It causes an artificial sequestration of blood, reduces preload, and filtrates plasma into the lower part of the body. Fluid distribution was assessed by bioelectrical impedance and anthropometric measurements. RESULTS: Heart rate, blood pressure, and total peripheral resistance increased significantly during LBNP experiments in-flight. The decrease in stroke volume, the increased pooling of blood, and the increased filtration of plasma into the lower limbs during LBNP indicated that a plasma volume reduction and a deficit of the interstitial volume of lower limbs rather than a change in cardiovascular control was responsible for the in-flight response. Post-flight LBNP showed no signs of cardiovascular deterioration. The still more pronounced haemodynamic changes during LBNP reflected the expected behaviour of cardiovascular control faced with less intravascular volume. In-flight, the status of an intra-and extravascular fluid deficit increases sympathetic activity, the release of vasoactive substances and consequently blood pressure. Post-flight, blood pressure decreases significantly below pre-flight values after restoration of volume deficits. CONCLUSION: We conclude that the cardiovascular changes in-flight are a consequence of a fluid deficit rather than a consequence of changes in autonomic signal processing.
Simulated Space Radiation: Murine Skeletal Responses During Recovery and with Mechanical Stimulation
NASA Technical Reports Server (NTRS)
Shirazi-Fard, Yasaman; Zaragoza, Josergio; Schreurs, Ann-Sofie; Truong, Tiffany; Tahimic, Candice; Alwood, Joshua S.; Castillo, Alesha B.; Globus, R. K.
2016-01-01
Simulated space radiation at doses similar to those of solar particle events or a round-trip sojourn to Mars (1-2Gy) may cause skeletal tissue degradation and deplete stem/progenitor cell pools throughout the body. We hypothesized that simulated space radiation (SSR) causes late, time-dependent deficits in bone structure and bone cell function reflected by changes in gene expression in response to anabolic stimuli. We used a unique sequential dual ion exposure (proton and iron) for SSR to investigate time-dependence of responses in gene expression, cell function, and microarchitecture with respect to radiation and an anabolic stimulus of axial loading (AL). Male 16-wk C57BL6/J mice (n=120 total) were exposed to 0Gy (Sham, n=10), 56Fe (2Gy, positive control dose, n=10), or sequential ions for SSR (1Gy 1H/56Fe/1H, n=10) by total body irradiation (IR), and the tissues were harvested 2 or 6 mo. later. Further, to assess the response to anabolic stimuli, we subjected additional Sham-AL (n=15) and SSR-AL (n=15) groups to rest-inserted tibial axial loading (AL) starting at 1 and 5 months post-IR (-9N, 60 cycles/day, 3 days/wk, 4 wks). Exposure to 56Fe caused a significant reduction in cancellous bone volume fraction (BV/TV) compared to Sham (-34%) and SSR (-20%) in the proximal tibia metaphysis at 2-months post-IR; however BV/TV for SSR group was not different than Sham. Both 56Fe and SSR caused significant reduction in trabecular number (Tb.N) compared to Sham (-33% and -16%, respectively). Further, Tb.N for 56Fe (2Gy) was significantly lower than SSR (-21%). Ex vivo culture of marrow cells to assess growth and differentiation of osteoblast lineage cells 6 months post-IR showed that both 56Fe and SSR exposures significantly impaired colony formation compared to Sham (-66% and -54%, respectively), as well as nodule mineralization (-90% and -51%, respectively). Two-way analysis of variance showed that both mechanical loading and radiation reduced BV/TV, mechanical loading
Simulated Space Radiation: Murine Skeletal Responses During Recovery and with Mechanical Stimulation
NASA Technical Reports Server (NTRS)
Shirazi-Fard, Yasaman; Zaragoza, Josergio; Schreurs, Ann-Sofie; Truong, Tiffany; Tahimic, Candice; Alwood, Joshua S.; Globus, R. K.
2016-01-01
Simulated space radiation at doses similar to those of solar particle events or a round-trip sojourn to Mars (1-2Gy) may cause skeletal tissue degradation and deplete stem/progenitor cell pools throughout the body. We hypothesized that simulated space radiation (SSR) causes late, time-dependent deficits in bone structure and bone cell function reflected by changes in gene expression in response to anabolic stimuli. We used a unique sequential dual ion exposure (proton and iron) for SSR to investigate time-dependence of responses in gene expression, cell function, and microarchitecture with respect to radiation and an anabolic stimulus of axial loading (AL). Male 16-wk C57BL6/J mice (n=120 total) were exposed to 0Gy (Sham, n=10), 56Fe (2Gy, positive control dose, n=10), or sequential ions for SSR (1Gy 1H/56Fe/1H, n=10) by total body irradiation (IR), and the tissues were harvested 2 or 6 mo. later. Further, to assess the response to anabolic stimuli, we subjected additional Sham-AL (n=15) and SSR-AL (n=15) groups to rest-inserted tibial axial loading (AL) starting at 1 and 5 months post-IR (-9N, 60 cycles/day, 3 days/wk, 4 wks). Exposure to 56Fe caused a significant reduction in cancellous bone volume fraction (BV/TV) compared to Sham (-34%) and SSR (-20%) in the proximal tibia metaphysis at 2-months post-IR; however BV/TV for SSR group was not different than Sham. Both 56Fe and SSR caused significant reduction in trabecular number (Tb.N) compared to Sham (-33% and -16%, respectively). Further, Tb.N for 56Fe (2Gy) was significantly lower than SSR (-21%). Ex vivo culture of marrow cells to assess growth and differentiation of osteoblast lineage cells 6 months post-IR showed that both 56Fe and SSR exposures significantly impaired colony formation compared to Sham (-66% and -54%, respectively), as well as nodule mineralization (-90% and -51%, respectively). Two-way analysis of variance showed that both mechanical loading and radiation reduced BV/TV, mechanical loading
The role of artificial gravity in the exploration of space.
Burton, R R
1994-07-01
Terrestrial animals including the human require regular periodic gravitational (g) stimulation to maintain normal physiologic functions on earth or in space. Identical g stimulations can be produced in space with inertial forces (G) using a centrifuge. These stimulations may be made more efficient in preventing physiologic deconditioning by increasing G levels above 1 G. The effective operational use of the centrifuge in space to prevent physiologic deconditioning from microgravity exposures will require ground-based studies using weightless simulation such as bedrest or dry immersion with laboratories that have human-use centrifuges. The use of periodic, increased-G exposures in space may offer a practical inexpensive solution in preventing physiologic deconditioning.
Sidtis, John J.; Alken, Amy G.; Tagliati, Michele; Alterman, Ron; Van Lancker Sidtis, Diana
2016-01-01
Background: Stimulation of the subthalamic nuclei (STN) is an effective treatment for Parkinson’s disease, but complaints of speech difficulties after surgery have been difficult to quantify. Speech measures do not convincingly account for such reports. Objective: This study examined STN stimulation effects on vowel production, in order to probe whether DBS affects articulatory posturing. The objective was to compare positioning during the initiation phase with the steady prolongation phase by measuring vowel spaces for three “corner” vowels at these two time frames. Methods: Vowel space was measured over the initial 0.25 sec of sustained productions of high front (/i/), high back (/u/) and low vowels (/a/), and again during a 2 sec segment at the midpoint. Eight right-handed male subjects with bilateral STN stimulation and seven age-matched male controls were studied based on their participation in a larger study that included functional imaging. Mean values: age = 57±4.6 yrs; PD duration = 12.3±2.7 yrs; duration of DBS = 25.6±21.2 mos, and UPDRS III speech score = 1.6±0.7. STN subjects were studied off medication at their therapeutic DBS settings and again with their stimulators off, counter-balanced order. Results: Vowel space was larger in the initiation phase compared to the midpoint for both the control and the STN subjects off stimulation. With stimulation on, however, the initial vowel space was significantly reduced to the area measured at the mid-point. For the three vowels, the acoustics were differentially affected, in accordance with expected effects of front versus back position in the vocal tract. Conclusions: STN stimulation appears to constrain initial articulatory gestures for vowel production, raising the possibility that articulatory positions normally used in speech are similarly constrained. PMID:27003219
Sachs, H G; Gekeler, F; Schwahn, H; Jakob, W; Köhler, M; Schulmeyer, F; Marienhagen, J; Brunner, U; Framme, C
2005-01-01
During the course of the development of visual prostheses, subretinal stimulation films were implanted in micropigs in order to prove the feasibility of subretinal electrical stimulation with subsequent cortical response. One aim was to demonstrate that epidural recording of visual evoked potentials is possible in the micropig. Film-bound stimulation electrode arrays were placed in the subretinal space of micropigs. This enabled the retina to be stimulated subretinally. Since conventional visual evoked potential (VEP) measuring is virtually impossible in the pig from the neurosurgical point of view, epidural recording electrode arrays were positioned over the visual cortex as permanent electrodes. The feasibility of temporary implantation of film-bound stimulation electrode arrays was successfully demonstrated in the micropig model. On stimulation with monopolar voltage pulses (1000 to 3000 mV), reproducible epidural VEP measurements (5 to 10 micronV) were detected. The feasibility of subretinal stimulation of the retina was demonstrated in a retinal model that is similar to the human retina. This animal model therefore offers a suitable means of studying the tolerability of stimulation situations in the course of visual prosthesis development.
The Volume of the Regular Octahedron
ERIC Educational Resources Information Center
Trigg, Charles W.
1974-01-01
Five methods are given for computing the area of a regular octahedron. It is suggested that students first construct an octahedron as this will aid in space visualization. Six further extensions are left for the reader to try. (LS)
Iterated fractional Tikhonov regularization
NASA Astrophysics Data System (ADS)
Bianchi, Davide; Buccini, Alessandro; Donatelli, Marco; Serra-Capizzano, Stefano
2015-05-01
Fractional Tikhonov regularization methods have been recently proposed to reduce the oversmoothing property of the Tikhonov regularization in standard form, in order to preserve the details of the approximated solution. Their regularization and convergence properties have been previously investigated showing that they are of optimal order. This paper provides saturation and converse results on their convergence rates. Using the same iterative refinement strategy of iterated Tikhonov regularization, new iterated fractional Tikhonov regularization methods are introduced. We show that these iterated methods are of optimal order and overcome the previous saturation results. Furthermore, nonstationary iterated fractional Tikhonov regularization methods are investigated, establishing their convergence rate under general conditions on the iteration parameters. Numerical results confirm the effectiveness of the proposed regularization iterations.
Physical model of dimensional regularization
NASA Astrophysics Data System (ADS)
Schonfeld, Jonathan F.
2016-12-01
We explicitly construct fractals of dimension 4{-}ɛ on which dimensional regularization approximates scalar-field-only quantum-field theory amplitudes. The construction does not require fractals to be Lorentz-invariant in any sense, and we argue that there probably is no Lorentz-invariant fractal of dimension greater than 2. We derive dimensional regularization's power-law screening first for fractals obtained by removing voids from 3-dimensional Euclidean space. The derivation applies techniques from elementary dielectric theory. Surprisingly, fractal geometry by itself does not guarantee the appropriate power-law behavior; boundary conditions at fractal voids also play an important role. We then extend the derivation to 4-dimensional Minkowski space. We comment on generalization to non-scalar fields, and speculate about implications for quantum gravity.
Ewert, Siobhan; Plettig, Philip; Li, Ningfei; Chakravarty, M Mallar; Collins, D Louis; Herrington, Todd M; Kühn, Andrea A; Horn, Andreas
2017-05-20
Three-dimensional atlases of subcortical brain structures are valuable tools to reference anatomy in neuroscience and neurology. For instance, they can be used to study the position and shape of the three most common deep brain stimulation (DBS) targets, the subthalamic nucleus (STN), internal part of the pallidum (GPi) and ventral intermediate nucleus of the thalamus (VIM) in spatial relationship to DBS electrodes. Here, we present a composite atlas based on manual segmentations of a multimodal high resolution brain template, histology and structural connectivity. In a first step, four key structures were defined on the template itself using a combination of multispectral image analysis and manual segmentation. Second, these structures were used as anchor points to coregister a detailed histological atlas into standard space. Results show that this approach significantly improved coregistration accuracy over previously published methods. Finally, a sub-segmentation of STN and GPi into functional zones was achieved based on structural connectivity. The result is a composite atlas that defines key nuclei on the template itself, fills the gaps between them using histology and further subdivides them using structural connectivity. We show that the atlas can be used to segment DBS targets in single subjects, yielding more accurate results compared to priorly published atlases. The atlas will be made publicly available and constitutes a resource to study DBS electrode localizations in combination with modern neuroimaging methods. Copyright © 2017 Elsevier Inc. All rights reserved.
Ensemble manifold regularization.
Geng, Bo; Tao, Dacheng; Xu, Chao; Yang, Linjun; Hua, Xian-Sheng
2012-06-01
We propose an automatic approximation of the intrinsic manifold for general semi-supervised learning (SSL) problems. Unfortunately, it is not trivial to define an optimization function to obtain optimal hyperparameters. Usually, cross validation is applied, but it does not necessarily scale up. Other problems derive from the suboptimality incurred by discrete grid search and the overfitting. Therefore, we develop an ensemble manifold regularization (EMR) framework to approximate the intrinsic manifold by combining several initial guesses. Algorithmically, we designed EMR carefully so it 1) learns both the composite manifold and the semi-supervised learner jointly, 2) is fully automatic for learning the intrinsic manifold hyperparameters implicitly, 3) is conditionally optimal for intrinsic manifold approximation under a mild and reasonable assumption, and 4) is scalable for a large number of candidate manifold hyperparameters, from both time and space perspectives. Furthermore, we prove the convergence property of EMR to the deterministic matrix at rate root-n. Extensive experiments over both synthetic and real data sets demonstrate the effectiveness of the proposed framework.
Fini, Chiara; Bardi, Lara; Epifanio, Alessandra; Committeri, Giorgia; Moors, Agnes; Brass, Marcel
2017-03-01
When we have to judge the distance between another person and an object (social condition), we judge this distance as being smaller compared to judging the distance between two objects (nonsocial condition). It has been suggested that this compression is mediated by the attribution of a motor potential to the reference frame (other person vs. object). In order to explore the neural basis of this effect, we investigated whether the modulation of activity in the inferior frontal cortex (IFC) of the left hemisphere (recruited during visuospatial processes with a social component) changes the way we categorize space in a social compared with a nonsocial condition. We applied transcranial direct current stimulation to the left IFC, with different polarities (anodal, cathodal, and sham) while subjects performed an extrapersonal space categorization task. Interestingly, anodal stimulation of IFC induced an higher compression of space in the social compared to nonsocial condition. By contrast, cathodal stimulation induced the opposite effect. Furthermore, we found that this effect is modulated by interindividual differences in cognitive perspective taking. Our data support the idea that IFC is recruited during the social categorization of space.
NASA Astrophysics Data System (ADS)
Grigoryan, E.; Almeida, E.; Domaratskaya, E.; Tairbekov, M.; Aleinikova, K.; Mitashov, V.
A study on space flight effect upon processes of regeneration is due to the necessity to know their characteristics in animals and human exposed to space and earth conditions shortly after flight Several experiments on the newts performed earlier aboard Russian biosatellites showed that the rate of organ and tissue regeneration in space was greater than that on the ground Space flight effect stimulating regeneration was enduring and apparent not only just after flight but long time later as well This observation found support in studies simulated physiological weightlessness by means of fast-rotating clinostat It was shown also that the higher rate of regeneration was associated with enhanced cell proliferation For instance we found that the number of cells in S-phase in regenerating tissues was significantly greater in space-flown animals than in the ground controls However it was unclear whether cell proliferation stimulation was induced by micro- g per se or by conditions of hyper- g during launching and re-adaptation on the earth Molecular mechanisms underlying the change also remained obscure These issues were addressed by the joint Russian-USA experiment Regeneration performed on Foton-M2 in 2005 In 16- day flight we used two well-known models of regeneration lens regeneration after lensectomy and tail regeneration after amputation in adult newts Pleurodeles walt Urodela In order to evaluate cell proliferative activity in time limits of microgravity influence the original method for in-flight delivering DNA precursor BrdU
Dimensional Regularization is Generic
NASA Astrophysics Data System (ADS)
Fujikawa, Kazuo
The absence of the quadratic divergence in the Higgs sector of the Standard Model in the dimensional regularization is usually regarded to be an exceptional property of a specific regularization. To understand what is going on in the dimensional regularization, we illustrate how to reproduce the results of the dimensional regularization for the λϕ4 theory in the more conventional regularization such as the higher derivative regularization; the basic postulate involved is that the quadratically divergent induced mass, which is independent of the scale change of the physical mass, is kinematical and unphysical. This is consistent with the derivation of the Callan-Symanzik equation, which is a comparison of two theories with slightly different masses, for the λϕ4 theory without encountering the quadratic divergence. In this sense the dimensional regularization may be said to be generic in a bottom-up approach starting with a successful low energy theory. We also define a modified version of the mass independent renormalization for a scalar field which leads to the homogeneous renormalization group equation. Implications of the present analysis on the Standard Model at high energies and the presence or absence of SUSY at LHC energies are briey discussed.
NASA Technical Reports Server (NTRS)
Lackner, J. R.; Graybiel, A.
1986-01-01
The effect of gravity on the severity of the Coriolis-induced motion sickness was investigated in ten individuals subjected to high and low G-force phases of parabolic flight maneuvers using constant level Coriolis, cross-coupled angular acceleration stimulation. Using seven levels of severity in the diagnosis of motion sickness, it was found that the subjects were less susceptible at 0 G than at +2 Gz, and that the perceived intensity and provocativeness of Coriolis stimulation decreased in 0 G and increased in +2 Gz relative to the +1 Gz baseline values. The changes in the apparent intensity of Coriolis stimulation occur virtually immediately when the background gravitatioinertial force level is varied. These findings explain why the Skylab astronauts were refractory to motion sickness during Coriolis stimulation in-flight.
Lee, Kuan H.; Huang, Yung-Jen; Grau, James W.
2016-01-01
How a stimulus impacts spinal cord function depends upon temporal relations. When intermittent noxious stimulation (shock) is applied and the interval between shock pulses is varied (unpredictable), it induces a lasting alteration that inhibits adaptive learning. If the same stimulus is applied in a temporally regular (predictable) manner, the capacity to learn is preserved and a protective/restorative effect is engaged that counters the adverse effect of variable stimulation. Sensitivity to temporal relations implies a capacity to encode time. This study explores how spinal neurons discriminate variable and fixed spaced stimulation. Communication with the brain was blocked by means of a spinal transection and adaptive capacity was tested using an instrumental learning task. In this task, subjects must learn to maintain a hind limb in a flexed position to minimize shock exposure. To evaluate the possibility that a distinct class of afferent fibers provide a sensory cue for regularity, we manipulated the temporal relation between shocks given to two dermatomes (leg and tail). Evidence for timing emerged when the stimuli were applied in a coherent manner across dermatomes, implying that a central (spinal) process detects regularity. Next, we show that fixed spaced stimulation has a restorative effect when half the physical stimuli are randomly omitted, as long as the stimuli remain in phase, suggesting that stimulus regularity is encoded by an internal oscillator Research suggests that the oscillator that drives the tempo of stepping depends upon neurons within the rostral lumbar (L1-L2) region. Disrupting communication with the L1-L2 tissue by means of a L3 transection eliminated the restorative effect of fixed spaced stimulation. Implications of the results for step training and rehabilitation after injury are discussed. PMID:26903830
Bronnikov, K A; Fabris, J C
2006-06-30
We study self-gravitating, static, spherically symmetric phantom scalar fields with arbitrary potentials (favored by cosmological observations) and single out 16 classes of possible regular configurations with flat, de Sitter, and anti-de Sitter asymptotics. Among them are traversable wormholes, bouncing Kantowski-Sachs (KS) cosmologies, and asymptotically flat black holes (BHs). A regular BH has a Schwarzschild-like causal structure, but the singularity is replaced by a de Sitter infinity, giving a hypothetic BH explorer a chance to survive. It also looks possible that our Universe has originated in a phantom-dominated collapse in another universe, with KS expansion and isotropization after crossing the horizon. Explicit examples of regular solutions are built and discussed. Possible generalizations include k-essence type scalar fields (with a potential) and scalar-tensor gravity.
Regularized Structural Equation Modeling.
Jacobucci, Ross; Grimm, Kevin J; McArdle, John J
A new method is proposed that extends the use of regularization in both lasso and ridge regression to structural equation models. The method is termed regularized structural equation modeling (RegSEM). RegSEM penalizes specific parameters in structural equation models, with the goal of creating easier to understand and simpler models. Although regularization has gained wide adoption in regression, very little has transferred to models with latent variables. By adding penalties to specific parameters in a structural equation model, researchers have a high level of flexibility in reducing model complexity, overcoming poor fitting models, and the creation of models that are more likely to generalize to new samples. The proposed method was evaluated through a simulation study, two illustrative examples involving a measurement model, and one empirical example involving the structural part of the model to demonstrate RegSEM's utility.
Synchronization of Regular Automata
NASA Astrophysics Data System (ADS)
Caucal, Didier
Functional graph grammars are finite devices which generate the class of regular automata. We recall the notion of synchronization by grammars, and for any given grammar we consider the class of languages recognized by automata generated by all its synchronized grammars. The synchronization is an automaton-related notion: all grammars generating the same automaton synchronize the same languages. When the synchronizing automaton is unambiguous, the class of its synchronized languages forms an effective boolean algebra lying between the classes of regular languages and unambiguous context-free languages. We additionally provide sufficient conditions for such classes to be closed under concatenation and its iteration.
NASA Astrophysics Data System (ADS)
Kuznetsova, Tamara
Here we discuss parameters of the solar wind streams as consequences of activity of solar cycles 20-24. We use in the report results of our study of connection between solar wind parameters (IMF B, solar wind velocity V, concentration N, electric field Е = [V,B]) and IMF longitude angle U during period of SC20-24. We have used for the study data base of B, V, N, measured at 1 a.u. near ecliptic plane for period of 1963 - 2013.The azimuth component of IMF spiral corresponds to east-west component By (GSE) which plays important role in reconnection on magnetopause and in progress of geomagnetic activity. Resulting from the conducted study, main regularities determining relationship between solar wind parameters in each from SC20-24 have been derived. In particular, it was shown that E for By>0 has its maxima in each solar cycle at average U=80 deg, herewith the maxima for odd cycles (21, 23) are considerably larger than ones for even cycles (20, 22). Besides, the value of E for 23 cycle has the absolute maximum for By>0 among SC20-24! So, relative low value of maximum of sunspot number Wm=121 of SC23 is a parameter, which does not determine strength of solar wind electric field E and consequently geomagnetic activity. Geomagnetic index Dst(U) shows also absolute maximum of depression for cycle 23 at near the same U=80 deg. (By>0). B(U) is larger, Wm is larger for all U except interval for By>0, where B for odd cycles 21, 23 is higher than B for even ones 20,22. It should be noted that V (U) for SC with minimal Wm (20,23) has the highest maximum for By>0; maximum of V for By<0 are larger for even SC than for odd ones. V(U) for cycle 24 is less than V for the other SC for now, but V is increasing rapidly (HSS) for By<0 (as in SC22). Based on the results of the study and on spectral analysis of V and B for the interval studied (which allowed us to describe long-term parts of B,V by sinusoids), we conclude: the Sun may is going for a global minimum (near 2020) similar
Deng, Zhi-De; Lisanby, Sarah H; Peterchev, Angel V
2013-12-01
Understanding the relationship between the stimulus parameters of electroconvulsive therapy (ECT) and the electric field characteristics could guide studies on improving risk/benefit ratio. We aimed to determine the effect of current amplitude and electrode size and spacing on the ECT electric field characteristics, compare ECT focality with magnetic seizure therapy (MST), and evaluate stimulus individualization by current amplitude adjustment. Electroconvulsive therapy and double-cone-coil MST electric field was simulated in a 5-shell spherical human head model. A range of ECT electrode diameters (2-5 cm), spacing (1-25 cm), and current amplitudes (0-900 mA) was explored. The head model parameters were varied to examine the stimulus current adjustment required to compensate for interindividual anatomical differences. By reducing the electrode size, spacing, and current, the ECT electric field can be more focal and superficial without increasing scalp current density. By appropriately adjusting the electrode configuration and current, the ECT electric field characteristics can be made to approximate those of MST within 15%. Most electric field characteristics in ECT are more sensitive to head anatomy variation than in MST, especially for close electrode spacing. Nevertheless, ECT current amplitude adjustment of less than 70% can compensate for interindividual anatomical variability. The strength and focality of ECT can be varied over a wide range by adjusting the electrode size, spacing, and current. If desirable, ECT can be made as focal as MST while using simpler stimulation equipment. Current amplitude individualization can compensate for interindividual anatomical variability.
ERIC Educational Resources Information Center
Sokol, William
This autoinstructional unit deals with the phenomena of regularity in chemical behavior. The prerequisites suggested are two other autoinstructional lessons (Experiments 1 and 2) identified in the Del Mod System as SE 018 020 and SE 018 023. The equipment needed is listed and 45 minutes is the suggested time allotment. The Student Guide includes…
ERIC Educational Resources Information Center
Lynch, Christopher O.
2010-01-01
This article presents a classroom activity that introduces students to the concept of themed space. Students learn to think critically about the spaces they encounter on a regular basis by analyzing existing spaces and by working in groups to create their own themed space. This exercise gives students the chance to see the relevance of critical…
ERIC Educational Resources Information Center
Lynch, Christopher O.
2010-01-01
This article presents a classroom activity that introduces students to the concept of themed space. Students learn to think critically about the spaces they encounter on a regular basis by analyzing existing spaces and by working in groups to create their own themed space. This exercise gives students the chance to see the relevance of critical…
Functional MRI using regularized parallel imaging acquisition.
Lin, Fa-Hsuan; Huang, Teng-Yi; Chen, Nan-Kuei; Wang, Fu-Nien; Stufflebeam, Steven M; Belliveau, John W; Wald, Lawrence L; Kwong, Kenneth K
2005-08-01
Parallel MRI techniques reconstruct full-FOV images from undersampled k-space data by using the uncorrelated information from RF array coil elements. One disadvantage of parallel MRI is that the image signal-to-noise ratio (SNR) is degraded because of the reduced data samples and the spatially correlated nature of multiple RF receivers. Regularization has been proposed to mitigate the SNR loss originating due to the latter reason. Since it is necessary to utilize static prior to regularization, the dynamic contrast-to-noise ratio (CNR) in parallel MRI will be affected. In this paper we investigate the CNR of regularized sensitivity encoding (SENSE) acquisitions. We propose to implement regularized parallel MRI acquisitions in functional MRI (fMRI) experiments by incorporating the prior from combined segmented echo-planar imaging (EPI) acquisition into SENSE reconstructions. We investigated the impact of regularization on the CNR by performing parametric simulations at various BOLD contrasts, acceleration rates, and sizes of the active brain areas. As quantified by receiver operating characteristic (ROC) analysis, the simulations suggest that the detection power of SENSE fMRI can be improved by regularized reconstructions, compared to unregularized reconstructions. Human motor and visual fMRI data acquired at different field strengths and array coils also demonstrate that regularized SENSE improves the detection of functionally active brain regions.
Functional MRI Using Regularized Parallel Imaging Acquisition
Lin, Fa-Hsuan; Huang, Teng-Yi; Chen, Nan-Kuei; Wang, Fu-Nien; Stufflebeam, Steven M.; Belliveau, John W.; Wald, Lawrence L.; Kwong, Kenneth K.
2013-01-01
Parallel MRI techniques reconstruct full-FOV images from undersampled k-space data by using the uncorrelated information from RF array coil elements. One disadvantage of parallel MRI is that the image signal-to-noise ratio (SNR) is degraded because of the reduced data samples and the spatially correlated nature of multiple RF receivers. Regularization has been proposed to mitigate the SNR loss originating due to the latter reason. Since it is necessary to utilize static prior to regularization, the dynamic contrast-to-noise ratio (CNR) in parallel MRI will be affected. In this paper we investigate the CNR of regularized sensitivity encoding (SENSE) acquisitions. We propose to implement regularized parallel MRI acquisitions in functional MRI (fMRI) experiments by incorporating the prior from combined segmented echo-planar imaging (EPI) acquisition into SENSE reconstructions. We investigated the impact of regularization on the CNR by performing parametric simulations at various BOLD contrasts, acceleration rates, and sizes of the active brain areas. As quantified by receiver operating characteristic (ROC) analysis, the simulations suggest that the detection power of SENSE fMRI can be improved by regularized reconstructions, compared to unregularized reconstructions. Human motor and visual fMRI data acquired at different field strengths and array coils also demonstrate that regularized SENSE improves the detection of functionally active brain regions. PMID:16032694
Regular Gleason Measures and Generalized Effect Algebras
NASA Astrophysics Data System (ADS)
Dvurečenskij, Anatolij; Janda, Jiří
2015-12-01
We study measures, finitely additive measures, regular measures, and σ-additive measures that can attain even infinite values on the quantum logic of a Hilbert space. We show when particular classes of non-negative measures can be studied in the frame of generalized effect algebras.
On the regularity in some variational problems
NASA Astrophysics Data System (ADS)
Ragusa, Maria Alessandra; Tachikawa, Atsushi
2017-01-01
Our main goal is the study some regularity results where are considered estimates in Morrey spaces for the derivatives of local minimizers of variational integrals of the form 𝒜 (u ,Ω )= ∫Ω F (x ,u ,D u ) dx where Ω is a bounded domain in ℝm and the integrand F have some different forms.
Regularized Hamiltonians and Spinfoams
NASA Astrophysics Data System (ADS)
Alesci, Emanuele
2012-05-01
We review a recent proposal for the regularization of the scalar constraint of General Relativity in the context of LQG. The resulting constraint presents strengths and weaknesses compared to Thiemann's prescription. The main improvement is that it can generate the 1-4 Pachner moves and its matrix elements contain 15j Wigner symbols, it is therefore compatible with the spinfoam formalism: the drawback is that Thiemann anomaly free proof is spoiled because the nodes that the constraint creates have volume.
NASA Technical Reports Server (NTRS)
1971-01-01
A case study of knowledge contributions from the crew life support aspect of the manned space program is reported. The new information needed to be learned, the solutions developed, and the relation of new knowledge gained to earthly problems were investigated. Illustrations are given in the following categories: supplying atmosphere for spacecraft; providing carbon dioxide removal and recycling; providing contaminant control and removal; maintaining the body's thermal balance; protecting against the space hazards of decompression, radiation, and meteorites; minimizing fire and blast hazards; providing adequate light and conditions for adequate visual performance; providing mobility and work physiology; and providing adequate habitability.
Regularizing portfolio optimization
NASA Astrophysics Data System (ADS)
Still, Susanne; Kondor, Imre
2010-07-01
The optimization of large portfolios displays an inherent instability due to estimation error. This poses a fundamental problem, because solutions that are not stable under sample fluctuations may look optimal for a given sample, but are, in effect, very far from optimal with respect to the average risk. In this paper, we approach the problem from the point of view of statistical learning theory. The occurrence of the instability is intimately related to over-fitting, which can be avoided using known regularization methods. We show how regularized portfolio optimization with the expected shortfall as a risk measure is related to support vector regression. The budget constraint dictates a modification. We present the resulting optimization problem and discuss the solution. The L2 norm of the weight vector is used as a regularizer, which corresponds to a diversification 'pressure'. This means that diversification, besides counteracting downward fluctuations in some assets by upward fluctuations in others, is also crucial because it improves the stability of the solution. The approach we provide here allows for the simultaneous treatment of optimization and diversification in one framework that enables the investor to trade off between the two, depending on the size of the available dataset.
Deng, Zhi-De; Lisanby, Sarah H.; Peterchev, Angel V.
2013-01-01
Objectives Understanding the relationship between the stimulus parameters of electroconvulsive therapy (ECT) and the electric field characteristics could guide studies on improving risk/benefit ratio. We aim to determine the effect of current amplitude and electrode size and spacing on the ECT electric field characteristics, compare ECT focality with magnetic seizure therapy (MST), and evaluate stimulus individualization by current amplitude adjustment. Methods ECT and double-cone-coil MST electric field was simulated in a 5-shell spherical human head model. A range of ECT electrode diameters (2–5 cm), spacing (1–25 cm), and current amplitudes (0–900 mA) were explored. The head model parameters were varied to examine the stimulus current adjustment required to compensate for interindividual anatomical differences. Results By reducing the electrode size, spacing, and current, the ECT electric field can be more focal and superficial without increasing scalp current density. By appropriately adjusting the electrode configuration and current, the ECT electric field characteristics can be made to approximate those of MST within 15%. Most electric field characteristics in ECT are more sensitive to head anatomy variation than in MST, especially for close electrode spacing. Nevertheless, ECT current amplitude adjustment of less than 70% can compensate for interindividual anatomical variability. Conclusions The strength and focality of ECT can be varied over a wide range by adjusting the electrode size, spacing, and current. If desirable, ECT can be made as focal as MST while using simpler stimulation equipment. Current amplitude individualization can compensate for interindividual anatomical variability. PMID:24263276
1973-10-01
The theory of strongly regular graphs was introduced by Bose r7 1 in 1963, in connection with partial geometries and 2 class association schemes. One...non adjacent vertices is constant and equal to ~. We shall denote by ~(p) (reap.r(p)) the set of vertices adjacent (resp.non adjacent) to a vertex p...is the complement of .2’ if the set of vertices of ~ is the set of vertices of .2’ and if two vertices in .2’ are adjacent if and only if they were
Regularized versus non-regularized statistical reconstruction techniques
NASA Astrophysics Data System (ADS)
Denisova, N. V.
2011-08-01
An important feature of positron emission tomography (PET) and single photon emission computer tomography (SPECT) is the stochastic property of real clinical data. Statistical algorithms such as ordered subset-expectation maximization (OSEM) and maximum a posteriori (MAP) are a direct consequence of the stochastic nature of the data. The principal difference between these two algorithms is that OSEM is a non-regularized approach, while the MAP is a regularized algorithm. From the theoretical point of view, reconstruction problems belong to the class of ill-posed problems and should be considered using regularization. Regularization introduces an additional unknown regularization parameter into the reconstruction procedure as compared with non-regularized algorithms. However, a comparison of non-regularized OSEM and regularized MAP algorithms with fixed regularization parameters has shown very minor difference between reconstructions. This problem is analyzed in the present paper. To improve the reconstruction quality, a method of local regularization is proposed based on the spatially adaptive regularization parameter. The MAP algorithm with local regularization was tested in reconstruction of the Hoffman brain phantom.
NASA Technical Reports Server (NTRS)
Raitt, W. J.; Banks, P. M.; Denig, W. F.; Anderson, H. R.
1982-01-01
Interest in the interaction of electron beams with plasma generated by ionization caused by the primary electron beam was stimulated by the need to develop special vacuum tubes to operate in the kMHz frequency region. The experiments of Getty and Smullin (1963) indicated that the interaction of an energetic electron beam with its self-produced plasma resulted in the emission of wave energy over a wide range of frequencies associated with cyclotron and longitudinal plasma instabilities. This enhanced the thermal plasma density in the vicinity of the beam, and the term Beam-Plasma Discharge (BPD) was employed to described this phenomenon. The present investigation is concerned with some of the transient phenomena associated with wave emission during the beam switch-on and switch-off periods. Results are presented on the changes in electron energy spectra on a time scale of tens of milliseconds following beam switch-on. The results are discussed in terms of the beam plasma discharge phenomenon.
NASA Technical Reports Server (NTRS)
Raitt, W. J.; Banks, P. M.; Denig, W. F.; Anderson, H. R.
1982-01-01
Interest in the interaction of electron beams with plasma generated by ionization caused by the primary electron beam was stimulated by the need to develop special vacuum tubes to operate in the kMHz frequency region. The experiments of Getty and Smullin (1963) indicated that the interaction of an energetic electron beam with its self-produced plasma resulted in the emission of wave energy over a wide range of frequencies associated with cyclotron and longitudinal plasma instabilities. This enhanced the thermal plasma density in the vicinity of the beam, and the term Beam-Plasma Discharge (BPD) was employed to described this phenomenon. The present investigation is concerned with some of the transient phenomena associated with wave emission during the beam switch-on and switch-off periods. Results are presented on the changes in electron energy spectra on a time scale of tens of milliseconds following beam switch-on. The results are discussed in terms of the beam plasma discharge phenomenon.
Leng, Yunxia; Lan, Weizhong; Yu, Keming; Liu, Bingqian; Yang, Zhikuan; Li, Zheng; Zhong, Xingwu; Zhang, Shaochong; Ge, Jian
2010-12-01
This study aimed to investigate the effects of sustained near vision stimulation, on the refractive development and elongation of the vitreous chamber in adolescent rhesus monkeys. A total of 12 adolescent rhesus monkeys (1.5-2.0 years old) were randomly assigned to 3 groups. In groups A (n=4) and B (n=4), monkeys were reared in close-vision cages for 8 and 4 h d(-1), respectively; tiny granules were added on the cage floor to avoid visual deprivation and to encourage near gaze. In group C (n=4), monkeys were reared in open-vision cages, with non-granule food as a control. Vitreous chamber depth, refractive status, and corneal refractive power were assessed over 18 months. Paired t-test was used to compare the differences and a P-value<0.05 was considered to be statistically significant. In group A, vitreous chamber depth and optical axis elongated significantly, and refractive error shifted towards myopia during the observation period. In group B, vitreous chambers and optical axis elongated but the refractive power did not show significant changes. In group C, there was no significant elongation in vitreous chambers and optical axis, and the refractive power changed slightly towards hypermetropia. There were no significant changes in corneal refractive power in each group. Sustained near vision can promote vitreous chamber growth and induce myopic shifts in refractive power in adolescent monkeys. Our results demonstrate the potential for a primate model of near-work-related myopia.
Gilbert, C L; Boulton, M I; Forsling, M L; Goode, J A; McGrath, T J
1997-04-01
This experiment studied the effects on endocrine and birth parameters of parturient pigs produced by restricting maternal freedom of movement without otherwise altering environment. Six primiparous pigs (gilts) were each given a jugular catheter under anaesthesia 7 days before parturition and commenced birth in a strawed pen, 2.0 m x 1.5 m in size. Continuous automated blood sampling (3 ml min-1) from unrestrained gilts began following the birth of the first piglet (stage 1) and continued for 2 h. After at least 30 min of blood collection, maternal space was reduced to 2.0 m x 0.55 m by placing rails across the pen (stage 2). The scope for movement in stage 2 was similar to that offered by a farrowing crate. After at least 25 min each gilt was given the opioid antagonist naloxone (1 mg kg-1 i.v.: stage 3). At each stage, vagino-cervical stimulation (VCS) was applied to mimic foetal ejection. Non-cervically stimulated oxytocin (OT) secretion between stages 1 and 2 was unchanged (P > 0.05) but increased significantly relative to both stages 1 and 2 following naloxone treatment for 15-20 min (P < 0.05, paired t-tests on log10 data). Following VCS in all stages plasma OT rose (P < 0.05) for 1-2 min in a similar way to that seen previously following foetal ejection, the increases being proportionally similar irrespective of stage or baseline secretion. Cortisol secretion did not increase as a consequence of space restriction (mean +/- SEM concentrations were 28.6 +/- 8.51 pmol l-1 and 32.3 +/- 11.8 pmol l-1 in stages 1 and 2, respectively). In addition, VCS did not significantly affect cortisol output. Lysine vasopressin concentrations were not affected as a consequence of either stage or VCS. Parturition was not interrupted following space restriction of gilts. These data suggest that reducing maternal space allowance during parturition is not stressful when the process does not involve the movement of animals to novel surroundings.
Mainstreaming the Regular Classroom Student.
ERIC Educational Resources Information Center
Kahn, Michael
The paper presents activities, suggested by regular classroom teachers, to help prepare the regular classroom student for mainstreaming. The author points out that regular classroom children need a vehicle in which curiosity, concern, interest, fear, attitudes and feelings can be fully explored, where prejudices can be dispelled, and where the…
Haj-Yasein, Nadia Nabil; Jensen, Vidar; Østby, Ivar; Omholt, Stig W; Voipio, Juha; Kaila, Kai; Ottersen, Ole P; Hvalby, Øivind; Nagelhus, Erlend A
2012-05-01
Little is known about the physiological roles of aquaporin-4 (AQP4) in the central nervous system. AQP4 water channels are concentrated in endfeet membranes of astrocytes but also localize to the fine astrocytic processes that abut central synapses. Based on its pattern of expression, we predicted that AQP4 could be involved in controlling water fluxes and changes in extracellular space (ECS) volume that are associated with activation of excitatory pathways. Here, we show that deletion of Aqp4 accentuated the shrinkage of the ECS that occurred in the mouse hippocampal CA1 region during activation of Schaffer collateral/commissural fibers. This effect was found in the stratum radiatum (where perisynaptic astrocytic processes abound) but not in the pyramidal cell layer (where astrocytic processes constitute but a minor volume fraction). For both genotypes the ECS shrinkage was most pronounced in the pyramidal cell layer. Our data attribute a physiological role to AQP4 and indicate that this water channel regulates extracellular volume dynamics in the mammalian brain.
Regular black holes with flux tube core
Zaslavskii, Oleg B.
2009-09-15
We consider a class of black holes for which the area of the two-dimensional spatial cross section has a minimum on the horizon with respect to a quasiglobal (Krusckal-like) coordinate. If the horizon is regular, one can generate a tubelike counterpart of such a metric and smoothly glue it to a black hole region. The resulting composite space-time is globally regular, so all potential singularities under the horizon of the original metrics are removed. Such a space-time represents a black hole without an apparent horizon. It is essential that the matter should be nonvacuum in the outer region but vacuumlike in the inner one. As an example we consider the noninteracting mixture of vacuum fluid and matter with a linear equation of state and scalar phantom fields. This approach is extended to distorted metrics, with the requirement of spherical symmetry relaxed.
Regularization of multiplicative iterative algorithms with nonnegative constraint
NASA Astrophysics Data System (ADS)
Benvenuto, Federico; Piana, Michele
2014-03-01
This paper studies the regularization of the constrained maximum likelihood iterative algorithms applied to incompatible ill-posed linear inverse problems. Specifically, we introduce a novel stopping rule which defines a regularization algorithm for the iterative space reconstruction algorithm in the case of least-squares minimization. Further we show that the same rule regularizes the expectation maximization algorithm in the case of Kullback-Leibler minimization, provided a well-justified modification of the definition of Tikhonov regularization is introduced. The performances of this stopping rule are illustrated in the case of an image reconstruction problem in the x-ray solar astronomy.
Construction of regular black holes in general relativity
NASA Astrophysics Data System (ADS)
Fan, Zhong-Ying; Wang, Xiaobao
2016-12-01
We present a general procedure for constructing exact black hole solutions with electric or magnetic charges in general relativity coupled to a nonlinear electrodynamics. We obtain a variety of two-parameter family spherically symmetric black hole solutions. In particular, the singularity at the center of the space-time can be canceled in the parameter space and the black hole solutions become regular everywhere in space-time. We study the global properties of the solutions and derive the first law of thermodynamics. We also generalize the procedure to include a cosmological constant and construct regular black hole solutions that are asymptotic to anti-de Sitter space-time.
The residual method for regularizing ill-posed problems
Grasmair, Markus; Haltmeier, Markus; Scherzer, Otmar
2011-01-01
Although the residual method, or constrained regularization, is frequently used in applications, a detailed study of its properties is still missing. This sharply contrasts the progress of the theory of Tikhonov regularization, where a series of new results for regularization in Banach spaces has been published in the recent years. The present paper intends to bridge the gap between the existing theories as far as possible. We develop a stability and convergence theory for the residual method in general topological spaces. In addition, we prove convergence rates in terms of (generalized) Bregman distances, which can also be applied to non-convex regularization functionals. We provide three examples that show the applicability of our theory. The first example is the regularized solution of linear operator equations on Lp-spaces, where we show that the results of Tikhonov regularization generalize unchanged to the residual method. As a second example, we consider the problem of density estimation from a finite number of sampling points, using the Wasserstein distance as a fidelity term and an entropy measure as regularization term. It is shown that the densities obtained in this way depend continuously on the location of the sampled points and that the underlying density can be recovered as the number of sampling points tends to infinity. Finally, we apply our theory to compressed sensing. Here, we show the well-posedness of the method and derive convergence rates both for convex and non-convex regularization under rather weak conditions. PMID:22345828
Space station needs, attributes, and architectural options: Commercial opportunities in space
NASA Technical Reports Server (NTRS)
Wolbers, H. L., Jr.
1983-01-01
The roles of government and industry in the commercialization of space are examined and an approach for stimulating the interests of potential users is described. Several illustrative examples of potential commercial developments are presented. The role of manned space systems in space commercialization is discussed as well as some of the issues and opportunities that are likely to be encountered in the commercial exploitation of the unique characteristics of space. Results suggest that interest in space facilities can be found among a number of commercially oriented users. In order to develop and maintain the involvement of these potential users, however, space demonstrations are required, and commercial growth or evolution depends on the results of the initial in situ experience. Manned facilities are required for the conceptual research and development phases and for maintenance and servicing operations during production or operational missions. Space facilities must be easily accessible by dependable and regularly scheduled means.
Generalization Performance of Regularized Ranking With Multiscale Kernels.
Zhou, Yicong; Chen, Hong; Lan, Rushi; Pan, Zhibin
2016-05-01
The regularized kernel method for the ranking problem has attracted increasing attentions in machine learning. The previous regularized ranking algorithms are usually based on reproducing kernel Hilbert spaces with a single kernel. In this paper, we go beyond this framework by investigating the generalization performance of the regularized ranking with multiscale kernels. A novel ranking algorithm with multiscale kernels is proposed and its representer theorem is proved. We establish the upper bound of the generalization error in terms of the complexity of hypothesis spaces. It shows that the multiscale ranking algorithm can achieve satisfactory learning rates under mild conditions. Experiments demonstrate the effectiveness of the proposed method for drug discovery and recommendation tasks.
NASA Astrophysics Data System (ADS)
Ioan Boţ, Radu; Hein, Torsten
2012-10-01
In this paper, we consider an iterative regularization scheme for linear ill-posed equations in Banach spaces. As opposed to other iterative approaches, we deal with a general penalty functional from Tikhonov regularization and take advantage of the properties of the regularized solutions which where supported by the choice of the specific penalty term. We present convergence and stability results for the presented algorithm. Additionally, we demonstrate how these theoretical results can be applied to L1- and TV-regularization approaches and close the paper with a short numerical example.
On regular rotating black holes
NASA Astrophysics Data System (ADS)
Torres, R.; Fayos, F.
2017-01-01
Different proposals for regular rotating black hole spacetimes have appeared recently in the literature. However, a rigorous analysis and proof of the regularity of this kind of spacetimes is still lacking. In this note we analyze rotating Kerr-like black hole spacetimes and find the necessary and sufficient conditions for the regularity of all their second order scalar invariants polynomial in the Riemann tensor. We also show that the regularity is linked to a violation of the weak energy conditions around the core of the rotating black hole.
Regular polygons in taxicab geometry
NASA Astrophysics Data System (ADS)
Hanson, J. R.
2014-10-01
A polygon of n sides will be called regular in taxicab geometry if it has n equal angles and n sides of equal taxicab length. This paper will show that there are no regular taxicab triangles and no regular taxicab pentagons. The sets of taxicab rectangles and taxicab squares will be shown to be the same, respectively, as the sets of Euclidean rectangles and Euclidean squares. A method of construction for a regular taxicab 2n-gon for any n will be demonstrated.
Fast Image Reconstruction with L2-Regularization
Bilgic, Berkin; Chatnuntawech, Itthi; Fan, Audrey P.; Setsompop, Kawin; Cauley, Stephen F.; Wald, Lawrence L.; Adalsteinsson, Elfar
2014-01-01
Purpose We introduce L2-regularized reconstruction algorithms with closed-form solutions that achieve dramatic computational speed-up relative to state of the art L1- and L2-based iterative algorithms while maintaining similar image quality for various applications in MRI reconstruction. Materials and Methods We compare fast L2-based methods to state of the art algorithms employing iterative L1- and L2-regularization in numerical phantom and in vivo data in three applications; 1) Fast Quantitative Susceptibility Mapping (QSD), 2) Lipid artifact suppression in Magnetic Resonance Spectroscopic Imaging (MRSI), and 3) Diffusion Spectrum Imaging (DSI). In all cases, proposed L2-based methods are compared with the state of the art algorithms, and two to three orders of magnitude speed up is demonstrated with similar reconstruction quality. Results The closed-form solution developed for regularized QSM allows processing of a 3D volume under 5 seconds, the proposed lipid suppression algorithm takes under 1 second to reconstruct single-slice MRSI data, while the PCA based DSI algorithm estimates diffusion propagators from undersampled q-space for a single slice under 30 seconds, all running in Matlab using a standard workstation. Conclusion For the applications considered herein, closed-form L2-regularization can be a faster alternative to its iterative counterpart or L1-based iterative algorithms, without compromising image quality. PMID:24395184
Regularized Generalized Canonical Correlation Analysis
ERIC Educational Resources Information Center
Tenenhaus, Arthur; Tenenhaus, Michel
2011-01-01
Regularized generalized canonical correlation analysis (RGCCA) is a generalization of regularized canonical correlation analysis to three or more sets of variables. It constitutes a general framework for many multi-block data analysis methods. It combines the power of multi-block data analysis methods (maximization of well identified criteria) and…
Federal Register 2010, 2011, 2012, 2013, 2014
2011-01-20
... From the Federal Register Online via the Government Publishing Office FARM CREDIT SYSTEM INSURANCE CORPORATION Farm Credit System Insurance Corporation Board Regular Meeting SUMMARY: Notice is hereby given of the regular meeting of the Farm Credit System Insurance Corporation Board (Board). Date and Time: The...
Trajectory optimization using regularized variables
NASA Technical Reports Server (NTRS)
Lewallen, J. M.; Szebehely, V.; Tapley, B. D.
1969-01-01
Regularized equations for a particular optimal trajectory are compared with unregularized equations with respect to computational characteristics, using perturbation type numerical optimization. In the case of the three dimensional, low thrust, Earth-Jupiter rendezvous, the regularized equations yield a significant reduction in computer time.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-12-07
... Board (Board). Date and Time: The meeting of the Board will be held at the offices of the Farm Credit Administration in McLean, Virginia, on December 9, 2010, from 12:30 p.m. until such time as the Board concludes... CORPORATION Regular Meeting AGENCY: Farm Credit System Insurance Corporation Board. ACTION: Regular meeting...
Regularly timed events amid chaos
NASA Astrophysics Data System (ADS)
Blakely, Jonathan N.; Cooper, Roy M.; Corron, Ned J.
2015-11-01
We show rigorously that the solutions of a class of chaotic oscillators are characterized by regularly timed events in which the derivative of the solution is instantaneously zero. The perfect regularity of these events is in stark contrast with the well-known unpredictability of chaos. We explore some consequences of these regularly timed events through experiments using chaotic electronic circuits. First, we show that a feedback loop can be implemented to phase lock the regularly timed events to a periodic external signal. In this arrangement the external signal regulates the timing of the chaotic signal but does not strictly lock its phase. That is, phase slips of the chaotic oscillation persist without disturbing timing of the regular events. Second, we couple the regularly timed events of one chaotic oscillator to those of another. A state of synchronization is observed where the oscillators exhibit synchronized regular events while their chaotic amplitudes and phases evolve independently. Finally, we add additional coupling to synchronize the amplitudes, as well, however in the opposite direction illustrating the independence of the amplitudes from the regularly timed events.
Regularity and chaos in cavity QED
NASA Astrophysics Data System (ADS)
Bastarrachea-Magnani, Miguel Angel; López-del-Carpio, Baldemar; Chávez-Carlos, Jorge; Lerma-Hernández, Sergio; Hirsch, Jorge G.
2017-05-01
The interaction of a quantized electromagnetic field in a cavity with a set of two-level atoms inside it can be described with algebraic Hamiltonians of increasing complexity, from the Rabi to the Dicke models. Their algebraic character allows, through the use of coherent states, a semiclassical description in phase space, where the non-integrable Dicke model has regions associated with regular and chaotic motion. The appearance of classical chaos can be quantified calculating the largest Lyapunov exponent over the whole available phase space for a given energy. In the quantum regime, employing efficient diagonalization techniques, we are able to perform a detailed quantitative study of the regular and chaotic regions, where the quantum participation ratio (P R ) of coherent states on the eigenenergy basis plays a role equivalent to the Lyapunov exponent. It is noted that, in the thermodynamic limit, dividing the participation ratio by the number of atoms leads to a positive value in chaotic regions, while it tends to zero in the regular ones.
Quantum Ergodicity on Regular Graphs
NASA Astrophysics Data System (ADS)
Anantharaman, Nalini
2017-07-01
We give three different proofs of the main result of Anantharaman and Le Masson (Duke Math J 164(4):723-765, 2015), establishing quantum ergodicity—a form of delocalization—for eigenfunctions of the laplacian on large regular graphs of fixed degree. These three proofs are much shorter than the original one, quite different from one another, and we feel that each of the four proofs sheds a different light on the problem. The goal of this exploration is to find a proof that could be adapted for other models of interest in mathematical physics, such as the Anderson model on large regular graphs, regular graphs with weighted edges, or possibly certain models of non-regular graphs. A source of optimism in this direction is that we are able to extend the last proof to the case of anisotropic random walks on large regular graphs.
Effort variation regularization in sound field reproduction.
Stefanakis, Nick; Jacobsen, Finn; Sarris, John
2010-08-01
In this paper, active control is used in order to reproduce a given sound field in an extended spatial region. A method is proposed which minimizes the reproduction error at a number of control positions with the reproduction sources holding a certain relation within their complex strengths. Specifically, it is suggested that the phase differential of the source driving signals should be in agreement with the phase differential of the desired sound pressure field. The performance of the suggested method is compared with that of conventional effort regularization, wave field synthesis (WFS), and adaptive wave field synthesis (AWFS), both under free-field conditions and in reverberant rooms. It is shown that effort variation regularization overcomes the problems associated with small spaces and with a low ratio of direct to reverberant energy, improving thus the reproduction accuracy in the listening room.
Rotating regular black hole solution
NASA Astrophysics Data System (ADS)
Abdujabbarov, Ahmadjon
2016-07-01
Based on the Newman-Janis algorithm, the Ayón-Beato-García spacetime metric [Phys. Rev. Lett. 80, 5056 (1998)] of the regular spherically symmetric, static, and charged black hole has been converted into rotational form. It is shown that the derived solution for rotating a regular black hole is regular and the critical value of the electric charge for which two horizons merge into one sufficiently decreases in the presence of the nonvanishing rotation parameter a of the black hole.
Takano, Yoshio; Yoshimitsu, Kazuhiro; Omoto, Masayuki; Hashida, Ryuki; Tagawa, Yoshihiko; Inada, Tomohisa; Yamada, Shin; Ohshima, Hiroshi
2015-01-01
Background Musculoskeletal atrophy is one of the major problems of extended periods of exposure to weightlessness such as on the International Space Station (ISS). We developed the Hybrid Training System (HTS) to maintain an astronaut’s musculoskeletal system using an electrically stimulated antagonist to resist the volitional contraction of the agonist instead of gravity. The present study assessed the system’s orbital operation capability and utility, as well as its preventative effect on an astronaut’s musculoskeletal atrophy. Methods HTS was attached to the non-dominant arm of an astronaut staying on the ISS, and his dominant arm without HTS was established as the control (CTR). 10 sets of 10 reciprocal elbow curls were one training session, and 12 total sessions of training (3 times per week for 4 weeks) were performed. Pre and post flight ground based evaluations were performed by Biodex (muscle performance), MRI (muscle volume), and DXA (BMD, lean [muscle] mass, fat mass). Pre and post training inflight evaluations were performed by a hand held dynamometer (muscle force) and a measuring tape (upper arm circumference). Results The experiment was completed on schedule, and HTS functioned well without problems. Isokinetic elbow extension torque (Nm) changed -19.4% in HTS, and -21.7% in CTR. Isokinetic elbow flexion torque changed -23.7% in HTS, and there was no change in CTR. Total Work (Joule) of elbow extension changed -8.3% in HTS, and +0.3% in CTR. For elbow flexion it changed -23.3% in HTS and -32.6% in CTR. Average Power (Watts) of elbow extension changed +22.1% in HTS and -8.0% in CTR. For elbow flexion it changed -6.5% in HTS and -4.8% in CTR. Triceps muscle volume according to MRI changed +11.7% and that of biceps was +2.1% using HTS, however -0.1% and -0.4% respectively for CTR. BMD changed +4.6% in the HTS arm and -1.2% for CTR. Lean (muscle) mass of the arm changed only +10.6% in HTS. Fat mass changed -12.6% in HTS and -6.4% in CTR
Shiba, Naoto; Matsuse, Hiroo; Takano, Yoshio; Yoshimitsu, Kazuhiro; Omoto, Masayuki; Hashida, Ryuki; Tagawa, Yoshihiko; Inada, Tomohisa; Yamada, Shin; Ohshima, Hiroshi
2015-01-01
Musculoskeletal atrophy is one of the major problems of extended periods of exposure to weightlessness such as on the International Space Station (ISS). We developed the Hybrid Training System (HTS) to maintain an astronaut's musculoskeletal system using an electrically stimulated antagonist to resist the volitional contraction of the agonist instead of gravity. The present study assessed the system's orbital operation capability and utility, as well as its preventative effect on an astronaut's musculoskeletal atrophy. HTS was attached to the non-dominant arm of an astronaut staying on the ISS, and his dominant arm without HTS was established as the control (CTR). 10 sets of 10 reciprocal elbow curls were one training session, and 12 total sessions of training (3 times per week for 4 weeks) were performed. Pre and post flight ground based evaluations were performed by Biodex (muscle performance), MRI (muscle volume), and DXA (BMD, lean [muscle] mass, fat mass). Pre and post training inflight evaluations were performed by a hand held dynamometer (muscle force) and a measuring tape (upper arm circumference). The experiment was completed on schedule, and HTS functioned well without problems. Isokinetic elbow extension torque (Nm) changed -19.4% in HTS, and -21.7% in CTR. Isokinetic elbow flexion torque changed -23.7% in HTS, and there was no change in CTR. Total Work (Joule) of elbow extension changed -8.3% in HTS, and +0.3% in CTR. For elbow flexion it changed -23.3% in HTS and -32.6% in CTR. Average Power (Watts) of elbow extension changed +22.1% in HTS and -8.0% in CTR. For elbow flexion it changed -6.5% in HTS and -4.8% in CTR. Triceps muscle volume according to MRI changed +11.7% and that of biceps was +2.1% using HTS, however -0.1% and -0.4% respectively for CTR. BMD changed +4.6% in the HTS arm and -1.2% for CTR. Lean (muscle) mass of the arm changed only +10.6% in HTS. Fat mass changed -12.6% in HTS and -6.4% in CTR. These results showed the orbital operation
Cao, Guan
2014-01-01
Hippocampal long-term potentiation (LTP) is a model system for studying cellular mechanisms of learning and memory. Recent interest in mechanisms underlying the advantage of spaced over massed learning has prompted investigation into the effects of distributed episodes of LTP induction. The amount of LTP induced in hippocampal area CA1 by one train (1T) of theta-burst stimulation (TBS) in young Sprague-Dawley rats was further enhanced by additional bouts of 1T given at 1-h intervals. However, in young Long-Evans (LE) rats, 1T did not initially saturate LTP. Instead, a stronger LTP induction paradigm using eight trains of TBS (8T) induced saturated LTP in hippocampal slices from both young and adult LE rats as well as adult mice. The saturated LTP induced by 8T could be augmented by another episode of 8T following an interval of at least 90 min. The success rate across animals and slices in augmenting LTP by an additional episode of 8T increased significantly with longer intervals between the first and last episodes, ranging from 0% at 30- and 60-min intervals to 13–66% at 90- to 180-min intervals to 90–100% at 240-min intervals. Augmentation above initially saturated LTP was blocked by the N-methyl-d-aspartate (NMDA) glutamate receptor antagonist d-2-amino-5-phosphonovaleric acid (d-APV). These findings suggest that the strength of induction and interval between episodes of TBS, as well as the strain and age of the animal, are important components in the augmentation of LTP. PMID:25057146
Degenerate Regularization of Forward-Backward Parabolic Equations: The Regularized Problem
NASA Astrophysics Data System (ADS)
Smarrazzo, Flavia; Tesei, Alberto
2012-04-01
We study a quasilinear parabolic equation of forward-backward type in one space dimension, under assumptions on the nonlinearity which hold for a number of important mathematical models (for example, the one-dimensional Perona-Malik equation), using a degenerate pseudoparabolic regularization proposed in Barenblatt et al. (SIAM J Math Anal 24:1414-1439, 1993), which takes time delay effects into account. We prove existence and uniqueness of positive solutions of the regularized problem in a space of Radon measures. We also study qualitative properties of such solutions, in particular concerning their decomposition into an absolutely continuous part and a singular part with respect to the Lebesgue measure. In this respect, the existence of a family of viscous entropy inequalities plays an important role.
NONCONVEX REGULARIZATION FOR SHAPE PRESERVATION
CHARTRAND, RICK
2007-01-16
The authors show that using a nonconvex penalty term to regularize image reconstruction can substantially improve the preservation of object shapes. The commonly-used total-variation regularization, {integral}|{del}u|, penalizes the length of the object edges. They show that {integral}|{del}u|{sup p}, 0 < p < 1, only penalizes edges of dimension at least 2-p, and thus finite-length edges not at all. We give numerical examples showing the resulting improvement in shape preservation.
Condition Number Regularized Covariance Estimation.
Won, Joong-Ho; Lim, Johan; Kim, Seung-Jean; Rajaratnam, Bala
2013-06-01
Estimation of high-dimensional covariance matrices is known to be a difficult problem, has many applications, and is of current interest to the larger statistics community. In many applications including so-called the "large p small n" setting, the estimate of the covariance matrix is required to be not only invertible, but also well-conditioned. Although many regularization schemes attempt to do this, none of them address the ill-conditioning problem directly. In this paper, we propose a maximum likelihood approach, with the direct goal of obtaining a well-conditioned estimator. No sparsity assumption on either the covariance matrix or its inverse are are imposed, thus making our procedure more widely applicable. We demonstrate that the proposed regularization scheme is computationally efficient, yields a type of Steinian shrinkage estimator, and has a natural Bayesian interpretation. We investigate the theoretical properties of the regularized covariance estimator comprehensively, including its regularization path, and proceed to develop an approach that adaptively determines the level of regularization that is required. Finally, we demonstrate the performance of the regularized estimator in decision-theoretic comparisons and in the financial portfolio optimization setting. The proposed approach has desirable properties, and can serve as a competitive procedure, especially when the sample size is small and when a well-conditioned estimator is required.
Condition Number Regularized Covariance Estimation*
Won, Joong-Ho; Lim, Johan; Kim, Seung-Jean; Rajaratnam, Bala
2012-01-01
Estimation of high-dimensional covariance matrices is known to be a difficult problem, has many applications, and is of current interest to the larger statistics community. In many applications including so-called the “large p small n” setting, the estimate of the covariance matrix is required to be not only invertible, but also well-conditioned. Although many regularization schemes attempt to do this, none of them address the ill-conditioning problem directly. In this paper, we propose a maximum likelihood approach, with the direct goal of obtaining a well-conditioned estimator. No sparsity assumption on either the covariance matrix or its inverse are are imposed, thus making our procedure more widely applicable. We demonstrate that the proposed regularization scheme is computationally efficient, yields a type of Steinian shrinkage estimator, and has a natural Bayesian interpretation. We investigate the theoretical properties of the regularized covariance estimator comprehensively, including its regularization path, and proceed to develop an approach that adaptively determines the level of regularization that is required. Finally, we demonstrate the performance of the regularized estimator in decision-theoretic comparisons and in the financial portfolio optimization setting. The proposed approach has desirable properties, and can serve as a competitive procedure, especially when the sample size is small and when a well-conditioned estimator is required. PMID:23730197
Exploring the spectrum of regularized bosonic string theory
Ambjørn, J. Makeenko, Y.
2015-03-15
We implement a UV regularization of the bosonic string by truncating its mode expansion and keeping the regularized theory “as diffeomorphism invariant as possible.” We compute the regularized determinant of the 2d Laplacian for the closed string winding around a compact dimension, obtaining the effective action in this way. The minimization of the effective action reliably determines the energy of the string ground state for a long string and/or for a large number of space-time dimensions. We discuss the possibility of a scaling limit when the cutoff is taken to infinity.
Universality in the flooding of regular islands by chaotic states.
Bäcker, Arnd; Ketzmerick, Roland; Monastra, Alejandro G
2007-06-01
We investigate the structure of eigenstates in systems with a mixed phase space in terms of their projection onto individual regular tori. Depending on dynamical tunneling rates and the Heisenberg time, regular states disappear and chaotic states flood the regular tori. For a quantitative understanding we introduce a random matrix model. The resulting statistical properties of eigenstates as a function of an effective coupling strength are in very good agreement with numerical results for a kicked system. We discuss the implications of these results for the applicability of the semiclassical eigenfunction hypothesis.
Geometric continuum regularization of quantum field theory
Halpern, M.B. . Dept. of Physics)
1989-11-08
An overview of the continuum regularization program is given. The program is traced from its roots in stochastic quantization, with emphasis on the examples of regularized gauge theory, the regularized general nonlinear sigma model and regularized quantum gravity. In its coordinate-invariant form, the regularization is seen as entirely geometric: only the supermetric on field deformations is regularized, and the prescription provides universal nonperturbative invariant continuum regularization across all quantum field theory. 54 refs.
Perturbation-free prediction of resonance-assisted tunneling in mixed regular-chaotic systems.
Mertig, Normann; Kullig, Julius; Löbner, Clemens; Bäcker, Arnd; Ketzmerick, Roland
2016-12-01
For generic Hamiltonian systems we derive predictions for dynamical tunneling from regular to chaotic phase-space regions. In contrast to previous approaches, we account for the resonance-assisted enhancement of regular-to-chaotic tunneling in a nonperturbative way. This provides the foundation for future semiclassical complex-path evaluations of resonance-assisted regular-to-chaotic tunneling. Our approach is based on a new class of integrable approximations which mimic the regular phase-space region and its dominant nonlinear resonance chain in a mixed regular-chaotic system. We illustrate the method for the standard map.
Regular Language Constrained Sequence Alignment Revisited
NASA Astrophysics Data System (ADS)
Kucherov, Gregory; Pinhas, Tamar; Ziv-Ukelson, Michal
Imposing constraints in the form of a finite automaton or a regular expression is an effective way to incorporate additional a priori knowledge into sequence alignment procedures. With this motivation, Arslan [1] introduced the Regular Language Constrained Sequence Alignment Problem and proposed an O(n 2 t 4) time and O(n 2 t 2) space algorithm for solving it, where n is the length of the input strings and t is the number of states in the non-deterministic automaton, which is given as input. Chung et al. [2] proposed a faster O(n 2 t 3) time algorithm for the same problem. In this paper, we further speed up the algorithms for Regular Language Constrained Sequence Alignment by reducing their worst case time complexity bound to O(n 2 t 3/logt). This is done by establishing an optimal bound on the size of Straight-Line Programs solving the maxima computation subproblem of the basic dynamic programming algorithm. We also study another solution based on a Steiner Tree computation. While it does not improve the run time complexity in the worst case, our simulations show that both approaches are efficient in practice, especially when the input automata are dense.
Discovering Structural Regularity in 3D Geometry
Pauly, Mark; Mitra, Niloy J.; Wallner, Johannes; Pottmann, Helmut; Guibas, Leonidas J.
2010-01-01
We introduce a computational framework for discovering regular or repeated geometric structures in 3D shapes. We describe and classify possible regular structures and present an effective algorithm for detecting such repeated geometric patterns in point- or mesh-based models. Our method assumes no prior knowledge of the geometry or spatial location of the individual elements that define the pattern. Structure discovery is made possible by a careful analysis of pairwise similarity transformations that reveals prominent lattice structures in a suitable model of transformation space. We introduce an optimization method for detecting such uniform grids specifically designed to deal with outliers and missing elements. This yields a robust algorithm that successfully discovers complex regular structures amidst clutter, noise, and missing geometry. The accuracy of the extracted generating transformations is further improved using a novel simultaneous registration method in the spatial domain. We demonstrate the effectiveness of our algorithm on a variety of examples and show applications to compression, model repair, and geometry synthesis. PMID:21170292
Sparse regularization for force identification using dictionaries
NASA Astrophysics Data System (ADS)
Qiao, Baijie; Zhang, Xingwu; Wang, Chenxi; Zhang, Hang; Chen, Xuefeng
2016-04-01
The classical function expansion method based on minimizing l2-norm of the response residual employs various basis functions to represent the unknown force. Its difficulty lies in determining the optimum number of basis functions. Considering the sparsity of force in the time domain or in other basis space, we develop a general sparse regularization method based on minimizing l1-norm of the coefficient vector of basis functions. The number of basis functions is adaptively determined by minimizing the number of nonzero components in the coefficient vector during the sparse regularization process. First, according to the profile of the unknown force, the dictionary composed of basis functions is determined. Second, a sparsity convex optimization model for force identification is constructed. Third, given the transfer function and the operational response, Sparse reconstruction by separable approximation (SpaRSA) is developed to solve the sparse regularization problem of force identification. Finally, experiments including identification of impact and harmonic forces are conducted on a cantilever thin plate structure to illustrate the effectiveness and applicability of SpaRSA. Besides the Dirac dictionary, other three sparse dictionaries including Db6 wavelets, Sym4 wavelets and cubic B-spline functions can also accurately identify both the single and double impact forces from highly noisy responses in a sparse representation frame. The discrete cosine functions can also successfully reconstruct the harmonic forces including the sinusoidal, square and triangular forces. Conversely, the traditional Tikhonov regularization method with the L-curve criterion fails to identify both the impact and harmonic forces in these cases.
Regular Patterns in Cerebellar Purkinje Cell Simple Spike Trains
Shin, Soon-Lim; Hoebeek, Freek E.; Schonewille, Martijn; De Zeeuw, Chris I.; Aertsen, Ad; De Schutter, Erik
2007-01-01
Background Cerebellar Purkinje cells (PC) in vivo are commonly reported to generate irregular spike trains, documented by high coefficients of variation of interspike-intervals (ISI). In strong contrast, they fire very regularly in the in vitro slice preparation. We studied the nature of this difference in firing properties by focusing on short-term variability and its dependence on behavioral state. Methodology/Principal Findings Using an analysis based on CV2 values, we could isolate precise regular spiking patterns, lasting up to hundreds of milliseconds, in PC simple spike trains recorded in both anesthetized and awake rodents. Regular spike patterns, defined by low variability of successive ISIs, comprised over half of the spikes, showed a wide range of mean ISIs, and were affected by behavioral state and tactile stimulation. Interestingly, regular patterns often coincided in nearby Purkinje cells without precise synchronization of individual spikes. Regular patterns exclusively appeared during the up state of the PC membrane potential, while single ISIs occurred both during up and down states. Possible functional consequences of regular spike patterns were investigated by modeling the synaptic conductance in neurons of the deep cerebellar nuclei (DCN). Simulations showed that these regular patterns caused epochs of relatively constant synaptic conductance in DCN neurons. Conclusions/Significance Our findings indicate that the apparent irregularity in cerebellar PC simple spike trains in vivo is most likely caused by mixing of different regular spike patterns, separated by single long intervals, over time. We propose that PCs may signal information, at least in part, in regular spike patterns to downstream DCN neurons. PMID:17534435
Word regularity affects orthographic learning.
Wang, Hua-Chen; Castles, Anne; Nickels, Lyndsey
2012-01-01
Share's self-teaching hypothesis proposes that orthographic representations are acquired via phonological decoding. A key, yet untested, prediction of this theory is that there should be an effect of word regularity on the number and quality of word-specific orthographic representations that children acquire. Thirty-four Grade 2 children were exposed to the sound and meaning of eight novel words and were then presented with those words in written form in short stories. Half the words were assigned regular pronunciations and half irregular pronunciations. Lexical decision and spelling tasks conducted 10 days later revealed that the children's orthographic representations of the regular words appeared to be stronger and more extensive than those of the irregular words.
Mixing of regular and chaotic orbits in beams
Courtlandt L. Bohn et al.
2002-09-04
Phase mixing of chaotic orbits exponentially distributes the orbits through their accessible phase space. This phenomenon, commonly called ''chaotic mixing'', stands in marked contrast to phase mixing of regular orbits which proceeds as a power law in time. It is inherently irreversible; hence, its associated e-folding time scale sets a condition on any process envisioned for emittance compensation. We numerically investigate phase mixing in the presence of space charge, distinguish between the evolution of regular and chaotic orbits, and discuss how phase mixing potentially influences macroscopic properties of high-brightness beams.
Regularized and generalized solutions of infinite-dimensional stochastic problems
Alshanskiy, Maxim A; Mel'nikova, Irina V
2011-11-30
The paper is concerned with solutions of Cauchy's problem for stochastic differential-operator equations in separable Hilbert spaces. Special emphasis is placed on the case when the operator coefficient of the equation is not a generator of a C{sub 0}-class semigroup, but rather generates some regularized semigroup. Regularized solutions of equations in the Ito form with a Wiener process as an inhomogeneity and generalized solutions of equations with white noise are constructed in various spaces of abstract distributions. Bibliography: 23 titles.
Menstrual Bleeding Patterns Among Regularly Menstruating Women
Dasharathy, Sonya S.; Mumford, Sunni L.; Pollack, Anna Z.; Perkins, Neil J.; Mattison, Donald R.; Wactawski-Wende, Jean; Schisterman, Enrique F.
2012-01-01
Menstrual bleeding patterns are considered relevant indicators of reproductive health, though few studies have evaluated patterns among regularly menstruating premenopausal women. The authors evaluated self-reported bleeding patterns, incidence of spotting, and associations with reproductive hormones among 201 women in the BioCycle Study (2005–2007) with 2 consecutive cycles. Bleeding patterns were assessed by using daily questionnaires and pictograms. Marginal structural models were used to evaluate associations between endogenous hormone concentrations and subsequent total reported blood loss and bleeding length by weighted linear mixed-effects models and weighted parametric survival analysis models. Women bled for a median of 5 days (standard deviation: 1.5) during menstruation, with heavier bleeding during the first 3 days. Only 4.8% of women experienced midcycle bleeding. Increased levels of follicle-stimulating hormone (β = 0.20, 95% confidence interval: 0.13, 0.27) and progesterone (β = 0.06, 95% confidence interval: 0.03, 0.09) throughout the cycle were associated with heavier menstrual bleeding, and higher follicle-stimulating hormone levels were associated with longer menses. Bleeding duration and volume were reduced after anovulatory compared with ovulatory cycles (geometric mean blood loss: 29.6 vs. 47.2 mL; P = 0.07). Study findings suggest that detailed characterizations of bleeding patterns may provide more insight than previously thought as noninvasive markers for endocrine status in a given cycle. PMID:22350580
Resource Guide for Regular Teachers.
ERIC Educational Resources Information Center
Kampert, George J.
The resource guide for regular teachers provides policies and procedures of the Flour Bluff (Texas) school district regarding special education of handicapped students. Individual sections provide guidelines for the following areas: the referral process; individual assessment; participation on student evaluation and placement committee; special…
Sparsity regularization in dynamic elastography.
Honarvar, M; Sahebjavaher, R S; Salcudean, S E; Rohling, R
2012-10-07
We consider the inverse problem of continuum mechanics with the tissue deformation described by a mixed displacement-pressure finite element formulation. The mixed formulation is used to model nearly incompressible materials by simultaneously solving for both elasticity and pressure distributions. To improve numerical conditioning, a common solution to this problem is to use regularization to constrain the solutions of the inverse problem. We present a sparsity regularization technique that uses the discrete cosine transform to transform the elasticity and pressure fields to a sparse domain in which a smaller number of unknowns is required to represent the original field. We evaluate the approach by solving the dynamic elastography problem for synthetic data using such a mixed finite element technique, assuming time harmonic motion, and linear, isotropic and elastic behavior for the tissue. We compare our simulation results to those obtained using the more common Tikhonov regularization. We show that the sparsity regularization is less dependent on boundary conditions, less influenced by noise, requires no parameter tuning and is computationally faster. The algorithm has been tested on magnetic resonance elastography data captured from a CIRS elastography phantom with similar results as the simulation.
Regularized Generalized Structured Component Analysis
ERIC Educational Resources Information Center
Hwang, Heungsun
2009-01-01
Generalized structured component analysis (GSCA) has been proposed as a component-based approach to structural equation modeling. In practice, GSCA may suffer from multi-collinearity, i.e., high correlations among exogenous variables. GSCA has yet no remedy for this problem. Thus, a regularized extension of GSCA is proposed that integrates a ridge…
Regularized Generalized Structured Component Analysis
ERIC Educational Resources Information Center
Hwang, Heungsun
2009-01-01
Generalized structured component analysis (GSCA) has been proposed as a component-based approach to structural equation modeling. In practice, GSCA may suffer from multi-collinearity, i.e., high correlations among exogenous variables. GSCA has yet no remedy for this problem. Thus, a regularized extension of GSCA is proposed that integrates a ridge…
Giftedness in the Regular Classroom.
ERIC Educational Resources Information Center
Green, Anne
This paper presents a rationale for serving gifted students in the regular classroom and offers guidelines for recognizing students who are gifted in the seven types of intelligence proposed by Howard Gardner. Stressed is the importance of creating in the classroom a community of learners that allows all children to actively explore ideas and…
Rotations of the Regular Polyhedra
ERIC Educational Resources Information Center
Jones, MaryClara; Soto-Johnson, Hortensia
2006-01-01
The study of the rotational symmetries of the regular polyhedra is important in the classroom for many reasons. Besides giving the students an opportunity to visualize in three dimensions, it is also an opportunity to relate two-dimensional and three-dimensional concepts. For example, rotations in R[superscript 2] require a point and an angle of…
Regularization of Localized Degradation Processes
1996-12-28
order to assess the regularization properties of non-classical micropolar Cosserat continua which feature non-symmetric stress and strain tensors because...of the presence of couple-stresses and micro-curvatures. It was shown that micropolar media may only exhibit localized failure in the form of tensile
Sparsity regularization for parameter identification problems
NASA Astrophysics Data System (ADS)
Jin, Bangti; Maass, Peter
2012-12-01
The investigation of regularization schemes with sparsity promoting penalty terms has been one of the dominant topics in the field of inverse problems over the last years, and Tikhonov functionals with ℓp-penalty terms for 1 ⩽ p ⩽ 2 have been studied extensively. The first investigations focused on regularization properties of the minimizers of such functionals with linear operators and on iteration schemes for approximating the minimizers. These results were quickly transferred to nonlinear operator equations, including nonsmooth operators and more general function space settings. The latest results on regularization properties additionally assume a sparse representation of the true solution as well as generalized source conditions, which yield some surprising and optimal convergence rates. The regularization theory with ℓp sparsity constraints is relatively complete in this setting; see the first part of this review. In contrast, the development of efficient numerical schemes for approximating minimizers of Tikhonov functionals with sparsity constraints for nonlinear operators is still ongoing. The basic iterated soft shrinkage approach has been extended in several directions and semi-smooth Newton methods are becoming applicable in this field. In particular, the extension to more general non-convex, non-differentiable functionals by variational principles leads to a variety of generalized iteration schemes. We focus on such iteration schemes in the second part of this review. A major part of this survey is devoted to applying sparsity constrained regularization techniques to parameter identification problems for partial differential equations, which we regard as the prototypical setting for nonlinear inverse problems. Parameter identification problems exhibit different levels of complexity and we aim at characterizing a hierarchy of such problems. The operator defining these inverse problems is the parameter-to-state mapping. We first summarize some
Learning rates of lq coefficient regularization learning with gaussian kernel.
Lin, Shaobo; Zeng, Jinshan; Fang, Jian; Xu, Zongben
2014-10-01
Regularization is a well-recognized powerful strategy to improve the performance of a learning machine and l(q) regularization schemes with 0 < q < ∞ are central in use. It is known that different q leads to different properties of the deduced estimators, say, l(2) regularization leads to a smooth estimator, while l(1) regularization leads to a sparse estimator. Then how the generalization capability of l(q) regularization learning varies with q is worthy of investigation. In this letter, we study this problem in the framework of statistical learning theory. Our main results show that implementing l(q) coefficient regularization schemes in the sample-dependent hypothesis space associated with a gaussian kernel can attain the same almost optimal learning rates for all 0 < q < ∞. That is, the upper and lower bounds of learning rates for l(q) regularization learning are asymptotically identical for all 0 < q < ∞. Our finding tentatively reveals that in some modeling contexts, the choice of q might not have a strong impact on the generalization capability. From this perspective, q can be arbitrarily specified, or specified merely by other nongeneralization criteria like smoothness, computational complexity or sparsity.
Photon-limited depth and reflectivity imaging with sparsity regularization
NASA Astrophysics Data System (ADS)
Yan, Kang; Lifei, Li; Xuejie, Duan; Tongyi, Zhang; Dongjian, Li; Wei, Zhao
2017-06-01
We demonstrate a depth and reflectivity imaging system at low light level based on sparsity regularization method. Depth and reflectivity imaging from the time-correlated single photon counting (TCSPC) measurement in limit of few photon counts are reconstructed through exploiting transform-domain sparsity. Two different sparsity-based penalty function: total variation (TV) penalty and l1 norm penalty measuring sparsity in the discrete cosine transform(DCT) basis, are applied to the experimental data. The results show that compared with traditional image denoising method, sparsity regularization approach achieves better accuracy with fewer photon measurements. Further more, the performance of TV regularization is proved better than l1-DCT regularization method for photon-limited imaging at first time, especially in the case of depth imaging. Our system is a photon-limited imaging device for a variety of applications, such as target detection, space surveillance, and distance measurement.
Temporal regularity in speech perception: Is regularity beneficial or deleterious?
Geiser, Eveline; Shattuck-Hufnagel, Stefanie
2012-04-01
Speech rhythm has been proposed to be of crucial importance for correct speech perception and language learning. This study investigated the influence of speech rhythm in second language processing. German pseudo-sentences were presented to participants in two conditions: 'naturally regular speech rhythm' and an 'emphasized regular rhythm'. Nine expert English speakers with 3.5±1.6 years of German training repeated each sentence after hearing it once over headphones. Responses were transcribed using the International Phonetic Alphabet and analyzed for the number of correct, false and missing consonants as well as for consonant additions. The over-all number of correct reproductions of consonants did not differ between the two experimental conditions. However, speech rhythmicization significantly affected the serial position curve of correctly reproduced syllables. The results of this pilot study are consistent with the view that speech rhythm is important for speech perception.
Regular languages, regular grammars and automata in splicing systems
NASA Astrophysics Data System (ADS)
Mohamad Jan, Nurhidaya; Fong, Wan Heng; Sarmin, Nor Haniza
2013-04-01
Splicing system is known as a mathematical model that initiates the connection between the study of DNA molecules and formal language theory. In splicing systems, languages called splicing languages refer to the set of double-stranded DNA molecules that may arise from an initial set of DNA molecules in the presence of restriction enzymes and ligase. In this paper, some splicing languages resulted from their respective splicing systems are shown. Since all splicing languages are regular, languages which result from the splicing systems can be further investigated using grammars and automata in the field of formal language theory. The splicing language can be written in the form of regular languages generated by grammar. Besides that, splicing systems can be accepted by automata. In this research, two restriction enzymes are used in splicing systems namely BfuCI and NcoI.
NASA Astrophysics Data System (ADS)
Buong, Nguyen; Dung, Nguyen Dinh
2014-03-01
In this paper, we present a regularized parameter choice in a new regularization method of Browder-Tikhonov type, for finding a common solution of a finite system of ill-posed operator equations involving Lipschitz continuous and accretive mappings in a real reflexive and strictly convex Banach space with a uniformly Gateaux differentiate norm. An estimate for convergence rates of regularized solution is also established.
Regular Motions of Resonant Asteroids
NASA Astrophysics Data System (ADS)
Ferraz-Mello, S.
1990-11-01
RESUMEN. Se revisan resultados analiticos relativos a soluciones regulares del problema asteroidal eliptico promediados en la vecindad de una resonancia con jupiten Mencionamos Ia ley de estructura para libradores de alta excentricidad, la estabilidad de los centros de liberaci6n, las perturbaciones forzadas por la excentricidad de jupiter y las 6rbitas de corotaci6n. ABSTRAC This paper reviews analytical results concerning the regular solutions of the elliptic asteroidal problem averaged in the neighbourhood of a resonance with jupiter. We mention the law of structure for high-eccentricity librators, the stability of the libration centers, the perturbations forced by the eccentricity ofjupiter and the corotation orbits. Key words: ASThROIDS
Energy functions for regularization algorithms
NASA Technical Reports Server (NTRS)
Delingette, H.; Hebert, M.; Ikeuchi, K.
1991-01-01
Regularization techniques are widely used for inverse problem solving in computer vision such as surface reconstruction, edge detection, or optical flow estimation. Energy functions used for regularization algorithms measure how smooth a curve or surface is, and to render acceptable solutions these energies must verify certain properties such as invariance with Euclidean transformations or invariance with parameterization. The notion of smoothness energy is extended here to the notion of a differential stabilizer, and it is shown that to void the systematic underestimation of undercurvature for planar curve fitting, it is necessary that circles be the curves of maximum smoothness. A set of stabilizers is proposed that meet this condition as well as invariance with rotation and parameterization.
Diffusion on regular random fractals
NASA Astrophysics Data System (ADS)
Aarão Reis, Fábio D. A.
1996-12-01
We study random walks on structures intermediate to statistical and deterministic fractals called regular random fractals, constructed introducing randomness in the distribution of lacunas of Sierpinski carpets. Random walks are simulated on finite stages of these fractals and the scaling properties of the mean square displacement 0305-4470/29/24/007/img1 of N-step walks are analysed. The anomalous diffusion exponents 0305-4470/29/24/007/img2 obtained are very near the estimates for the carpets with the same dimension. This result motivates a discussion on the influence of some types of lattice irregularity (random structure, dead ends, lacunas) on 0305-4470/29/24/007/img2, based on results on several fractals. We also propose to use these and other regular random fractals as models for real self-similar structures and to generalize results for statistical systems on fractals.
Graph Regularized Auto-Encoders for Image Representation.
Yiyi Liao; Yue Wang; Yong Liu
2017-06-01
Image representation has been intensively explored in the domain of computer vision for its significant influence on the relative tasks such as image clustering and classification. It is valuable to learn a low-dimensional representation of an image which preserves its inherent information from the original image space. At the perspective of manifold learning, this is implemented with the local invariant idea to capture the intrinsic low-dimensional manifold embedded in the high-dimensional input space. Inspired by the recent successes of deep architectures, we propose a local invariant deep nonlinear mapping algorithm, called graph regularized auto-encoder (GAE). With the graph regularization, the proposed method preserves the local connectivity from the original image space to the representation space, while the stacked auto-encoders provide explicit encoding model for fast inference and powerful expressive capacity for complex modeling. Theoretical analysis shows that the graph regularizer penalizes the weighted Frobenius norm of the Jacobian matrix of the encoder mapping, where the weight matrix captures the local property in the input space. Furthermore, the underlying effects on the hidden representation space are revealed, providing insightful explanation to the advantage of the proposed method. Finally, the experimental results on both clustering and classification tasks demonstrate the effectiveness of our GAE as well as the correctness of the proposed theoretical analysis, and it also suggests that GAE is a superior solution to the current deep representation learning techniques comparing with variant auto-encoders and existing local invariant methods.
On different facets of regularization theory.
Chen, Zhe; Haykin, Simon
2002-12-01
This review provides a comprehensive understanding of regularization theory from different perspectives, emphasizing smoothness and simplicity principles. Using the tools of operator theory and Fourier analysis, it is shown that the solution of the classical Tikhonov regularization problem can be derived from the regularized functional defined by a linear differential (integral) operator in the spatial (Fourier) domain. State-of-the-art research relevant to the regularization theory is reviewed, covering Occam's razor, minimum length description, Bayesian theory, pruning algorithms, informational (entropy) theory, statistical learning theory, and equivalent regularization. The universal principle of regularization in terms of Kolmogorov complexity is discussed. Finally, some prospective studies on regularization theory and beyond are suggested.
NASA Astrophysics Data System (ADS)
Fukushima, Toshio
2007-01-01
We present a new scheme to regularize a three-dimensional two-body problem under perturbations. It is a combination of Sundman's time transformation and Levi-Civita's spatial coordinate transformation applied to the two-dimensional components of the position and velocity vectors in the osculating orbital plane. We adopt a coordinate triad specifying the plane as a function of the orbital angular momentum vector only. Since the magnitude of the orbital angular momentum is explicitly computed from the in-the-plane components of the position and velocity vectors, only two components of the orbital angular momentum vector are to be determined. In addition to these, we select the total energy of the two-body system and the physical time as additional components of the new variables. The equations of motion of the new variables have no singularity even when the mutual distance is extremely small, and therefore, the new variables are suitable to deal with close encounters. As a result, the number of dependent variables in the new scheme becomes eight, which is significantly smaller than the existing schemes to avoid close encounters: two less than the Kustaanheimo-Stiefel and the Bürdet-Ferrandiz regularizations, and five less than the Sperling-Bürdet/Bürdet-Heggie regularization.
Regular sun exposure benefits health.
van der Rhee, H J; de Vries, E; Coebergh, J W
2016-12-01
Since it was discovered that UV radiation was the main environmental cause of skin cancer, primary prevention programs have been started. These programs advise to avoid exposure to sunlight. However, the question arises whether sun-shunning behaviour might have an effect on general health. During the last decades new favourable associations between sunlight and disease have been discovered. There is growing observational and experimental evidence that regular exposure to sunlight contributes to the prevention of colon-, breast-, prostate cancer, non-Hodgkin lymphoma, multiple sclerosis, hypertension and diabetes. Initially, these beneficial effects were ascribed to vitamin D. Recently it became evident that immunomodulation, the formation of nitric oxide, melatonin, serotonin, and the effect of (sun)light on circadian clocks, are involved as well. In Europe (above 50 degrees north latitude), the risk of skin cancer (particularly melanoma) is mainly caused by an intermittent pattern of exposure, while regular exposure confers a relatively low risk. The available data on the negative and positive effects of sun exposure are discussed. Considering these data we hypothesize that regular sun exposure benefits health. Copyright © 2016 Elsevier Ltd. All rights reserved.
Words cluster phonetically beyond phonotactic regularities.
Dautriche, Isabelle; Mahowald, Kyle; Gibson, Edward; Christophe, Anne; Piantadosi, Steven T
2017-06-01
Recent evidence suggests that cognitive pressures associated with language acquisition and use could affect the organization of the lexicon. On one hand, consistent with noisy channel models of language (e.g., Levy, 2008), the phonological distance between wordforms should be maximized to avoid perceptual confusability (a pressure for dispersion). On the other hand, a lexicon with high phonological regularity would be simpler to learn, remember and produce (e.g., Monaghan et al., 2011) (a pressure for clumpiness). Here we investigate wordform similarity in the lexicon, using measures of word distance (e.g., phonological neighborhood density) to ask whether there is evidence for dispersion or clumpiness of wordforms in the lexicon. We develop a novel method to compare lexicons to phonotactically-controlled baselines that provide a null hypothesis for how clumpy or sparse wordforms would be as the result of only phonotactics. Results for four languages, Dutch, English, German and French, show that the space of monomorphemic wordforms is clumpier than what would be expected by the best chance model according to a wide variety of measures: minimal pairs, average Levenshtein distance and several network properties. This suggests a fundamental drive for regularity in the lexicon that conflicts with the pressure for words to be as phonologically distinct as possible. Copyright © 2017 Elsevier B.V. All rights reserved.
Color correction optimization with hue regularization
NASA Astrophysics Data System (ADS)
Zhang, Heng; Liu, Huaping; Quan, Shuxue
2011-01-01
Previous work has suggested that observers are capable of judging the quality of an image without any knowledge of the original scene. When no reference is available, observers can extract the apparent objects in an image and compare them with the typical colors of similar objects recalled from their memories. Some generally agreed upon research results indicate that although perfect colorimetric rendering is not conspicuous and color errors can be well tolerated, the appropriate rendition of certain memory colors such as skin, grass, and sky is an important factor in the overall perceived image quality. These colors are appreciated in a fairly consistent manner and are memorized with slightly different hues and higher color saturation. The aim of color correction for a digital color pipeline is to transform the image data from a device dependent color space to a target color space, usually through a color correction matrix which in its most basic form is optimized through linear regressions between the two sets of data in two color spaces in the sense of minimized Euclidean color error. Unfortunately, this method could result in objectionable distortions if the color error biased certain colors undesirably. In this paper, we propose a color correction optimization method with preferred color reproduction in mind through hue regularization and present some experimental results.
Regularization of Nutation Time Series at GSFC
NASA Astrophysics Data System (ADS)
Le Bail, K.; Gipson, J. M.; Bolotin, S.
2012-12-01
VLBI is unique in its ability to measure all five Earth orientation parameters. In this paper we focus on the two nutation parameters which characterize the orientation of the Earth's rotation axis in space. We look at the periodicities and the spectral characteristics of these parameters for both R1 and R4 sessions independently. The study of the most significant periodic signals for periods shorter than 600 days is common for these four time series (period of 450 days), and the type of noise determined by the Allan variance is a white noise for the four series. To investigate methods of regularizing the series, we look at a Singular Spectrum Analysis-derived method and at the Kalman filter. The two methods adequately reproduce the tendency of the nutation time series, but the resulting series are noisier using the Singular Spectrum Analysis-derived method.
Thermodynamics of regular accelerating black holes
NASA Astrophysics Data System (ADS)
Astorino, Marco
2017-03-01
Using the covariant phase space formalism, we compute the conserved charges for a solution, describing an accelerating and electrically charged Reissner-Nordstrom black hole. The metric is regular provided that the acceleration is driven by an external electric field, in spite of the usual string of the standard C-metric. The Smarr formula and the first law of black hole thermodynamics are fulfilled. The resulting mass has the same form of the Christodoulou-Ruffini irreducible mass. On the basis of these results, we can extrapolate the mass and thermodynamics of the rotating C-metric, which describes a Kerr-Newman-(A)dS black hole accelerated by a pulling string.
Kernelized Elastic Net Regularization: Generalization Bounds, and Sparse Recovery.
Feng, Yunlong; Lv, Shao-Gao; Hang, Hanyuan; Suykens, Johan A K
2016-03-01
Kernelized elastic net regularization (KENReg) is a kernelization of the well-known elastic net regularization (Zou & Hastie, 2005). The kernel in KENReg is not required to be a Mercer kernel since it learns from a kernelized dictionary in the coefficient space. Feng, Yang, Zhao, Lv, and Suykens (2014) showed that KENReg has some nice properties including stability, sparseness, and generalization. In this letter, we continue our study on KENReg by conducting a refined learning theory analysis. This letter makes the following three main contributions. First, we present refined error analysis on the generalization performance of KENReg. The main difficulty of analyzing the generalization error of KENReg lies in characterizing the population version of its empirical target function. We overcome this by introducing a weighted Banach space associated with the elastic net regularization. We are then able to conduct elaborated learning theory analysis and obtain fast convergence rates under proper complexity and regularity assumptions. Second, we study the sparse recovery problem in KENReg with fixed design and show that the kernelization may improve the sparse recovery ability compared to the classical elastic net regularization. Finally, we discuss the interplay among different properties of KENReg that include sparseness, stability, and generalization. We show that the stability of KENReg leads to generalization, and its sparseness confidence can be derived from generalization. Moreover, KENReg is stable and can be simultaneously sparse, which makes it attractive theoretically and practically.
Regularity criteria for incompressible magnetohydrodynamics equations in three dimensions
NASA Astrophysics Data System (ADS)
Lin, Hongxia; Du, Lili
2013-01-01
In this paper, we give some new global regularity criteria for three-dimensional incompressible magnetohydrodynamics (MHD) equations. More precisely, we provide some sufficient conditions in terms of the derivatives of the velocity or pressure, for the global regularity of strong solutions to 3D incompressible MHD equations in the whole space, as well as for periodic boundary conditions. Moreover, the regularity criterion involving three of the nine components of the velocity gradient tensor is also obtained. The main results generalize the recent work by Cao and Wu (2010 Two regularity criteria for the 3D MHD equations J. Diff. Eqns 248 2263-74) and the analysis in part is based on the works by Cao C and Titi E (2008 Regularity criteria for the three-dimensional Navier-Stokes equations Indiana Univ. Math. J. 57 2643-61 2011 Gobal regularity criterion for the 3D Navier-Stokes equations involving one entry of the velocity gradient tensor Arch. Rational Mech. Anal. 202 919-32) for 3D incompressible Navier-Stokes equations.
Quantitative regularities in floodplain formation
NASA Astrophysics Data System (ADS)
Nevidimova, O.
2009-04-01
Quantitative regularities in floodplain formation Modern methods of the theory of complex systems allow to build mathematical models of complex systems where self-organizing processes are largely determined by nonlinear effects and feedback. However, there exist some factors that exert significant influence on the dynamics of geomorphosystems, but hardly can be adequately expressed in the language of mathematical models. Conceptual modeling allows us to overcome this difficulty. It is based on the methods of synergetic, which, together with the theory of dynamic systems and classical geomorphology, enable to display the dynamics of geomorphological systems. The most adequate for mathematical modeling of complex systems is the concept of model dynamics based on equilibrium. This concept is based on dynamic equilibrium, the tendency to which is observed in the evolution of all geomorphosystems. As an objective law, it is revealed in the evolution of fluvial relief in general, and in river channel processes in particular, demonstrating the ability of these systems to self-organization. Channel process is expressed in the formation of river reaches, rifts, meanders and floodplain. As floodplain is a periodically flooded surface during high waters, it naturally connects river channel with slopes, being one of boundary expressions of the water stream activity. Floodplain dynamics is inseparable from the channel dynamics. It is formed at simultaneous horizontal and vertical displacement of the river channel, that is at Y=Y(x, y), where х, y - horizontal and vertical coordinates, Y - floodplain height. When dу/dt=0 (for not lowering river channel), the river, being displaced in a horizontal plane, leaves behind a low surface, which flooding during high waters (total duration of flooding) changes from the maximum during the initial moment of time t0 to zero in the moment tn. In a similar manner changed is the total amount of accumulated material on the floodplain surface
Knowledge and regularity in planning
NASA Technical Reports Server (NTRS)
Allen, John A.; Langley, Pat; Matwin, Stan
1992-01-01
The field of planning has focused on several methods of using domain-specific knowledge. The three most common methods, use of search control, use of macro-operators, and analogy, are part of a continuum of techniques differing in the amount of reused plan information. This paper describes TALUS, a planner that exploits this continuum, and is used for comparing the relative utility of these methods. We present results showing how search control, macro-operators, and analogy are affected by domain regularity and the amount of stored knowledge.
Solar reflection from a regular array of horizontally finite clouds
NASA Technical Reports Server (NTRS)
Weinman, J. A.; Harshvardhan, MR.
1982-01-01
The reflected flux from a regular array of 2- and 3-D clouds has been computed to estimate the effect of fractional cloud cover on albedos and the solar flux available to heat the earth's surface. The broken clouds are represented by a regular array of identical cuboids for the 3-D problem and equally spaced, infinitely long, bars for the 2-D problem. A diffusion approximation to the radiative transfer equation is used to compute the fluxes leaving each face of the cloud. Interaction between clouds is simulated by assuming diffuse exitance from the cloud faces and applying angle factors to obtain modified boundary conditions on each cloud face.
Senova, Suhan; Hosomi, Koichi; Gurruchaga, Jean-Marc; Gouello, Gaëtane; Ouerchefani, Naoufel; Beaugendre, Yara; Lepetit, Hélène; Lefaucheur, Jean-Pascal; Badin, Romina Aron; Dauguet, Julien; Jan, Caroline; Hantraye, Philippe; Brugières, Pierre; Palfi, Stéphane
2016-08-01
OBJECTIVE Deep brain stimulation (DBS) of the subthalamic nucleus (STN) is a well-established therapy for motor symptoms in patients with pharmacoresistant Parkinson's disease (PD). However, the procedure, which requires multimodal perioperative exploration such as imaging, electrophysiology, or clinical examination during macrostimulation to secure lead positioning, remains challenging because the STN cannot be reliably visualized using the gold standard, T2-weighted imaging (T2WI) at 1.5 T. Thus, there is a need to improve imaging tools to better visualize the STN, optimize DBS lead implantation, and enlarge DBS diffusion. METHODS Gradient-echo sequences such as those used in T2WI suffer from higher distortions at higher magnetic fields than spin-echo sequences. First, a spin-echo 3D SPACE (sampling perfection with application-optimized contrasts using different flip angle evolutions) FLAIR sequence at 3 T was designed, validated histologically in 2 nonhuman primates, and applied to 10 patients with PD; their data were clinically compared in a double-blind manner with those of a control group of 10 other patients with PD in whom STN targeting was performed using T2WI. RESULTS Overlap between the nonhuman primate STNs segmented on 3D-histological and on 3D-SPACE-FLAIR volumes was high for the 3 most anterior quarters (mean [± SD] Dice scores 0.73 ± 0.11, 0.74 ± 0.06, and 0.60 ± 0.09). STN limits determined by the 3D-SPACE-FLAIR sequence were more consistent with electrophysiological edges than those determined by T2WI (0.9 vs 1.4 mm, respectively). The imaging contrast of the STN on the 3D-SPACE-FLAIR sequence was 4 times higher (p < 0.05). Improvement in the Unified Parkinson's Disease Rating Scale Part III score (off medication, on stimulation) 12 months after the operation was higher for patients who underwent 3D-SPACE-FLAIR-guided implantation than for those in whom T2WI was used (62.2% vs 43.6%, respectively; p < 0.05). The total electrical energy
NASA Technical Reports Server (NTRS)
1997-01-01
Under a Goddard Space Flight Center contract, Electrologic of America was able to refine the process of densely packing circuitry on personal computer boards, providing significant contributions to the closed-loop systems for the Remote Manipulator System Simulator. The microcircuitry work was then applied to the StimMaster FES Ergometer, an exercise device used to stimulate muscles suffering from paralysis. The electrical stimulation equipment was developed exclusively for V-Care Health Systems, Inc. Product still commercially available as of March 2002.
NASA Astrophysics Data System (ADS)
Chen, De-Han; Hofmann, Bernd; Zou, Jun
2017-01-01
We consider the ill-posed operator equation Ax = y with an injective and bounded linear operator A mapping between {{\\ell}2} and a Hilbert space Y, possessing the unique solution {{x}\\dagger}=≤ft\\{{{x}\\dagger}k\\right\\}k=1∞ . For the cases that sparsity {{x}\\dagger}\\in {{\\ell}0} is expected but often slightly violated in practice, we investigate in comparison with the {{\\ell}1} -regularization the elastic-net regularization, where the penalty is a weighted superposition of the {{\\ell}1} -norm and the {{\\ell}2} -norm square, under the assumption that {{x}\\dagger}\\in {{\\ell}1} . There occur two positive parameters in this approach, the weight parameter η and the regularization parameter as the multiplier of the whole penalty in the Tikhonov functional, whereas only one regularization parameter arises in {{\\ell}1} -regularization. Based on the variational inequality approach for the description of the solution smoothness with respect to the forward operator A and exploiting the method of approximate source conditions, we present some results to estimate the rate of convergence for the elastic-net regularization. The occurring rate function contains the rate of the decay {{x}\\dagger}k\\to 0 for k\\to ∞ and the classical smoothness properties of {{x}\\dagger} as an element in {{\\ell}2} .
The Effect of Early Stimulation: The Problem of Focus in Developmental Stimulation.
ERIC Educational Resources Information Center
Fowler, William
Studies of the effect of environmental stimulation on an individual's development in either general or specific ability conclude that some specific stimulation should be introduced at an early age while a child is still malleable. An intense, persistent, and regular tutorial approach within the family encourages the development of a special talent…
Wave dynamics of regular and chaotic rays
McDonald, S.W.
1983-09-01
In order to investigate general relationships between waves and rays in chaotic systems, I study the eigenfunctions and spectrum of a simple model, the two-dimensional Helmholtz equation in a stadium boundary, for which the rays are ergodic. Statistical measurements are performed so that the apparent randomness of the stadium modes can be quantitatively contrasted with the familiar regularities observed for the modes in a circular boundary (with integrable rays). The local spatial autocorrelation of the eigenfunctions is constructed in order to indirectly test theoretical predictions for the nature of the Wigner distribution corresponding to chaotic waves. A portion of the large-eigenvalue spectrum is computed and reported in an appendix; the probability distribution of successive level spacings is analyzed and compared with theoretical predictions. The two principal conclusions are: 1) waves associated with chaotic rays may exhibit randomly situated localized regions of high intensity; 2) the Wigner function for these waves may depart significantly from being uniformly distributed over the surface of constant frequency in the ray phase space.
An Anisotropic Partial Regularity Criterion for the Navier-Stokes Equations
NASA Astrophysics Data System (ADS)
Kukavica, Igor; Rusin, Walter; Ziane, Mohammed
2017-03-01
In this paper, we address the partial regularity of suitable weak solutions of the incompressible Navier-Stokes equations. We prove an interior regularity criterion involving only one component of the velocity. Namely, if ( u, p) is a suitable weak solution and a certain scale-invariant quantity involving only u 3 is small on a space-time cylinder {{Qr^{*}}(x_0,t_0)}, then u is regular at ( x 0, t 0).
"Space, the Final Frontier"; Books on Space and Space Exploration.
ERIC Educational Resources Information Center
Jordan, Anne Devereaux
1997-01-01
Advocates play in a child's life. Describes how science fiction seizes the imaginations of young readers with its tales of the future and of outer space. Talks about various nonfiction books about space. Elaborates a workshop on books about space exploration. Gives 10 questions about stimulating student response. (PA)
"Space, the Final Frontier"; Books on Space and Space Exploration.
ERIC Educational Resources Information Center
Jordan, Anne Devereaux
1997-01-01
Advocates play in a child's life. Describes how science fiction seizes the imaginations of young readers with its tales of the future and of outer space. Talks about various nonfiction books about space. Elaborates a workshop on books about space exploration. Gives 10 questions about stimulating student response. (PA)
Regularity Detection As A Strategy In Object Modelling And Recognition
NASA Astrophysics Data System (ADS)
van Gool, Luc J.; Wagemans, Johan; Oosterlinck, Andre J.
1989-03-01
Human subjects easily perceive and extensively use shape regularities such as symmetry or periodicity when they are confronted with the task of object description and recognition. A computer vision algorithm is presented which emulates such behaviour in that it similarly makes use of shape redundancies for the concise description and meaningful segmentation of object contours. This can be compared with the way in which designers proceed in using CAD/CAM. In order to make the problem more accessible to computer programming, the contours are analyzed in so-called 'arc length space'. This novel mapping facilitates the detection and elimination of regularities under a broad range of viewing conditions and yields a natural basis for the formulation of the corresponding model compression rules. Several of the regularities which have traditionally been treated separately, are given a unified substrate.
MAXIMAL POINTS OF A REGULAR TRUTH FUNCTION
Every canonical linearly separable truth function is a regular function, but not every regular truth function is linearly separable. The most...promising method of determining which of the regular truth functions are linearly separable r quires finding their maximal and minimal points. In this...report is developed a quick, systematic method of finding the maximal points of any regular truth function in terms of its arithmetic invariants. (Author)
Natural frequency of regular basins
NASA Astrophysics Data System (ADS)
Tjandra, Sugih S.; Pudjaprasetya, S. R.
2014-03-01
Similar to the vibration of a guitar string or an elastic membrane, water waves in an enclosed basin undergo standing oscillatory waves, also known as seiches. The resonant (eigen) periods of seiches are determined by water depth and geometry of the basin. For regular basins, explicit formulas are available. Resonance occurs when the dominant frequency of external force matches the eigen frequency of the basin. In this paper, we implement the conservative finite volume scheme to 2D shallow water equation to simulate resonance in closed basins. Further, we would like to use this scheme and utilizing energy spectra of the recorded signal to extract resonant periods of arbitrary basins. But here we first test the procedure for getting resonant periods of a square closed basin. The numerical resonant periods that we obtain are comparable with those from analytical formulas.
Regularized degenerate multi-solitons
NASA Astrophysics Data System (ADS)
Correa, Francisco; Fring, Andreas
2016-09-01
We report complex {P}{T} -symmetric multi-soliton solutions to the Korteweg de-Vries equation that asymptotically contain one-soliton solutions, with each of them possessing the same amount of finite real energy. We demonstrate how these solutions originate from degenerate energy solutions of the Schrödinger equation. Technically this is achieved by the application of Darboux-Crum transformations involving Jordan states with suitable regularizing shifts. Alternatively they may be constructed from a limiting process within the context Hirota's direct method or on a nonlinear superposition obtained from multiple Bäcklund transformations. The proposed procedure is completely generic and also applicable to other types of nonlinear integrable systems.
Rule extraction by successive regularization.
Ishikawa, M
2000-12-01
Knowledge acquisition is, needless to say, important, because it is a key to the solution to one of the bottlenecks in artificial intelligence. Recently, knowledge acquisition using neural networks, called rule extraction, is attracting wide attention because of its computational simplicity and ability to generalize. Proposed in this paper is a novel approach to rule extraction named successive regularization. It generates a small number of dominant rules at an earlier stage and less dominant rules or exceptions at later stages. It has various advantages such as robustness of computation, better understanding, and similarity to child development. It is applied to the classification of mushrooms, the recognition of promoters in DNA sequences and the classification of irises. Empirical results indicate superior performance of rule extraction in terms of the number and the size of rules for explaining data.
Some Cosine Relations and the Regular Heptagon
ERIC Educational Resources Information Center
Osler, Thomas J.; Heng, Phongthong
2007-01-01
The ancient Greek mathematicians sought to construct, by use of straight edge and compass only, all regular polygons. They had no difficulty with regular polygons having 3, 4, 5 and 6 sides, but the 7-sided heptagon eluded all their attempts. In this article, the authors discuss some cosine relations and the regular heptagon. (Contains 1 figure.)
Regular Pentagons and the Fibonacci Sequence.
ERIC Educational Resources Information Center
French, Doug
1989-01-01
Illustrates how to draw a regular pentagon. Shows the sequence of a succession of regular pentagons formed by extending the sides. Calculates the general formula of the Lucas and Fibonacci sequences. Presents a regular icosahedron as an example of the golden ratio. (YP)
22 CFR 120.39 - Regular employee.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 22 Foreign Relations 1 2013-04-01 2013-04-01 false Regular employee. 120.39 Section 120.39 Foreign Relations DEPARTMENT OF STATE INTERNATIONAL TRAFFIC IN ARMS REGULATIONS PURPOSE AND DEFINITIONS § 120.39 Regular employee. (a) A regular employee means for purposes of this subchapter: (1) An...
22 CFR 120.39 - Regular employee.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 22 Foreign Relations 1 2014-04-01 2014-04-01 false Regular employee. 120.39 Section 120.39 Foreign Relations DEPARTMENT OF STATE INTERNATIONAL TRAFFIC IN ARMS REGULATIONS PURPOSE AND DEFINITIONS § 120.39 Regular employee. (a) A regular employee means for purposes of this subchapter: (1) An...
22 CFR 120.39 - Regular employee.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 22 Foreign Relations 1 2012-04-01 2012-04-01 false Regular employee. 120.39 Section 120.39 Foreign Relations DEPARTMENT OF STATE INTERNATIONAL TRAFFIC IN ARMS REGULATIONS PURPOSE AND DEFINITIONS § 120.39 Regular employee. (a) A regular employee means for purposes of this subchapter: (1) An...
Discriminative Elastic-Net Regularized Linear Regression.
Zhang, Zheng; Lai, Zhihui; Xu, Yong; Shao, Ling; Wu, Jian; Xie, Guo-Sen
2017-03-01
In this paper, we aim at learning compact and discriminative linear regression models. Linear regression has been widely used in different problems. However, most of the existing linear regression methods exploit the conventional zero-one matrix as the regression targets, which greatly narrows the flexibility of the regression model. Another major limitation of these methods is that the learned projection matrix fails to precisely project the image features to the target space due to their weak discriminative capability. To this end, we present an elastic-net regularized linear regression (ENLR) framework, and develop two robust linear regression models which possess the following special characteristics. First, our methods exploit two particular strategies to enlarge the margins of different classes by relaxing the strict binary targets into a more feasible variable matrix. Second, a robust elastic-net regularization of singular values is introduced to enhance the compactness and effectiveness of the learned projection matrix. Third, the resulting optimization problem of ENLR has a closed-form solution in each iteration, which can be solved efficiently. Finally, rather than directly exploiting the projection matrix for recognition, our methods employ the transformed features as the new discriminate representations to make final image classification. Compared with the traditional linear regression model and some of its variants, our method is much more accurate in image classification. Extensive experiments conducted on publicly available data sets well demonstrate that the proposed framework can outperform the state-of-the-art methods. The MATLAB codes of our methods can be available at http://www.yongxu.org/lunwen.html.
A New Regularization Mechanism for the Boltzmann Equation Without Cut-Off
NASA Astrophysics Data System (ADS)
Silvestre, Luis
2016-11-01
We apply recent results on regularity for general integro-differential equations to derive a priori estimates in Hölder spaces for the space homogeneous Boltzmann equation in the non cut-off case. We also show an a priori estimate in {L^∞} which applies in the space inhomogeneous case as well, provided that the macroscopic quantities remain bounded.
Emerging psychoactive substance use among regular ecstasy users in Australia.
Bruno, Raimondo; Matthews, Allison J; Dunn, Matthew; Alati, Rosa; McIlwraith, Fairlie; Hickey, Sophie; Burns, Lucy; Sindicich, Natasha
2012-07-01
The past decade has seen the development of an array of emerging psychoactive substances (EPS), however, there is minimal information on the extent of their use outside Europe. This study aimed to determine the extent of use of EPS from stimulant (such as mephedrone) and psychedelic classes (such as 5-methoxy-dimethyltryptamine [5-MeO-DMT]) among an Australian sample of regular ecstasy users (REU). Further, to determine if consumers of these drugs represent a distinct subgroup of REU. Australian national cross-sectional surveys of 693 regular (at least monthly) ecstasy users conducted during 2010. More than one quarter (28%) of REU had used an EPS in the past six months, most commonly from the stimulant class (20%, typically mephedrone, 17%) rather than the psychedelic class (13%). Demographics and risk behaviours of REU that used stimulant EPS were largely no different from non-EPS consuming REU. Those using psychedelic EPS were distinct, initiating ecstasy use earlier, more frequently using multiple substances (cannabis, inhalants, GHB, ketamine) and more commonly experiencing legal, psychological and social problems. Psychedelic EPS use appears largely restricted to a distinct subset of REU with high-level non-injecting polydrug use, but use appears generally limited. The demographic similarity of stimulant EPS consumers with 'mainstream' REU, in conjunction with positive responses to the psychoactive effects of these drugs and declining ecstasy purity, suggests strong potential for stimulant EPS to expand further into ecstasy markets. Such drugs may have a greater public health impact than ecstasy, and merit careful monitoring into the future. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
A Generic Path Algorithm for Regularized Statistical Estimation.
Zhou, Hua; Wu, Yichao
2014-01-01
Regularization is widely used in statistics and machine learning to prevent overfitting and gear solution towards prior information. In general, a regularized estimation problem minimizes the sum of a loss function and a penalty term. The penalty term is usually weighted by a tuning parameter and encourages certain constraints on the parameters to be estimated. Particular choices of constraints lead to the popular lasso, fused-lasso, and other generalized ℓ1 penalized regression methods. In this article we follow a recent idea by Wu (2011, 2012) and propose an exact path solver based on ordinary differential equations (EPSODE) that works for any convex loss function and can deal with generalized ℓ1 penalties as well as more complicated regularization such as inequality constraints encountered in shape-restricted regressions and nonparametric density estimation. Non-asymptotic error bounds for the equality regularized estimates are derived. In practice, the EPSODE can be coupled with AIC, BIC, Cp or cross-validation to select an optimal tuning parameter, or provides a convenient model space for performing model averaging or aggregation. Our applications to generalized ℓ1 regularized generalized linear models, shape-restricted regressions, Gaussian graphical models, and nonparametric density estimation showcase the potential of the EPSODE algorithm.
Information fusion in regularized inversion of tomographic pumping tests
Bohling, G.C.; ,
2008-01-01
In this chapter we investigate a simple approach to incorporating geophysical information into the analysis of tomographic pumping tests for characterization of the hydraulic conductivity (K) field in an aquifer. A number of authors have suggested a tomographic approach to the analysis of hydraulic tests in aquifers - essentially simultaneous analysis of multiple tests or stresses on the flow system - in order to improve the resolution of the estimated parameter fields. However, even with a large amount of hydraulic data in hand, the inverse problem is still plagued by non-uniqueness and ill-conditioning and the parameter space for the inversion needs to be constrained in some sensible fashion in order to obtain plausible estimates of aquifer properties. For seismic and radar tomography problems, the parameter space is often constrained through the application of regularization terms that impose penalties on deviations of the estimated parameters from a prior or background model, with the tradeoff between data fit and model norm explored through systematic analysis of results for different levels of weighting on the regularization terms. In this study we apply systematic regularized inversion to analysis of tomographic pumping tests in an alluvial aquifer, taking advantage of the steady-shape flow regime exhibited in these tests to expedite the inversion process. In addition, we explore the possibility of incorporating geophysical information into the inversion through a regularization term relating the estimated K distribution to ground penetrating radar velocity and attenuation distributions through a smoothing spline model. ?? 2008 Springer-Verlag Berlin Heidelberg.
Automated graph regularized projective nonnegative matrix factorization for document clustering.
Pei, Xiaobing; Wu, Tao; Chen, Chuanbo
2014-10-01
In this paper, a novel projective nonnegative matrix factorization (PNMF) method for enhancing the clustering performance is presented, called automated graph regularized projective nonnegative matrix factorization (AGPNMF). The idea of AGPNMF is to extend the original PNMF by incorporating the automated graph regularized constraint into the PNMF decomposition. The key advantage of this approach is that AGPNMF simultaneously finds graph weights matrix and dimensionality reduction of data. AGPNMF seeks to extract the data representation space that preserves the local geometry structure. This character makes AGPNMF more intuitive and more powerful than the original method for clustering tasks. The kernel trick is used to extend AGPNMF model related to the input space by some nonlinear map. The proposed method has been applied to the problem of document clustering using the well-known Reuters-21578, TDT2, and SECTOR data sets. Our experimental evaluations show that the proposed method enhances the performance of PNMF for document clustering.
Partial Regularity for Holonomic Minimisers of Quasiconvex Functionals
NASA Astrophysics Data System (ADS)
Hopper, Christopher P.
2016-10-01
We prove partial regularity for local minimisers of certain strictly quasiconvex integral functionals, over a class of Sobolev mappings into a compact Riemannian manifold, to which such mappings are said to be holonomically constrained. Our approach uses the lifting of Sobolev mappings to the universal covering space, the connectedness of the covering space, an application of Ekeland's variational principle and a certain tangential A-harmonic approximation lemma obtained directly via a Lipschitz approximation argument. This allows regularity to be established directly on the level of the gradient. Several applications to variational problems in condensed matter physics with broken symmetries are also discussed, in particular those concerning the superfluidity of liquid helium-3 and nematic liquid crystals.
Gevrey regularity for the supercritical quasi-geostrophic equation
NASA Astrophysics Data System (ADS)
Biswas, Animikh
2014-09-01
In this paper, following the techniques of Foias and Temam, we establish suitable Gevrey class regularity of solutions to the supercritical quasi-geostrophic equations in the whole space, with initial data in “critical” Sobolev spaces. Moreover, the Gevrey class that we obtain is “near optimal” and as a corollary, we obtain temporal decay rates of higher order Sobolev norms of the solutions. Unlike the Navier-Stokes or the subcritical quasi-geostrophic equations, the low dissipation poses a difficulty in establishing Gevrey regularity. A new commutator estimate in Gevrey classes, involving the dyadic Littlewood-Paley operators, is established that allow us to exploit the cancellation properties of the equation and circumvent this difficulty.
Flicker Regularity Is Crucial for Entrainment of Alpha Oscillations.
Notbohm, Annika; Herrmann, Christoph S
2016-01-01
Previous studies have shown that alpha oscillations (8-13 Hz) in human electroencephalogram (EEG) modulate perception via phase-dependent inhibition. If entrained to an external driving force, inhibition maxima and minima of the oscillation appear more distinct in time and make potential phase-dependent perception predictable. There is an ongoing debate about whether visual stimulation is suitable to entrain alpha oscillations. On the one hand, it has been argued that a series of light flashes results in transient event-related responses (ERPs) superimposed on the ongoing EEG. On the other hand, it has been demonstrated that alpha oscillations become entrained to a series of light flashes if they are presented at a certain temporal regularity. This raises the question under which circumstances a sequence of light flashes causes entrainment, i.e., whether an arrhythmic stream of light flashes would also result in entrainment. Here, we measured detection rates in response to visual targets at two opposing stimulation phases during rhythmic and arrhythmic light stimulation. We introduce a new measure called "behavioral modulation depth" to determine differences in perception. This measure is capable of correcting for inevitable artifacts that occur in visual detection tasks during visual stimulation. The physical concept of entrainment predicts that increased stimulation intensity should produce stronger entrainment. Thus, two experiments with medium (Experiment 1) and high (Experiment 2) stimulation intensity were performed. Data from the first experiment show that the behavioral modulation depth (alpha phase-dependent differences in detection threshold) increases with increasing entrainment of alpha oscillations. Furthermore, individual alpha phase delays of entrained alpha oscillations determine the behavioral modulation depth: the largest behavioral modulation depth can be found if targets presented during the minimum of the entrained oscillation are compared to
Flicker Regularity Is Crucial for Entrainment of Alpha Oscillations
Notbohm, Annika; Herrmann, Christoph S.
2016-01-01
Previous studies have shown that alpha oscillations (8–13 Hz) in human electroencephalogram (EEG) modulate perception via phase-dependent inhibition. If entrained to an external driving force, inhibition maxima and minima of the oscillation appear more distinct in time and make potential phase-dependent perception predictable. There is an ongoing debate about whether visual stimulation is suitable to entrain alpha oscillations. On the one hand, it has been argued that a series of light flashes results in transient event-related responses (ERPs) superimposed on the ongoing EEG. On the other hand, it has been demonstrated that alpha oscillations become entrained to a series of light flashes if they are presented at a certain temporal regularity. This raises the question under which circumstances a sequence of light flashes causes entrainment, i.e., whether an arrhythmic stream of light flashes would also result in entrainment. Here, we measured detection rates in response to visual targets at two opposing stimulation phases during rhythmic and arrhythmic light stimulation. We introduce a new measure called “behavioral modulation depth” to determine differences in perception. This measure is capable of correcting for inevitable artifacts that occur in visual detection tasks during visual stimulation. The physical concept of entrainment predicts that increased stimulation intensity should produce stronger entrainment. Thus, two experiments with medium (Experiment 1) and high (Experiment 2) stimulation intensity were performed. Data from the first experiment show that the behavioral modulation depth (alpha phase-dependent differences in detection threshold) increases with increasing entrainment of alpha oscillations. Furthermore, individual alpha phase delays of entrained alpha oscillations determine the behavioral modulation depth: the largest behavioral modulation depth can be found if targets presented during the minimum of the entrained oscillation are
Yosida-Moreau Regularization of Sweeping Processes with Unbounded Variation
NASA Astrophysics Data System (ADS)
Kunze, M.; Monteiro Marques, M. D. P.
1996-09-01
Lett↦C(t) be a Hausdorff-continuous multifunction with closed convex values in a Hilbert spaceHsuch thatC(t) has nonempty interior for allt. We show that the Yosida-Moreau regularizations of the sweeping process with moving setC(t), i.e., the solutions of[formula]are strongly pointwisely convergent asλ→0+to the solution of the corresponding sweeping process, formally written as[formula
Class of regular bouncing cosmologies
NASA Astrophysics Data System (ADS)
Vasilić, Milovan
2017-06-01
In this paper, I construct a class of everywhere regular geometric sigma models that possess bouncing solutions. Precisely, I show that every bouncing metric can be made a solution of such a model. My previous attempt to do so by employing one scalar field has failed due to the appearance of harmful singularities near the bounce. In this work, I use four scalar fields to construct a class of geometric sigma models which are free of singularities. The models within the class are parametrized by their background geometries. I prove that, whatever background is chosen, the dynamics of its small perturbations is classically stable on the whole time axis. Contrary to what one expects from the structure of the initial Lagrangian, the physics of background fluctuations is found to carry two tensor, two vector, and two scalar degrees of freedom. The graviton mass, which naturally appears in these models, is shown to be several orders of magnitude smaller than its experimental bound. I provide three simple examples to demonstrate how this is done in practice. In particular, I show that graviton mass can be made arbitrarily small.
ENUMERATION OF REGULAR TRUTH FUNCTIONS
IN A PREVIOUS WORK, (Lockheed Missiles and Space Company, 6-90-61-26, Jan 1961) the classification problem of the linearly separable truth functions...was reduced to the enumeration of some special kind of linearly separable truth functions called canonical truth functions. A canonical truth ...function F of n variables has an important property: if x F and y x in the canonical partial order of Qn, then y F. Any truth function F of n
ERIC Educational Resources Information Center
Necka, Edward
1989-01-01
Curiosity can be developed and nurtured through application of such educational principles as the rewarding of questioning, the use of open questions, delaying answers, accepting incompleteness in existing knowledge, etc. Teaching techniques for stimulating curiosity include brain questioning, role playing, hypothesizing, and pursuing curiosity.…
Nondissipative Velocity and Pressure Regularizations for the ICON Model
NASA Astrophysics Data System (ADS)
Restelli, M.; Giorgetta, M.; Hundertmark, T.; Korn, P.; Reich, S.
2009-04-01
A challenging aspect in the numerical simulation of atmospheric and oceanic flows is the multiscale character of the problem both in space and time. The small spacial scales are generated by the turbulent energy and enstrophy cascades, and are usually dealt with by means of turbulence parametrizations, while the small temporal scales are governed by the propagation of acoustic and gravity waves, which are of little importance for the large scale dynamics and are often eliminated by means of a semi-implicit time discretization. We propose to treat both phenomena of subgrid turbulence and temporal scale separation in a unified way by means of nondissipative regularizations of the underlying model equations. More precisely, we discuss the use of two regularized equation sets: the velocity regularization, also know as Lagrangian averaged Navier-Stokes system, and the pressure regularization. Both regularizations are nondissipative since they do not enhance the dissipation of energy and enstrophy of the flow. The velocity regularization models the effects of the subgrid velocity fluctuations on the mean flow, it has thus been proposed as a turbulence parametrization and it has been found to yield promising results in ocean modeling [HHPW08]. In particular, the velocity regularization results in a higher variability of the numerical solution. The pressure regularization, discussed in [RWS07], modifies the propagation of acoustic and gravity waves so that the resulting system can be discretized explicitly in time with time steps analogous to those allowed by a semi-implicit method. Compared to semi-implicit time integrators, however, the pressure regularization takes fully into account the geostrophic balance of the flow. We discuss here the implementation of the velocity and pressure regularizations within the numerical framework of the ICON general circulation model (GCM) [BR05] for the case of the rotating shallow water system, showing how the original numerical
On the regularizing effect for unbounded solutions of first-order Hamilton-Jacobi equations
NASA Astrophysics Data System (ADS)
Barles, Guy; Chasseigne, Emmanuel
2016-05-01
We give a simplified proof of regularizing effects for first-order Hamilton-Jacobi Equations of the form ut + H (x , t , Du) = 0 in RN × (0 , + ∞) in the case where the idea is to first estimate ut. As a consequence, we have a Lipschitz regularity in space and time for coercive Hamiltonians and, for hypo-elliptic Hamiltonians, we also have an Hölder regularizing effect in space following a result of L.C. Evans and M.R. James.
Reducing errors in the GRACE gravity solutions using regularization
NASA Astrophysics Data System (ADS)
Save, Himanshu; Bettadpur, Srinivas; Tapley, Byron D.
2012-09-01
solutions (RL04) from the Center for Space Research (CSR). Post-fit residual analysis shows that the regularized solutions fit the data to within the noise level of GRACE. A time series of filtered hydrological model is used to confirm that signal attenuation for basins in the Total Runoff Integrating Pathways (TRIP) database over 320 km radii is less than 1 cm equivalent water height RMS, which is within the noise level of GRACE.
... Magnetic Seizure Therapy Deep Brain Stimulation Additional Resources Brain Stimulation Therapies Overview Brain stimulation therapies can play ... for a shorter recovery time than ECT Deep Brain Stimulation Deep brain stimulation (DBS) was first developed ...
Regularization Theory and Shape Constraint.
1986-09-01
solution in linear integral problems . In this note, after a brief review of ill - posedness in functional spaces and in W". we show • which of these...ca he ,ii;id ;, hmtaiily small, while the distance between the solution can 1)e arbitra rl a1;rge’. .:-? 5 2.2. Ill - posed problems in R" Let us...method of finding an approximate solution to equation (2.1.1) is the .,;dcciODi m’dhod ( Tikhonov and Arsenin , 1977 ). It consists in
A multiplicative regularization for force reconstruction
NASA Astrophysics Data System (ADS)
Aucejo, M.; De Smet, O.
2017-02-01
Additive regularizations, such as Tikhonov-like approaches, are certainly the most popular methods for reconstructing forces acting on a structure. These approaches require, however, the knowledge of a regularization parameter, that can be numerically computed using specific procedures. Unfortunately, these procedures are generally computationally intensive. For this particular reason, it could be of primary interest to propose a method able to proceed without defining any regularization parameter beforehand. In this paper, a multiplicative regularization is introduced for this purpose. By construction, the regularized solution has to be calculated in an iterative manner. In doing so, the amount of regularization is automatically adjusted throughout the resolution process. Validations using synthetic and experimental data highlight the ability of the proposed approach in providing consistent reconstructions.
Total variation regularization with bounded linear variations
NASA Astrophysics Data System (ADS)
Makovetskii, Artyom; Voronin, Sergei; Kober, Vitaly
2016-09-01
One of the most known techniques for signal denoising is based on total variation regularization (TV regularization). A better understanding of TV regularization is necessary to provide a stronger mathematical justification for using TV minimization in signal processing. In this work, we deal with an intermediate case between one- and two-dimensional cases; that is, a discrete function to be processed is two-dimensional radially symmetric piecewise constant. For this case, the exact solution to the problem can be obtained as follows: first, calculate the average values over rings of the noisy function; second, calculate the shift values and their directions using closed formulae depending on a regularization parameter and structure of rings. Despite the TV regularization is effective for noise removal; it often destroys fine details and thin structures of images. In order to overcome this drawback, we use the TV regularization for signal denoising subject to linear signal variations are bounded.
A low-cost multichannel wireless neural stimulation system for freely roaming animals.
Alam, Monzurul; Chen, Xi; Fernandez, Eduardo
2013-12-01
Electrical stimulation of nerve tissue and recording of neural activity are the basis of many therapies and neural prostheses. Conventional stimulation systems have a number of practical limitations, especially in experiments involving freely roaming subjects. Our main objective was to develop a modular, versatile and inexpensive multichannel wireless system able to overcome some of these constraints. We have designed and implemented a new multichannel wireless neural stimulator based on commercial components. The system is small (2 cm × 4 cm × 0.5 cm) and light in weight (9 g) which allows it to be easily carried in a small backpack. To test and validate the performance and reliability of the whole system we conducted several bench tests and in vivo experiments. The performance and accuracy of the stimulator were comparable to commercial threaded systems. Stimulation sequences can be constructed on-the-fly with 251 selectable current levels (from 0 to 250 µA) with 1 µA step resolution. The pulse widths and intervals can be as long as 65 ms in 2 µs time resolution. The system covers approximately 10 m of transmission range in a regular laboratory environment and 100 m in free space (line of sight). Furthermore it provides great flexibility for experiments since it allows full control of the stimulator and the stimulation parameters in real time. When there is no stimulation, the device automatically goes into low-power sleep mode to preserve battery power. We introduce the design of a powerful multichannel wireless stimulator assembled from commercial components. Key features of the system are their reliability, robustness and small size. The system has a flexible design that can be modified straightforwardly to tailor it to any specific experimental need. Furthermore it can be effortlessly adapted for use with any kind of multielectrode arrays.
A low-cost multichannel wireless neural stimulation system for freely roaming animals
NASA Astrophysics Data System (ADS)
Alam, Monzurul; Chen, Xi; Fernandez, Eduardo
2013-12-01
Objectives. Electrical stimulation of nerve tissue and recording of neural activity are the basis of many therapies and neural prostheses. Conventional stimulation systems have a number of practical limitations, especially in experiments involving freely roaming subjects. Our main objective was to develop a modular, versatile and inexpensive multichannel wireless system able to overcome some of these constraints. Approach. We have designed and implemented a new multichannel wireless neural stimulator based on commercial components. The system is small (2 cm × 4 cm × 0.5 cm) and light in weight (9 g) which allows it to be easily carried in a small backpack. To test and validate the performance and reliability of the whole system we conducted several bench tests and in vivo experiments. Main results. The performance and accuracy of the stimulator were comparable to commercial threaded systems. Stimulation sequences can be constructed on-the-fly with 251 selectable current levels (from 0 to 250 µA) with 1 µA step resolution. The pulse widths and intervals can be as long as 65 ms in 2 µs time resolution. The system covers approximately 10 m of transmission range in a regular laboratory environment and 100 m in free space (line of sight). Furthermore it provides great flexibility for experiments since it allows full control of the stimulator and the stimulation parameters in real time. When there is no stimulation, the device automatically goes into low-power sleep mode to preserve battery power. Significance. We introduce the design of a powerful multichannel wireless stimulator assembled from commercial components. Key features of the system are their reliability, robustness and small size. The system has a flexible design that can be modified straightforwardly to tailor it to any specific experimental need. Furthermore it can be effortlessly adapted for use with any kind of multielectrode arrays.
Testing times: regularities in the historical sciences.
Jeffares, Ben
2008-12-01
The historical sciences, such as geology, evolutionary biology, and archaeology, appear to have no means to test hypotheses. However, on closer examination, reasoning in the historical sciences relies upon regularities, regularities that can be tested. I outline the role of regularities in the historical sciences, and in the process, blur the distinction between the historical sciences and the experimental sciences: all sciences deploy theories about the world in their investigations.
Regularity effect in prospective memory during aging
Blondelle, Geoffrey; Hainselin, Mathieu; Gounden, Yannick; Heurley, Laurent; Voisin, Hélène; Megalakaki, Olga; Bressous, Estelle; Quaglino, Véronique
2016-01-01
Background Regularity effect can affect performance in prospective memory (PM), but little is known on the cognitive processes linked to this effect. Moreover, its impacts with regard to aging remain unknown. To our knowledge, this study is the first to examine regularity effect in PM in a lifespan perspective, with a sample of young, intermediate, and older adults. Objective and design Our study examined the regularity effect in PM in three groups of participants: 28 young adults (18–30), 16 intermediate adults (40–55), and 25 older adults (65–80). The task, adapted from the Virtual Week, was designed to manipulate the regularity of the various activities of daily life that were to be recalled (regular repeated activities vs. irregular non-repeated activities). We examine the role of several cognitive functions including certain dimensions of executive functions (planning, inhibition, shifting, and binding), short-term memory, and retrospective episodic memory to identify those involved in PM, according to regularity and age. Results A mixed-design ANOVA showed a main effect of task regularity and an interaction between age and regularity: an age-related difference in PM performances was found for irregular activities (older < young), but not for regular activities. All participants recalled more regular activities than irregular ones with no age effect. It appeared that recalling of regular activities only involved planning for both intermediate and older adults, while recalling of irregular ones were linked to planning, inhibition, short-term memory, binding, and retrospective episodic memory. Conclusion Taken together, our data suggest that planning capacities seem to play a major role in remembering to perform intended actions with advancing age. Furthermore, the age-PM-paradox may be attenuated when the experimental design is adapted by implementing a familiar context through the use of activities of daily living. The clinical implications of regularity
Analysis of Tikhonov regularization for function approximation by neural networks.
Burger, Martin; Neubauer, Andreas
2003-01-01
This paper is devoted to the convergence and stability analysis of Tikhonov regularization for function approximation by a class of feed-forward neural networks with one hidden layer and linear output layer. We investigate two frequently used approaches, namely regularization by output smoothing and regularization by weight decay, as well as a combination of both methods to combine their advantages. We show that in all cases stable approximations are obtained converging to the approximated function in a desired Sobolev space as the noise in the data tends to zero (in the weaker L(2)-norm) if the regularization parameter and the number of units in the network are chosen appropriately. Under additional smoothness assumptions we are able to show convergence rates results in terms of the noise level and the number of units in the network. In addition, we show how the theoretical results can be applied to the important classes of perceptrons with one hidden layer and to translation networks. Finally, the performance of the different approaches is compared in some numerical examples.
NASA Technical Reports Server (NTRS)
Davis, Jeffrey R.
2006-01-01
This abstract covers a one hour presentation on Space Exploration. The audience is elementary students; therefore there are few words on the slides, mostly pictures of living and working in space. The presentation opens with a few slides describing a day in the life of a space explorer. It begins with a launch, discussions of day-night cycles, eating, exercising, housekeeping, EVA, relaxation, and sleeping. The next section of the presentation shows photos of astronauts performing experiments on the ISS. Yokomi Elementary School launched this fall with the most advanced educational technology tools available in schools today. The science and technology magnet school is equipped with interactive white boards, digital projectors, integrated sound systems and several computers for use by teachers and students. The only elementary school in Fresno Unified with a science focus also houses dedicated science classrooms equipped specifically for elementary students to experience hands-on science instruction in addition to the regular elementary curriculum.
NASA Technical Reports Server (NTRS)
Davis, Jeffrey R.
2006-01-01
This abstract covers a one hour presentation on Space Exploration. The audience is elementary students; therefore there are few words on the slides, mostly pictures of living and working in space. The presentation opens with a few slides describing a day in the life of a space explorer. It begins with a launch, discussions of day-night cycles, eating, exercising, housekeeping, EVA, relaxation, and sleeping. The next section of the presentation shows photos of astronauts performing experiments on the ISS. Yokomi Elementary School launched this fall with the most advanced educational technology tools available in schools today. The science and technology magnet school is equipped with interactive white boards, digital projectors, integrated sound systems and several computers for use by teachers and students. The only elementary school in Fresno Unified with a science focus also houses dedicated science classrooms equipped specifically for elementary students to experience hands-on science instruction in addition to the regular elementary curriculum.
12 CFR 725.3 - Regular membership.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 12 Banks and Banking 6 2010-01-01 2010-01-01 false Regular membership. 725.3 Section 725.3 Banks and Banking NATIONAL CREDIT UNION ADMINISTRATION REGULATIONS AFFECTING CREDIT UNIONS NATIONAL CREDIT UNION ADMINISTRATION CENTRAL LIQUIDITY FACILITY § 725.3 Regular membership. (a) A natural person...
Continuum regularization of quantum field theory
Bern, Z.
1986-04-01
Possible nonperturbative continuum regularization schemes for quantum field theory are discussed which are based upon the Langevin equation of Parisi and Wu. Breit, Gupta and Zaks made the first proposal for new gauge invariant nonperturbative regularization. The scheme is based on smearing in the ''fifth-time'' of the Langevin equation. An analysis of their stochastic regularization scheme for the case of scalar electrodynamics with the standard covariant gauge fixing is given. Their scheme is shown to preserve the masslessness of the photon and the tensor structure of the photon vacuum polarization at the one-loop level. Although stochastic regularization is viable in one-loop electrodynamics, two difficulties arise which, in general, ruins the scheme. One problem is that the superficial quadratic divergences force a bottomless action for the noise. Another difficulty is that stochastic regularization by fifth-time smearing is incompatible with Zwanziger's gauge fixing, which is the only known nonperturbaive covariant gauge fixing for nonabelian gauge theories. Finally, a successful covariant derivative scheme is discussed which avoids the difficulties encountered with the earlier stochastic regularization by fifth-time smearing. For QCD the regularized formulation is manifestly Lorentz invariant, gauge invariant, ghost free and finite to all orders. A vanishing gluon mass is explicitly verified at one loop. The method is designed to respect relevant symmetries, and is expected to provide suitable regularization for any theory of interest. Hopefully, the scheme will lend itself to nonperturbative analysis. 44 refs., 16 figs.
12 CFR 725.3 - Regular membership.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 12 Banks and Banking 6 2011-01-01 2011-01-01 false Regular membership. 725.3 Section 725.3 Banks... UNION ADMINISTRATION CENTRAL LIQUIDITY FACILITY § 725.3 Regular membership. (a) A natural person credit... stock subscription;1 and 1 A credit union which submits its application for membership prior to...
12 CFR 725.3 - Regular membership.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 12 Banks and Banking 7 2014-01-01 2014-01-01 false Regular membership. 725.3 Section 725.3 Banks... UNION ADMINISTRATION CENTRAL LIQUIDITY FACILITY § 725.3 Regular membership. (a) A natural person credit... stock subscription;1 and 1 A credit union which submits its application for membership prior to...
12 CFR 725.3 - Regular membership.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 12 Banks and Banking 7 2012-01-01 2012-01-01 false Regular membership. 725.3 Section 725.3 Banks... UNION ADMINISTRATION CENTRAL LIQUIDITY FACILITY § 725.3 Regular membership. (a) A natural person credit... stock subscription;1 and 1 A credit union which submits its application for membership prior to...
12 CFR 725.3 - Regular membership.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 12 Banks and Banking 7 2013-01-01 2013-01-01 false Regular membership. 725.3 Section 725.3 Banks... UNION ADMINISTRATION CENTRAL LIQUIDITY FACILITY § 725.3 Regular membership. (a) A natural person credit... stock subscription;1 and 1 A credit union which submits its application for membership prior to...
Numerical Regularization of Ill-Posed Problems.
1980-07-09
Unione Matematica Italiana. 4. The parameter choice problem in linear regularization: a mathematical introduction, in "Ill-Posed Problems: Theory and...vector b which is generally unavailable (see [21], [22]). Kdckler [33] has shon however that in the case of Tikhonov regularization for matrices it may
Transport Code for Regular Triangular Geometry
1993-06-09
DIAMANT2 solves the two-dimensional static multigroup neutron transport equation in planar regular triangular geometry. Both regular and adjoint, inhomogeneous and homogeneous problems subject to vacuum, reflective or input specified boundary flux conditions are solved. Anisotropy is allowed for the scattering source. Volume and surface sources are allowed for inhomogeneous problems.
Regularity Re-Revisited: Modality Matters
ERIC Educational Resources Information Center
Tsapkini, Kyrana; Jarema, Gonia; Kehayia, Eva
2004-01-01
The issue of regular-irregular past tense formation was examined in a cross-modal lexical decision task in Modern Greek, a language where the orthographic and phonological overlap between present and past tense stems is the same for both regular and irregular verbs. The experiment described here is a follow-up study of previous visual lexical…
Nasimi, Ali; Rees, Adrian
2010-12-01
The spike discharge regularity may be important in the processing of information in the auditory pathway. It has already been shown that many cells in the central nucleus of the inferior colliculus fire regularly in response to monaural stimulation by the best frequency tones. The aim of this study was to find how the regularity of units was affected by adding ipsilateral tone, and how interaural intensity difference sensitivity is related to regularity. Single unit recordings were performed from 66 units in the inferior colliculus of the anaesthetized guinea pig in response to the best frequency tone. Regularity of firing was measured by calculating the coefficient of variation as a function of time of a unit's response. There was a positive correlation between coefficient of variation and interaural intensity difference sensitivity, indicating that highly regular units had very weak and irregular units had strong interaural intensity difference sensitivity responses. Three effects of binaural interaction on the sustained regularity were observed: constant coefficient of variation despite change in rate (66% of the units), negative (20%) and positive (13%) rate-CV relationships. A negative rate-coefficient of variation relationship was the dominant pattern of binaural interaction on the onset regularity.
Timing predictability enhances regularity encoding in the human subcortical auditory pathway.
Gorina-Careta, Natàlia; Zarnowiec, Katarzyna; Costa-Faidella, Jordi; Escera, Carles
2016-11-17
The encoding of temporal regularities is a critical property of the auditory system, as short-term neural representations of environmental statistics serve to auditory object formation and detection of potentially relevant novel stimuli. A putative neural mechanism underlying regularity encoding is repetition suppression, the reduction of neural activity to repeated stimulation. Although repetitive stimulation per se has shown to reduce auditory neural activity in animal cortical and subcortical levels and in the human cerebral cortex, other factors such as timing may influence the encoding of statistical regularities. This study was set out to investigate whether temporal predictability in the ongoing auditory input modulates repetition suppression in subcortical stages of the auditory processing hierarchy. Human auditory frequency-following responses (FFR) were recorded to a repeating consonant-vowel stimuli (/wa/) delivered in temporally predictable and unpredictable conditions. FFR amplitude was attenuated by repetition independently of temporal predictability, yet we observed an accentuated suppression when the incoming stimulation was temporally predictable. These findings support the view that regularity encoding spans across the auditory hierarchy and point to temporal predictability as a modulatory factor of regularity encoding in early stages of the auditory pathway.
Timing predictability enhances regularity encoding in the human subcortical auditory pathway
Gorina-Careta, Natàlia; Zarnowiec, Katarzyna; Costa-Faidella, Jordi; Escera, Carles
2016-01-01
The encoding of temporal regularities is a critical property of the auditory system, as short-term neural representations of environmental statistics serve to auditory object formation and detection of potentially relevant novel stimuli. A putative neural mechanism underlying regularity encoding is repetition suppression, the reduction of neural activity to repeated stimulation. Although repetitive stimulation per se has shown to reduce auditory neural activity in animal cortical and subcortical levels and in the human cerebral cortex, other factors such as timing may influence the encoding of statistical regularities. This study was set out to investigate whether temporal predictability in the ongoing auditory input modulates repetition suppression in subcortical stages of the auditory processing hierarchy. Human auditory frequency–following responses (FFR) were recorded to a repeating consonant–vowel stimuli (/wa/) delivered in temporally predictable and unpredictable conditions. FFR amplitude was attenuated by repetition independently of temporal predictability, yet we observed an accentuated suppression when the incoming stimulation was temporally predictable. These findings support the view that regularity encoding spans across the auditory hierarchy and point to temporal predictability as a modulatory factor of regularity encoding in early stages of the auditory pathway. PMID:27853313
Regularization techniques in realistic Laplacian computation.
Bortel, Radoslav; Sovka, Pavel
2007-11-01
This paper explores regularization options for the ill-posed spline coefficient equations in the realistic Laplacian computation. We investigate the use of the Tikhonov regularization, truncated singular value decomposition, and the so-called lambda-correction with the regularization parameter chosen by the L-curve, generalized cross-validation, quasi-optimality, and the discrepancy principle criteria. The provided range of regularization techniques is much wider than in the previous works. The improvement of the realistic Laplacian is investigated by simulations on the three-shell spherical head model. The conclusion is that the best performance is provided by the combination of the Tikhonov regularization and the generalized cross-validation criterion-a combination that has never been suggested for this task before.
A linear functional strategy for regularized ranking.
Kriukova, Galyna; Panasiuk, Oleksandra; Pereverzyev, Sergei V; Tkachenko, Pavlo
2016-01-01
Regularization schemes are frequently used for performing ranking tasks. This topic has been intensively studied in recent years. However, to be effective a regularization scheme should be equipped with a suitable strategy for choosing a regularization parameter. In the present study we discuss an approach, which is based on the idea of a linear combination of regularized rankers corresponding to different values of the regularization parameter. The coefficients of the linear combination are estimated by means of the so-called linear functional strategy. We provide a theoretical justification of the proposed approach and illustrate them by numerical experiments. Some of them are related with ranking the risk of nocturnal hypoglycemia of diabetes patients.
On regularizations of the Dirac delta distribution
NASA Astrophysics Data System (ADS)
Hosseini, Bamdad; Nigam, Nilima; Stockie, John M.
2016-01-01
In this article we consider regularizations of the Dirac delta distribution with applications to prototypical elliptic and hyperbolic partial differential equations (PDEs). We study the convergence of a sequence of distributions SH to a singular term S as a parameter H (associated with the support size of SH) shrinks to zero. We characterize this convergence in both the weak-* topology of distributions and a weighted Sobolev norm. These notions motivate a framework for constructing regularizations of the delta distribution that includes a large class of existing methods in the literature. This framework allows different regularizations to be compared. The convergence of solutions of PDEs with these regularized source terms is then studied in various topologies such as pointwise convergence on a deleted neighborhood and weighted Sobolev norms. We also examine the lack of symmetry in tensor product regularizations and effects of dissipative error in hyperbolic problems.
Elementary Particle Spectroscopy in Regular Solid Rewrite
NASA Astrophysics Data System (ADS)
Trell, Erik
2008-10-01
The Nilpotent Universal Computer Rewrite System (NUCRS) has operationalized the radical ontological dilemma of Nothing at All versus Anything at All down to the ground recursive syntax and principal mathematical realisation of this categorical dichotomy as such and so governing all its sui generis modalities, leading to fulfilment of their individual terms and compass when the respective choice sequence operations are brought to closure. Focussing on the general grammar, NUCRS by pure logic and its algebraic notations hence bootstraps Quantum Mechanics, aware that it "is the likely keystone of a fundamental computational foundation" also for e.g. physics, molecular biology and neuroscience. The present work deals with classical geometry where morphology is the modality, and ventures that the ancient regular solids are its specific rewrite system, in effect extensively anticipating the detailed elementary particle spectroscopy, and further on to essential structures at large both over the inorganic and organic realms. The geodetic antipode to Nothing is extension, with natural eigenvector the endless straight line which when deployed according to the NUCRS as well as Plotelemeian topographic prescriptions forms a real three-dimensional eigenspace with cubical eigenelements where observed quark-skewed quantum-chromodynamical particle events self-generate as an Aristotelean phase transition between the straight and round extremes of absolute endlessness under the symmetry- and gauge-preserving, canonical coset decomposition SO(3)×O(5) of Lie algebra SU(3). The cubical eigen-space and eigen-elements are the parental state and frame, and the other solids are a range of transition matrix elements and portions adapting to the spherical root vector symmetries and so reproducibly reproducing the elementary particle spectroscopy, including a modular, truncated octahedron nano-composition of the Electron which piecemeal enter into molecular structures or compressed to each
Elementary Particle Spectroscopy in Regular Solid Rewrite
Trell, Erik
2008-10-17
The Nilpotent Universal Computer Rewrite System (NUCRS) has operationalized the radical ontological dilemma of Nothing at All versus Anything at All down to the ground recursive syntax and principal mathematical realisation of this categorical dichotomy as such and so governing all its sui generis modalities, leading to fulfilment of their individual terms and compass when the respective choice sequence operations are brought to closure. Focussing on the general grammar, NUCRS by pure logic and its algebraic notations hence bootstraps Quantum Mechanics, aware that it ''is the likely keystone of a fundamental computational foundation'' also for e.g. physics, molecular biology and neuroscience. The present work deals with classical geometry where morphology is the modality, and ventures that the ancient regular solids are its specific rewrite system, in effect extensively anticipating the detailed elementary particle spectroscopy, and further on to essential structures at large both over the inorganic and organic realms. The geodetic antipode to Nothing is extension, with natural eigenvector the endless straight line which when deployed according to the NUCRS as well as Plotelemeian topographic prescriptions forms a real three-dimensional eigenspace with cubical eigenelements where observed quark-skewed quantum-chromodynamical particle events self-generate as an Aristotelean phase transition between the straight and round extremes of absolute endlessness under the symmetry- and gauge-preserving, canonical coset decomposition SO(3)xO(5) of Lie algebra SU(3). The cubical eigen-space and eigen-elements are the parental state and frame, and the other solids are a range of transition matrix elements and portions adapting to the spherical root vector symmetries and so reproducibly reproducing the elementary particle spectroscopy, including a modular, truncated octahedron nano-composition of the Electron which piecemeal enter into molecular structures or compressed to each
14 CFR 121.487 - Flight time limitations: Pilots not regularly assigned.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Flight time limitations: Pilots not regularly assigned. 121.487 Section 121.487 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... AND OPERATIONS OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Flight Time...
14 CFR 121.487 - Flight time limitations: Pilots not regularly assigned.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Flight time limitations: Pilots not regularly assigned. 121.487 Section 121.487 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... AND OPERATIONS OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Flight Time...
14 CFR 121.487 - Flight time limitations: Pilots not regularly assigned.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Flight time limitations: Pilots not regularly assigned. 121.487 Section 121.487 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... AND OPERATIONS OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Flight Time...
14 CFR 121.487 - Flight time limitations: Pilots not regularly assigned.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Flight time limitations: Pilots not regularly assigned. 121.487 Section 121.487 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... AND OPERATIONS OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Flight Time...
14 CFR 121.487 - Flight time limitations: Pilots not regularly assigned.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Flight time limitations: Pilots not regularly assigned. 121.487 Section 121.487 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... AND OPERATIONS OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Flight Time...
Compressing Regular Expressions' DFA Table by Matrix Decomposition
NASA Astrophysics Data System (ADS)
Liu, Yanbing; Guo, Li; Liu, Ping; Tan, Jianlong
Recently regular expression matching has become a research focus as a result of the urgent demand for Deep Packet Inspection (DPI) in many network security systems. Deterministic Finite Automaton (DFA), which recognizes a set of regular expressions, is usually adopted to cater to the need for real-time processing of network traffic. However, the huge memory usage of DFA prevents it from being applied even on a medium-sized pattern set. In this article, we propose a matrix decomposition method for DFA table compression. The basic idea of the method is to decompose a DFA table into the sum of a row vector, a column vector and a sparse matrix, all of which cost very little space. Experiments on typical rule sets show that the proposed method significantly reduces the memory usage and still runs at fast searching speed.
Regularization of hidden dynamics in piecewise smooth flows
NASA Astrophysics Data System (ADS)
Novaes, Douglas D.; Jeffrey, Mike R.
2015-11-01
This paper studies the equivalence between differentiable and non-differentiable dynamics in Rn. Filippov's theory of discontinuous differential equations allows us to find flow solutions of dynamical systems whose vector fields undergo switches at thresholds in phase space. The canonical convex combination at the discontinuity is only the linear part of a nonlinear combination that more fully explores Filippov's most general problem: the differential inclusion. Here we show how recent work relating discontinuous systems to singular limits of continuous (or regularized) systems extends to nonlinear combinations. We show that if sliding occurs in a discontinuous systems, there exists a differentiable slow-fast system with equivalent slow invariant dynamics. We also show the corresponding result for the pinching method, a converse to regularization which approximates a smooth system by a discontinuous one.
Semi-regular biorthogonal pairs and generalized Riesz bases
NASA Astrophysics Data System (ADS)
Inoue, H.
2016-11-01
In this paper we introduce general theories of semi-regular biorthogonal pairs, generalized Riesz bases and its physical applications. Here we deal with biorthogonal sequences {ϕn} and {ψn} in a Hilbert space H , with domains D ( ϕ ) = { x ∈ H ; ∑ k = 0 ∞ |" separators=" ( x | ϕ k ) | 2 < ∞ } and D ( ψ ) = { x ∈ H ; ∑ k = 0 ∞ |" separators=" ( x | ψ k ) | 2 < ∞ } and linear spans Dϕ ≡ Span{ϕn} and Dψ ≡ Span{ψn}. A biorthogonal pair ({ϕn}, {ψn}) is called regular if both Dϕ and Dψ are dense in H , and it is called semi-regular if either Dϕ and D(ϕ) or Dψ and D(ψ) are dense in H . In a previous paper [H. Inoue, J. Math. Phys. 57, 083511 (2016)], we have shown that if ({ϕn}, {ψn}) is a regular biorthogonal pair then both {ϕn} and {ψn} are generalized Riesz bases defined in the work of Inoue and Takakura [J. Math. Phys. 57, 083505 (2016)]. Here we shall show that the same result holds true if the pair is only semi-regular by using operators Tϕ,e, Te,ϕ, Tψ,e, and Te,ψ defined by an orthonormal basis e in H and a biorthogonal pair ({ϕn}, {ψn}). Furthermore, we shall apply this result to pseudo-bosons in the sense of the papers of Bagarello [J. Math. Phys. 51, 023531 (2010); J. Phys. A 44, 015205 (2011); Phys. Rev. A 88, 032120 (2013); and J. Math. Phys. 54, 063512 (2013)].
A theoretical foundation for multi-scale regular vegetation patterns.
Tarnita, Corina E; Bonachela, Juan A; Sheffer, Efrat; Guyton, Jennifer A; Coverdale, Tyler C; Long, Ryan A; Pringle, Robert M
2017-01-18
Self-organized regular vegetation patterns are widespread and thought to mediate ecosystem functions such as productivity and robustness, but the mechanisms underlying their origin and maintenance remain disputed. Particularly controversial are landscapes of overdispersed (evenly spaced) elements, such as North American Mima mounds, Brazilian murundus, South African heuweltjies, and, famously, Namibian fairy circles. Two competing hypotheses are currently debated. On the one hand, models of scale-dependent feedbacks, whereby plants facilitate neighbours while competing with distant individuals, can reproduce various regular patterns identified in satellite imagery. Owing to deep theoretical roots and apparent generality, scale-dependent feedbacks are widely viewed as a unifying and near-universal principle of regular-pattern formation despite scant empirical evidence. On the other hand, many overdispersed vegetation patterns worldwide have been attributed to subterranean ecosystem engineers such as termites, ants, and rodents. Although potentially consistent with territorial competition, this interpretation has been challenged theoretically and empirically and (unlike scale-dependent feedbacks) lacks a unifying dynamical theory, fuelling scepticism about its plausibility and generality. Here we provide a general theoretical foundation for self-organization of social-insect colonies, validated using data from four continents, which demonstrates that intraspecific competition between territorial animals can generate the large-scale hexagonal regularity of these patterns. However, this mechanism is not mutually exclusive with scale-dependent feedbacks. Using Namib Desert fairy circles as a case study, we present field data showing that these landscapes exhibit multi-scale patterning-previously undocumented in this system-that cannot be explained by either mechanism in isolation. These multi-scale patterns and other emergent properties, such as enhanced resistance to
Fine-granularity and spatially-adaptive regularization for projection-based image deblurring.
Li, Xin
2011-04-01
This paper studies two classes of regularization strategies to achieve an improved tradeoff between image recovery and noise suppression in projection-based image deblurring. The first is based on a simple fact that r-times Landweber iteration leads to a fixed level of regularization, which allows us to achieve fine-granularity control of projection-based iterative deblurring by varying the value r. The regularization behavior is explained by using the theory of Lagrangian multiplier for variational schemes. The second class of regularization strategy is based on the observation that various regularized filters can be viewed as nonexpansive mappings in the metric space. A deeper understanding about different regularization filters can be gained by probing into their asymptotic behavior--the fixed point of nonexpansive mappings. By making an analogy to the states of matter in statistical physics, we can observe that different image structures (smooth regions, regular edges and textures) correspond to different fixed points of nonexpansive mappings when the temperature(regularization) parameter varies. Such an analogy motivates us to propose a deterministic annealing based approach toward spatial adaptation in projection-based image deblurring. Significant performance improvements over the current state-of-the-art schemes have been observed in our experiments, which substantiates the effectiveness of the proposed regularization strategies.
Regularity detection by haptics and vision.
Cecchetto, Stefano; Lawson, Rebecca
2017-01-01
For vision, mirror-reflectional symmetry is usually easier to detect when it occurs within 1 object than when it occurs across 2 objects. The opposite pattern has been found for a different regularity, repetition. We investigated whether these results generalize to our sense of active touch (haptics). This was done to examine whether the interaction observed in vision results from intrinsic properties of the environment, or whether it is a consequence of how that environment is perceived and explored. In 4 regularity detection experiments, we haptically presented novel, planar shapes and then visually presented images of the same shapes. In addition to modality (haptics, vision), we varied regularity-type (symmetry, repetition), objectness (1, 2) and alignment of the axis of regularity with respect to the body midline (aligned, across). For both modalities, performance was better overall for symmetry than repetition. For vision, we replicated the previously reported regularity-type by objectness interaction for both stereoscopic and pictorial presentation, and for slanted and frontoparallel views. In contrast, for haptics, there was a 1-object advantage for repetition, as well as for symmetry when stimuli were explored with 1 hand, and no effect of objectness was found for 2-handed exploration. These results suggest that regularity is perceived differently in vision and in haptics, such that regularity detection does not just reflect modality-invariant, physical properties of our environment. (PsycINFO Database Record
The hypergraph regularity method and its applications
Rödl, V.; Nagle, B.; Skokan, J.; Schacht, M.; Kohayakawa, Y.
2005-01-01
Szemerédi's regularity lemma asserts that every graph can be decomposed into relatively few random-like subgraphs. This random-like behavior enables one to find and enumerate subgraphs of a given isomorphism type, yielding the so-called counting lemma for graphs. The combined application of these two lemmas is known as the regularity method for graphs and has proved useful in graph theory, combinatorial geometry, combinatorial number theory, and theoretical computer science. Here, we report on recent advances in the regularity method for k-uniform hypergraphs, for arbitrary k ≥ 2. This method, purely combinatorial in nature, gives alternative proofs of density theorems originally due to E. Szemerédi, H. Furstenberg, and Y. Katznelson. Further results in extremal combinatorics also have been obtained with this approach. The two main components of the regularity method for k-uniform hypergraphs, the regularity lemma and the counting lemma, have been obtained recently: Rödl and Skokan (based on earlier work of Frankl and Rödl) generalized Szemerédi's regularity lemma to k-uniform hypergraphs, and Nagle, Rödl, and Schacht succeeded in proving a counting lemma accompanying the Rödl–Skokan hypergraph regularity lemma. The counting lemma is proved by reducing the counting problem to a simpler one previously investigated by Kohayakawa, Rödl, and Skokan. Similar results were obtained independently by W. T. Gowers, following a different approach. PMID:15919821
Multiple graph regularized protein domain ranking
2012-01-01
Background Protein domain ranking is a fundamental task in structural biology. Most protein domain ranking methods rely on the pairwise comparison of protein domains while neglecting the global manifold structure of the protein domain database. Recently, graph regularized ranking that exploits the global structure of the graph defined by the pairwise similarities has been proposed. However, the existing graph regularized ranking methods are very sensitive to the choice of the graph model and parameters, and this remains a difficult problem for most of the protein domain ranking methods. Results To tackle this problem, we have developed the Multiple Graph regularized Ranking algorithm, MultiG-Rank. Instead of using a single graph to regularize the ranking scores, MultiG-Rank approximates the intrinsic manifold of protein domain distribution by combining multiple initial graphs for the regularization. Graph weights are learned with ranking scores jointly and automatically, by alternately minimizing an objective function in an iterative algorithm. Experimental results on a subset of the ASTRAL SCOP protein domain database demonstrate that MultiG-Rank achieves a better ranking performance than single graph regularized ranking methods and pairwise similarity based ranking methods. Conclusion The problem of graph model and parameter selection in graph regularized protein domain ranking can be solved effectively by combining multiple graphs. This aspect of generalization introduces a new frontier in applying multiple graphs to solving protein domain ranking applications. PMID:23157331
Temporal pattern of stimulation modulates reflex bladder activation by pudendal nerve stimulation.
McGee, Meredith J; Grill, Warren M
2016-11-01
Reflex bladder activation and inhibition by electrical stimulation of pudendal nerve (PN) afferents is a promising approach to restore control of bladder function in persons with lower urinary tract dysfunction caused by disease or injury. The objective of this work was to determine whether bladder activation evoked by pudendal afferent stimulation was dependent on the temporal pattern of stimulation, and whether specific temporal patterns of stimulation produced larger bladder contractions than constant frequency stimulation. The mean and maximum contraction pressures evoked by different temporal patterns of stimulation of the dorsal genital branch of the pudendal nerve were measured under isovolumetric conditions in α-chloralose anesthetized cats. A computational model of the spinal neural network mediating the pudendo-vesical reflex was used to understand the mechanisms of different bladder responses to patterned stimulation. The pattern of stimulation significantly affected the magnitude of evoked bladder contractions; several temporal patterns were as effective as regular stimulation, but no pattern evoked larger bladder contractions. Random patterns and patterns with pauses, burst-like activity, or high frequency components evoked significantly smaller bladder contractions, supporting the use of regular frequency stimulation in the development of neural prosthetic approaches for bladder control. These results reveal that the bladder response to pudendal afferent stimulation is dependent on the pattern, as well as the frequency, of stimulation. The computational model revealed that the effects of patterned pudendal afferent stimulation were determined by the dynamic properties of excitatory and inhibitory interneurons in the lumbosacral spinal cord. Neurourol. Urodynam. 35:882-887, 2016. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.
Completeness and regularity of generalized fuzzy graphs.
Samanta, Sovan; Sarkar, Biswajit; Shin, Dongmin; Pal, Madhumangal
2016-01-01
Fuzzy graphs are the backbone of many real systems like networks, image, scheduling, etc. But, due to some restriction on edges, fuzzy graphs are limited to represent for some systems. Generalized fuzzy graphs are appropriate to avoid such restrictions. In this study generalized fuzzy graphs are introduced. In this study, matrix representation of generalized fuzzy graphs is described. Completeness and regularity are two important parameters of graph theory. Here, regular and complete generalized fuzzy graphs are introduced. Some properties of them are discussed. After that, effective regular graphs are exemplified.
Partitioning of regular computation on multiprocessor systems
NASA Technical Reports Server (NTRS)
Lee, Fung Fung
1988-01-01
Problem partitioning of regular computation over two dimensional meshes on multiprocessor systems is examined. The regular computation model considered involves repetitive evaluation of values at each mesh point with local communication. The computational workload and the communication pattern are the same at each mesh point. The regular computation model arises in numerical solutions of partial differential equations and simulations of cellular automata. Given a communication pattern, a systematic way to generate a family of partitions is presented. The influence of various partitioning schemes on performance is compared on the basis of computation to communication ratio.
Partitioning of regular computation on multiprocessor systems
NASA Technical Reports Server (NTRS)
Lee, Fung F.
1990-01-01
Problem partitioning of regular computation over two dimensional meshes on multiprocessor systems is examined. The regular computation model considered involves repetitive evaluation of values at each mesh point with local communication. The computational workload and the communication pattern are the same at each mesh point. The regular computation model arises in numerical solutions of partial differential equations and simulations of cellular automata. Given a communication pattern, a systematic way to generate a family of partitions is presented. The influence of various partitioning schemes on performance is compared on the basis of computation to communication ratio.
Regular subalgebras of affine Kac Moody algebras
NASA Astrophysics Data System (ADS)
Felikson, Anna; Retakh, Alexander; Tumarkin, Pavel
2008-09-01
We classify regular subalgebras of Kac-Moody algebras in terms of their root systems. In the process, we establish that a root system of a subalgebra is always an intersection of the root system of the algebra with a sublattice of its root lattice. We also discuss applications to investigations of regular subalgebras of hyperbolic Kac-Moody algebras and conformally invariant subalgebras of affine Kac-Moody algebras. In particular, we provide explicit formulae for determining all Virasoro charges in coset constructions that involve regular subalgebras.
Partitioning of regular computation on multiprocessor systems
Lee, F. . Computer Systems Lab.)
1990-07-01
Problem partitioning of regular computation over two-dimensional meshes on multiprocessor systems is examined. The regular computation model considered involves repetitive evaluation of values at each mesh point with local communication. The computational workload and the communication pattern are the same at each mesh point. The regular computation model arises in numerical solutions of partial differential equations and simulations of cellular automata. Given a communication pattern, a systematic way to generate a family of partitions is presented. The influence of various partitioning schemes on performance is compared on the basis of computation to communication ratio.
Continuum regularization of gauge theory with fermions
Chan, H.S.
1987-03-01
The continuum regularization program is discussed in the case of d-dimensional gauge theory coupled to fermions in an arbitrary representation. Two physically equivalent formulations are given. First, a Grassmann formulation is presented, which is based on the two-noise Langevin equations of Sakita, Ishikawa and Alfaro and Gavela. Second, a non-Grassmann formulation is obtained by regularized integration of the matter fields within the regularized Grassmann system. Explicit perturbation expansions are studied in both formulations, and considerable simplification is found in the integrated non-Grassmann formalism.
Regular biorthogonal pairs and pseudo-bosonic operators
NASA Astrophysics Data System (ADS)
Inoue, H.; Takakura, M.
2016-08-01
The first purpose of this paper is to show a method of constructing a regular biorthogonal pair based on the commutation rule: ab - ba = I for a pair of operators a and b acting on a Hilbert space H with inner product (ṡ| ṡ ). Here, sequences {ϕn} and {ψn} in a Hilbert space H are biorthogonal if (ϕn|ψm) = δnm, n, m = 0, 1, …, and they are regular if both Dϕ ≡ Span{ϕn} and Dψ ≡ Span{ψn} are dense in H . Indeed, the assumptions to construct the regular biorthogonal pair coincide with the definition of pseudo-bosons as originally given in F. Bagarello ["Pseudobosons, Riesz bases, and coherent states," J. Math. Phys. 51, 023531 (2010)]. Furthermore, we study the connections between the pseudo-bosonic operators a, b, a†, b† and the pseudo-bosonic operators defined by a regular biorthogonal pair ({ϕn}, {ψn}) and an ONB e of H in H. Inoue ["General theory of regular biorthogonal pairs and its physical applications," e-print arXiv:math-ph/1604.01967]. The second purpose is to define and study the notion of D -pseudo-bosons in F. Bagarello ["More mathematics for pseudo-bosons," J. Math. Phys. 54, 063512 (2013)] and F. Bagarello ["From self-adjoint to non self-adjoint harmonic oscillators: Physical consequences and mathematical pitfalls," Phys. Rev. A 88, 032120 (2013)] and give a method of constructing D -pseudo-bosons on some steps. Then it is shown that for any ONB e = {en} in H and any operators T and T-1 in L † ( D ) , we may construct operators A and B satisfying D -pseudo bosons, where D is a dense subspace in a Hilbert space H and L † ( D ) the set of all linear operators T from D to D such that T * D ⊂ D , where T* is the adjoint of T. Finally, we give some physical examples of D -pseudo-bosons based on standard bosons by the method of constructing D -pseudo-bosons stated above.
Regularization of B-Spline Objects.
Xu, Guoliang; Bajaj, Chandrajit
2011-01-01
By a d-dimensional B-spline object (denoted as ), we mean a B-spline curve (d = 1), a B-spline surface (d = 2) or a B-spline volume (d = 3). By regularization of a B-spline object we mean the process of relocating the control points of such that they approximate an isometric map of its definition domain in certain directions and is shape preserving. In this paper we develop an efficient regularization method for , d = 1, 2, 3 based on solving weak form L(2)-gradient flows constructed from the minimization of certain regularizing energy functionals. These flows are integrated via the finite element method using B-spline basis functions. Our experimental results demonstrate that our new regularization method is very effective.
Regular Sleep Makes for Happier College Students
... https://medlineplus.gov/news/fullstory_166856.html Regular Sleep Makes for Happier College Students When erratic snoozers ... studying and socializing, college students often have crazy sleep schedules, and new research suggests that a lack ...
[Serum ferritin in donors with regular plateletpheresis].
Ma, Chun-Hui; Guo, Ru-Hua; Wu, Wei-Jian; Yan, Jun-Xiong; Yu, Jin-Lin; Zhu, Ye-Hua; He, Qi-Tong; Luo, Yi-Hong; Huang, Lu; Ye, Rui-Yun
2011-04-01
This study was aimed to evaluate the impact of regular donating platelets on serum ferritin (SF) of donors. A total of 93 male blood donors including 24 initial plateletpheresis donors and 69 regular plateletpheresis donors were selected randomly. Their SF level was measured by ELISA. The results showed that the SF level of initial plateletpheresis donors and regular plateletpheresis donors were 91.08 ± 23.38 µg/L and 57.16 ± 35.48 µg/L respectively, and all were in normal levels, but there was significant difference between the 2 groups (p < 0.05). The SF level decreased when the donation frequency increased, there were no significant differences between the groups with different donation frequency. Correlation with lifetime donations of platelets was not found. It is concluded that regular plateletpheresis donors may have lower SF level.
Epigenetic adaptation to regular exercise in humans.
Ling, Charlotte; Rönn, Tina
2014-07-01
Regular exercise has numerous health benefits, for example, it reduces the risk of cardiovascular disease and cancer. It has also been shown that the risk of type 2 diabetes can be halved in high-risk groups through nonpharmacological lifestyle interventions involving exercise and diet. Nevertheless, the number of people living a sedentary life is dramatically increasing worldwide. Researchers have searched for molecular mechanisms explaining the health benefits of regular exercise for decades and it is well established that exercise alters the gene expression pattern in multiple tissues. However, until recently it was unknown that regular exercise can modify the genome-wide DNA methylation pattern in humans. This review will focus on recent progress in the field of regular exercise and epigenetics.
On a class of coedge regular graphs
NASA Astrophysics Data System (ADS)
Makhnev, A. A.; Paduchikh, D. V.
2005-12-01
We study graphs in which \\lambda(a,b)=\\lambda_1,\\lambda_2 for every edge \\{a,b\\} and all \\mu-subgraphs are 2-cocliques. We give a description of connected edge-regular graphs for k\\ge (b_1^2+3b_1-4)/2. In particular, the following examples confirm that the inequality k>b_1(b_1+3)/2 is a sharp bound for strong regularity: the n-gon, the icosahedron graph, the graph in \\mathrm{MP}(6) and the distance-regular graph of diameter 4 with intersection massive \\{x,x-1,4,1;1,2,x-1,x\\}, which is an antipodal 3-covering of the strongly regular graph with parameters ((x+2)(x+3)/6,x,0,6).
Sawakuchi, G. O.; Yukihara, E. G.; McKeever, S. W. S.; Benton, E. R.; Gaza, R.; Uchihori, Y.; Yasuda, N.; Kitamura, H.
2008-12-15
This article presents a comprehensive characterization of the thermoluminescence (TL) and optically stimulated luminescence (OSL) relative luminescence efficiencies of carbon-doped aluminum (Al{sub 2}O{sub 3}:C) for heavy charged particles (HCPs) with atomic numbers ranging from 1 (proton) to 54 (xenon) and energies ranging from 7 to 1000 MeV/u, and investigates the dependence of the Al{sub 2}O{sub 3}:C response on experimental conditions. Relative luminescence efficiency values are presented for 19 primary charge/energy combinations, plus 31 additional charge/energy combinations obtained by introducing absorbers in the primary beam. Our results show that for energies of hundreds of MeV/u the data can be described by a single curve of relative luminescence efficiency versus linear energy transfer (LET). This information is needed to compensate for the reduced OSL efficiency to high-LET particles in such applications as space dosimetry. For lower energies, the relative luminescence efficiency as function of LET cannot be described by a single curve; instead, it separates into different components corresponding to different particles. We also present data on the low-LET dose response of Al{sub 2}O{sub 3}:C, measured under the same experimental conditions in which the relative luminescence efficiencies to HCPs were obtained, providing information relevant to future theoretical investigations of HCP energy deposition and luminescence production in Al{sub 2}O{sub 3}:C.
Wavelet Characterizations of Multi-Directional Regularity
NASA Astrophysics Data System (ADS)
Slimane, Mourad Ben
2011-05-01
The study of d dimensional traces of functions of m several variables leads to directional behaviors. The purpose of this paper is two-fold. Firstly, we extend the notion of one direction pointwise Hölder regularity introduced by Jaffard to multi-directions. Secondly, we characterize multi-directional pointwise regularity by Triebel anisotropic wavelet coefficients (resp. leaders), and also by Calderón anisotropic continuous wavelet transform.
Probabilistic regularization in inverse optical imaging.
De Micheli, E; Viano, G A
2000-11-01
The problem of object restoration in the case of spatially incoherent illumination is considered. A regularized solution to the inverse problem is obtained through a probabilistic approach, and a numerical algorithm based on the statistical analysis of the noisy data is presented. Particular emphasis is placed on the question of the positivity constraint, which is incorporated into the probabilistically regularized solution by means of a quadratic programming technique. Numerical examples illustrating the main steps of the algorithm are also given.
Trudel, Guy; Payne, Michael; Mädler, Burkhard; Ramachandran, Nanthan; Lecompte, Martin; Wade, Charles; Biolo, Gianni; Blanc, Stéphane; Hughson, Richard; Bear, Lisa; Uhthoff, Hans K
2009-08-01
Immobility in bed and decreased mobility cause adaptations to most human body systems. The effect of immobility on fat accumulation in hemopoietic bone marrow has never been measured prospectively. The reversibility of marrow fat accumulation and the effects on hemopoiesis are not known. In the present study, 24 healthy women (age: 25-40 yr) underwent -6 degrees head-down bed rest for 60 days. We used MRI to noninvasively measure the lumbar vertebral fat fraction at various time points. We also measured hemoglobin, erythropoietin, reticulocytes, leukocytes, platelet count, peripheral fat mass, leptin, cortisol, and C-reactive protein during bed rest and for 1 yr after bed rest ended. Compared with baseline, the mean (+/-SE) fat fraction was increased after 60 days of bed rest (+2.5+/-1.1%, P<0.05); the increase persisted 1 yr after the resumption of regular activities (+2.3+/-0.8%, P<0.05). Mean hemoglobin levels were significantly decreased 6 days after bed rest ended (-1.36+/-0.20 g/dl, P<0.05) but had recovered at 1 yr, with significantly lower mean circulating erythropoietin levels (-3.8+/-1.2 mU/ml, P<0.05). Mean numbers of neutrophils and lymphocytes remained significantly elevated at 1 yr (+617+/-218 neutrophils/microl and +498+/-112 lymphocytes/microl, both P<0.05). These results constitute direct evidence that bed rest irreversibly accelerated fat accumulation in hemopoietic bone marrow. The 2.5% increase in fat fraction after 60 days of bed rest was 25-fold larger than expected from historical ambulatory controls. Sixty days of bed rest accelerated by 4 yr the normal bone marrow involution. Bed rest and marrow adiposity were associated with hemopoietic stimulation. One year after subjects returned to normal activities, hemoglobin levels were maintained, with 43% lower circulating erythropoietin levels, and leukocytes remained significantly elevated across lineages. Lack of mobility alters hemopoiesis, possibly through marrow fat accumulation, with
Non-autonomous maximal regularity for forms given by elliptic operators of bounded variation
NASA Astrophysics Data System (ADS)
Fackler, Stephan
2017-09-01
We show maximal Lp-regularity for non-autonomous Cauchy problems provided the trace spaces are stable in some parameterized sense and the time dependence is of bounded variation. In particular on L2 (Ω), for Lipschitz domains Ω and under mixed boundary conditions, we obtain maximal Lp-regularity for all p ∈ (1 , 2 ] for elliptic operators with coefficients aij : Ω → C satisfying aij (ṡ , x) ∈ BV uniformly in x ∈ Ω.
On the low regularity of the Benney-Lin equation
NASA Astrophysics Data System (ADS)
Chen, Wengu; Li, Junfeng
2008-03-01
We consider the low regularity of the Benney-Lin equation ut+uux+uxxx+[beta](uxx+uxxxx)+[eta]uxxxxx=0. We established the global well posedness for the initial value problem of Benney-Lin equation in the Sobolev spaces for 0[greater-or-equal, slanted]s>-2, improving the well-posedness result of Biagioni and Linares [H.A. Biaginoi, F. Linares, On the Benney-Lin and Kawahara equation, J. Math. Anal. Appl. 211 (1997) 131-152]. For s<-2 we also prove some ill-posedness issues.
Regularization of Mickelsson generators for nonexceptional quantum groups
NASA Astrophysics Data System (ADS)
Mudrov, A. I.
2017-08-01
Let g' ⊂ g be a pair of Lie algebras of either symplectic or orthogonal infinitesimal endomorphisms of the complex vector spaces C N-2 ⊂ C N and U q (g') ⊂ U q (g) be a pair of quantum groups with a triangular decomposition U q (g) = U q (g-) U q (g+) U q (h). Let Z q (g, g') be the corresponding step algebra. We assume that its generators are rational trigonometric functions h ∗ → U q (g±). We describe their regularization such that the resulting generators do not vanish for any choice of the weight.
Guzzo, Massimiliano; Bernardi, Olga; Cardin, Franco
2007-09-01
We provide a new method for the localization of Aubry-Mather sets in quasi-integrable two-dimensional twist maps. Inspired by viscosity theories, we introduce regularization techniques based on the new concept of "relative viscosity and friction," which allows one to obtain regularized parametrizations of invariant sets with irrational rotation number. Such regularized parametrizations allow one to compute a curve in the phase-space that passes near the Aubry-Mather set, and an invariant measure whose density allows one to locate the gaps on the curve. We show applications to the "golden" cantorus of the standard map as well as to a more general case.
Graph Laplacian Regularization for Image Denoising: Analysis in the Continuous Domain.
Pang, Jiahao; Cheung, Gene
2017-04-01
Inverse imaging problems are inherently underdetermined, and hence, it is important to employ appropriate image priors for regularization. One recent popular prior-the graph Laplacian regularizer-assumes that the target pixel patch is smooth with respect to an appropriately chosen graph. However, the mechanisms and implications of imposing the graph Laplacian regularizer on the original inverse problem are not well understood. To address this problem, in this paper, we interpret neighborhood graphs of pixel patches as discrete counterparts of Riemannian manifolds and perform analysis in the continuous domain, providing insights into several fundamental aspects of graph Laplacian regularization for image denoising. Specifically, we first show the convergence of the graph Laplacian regularizer to a continuous-domain functional, integrating a norm measured in a locally adaptive metric space. Focusing on image denoising, we derive an optimal metric space assuming non-local self-similarity of pixel patches, leading to an optimal graph Laplacian regularizer for denoising in the discrete domain. We then interpret graph Laplacian regularization as an anisotropic diffusion scheme to explain its behavior during iterations, e.g., its tendency to promote piecewise smooth signals under certain settings. To verify our analysis, an iterative image denoising algorithm is developed. Experimental results show that our algorithm performs competitively with state-of-the-art denoising methods, such as BM3D for natural images, and outperforms them significantly for piecewise smooth images.
Graph Laplacian Regularization for Image Denoising: Analysis in the Continuous Domain
NASA Astrophysics Data System (ADS)
Pang, Jiahao; Cheung, Gene
2017-04-01
Inverse imaging problems are inherently under-determined, and hence it is important to employ appropriate image priors for regularization. One recent popular prior---the graph Laplacian regularizer---assumes that the target pixel patch is smooth with respect to an appropriately chosen graph. However, the mechanisms and implications of imposing the graph Laplacian regularizer on the original inverse problem are not well understood. To address this problem, in this paper we interpret neighborhood graphs of pixel patches as discrete counterparts of Riemannian manifolds and perform analysis in the continuous domain, providing insights into several fundamental aspects of graph Laplacian regularization for image denoising. Specifically, we first show the convergence of the graph Laplacian regularizer to a continuous-domain functional, integrating a norm measured in a locally adaptive metric space. Focusing on image denoising, we derive an optimal metric space assuming non-local self-similarity of pixel patches, leading to an optimal graph Laplacian regularizer for denoising in the discrete domain. We then interpret graph Laplacian regularization as an anisotropic diffusion scheme to explain its behavior during iterations, e.g., its tendency to promote piecewise smooth signals under certain settings. To verify our analysis, an iterative image denoising algorithm is developed. Experimental results show that our algorithm performs competitively with state-of-the-art denoising methods such as BM3D for natural images, and outperforms them significantly for piecewise smooth images.
Usual Source of Care in Preventive Service Use: A Regular Doctor versus a Regular Site
Xu, K Tom
2002-01-01
Objective To compare the effects of having a regular doctor and having a regular site on five preventive services, controlling for the endogeneity of having a usual source of care. Data Source The Medical Expenditure Panel Survey 1996 conducted by the Agency for Healthcare Research and Quality and the National Center for Health Statistics. Study Design Mammograms, pap smears, blood pressure checkups, cholesterol level checkups, and flu shots were examined. A modified behavioral model framework was presented, which controlled for the endogeneity of having a usual source of care. Based on this framework, a two-equation empirical model was established to predict the probabilities of having a regular doctor and having a regular site, and use of each type of preventive service. Principal Findings Having a regular doctor was found to have a greater impact than having a regular site on discretional preventive services, such as blood pressure and cholesterol level checkups. No statistically significant differences were found between the effects a having a regular doctor and having a regular site on the use of flu shots, pap smears, and mammograms. Among the five preventive services, having a usual source of care had the greatest impact on cholesterol level checkups and pap smears. Conclusions Promoting a stable physician–patient relationship can improve patients’ timely receipt of clinical prevention. For certain preventive services, having a regular doctor is more effective than having a regular site. PMID:12546284
Channeling power across ecological systems: social regularities in community organizing.
Christens, Brian D; Inzeo, Paula Tran; Faust, Victoria
2014-06-01
Relational and social network perspectives provide opportunities for more holistic conceptualizations of phenomena of interest in community psychology, including power and empowerment. In this article, we apply these tools to build on multilevel frameworks of empowerment by proposing that networks of relationships between individuals constitute the connective spaces between ecological systems. Drawing on an example of a model for grassroots community organizing practiced by WISDOM—a statewide federation supporting local community organizing initiatives in Wisconsin—we identify social regularities (i.e., relational and temporal patterns) that promote empowerment and the development and exercise of social power through building and altering relational ties. Through an emphasis on listening-focused one-to-one meetings, reflection, and social analysis, WISDOM organizing initiatives construct and reinforce social regularities that develop social power in the organizing initiatives and advance psychological empowerment among participant leaders in organizing. These patterns are established by organizationally driven brokerage and mobilization of interpersonal ties, some of which span ecological systems.Hence, elements of these power-focused social regularities can be conceptualized as cross-system channels through which micro-level empowerment processes feed into macro-level exercise of social power, and vice versa. We describe examples of these channels in action, and offer recommendations for theory and design of future action research [corrected] .
Manifold regularized non-negative matrix factorization with label information
NASA Astrophysics Data System (ADS)
Li, Huirong; Zhang, Jiangshe; Wang, Changpeng; Liu, Junmin
2016-03-01
Non-negative matrix factorization (NMF) as a popular technique for finding parts-based, linear representations of non-negative data has been successfully applied in a wide range of applications, such as feature learning, dictionary learning, and dimensionality reduction. However, both the local manifold regularization of data and the discriminative information of the available label have not been taken into account together in NMF. We propose a new semisupervised matrix decomposition method, called manifold regularized non-negative matrix factorization (MRNMF) with label information, which incorporates the manifold regularization and the label information into the NMF to improve the performance of NMF in clustering tasks. We encode the local geometrical structure of the data space by constructing a nearest neighbor graph and enhance the discriminative ability of different classes by effectively using the label information. Experimental comparisons with the state-of-the-art methods on theCOIL20, PIE, Extended Yale B, and MNIST databases demonstrate the effectiveness of MRNMF.
Enhanced manifold regularization for semi-supervised classification.
Gan, Haitao; Luo, Zhizeng; Fan, Yingle; Sang, Nong
2016-06-01
Manifold regularization (MR) has become one of the most widely used approaches in the semi-supervised learning field. It has shown superiority by exploiting the local manifold structure of both labeled and unlabeled data. The manifold structure is modeled by constructing a Laplacian graph and then incorporated in learning through a smoothness regularization term. Hence the labels of labeled and unlabeled data vary smoothly along the geodesics on the manifold. However, MR has ignored the discriminative ability of the labeled and unlabeled data. To address the problem, we propose an enhanced MR framework for semi-supervised classification in which the local discriminative information of the labeled and unlabeled data is explicitly exploited. To make full use of labeled data, we firstly employ a semi-supervised clustering method to discover the underlying data space structure of the whole dataset. Then we construct a local discrimination graph to model the discriminative information of labeled and unlabeled data according to the discovered intrinsic structure. Therefore, the data points that may be from different clusters, though similar on the manifold, are enforced far away from each other. Finally, the discrimination graph is incorporated into the MR framework. In particular, we utilize semi-supervised fuzzy c-means and Laplacian regularized Kernel minimum squared error for semi-supervised clustering and classification, respectively. Experimental results on several benchmark datasets and face recognition demonstrate the effectiveness of our proposed method.
NASA Astrophysics Data System (ADS)
Alves, Claudianor O.; Miyagaki, Olímpio H.
2017-08-01
In this paper, we establish some results concerning the existence, regularity, and concentration phenomenon of nontrivial solitary waves for a class of generalized variable coefficient Kadomtsev-Petviashvili equation. Variational methods are used to get an existence result, as well as, to study the concentration phenomenon, while the regularity is more delicate because we are leading with functions in an anisotropic Sobolev space.
Tilley, Dana M; Vallejo, Ricardo; Kelley, Courtney A; Benyamin, Ramsin; Cedeño, David L
2015-04-01
Models that simulate clinical conditions are needed to gain an understanding of the mechanism involved during spinal cord stimulation (SCS) treatment of chronic neuropathic pain. An animal model has been developed for continuous SCS in which animals that have been injured to develop neuropathic pain behavior were allowed to carry on with regular daily activities while being stimulated for 72 hours. Sprague-Dawley rats were randomized into each of six different groups (N = 10-13). Three groups included animals in which the spared nerve injury (SNI) was induced. Animals in two of these groups were implanted with a four-contact electrode in the epidural space. Animals in one of these groups received stimulation for 72 hours continuously. Three corresponding sham groups (no SNI) were included. Mechanical and cold-thermal allodynia were evaluated using von Frey filaments and acetone drops, respectively. Mean withdrawal thresholds were compared. Statistical significance was established using one-way ANOVAs followed by Holm-Sidak post hoc analysis. Continuous SCS attenuates mechanical allodynia in animals with neuropathic pain behavior. Mechanical withdrawal threshold increases significantly in SNI animals after 24 and 72 hours stimulation vs. SNI no stimulation (p = 0.007 and p < 0.001, respectively). SCS for 24 and 72 hours provides significant increase in mechanical withdrawal thresholds relative to values before stimulation (p = 0.001 and p < 0.001, respectively). Stimulation did not provide recovery to baseline values. SCS did not seem to attenuate cold-thermal allodynia. A continuous SCS model has been developed. Animals with neuropathic pain behavior that were continuously stimulated showed significant increase in withdrawal thresholds proportional to stimulation time. © 2015 International Neuromodulation Society.
THE STIMULATING EFFECT OF GLYCOLS AND THEIR POLYMERS ON THE TARSAL RECEPTORS OF BLOWFLIES
Dethier, V. G.; Chadwick, L. E.
1948-01-01
The rejection thresholds of Phormia regina Meigen for twenty-four glycols have been determined. A definite relationship between the concentration of the test material and the distribution of thresholds has been noted regularly in samples of flies selected at random from a population of known age which had been reared under standard conditions. The scattering of thresholds is normal with respect to the logarithm of concentration. Recalculation of the data of other workers reveals the same sort of relationship with other species of insects and the minnow Phoxinus. The underlying reason for the phenomenon is not known. The glycols in common with other series of homologous alipbatic compounds are rejected at logarithmically decreasing concentrations as the chain length is increased. In general the straight chain diols are more stimulating than the corresponding polyethylene and polypropylene glycols. This difference is related in some manner to the presence of ether linkages in the latter. Polypropylene glycols, with chains of three carbon atoms between the ether linkages are more stimulating than polyethylene glycols, where the spacing is —O—C—C—O—. Unipolymers are more stimulating than mixtures of homologues with the same average molecular weights. Polyethylene glycol 1540 is the largest molecule of measured molecular weight known to stimulate chemoreceptors. The introduction of a second terminal hydroxyl group into the straight hydrocarbon chain reduces the stimulating effect. Alcohols corresponding to the first three diols average about four times as stimulating as the latter while those corresponding to the higher diols average more than one hundred times as stimulating. PMID:18891141
C1,1 regularity for degenerate elliptic obstacle problems
NASA Astrophysics Data System (ADS)
Daskalopoulos, Panagiota; Feehan, Paul M. N.
2016-03-01
The Heston stochastic volatility process is a degenerate diffusion process where the degeneracy in the diffusion coefficient is proportional to the square root of the distance to the boundary of the half-plane. The generator of this process with killing, called the elliptic Heston operator, is a second-order, degenerate-elliptic partial differential operator, where the degeneracy in the operator symbol is proportional to the distance to the boundary of the half-plane. In mathematical finance, solutions to the obstacle problem for the elliptic Heston operator correspond to value functions for perpetual American-style options on the underlying asset. With the aid of weighted Sobolev spaces and weighted Hölder spaces, we establish the optimal C 1 , 1 regularity (up to the boundary of the half-plane) for solutions to obstacle problems for the elliptic Heston operator when the obstacle functions are sufficiently smooth.
Temporal Prediction in lieu of Periodic Stimulation
Schroeder, Charles E.; Wyart, Valentin
2016-01-01
Predicting not only what will happen, but also when it will happen is extremely helpful for optimizing perception and action. Temporal predictions driven by periodic stimulation increase perceptual sensitivity and reduce response latencies. At the neurophysiological level, a single mechanism has been proposed to mediate this twofold behavioral improvement: the rhythmic entrainment of slow cortical oscillations to the stimulation rate. However, temporal regularities can occur in aperiodic contexts, suggesting that temporal predictions per se may be dissociable from entrainment to periodic sensory streams. We investigated this possibility in two behavioral experiments, asking human participants to detect near-threshold auditory tones embedded in streams whose temporal and spectral properties were manipulated. While our findings confirm that periodic stimulation reduces response latencies, in agreement with the hypothesis of a stimulus-driven entrainment of neural excitability, they further reveal that this motor facilitation can be dissociated from the enhancement of auditory sensitivity. Perceptual sensitivity improvement is unaffected by the nature of temporal regularities (periodic vs aperiodic), but contingent on the co-occurrence of a fulfilled spectral prediction. Altogether, the dissociation between predictability and periodicity demonstrates that distinct mechanisms flexibly and synergistically operate to facilitate perception and action. SIGNIFICANCE STATEMENT Temporal predictions are increasingly recognized as fundamental instruments for optimizing performance, enabling mammals to exploit regularities in the world. However, the notion of temporal predictions is often confounded with the idea of entrainment to periodic sensory inputs. At the behavioral level, it is also unclear whether perceptual sensitivity and reaction time improvements benefit the same way from temporal predictions and periodic stimulation. In two behavioral experiments on human
Assessment of regularization techniques for electrocardiographic imaging
Milanič, Matija; Jazbinšek, Vojko; MacLeod, Robert S.; Brooks, Dana H.; Hren, Rok
2014-01-01
A widely used approach to solving the inverse problem in electrocardiography involves computing potentials on the epicardium from measured electrocardiograms (ECGs) on the torso surface. The main challenge of solving this electrocardiographic imaging (ECGI) problem lies in its intrinsic ill-posedness. While many regularization techniques have been developed to control wild oscillations of the solution, the choice of proper regularization methods for obtaining clinically acceptable solutions is still a subject of ongoing research. However there has been little rigorous comparison across methods proposed by different groups. This study systematically compared various regularization techniques for solving the ECGI problem under a unified simulation framework, consisting of both 1) progressively more complex idealized source models (from single dipole to triplet of dipoles), and 2) an electrolytic human torso tank containing a live canine heart, with the cardiac source being modeled by potentials measured on a cylindrical cage placed around the heart. We tested 13 different regularization techniques to solve the inverse problem of recovering epicardial potentials, and found that non-quadratic methods (total variation algorithms) and first-order and second-order Tikhonov regularizations outperformed other methodologies and resulted in similar average reconstruction errors. PMID:24369741
Modified sparse regularization for electrical impedance tomography
Fan, Wenru Xue, Qian; Wang, Huaxiang; Cui, Ziqiang; Sun, Benyuan; Wang, Qi
2016-03-15
Electrical impedance tomography (EIT) aims to estimate the electrical properties at the interior of an object from current-voltage measurements on its boundary. It has been widely investigated due to its advantages of low cost, non-radiation, non-invasiveness, and high speed. Image reconstruction of EIT is a nonlinear and ill-posed inverse problem. Therefore, regularization techniques like Tikhonov regularization are used to solve the inverse problem. A sparse regularization based on L{sub 1} norm exhibits superiority in preserving boundary information at sharp changes or discontinuous areas in the image. However, the limitation of sparse regularization lies in the time consumption for solving the problem. In order to further improve the calculation speed of sparse regularization, a modified method based on separable approximation algorithm is proposed by using adaptive step-size and preconditioning technique. Both simulation and experimental results show the effectiveness of the proposed method in improving the image quality and real-time performance in the presence of different noise intensities and conductivity contrasts.
Regularity re-revisited: modality matters.
Tsapkini, Kyrana; Jarema, Gonia; Kehayia, Eva
2004-06-01
The issue of regular-irregular past tense formation was examined in a cross-modal lexical decision task in Modern Greek, a language where the orthographic and phonological overlap between present and past tense stems is the same for both regular and irregular verbs. The experiment described here is a follow-up study of previous visual lexical decision experiments (Tsapkini, Kehayia, & Harema, 2002) that also addressed the regular-irregular distinction in Greek. In the present experiment, we investigated the effect of input modality in lexical processing and compared different types of regular and irregular verbs. In contrast to our previous intra-modal (visual-visual) priming experiments, in this cross-modal (auditory-visual) priming study, we found that regular verbs with an orthographically salient morphemic aspectual marker elicited the same facilitation as those without an orthographically salient marker. However, irregular verbs did not exhibit a different priming pattern with respect to modality. We interpret these results in the framework of a two-level lexical processing approach with modality-specific access representations at a surface level and modality-independent morphemic representations at a deeper level.
Hessian estimates in weighted Lebesgue spaces for fully nonlinear elliptic equations
NASA Astrophysics Data System (ADS)
Byun, Sun-Sig; Lee, Mikyoung; Palagachev, Dian K.
2016-03-01
We prove global regularity in weighted Lebesgue spaces for the viscosity solutions to the Dirichlet problem for fully nonlinear elliptic equations. As a consequence, regularity in Morrey spaces of the Hessian is derived as well.
Characteristics of density currents over regular and irregular rough surfaces
NASA Astrophysics Data System (ADS)
Bhaganagar, K.
2013-12-01
Direct numerical simulation is used as a tool to understand the effect of surface roughness on the propagation of density currents. Simulations have been performed for lock-exchange flow with gate separating the dense and the lighter fluid. As the lock is released the dense fluid collapses with the lighter fluid on the top, resulting in formation of horizontally evolving density current. The talk will focus on the fundamental differences between the propagation of the density current over regular and irregular rough surfaces. The flow statistics and the flow structures are discussed. The results have revealed the spacing between the roughness elements is an important factor in classifying the density currents. The empirical relations of the front velocity and location for the dense and sparse roughness have been evaluated in terms of the roughness height, spacing between the elements and the initial amount of lock fluid. DNS results for a dense current flowing over a (a) smooth and (b) rough bottom with egg-carton roughness elements in a regular configuration. In these simulations the lock-exchange box is located in the middle of the channel and has two gates which allow two dense currents to be generated, one moving to the right and one to the left side of the channel. Note how the dense current interface presents smaller structures when over a rough bottom (right).
Shadow of rotating regular black holes
NASA Astrophysics Data System (ADS)
Abdujabbarov, Ahmadjon; Amir, Muhammed; Ahmedov, Bobomurat; Ghosh, Sushant G.
2016-05-01
We study the shadows cast by the different types of rotating regular black holes viz. Ayón-Beato-García (ABG), Hayward, and Bardeen. These black holes have in addition to the total mass (M ) and rotation parameter (a ), different parameters as electric charge (Q ), deviation parameter (g ), and magnetic charge (g*). Interestingly, the size of the shadow is affected by these parameters in addition to the rotation parameter. We found that the radius of the shadow in each case decreases monotonically, and the distortion parameter increases when the values of these parameters increase. A comparison with the standard Kerr case is also investigated. We have also studied the influence of the plasma environment around regular black holes to discuss its shadow. The presence of the plasma affects the apparent size of the regular black hole's shadow to be increased due to two effects: (i) gravitational redshift of the photons and (ii) radial dependence of plasma density.
Strong regularizing effect of integrable systems
Zhou, Xin
1997-11-01
Many time evolution problems have the so-called strong regularization effect, that is, with any irregular initial data, as soon as becomes greater than 0, the solution becomes C{sup {infinity}} for both spacial and temporal variables. This paper studies 1 x 1 dimension integrable systems for such regularizing effect. In the work by Sachs, Kappler [S][K], (see also earlier works [KFJ] and [Ka]), strong regularizing effect is proved for KdV with rapidly decaying irregular initial data, using the inverse scattering method. There are two equivalent Gel`fand-Levitan-Marchenko (GLM) equations associated to an inverse scattering problem, one is normalized at x = {infinity} and another at x = {infinity}. The method of [S][K] relies on the fact that the KdV waves propagate only in one direction and therefore one of the two GLM equations remains normalized and can be differentiated infinitely many times. 15 refs.
Surface counterterms and regularized holographic complexity
NASA Astrophysics Data System (ADS)
Yang, Run-Qiu; Niu, Chao; Kim, Keun-Young
2017-09-01
The holographic complexity is UV divergent. As a finite complexity, we propose a "regularized complexity" by employing a similar method to the holographic renor-malization. We add codimension-two boundary counterterms which do not contain any boundary stress tensor information. It means that we subtract only non-dynamic back-ground and all the dynamic information of holographic complexity is contained in the regularized part. After showing the general counterterms for both CA and CV conjectures in holographic spacetime dimension 5 and less, we give concrete examples: the BTZ black holes and the four and five dimensional Schwarzschild AdS black holes. We propose how to obtain the counterterms in higher spacetime dimensions and show explicit formulas only for some special cases with enough symmetries. We also compute the complexity of formation by using the regularized complexity.
Perturbations in a regular bouncing universe
Battefeld, T.J.; Geshnizjani, G.
2006-03-15
We consider a simple toy model of a regular bouncing universe. The bounce is caused by an extra timelike dimension, which leads to a sign flip of the {rho}{sup 2} term in the effective four dimensional Randall Sundrum-like description. We find a wide class of possible bounces: big bang avoiding ones for regular matter content, and big rip avoiding ones for phantom matter. Focusing on radiation as the matter content, we discuss the evolution of scalar, vector and tensor perturbations. We compute a spectral index of n{sub s}=-1 for scalar perturbations and a deep blue index for tensor perturbations after invoking vacuum initial conditions, ruling out such a model as a realistic one. We also find that the spectrum (evaluated at Hubble crossing) is sensitive to the bounce. We conclude that it is challenging, but not impossible, for cyclic/ekpyrotic models to succeed, if one can find a regularized version.
Nonlinear electrodynamics and regular black holes
NASA Astrophysics Data System (ADS)
Sajadi, S. N.; Riazi, N.
2017-03-01
In this work, an exact regular black hole solution in General Relativity is presented. The source is a nonlinear electromagnetic field with the algebraic structure T00=T11 for the energy-momentum tensor, partially satisfying the weak energy condition but not the strong energy condition. In the weak field limit, the EM field behaves like the Maxwell field. The solution corresponds to a charged black hole with q≤0.77 m. The metric, the curvature invariants, and the electric field are regular everywhere. The BH is stable against small perturbations of spacetime and using the Weinhold metric, geometrothermodynamical stability has been investigated. Finally we investigate the idea that the observable universe lives inside a regular black hole. We argue that this picture might provide a viable description of universe.
Numerical Comparison of Two-Body Regularizations
NASA Astrophysics Data System (ADS)
Fukushima, Toshio
2007-06-01
We numerically compare four schemes to regularize a three-dimensional two-body problem under perturbations: the Sperling-Bürdet (S-B), Kustaanheimo-Stiefel (K-S), and Bürdet-Ferrandiz (B-F) regularizations, and a three-dimensional extension of the Levi-Civita (L-C) regularization we developed recently. As for the integration time of the equation of motion, the least time is needed for the unregularized treatment, followed by the K-S, the extended L-C, the B-F, and the S-B regularizations. However, these differences become significantly smaller when the time to evaluate perturbations becomes dominant. As for the integration error after one close encounter, the K-S and the extended L-C regularizations are tied for the least error, followed by the S-B, the B-F, and finally the unregularized scheme for unperturbed orbits with eccentricity less than 2. This order is not changed significantly by various kinds of perturbations. As for the integration error of elliptical orbits after multiple orbital periods, the situation remains the same except for the rank of the S-B scheme, which varies from the best to the second worst depending on the length of integration and/or on the nature of perturbations. Also, we confirm that Kepler energy scaling enhances the performance of the unregularized, K-S, and extended L-C schemes. As a result, the K-S and the extended L-C regularizations with Kepler energy scaling provide the best cost performance in integrating almost all the perturbed two-body problems.
Regular transport dynamics produce chaotic travel times
NASA Astrophysics Data System (ADS)
Villalobos, Jorge; Muñoz, Víctor; Rogan, José; Zarama, Roberto; Johnson, Neil F.; Toledo, Benjamín; Valdivia, Juan Alejandro
2014-06-01
In the hope of making passenger travel times shorter and more reliable, many cities are introducing dedicated bus lanes (e.g., Bogota, London, Miami). Here we show that chaotic travel times are actually a natural consequence of individual bus function, and hence of public transport systems more generally, i.e., chaotic dynamics emerge even when the route is empty and straight, stops and lights are equidistant and regular, and loading times are negligible. More generally, our findings provide a novel example of chaotic dynamics emerging from a single object following Newton's laws of motion in a regularized one-dimensional system.
Regular transport dynamics produce chaotic travel times.
Villalobos, Jorge; Muñoz, Víctor; Rogan, José; Zarama, Roberto; Johnson, Neil F; Toledo, Benjamín; Valdivia, Juan Alejandro
2014-06-01
In the hope of making passenger travel times shorter and more reliable, many cities are introducing dedicated bus lanes (e.g., Bogota, London, Miami). Here we show that chaotic travel times are actually a natural consequence of individual bus function, and hence of public transport systems more generally, i.e., chaotic dynamics emerge even when the route is empty and straight, stops and lights are equidistant and regular, and loading times are negligible. More generally, our findings provide a novel example of chaotic dynamics emerging from a single object following Newton's laws of motion in a regularized one-dimensional system.
Demosaicing as the problem of regularization
NASA Astrophysics Data System (ADS)
Kunina, Irina; Volkov, Aleksey; Gladilin, Sergey; Nikolaev, Dmitry
2015-12-01
Demosaicing is the process of reconstruction of a full-color image from Bayer mosaic, which is used in digital cameras for image formation. This problem is usually considered as an interpolation problem. In this paper, we propose to consider the demosaicing problem as a problem of solving an underdetermined system of algebraic equations using regularization methods. We consider regularization with standard l1/2-, l1 -, l2- norms and their effect on quality image reconstruction. The experimental results showed that the proposed technique can both be used in existing methods and become the base for new ones
Recollections on Dimensional Regularization and Related Topics
NASA Astrophysics Data System (ADS)
Bollini, Carlos Guido
Professor Juan José Giambiagi and I started working on divergent diagrams in different number of dimensions in 1970. We had a certain idea about the behavior in odd or even number of dimensions, but the most important factor in our work, I think, was the previous experience with an analytical regularization method. We had developed it a few years before. Within this method the amplitudes turned out to be analytic functions of the regularizing parameter, with poles at the physical value of that parameter…
Existence of constants in regular splicing languages.
Bonizzoni, Paola; Jonoska, Nataša
2015-06-01
In spite of wide investigations of finite splicing systems in formal language theory, basic questions, such as their characterization, remain unsolved. It has been conjectured that a necessary condition for a regular language L to be a splicing language is that L must have a constant in the Schutzenberger sense. We prove this longstanding conjecture to be true. The result is based on properties of strongly connected components of the minimal deterministic finite state automaton for a regular splicing language. Using constants of the corresponding languages, we also provide properties of transitive automata and pathautomata.
Existence of constants in regular splicing languages
Jonoska, Nataša
2015-01-01
In spite of wide investigations of finite splicing systems in formal language theory, basic questions, such as their characterization, remain unsolved. It has been conjectured that a necessary condition for a regular language L to be a splicing language is that L must have a constant in the Schutzenberger sense. We prove this longstanding conjecture to be true. The result is based on properties of strongly connected components of the minimal deterministic finite state automaton for a regular splicing language. Using constants of the corresponding languages, we also provide properties of transitive automata and pathautomata. PMID:27185985
Generalised hyperbolicity in spacetimes with Lipschitz regularity
NASA Astrophysics Data System (ADS)
Sanchez Sanchez, Yafet; Vickers, James A.
2017-02-01
In this paper we obtain general conditions under which the wave equation is well-posed in spacetimes with metrics of Lipschitz regularity. In particular, the results can be applied to spacetimes where there is a loss of regularity on a hypersurface such as shell-crossing singularities, thin shells of matter, and surface layers. This provides a framework for regarding gravitational singularities not as obstructions to the world lines of point-particles, but rather as obstruction to the dynamics of test fields.
Regular homotopy for immersions of graphs into surfaces
NASA Astrophysics Data System (ADS)
Permyakov, D. A.
2016-06-01
We study invariants of regular immersions of graphs into surfaces up to regular homotopy. The concept of the winding number is used to introduce a new simple combinatorial invariant of regular homotopy. Bibliography: 20 titles.
Vagus nerve stimulation Overview By Mayo Clinic Staff Vagus nerve stimulation is a procedure that involves implantation of a device that stimulates the vagus nerve with electrical impulses. There's one vagus nerve on ...
NASA Astrophysics Data System (ADS)
Sumin, M. I.
2015-06-01
A parametric nonlinear programming problem in a metric space with an operator equality constraint in a Hilbert space is studied assuming that its lower semicontinuous value function at a chosen individual parameter value has certain subdifferentiability properties in the sense of nonlinear (nonsmooth) analysis. Such subdifferentiability can be understood as the existence of a proximal subgradient or a Fréchet subdifferential. In other words, an individual problem has a corresponding generalized Kuhn-Tucker vector. Under this assumption, a stable sequential Kuhn-Tucker theorem in nondifferential iterative form is proved and discussed in terms of minimizing sequences on the basis of the dual regularization method. This theorem provides necessary and sufficient conditions for the stable construction of a minimizing approximate solution in the sense of Warga in the considered problem, whose initial data can be approximately specified. A substantial difference of the proved theorem from its classical same-named analogue is that the former takes into account the possible instability of the problem in the case of perturbed initial data and, as a consequence, allows for the inherited instability of classical optimality conditions. This theorem can be treated as a regularized generalization of the classical Uzawa algorithm to nonlinear programming problems. Finally, the theorem is applied to the "simplest" nonlinear optimal control problem, namely, to a time-optimal control problem.
Tang, Jinping; Han, Bo; Han, Weimin; Bi, Bo; Li, Li
2017-01-01
Optical tomography is an emerging and important molecular imaging modality. The aim of optical tomography is to reconstruct optical properties of human tissues. In this paper, we focus on reconstructing the absorption coefficient based on the radiative transfer equation (RTE). It is an ill-posed parameter identification problem. Regularization methods have been broadly applied to reconstruct the optical coefficients, such as the total variation (TV) regularization and the L(1) regularization. In order to better reconstruct the piecewise constant and sparse coefficient distributions, TV and L(1) norms are combined as the regularization. The forward problem is discretized with the discontinuous Galerkin method on the spatial space and the finite element method on the angular space. The minimization problem is solved by a Jacobian-based Levenberg-Marquardt type method which is equipped with a split Bregman algorithms for the L(1) regularization. We use the adjoint method to compute the Jacobian matrix which dramatically improves the computation efficiency. By comparing with the other imaging reconstruction methods based on TV and L(1) regularizations, the simulation results show the validity and efficiency of the proposed method.
Bi, Bo; Li, Li
2017-01-01
Optical tomography is an emerging and important molecular imaging modality. The aim of optical tomography is to reconstruct optical properties of human tissues. In this paper, we focus on reconstructing the absorption coefficient based on the radiative transfer equation (RTE). It is an ill-posed parameter identification problem. Regularization methods have been broadly applied to reconstruct the optical coefficients, such as the total variation (TV) regularization and the L1 regularization. In order to better reconstruct the piecewise constant and sparse coefficient distributions, TV and L1 norms are combined as the regularization. The forward problem is discretized with the discontinuous Galerkin method on the spatial space and the finite element method on the angular space. The minimization problem is solved by a Jacobian-based Levenberg-Marquardt type method which is equipped with a split Bregman algorithms for the L1 regularization. We use the adjoint method to compute the Jacobian matrix which dramatically improves the computation efficiency. By comparing with the other imaging reconstruction methods based on TV and L1 regularizations, the simulation results show the validity and efficiency of the proposed method. PMID:28280517
A Quantitative Measure of Memory Reference Regularity
Mohan, T; de Supinski, B R; McKee, S A; Mueller, F; Yoo, A
2001-10-01
The memory performance of applications on existing architectures depends significantly on hardware features like prefetching and caching that exploit the locality of the memory accesses. The principle of locality has guided the design of many key micro-architectural features, including cache hierarchies, TLBs, and branch predictors. Quantitative measures of spatial and temporal locality have been useful for predicting the performance of memory hierarchy components. Unfortunately, the concept of locality is constrained to capturing memory access patterns characterized by proximity, while sophisticated memory systems are capable of exploiting other predictable access patterns. Here, we define the concepts of spatial and temporal regularity, and introduce a measure of spatial access regularity to quantify some of this predictability in access patterns. We present an efficient online algorithm to dynamically determine the spatial access regularity in an application's memory references, and demonstrate its use on a set of regular and irregular codes. We find that the use of our algorithm, with its associated overhead of trace generation, slows typical applications by a factor of 50-200, which is at least an order of magnitude better than traditional full trace generation approaches. Our approach can be applied to the characterization of program access patterns and in the implementation of sophisticated, software-assisted prefetching mechanisms, and its inherently parallel nature makes it well suited for use with multi-threaded programs.
Strategies of Teachers in the Regular Classroom
ERIC Educational Resources Information Center
De Leeuw, Renske Ria; De Boer, Anke Aaltje
2016-01-01
It is known that regular schoolteachers have difficulties in educating students with social, emotional and behavioral difficulties (SEBD), mainly because of their disruptive behavior. In order to manage the disruptive behavior of students with SEBD many advices and strategies are provided in educational literature. However, very little is known…
Regular Polygons with Rational Area or Perimeter.
ERIC Educational Resources Information Center
Killgrove, R. B.; Koster, D. W.
1991-01-01
Discussed are two approaches to determining which regular polygons, either inscribed within or circumscribed about the unit circle, exhibit rational area or rational perimeter. One approach involves applications of abstract theory from a typical modern algebra course, whereas the other approach employs material from a traditional…
Regularization of turbulence - a comprehensive modeling approach
NASA Astrophysics Data System (ADS)
Geurts, B. J.
2011-12-01
Turbulence readily arises in numerous flows in nature and technology. The large number of degrees of freedom of turbulence poses serious challenges to numerical approaches aimed at simulating and controlling such flows. While the Navier-Stokes equations are commonly accepted to precisely describe fluid turbulence, alternative coarsened descriptions need to be developed to cope with the wide range of length and time scales. These coarsened descriptions are known as large-eddy simulations in which one aims to capture only the primary features of a flow, at considerably reduced computational effort. Such coarsening introduces a closure problem that requires additional phenomenological modeling. A systematic approach to the closure problem, know as regularization modeling, will be reviewed. Its application to multiphase turbulent will be illustrated in which a basic regularization principle is enforced to physically consistently approximate momentum and scalar transport. Examples of Leray and LANS-alpha regularization are discussed in some detail, as are compatible numerical strategies. We illustrate regularization modeling to turbulence under the influence of rotation and buoyancy and investigate the accuracy with which particle-laden flow can be represented. A discussion of the numerical and modeling errors incurred will be given on the basis of homogeneous isotropic turbulence.
Starting flow in regular polygonal ducts
NASA Astrophysics Data System (ADS)
Wang, C. Y.
2016-06-01
The starting flows in regular polygonal ducts of S = 3, 4, 5, 6, 8 sides are determined by the method of eigenfunction superposition. The necessary S-fold symmetric eigenfunctions and eigenvalues of the Helmholtz equation are found either exactly or by boundary point match. The results show the starting time is governed by the first eigenvalue.
Regularity Aspects in Inverse Musculoskeletal Biomechanics
NASA Astrophysics Data System (ADS)
Lund, Marie; Stâhl, Fredrik; Gulliksson, Mârten
2008-09-01
Inverse simulations of musculoskeletal models computes the internal forces such as muscle and joint reaction forces, which are hard to measure, using the more easily measured motion and external forces as input data. Because of the difficulties of measuring muscle forces and joint reactions, simulations are hard to validate. One way of reducing errors for the simulations is to ensure that the mathematical problem is well-posed. This paper presents a study of regularity aspects for an inverse simulation method, often called forward dynamics or dynamical optimization, that takes into account both measurement errors and muscle dynamics. Regularity is examined for a test problem around the optimum using the approximated quadratic problem. The results shows improved rank by including a regularization term in the objective that handles the mechanical over-determinancy. Using the 3-element Hill muscle model the chosen regularization term is the norm of the activation. To make the problem full-rank only the excitation bounds should be included in the constraints. However, this results in small negative values of the activation which indicates that muscles are pushing and not pulling, which is unrealistic but the error maybe small enough to be accepted for specific applications. These results are a start to ensure better results of inverse musculoskeletal simulations from a numerical point of view.
Effective Special Education in Regular Classes.
ERIC Educational Resources Information Center
Wang, Margaret C.; Birch, Jack W.
1984-01-01
A study of 156 K-3 classrooms revealed that the Adaptive Learning Enviornments Model, an educational approach that accommodates, in regular classes, a wider-than-usual range of individual differences, can be implemented effectively in a variety of settings, and that favorable student outcome measures coincide with high degrees of program…
Semantic Gender Assignment Regularities in German
ERIC Educational Resources Information Center
Schwichtenberg, Beate; Schiller, Niels O.
2004-01-01
Gender assignment relates to a native speaker's knowledge of the structure of the gender system of his/her language, allowing the speaker to select the appropriate gender for each noun. Whereas categorical assignment rules and exceptional gender assignment are well investigated, assignment regularities, i.e., tendencies in the gender distribution…
Regularizing cosmological singularities by varying physical constants
Dąbrowski, Mariusz P.; Marosek, Konrad E-mail: k.marosek@wmf.univ.szczecin.pl
2013-02-01
Varying physical constant cosmologies were claimed to solve standard cosmological problems such as the horizon, the flatness and the Λ-problem. In this paper, we suggest yet another possible application of these theories: solving the singularity problem. By specifying some examples we show that various cosmological singularities may be regularized provided the physical constants evolve in time in an appropriate way.
Dyslexia in Regular Orthographies: Manifestation and Causation
ERIC Educational Resources Information Center
Wimmer, Heinz; Schurz, Matthias
2010-01-01
This article summarizes our research on the manifestation of dyslexia in German and on cognitive deficits, which may account for the severe reading speed deficit and the poor orthographic spelling performance that characterize dyslexia in regular orthographies. An only limited causal role of phonological deficits (phonological awareness,…
A Sim(2) invariant dimensional regularization
NASA Astrophysics Data System (ADS)
Alfaro, J.
2017-09-01
We introduce a Sim (2) invariant dimensional regularization of loop integrals. Then we can compute the one loop quantum corrections to the photon self energy, electron self energy and vertex in the Electrodynamics sector of the Very Special Relativity Standard Model (VSRSM).
Generalisation of Regular and Irregular Morphological Patterns.
ERIC Educational Resources Information Center
Prasada, Sandeep; and Pinker, Steven
1993-01-01
When it comes to explaining English verbs' patterns of regular and irregular generalization, single-network theories have difficulty with the former, rule-only theories with the latter process. Linguistic and psycholinguistic evidence, based on observation during experiments and simulations in morphological pattern generation, independently call…
Regular Nonchaotic Attractors with Positive Plural
NASA Astrophysics Data System (ADS)
Zhang, Xu
2016-12-01
The study of the strange nonchaotic attractors is an interesting topic, where the dynamics are neither regular nor chaotic (the word chaotic means the positive Lyapunov exponents), and the shape of the attractors has complicated geometry structure, or fractal structure. It is found that in a class of planar first-order nonautonomous systems, it is possible that there exist attractors, where the shape of the attractors is regular, the orbits are transitive on the attractors, and the dynamics are not chaotic. We call this type of attractors as regular nonchaotic attractors with positive plural, which are different from the strange nonchaotic attractors, attracting fixed points, or attracting periodic orbits. Several examples with computer simulations are given. The first two examples have annulus-shaped attractors. Another two examples have disk-shaped attractors. The last two examples with externally driven terms at two incommensurate frequencies have regular nonchaotic attractors with positive plural, implying that the existence of externally driven terms at two incommensurate frequencies might not be the sufficient condition to guarantee that the system has strange nonchaotic attractors.
Exploring the structural regularities in networks.
Shen, Hua-Wei; Cheng, Xue-Qi; Guo, Jia-Feng
2011-11-01
In this paper, we consider the problem of exploring structural regularities of networks by dividing the nodes of a network into groups such that the members of each group have similar patterns of connections to other groups. Specifically, we propose a general statistical model to describe network structure. In this model, a group is viewed as a hidden or unobserved quantity and it is learned by fitting the observed network data using the expectation-maximization algorithm. Compared with existing models, the most prominent strength of our model is the high flexibility. This strength enables it to possess the advantages of existing models and to overcome their shortcomings in a unified way. As a result, not only can broad types of structure be detected without prior knowledge of the type of intrinsic regularities existing in the target network, but also the type of identified structure can be directly learned from the network. Moreover, by differentiating outgoing edges from incoming edges, our model can detect several types of structural regularities beyond competing models. Tests on a number of real world and artificial networks demonstrate that our model outperforms the state-of-the-art model in shedding light on the structural regularities of networks, including the overlapping community structure, multipartite structure, and several other types of structure, which are beyond the capability of existing models.
Regularities in Spearman's Law of Diminishing Returns.
ERIC Educational Resources Information Center
Jensen, Arthur R.
2003-01-01
Examined the assumption that Spearman's law acts unsystematically and approximately uniformly for various subtests of cognitive ability in an IQ test battery when high- and low-ability IQ groups are selected. Data from national standardization samples for Wechsler adult and child IQ tests affirm regularities in Spearman's "Law of Diminishing…
Regularities in Spearman's Law of Diminishing Returns.
ERIC Educational Resources Information Center
Jensen, Arthur R.
2003-01-01
Examined the assumption that Spearman's law acts unsystematically and approximately uniformly for various subtests of cognitive ability in an IQ test battery when high- and low-ability IQ groups are selected. Data from national standardization samples for Wechsler adult and child IQ tests affirm regularities in Spearman's "Law of Diminishing…
TAUBERIAN THEOREMS FOR MATRIX REGULAR VARIATION
MEERSCHAERT, M. M.; SCHEFFLER, H.-P.
2013-01-01
Karamata’s Tauberian theorem relates the asymptotics of a nondecreasing right-continuous function to that of its Laplace-Stieltjes transform, using regular variation. This paper establishes the analogous Tauberian theorem for matrix-valued functions. Some applications to time series analysis are indicated. PMID:24644367
Strategies of Teachers in the Regular Classroom
ERIC Educational Resources Information Center
De Leeuw, Renske Ria; De Boer, Anke Aaltje
2016-01-01
It is known that regular schoolteachers have difficulties in educating students with social, emotional and behavioral difficulties (SEBD), mainly because of their disruptive behavior. In order to manage the disruptive behavior of students with SEBD many advices and strategies are provided in educational literature. However, very little is known…
Regularity of rotational travelling water waves.
Escher, Joachim
2012-04-13
Several recent results on the regularity of streamlines beneath a rotational travelling wave, along with the wave profile itself, will be discussed. The survey includes the classical water wave problem in both finite and infinite depth, capillary waves and solitary waves as well. A common assumption in all models to be discussed is the absence of stagnation points.
Asymmetry Factors Shaping Regular and Irregular Bursting Rhythms in Central Pattern Generators
Elices, Irene; Varona, Pablo
2017-01-01
Central Pattern Generator (CPG) circuits are neural networks that generate rhythmic motor patterns. These circuits are typically built of half-center oscillator subcircuits with reciprocally inhibitory connections. Another common property in many CPGs is the remarkable rich spiking-bursting dynamics of their constituent cells, which balance robustness and flexibility to generate their joint coordinated rhythms. In this paper, we use conductance-based models and realistic connection topologies inspired by the crustacean pyloric CPG to address the study of asymmetry factors shaping CPG bursting rhythms. In particular, we assess the role of asymmetric maximal synaptic conductances, time constants and gap-junction connectivity to establish the regularity of half-center oscillator based CPGs. We map and characterize the synaptic parameter space that lead to regular and irregular bursting activity in these networks. The analysis indicates that asymmetric configurations display robust regular rhythms and that large regions of both regular and irregular but coordinated rhythms exist as a function of the asymmetry in the circuit. Our results show that asymmetry both in the maximal conductances and in the temporal dynamics of mutually inhibitory neurons can synergistically contribute to shape wide regimes of regular spiking-bursting activity in CPGs. Finally, we discuss how a closed-loop protocol driven by a regularity goal can be used to find and characterize regular regimes when there is not time to perform an exhaustive search, as in most experimental studies. PMID:28261081
Application of perceptual difference model (PDM) on regularization techniques of parallel MR imaging
NASA Astrophysics Data System (ADS)
Huo, Donglai; Xu, Dan; Ying, Leslie; Liang, Zhi-Pei; Wilson, David
2005-04-01
Parallel magnetic resonance imaging through sensitivity encoding using multiple receiver coils has emerged as an effective tool to reduce imaging time or improve the image quality. Reconstructed image quality is limited by the noise in the acquired k-space data, inaccurate estimation of the sensitivity map, and the ill-conditioned nature of the coefficient matrix. Tikhonov Regularization is currently the most popular method to solve the ill-condition problem. Selections of the regularization map and the regularization parameter are very important. The Perceptual Difference Model (PDM) is a quantitative image quality evaluation tool which has been successfully applied to varieties of MR applications. High correlation between the human rating and the PDM score shows that PDM could be suitable for evaluating image quality in parallel MR imaging. By applying PDM, we compared four methods of selecting the regularization map and four methods of selecting regularization parameter. We find that generalized series (GS) method to select the regularization map together with spatially adaptive method to select the regularization parameter gives the best solution to reconstruct the image. PDM also work as a quantitative image quality index to optimize two important free parameters in spatially adaptive method. We conclude that PDM is an effective tool in helping design and optimize reconstruction methods in parallel MR imaging.
Asymmetry Factors Shaping Regular and Irregular Bursting Rhythms in Central Pattern Generators.
Elices, Irene; Varona, Pablo
2017-01-01
Central Pattern Generator (CPG) circuits are neural networks that generate rhythmic motor patterns. These circuits are typically built of half-center oscillator subcircuits with reciprocally inhibitory connections. Another common property in many CPGs is the remarkable rich spiking-bursting dynamics of their constituent cells, which balance robustness and flexibility to generate their joint coordinated rhythms. In this paper, we use conductance-based models and realistic connection topologies inspired by the crustacean pyloric CPG to address the study of asymmetry factors shaping CPG bursting rhythms. In particular, we assess the role of asymmetric maximal synaptic conductances, time constants and gap-junction connectivity to establish the regularity of half-center oscillator based CPGs. We map and characterize the synaptic parameter space that lead to regular and irregular bursting activity in these networks. The analysis indicates that asymmetric configurations display robust regular rhythms and that large regions of both regular and irregular but coordinated rhythms exist as a function of the asymmetry in the circuit. Our results show that asymmetry both in the maximal conductances and in the temporal dynamics of mutually inhibitory neurons can synergistically contribute to shape wide regimes of regular spiking-bursting activity in CPGs. Finally, we discuss how a closed-loop protocol driven by a regularity goal can be used to find and characterize regular regimes when there is not time to perform an exhaustive search, as in most experimental studies.
Bedoin, Nathalie; Brisseau, Lucie; Molinier, Pauline; Roch, Didier; Tillmann, Barbara
2016-01-01
Children with developmental language disorders have been shown to be also impaired in rhythm and meter perception. Temporal processing and its link to language processing can be understood within the dynamic attending theory. An external stimulus can stimulate internal oscillators, which orient attention over time and drive speech signal segmentation to provide benefits for syntax processing, which is impaired in various patient populations. For children with Specific Language Impairment (SLI) and dyslexia, previous research has shown the influence of an external rhythmic stimulation on subsequent language processing by comparing the influence of a temporally regular musical prime to that of a temporally irregular prime. Here we tested whether the observed rhythmic stimulation effect is indeed due to a benefit provided by the regular musical prime (rather than a cost subsequent to the temporally irregular prime). Sixteen children with SLI and 16 age-matched controls listened to either a regular musical prime sequence or an environmental sound scene (without temporal regularities in event occurrence; i.e., referred to as “baseline condition”) followed by grammatically correct and incorrect sentences. They were required to perform grammaticality judgments for each auditorily presented sentence. Results revealed that performance for the grammaticality judgments was better after the regular prime sequences than after the baseline sequences. Our findings are interpreted in the theoretical framework of the dynamic attending theory (Jones, 1976) and the temporal sampling (oscillatory) framework for developmental language disorders (Goswami, 2011). Furthermore, they encourage the use of rhythmic structures (even in non-verbal materials) to boost linguistic structure processing and outline perspectives for rehabilitation. PMID:27378833
Bedoin, Nathalie; Brisseau, Lucie; Molinier, Pauline; Roch, Didier; Tillmann, Barbara
2016-01-01
Children with developmental language disorders have been shown to be also impaired in rhythm and meter perception. Temporal processing and its link to language processing can be understood within the dynamic attending theory. An external stimulus can stimulate internal oscillators, which orient attention over time and drive speech signal segmentation to provide benefits for syntax processing, which is impaired in various patient populations. For children with Specific Language Impairment (SLI) and dyslexia, previous research has shown the influence of an external rhythmic stimulation on subsequent language processing by comparing the influence of a temporally regular musical prime to that of a temporally irregular prime. Here we tested whether the observed rhythmic stimulation effect is indeed due to a benefit provided by the regular musical prime (rather than a cost subsequent to the temporally irregular prime). Sixteen children with SLI and 16 age-matched controls listened to either a regular musical prime sequence or an environmental sound scene (without temporal regularities in event occurrence; i.e., referred to as "baseline condition") followed by grammatically correct and incorrect sentences. They were required to perform grammaticality judgments for each auditorily presented sentence. Results revealed that performance for the grammaticality judgments was better after the regular prime sequences than after the baseline sequences. Our findings are interpreted in the theoretical framework of the dynamic attending theory (Jones, 1976) and the temporal sampling (oscillatory) framework for developmental language disorders (Goswami, 2011). Furthermore, they encourage the use of rhythmic structures (even in non-verbal materials) to boost linguistic structure processing and outline perspectives for rehabilitation.
Galli-Resta, Lucia; Novelli, Elena; Viegi, Alessandro
2002-08-01
In the vertebrate retina cell layers support serial processing, while monolayered arrays of homotypic neurones tile each layer to allow parallel processing. How neurones form layers and arrays is still largely unknown. We show that monolayered retinal arrays are dynamic structures based on dendritic interactions between the array cells. The analysis of three developing retinal arrays shows that these become regular as a net of dendritic processes links neighbouring array cells. Molecular or pharmacological perturbations of microtubules within dendrites lead to a stereotyped and reversible disruption of array organization: array cells lose their regular spacing and the arrangement in a monolayer. This leads to a micro-mechanical explanation of how monolayers of regularly spaced 'like-cells' are formed.
NASA Astrophysics Data System (ADS)
Save, H.; Bettadpur, S. V.
2013-12-01
It has been demonstrated before that using Tikhonov regularization produces spherical harmonic solutions from GRACE that have very little residual stripes while capturing all the signal observed by GRACE within the noise level. This paper demonstrates a two-step process and uses Tikhonov regularization to remove the residual stripes in the CSR regularized spherical harmonic coefficients when computing the spatial projections. We discuss methods to produce mass anomaly grids that have no stripe features while satisfying the necessary condition of capturing all observed signal within the GRACE noise level.
Atomic oxygen stimulated outgassing
NASA Technical Reports Server (NTRS)
Linton, Roger C.; Reynolds, John M.
1991-01-01
The passive Long Duration Exposure Facility (LDEF) Experiment A0034, Atomic Oxygen Simulated Outgassing, consisted of two identical one-sixth tray modules, exposing selected thermal control coatings to atomic oxygen and the combined space environment on the leading edge and, for reference, to the relative wake environment on the trailing edge. Optical mirrors were included adjacent to the thermal coatings for deposition of outgassing products. Ultraviolet grade windows and metal covers were provided for additional assessment of the effects of the various environmental factors. Preliminary results indicate that orbital atomic oxygen is both a degrading and a optically restorative factor in the thermo-optical properties of selected thermal coatings. There is evidence of more severe optical degradation on collector mirrors adjacent to coatings that were exposed to the RAM-impinging atomic oxygen. This evidence of atomic oxygen stimulated outgassing is discussed in relation to alternative factors that could affect degradation. The general effects of the space environment on the experiment hardware as well as the specimens are discussed.
ERIC Educational Resources Information Center
Turk-Browne, Nicholas B.; Scholl, Brian J.; Chun, Marvin M.; Johnson, Marcia K.
2009-01-01
Our environment contains regularities distributed in space and time that can be detected by way of statistical learning. This unsupervised learning occurs without intent or awareness, but little is known about how it relates to other types of learning, how it affects perceptual processing, and how quickly it can occur. Here we use fMRI during…
Mainstreaming from Plan to Program: From the Perspective of the Regular Classroom Teacher.
ERIC Educational Resources Information Center
Battaglia, Marguerite
A regular classroom teacher describes a mainstreaming program for handicapped children within an open space and team teaching situation. Described are ways that placement procedures, the use of learning centers, and teacher attitudes can facilitate successful mainstreaming. Examples are given of methods of monitoring student progress and of…
ERIC Educational Resources Information Center
Turk-Browne, Nicholas B.; Scholl, Brian J.; Chun, Marvin M.; Johnson, Marcia K.
2009-01-01
Our environment contains regularities distributed in space and time that can be detected by way of statistical learning. This unsupervised learning occurs without intent or awareness, but little is known about how it relates to other types of learning, how it affects perceptual processing, and how quickly it can occur. Here we use fMRI during…
NASA Astrophysics Data System (ADS)
Bae, Hyeong-Ohk; Wolf, Jörg
2017-02-01
We prove the local regularity of a weak solution {\\varvec{u}} to the equations of a generalized Newtonian fluid with power law 1< q ≤ 2 if {\\varvec{u}} belongs to a suitable Lebesgue space. This result extends the well-known Serrin condition for weak solutions of the Navier-Stokes equations to the shear-thinning fluids.
Cubic Trigonometric B-spline Galerkin Methods for the Regularized Long Wave Equation
NASA Astrophysics Data System (ADS)
Irk, Dursun; Keskin, Pinar
2016-10-01
A numerical solution of the Regularized Long Wave (RLW) equation is obtained using Galerkin finite element method, based on Crank Nicolson method for the time integration and cubic trigonometric B-spline functions for the space integration. After two different linearization techniques are applied, the proposed algorithms are tested on the problems of propagation of a solitary wave and interaction of two solitary waves.
42 CFR 61.3 - Purpose of regular fellowships.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 42 Public Health 1 2013-10-01 2013-10-01 false Purpose of regular fellowships. 61.3 Section 61.3 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES FELLOWSHIPS, INTERNSHIPS, TRAINING FELLOWSHIPS Regular Fellowships § 61.3 Purpose of regular fellowships. Regular fellowships...
42 CFR 61.3 - Purpose of regular fellowships.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 42 Public Health 1 2014-10-01 2014-10-01 false Purpose of regular fellowships. 61.3 Section 61.3 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES FELLOWSHIPS, INTERNSHIPS, TRAINING FELLOWSHIPS Regular Fellowships § 61.3 Purpose of regular fellowships. Regular fellowships...
42 CFR 61.3 - Purpose of regular fellowships.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 42 Public Health 1 2011-10-01 2011-10-01 false Purpose of regular fellowships. 61.3 Section 61.3 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES FELLOWSHIPS, INTERNSHIPS, TRAINING FELLOWSHIPS Regular Fellowships § 61.3 Purpose of regular fellowships. Regular fellowships...
42 CFR 61.3 - Purpose of regular fellowships.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 42 Public Health 1 2012-10-01 2012-10-01 false Purpose of regular fellowships. 61.3 Section 61.3 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES FELLOWSHIPS, INTERNSHIPS, TRAINING FELLOWSHIPS Regular Fellowships § 61.3 Purpose of regular fellowships. Regular fellowships...
Chaos regularization of quantum tunneling rates.
Pecora, Louis M; Lee, Hoshik; Wu, Dong-Ho; Antonsen, Thomas; Lee, Ming-Jer; Ott, Edward
2011-06-01
Quantum tunneling rates through a barrier separating two-dimensional, symmetric, double-well potentials are shown to depend on the classical dynamics of the billiard trajectories in each well and, hence, on the shape of the wells. For shapes that lead to regular (integrable) classical dynamics the tunneling rates fluctuate greatly with eigenenergies of the states sometimes by over two orders of magnitude. Contrarily, shapes that lead to completely chaotic trajectories lead to tunneling rates whose fluctuations are greatly reduced, a phenomenon we call regularization of tunneling rates. We show that a random-plane-wave theory of tunneling accounts for the mean tunneling rates and the small fluctuation variances for the chaotic systems.
Tracking magnetogram proper motions by multiscale regularization
NASA Technical Reports Server (NTRS)
Jones, Harrison P.
1995-01-01
Long uninterrupted sequences of solar magnetograms from the global oscillations network group (GONG) network and from the solar and heliospheric observatory (SOHO) satellite will provide the opportunity to study the proper motions of magnetic features. The possible use of multiscale regularization, a scale-recursive estimation technique which begins with a prior model of how state variables and their statistical properties propagate over scale. Short magnetogram sequences are analyzed with the multiscale regularization algorithm as applied to optical flow. This algorithm is found to be efficient, provides results for all the spatial scales spanned by the data and provides error estimates for the solutions. It is found that the algorithm is less sensitive to evolutionary changes than correlation tracking.
Variational regularized 2-D nonnegative matrix factorization.
Gao, Bin; Woo, W L; Dlay, S S
2012-05-01
A novel approach for adaptive regularization of 2-D nonnegative matrix factorization is presented. The proposed matrix factorization is developed under the framework of maximum a posteriori probability and is adaptively fine-tuned using the variational approach. The method enables: (1) a generalized criterion for variable sparseness to be imposed onto the solution; and (2) prior information to be explicitly incorporated into the basis features. The method is computationally efficient and has been demonstrated on two applications, that is, extracting features from image and separating single channel source mixture. In addition, it is shown that the basis features of an information-bearing matrix can be extracted more efficiently using the proposed regularized priors. Experimental tests have been rigorously conducted to verify the efficacy of the proposed method.
Convex nonnegative matrix factorization with manifold regularization.
Hu, Wenjun; Choi, Kup-Sze; Wang, Peiliang; Jiang, Yunliang; Wang, Shitong
2015-03-01
Nonnegative Matrix Factorization (NMF) has been extensively applied in many areas, including computer vision, pattern recognition, text mining, and signal processing. However, nonnegative entries are usually required for the data matrix in NMF, which limits its application. Besides, while the basis and encoding vectors obtained by NMF can represent the original data in low dimension, the representations do not always reflect the intrinsic geometric structure embedded in the data. Motivated by manifold learning and Convex NMF (CNMF), we propose a novel matrix factorization method called Graph Regularized and Convex Nonnegative Matrix Factorization (GCNMF) by introducing a graph regularized term into CNMF. The proposed matrix factorization technique not only inherits the intrinsic low-dimensional manifold structure, but also allows the processing of mixed-sign data matrix. Clustering experiments on nonnegative and mixed-sign real-world data sets are conducted to demonstrate the effectiveness of the proposed method. Copyright © 2014 Elsevier Ltd. All rights reserved.
Regularity of nuclear structure under random interactions
Zhao, Y. M.
2011-05-06
In this contribution I present a brief introduction to simplicity out of complexity in nuclear structure, specifically, the regularity of nuclear structure under random interactions. I exemplify such simplicity by two examples: spin-zero ground state dominance and positive parity ground state dominance in even-even nuclei. Then I discuss two recent results of nuclear structure in the presence of random interactions, in collaboration with Prof. Arima. Firstly I discuss sd bosons under random interactions, with the focus on excited states in the yrast band. We find a few regular patterns in these excited levels. Secondly I discuss our recent efforts towards obtaining eigenvalues without diagonalizing the full matrices of the nuclear shell model Hamiltonian.
Modeling Regular Replacement for String Constraint Solving
NASA Technical Reports Server (NTRS)
Fu, Xiang; Li, Chung-Chih
2010-01-01
Bugs in user input sanitation of software systems often lead to vulnerabilities. Among them many are caused by improper use of regular replacement. This paper presents a precise modeling of various semantics of regular substitution, such as the declarative, finite, greedy, and reluctant, using finite state transducers (FST). By projecting an FST to its input/output tapes, we are able to solve atomic string constraints, which can be applied to both the forward and backward image computation in model checking and symbolic execution of text processing programs. We report several interesting discoveries, e.g., certain fragments of the general problem can be handled using less expressive deterministic FST. A compact representation of FST is implemented in SUSHI, a string constraint solver. It is applied to detecting vulnerabilities in web applications
Symmetries and regular behavior of Hamiltonian systems.
Kozlov, Valeriy V.
1996-03-01
The behavior of the phase trajectories of the Hamilton equations is commonly classified as regular and chaotic. Regularity is usually related to the condition for complete integrability, i.e., a Hamiltonian system with n degrees of freedom has n independent integrals in involution. If at the same time the simultaneous integral manifolds are compact, the solutions of the Hamilton equations are quasiperiodic. In particular, the entropy of the Hamiltonian phase flow of a completely integrable system is zero. It is found that there is a broader class of Hamiltonian systems that do not show signs of chaotic behavior. These are systems that allow n commuting "Lagrangian" vector fields, i.e., the symplectic 2-form on each pair of such fields is zero. They include, in particular, Hamiltonian systems with multivalued integrals. (c) 1996 American Institute of Physics.
Power-law regularities in human language
NASA Astrophysics Data System (ADS)
Mehri, Ali; Lashkari, Sahar Mohammadpour
2016-11-01
Complex structure of human language enables us to exchange very complicated information. This communication system obeys some common nonlinear statistical regularities. We investigate four important long-range features of human language. We perform our calculations for adopted works of seven famous litterateurs. Zipf's law and Heaps' law, which imply well-known power-law behaviors, are established in human language, showing a qualitative inverse relation with each other. Furthermore, the informational content associated with the words ordering, is measured by using an entropic metric. We also calculate fractal dimension of words in the text by using box counting method. The fractal dimension of each word, that is a positive value less than or equal to one, exhibits its spatial distribution in the text. Generally, we can claim that the Human language follows the mentioned power-law regularities. Power-law relations imply the existence of long-range correlations between the word types, to convey an especial idea.
Charged fermions tunneling from regular black holes
Sharif, M. Javed, W.
2012-11-15
We study Hawking radiation of charged fermions as a tunneling process from charged regular black holes, i.e., the Bardeen and ABGB black holes. For this purpose, we apply the semiclassical WKB approximation to the general covariant Dirac equation for charged particles and evaluate the tunneling probabilities. We recover the Hawking temperature corresponding to these charged regular black holes. Further, we consider the back-reaction effects of the emitted spin particles from black holes and calculate their corresponding quantum corrections to the radiation spectrum. We find that this radiation spectrum is not purely thermal due to the energy and charge conservation but has some corrections. In the absence of charge, e = 0, our results are consistent with those already present in the literature.
Regular Magnetic Black Hole Gravitational Lensing
NASA Astrophysics Data System (ADS)
Liang, Jun
2017-05-01
The Bronnikov regular magnetic black hole as a gravitational lens is studied. In nonlinear electrodynamics, photons do not follow null geodesics of background geometry, but move along null geodesics of a corresponding effective geometry. To study the Bronnikov regular magnetic black hole gravitational lensing in the strong deflection limit, the corresponding effective geometry should be obtained firstly. This is the most important and key step. We obtain the deflection angle in the strong deflection limit, and further calculate the angular positions and magnifications of relativistic images as well as the time delay between different relativistic images. The influence of the magnetic charge on the black hole gravitational lensing is also discussed. Supported by the Natural Science Foundation of Education Department of Shannxi Province under Grant No 15JK1077, and the Doctorial Scientific Research Starting Fund of Shannxi University of Science and Technology under Grant No BJ12-02.
Superfast Tikhonov Regularization of Toeplitz Systems
NASA Astrophysics Data System (ADS)
Turnes, Christopher K.; Balcan, Doru; Romberg, Justin
2014-08-01
Toeplitz-structured linear systems arise often in practical engineering problems. Correspondingly, a number of algorithms have been developed that exploit Toeplitz structure to gain computational efficiency when solving these systems. The earliest "fast" algorithms for Toeplitz systems required O(n^2) operations, while more recent "superfast" algorithms reduce the cost to O(n (log n)^2) or below. In this work, we present a superfast algorithm for Tikhonov regularization of Toeplitz systems. Using an "extension-and-transformation" technique, our algorithm translates a Tikhonov-regularized Toeplitz system into a type of specialized polynomial problem known as tangential interpolation. Under this formulation, we can compute the solution in only O(n (log n)^2) operations. We use numerical simulations to demonstrate our algorithm's complexity and verify that it returns stable solutions.
3D Gravity Inversion using Tikhonov Regularization
NASA Astrophysics Data System (ADS)
Toushmalani, Reza; Saibi, Hakim
2015-08-01
Subsalt exploration for oil and gas is attractive in regions where 3D seismic depth-migration to recover the geometry of a salt base is difficult. Additional information to reduce the ambiguity in seismic images would be beneficial. Gravity data often serve these purposes in the petroleum industry. In this paper, the authors present an algorithm for a gravity inversion based on Tikhonov regularization and an automatically regularized solution process. They examined the 3D Euler deconvolution to extract the best anomaly source depth as a priori information to invert the gravity data and provided a synthetic example. Finally, they applied the gravity inversion to recently obtained gravity data from the Bandar Charak (Hormozgan, Iran) to identify its subsurface density structure. Their model showed the 3D shape of salt dome in this region.
Speech enhancement using local spectral regularization
NASA Astrophysics Data System (ADS)
Sandoval-Ibarra, Yuma; Diaz-Ramirez, Victor H.; Kober, Vitaly; Diaz, Arnoldo
2016-09-01
A locally-adaptive algorithm for speech enhancement based on local spectral regularization is presented. The algorithm is able to retrieve a clean speech signal from a noisy signal using locally-adaptive signal processing. The proposed algorithm is able to increase the quality of a noisy signal in terms of objective metrics. Computer simulation results obtained with the proposed algorithm are presented and discussed in processing speech signals corrupted with additive noise.
A regularization approach to hydrofacies delineation
Wohlberg, Brendt; Tartakovsky, Daniel
2009-01-01
We consider an inverse problem of identifying complex internal structures of composite (geological) materials from sparse measurements of system parameters and system states. Two conceptual frameworks for identifying internal boundaries between constitutive materials in a composite are considered. A sequential approach relies on support vector machines, nearest neighbor classifiers, or geostatistics to reconstruct boundaries from measurements of system parameters and then uses system states data to refine the reconstruction. A joint approach inverts the two data sets simultaneously by employing a regularization approach.
Spectra of sparse regular graphs with loops.
Metz, F L; Neri, I; Bollé, D
2011-11-01
We derive exact equations that determine the spectra of undirected and directed sparsely connected regular graphs containing loops of arbitrary lengths. The implications of our results for the structural and dynamical properties of network models are discussed by showing how loops influence the size of the spectral gap and the propensity for synchronization. Analytical formulas for the spectrum are obtained for specific lengths of the loops.
Bouncing cosmology inspired by regular black holes
NASA Astrophysics Data System (ADS)
Neves, J. C. S.
2017-09-01
In this article, we present a bouncing cosmology inspired by a family of regular black holes. This scale-dependent cosmology deviates from the cosmological principle by means of a scale factor which depends on the time and the radial coordinate as well. The model is isotropic but not perfectly homogeneous. That is, this cosmology describes a universe almost homogeneous only for large scales, such as our observable universe.
Optical tomography by means of regularized MLEM
NASA Astrophysics Data System (ADS)
Majer, Charles L.; Urbanek, Tina; Peter, Jörg
2015-09-01
To solve the inverse problem involved in fluorescence mediated tomography a regularized maximum likelihood expectation maximization (MLEM) reconstruction strategy is proposed. This technique has recently been applied to reconstruct galaxy clusters in astronomy and is adopted here. The MLEM algorithm is implemented as Richardson-Lucy (RL) scheme and includes entropic regularization and a floating default prior. Hence, the strategy is very robust against measurement noise and also avoids converging into noise patterns. Normalized Gaussian filtering with fixed standard deviation is applied for the floating default kernel. The reconstruction strategy is investigated using the XFM-2 homogeneous mouse phantom (Caliper LifeSciences Inc., Hopkinton, MA) with known optical properties. Prior to optical imaging, X-ray CT tomographic data of the phantom were acquire to provide structural context. Phantom inclusions were fit with various fluorochrome inclusions (Cy5.5) for which optical data at 60 projections over 360 degree have been acquired, respectively. Fluorochrome excitation has been accomplished by scanning laser point illumination in transmission mode (laser opposite to camera). Following data acquisition, a 3D triangulated mesh is derived from the reconstructed CT data which is then matched with the various optical projection images through 2D linear interpolation, correlation and Fourier transformation in order to assess translational and rotational deviations between the optical and CT imaging systems. Preliminary results indicate that the proposed regularized MLEM algorithm, when driven with a constant initial condition, yields reconstructed images that tend to be smoother in comparison to classical MLEM without regularization. Once the floating default prior is included this bias was significantly reduced.
Regularization Parameter Selections via Generalized Information Criterion
Zhang, Yiyun; Li, Runze; Tsai, Chih-Ling
2009-01-01
We apply the nonconcave penalized likelihood approach to obtain variable selections as well as shrinkage estimators. This approach relies heavily on the choice of regularization parameter, which controls the model complexity. In this paper, we propose employing the generalized information criterion (GIC), encompassing the commonly used Akaike information criterion (AIC) and Bayesian information criterion (BIC), for selecting the regularization parameter. Our proposal makes a connection between the classical variable selection criteria and the regularization parameter selections for the nonconcave penalized likelihood approaches. We show that the BIC-type selector enables identification of the true model consistently, and the resulting estimator possesses the oracle property in the terminology of Fan and Li (2001). In contrast, however, the AIC-type selector tends to overfit with positive probability. We further show that the AIC-type selector is asymptotically loss efficient, while the BIC-type selector is not. Our simulation results confirm these theoretical findings, and an empirical example is presented. Some technical proofs are given in the online supplementary material. PMID:20676354
Guaranteed classification via regularized similarity learning.
Guo, Zheng-Chu; Ying, Yiming
2014-03-01
Learning an appropriate (dis)similarity function from the available data is a central problem in machine learning, since the success of many machine learning algorithms critically depends on the choice of a similarity function to compare examples. Despite many approaches to similarity metric learning that have been proposed, there has been little theoretical study on the links between similarity metric learning and the classification performance of the resulting classifier. In this letter, we propose a regularized similarity learning formulation associated with general matrix norms and establish their generalization bounds. We show that the generalization error of the resulting linear classifier can be bounded by the derived generalization bound of similarity learning. This shows that a good generalization of the learned similarity function guarantees a good classification of the resulting linear classifier. Our results extend and improve those obtained by Bellet, Habrard, and Sebban (2012). Due to the techniques dependent on the notion of uniform stability (Bousquet & Elisseeff, 2002), the bound obtained there holds true only for the Frobenius matrix-norm regularization. Our techniques using the Rademacher complexity (Bartlett & Mendelson, 2002) and its related Khinchin-type inequality enable us to establish bounds for regularized similarity learning formulations associated with general matrix norms, including sparse L1-norm and mixed (2,1)-norm.
Automatic detection of regularly repeating vocalizations
NASA Astrophysics Data System (ADS)
Mellinger, David
2005-09-01
Many animal species produce repetitive sounds at regular intervals. This regularity can be used for automatic recognition of the sounds, providing improved detection at a given signal-to-noise ratio. Here, the detection of sperm whale sounds is examined. Sperm whales produce highly repetitive ``regular clicks'' at periods of about 0.2-2 s, and faster click trains in certain behavioral contexts. The following detection procedure was tested: a spectrogram was computed; values within a certain frequency band were summed; time windowing was applied; each windowed segment was autocorrelated; and the maximum of the autocorrelation within a certain periodicity range was chosen. This procedure was tested on sets of recordings containing sperm whale sounds and interfering sounds, both low-frequency recordings from autonomous hydrophones and high-frequency ones from towed hydrophone arrays. An optimization procedure iteratively varies detection parameters (spectrogram frame length and frequency range, window length, periodicity range, etc.). Performance of various sets of parameters was measured by setting a standard level of allowable missed calls, and the resulting optimium parameters are described. Performance is also compared to that of a neural network trained using the data sets. The method is also demonstrated for sounds of blue whales, minke whales, and seismic airguns. [Funding from ONR.
Regularization Parameter Selections via Generalized Information Criterion.
Zhang, Yiyun; Li, Runze; Tsai, Chih-Ling
2010-03-01
We apply the nonconcave penalized likelihood approach to obtain variable selections as well as shrinkage estimators. This approach relies heavily on the choice of regularization parameter, which controls the model complexity. In this paper, we propose employing the generalized information criterion (GIC), encompassing the commonly used Akaike information criterion (AIC) and Bayesian information criterion (BIC), for selecting the regularization parameter. Our proposal makes a connection between the classical variable selection criteria and the regularization parameter selections for the nonconcave penalized likelihood approaches. We show that the BIC-type selector enables identification of the true model consistently, and the resulting estimator possesses the oracle property in the terminology of Fan and Li (2001). In contrast, however, the AIC-type selector tends to overfit with positive probability. We further show that the AIC-type selector is asymptotically loss efficient, while the BIC-type selector is not. Our simulation results confirm these theoretical findings, and an empirical example is presented. Some technical proofs are given in the online supplementary material.
Space Awareness: Inspiring A New Generation of Space Explorers
NASA Astrophysics Data System (ADS)
Russo, Pedro
2016-10-01
Space Awareness (EUSPACE-AWE) will use the excitement of space to attract young people into science and technology and stimulate European and global citizenship. Our main goal is to increase the number of young people that choose space-related careers.
NASA Astrophysics Data System (ADS)
Parekh, Ankit
Sparsity has become the basis of some important signal processing methods over the last ten years. Many signal processing problems (e.g., denoising, deconvolution, non-linear component analysis) can be expressed as inverse problems. Sparsity is invoked through the formulation of an inverse problem with suitably designed regularization terms. The regularization terms alone encode sparsity into the problem formulation. Often, the ℓ1 norm is used to induce sparsity, so much so that ℓ1 regularization is considered to be `modern least-squares'. The use of ℓ1 norm, as a sparsity-inducing regularizer, leads to a convex optimization problem, which has several benefits: the absence of extraneous local minima, well developed theory of globally convergent algorithms, even for large-scale problems. Convex regularization via the ℓ1 norm, however, tends to under-estimate the non-zero values of sparse signals. In order to estimate the non-zero values more accurately, non-convex regularization is often favored over convex regularization. However, non-convex regularization generally leads to non-convex optimization, which suffers from numerous issues: convergence may be guaranteed to only a stationary point, problem specific parameters may be difficult to set, and the solution is sensitive to the initialization of the algorithm. The first part of this thesis is aimed toward combining the benefits of non-convex regularization and convex optimization to estimate sparse signals more effectively. To this end, we propose to use parameterized non-convex regularizers with designated non-convexity and provide a range for the non-convex parameter so as to ensure that the objective function is strictly convex. By ensuring convexity of the objective function (sum of data-fidelity and non-convex regularizer), we can make use of a wide variety of convex optimization algorithms to obtain the unique global minimum reliably. The second part of this thesis proposes a non-linear signal
Interfacial turbulence and regularization in electrified falling films
NASA Astrophysics Data System (ADS)
Tseluiko, Dmitri; Blyth, Mark; Lin, Te-Sheng; Kalliadasis, Serafim
2016-11-01
Consider a liquid film flowing down an inclined wall and subjected to a normal electric field. Previous studies on the problem invoked the long-wave approximation. Here, for the first time, we analyze the Stokes-flow regime using both a non-local long-wave model and the full system of governing equations. For an obtuse inclination angle and strong surface tension, the evolution of the interface is chaotic in space and time. However, a sufficiently strong electric field has a regularizing effect, and the time-dependent solution evolves into an array of continuously interacting pulses, each of which resembles a single-hump solitary pulse. This is the so-called interfacial turbulence regime. For an acute inclination angle and a sufficiently small supercritical value of the electric field, solitary-pulse solutions do not exist, and the time-dependent solution is instead a modulated array of short-wavelength waves. When the electric field is increased, the evolution of the interface first becomes chaotic, but then is regularized so that an array of pulses is generated. A coherent-structure theory for such pulses is developed and corroborated by numerical simulations. This work was supported by the EPSRC under Grants EP/J001740/1 and EP/K041134/1.
Regularities and symmetries in atomic structure and spectra
NASA Astrophysics Data System (ADS)
Pain, Jean-Christophe
2013-09-01
The use of statistical methods for the description of complex quantum systems was primarily motivated by the failure of a line-by-line interpretation of atomic spectra. Such methods reveal regularities and trends in the distributions of levels and lines. In the past, much attention was paid to the distribution of energy levels (Wigner surmise, random-matrix model…). However, information about the distribution of the lines (energy and strength) is lacking. Thirty years ago, Learner found empirically an unexpected law: the logarithm of the number of lines whose intensities lie between 2kI0 and 2k+1I0, I0 being a reference intensity and k an integer, is a decreasing linear function of k. In the present work, the fractal nature of such an intriguing regularity is outlined and a calculation of its fractal dimension is proposed. Other peculiarities are also presented, such as the fact that the distribution of line strengths follows Benford's law of anomalous numbers, the existence of additional selection rules (PH coupling), the symmetry with respect to a quarter of the subshell in the spin-adapted space (LL coupling) and the odd-even staggering in the distribution of quantum numbers, pointed out by Bauche and Cossé.
Relational-Regularized Discriminative Sparse Learning for Alzheimer's Disease Diagnosis.
Lei, Baiying; Yang, Peng; Wang, Tianfu; Chen, Siping; Ni, Dong
2017-01-16
Accurate identification and understanding informative feature is important for early Alzheimer's disease (AD) prognosis and diagnosis. In this paper, we propose a novel discriminative sparse learning method with relational regularization to jointly predict the clinical score and classify AD disease stages using multimodal features. Specifically, we apply a discriminative learning technique to expand the class-specific difference and include geometric information for effective feature selection. In addition, two kind of relational information are incorporated to explore the intrinsic relationships among features and training subjects in terms of similarity learning. We map the original feature into the target space to identify the informative and predictive features by sparse learning technique. A unique loss function is designed to include both discriminative learning and relational regularization methods. Experimental results based on a total of 805 subjects [including 226 AD patients, 393 mild cognitive impairment (MCI) subjects, and 186 normal controls (NCs)] from AD neuroimaging initiative database show that the proposed method can obtain a classification accuracy of 94.68% for AD versus NC, 80.32% for MCI versus NC, and 74.58% for progressive MCI versus stable MCI, respectively. In addition, we achieve remarkable performance for the clinical scores prediction and classification label identification, which has efficacy for AD disease diagnosis and prognosis. The algorithm comparison demonstrates the effectiveness of the introduced learning techniques and superiority over the state-of-the-arts methods.
Chiral Thirring–Wess model with Faddeevian regularization
Rahaman, Anisur
2015-03-15
Replacing vector type of interaction of the Thirring–Wess model by the chiral type a new model is presented which is termed here as chiral Thirring–Wess model. Ambiguity parameters of regularization are so chosen that the model falls into the Faddeevian class. The resulting Faddeevian class of model in general does not possess Lorentz invariance. However we can exploit the arbitrariness admissible in the ambiguity parameters to relate the quantum mechanically generated ambiguity parameters with the classical parameter involved in the masslike term of the gauge field which helps to maintain physical Lorentz invariance instead of the absence of manifestly Lorentz covariance of the model. The phase space structure and the theoretical spectrum of this class of model have been determined through Dirac’s method of quantization of constraint system.
Graph Regularized Nonnegative Matrix Factorization for Data Representation.
Cai, Deng; He, Xiaofei; Han, Jiawei; Huang, Thomas S
2011-08-01
Matrix factorization techniques have been frequently applied in information retrieval, computer vision, and pattern recognition. Among them, Nonnegative Matrix Factorization (NMF) has received considerable attention due to its psychological and physiological interpretation of naturally occurring data whose representation may be parts based in the human brain. On the other hand, from the geometric perspective, the data is usually sampled from a low-dimensional manifold embedded in a high-dimensional ambient space. One then hopes to find a compact representation,which uncovers the hidden semantics and simultaneously respects the intrinsic geometric structure. In this paper, we propose a novel algorithm, called Graph Regularized Nonnegative Matrix Factorization (GNMF), for this purpose. In GNMF, an affinity graph is constructed to encode the geometrical information and we seek a matrix factorization, which respects the graph structure. Our empirical study shows encouraging results of the proposed algorithm in comparison to the state-of-the-art algorithms on real-world problems.
ERIC Educational Resources Information Center
Flanagan, Sue
2001-01-01
Introduces some ideas for using space in classrooms. Provides a rationale for using space as part of the curriculum and focuses on the concept of a space mission as a vehicle for learning. Includes a list of some space-related web sites. (DDR)
New approach to gridding using regularization and estimation theory.
Rosenfeld, Daniel
2002-07-01
When sampling under time-varying gradients, data is acquired over a non-equally spaced grid in k-space. The most computationally efficient method of reconstruction is first to interpolate the data onto a Cartesian grid, enabling the subsequent use of the inverse fast Fourier transform (IFFT). The most commonly used interpolation technique is called gridding, and is comprised of four steps: precompensation, convolution with a Kaiser-Bessel window, IFFT, and postcompensation. Recently, the author introduced a new gridding method called Block Uniform ReSampling (BURS), which is both optimal and efficient. The interpolation coefficients are computed by solving a set of linear equations using singular value decomposition (SVD). BURS requires neither the pre- nor the postcompensation steps, and resamples onto an n x n grid rather than the 2n x 2n matrix required by conventional gridding. This significantly decreases the computational complexity. Several authors have reported that although the BURS algorithm is very accurate, it is also sensitive to noise. As a consequence, even in the presence of a low level of measurement noise, the resulting image is often highly contaminated with noise. In this work, the origin of the noise sensitivity is traced back to the potentially ill-posed matrix inversion performed by BURS. Two approaches to the solution are presented. The first uses regularization theory to stabilize the inversion process. The second formulates the interpolation as an estimation problem, and employs estimation theory for the solution. The new algorithm, called rBURS, contains a regularization parameter, which is used to trade off the accuracy of the result against the signal-to-noise ratio (SNR). The results of the new method are compared with those obtained using conventional gridding via simulations. For the SNR performance of conventional gridding, it is shown that the rBURS algorithm exhibits equal or better accuracy. This is achieved at a decreased
Cao, Nannan; Nehorai, Arye; Jacobs, Mathews
2007-10-17
We present an image reconstruction method for diffuse optical tomography (DOT) by using the sparsity regularization and expectation-maximization (EM) algorithm. Typical image reconstruction approaches in DOT employ Tikhonov-type regularization, which imposes restrictions on the L(2) norm of the optical properties (absorption/scattering coefficients). It tends to cause a blurring effect in the reconstructed image and works best when the unknown parameters follow a Gaussian distribution. In reality, the abnormality is often localized in space. Therefore, the vector corresponding to the change of the optical properties compared with the background would be sparse with only a few elements being nonzero. To incorporate this information and improve the performance, we propose an image reconstruction method by regularizing the L(1) norm of the unknown parameters and solve it iteratively using the expectation-maximization algorithm. We verify our method using simulated 3D examples and compare the reconstruction performance of our approach with the level-set algorithm, Tikhonov regularization, and simultaneous iterative reconstruction technique (SIRT). Numerical results show that our method provides better resolution than the Tikhonov-type regularization and is also efficient in estimating two closely spaced abnormalities.
[Spinal cord stimulation for the management of chronic pain].
Perruchoud, Christophe; Mariotti, Nicolas
2016-06-22
Neuromodulation techniques modify the activity of the central or peripheral nervous system. Spinal cord stimulation is a reversible and minimally invasive treatment whose efficacy and cost effectiveness are recognized for the treatment of chronic neuropathic pain or ischemic pain. Spinal cord stimulation is not the option of last resort and should be considered among other options before prescribing long-term opioids or considering reoperation. The selection and regular follow-up of patients are crucial to the success of the therapy.
NASA Astrophysics Data System (ADS)
Goehlich, Robert A.; Rücker, Udo
2005-01-01
It is believed that a potential means for further significant reduction of the recurrent launch cost, which results also in a stimulation of launch rates of small satellites, is to make the launcher reusable, to increase its reliability and to make it suitable for new markets such as mass space tourism. Therefore, not only launching small satellites with expendable rockets on non-regular flights but also with reusable rockets on regular flights should be considered for the long term. However, developing, producing and operating reusable rockets require a fundamental change in the current "business as usual" philosophy. Under current conditions, it might not be possible to develop, to produce or to operate a reusable vehicle fleet economically. The favorite philosophy is based on "smart business" processes adapted by the authors using cost engineering techniques. In the following paper, major strategies for reducing costs are discussed, which are applied for a representative program proposal.
Cohen-Bacrie, C; Goussard, Y; Guardo, R
1997-10-01
This paper describes a new approach to reconstruction of the conductivity field in electrical impedance tomography. Our goal is to improve the tradeoff between the quality of the images and the numerical complexity of the reconstruction method. In order to reduce the computational load, we adopt a linearized approximation to the forward problem that describes the relationship between the unknown conductivity and the measurements. In this framework, we focus on finding a proper way to cope with the ill-posed nature of the problem, mainly caused by strong attenuation phenomena; this is done by devising regularization techniques well suited to this particular problem. First, we propose a solution which is based on Tikhonov regularization of the problem. Second, we introduce an original regularized reconstruction method in which the regularization matrix is determined by space-uniformization of the variance of the reconstructed condictivities. Both methods are nonsupervised, i.e., all tuning parameters are automatically determined from the measured data. Tests performed on simulated and real data indicate that Tikhonov regularization provides results similar to those obtained with iterative methods, but with a much smaller amount of computations. Regularization using a variance uniformization constraint yields further improvements, particularly in the central region of the unknown object where attenuation is most severe. We anticipate that the variance uniformization approach could be adapted to iterative methods that preserve the nonlinearity of the forward problem. More generally, it appears as a useful tool for solving other severely ill-posed reconstruction problems such as eddy current tomography.
Analysis of regularized inversion of data corrupted by white Gaussian noise
NASA Astrophysics Data System (ADS)
Kekkonen, Hanne; Lassas, Matti; Siltanen, Samuli
2014-04-01
Tikhonov regularization is studied in the case of linear pseudodifferential operator as the forward map and additive white Gaussian noise as the measurement error. The measurement model for an unknown function u(x) is \\begin{eqnarray*} m(x) = Au(x) + \\delta \\varepsilon (x), \\end{eqnarray*} where δ > 0 is the noise magnitude. If ɛ was an L2-function, Tikhonov regularization gives an estimate \\begin{eqnarray*} T_\\alpha (m) = \\mathop {{arg\\, min}}_{u\\in H^r} \\big \\lbrace \\Vert A u-m\\Vert _{L^2}^2+ \\alpha \\Vert u\\Vert _{H^r}^2 \\big \\rbrace \\end{eqnarray*} for u where α = α(δ) is the regularization parameter. Here penalization of the Sobolev norm \\Vert u\\Vert _{H^r} covers the cases of standard Tikhonov regularization (r = 0) and first derivative penalty (r = 1). Realizations of white Gaussian noise are almost never in L2, but do belong to Hs with probability one if s < 0 is small enough. A modification of Tikhonov regularization theory is presented, covering the case of white Gaussian measurement noise. Furthermore, the convergence of regularized reconstructions to the correct solution as δ → 0 is proven in appropriate function spaces using microlocal analysis. The convergence of the related finite-dimensional problems to the infinite-dimensional problem is also analysed.
Model-Based Analysis and Design of Waveforms for Efficient Neural Stimulation
Grill, Warren M.
2016-01-01
The design space for electrical stimulation of the nervous system is extremely large, and because the response to stimulation is highly non-linear, the selection of stimulation parameters to achieve a desired response is a challenging problem. Computational models of the response of neurons to extracellular stimulation allow analysis of the effects of stimulation parameters on neural excitation and provide an approach to select or design optimal parameters of stimulation. Here, I review the use of computational models to understand the effects of stimulation waveform on the energy efficiency of neural excitation and to design novel stimulation waveforms to increase the efficiency of neural stimulation. PMID:26541380
Wettstein, A; Hanhart, U
2000-02-10
The target group includes caregivers of demented persons at home and in institutions. The aim is a synopsis of different ways to cope with behavioural disturbances by milieu-therapy for demented persons. Appeals are made to their remaining resources, thus getting them more joy and less frustration by less excessive demands. Less boring activities avoid to feel under-challenged. More activity during day-time provides better sleep at night.--Consequently there are less behavioural disturbances with less stress for caregivers thus enabling them to keep the patients longer at home, leading to lower health costs. Behavioural disturbances of demented persons should always be treated by milieu-therapy achieving a response rate of up to 60%. With application of adjuvant medication, e.g. geriatric neuroleptics, a rate of 70% is within reach. Milieu-therapy is optimal for the prevention of behavioural disturbances. The better the adaptation of milieu-therapy to the individual patient's deficits and lifestyle and to the lifestyle of his caregiver, the better the effect.
Convergence and Fluctuations of Regularized Tyler Estimators
NASA Astrophysics Data System (ADS)
Kammoun, Abla; Couillet, Romain; Pascal, Ferderic; Alouini, Mohamed-Slim
2016-02-01
This article studies the behavior of regularized Tyler estimators (RTEs) of scatter matrices. The key advantages of these estimators are twofold. First, they guarantee by construction a good conditioning of the estimate and second, being a derivative of robust Tyler estimators, they inherit their robustness properties, notably their resilience to the presence of outliers. Nevertheless, one major problem that poses the use of RTEs in practice is represented by the question of setting the regularization parameter $\\rho$. While a high value of $\\rho$ is likely to push all the eigenvalues away from zero, it comes at the cost of a larger bias with respect to the population covariance matrix. A deep understanding of the statistics of RTEs is essential to come up with appropriate choices for the regularization parameter. This is not an easy task and might be out of reach, unless one considers asymptotic regimes wherein the number of observations $n$ and/or their size $N$ increase together. First asymptotic results have recently been obtained under the assumption that $N$ and $n$ are large and commensurable. Interestingly, no results concerning the regime of $n$ going to infinity with $N$ fixed exist, even though the investigation of this assumption has usually predated the analysis of the most difficult $N$ and $n$ large case. This motivates our work. In particular, we prove in the present paper that the RTEs converge to a deterministic matrix when $n\\to\\infty$ with $N$ fixed, which is expressed as a function of the theoretical covariance matrix. We also derive the fluctuations of the RTEs around this deterministic matrix and establish that these fluctuations converge in distribution to a multivariate Gaussian distribution with zero mean and a covariance depending on the population covariance and the parameter $\\rho$.
Regular physical exercise: way to healthy life.
Siddiqui, N I; Nessa, A; Hossain, M A
2010-01-01
Any bodily activity or movement that enhances and maintains overall health and physical fitness is called physical exercise. Habit of regular physical exercise has got numerous benefits. Exercise is of various types such as aerobic exercise, anaerobic exercise and flexibility exercise. Aerobic exercise moves the large muscle groups with alternate contraction and relaxation, forces to deep breath, heart to pump more blood with adequate tissue oxygenation. It is also called cardiovascular exercise. Examples of aerobic exercise are walking, running, jogging, swimming etc. In anaerobic exercise, there is forceful contraction of muscle with stretching, usually mechanically aided and help to build up muscle strength and muscle bulk. Examples are weight lifting, pulling, pushing, sprinting etc. Flexibility exercise is one type of stretching exercise to improve the movements of muscles, joints and ligaments. Walking is a good example of aerobic exercise, easy to perform, safe, effective, does not require any training or equipment and less chance of injury. Regular 30 minutes brisk walking in the morning with 150 minutes per week is a good exercise. Regular exercise improves the cardiovascular status, reduces the risk of cardiac disease, high blood pressure and cerebrovascular disease. It reduces body weight, improves insulin sensitivity, helps in glycemic control, prevents obesity and diabetes mellitus. It is helpful for relieving anxiety, stress, brings a sense of well being and overall physical fitness. Global trend is mechanization, labor savings and leading to epidemic of long term chronic diseases like diabetes mellitus, cardiovascular diseases etc. All efforts should be made to create public awareness promoting physical activity, physically demanding recreational pursuits and providing adequate facilities.
NASA Astrophysics Data System (ADS)
Flemming, Jens; Hofmann, Bernd
2011-08-01
In this paper, we enlighten the role of variational inequalities for obtaining convergence rates in Tikhonov regularization of nonlinear ill-posed problems with convex penalty functionals under convexity constraints in Banach spaces. Variational inequalities are able to cover solution smoothness and the structure of nonlinearity in a uniform manner, not only for unconstrained but, as we indicate, also for constrained Tikhonov regularization. In this context, we extend the concept of projected source conditions already known in Hilbert spaces to Banach spaces, and we show in the main theorem that such projected source conditions are to some extent equivalent to certain variational inequalities. The derived variational inequalities immediately yield convergence rates measured by Bregman distances.
Regular Expression Analysis of Procedures and Exceptions,
1985-06-01
L D-RI63 817 REGULAR EXPRESSION ANALYSIS OF PROCEDURES AND1/7 EXCEPTIONS(U) ROYAL SIGNALS AND RADAR ESTABLISHNENT NALVERN ( ENGLAND ) J M FOSTER JUN 85...34 means composition in sequence, that is a.b denotes the path formed by a followed by b. The constant 1I. " is a unit for the dot operation, so L.a - a...s.c a b.c right distribution of . over . - l.a-a I is a left unit for. a.1 -a I is a right unit for. . .. *. . . ". .. -.•. S
Regularization ambiguities in loop quantum gravity
NASA Astrophysics Data System (ADS)
Perez, Alejandro
2006-02-01
One of the main achievements of loop quantum gravity is the consistent quantization of the analog of the Wheeler-DeWitt equation which is free of ultraviolet divergences. However, ambiguities associated to the intermediate regularization procedure lead to an apparently infinite set of possible theories. The absence of an UV problem—the existence of well-behaved regularization of the constraints—is intimately linked with the ambiguities arising in the quantum theory. Among these ambiguities is the one associated to the SU(2) unitary representation used in the diffeomorphism covariant “point-splitting” regularization of the nonlinear functionals of the connection. This ambiguity is labeled by a half-integer m and, here, it is referred to as the m ambiguity. The aim of this paper is to investigate the important implications of this ambiguity. We first study 2+1 gravity (and more generally BF theory) quantized in the canonical formulation of loop quantum gravity. Only when the regularization of the quantum constraints is performed in terms of the fundamental representation of the gauge group does one obtain the usual topological quantum field theory as a result. In all other cases unphysical local degrees of freedom arise at the level of the regulated theory that conspire against the existence of the continuum limit. This shows that there is a clear-cut choice in the quantization of the constraints in 2+1 loop quantum gravity. We then analyze the effects of the ambiguity in 3+1 gravity exhibiting the existence of spurious solutions for higher representation quantizations of the Hamiltonian constraint. Although the analysis is not complete in 3+1 dimensions—due to the difficulties associated to the definition of the physical inner product—it provides evidence supporting the definitions quantum dynamics of loop quantum gravity in terms of the fundamental representation of the gauge group as the only consistent possibilities. If the gauge group is SO(3) we
The regular state in higher order gravity
NASA Astrophysics Data System (ADS)
Cotsakis, Spiros; Kadry, Seifedine; Trachilis, Dimitrios
2016-08-01
We consider the higher-order gravity theory derived from the quadratic Lagrangian R + 𝜖R2 in vacuum as a first-order (ADM-type) system with constraints, and build time developments of solutions of an initial value formulation of the theory. We show that all such solutions, if analytic, contain the right number of free functions to qualify as general solutions of the theory. We further show that any regular analytic solution which satisfies the constraints and the evolution equations can be given in the form of an asymptotic formal power series expansion.
Total-variation regularization with bound constraints
Chartrand, Rick; Wohlberg, Brendt
2009-01-01
We present a new algorithm for bound-constrained total-variation (TV) regularization that in comparison with its predecessors is simple, fast, and flexible. We use a splitting approach to decouple TV minimization from enforcing the constraints. Consequently, existing TV solvers can be employed with minimal alteration. This also makes the approach straightforward to generalize to any situation where TV can be applied. We consider deblurring of images with Gaussian or salt-and-pepper noise, as well as Abel inversion of radiographs with Poisson noise. We incorporate previous iterative reweighting algorithms to solve the TV portion.
Multichannel image regularization using anisotropic geodesic filtering
Grazzini, Jacopo A
2010-01-01
This paper extends a recent image-dependent regularization approach introduced in aiming at edge-preserving smoothing. For that purpose, geodesic distances equipped with a Riemannian metric need to be estimated in local neighbourhoods. By deriving an appropriate metric from the gradient structure tensor, the associated geodesic paths are constrained to follow salient features in images. Following, we design a generalized anisotropic geodesic filter; incorporating not only a measure of the edge strength, like in the original method, but also further directional information about the image structures. The proposed filter is particularly efficient at smoothing heterogeneous areas while preserving relevant structures in multichannel images.
Regularization ambiguities in loop quantum gravity
Perez, Alejandro
2006-02-15
One of the main achievements of loop quantum gravity is the consistent quantization of the analog of the Wheeler-DeWitt equation which is free of ultraviolet divergences. However, ambiguities associated to the intermediate regularization procedure lead to an apparently infinite set of possible theories. The absence of an UV problem--the existence of well-behaved regularization of the constraints--is intimately linked with the ambiguities arising in the quantum theory. Among these ambiguities is the one associated to the SU(2) unitary representation used in the diffeomorphism covariant 'point-splitting' regularization of the nonlinear functionals of the connection. This ambiguity is labeled by a half-integer m and, here, it is referred to as the m ambiguity. The aim of this paper is to investigate the important implications of this ambiguity. We first study 2+1 gravity (and more generally BF theory) quantized in the canonical formulation of loop quantum gravity. Only when the regularization of the quantum constraints is performed in terms of the fundamental representation of the gauge group does one obtain the usual topological quantum field theory as a result. In all other cases unphysical local degrees of freedom arise at the level of the regulated theory that conspire against the existence of the continuum limit. This shows that there is a clear-cut choice in the quantization of the constraints in 2+1 loop quantum gravity. We then analyze the effects of the ambiguity in 3+1 gravity exhibiting the existence of spurious solutions for higher representation quantizations of the Hamiltonian constraint. Although the analysis is not complete in 3+1 dimensions - due to the difficulties associated to the definition of the physical inner product - it provides evidence supporting the definitions quantum dynamics of loop quantum gravity in terms of the fundamental representation of the gauge group as the only consistent possibilities. If the gauge group is SO(3) we find
New Regularization Method for EXAFS Analysis
Reich, Tatiana Ye.; Reich, Tobias; Korshunov, Maxim E.; Antonova, Tatiana V.; Ageev, Alexander L.; Moll, Henry
2007-02-02
As an alternative to the analysis of EXAFS spectra by conventional shell fitting, the Tikhonov regularization method has been proposed. An improved algorithm that utilizes a priori information about the sample has been developed and applied to the analysis of U L3-edge spectra of soddyite, (UO2)2SiO4{center_dot}2H2O, and of U(VI) sorbed onto kaolinite. The partial radial distribution functions g1(UU), g2(USi), and g3(UO) of soddyite agree with crystallographic values and previous EXAFS results.
Sparsity-based Image Error Concealment via Adaptive Dual Dictionary Learning and Regularization.
Liu, Xianming; Zhai, Deming; Zhou, Jiantao; Wang, Shiqi; Zhao, Debin; Gao, Huijun
2016-10-31
In this paper, we propose a novel sparsity-based image error concealment (EC) algorithm through Adaptive Dual dictionary Learning and Regularization (ADLR). We define two feature spaces: the observed space and the latent space, corresponding to the available regions and the missing regions of image under test, respectively. We learn adaptive and complete dictionaries individually for each space, where the training data are collected via an adaptive template matching mechanism. Based on the piecewise stationarity of natural images, a local correlation model is learned to bridge the sparse representations of the aforementioned dual spaces, allowing us to transfer the knowledge of the available regions to the missing regions for EC purpose. Eventually, the EC task is formulated as a unified optimization problem, where the sparsity of both spaces and the learned correlation model are incorporated. Experimental results show that the proposed method outperforms the state-of-the-art techniques in terms of both objective and perceptual metrics.
NASA Astrophysics Data System (ADS)
Shen, Wenxian; Shen, Zhongwei
2017-03-01
The present paper is devoted to the investigation of various properties of transition fronts in one-dimensional nonlocal equations in heterogeneous media of ignition type, whose existence has been established by the authors of the present paper in a previous work. It is first shown that transition fronts are continuously differentiable in space with uniformly bounded and uniformly Lipschitz continuous space partial derivative. This is the first time that space regularity of transition fronts in nonlocal equations is ever studied. It is then shown that transition fronts are uniformly steep. Finally, asymptotic stability, in the sense of exponentially attracting front-like initial data, of transition fronts is studied.
Supporting Regularized Logistic Regression Privately and Efficiently
Li, Wenfa; Liu, Hongzhe; Yang, Peng; Xie, Wei
2016-01-01
As one of the most popular statistical and machine learning models, logistic regression with regularization has found wide adoption in biomedicine, social sciences, information technology, and so on. These domains often involve data of human subjects that are contingent upon strict privacy regulations. Concerns over data privacy make it increasingly difficult to coordinate and conduct large-scale collaborative studies, which typically rely on cross-institution data sharing and joint analysis. Our work here focuses on safeguarding regularized logistic regression, a widely-used statistical model while at the same time has not been investigated from a data security and privacy perspective. We consider a common use scenario of multi-institution collaborative studies, such as in the form of research consortia or networks as widely seen in genetics, epidemiology, social sciences, etc. To make our privacy-enhancing solution practical, we demonstrate a non-conventional and computationally efficient method leveraging distributing computing and strong cryptography to provide comprehensive protection over individual-level and summary data. Extensive empirical evaluations on several studies validate the privacy guarantee, efficiency and scalability of our proposal. We also discuss the practical implications of our solution for large-scale studies and applications from various disciplines, including genetic and biomedical studies, smart grid, network analysis, etc. PMID:27271738
Tomographic laser absorption spectroscopy using Tikhonov regularization.
Guha, Avishek; Schoegl, Ingmar
2014-12-01
The application of tunable diode laser absorption spectroscopy (TDLAS) to flames with nonhomogeneous temperature and concentration fields is an area where only few studies exist. Experimental work explores the performance of tomographic reconstructions of species concentration and temperature profiles from wavelength-modulated TDLAS measurements within the plume of an axisymmetric McKenna burner. Water vapor transitions at 1391.67 and 1442.67 nm are probed using calibration-free wavelength modulation spectroscopy with second harmonic detection (WMS-2f). A single collimated laser beam is swept parallel to the burner surface, where scans yield pairs of line-of-sight (LOS) data at multiple radial locations. Radial profiles of absorption data are reconstructed using Tikhonov regularized Abel inversion, which suppresses the amplification of experimental noise that is typically observed for reconstructions with high spatial resolution. Based on spectral data reconstructions, temperatures and mole fractions are calculated point-by-point. Here, a least-squares approach addresses difficulties due to modulation depths that cannot be universally optimized due to a nonuniform domain. Experimental results show successful reconstructions of temperature and mole fraction profiles based on two-transition, nonoptimally modulated WMS-2f and Tikhonov regularized Abel inversion, and thus validate the technique as a viable diagnostic tool for flame measurements.
Supporting Regularized Logistic Regression Privately and Efficiently.
Li, Wenfa; Liu, Hongzhe; Yang, Peng; Xie, Wei
2016-01-01
As one of the most popular statistical and machine learning models, logistic regression with regularization has found wide adoption in biomedicine, social sciences, information technology, and so on. These domains often involve data of human subjects that are contingent upon strict privacy regulations. Concerns over data privacy make it increasingly difficult to coordinate and conduct large-scale collaborative studies, which typically rely on cross-institution data sharing and joint analysis. Our work here focuses on safeguarding regularized logistic regression, a widely-used statistical model while at the same time has not been investigated from a data security and privacy perspective. We consider a common use scenario of multi-institution collaborative studies, such as in the form of research consortia or networks as widely seen in genetics, epidemiology, social sciences, etc. To make our privacy-enhancing solution practical, we demonstrate a non-conventional and computationally efficient method leveraging distributing computing and strong cryptography to provide comprehensive protection over individual-level and summary data. Extensive empirical evaluations on several studies validate the privacy guarantee, efficiency and scalability of our proposal. We also discuss the practical implications of our solution for large-scale studies and applications from various disciplines, including genetic and biomedical studies, smart grid, network analysis, etc.
Accelerating Large Data Analysis By Exploiting Regularities
NASA Technical Reports Server (NTRS)
Moran, Patrick J.; Ellsworth, David
2003-01-01
We present techniques for discovering and exploiting regularity in large curvilinear data sets. The data can be based on a single mesh or a mesh composed of multiple submeshes (also known as zones). Multi-zone data are typical to Computational Fluid Dynamics (CFD) simulations. Regularities include axis-aligned rectilinear and cylindrical meshes as well as cases where one zone is equivalent to a rigid-body transformation of another. Our algorithms can also discover rigid-body motion of meshes in time-series data. Next, we describe a data model where we can utilize the results from the discovery process in order to accelerate large data visualizations. Where possible, we replace general curvilinear zones with rectilinear or cylindrical zones. In rigid-body motion cases we replace a time-series of meshes with a transformed mesh object where a reference mesh is dynamically transformed based on a given time value in order to satisfy geometry requests, on demand. The data model enables us to make these substitutions and dynamic transformations transparently with respect to the visualization algorithms. We present results with large data sets where we combine our mesh replacement and transformation techniques with out-of-core paging in order to achieve significant speed-ups in analysis.
Motion regularization for matting motion blurred objects.
Lin, Hai Ting; Tai, Yu-Wing; Brown, Michael S
2011-11-01
This paper addresses the problem of matting motion blurred objects from a single image. Existing single image matting methods are designed to extract static objects that have fractional pixel occupancy. This arises because the physical scene object has a finer resolution than the discrete image pixel and therefore only occupies a fraction of the pixel. For a motion blurred object, however, fractional pixel occupancy is attributed to the object’s motion over the exposure period. While conventional matting techniques can be used to matte motion blurred objects, they are not formulated in a manner that considers the object’s motion and tend to work only when the object is on a homogeneous background. We show how to obtain better alpha mattes by introducing a regularization term in the matting formulation to account for the object’s motion. In addition, we outline a method for estimating local object motion based on local gradient statistics from the original image. For the sake of completeness, we also discuss how user markup can be used to denote the local direction in lieu of motion estimation. Improvements to alpha mattes computed with our regularization are demonstrated on a variety of examples.
Nonlinear regularization techniques for seismic tomography
Loris, I. Douma, H.; Nolet, G.; Regone, C.
2010-02-01
The effects of several nonlinear regularization techniques are discussed in the framework of 3D seismic tomography. Traditional, linear, l{sub 2} penalties are compared to so-called sparsity promoting l{sub 1} and l{sub 0} penalties, and a total variation penalty. Which of these algorithms is judged optimal depends on the specific requirements of the scientific experiment. If the correct reproduction of model amplitudes is important, classical damping towards a smooth model using an l{sub 2} norm works almost as well as minimizing the total variation but is much more efficient. If gradients (edges of anomalies) should be resolved with a minimum of distortion, we prefer l{sub 1} damping of Daubechies-4 wavelet coefficients. It has the additional advantage of yielding a noiseless reconstruction, contrary to simple l{sub 2} minimization ('Tikhonov regularization') which should be avoided. In some of our examples, the l{sub 0} method produced notable artifacts. In addition we show how nonlinear l{sub 1} methods for finding sparse models can be competitive in speed with the widely used l{sub 2} methods, certainly under noisy conditions, so that there is no need to shun l{sub 1} penalizations.
The challenge of the US Space Station
NASA Technical Reports Server (NTRS)
Beggs, J. M.
1985-01-01
The U.S. Space Station program is described. The objectives of the present national space policy are reviewed. International involvement and commercial use of space are the two strategies involved in the development of the Space Station. The Space Station is to be a multifunctional, modular, permanent facility with manned and unmanned platforms. The functions of the Space Station for space research projects, such as material processing and electrophoresis, are examined. The infrastructure required for commercialization of space is analyzed. NASA's space policy aimed at stimulating space commerce is discussed. NASA's plans to reduce the financial, institutional, and technical risks of space research are studied.
The challenge of the US Space Station
NASA Technical Reports Server (NTRS)
Beggs, J. M.
1985-01-01
The U.S. Space Station program is described. The objectives of the present national space policy are reviewed. International involvement and commercial use of space are the two strategies involved in the development of the Space Station. The Space Station is to be a multifunctional, modular, permanent facility with manned and unmanned platforms. The functions of the Space Station for space research projects, such as material processing and electrophoresis, are examined. The infrastructure required for commercialization of space is analyzed. NASA's space policy aimed at stimulating space commerce is discussed. NASA's plans to reduce the financial, institutional, and technical risks of space research are studied.
ERIC Educational Resources Information Center
Congress of the U.S., Washington, DC. House Committee on Science, Space and Technology.
Views on ways the U.S. tax code might be used to stimulate investment in research and development were presented at this hearing. Witnesses represented industry and universities and included experts on how tax policy impacts scientific research and development. The document contains testimonies and supporting documentation from the following…
Regular black holes and noncommutative geometry inspired fuzzy sources
NASA Astrophysics Data System (ADS)
Kobayashi, Shinpei
2016-05-01
We investigated regular black holes with fuzzy sources in three and four dimensions. The density distributions of such fuzzy sources are inspired by noncommutative geometry and given by Gaussian or generalized Gaussian functions. We utilized mass functions to give a physical interpretation of the horizon formation condition for the black holes. In particular, we investigated three-dimensional BTZ-like black holes and four-dimensional Schwarzschild-like black holes in detail, and found that the number of horizons is related to the space-time dimensions, and the existence of a void in the vicinity of the center of the space-time is significant, rather than noncommutativity. As an application, we considered a three-dimensional black hole with the fuzzy disc which is a disc-shaped region known in the context of noncommutative geometry as a source. We also analyzed a four-dimensional black hole with a source whose density distribution is an extension of the fuzzy disc, and investigated the horizon formation condition for it.
Supplementary Auditory and Vestibular Stimulation: Effects on Institutionalized Infants
ERIC Educational Resources Information Center
Casler, Lawrence
1975-01-01
Supplementary stimulation was supplied for 30 minutes per day for approximately six weeks to 156 normal, full-term institutionalized infants prior to adoption. The Gesell Developmental Schedules were administered regularly (until age 27 months), to determine whether development had been enhanced by the treatment. (JMB)
Incremental projection approach of regularization for inverse problems
Souopgui, Innocent; Ngodock, Hans E.; Vidard, Arthur Le Dimet, François-Xavier
2016-10-15
This paper presents an alternative approach to the regularized least squares solution of ill-posed inverse problems. Instead of solving a minimization problem with an objective function composed of a data term and a regularization term, the regularization information is used to define a projection onto a convex subspace of regularized candidate solutions. The objective function is modified to include the projection of each iterate in the place of the regularization. Numerical experiments based on the problem of motion estimation for geophysical fluid images, show the improvement of the proposed method compared with regularization methods. For the presented test case, the incremental projection method uses 7 times less computation time than the regularization method, to reach the same error target. Moreover, at convergence, the incremental projection is two order of magnitude more accurate than the regularization method.
Laplacian embedded regression for scalable manifold regularization.
Chen, Lin; Tsang, Ivor W; Xu, Dong
2012-06-01
Semi-supervised learning (SSL), as a powerful tool to learn from a limited number of labeled data and a large number of unlabeled data, has been attracting increasing attention in the machine learning community. In particular, the manifold regularization framework has laid solid theoretical foundations for a large family of SSL algorithms, such as Laplacian support vector machine (LapSVM) and Laplacian regularized least squares (LapRLS). However, most of these algorithms are limited to small scale problems due to the high computational cost of the matrix inversion operation involved in the optimization problem. In this paper, we propose a novel framework called Laplacian embedded regression by introducing an intermediate decision variable into the manifold regularization framework. By using ∈-insensitive loss, we obtain the Laplacian embedded support vector regression (LapESVR) algorithm, which inherits the sparse solution from SVR. Also, we derive Laplacian embedded RLS (LapERLS) corresponding to RLS under the proposed framework. Both LapESVR and LapERLS possess a simpler form of a transformed kernel, which is the summation of the original kernel and a graph kernel that captures the manifold structure. The benefits of the transformed kernel are two-fold: (1) we can deal with the original kernel matrix and the graph Laplacian matrix in the graph kernel separately and (2) if the graph Laplacian matrix is sparse, we only need to perform the inverse operation for a sparse matrix, which is much more efficient when compared with that for a dense one. Inspired by kernel principal component analysis, we further propose to project the introduced decision variable into a subspace spanned by a few eigenvectors of the graph Laplacian matrix in order to better reflect the data manifold, as well as accelerate the calculation of the graph kernel, allowing our methods to efficiently and effectively cope with large scale SSL problems. Extensive experiments on both toy and real
The topology of the regularized integral surfaces of the 3-body problem
NASA Technical Reports Server (NTRS)
Easton, R.
1971-01-01
Momentum, angular momentum, and energy of integral surfaces in the planar three-body problem are considered. The end points of orbits which cross an isolating block are identified. It is shown that this identification has a unique extension to an identification which pairs the end points of orbits entering the block and which end in a binary collision with the end points of orbits leaving the block and which come from a binary collision. The problem of regularization is that of showing that the identification of the end points of crossing orbits has a continuous, unique extension. The regularized phase space for the three-body problem was obtained, as were regularized integral surfaces for the problem on which the three-body equations of motion induce flows. Finally the topology of these surfaces is described.
Brain Stimulation in Addiction.
Salling, Michael C; Martinez, Diana
2016-11-01
Localized stimulation of the human brain to treat neuropsychiatric disorders has been in place for over 20 years. Although these methods have been used to a greater extent for mood and movement disorders, recent work has explored brain stimulation methods as potential treatments for addiction. The rationale behind stimulation therapy in addiction involves reestablishing normal brain function in target regions in an effort to dampen addictive behaviors. In this review, we present the rationale and studies investigating brain stimulation in addiction, including transcranial magnetic stimulation, transcranial direct current stimulation, and deep brain stimulation. Overall, these studies indicate that brain stimulation has an acute effect on craving for drugs and alcohol, but few studies have investigated the effect of brain stimulation on actual drug and alcohol use or relapse. Stimulation therapies may achieve their effect through direct or indirect modulation of brain regions involved in addiction, either acutely or through plastic changes in neuronal transmission. Although these mechanisms are not well understood, further identification of the underlying neurobiology of addiction and rigorous evaluation of brain stimulation methods has the potential for unlocking an effective, long-term treatment of addiction.
Charge regularization in phase separating polyelectrolyte solutions.
Muthukumar, M; Hua, Jing; Kundagrami, Arindam
2010-02-28
Theoretical investigations of phase separation in polyelectrolyte solutions have so far assumed that the effective charge of the polyelectrolyte chains is fixed. The ability of the polyelectrolyte chains to self-regulate their effective charge due to the self-consistent coupling between ionization equilibrium and polymer conformations, depending on the dielectric constant, temperature, and polymer concentration, affects the critical phenomena and phase transitions drastically. By considering salt-free polyelectrolyte solutions, we show that the daughter phases have different polymer charges from that of the mother phase. The critical point is also altered significantly by the charge self-regularization of the polymer chains. This work extends the progress made so far in the theory of phase separation of strong polyelectrolyte solutions to a higher level of understanding by considering chains which can self-regulate their charge.
Multiloop integrals in dimensional regularization made simple.
Henn, Johannes M
2013-06-21
Scattering amplitudes at loop level can be expressed in terms of Feynman integrals. The latter satisfy partial differential equations in the kinematical variables. We argue that a good choice of basis for (multi)loop integrals can lead to significant simplifications of the differential equations, and propose criteria for finding an optimal basis. This builds on experience obtained in supersymmetric field theories that can be applied successfully to generic quantum field theory integrals. It involves studying leading singularities and explicit integral representations. When the differential equations are cast into canonical form, their solution becomes elementary. The class of functions involved is easily identified, and the solution can be written down to any desired order in ϵ within dimensional regularization. Results obtained in this way are particularly simple and compact. In this Letter, we outline the general ideas of the method and apply them to a two-loop example.
Regularity of inviscid shell models of turbulence
NASA Astrophysics Data System (ADS)
Constantin, Peter; Levant, Boris; Titi, Edriss S.
2007-01-01
In this paper we continue the analytical study of the sabra shell model of energy turbulent cascade. We prove the global existence of weak solutions of the inviscid sabra shell model, and show that these solutions are unique for some short interval of time. In addition, we prove that the solutions conserve energy, provided that the components of the solution satisfy ∣un∣≤Ckn-1/3[nlog(n+1)]-1 for some positive absolute constant C , which is the analog of the Onsager’s conjecture for the Euler’s equations. Moreover, we give a Beal-Kato-Majda type criterion for the blow-up of solutions of the inviscid sabra shell model and show the global regularity of the solutions in the “two-dimensional” parameters regime.
Regularization destriping of remote sensing imagery
NASA Astrophysics Data System (ADS)
Basnayake, Ranil; Bollt, Erik; Tufillaro, Nicholas; Sun, Jie; Gierach, Michelle
2017-07-01
We illustrate the utility of variational destriping for ocean color images from both multispectral and hyperspectral sensors. In particular, we examine data from a filter spectrometer, the Visible Infrared Imaging Radiometer Suite (VIIRS) on the Suomi National Polar Partnership (NPP) orbiter, and an airborne grating spectrometer, the Jet Population Laboratory's (JPL) hyperspectral Portable Remote Imaging Spectrometer (PRISM) sensor. We solve the destriping problem using a variational regularization method by giving weights spatially to preserve the other features of the image during the destriping process. The target functional penalizes the neighborhood of stripes
(strictly, directionally uniform features) while promoting data fidelity, and the functional is minimized by solving the Euler-Lagrange equations with an explicit finite-difference scheme. We show the accuracy of our method from a benchmark data set which represents the sea surface temperature off the coast of Oregon, USA. Technical details, such as how to impose continuity across data gaps using inpainting, are also described.
Regularized discriminative direction for shape difference analysis.
Zhou, Luping; Hartley, Richard; Wang, Lei; Lieby, Paulette; Barnes, Nick
2008-01-01
The "discriminative direction" has been proven useful to reveal the subtle difference between two anatomical shape classes. When a shape moves along this direction, its deformation will best manifest the class difference detected by a kernel classifier. However, we observe that such a direction cannot maintain a shape's "anatomical" correctness, introducing spurious difference. To overcome this drawback, we develop a regularized discriminative direction by requiring a shape to conform to its population distribution when it deforms along the discriminative direction. Instead of iterative optimization, an analytic solution is provided to directly work out this direction. Experimental study shows its superior performance in detecting and localizing the difference of hippocampal shapes for sex. The result is supported by other independent research in the same domain.
Conformal regularization of Einstein's field equations
NASA Astrophysics Data System (ADS)
Röhr, Niklas; Uggla, Claes
2005-09-01
To study asymptotic structures, we regularize Einstein's field equations by means of conformal transformations. The conformal factor is chosen so that it carries a dimensional scale that captures crucial asymptotic features. By choosing a conformal orthonormal frame, we obtain a coupled system of differential equations for a set of dimensionless variables, associated with the conformal dimensionless metric, where the variables describe ratios with respect to the chosen asymptotic scale structure. As examples, we describe some explicit choices of conformal factors and coordinates appropriate for the situation of a timelike congruence approaching a singularity. One choice is shown to just slightly modify the so-called Hubble-normalized approach, and one leads to dimensionless first-order symmetric hyperbolic equations. We also discuss differences and similarities with other conformal approaches in the literature, as regards, e.g., isotropic singularities.
Regularity of free boundaries a heuristic retro
Caffarelli, Luis A.; Shahgholian, Henrik
2015-01-01
This survey concerns regularity theory of a few free boundary problems that have been developed in the past half a century. Our intention is to bring up different ideas and techniques that constitute the fundamentals of the theory. We shall discuss four different problems, where approaches are somewhat different in each case. Nevertheless, these problems can be divided into two groups: (i) obstacle and thin obstacle problem; (ii) minimal surfaces, and cavitation flow of a perfect fluid. In each case, we shall only discuss the methodology and approaches, giving basic ideas and tools that have been specifically designed and tailored for that particular problem. The survey is kept at a heuristic level with mainly geometric interpretation of the techniques and situations in hand. PMID:26261372
Charge regularization in phase separating polyelectrolyte solutions
Muthukumar, M.; Hua, Jing; Kundagrami, Arindam
2010-01-01
Theoretical investigations of phase separation in polyelectrolyte solutions have so far assumed that the effective charge of the polyelectrolyte chains is fixed. The ability of the polyelectrolyte chains to self-regulate their effective charge due to the self-consistent coupling between ionization equilibrium and polymer conformations, depending on the dielectric constant, temperature, and polymer concentration, affects the critical phenomena and phase transitions drastically. By considering salt-free polyelectrolyte solutions, we show that the daughter phases have different polymer charges from that of the mother phase. The critical point is also altered significantly by the charge self-regularization of the polymer chains. This work extends the progress made so far in the theory of phase separation of strong polyelectrolyte solutions to a higher level of understanding by considering chains which can self-regulate their charge. PMID:20192314
Regularization for Atmospheric Temperature Retrieval Problems
NASA Technical Reports Server (NTRS)
Velez-Reyes, Miguel; Galarza-Galarza, Ruben
1997-01-01
Passive remote sensing of the atmosphere is used to determine the atmospheric state. A radiometer measures microwave emissions from earth's atmosphere and surface. The radiance measured by the radiometer is proportional to the brightness temperature. This brightness temperature can be used to estimate atmospheric parameters such as temperature and water vapor content. These quantities are of primary importance for different applications in meteorology, oceanography, and geophysical sciences. Depending on the range in the electromagnetic spectrum being measured by the radiometer and the atmospheric quantities to be estimated, the retrieval or inverse problem of determining atmospheric parameters from brightness temperature might be linear or nonlinear. In most applications, the retrieval problem requires the inversion of a Fredholm integral equation of the first kind making this an ill-posed problem. The numerical solution of the retrieval problem requires the transformation of the continuous problem into a discrete problem. The ill-posedness of the continuous problem translates into ill-conditioning or ill-posedness of the discrete problem. Regularization methods are used to convert the ill-posed problem into a well-posed one. In this paper, we present some results of our work in applying different regularization techniques to atmospheric temperature retrievals using brightness temperatures measured with the SSM/T-1 sensor. Simulation results are presented which show the potential of these techniques to improve temperature retrievals. In particular, no statistical assumptions are needed and the algorithms were capable of correctly estimating the temperature profile corner at the tropopause independent of the initial guess.
Black hole mimickers: Regular versus singular behavior
Lemos, Jose P. S.; Zaslavskii, Oleg B.
2008-07-15
Black hole mimickers are possible alternatives to black holes; they would look observationally almost like black holes but would have no horizon. The properties in the near-horizon region where gravity is strong can be quite different for both types of objects, but at infinity it could be difficult to discern black holes from their mimickers. To disentangle this possible confusion, we examine the near-horizon properties, and their connection with far away asymptotic properties, of some candidates to black mimickers. We study spherically symmetric uncharged or charged but nonextremal objects, as well as spherically symmetric charged extremal objects. Within the uncharged or charged but nonextremal black hole mimickers, we study nonextremal {epsilon}-wormholes on the threshold of the formation of an event horizon, of which a subclass are called black foils, and gravastars. Within the charged extremal black hole mimickers we study extremal {epsilon}-wormholes on the threshold of the formation of an event horizon, quasi-black holes, and wormholes on the basis of quasi-black holes from Bonnor stars. We elucidate whether or not the objects belonging to these two classes remain regular in the near-horizon limit. The requirement of full regularity, i.e., finite curvature and absence of naked behavior, up to an arbitrary neighborhood of the gravitational radius of the object enables one to rule out potential mimickers in most of the cases. A list ranking the best black hole mimickers up to the worst, both nonextremal and extremal, is as follows: wormholes on the basis of extremal black holes or on the basis of quasi-black holes, quasi-black holes, wormholes on the basis of nonextremal black holes (black foils), and gravastars. Since in observational astrophysics it is difficult to find extremal configurations (the best mimickers in the ranking), whereas nonextremal configurations are really bad mimickers, the task of distinguishing black holes from their mimickers seems to
Regularization of Instantaneous Frequency Attribute Computations
NASA Astrophysics Data System (ADS)
Yedlin, M. J.; Margrave, G. F.; Van Vorst, D. G.; Ben Horin, Y.
2014-12-01
We compare two different methods of computation of a temporally local frequency:1) A stabilized instantaneous frequency using the theory of the analytic signal.2) A temporally variant centroid (or dominant) frequency estimated from a time-frequency decomposition.The first method derives from Taner et al (1979) as modified by Fomel (2007) and utilizes the derivative of the instantaneous phase of the analytic signal. The second method computes the power centroid (Cohen, 1995) of the time-frequency spectrum, obtained using either the Gabor or Stockwell Transform. Common to both methods is the necessity of division by a diagonal matrix, which requires appropriate regularization.We modify Fomel's (2007) method by explicitly penalizing the roughness of the estimate. Following Farquharson and Oldenburg (2004), we employ both the L curve and GCV methods to obtain the smoothest model that fits the data in the L2 norm.Using synthetic data, quarry blast, earthquakes and the DPRK tests, our results suggest that the optimal method depends on the data. One of the main applications for this work is the discrimination between blast events and earthquakesFomel, Sergey. " Local seismic attributes." , Geophysics, 72.3 (2007): A29-A33.Cohen, Leon. " Time frequency analysis theory and applications." USA: Prentice Hall, (1995).Farquharson, Colin G., and Douglas W. Oldenburg. "A comparison of automatic techniques for estimating the regularization parameter in non-linear inverse problems." Geophysical Journal International 156.3 (2004): 411-425.Taner, M. Turhan, Fulton Koehler, and R. E. Sheriff. " Complex seismic trace analysis." Geophysics, 44.6 (1979): 1041-1063.
The Essential Special Education Guide for the Regular Education Teacher
ERIC Educational Resources Information Center
Burns, Edward
2007-01-01
The Individuals with Disabilities Education Act (IDEA) of 2004 has placed a renewed emphasis on the importance of the regular classroom, the regular classroom teacher and the general curriculum as the primary focus of special education. This book contains over 100 topics that deal with real issues and concerns regarding the regular classroom and…
The Essential Special Education Guide for the Regular Education Teacher
ERIC Educational Resources Information Center
Burns, Edward
2007-01-01
The Individuals with Disabilities Education Act (IDEA) of 2004 has placed a renewed emphasis on the importance of the regular classroom, the regular classroom teacher and the general curriculum as the primary focus of special education. This book contains over 100 topics that deal with real issues and concerns regarding the regular classroom and…
Recognition Memory for Novel Stimuli: The Structural Regularity Hypothesis
ERIC Educational Resources Information Center
Cleary, Anne M.; Morris, Alison L.; Langley, Moses M.
2007-01-01
Early studies of human memory suggest that adherence to a known structural regularity (e.g., orthographic regularity) benefits memory for an otherwise novel stimulus (e.g., G. A. Miller, 1958). However, a more recent study suggests that structural regularity can lead to an increase in false-positive responses on recognition memory tests (B. W. A.…
Recognition Memory for Novel Stimuli: The Structural Regularity Hypothesis
ERIC Educational Resources Information Center
Cleary, Anne M.; Morris, Alison L.; Langley, Moses M.
2007-01-01
Early studies of human memory suggest that adherence to a known structural regularity (e.g., orthographic regularity) benefits memory for an otherwise novel stimulus (e.g., G. A. Miller, 1958). However, a more recent study suggests that structural regularity can lead to an increase in false-positive responses on recognition memory tests (B. W. A.…
39 CFR 6.1 - Regular meetings, annual meeting.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 39 Postal Service 1 2010-07-01 2010-07-01 false Regular meetings, annual meeting. 6.1 Section 6.1 Postal Service UNITED STATES POSTAL SERVICE THE BOARD OF GOVERNORS OF THE U.S. POSTAL SERVICE MEETINGS (ARTICLE VI) § 6.1 Regular meetings, annual meeting. The Board shall meet regularly on a schedule...
5 CFR 532.203 - Structure of regular wage schedules.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 5 Administrative Personnel 1 2010-01-01 2010-01-01 false Structure of regular wage schedules. 532... PREVAILING RATE SYSTEMS Prevailing Rate Determinations § 532.203 Structure of regular wage schedules. (a) Each nonsupervisory and leader regular wage schedule shall have 15 grades, which shall be designated as...
ERIC Educational Resources Information Center
Brown, Joyceanne; And Others
1991-01-01
This survey of 201 regular education teachers found that the most frequently used prereferral strategies used to facilitate classroom adjustment and achievement were consultation with other professionals, parent conferences, and behavior management techniques. Elementary teachers implemented more strategies than secondary-level teachers.…
Subthalamic Nucleus Stimulation Modulates Thalamic Neuronal Activity
Xu, Weidong; Russo, Gary S.; Hashimoto, Takao; Zhang, Jianyu; Vitek, Jerrold L.
2009-01-01
Deep brain stimulation (DBS) in the subthalamic nucleus (STN) is an effective tool for the treatment of advanced Parkinson’s disease. The mechanism by which STN DBS elicits its beneficial effect, however, remains unclear. We previously reported STN stimulation increased the rate and produced a more regular and periodic pattern of neuronal activity in the internal segment of the globus pallidus (GPi). Here we extend our observations to neurons in the pallidal (ventralis lateralis pars oralis (VLo) and ventralis anterior (VA)) and cerebellar (ventralis lateralis posterior pars oralis (VPLo)) receiving areas of the motor thalamus during STN DBS. Stimulation parameters that produced improvement in rigidity and bradykinesia resulted in changes in the pattern and power of oscillatory activity of neuronal activity that were similar in both regions of the motor thalamus. Neurons in both VA/VLo and VPLo tended to become more periodic and regular with a shift in oscillatory activity from low to high frequencies. Burst activity was reduced in VA/VLo, but was not significantly changed in VPLo. There was also a significant shift in the population of VA/VLo neurons that were inhibited during STN DBS, while VPLo neurons tended to be activated. These data are consistent with the hypothesis that STN DBS increases output from the nucleus and produces a change in the pattern and periodicity of neuronal activity in the basal ganglia thalamic network, and that these changes include cerebellar pathways likely via activation of adjacent cerebello-thalamic fiber bundles. PMID:19005057
Unitarity and ultraviolet regularity in cosmology
NASA Astrophysics Data System (ADS)
Agullo, Ivan; Ashtekar, Abhay
2015-06-01
Quantum field theory in curved space-times is a well developed area in mathematical physics which has had important phenomenological applications to the very early universe. However, it is not commonly appreciated that on time-dependent space-times—including the simplest cosmological models—dynamics of quantum fields is not unitary in the standard sense. This issue is first explained with an explicit example, and it is then shown that a generalized notion of unitarity does hold. The generalized notion allows one to correctly pass to the Schrödinger picture starting from the Heisenberg picture used in the textbook treatments. Finally, we indicate how these considerations can be extended from simple cosmological models to general globally hyperbolic space-times.
Deep brain stimulation: how does it work?
Agnesi, Filippo; Johnson, Matthew D; Vitek, Jerrold L
2013-01-01
Chronic deep brain stimulation (DBS) has become a widely accepted surgical treatment for medication-refractory movement disorders and is under evaluation for a variety of neurological disorders. In order to create opportunities to improve treatment efficacy, streamline parameter selection, and foster new potential applications, it is important to have a clear and comprehensive understanding of how DBS works. Although early hypothesis proposed that high-frequency electrical stimulation inhibited neuronal activity proximal to the active electrode, recent studies have suggested that the output of the stimulated nuclei is paradoxically activated by DBS. Such regular, time-locked output is thought to override the transmission of pathological bursting and oscillatory activity through the stimulated nuclei, as well as inducing synaptic plasticity and network reorganization. This chapter reviews electrophysiological experiments, biochemical analyses, computer modeling and imaging studies positing that, although general principles exist, the therapeutic mechanism(s) of action depend both on the site of stimulation and on the disorder being treated. © 2013 Elsevier B.V. All rights reserved.
Lee, Kuan H.; Turtle, Joel D.; Huang, Yung-Jen; Strain, Misty M.; Baumbauer, Kyle M.; Grau, James W.
2015-01-01
Prior studies have shown that intermittent noxious stimulation has divergent effects on spinal cord plasticity depending upon whether it occurs in a regular (fixed time, FT) or irregular (variable time, VT) manner: In spinally transected animals, VT stimulation to the tail or hind leg impaired spinal learning whereas an extended exposure to FT stimulation had a restorative/protective effect. These observations imply that lower level systems are sensitive to temporal relations. Using spinally transected rats, it is shown that the restorative effect of FT stimulation emerges after 540 shocks; fewer shocks generate a learning impairment. The transformative effect of FT stimulation is related to the number of shocks administered, not the duration of exposure. Administration of 360 FT shocks induces a learning deficit that lasts 24 h. If a second bout of FT stimulation is given a day after the first, it restores the capacity to learn. This savings effect implies that the initial training episode had a lasting (memory-like) effect. Two bouts of shock have a transformative effect when applied at different locations or at difference frequencies, implying spinal systems abstract and store an index of regularity (rather than a specific interval). Implications of the results for step training and rehabilitation after injury are discussed. PMID:26539090
1995-06-06
The crew patch of STS-73, the second flight of the United States Microgravity Laboratory (USML-2), depicts the Space Shuttle Columbia in the vastness of space. In the foreground are the classic regular polyhedrons that were investigated by Plato and later Euclid. The Pythagoreans were also fascinated by the symmetrical three-dimensional objects whose sides are the same regular polygon. The tetrahedron, the cube, the octahedron, and the icosahedron were each associated with the Natural Elements of that time: fire (on this mission represented as combustion science); Earth (crystallography), air and water (fluid physics). An additional icon shown as the infinity symbol was added to further convey the discipline of fluid mechanics. The shape of the emblem represents a fifth polyhedron, a dodecahedron, which the Pythagoreans thought corresponded to a fifth element that represented the cosmos.
Temporal sparsity exploiting nonlocal regularization for 4D computed tomography reconstruction.
Kazantsev, Daniil; Guo, Enyu; Kaestner, Anders; Lionheart, William R B; Bent, Julian; Withers, Philip J; Lee, Peter D
2016-01-01
X-ray imaging applications in medical and material sciences are frequently limited by the number of tomographic projections collected. The inversion of the limited projection data is an ill-posed problem and needs regularization. Traditional spatial regularization is not well adapted to the dynamic nature of time-lapse tomography since it discards the redundancy of the temporal information. In this paper, we propose a novel iterative reconstruction algorithm with a nonlocal regularization term to account for time-evolving datasets. The aim of the proposed nonlocal penalty is to collect the maximum relevant information in the spatial and temporal domains. With the proposed sparsity seeking approach in the temporal space, the computational complexity of the classical nonlocal regularizer is substantially reduced (at least by one order of magnitude). The presented reconstruction method can be directly applied to various big data 4D (x, y, z+time) tomographic experiments in many fields. We apply the proposed technique to modelled data and to real dynamic X-ray microtomography (XMT) data of high resolution. Compared to the classical spatio-temporal nonlocal regularization approach, the proposed method delivers reconstructed images of improved resolution and higher contrast while remaining significantly less computationally demanding.
Regularization of the circular restricted three-body problem using `similar' coordinate systems
NASA Astrophysics Data System (ADS)
Roman, R.; Szücs-Csillik, I.
2012-04-01
The regularization of a new problem, namely the three-body problem, using `similar' coordinate system is proposed. For this purpose we use the relation of `similarity', which has been introduced as an equivalence relation in a previous paper (see Roman in Astrophys. Space Sci. doi:10.1007/s10509-011-0747-1, 2011). First we write the Hamiltonian function, the equations of motion in canonical form, and then using a generating function, we obtain the transformed equations of motion. After the coordinates transformations, we introduce the fictitious time, to regularize the equations of motion. Explicit formulas are given for the regularization in the coordinate systems centered in the more massive and the less massive star of the binary system. The `similar' polar angle's definition is introduced, in order to analyze the regularization's geometrical transformation. The effect of Levi-Civita's transformation is described in a geometrical manner. Using the resulted regularized equations, we analyze and compare these canonical equations numerically, for the Earth-Moon binary system.
Community assembly and biomass production in regularly and never weeded experimental grasslands
NASA Astrophysics Data System (ADS)
Roscher, Christiane; Temperton, Vicky M.; Buchmann, Nina; Schulze, Ernst-Detlef
2009-03-01
We studied the natural colonisation of new species in experimental grasslands varying in plant species richness (from 1 to 60) and plant functional group richness (from 1 to 4) in either regularly or never weeded subplots during the first 3 years after establishment. Sown species established successfully, with no differences in species richness or their relative abundances between the regularly and never weeded subplots during the study period. Aboveground biomass of sown species increased with increasing sown species richness in both treatments. While a positive relationship between sown species richness and total aboveground biomass (including colonising species) existed in the 2nd year after sowing in the regularly and never weeded subplots, this positive relationship decayed in the 3rd year in the never weeded subplots because of a higher biomass of colonising species in species-poor mixtures. Total aboveground biomass varied independently of total species richness 3 years after sowing in both treatments. Jaccard similarity of coloniser species composition between regularly and never weeded subplots decreased from the 2nd to the 3rd year, indicating a divergence in coloniser species composition. Coloniser immigration and turnover rates were higher in regularly weeded subplots, confirming that weeding counteracts species saturation and increases the chance that new colonisers would establish. Although our study shows that low diversity plant communities are unstable and converge to higher levels of biodiversity, the effects of initially sown species on community composition persisted 3 years after sowing even when allowing for succession, suggesting that colonising species mainly filled empty niche space.
Temporal sparsity exploiting nonlocal regularization for 4D computed tomography reconstruction
Kazantsev, Daniil; Guo, Enyu; Kaestner, Anders; Lionheart, William R. B.; Bent, Julian; Withers, Philip J.; Lee, Peter D.
2016-01-01
X-ray imaging applications in medical and material sciences are frequently limited by the number of tomographic projections collected. The inversion of the limited projection data is an ill-posed problem and needs regularization. Traditional spatial regularization is not well adapted to the dynamic nature of time-lapse tomography since it discards the redundancy of the temporal information. In this paper, we propose a novel iterative reconstruction algorithm with a nonlocal regularization term to account for time-evolving datasets. The aim of the proposed nonlocal penalty is to collect the maximum relevant information in the spatial and temporal domains. With the proposed sparsity seeking approach in the temporal space, the computational complexity of the classical nonlocal regularizer is substantially reduced (at least by one order of magnitude). The presented reconstruction method can be directly applied to various big data 4D (x, y, z+time) tomographic experiments in many fields. We apply the proposed technique to modelled data and to real dynamic X-ray microtomography (XMT) data of high resolution. Compared to the classical spatio-temporal nonlocal regularization approach, the proposed method delivers reconstructed images of improved resolution and higher contrast while remaining significantly less computationally demanding. PMID:27002902
Shkvarko, Yuriy; Tuxpan, José; Santos, Stewart
2011-01-01
We consider a problem of high-resolution array radar/SAR imaging formalized in terms of a nonlinear ill-posed inverse problem of nonparametric estimation of the power spatial spectrum pattern (SSP) of the random wavefield scattered from a remotely sensed scene observed through a kernel signal formation operator and contaminated with random Gaussian noise. First, the Sobolev-type solution space is constructed to specify the class of consistent kernel SSP estimators with the reproducing kernel structures adapted to the metrics in such the solution space. Next, the “model-free” variational analysis (VA)-based image enhancement approach and the “model-based” descriptive experiment design (DEED) regularization paradigm are unified into a new dynamic experiment design (DYED) regularization framework. Application of the proposed DYED framework to the adaptive array radar/SAR imaging problem leads to a class of two-level (DEED-VA) regularized SSP reconstruction techniques that aggregate the kernel adaptive anisotropic windowing with the projections onto convex sets to enforce the consistency and robustness of the overall iterative SSP estimators. We also show how the proposed DYED regularization method may be considered as a generalization of the MVDR, APES and other high-resolution nonparametric adaptive radar sensing techniques. A family of the DYED-related algorithms is constructed and their effectiveness is finally illustrated via numerical simulations. PMID:22163859
Shkvarko, Yuriy; Tuxpan, José; Santos, Stewart
2011-01-01
We consider a problem of high-resolution array radar/SAR imaging formalized in terms of a nonlinear ill-posed inverse problem of nonparametric estimation of the power spatial spectrum pattern (SSP) of the random wavefield scattered from a remotely sensed scene observed through a kernel signal formation operator and contaminated with random Gaussian noise. First, the Sobolev-type solution space is constructed to specify the class of consistent kernel SSP estimators with the reproducing kernel structures adapted to the metrics in such the solution space. Next, the "model-free" variational analysis (VA)-based image enhancement approach and the "model-based" descriptive experiment design (DEED) regularization paradigm are unified into a new dynamic experiment design (DYED) regularization framework. Application of the proposed DYED framework to the adaptive array radar/SAR imaging problem leads to a class of two-level (DEED-VA) regularized SSP reconstruction techniques that aggregate the kernel adaptive anisotropic windowing with the projections onto convex sets to enforce the consistency and robustness of the overall iterative SSP estimators. We also show how the proposed DYED regularization method may be considered as a generalization of the MVDR, APES and other high-resolution nonparametric adaptive radar sensing techniques. A family of the DYED-related algorithms is constructed and their effectiveness is finally illustrated via numerical simulations.
Full Regularity for a C*-ALGEBRA of the Canonical Commutation Relations
NASA Astrophysics Data System (ADS)
Grundling, Hendrik; Neeb, Karl-Hermann
The Weyl algebra — the usual C*-algebra employed to model the canonical commutation relations (CCRs), has a well-known defect, in that it has a large number of representations which are not regular and these cannot model physical fields. Here, we construct explicitly a C*-algebra which can reproduce the CCRs of a countably dimensional symplectic space (S, B) and such that its representation set is exactly the full set of regular representations of the CCRs. This construction uses Blackadar's version of infinite tensor products of nonunital C*-algebras, and it produces a "host algebra" (i.e. a generalized group algebra, explained below) for the σ-representation theory of the Abelian group S where σ(·,·) ≔ eiB(·,·)/2. As an easy application, it then follows that for every regular representation of /line{Δ (S, B)} on a separable Hilbert space, there is a direct integral decomposition of it into irreducible regular representations (a known result).
An efficient, advanced regularized inversion method for highly parameterized environmental models
NASA Astrophysics Data System (ADS)
Skahill, B. E.; Baggett, J. S.
2008-12-01
The Levenberg-Marquardt method of computer based parameter estimation can be readily modified in cases of high parameter insensitivity and correlation by the inclusion of various regularization devices to maintain numerical stability and robustness, including; for example, Tikhonov regularization and truncated singular value decomposition. With Tikhonov regularization, where parameters or combinations of parameters cannot be uniquely estimated, they are provided with values or assigned relationships with other parameters that are decreed to be realistic by the modeler. Tikhonov schemes provide a mechanism for assimilation of valuable "outside knowledge" into the inversion process, with the result that parameter estimates, thus informed by a modeler's expertise, are more suitable for use in the making of important predictions by that model than would otherwise be the case. However, by maintaining the high dimensionality of the adjustable parameter space, they can potentially be computational burdensome. Moreover, while Tikhonov schemes are very attractive and hence widely used, problems with numerical stability can sometimes arise because the strength with which regularization constraints are applied throughout the regularized inversion process cannot be guaranteed to exactly complement inadequacies in the information content of a given calibration dataset. We will present results associated with development efforts that include an accelerated Levenberg-Marquardt local search algorithm adapted for Tikhonov regularization, and a technique which allows relative regularization weights to be estimated as parameters through the calibration process itself (Doherty and Skahill, 2006). This new method, encapsulated in the MICUT software (Skahill et al., 2008) will be compared, in terms of efficiency and enforcement of regularization relationships, with the SVD Assist method (Tonkin and Doherty, 2005) contained in the popular PEST package by considering various watershed
The connection between regularization operators and support vector kernels.
Smola, Alex J.; Schölkopf, Bernhard; Müller, Klaus Robert
1998-06-01
In this paper a correspondence is derived between regularization operators used in regularization networks and support vector kernels. We prove that the Green's Functions associated with regularization operators are suitable support vector kernels with equivalent regularization properties. Moreover, the paper provides an analysis of currently used support vector kernels in the view of regularization theory and corresponding operators associated with the classes of both polynomial kernels and translation invariant kernels. The latter are also analyzed on periodical domains. As a by-product we show that a large number of radial basis functions, namely conditionally positive definite functions, may be used as support vector kernels.
ERIC Educational Resources Information Center
Journal of Aerospace Education, 1975
1975-01-01
Describes the Alabama Space and Rocket Center in Huntsville, Alabama as stimulating experience for students in aerospace education. The center has the largest collection of space-age hardware assembled under one roof, a Space Flight simulator, a Skylab space station mock-up and many more interesting exhibits. (BR)
ERIC Educational Resources Information Center
Journal of Aerospace Education, 1975
1975-01-01
Describes the Alabama Space and Rocket Center in Huntsville, Alabama as stimulating experience for students in aerospace education. The center has the largest collection of space-age hardware assembled under one roof, a Space Flight simulator, a Skylab space station mock-up and many more interesting exhibits. (BR)
Effects of periodic stimulation on an overly activated neuronal circuit
NASA Astrophysics Data System (ADS)
Kwon, Okyu; Kim, Kiwoong; Park, Sungwon; Moon, Hie-Tae
2011-08-01
Motivated by therapeutic deep brain stimulation, we carried out a model study on the effects of periodic stimulation on an overly activated neuronal circuit. Our neuronal circuit, modeled as a small-world network of noisy Hodgkin-Huxley neurons, is controlled to undergo the mechanism of coherence resonance to exhibit spontaneous synchronization of neuronal firing. This state of energy burst is then directly modulated by a chain of electric pulses. Our study shows that (i) the stimulation blocks the synchronization by generating traveling waves, (ii) only the pulse with proper frequency can block the synchronization, and (iii) the effects of stimulation are completely reversible. It is also found that the stimulation is effective only when the network maintains fairly good structural regularity.
NASA Astrophysics Data System (ADS)
Huggett, Nick
2017-08-01
This paper investigates the significance of T-duality in string theory: the indistinguishability with respect to all observables, of models attributing radically different radii to space-larger than the observable universe, or far smaller than the Planck length, say. Two interpretational branch points are identified and discussed. First, whether duals are physically equivalent or not: by considering a duality of the familiar simple harmonic oscillator, I argue that they are. Unlike the oscillator, there are no measurements 'outside' string theory that could distinguish the duals. Second, whether duals agree or disagree on the radius of 'target space', the space in which strings evolve according to string theory. I argue for the latter position, because the alternative leaves it unknown what the radius is. Since duals are physically equivalent yet disagree on the radius of target space, it follows that the radius is indeterminate between them. Using an analysis of Brandenberger and Vafa (1989), I explain why-even so-space is observed to have a determinate, large radius. The conclusion is that observed, 'phenomenal' space is not target space, since a space cannot have both a determinate and indeterminate radius: instead phenomenal space must be a higher-level phenomenon, not fundamental.
Su, Ling-Hwa; Wu, Kwan-Dun; Lee, Li-Shan; Wang, Harrison; Liu, Chi-Feng
2009-01-01
Patients receiving regular hemodialysis sessions have been known to suffer from fatigue and depression. This experiment was designed to determine the effects of far infrared ray (FIR) stimulation on acupoints of patients suffering from renal failure who are receiving regular hemodialysis. Patients receiving long-term and regular hemodialysis who volunteered for this procedure were randomly selected to undergo either FIR or heat pad (HP) therapy to determine the impact of FIR treatment on these patients. Both the activities of the autonomic nervous system and changes in quality of life were measured before and after treatment to determine the effectiveness of the FIR treatment. Results from this study show that FIR therapy decreases both stress and fatigue levels of these patients. It also stimulates autonomic nervous system (ANS) activity in patients who are diagnosed with end-stage renal disease (ESRD) and are receiving regular hemodialysis (HD). Therefore, benefits of FIR stimulation on these patients are clearly demonstrated in this preliminary study.
Preparation of Regular Specimens for Atom Probes
NASA Technical Reports Server (NTRS)
Kuhlman, Kim; Wishard, James
2003-01-01
A method of preparation of specimens of non-electropolishable materials for analysis by atom probes is being developed as a superior alternative to a prior method. In comparison with the prior method, the present method involves less processing time. Also, whereas the prior method yields irregularly shaped and sized specimens, the present developmental method offers the potential to prepare specimens of regular shape and size. The prior method is called the method of sharp shards because it involves crushing the material of interest and selecting microscopic sharp shards of the material for use as specimens. Each selected shard is oriented with its sharp tip facing away from the tip of a stainless-steel pin and is glued to the tip of the pin by use of silver epoxy. Then the shard is milled by use of a focused ion beam (FIB) to make the shard very thin (relative to its length) and to make its tip sharp enough for atom-probe analysis. The method of sharp shards is extremely time-consuming because the selection of shards must be performed with the help of a microscope, the shards must be positioned on the pins by use of micromanipulators, and the irregularity of size and shape necessitates many hours of FIB milling to sharpen each shard. In the present method, a flat slab of the material of interest (e.g., a polished sample of rock or a coated semiconductor wafer) is mounted in the sample holder of a dicing saw of the type conventionally used to cut individual integrated circuits out of the wafers on which they are fabricated in batches. A saw blade appropriate to the material of interest is selected. The depth of cut and the distance between successive parallel cuts is made such that what is left after the cuts is a series of thin, parallel ridges on a solid base. Then the workpiece is rotated 90 and the pattern of cuts is repeated, leaving behind a square array of square posts on the solid base. The posts can be made regular, long, and thin, as required for samples
Chaos and Regularity in the Doubly Magic Nucleus 208Pb
NASA Astrophysics Data System (ADS)
Dietz, B.; Heusler, A.; Maier, K. H.; Richter, A.; Brown, B. A.
2017-01-01
High-resolution experiments have recently lead to a complete identification (energy, spin, and parity) of 151 nuclear levels up to an excitation energy of Ex=6.20 MeV in 208Pb [Heusler et al., Phys. Rev. C 93, 054321 (2016), 10.1103/PhysRevC.93.054321]. We present a thorough study of the fluctuation properties in the energy spectra of the unprecedented set of nuclear bound states. In a first approach, we group states with the same spin and parity into 14 subspectra, analyze standard statistical measures for short- and long-range correlations, i.e., the nearest-neighbor spacing distribution, the number variance Σ2, the Dyson-Mehta Δ3 statistics, and the novel distribution of the ratios of consecutive spacings of adjacent energy levels in each energy sequence, and then compute their ensemble average. Their comparison with a random matrix ensemble which interpolates between Poisson statistics expected for regular systems and the Gaussian orthogonal ensemble (GOE) predicted for chaotic systems shows that the data are well described by the GOE. In a second approach, following an idea of Rosenzweig and Porter [Phys. Rev. 120, 1698 (1960), 10.1103/PhysRev.120.1698], we consider the complete spectrum composed of the independent subspectra. We analyze their fluctuation properties using the method of Bayesian inference involving a quantitative measure, called the chaoticity parameter f , which also interpolates between Poisson (f =0 ) and GOE statistics (f =1 ). It turns out to be f ≈0.9 . This is so far the closest agreement with a GOE observed in the spectra of bound states in a nucleus. The same analysis is also performed with spectra computed on the basis of shell model calculations with different interactions (surface-delta interaction, Kuo-Brown, Michigan-three-Yukawa). While the simple surface-delta interaction exhibits features typical for nuclear many-body systems with regular dynamics, the other, more realistic interactions yield chaoticity parameters f close
Error analysis for matrix elastic-net regularization algorithms.
Li, Hong; Chen, Na; Li, Luoqing
2012-05-01
Elastic-net regularization is a successful approach in statistical modeling. It can avoid large variations which occur in estimating complex models. In this paper, elastic-net regularization is extended to a more general setting, the matrix recovery (matrix completion) setting. Based on a combination of the nuclear-norm minimization and the Frobenius-norm minimization, we consider the matrix elastic-net (MEN) regularization algorithm, which is an analog to the elastic-net regularization scheme from compressive sensing. Some properties of the estimator are characterized by the singular value shrinkage operator. We estimate the error bounds of the MEN regularization algorithm in the framework of statistical learning theory. We compute the learning rate by estimates of the Hilbert-Schmidt operators. In addition, an adaptive scheme for selecting the regularization parameter is presented. Numerical experiments demonstrate the superiority of the MEN regularization algorithm.
Causal Measurement Models: Can Criticism Stimulate Clarification?
ERIC Educational Resources Information Center
Markus, Keith A.
2016-01-01
In their 2016 work, Aguirre-Urreta et al. provided a contribution to the literature on causal measurement models that enhances clarity and stimulates further thinking. Aguirre-Urreta et al. presented a form of statistical identity involving mapping onto the portion of the parameter space involving the nomological net, relationships between the…
Causal Measurement Models: Can Criticism Stimulate Clarification?
ERIC Educational Resources Information Center
Markus, Keith A.
2016-01-01
In their 2016 work, Aguirre-Urreta et al. provided a contribution to the literature on causal measurement models that enhances clarity and stimulates further thinking. Aguirre-Urreta et al. presented a form of statistical identity involving mapping onto the portion of the parameter space involving the nomological net, relationships between the…
Peripheral nerve stimulation: definition.
Abejón, David; Pérez-Cajaraville, Juan
2011-01-01
Recently, there has been a tremendous evolution in the field of neurostimulation, both from the technological point of view and from development of the new and different indications. In some areas, such as peripheral nerve stimulation, there has been a boom in recent years due to the variations in the surgical technique and the improved results documented by in multiple published papers. All this makes imperative the need to classify and define the different types of stimulation that are used today. The confusion arises when attempting to describe peripheral nerve stimulation and subcutaneous stimulation. Peripheral nerve stimulation, in its pure definition, involves implanting a lead on a nerve, with the aim to produce paresthesia along the entire trajectory of the stimulated nerve. Copyright © 2011 S. Karger AG, Basel.
Factors stimulating bone formation.
Lind, M; Bünger, C
2001-10-01
The aim of this review is to describe major approaches for stimulating bone healing and to review other factors affecting bone healing. Spinal bone fusion after surgery is a demanding process requiring optimal conditions for clinical success. Bone formation and healing can be enhanced through various methods. Experimental studies have revealed an array of stimulative measures. These include biochemical stimulation by use of hormones and growth factors, physical stimulation through mechanical and electromagnetic measures, and bone grafting by use of bone tissue or bone substitutes. Newer biological techniques such as stem cell transplantation and gene therapy can also be used to stimulate bone healing. Apart from bone transplantation, clinical experience with the many stimulation modalities is limited. Possible areas for clinical use of these novel methods are discussed.
Park, Taryn M; Haning, William F
2016-07-01
Compared with other illicit substances, stimulants are not commonly used by adolescents; however, they represent a serious concern regarding substance use among youths. This article uses methamphetamine as a model for stimulant use in adolescents; cocaine and prescription stimulants are also mentioned. Methamphetamine use among adolescents and young adults is a serious health concern with potentially long-term physical, cognitive, and psychiatric consequences. Brain development and the effects of misusing stimulants align such that usage in adolescents can more dangerous than during adulthood. It seems helpful to keep in mind the differences between adolescents and young adults when implementing interventions. Published by Elsevier Inc.
Regularity of the global attractor for the plate equation with nonlocal nonlinearity in ℝn
NASA Astrophysics Data System (ADS)
Yayla, Sema
2017-07-01
This paper deals with the regularity of the global attractor for the semilinear plate equation with nonlocal nonlinearity. We proved the existence of the global attractor in the phase space H2 (ℝn) × L2 (ℝn) in our earlier work. In this study, we show that the global attractor is a bounded subset of H4 (ℝn) × H2 (ℝn).
Existence of periodic travelling wave solutions for a regularized Benjamin-Ono system
NASA Astrophysics Data System (ADS)
Pipicano, Felipe Alexander; Muñoz Grajales, Juan Carlos
2015-12-01
In this paper, we discuss the existence of periodic travelling wave solutions of a regularized Benjamin-Ono system by using the topological-degree theory of positive operators on Banach spaces. Furthermore, we use a high-accuracy pseudospectral solver based on a Fourier decomposition to construct numerical approximations of these stationary solutions. The numerical simulations are in perfect agreement with the theoretical results.