Sample records for regulate cardiac function

  1. Mitochondrial function in engineered cardiac tissues is regulated by extracellular matrix elasticity and tissue alignment.

    PubMed

    Lyra-Leite, Davi M; Andres, Allen M; Petersen, Andrew P; Ariyasinghe, Nethika R; Cho, Nathan; Lee, Jezell A; Gottlieb, Roberta A; McCain, Megan L

    2017-10-01

    Mitochondria in cardiac myocytes are critical for generating ATP to meet the high metabolic demands associated with sarcomere shortening. Distinct remodeling of mitochondrial structure and function occur in cardiac myocytes in both developmental and pathological settings. However, the factors that underlie these changes are poorly understood. Because remodeling of tissue architecture and extracellular matrix (ECM) elasticity are also hallmarks of ventricular development and disease, we hypothesize that these environmental factors regulate mitochondrial function in cardiac myocytes. To test this, we developed a new procedure to transfer tunable polydimethylsiloxane disks microcontact-printed with fibronectin into cell culture microplates. We cultured Sprague-Dawley neonatal rat ventricular myocytes within the wells, which consistently formed tissues following the printed fibronectin, and measured oxygen consumption rate using a Seahorse extracellular flux analyzer. Our data indicate that parameters associated with baseline metabolism are predominantly regulated by ECM elasticity, whereas the ability of tissues to adapt to metabolic stress is regulated by both ECM elasticity and tissue alignment. Furthermore, bioenergetic health index, which reflects both the positive and negative aspects of oxygen consumption, was highest in aligned tissues on the most rigid substrate, suggesting that overall mitochondrial function is regulated by both ECM elasticity and tissue alignment. Our results demonstrate that mitochondrial function is regulated by both ECM elasticity and myofibril architecture in cardiac myocytes. This provides novel insight into how extracellular cues impact mitochondrial function in the context of cardiac development and disease. NEW & NOTEWORTHY A new methodology has been developed to measure O 2 consumption rates in engineered cardiac tissues with independent control over tissue alignment and matrix elasticity. This led to the findings that matrix elasticity regulates basal mitochondrial function, whereas both matrix elasticity and tissue alignment regulate mitochondrial stress responses. Copyright © 2017 the American Physiological Society.

  2. Kruppel-like factor 15 is required for the cardiac adaptive response to fasting.

    PubMed

    Sugi, Keiki; Hsieh, Paishiun N; Ilkayeva, Olga; Shelkay, Shamanthika; Moroney, Bridget; Baadh, Palvir; Haynes, Browning; Pophal, Megan; Fan, Liyan; Newgard, Christopher B; Prosdocimo, Domenick A; Jain, Mukesh K

    2018-01-01

    Cardiac metabolism is highly adaptive in response to changes in substrate availability, as occur during fasting. This metabolic flexibility is essential to the maintenance of contractile function and is under the control of a group of select transcriptional regulators, notably the nuclear receptor family of factors member PPARα. However, the diversity of physiologic and pathologic states through which the heart must sustain function suggests the possible existence of additional transcriptional regulators that play a role in matching cardiac metabolism to energetic demand. Here we show that cardiac KLF15 is required for the normal cardiac response to fasting. Specifically, we find that cardiac function is impaired upon fasting in systemic and cardiac specific Klf15-null mice. Further, cardiac specific Klf15-null mice display a fasting-dependent accumulation of long chain acylcarnitine species along with a decrease in expression of the carnitine translocase Slc25a20. Treatment with a diet high in short chain fatty acids relieves the KLF15-dependent long chain acylcarnitine accumulation and impaired cardiac function in response to fasting. Our observations establish KLF15 as a critical mediator of the cardiac adaptive response to fasting through its regulation of myocardial lipid utilization.

  3. Abnormal cardiac autonomic regulation in mice lacking ASIC3.

    PubMed

    Cheng, Ching-Feng; Kuo, Terry B J; Chen, Wei-Nan; Lin, Chao-Chieh; Chen, Chih-Cheng

    2014-01-01

    Integration of sympathetic and parasympathetic outflow is essential in maintaining normal cardiac autonomic function. Recent studies demonstrate that acid-sensing ion channel 3 (ASIC3) is a sensitive acid sensor for cardiac ischemia and prolonged mild acidification can open ASIC3 and evoke a sustained inward current that fires action potentials in cardiac sensory neurons. However, the physiological role of ASIC3 in cardiac autonomic regulation is not known. In this study, we elucidate the role of ASIC3 in cardiac autonomic function using Asic3(-/-) mice. Asic3(-/-) mice showed normal baseline heart rate and lower blood pressure as compared with their wild-type littermates. Heart rate variability analyses revealed imbalanced autonomic regulation, with decreased sympathetic function. Furthermore, Asic3(-/-) mice demonstrated a blunted response to isoproterenol-induced cardiac tachycardia and prolonged duration to recover to baseline heart rate. Moreover, quantitative RT-PCR analysis of gene expression in sensory ganglia and heart revealed that no gene compensation for muscarinic acetylcholines receptors and beta-adrenalin receptors were found in Asic3(-/-) mice. In summary, we unraveled an important role of ASIC3 in regulating cardiac autonomic function, whereby loss of ASIC3 alters the normal physiological response to ischemic stimuli, which reveals new implications for therapy in autonomic nervous system-related cardiovascular diseases.

  4. Cardiac regulation in the socially monogamous prairie vole

    PubMed Central

    Grippo, Angela J.; Lamb, Damon G.; Carter, C. Sue; Porges, Stephen W.

    2007-01-01

    Social experiences, both positive and negative, may influence cardiovascular regulation. Prairie voles (Microtus ochrogaster) are socially monogamous rodents that form social bonds similar to those seen in primates, and this species may provide a useful model for investigating neural and social regulation of cardiac function. Cardiac regulation has not been studied previously in the prairie vole. Radiotelemetry transmitters were implanted into adult female prairie voles under anesthesia, and electrocardiographic parameters were recorded. Autonomic blockade was performed using atenolol (8 mg/kg ip) and atropine methyl nitrate (4 mg/kg ip). Several variables were evaluated, including heart rate (HR), HR variability and the amplitude of respiratory sinus arrhythmia. Sympathetic blockade significantly reduced HR. Parasympathetic blockade significantly increased HR, and reduced HR variability and the amplitude of respiratory sinus arrhythmia. Combined autonomic blockade significantly increased HR, and reduced HR variability and respiratory sinus arrhythmia amplitude. The data indicate that autonomic function in prairie voles shares similarities with primates, with a predominant vagal influence on cardiac regulation. The current results provide a foundation for studying neural and social regulation of cardiac function during different behavioral states in this socially monogamous rodent model. PMID:17107695

  5. Mast cells regulate myofilament calcium sensitization and heart function after myocardial infarction

    PubMed Central

    Richart, Adèle; Vilar, Jose; Lemitre, Mathilde; Marck, Pauline; Branchereau, Maxime; Guerin, Coralie; Gautier, Gregory; Blank, Ulrich; Heymes, Christophe; Luche, Elodie; Cousin, Béatrice; Rodewald, Hans-Reimer

    2016-01-01

    Acute myocardial infarction (MI) is a severe ischemic disease responsible for heart failure and sudden death. Inflammatory cells orchestrate postischemic cardiac remodeling after MI. Studies using mice with defective mast/stem cell growth factor receptor c-Kit have suggested key roles for mast cells (MCs) in postischemic cardiac remodeling. Because c-Kit mutations affect multiple cell types of both immune and nonimmune origin, we addressed the impact of MCs on cardiac function after MI, using the c-Kit–independent MC-deficient (Cpa3Cre/+) mice. In response to MI, MC progenitors originated primarily from white adipose tissue, infiltrated the heart, and differentiated into mature MCs. MC deficiency led to reduced postischemic cardiac function and depressed cardiomyocyte contractility caused by myofilament Ca2+ desensitization. This effect correlated with increased protein kinase A (PKA) activity and hyperphosphorylation of its targets, troponin I and myosin-binding protein C. MC-specific tryptase was identified to regulate PKA activity in cardiomyocytes via protease-activated receptor 2 proteolysis. This work reveals a novel function for cardiac MCs modulating cardiomyocyte contractility via alteration of PKA-regulated force–Ca2+ interactions in response to MI. Identification of this MC-cardiomyocyte cross-talk provides new insights on the cellular and molecular mechanisms regulating the cardiac contractile machinery and a novel platform for therapeutically addressable regulators. PMID:27353089

  6. Engineered hybrid cardiac patches with multifunctional electronics for online monitoring and regulation of tissue function

    PubMed Central

    Feiner, Ron; Engel, Leeya; Fleischer, Sharon; Malki, Maayan; Gal, Idan; Shapira, Assaf; Shacham-Diamand, Yosi; Dvir, Tal

    2016-01-01

    In cardiac tissue engineering approaches to treat myocardial infarction, cardiac cells are seeded within three-dimensional porous scaffolds to create functional cardiac patches. However, current cardiac patches do not allow for online monitoring and reporting of engineered-tissue performance, and do not interfere to deliver signals for patch activation or to enable its integration with the host. Here, we report an engineered cardiac patch that integrates cardiac cells with flexible, free-standing electronics and a 3D nanocomposite scaffold. The patch exhibited robust electronic properties, enabling the recording of cellular electrical activities and the on-demand provision of electrical stimulation for synchronizing cell contraction. We also show that electroactive polymers containing biological factors can be deposited on designated electrodes to release drugs in the patch microenvironment on-demand. We expect that the integration of complex electronics within cardiac patches will eventually provide therapeutic control and regulation of cardiac function. PMID:26974408

  7. Engineered hybrid cardiac patches with multifunctional electronics for online monitoring and regulation of tissue function.

    PubMed

    Feiner, Ron; Engel, Leeya; Fleischer, Sharon; Malki, Maayan; Gal, Idan; Shapira, Assaf; Shacham-Diamand, Yosi; Dvir, Tal

    2016-06-01

    In cardiac tissue engineering approaches to treat myocardial infarction, cardiac cells are seeded within three-dimensional porous scaffolds to create functional cardiac patches. However, current cardiac patches do not allow for online monitoring and reporting of engineered-tissue performance, and do not interfere to deliver signals for patch activation or to enable its integration with the host. Here, we report an engineered cardiac patch that integrates cardiac cells with flexible, freestanding electronics and a 3D nanocomposite scaffold. The patch exhibited robust electronic properties, enabling the recording of cellular electrical activities and the on-demand provision of electrical stimulation for synchronizing cell contraction. We also show that electroactive polymers containing biological factors can be deposited on designated electrodes to release drugs in the patch microenvironment on demand. We expect that the integration of complex electronics within cardiac patches will eventually provide therapeutic control and regulation of cardiac function.

  8. Transient Receptor Potential Vanilloid 2 Regulates Myocardial Response to Exercise

    PubMed Central

    Naticchioni, Mindi; Karani, Rajiv; Smith, Margaret A.; Onusko, Evan; Robbins, Nathan; Jiang, Min; Radzyukevich, Tatiana; Fulford, Logan; Gao, Xu; Apel, Ryan; Heiny, Judith; Rubinstein, Jack; Koch, Sheryl E.

    2015-01-01

    The myocardial response to exercise is an adaptive mechanism that permits the heart to maintain cardiac output via improved cardiac function and development of hypertrophy. There are many overlapping mechanisms via which this occurs with calcium handling being a crucial component of this process. Our laboratory has previously found that the stretch sensitive TRPV2 channels are active regulators of calcium handling and cardiac function under baseline conditions based on our observations that TRPV2-KO mice have impaired cardiac function at baseline. The focus of this study was to determine the cardiac function of TRPV2-KO mice under exercise conditions. We measured skeletal muscle at baseline in WT and TRPV2-KO mice and subjected them to various exercise protocols and measured the cardiac response using echocardiography and molecular markers. Our results demonstrate that the TRPV2-KO mouse did not tolerate forced exercise although they became increasingly exercise tolerant with voluntary exercise. This occurs as the cardiac function deteriorates further with exercise. Thus, our conclusion is that TRPV2-KO mice have impaired cardiac functional response to exercise. PMID:26356305

  9. The long noncoding RNA Wisper controls cardiac fibrosis and remodeling

    PubMed Central

    Micheletti, Rudi; Plaisance, Isabelle; Abraham, Brian J.; Sarre, Alexandre; Ting, Ching-Chia; Alexanian, Michael; Maric, Daniel; Maison, Damien; Nemir, Mohamed; Young, Richard A.; Schroen, Blanche; González, Arantxa; Ounzain, Samir; Pedrazzini, Thierry

    2017-01-01

    Long noncoding RNAs (lncRNAs) are emerging as powerful regulators of cardiac development and disease. However, our understanding of the importance of these molecules in cardiac fibrosis is limited. Using an integrated genomic screen, we identified Wisper (Wisp2 super-enhancer–associated RNA) as a cardiac fibroblast–enriched lncRNA that regulates cardiac fibrosis after injury. Wisper expression was correlated with cardiac fibrosis both in a murine model of myocardial infarction (MI) and in heart tissue from human patients suffering from aortic stenosis. Loss-of-function approaches in vitro using modified antisense oligonucleotides (ASOs) demonstrated that Wisper is a specific regulator of cardiac fibroblast proliferation, migration, and survival. Accordingly, ASO-mediated silencing of Wisper in vivo attenuated MI-induced fibrosis and cardiac dysfunction. Functionally, Wisper regulates cardiac fibroblast gene expression programs critical for cell identity, extracellular matrix deposition, proliferation, and survival. In addition, its association with TIA1-related protein allows it to control the expression of a profibrotic form of lysyl hydroxylase 2, implicated in collagen cross-linking and stabilization of the matrix. Together, our findings identify Wisper as a cardiac fibroblast–enriched super-enhancer–associated lncRNA that represents an attractive therapeutic target to reduce the pathological development of cardiac fibrosis in response to MI and prevent adverse remodeling in the damaged heart. PMID:28637928

  10. Mast cells regulate myofilament calcium sensitization and heart function after myocardial infarction.

    PubMed

    Ngkelo, Anta; Richart, Adèle; Kirk, Jonathan A; Bonnin, Philippe; Vilar, Jose; Lemitre, Mathilde; Marck, Pauline; Branchereau, Maxime; Le Gall, Sylvain; Renault, Nisa; Guerin, Coralie; Ranek, Mark J; Kervadec, Anaïs; Danelli, Luca; Gautier, Gregory; Blank, Ulrich; Launay, Pierre; Camerer, Eric; Bruneval, Patrick; Menasche, Philippe; Heymes, Christophe; Luche, Elodie; Casteilla, Louis; Cousin, Béatrice; Rodewald, Hans-Reimer; Kass, David A; Silvestre, Jean-Sébastien

    2016-06-27

    Acute myocardial infarction (MI) is a severe ischemic disease responsible for heart failure and sudden death. Inflammatory cells orchestrate postischemic cardiac remodeling after MI. Studies using mice with defective mast/stem cell growth factor receptor c-Kit have suggested key roles for mast cells (MCs) in postischemic cardiac remodeling. Because c-Kit mutations affect multiple cell types of both immune and nonimmune origin, we addressed the impact of MCs on cardiac function after MI, using the c-Kit-independent MC-deficient (Cpa3(Cre/+)) mice. In response to MI, MC progenitors originated primarily from white adipose tissue, infiltrated the heart, and differentiated into mature MCs. MC deficiency led to reduced postischemic cardiac function and depressed cardiomyocyte contractility caused by myofilament Ca(2+) desensitization. This effect correlated with increased protein kinase A (PKA) activity and hyperphosphorylation of its targets, troponin I and myosin-binding protein C. MC-specific tryptase was identified to regulate PKA activity in cardiomyocytes via protease-activated receptor 2 proteolysis. This work reveals a novel function for cardiac MCs modulating cardiomyocyte contractility via alteration of PKA-regulated force-Ca(2+) interactions in response to MI. Identification of this MC-cardiomyocyte cross-talk provides new insights on the cellular and molecular mechanisms regulating the cardiac contractile machinery and a novel platform for therapeutically addressable regulators. ©2016 Ngkelo et al.

  11. Channelopathies from Mutations in the Cardiac Sodium Channel Protein Complex

    PubMed Central

    Adsit, Graham S.; Vaidyanathan, Ravi; Galler, Carla M.; Kyle, John W.; Makielski, Jonathan C.

    2013-01-01

    The cardiac sodium current underlies excitability in heart, and inherited abnormalities of the proteins regulating and conducting this current cause inherited arrhythmia syndromes. This review focuses on inherited mutations in non-pore forming proteins of sodium channel complexes that cause cardiac arrhythmia, and the deduced mechanisms by which they affect function and dysfunction of the cardiac sodium current. Defining the structure and function of these complexes and how they are regulated will contribute to understanding the possible roles for this complex in normal and abnormal physiology and homeostasis. PMID:23557754

  12. RNA splicing regulated by RBFOX1 is essential for cardiac function in zebrafish.

    PubMed

    Frese, Karen S; Meder, Benjamin; Keller, Andreas; Just, Steffen; Haas, Jan; Vogel, Britta; Fischer, Simon; Backes, Christina; Matzas, Mark; Köhler, Doreen; Benes, Vladimir; Katus, Hugo A; Rottbauer, Wolfgang

    2015-08-15

    Alternative splicing is one of the major mechanisms through which the proteomic and functional diversity of eukaryotes is achieved. However, the complex nature of the splicing machinery, its associated splicing regulators and the functional implications of alternatively spliced transcripts are only poorly understood. Here, we investigated the functional role of the splicing regulator rbfox1 in vivo using the zebrafish as a model system. We found that loss of rbfox1 led to progressive cardiac contractile dysfunction and heart failure. By using deep-transcriptome sequencing and quantitative real-time PCR, we show that depletion of rbfox1 in zebrafish results in an altered isoform expression of several crucial target genes, such as actn3a and hug. This study underlines that tightly regulated splicing is necessary for unconstrained cardiac function and renders the splicing regulator rbfox1 an interesting target for investigation in human heart failure and cardiomyopathy. © 2015. Published by The Company of Biologists Ltd.

  13. HAND2 Target Gene Regulatory Networks Control Atrioventricular Canal and Cardiac Valve Development.

    PubMed

    Laurent, Frédéric; Girdziusaite, Ausra; Gamart, Julie; Barozzi, Iros; Osterwalder, Marco; Akiyama, Jennifer A; Lincoln, Joy; Lopez-Rios, Javier; Visel, Axel; Zuniga, Aimée; Zeller, Rolf

    2017-05-23

    The HAND2 transcriptional regulator controls cardiac development, and we uncover additional essential functions in the endothelial to mesenchymal transition (EMT) underlying cardiac cushion development in the atrioventricular canal (AVC). In Hand2-deficient mouse embryos, the EMT underlying AVC cardiac cushion formation is disrupted, and we combined ChIP-seq of embryonic hearts with transcriptome analysis of wild-type and mutants AVCs to identify the functionally relevant HAND2 target genes. The HAND2 target gene regulatory network (GRN) includes most genes with known functions in EMT processes and AVC cardiac cushion formation. One of these is Snai1, an EMT master regulator whose expression is lost from Hand2-deficient AVCs. Re-expression of Snai1 in mutant AVC explants partially restores this EMT and mesenchymal cell migration. Furthermore, the HAND2-interacting enhancers in the Snai1 genomic landscape are active in embryonic hearts and other Snai1-expressing tissues. These results show that HAND2 directly regulates the molecular cascades initiating AVC cardiac valve development. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  14. HAND2 Target Gene Regulatory Networks Control Atrioventricular Canal and Cardiac Valve Development

    DOE PAGES

    Laurent, Frédéric; Girdziusaite, Ausra; Gamart, Julie; ...

    2017-05-23

    The HAND2 transcriptional regulator controls cardiac development, and we uncover additional essential functions in the endothelial to mesenchymal transition (EMT) underlying cardiac cushion development in the atrioventricular canal (AVC). In Hand2-deficient mouse embryos, the EMT underlying AVC cardiac cushion formation is disrupted, and we combined ChIP-seq of embryonic hearts with transcriptome analysis of wild-type and mutants AVCs to identify the functionally relevant HAND2 target genes. The HAND2 target gene regulatory network (GRN) includes most genes with known functions in EMT processes and AVC cardiac cushion formation. One of these is Snai1, an EMT master regulator whose expression is lost frommore » Hand2-deficient AVCs. Re-expression of Snai1 in mutant AVC explants partially restores this EMT and mesenchymal cell migration. Furthermore, the HAND2-interacting enhancers in the Snai1 genomic landscape are active in embryonic hearts and other Snai1-expressing tissues. These results show that HAND2 directly regulates the molecular cascades initiating AVC cardiac valve development.« less

  15. HAND2 Target Gene Regulatory Networks Control Atrioventricular Canal and Cardiac Valve Development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laurent, Frédéric; Girdziusaite, Ausra; Gamart, Julie

    The HAND2 transcriptional regulator controls cardiac development, and we uncover additional essential functions in the endothelial to mesenchymal transition (EMT) underlying cardiac cushion development in the atrioventricular canal (AVC). In Hand2-deficient mouse embryos, the EMT underlying AVC cardiac cushion formation is disrupted, and we combined ChIP-seq of embryonic hearts with transcriptome analysis of wild-type and mutants AVCs to identify the functionally relevant HAND2 target genes. The HAND2 target gene regulatory network (GRN) includes most genes with known functions in EMT processes and AVC cardiac cushion formation. One of these is Snai1, an EMT master regulator whose expression is lost frommore » Hand2-deficient AVCs. Re-expression of Snai1 in mutant AVC explants partially restores this EMT and mesenchymal cell migration. Furthermore, the HAND2-interacting enhancers in the Snai1 genomic landscape are active in embryonic hearts and other Snai1-expressing tissues. These results show that HAND2 directly regulates the molecular cascades initiating AVC cardiac valve development.« less

  16. Cardiac myofilaments: mechanics and regulation

    NASA Technical Reports Server (NTRS)

    de Tombe, Pieter P.; Bers, D. M. (Principal Investigator)

    2003-01-01

    The mechanical properties of the cardiac myofilament are an important determinant of pump function of the heart. This report is focused on the regulation of myofilament function in cardiac muscle. Calcium ions form the trigger that induces activation of the thin filament which, in turn, allows for cross-bridge formation, ATP hydrolysis, and force development. The structure and protein-protein interactions of the cardiac sarcomere that are responsible for these processes will be reviewed. The molecular mechanism that underlies myofilament activation is incompletely understood. Recent experimental approaches have been employed to unravel the mechanism and regulation of myofilament mechanics and energetics by activator calcium and sarcomere length, as well as contractile protein phosphorylation mediated by protein kinase A. Central to these studies is the question whether such factors impact on muscle function simply by altering thin filament activation state, or whether modulation of cross-bridge cycling also plays a part in the responses of muscle to these stimuli.

  17. Epitranscriptional orchestration of genetic reprogramming is an emergent property of stress-regulated cardiac microRNAs

    PubMed Central

    Hu, Yuanxin; Matkovich, Scot J.; Hecker, Peter A.; Zhang, Yan; Edwards, John R.; Dorn, Gerald W.

    2012-01-01

    Cardiac stress responses are driven by an evolutionarily conserved gene expression program comprising dozens of microRNAs and hundreds of mRNAs. Functionalities of different individual microRNAs are being studied, but the overall purpose of interactions between stress-regulated microRNAs and mRNAs and potentially distinct roles for microRNA-mediated epigenetic and conventional transcriptional genetic reprogramming of the stressed heart are unknown. Here we used deep sequencing to interrogate microRNA and mRNA regulation in pressure-overloaded mouse hearts, and performed a genome-wide examination of microRNA–mRNA interactions during early cardiac hypertrophy. Based on abundance and regulatory patterns, cardiac microRNAs were categorized as constitutively expressed housekeeping, regulated homeostatic, or dynamic early stress-responsive microRNAs. Regulation of 62 stress-responsive cardiac microRNAs directly affected levels of only 66 mRNAs, but the global impact of microRNA-mediated epigenetic regulation was amplified by preferential targeting of mRNAs encoding transcription factors, kinases, and phosphatases exerting amplified secondary effects. Thus, an emergent cooperative property of stress-regulated microRNAs is orchestration of transcriptional and posttranslational events that help determine the stress-reactive cardiac phenotype. This global functionality explains how large end-organ effects can be induced through modest individual changes in target mRNA and protein content by microRNAs that sense and respond dynamically to a changing physiological milieu. PMID:23150554

  18. Measures of Autonomic Nervous System Regulation

    DTIC Science & Technology

    2011-04-01

    and most often used measures of ANS activation encompass non-invasive tools, which measure cardiac, skin conductance, respiratory , and vascular...regulation, osmotic balance, metabolism, digestion, excretion, and cardiac and respiratory activity. The ANS consists of the sympathetic and...modulate heart rate, as a function of the respiratory cycles. Generally, these two systems should be seen as permanently modulating vital functions to

  19. Differential and Conditional Activation of PKC-Isoforms Dictates Cardiac Adaptation during Physiological to Pathological Hypertrophy

    PubMed Central

    Naskar, Shaon; Datta, Kaberi; Mitra, Arkadeep; Pathak, Kanchan; Datta, Ritwik; Bansal, Trisha; Sarkar, Sagartirtha

    2014-01-01

    A cardiac hypertrophy is defined as an increase in heart mass which may either be beneficial (physiological hypertrophy) or detrimental (pathological hypertrophy). This study was undertaken to establish the role of different protein kinase-C (PKC) isoforms in the regulation of cardiac adaptation during two types of cardiac hypertrophy. Phosphorylation of specific PKC-isoforms and expression of their downstream proteins were studied during physiological and pathological hypertrophy in 24 week male Balb/c mice (Mus musculus) models, by reverse transcriptase-PCR, western blot analysis and M-mode echocardiography for cardiac function analysis. PKC-δ was significantly induced during pathological hypertrophy while PKC-α was exclusively activated during physiological hypertrophy in our study. PKC-δ activation during pathological hypertrophy resulted in cardiomyocyte apoptosis leading to compromised cardiac function and on the other hand, activation of PKC-α during physiological hypertrophy promoted cardiomyocyte growth but down regulated cellular apoptotic load resulting in improved cardiac function. Reversal in PKC-isoform with induced activation of PKC-δ and simultaneous inhibition of phospho-PKC-α resulted in an efficient myocardium to deteriorate considerably resulting in compromised cardiac function during physiological hypertrophy via augmentation of apoptotic and fibrotic load. This is the first report where PKC-α and -δ have been shown to play crucial role in cardiac adaptation during physiological and pathological hypertrophy respectively thereby rendering compromised cardiac function to an otherwise efficient heart by conditional reversal of their activation. PMID:25116170

  20. Live dynamic analysis of mouse embryonic cardiogenesis with functional optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Lopez, Andrew L.; Wang, Shang; Larina, Irina V.

    2018-02-01

    Hemodynamic load, contractile forces, and tissue elasticity are regulators of cardiac development and contribute to the mechanical homeostasis of the developing vertebrate heart. Congenital heart disease (CHD) is a prevalent condition in the United States that affects 8 in 1000 live births[1], and has been linked to disrupted cardiac biomechanics[2-4]. Therefore, it is important to understand how these forces integrate and regulate vertebrate cardiac development to inform clinical strategies to treat CHD early on by reintroducing proper mechanical load or modulating downstream factors that rely on mechanical signalling. Toward investigation of biomechanical regulation of mammalian cardiovascular dynamics and development, our methodology combines live mouse embryo culture protocols, state-of-the-art structural and functional Optical Coherence Tomography (OCT), second harmonic generation (SHG) microscopy, and computational analysis. Using these approaches, we assess functional aspects of the developing heart and characterize how they coincide with a determinant of tissue stiffness and main constituent of the extracellular matrix (ECM)—type I collagen. This work is bringing us closer to understanding how cardiac biomechanics change temporally and spatially during normal development, and how it regulates ECM to maintain mechanical homeostasis for proper function.

  1. CHIP protects against cardiac pressure overload through regulation of AMPK

    PubMed Central

    Schisler, Jonathan C.; Rubel, Carrie E.; Zhang, Chunlian; Lockyer, Pamela; Cyr, Douglas M.; Patterson, Cam

    2013-01-01

    Protein quality control and metabolic homeostasis are integral to maintaining cardiac function during stress; however, little is known about if or how these systems interact. Here we demonstrate that C terminus of HSC70-interacting protein (CHIP), a regulator of protein quality control, influences the metabolic response to pressure overload by direct regulation of the catalytic α subunit of AMPK. Induction of cardiac pressure overload in Chip–/– mice resulted in robust hypertrophy and decreased cardiac function and energy generation stemming from a failure to activate AMPK. Mechanistically, CHIP promoted LKB1-mediated phosphorylation of AMPK, increased the specific activity of AMPK, and was necessary and sufficient for stress-dependent activation of AMPK. CHIP-dependent effects on AMPK activity were accompanied by conformational changes specific to the α subunit, both in vitro and in vivo, identifying AMPK as the first physiological substrate for CHIP chaperone activity and establishing a link between cardiac proteolytic and metabolic pathways. PMID:23863712

  2. PDE1C deficiency antagonizes pathological cardiac remodeling and dysfunction

    PubMed Central

    Knight, Walter E.; Chen, Si; Zhang, Yishuai; Oikawa, Masayoshi; Wu, Meiping; Zhou, Qian; Miller, Clint L.; Cai, Yujun; Mickelsen, Deanne M.; Moravec, Christine; Small, Eric M.; Abe, Junichi; Yan, Chen

    2016-01-01

    Cyclic nucleotide phosphodiesterase 1C (PDE1C) represents a major phosphodiesterase activity in human myocardium, but its function in the heart remains unknown. Using genetic and pharmacological approaches, we studied the expression, regulation, function, and underlying mechanisms of PDE1C in the pathogenesis of cardiac remodeling and dysfunction. PDE1C expression is up-regulated in mouse and human failing hearts and is highly expressed in cardiac myocytes but not in fibroblasts. In adult mouse cardiac myocytes, PDE1C deficiency or inhibition attenuated myocyte death and apoptosis, which was largely dependent on cyclic AMP/PKA and PI3K/AKT signaling. PDE1C deficiency also attenuated cardiac myocyte hypertrophy in a PKA-dependent manner. Conditioned medium taken from PDE1C-deficient cardiac myocytes attenuated TGF-β–stimulated cardiac fibroblast activation through a mechanism involving the crosstalk between cardiac myocytes and fibroblasts. In vivo, cardiac remodeling and dysfunction induced by transverse aortic constriction, including myocardial hypertrophy, apoptosis, cardiac fibrosis, and loss of contractile function, were significantly attenuated in PDE1C-knockout mice relative to wild-type mice. These results indicate that PDE1C activation plays a causative role in pathological cardiac remodeling and dysfunction. Given the continued development of highly specific PDE1 inhibitors and the high expression level of PDE1C in the human heart, our findings could have considerable therapeutic significance. PMID:27791092

  3. Cardiac Med1 deletion promotes early lethality, cardiac remodeling, and transcriptional reprogramming

    PubMed Central

    Spitler, Kathryn M.; Ponce, Jessica M.; Oudit, Gavin Y.; Hall, Duane D.

    2017-01-01

    The mediator complex, a multisubunit nuclear complex, plays an integral role in regulating gene expression by acting as a bridge between transcription factors and RNA polymerase II. Genetic deletion of mediator subunit 1 (Med1) results in embryonic lethality, due in large part to impaired cardiac development. We first established that Med1 is dynamically expressed in cardiac development and disease, with marked upregulation of Med1 in both human and murine failing hearts. To determine if Med1 deficiency protects against cardiac stress, we generated two cardiac-specific Med1 knockout mouse models in which Med1 is conditionally deleted (Med1cKO mice) or inducibly deleted in adult mice (Med1cKO-MCM mice). In both models, cardiac deletion of Med1 resulted in early lethality accompanied by pronounced changes in cardiac function, including left ventricular dilation, decreased ejection fraction, and pathological structural remodeling. We next defined how Med1 deficiency alters the cardiac transcriptional profile using RNA-sequencing analysis. Med1cKO mice demonstrated significant dysregulation of genes related to cardiac metabolism, in particular genes that are coordinated by the transcription factors Pgc1α, Pparα, and Errα. Consistent with the roles of these transcription factors in regulation of mitochondrial genes, we observed significant alterations in mitochondrial size, mitochondrial gene expression, complex activity, and electron transport chain expression under Med1 deficiency. Taken together, these data identify Med1 as an important regulator of vital cardiac gene expression and maintenance of normal heart function. NEW & NOTEWORTHY Disruption of transcriptional gene expression is a hallmark of dilated cardiomyopathy; however, its etiology is not well understood. Cardiac-specific deletion of the transcriptional coactivator mediator subunit 1 (Med1) results in dilated cardiomyopathy, decreased cardiac function, and lethality. Med1 deletion disrupted cardiac mitochondrial and metabolic gene expression patterns. PMID:28159809

  4. EPAC expression and function in cardiac fibroblasts and myofibroblasts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olmedo, Ivonne; Muñoz, Claudia; Guzmán, Nancy

    In the heart, cardiac fibroblasts (CF) and cardiac myofibroblasts (CMF) are the main cells responsible for wound healing after cardiac insult. Exchange protein activated by cAMP (EPAC) is a downstream effector of cAMP, and it has been not completely studied on CF. Moreover, in CMF, which are the main cells responsible for cardiac healing, EPAC expression and function are unknown. We evaluated in both CF and CMF the effect of transforming growth factor β1 (TGF-β1) on EPAC-1 expression. We also studied the EPAC involvement on collagen synthesis, adhesion, migration and collagen gel contraction. Method: Rat neonatal CF and CMF weremore » treated with TGF-β1 at different times and concentrations. EPAC-1 protein levels and Rap1 activation were measured by western blot and pull down assay respectively. EPAC cellular functions were determined by adhesion, migration and collagen gel contraction assay; and collagen expression was determined by western blot. Results: TGF-β1 through Smad and JNK significantly reduced EPAC-1 expression in CF, while in CMF this cytokine increased EPAC-1 expression through ERK1/2, JNK, p38, AKT and Smad3. EPAC activation was able to induce higher Rap1-GTP levels in CMF than in CF. EPAC and PKA, both cAMP effectors, promoted CF and CMF adhesion on fibronectin, as well as CF migration; however, this effect was not observed in CMF. EPAC but not PKA activation mediated collagen gel contraction in CF, while in CMF both PKA and EPAC mediated collagen gel contraction. Finally, the EPAC and PKA activation reduced collagen synthesis in CF and CMF. Conclusion: TGF-β1 differentially regulates the expression of EPAC in CF and CMF; and EPAC regulates differentially CF and CMF functions associated with cardiac remodeling. - Highlights: • TGF-β1 regulates EPAC-1 expression in cardiac fibroblast and myofibroblast. • Rap-1GTP levels are higher in cardiac myofibroblast than fibroblast. • EPAC-1 controls adhesion, migration and collagen synthesis in cardiac fibroblast. • PKA regulates collagen gel contraction in cardiac myofibroblast.« less

  5. Low-dose copper infusion into the coronary circulation induces acute heart failure in diabetic rats: New mechanism of heart disease.

    PubMed

    Cheung, Carlos Chun Ho; Soon, Choong Yee; Chuang, Chia-Lin; Phillips, Anthony R J; Zhang, Shaoping; Cooper, Garth J S

    2015-09-01

    Diabetes impairs copper (Cu) regulation, causing elevated serum Cu and urinary Cu excretion in patients with established cardiovascular disease; it also causes cardiomyopathy and chronic cardiac impairment linked to defective Cu homeostasis in rats. However, the mechanisms that link impaired Cu regulation to cardiac dysfunction in diabetes are incompletely understood. Chronic treatment with triethylenetetramine (TETA), a Cu²⁺-selective chelator, improves cardiac function in diabetic patients, and in rats with heart disease; the latter displayed ∼3-fold elevations in free Cu²⁺ in the coronary effluent when TETA was infused into their coronary arteries. To further study the nature of defective cardiac Cu regulation in diabetes, we employed an isolated-perfused, working-heart model in which we infused micromolar doses of Cu²⁺ into the coronary arteries and measured acute effects on cardiac function in diabetic and non-diabetic-control rats. Infusion of CuCl₂ solutions caused acute dose-dependent cardiac dysfunction in normal hearts. Several measures of baseline cardiac function were impaired in diabetic hearts, and these defects were exacerbated by low-micromolar Cu²⁺ infusion. The response to infused Cu²⁺ was augmented in diabetic hearts, which became defective at lower infusion levels and underwent complete pump failure (cardiac output = 0 ml/min) more often (P < 0.0001) at concentrations that only moderately impaired function of control hearts. To our knowledge, this is the first report describing the acute effects on cardiac function of pathophysiological elevations in coronary Cu²⁺. The effects of Cu²⁺ infusion occur within minutes in both control and diabetic hearts, which suggests that they are not due to remodelling. Heightened sensitivity to the acute effects of small elevations in Cu²⁺ could contribute substantively to impaired cardiac function in patients with diabetes and is thus identified as a new mechanism of heart disease. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Biomechanics of Cardiac Function

    PubMed Central

    Voorhees, Andrew P.; Han, Hai-Chao

    2015-01-01

    The heart pumps blood to maintain circulation and ensure the delivery of oxygenated blood to all the organs of the body. Mechanics play a critical role in governing and regulating heart function under both normal and pathological conditions. Biological processes and mechanical stress are coupled together in regulating myocyte function and extracellular matrix structure thus controlling heart function. Here we offer a brief introduction to the biomechanics of left ventricular function and then summarize recent progress in the study of the effects of mechanical stress on ventricular wall remodeling and cardiac function as well as the effects of wall mechanical properties on cardiac function in normal and dysfunctional hearts. Various mechanical models to determine wall stress and cardiac function in normal and diseased hearts with both systolic and diastolic dysfunction are discussed. The results of these studies have enhanced our understanding of the biomechanical mechanism in the development and remodeling of normal and dysfunctional hearts. Biomechanics provide a tool to understand the mechanism of left ventricular remodeling in diastolic and systolic dysfunction and guidance in designing and developing new treatments. PMID:26426462

  7. Lysine Ubiquitination and Acetylation of Human Cardiac 20S Proteasomes

    PubMed Central

    Lau, Edward; Choi, Howard JH; Ng, Dominic CM; Meyer, David; Fang, Caiyun; Li, Haomin; Wang, Ding; Zelaya, Ivette M; Yates, John R; Lam, Maggie PY

    2016-01-01

    Purpose Altered proteasome functions are associated with multiple cardiomyopathies. While the proteasome targets poly-ubiquitinated proteins for destruction, it itself is modifiable by ubiquitination. We aim to identify the exact ubiquitination sites on cardiac proteasomes and examine whether they are also subject to acetylations. Experimental design Assembled cardiac 20S proteasome complexes were purified from five human hearts with ischemic cardiomyopathy, then analyzed by high-resolution MS to identify ubiquitination and acetylation sites. We developed a library search strategy that may be used to complement database search in identifying PTM in different samples. Results We identified 63 ubiquitinated lysines from intact human cardiac 20S proteasomes. In parallel, 65 acetylated residues were also discovered, 39 of which shared with ubiquitination sites. Conclusion and clinical relevance This is the most comprehensive characterization of cardiac proteasome ubiquitination to-date. There are significant overlaps between the discovered ubiquitination and acetylation sites, permitting potential crosstalk in regulating proteasome functions. The information presented here will aid future therapeutic strategies aimed at regulating the functions of cardiac proteasomes. PMID:24957502

  8. Lysine ubiquitination and acetylation of human cardiac 20S proteasomes.

    PubMed

    Zong, Nobel; Ping, Peipei; Lau, Edward; Choi, Howard Jh; Ng, Dominic Cm; Meyer, David; Fang, Caiyun; Li, Haomin; Wang, Ding; Zelaya, Ivette M; Yates, John R; Lam, Maggie Py

    2014-08-01

    Altered proteasome functions are associated with multiple cardiomyopathies. While the proteasome targets polyubiquitinated proteins for destruction, it itself is modifiable by ubiquitination. We aim to identify the exact ubiquitination sites on cardiac proteasomes and examine whether they are also subject to acetylations. Assembled cardiac 20S proteasome complexes were purified from five human hearts with ischemic cardiomyopathy, then analyzed by high-resolution MS to identify ubiquitination and acetylation sites. We developed a library search strategy that may be used to complement database search in identifying PTM in different samples. We identified 63 ubiquitinated lysines from intact human cardiac 20S proteasomes. In parallel, 65 acetylated residues were also discovered, 39 of which shared with ubiquitination sites. This is the most comprehensive characterization of cardiac proteasome ubiquitination to date. There are significant overlaps between the discovered ubiquitination and acetylation sites, permitting potential crosstalk in regulating proteasome functions. The information presented here will aid future therapeutic strategies aimed at regulating the functions of cardiac proteasomes. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Regulation of cardiac excitation and contraction by p21 activated kinase-1.

    PubMed

    Ke, Yunbo; Lei, Ming; Solaro, R John

    2008-01-01

    Cardiac excitation and contraction are regulated by a variety of signaling molecules. Central to the regulatory scheme are protein kinases and phosphatases that carry out reversible phosphorylation of different effectors. The process of beta-adrenergic stimulation mediated by cAMP dependent protein kinase (PKA) forms a well-known pathway considered as the most significant control mechanism in excitation and contraction as well as many other regulatory mechanisms in cardiac function. However, although dephosphorylation pathways are critical to these regulatory processes, signaling to phosphatases is relatively poorly understood. Emerging evidence indicates that regulation of phosphatases, which dampen the effect of beta-adrenergic stimulation, is also important. We review here functional studies of p21 activated kinase-1 (Pak1) and its potential role as an upstream signal for protein phosphatase PP2A in the heart. Pak1 is a serine/threonine protein kinase directly activated by the small GTPases Cdc42 and Rac1. Pak1 is highly expressed in different regions of the heart and modulates the activities of ion channels, sarcomeric proteins, and other phosphoproteins through up-regulation of PP2A activity. Coordination of Pak1 and PP2A activities is not only potentially involved in regulation of normal cardiac function, but is likely to be important in patho-physiological conditions.

  10. Modulation of cardiac fibrosis by Krüppel-like factor 6 through transcriptional control of thrombospondin 4 in cardiomyocytes

    PubMed Central

    Sawaki, Daigo; Hou, Lianguo; Tomida, Shota; Sun, Junqing; Zhan, Hong; Aizawa, Kenichi; Son, Bo-Kyung; Kariya, Taro; Takimoto, Eiki; Otsu, Kinya; Conway, Simon J.; Manabe, Ichiro; Komuro, Issei; Friedman, Scott L.; Nagai, Ryozo; Suzuki, Toru

    2015-01-01

    Aims Krüppel-like factors (KLFs) are a family of transcription factors which play important roles in the heart under pathological and developmental conditions. We previously identified and cloned Klf6 whose homozygous mutation in mice results in embryonic lethality suggesting a role in cardiovascular development. Effects of KLF6 on pathological regulation of the heart were investigated in the present study. Methods and results Mice heterozygous for Klf6 resulted in significantly diminished levels of cardiac fibrosis in response to angiotensin II infusion. Intriguingly, a similar phenotype was seen in cardiomyocyte-specific Klf6 knockout mice, but not in cardiac fibroblast-specific knockout mice. Microarray analysis revealed increased levels of the extracellular matrix factor, thrombospondin 4 (TSP4), in the Klf6-ablated heart. Mechanistically, KLF6 directly suppressed Tsp4 expression levels, and cardiac TSP4 regulated the activation of cardiac fibroblasts to regulate cardiac fibrosis. Conclusion Our present studies on the cardiac function of KLF6 show a new mechanism whereby cardiomyocytes regulate cardiac fibrosis through transcriptional control of the extracellular matrix factor, TSP4, which, in turn, modulates activation of cardiac fibroblasts. PMID:25987545

  11. Caffeic acid phenethyl ester attenuates pathological cardiac hypertrophy by regulation of MEK/ERK signaling pathway in vivo and vitro.

    PubMed

    Ren, Jie; Zhang, Nan; Liao, Haihan; Chen, Si; Xu, Ling; Li, Jing; Yang, Zheng; Deng, Wei; Tang, Qizhu

    2017-07-15

    To explore the effects of caffeic acid phenethyl ester (CAPE) on cardiac hypertrophy induced by pressure overload. Male wild-type C57 mice, aged 8-10weeks, were used for aortic banding (AB) to induce cardiac hypertrophy. CAPE or (resveratrol) RS was administered from the 3rd day after AB surgery for 6weeks. Echocardiography and hemodynamic analysis were performed to estimate cardiac function. Mice hearts were collected for H&E and PSR staining. Western blot analysis and quantitative PCR were performed for to investigate molecular mechanism. We further confirmed our findings in H9c2 cardiac fibroblasts treated with PE or CAPE. CAPE protected against cardiac hypertrophy induced by pressure overload, as evidenced by inhibition of cardiac hypertrophy and improvement in mouse cardiac function. The effect of CAPE on cardiac hypertrophy was mediated via inhibition of the MEK/ERK and TGFβ-Smad signaling pathways. We also demonstrated that CAPE protected H9c2 cells from PE-induced hypertrophy in vitro via a similar molecular mechanism as seen in the mouse heart. Finally, CAPE seemed to be as effective as RS for treatment of pressure overload induced mouse cardiac hypertrophy. Our results suggest that CAPE may play an important role in the regulation of cardiac hypertrophy induced by pressure overload via negative regulation of the MEK/ERK and TGFβ/Smad signaling pathways. These results indicate that CAPE could potentially be used for treatment of cardiac hypertrophy. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Mesenchymal-endothelial-transition contributes to cardiac neovascularization

    PubMed Central

    Ubil, Eric; Duan, Jinzhu; Pillai, Indulekha C.L.; Rosa-Garrido, Manuel; Wu, Yong; Bargiacchi, Francesca; Lu, Yan; Stanbouly, Seta; Huang, Jie; Rojas, Mauricio; Vondriska, Thomas M.; Stefani, Enrico; Deb, Arjun

    2014-01-01

    Endothelial cells contribute to a subset of cardiac fibroblasts by undergoing endothelial-to-mesenchymal-transition, but whether cardiac fibroblasts can adopt an endothelial cell fate and directly contribute to neovascularization after cardiac injury is not known. Here, using genetic fate map techniques, we demonstrate that cardiac fibroblasts rapidly adopt an endothelial cell like phenotype after acute ischemic cardiac injury. Fibroblast derived endothelial cells exhibit anatomical and functional characteristics of native endothelial cells. We show that the transcription factor p53 regulates such a switch in cardiac fibroblast fate. Loss of p53 in cardiac fibroblasts severely decreases the formation of fibroblast derived endothelial cells, reduces post infarct vascular density and worsens cardiac function. Conversely, stimulation of the p53 pathway in cardiac fibroblasts augments mesenchymal to endothelial transition, enhances vascularity and improves cardiac function. These observations demonstrate that mesenchymal-to-endothelial-transition contributes to neovascularization of the injured heart and represents a potential therapeutic target for enhancing cardiac repair. PMID:25317562

  13. Down-regulation of fibroblast growth factor 2 and its co-receptors heparan sulfate proteoglycans by resveratrol underlies the improvement of cardiac dysfunction in experimental diabetes.

    PubMed

    Strunz, Célia Maria Cássaro; Roggerio, Alessandra; Cruz, Paula Lázara; Pacanaro, Ana Paula; Salemi, Vera Maria Cury; Benvenuti, Luiz Alberto; Mansur, Antonio de Pádua; Irigoyen, Maria Cláudia

    2017-02-01

    Cardiac remodeling in diabetes involves cardiac hypertrophy and fibrosis, and fibroblast growth factor 2 (FGF2) is an important mediator of this process. Resveratrol, a polyphenolic antioxidant, reportedly promotes the improvement of cardiac dysfunction in diabetic rats. However, little information exists linking the amelioration of the cardiac function promoted by resveratrol and the expression of FGF2 and its co-receptors, heparan sulfate proteoglycans (HSPGs: Glypican-1 and Syndecan-4), in cardiac muscle of Type 2 diabetic rats. Diabetes was induced experimentally by the injection of streptozotocin and nicotinamide, and the rats were treated with resveratrol for 6 weeks. According to our results, there is an up-regulation of the expression of genes and/or proteins of Glypican-1, Syndecan-4, FGF2, peroxisome proliferator-activated receptor gamma and AMP-activated protein kinase in diabetic rats. On the other hand, resveratrol treatment promoted the attenuation of left ventricular diastolic dysfunction and the down-regulation of the expression of all proteins under study. The trigger for the changes in gene expression and protein synthesis promoted by resveratrol was the presence of diabetes. The negative modulation conducted by resveratrol on FGF2 and HSPGs expression, which are involved in cardiac remodeling, underlies the amelioration of cardiac function. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  14. Myostatin regulates energy homeostasis in the heart and prevents heart failure.

    PubMed

    Biesemann, Nadine; Mendler, Luca; Wietelmann, Astrid; Hermann, Sven; Schäfers, Michael; Krüger, Marcus; Boettger, Thomas; Borchardt, Thilo; Braun, Thomas

    2014-07-07

    Myostatin is a major negative regulator of skeletal muscle mass and initiates multiple metabolic changes, including enhanced insulin sensitivity. However, the function of myostatin in the heart is barely understood, although it is upregulated in the myocardium under several pathological conditions. Here, we aimed to decipher the role of myostatin and myostatin-dependent signaling pathways for cardiac function and cardiac metabolism in adult mice. To avoid potential counterregulatory mechanisms occurring in constitutive and germ-line-based myostatin mutants, we generated a mouse model that allows myostatin inactivation in adult cardiomyocytes. Cardiac MRI revealed that genetic inactivation of myostatin signaling in the adult murine heart caused cardiac hypertrophy and heart failure, partially recapitulating effects of the age-dependent decline of the myostatin paralog growth and differentiation factor 11. We found that myostatin represses AMP-activated kinase activation in the heart via transforming growth factor-β-activated kinase 1, thereby preventing a metabolic switch toward glycolysis and glycogen accumulation. Furthermore, myostatin stimulated expression of regulator of G-protein signaling 2, a GTPase-activating protein that restricts Gaq and Gas signaling and thereby protects against cardiac failure. Inhibition of AMP-activated kinase in vivo rescued cardiac hypertrophy and prevented enhanced glycolytic flow and glycogen accumulation after inactivation of myostatin in cardiomyocytes. Our results uncover an important role of myostatin in the heart for maintaining cardiac energy homeostasis and preventing cardiac hypertrophy. © 2014 American Heart Association, Inc.

  15. Sympathetic- and Parasympathetic-Linked Cardiac Function and Prediction of Externalizing Behavior, Emotion Regulation, and Prosocial Behavior among Preschoolers Treated for ADHD

    ERIC Educational Resources Information Center

    Beauchaine, Theodore P.; Gatzke-Kopp, Lisa; Neuhaus, Emily; Chipman, Jane; Reid, M. Jamila; Webster-Stratton, Carolyn

    2013-01-01

    Objective: To evaluate measures of cardiac activity and reactivity as prospective biomarkers of treatment response to an empirically supported behavioral intervention for attention-deficit/hyperactivity disorder (ADHD). Method: Cardiac preejection period (PEP), an index of sympathetic-linked cardiac activity, and respiratory sinus arrhythmia…

  16. The heart as a self-regulating system: integration of homeodynamic mechanisms.

    PubMed

    Kresh, J Y; Armour, J A

    1997-04-01

    In the past the study of mechanical and electrical properties of the heart has been disjointed with minimal overlap and unification. The fact remains that these features are tightly coupled and central to the functioning heart. The maintenance of adequate cardiac output relies upon the highly integrated autoregulatory mechanisms and modulation of cardiac myocyte function. Regional ventricular mechanics and energetics are dependent upon muscle fiber stress-strain rate, the passive properties of myocardial collagen matrix, adequate vascular perfusion, transcapillary transport and electrical activation pattern. Intramural hydraulic "loading" is regulated by coronary arterial and venous dynamics. All of these components are under the constant influence of intrinsic cardiac and extracardiac autonomic neurons, as well as circulating hormones. A brief overview of the putative regulation of these various components is presented in this paper.

  17. AMP-Activated Protein Kinase: An Ubiquitous Signaling Pathway With Key Roles in the Cardiovascular System.

    PubMed

    Salt, Ian P; Hardie, D Grahame

    2017-05-26

    The AMP-activated protein kinase (AMPK) is a key regulator of cellular and whole-body energy homeostasis, which acts to restore energy homoeostasis whenever cellular energy charge is depleted. Over the last 2 decades, it has become apparent that AMPK regulates several other cellular functions and has specific roles in cardiovascular tissues, acting to regulate cardiac metabolism and contractile function, as well as promoting anticontractile, anti-inflammatory, and antiatherogenic actions in blood vessels. In this review, we discuss the role of AMPK in the cardiovascular system, including the molecular basis of mutations in AMPK that alter cardiac physiology and the proposed mechanisms by which AMPK regulates vascular function under physiological and pathophysiological conditions. © 2017 American Heart Association, Inc.

  18. Dynamic denitrosylation via S-nitrosoglutathione reductase regulates cardiovascular function

    PubMed Central

    Beigi, Farideh; Gonzalez, Daniel R.; Minhas, Khalid M.; Sun, Qi-An; Foster, Matthew W.; Khan, Shakil A.; Treuer, Adriana V.; Dulce, Raul A.; Harrison, Robert W.; Saraiva, Roberto M.; Premer, Courtney; Schulman, Ivonne Hernandez; Stamler, Jonathan S.; Hare, Joshua M.

    2012-01-01

    Although protein S-nitrosylation is increasingly recognized as mediating nitric oxide (NO) signaling, roles for protein denitrosylation in physiology remain unknown. Here, we show that S-nitrosoglutathione reductase (GSNOR), an enzyme that governs levels of S-nitrosylation by promoting protein denitrosylation, regulates both peripheral vascular tone and β-adrenergic agonist-stimulated cardiac contractility, previously ascribed exclusively to NO/cGMP. GSNOR-deficient mice exhibited reduced peripheral vascular tone and depressed β-adrenergic inotropic responses that were associated with impaired β-agonist–induced denitrosylation of cardiac ryanodine receptor 2 (RyR2), resulting in calcium leak. These results indicate that systemic hemodynamic responses (vascular tone and cardiac contractility), both under basal conditions and after adrenergic activation, are regulated through concerted actions of NO synthase/GSNOR and that aberrant denitrosylation impairs cardiovascular function. Our findings support the notion that dynamic S-nitrosylation/denitrosylation reactions are essential in cardiovascular regulation. PMID:22366318

  19. A-kinase anchoring proteins that regulate cardiac remodeling.

    PubMed

    Carnegie, Graeme K; Burmeister, Brian T

    2011-11-01

    In response to injury or stress, the adult heart undergoes maladaptive changes, collectively defined as pathological cardiac remodeling. Here, we focus on the role of A-kinase anchoring proteins (AKAPs) in 3 main areas associated with cardiac remodeling and the progression of heart failure: excitation-contraction coupling, sarcomeric regulation, and induction of pathological hypertrophy. AKAPs are a diverse family of scaffold proteins that form multiprotein complexes, integrating cAMP signaling with protein kinases, phosphatases, and other effector proteins. Many AKAPs have been characterized in the heart, where they play a critical role in modulating cardiac function.

  20. A-Kinase Anchoring Proteins That Regulate Cardiac Remodeling

    PubMed Central

    Carnegie, Graeme K.; Burmeister, Brian T.

    2012-01-01

    In response to injury or stress, the adult heart undergoes maladaptive changes, collectively defined as pathological cardiac remodeling. Here, we focus on the role of A-kinase anchoring proteins (AKAPs) in 3 main areas associated with cardiac remodeling and the progression of heart failure: excitation–contraction coupling, sarcomeric regulation, and induction of pathological hypertrophy. AKAPs are a diverse family of scaffold proteins that form multi-protein complexes, integrating cAMP signaling with protein kinases, phosphatases, and other effector proteins. Many AKAPs have been characterized in the heart, where they play a critical role in modulating cardiac function. PMID:22075671

  1. Influence of cardiac nerve status on cardiovascular regulation and cardioprotection

    PubMed Central

    Kingma, John G; Simard, Denys; Rouleau, Jacques R

    2017-01-01

    Neural elements of the intrinsic cardiac nervous system transduce sensory inputs from the heart, blood vessels and other organs to ensure adequate cardiac function on a beat-to-beat basis. This inter-organ crosstalk is critical for normal function of the heart and other organs; derangements within the nervous system hierarchy contribute to pathogenesis of organ dysfunction. The role of intact cardiac nerves in development of, as well as protection against, ischemic injury is of current interest since it may involve recruitment of intrinsic cardiac ganglia. For instance, ischemic conditioning, a novel protection strategy against organ injury, and in particular remote conditioning, is likely mediated by activation of neural pathways or by endogenous cytoprotective blood-borne substances that stimulate different signalling pathways. This discovery reinforces the concept that inter-organ communication, and maintenance thereof, is key. As such, greater understanding of mechanisms and elucidation of treatment strategies is imperative to improve clinical outcomes particularly in patients with comorbidities. For instance, autonomic imbalance between sympathetic and parasympathetic nervous system regulation can initiate cardiovascular autonomic neuropathy that compromises cardiac stability and function. Neuromodulation therapies that directly target the intrinsic cardiac nervous system or other elements of the nervous system hierarchy are currently being investigated for treatment of different maladies in animal and human studies. PMID:28706586

  2. Update on the slow delayed rectifier potassium current (I(Ks)): role in modulating cardiac function.

    PubMed

    Liu, Zhenzhen; Du, Lupei; Li, Minyong

    2012-01-01

    The slow delayed rectifier current (I(Ks)) is the slow component of cardiac delayed rectifier current and is critical for the late phase repolarization of cardiac action potential. This current is also an important target for Sympathetic Nervous System (SNS) to regulate the cardiac electivity to accommodate to heart rate alterations in response to exercise or emotional stress and can be up-regulated by β- adrenergic or other signal molecules. I(Ks) channel is originated by the co-assembly of pore-forming KCNQ1 α-subunit and accessory KCNE1 β-subunit. Mutations in any subunit can bring about severe long QT syndrome (LQT-1, LQT-5) as characterized by deliquium, seizures and sudden death. This review summarizes the normal physiological functions and molecular basis of I(Ks) channels, as well as illustrates up-to-date development on its blockers and activators. Therefore, the current extensive survey should generate fundamental understanding of the role of I(Ks) channel in modulating cardiac function and donate some instructions to the progression of I(Ks) blockers and activators as potential antiarrhythmic agents or pharmacological tools to determine the physiological and pathological function of I(Ks).

  3. p21-Activated kinase-1 and its role in integrated regulation of cardiac contractility.

    PubMed

    Sheehan, Katherine A; Ke, Yunbo; Solaro, R John

    2007-09-01

    We review here a novel concept in the regulation of cardiac contractility involving variations in the activity of the multifunctional enzyme, p21-activated kinase 1 (Pak1), a member of a family of proteins in the small G protein-signaling pathway that is activated by Cdc42 and Rac1. There is a large body of evidence from studies in noncardiac tissue that Pak1 activity is key in regulation of a number of cellular functions, including cytoskeletal dynamics, cell motility, growth, and proliferation. Although of significant potential impact, the role of Pak1 in regulation of the heart has been investigated in only a few laboratories. In this review, we discuss the structure of Pak1 and its sites of posttranslational modification and molecular interactions. We assemble an overview of the current data on Pak1 signaling in noncardiac tissues relative to similar signaling pathways in the heart, and we identify potential roles of Pak1 in cardiac regulation. Finally, we discuss the current state of Pak1 research in the heart in regard to regulation of contractility through functional myofilament and Ca(2+)-flux modification. An important aspect of this regulation is the modulation of kinase and phosphatase activity. We have focused on Pak1 regulation of protein phosphatase 2A (PP2A), which is abundant in cardiac muscle, thereby mediating dephosphorylation of sarcomeric proteins and sensitizing the myofilaments to Ca(2+). We present a model for Pak1 signaling that provides a mechanism for specifically affecting cardiac cellular processes in which regulation of protein phosphorylation states by PP2A dephosphorylation predominates.

  4. Four and a half LIM domain protein signaling and cardiomyopathy.

    PubMed

    Liang, Yan; Bradford, William H; Zhang, Jing; Sheikh, Farah

    2018-06-20

    Four and a half LIM domain (FHL) protein family members, FHL1 and FHL2, are multifunctional proteins that are enriched in cardiac muscle. Although they both localize within the cardiomyocyte sarcomere (titin N2B), they have been shown to have important yet unique functions within the context of cardiac hypertrophy and disease. Studies in FHL1-deficient mice have primarily uncovered mitogen-activated protein kinase (MAPK) scaffolding functions for FHL1 as part of a novel biomechanical stretch sensor within the cardiomyocyte sarcomere, which acts as a positive regulator of pressure overload-mediated cardiac hypertrophy. New data have highlighted a novel role for the serine/threonine protein phosphatase (PP5) as a deactivator of the FHL1-based biomechanical stretch sensor, which has implications in not only cardiac hypertrophy but also heart failure. In contrast, studies in FHL2-deficient mice have primarily uncovered an opposing role for FHL2 as a negative regulator of adrenergic-mediated signaling and cardiac hypertrophy, further suggesting unique functions targeted by FHL proteins in the "stressed" cardiomyocyte. In this review, we provide current knowledge of the role of FHL1 and FHL2 in cardiac muscle as it relates to their actions in cardiac hypertrophy and cardiomyopathy. A specific focus will be to dissect the pathways and protein-protein interactions that underlie FHLs' signaling role in cardiac hypertrophy as well as provide a comprehensive list of FHL mutations linked to cardiac disease, using evidence gained from genetic mouse models and human genetic studies.

  5. AMP-Activated Protein Kinase – A Ubiquitous Signalling Pathway with Key Roles in the Cardiovascular System

    PubMed Central

    Salt, Ian P.; Hardie, D. Grahame

    2017-01-01

    The AMP-activated protein kinase (AMPK) is a key regulator of cellular and whole body energy homeostasis, which acts to restore energy homoeostasis whenever cellular energy charge is depleted. Over the last two decades, it has become apparent that AMPK regulates a number of other cellular functions and has specific roles in cardiovascular tissues, acting to regulate cardiac metabolism and contractile function as well as promoting anti-contractile, anti-inflammatory and anti-atherogenic actions in blood vessels. In this review, we will discuss the role of AMPK in the cardiovascular system, including the molecular basis of mutations in AMPK that alter cardiac physiology and the proposed mechanisms by which AMPK regulates vascular function under physiological and pathophysiological conditions. PMID:28546359

  6. Sarcospan Regulates Cardiac Isoproterenol Response and Prevents Duchenne Muscular Dystrophy-Associated Cardiomyopathy.

    PubMed

    Parvatiyar, Michelle S; Marshall, Jamie L; Nguyen, Reginald T; Jordan, Maria C; Richardson, Vanitra A; Roos, Kenneth P; Crosbie-Watson, Rachelle H

    2015-12-23

    Duchenne muscular dystrophy is a fatal cardiac and skeletal muscle disease resulting from mutations in the dystrophin gene. We have previously demonstrated that a dystrophin-associated protein, sarcospan (SSPN), ameliorated Duchenne muscular dystrophy skeletal muscle degeneration by activating compensatory pathways that regulate muscle cell adhesion (laminin-binding) to the extracellular matrix. Conversely, loss of SSPN destabilized skeletal muscle adhesion, hampered muscle regeneration, and reduced force properties. Given the importance of SSPN to skeletal muscle, we investigated the consequences of SSPN ablation in cardiac muscle and determined whether overexpression of SSPN into mdx mice ameliorates cardiac disease symptoms associated with Duchenne muscular dystrophy cardiomyopathy. SSPN-null mice exhibited cardiac enlargement, exacerbated cardiomyocyte hypertrophy, and increased fibrosis in response to β-adrenergic challenge (isoproterenol; 0.8 mg/day per 2 weeks). Biochemical analysis of SSPN-null cardiac muscle revealed reduced sarcolemma localization of many proteins with a known role in cardiomyopathy pathogenesis: dystrophin, the sarcoglycans (α-, δ-, and γ-subunits), and β1D integrin. Transgenic overexpression of SSPN in Duchenne muscular dystrophy mice (mdx(TG)) improved cardiomyofiber cell adhesion, sarcolemma integrity, cardiac functional parameters, as well as increased expression of compensatory transmembrane proteins that mediate attachment to the extracellular matrix. SSPN regulates sarcolemmal expression of laminin-binding complexes that are critical to cardiac muscle function and protects against transient and chronic injury, including inherited cardiomyopathy. © 2015 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley Blackwell.

  7. Analysis of the SWI/SNF chromatin-remodeling complex during early heart development and BAF250a repression cardiac gene transcription during P19 cell differentiation

    PubMed Central

    Singh, Ajeet Pratap; Archer, Trevor K.

    2014-01-01

    The regulatory networks of differentiation programs and the molecular mechanisms of lineage-specific gene regulation in mammalian embryos remain only partially defined. We document differential expression and temporal switching of BRG1-associated factor (BAF) subunits, core pluripotency factors and cardiac-specific genes during post-implantation development and subsequent early organogenesis. Using affinity purification of BRG1 ATPase coupled to mass spectrometry, we characterized the cardiac-enriched remodeling complexes present in E8.5 mouse embryos. The relative abundance and combinatorial assembly of the BAF subunits provides functional specificity to Switch/Sucrose NonFermentable (SWI/SNF) complexes resulting in a unique gene expression profile in the developing heart. Remarkably, the specific depletion of the BAF250a subunit demonstrated differential effects on cardiac-specific gene expression and resulted in arrhythmic contracting cardiomyocytes in vitro. Indeed, the BAF250a physically interacts and functionally cooperates with Nucleosome Remodeling and Histone Deacetylase (NURD) complex subunits to repressively regulate chromatin structure of the cardiac genes by switching open and poised chromatin marks associated with active and repressed gene expression. Finally, BAF250a expression modulates BRG1 occupancy at the loci of cardiac genes regulatory regions in P19 cell differentiation. These findings reveal specialized and novel cardiac-enriched SWI/SNF chromatin-remodeling complexes, which are required for heart formation and critical for cardiac gene expression regulation at the early stages of heart development. PMID:24335282

  8. Exercise-Induced Changes in Glucose Metabolism Promote Physiological Cardiac Growth

    PubMed Central

    Gibb, Andrew A.; Epstein, Paul N.; Uchida, Shizuka; Zheng, Yuting; McNally, Lindsey A.; Obal, Detlef; Katragadda, Kartik; Trainor, Patrick; Conklin, Daniel J.; Brittian, Kenneth R.; Tseng, Michael T.; Wang, Jianxun; Jones, Steven P.; Bhatnagar, Aruni

    2017-01-01

    Background: Exercise promotes metabolic remodeling in the heart, which is associated with physiological cardiac growth; however, it is not known whether or how physical activity–induced changes in cardiac metabolism cause myocardial remodeling. In this study, we tested whether exercise-mediated changes in cardiomyocyte glucose metabolism are important for physiological cardiac growth. Methods: We used radiometric, immunologic, metabolomic, and biochemical assays to measure changes in myocardial glucose metabolism in mice subjected to acute and chronic treadmill exercise. To assess the relevance of changes in glycolytic activity, we determined how cardiac-specific expression of mutant forms of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase affect cardiac structure, function, metabolism, and gene programs relevant to cardiac remodeling. Metabolomic and transcriptomic screenings were used to identify metabolic pathways and gene sets regulated by glycolytic activity in the heart. Results: Exercise acutely decreased glucose utilization via glycolysis by modulating circulating substrates and reducing phosphofructokinase activity; however, in the recovered state following exercise adaptation, there was an increase in myocardial phosphofructokinase activity and glycolysis. In mice, cardiac-specific expression of a kinase-deficient 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase transgene (GlycoLo mice) lowered glycolytic rate and regulated the expression of genes known to promote cardiac growth. Hearts of GlycoLo mice had larger myocytes, enhanced cardiac function, and higher capillary-to-myocyte ratios. Expression of phosphatase-deficient 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase in the heart (GlycoHi mice) increased glucose utilization and promoted a more pathological form of hypertrophy devoid of transcriptional activation of the physiological cardiac growth program. Modulation of phosphofructokinase activity was sufficient to regulate the glucose–fatty acid cycle in the heart; however, metabolic inflexibility caused by invariantly low or high phosphofructokinase activity caused modest mitochondrial damage. Transcriptomic analyses showed that glycolysis regulates the expression of key genes involved in cardiac metabolism and remodeling. Conclusions: Exercise-induced decreases in glycolytic activity stimulate physiological cardiac remodeling, and metabolic flexibility is important for maintaining mitochondrial health in the heart. PMID:28860122

  9. Differential proteomics reveals S100-A11 as a key factor in aldosterone-induced collagen expression in human cardiac fibroblasts.

    PubMed

    Martínez-Martínez, Ernesto; Ibarrola, Jaime; Lachén-Montes, Mercedes; Fernández-Celis, Amaya; Jaisser, Frederic; Santamaría, Enrique; Fernández-Irigoyen, Joaquín; López-Andrés, Natalia

    2017-08-23

    Aldosterone (Aldo) could induce cardiac fibrosis, a hallmark of heart disease. Aldo direct effects on collagen production in cardiac fibroblasts remain controversial. Our aim is to characterize changes in the proteome of adult human cardiac fibroblasts treated with Aldo to identify new proteins altered that might be new therapeutic targets in cardiovascular diseases. Aldo increased collagens expressions in human cardiac fibroblasts. Complementary, using a quantitative proteomic approach, 30 proteins were found differentially expressed between control and Aldo-treated cardiac fibroblasts. Among these proteins, 7 were up-regulated and 23 were down-regulated by Aldo. From the up-regulated proteins, collagen type I, collagen type III, collagen type VI and S100-A11 were verified by Western blot. Moreover, protein interaction networks revealed a functional link between a third of Aldo-modulated proteome and specific survival routes. S100-A11 was identified as a possible link between Aldo and collagen. Interestingly, CRISPR/Cas9-mediated knock-down of S100-A11 blocked Aldo-induced collagen production in human cardiac fibroblasts. In adult human cardiac fibroblasts treated with Aldo, proteomic analyses revealed an increase in collagen production. S100-A11 was identified as a new regulator of Aldo-induced collagen production in human cardiac fibroblasts. These data could identify new candidate proteins for the treatment of cardiac fibrosis in cardiovascular diseases. S100-A11 is identified by a proteomic approach as a novel regulator of Aldosterone-induced collagen production in human cardiac fibroblasts. Our data could identify new candidate proteins of interest for the treatment of cardiac fibrosis in cardiovascular diseases. Copyright © 2017. Published by Elsevier B.V.

  10. Myocardin-related transcription factors are required for cardiac development and function

    PubMed Central

    Mokalled, Mayssa H.; Carroll, Kelli J.; Cenik, Bercin K.; Chen, Beibei; Liu, Ning; Olson, Eric N.; Bassel-Duby, Rhonda

    2016-01-01

    Myocardin-Related Transcription Factors A and B (MRTF-A and MRTF-B) are highly homologous proteins that function as powerful coactivators of serum response factor (SRF), a ubiquitously expressed transcription factor essential for cardiac development. The SRF/MRTF complex binds to CArG boxes found in the control regions of genes that regulate cytoskeletal dynamics and muscle contraction, among other processes. While SRF is required for heart development and function, the role of MRTFs in the developing or adult heart has not been explored. Through cardiac-specific deletion of MRTF alleles in mice, we show that either MRTF-A or MRTF-B is dispensable for cardiac development and function, whereas deletion of both MRTF-A and MRTF-B causes a spectrum of structural and functional cardiac abnormalities. Defects observed in MRTF-A/B null mice ranged from reduced cardiac contractility and adult onset heart failure to neonatal lethality accompanied by sarcomere disarray. RNA-seq analysis on neonatal hearts identified the most altered pathways in MRTF double knockout hearts as being involved in cytoskeletal organization. Together, these findings demonstrate redundant but essential roles of the MRTFs in maintenance of cardiac structure and function and as indispensible links in cardiac cytoskeletal gene regulatory networks. PMID:26386146

  11. Endonuclease G is a novel determinant of cardiac hypertrophy and mitochondrial function

    PubMed Central

    McDermott-Roe, Chris; Ye, Junmei; Ahmed, Rizwan; Sun, Xi-Ming; Serafín, Anna; Ware, James; Bottolo, Leonardo; Muckett, Phil; Cañas, Xavier; Zhang, Jisheng; Rowe, Glenn C.; Buchan, Rachel; Lu, Han; Braithwaite, Adam; Mancini, Massimiliano; Hauton, David; Martí, Ramon; García-Arumí, Elena; Hubner, Norbert; Jacob, Howard; Serikawa, Tadao; Zidek, Vaclav; Papousek, Frantisek; Kolar, Frantisek; Cardona, Maria; Ruiz-Meana, Marisol; García-Dorado, David; Comella, Joan X; Felkin, Leanne E; Barton, Paul JR; Arany, Zoltan; Pravenec, Michal; Petretto, Enrico; Sanchis, Daniel; Cook, Stuart A.

    2011-01-01

    Left ventricular mass (LVM) is a highly heritable trait1 and an independent risk factor for all-cause mortality2. To date, genome-wide association studies (GWASs) have not identified the genetic factors underlying LVM variation3 and the regulatory mechanisms for blood pressure (BP)-independent cardiac hypertrophy remain poorly understood4,5. Unbiased systems-genetics approaches in the rat6,7 now provide a powerful complementary tool to GWAS and we applied integrative genomics to dissect a highly replicated, BP-independent LVM locus on rat chromosome 3p. We identified endonuclease G (Endog), previously implicated in apoptosis8 but not hypertrophy, as the gene at the locus and demonstrated loss-of-function mutation in Endog associated with increased LVM and impaired cardiac function. Inhibition of Endog in cultured cardiomyocytes resulted in an increase in cell size and hypertrophic biomarkers in the absence of pro-hypertrophic stimulation. Genome-wide network analysis unexpectedly inferred ENDOG in fundamental mitochondrial processes unrelated to apoptosis. We showed direct regulation of ENDOG by ERRα and PGC1α, master regulators of mitochondrial and cardiac function9,10,11, interaction of ENDOG with the mitochondrial genome and ENDOG-mediated regulation of mitochondrial mass. At baseline, Endog deleted mouse heart had depleted mitochondria, mitochondrial dysfunction and elevated reactive oxygen species (ROS), which was associated with enlarged and steatotic cardiomyocytes. Our studies establish further the link between mitochondrial dysfunction, ROS and heart disease and demonstrate a new role for Endog in maladaptive cardiac hypertrophy. PMID:21979051

  12. Role of plasma membrane-associated AKAPs for the regulation of cardiac IK1 current by protein kinase A.

    PubMed

    Seyler, Claudia; Scherer, Daniel; Köpple, Christoph; Kulzer, Martin; Korkmaz, Sevil; Xynogalos, Panagiotis; Thomas, Dierk; Kaya, Ziya; Scholz, Eberhard; Backs, Johannes; Karle, Christoph; Katus, Hugo A; Zitron, Edgar

    2017-05-01

    The cardiac I K1 current stabilizes the resting membrane potential of cardiomyocytes. Protein kinase A (PKA) induces an inhibition of I K1 current which strongly promotes focal arrhythmogenesis. The molecular mechanisms underlying this regulation have only partially been elucidated yet. Furthermore, the role of A-kinase anchoring proteins (AKAPs) in this regulation has not been examined to date. The objective of this project was to elucidate the molecular mechanisms underlying the inhibition of I K1 by PKA and to identify novel molecular targets for antiarrhythmic therapy downstream β-adrenoreceptors. Patch clamp and voltage clamp experiments were used to record currents and co-immunoprecipitation, and co-localization experiments were performed to show spatial and functional coupling. Activation of PKA inhibited I K1 current in rat cardiomyocytes. This regulation was markedly attenuated by disrupting PKA-binding to AKAPs with the peptide inhibitor AKAP-IS. We observed functional and spatial coupling of the plasma membrane-associated AKAP15 and AKAP79 to Kir2.1 and Kir2.2 channel subunits, but not to Kir2.3 channels. In contrast, AKAPyotiao had no functional effect on the PKA regulation of Kir channels. AKAP15 and AKAP79 co-immunoprecipitated with and co-localized to Kir2.1 and Kir2.2 channel subunits in ventricular cardiomyocytes. In this study, we provide evidence for coupling of cardiac Kir2.1 and Kir2.2 subunits with the plasma membrane-bound AKAPs 15 and 79. Cardiac membrane-associated AKAPs are a functionally essential part of the regulatory cascade determining I K1 current function and may be novel molecular targets for antiarrhythmic therapy downstream from β-adrenoreceptors.

  13. Negative feedback regulation of Homer 1a on norepinephrine-dependent cardiac hypertrophy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chiarello, Carmelina; Bortoloso, Elena; Carpi, Andrea

    2013-07-15

    Homers are scaffolding proteins that modulate diverse cell functions being able to assemble signalling complexes. In this study, the presence, sub-cellular distribution and function of Homer 1 was investigated. Homer 1a and Homer 1b/c are constitutively expressed in cardiac muscle of both mouse and rat and in HL-1 cells, a cardiac cell line. As judged by confocal immunofluorescence microscopy, Homer 1a displays sarcomeric and peri-nuclear localization. In cardiomyocytes and cultured HL-1 cells, the hypertrophic agonist norepinephrine (NE) induces α{sub 1}-adrenergic specific Homer 1a over-expression, with a two-to-three-fold increase within 1 h, and no up-regulation of Homer 1b/c, as judged bymore » Western blot and qPCR. In HL-1 cells, plasmid-driven over-expression of Homer 1a partially antagonizes activation of ERK phosphorylation and ANF up-regulation, two well-established, early markers of hypertrophy. At the morphometric level, NE-induced increase of cell size is likewise and partially counteracted by exogenous Homer 1a. Under the same experimental conditions, Homer 1b/c does not have any effect on ANF up-regulation nor on cell hypertrophy. Thus, Homer 1a up-regulation is associated to early stages of cardiac hypertrophy and appears to play a negative feedback regulation on molecular transducers of hypertrophy. -- Highlights: • Homer 1a is constitutively expressed in cardiac tissue. • In HL-1 cells, norepinephrine activates signaling pathways leading to hypertrophy. • Homer 1a up-regulation is an early event of norepinephrine-induced hypertrophy. • Homer 1a plays a negative feedback regulation modulating pathological hypertrophy. • Over-expression of Homer 1a per se does not induce hypertrophy.« less

  14. Single allele Lmbrd1 knockout results in cardiac hypertrophy.

    PubMed

    Tseng, Linda Tzu-Ling; Lin, Chieh-Liang; Pan, Kuei-Hsiang; Tzen, Kai-Yuan; Su, Ming-Jai; Tsai, Chia-Ti; Li, Yi-Han; Li, Pai-Chi; Chiang, Fu-Tien; Chang, Shin C; Chang, Ming-Fu

    2018-06-01

    LMBD1 protein, a type IV-B plasma membrane protein possessing nine putative trans-membrane domains, was previously demonstrated at cellular level to play a critical part in the signaling cascade of insulin receptor through its involvement in regulating clathrin-mediated endocytosis. However, at physiological level, the significance of LMBD1 protein in cardiac development remains unclear. To understand the role of Lmbrd1 gene involved in the cardiac function, heterozygous knockout mice were used as an animal model system. The pathological outcomes were analyzed by micro-positron emission tomography, ECG acquisition, cardiac ultrasound, and immunohistochemistry. By studying the heterozygous knockout of Lmbrd1 (Lmbrd1 +/- ), we discovered that lack of Lmbrd1 not only resulted in the increase of cardiac-glucose uptake, pathological consequences were also observed. Here, we have distinguished that Lmbrd1 +/- is sufficient in causing cardiac diseases through a pathway independent of the recessive vitamin B 12 cblF cobalamin transport defect. Lmbrd1 +/- mice exhibited an increase in myocardial glucose uptake and insulin receptor signaling that is insensitive to the administration of additional insulin. Pathological symptoms such as cardiac hypertrophy, ventricular tissue fibrosis, along with the increase of heart rate and cardiac muscle contractility were observed. As Lmbrd1 +/- mice aged, the decrease in ejection fraction and fraction shortening showed signs of ventricular function deterioration. The results suggested that Lmbrd1 gene not only plays a significant role in mediating the energy homeostasis in cardiac tissue, it may also be a key factor in the regulation of cardiac function in mice. Copyright © 2017. Published by Elsevier B.V.

  15. Insulin receptor substrate signaling controls cardiac energy metabolism and heart failure.

    PubMed

    Guo, Cathy A; Guo, Shaodong

    2017-06-01

    The heart is an insulin-dependent and energy-consuming organ in which insulin and nutritional signaling integrates to the regulation of cardiac metabolism, growth and survival. Heart failure is highly associated with insulin resistance, and heart failure patients suffer from the cardiac energy deficiency and structural and functional dysfunction. Chronic pathological conditions, such as obesity and type 2 diabetes mellitus, involve various mechanisms in promoting heart failure by remodeling metabolic pathways, modulating cardiac energetics and impairing cardiac contractility. Recent studies demonstrated that insulin receptor substrates 1 and 2 (IRS-1,-2) are major mediators of both insulin and insulin-like growth factor-1 (IGF-1) signaling responsible for myocardial energetics, structure, function and organismal survival. Importantly, the insulin receptor substrates (IRS) play an important role in the activation of the phosphatidylinositide-3-dependent kinase (PI-3K) that controls Akt and Foxo1 signaling cascade, regulating the mitochondrial function, cardiac energy metabolism and the renin-angiotensin system. Dysregulation of this branch in signaling cascades by insulin resistance in the heart through the endocrine system promotes heart failure, providing a novel mechanism for diabetic cardiomyopathy. Therefore, targeting this branch of IRS→PI-3K→Foxo1 signaling cascade and associated pathways may provide a fundamental strategy for the therapeutic and nutritional development in control of metabolic and cardiovascular diseases. In this review, we focus on insulin signaling and resistance in the heart and the role energetics play in cardiac metabolism, structure and function. © 2017 Society for Endocrinology.

  16. Apelin: an endogenous peptide essential for cardiomyogenic differentiation of mesenchymal stem cells via activating extracellular signal-regulated kinase 1/2 and 5.

    PubMed

    Wang, Li; Zhu, Zhi-Ming; Zhang, Ning-Kun; Fang, Zhi-Rong; Xu, Xiao-Hong; Zheng, Nan; Gao, Lian-Ru

    2016-05-01

    Growing evidence has shown that apelin/APJ system functions as a critical mediator of cardiac development as well as cardiovascular function. Here, we investigated the role of apelin in the cardiomyogenic differentiation of mesenchymal stem cells derived from Wharton's jelly of human umbilical cord in vitro. In this research, we used RNA interference methodology and gene transfection technique to regulate the expression of apelin in Wharton's jelly-derived mesenchymal stem cells and induced cells with a effective cardiac differentiation protocol including 5-azacytidine and bFGF. Four weeks after induction, induced cells assumed a stick-like morphology and myotube-like structures except apelin-silenced cells and the control group. The silencing expression of apelin in Wharton's jelly-derived mesenchymal stem cells decreased the expression of several critical cardiac progenitor transcription factors (Mesp1, Mef2c, NKX2.5) and cardiac phenotypes (cardiac α-actin, β-MHC, cTnT, and connexin-43). Meanwhile, endogenous compensation of apelin contributed to differentiating into cells with characteristics of cardiomyocytes in vitro. Further experiment showed that exogenous apelin peptide rescued the cardiomyogenic differentiation of apelin-silenced mesenchymal stem cells in the early stage (1-4 days) of induction. Remarkably, our experiment indicated that apelin up-regulated cardiac specific genes in Wharton's jelly-derived mesenchymal stem cells via activating extracellular signal-regulated kinase (ERK) 1/2 and 5. © 2016 International Federation for Cell Biology.

  17. Interaction between cardiac myosin-binding protein C and formin Fhod3.

    PubMed

    Matsuyama, Sho; Kage, Yohko; Fujimoto, Noriko; Ushijima, Tomoki; Tsuruda, Toshihiro; Kitamura, Kazuo; Shiose, Akira; Asada, Yujiro; Sumimoto, Hideki; Takeya, Ryu

    2018-05-08

    Mutations in cardiac myosin-binding protein C (cMyBP-C) are a major cause of familial hypertrophic cardiomyopathy. Although cMyBP-C has been considered to regulate the cardiac function via cross-bridge arrangement at the C-zone of the myosin-containing A-band, the mechanism by which cMyBP-C functions remains unclear. We identified formin Fhod3, an actin organizer essential for the formation and maintenance of cardiac sarcomeres, as a cMyBP-C-binding protein. The cardiac-specific N-terminal Ig-like domain of cMyBP-C directly interacts with the cardiac-specific N-terminal region of Fhod3. The interaction seems to direct the localization of Fhod3 to the C-zone, since a noncardiac Fhod3 variant lacking the cMyBP-C-binding region failed to localize to the C-zone. Conversely, the cardiac variant of Fhod3 failed to localize to the C-zone in the cMyBP-C-null mice, which display a phenotype of hypertrophic cardiomyopathy. The cardiomyopathic phenotype of cMyBP-C-null mice was further exacerbated by Fhod3 overexpression with a defect of sarcomere integrity, whereas that was partially ameliorated by a reduction in the Fhod3 protein levels, suggesting that Fhod3 has a deleterious effect on cardiac function under cMyBP-C-null conditions where Fhod3 is aberrantly mislocalized. Together, these findings suggest the possibility that Fhod3 contributes to the pathogenesis of cMyBP-C-related cardiomyopathy and that Fhod3 is critically involved in cMyBP-C-mediated regulation of cardiac function via direct interaction.

  18. SIRT1 Activation by Resveratrol Alleviates Cardiac Dysfunction via Mitochondrial Regulation in Diabetic Cardiomyopathy Mice.

    PubMed

    Ma, Sai; Feng, Jing; Zhang, Ran; Chen, Jiangwei; Han, Dong; Li, Xiang; Yang, Bo; Li, Xiujuan; Fan, Miaomiao; Li, Congye; Tian, Zuhong; Wang, Yabin; Cao, Feng

    2017-01-01

    Diabetic cardiomyopathy (DCM) is a major threat for diabetic patients. Silent information regulator 1 (SIRT1) has a regulatory effect on mitochondrial dynamics, which is associated with DCM pathological changes. Our study aims to investigate whether resveratrol, a SRIT1 activator, could exert a protective effect against DCM. Cardiac-specific SIRT1 knockout (SIRT1 KO ) mice were generated using Cre-loxP system. SIRT1 KO mice displayed symptoms of DCM, including cardiac hypertrophy and dysfunction, insulin resistance, and abnormal glucose metabolism. DCM and SIRT1 KO hearts showed impaired mitochondrial biogenesis and function, while SIRT1 activation by resveratrol reversed this in DCM mice. High glucose caused increased apoptosis, impaired mitochondrial biogenesis, and function in cardiomyocytes, which was alleviated by resveratrol. SIRT1 deletion by both SIRT1 KO and shRNA abolished the beneficial effects of resveratrol. Furthermore, the function of SIRT1 is mediated via the deacetylation effect on peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α), thus inducing increased expression of nuclear respiratory factor 1 (NRF-1), NRF-2, estrogen-related receptor-α (ERR-α), and mitochondrial transcription factor A (TFAM). Cardiac deletion of SIRT1 caused phenotypes resembling DCM. Activation of SIRT1 by resveratrol ameliorated cardiac injuries in DCM through PGC-1α-mediated mitochondrial regulation. Collectively, SIRT1 may serve as a potential therapeutic target for DCM.

  19. Cardiac vagal regulation in infancy predicts executive function and social competence in preschool: Indirect effects through language.

    PubMed

    Whedon, Margaret; Perry, Nicole B; Calkins, Susan D; Bell, Martha Ann

    2018-05-21

    Parasympathetic nervous system functioning in infancy may serve a foundational role in the development of cognitive and socioemotional skills (Calkins, 2007). In this study (N = 297), we investigated the potential indirect effects of cardiac vagal regulation in infancy on children's executive functioning and social competence in preschool via expressive and receptive language in toddlerhood. Vagal regulation was assessed at 10 months during two attention conditions (social, nonsocial) via task-related changes in respiratory sinus arrhythmia (RSA). A path analysis revealed that decreased RSA from baseline in the nonsocial condition and increased RSA in the social condition were related to larger vocabularies in toddlerhood. Additionally, children's vocabulary sizes were positively related to their executive function and social competence in preschool. Indirect effects from vagal regulation in both contexts to both 4-year outcomes were significant, suggesting that early advances in language may represent a mechanism through which biological functioning in infancy impacts social and cognitive functioning in childhood. © 2018 Wiley Periodicals, Inc.

  20. Calreticulin Induces Dilated Cardiomyopathy

    PubMed Central

    Lee, Dukgyu; Oka, Tatsujiro; Hunter, Beth; Robinson, Alison; Papp, Sylvia; Nakamura, Kimitoshi; Srisakuldee, Wattamon; Nickel, Barbara E.; Light, Peter E.; Dyck, Jason R. B.; Lopaschuk, Gary D.; Kardami, Elissavet; Opas, Michal; Michalak, Marek

    2013-01-01

    Background Calreticulin, a Ca2+-buffering chaperone of the endoplasmic reticulum, is highly expressed in the embryonic heart and is essential for cardiac development. After birth, the calreticulin gene is sharply down regulated in the heart, and thus, adult hearts have negligible levels of calreticulin. In this study we tested the role of calreticulin in the adult heart. Methodology/Principal Findings We generated an inducible transgenic mouse in which calreticulin is targeted to the cardiac tissue using a Cre/loxP system and can be up-regulated in adult hearts. Echocardiography analysis of hearts from transgenic mice expressing calreticulin revealed impaired left ventricular systolic and diastolic function and impaired mitral valve function. There was altered expression of Ca2+ signaling molecules and the gap junction proteins, Connexin 43 and 45. Sarcoplasmic reticulum associated Ca2+-handling proteins (including the cardiac ryanodine receptor, sarco/endoplasmic reticulum Ca2+-ATPase, and cardiac calsequestrin) were down-regulated in the transgenic hearts with increased expression of calreticulin. Conclusions/Significance We show that in adult heart, up-regulated expression of calreticulin induces cardiomyopathy in vivo leading to heart failure. This is due to an alternation in changes in a subset of Ca2+ handling genes, gap junction components and left ventricle remodeling. PMID:23437120

  1. Effects of Iron Overload on Cardiac Calcium Regulation: Translational Insights Into Mechanisms and Management of a Global Epidemic.

    PubMed

    Khamseekaew, Juthamas; Kumfu, Sirinart; Chattipakorn, Siriporn C; Chattipakorn, Nipon

    2016-08-01

    Iron overload cardiomyopathy occurs in a rare primary form (ie, hemochromatosis) and a very common secondary form in a host of hemoglobinopathies (eg, thalassemia, sickle cell anemia) of substantial and growing global prevalence, which have transformed iron overload cardiomyopathy into a worldwide epidemic. Intracellular calcium ([Ca(2+)]i) is known to be a critical regulator of myocardial function, in which it plays a key role in maintaining cardiac excitation-contraction coupling. It has been proposed that a disturbance in cardiac calcium regulation is a major contributor to left ventricular dysfunction in iron overload cardiomyopathy. This review comprehensively summarizes reports concerned with the effects of iron overload on cardiac calcium regulation, including alteration in the intracellular calcium level, voltage-gated calcium channel function, and calcium cycling protein activity. Consistent reports, as well as inconsistent findings, from both in vitro and in vivo studies, are presented and discussed. The understanding of these mechanisms has provided important new pathophysiological insights and has led to the development of novel therapeutic and preventive strategies for patients with iron overload cardiomyopathy that are currently in clinical trials. Copyright © 2016 Canadian Cardiovascular Society. Published by Elsevier Inc. All rights reserved.

  2. Cardiac myocyte-protective effect of microRNA-22 during ischemia and reperfusion through disrupting the caveolin-3/eNOS signaling

    PubMed Central

    Chen, Zhenfei; Qi, Yinliang; Gao, Chao

    2015-01-01

    MicroRNA-22 (miR-22) was previously reported to elicit cardiac myocyte hypertrophy and had an anti-apoptotic effect on neurons. However, its effects on cardiac myocyte apoptosis and cardiac function during ischemia and reperfusion (I/R) are not clear. In the present study, we demonstrate that pre-administration of miR-22 mimic reduced I/R-induced cardiac dysfunction significantly in a rat model. We found that miR-22 overexpression inhibited cardiac myocyte apoptosis, and reduced cardiac remodeling during I/R. Significant cardiac myocyte apoptosis was also observed in a cardiac myocyte model after hypoxia/reoxygenation (H/R), a representative process of I/R. Further experiments showed that eNOS activity and the following NO production were significantly decreased during I/R and H/R, while such decrease was inhibited by overexpression of miR-22. Mechanistically, overexpression of miR-22 had little effect on the total protein level of eNOS, but restored the level of p-eNOS (Ser1177) which was down-regulated during H/R. Further RT-PCR results demonstrated that Caveolin 3 (Cav3), an upstream negative regulator of eNOS, was upregulated during H/R, resulting in a decrease of p-eNOS. However, such upregulation of Cav3 transcript level was inhibited directly by miR-22 during H/R, leading to a restored p-eNOS level and followed NO production in cardiac myocytes. Together, the present study revealed that miR-22 down-regulated Cav3, leading to restored eNOS activity and NO production, which further inhibited cardiac myocyte apoptosis and promoted cardiac function after I/R. Of clinical interest, the present study may highlight miR-22 as a potential therapeutic agent for reducing I/R induced cardiac injury. PMID:26191152

  3. mTOR Hyperactivation by Ablation of Tuberous Sclerosis Complex 2 in the Mouse Heart Induces Cardiac Dysfunction with the Increased Number of Small Mitochondria Mediated through the Down-Regulation of Autophagy

    PubMed Central

    Taneike, Manabu; Nishida, Kazuhiko; Omiya, Shigemiki; Zarrinpashneh, Elham; Misaka, Tomofumi; Kitazume-Taneike, Rika; Austin, Ruth; Takaoka, Minoru; Yamaguchi, Osamu; Gambello, Michael J.; Shah, Ajay M.; Otsu, Kinya

    2016-01-01

    Mammalian target of rapamycin complex 1 (mTORC1) is a key regulator of cell growth, proliferation and metabolism. mTORC1 regulates protein synthesis positively and autophagy negatively. Autophagy is a major system to manage bulk degradation and recycling of cytoplasmic components and organelles. Tuberous sclerosis complex (TSC) 1 and 2 form a heterodimeric complex and inactivate Ras homolog enriched in brain, resulting in inhibition of mTORC1. Here, we investigated the effects of hyperactivation of mTORC1 on cardiac function and structure using cardiac-specific TSC2-deficient (TSC2-/-) mice. TSC2-/- mice were born normally at the expected Mendelian ratio. However, the median life span of TSC2-/- mice was approximately 10 months and significantly shorter than that of control mice. TSC2-/- mice showed cardiac dysfunction and cardiomyocyte hypertrophy without considerable fibrosis, cell infiltration or apoptotic cardiomyocyte death. Ultrastructural analysis of TSC2-/- hearts revealed misalignment, aggregation and a decrease in the size and an increase in the number of mitochondria, but the mitochondrial function was maintained. Autophagic flux was inhibited, while the phosphorylation level of S6 or eukaryotic initiation factor 4E -binding protein 1, downstream of mTORC1, was increased. The upregulation of autophagic flux by trehalose treatment attenuated the cardiac phenotypes such as cardiac dysfunction and structural abnormalities of mitochondria in TSC2-/- hearts. The results suggest that autophagy via the TSC2-mTORC1 signaling pathway plays an important role in maintenance of cardiac function and mitochondrial quantity and size in the heart and could be a therapeutic target to maintain mitochondrial homeostasis in failing hearts. PMID:27023784

  4. Intrinsic cardiac nervous system in tachycardia induced heart failure.

    PubMed

    Arora, Rakesh C; Cardinal, Rene; Smith, Frank M; Ardell, Jeffrey L; Dell'Italia, Louis J; Armour, J Andrew

    2003-11-01

    The purpose of this study was to test the hypothesis that early-stage heart failure differentially affects the intrinsic cardiac nervous system's capacity to regulate cardiac function. After 2 wk of rapid ventricular pacing in nine anesthetized canines, cardiac and right atrial neuronal function were evaluated in situ in response to enhanced cardiac sensory inputs, stimulation of extracardiac autonomic efferent neuronal inputs, and close coronary arterial administration of neurochemicals that included nicotine. Right atrial neuronal intracellular electrophysiological properties were then evaluated in vitro in response to synaptic activation and nicotine. Intrinsic cardiac nicotine-sensitive, neuronally induced cardiac responses were also evaluated in eight sham-operated, unpaced animals. Two weeks of rapid ventricular pacing reduced the cardiac index by 54%. Intrinsic cardiac neurons of paced hearts maintained their cardiac mechano- and chemosensory transduction properties in vivo. They also responded normally to sympathetic and parasympathetic preganglionic efferent neuronal inputs, as well as to locally administered alpha-or beta-adrenergic agonists or angiotensin II. The dose of nicotine needed to modify intrinsic cardiac neurons was 50 times greater in failure compared with normal preparations. That dose failed to alter monitored cardiovascular indexes in failing preparations. Phasic and accommodating neurons identified in vitro displayed altered intracellular membrane properties compared with control, including decreased membrane resistance, indicative of reduced excitability. Early-stage heart failure differentially affects the intrinsic cardiac nervous system's capacity to regulate cardiodynamics. While maintaining its capacity to transduce cardiac mechano- and chemosensory inputs, as well as inputs from extracardiac autonomic efferent neurons, intrinsic cardiac nicotine-sensitive, local-circuit neurons differentially remodel such that their capacity to influence cardiodynamics becomes obtunded.

  5. Substance P acting via the neurokinin-1 receptor regulates adverse myocardial remodeling in a rat model of hypertension

    PubMed Central

    Dehlin, Heather M.; Manteufel, Edward J.; Monroe, Andrew L.; Reimer, Michael H.; Levick, Scott P.

    2013-01-01

    Background Substance P is a sensory nerve neuropeptide located near coronary vessels in the heart. Therefore, substance P may be one of the first mediators released in the heart in response to hypertension, and can contribute to adverse myocardial remodeling via interactions with the neurokinin-1 receptor. We asked: 1) whether substance P promoted cardiac hypertrophy, including the expression of fetal genes known to be re-expressed during pathological hypertrophy; and 2) the extent to which substance P regulated collagen production and fibrosis. Methods and Results Spontaneously hypertensive rats (SHR) were treated with the neurokinin-1 receptor antagonist L732138 (5 mg/kg/d) from 8 to 24 weeks of age. Age-matched WKY served as controls. The gene encoding substance P, TAC1, was up-regulated as blood pressure increased in SHR. Fetal gene expression by cardiomyocytes was increased in SHR and was prevented by L732138. Cardiac fibrosis also occurred in the SHR and was prevented by L732138. Endothelin-1 was up-regulated in the SHR and this was prevented by L732138. In isolated cardiac fibroblasts, substance P transiently up-regulated several genes related to cell-cell adhesion, cell-matrix adhesion, and extracellular matrix regulation, however, no changes in fibroblast function were observed. Conclusions Substance P activation of the neurokinin-1 receptor induced expression of fetal genes related to pathological hypertrophy in the hypertensive heart. Additionally, activation of the neurokinin-1 receptor was critical to the development of cardiac fibrosis. Since no functional changes were induced in isolated cardiac fibroblasts by substance P, we conclude that substance P mediates fibrosis via up-regulation of endothelin-1. PMID:23962787

  6. Connecting Teratogen-Induced Congenital Heart Defects to Neural Crest Cells and Their Effect on Cardiac Function

    PubMed Central

    Karunamuni, Ganga H.; Ma, Pei; Gu, Shi; Rollins, Andrew M.; Jenkins, Michael W.; Watanabe, Michiko

    2014-01-01

    Neural crest cells play many key roles in embryonic development, as demonstrated by the abnormalities that result from their specific absence or dysfunction. Unfortunately, these key cells are particularly sensitive to abnormalities in various intrinsic and extrinsic factors, such as genetic deletions or ethanol-exposure that lead to morbidity and mortality for organisms. This review discusses the role identified for a segment of neural crest is in regulating the morphogenesis of the heart and associated great vessels. The paradox is that their derivatives constitute a small proportion of cells to the cardiovascular system. Findings supporting that these cells impact early cardiac function raises the interesting possibility that they indirectly control cardiovascular development at least partially through regulating function. Making connections between insults to the neural crest, cardiac function, and morphogenesis is more approachable with technological advances. Expanding our understanding of early functional consequences could be useful in improving diagnosis and testing therapies. PMID:25220155

  7. The E3 ligase Mule protects the heart against oxidative stress and mitochondrial dysfunction through Myc-dependent inactivation of Pgc-1α and Pink1.

    PubMed

    Dadson, Keith; Hauck, Ludger; Hao, Zhenyue; Grothe, Daniela; Rao, Vivek; Mak, Tak W; Billia, Filio

    2017-02-02

    Cardiac homeostasis requires proper control of protein turnover. Protein degradation is principally controlled by the Ubiquitin-Proteasome System. Mule is an E3 ubiquitin ligase that regulates cellular growth, DNA repair and apoptosis to maintain normal tissue architecture. However, Mule's function in the heart has yet to be described. In a screen, we found reduced Mule expression in left ventricular samples from end-stage heart failure patients. Consequently, we generated conditional cardiac-specific Mule knockout (Mule  fl/fl(y) ;mcm) mice. Mule ablation in adult Mule  fl/fl(y) ;mcm mice prevented myocardial c-Myc polyubiquitination, leading to c-Myc accumulation and subsequent reduced expression of Pgc-1α, Pink1, and mitochondrial complex proteins. Furthermore, these mice developed spontaneous cardiac hypertrophy, left ventricular dysfunction, and early mortality. Co-deletion of Mule and c-Myc rescued this phenotype. Our data supports an indispensable role for Mule in cardiac homeostasis through the regulation of mitochondrial function via maintenance of Pgc-1α and Pink1 expression and persistent negative regulation of c-Myc.

  8. MicroRNA-19a/b-3p protect the heart from hypertension-induced pathological cardiac hypertrophy through PDE5A.

    PubMed

    Liu, Kun; Hao, Qiongyu; Wei, Jie; Li, Gong-Hao; Wu, Yong; Zhao, Yun-Feng

    2018-04-16

    PDE5A is a leading factor contributing to cGMP signaling and cardiac hypertrophy. However, microRNA-mediated posttranscriptional regulation of PDE5A has not been reported. The aim of this study is to screen the microRNAs that are able to regulate PDE5A and explore the function of the microRNAs in cardiac hypertrophy and remodeling. Although miR-19a/b-3p (microRNA-19a-3p and microRNA-19b-3p) have been reported to be differentially expressed during cardiac hypertrophy, the direct targets and the functions of this microRNA family for regulation of cardiac hypertrophy have not yet been investigated. The present study identified some direct targets and the underlying functions of miR-19a/b-3p by using bioinformatics tools and gene manipulations within mouse neonatal cardiomyocytes. Transfection of miR-19a/b-3p down-regulated endogenous expressions of PDE5A at both mRNA and protein levels with real-time PCR and western blot. Luciferase reporter assays showed that PDE5A was a direct target of miR-19a/b-3p. In mouse models of cardiac hypertrophy, we found that miR-19a/b-3p was expressed in cardiomyocytes and that its expression was reduced in pressure overload-induced hypertrophic hearts. miR-19a/b-3p transgenic mice prevented the progress of cardiac hypertrophy and cardiac remodeling in response to angiotensin II infusion with echocardiographic assessment and pressure-volume relation analysis. Our study elucidates that PDE5A is a novel direct target of miR-19a/b-3p, and demonstrates that antihypertrophic roles of the miR-19a/b-3p family in Ang II-induced hypertrophy and cardiac remodeling, suggests that endogenous miR-19a/b-3p might have clinical potential to suppress cardiac hypertrophy and heart failure.This is an open access article distributed under the terms of the Creative Commons Attribution-Non Commercial-No Derivatives License 4.0 (CCBY-NC-ND), where it is permissible to download and share the work provided it is properly cited. The work cannot be changed in any way or used commercially without permission from the journal. http://creativecommons.org/licenses/by-nc-nd/4.0.

  9. Regulation of human cardiac potassium channels by full-length KCNE3 and KCNE4.

    PubMed

    Abbott, Geoffrey W

    2016-12-06

    Voltage-gated potassium (Kv) channels comprise pore-forming α subunits and a multiplicity of regulatory proteins, including the cardiac-expressed and cardiac arrhythmia-linked transmembrane KCNE subunits. After recently uncovering novel, N-terminally extended (L) KCNE3 and KCNE4 isoforms and detecting their transcripts in human atrium, reported here are their functional effects on human cardiac Kv channel α subunits expressed in Xenopus laevis oocytes. As previously reported for short isoforms KCNE3S and KCNE4S, KCNE3L inhibited hERG; KCNE4L inhibited Kv1.1; neither form regulated the HCN1 pacemaker channel. Unlike KCNE4S, KCNE4L was a potent inhibitor of Kv4.2 and Kv4.3; co-expression of cytosolic β subunit KChIP2, which regulates Kv4 channels in cardiac myocytes, partially relieved Kv4.3 but not Kv4.2 inhibition. Inhibition of Kv4.2 and Kv4.3 by KCNE3L was weaker, and its inhibition of Kv4.2 abolished by KChIP2. KCNE3L and KCNE4L also exhibited subunit-specific effects on Kv4 channel complex inactivation kinetics, voltage dependence and recovery. Further supporting the potential physiological significance of the robust functional effects of KCNE4L on Kv4 channels, KCNE4L protein was detected in human atrium, where it co-localized with Kv4.3. The findings establish functional effects of novel human cardiac-expressed KCNE isoforms and further contribute to our understanding of the potential mechanisms influencing cardiomyocyte repolarization.

  10. Estrogen-Related Receptor α (ERRα) and ERRγ Are Essential Coordinators of Cardiac Metabolism and Function

    PubMed Central

    Wang, Ting; McDonald, Caitlin; Petrenko, Nataliya B.; Leblanc, Mathias; Wang, Tao; Giguere, Vincent; Evans, Ronald M.; Patel, Vickas V.

    2015-01-01

    Almost all cellular functions are powered by a continuous energy supply derived from cellular metabolism. However, it is little understood how cellular energy production is coordinated with diverse energy-consuming cellular functions. Here, using the cardiac muscle system, we demonstrate that nuclear receptors estrogen-related receptor α (ERRα) and ERRγ are essential transcriptional coordinators of cardiac energy production and consumption. On the one hand, ERRα and ERRγ together are vital for intact cardiomyocyte metabolism by directly controlling expression of genes important for mitochondrial functions and dynamics. On the other hand, ERRα and ERRγ influence major cardiomyocyte energy consumption functions through direct transcriptional regulation of key contraction, calcium homeostasis, and conduction genes. Mice lacking both ERRα and cardiac ERRγ develop severe bradycardia, lethal cardiomyopathy, and heart failure featuring metabolic, contractile, and conduction dysfunctions. These results illustrate that the ERR transcriptional pathway is essential to couple cellular energy metabolism with energy consumption processes in order to maintain normal cardiac function. PMID:25624346

  11. AKAP-scaffolding proteins and regulation of cardiac physiology

    PubMed Central

    Mauban, JRH; O'Donnell, M; Warrier, S; Manni, S; Bond, M

    2009-01-01

    A kinase anchoring proteins (AKAPs) compose a growing list of diverse but functionally related proteins defined by their ability to bind to the regulatory subunit of protein kinase A. AKAPs perform an integral role in the spatiotemporal modulation of a multitude of cellular signaling pathways. This review highlights the extensive role of AKAPs in cardiac excitation/contraction coupling and cardiac physiology. The literature shows that particular AKAPs are involved in cardiac Ca2+ influx, release, re-uptake, and myocyte repolarization. Studies have also suggested roles for AKAPs in cardiac remodeling. Transgenic studies show functional effects of AKAPs, not only in the cardiovascular system, but in other organ systems as well. PMID:19364910

  12. Qiliqiangxin Rescues Mouse Cardiac Function by Regulating AGTR1/TRPV1-Mediated Autophagy in STZ-Induced Diabetes Mellitus.

    PubMed

    Tong, Jing; Lai, Yan; Yao, Yi-An; Wang, Xue-Jun; Shi, Yu-Shuang; Hou, Han-Jin; Gu, Jian-Yun; Chen, Fei; Liu, Xue-Bo

    2018-06-19

    To explore the potential role of qiliqiangxin (QLQX) A traditional Chinese medicine and the involvement of angiotensin II receptor type 1 (AGTR1) and transient receptor potential vanilloid 1 (TRPV1) in diabetic mouse cardiac function. Intragastric QLQX was administered for 5 weeks after streptozotocin (STZ) treatment. Additionally, Intraperitoneal injections of angiotensin II (Ang II) or intragastric losartan (Los) were administered to assess the activities of AGTR1 and TRPV1. Two-dimensional echocardiography and tissue histopathology were used to assess cardiac function Western blot was used to detect the autophagic biomarkers Such as light chain 3 P62 and lysosomal-associated membrane protein 2 And transmission electron microscopy was used to count the number of autophagosomes. Decreased expression of TRPV1 and autophagic hallmarks and reduced numbers of autophagolysosomes as well as increased expression of angiotensin converting enzyme 1 and AGTR1 were observed in diabetic hearts. Blocking AGTR1 with Los mimicked the QLQX-mediated improvements in cardiac function Alleviated myocardial fibrosis and enabled autophagy Whereas Ang II abolished the beneficial effects of QLQX in wild type diabetic mice but not in TRPV1-/- diabetic mice. QLQX may improve diabetic cardiac function by regulating AGTR1/ TRPV1-mediated autophagy in STZ-induced diabetic mice. © 2018 The Author(s). Published by S. Karger AG, Basel.

  13. O-GlcNAcomic Profiling Identifies Widespread O-Linked β-N-Acetylglucosamine Modification (O-GlcNAcylation) in Oxidative Phosphorylation System Regulating Cardiac Mitochondrial Function*♦

    PubMed Central

    Ma, Junfeng; Liu, Ting; Wei, An-Chi; Banerjee, Partha; O'Rourke, Brian; Hart, Gerald W.

    2015-01-01

    Dynamic cycling of O-linked β-N-acetylglucosamine (O-GlcNAc) on nucleocytoplasmic proteins serves as a nutrient sensor to regulate numerous biological processes. However, mitochondrial protein O-GlcNAcylation and its effects on function are largely unexplored. In this study, we performed a comparative analysis of the proteome and O-GlcNAcome of cardiac mitochondria from rats acutely (12 h) treated without or with thiamet-G (TMG), a potent and specific inhibitor of O-GlcNAcase. We then determined the functional consequences in mitochondria isolated from the two groups. O-GlcNAcomic profiling finds that over 88 mitochondrial proteins are O-GlcNAcylated, with the oxidative phosphorylation system as a major target. Moreover, in comparison with controls, cardiac mitochondria from TMG-treated rats did not exhibit altered protein abundance but showed overall elevated O-GlcNAcylation of many proteins. However, O-GlcNAc was unexpectedly down-regulated at certain sites of specific proteins. Concomitantly, TMG treatment resulted in significantly increased mitochondrial oxygen consumption rates, ATP production rates, and enhanced threshold for permeability transition pore opening by Ca2+. Our data reveal widespread and dynamic mitochondrial protein O-GlcNAcylation, serving as a regulator to their function. PMID:26446791

  14. Linking an Anxiety-Related Personality Trait to Cardiac Autonomic Regulation in Well-Defined Healthy Adults: Harm Avoidance and Resting Heart Rate Variability.

    PubMed

    Kao, Lien-Cheng; Liu, Yu-Wen; Tzeng, Nian-Sheng; Kuo, Terry B J; Huang, San-Yuan; Chang, Chuan-Chia; Chang, Hsin-An

    2016-07-01

    Anxiety trait, anxiety and depression states have all been reported to increase risks for cardiovascular disease (CVD), possibly through altering cardiac autonomic regulation. Our aim was to investigate whether the relationship between harm avoidance (HA, an anxiety-related personality trait) and cardiac autonomic regulation is independent of anxiety and depression states in healthy adults. We recruited 535 physically and mentally healthy volunteers. Participants completed the Beck Anxiety Inventory (BAI), Beck Depression Inventory (BDI) and Tri-dimensional Personality Questionnaire. Participants were divided into high or low HA groups as discriminated by the quartile value. Cardiac autonomic function was evaluated by measuring heart rate variability (HRV). We obtained the time and frequency-domain indices of HRV including variance (total HRV), the low-frequency power (LF; 0.05-0.15 Hz), which may reflect baroreflex function, the high-frequency power (HF; 0.15-0.40 Hz), which reflects cardiac parasympathetic activity, as well as the LF/HF ratio. The BDI and HA scores showed associations with HRV parameters. After adjustment for the BDI scores and other control variables, HA is still associated with reduced variance, LF and HF power. Compared with the participants with low HA, those with high HA displayed significant reductions in variance, LF and HF power and a significant increase in their LF/HF ratio. This study highlights the independent role of HA in contributing to decreased autonomic cardiac regulation in healthy adults and provides a potential underlying mechanism for anxiety trait to confer increased risk for CVD.

  15. Depression and reduced heart rate variability after cardiac surgery: the mediating role of emotion regulation.

    PubMed

    Patron, Elisabetta; Messerotti Benvenuti, Simone; Favretto, Giuseppe; Gasparotto, Renata; Palomba, Daniela

    2014-02-01

    Heart rate variability (HRV), as an index of autonomic nervous system (ANS) functioning, is reduced by depression after cardiac surgery, but the underlying mechanisms of this relationship are poorly understood. Poor emotion regulation as a core symptom of depression has also been associated with altered ANS functioning. The present study aimed to examine whether emotion dysregulation could be a mediator of the depression-reduced HRV relationship observed after cardiac surgery. Self-reported emotion regulation and four-minute HRV were measured in 25 depressed and 43 nondepressed patients after cardiac surgery. Mediation analysis was conducted to evaluate emotion regulation as a mediator of the depression-reduced HRV relationship. Compared to nondepressed patients, those with depression showed lower standard deviation of normal-to-normal (NN) intervals (p<.05), root mean square successive difference of NN intervals (p<.004), and number of interval differences of successive NN intervals greater than 50ms (NN50) (p<.05). Increased low frequency (LF) in normalized units (n.u.) and reduced high frequency (HF) n.u. were also found in depressed compared to nondepressed patients (p's<.01). Mediation analysis revealed that suppression of emotion-expressive behavior partially mediated the effect of depression on LF n.u. and HF n.u. Results confirmed previous findings showing that depression is associated with reduced HRV, especially a reduced vagal tone and a sympathovagal imbalance, after cardiac surgery. This study also provides preliminary evidence that increased trait levels of suppression of emotion-expressive behavior may mediate the depression-related sympathovagal imbalance after cardiac surgery. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Linking an Anxiety-Related Personality Trait to Cardiac Autonomic Regulation in Well-Defined Healthy Adults: Harm Avoidance and Resting Heart Rate Variability

    PubMed Central

    Kao, Lien-Cheng; Liu, Yu-Wen; Tzeng, Nian-Sheng; Kuo, Terry B. J.; Huang, San-Yuan

    2016-01-01

    Objective Anxiety trait, anxiety and depression states have all been reported to increase risks for cardiovascular disease (CVD), possibly through altering cardiac autonomic regulation. Our aim was to investigate whether the relationship between harm avoidance (HA, an anxiety-related personality trait) and cardiac autonomic regulation is independent of anxiety and depression states in healthy adults. Methods We recruited 535 physically and mentally healthy volunteers. Participants completed the Beck Anxiety Inventory (BAI), Beck Depression Inventory (BDI) and Tri-dimensional Personality Questionnaire. Participants were divided into high or low HA groups as discriminated by the quartile value. Cardiac autonomic function was evaluated by measuring heart rate variability (HRV). We obtained the time and frequency-domain indices of HRV including variance (total HRV), the low-frequency power (LF; 0.05–0.15 Hz), which may reflect baroreflex function, the high-frequency power (HF; 0.15–0.40 Hz), which reflects cardiac parasympathetic activity, as well as the LF/HF ratio. Results The BDI and HA scores showed associations with HRV parameters. After adjustment for the BDI scores and other control variables, HA is still associated with reduced variance, LF and HF power. Compared with the participants with low HA, those with high HA displayed significant reductions in variance, LF and HF power and a significant increase in their LF/HF ratio. Conclusion This study highlights the independent role of HA in contributing to decreased autonomic cardiac regulation in healthy adults and provides a potential underlying mechanism for anxiety trait to confer increased risk for CVD. PMID:27482240

  17. Calcineurin Regulates Myocardial Function during Acute Endotoxemia

    PubMed Central

    Joshi, Mandar S.; Julian, Mark W.; Huff, Jennifer E.; Bauer, John A.; Xia, Yong; Crouser, Elliott D.

    2006-01-01

    Rationale: Cyclosporin A (CsA) is known to preserve cardiac contractile function during endotoxemia, but the mechanism is unclear. Increased nitric oxide (NO) production and altered mitochondrial function are implicated as mechanisms contributing to sepsis-induced cardiac dysfunction, and CsA has the capacity to reduce NO production and inhibit mitochondrial dysfunction relating to the mitochondrial permeability transition (MPT). Objectives: We hypothesized that CsA would protect against endotoxin-mediated cardiac contractile dysfunction by attenuating NO production and preserving mitochondrial function. Methods: Left ventricular function was measured continuously over 4 h in cats assigned as follows: control animals (n = 7); LPS alone (3 mg/kg, n = 8); and CsA (6 mg/kg, n = 7), a calcineurin inhibitor that blocks the MPT, or tacrolimus (FK506, 0.1 mg/kg, n = 7), a calcineurin inhibitor lacking MPT activity, followed in 30 min by LPS. Myocardial tissue was then analyzed for NO synthase-2 expression, tissue nitration, protein carbonylation, and mitochondrial morphology and function. Measurements and Main Results: LPS treatment resulted in impaired left ventricular contractility, altered mitochondrial morphology and function, and increased protein nitration. As hypothesized, CsA pretreatment normalized cardiac performance and mitochondrial respiration and reduced myocardial protein nitration. Unexpectedly, FK506 pretreatment had similar effects, normalizing both cardiac and mitochondrial parameters. However, CsA and FK506 pretreatments markedly increased protein carbonylation in the myocardium despite elevated manganese superoxide dismutase activity during endotoxemia. Conclusions: Our data indicate that calcineurin is a critical regulator of mitochondrial respiration, tissue nitration, protein carbonylation, and contractile function in the heart during acute endotoxemia. PMID:16424445

  18. Translational neurocardiology: preclinical models and cardioneural integrative aspects

    PubMed Central

    Andresen, M. C.; Armour, J. A.; Billman, G. E.; Chen, P.‐S.; Foreman, R. D.; Herring, N.; O'Leary, D. S.; Sabbah, H. N.; Schultz, H. D.; Sunagawa, K.; Zucker, I. H.

    2016-01-01

    Abstract Neuronal elements distributed throughout the cardiac nervous system, from the level of the insular cortex to the intrinsic cardiac nervous system, are in constant communication with one another to ensure that cardiac output matches the dynamic process of regional blood flow demand. Neural elements in their various ‘levels’ become differentially recruited in the transduction of sensory inputs arising from the heart, major vessels, other visceral organs and somatic structures to optimize neuronal coordination of regional cardiac function. This White Paper will review the relevant aspects of the structural and functional organization for autonomic control of the heart in normal conditions, how these systems remodel/adapt during cardiac disease, and finally how such knowledge can be leveraged in the evolving realm of autonomic regulation therapy for cardiac therapeutics. PMID:27098459

  19. Non-human Primate and Rat Cardiac Fibroblasts show similar Extracellular Matrix-related and Cellular Adhesion Gene Responses to Substance P

    PubMed Central

    Meléndez, Giselle C.; Manteufel, Edward J.; Dehlin, Heather M.; Register, Thomas C.; Levick, Scott P.

    2015-01-01

    Background The sensory nerve neuropeptide substance P (SP) regulates cardiac fibrosis in rodents under pressure overload conditions. Interestingly, SP induces transient increase expression of specific genes in isolated rat cardiac fibroblasts, without resultant changes in cell function. This suggests that SP ‘primes’ fibroblasts, but does not directly activate them. We investigated whether these unusual findings are specific to rodent fibroblasts or are translatable to a larger animal model more closely related to humans. Methods We compared the effects of SP on genes associated with extracellular matrix (ECM) regulation, cell-cell adhesion, cell-matrix adhesion and ECM in cardiac fibroblasts isolated from a non-human primate and Sprague-Dawley rats. Results We found that rodent and non-human primate cardiac fibroblasts showed similar ECM regulation and cell adhesion gene expression responses to SP. There were, however, large discrepancies in ECM genes which did not result in collagen or laminin synthesis in rat or non-human primate fibroblasts in response to SP. Conclusions This study further supports the notion that SP serves as a ‘primer’ for fibroblasts rather than initiating direct effects and suggests that rodent fibroblasts are a suitable model for studying gene and functional responses to SP in the absence of human or non-human primate fibroblasts. PMID:25550118

  20. Essential Role of the m2R-RGS6-IKACh Pathway in Controlling Intrinsic Heart Rate Variability

    PubMed Central

    Posokhova, Ekaterina; Ng, David; Opel, Aaisha; Masuho, Ikuo; Tinker, Andrew; Biesecker, Leslie G.; Wickman, Kevin; Martemyanov, Kirill A.

    2013-01-01

    Normal heart function requires generation of a regular rhythm by sinoatrial pacemaker cells and the alteration of this spontaneous heart rate by the autonomic input to match physiological demand. However, the molecular mechanisms that ensure consistent periodicity of cardiac contractions and fine tuning of this process by autonomic system are not completely understood. Here we examined the contribution of the m2R-IKACh intracellular signaling pathway, which mediates the negative chronotropic effect of parasympathetic stimulation, to the regulation of the cardiac pacemaking rhythm. Using isolated heart preparations and single-cell recordings we show that the m2R-IKACh signaling pathway controls the excitability and firing pattern of the sinoatrial cardiomyocytes and determines variability of cardiac rhythm in a manner independent from the autonomic input. Ablation of the major regulator of this pathway, Rgs6, in mice results in irregular cardiac rhythmicity and increases susceptibility to atrial fibrillation. We further identify several human subjects with variants in the RGS6 gene and show that the loss of function in RGS6 correlates with increased heart rate variability. These findings identify the essential role of the m2R-IKACh signaling pathway in the regulation of cardiac sinus rhythm and implicate RGS6 in arrhythmia pathogenesis. PMID:24204714

  1. Mammalian enabled (Mena) is a critical regulator of cardiac function

    PubMed Central

    Aguilar, Frédérick; Belmonte, Stephen L.; Ram, Rashmi; Noujaim, Sami F.; Dunaevsky, Olga; Protack, Tricia L.; Jalife, Jose; Todd Massey, H.; Gertler, Frank B.

    2011-01-01

    Mammalian enabled (Mena) of the Drosophila enabled/vasodilator-stimulated phosphoprotein gene family is a cytoskeletal protein implicated in actin regulation and cell motility. Cardiac Mena expression is enriched in intercalated discs (ICD), the critical intercellular communication nexus between adjacent muscle cells. We previously identified Mena gene expression to be a key predictor of human and murine heart failure (HF). To determine the in vivo function of Mena in the heart, we assessed Mena protein expression in multiple HF models and characterized the effects of genetic Mena deletion on cardiac structure and function. Immunoblot analysis revealed significant upregulation of Mena protein expression in left ventricle tissue from patients with end-stage HF, calsequestrin-overexpressing mice, and isoproterenol-infused mice. Characterization of the baseline cardiac function of adult Mena knockout mice (Mena−/−) via echocardiography demonstrated persistent cardiac dysfunction, including a significant reduction in percent fractional shortening compared with wild-type littermates. Electrocardiogram PR and QRS intervals were significantly prolonged in Mena−/− mice, manifested by slowed conduction on optical mapping studies. Ultrastructural analysis of Mena−/− hearts revealed disrupted organization and widening of ICD structures, mislocalization of the gap junction protein connexin 43 (Cx43) to the lateral borders of cardiomyoycytes, and increased Cx43 expression. Furthermore, the expression of vinculin (an adherens junction protein) was significantly reduced in Mena−/− mice. We report for the first time that genetic ablation of Mena results in cardiac dysfunction, highlighted by diminished contractile performance, disrupted ICD structure, and slowed electrical conduction. PMID:21335464

  2. Mammalian enabled (Mena) is a critical regulator of cardiac function.

    PubMed

    Aguilar, Frédérick; Belmonte, Stephen L; Ram, Rashmi; Noujaim, Sami F; Dunaevsky, Olga; Protack, Tricia L; Jalife, Jose; Todd Massey, H; Gertler, Frank B; Blaxall, Burns C

    2011-05-01

    Mammalian enabled (Mena) of the Drosophila enabled/vasodilator-stimulated phosphoprotein gene family is a cytoskeletal protein implicated in actin regulation and cell motility. Cardiac Mena expression is enriched in intercalated discs (ICD), the critical intercellular communication nexus between adjacent muscle cells. We previously identified Mena gene expression to be a key predictor of human and murine heart failure (HF). To determine the in vivo function of Mena in the heart, we assessed Mena protein expression in multiple HF models and characterized the effects of genetic Mena deletion on cardiac structure and function. Immunoblot analysis revealed significant upregulation of Mena protein expression in left ventricle tissue from patients with end-stage HF, calsequestrin-overexpressing mice, and isoproterenol-infused mice. Characterization of the baseline cardiac function of adult Mena knockout mice (Mena(-/-)) via echocardiography demonstrated persistent cardiac dysfunction, including a significant reduction in percent fractional shortening compared with wild-type littermates. Electrocardiogram PR and QRS intervals were significantly prolonged in Mena(-/-) mice, manifested by slowed conduction on optical mapping studies. Ultrastructural analysis of Mena(-/-) hearts revealed disrupted organization and widening of ICD structures, mislocalization of the gap junction protein connexin 43 (Cx43) to the lateral borders of cardiomyoycytes, and increased Cx43 expression. Furthermore, the expression of vinculin (an adherens junction protein) was significantly reduced in Mena(-/-) mice. We report for the first time that genetic ablation of Mena results in cardiac dysfunction, highlighted by diminished contractile performance, disrupted ICD structure, and slowed electrical conduction.

  3. SIRT1 Activation by Resveratrol Alleviates Cardiac Dysfunction via Mitochondrial Regulation in Diabetic Cardiomyopathy Mice

    PubMed Central

    Zhang, Ran; Chen, Jiangwei; Li, Xiang; Yang, Bo; Li, Xiujuan; Fan, Miaomiao; Li, Congye; Tian, Zuhong

    2017-01-01

    Background Diabetic cardiomyopathy (DCM) is a major threat for diabetic patients. Silent information regulator 1 (SIRT1) has a regulatory effect on mitochondrial dynamics, which is associated with DCM pathological changes. Our study aims to investigate whether resveratrol, a SRIT1 activator, could exert a protective effect against DCM. Methods and Results Cardiac-specific SIRT1 knockout (SIRT1KO) mice were generated using Cre-loxP system. SIRT1KO mice displayed symptoms of DCM, including cardiac hypertrophy and dysfunction, insulin resistance, and abnormal glucose metabolism. DCM and SIRT1KO hearts showed impaired mitochondrial biogenesis and function, while SIRT1 activation by resveratrol reversed this in DCM mice. High glucose caused increased apoptosis, impaired mitochondrial biogenesis, and function in cardiomyocytes, which was alleviated by resveratrol. SIRT1 deletion by both SIRT1KO and shRNA abolished the beneficial effects of resveratrol. Furthermore, the function of SIRT1 is mediated via the deacetylation effect on peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α), thus inducing increased expression of nuclear respiratory factor 1 (NRF-1), NRF-2, estrogen-related receptor-α (ERR-α), and mitochondrial transcription factor A (TFAM). Conclusions Cardiac deletion of SIRT1 caused phenotypes resembling DCM. Activation of SIRT1 by resveratrol ameliorated cardiac injuries in DCM through PGC-1α-mediated mitochondrial regulation. Collectively, SIRT1 may serve as a potential therapeutic target for DCM. PMID:28883902

  4. Identification of genes regulated during mechanical load-induced cardiac hypertrophy

    NASA Technical Reports Server (NTRS)

    Johnatty, S. E.; Dyck, J. R.; Michael, L. H.; Olson, E. N.; Abdellatif, M.; Schneider, M. (Principal Investigator)

    2000-01-01

    Cardiac hypertrophy is associated with both adaptive and adverse changes in gene expression. To identify genes regulated by pressure overload, we performed suppressive subtractive hybridization between cDNA from the hearts of aortic-banded (7-day) and sham-operated mice. In parallel, we performed a subtraction between an adult and a neonatal heart, for the purpose of comparing different forms of cardiac hypertrophy. Sequencing more than 100 clones led to the identification of an array of functionally known (70%) and unknown genes (30%) that are upregulated during cardiac growth. At least nine of those genes were preferentially expressed in both the neonatal and pressure over-load hearts alike. Using Northern blot analysis to investigate whether some of the identified genes were upregulated in the load-independent calcineurin-induced cardiac hypertrophy mouse model, revealed its incomplete similarity with the former models of cardiac growth. Copyright 2000 Academic Press.

  5. BET Acetyl-Lysine Binding Proteins Control Pathological Cardiac Hypertrophy

    PubMed Central

    Spiltoir, Jessica I.; Stratton, Matthew S.; Cavasin, Maria A.; Demos-Davies, Kim; Reid, Brian G.; Qi, Jun; Bradner, James E.; McKinsey, Timothy A.

    2014-01-01

    Cardiac hypertrophy is an independent predictor of adverse outcomes in patients with heart failure, and thus represents an attractive target for novel therapeutic intervention. JQ1, a small molecule inhibitor of bromodomain and extraterminal (BET) acetyl-lysine reader proteins, was identified in a high throughput screen designed to discover novel small molecule regulators of cardiomyocyte hypertrophy. JQ1 dose-dependently blocked agonist-dependent hypertrophy of cultured neonatal rat ventricular myocytes (NRVMs) and reversed the prototypical gene program associated with pathological cardiac hypertrophy. JQ1 also blocked left ventricular hypertrophy (LVH) and improved cardiac function in adult mice subjected to transverse aortic constriction (TAC). The BET family consists of BRD2, BRD3, BRD4 and BRDT. BRD4 protein expression was increased during cardiac hypertrophy, and hypertrophic stimuli promoted recruitment of BRD4 to the transcriptional start site (TSS) of the gene encoding atrial natriuretic factor (ANF). Binding of BRD4 to the ANF TSS was associated with increased phosphorylation of local RNA polymerase II. These findings define a novel function for BET proteins as signal-responsive regulators of cardiac hypertrophy, and suggest that small molecule inhibitors of these epigenetic reader proteins have potential as therapeutics for heart failure. PMID:23939492

  6. Cardiovascular Development and the Colonizing Cardiac Neural Crest Lineage

    PubMed Central

    Snider, Paige; Olaopa, Michael; Firulli, Anthony B.; Conway, Simon J.

    2007-01-01

    Although it is well established that transgenic manipulation of mammalian neural crest-related gene expression and microsurgical removal of premigratory chicken and Xenopus embryonic cardiac neural crest progenitors results in a wide spectrum of both structural and functional congenital heart defects, the actual functional mechanism of the cardiac neural crest cells within the heart is poorly understood. Neural crest cell migration and appropriate colonization of the pharyngeal arches and outflow tract septum is thought to be highly dependent on genes that regulate cell-autonomous polarized movement (i.e., gap junctions, cadherins, and noncanonical Wnt1 pathway regulators). Once the migratory cardiac neural crest subpopulation finally reaches the heart, they have traditionally been thought to participate in septation of the common outflow tract into separate aortic and pulmonary arteries. However, several studies have suggested these colonizing neural crest cells may also play additional unexpected roles during cardiovascular development and may even contribute to a crest-derived stem cell population. Studies in both mice and chick suggest they can also enter the heart from the venous inflow as well as the usual arterial outflow region, and may contribute to the adult semilunar and atrioventricular valves as well as part of the cardiac conduction system. Furthermore, although they are not usually thought to give rise to the cardiomyocyte lineage, neural crest cells in the zebrafish (Danio rerio) can contribute to the myocardium and may have different functions in a species-dependent context. Intriguingly, both ablation of chick and Xenopus premigratory neural crest cells, and a transgenic deletion of mouse neural crest cell migration or disruption of the normal mammalian neural crest gene expression profiles, disrupts ventral myocardial function and/or cardiomyocyte proliferation. Combined, this suggests that either the cardiac neural crest secrete factor/s that regulate myocardial proliferation, can signal to the epicardium to subsequently secrete a growth factor/s, or may even contribute directly to the heart. Although there are species differences between mouse, chick, and Xenopus during cardiac neural crest cell morphogenesis, recent data suggest mouse and chick are more similar to each other than to the zebrafish neural crest cell lineage. Several groups have used the genetically defined Pax3 (splotch) mutant mice model to address the role of the cardiac neural crest lineage. Here we review the current literature, the neural crest-related role of the Pax3 transcription factor, and discuss potential function/s of cardiac neural crest-derived cells during cardiovascular developmental remodeling. PMID:17619792

  7. [Individual typological peculiarities of system blood flow, physical capacity for work and cardiac activity regulation in patients with different resistance to periodontal diseases].

    PubMed

    Bragin, A V

    2008-01-01

    From position of typological variability of physiological individuality concept-functional constitution types - the principle of organism integrity was substantiated for stomatological pathology. There were isolated typical and specific reactions of cardiac-vessel system in patients with different resistance to periodontal diseases. Each functional type - patients with different levels of usual motion activity - had their own physiological peculiarities of parameters of system blood flow, physical capacity for work and cardiac activity regulation, that determined individual typological organism reaction in cases of maxillo-facial system pathology. The received data gives the objective base for physiological approach to single out the extreme variants of norm for forming risk contingent and groups of resistant people to periodontal diseases.

  8. Novel role of transient receptor potential vanilloid 2 in the regulation of cardiac performance

    PubMed Central

    Lasko, Valerie M.; Koch, Sheryl E.; Singh, Vivek P.; Carreira, Vinicius; Robbins, Nathan; Patel, Amit R.; Jiang, Min; Bidwell, Philip; Kranias, Evangelia G.; Jones, W. Keith; Lorenz, John N.

    2013-01-01

    Transient receptor potential cation channels have been implicated in the regulation of cardiovascular function, but only recently has our laboratory described the vanilloid-2 subtype (TRPV2) in the cardiomyocyte, though its exact mechanism of action has not yet been established. This study tests the hypothesis that TRPV2 plays an important role in regulating myocyte contractility under physiological conditions. Therefore, we measured cardiac and vascular function in wild-type and TRPV2−/− mice in vitro and in vivo and found that TRPV2 deletion resulted in a decrease in basal systolic and diastolic function without affecting loading conditions or vascular tone. TRPV2 stimulation with probenecid, a relatively selective TRPV2 agonist, caused an increase in both inotropy and lusitropy in wild-type mice that was blunted in TRPV2−/− mice. We examined the mechanism of TRPV2 inotropy/lusitropy in isolated myocytes and found that it modulates Ca2+ transients and sarcoplasmic reticulum Ca2+ loading. We show that the activity of this channel is necessary for normal cardiac function and that there is increased contractility in response to agonism of TRPV2 with probenecid. PMID:24322617

  9. Evaluation of cardiac function in active and hibernating grizzly bears.

    PubMed

    Nelson, O Lynne; McEwen, Margaret-Mary; Robbins, Charles T; Felicetti, Laura; Christensen, William F

    2003-10-15

    To evaluate cardiac function parameters in a group of active and hibernating grizzly bears. Prospective study. 6 subadult grizzly bears. Indirect blood pressure, a 12-lead ECG, and a routine echocardiogram were obtained in each bear during the summer active phase and during hibernation. All measurements of myocardial contractility were significantly lower in all bears during hibernation, compared with the active period. Mean rate of circumferential left ventricular shortening, percentage fractional shortening, and percentage left ventricular ejection fraction were significantly lower in bears during hibernation, compared with the active period. Certain indices of diastolic function appeared to indicate enhanced ventricular compliance during the hibernation period. Mean mitral inflow ratio and isovolumic relaxation time were greater during hibernation. Heart rate was significantly lower for hibernating bears, and mean cardiac index was lower but not significantly different from cardiac index during the active phase. Contrary to results obtained in hibernating rodent species, cardiac index was not significantly correlated with heart rate. Cardiac function parameters in hibernating bears are opposite to the chronic bradycardic effects detected in nonhibernating species, likely because of intrinsic cardiac muscle adaptations during hibernation. Understanding mechanisms and responses of the myocardium during hibernation could yield insight into mechanisms of cardiac function regulation in various disease states in nonhibernating species.

  10. Action Potential Shortening and Impairment of Cardiac Function by Ablation of Slc26a6.

    PubMed

    Sirish, Padmini; Ledford, Hannah A; Timofeyev, Valeriy; Thai, Phung N; Ren, Lu; Kim, Hyo Jeong; Park, Seojin; Lee, Jeong Han; Dai, Gu; Moshref, Maryam; Sihn, Choong-Ryoul; Chen, Wei Chun; Timofeyeva, Maria Valeryevna; Jian, Zhong; Shimkunas, Rafael; Izu, Leighton T; Chiamvimonvat, Nipavan; Chen-Izu, Ye; Yamoah, Ebenezer N; Zhang, Xiao-Dong

    2017-10-01

    Intracellular pH (pH i ) is critical to cardiac excitation and contraction; uncompensated changes in pH i impair cardiac function and trigger arrhythmia. Several ion transporters participate in cardiac pH i regulation. Our previous studies identified several isoforms of a solute carrier Slc26a6 to be highly expressed in cardiomyocytes. We show that Slc26a6 mediates electrogenic Cl - /HCO 3 - exchange activities in cardiomyocytes, suggesting the potential role of Slc26a6 in regulation of not only pH i , but also cardiac excitability. To test the mechanistic role of Slc26a6 in the heart, we took advantage of Slc26a6 knockout ( Slc26a6 -/ - ) mice using both in vivo and in vitro analyses. Consistent with our prediction of its electrogenic activities, ablation of Slc26a6 results in action potential shortening. There are reduced Ca 2+ transient and sarcoplasmic reticulum Ca 2+ load, together with decreased sarcomere shortening in Slc26a6 -/ - cardiomyocytes. These abnormalities translate into reduced fractional shortening and cardiac contractility at the in vivo level. Additionally, pH i is elevated in Slc26a6 -/ - cardiomyocytes with slower recovery kinetics from intracellular alkalization, consistent with the Cl - /HCO 3 - exchange activities of Slc26a6. Moreover, Slc26a6 -/ - mice show evidence of sinus bradycardia and fragmented QRS complex, supporting the critical role of Slc26a6 in cardiac conduction system. Our study provides mechanistic insights into Slc26a6, a unique cardiac electrogenic Cl - /HCO 3 - transporter in ventricular myocytes, linking the critical roles of Slc26a6 in regulation of pH i , excitability, and contractility. pH i is a critical regulator of other membrane and contractile proteins. Future studies are needed to investigate possible changes in these proteins in Slc26a6 -/ - mice. © 2017 American Heart Association, Inc.

  11. From syncitium to regulated pump: a cardiac muscle cellular update

    PubMed Central

    2011-01-01

    The primary purpose of this article is to present a basic overview of some key teaching concepts that should be considered for inclusion in an six- to eight-lecture introductory block on the regulation of cardiac performance for graduate students. Within the context of cardiac excitation-contraction coupling, this review incorporates information on Ca2+ microdomains and local control theory, with particular emphasis on the role of Ca2+ sparks as a key regulatory component of ventricular myocyte contraction dynamics. Recent information pertaining to local Ca2+ cycling in sinoatrial nodal cells (SANCs) as a mechanism underlying cardiac automaticity is also presented as part of the recently described coupled-clock pacemaker system. The details of this regulation are emerging; however, the notion that the sequestration and release of Ca2+ from internal stores in SANCs (similar to that observed in ventricular myocytes) regulates the rhythmic excitation of the heart (i.e., membrane ion channels) is an important advancement in this area. The regulatory role of cardiac adrenergic receptors on cardiac rate and function is also included, and fundamental concepts related to intracellular signaling are discussed. An important point of emphasis is that whole organ cardiac dynamics can be traced back to cellular events regulating intracellular Ca2+ homeostasis and, as such, provides an important conceptual framework from which students can begin to think about whole organ physiology in health and disease. Greater synchrony of Ca2+-regulatory mechanisms between ventricular and pacemaker cells should enhance student comprehension of complex regulatory phenomenon in cardiac muscle. PMID:21385997

  12. TRYPTASE/PAR-2 INTERACTIONS INDUCE SELECTIVE MAPK SIGNALING AND COLLAGEN SYNTHESIS BY CARDIAC FIBROBLASTS

    PubMed Central

    McLarty, Jennifer L.; Meléndez, Giselle C.; Brower, Gregory L.; Janicki, Joseph S.; Levick, Scott P.

    2012-01-01

    The mast cell product, tryptase, has recently been implicated in fibrosis in the hypertensive heart. Tryptase has been shown to mediate non-cardiac fibroblast function via activation of protease activated receptor-2 and subsequent activation of the mitogen-activated protein kinase pathway, including extracellular signal-regulated kinase1/2. Therefore, we hypothesized that this pathway may be a mechanism leading to fibrosis in the hypertensive heart. Isolated adult cardiac fibroblasts were treated with tryptase, which induced activation of extracellular signal-regulated kinase1/2 via protease activated receptor-2. Blockade of protease activated receptor-2 with FSLLRY (10 μM) and inhibition of the extracellular signal-regulated kinase pathway with PD98059 (10 μM) prevented collagen synthesis in isolated cardiac fibroblasts stimulated with tryptase. p38 mitogen activated protein kinase and stress-activated protein/c-Jun N-terminal kinase were not activated by tryptase. Cardiac fibroblasts isolated from spontaneously hypertensive rats showed this same pattern of activation and treatment of spontaneously hypertensive rats with FSLLRY prevented fibrosis in these animals indicating the in vivo applicability of the cultured fibroblast findings. Also, tryptase induced a myofibroblastic phenotype indicated by elevations in α smooth muscle actin and ED-A fibronectin. Thus, the results from this study demonstrate the importance of tryptase for inducing a cardiac myofibroblastic phenotype, ultimately leading to the development of cardiac fibrosis through the activation of the extracellular signal-regulated kinase pathway. Specifically, tryptase causes cardiac fibroblasts to increase collagen synthesis via a mechanism involving activation of protease activated receptor-2 and subsequent induction of extracellular signal-regulated kinase signaling. PMID:21730297

  13. Differential Regulation of Cardiac Function and Intracardiac Cytokines by Rapamycin in Healthy and Diabetic Rats.

    PubMed

    Luck, Christian; DeMarco, Vincent G; Mahmood, Abuzar; Gavini, Madhavi P; Pulakat, Lakshmi

    2017-01-01

    Diabetes is comorbid with cardiovascular disease and impaired immunity. Rapamycin improves cardiac functions and extends lifespan by inhibiting the mechanistic target of rapamycin complex 1 (mTORC1). However, in diabetic murine models, Rapamycin elevates hyperglycemia and reduces longevity. Since Rapamycin is an immunosuppressant, we examined whether Rapamycin (750  μ g/kg/day) modulates intracardiac cytokines, which affect the cardiac immune response, and cardiac function in male lean (ZL) and diabetic obese Zucker (ZO) rats. Rapamycin suppressed levels of fasting triglycerides, insulin, and uric acid in ZO but increased glucose. Although Rapamycin improved multiple diastolic parameters ( E / E ', E '/ A ', E / Vp ) initially, these improvements were reversed or absent in ZO at the end of treatment, despite suppression of cardiac fibrosis and phosphoSer473Akt. Intracardiac cytokine protein profiling and Ingenuity® Pathway Analysis indicated suppression of intracardiac immune defense in ZO, in response to Rapamycin treatment in both ZO and ZL. Rapamycin increased fibrosis in ZL without increasing phosphoSer473Akt and differentially modulated anti-fibrotic IL-10, IFN γ , and GM-CSF in ZL and ZO. Therefore, fundamental difference in intracardiac host defense between diabetic ZO and healthy ZL, combined with differential regulation of intracardiac cytokines by Rapamycin in ZO and ZL hearts, underlies differential cardiac outcomes of Rapamycin treatment in health and diabetes.

  14. Differential Regulation of Cardiac Function and Intracardiac Cytokines by Rapamycin in Healthy and Diabetic Rats

    PubMed Central

    Luck, Christian; DeMarco, Vincent G.; Mahmood, Abuzar; Gavini, Madhavi P.

    2017-01-01

    Diabetes is comorbid with cardiovascular disease and impaired immunity. Rapamycin improves cardiac functions and extends lifespan by inhibiting the mechanistic target of rapamycin complex 1 (mTORC1). However, in diabetic murine models, Rapamycin elevates hyperglycemia and reduces longevity. Since Rapamycin is an immunosuppressant, we examined whether Rapamycin (750 μg/kg/day) modulates intracardiac cytokines, which affect the cardiac immune response, and cardiac function in male lean (ZL) and diabetic obese Zucker (ZO) rats. Rapamycin suppressed levels of fasting triglycerides, insulin, and uric acid in ZO but increased glucose. Although Rapamycin improved multiple diastolic parameters (E/E′, E′/A′, E/Vp) initially, these improvements were reversed or absent in ZO at the end of treatment, despite suppression of cardiac fibrosis and phosphoSer473Akt. Intracardiac cytokine protein profiling and Ingenuity® Pathway Analysis indicated suppression of intracardiac immune defense in ZO, in response to Rapamycin treatment in both ZO and ZL. Rapamycin increased fibrosis in ZL without increasing phosphoSer473Akt and differentially modulated anti-fibrotic IL-10, IFNγ, and GM-CSF in ZL and ZO. Therefore, fundamental difference in intracardiac host defense between diabetic ZO and healthy ZL, combined with differential regulation of intracardiac cytokines by Rapamycin in ZO and ZL hearts, underlies differential cardiac outcomes of Rapamycin treatment in health and diabetes. PMID:28408970

  15. Sulforaphane effects on postinfarction cardiac remodeling in rats: modulation of redox-sensitive prosurvival and proapoptotic proteins.

    PubMed

    Fernandes, Rafael Oliveira; De Castro, Alexandre Luz; Bonetto, Jéssica Hellen Poletto; Ortiz, Vanessa Duarte; Müller, Dalvana Daneliza; Campos-Carraro, Cristina; Barbosa, Silvia; Neves, Laura Tartari; Xavier, Léder Leal; Schenkel, Paulo Cavalheiro; Singal, Pawan; Khaper, Neelam; da Rosa Araujo, Alex Sander; Belló-Klein, Adriane

    2016-08-01

    This study investigated whether sulforaphane (SFN), a compound found in cruciferous vegetables, could attenuate the progression of post-myocardial infarction (MI) cardiac remodeling. Male Wistar rats (350 g) were allocated to four groups: SHAM (n=8), SHAM+SFN (n=7), MI (n=8) and MI+SFN (n=5). On the third day after surgery, cardiac function was assessed and SFN treatment (5 mg/kg/day) was started. At the end of 25 days of treatment, cardiac function was assessed and heart was collected to measure collagen content, oxidative stress and protein kinase. MI and MI+SFN groups presented cardiac dysfunction, without signs of congestion. Sulforaphane reduced fibrosis (2.1-fold) in infarcted rats, which was associated with a slight attenuation in the cardiac remodeling process. Both infarcted groups presented increases in the oxidative markers xanthine oxidase and 4-hydroxinonenal, as well as a parallel increase in the antioxidant enzymes glutathione peroxidase and superoxide dismutase. Moreover, sulforaphane stimulated the cytoprotective heme oxygenase-1 (HO-1) (38%). Oxidative markers correlated with ERK 1/2 activation. In the MI+SFN group, up-regulation of ERK 1/2 (34%) and Akt (35%), as well as down-regulation of p38 (52%), was observed. This change in the prosurvival kinase balance in the MI+SFN group was related to a down-regulation of apoptosis pathways (Bax/Bcl-2/caspase-3). Sulforaphane was unable to modulate autophagy. Taken together, sulforaphane increased HO-1, which may generate a redox environment in the cardiac tissue favorable to activation of prosurvival and deactivation of prodeath pathways. In conclusion, this natural compound contributes to attenuation of the fibrotic process, which may contribute to mitigation against the progression of cardiac remodeling postinfarction. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Embryonic and adult-derived resident cardiac macrophages are maintained through distinct mechanisms at steady state and during inflammation

    PubMed Central

    Epelman, Slava; Lavine, Kory J.; Beaudin, Anna E.; Sojka, Dorothy K.; Carrero, Javier A.; Calderon, Boris; Brija, Thaddeus; Gautier, Emmanuel L.; Ivanov, Stoyan; Satpathy, Ansuman T.; Schilling, Joel D.; Schwendener, Reto; Sergin, Ismail; Razani, Babak; Forsberg, E. Camilla; Yokoyama, Wayne; Unanue, Emil R.; Colonna, Marco; Randolph, Gwendalyn J.; Mann, Douglas L.

    2014-01-01

    Summary Cardiac macrophages are crucial for tissue repair after cardiac injury but have not been well characterized. Here we identify four populations of cardiac macrophages. At steady state, resident macrophages were primarily maintained through local proliferation. However, after macrophage depletion or during cardiac inflammation, Ly6chi monocytes contributed to all four macrophage populations, whereas resident macrophages also expanded numerically through proliferation. Genetic fate mapping revealed that yolk-sac and fetal monocyte progenitors gave rise to the majority of cardiac macrophages, and the heart was among a minority of organs in which substantial numbers of yolk-sac macrophages persisted in adulthood. CCR2 expression and dependence distinguished cardiac macrophages of adult monocyte versus embryonic origin. Transcriptional and functional data revealed that monocyte-derived macrophages coordinate cardiac inflammation, while playing redundant but lesser roles in antigen sampling and efferocytosis. These data highlight the presence of multiple cardiac macrophage subsets, with different functions, origins and strategies to regulate compartment. PMID:24439267

  17. Metformin improves cardiac function in mice with heart failure after myocardial infarction by regulating mitochondrial energy metabolism.

    PubMed

    Sun, Dan; Yang, Fei

    2017-04-29

    To investigate whether metformin can improve the cardiac function through improving the mitochondrial function in model of heart failure after myocardial infarction. Male C57/BL6 mice aged about 8 weeks were selected and the anterior descending branch was ligatured to establish the heart failure model after myocardial infarction. The cardiac function was evaluated via ultrasound after 3 days to determine the modeling was successful, and the mice were randomly divided into two groups. Saline group (Saline) received the intragastric administration of normal saline for 4 weeks, and metformin group (Met) received the intragastric administration of metformin for 4 weeks. At the same time, Shame group (Sham) was set up. Changes in cardiac function in mice were detected at 4 weeks after operation. Hearts were taken from mice after 4 weeks, and cell apoptosis in myocardial tissue was detected using TUNEL method; fresh mitochondria were taken and changes in oxygen consumption rate (OCR) and respiratory control rate (RCR) of mitochondria in each group were detected using bio-energy metabolism tester, and change in mitochondrial membrane potential (MMP) of myocardial tissue was detected via JC-1 staining; the expressions and changes in Bcl-2, Bax, Sirt3, PGC-1α and acetylated PGC-1α in myocardial tissue were detected by Western blot. RT-PCR was used to detect mRNA levels in Sirt3 in myocardial tissues. Metformin improved the systolic function of heart failure model rats after myocardial infarction and reduced the apoptosis of myocardial cells after myocardial infarction. Myocardial mitochondrial respiratory function and membrane potential were decreased after myocardial infarction, and metformin treatment significantly improved the mitochondrial respiratory function and mitochondrial membrane potential; Metformin up-regulated the expression of Sirt3 and the activity of PGC-1α in myocardial tissue of heart failure after myocardial infarction. Metformin decreases the acetylation level of PGC-1α through up-regulating Sirt3, mitigates the damage to mitochondrial membrane potential of model of heart failure after myocardial infarction and improves the respiratory function of mitochondria, thus improving the cardiac function of mice. Copyright © 2017. Published by Elsevier Inc.

  18. Translational neurocardiology: preclinical models and cardioneural integrative aspects.

    PubMed

    Ardell, J L; Andresen, M C; Armour, J A; Billman, G E; Chen, P-S; Foreman, R D; Herring, N; O'Leary, D S; Sabbah, H N; Schultz, H D; Sunagawa, K; Zucker, I H

    2016-07-15

    Neuronal elements distributed throughout the cardiac nervous system, from the level of the insular cortex to the intrinsic cardiac nervous system, are in constant communication with one another to ensure that cardiac output matches the dynamic process of regional blood flow demand. Neural elements in their various 'levels' become differentially recruited in the transduction of sensory inputs arising from the heart, major vessels, other visceral organs and somatic structures to optimize neuronal coordination of regional cardiac function. This White Paper will review the relevant aspects of the structural and functional organization for autonomic control of the heart in normal conditions, how these systems remodel/adapt during cardiac disease, and finally how such knowledge can be leveraged in the evolving realm of autonomic regulation therapy for cardiac therapeutics. © 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ledee, Dolena R.; Smith, Lincoln; Kajimoto, Masaki

    Pressure overload cardiac hypertrophy alters substrate metabolism. Prior work showed that myocardial inactivation of c-Myc (Myc) attenuated hypertrophy and decreased expression of glycolytic genes after aortic constriction. Accordingly, we hypothesize that Myc regulates substrate preferences for the citric acid cycle during pressure overload hypertrophy from transverse aortic constriction (TAC) and that these metabolic changes impact cardiac function and growth. To test this hypothesis, we subjected FVB mice with cardiac specific, inducible Myc inactivation (MycKO-TAC) and non-transgenic littermates (Cont-TAC) to transverse aortic constriction (n=7/group). A separate group underwent sham surgery (Sham, n=5). After two weeks, function was measured in isolated workingmore » hearts along with substrate fractional contributions to the citric acid cycle by using perfusate with 13C labeled mixed fatty acids, lactate, ketones and unlabeled glucose and insulin. Western blots were used to evaluate metabolic enzymes. Cardiac function was similar between groups after TAC although +dP/dT and -dP/dT trended towards improvement in MycKO-TAC versus Cont-TAC. Compared to Sham, Cont-TAC had increased free fatty acid fractional contribution with a concurrent decrease in unlabeled (presumably glucose) contribution. Myc inactivation (MycKO-TAC) inhibited these metabolic changes. Hypertrophy in general increased protein levels of PKM2; however this change was not linked to Myc status. Protein post-translation modification by O-GlcNAc was significantly greater in Cont-TAC versus both Sham and MycKO-TAC. In conclusion, Myc regulates substrate utilization during early pressure overload hypertrophy. Our results show that the metabolic switch during hypertrophy is not necessary to maintain cardiac function, but it may be important mechanism to promote cardiomyocyte growth. Myc also regulates protein O-GlcNAcylation during hypertrophy.« less

  20. Energy metabolism regulated by HDAC inhibitor attenuates cardiac injury in hemorrhagic rat model

    PubMed Central

    Kuai, Qiyuan; Wang, Chunyan; Wang, Yanbing; Li, Weijing; Zhang, Gongqing; Qiao, Zhixin; He, Min; Wang, Xuanlin; Wang, Yu; Jiang, Xingwei; Su, Lihua; He, Yuezhong; Ren, Suping; Yu, Qun

    2016-01-01

    A disturbance of energy metabolism reduces cardiac function in acute severe hemorrhagic patients. Alternatively, adequate energy supply reduces heart failure and increases survival. However, the approach to regulating energy metabolism conductive to vital organs is limited, and the underlying molecular mechanism remains unknown. This study assesses the ability of histone deacetylase inhibitors (HDACIs) to preserve cardiac energy metabolism during lethal hemorrhagic injury. In the lethally hemorrhagic rat and hypoxic myocardial cells, energy metabolism and heart function were well maintained following HDACI treatment, as evident by continuous ATP production with normal cardiac contraction. Valproic acid (VPA) regulated the energy metabolism of hemorrhagic heart by reducing lactate synthesis and protecting the mitochondrial ultrastructure and respiration, which were attributable to the inhibition of lactate dehydrogenase A activity and the increased myeloid cell leukemia-1 (mcl-1) gene expression, ultimately facilitating ATP production and consumption. MCL-1, the key target of VPA, mediated this cardioprotective effect under acute severe hemorrhage conditions. Our results suggest that HDACIs promote cardioprotection by improving energy metabolism during hemorrhagic injury and could therefore be an effective strategy to counteract this process in the clinical setting. PMID:27910887

  1. The Role of Diacylglycerol Acyltransferase (DGAT) 1 and 2 in Cardiac Metabolism and Function.

    PubMed

    Roe, Nathan D; Handzlik, Michal K; Li, Tao; Tian, Rong

    2018-03-21

    It is increasingly recognized that synthesis and turnover of cardiac triglyceride (TG) play a pivotal role in the regulation of lipid metabolism and function of the heart. The last step in TG synthesis is catalyzed by diacylglycerol:acyltransferase (DGAT) which esterifies the diacylglycerol with a fatty acid. Mammalian heart has two DGAT isoforms, DGAT1 and DGAT2, yet their roles in cardiac metabolism and function remain poorly defined. Here, we show that inactivation of DGAT1 or DGAT2 in adult mouse heart results in a moderate suppression of TG synthesis and turnover. Partial inhibition of DGAT activity increases cardiac fatty acid oxidation without affecting PPARα signaling, myocardial energetics or contractile function. Moreover, coinhibition of DGAT1/2 in the heart abrogates TG turnover and protects the heart against high fat diet-induced lipid accumulation with no adverse effects on basal or dobutamine-stimulated cardiac function. Thus, the two DGAT isoforms in the heart have partially redundant function, and pharmacological inhibition of one DGAT isoform is well tolerated in adult hearts.

  2. Using iPSC Models to Probe Regulation of Cardiac Ion Channel Function.

    PubMed

    Bruyneel, Arne A N; McKeithan, Wesley L; Feyen, Dries A M; Mercola, Mark

    2018-05-25

    Cardiovascular disease is the leading contributor to mortality and morbidity. Many deaths of heart failure patients can be attributed to sudden cardiac death due primarily to ventricular arrhythmia. Currently, most anti-arrhythmics modulate ion channel conductivity or β-adrenergic signaling, but these drugs have limited efficacy for some indications, and can potentially be proarrhythmic. Recent studies have shown that mutations in proteins other than cardiac ion channels may confer susceptibility to congenital as well as acquired arrhythmias. Additionally, ion channels themselves are subject to regulation at the levels of channel expression, trafficking and post-translational modification; thus, research into the regulation of ion channels may elucidate disease mechanisms and potential therapeutic targets for future drug development. This review summarizes the current knowledge of the molecular mechanisms of arrhythmia susceptibility and discusses technological advances such as induced pluripotent stem cell-derived cardiomyocytes, gene editing, functional genomics, and physiological screening platforms that provide a new paradigm for discovery of new therapeutic targets to treat congenital and acquired diseases of the heart rhythm.

  3. Mediator complex dependent regulation of cardiac development and disease.

    PubMed

    Grueter, Chad E

    2013-06-01

    Cardiovascular disease (CVD) is a leading cause of morbidity and mortality. The risk factors for CVD include environmental and genetic components. Human mutations in genes involved in most aspects of cardiovascular function have been identified, many of which are involved in transcriptional regulation. The Mediator complex serves as a pivotal transcriptional regulator that functions to integrate diverse cellular signals by multiple mechanisms including recruiting RNA polymerase II, chromatin modifying proteins and non-coding RNAs to promoters in a context dependent manner. This review discusses components of the Mediator complex and the contribution of the Mediator complex to normal and pathological cardiac development and function. Enhanced understanding of the role of this core transcriptional regulatory complex in the heart will help us gain further insights into CVD. Copyright © 2013. Production and hosting by Elsevier Ltd.

  4. Tinman/Nkx2-5 acts via miR-1 and upstream of Cdc42 to regulate heart function across species

    PubMed Central

    Wythe, Joshua D.; Liu, Jiandong; Cartry, Jerome; Vogler, Georg; Mohapatra, Bhagyalaxmi; Otway, Robyn T.; Huang, Yu; King, Isabelle N.; Maillet, Marjorie; Zheng, Yi; Crawley, Timothy; Taghli-Lamallem, Ouarda; Semsarian, Christopher; Dunwoodie, Sally; Winlaw, David; Harvey, Richard P.; Fatkin, Diane; Towbin, Jeffrey A.; Molkentin, Jeffery D.; Srivastava, Deepak; Ocorr, Karen; Bruneau, Benoit G.

    2011-01-01

    Unraveling the gene regulatory networks that govern development and function of the mammalian heart is critical for the rational design of therapeutic interventions in human heart disease. Using the Drosophila heart as a platform for identifying novel gene interactions leading to heart disease, we found that the Rho-GTPase Cdc42 cooperates with the cardiac transcription factor Tinman/Nkx2-5. Compound Cdc42, tinman heterozygous mutant flies exhibited impaired cardiac output and altered myofibrillar architecture, and adult heart–specific interference with Cdc42 function is sufficient to cause these same defects. We also identified K+ channels, encoded by dSUR and slowpoke, as potential effectors of the Cdc42–Tinman interaction. To determine whether a Cdc42–Nkx2-5 interaction is conserved in the mammalian heart, we examined compound heterozygous mutant mice and found conduction system and cardiac output defects. In exploring the mechanism of Nkx2-5 interaction with Cdc42, we demonstrated that mouse Cdc42 was a target of, and negatively regulated by miR-1, which itself was negatively regulated by Nkx2-5 in the mouse heart and by Tinman in the fly heart. We conclude that Cdc42 plays a conserved role in regulating heart function and is an indirect target of Tinman/Nkx2-5 via miR-1. PMID:21690310

  5. RBFox1-mediated RNA splicing regulates cardiac hypertrophy and heart failure.

    PubMed

    Gao, Chen; Ren, Shuxun; Lee, Jae-Hyung; Qiu, Jinsong; Chapski, Douglas J; Rau, Christoph D; Zhou, Yu; Abdellatif, Maha; Nakano, Astushi; Vondriska, Thomas M; Xiao, Xinshu; Fu, Xiang-Dong; Chen, Jau-Nian; Wang, Yibin

    2016-01-01

    RNA splicing is a major contributor to total transcriptome complexity; however, the functional role and regulation of splicing in heart failure remain poorly understood. Here, we used a total transcriptome profiling and bioinformatic analysis approach and identified a muscle-specific isoform of an RNA splicing regulator, RBFox1 (also known as A2BP1), as a prominent regulator of alternative RNA splicing during heart failure. Evaluation of developing murine and zebrafish hearts revealed that RBFox1 is induced during postnatal cardiac maturation. However, we found that RBFox1 is markedly diminished in failing human and mouse hearts. In a mouse model, RBFox1 deficiency in the heart promoted pressure overload-induced heart failure. We determined that RBFox1 is a potent regulator of RNA splicing and is required for a conserved splicing process of transcription factor MEF2 family members that yields different MEF2 isoforms with differential effects on cardiac hypertrophic gene expression. Finally, induction of RBFox1 expression in murine pressure overload models substantially attenuated cardiac hypertrophy and pathological manifestations. Together, this study identifies regulation of RNA splicing by RBFox1 as an important player in transcriptome reprogramming during heart failure that influence pathogenesis of the disease.

  6. RBFox1-mediated RNA splicing regulates cardiac hypertrophy and heart failure

    PubMed Central

    Gao, Chen; Ren, Shuxun; Lee, Jae-Hyung; Qiu, Jinsong; Chapski, Douglas J.; Rau, Christoph D.; Zhou, Yu; Abdellatif, Maha; Nakano, Astushi; Vondriska, Thomas M.; Xiao, Xinshu; Fu, Xiang-Dong; Chen, Jau-Nian; Wang, Yibin

    2015-01-01

    RNA splicing is a major contributor to total transcriptome complexity; however, the functional role and regulation of splicing in heart failure remain poorly understood. Here, we used a total transcriptome profiling and bioinformatic analysis approach and identified a muscle-specific isoform of an RNA splicing regulator, RBFox1 (also known as A2BP1), as a prominent regulator of alternative RNA splicing during heart failure. Evaluation of developing murine and zebrafish hearts revealed that RBFox1 is induced during postnatal cardiac maturation. However, we found that RBFox1 is markedly diminished in failing human and mouse hearts. In a mouse model, RBFox1 deficiency in the heart promoted pressure overload–induced heart failure. We determined that RBFox1 is a potent regulator of RNA splicing and is required for a conserved splicing process of transcription factor MEF2 family members that yields different MEF2 isoforms with differential effects on cardiac hypertrophic gene expression. Finally, induction of RBFox1 expression in murine pressure overload models substantially attenuated cardiac hypertrophy and pathological manifestations. Together, this study identifies regulation of RNA splicing by RBFox1 as an important player in transcriptome reprogramming during heart failure that influence pathogenesis of the disease. PMID:26619120

  7. MicroRNA-133 modulates the β1-adrenergic receptor transduction cascade.

    PubMed

    Castaldi, Alessandra; Zaglia, Tania; Di Mauro, Vittoria; Carullo, Pierluigi; Viggiani, Giacomo; Borile, Giulia; Di Stefano, Barbara; Schiattarella, Gabriele Giacomo; Gualazzi, Maria Giovanna; Elia, Leonardo; Stirparo, Giuliano Giuseppe; Colorito, Maria Luisa; Pironti, Gianluigi; Kunderfranco, Paolo; Esposito, Giovanni; Bang, Marie-Louise; Mongillo, Marco; Condorelli, Gianluigi; Catalucci, Daniele

    2014-07-07

    The sympathetic nervous system plays a fundamental role in the regulation of myocardial function. During chronic pressure overload, overactivation of the sympathetic nervous system induces the release of catecholamines, which activate β-adrenergic receptors in cardiomyocytes and lead to increased heart rate and cardiac contractility. However, chronic stimulation of β-adrenergic receptors leads to impaired cardiac function, and β-blockers are widely used as therapeutic agents for the treatment of cardiac disease. MicroRNA-133 (miR-133) is highly expressed in the myocardium and is involved in controlling cardiac function through regulation of messenger RNA translation/stability. To determine whether miR-133 affects β-adrenergic receptor signaling during progression to heart failure. Based on bioinformatic analysis, β1-adrenergic receptor (β1AR) and other components of the β1AR signal transduction cascade, including adenylate cyclase VI and the catalytic subunit of the cAMP-dependent protein kinase A, were predicted as direct targets of miR-133 and subsequently validated by experimental studies. Consistently, cAMP accumulation and activation of downstream targets were repressed by miR-133 overexpression in both neonatal and adult cardiomyocytes following selective β1AR stimulation. Furthermore, gain-of-function and loss-of-function studies of miR-133 revealed its role in counteracting the deleterious apoptotic effects caused by chronic β1AR stimulation. This was confirmed in vivo using a novel cardiac-specific TetON-miR-133 inducible transgenic mouse model. When subjected to transaortic constriction, TetON-miR-133 inducible transgenic mice maintained cardiac performance and showed attenuated apoptosis and reduced fibrosis compared with control mice. miR-133 controls multiple components of the β1AR transduction cascade and is cardioprotective during heart failure. © 2014 American Heart Association, Inc.

  8. Cardiac integrins the ties that bind.

    PubMed

    Simpson, D G; Reaves, T A; Shih, D T; Burgess, W; Borg, T K; Terracio, L

    1998-01-01

    An elaborate series of morphogenetic events must be precisely coordinated during development to promote the formation of the elaborate three-dimensional structure of the normal heart. In this study we focus on discussing how interconnections between the cardiac myocyte and its surrounding environment regulate cardiac form and function. In vitro experiments from our laboratories provide direct evidence that cardiac cell shape is regulated by a dynamic interaction between constituents of the extracellular matrix (ECM) and by specific members of the integrin family of matrix receptors. Our data indicates that phenotypic information is stored in the tertiary structure and chemical identity of the ECM. This information appears to be actively communicated and transduced by the α1β1 integrin molecule into an intracellular signal that regulates cardiac cell shape and myofibrillar organization. In this study we have assessed the phenotypic consequences of suppressing the expression and accumulation of the α1 integrin molecule in aligned cultures of cardiac myocytes. In related experiments we have examined how the overexpression of α2 and α5 integrin, integrins normally not present or present at very low copy number on the cell surface of neonatal cardiac myocytes, affect cardiac protein metabolism. We also consider how biochemical signals and the mechanical signals mediated by the integrins may converge on common intracellular signaling pathways in the heart. Experiments with the whole embryo culture system indicate that angiotensin II, a peptide that carries information concerning cardiac load, plays a role in controling cardiac looping and the proliferation of myofibrils during development.

  9. Knockout of the Na,K-ATPase α2-isoform in cardiac myocytes delays pressure overload-induced cardiac dysfunction

    PubMed Central

    Rindler, Tara N.; Lasko, Valerie M.; Nieman, Michelle L.; Okada, Motoi; Lorenz, John N.

    2013-01-01

    The α2-isoform of the Na,K-ATPase (α2) is the minor isoform of the Na,K-ATPase expressed in the cardiovascular system and is thought to play a critical role in the regulation of cardiovascular hemodynamics. However, the organ system/cell type expressing α2 that is required for this regulation has not been fully defined. The present study uses a heart-specific knockout of α2 to further define the tissue-specific role of α2 in the regulation of cardiovascular hemodynamics. To accomplish this, we developed a mouse model using the Cre/loxP system to generate a tissue-specific knockout of α2 in the heart using β-myosin heavy chain Cre. We have achieved a 90% knockout of α2 expression in the heart of the knockout mice. Interestingly, the heart-specific knockout mice exhibit normal basal cardiac function and systolic blood pressure, and in addition, these mice develop ACTH-induced hypertension in response to ACTH treatment similar to control mice. Surprisingly, the heart-specific knockout mice display delayed onset of cardiac dysfunction compared with control mice in response to pressure overload induced by transverse aortic constriction; however, the heart-specific knockout mice deteriorated to control levels by 9 wk post-transverse aortic constriction. These results suggest that heart expression of α2 does not play a role in the regulation of basal cardiovascular function or blood pressure; however, heart expression of α2 plays a role in the hypertrophic response to pressure overload. This study further emphasizes that the tissue localization of α2 determines its unique roles in the regulation of cardiovascular function. PMID:23436327

  10. Effects of Kaempferia parviflora Wall. Ex. Baker and sildenafil citrate on cGMP level, cardiac function, and intracellular Ca2+ regulation in rat hearts.

    PubMed

    Weerateerangkul, Punate; Palee, Siripong; Chinda, Kroekkiat; Chattipakorn, Siriporn C; Chattipakorn, Nipon

    2012-09-01

    Although Kaempferia parviflora extract (KPE) and its flavonoids have positive effects on the nitric oxide (NO) signaling pathway, its mechanisms on the heart are still unclear. Because our previous studies demonstrated that KPE decreased defibrillation efficacy in swine similar to that of sildenafil citrate, the phosphodiesterase-5 inhibitor, it is possible that KPE may affect the cardiac NO signaling pathway. In the present study, the effects of KPE and sildenafil citrate on cyclic guanosine monophosphate (cGMP) level, modulation of cardiac function, and Ca transients in ventricular myocytes were investigated. In a rat model, cardiac cGMP level, cardiac function, and Ca transients were measured before and after treatment with KPE and sildenafil citrate. KPE significantly increased the cGMP level and decreased cardiac function and Ca transient. These effects were similar to those found in the sildenafil citrate-treated group. Furthermore, the nonspecific NOS inhibitor could abolish the effects of KPE and sildenafil citrate on Ca transient. KPE has positive effect on NO signaling in the heart, resulting in an increased cGMP level, similar to that of sildenafil citrate. This effect was found to influence the physiology of normal heart via the attenuation of cardiac function and the reduction of Ca transient in ventricular myocytes.

  11. AMP-activated Protein Kinase Phosphorylates Cardiac Troponin I at Ser-150 to Increase Myofilament Calcium Sensitivity and Blunt PKA-dependent Function*

    PubMed Central

    Nixon, Benjamin R.; Thawornkaiwong, Ariyoporn; Jin, Janel; Brundage, Elizabeth A.; Little, Sean C.; Davis, Jonathan P.; Solaro, R. John; Biesiadecki, Brandon J.

    2012-01-01

    AMP-activated protein kinase (AMPK) is an energy-sensing enzyme central to the regulation of metabolic homeostasis. In the heart AMPK is activated during cardiac stress-induced ATP depletion and functions to stimulate metabolic pathways that restore the AMP/ATP balance. Recently it was demonstrated that AMPK phosphorylates cardiac troponin I (cTnI) at Ser-150 in vitro. We sought to determine if the metabolic regulatory kinase AMPK phosphorylates cTnI at Ser-150 in vivo to alter cardiac contractile function directly at the level of the myofilament. Rabbit cardiac myofibrils separated by two-dimensional isoelectric focusing subjected to a Western blot with a cTnI phosphorylation-specific antibody demonstrates that cTnI is endogenously phosphorylated at Ser-150 in the heart. Treatment of myofibrils with the AMPK holoenzyme increased cTnI Ser-150 phosphorylation within the constraints of the muscle lattice. Compared with controls, cardiac fiber bundles exchanged with troponin containing cTnI pseudo-phosphorylated at Ser-150 demonstrate increased sensitivity of calcium-dependent force development, blunting of both PKA-dependent calcium desensitization, and PKA-dependent increases in length dependent activation. Thus, in addition to the defined role of AMPK as a cardiac metabolic energy gauge, these data demonstrate AMPK Ser-150 phosphorylation of cTnI directly links the regulation of cardiac metabolic demand to myofilament contractile energetics. Furthermore, the blunting effect of cTnI Ser-150 phosphorylation cross-talk can uncouple the effects of myofilament PKA-dependent phosphorylation from β-adrenergic signaling as a novel thin filament contractile regulatory signaling mechanism. PMID:22493448

  12. Nanotized PPARα Overexpression Targeted to Hypertrophied Myocardium Improves Cardiac Function by Attenuating the p53-GSK3β-Mediated Mitochondrial Death Pathway.

    PubMed

    Rana, Santanu; Datta, Ritwik; Chaudhuri, Ratul Datta; Chatterjee, Emeli; Chawla-Sarkar, Mamta; Sarkar, Sagartirtha

    2018-05-09

    Metabolic remodeling of cardiac muscles during pathological hypertrophy is characterized by downregulation of fatty acid oxidation (FAO) regulator, peroxisome proliferator-activated receptor alpha (PPARα). Thereby, we hypothesized that a cardiac-specific induction of PPARα might restore the FAO-related protein expression and resultant energy deficit. In the present study, consequences of PPARα augmentation were evaluated for amelioration of chronic oxidative stress, myocyte apoptosis, and cardiac function during pathological cardiac hypertrophy. Nanotized PPARα overexpression targeted to myocardium was done by a stearic acid-modified carboxymethyl-chitosan (CMC) conjugated to a 20-mer myocyte-targeted peptide (CMCP). Overexpression of PPARα ameliorated pathological hypertrophy and improved cardiac function. Augmented PPARα in hypertrophied myocytes revealed downregulated p53 acetylation (lys 382), leading to reduced apoptosis. Such cells showed increased binding of PPARα with p53 that in turn reduced interaction of p53 with glycogen synthase kinase-3β (GSK3β), which upregulated inactive phospho-GSK3β (serine [Ser]9) expression within mitochondrial protein fraction. Altogether, the altered molecular milieu in PPARα-overexpressed hypertrophy groups restored mitochondrial structure and function both in vitro and in vivo. Cardiomyocyte-targeted overexpression of a protein of interest (PPARα) by nanotized plasmid has been described for the first time in this study. Our data provide a novel insight towards regression of pathological hypertrophy by ameliorating mitochondrial oxidative stress in targeted PPARα-overexpressed myocardium. PPARα-overexpression during pathological hypertrophy showed substantial betterment of mitochondrial structure and function, along with downregulated apoptosis. Myocardium-targeted overexpression of PPARα during pathological cardiac hypertrophy led to an overall improvement of cardiac energy deficit and subsequent cardiac function, thereby, opening up a potential avenue for cardiac tissue engineering during hypertrophic cardiac pathophysiology.

  13. Disturbance of cardiac gene expression and cardiomyocyte structure predisposes Mecp2-null mice to arrhythmias

    PubMed Central

    Hara, Munetsugu; Takahashi, Tomoyuki; Mitsumasu, Chiaki; Igata, Sachiyo; Takano, Makoto; Minami, Tomoko; Yasukawa, Hideo; Okayama, Satoko; Nakamura, Keiichiro; Okabe, Yasunori; Tanaka, Eiichiro; Takemura, Genzou; Kosai, Ken-ichiro; Yamashita, Yushiro; Matsuishi, Toyojiro

    2015-01-01

    Methyl-CpG-binding protein 2 (MeCP2) is an epigenetic regulator of gene expression that is essential for normal brain development. Mutations in MeCP2 lead to disrupted neuronal function and can cause Rett syndrome (RTT), a neurodevelopmental disorder. Previous studies reported cardiac dysfunction, including arrhythmias in both RTT patients and animal models of RTT. In addition, recent studies indicate that MeCP2 may be involved in cardiac development and dysfunction, but its role in the developing and adult heart remains unknown. In this study, we found that Mecp2-null ESCs could differentiate into cardiomyocytes, but the development and further differentiation of cardiovascular progenitors were significantly affected in MeCP2 deficiency. In addition, we revealed that loss of MeCP2 led to dysregulation of endogenous cardiac genes and myocardial structural alterations, although Mecp2-null mice did not exhibit obvious cardiac functional abnormalities. Furthermore, we detected methylation of the CpG islands in the Tbx5 locus, and showed that MeCP2 could target these sequences. Taken together, these results suggest that MeCP2 is an important regulator of the gene-expression program responsible for maintaining normal cardiac development and cardiomyocyte structure. PMID:26073556

  14. Understanding Key Mechanisms of Exercise-Induced Cardiac Protection to Mitigate Disease: Current Knowledge and Emerging Concepts.

    PubMed

    Bernardo, Bianca C; Ooi, Jenny Y Y; Weeks, Kate L; Patterson, Natalie L; McMullen, Julie R

    2018-01-01

    The benefits of exercise on the heart are well recognized, and clinical studies have demonstrated that exercise is an intervention that can improve cardiac function in heart failure patients. This has led to significant research into understanding the key mechanisms responsible for exercise-induced cardiac protection. Here, we summarize molecular mechanisms that regulate exercise-induced cardiac myocyte growth and proliferation. We discuss in detail the effects of exercise on other cardiac cells, organelles, and systems that have received less or little attention and require further investigation. This includes cardiac excitation and contraction, mitochondrial adaptations, cellular stress responses to promote survival (heat shock response, ubiquitin-proteasome system, autophagy-lysosomal system, endoplasmic reticulum unfolded protein response, DNA damage response), extracellular matrix, inflammatory response, and organ-to-organ crosstalk. We summarize therapeutic strategies targeting known regulators of exercise-induced protection and the challenges translating findings from bench to bedside. We conclude that technological advancements that allow for in-depth profiling of the genome, transcriptome, proteome and metabolome, combined with animal and human studies, provide new opportunities for comprehensively defining the signaling and regulatory aspects of cell/organelle functions that underpin the protective properties of exercise. This is likely to lead to the identification of novel biomarkers and therapeutic targets for heart disease.

  15. Restoration of Cardiac Tissue Thyroid Hormone Status in Experimental Hypothyroidism: A Dose-Response Study in Female Rats

    PubMed Central

    Weltman, Nathan Y.; Ojamaa, Kaie; Savinova, Olga V.; Chen, Yue-Feng; Schlenker, Evelyn H.; Zucchi, Riccardo; Saba, Alessandro; Colligiani, Daria; Pol, Christine J.

    2013-01-01

    Thyroid hormones (THs) play a pivotal role in regulating cardiovascular homeostasis. To provide a better understanding of the coordinated processes that govern cardiac TH bioavailability, this study investigated the influence of serum and cardiac TH status on the expression of TH transporters and cytosolic binding proteins in the myocardium. In addition, we sought to determine whether the administration of T3 (instead of T4) improves the relationship between THs in serum and cardiac tissue and cardiac function over a short-term treatment period. Adult female Sprague Dawley rats were made hypothyroid by 7 weeks treatment with the antithyroid drug 6-n-propyl-2-thiouracil (PTU). After establishing hypothyroidism, rats were assigned to 1 of 5 graded T3 dosages plus PTU for a 2-week dose-response experiment. Untreated, age-matched rats served as euthyroid controls. PTU was associated with depressed serum and cardiac tissue T3 and T4 levels, arteriolar atrophy, altered TH transporter and cytosolic TH binding protein expression, fetal gene reexpression, and cardiac dysfunction. Short-term administration of T3 led to a mismatch between serum and cardiac tissue TH levels. Normalization of serum T3 levels was not associated with restoration of cardiac tissue T3 levels or cardiac function. In fact, a 3-fold higher T3 dosage was necessary to normalize cardiac tissue T3 levels and cardiac function. Importantly, this study provides the first comprehensive data on the relationship between altered TH status (serum and cardiac tissue), cardiac function, and the coordinated in vivo changes in cardiac TH membrane transporters and cytosolic TH binding proteins in altered TH states. PMID:23594789

  16. Id4 functions downstream of Bmp signaling to restrict TCF function in endocardial cells during atrioventricular valve development.

    PubMed

    Ahuja, Suchit; Dogra, Deepika; Stainier, Didier Y R; Reischauer, Sven

    2016-04-01

    The atrioventricular canal (AVC) connects the atrial and ventricular chambers of the heart and its formation is critical for the development of the cardiac valves, chamber septation and formation of the cardiac conduction system. Consequently, problems in AVC formation can lead to congenital defects ranging from cardiac arrhythmia to incomplete cardiac septation. While our knowledge about early heart tube formation is relatively comprehensive, much remains to be investigated about the genes that regulate AVC formation. Here we identify a new role for the basic helix-loop-helix factor Id4 in zebrafish AVC valve development and function. id4 is first expressed in the AVC endocardium and later becomes more highly expressed in the atrial chamber. TALEN induced inactivation of id4 causes retrograde blood flow at the AV canal under heat induced stress conditions, indicating defects in AV valve function. At the molecular level, we found that id4 inactivation causes misexpression of several genes important for AVC and AV valve formation including bmp4 and spp1. We further show that id4 appears to control the number of endocardial cells that contribute to the AV valves by regulating Wnt signaling in the developing AVC endocardium. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Notch3/Akt signaling contributes to OSM-induced protection against cardiac ischemia/reperfusion injury.

    PubMed

    Zhang, Mingming; Wang, Chen; Hu, Jianqiang; Lin, Jie; Zhao, Zhijing; Shen, Min; Gao, Haokao; Li, Na; Liu, Min; Zheng, Pengfei; Qiu, Cuiting; Gao, Erhe; Wang, Haichang; Sun, Dongdong

    2015-09-01

    Oncostatin M (OSM) exhibits many unique biological activities by activating the Oβ receptor. However, its role in myocardial ischemia/reperfusion injury (I/R injury) in mice remains unknown. We investigated whether Notch3/Akt signaling is involved in the regulation of OSM-induced protection against cardiac I/R injury. The effects of OSM were assessed in mice that underwent myocardial I/R injury by OSM treatment or by genetic deficiency of the OSM receptor Oβ. We investigated its effects on cardiomyocyte apoptosis and mitochondrial biogenesis and whether Notch3/Akt signaling was involved in the regulation of OSM-induced protection against cardiac I/R injury. The mice underwent 30 min of ischemia followed by 3 h of reperfusion and were randomized to be treated with Notch3 siRNA (siNotch3) or lentivirus carrying Notch3 cDNA (Notch3) 72 h before coronary artery ligation. Myocardial infarct size, cardiac function, cardiomyocyte apoptosis and mitochondria morphology in mice that underwent cardiac I/R injury were compared between groups. OSM alleviated cardiac I/R injury by inhibiting cardiomyocyte apoptosis through promotion of Notch3 production, thus activating the PI3K/Akt pathway. OSM enhanced mitochondrial biogenesis and mitochondrial function in mice subjected to cardiac I/R injury. In contrast, OSM receptor Oβ knock out exacerbated cardiac I/R injury, decreased Notch3 production, enhanced cardiomyocyte apoptosis, and impaired mitochondrial biogenesis in cardiac I/R injured mice. The mechanism of OSM on cardiac I/R injury is partly mediated by the Notch3/Akt pathway. These results suggest a novel role of Notch3/Akt signaling that contributes to OSM-induced protection against cardiac I/R injury.

  18. Modeling heart rate variability by stochastic feedback

    NASA Technical Reports Server (NTRS)

    Amaral, L. A.; Goldberger, A. L.; Stanley, H. E.

    1999-01-01

    We consider the question of how the cardiac rhythm spontaneously self-regulates and propose a new mechanism as a possible answer. We model the neuroautonomic regulation of the heart rate as a stochastic feedback system and find that the model successfully accounts for key characteristics of cardiac variability, including the 1/f power spectrum, the functional form and scaling of the distribution of variations of the interbeat intervals, and the correlations in the Fourier phases which indicate nonlinear dynamics.

  19. Necessity of angiotensin-converting enzyme-related gene for cardiac functions and longevity of Drosophila melanogaster assessed by optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Liao, Fang-Tsu; Chang, Cheng-Yi; Su, Ming-Tsan; Kuo, Wen-Chuan

    2014-01-01

    Prior studies have established the necessity of an angiotensin-converting enzyme-related (ACER) gene for heart morphogenesis of Drosophila. Nevertheless, the physiology of ACER has yet to be comprehensively understood. Herein, we employed RNA interference to down-regulate the expression of ACER in Drosophila's heart and swept source optical coherence tomography to assess whether ACER is required for cardiac functions in living adult flies. Several contractile parameters of Drosophila heart, including the heart rate (HR), end-diastolic diameter (EDD), end-systolic diameter (ESD), percent fractional shortening (%FS), and stress-induced cardiac performance, are shown, which are age dependent. These age-dependent cardiac functions declined significantly when ACER was down-regulated. Moreover, the lifespans of ACER knock-down flies were significantly shorter than those of wild-type control flies. Thus, we posit that ACER, the Drosophila ortholog of mammalian angiotensin-converting enzyme 2 (ACE2), is essential for both heart physiology and longevity of animals. Since mammalian ACE2 controls many cardiovascular physiological features and is implicated in cardiomyopathies, our findings that ACER plays conserved roles in genetically tractable animals will pave the way for uncovering the genetic pathway that controls the renin-angiotensin system.

  20. NADPH oxidase-4 mediates protection against chronic load-induced stress in mouse hearts by enhancing angiogenesis

    PubMed Central

    Zhang, Min; Brewer, Alison C.; Schröder, Katrin; Santos, Celio X. C.; Grieve, David J.; Wang, Minshu; Anilkumar, Narayana; Yu, Bin; Dong, Xuebin; Walker, Simon J.; Brandes, Ralf P.; Shah, Ajay M.

    2010-01-01

    Cardiac failure occurs when the heart fails to adapt to chronic stresses. Reactive oxygen species (ROS)-dependent signaling is implicated in cardiac stress responses, but the role of different ROS sources remains unclear. Here we report that NADPH oxidase-4 (Nox4) facilitates cardiac adaptation to chronic stress. Unlike other Nox proteins, Nox4 activity is regulated mainly by its expression level, which increases in cardiomyocytes under stresses such as pressure overload or hypoxia. To investigate the functional role of Nox4 during the cardiac response to stress, we generated mice with a genetic deletion of Nox4 or a cardiomyocyte-targeted overexpression of Nox4. Basal cardiac function was normal in both models, but Nox4-null animals developed exaggerated contractile dysfunction, hypertrophy, and cardiac dilatation during exposure to chronic overload whereas Nox4-transgenic mice were protected. Investigation of mechanisms underlying this protective effect revealed a significant Nox4-dependent preservation of myocardial capillary density after pressure overload. Nox4 enhanced stress-induced activation of cardiomyocyte hypoxia inducible factor 1 and the release of vascular endothelial growth factor, resulting in increased paracrine angiogenic activity. These data indicate that cardiomyocyte Nox4 is a unique inducible regulator of myocardial angiogenesis, a key determinant of cardiac adaptation to overload stress. Our results also have wider relevance to the use of nonspecific antioxidant approaches in cardiac disease and may provide an explanation for the failure of such strategies in many settings. PMID:20921387

  1. c-Abl tyrosine kinase regulates cardiac growth and development.

    PubMed

    Qiu, Zhaozhu; Cang, Yong; Goff, Stephen P

    2010-01-19

    The c-Abl protein is a ubiquitously expressed nonreceptor tyrosine kinase involved in the development and function of many mammalian organ systems, including the immune system and bone. Here we show that homozygous Abl mutant embryos and newborns on the C57BL/6J background, but not on other backgrounds, display dramatically enlarged hearts and die perinatally. The heart defects can be largely rescued by cardiomyocyte-specific restoration of the full-length c-Abl protein. The cardiac hyperplasia phenotype is not caused by decreased apoptosis, but rather by abnormally increased cardiomyocyte proliferation during later stages of embryogenesis. Genes involved in cardiac stress and remodeling and cell cycle regulation are also up-regulated in the mutant hearts. These findings reveal an essential role for c-Abl in mammalian heart growth and development.

  2. c-Abl tyrosine kinase regulates cardiac growth and development

    PubMed Central

    Qiu, Zhaozhu; Cang, Yong; Goff, Stephen P.

    2009-01-01

    The c-Abl protein is a ubiquitously expressed nonreceptor tyrosine kinase involved in the development and function of many mammalian organ systems, including the immune system and bone. Here we show that homozygous Abl mutant embryos and newborns on the C57BL/6J background, but not on other backgrounds, display dramatically enlarged hearts and die perinatally. The heart defects can be largely rescued by cardiomyocyte-specific restoration of the full-length c-Abl protein. The cardiac hyperplasia phenotype is not caused by decreased apoptosis, but rather by abnormally increased cardiomyocyte proliferation during later stages of embryogenesis. Genes involved in cardiac stress and remodeling and cell cycle regulation are also up-regulated in the mutant hearts. These findings reveal an essential role for c-Abl in mammalian heart growth and development. PMID:20080568

  3. Cardiomyocyte-enriched protein CIP protects against pathophysiological stresses and regulates cardiac homeostasis.

    PubMed

    Huang, Zhan-Peng; Kataoka, Masaharu; Chen, Jinghai; Wu, Gengze; Ding, Jian; Nie, Mao; Lin, Zhiqiang; Liu, Jianming; Hu, Xiaoyun; Ma, Lixin; Zhou, Bin; Wakimoto, Hiroko; Zeng, Chunyu; Kyselovic, Jan; Deng, Zhong-Liang; Seidman, Christine E; Seidman, J G; Pu, William T; Wang, Da-Zhi

    2015-11-02

    Cardiomyopathy is a common human disorder that is characterized by contractile dysfunction and cardiac remodeling. Genetic mutations and altered expression of genes encoding many signaling molecules and contractile proteins are associated with cardiomyopathy; however, how cardiomyocytes sense pathophysiological stresses in order to then modulate cardiac remodeling remains poorly understood. Here, we have described a regulator in the heart that harmonizes the progression of cardiac hypertrophy and dilation. We determined that expression of the myocyte-enriched protein cardiac ISL1-interacting protein (CIP, also known as MLIP) is reduced in patients with dilated cardiomyopathy. As CIP is highly conserved between human and mouse, we evaluated the effects of CIP deficiency on cardiac remodeling in mice. Deletion of the CIP-encoding gene accelerated progress from hypertrophy to heart failure in several cardiomyopathy models. Conversely, transgenic and AAV-mediated CIP overexpression prevented pathologic remodeling and preserved cardiac function. CIP deficiency combined with lamin A/C deletion resulted in severe dilated cardiomyopathy and cardiac dysfunction in the absence of stress. Transcriptome analyses of CIP-deficient hearts revealed that the p53- and FOXO1-mediated gene networks related to homeostasis are disturbed upon pressure overload stress. Moreover, FOXO1 overexpression suppressed stress-induced cardiomyocyte hypertrophy in CIP-deficient cardiomyocytes. Our studies identify CIP as a key regulator of cardiomyopathy that has potential as a therapeutic target to attenuate heart failure progression.

  4. Cardiomyocyte-enriched protein CIP protects against pathophysiological stresses and regulates cardiac homeostasis

    PubMed Central

    Huang, Zhan-Peng; Kataoka, Masaharu; Chen, Jinghai; Wu, Gengze; Ding, Jian; Nie, Mao; Lin, Zhiqiang; Liu, Jianming; Hu, Xiaoyun; Ma, Lixin; Zhou, Bin; Wakimoto, Hiroko; Zeng, Chunyu; Kyselovic, Jan; Deng, Zhong-Liang; Seidman, Christine E.; Seidman, J.G.; Pu, William T.; Wang, Da-Zhi

    2015-01-01

    Cardiomyopathy is a common human disorder that is characterized by contractile dysfunction and cardiac remodeling. Genetic mutations and altered expression of genes encoding many signaling molecules and contractile proteins are associated with cardiomyopathy; however, how cardiomyocytes sense pathophysiological stresses in order to then modulate cardiac remodeling remains poorly understood. Here, we have described a regulator in the heart that harmonizes the progression of cardiac hypertrophy and dilation. We determined that expression of the myocyte-enriched protein cardiac ISL1-interacting protein (CIP, also known as MLIP) is reduced in patients with dilated cardiomyopathy. As CIP is highly conserved between human and mouse, we evaluated the effects of CIP deficiency on cardiac remodeling in mice. Deletion of the CIP-encoding gene accelerated progress from hypertrophy to heart failure in several cardiomyopathy models. Conversely, transgenic and AAV-mediated CIP overexpression prevented pathologic remodeling and preserved cardiac function. CIP deficiency combined with lamin A/C deletion resulted in severe dilated cardiomyopathy and cardiac dysfunction in the absence of stress. Transcriptome analyses of CIP-deficient hearts revealed that the p53- and FOXO1-mediated gene networks related to homeostasis are disturbed upon pressure overload stress. Moreover, FOXO1 overexpression suppressed stress-induced cardiomyocyte hypertrophy in CIP-deficient cardiomyocytes. Our studies identify CIP as a key regulator of cardiomyopathy that has potential as a therapeutic target to attenuate heart failure progression. PMID:26436652

  5. Increased Cardiac Arrhythmogenesis Associated With Gap Junction Remodeling With Upregulation of RNA-Binding Protein FXR1.

    PubMed

    Chu, Miensheng; Novak, Stefanie Mares; Cover, Cathleen; Wang, Anne A; Chinyere, Ikeotunye Royal; Juneman, Elizabeth B; Zarnescu, Daniela C; Wong, Pak Kin; Gregorio, Carol C

    2018-02-06

    Gap junction remodeling is well established as a consistent feature of human heart disease involving spontaneous ventricular arrhythmia. The mechanisms responsible for gap junction remodeling that include alterations in the distribution of, and protein expression within, gap junctions are still debated. Studies reveal that multiple transcriptional and posttranscriptional regulatory pathways are triggered in response to cardiac disease, such as those involving RNA-binding proteins. The expression levels of FXR1 (fragile X mental retardation autosomal homolog 1), an RNA-binding protein, are critical to maintain proper cardiac muscle function; however, the connection between FXR1 and disease is not clear. To identify the mechanisms regulating gap junction remodeling in cardiac disease, we sought to identify the functional properties of FXR1 expression, direct targets of FXR1 in human left ventricle dilated cardiomyopathy (DCM) biopsy samples and mouse models of DCM through BioID proximity assay and RNA immunoprecipitation, how FXR1 regulates its targets through RNA stability and luciferase assays, and functional consequences of altering the levels of this important RNA-binding protein through the analysis of cardiac-specific FXR1 knockout mice and mice injected with 3xMyc-FXR1 adeno-associated virus. FXR1 expression is significantly increased in tissue samples from human and mouse models of DCM via Western blot analysis. FXR1 associates with intercalated discs, and integral gap junction proteins Cx43 (connexin 43), Cx45 (connexin 45), and ZO-1 (zonula occludens-1) were identified as novel mRNA targets of FXR1 by using a BioID proximity assay and RNA immunoprecipitation. Our findings show that FXR1 is a multifunctional protein involved in translational regulation and stabilization of its mRNA targets in heart muscle. In addition, introduction of 3xMyc-FXR1 via adeno-associated virus into mice leads to the redistribution of gap junctions and promotes ventricular tachycardia, showing the functional significance of FXR1 upregulation observed in DCM. In DCM, increased FXR1 expression appears to play an important role in disease progression by regulating gap junction remodeling. Together this study provides a novel function of FXR1, namely, that it directly regulates major gap junction components, contributing to proper cell-cell communication in the heart. © 2017 American Heart Association, Inc.

  6. Cortistatin Improves Cardiac Function After Acute Myocardial Infarction in Rats by Suppressing Myocardial Apoptosis and Endoplasmic Reticulum Stress.

    PubMed

    Shi, Zhi-Yu; Liu, Yue; Dong, Li; Zhang, Bo; Zhao, Meng; Liu, Wen-Xiu; Zhang, Xin; Yin, Xin-Hua

    2016-04-18

    The endoplasmic reticulum (ER) stress-induced apoptotic pathway is associated with the development of acute myocardial infarction (AMI). Cortistatin (CST) is a novel bioactive peptide that inhibits apoptosis-related injury. Therefore, we investigated the cardioprotective effects and potential mechanisms of CST in a rat model of AMI. Male Wistar rats were randomly divided into sham, AMI, and AMI + CST groups. Cardiac function and the degree of infarction were evaluated by echocardiography, cardiac troponin I activity, and 2,3,5-triphenyl-2H-tetrazolium chloride staining after 7 days. The expression of CST, ER stress markers, and apoptotic markers was examined using immunohistochemistry and Western blotting. Compared to the AMI group, the AMI + CST group exhibited markedly better cardiac function and a lower degree of infarction. Electron microscopy and terminal deoxynucleotidyl transferase dUTP nick end labeling confirmed that myocardial apoptosis occurred after AMI. Cortistatin treatment reduced the expression of caspase 3, cleaved caspase 3, and Bax (proapoptotic proteins) and promoted the expression of Bcl-2 (antiapoptotic protein). In addition, the reduced expression of glucose-regulated protein 94 (GRP94), glucose-regulated protein 78 (GRP78), CCAAT/enhancer-binding proteins homologous protein, and caspase 12 indicated that ER stress and the apoptotic pathway associated with ER stress were suppressed. Exogenous CST has a notable cardioprotective effect after AMI in a rat model in that it improves cardiac function by suppressing ER stress and myocardial apoptosis. © The Author(s) 2016.

  7. Structural analyses of Ca2+/CaM interaction with NaV channel C-termini reveal mechanisms of calcium-dependent regulation

    PubMed Central

    Wang, Chaojian; Chung, Ben C.; Yan, Haidun; Wang, Hong-Gang; Lee, Seok-Yong; Pitt, Geoffrey S.

    2014-01-01

    Ca2+ regulates voltage-gated Na+ (NaV) channels and perturbed Ca2+ regulation of NaV function is associated with epilepsy syndromes, autism, and cardiac arrhythmias. Understanding the disease mechanisms, however, has been hindered by a lack of structural information and competing models for how Ca2+ affects NaV channel function. Here, we report the crystal structures of two ternary complexes of a human NaV cytosolic C-terminal domain (CTD), a fibroblast growth factor homologous factor, and Ca2+/calmodulin (Ca2+/CaM). These structures rule out direct binding of Ca2+ to the NaV CTD, and uncover new contacts between CaM and the NaV CTD. Probing these new contacts with biochemical and functional experiments allows us to propose a mechanism by which Ca2+ could regulate NaV channels. Further, our model provides hints towards understanding the molecular basis of the neurologic disorders and cardiac arrhythmias caused by NaV channel mutations. PMID:25232683

  8. Interferon Regulatory Factor 7 Functions as a Novel Negative Regulator of Pathological Cardiac Hypertrophy

    PubMed Central

    Jiang, Ding-Sheng; Liu, Yu; Zhou, Heng; Zhang, Yan; Zhang, Xiao-Dong; Zhang, Xiao-Fei; Chen, Ke; Gao, Lu; Peng, Juan; Gong, Hui; Chen, Yingjie; Yang, Qinglin; Liu, Peter P.; Fan, Guo-Chang; Zou, Yunzeng; Li, Hongliang

    2017-01-01

    Cardiac hypertrophy is a complex pathological process that involves multiple factors including inflammation and apoptosis. Interferon regulatory factor 7 (IRF7) is a multifunctional regulator that participates in immune regulation, cell differentiation, apoptosis, and oncogenesis. However, the role of IRF7 in cardiac hypertrophy remains unclear. We performed aortic banding in cardiac-specific IRF7 transgenic mice, IRF7 knockout mice, and the wild-type littermates of these mice. Our results demonstrated that IRF7 was downregulated in aortic banding–induced animal hearts and cardiomyocytes that had been treated with angiotensin II or phenylephrine for 48 hours. Accordingly, heart-specific overexpression of IRF7 significantly attenuated pressure overload–induced cardiac hypertrophy, fibrosis, and dysfunction, whereas loss of IRF7 led to opposite effects. Moreover, IRF7 protected against angiotensin II–induced cardiomyocyte hypertrophy in vitro. Mechanistically, we identified that IRF7-dependent cardioprotection was mediated through IRF7 binding to inhibitor of κB kinase-β, and subsequent nuclear factor-κB inactivation. In fact, blocking nuclear factor-κB signaling with cardiac-specific inhibitors of κBαS32A/S36A super-repressor transgene counteracted the adverse effect of IRF7 deficiency. Conversely, activation of nuclear factor-κB signaling via a cardiac-specific conditional inhibitor of κB kinase-βS177E/S181E (constitutively active) transgene negated the antihypertrophic effect of IRF7 overexpression. Our data demonstrate that IRF7 acts as a novel negative regulator of pathological cardiac hypertrophy by inhibiting nuclear factor-κB signaling and may constitute a potential therapeutic target for pathological cardiac hypertrophy. PMID:24396025

  9. Therapeutic effect of a novel Wnt pathway inhibitor on cardiac regeneration after myocardial infarction.

    PubMed

    Yang, Dezhong; Fu, Wenbin; Li, Liangpeng; Xia, Xuewei; Liao, Qiao; Yue, Rongchuan; Chen, Hongmei; Chen, Xiongwen; An, Songzhu; Zeng, Chunyu; Wang, Wei Eric

    2017-12-15

    After myocardial infarction (MI), the heart is difficult to repair because of great loss of cardiomyoctyes and lack of cardiac regeneration. Novel drug candidates that aim at reducing pathological remodeling and stimulating cardiac regeneration are highly desirable. In the present study, we identified if and how a novel porcupine inhibitor CGX1321 influenced MI and cardiac regeneration. Permanent ligation of left anterior descending (LAD) coronary artery was performed in mice to induce MI injury. Cardiac function was measured by echocardiography, infarct size was examined by TTC staining. Fibrosis was evaluated with Masson's trichrome staining and vimentin staining. As a result, CGX1321 administration blocked the secretion of Wnt proteins, and inhibited both canonical and non-canonical Wnt signaling pathways. CGX1321 improved cardiac function, reduced myocardial infarct size, and fibrosis of post-MI hearts. CGX1321 significantly increased newly formed cardiomyocytes in infarct border zone of post-MI hearts, evidenced by the increased EdU + cardiomyocytes. Meanwhile, CGX1321 increased Ki67 + and phosphohistone H3 (PH3 + ) cardiomyocytes in culture, indicating enhanced cardiomyocyte proliferation. The mRNA microarray showed that CGX1321 up-regulated cell cycle regulating genes such as Ccnb1 and Ccne1 CGX1321 did not alter YAP protein phosphorylation and nuclear translocation in cardiomyocytes. In conclusion, porcupine inhibitor CGX1321 reduces MI injury by limiting fibrosis and promoting regeneration. It promotes cardiomyocyte proliferation by stimulating cell cycle regulating genes with a Hippo/YAP-independent pathway. © 2017 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  10. Syndecans in heart fibrosis.

    PubMed

    Lunde, Ida G; Herum, Kate M; Carlson, Cathrine C; Christensen, Geir

    2016-09-01

    Heart disease is a deadly syndrome affecting millions worldwide. It reflects an unmet clinical need, and the disease mechanisms are poorly understood. Cardiac fibrosis is central to heart disease. The four-membered family of transmembrane proteoglycans, syndecan-1 to -4, is believed to regulate fibrosis. We review the current literature concerning syndecans in cardiac fibrosis. Syndecan expression is up-regulated in response to pro-inflammatory stimuli in various forms of heart disease with fibrosis. Mice lacking syndecan-1 and -4 show reduced activation of pro-fibrotic signaling and increased cardiac rupture upon infarction indicating an important role for these molecules. Whereas the short cytoplasmic tail of syndecans regulates signaling, their extracellular part, substituted with heparan sulfate glycosaminoglycan chains, binds a plethora of extracellular matrix (ECM) molecules involved in fibrosis, e.g., collagens, growth factors, cytokines, and immune cell adhesion proteins. Full-length syndecans induce pro-fibrotic signaling, increasing the expression of collagens, myofibroblast differentiation factors, ECM enzymes, growth factors, and immune cell adhesion molecules, thereby also increasing cardiac stiffness and preventing cardiac rupture. Upon pro-inflammatory stimuli, syndecan ectodomains are enzymatically released from heart cells (syndecan shedding). Shed ectodomains affect the expression of ECM molecules, promoting ECM degradation and cardiac rupture upon myocardial infarction. Blood levels of shed syndecan-1 and -4 ectodomains are associated with hospitalization, mortality, and heart remodeling in patients with heart failure. Improved understanding of syndecans and their modifying enzymes in cardiac fibrosis might contribute to the development of compounds with therapeutic potential, and enzymatically shed syndecan ectodomains might constitute a future prognostic tool for heart diseases with fibrosis. Graphical Abstract Graphical abstract summarizing the contents of the current review on syndecans in cardiac fibrosis. The heart is subjected to various forms of pathological stimuli, e.g., myocardial infarction, hypertension, valvular stenosis, infection, or an inherited genetic mutation, triggering responses in cells resident in the heart. Here, we focus on the responses of cardiac fibroblasts directing changes in the extracellular matrix resulting in cardiac fibrosis. A family of four transmembrane proteoglycans, syndecan-1 to -4, is expressed in the cell membrane of cardiac fibroblasts and is generally up-regulated in response to the above-mentioned pathological stimuli. Syndecans carry glycosaminoglycan chains on their extracellular domain, binding a plethora of molecules involved in fibrosis, e.g., growth factors, cytokines, immune cell adhesion proteins, and pathogens. Syndecans have a short cytoplasmic tail involved in pro-fibrotic signaling. The signaling and cellular processes governed by syndecans in the heart in response to pathological stimuli regulate important aspects of extracellular matrix remodeling and fibrosis and have mainly been studied in cardiac remodeling in response to cardiac infarction and pressure overload. In general, adequate timing and the quantity and quality of fibrosis are absolutely crucial for heart function and survival, determining cardiac stiffness, contractility, compliance, probability of rupture, dilation, and diastolic and systolic function. Syndecan-1 and -4 have mainly been studied in the heart and are discussed in this review (LV left ventricle).

  11. A novel mitochondrial matrix serine/threonine protein phosphatase regulates the mitochondria permeability transition pore and is essential for cellular survival and development

    PubMed Central

    Lu, Gang; Ren, Shuxun; Korge, Paavo; Choi, Jayoung; Dong, Yuan; Weiss, James; Koehler, Carla; Chen, Jau-nian; Wang, Yibin

    2007-01-01

    Mitochondria play a central role in the regulation of programmed cell death signaling. Here, we report the finding of a mitochondrial matrix-targeted protein phosphatase 2C family member (PP2Cm) that regulates mitochondrial membrane permeability transition pore (MPTP) opening and is essential for cell survival, embryonic development, and cardiac function. PP2Cm is highly conserved among vertebrates, with the highest expression levels detected in the heart and brain. Small hairpin RNA (shRNA)-mediated knockdown of PP2Cm resulted in cell death associated with loss of mitochondrial membrane potential in cultured cardiac mycoytes and an induction of hepatocyte apoptosis in vivo. PP2Cm-deficient mitochondria showed elevated susceptibility to calcium-induced MPTP opening, whereas mitochondrial oxidative phosphorylation activities were not affected. Finally, inactivation of PP2Cm in developing zebrafish embryos caused abnormal cardiac and neural development as well as heart failure associated with induced apoptosis. These data suggest that PP2Cm is a novel mitochondrial protein phosphatase that has a critical function in cell death and survival, and may play a role in regulating the MPTP opening. PMID:17374715

  12. Deletion of interleukin-6 alleviated interstitial fibrosis in streptozotocin-induced diabetic cardiomyopathy of mice through affecting TGFβ1 and miR-29 pathways.

    PubMed

    Zhang, Yang; Wang, Jing-Hao; Zhang, Yi-Yuan; Wang, Ying-Zhe; Wang, Jin; Zhao, Yue; Jin, Xue-Xin; Xue, Gen-Long; Li, Peng-Hui; Sun, Yi-Lin; Huang, Qi-He; Song, Xiao-Tong; Zhang, Zhi-Ren; Gao, Xu; Yang, Bao-Feng; Du, Zhi-Min; Pan, Zhen-Wei

    2016-03-14

    Interleukin 6 (IL-6) has been shown to be an important regulator of cardiac interstitial fibrosis. In this study, we explored the role of interleukin-6 in the development of diabetic cardiomyopathy and the underlying mechanisms. Cardiac function of IL-6 knockout mice was significantly improved and interstitial fibrosis was apparently alleviated in comparison with wildtype (WT) diabetic mice induced by streptozotocin (STZ). Treatment with IL-6 significantly promoted the proliferation and collagen production of cultured cardiac fibroblasts (CFs). High glucose treatment increased collagen production, which were mitigated in CFs from IL-6 KO mice. Moreover, IL-6 knockout alleviated the up-regulation of TGFβ1 in diabetic hearts of mice and cultured CFs treated with high glucose or IL-6. Furthermore, the expression of miR-29 reduced upon IL-6 treatment, while increased in IL-6 KO hearts. Overexpression of miR-29 blocked the pro-fibrotic effects of IL-6 on cultured CFs. In summary, deletion of IL-6 is able to mitigate myocardial fibrosis and improve cardiac function of diabetic mice. The mechanism involves the regulation of IL-6 on TGFβ1 and miR-29 pathway. This study indicates the therapeutic potential of IL-6 suppression on diabetic cardiomyopathy disease associated with fibrosis.

  13. Asb2α-Filamin A Axis Is Essential for Actin Cytoskeleton Remodeling During Heart Development.

    PubMed

    Métais, Arnaud; Lamsoul, Isabelle; Melet, Armelle; Uttenweiler-Joseph, Sandrine; Poincloux, Renaud; Stefanovic, Sonia; Valière, Amélie; Gonzalez de Peredo, Anne; Stella, Alexandre; Burlet-Schiltz, Odile; Zaffran, Stéphane; Lutz, Pierre G; Moog-Lutz, Christel

    2018-03-16

    Heart development involves differentiation of cardiac progenitors and assembly of the contractile sarcomere apparatus of cardiomyocytes. However, little is known about the mechanisms that regulate actin cytoskeleton remodeling during cardiac cell differentiation. The Asb2α (Ankyrin repeat-containing protein with a suppressor of cytokine signaling box 2) CRL5 (cullin 5 RING E3 ubiquitin ligase) triggers polyubiquitylation and subsequent degradation by the proteasome of FLNs (filamins). Here, we investigate the role of Asb2α in heart development and its mechanisms of action. Using Asb2 knockout embryos, we show that Asb2 is an essential gene, critical to heart morphogenesis and function, although its loss does not interfere with the overall patterning of the embryonic heart tube. We show that the Asb2α E3 ubiquitin ligase controls Flna stability in immature cardiomyocytes. Importantly, Asb2α-mediated degradation of the actin-binding protein Flna marks a previously unrecognized intermediate step in cardiac cell differentiation characterized by cell shape changes and actin cytoskeleton remodeling. We further establish that in the absence of Asb2α, myofibrils are disorganized and that heartbeats are inefficient, leading to embryonic lethality in mice. These findings identify Asb2α as an unsuspected key regulator of cardiac cell differentiation and shed light on the molecular and cellular mechanisms determining the onset of myocardial cell architecture and its link with early cardiac function. Although Flna is known to play roles in cytoskeleton organization and to be required for heart function, this study now reveals that its degradation mediated by Asb2α ensures essential functions in differentiating cardiac progenitors. © 2018 American Heart Association, Inc.

  14. Revisiting the physiological effects of exercise training on autonomic regulation and chemoreflex control in heart failure: does ejection fraction matter?

    PubMed

    Andrade, David C; Arce-Alvarez, Alexis; Toledo, Camilo; Díaz, Hugo S; Lucero, Claudia; Quintanilla, Rodrigo A; Schultz, Harold D; Marcus, Noah J; Amann, Markus; Del Rio, Rodrigo

    2018-03-01

    Heart failure (HF) is a global public health problem that, independent of its etiology [reduced (HFrEF) or preserved ejection fraction (HFpEF)], is characterized by functional impairments of cardiac function, chemoreflex hypersensitivity, baroreflex sensitivity (BRS) impairment, and abnormal autonomic regulation, all of which contribute to increased morbidity and mortality. Exercise training (ExT) has been identified as a nonpharmacological therapy capable of restoring normal autonomic function and improving survival in patients with HFrEF. Improvements in autonomic function after ExT are correlated with restoration of normal peripheral chemoreflex sensitivity and BRS in HFrEF. To date, few studies have addressed the effects of ExT on chemoreflex control, BRS, and cardiac autonomic control in HFpEF; however, there are some studies that have suggested that ExT has a beneficial effect on cardiac autonomic control. The beneficial effects of ExT on cardiac function and autonomic control in HF may have important implications for functional capacity in addition to their obvious importance to survival. Recent studies have suggested that the peripheral chemoreflex may also play an important role in attenuating exercise intolerance in HFrEF patients. The role of the central/peripheral chemoreflex, if any, in mediating exercise intolerance in HFpEF has not been investigated. The present review focuses on recent studies that address primary pathophysiological mechanisms of HF (HFrEF and HFpEF) and the potential avenues by which ExT exerts its beneficial effects.

  15. Reduced cardiac vagal activity in obese children and adolescents.

    PubMed

    Dangardt, Frida; Volkmann, Reinhard; Chen, Yun; Osika, Walter; Mårild, Staffan; Friberg, Peter

    2011-03-01

      Obese children present with various cardiovascular risk factors affecting their future health. In adults, cardiac autonomic function is a major risk factor, predicting cardiovascular morbidity and mortality. We hypothesized that obese children and adolescents had a lower cardiac vagal activity than lean subjects. We measured cardiac spontaneous baroreflex sensitivity (BRS), reflecting the dynamic regulation of cardiac vagal function, in large groups of obese and lean young individuals.   Cardiac BRS, using the sequence approach, was assessed in 120 obese (59 girls), 43 overweight (23 girls) and 148 lean subjects (78 girls). Obese subjects showed a decreased BRS compared to both overweight and lean subjects [16±7 versus 21±9 (P<0·01) and 22±10 ms per mmHg (P<0·0001), respectively]. The differences remained after correcting for age, gender and pubertal status.   Children with obesity had low vagal activity at rest, and there was no gender difference. © 2010 The Authors. Clinical Physiology and Functional Imaging © 2010 Scandinavian Society of Clinical Physiology and Nuclear Medicine.

  16. Differential effects of saturated and unsaturated fatty acid diets on cardiomyocyte apoptosis, adipose distribution, and serum leptin.

    PubMed

    Okere, Isidore C; Chandler, Margaret P; McElfresh, Tracy A; Rennison, Julie H; Sharov, Victor; Sabbah, Hani N; Tserng, Kou-Yi; Hoit, Brian D; Ernsberger, Paul; Young, Martin E; Stanley, William C

    2006-07-01

    Fatty acids are the primary fuel for the heart and are ligands for peroxisome proliferator-activated receptors (PPARs), which regulate the expression of genes encoding proteins involved in fatty acid metabolism. Saturated fatty acids, particularly palmitate, can be converted to the proapoptotic lipid intermediate ceramide. This study assessed cardiac function, expression of PPAR-regulated genes, and cardiomyocyte apoptosis in rats after 8 wk on either a low-fat diet [normal chow control (NC); 10% fat calories] or high-fat diets composed mainly of either saturated (Sat) or unsaturated fatty acids (Unsat) (60% fat calories) (n = 10/group). The Sat group had lower plasma insulin and leptin concentrations compared with the NC or Unsat groups. Cardiac function and mass and body mass were not different. Cardiac triglyceride content was increased in the Sat and Unsat groups compared with NC (P < 0.05); however, ceramide content was higher in the Sat group compared with the Unsat group (2.9 +/- 0.2 vs. 1.4 +/- 0.2 nmol/g; P < 0.05), whereas the NC group was intermediate (2.3 +/- 0.3 nmol/g). The number of apoptotic myocytes, assessed by terminal deoxynucleotide transferase-mediated dUTP nick-end labeling staining, was higher in the Sat group compared with the Unsat group (0.28 +/- 0.05 vs. 0.17 +/- 0.04 apoptotic cells/1,000 nuclei; P < 0.04) and was positively correlated to ceramide content (P < 0.02). Both high-fat diets increased the myocardial mRNA expression of the PPAR-regulated genes encoding uncoupling protein-3 and pyruvate dehydrogenase kinase-4, but only the Sat diet upregulated medium-chain acyl-CoA dehydrogenase. In conclusion, dietary fatty acid composition affects cardiac ceramide accumulation, cardiomyocyte apoptosis, and expression of PPAR-regulated genes independent of cardiac mass or function.

  17. A vigilant, hypoxia-regulated heme oxygenase-1 gene vector in the heart limits cardiac injury after ischemia-reperfusion in vivo.

    PubMed

    Tang, Yao Liang; Qian, Keping; Zhang, Y Clare; Shen, Leping; Phillips, M Ian

    2005-12-01

    The effect of a cardiac specific, hypoxia-regulated, human heme oxygenase-1 (hHO-1) vector to provide cardioprotection from ischemia-reperfusion injury was assessed. When myocardial ischemia and reperfusion is asymptomatic, the damaging effects are cumulative and patients miss timely treatment. A gene therapy approach that expresses therapeutic genes only when ischemia is experienced is a desirable strategy. We have developed a cardiac-specific, hypoxia-regulated gene therapy "vigilant vector'' system that amplifies cardioprotective gene expression. Vigilant hHO-1 plasmids, LacZ plasmids, or saline (n = 40 per group) were injected into mouse heart 2 days in advance of ischemia-reperfusion injury. Animals were exposed to 60 minutes of ischemia followed by 24 hours of reperfusion. For that term (24 hours) effects, the protein levels of HO-1, inflammatory responses, apoptosis, and infarct size were determined. For long-term (3 week) effects, the left ventricular remodeling and recovery of cardiac function were assessed. Ischemia-reperfusion resulted in a timely overexpression of HO-1 protein. Infarct size at 24 hours after ischemia-reperfusion was significantly reduced in the HO-1-treated animals compared with the LacZ-treated group or saline-treated group (P < .001). The reduction of infarct size was accompanied by a decrease in lipid peroxidant activity, inflammatory cell infiltration, and proapoptotic protein level in ischemia-reperfusion-injured myocardium. The long-term study demonstrated that timely, hypoxia-induced HO-1 overexpression is beneficial in conserving cardiac function and attenuating left ventricle remodelling. The vigilant HO-1 vector provides a protective therapy in the heart for reducing cellular damage during ischemia-reperfusion injury and preserving heart function.

  18. Cardiac Expression of ms1/STARS, a Novel Gene Involved in Cardiac Development and Disease, Is Regulated by GATA4

    PubMed Central

    Kobayashi, Satoru; Peterson, Richard E.; He, Aibin; Motterle, Anna; Samani, Nilesh J.; Menick, Donald R.; Pu, William T.; Liang, Qiangrong

    2012-01-01

    Ms1/STARS is a novel muscle-specific actin-binding protein that specifically modulates the myocardin-related transcription factor (MRTF)-serum response factor (SRF) regulatory axis within striated muscle. This ms1/STARS-dependent regulatory axis is of central importance within the cardiac gene regulatory network and has been implicated in cardiac development and postnatal cardiac function/homeostasis. The dysregulation of ms1/STARS is associated with and causative of pathological cardiac phenotypes, including cardiac hypertrophy and cardiomyopathy. In order to gain an understanding of the mechanisms governing ms1/STARS expression in the heart, we have coupled a comparative genomic in silico analysis with reporter, gain-of-function, and loss-of-function approaches. Through this integrated analysis, we have identified three evolutionarily conserved regions (ECRs), α, SINA, and DINA, that act as cis-regulatory modules and confer differential cardiac cell-specific activity. Two of these ECRs, α and DINA, displayed distinct regulatory sensitivity to the core cardiac transcription factor GATA4. Overall, our results demonstrate that within embryonic, neonatal, and adult hearts, GATA4 represses ms1/STARS expression with the pathologically associated depletion of GATA4 (type 1/type 2 diabetic models), resulting in ms1/STARS upregulation. This GATA4-dependent repression of ms1/STARS expression has major implications for MRTF-SRF signaling in the context of cardiac development and disease. PMID:22431517

  19. Spatially resolved RNA-sequencing of the embryonic heart identifies a role for Wnt/β-catenin signaling in autonomic control of heart rate

    PubMed Central

    Burkhard, Silja Barbara

    2018-01-01

    Development of specialized cells and structures in the heart is regulated by spatially -restricted molecular pathways. Disruptions in these pathways can cause severe congenital cardiac malformations or functional defects. To better understand these pathways and how they regulate cardiac development we used tomo-seq, combining high-throughput RNA-sequencing with tissue-sectioning, to establish a genome-wide expression dataset with high spatial resolution for the developing zebrafish heart. Analysis of the dataset revealed over 1100 genes differentially expressed in sub-compartments. Pacemaker cells in the sinoatrial region induce heart contractions, but little is known about the mechanisms underlying their development. Using our transcriptome map, we identified spatially restricted Wnt/β-catenin signaling activity in pacemaker cells, which was controlled by Islet-1 activity. Moreover, Wnt/β-catenin signaling controls heart rate by regulating pacemaker cellular response to parasympathetic stimuli. Thus, this high-resolution transcriptome map incorporating all cell types in the embryonic heart can expose spatially restricted molecular pathways critical for specific cardiac functions. PMID:29400650

  20. p53 and Mdm2 act synergistically to maintain cardiac homeostasis and mediate cardiomyocyte cell cycle arrest through a network of microRNAs.

    PubMed

    Stanley-Hasnain, Shanna; Hauck, Ludger; Grothe, Daniela; Aschar-Sobbi, Roozbeh; Beca, Sanja; Butany, Jagdish; Backx, Peter H; Mak, Tak W; Billia, Filio

    2017-01-01

    Defining the roadblocks responsible for cell cycle arrest in adult cardiomyocytes lies at the core of developing cardiac regenerative therapies. p53 and Mdm2 are crucial mediators of cell cycle arrest in proliferative cell types, however, little is known about their function in regulating homeostasis and proliferation in terminally differentiated cell types, like cardiomyocytes. To explore this, we generated a cardiac-specific conditional deletion of p53 and Mdm2 (DKO) in adult mice. Herein we describe the development of a dilated cardiomyopathy, in the absence of cardiac hypertrophy. In addition, DKO hearts exhibited a significant increase in cardiomyocyte proliferation. Further evaluation showed that proliferation was mediated by a significant increase in Cdk2 and cyclin E with downregulation of p21 Cip1 and p27 Kip1 . Comparison of miRNA expression profiles from DKO mouse hearts and controls revealed 11 miRNAs that were downregulated in the DKO hearts and enriched for mRNA targets involved in cell cycle regulation. Knockdown of these miRNAs in neonatal rat cardiomyocytes significantly increased cytokinesis with an upregulation in the expression of crucial cell cycle regulators. These results illustrate the importance of the cooperative activities of p53 and Mdm2 in a network of miRNAs that function to impose a barrier against aberrant cardiomyocyte cell cycle re-entry to maintain cardiac homeostasis.

  1. Skeletal and cardiac muscle pericytes: Functions and therapeutic potential

    PubMed Central

    Murray, Iain R.; Baily, James E.; Chen, William C.W.; Dar, Ayelet; Gonzalez, Zaniah N.; Jensen, Andrew R.; Petrigliano, Frank A.; Deb, Arjun; Henderson, Neil C.

    2017-01-01

    Pericytes are periendothelial mesenchymal cells residing within the microvasculature. Skeletal muscle and cardiac pericytes are now recognized to fulfill an increasing number of functions in normal tissue homeostasis, including contributing to microvascular function by maintaining vessel stability and regulating capillary flow. In the setting of muscle injury, pericytes contribute to a regenerative microenvironment through release of trophic factors and by modulating local immune responses. In skeletal muscle, pericytes also directly enhance tissue healing by differentiating into myofibers. Conversely, pericytes have also been implicated in the development of disease states, including fibrosis, heterotopic ossication and calcification, atherosclerosis, and tumor angiogenesis. Despite increased recognition of pericyte heterogeneity, it is not yet clear whether specific subsets of pericytes are responsible for individual functions in skeletal and cardiac muscle homeostasis and disease. PMID:27595928

  2. Nucleostemin rejuvenates cardiac progenitor cells and antagonizes myocardial aging.

    PubMed

    Hariharan, Nirmala; Quijada, Pearl; Mohsin, Sadia; Joyo, Anya; Samse, Kaitlen; Monsanto, Megan; De La Torre, Andrea; Avitabile, Daniele; Ormachea, Lucia; McGregor, Michael J; Tsai, Emily J; Sussman, Mark A

    2015-01-20

    Functional decline in stem cell-mediated regeneration contributes to aging associated with cellular senescence in c-kit+ cardiac progenitor cells (CPCs). Clinical implementation of CPC-based therapy in elderly patients would benefit tremendously from understanding molecular characteristics of senescence to antagonize aging. Nucleostemin (NS) is a nucleolar protein regulating stem cell proliferation and pluripotency. This study sought to demonstrate that NS preserves characteristics associated with "stemness" in CPCs and antagonizes myocardial senescence and aging. CPCs isolated from human fetal (fetal human cardiac progenitor cell [FhCPC]) and adult failing (adult human cardiac progenitor cell [AhCPC]) hearts, as well as young (young cardiac progenitor cell [YCPC]) and old mice (old cardiac progenitor cell [OCPC]), were studied for senescence characteristics and NS expression. Heterozygous knockout mice with 1 functional allele of NS (NS+/-) were used to demonstrate that NS preserves myocardial structure and function and slows characteristics of aging. NS expression is decreased in AhCPCs relative to FhCPCs, correlating with lowered proliferation potential and shortened telomere length. AhCPC characteristics resemble those of OCPCs, which have a phenotype induced by NS silencing, resulting in cell flattening, senescence, multinucleated cells, decreased S-phase progression, diminished expression of stemness markers, and up-regulation of p53 and p16. CPC senescence resulting from NS loss is partially p53 dependent and is rescued by concurrent silencing of p53. Mechanistically, NS induction correlates with Pim-1 kinase-mediated stabilization of c-Myc. Engineering OCPCs and AhCPCs to overexpress NS decreases senescent and multinucleated cells, restores morphology, and antagonizes senescence, thereby preserving phenotypic properties of "stemness." Early cardiac aging with a decline in cardiac function, an increase in senescence markers p53 and p16, telomere attrition, and accompanied CPC exhaustion is evident in NS+/- mice. Youthful properties and antagonism of senescence in CPCs and the myocardium are consistent with a role for NS downstream from Pim-1 signaling that enhances cardiac regeneration. Copyright © 2015 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  3. Fibroblast Growth Factors and Vascular Endothelial Growth Factor Promote Cardiac Reprogramming under Defined Conditions

    PubMed Central

    Yamakawa, Hiroyuki; Muraoka, Naoto; Miyamoto, Kazutaka; Sadahiro, Taketaro; Isomi, Mari; Haginiwa, Sho; Kojima, Hidenori; Umei, Tomohiko; Akiyama, Mizuha; Kuishi, Yuki; Kurokawa, Junko; Furukawa, Tetsushi; Fukuda, Keiichi; Ieda, Masaki

    2015-01-01

    Summary Fibroblasts can be directly reprogrammed into cardiomyocyte-like cells (iCMs) by overexpression of cardiac transcription factors, including Gata4, Mef2c, and Tbx5; however, this process is inefficient under serum-based culture conditions, in which conversion of partially reprogrammed cells into fully reprogrammed functional iCMs has been a major hurdle. Here, we report that a combination of fibroblast growth factor (FGF) 2, FGF10, and vascular endothelial growth factor (VEGF), termed FFV, promoted cardiac reprogramming under defined serum-free conditions, increasing spontaneously beating iCMs by 100-fold compared with those under conventional serum-based conditions. Mechanistically, FFV activated multiple cardiac transcriptional regulators and converted partially reprogrammed cells into functional iCMs through the p38 mitogen-activated protein kinase and phosphoinositol 3-kinase/AKT pathways. Moreover, FFV enabled cardiac reprogramming with only Mef2c and Tbx5 through the induction of cardiac reprogramming factors, including Gata4. Thus, defined culture conditions promoted the quality of cardiac reprogramming, and this finding provides new insight into the mechanism of cardiac reprogramming. PMID:26626177

  4. mAKAP – A Master Scaffold for Cardiac Remodeling

    PubMed Central

    Passariello, Catherine L.; Li, Jinliang; Dodge-Kafka, Kimberly; Kapiloff, Michael S.

    2014-01-01

    Cardiac remodeling is regulated by an extensive intracellular signal transduction network. Each of the many signaling pathways in this network contributes uniquely to the control of cellular adaptation. In the last few years, it has become apparent that multimolecular signaling complexes or ‘signalosomes’ are important for fidelity in intracellular signaling and for mediating crosstalk between the different signaling pathways. These complexes integrate upstream signals and control downstream effectors. In the cardiac myocyte, the protein mAKAPβ serves as a scaffold for a large signalosome that is responsive to cAMP, calcium, hypoxia, and mitogen-activated protein kinase signaling. The main function of mAKAPβ signalosomes is to modulate stress-related gene expression regulated by the transcription factors NFATc, MEF2 and HIF-1α and type II histone deacetylases that control pathological cardiac hypertrophy. PMID:25551320

  5. Cardiomyocyte specific expression of Acyl-coA thioesterase 1 attenuates sepsis induced cardiac dysfunction and mortality

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xia, Congying; Dong, Ruolan; Chen, Chen

    Compromised cardiac fatty acid oxidation (FAO) induced energy deprivation is a critical cause of cardiac dysfunction in sepsis. Acyl-CoA thioesterase 1 (ACOT1) is involved in regulating cardiac energy production via altering substrate metabolism. This study aims to clarify whether ACOT1 has a potency to ameliorate septic myocardial dysfunction via enhancing cardiac FAO. Transgenic mice with cardiomyocyte specific expression of ACOT1 (αMHC-ACOT1) and their wild type (WT) littermates were challenged with Escherichia coli lipopolysaccharide (LPS; 5 mg/kg i.p.) and myocardial function was assessed 6 h later using echocardiography and hemodynamics. Deteriorated cardiac function evidenced by reduction of the percentage of left ventricular ejectionmore » fraction and fractional shortening after LPS administration was significantly attenuated by cardiomyocyte specific expression of ACOT1. αMHC-ACOT1 mice exhibited a markedly increase in glucose utilization and cardiac FAO compared with LPS-treated WT mice. Suppression of cardiac peroxisome proliferator activated receptor alpha (PPARa) and PPARγ-coactivator-1α (PGC1a) signaling observed in LPS-challenged WT mice was activated by the presence of ACOT1. These results suggest that ACOT1 has potential therapeutic values to protect heart from sepsis mediated dysfunction, possibly through activating PPARa/PGC1a signaling. - Highlights: • ACOT1 has potential therapeutic values to protect heart from sepsis mediated dysfunction. • ACOT1 can regulate PPARa/PGC1a signaling pathway. • We first generate the transgenic mice with cardiomyocyte specific expression of ACOT1.« less

  6. Valsartan attenuates cardiac and renal hypertrophy in rats with experimental cardiorenal syndrome possibly through down-regulating galectin-3 signaling.

    PubMed

    Zhang, M-J; Gu, Y; Wang, H; Zhu, P-F; Liu, X-Y; Wu, J

    2016-01-01

    Aortocaval fistula (AV) induced chronic volume overload in rats with preexisting mild renal dysfunction (right kidney remove: UNX) could mimic the type 4 cardiorenal syndrome (CRS): chronic renocardiac syndrome. Galectin-3, a β-galactoside binding lectin, is an emerging biomarker in cardiovascular as well as renal diseases. We observed the impact of valsartan on cardiac and renal hypertrophy and galectin-3 changes in this model. Adult male Sprague-Dawley (SD) rats (200-250 g) were divided into S (Sham, n = 7), M (UNX+AV, n = 7) and M+V (UNX+AV+valsartan, n = 7) groups. Eight weeks later, cardiac function was measured by echocardiography. Renal outcome was measured by glomerular filtration rate, effective renal plasma flow, renal blood flow and 24 hours albuminuria. Immunohistochemistry and real-time PCR were used to evaluate the expressions of galectin-3 in heart and renal. Cardiac hypertrophy and renal hypertrophy as well as cardiac enlargement were evidenced in this AV shunt induced chronic volume overload rat model with preexisting mild renal dysfunction. Cardiac and renal hypertrophy were significantly attenuated but cardiac enlargement was unaffected by valsartan independent of its blood pressure lowering effect. 24 hours urine albumin was significantly increased, which was significantly reduced by valsartan in this model. Immunohistochemistry and real-time PCR evidenced significantly up-regulated galectin-3 expression in heart and kidney and borderline increased myocardial collagen I expression, which tended to be lower post valsartan treatment. Up-regulated galectin-3 signaling might also be involved in the pathogenesis in this CRS model. The beneficial effects of valsartan in terms of attenuating cardiac and renal hypertrophy and reducing 24 hours albumin in this model might partly be mediated through down-regulating galectin-3 signal pathway.

  7. Comparative Analysis of mRNA Isoform Expression in Cardiac Hypertrophy and Development Reveals Multiple Post-Transcriptional Regulatory Modules

    PubMed Central

    Park, Ji Yeon; Li, Wencheng; Zheng, Dinghai; Zhai, Peiyong; Zhao, Yun; Matsuda, Takahisa; Vatner, Stephen F.; Sadoshima, Junichi; Tian, Bin

    2011-01-01

    Cardiac hypertrophy is enlargement of the heart in response to physiological or pathological stimuli, chiefly involving growth of myocytes in size rather than in number. Previous studies have shown that the expression pattern of a group of genes in hypertrophied heart induced by pressure overload resembles that at the embryonic stage of heart development, a phenomenon known as activation of the “fetal gene program”. Here, using a genome-wide approach we systematically defined genes and pathways regulated in short- and long-term cardiac hypertrophy conditions using mice with transverse aortic constriction (TAC), and compared them with those regulated at different stages of embryonic and postnatal development. In addition, exon-level analysis revealed widespread mRNA isoform changes during cardiac hypertrophy resulting from alternative usage of terminal or internal exons, some of which are also developmentally regulated and may be attributable to decreased expression of Fox-1 protein in cardiac hypertrophy. Genes with functions in certain pathways, such as cell adhesion and cell morphology, are more likely to be regulated by alternative splicing. Moreover, we found 3′UTRs of mRNAs were generally shortened through alternative cleavage and polyadenylation in hypertrophy, and microRNA target genes were generally de-repressed, suggesting coordinated mechanisms to increase mRNA stability and protein production during hypertrophy. Taken together, our results comprehensively delineated gene and mRNA isoform regulation events in cardiac hypertrophy and revealed their relations to those in development, and suggested that modulation of mRNA isoform expression plays an importance role in heart remodeling under pressure overload. PMID:21799842

  8. Kallikrein-related peptidase 8 is expressed in myocardium and induces cardiac hypertrophy

    PubMed Central

    Cao, Buqing; Yu, Qing; Zhao, Wei; Tang, Zhiping; Cong, Binghai; Du, Jiankui; Lu, Jianqiang; Zhu, Xiaoyan; Ni, Xin

    2016-01-01

    The tissue kallikrein-related peptidase family (KLK) is a group of trypsin- and chymotrypsin-like serine proteases that share a similar homology to parent tissue kallikrein (KLK1). KLK1 is identified in heart and has anti-hypertrophic effects. However, whether other KLK family members play a role in regulating cardiac function remains unknown. In the present study, we demonstrated for the first time that KLK8 was expressed in myocardium. KLK8 expression was upregulated in left ventricle of cardiac hypertrophy models. Both intra-cardiac adenovirus-mediated and transgenic-mediated KLK8 overexpression led to cardiac hypertrophy in vivo. In primary neonatal rat cardiomyocytes, KLK8 knockdown inhibited phenylephrine (PE)-induced cardiomyocyte hypertrophy, whereas KLK8 overexpression promoted cardiomyocyte hypertrophy via a serine protease activity-dependent but kinin receptor-independent pathway. KLK8 overexpression increased epidermal growth factor (EGF) production, which was blocked by the inhibitors of serine protease. EGF receptor (EGFR) antagonist and EGFR knockdown reversed the hypertrophy induced by KLK8 overexpression. KLK8-induced cardiomyocyte hypertrophy was also significantly decreased by blocking the protease-activated receptor 1 (PAR1) or PAR2 pathway. Our data suggest that KLK8 may promote cardiomyocyte hypertrophy through EGF signaling- and PARs-dependent but a kinin receptor-independent pathway. It is implied that different KLK family members can subtly regulate cardiac function and remodeling. PMID:26823023

  9. Overlapping and Opposing Functions of G Protein-coupled Receptor Kinase 2 (GRK2) and GRK5 during Heart Development*

    PubMed Central

    Philipp, Melanie; Berger, Ina M.; Just, Steffen; Caron, Marc G.

    2014-01-01

    G protein-coupled receptor kinases 2 (GRK2) and 5 (GRK5) are fundamental regulators of cardiac performance in adults but are less well characterized for their function in the hearts of embryos. GRK2 and -5 belong to different subfamilies and function as competitors in the control of certain receptors and signaling pathways. In this study, we used zebrafish to investigate whether the fish homologs of GRK2 and -5, Grk2/3 and Grk5, also have unique, complementary, or competitive roles during heart development. We found that they differentially regulate the heart rate of early embryos and equally facilitate heart function in older embryos and that both are required to develop proper cardiac morphology. A loss of Grk2/3 results in dilated atria and hypoplastic ventricles, and the hearts of embryos depleted in Grk5 present with a generalized atrophy. This Grk5 morphant phenotype was associated with an overall decrease of early cardiac progenitors as well as a reduction in the area occupied by myocardial progenitor cells. In the case of Grk2/3, the progenitor decrease was confined to a subset of precursor cells with a committed ventricular fate. We attempted to rescue the GRK loss-of-function heart phenotypes by downstream activation of Hedgehog signaling. The Grk2/3 loss-of-function embryos were rescued by this approach, but Grk5 embryos failed to respond. In summary, we found that GRK2 and GRK5 control cardiac function as well as morphogenesis during development although with different morphological outcomes. PMID:25104355

  10. PGC-1{alpha} accelerates cytosolic Ca{sup 2+} clearance without disturbing Ca{sup 2+} homeostasis in cardiac myocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Min, E-mail: chenminyx@gmail.com; Yunnan Centers for Diseases Prevention and Control, Kunming 650022; Wang, Yanru

    2010-06-11

    Energy metabolism and Ca{sup 2+} handling serve critical roles in cardiac physiology and pathophysiology. Peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PGC-1{alpha}) is a multi-functional coactivator that is involved in the regulation of cardiac mitochondrial functional capacity and cellular energy metabolism. However, the regulation of PGC-1{alpha} in cardiac Ca{sup 2+} signaling has not been fully elucidated. To address this issue, we combined confocal line-scan imaging with off-line imaging processing to characterize calcium signaling in cultured adult rat ventricular myocytes expressing PGC-1{alpha} via adenoviral transduction. Our data shows that overexpressing PGC-1{alpha} improved myocyte contractility without increasing the amplitude of Ca{sup 2+}more » transients, suggesting that myofilament sensitivity to Ca{sup 2+} increased. Interestingly, the decay kinetics of global Ca{sup 2+} transients and Ca{sup 2+} waves accelerated in PGC-1{alpha}-expressing cells, but the decay rate of caffeine-elicited Ca{sup 2+} transients showed no significant change. This suggests that sarcoplasmic reticulum (SR) Ca{sup 2+}-ATPase (SERCA2a), but not Na{sup +}/Ca{sup 2+} exchange (NCX) contribute to PGC-1{alpha}-induced cytosolic Ca{sup 2+} clearance. Furthermore, PGC-1{alpha} induced the expression of SERCA2a in cultured cardiac myocytes. Importantly, overexpressing PGC-1{alpha} did not disturb cardiac Ca{sup 2+} homeostasis, because SR Ca{sup 2+} load and the propensity for Ca{sup 2+} waves remained unchanged. These data suggest that PGC-1{alpha} can ameliorate cardiac Ca{sup 2+} cycling and improve cardiac work output in response to physiological stress. Unraveling the PGC-1{alpha}-calcium handing pathway sheds new light on the role of PGC-1{alpha} in the therapy of cardiac diseases.« less

  11. Restoration of Circulating MFGE8 (Milk Fat Globule-EGF Factor 8) Attenuates Cardiac Hypertrophy Through Inhibition of Akt Pathway.

    PubMed

    Deng, Ke-Qiong; Li, Jing; She, Zhi-Gang; Gong, Jun; Cheng, Wen-Lin; Gong, Fu-Han; Zhu, Xue-Yong; Zhang, Yan; Wang, Zhihua; Li, Hongliang

    2017-10-01

    Cardiac hypertrophy occurs in response to numerous stimuli like neurohumoral stress, pressure overload, infection, and injury, and leads to heart failure. Mfge8 (milk fat globule-EGF factor 8) is a secreted protein involved in various human diseases, but its regulation and function during cardiac hypertrophy remain unexplored. Here, we found that circulating MFGE8 levels declined significantly in failing hearts from patients with dilated cardiomyopathy. Correlation analyses revealed that circulating MFGE8 levels were negatively correlated with the severity of cardiac dysfunction and remodeling in affected patients. Deleting Mfge8 in mice maintained normal heart function at basal level but substantially exacerbated the hypertrophic enlargement of cardiomyocytes, reprogramming of pathological genes, contractile dysfunction, and myocardial fibrosis after aortic banding surgery. In contrast, cardiac-specific Mfge8 overexpression in transgenic mice significantly blunted aortic banding-induced cardiac hypertrophy. Whereas MAPK (mitogen-activated protein kinase) pathways were unaffected in either Mfge8 -knockout or Mfge8 -overexpressing mice, the activated Akt/PKB (protein kinase B)-Gsk-3β (glycogen synthase kinase-3β)/mTOR (mammalian target of rapamycin) pathway after aortic banding was significantly potentiated by Mfge8 deficiency but suppressed by Mfge8 overexpression. Inhibition of Akt with MK-2206 blocked the prohypertrophic effects of Mfge8 deficiency in angiotensin II-treated neonatal rat cardiomyocytes. Finally, administering a recombinant human MFGE8 in mice in vivo alleviated cardiac hypertrophy induced by aortic banding. Our findings indicate that Mfge8 is an endogenous negative regulator of pathological cardiac hypertrophy and may, thus, have potential both as a novel biomarker and as a therapeutic target for treatment of cardiac hypertrophy. © 2017 American Heart Association, Inc.

  12. β-Adrenergic regulation of a novel isoform of NCX: sequence and expression of shark heart NCX in human kidney cells

    PubMed Central

    Janowski, Einsley; Day, Regina; Kraev, Alexander; Roder, John C.; Cleemann, Lars; Morad, Martin

    2009-01-01

    The function, regulation, and molecular structure of the cardiac Na+/Ca2+ exchangers (NCXs) vary significantly among vertebrates. We previously reported that β-adrenergic suppression of amphibian cardiac NCX1.1 is associated with specific molecular motifs. Here we investigated the bimodal, cAMP-dependent regulation of spiny dogfish shark (Squalus acanthias) cardiac NCX, exploring the effects of molecular structure, host cell environment, and ionic milieu. The shark cardiac NCX sequence (GenBank accession no. DQ 068478) revealed two novel proline/alanine-rich amino acid insertions. Wild-type and mutant shark NCXs were cloned and expressed in mammalian cells (HEK-293 and FlpIn-293), where their activities were measured as Ni2+-sensitive Ca2+ fluxes (fluo 4) and membrane (Na+/Ca2+ exchange) currents evoked by changes in extracellular Na+ concentration and/or membrane potential. Regardless of Ca2+ buffering, β-adrenergic stimulation of cloned wild-type shark NCX consistently produced bimodal regulation (defined as differential regulation of Ca2+-efflux and -influx pathways), with suppression of the Ca2+-influx mode and either no change or enhancement of the Ca2+-efflux mode, closely resembling results from parallel experiments with native shark cardiomyocytes. In contrast, mutant shark NCX, with deletion of the novel region 2 insertion, produced equal suppression of the inward and outward currents and Ca2+ fluxes, thereby abolishing the bimodal nature of the regulation. Control experiments with nontransfected and dog cardiac NCX-expressing cells showed no cAMP regulation. We conclude that bimodal β-adrenergic regulation is retained in cloned shark NCX and is dependent on the shark's unique molecular motifs. PMID:19395557

  13. Reduction in dynamin-2 is implicated in ischaemic cardiac arrhythmias

    PubMed Central

    Shi, Dan; Xie, Duanyang; Zhang, Hong; Zhao, Hong; Huang, Jian; Li, Changming; Liu, Yi; Lv, Fei; The, Erlinda; Liu, Yuan; Yuan, Tianyou; Wang, Shiyi; Chen, Jinjin; Pan, Lei; Yu, Zuoren; Liang, Dandan; Zhu, Weidong; Zhang, Yuzhen; Li, Li; Peng, Luying; Li, Jun; Chen, Yi-Han

    2014-01-01

    Ischaemic cardiac arrhythmias cause a large proportion of sudden cardiac deaths worldwide. The ischaemic arrhythmogenesis is primarily because of the dysfunction and adverse remodelling of sarcolemma ion channels. However, the potential regulators of sarcolemma ion channel turnover and function in ischaemic cardiac arrhythmias remains unknown. Our previous studies indicate that dynamin-2 (DNM2), a cardiac membrane-remodelling GTPase, modulates ion channels membrane trafficking in the cardiomyocytes. Here, we have found that DNM2 plays an important role in acute ischaemic arrhythmias. In rat ventricular tissues and primary cardiomyocytes subjected to acute ischaemic stress, the DNM2 protein and transcription levels were markedly down-regulated. This DNM2 reduction was coupled with severe ventricular arrhythmias. Moreover, we identified that the down-regulation of DNM2 within cardiomyocytes increases the action potential amplitude and prolongs the re-polarization duration by depressing the retrograde trafficking of Nav1.5 and Kir2.1 channels. These effects are likely to account for the DNM2 defect-induced arrhythmogenic potentials. These results suggest that DNM2, with its multi-ion channel targeting properties, could be a promising target for novel antiarrhythmic therapies. PMID:25092467

  14. Prevention by sulforaphane of diabetic cardiomyopathy is associated with up-regulation of Nrf2 expression and transcription activation.

    PubMed

    Bai, Yang; Cui, Wenpeng; Xin, Ying; Miao, Xiao; Barati, Michelle T; Zhang, Chi; Chen, Qiang; Tan, Yi; Cui, Taixing; Zheng, Yang; Cai, Lu

    2013-04-01

    This study was to investigate whether sulforaphane (SFN) can prevent diabetic cardiomyopathy. Type 1 diabetes was induced in FVB mice by multiple intraperitoneal injections with low-dose streptozotocin. Hyperglycemic and age-matched control mice were treated with or without SFN at 0.5mg/kg daily in five days of each week for 3 months and then kept until 6 months. At 3 and 6 months of diabetes, blood pressure and cardiac function were assessed. Cardiac fibrosis, inflammation, and oxidative damage were assessed by Western blot, real-time qPCR, and histopathological examination. SFN significantly prevented diabetes-induced high blood pressure and cardiac dysfunction at both 3 and 6 months, and also prevented diabetes-induced cardiac hypertrophy (increased the ratio of heart weight to tibia length and the expression of atrial natriuretic peptide mRNA and protein) and fibrosis (increased the accumulation of collagen and expression of connective tissue growth factor and tissue growth factor-β). SFN also almost completely prevented diabetes-induced cardiac oxidative damage (increased accumulation of 3-nitrotyrosine and 4-hydroxynonenal) and inflammation (increased tumor necrotic factor-α and plasminogen activator inhibitor 1 expression). SFN up-regulated NFE2-related factor 2 (Nrf2) expression and transcription activity that was reflected by increased Nrf2 nuclear accumulation and phosphorylation as well as the mRNA and protein expression of Nrf2 downstream antioxidants. Furthermore, in cultured H9c2 cardiac cells silencing Nrf2 gene with its siRNA abolished the SFN's prevention of high glucose-induced fibrotic response. These results suggest that diabetes-induced cardiomyopathy can be prevented by SFN, which was associated with the up-regulated Nrf2 expression and transcription function. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Adjustment of Dysregulated Ceramide Metabolism in a Murine Model of Sepsis-Induced Cardiac Dysfunction

    PubMed Central

    Chung, Ha-Yeun; Kollmey, Anna S.; Schrepper, Andrea; Kohl, Matthias; Bläss, Markus F.; Stehr, Sebastian N.; Lupp, Amelie; Gräler, Markus H.; Claus, Ralf A.

    2017-01-01

    Cardiac dysfunction, in particular of the left ventricle, is a common and early event in sepsis, and is strongly associated with an increase in patients’ mortality. Acid sphingomyelinase (SMPD1)—the principal regulator for rapid and transient generation of the lipid mediator ceramide—is involved in both the regulation of host response in sepsis as well as in the pathogenesis of chronic heart failure. This study determined the degree and the potential role to which SMPD1 and its modulation affect sepsis-induced cardiomyopathy using both genetically deficient and pharmacologically-treated animals in a polymicrobial sepsis model. As surrogate parameters of sepsis-induced cardiomyopathy, cardiac function, markers of oxidative stress as well as troponin I levels were found to be improved in desipramine-treated animals, desipramine being an inhibitor of ceramide formation. Additionally, ceramide formation in cardiac tissue was dysregulated in SMPD1+/+ as well as SMPD1−/− animals, whereas desipramine pretreatment resulted in stable, but increased ceramide content during host response. This was a result of elevated de novo synthesis. Strikingly, desipramine treatment led to significantly improved levels of surrogate markers. Furthermore, similar results in desipramine-pretreated SMPD1−/− littermates suggest an SMPD1-independent pathway. Finally, a pattern of differentially expressed transcripts important for regulation of apoptosis as well as antioxidative and cytokine response supports the concept that desipramine modulates ceramide formation, resulting in beneficial myocardial effects. We describe a novel, protective role of desipramine during sepsis-induced cardiac dysfunction that controls ceramide content. In addition, it may be possible to modulate cardiac function during host response by pre-conditioning with the Food and Drug Administration (FDA)-approved drug desipramine. PMID:28420138

  16. Adjustment of Dysregulated Ceramide Metabolism in a Murine Model of Sepsis-Induced Cardiac Dysfunction.

    PubMed

    Chung, Ha-Yeun; Kollmey, Anna S; Schrepper, Andrea; Kohl, Matthias; Bläss, Markus F; Stehr, Sebastian N; Lupp, Amelie; Gräler, Markus H; Claus, Ralf A

    2017-04-15

    Cardiac dysfunction, in particular of the left ventricle, is a common and early event in sepsis, and is strongly associated with an increase in patients' mortality. Acid sphingomyelinase (SMPD1)-the principal regulator for rapid and transient generation of the lipid mediator ceramide-is involved in both the regulation of host response in sepsis as well as in the pathogenesis of chronic heart failure. This study determined the degree and the potential role to which SMPD1 and its modulation affect sepsis-induced cardiomyopathy using both genetically deficient and pharmacologically-treated animals in a polymicrobial sepsis model. As surrogate parameters of sepsis-induced cardiomyopathy, cardiac function, markers of oxidative stress as well as troponin I levels were found to be improved in desipramine-treated animals, desipramine being an inhibitor of ceramide formation. Additionally, ceramide formation in cardiac tissue was dysregulated in SMPD1 +/+ as well as SMPD1 -/- animals, whereas desipramine pretreatment resulted in stable, but increased ceramide content during host response. This was a result of elevated de novo synthesis. Strikingly, desipramine treatment led to significantly improved levels of surrogate markers. Furthermore, similar results in desipramine-pretreated SMPD1 -/- littermates suggest an SMPD1-independent pathway. Finally, a pattern of differentially expressed transcripts important for regulation of apoptosis as well as antioxidative and cytokine response supports the concept that desipramine modulates ceramide formation, resulting in beneficial myocardial effects. We describe a novel, protective role of desipramine during sepsis-induced cardiac dysfunction that controls ceramide content. In addition, it may be possible to modulate cardiac function during host response by pre-conditioning with the Food and Drug Administration (FDA)-approved drug desipramine.

  17. Can the Nerve Growth Factor promote the reinnervation of the transplanted heart?

    PubMed

    Galli, Alessio

    2014-02-01

    The activity of the heart is widely regulated by the autonomous nervous system. This important mechanism of control may be impaired in chronic diseases such as heart failure or lost in those patients who undergo heart transplantation, owing to the surgical interruption of cardiac nerves in the transplanted heart. It has been demonstrated that spontaneous reinnervation can occur in transplanted hearts and is associated with an improvement in cardiac function. However, this process may require many years and the restoration of a proper cardiac innervation and functioning during exercise is never complete. In this perspective, the Nerve Growth Factor (NGF) and other neurotrophic hormones might ameliorate cardiac innervation in the transplanted heart and should be tried in animal models. Endothelial cells engineered with a viral vector to overexpress the NGF might be engrafted in the heart and integrate into cardiac small vessels, thus providing a source of neurotrophic factors which might promote and direct regrowth and axonal sprouting of cardiac nerves. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Reducing RBM20 activity improves diastolic dysfunction and cardiac atrophy.

    PubMed

    Hinze, Florian; Dieterich, Christoph; Radke, Michael H; Granzier, Henk; Gotthardt, Michael

    2016-12-01

    Impaired diastolic filling is a main contributor to heart failure with preserved ejection fraction (HFpEF), a syndrome with increasing prevalence and no treatment. Both collagen and the giant sarcomeric protein titin determine diastolic function. Since titin's elastic properties can be adjusted physiologically, we evaluated titin-based stiffness as a therapeutic target. We adjusted RBM20-dependent cardiac isoform expression in the titin N2B knockout mouse with increased ventricular stiffness. A ~50 % reduction of RBM20 activity does not only maintain cardiac filling in diastole but also ameliorates cardiac atrophy and thus improves cardiac function in the N2B-deficient heart. Reduced RBM20 activity partially normalized gene expression related to muscle development and fatty acid metabolism. The adaptation of cardiac growth was related to hypertrophy signaling via four-and-a-half lim-domain proteins (FHLs) that translate mechanical input into hypertrophy signals. We provide a novel link between cardiac isoform expression and trophic signaling via FHLs and suggest cardiac splicing as a therapeutic target in diastolic dysfunction. Increasing the length of titin isoforms improves ventricular filling in heart disease. FHL proteins are regulated via RBM20 and adapt cardiac growth. RBM20 is a therapeutic target in diastolic dysfunction.

  19. Application of the principles of systems biology and Wiener's cybernetics for analysis of regulation of energy fluxes in muscle cells in vivo.

    PubMed

    Guzun, Rita; Saks, Valdur

    2010-03-08

    The mechanisms of regulation of respiration and energy fluxes in the cells are analyzed based on the concepts of systems biology, non-equilibrium steady state kinetics and applications of Wiener's cybernetic principles of feedback regulation. Under physiological conditions cardiac function is governed by the Frank-Starling law and the main metabolic characteristic of cardiac muscle cells is metabolic homeostasis, when both workload and respiration rate can be changed manifold at constant intracellular level of phosphocreatine and ATP in the cells. This is not observed in skeletal muscles. Controversies in theoretical explanations of these observations are analyzed. Experimental studies of permeabilized fibers from human skeletal muscle vastus lateralis and adult rat cardiomyocytes showed that the respiration rate is always an apparent hyperbolic but not a sigmoid function of ADP concentration. It is our conclusion that realistic explanations of regulation of energy fluxes in muscle cells require systemic approaches including application of the feedback theory of Wiener's cybernetics in combination with detailed experimental research. Such an analysis reveals the importance of limited permeability of mitochondrial outer membrane for ADP due to interactions of mitochondria with cytoskeleton resulting in quasi-linear dependence of respiration rate on amplitude of cyclic changes in cytoplasmic ADP concentrations. The system of compartmentalized creatine kinase (CK) isoenzymes functionally coupled to ANT and ATPases, and mitochondrial-cytoskeletal interactions separate energy fluxes (mass and energy transfer) from signalling (information transfer) within dissipative metabolic structures - intracellular energetic units (ICEU). Due to the non-equilibrium state of CK reactions, intracellular ATP utilization and mitochondrial ATP regeneration are interconnected by the PCr flux from mitochondria. The feedback regulation of respiration occurring via cyclic fluctuations of cytosolic ADP, Pi and Cr/PCr ensures metabolic stability necessary for normal function of cardiac cells.

  20. Inhibition of Nogo-B promotes cardiac hypertrophy via endoplasmic reticulum stress.

    PubMed

    Li, Junli; Wu, Wenchao; Xin, Yanguo; Zhao, Mingyue; Liu, Xiaojing

    2018-05-14

    Nogo-B is a key endoplasmic reticulum (ER) protein that regulates ER stress signaling. However, its role in cardiac hypertrophy remains poorly understood. ER stress is interrelated with autophagy in the process of cardiac hypertrophy. Therefore, we aimed to test the hypothesis that both ER stress and autophagy signaling mediate the function of Nogo-B in cardiac hypertrophy. Rat models of transverse aortic constriction (TAC), neonatal rat cardiomyocytes (NRCMs) stimulated with norepinephrine (Ne) and primary cardiac fibroblasts treated with transforming growth factor β1 (TGF-β1) were used in this study. The expression of Nogo-B and markers of ER stress were determined by quantitative RT-PCR, western blotting and immunofluorescence. Autophagy was measured by monitoring autophagic flux. Specific small interfering RNA (siRNA) of Nogo-B was transfected to investigate the role of Nogo-B in regulating cardiac hypertrophy. In TAC-induced hypertrophic heart tissues, Ne-treated hypertrophic cardiomyocytes and TGF-β1-stimulated cardiac fibroblasts, the expression of Nogo-B, and markers of ER stress were significantly elevated. Impairment of autophagic flux was observed in the activated cardiac fibroblasts. Down-regulation of Nogo-B by siRNA further exacerbated Ne-induced cardiomyocyte hypertrophy and TGF-β1-induced cardiac fibroblast activation. Gene silencing of Nogo-B promoted the activation of the ER stress pathway and the impairment of autophagic flux. Moreover, inhibition of Nogo-B activated the protein kinase RNA-like ER kinase (PERK)/activating transcriptional factor 4 (ATF4) and activating transcriptional factor 6 (ATF6) branches of ER stress pathways. These findings suggest that inhibition of Nogo-B promotes cardiomyocyte hypertrophy and cardiac fibroblast activation by activating the PERK/ATF4 signaling pathway and defects of autophagic flux. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  1. Roles of PDE1 in Pathological Cardiac Remodeling and Dysfunction.

    PubMed

    Chen, Si; Knight, Walter E; Yan, Chen

    2018-04-23

    Pathological cardiac hypertrophy and dysfunction is a response to various stress stimuli and can result in reduced cardiac output and heart failure. Cyclic nucleotide signaling regulates several cardiac functions including contractility, remodeling, and fibrosis. Cyclic nucleotide phosphodiesterases (PDEs), by catalyzing the hydrolysis of cyclic nucleotides, are critical in the homeostasis of intracellular cyclic nucleotide signaling and hold great therapeutic potential as drug targets. Recent studies have revealed that the inhibition of the PDE family member PDE1 plays a protective role in pathological cardiac remodeling and dysfunction by the modulation of distinct cyclic nucleotide signaling pathways. This review summarizes recent key findings regarding the roles of PDE1 in the cardiac system that can lead to a better understanding of its therapeutic potential.

  2. l-Arginine Attenuates Cardiac Dysfunction, But Further Down-Regulates α-Myosin Heavy Chain Expression in Isoproterenol-Induced Cardiomyopathy.

    PubMed

    Kralova, Eva; Doka, Gabriel; Pivackova, Lenka; Srankova, Jasna; Kuracinova, Kristina; Janega, Pavol; Babal, Pavel; Klimas, Jan; Krenek, Peter

    2015-10-01

    In view of previously reported increased capacity for nitric oxide production, we suggested that l-arginine (ARG), the nitric oxide synthase (NOS) substrate, supplementation would improve cardiac function in isoproterenol (ISO)-induced heart failure. Male Wistar rats were treated with ISO for 8 days (5 mg/kg/day, i.p.) or vehicle. ARG was given to control (ARG) and ISO-treated (ISO+ARG) rats in water (0.4 g/kg/day). ISO administration was associated with 40% mortality, ventricular hypertrophy, decreased heart rate, left ventricular dysfunction, fibrosis and ECG signs of ischaemia. RT-PCR showed increased mRNA levels of cardiac hypertrophy marker atrial natriuretic peptide, but not BNP, decreased expression of myosin heavy chain isoform MYH6 and unaltered expression of pathological MYH7. ISO increased the protein levels of endothelial nitric oxide synthase, but at the same time it markedly up-regulated mRNA and protein levels of gp91phox, a catalytical subunit of superoxide-producing NADPH oxidase. Fibrosis was markedly increased by ISO. ARG treatment moderately ameliorated left ventricular dysfunction, but was without effect on cardiac hypertrophy and fibrosis. Combination of ISO and ARG led to a decrease in cav-1 expression, a further increase in MYH7 expression and a down-regulation of MYH6 that inversely correlated with gp91phox mRNA levels. Although ARG, at least partially, improved ISO-impaired basal left ventricular systolic function, it failed to reduce cardiac hypertrophy, fibrosis, oxidative stress and mortality. The protection of contractile performance might be related to increased capacity for nitric oxide production and the up-regulation of MYH7 which may compensate for the marked down-regulation of the major MYH6 isoform. © 2015 Nordic Association for the Publication of BCPT (former Nordic Pharmacological Society).

  3. Competent for commitment: you've got to have heart!

    PubMed

    Jain, Rajan; Epstein, Jonathan A

    2018-01-01

    The mature heart is composed primarily of four different cell types: cardiac myocytes, endothelium, smooth muscle, and fibroblasts. These cell types derive from pluripotent progenitors that become progressively restricted with regard to lineage potential, giving rise to multipotent cardiac progenitor cells and, ultimately, the differentiated cell types of the heart. Recent studies have begun to shed light on the defining characteristics of the intermediary cell types that exist transiently during this developmental process and the extrinsic and cell-autonomous factors that influence cardiac lineage decisions and cellular competence. This information will shape our understanding of congenital and adult cardiac disease and guide regenerative therapeutic approaches. In addition, cardiac progenitor specification can serve as a model for understanding basic mechanisms regulating the acquisition of cellular identity. In this review, we present the concept of "chromatin competence" that describes the potential for three-dimensional chromatin organization to function as the molecular underpinning of the ability of a progenitor cell to respond to inductive lineage cues and summarize recent studies advancing our understanding of cardiac cell specification, gene regulation, and chromatin organization and how they impact cardiac development. © 2018 Jain and Epstein; Published by Cold Spring Harbor Laboratory Press.

  4. Changes of myocardial lipidomics profiling in a rat model of diabetic cardiomyopathy using UPLC/Q-TOF/MS analysis.

    PubMed

    Dong, Shifen; Zhang, Rong; Liang, Yaoyue; Shi, Jiachen; Li, Jiajia; Shang, Fei; Mao, Xuezhou; Sun, Jianning

    2017-01-01

    Diabetic cardiomyopathy (DCM) is a serious cardiac dysfunction induced by changes in the structure and contractility of the myocardium that are initiated in part by alterations in energy substrates. The underlying mechanisms of DCM are still under controversial. The observation of lipids, especially lipidomics profiling, can provide an insight into the know the biomarkers of DCM. The aim of our research was to detect changes of myocardial lipidomics profiling in a rat model of diabetic cardiomyopathy. Diabetic cardiomyopathy was induced by feeding a high-sucrose/fat diet (HSFD) for 28 weeks and streptozotocin (30 mg/kg, intraperitoneally). The ultra-high-performance liquid chromatography (UPLC) coupled to quadruple time-of flight (QTOF) mass spectrometer was used to acquire and analyze the lipidomics profiling of myocardial tissue. Meanwhile, parameters of cardiac function were collected using cardiac catheterization, and the cardiac index was calculated, and fasting blood glucose and lipid levels were measured by an ultraviolet spectrophotometric method. We detected 3023 positive ion peaks and 300 negative ion peaks. Levels of phosphatidylcholine (PC) (22:6/18:2), PC (22:6/18:1), PC (20:4/16:1), PC (16:1/18:3), phosphatidylethanolamine (PE) (20:4/18:2), and PE (20:4/16:0) were down-regulated, and PC (20:2/18:2), PC (18:0/16:0), and PC (20:4/18:0) were up-regulated in DCM model rats, when compared with control rats. Cardiac functions signed as values of left ventricular systolic pressure, maximal uprising velocity of left ventricular pressure and maximal decreasing velocity of left ventricular pressure were injured by 21-44%, and the cardiac index was increased by 25%, and fasting blood glucose and lipids were increased by 34-368%. Meanwhile, the cardiac lipid-related biomarkers have significant correlation with changes of cardiac function and cardiac index. UPLC/Q-TOF/MS analysis data suggested changes of some potential lipid biomarkers in the development of cardiac dysfunction and hypertrophy of diabetic cardiomyopathy, which may serve as potential important targets for clinical diagnosis and therapeutic intervention of DCM in the future.

  5. [Cardiac rhythm variability as an index of vegetative heart regulation in a situation of psychoemotional tension].

    PubMed

    Revina, N E

    2006-01-01

    Differentiated role of segmental and suprasegmental levels of cardiac rhythm variability regulation in dynamics of motivational human conflict was studied for the first time. The author used an original method allowing simultaneous analysis of psychological and physiological parameters of human activity. The study demonstrates that will and anxiety, as components of motivational activity spectrum, form the "energetic" basis of voluntary-constructive and involuntary-affective behavioral strategies, selectively uniting various levels of suprasegmental and segmental control of human heart functioning in a conflict situation.

  6. Metallothionein as a compensatory component prevents intermittent hypoxia-induced cardiomyopathy in mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yin, Xia; Zhou, Shanshan; KCHRI at the Department of Pediatrics, School of Medicine, University of Louisville, Louisville, 40202

    Obstructive sleep apnea (OSA) causes chronic intermittent hypoxia (IH) to induce cardiovascular disease, which may be related to oxidative damage. Metallothionein (MT) has been extensively proved to be an endogenous and highly inducible antioxidant protein expressed in the heart. Therefore, we tested the hypotheses that oxidative stress plays a critical role in OSA induced cardiac damage and MT protects the heart from OSA-induced cardiomyopathy. To mimic hypoxia/reoxygenation events that occur in adult OSA patients, mice were exposed to IH for 3 days to 8 weeks. The IH paradigm consisted of alternating cycles of 20.9% O{sub 2}/8% O{sub 2} F{sub I}O{submore » 2} (30 episodes per hour) with 20 s at the nadir F{sub I}O{sub 2} for 12 h a day during daylight. IH significantly increased the ratio of heart weight to tibia length at 4 weeks with a decrease in cardiac function from 4 to 8 weeks. Cardiac oxidative damage and fibrosis were observed after 4 and 8 weeks of IH exposures. Endogenous MT expression was up-regulated in response to 3-day IH, but significantly decreased at 4 and 8 weeks of IH. In support of MT as a major compensatory component, mice with cardiac overexpression of MT gene and mice with global MT gene deletion were completely resistant, and highly sensitive, respectively, to chronic IH induced cardiac effects. These findings suggest that chronic IH induces cardiomyopathy characterized by oxidative stress-mediated cardiac damage and the antioxidant MT protects the heart from such pathological and functional changes. - Highlights: • The effect of intermittent hypoxia (IH) on cardiac metallothionein (MT) • Cardiac MT expression was up-regulated in response to 3-day IH. • Exposure to 4- or 8-week IH downregulated cardiac MT expression. • Overexpression of cardiac MT protects from IH-induced cardiac damage. • Global deletion of MT gene made the heart more sensitive to IH damage.« less

  7. Myocardial ischaemia and the cardiac nervous system.

    PubMed

    Armour, J A

    1999-01-01

    The intrinsic cardiac nervous system has been classically considered to contain only parasympathetic efferent postganglionic neurones which receive inputs from medullary parasympathetic efferent preganglionic neurones. In such a view, intrinsic cardiac ganglia act as simple relay stations of parasympathetic efferent neuronal input to the heart, the major autonomic control of the heart purported to reside solely in the brainstem and spinal cord. Data collected over the past two decades indicate that processing occurs within the mammalian intrinsic cardiac nervous system which involves afferent neurones, local circuit neurones (interconnecting neurones) as well as both sympathetic and parasympathetic efferent postganglionic neurones. As such, intrinsic cardiac ganglionic interactions represent the organ component of the hierarchy of intrathoracic nested feedback control loops which provide rapid and appropriate reflex coordination of efferent autonomic neuronal outflow to the heart. In such a concept, the intrinsic cardiac nervous system acts as a distributive processor, integrating parasympathetic and sympathetic efferent centrifugal information to the heart in addition to centripetal information arising from cardiac sensory neurites. A number of neurochemicals have been shown to influence the interneuronal interactions which occur within the intrathoracic cardiac nervous system. For instance, pharmacological interventions that modify beta-adrenergic or angiotensin II receptors affect cardiomyocyte function not only directly, but indirectly by influencing the capacity of intrathoracic neurones to regulate cardiomyocytes. Thus, current pharmacological management of heart disease may influence cardiomyocyte function directly as well as indirectly secondary to modifying the cardiac nervous system. This review presents a brief summary of developing concepts about the role of the cardiac nervous system in regulating the normal heart. In addition, it provides some tentative ideas concerning the importance of this nervous system in cardiac disease states with a view to stimulating further interest in neural control of the heart so that appropriate neurocardiological strategies can be devised for the management of heart disease.

  8. Proceedings of the First Joint NASA Cardiopulmonary Workshop

    NASA Technical Reports Server (NTRS)

    Fortney, Suzanne M. (Editor); Hargens, Alan R. (Editor)

    1991-01-01

    The topics covered include the following: flight echocardiography, pulmonary function, central hemodynamics, glycerol hyperhydration, spectral analysis, lower body negative pressure countermeasures, orthostatic tolerance, autonomic function, cardiac deconditioning, fluid and renal responses to head-down tilt, local fluid regulation, endocrine regulation during bed rest, autogenic feedback, and chronic cardiovascular measurements. The program ended with a general discussion of weightlessness models and countermeasures.

  9. NF-κB (p65) negatively regulates myocardin-induced cardiomyocyte hypertrophy through multiple mechanisms.

    PubMed

    Liao, Xing-Hua; Wang, Nan; Zhao, Dong-Wei; Zheng, De-Liang; Zheng, Li; Xing, Wen-Jing; Zhou, Hao; Cao, Dong-Sun; Zhang, Tong-Cun

    2014-12-01

    Myocardin is well known to play a key role in the development of cardiomyocyte hypertrophy. But the exact molecular mechanism regulating myocardin stability and transactivity to affect cardiomyocyte hypertrophy has not been studied clearly. We now report that NF-κB (p65) can inhibit myocardin-induced cardiomyocyte hypertrophy. Then we explore the molecular mechanism of this response. First, we show that p65 can functionally repress myocardin transcriptional activity and also reduce the protein expression of myocardin. Second, the function of myocardin can be regulated by epigenetic modifications. Myocardin sumoylation is known to transactivate cardiac genes, but whether p65 can inhibit SUMO modification of myocardin is still not clear. Our data show that p65 weakens myocardin transcriptional activity through attenuating SUMO modification of myocardin by SUMO1/PIAS1, thereby impairing myocardin-mediated cardiomyocyte hypertrophy. Furthermore, the expression of myocardin can be regulated by several microRNAs, which play important roles in the development and function of the heart and muscle. We next investigated potential role of miR-1 in cardiac hypotrophy. Our results show that p65 can upregulate the level of miR-1 and miR-1 can decrease protein expression of myocardin in cardiac myocytes. Notably, miR-1 expression is also controlled by myocardin, leading to a feedback loop. These data thus provide important and novel insights into the function that p65 inhibits myocardin-mediated cardiomyocyte hypertrophy by downregulating the expression and SUMO modification of myocardin and enhancing the expression of miR-1. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Cardiac telomere length in heart development, function, and disease.

    PubMed

    Booth, S A; Charchar, F J

    2017-07-01

    Telomeres are repetitive nucleoprotein structures at chromosome ends, and a decrease in the number of these repeats, known as a reduction in telomere length (TL), triggers cellular senescence and apoptosis. Heart disease, the worldwide leading cause of death, often results from the loss of cardiac cells, which could be explained by decreases in TL. Due to the cell-specific regulation of TL, this review focuses on studies that have measured telomeres in heart cells and critically assesses the relationship between cardiac TL and heart function. There are several lines of evidence that have identified rapid changes in cardiac TL during the onset and progression of heart disease as well as at critical stages of development. There are also many factors, such as the loss of telomeric proteins, oxidative stress, and hypoxia, that decrease cardiac TL and heart function. In contrast, antioxidants, calorie restriction, and exercise can prevent both cardiac telomere attrition and the progression of heart disease. TL in the heart is also indicative of proliferative potential and could facilitate the identification of cells suitable for cardiac rejuvenation. Although these findings highlight the involvement of TL in heart function, there are important questions regarding the validity of animal models, as well as several confounding factors, that need to be considered when interpreting results and planning future research. With these in mind, elucidating the telomeric mechanisms involved in heart development and the transition to disease holds promise to prevent cardiac dysfunction and potentiate regeneration after injury. Copyright © 2017 the American Physiological Society.

  11. The day/night proteome in the murine heart.

    PubMed

    Podobed, Peter; Pyle, W Glen; Ackloo, Suzanne; Alibhai, Faisal J; Tsimakouridze, Elena V; Ratcliffe, William F; Mackay, Allison; Simpson, Jeremy; Wright, David C; Kirby, Gordon M; Young, Martin E; Martino, Tami A

    2014-07-15

    Circadian rhythms are essential to cardiovascular health and disease. Temporal coordination of cardiac structure and function has focused primarily at the physiological and gene expression levels, but these analyses are invariably incomplete, not the least because proteins underlie many biological processes. The purpose of this study was to reveal the diurnal cardiac proteome and important contributions to cardiac function. The 24-h day-night murine cardiac proteome was assessed by two-dimensional difference in gel electrophoresis (2D-DIGE) and liquid chromatography-mass spectrometry. Daily variation was considerable, as ∼7.8% (90/1,147) of spots exhibited statistical changes at paired times across the 24-h light- (L) dark (D) cycle. JTK_CYCLE was used to investigate underlying diurnal rhythms in corresponding mRNA. We next revealed that disruption of the L:D cycle altered protein profiles and diurnal variation in cardiac function in Langendorff-perfused hearts, relative to the L:D cycle. To investigate the role of the circadian clock mechanism, we used cardiomyocyte clock mutant (CCM) mice. CCM myofilaments exhibited a loss of time-of-day-dependent maximal calcium-dependent ATP consumption, and altered phosphorylation rhythms. Moreover, the cardiac proteome was significantly altered in CCM hearts, especially enzymes regulating vital metabolic pathways. Lastly, we used a model of pressure overload cardiac hypertrophy to demonstrate the temporal proteome during heart disease. Our studies demonstrate that time of day plays a direct role in cardiac protein abundance and indicate a novel mechanistic contribution of circadian biology to cardiovascular structure and function.

  12. The day/night proteome in the murine heart

    PubMed Central

    Podobed, Peter; Pyle, W. Glen; Ackloo, Suzanne; Alibhai, Faisal J.; Tsimakouridze, Elena V.; Ratcliffe, William F.; Mackay, Allison; Simpson, Jeremy; Wright, David C.; Kirby, Gordon M.; Young, Martin E.

    2014-01-01

    Circadian rhythms are essential to cardiovascular health and disease. Temporal coordination of cardiac structure and function has focused primarily at the physiological and gene expression levels, but these analyses are invariably incomplete, not the least because proteins underlie many biological processes. The purpose of this study was to reveal the diurnal cardiac proteome and important contributions to cardiac function. The 24-h day-night murine cardiac proteome was assessed by two-dimensional difference in gel electrophoresis (2D-DIGE) and liquid chromatography-mass spectrometry. Daily variation was considerable, as ∼7.8% (90/1,147) of spots exhibited statistical changes at paired times across the 24-h light- (L) dark (D) cycle. JTK_CYCLE was used to investigate underlying diurnal rhythms in corresponding mRNA. We next revealed that disruption of the L:D cycle altered protein profiles and diurnal variation in cardiac function in Langendorff-perfused hearts, relative to the L:D cycle. To investigate the role of the circadian clock mechanism, we used cardiomyocyte clock mutant (CCM) mice. CCM myofilaments exhibited a loss of time-of-day-dependent maximal calcium-dependent ATP consumption, and altered phosphorylation rhythms. Moreover, the cardiac proteome was significantly altered in CCM hearts, especially enzymes regulating vital metabolic pathways. Lastly, we used a model of pressure overload cardiac hypertrophy to demonstrate the temporal proteome during heart disease. Our studies demonstrate that time of day plays a direct role in cardiac protein abundance and indicate a novel mechanistic contribution of circadian biology to cardiovascular structure and function. PMID:24789993

  13. Myostatin induces interstitial fibrosis in the heart via TAK1 and p38.

    PubMed

    Biesemann, Nadine; Mendler, Luca; Kostin, Sawa; Wietelmann, Astrid; Borchardt, Thilo; Braun, Thomas

    2015-09-01

    Myostatin, a member of the TGF-β superfamily of secreted growth factors, is a negative regulator of skeletal muscle growth. In the heart, it is expressed at lower levels compared to skeletal muscle but up-regulated under disease conditions. Cre recombinase-mediated inactivation of myostatin in adult cardiomyocytes leads to heart failure and increased mortality but cardiac function of surviving mice is restored after several weeks probably due to compensatory expression in non-cardiomyocytes. To study long-term effects of increased myostatin expression in the heart and to analyze the putative crosstalk between cardiomyocytes and fibroblasts, we overexpressed myostatin in cardiomyocytes. Increased expression of myostatin in heart muscle cells caused interstitial fibrosis via activation of the TAK-1-MKK3/6-p38 signaling pathway, compromising cardiac function in older mice. Our results uncover a novel role of myostatin in the heart and highlight the necessity for tight regulation of myostatin to maintain normal heart function.

  14. High-Intensity Progressive Resistance Training Increases Strength With No Change in Cardiovascular Function and Autonomic Neural Regulation in Older Adults.

    PubMed

    Kanegusuku, Hélcio; Queiroz, Andréia C; Silva, Valdo J; de Mello, Marco T; Ugrinowitsch, Carlos; Forjaz, Cláudia L

    2015-07-01

    The effects of high-intensity progressive resistance training (HIPRT) on cardiovascular function and autonomic neural regulation in older adults are unclear. To investigate this issue, 25 older adults were randomly divided into two groups: control (CON, N = 13, 63 ± 4 years; no training) and HIPRT (N = 12, 64 ± 4 years; 2 sessions/week, 7 exercises, 2–4 sets, 10–4 RM). Before and after four months, maximal strength, quadriceps cross-sectional area (QCSA), clinic and ambulatory blood pressures (BP), systemic hemodynamics, and cardiovascular autonomic modulation were measured. Maximal strength and QCSA increased in the HIPRT group and did not change in the CON group. Clinic and ambulatory BP, cardiac output, systemic vascular resistance, stroke volume, heart rate, and cardiac sympathovagal balance did not change in the HIPRT group or the CON group. In conclusion, HIPRT was effective at increasing muscle mass and strength without promoting changes in cardiovascular function or autonomic neural regulation.

  15. Obscurin Targets Ankyrin-B and Protein Phosphatase 2A to the Cardiac M-line*

    PubMed Central

    Cunha, Shane R.; Mohler, Peter J.

    2008-01-01

    Ankyrin-B targets ion channels and transporters in excitable cells. Dysfunction in ankyrin-B-based pathways results in defects in cardiac physiology. Despite a wealth of knowledge regarding the role of ankyrin-B for cardiac function, little is known regarding the mechanisms underlying ankyrin-B regulation. Moreover, the pathways underlying ankyrin-B targeting in heart are unclear. We report that alternative splicing regulates ankyrin-B localization and function in cardiomyocytes. Specifically, we identify a novel exon (exon 43′) in the ankyrin-B regulatory domain that mediates interaction with the Rho-GEF obscurin. Ankyrin-B transcripts harboring exon 43′ represent the primary cardiac isoform in human and mouse. We demonstrate that ankyrin-B and obscurin are co-localized at the M-line of myocytes and co-immunoprecipitate from heart. We define the structural requirements for ankyrin-B/obscurin interaction to two motifs in the ankyrin-B regulatory domain and demonstrate that both are critical for obscurin/ankyrin-B interaction. In addition, we demonstrate that interaction with obscurin is required for ankyrin-B M-line targeting. Specifically, both obscurin-binding motifs are required for the M-line targeting of a GFP-ankyrin-B regulatory domain. Moreover, this construct acts as a dominant-negative by competing with endogenous ankyrin-B for obscurin-binding at the M-line, thus providing a powerful new tool to evaluate the function of obscurin/ankyrin-B interactions. With this new tool, we demonstrate that the obscurin/ankyrin-B interaction is critical for recruitment of PP2A to the cardiac M-line. Together, these data provide the first evidence for the molecular basis of ankyrin-B and PP2A targeting and function at the cardiac M-line. Finally, we report that ankyrin-B R1788W is localized adjacent to the ankyrin-B obscurin-binding motif and increases binding activity for obscurin. In summary, our new findings demonstrate that ANK2 is subject to alternative splicing that gives rise to unique polypeptides with diverse roles in cardiac function. PMID:18782775

  16. Cardiac overexpression of Mammalian enabled (Mena) exacerbates heart failure in mice

    PubMed Central

    Belmonte, Stephen L.; Ram, Rashmi; Mickelsen, Deanne M.; Gertler, Frank B.

    2013-01-01

    Mammalian enabled (Mena) is a key regulator of cytoskeletal actin dynamics, which has been implicated in heart failure (HF). We have previously demonstrated that cardiac Mena deletion produced cardiac dysfunction with conduction abnormalities and hypertrophy. Moreover, elevated Mena expression correlates with HF in human and animal models, yet the precise role of Mena in cardiac pathophysiology is unclear. In these studies, we evaluated mice with cardiac myocyte-specific Mena overexpression (TTA/TgTetMena) comparable to that observed in cardiac pathology. We found that the hearts of TTA/TgTetMena mice were functionally and morphologically comparable to wild-type littermates, except for mildly increased heart mass in the transgenic mice. Interestingly, TTA/TgTetMena mice were particularly susceptible to cardiac injury, as these animals experienced pronounced decreases in ejection fraction and fractional shortening as well as heart dilatation and hypertrophy after transverse aortic constriction (TAC). By “turning off” Mena overexpression in TTA/TgTetMena mice either immediately prior to or immediately after TAC surgery, we discovered that normalizing Mena levels eliminated cardiac hypertrophy in TTA/TgTetMena animals but did not preclude post-TAC cardiac functional deterioration. These findings indicate that hearts with increased levels of Mena fare worse when subjected to cardiac injury and suggest that Mena contributes to HF pathophysiology. PMID:23832697

  17. Cardiac overexpression of Mammalian enabled (Mena) exacerbates heart failure in mice.

    PubMed

    Belmonte, Stephen L; Ram, Rashmi; Mickelsen, Deanne M; Gertler, Frank B; Blaxall, Burns C

    2013-09-15

    Mammalian enabled (Mena) is a key regulator of cytoskeletal actin dynamics, which has been implicated in heart failure (HF). We have previously demonstrated that cardiac Mena deletion produced cardiac dysfunction with conduction abnormalities and hypertrophy. Moreover, elevated Mena expression correlates with HF in human and animal models, yet the precise role of Mena in cardiac pathophysiology is unclear. In these studies, we evaluated mice with cardiac myocyte-specific Mena overexpression (TTA/TgTetMena) comparable to that observed in cardiac pathology. We found that the hearts of TTA/TgTetMena mice were functionally and morphologically comparable to wild-type littermates, except for mildly increased heart mass in the transgenic mice. Interestingly, TTA/TgTetMena mice were particularly susceptible to cardiac injury, as these animals experienced pronounced decreases in ejection fraction and fractional shortening as well as heart dilatation and hypertrophy after transverse aortic constriction (TAC). By "turning off" Mena overexpression in TTA/TgTetMena mice either immediately prior to or immediately after TAC surgery, we discovered that normalizing Mena levels eliminated cardiac hypertrophy in TTA/TgTetMena animals but did not preclude post-TAC cardiac functional deterioration. These findings indicate that hearts with increased levels of Mena fare worse when subjected to cardiac injury and suggest that Mena contributes to HF pathophysiology.

  18. Mechanisms of physiological and pathological cardiac hypertrophy.

    PubMed

    Nakamura, Michinari; Sadoshima, Junichi

    2018-04-19

    Cardiomyocytes exit the cell cycle and become terminally differentiated soon after birth. Therefore, in the adult heart, instead of an increase in cardiomyocyte number, individual cardiomyocytes increase in size, and the heart develops hypertrophy to reduce ventricular wall stress and maintain function and efficiency in response to an increased workload. There are two types of hypertrophy: physiological and pathological. Hypertrophy initially develops as an adaptive response to physiological and pathological stimuli, but pathological hypertrophy generally progresses to heart failure. Each form of hypertrophy is regulated by distinct cellular signalling pathways. In the past decade, a growing number of studies have suggested that previously unrecognized mechanisms, including cellular metabolism, proliferation, non-coding RNAs, immune responses, translational regulation, and epigenetic modifications, positively or negatively regulate cardiac hypertrophy. In this Review, we summarize the underlying molecular mechanisms of physiological and pathological hypertrophy, with a particular emphasis on the role of metabolic remodelling in both forms of cardiac hypertrophy, and we discuss how the current knowledge on cardiac hypertrophy can be applied to develop novel therapeutic strategies to prevent or reverse pathological hypertrophy.

  19. Dmpk gene deletion or antisense knockdown does not compromise cardiac or skeletal muscle function in mice

    PubMed Central

    Carrell, Samuel T.; Carrell, Ellie M.; Auerbach, David; Pandey, Sanjay K.; Bennett, C. Frank; Dirksen, Robert T.; Thornton, Charles A.

    2016-01-01

    Myotonic dystrophy type 1 (DM1) is a genetic disorder in which dominant-active DM protein kinase (DMPK) transcripts accumulate in nuclear foci, leading to abnormal regulation of RNA processing. A leading approach to treat DM1 uses DMPK-targeting antisense oligonucleotides (ASOs) to reduce levels of toxic RNA. However, basal levels of DMPK protein are reduced by half in DM1 patients. This raises concern that intolerance for further DMPK loss may limit ASO therapy, especially since mice with Dmpk gene deletion reportedly show cardiac defects and skeletal myopathy. We re-examined cardiac and muscle function in mice with Dmpk gene deletion, and studied post-maturity knockdown using Dmpk-targeting ASOs in mice with heterozygous deletion. Contrary to previous reports, we found no effect of Dmpk gene deletion on cardiac or muscle function, when studied on two genetic backgrounds. In heterozygous knockouts, the administration of ASOs reduced Dmpk expression in cardiac and skeletal muscle by > 90%, yet survival, electrocardiogram intervals, cardiac ejection fraction and muscle strength remained normal. The imposition of cardiac stress by pressure overload, or muscle stress by myotonia, did not unmask a requirement for DMPK. Our results support the feasibility and safety of using ASOs for post-transcriptional silencing of DMPK in muscle and heart. PMID:27522499

  20. Effect of L-Carnitine Supplementation on Apelin and Apelin Receptor (Apj) Expression in Cardiac Muscle of Obese Diabetic Rats.

    PubMed

    Ranjbar Kohan, Neda; Nazifi, Saeed; Tabandeh, Mohammad Reza; Ansari Lari, Maryam

    2018-10-01

    L-carnitine (LC) has been shown to protect cardiac metabolism in diabetes patients with cardiovascular diseases (CVDs). Apelin, a newly discovered adipocytokines, is an important regulator of cardiac muscle function; however, the role of the level of expression of Apelin axis in improvement of cardiac function by LC in diabetic patients, is not clear. In the present study, obese insulin-resistant rats were used to determine the effect of LC, when given orally with a high-calorie diet, on Apelin and Apelin receptor (Apj) expression in cardiac muscle. In this experimental study, rats were fed with high-fat/high-carbohydrate diet for five weeks and subsequently were injected with streptozotocin 30 mg/kg for induction of obesity and insulin resistance. After confirming the induction of diabetes (serum glucose above 7.5 mmol/L), the animals received LC 300 mg/kg in drinking water for 28 days. On days 0, 14 and 28 after treatment, cardiac Apelin and Apj gene expression was evaluated by real time polymerase chain reaction (PCR) analysis. Serum levels of insulin, Apelin, glucose, tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β) and the homeostasis model assessment of insulin resistance (HOMA-IR) were also measured using commercial kits. Cardiac Apelin and Apj expression and serum Apelin were increased in obese rats, while LC supplementation decreased the serum levels of Apelin and down-regulated Apelin and Apj expression in cardiac muscle. These changes were associated with reduced insulin resistance markers and serum inflammatory factors and improved lipid profile. We concluded that LC supplementation could attenuate the over-expression of Apelin axis in heart of diabetic rats, a novel mechanism by which LC improves cardiovascular complications in diabetic patients. Copyright© by Royan Institute. All rights reserved.

  1. On the Evolution of the Cardiac Pacemaker

    PubMed Central

    Burkhard, Silja; van Eif, Vincent; Garric, Laurence; Christoffels, Vincent M.; Bakkers, Jeroen

    2017-01-01

    The rhythmic contraction of the heart is initiated and controlled by an intrinsic pacemaker system. Cardiac contractions commence at very early embryonic stages and coordination remains crucial for survival. The underlying molecular mechanisms of pacemaker cell development and function are still not fully understood. Heart form and function show high evolutionary conservation. Even in simple contractile cardiac tubes in primitive invertebrates, cardiac function is controlled by intrinsic, autonomous pacemaker cells. Understanding the evolutionary origin and development of cardiac pacemaker cells will help us outline the important pathways and factors involved. Key patterning factors, such as the homeodomain transcription factors Nkx2.5 and Shox2, and the LIM-homeodomain transcription factor Islet-1, components of the T-box (Tbx), and bone morphogenic protein (Bmp) families are well conserved. Here we compare the dominant pacemaking systems in various organisms with respect to the underlying molecular regulation. Comparative analysis of the pathways involved in patterning the pacemaker domain in an evolutionary context might help us outline a common fundamental pacemaker cell gene programme. Special focus is given to pacemaker development in zebrafish, an extensively used model for vertebrate development. Finally, we conclude with a summary of highly conserved key factors in pacemaker cell development and function. PMID:29367536

  2. Modern Perspectives on Numerical Modeling of Cardiac Pacemaker Cell

    PubMed Central

    Maltsev, Victor A.; Yaniv, Yael; Maltsev, Anna V.; Stern, Michael D.; Lakatta, Edward G.

    2015-01-01

    Cardiac pacemaking is a complex phenomenon that is still not completely understood. Together with experimental studies, numerical modeling has been traditionally used to acquire mechanistic insights in this research area. This review summarizes the present state of numerical modeling of the cardiac pacemaker, including approaches to resolve present paradoxes and controversies. Specifically we discuss the requirement for realistic modeling to consider symmetrical importance of both intracellular and cell membrane processes (within a recent “coupled-clock” theory). Promising future developments of the complex pacemaker system models include the introduction of local calcium control, mitochondria function, and biochemical regulation of protein phosphorylation and cAMP production. Modern numerical and theoretical methods such as multi-parameter sensitivity analyses within extended populations of models and bifurcation analyses are also important for the definition of the most realistic parameters that describe a robust, yet simultaneously flexible operation of the coupled-clock pacemaker cell system. The systems approach to exploring cardiac pacemaker function will guide development of new therapies, such as biological pacemakers for treating insufficient cardiac pacemaker function that becomes especially prevalent with advancing age. PMID:24748434

  3. Reciprocal repression between Fgf8 and miR-133 regulates cardiac induction through Bmp2 signaling.

    PubMed

    Lopez-Sanchez, Carmen; Franco, Diego; Bonet, Fernando; Garcia-Lopez, Virginio; Aranega, Amelia; Garcia-Martinez, Virginio

    2015-12-01

    This data article contains complementary figures and results related to the research article entitled "Negative Fgf8-Bmp2 feed-back is controlled by miR-130 during early cardiac specification" [15], which reveals what specific role miR-130 plays during the cardiac induction process. This study evidenced miR-130 a putative microRNA that targets Erk1/2 (Mapk1) 3'UTR- as a necessary linkage in the control of Fgf8 signaling, mediated by Bmp2. Thus, miR-130 regulates a negative Fgf8-Bmp2 feed-back loop responsible to achieve early cardiac specification. A significant aspect supporting our conclusions is given by the expression pattern of miR-130 during early cardiac specification, as well as by those results obtained after the designed experimental procedures. The data presented here reveal that miR-133 is also expressed within the precardiac areas during early cardiogenesis, pattern which is comparable to that of FGFR1, receptor involved in the Fgf8/ERK signaling pathway. Interestingly, our miR-133 overexpression experiments resulted in a decrease of Fgf8 expression, whereas we observed an increase of Bmp2 and subsequently of cardiac specific markers Nkx-2.5 and Gata4. Additionally, our loss-of-function experiments -through Fgf8 siRNA electroporation- showed an increase of miR-133 expression. Finally, after our Bmp2 experiments, we observed that miR-133 is upstream-regulated by Bmp2. All those results suggest that miR-133 also constitutes a crucial linkage in the crosstalk between Fgf8 and Bmp2 signaling by regulating the Fgf8/ERK pathway during cardiac induction.

  4. Chemical Endoplasmic Reticulum Chaperone Alleviates Doxorubicin-Induced Cardiac Dysfunction.

    PubMed

    Fu, Hai Ying; Sanada, Shoji; Matsuzaki, Takashi; Liao, Yulin; Okuda, Keiji; Yamato, Masaki; Tsuchida, Shota; Araki, Ryo; Asano, Yoshihiro; Asanuma, Hiroshi; Asakura, Masanori; French, Brent A; Sakata, Yasushi; Kitakaze, Masafumi; Minamino, Tetsuo

    2016-03-04

    Doxorubicin is an effective chemotherapeutic agent for cancer, but its use is often limited by cardiotoxicity. Doxorubicin causes endoplasmic reticulum (ER) dilation in cardiomyocytes, and we have demonstrated that ER stress plays important roles in the pathophysiology of heart failure. We evaluated the role of ER stress in doxorubicin-induced cardiotoxicity and examined whether the chemical ER chaperone could prevent doxorubicin-induced cardiac dysfunction. We confirmed that doxorubicin caused ER dilation in mouse hearts, indicating that doxorubicin may affect ER function. Doxorubicin activated an ER transmembrane stress sensor, activating transcription factor 6, in cultured cardiomyocytes and mouse hearts. However, doxorubicin suppressed the expression of genes downstream of activating transcription factor 6, including X-box binding protein 1. The decreased levels of X-box binding protein 1 resulted in a failure to induce the expression of the ER chaperone glucose-regulated protein 78 which plays a major role in adaptive responses to ER stress. In addition, doxorubicin activated caspase-12, an ER membrane-resident apoptotic molecule, which can lead to cardiomyocyte apoptosis and cardiac dysfunction. Cardiac-specific overexpression of glucose-regulated protein 78 by adeno-associated virus 9 or the administration of the chemical ER chaperone 4-phenylbutyrate attenuated caspase-12 cleavage, and alleviated cardiac apoptosis and dysfunction induced by doxorubicin. Doxorubicin activated the ER stress-initiated apoptotic response without inducing the ER chaperone glucose-regulated protein 78, further augmenting ER stress in mouse hearts. Cardiac-specific overexpression of glucose-regulated protein 78 or the administration of the chemical ER chaperone alleviated the cardiac dysfunction induced by doxorubicin and may facilitate the safe use of doxorubicin for cancer treatment. © 2016 American Heart Association, Inc.

  5. Fibroblast Growth Factors and Vascular Endothelial Growth Factor Promote Cardiac Reprogramming under Defined Conditions.

    PubMed

    Yamakawa, Hiroyuki; Muraoka, Naoto; Miyamoto, Kazutaka; Sadahiro, Taketaro; Isomi, Mari; Haginiwa, Sho; Kojima, Hidenori; Umei, Tomohiko; Akiyama, Mizuha; Kuishi, Yuki; Kurokawa, Junko; Furukawa, Tetsushi; Fukuda, Keiichi; Ieda, Masaki

    2015-12-08

    Fibroblasts can be directly reprogrammed into cardiomyocyte-like cells (iCMs) by overexpression of cardiac transcription factors, including Gata4, Mef2c, and Tbx5; however, this process is inefficient under serum-based culture conditions, in which conversion of partially reprogrammed cells into fully reprogrammed functional iCMs has been a major hurdle. Here, we report that a combination of fibroblast growth factor (FGF) 2, FGF10, and vascular endothelial growth factor (VEGF), termed FFV, promoted cardiac reprogramming under defined serum-free conditions, increasing spontaneously beating iCMs by 100-fold compared with those under conventional serum-based conditions. Mechanistically, FFV activated multiple cardiac transcriptional regulators and converted partially reprogrammed cells into functional iCMs through the p38 mitogen-activated protein kinase and phosphoinositol 3-kinase/AKT pathways. Moreover, FFV enabled cardiac reprogramming with only Mef2c and Tbx5 through the induction of cardiac reprogramming factors, including Gata4. Thus, defined culture conditions promoted the quality of cardiac reprogramming, and this finding provides new insight into the mechanism of cardiac reprogramming. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  6. Epigenomic Reprogramming of Adult Cardiomyocyte-Derived Cardiac Progenitor Cells

    PubMed Central

    Zhang, Yiqiang; Zhong, Jiang F; Qiu, Hongyu; Robb MacLellan, W.; Marbán, Eduardo; Wang, Charles

    2015-01-01

    It has been believed that mammalian adult cardiomyocytes (ACMs) are terminally-differentiated and are unable to proliferate. Recently, using a bi-transgenic ACM fate mapping mouse model and an in vitro culture system, we demonstrated that adult mouse cardiomyocytes were able to dedifferentiate into cardiac progenitor-like cells (CPCs). However, little is known about the molecular basis of their intrinsic cellular plasticity. Here we integrate single-cell transcriptome and whole-genome DNA methylation analyses to unravel the molecular mechanisms underlying the dedifferentiation and cell cycle reentry of mouse ACMs. Compared to parental cardiomyocytes, dedifferentiated mouse cardiomyocyte-derived CPCs (mCPCs) display epigenomic reprogramming with many differentially-methylated regions, both hypermethylated and hypomethylated, across the entire genome. Correlated well with the methylome, our transcriptomic data showed that the genes encoding cardiac structure and function proteins are remarkably down-regulated in mCPCs, while those for cell cycle, proliferation, and stemness are significantly up-regulated. In addition, implantation of mCPCs into infarcted mouse myocardium improves cardiac function with augmented left ventricular ejection fraction. Our study demonstrates that the cellular plasticity of mammalian cardiomyocytes is the result of a well-orchestrated epigenomic reprogramming and a subsequent global transcriptomic alteration. PMID:26657817

  7. Macrophage Migration Inhibitory Factor (MIF) Deficiency Exacerbates Aging-Induced Cardiac Remodeling and Dysfunction Despite Improved Inflammation: Role of Autophagy Regulation.

    PubMed

    Xu, Xihui; Pang, Jiaojiao; Chen, Yuguo; Bucala, Richard; Zhang, Yingmei; Ren, Jun

    2016-03-04

    Aging leads to unfavorable geometric and functional sequelae in the heart. The proinflammatory cytokine macrophage migration inhibitory factor (MIF) plays a role in the maintenance of cardiac homeostasis under stress conditions although its impact in cardiac aging remains elusive. This study was designed to evaluate the role of MIF in aging-induced cardiac anomalies and the underlying mechanism involved. Cardiac geometry, contractile and intracellular Ca(2+) properties were examined in young (3-4 mo) or old (24 mo) wild type and MIF knockout (MIF(-/-)) mice. Our data revealed that MIF knockout exacerbated aging-induced unfavorable structural and functional changes in the heart. The detrimental effect of MIF knockout was associated with accentuated loss in cardiac autophagy with aging. Aging promoted cardiac inflammation, the effect was attenuated by MIF knockout. Intriguingly, aging-induced unfavorable responses were reversed by treatment with the autophagy inducer rapamycin, with improved myocardial ATP availability in aged WT and MIF(-/-) mice. Using an in vitro model of senescence, MIF knockdown exacerbated doxorubicin-induced premature senescence in H9C2 myoblasts, the effect was ablated by MIF replenishment. Our data indicated that MIF knockout exacerbates aging-induced cardiac remodeling and functional anomalies despite improved inflammation, probably through attenuating loss of autophagy and ATP availability in the heart.

  8. In vivo cardiac role of migfilin during experimental pressure overload.

    PubMed

    Haubner, Bernhard Johannes; Moik, Daniel; Schuetz, Thomas; Reiner, Martin F; Voelkl, Jakob G; Streil, Katrin; Bader, Kerstin; Zhao, Lei; Scheu, Claudia; Mair, Johannes; Pachinger, Otmar; Metzler, Bernhard

    2015-06-01

    Increased myocardial wall strain triggers the cardiac hypertrophic response by increasing cardiomyocyte size, reprogramming gene expression, and enhancing contractile protein synthesis. The LIM protein, migfilin, is a cytoskeleton-associated protein that was found to translocate in vitro into the nucleus in a Ca(2+)-dependent manner, where it co-activates the pivotal cardiac transcription factor Csx/Nkx2.5. However, the in vivo role of migfilin in cardiac function and stress response is unclear. To define the role of migfilin in cardiac hypertrophy, we induced hypertension by transverse aortic constriction (TAC) and compared cardiac morphology and function of migfilin knockout (KO) with wild-type (WT) hearts. Heart size and myocardial contractility were comparable in untreated migfilin KO and WT hearts, but migfilin-null hearts presented a reduced extent of hypertrophic remodelling in response to chronic hypertensile stress. Migfilin KO mice maintained their cardiac function for a longer time period compared with WT mice, which presented extensive fibrosis and death due to heart failure. Migfilin translocated into the nucleus of TAC-treated cardiomyocytes, and migfilin KO hearts showed reduced Akt activation during the early response to pressure overload. Our findings indicate an important role of migfilin in the regulation of cardiac hypertrophy upon experimental TAC. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2015. For permissions please email: journals.permissions@oup.com.

  9. Sympathetic- and Parasympathetic-linked Cardiac Function and Prediction of Externalizing Behavior, Emotion Regulation, and Prosocial Behavior among Preschoolers Treated for ADHD

    PubMed Central

    Beauchaine, Theodore P.; Gatzke-Kopp, Lisa; Neuhaus, Emily; Chipman, Jane; Reid, M. Jamila; Webster-Stratton, Carolyn

    2014-01-01

    Objective To evaluate measures of cardiac activity and reactivity as prospective biomarkers of treatment response to an empirically-supported behavioral intervention for attention-deficit/hyperactivity disorder (ADHD). Method Cardiac pre-ejection period (PEP), an index of sympathetic-linked cardiac activity, and respiratory sinus arrhythmia (RSA), and index of parasympathetic-linked cardiac activity, were assessed among 99 preschool children (ages 4–6 years) with ADHD both at rest and in response to behavioral challenge, before participants and their parents completed one of two versions of the Incredible Years parent and child interventions. Results Main effects of PEP activity and reactivity, and of RSA activity and reactivity were found. Although sample-wide improvements in behavior were observed at post treatment, those who exhibited lengthened cardiac PEP at rest and reduced PEP reactivity to incentives scored higher on measures of conduct problems and aggression both before and after treatment. In contrast, children who exhibited lower baseline RSA and greater RSA withdrawal scored lower on prosocial behavior before and after treatment. Finally, children who exhibited greater RSA withdrawal scored lower on emotion regulation before and after treatment. Conclusions We discuss these findings in terms of (a) individual differences in underlying neurobiological systems subserving appetitive (i.e., approach) motivation, emotion regulation, and social affiliation, and (b) the need to develop more intensive interventions targeting neurobiologically vulnerable children. PMID:23544677

  10. Sympathetic- and parasympathetic-linked cardiac function and prediction of externalizing behavior, emotion regulation, and prosocial behavior among preschoolers treated for ADHD.

    PubMed

    Beauchaine, Theodore P; Gatzke-Kopp, Lisa; Neuhaus, Emily; Chipman, Jane; Reid, M Jamila; Webster-Stratton, Carolyn

    2013-06-01

    To evaluate measures of cardiac activity and reactivity as prospective biomarkers of treatment response to an empirically supported behavioral intervention for attention-deficit/hyperactivity disorder (ADHD). Cardiac preejection period (PEP), an index of sympathetic-linked cardiac activity, and respiratory sinus arrhythmia (RSA), an index of parasympathetic-linked cardiac activity, were assessed among 99 preschool children (ages 4-6 years) with ADHD both at rest and in response to behavioral challenge, before participants and their parents completed 1 of 2 versions of the Incredible Years parent and child interventions. Main effects of PEP activity and reactivity and of RSA activity and reactivity were found. Although samplewide improvements in behavior were observed at posttreatment, those who exhibited lengthened cardiac PEP at rest and reduced PEP reactivity to incentives scored higher on measures of conduct problems and aggression both before and after treatment. In contrast, children who exhibited lower baseline RSA and greater RSA withdrawal scored lower on prosocial behavior before and after treatment. Finally, children who exhibited greater RSA withdrawal scored lower on emotion regulation before and after treatment. We discuss these findings in terms of (a) individual differences in underlying neurobiological systems subserving appetitive (i.e., approach) motivation, emotion regulation, and social affiliation and (b) the need to develop more intensive interventions targeting neurobiologically vulnerable children.

  11. Redox Aspects of Chaperones in Cardiac Function

    PubMed Central

    Penna, Claudia; Sorge, Matteo; Femminò, Saveria; Pagliaro, Pasquale; Brancaccio, Mara

    2018-01-01

    Molecular chaperones are stress proteins that allow the correct folding or unfolding as well as the assembly or disassembly of macromolecular cellular components. Changes in expression and post-translational modifications of chaperones have been linked to a number of age- and stress-related diseases including cancer, neurodegeneration, and cardiovascular diseases. Redox sensible post-translational modifications, such as S-nitrosylation, glutathionylation and phosphorylation of chaperone proteins have been reported. Redox-dependent regulation of chaperones is likely to be a phenomenon involved in metabolic processes and may represent an adaptive response to several stress conditions, especially within mitochondria, where it impacts cellular bioenergetics. These post-translational modifications might underlie the mechanisms leading to cardioprotection by conditioning maneuvers as well as to ischemia/reperfusion injury. In this review, we discuss this topic and focus on two important aspects of redox-regulated chaperones, namely redox regulation of mitochondrial chaperone function and cardiac protection against ischemia/reperfusion injury. PMID:29615920

  12. Caveolae-localized L-type Ca2+ channels do not contribute to function or hypertrophic signalling in the mouse heart.

    PubMed

    Correll, Robert N; Makarewich, Catherine A; Zhang, Hongyu; Zhang, Chen; Sargent, Michelle A; York, Allen J; Berretta, Remus M; Chen, Xiongwen; Houser, Steven R; Molkentin, Jeffery D

    2017-06-01

    L-type Ca2+ channels (LTCCs) in adult cardiomyocytes are localized to t-tubules where they initiate excitation-contraction coupling. Our recent work has shown that a subpopulation of LTCCs found at the surface sarcolemma in caveolae of adult feline cardiomyocytes can also generate a Ca2+ microdomain that activates nuclear factor of activated T-cells signaling and cardiac hypertrophy, although the relevance of this paradigm to hypertrophy regulation in vivo has not been examined. Here we generated heart-specific transgenic mice with a putative caveolae-targeted LTCC activator protein that was ineffective in initiating or enhancing cardiac hypertrophy in vivo. We also generated transgenic mice with cardiac-specific overexpression of a putative caveolae-targeted inhibitor of LTCCs, and while this protein inhibited caveolae-localized LTCCs without effects on global Ca2+ handling, it similarly had no effect on cardiac hypertrophy in vivo. Cardiac hypertrophy was elicited by pressure overload for 2 or 12 weeks or with neurohumoral agonist infusion. Caveolae-specific LTCC activator or inhibitor transgenic mice showed no greater change in nuclear factor of activated T-cells activity after 2 weeks of pressure overload stimulation compared with control mice. Our results indicate that LTCCs in the caveolae microdomain do not affect cardiac function and are not necessary for the regulation of hypertrophic signaling in the adult mouse heart. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2017. For permissions, please email: journals.permissions@oup.com.

  13. miR-300 mediates Bmi1 function and regulates differentiation in primitive cardiac progenitors

    PubMed Central

    Cruz, F M; Tomé, M; Bernal, J A; Bernad, A

    2015-01-01

    B lymphoma Mo-MLV insertion region 1 (Bmi1) is a polycomb-family transcriptional factor critical for self-renewal in many adult stem cells and human neoplasia. We sought to identify microRNAs regulated by Bmi1 that could play a role in multipotent cardiac progenitor cell (CPC) decisions. We found that miR-300, a poorly characterized microRNA mapping in the Dlk1-Dio3 microRNA cluster, was positively regulated by Bmi1 in CPCs. Forced expression of miR-300 in CPCs promoted an improved stemness signature with a significant increase in Oct4 levels, a reduction in senescence progression and an enhanced proliferative status via p19 activation and inhibition of p16 accumulation. Endothelial and cardiogenic differentiation were clearly compromised by sustained miR-300 expression. Additionally, RNA and protein analysis revealed a significant reduction in key cardiac transcription factors, including Nkx2.5 and Tbx5. Collectively, these results suggest that some functions attributed to Bmi1 are due to induction of miR-300, which decreases the cardiogenic differentiation potential of multipotent CPCs in vitro and promotes self-renewal. PMID:26512961

  14. Overlapping and opposing functions of G protein-coupled receptor kinase 2 (GRK2) and GRK5 during heart development.

    PubMed

    Philipp, Melanie; Berger, Ina M; Just, Steffen; Caron, Marc G

    2014-09-19

    G protein-coupled receptor kinases 2 (GRK2) and 5 (GRK5) are fundamental regulators of cardiac performance in adults but are less well characterized for their function in the hearts of embryos. GRK2 and -5 belong to different subfamilies and function as competitors in the control of certain receptors and signaling pathways. In this study, we used zebrafish to investigate whether the fish homologs of GRK2 and -5, Grk2/3 and Grk5, also have unique, complementary, or competitive roles during heart development. We found that they differentially regulate the heart rate of early embryos and equally facilitate heart function in older embryos and that both are required to develop proper cardiac morphology. A loss of Grk2/3 results in dilated atria and hypoplastic ventricles, and the hearts of embryos depleted in Grk5 present with a generalized atrophy. This Grk5 morphant phenotype was associated with an overall decrease of early cardiac progenitors as well as a reduction in the area occupied by myocardial progenitor cells. In the case of Grk2/3, the progenitor decrease was confined to a subset of precursor cells with a committed ventricular fate. We attempted to rescue the GRK loss-of-function heart phenotypes by downstream activation of Hedgehog signaling. The Grk2/3 loss-of-function embryos were rescued by this approach, but Grk5 embryos failed to respond. In summary, we found that GRK2 and GRK5 control cardiac function as well as morphogenesis during development although with different morphological outcomes. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  15. CIP, a cardiac Isl1-interacting protein, represses cardiomyocyte hypertrophy.

    PubMed

    Huang, Zhan-Peng; Young Seok, Hee; Zhou, Bin; Chen, Jinghai; Chen, Jian-Fu; Tao, Yazhong; Pu, William T; Wang, Da-Zhi

    2012-03-16

    Mammalian heart has minimal regenerative capacity. In response to mechanical or pathological stress, the heart undergoes cardiac remodeling. Pressure and volume overload in the heart cause increased size (hypertrophic growth) of cardiomyocytes. Whereas the regulatory pathways that activate cardiac hypertrophy have been well-established, the molecular events that inhibit or repress cardiac hypertrophy are less known. To identify and investigate novel regulators that modulate cardiac hypertrophy. Here, we report the identification, characterization, and functional examination of a novel cardiac Isl1-interacting protein (CIP). CIP was identified from a bioinformatic search for novel cardiac-expressed genes in mouse embryonic hearts. CIP encodes a nuclear protein without recognizable motifs. Northern blotting, in situ hybridization, and reporter gene tracing demonstrated that CIP is highly expressed in cardiomyocytes of developing and adult hearts. Yeast two-hybrid screening identified Isl1, a LIM/homeodomain transcription factor essential for the specification of cardiac progenitor cells in the second heart field, as a cofactor of CIP. CIP directly interacted with Isl1, and we mapped the domains of these two proteins, which mediate their interaction. We show that CIP represses the transcriptional activity of Isl1 in the activation of the myocyte enhancer factor 2C. The expression of CIP was dramatically reduced in hypertrophic cardiomyocytes. Most importantly, overexpression of CIP repressed agonist-induced cardiomyocyte hypertrophy. Our studies therefore identify CIP as a novel regulator of cardiac hypertrophy.

  16. Knockout of p21-activated kinase-1 attenuates exercise-induced cardiac remodelling through altered calcineurin signalling

    PubMed Central

    Davis, Robert T.; Simon, Jillian N.; Utter, Megan; Mungai, Paul; Alvarez, Manuel G.; Chowdhury, Shamim A.K.; Heydemann, Ahlke; Ke, Yunbo; Wolska, Beata M.; Solaro, R. John

    2015-01-01

    Aims Despite its known cardiovascular benefits, the intracellular signalling mechanisms underlying physiological cardiac growth remain poorly understood. Therefore, the purpose of this study was to investigate a novel role of p21-activated kinase-1 (Pak1) in the regulation of exercise-induced cardiac hypertrophy. Methods and results Wild-type (WT) and Pak1 KO mice were subjected to 6 weeks of treadmill endurance exercise training (ex-training). Cardiac function was assessed via echocardiography, in situ haemodynamics, and the pCa–force relations in skinned fibre preparations at baseline and at the end of the training regimen. Post-translational modifications to the sarcomeric proteins and expression levels of calcium-regulating proteins were also assessed following ex-training. Heart weight/tibia length and echocardiography data revealed that there was marked hypertrophy following ex-training in the WT mice, which was not evident in the KO mice. Additionally, following ex-training, WT mice demonstrated an increase in cardiac contractility, myofilament calcium sensitivity, and phosphorylation of cardiac myosin-binding protein C, cardiac TnT, and tropomyosin compared with KO mice. With ex-training in WT mice, there were also increased protein levels of calcineurin and increased phosphorylation of phospholamban. Conclusions Our data suggest that Pak1 is essential for adaptive physiological cardiac remodelling and support previous evidence that demonstrates Pak1 signalling is important for cardiac growth and survival. PMID:26464331

  17. Elevated expression of the metabolic regulator receptor-interacting protein 140 results in cardiac hypertrophy and impaired cardiac function.

    PubMed

    Fritah, Asmaà; Steel, Jennifer H; Nichol, Donna; Parker, Nadeene; Williams, Sharron; Price, Anthony; Strauss, Leena; Ryder, Timothy A; Mobberley, Margaret A; Poutanen, Matti; Parker, Malcolm; White, Roger

    2010-06-01

    Receptor-interacting protein 140 (RIP140) is a ligand-dependent cofactor for nuclear receptors that regulate networks of genes involved in cellular processes, including metabolism. An important role for RIP140 in metabolic control has been identified in RIP140 null mice, whose phenotypes include derepression of genes involved in energy mobilization or catabolism in adipocytes and a switch to more oxidative fibres in skeletal muscle. We hypothesized that ubiquitous expression of RIP140 would suppress metabolic processes, leading to defects in development or cellular function. The primary effect of exogenous expression of RIP140 mRNA (real-time PCR) and protein (western blotting) in transgenic mice is impaired postnatal heart function. There was rapid onset of cardiac hypertrophy and ventricular fibrosis, detected microscopically, in male RIP140 transgenic mice from 4 weeks of age, resulting in 25% mortality by 5 months. RIP140 exogenous expression in the heart leads to decreased mitochondria state III and state IV membrane potential and oxygen consumption. Quantitative PCR showed more than 50% reduced expression of genes involved in mitochondrial activity and fatty acid metabolism, including mitochondrial transcription factor A, cytochrome oxidase VIIa, cytochrome XII, CD36, medium-chain acyl dehydrogenase, and fatty acid transport protein, many of which are known targets for nuclear receptors, including peroxisome proliferator-activated receptors PPARalpha and PPARdelta and oestrogen-related receptors ERRalpha and ERRgamma. This study demonstrates that RIP140 is an important cofactor in postnatal cardiac function and that inhibition of the action of RIP140 may provide a model system to investigate specific interventions designed to prevent or delay the onset of cardiac disease.

  18. Hypertrophic Cardiomyopathy Cardiac Troponin C Mutations Differentially Affect Slow Skeletal and Cardiac Muscle Regulation

    PubMed Central

    Veltri, Tiago; Landim-Vieira, Maicon; Parvatiyar, Michelle S.; Gonzalez-Martinez, David; Dieseldorff Jones, Karissa M.; Michell, Clara A.; Dweck, David; Landstrom, Andrew P.; Chase, P. Bryant; Pinto, Jose R.

    2017-01-01

    Mutations in TNNC1—the gene encoding cardiac troponin C (cTnC)—that have been associated with hypertrophic cardiomyopathy (HCM) and cardiac dysfunction may also affect Ca2+-regulation and function of slow skeletal muscle since the same gene is expressed in both cardiac and slow skeletal muscle. Therefore, we reconstituted rabbit soleus fibers and bovine masseter myofibrils with mutant cTnCs (A8V, C84Y, E134D, and D145E) associated with HCM to investigate their effects on contractile force and ATPase rates, respectively. Previously, we showed that these HCM cTnC mutants, except for E134D, increased the Ca2+ sensitivity of force development in cardiac preparations. In the current study, an increase in Ca2+ sensitivity of isometric force was only observed for the C84Y mutant when reconstituted in soleus fibers. Incorporation of cTnC C84Y in bovine masseter myofibrils reduced the ATPase activity at saturating [Ca2+], whereas, incorporation of cTnC D145E increased the ATPase activity at inhibiting and saturating [Ca2+]. We also tested whether reconstitution of cardiac fibers with troponin complexes containing the cTnC mutants and slow skeletal troponin I (ssTnI) could emulate the slow skeletal functional phenotype. Reconstitution of cardiac fibers with troponin complexes containing ssTnI attenuated the Ca2+ sensitization of isometric force when cTnC A8V and D145E were present; however, it was enhanced for C84Y. In summary, although the A8V and D145E mutants are present in both muscle types, their functional phenotype is more prominent in cardiac muscle than in slow skeletal muscle, which has implications for the protein-protein interactions within the troponin complex. The C84Y mutant warrants further investigation since it drastically alters the properties of both muscle types and may account for the earlier clinical onset in the proband. PMID:28473771

  19. MicroRNA-363 negatively regulates the left ventricular determining transcription factor HAND1 in human embryonic stem cell-derived cardiomyocytes.

    PubMed

    Wagh, Vilas; Pomorski, Alexander; Wilschut, Karlijn J; Piombo, Sebastian; Bernstein, Harold S

    2014-06-06

    Posttranscriptional control of mRNA by microRNA (miRNA) has been implicated in the regulation of diverse biologic processes from directed differentiation of stem cells through organism development. We describe a unique pathway by which miRNA regulates the specialized differentiation of cardiomyocyte (CM) subtypes. We differentiated human embryonic stem cells (hESCs) to cardiac progenitor cells and functional CMs, and characterized the regulated expression of specific miRNAs that target transcriptional regulators of left/right ventricular-subtype specification. From >900 known human miRNAs in hESC-derived cardiac progenitor cells and functional CMs, a subset of differentially expressed cardiac miRNAs was identified, and in silico analysis predicted highly conserved binding sites in the 3'-untranslated regions (3'UTRs) of Hand-and-neural-crest-derivative-expressed (HAND) genes 1 and 2 that are involved in left and right ventricular development. We studied the temporal and spatial expression patterns of four miRNAs in differentiating hESCs, and found that expression of miRNA (miR)-363, miR-367, miR-181a, and miR-181c was specific for stage and site. Further analysis showed that miR-363 overexpression resulted in downregulation of HAND1 mRNA and protein levels. A dual luciferase reporter assay demonstrated functional interaction of miR-363 with the full-length 3'UTR of HAND1. Expression of anti-miR-363 in-vitro resulted in enrichment for HAND1-expressing CM subtype populations. We also showed that BMP4 treatment induced the expression of HAND2 with less effect on HAND1, whereas miR-363 overexpression selectively inhibited HAND1. These data show that miR-363 negatively regulates the expression of HAND1 and suggest that suppression of miR-363 could provide a novel strategy for generating functional left-ventricular CMs.

  20. Functional assembly of engineered myocardium by electrical stimulation of cardiac myocytes cultured on scaffolds.

    PubMed

    Radisic, Milica; Park, Hyoungshin; Shing, Helen; Consi, Thomas; Schoen, Frederick J; Langer, Robert; Freed, Lisa E; Vunjak-Novakovic, Gordana

    2004-12-28

    The major challenge of tissue engineering is directing the cells to establish the physiological structure and function of the tissue being replaced across different hierarchical scales. To engineer myocardium, biophysical regulation of the cells needs to recapitulate multiple signals present in the native heart. We hypothesized that excitation-contraction coupling, critical for the development and function of a normal heart, determines the development and function of engineered myocardium. To induce synchronous contractions of cultured cardiac constructs, we applied electrical signals designed to mimic those in the native heart. Over only 8 days in vitro, electrical field stimulation induced cell alignment and coupling, increased the amplitude of synchronous construct contractions by a factor of 7, and resulted in a remarkable level of ultrastructural organization. Development of conductive and contractile properties of cardiac constructs was concurrent, with strong dependence on the initiation and duration of electrical stimulation.

  1. Expression, Regulation and Putative Nutrient-Sensing Function of Taste GPCRs in the Heart

    PubMed Central

    Foster, Simon R.; Porrello, Enzo R.; Purdue, Brooke; Chan, Hsiu-Wen; Voigt, Anja; Frenzel, Sabine; Hannan, Ross D.; Moritz, Karen M.; Simmons, David G.; Molenaar, Peter; Roura, Eugeni; Boehm, Ulrich; Meyerhof, Wolfgang; Thomas, Walter G.

    2013-01-01

    G protein-coupled receptors (GPCRs) are critical for cardiovascular physiology. Cardiac cells express >100 nonchemosensory GPCRs, indicating that important physiological and potential therapeutic targets remain to be discovered. Moreover, there is a growing appreciation that members of the large, distinct taste and odorant GPCR families have specific functions in tissues beyond the oronasal cavity, including in the brain, gastrointestinal tract and respiratory system. To date, these chemosensory GPCRs have not been systematically studied in the heart. We performed RT-qPCR taste receptor screens in rodent and human heart tissues that revealed discrete subsets of type 2 taste receptors (TAS2/Tas2) as well as Tas1r1 and Tas1r3 (comprising the umami receptor) are expressed. These taste GPCRs are present in cultured cardiac myocytes and fibroblasts, and by in situ hybridization can be visualized across the myocardium in isolated cardiac cells. Tas1r1 gene-targeted mice (Tas1r1Cre/Rosa26tdRFP) strikingly recapitulated these data. In vivo taste receptor expression levels were developmentally regulated in the postnatal period. Intriguingly, several Tas2rs were upregulated in cultured rat myocytes and in mouse heart in vivo following starvation. The discovery of taste GPCRs in the heart opens an exciting new field of cardiac research. We predict that these taste receptors may function as nutrient sensors in the heart. PMID:23696900

  2. Radiation-induced cardiovascular effects

    NASA Astrophysics Data System (ADS)

    Tapio, Soile

    Recent epidemiological studies indicate that exposure to ionising radiation enhances the risk of cardiovascular mortality and morbidity in a moderate but significant manner. Our goal is to identify molecular mechanisms involved in the pathogenesis of radiation-induced cardiovascular disease using cellular and mouse models. Two radiation targets are studied in detail: the vascular endothelium that plays a pivotal role in the regulation of cardiac function, and the myocardium, in particular damage to the cardiac mitochondria. Ionising radiation causes immediate and persistent alterations in several biological pathways in the endothelium in a dose- and dose-rate dependent manner. High acute and cumulative doses result in rapid, non-transient remodelling of the endothelial cytoskeleton, as well as increased lipid peroxidation and protein oxidation of the heart tissue, independent of whether exposure is local or total body. Proteomic and functional changes are observed in lipid metabolism, glycolysis, mitochondrial function (respiration, ROS production etc.), oxidative stress, cellular adhesion, and cellular structure. The transcriptional regulators Akt and PPAR alpha seem to play a central role in the radiation-response of the endothelium and myocardium, respectively. We have recently started co-operation with GSI in Darmstadt to study the effect of heavy ions on the endothelium. Our research will facilitate the identification of biomarkers associated with adverse cardiac effects of ionising radiation and may lead to the development of countermeasures against radiation-induced cardiac damage.

  3. YY1 Protects Cardiac Myocytes from Pathologic Hypertrophy by Interacting with HDAC5

    PubMed Central

    Dockstader, Karen; McKinsey, Timothy A.

    2008-01-01

    YY1 is a transcription factor that can repress or activate the transcription of a variety of genes. Here, we show that the function of YY1 as a repressor in cardiac myocytes is tightly dependent on its ability to interact with histone deacetylase 5 (HDAC5). YY1 interacts with HDAC5, and overexpression of YY1 prevents HDAC5 nuclear export in response to hypertrophic stimuli and the increase in cell size and re-expression of fetal genes that accompany pathological cardiac hypertrophy. Knockdown of YY1 results in up-regulation of all genes present during fetal development and increases the cell size of neonatal cardiac myocytes. Moreover, overexpression of a YY1 deletion construct that does not interact with HDAC5 results in transcription activation, suggesting that HDAC5 is necessary for YY1 function as a transcription repressor. In support of this relationship, we show that knockdown of HDAC5 results in transcription activation by YY1. Finally, we show that YY1 interaction with HDAC5 is dependent on the HDAC5 phosphorylation domain and that overexpression of YY1 reduces HDAC5 phosphorylation in response to hypertrophic stimuli. Our results strongly suggest that YY1 functions as an antihypertrophic factor by preventing HDAC5 nuclear export and that up-regulation of YY1 in human heart failure may be a protective mechanism against pathological hypertrophy. PMID:18632988

  4. Mammalian target of rapamycin is essential for cardiomyocyte survival and heart development in mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Pengpeng; Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070; Department of Animal Sciences, Purdue University, West Lafayette, IN 47907

    Highlights: • mTOR is a critical regulator of many biological processes yet its function in heart is not well understood. • MCK-Cre/Mtor{sup flox/flox} mice were established to delete Mtor in cardiomyocytes. • The mTOR-mKO mice developed normally but die prematurely within 5 weeks after birth due to heart disease. • The mTOR-mKO mice had dilated myocardium and increased cell death. • mTOR-mKO hearts had reduced expression of metabolic genes and activation of mTOR target proteins. - Abstract: Mammalian target of rapamycin (mTOR) is a critical regulator of protein synthesis, cell proliferation and energy metabolism. As constitutive knockout of Mtor leadsmore » to embryonic lethality, the in vivo function of mTOR in perinatal development and postnatal growth of heart is not well defined. In this study, we established a muscle-specific mTOR conditional knockout mouse model (mTOR-mKO) by crossing MCK-Cre and Mtor{sup flox/flox} mice. Although the mTOR-mKO mice survived embryonic and perinatal development, they exhibited severe postnatal growth retardation, cardiac muscle pathology and premature death. At the cellular level, the cardiac muscle of mTOR-mKO mice had fewer cardiomyocytes due to apoptosis and necrosis, leading to dilated cardiomyopathy. At the molecular level, the cardiac muscle of mTOR-mKO mice expressed lower levels of fatty acid oxidation and glycolysis related genes compared to the WT littermates. In addition, the mTOR-mKO cardiac muscle had reduced Myh6 but elevated Myh7 expression, indicating cardiac muscle degeneration. Furthermore, deletion of Mtor dramatically decreased the phosphorylation of S6 and AKT, two key targets downstream of mTORC1 and mTORC2 mediating the normal function of mTOR. These results demonstrate that mTOR is essential for cardiomyocyte survival and cardiac muscle function.« less

  5. Extracellular signal-regulated kinase (ERK) activation preserves cardiac function in pressure overload induced hypertrophy.

    PubMed

    Mutlak, Michael; Schlesinger-Laufer, Michal; Haas, Tali; Shofti, Rona; Ballan, Nimer; Lewis, Yair E; Zuler, Mor; Zohar, Yaniv; Caspi, Lilac H; Kehat, Izhak

    2018-05-24

    Chronic pressure overload and a variety of mediators induce concentric cardiac hypertrophy. When prolonged, cardiac hypertrophy culminates in decreased myocardial function and heart failure. Activation of the extracellular signal-regulated kinase (ERK) is consistently observed in animal models of hypertrophy and in human patients, but its role in the process is controversial. We generated transgenic mouse lines with cardiomyocyte restricted overexpression of intrinsically active ERK1, which similar to the observations in hypertrophy is phosphorylated on both the TEY and the Thr207 motifs and is overexpressed at pathophysiological levels. The activated ERK1 transgenic mice developed a modest adaptive hypertrophy with increased contractile function and without fibrosis. Following induction of pressure-overload, where multiple pathways are stimulated, this activation did not further increase the degree of hypertrophy but protected the heart through a decrease in the degree of fibrosis and maintenance of ventricular contractile function. The ERK pathway acts to promote a compensated hypertrophic response, with enhanced contractile function and reduced fibrosis. The activation of this pathway may be a therapeutic strategy to preserve contractile function when the pressure overload cannot be easily alleviated. The inhibition of this pathway, which is increasingly being used for cancer therapy on the other hand, should be used with caution in the presence of pressure-overload. Copyright © 2017. Published by Elsevier B.V.

  6. Biochemistry and biology: heart-to-heart to investigate cardiac progenitor cells.

    PubMed

    Chimenti, Isotta; Forte, Elvira; Angelini, Francesco; Messina, Elisa; Giacomello, Alessandro

    2013-02-01

    Cardiac regenerative medicine is a rapidly evolving field, with promising future developments for effective personalized treatments. Several stem/progenitor cells are candidates for cardiac cell therapy, and emerging evidence suggests how multiple metabolic and biochemical pathways strictly regulate their fate and renewal. In this review, we will explore a selection of areas of common interest for biology and biochemistry concerning stem/progenitor cells, and in particular cardiac progenitor cells. Numerous regulatory mechanisms have been identified that link stem cell signaling and functions to the modulation of metabolic pathways, and vice versa. Pharmacological treatments and culture requirements may be exploited to modulate stem cell pluripotency and self-renewal, possibly boosting their regenerative potential for cell therapy. Mitochondria and their many related metabolites and messengers, such as oxygen, ROS, calcium and glucose, have a crucial role in regulating stem cell fate and the balance of their functions, together with many metabolic enzymes. Furthermore, protein biochemistry and proteomics can provide precious clues on the definition of different progenitor cell populations, their physiology and their autocrine/paracrine regulatory/signaling networks. Interdisciplinary approaches between biology and biochemistry can provide productive insights on stem/progenitor cells, allowing the development of novel strategies and protocols for effective cardiac cell therapy clinical translation. This article is part of a Special Issue entitled Biochemistry of Stem Cells. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Cardiac parasympathetic regulation in obese women with binge eating disorder.

    PubMed

    Friederich, H-C; Schild, S; Schellberg, D; Quenter, A; Bode, C; Herzog, W; Zipfel, S

    2006-03-01

    Obese individuals with a binge eating disorder (BED) differ from obese non-binge eaters (NBED) with respect to (a) eating behaviour, (b) psychiatric comorbidity and (c) level of psychosocial distress. The aim of the study was to explore whether these three factors have an influence on cardiac parasympathetic function, that is independent of obesity: as alterations in cardiac parasympathetic function may have a role in the higher cardiovascular mortality that is present in obese individuals. In total, 38 obese women (BMI>30 kg/m(2)), with a BED and 34 age and BMI matched healthy controls (NBED) completed a laboratory stress protocol that incorporated a baseline resting period, Head-up Tilt Testing (HUT) and two challenging mental tasks. Heart rate and blood pressure were measured continuously during the protocol. Parasympathetic cardiac regulation was assessed as the high frequency component of heart rate variability (HRV-HF). Mental challenge led to an augmented reduction of HRV-HF in obese binge eaters, which was linked to the binge eating frequency and hunger perception, but not to psychiatric comorbidity. During baseline conditions and HUT, no significant differences in parasympathetic measures were observed between the two subject groups. Subjects with a BED showed greater reduction in parasympathetic cardiac control (HRV-HF) during mental stress, suggesting higher stress vulnerability in women with a BED. Longitudinal investigations are necessary to evaluate whether this is associated with an increased cardiovascular mortality.

  8. Postural Regulation of Muscle Sympathetic Nerve Activity Before and After Simulated and Actual Microgravity Deconditioning

    NASA Technical Reports Server (NTRS)

    Pawelczyk, J. A.; Levine, B. D.

    1999-01-01

    The etiology of orthostatic intolerance after spaceflight is multifaceted. Morphological adaptations, in particular cardiac atrophy, are likely to magnify the decrease in stroke volume that occurs with reductions in cardiac filling pressure when standing. Neural adaptations may be inferred as well, as reductions in carotid-cardiac baroreflex responsiveness have been reported following bedrest deconditioning and spaceflight. Neural control of vascular resistance has not been studied directly when orthostatic intolerance is florid in the hours following spaceflight. However, the increases in systemic vascular resistance and plasma catecholamines during orthostatic stress are inappropriately low in orthostatically intolerant subjects following spaceflight, suggesting that deficits in the regulation of vascular resistance may be associated with hypoadrenergic function. The studies described in this abstract were designed to test this hypothesis.

  9. A Novel Human Tissue-Engineered 3-D Functional Vascularized Cardiac Muscle Construct

    PubMed Central

    Valarmathi, Mani T.; Fuseler, John W.; Davis, Jeffrey M.; Price, Robert L.

    2017-01-01

    Organ tissue engineering, including cardiovascular tissues, has been an area of intense investigation. The major challenge to these approaches has been the inability to vascularize and perfuse the in vitro engineered tissue constructs. Attempts to provide oxygen and nutrients to the cells contained in the biomaterial constructs have had varying degrees of success. The aim of this current study is to develop a three-dimensional (3-D) model of vascularized cardiac tissue to examine the concurrent temporal and spatial regulation of cardiomyogenesis in the context of postnatal de novo vasculogenesis during stem cell cardiac regeneration. In order to achieve the above aim, we have developed an in vitro 3-D functional vascularized cardiac muscle construct using human induced pluripotent stem cell-derived embryonic cardiac myocytes (hiPSC-ECMs) and human mesenchymal stem cells (hMSCs). First, to generate the prevascularized scaffold, human cardiac microvascular endothelial cells (hCMVECs) and hMSCs were co-cultured onto a 3-D collagen cell carrier (CCC) for 7 days under vasculogenic culture conditions. In this milieu, hCMVECs/hMSCs underwent maturation, differentiation, and morphogenesis characteristic of microvessels, and formed extensive plexuses of vascular networks. Next, the hiPSC-ECMs and hMSCs were co-cultured onto this generated prevascularized CCCs for further 7 or 14 days in myogenic culture conditions. Finally, the vascular and cardiac phenotypic inductions were analyzed at the morphological, immunological, biochemical, molecular, and functional levels. Expression and functional analyses of the differentiated cells revealed neo-angiogenesis and neo-cardiomyogenesis. Thus, our unique 3-D co-culture system provided us the apt in vitro functional vascularized 3-D cardiac patch that can be utilized for cellular cardiomyoplasty. PMID:28194397

  10. Novel Insights into the Cardio-Protective Effects of FGF21 in Lean and Obese Rat Hearts

    PubMed Central

    Chen, Jing; Ramanjaneya, Manjunath; Bari, Muhammad F.; Bhudia, Sunil K.; Hillhouse, Edward W.; Tan, Bee K.; Randeva, Harpal S.

    2014-01-01

    Aims Fibroblast growth factor 21 (FGF21) is a hepatic metabolic regulator with pleotropic actions. Its plasma concentrations are increased in obesity and diabetes; states associated with an increased incidence of cardiovascular disease. We therefore investigated the direct effect of FGF21 on cardio-protection in obese and lean hearts in response to ischemia. Methods and Results FGF21, FGF21-receptor 1 (FGFR1) and beta-Klotho (βKlotho) were expressed in rodent, human hearts and primary rat cardiomyocytes. Cardiac FGF21 was expressed and secreted (real time RT-PCR/western blot and ELISA) in an autocrine-paracrine manner, in response to obesity and hypoxia, involving FGFR1-βKlotho components. Cardiac-FGF21 expression and secretion were increased in response to global ischemia. In contrast βKlotho was reduced in obese hearts. In isolated adult rat cardiomyocytes, FGF21 activated PI3K/Akt (phosphatidylinositol 3-kinase/Akt), ERK1/2(extracellular signal-regulated kinase) and AMPK (AMP-activated protein kinase) pathways. In Langendorff perfused rat [adult male wild-type wistar] hearts, FGF21 administration induced significant cardio-protection and restoration of function following global ischemia. Inhibition of PI3K/Akt, AMPK, ERK1/2 and ROR-α (retinoic-acid receptor alpha) pathway led to significant decrease of FGF21 induced cardio-protection and restoration of cardiac function in response to global ischemia. More importantly, this cardio-protective response induced by FGF21 was reduced in obesity, although the cardiac expression profiles and circulating FGF21 levels were increased. Conclusion In an ex vivo Langendorff system, we show that FGF21 induced cardiac protection and restoration of cardiac function involving autocrine-paracrine pathways, with reduced effect in obesity. Collectively, our findings provide novel insights into FGF21-induced cardiac effects in obesity and ischemia. PMID:24498293

  11. β-Adrenergic Receptor-Mediated Cardiac Contractility is Inhibited via Vasopressin Type 1A-Receptor-Dependent Signaling

    PubMed Central

    Tilley, Douglas G.; Zhu, Weizhong; Myers, Valerie D.; Barr, Larry A.; Gao, Erhe; Li, Xue; Song, Jianliang; Carter, Rhonda L.; Makarewich, Catherine A.; Yu, Daohai; Troupes, Constantine D.; Grisanti, Laurel A.; Coleman, Ryan C.; Koch, Walter J.; Houser, Steven R.; Cheung, Joseph Y.; Feldman, Arthur M.

    2014-01-01

    Background Enhanced arginine vasopressin (AVP) levels are associated with increased mortality during end-stage human heart failure (HF), and cardiac AVP type 1A receptor (V1AR) expression becomes increased. Additionally, mice with cardiac-restricted V1AR overexpression develop cardiomyopathy and decreased β-adrenergic receptor (βAR) responsiveness. This led us to hypothesize that V1AR signaling regulated βAR responsiveness and in doing so contributes to HF development. Methods and Results Transaortic constriction resulted in decreased cardiac function and βAR density and increased cardiac V1AR expression, effects reversed by a V1AR-selective antagonist. Molecularly, V1AR stimulation led to decreased βAR ligand affinity, as well as βAR-induced Ca2+ mobilization and cAMP generation in isolated adult cardiomyocytes, effects recapitulated via ex vivo Langendorff analysis. V1AR-mediated regulation of βAR responsiveness was demonstrated to occur in a previously unrecognized Gq protein-independent/GRK-dependent manner. Conclusions This newly discovered relationship between cardiac V1AR and βAR may be informative for the treatment of patients with acute decompensated HF and elevated AVP. PMID:25205804

  12. Molecular identity of cardiac mitochondrial chloride intracellular channel proteins.

    PubMed

    Ponnalagu, Devasena; Gururaja Rao, Shubha; Farber, Jason; Xin, Wenyu; Hussain, Ahmed Tafsirul; Shah, Kajol; Tanda, Soichi; Berryman, Mark; Edwards, John C; Singh, Harpreet

    2016-03-01

    Emerging evidences demonstrate significance of chloride channels in cardiac function and cardioprotection from ischemia-reperfusion (IR) injury. Unlike mitochondrial potassium channels sensitive to calcium (BKCa) and ATP (KATP), molecular identity of majority of cardiac mitochondrial chloride channels located at the inner membrane is not known. In this study, we report the presence of unique dimorphic chloride intracellular channel (CLIC) proteins namely CLIC1, CLIC4 and CLIC5 as abundant CLICs in the rodent heart. Further, CLIC4, CLIC5, and an ortholog present in Drosophila (DmCLIC) localize to adult cardiac mitochondria. We found that CLIC4 is enriched in the outer mitochondrial membrane, whereas CLIC5 is present in the inner mitochondrial membrane. Also, CLIC5 plays a direct role in regulating mitochondrial reactive oxygen species (ROS) generation. Our study highlights that CLIC5 is localized to the cardiac mitochondria and directly modulates mitochondrial function. Copyright © 2016 Elsevier B.V. and Mitochondria Research Society. All rights reserved.

  13. Strategies for Analyzing Cardiac Phenotypes in the Zebrafish Embryo

    PubMed Central

    Houk, Andrew R.; Yelon, Deborah

    2017-01-01

    The molecular mechanisms underlying cardiogenesis are of critical biomedical importance due to the high prevalence of cardiac birth defects. Over the past two decades, the zebrafish has served as a powerful model organism for investigating heart development, facilitated by its powerful combination of optical access to the embryonic heart and plentiful opportunities for genetic analysis. Work in zebrafish has identified numerous factors that are required for various aspects of heart formation, including the specification and differentiation of cardiac progenitor cells, the morphogenesis of the heart tube, cardiac chambers, and atrioventricular canal, and the establishment of proper cardiac function. However, our current roster of regulators of cardiogenesis is by no means complete. It is therefore valuable for ongoing studies to continue pursuit of additional genes and pathways that control the size, shape, and function of the zebrafish heart. An extensive arsenal of techniques is available to distinguish whether particular mutations, morpholinos, or small molecules disrupt specific processes during heart development. In this chapter, we provide a guide to the experimental strategies that are especially effective for the characterization of cardiac phenotypes in the zebrafish embryo. PMID:27312497

  14. Overexpression of miR-223 Tips the Balance of Pro- and Anti-hypertrophic Signaling Cascades toward Physiologic Cardiac Hypertrophy*

    PubMed Central

    Yang, Liwang; Li, Yutian; Wang, Xiaohong; Mu, Xingjiang; Qin, Dongze; Huang, Wei; Alshahrani, Saeed; Nieman, Michelle; Peng, Jiangtong; Essandoh, Kobina; Peng, Tianqing; Wang, Yigang; Lorenz, John; Soleimani, Manoocher; Zhao, Zhi-Qing; Fan, Guo-Chang

    2016-01-01

    MicroRNAs (miRNAs) have been extensively examined in pathological cardiac hypertrophy. However, few studies focused on profiling the miRNA alterations in physiological hypertrophic hearts. In this study we generated a transgenic mouse model with cardiac-specific overexpression of miR-223. Our results showed that elevation of miR-223 caused physiological cardiac hypertrophy with enhanced cardiac function but no fibrosis. Using the next generation RNA sequencing, we observed that most of dys-regulated genes (e.g. Atf3/5, Egr1/3, Sfrp2, Itgb1, Ndrg4, Akip1, Postn, Rxfp1, and Egln3) in miR-223-transgenic hearts were associated with cell growth, but they were not directly targeted by miR-223. Interestingly, these dys-regulated genes are known to regulate the Akt signaling pathway. We further identified that miR-223 directly interacted with 3′-UTRs of FBXW7 and Acvr2a, two negative regulators of the Akt signaling. However, we also validated that miR-223 directly inhibited the expression of IGF-1R and β1-integrin, two positive regulators of the Akt signaling. Lastly, Western blotting did reveal that Akt was activated in miR-223-overexpressing hearts. Adenovirus-mediated overexpression of miR-223 in neonatal rat cardiomyocytes induced cell hypertrophy, which was blocked by the addition of MK2206, a specific inhibitor of Akt. Taken together, these data represent the first piece of work showing that miR-223 tips the balance of promotion and inactivation of Akt signaling cascades toward activation of Akt, a key regulator of physiological cardiac hypertrophy. Thus, our study suggests that the ultimate phenotype outcome of a miRNA may be decided by the secondary net effects of the whole target network rather than by several primary direct targets in an organ/tissue. PMID:27226563

  15. Bitopic Sphingosine 1-Phosphate Receptor 3 (S1P3) Antagonist Rescue from Complete Heart Block: Pharmacological and Genetic Evidence for Direct S1P3 Regulation of Mouse Cardiac Conduction.

    PubMed

    Sanna, M Germana; Vincent, Kevin P; Repetto, Emanuela; Nguyen, Nhan; Brown, Steven J; Abgaryan, Lusine; Riley, Sean W; Leaf, Nora B; Cahalan, Stuart M; Kiosses, William B; Kohno, Yasushi; Brown, Joan Heller; McCulloch, Andrew D; Rosen, Hugh; Gonzalez-Cabrera, Pedro J

    2016-01-01

    The molecular pharmacology of the G protein-coupled receptors for sphingosine 1-phosphate (S1P) provides important insight into established and new therapeutic targets. A new, potent bitopic S1P3 antagonist, SPM-354, with in vivo activity, has been used, together with S1P3-knockin and S1P3-knockout mice to define the spatial and functional properties of S1P3 in regulating cardiac conduction. We show that S1P3 is a key direct regulator of cardiac rhythm both in vivo and in isolated perfused hearts. 2-Amino-2-[2-(4-octylphenyl)ethyl]propane-1,3-diol in vivo and S1P in isolated hearts induced a spectrum of cardiac effects, ranging from sinus bradycardia to complete heart block, as measured by a surface electrocardiogram in anesthetized mice and in volume-conducted Langendorff preparations. The agonist effects on complete heart block are absent in S1P3-knockout mice and are reversed in wild-type mice with SPM-354, as characterized and described here. Homologous knockin of S1P3-mCherry is fully functional pharmacologically and is strongly expressed by immunohistochemistry confocal microscopy in Hyperpolarization Activated Cyclic Nucleotide Gated Potassium Channel 4 (HCN4)-positive atrioventricular node and His-Purkinje fibers, with relative less expression in the HCN4-positive sinoatrial node. In Langendorff studies, at constant pressure, SPM-354 restored sinus rhythm in S1P-induced complete heart block and fully reversed S1P-mediated bradycardia. S1P3 distribution and function in the mouse ventricular cardiac conduction system suggest a direct mechanism for heart block risk that should be further studied in humans. A richer understanding of receptor and ligand usage in the pacemaker cells of the cardiac system is likely to be useful in understanding ventricular conduction in health, disease, and pharmacology. Copyright © 2015 by The American Society for Pharmacology and Experimental Therapeutics.

  16. Hierarchical approaches for systems modeling in cardiac development.

    PubMed

    Gould, Russell A; Aboulmouna, Lina M; Varner, Jeffrey D; Butcher, Jonathan T

    2013-01-01

    Ordered cardiac morphogenesis and function are essential for all vertebrate life. The heart begins as a simple contractile tube, but quickly grows and morphs into a multichambered pumping organ complete with valves, while maintaining regulation of blood flow and nutrient distribution. Though not identical, cardiac morphogenesis shares many molecular and morphological processes across vertebrate species. Quantitative data across multiple time and length scales have been gathered through decades of reductionist single variable analyses. These range from detailed molecular signaling pathways at the cellular levels to cardiac function at the tissue/organ levels. However, none of these components act in true isolation from others, and each, in turn, exhibits short- and long-range effects in both time and space. With the absence of a gene, entire signaling cascades and genetic profiles may be shifted, resulting in complex feedback mechanisms. Also taking into account local microenvironmental changes throughout development, it is apparent that a systems level approach is an essential resource to accelerate information generation concerning the functional relationships across multiple length scales (molecular data vs physiological function) and structural development. In this review, we discuss relevant in vivo and in vitro experimental approaches, compare different computational frameworks for systems modeling, and the latest information about systems modeling of cardiac development. Finally, we conclude with some important future directions for cardiac systems modeling. Copyright © 2013 Wiley Periodicals, Inc.

  17. Adrenergic Blockade Bi-directionally and Asymmetrically Alters Functional Brain-Heart Communication and Prolongs Electrical Activities of the Brain and Heart during Asphyxic Cardiac Arrest

    PubMed Central

    Tian, Fangyun; Liu, Tiecheng; Xu, Gang; Li, Duan; Ghazi, Talha; Shick, Trevor; Sajjad, Azeem; Wang, Michael M.; Farrehi, Peter; Borjigin, Jimo

    2018-01-01

    Sudden cardiac arrest is a leading cause of death in the United States. The neurophysiological mechanism underlying sudden death is not well understood. Previously we have shown that the brain is highly stimulated in dying animals and that asphyxia-induced death could be delayed by blocking the intact brain-heart neuronal connection. These studies suggest that the autonomic nervous system plays an important role in mediating sudden cardiac arrest. In this study, we tested the effectiveness of phentolamine and atenolol, individually or combined, in prolonging functionality of the vital organs in CO2-mediated asphyxic cardiac arrest model. Rats received either saline, phentolamine, atenolol, or phentolamine plus atenolol, 30 min before the onset of asphyxia. Electrocardiogram (ECG) and electroencephalogram (EEG) signals were simultaneously collected from each rat during the entire process and investigated for cardiac and brain functions using a battery of analytic tools. We found that adrenergic blockade significantly suppressed the initial decline of cardiac output, prolonged electrical activities of both brain and heart, asymmetrically altered functional connectivity within the brain, and altered, bi-directionally and asymmetrically, functional, and effective connectivity between the brain and heart. The protective effects of adrenergic blockers paralleled the suppression of brain and heart connectivity, especially in the right hemisphere associated with central regulation of sympathetic function. Collectively, our results demonstrate that blockade of brain-heart connection via alpha- and beta-adrenergic blockers significantly prolonged the detectable activities of both the heart and the brain in asphyxic rat. The beneficial effects of combined alpha and beta blockers may help extend the survival of cardiac arrest patients. PMID:29487541

  18. Adrenergic Blockade Bi-directionally and Asymmetrically Alters Functional Brain-Heart Communication and Prolongs Electrical Activities of the Brain and Heart during Asphyxic Cardiac Arrest.

    PubMed

    Tian, Fangyun; Liu, Tiecheng; Xu, Gang; Li, Duan; Ghazi, Talha; Shick, Trevor; Sajjad, Azeem; Wang, Michael M; Farrehi, Peter; Borjigin, Jimo

    2018-01-01

    Sudden cardiac arrest is a leading cause of death in the United States. The neurophysiological mechanism underlying sudden death is not well understood. Previously we have shown that the brain is highly stimulated in dying animals and that asphyxia-induced death could be delayed by blocking the intact brain-heart neuronal connection. These studies suggest that the autonomic nervous system plays an important role in mediating sudden cardiac arrest. In this study, we tested the effectiveness of phentolamine and atenolol, individually or combined, in prolonging functionality of the vital organs in CO 2 -mediated asphyxic cardiac arrest model. Rats received either saline, phentolamine, atenolol, or phentolamine plus atenolol, 30 min before the onset of asphyxia. Electrocardiogram (ECG) and electroencephalogram (EEG) signals were simultaneously collected from each rat during the entire process and investigated for cardiac and brain functions using a battery of analytic tools. We found that adrenergic blockade significantly suppressed the initial decline of cardiac output, prolonged electrical activities of both brain and heart, asymmetrically altered functional connectivity within the brain, and altered, bi-directionally and asymmetrically, functional, and effective connectivity between the brain and heart. The protective effects of adrenergic blockers paralleled the suppression of brain and heart connectivity, especially in the right hemisphere associated with central regulation of sympathetic function. Collectively, our results demonstrate that blockade of brain-heart connection via alpha- and beta-adrenergic blockers significantly prolonged the detectable activities of both the heart and the brain in asphyxic rat. The beneficial effects of combined alpha and beta blockers may help extend the survival of cardiac arrest patients.

  19. Renalase is a novel, soluble monoamine oxidase that regulates cardiac function and blood pressure

    PubMed Central

    Xu, Jianchao; Li, Guoyong; Wang, Peili; Velazquez, Heino; Yao, Xiaoqiang; Li, Yanyan; Wu, Yanling; Peixoto, Aldo; Crowley, Susan; Desir, Gary V.

    2005-01-01

    The kidney not only regulates fluid and electrolyte balance but also functions as an endocrine organ. For instance, it is the major source of circulating erythropoietin and renin. Despite currently available therapies, there is a marked increase in cardiovascular morbidity and mortality among patients suffering from end-stage renal disease. We hypothesized that the current understanding of the endocrine function of the kidney was incomplete and that the organ might secrete additional proteins with important biological roles. Here we report the identification of a novel flavin adenine dinucleotide–dependent amine oxidase (renalase) that is secreted into the blood by the kidney and metabolizes catecholamines in vitro (renalase metabolizes dopamine most efficiently, followed by epinephrine, and then norepinephrine). In humans, renalase gene expression is highest in the kidney but is also detectable in the heart, skeletal muscle, and the small intestine. The plasma concentration of renalase is markedly reduced in patients with end-stage renal disease, as compared with healthy subjects. Renalase infusion in rats caused a decrease in cardiac contractility, heart rate, and blood pressure and prevented a compensatory increase in peripheral vascular tone. These results identify renalase as what we believe to be a novel amine oxidase that is secreted by the kidney, circulates in blood, and modulates cardiac function and systemic blood pressure. PMID:15841207

  20. Effects of hypertrophic and dilated cardiomyopathy mutations on power output by human β-cardiac myosin.

    PubMed

    Spudich, James A; Aksel, Tural; Bartholomew, Sadie R; Nag, Suman; Kawana, Masataka; Yu, Elizabeth Choe; Sarkar, Saswata S; Sung, Jongmin; Sommese, Ruth F; Sutton, Shirley; Cho, Carol; Adhikari, Arjun S; Taylor, Rebecca; Liu, Chao; Trivedi, Darshan; Ruppel, Kathleen M

    2016-01-01

    Hypertrophic cardiomyopathy is the most frequently occurring inherited cardiovascular disease, with a prevalence of more than one in 500 individuals worldwide. Genetically acquired dilated cardiomyopathy is a related disease that is less prevalent. Both are caused by mutations in the genes encoding the fundamental force-generating protein machinery of the cardiac muscle sarcomere, including human β-cardiac myosin, the motor protein that powers ventricular contraction. Despite numerous studies, most performed with non-human or non-cardiac myosin, there is no clear consensus about the mechanism of action of these mutations on the function of human β-cardiac myosin. We are using a recombinantly expressed human β-cardiac myosin motor domain along with conventional and new methodologies to characterize the forces and velocities of the mutant myosins compared with wild type. Our studies are extending beyond myosin interactions with pure actin filaments to include the interaction of myosin with regulated actin filaments containing tropomyosin and troponin, the roles of regulatory light chain phosphorylation on the functions of the system, and the possible roles of myosin binding protein-C and titin, important regulatory components of both cardiac and skeletal muscles. © 2016. Published by The Company of Biologists Ltd.

  1. Both alpha(1A)- and alpha(1B)-adrenergic receptors crosstalk to down regulate beta(1)-ARs in mouse heart: coupling to differential PTX-sensitive pathways.

    PubMed

    Rorabaugh, Boyd R; Gaivin, Robert J; Papay, Robert S; Shi, Ting; Simpson, Paul C; Perez, Dianne M

    2005-11-01

    Adrenergic receptors (ARs) play an important role in the regulation of cardiac function. Cardiac inotropy is primarily regulated by beta(1)-ARs. However, alpha(1)-ARs may play an important role in inotropy during heart failure. Previous work has suggested that the alpha(1B)-AR modulates beta(1)-AR function in the heart. The potential role of the alpha(1A)-AR has not been previously studied. We used transgenic mice that express constitutively active mutant (CAM) forms of the alpha(1A)-AR or alpha(1B)-AR regulated by their endogenous promoters. Expression of the CAM alpha(1A)-AR or CAM alpha(1B)-AR had no effect on basal cardiac function (developed pressure, +dP/dT, -dP/dT, heart rate, flow rate). However, both alpha(1)-AR subtypes significantly decreased isoproterenol-stimulated +dP/dT. Pertussis toxin had no effect on +dP/dT in CAM alpha(1A)-AR hearts but restored +dP/dT to non-transgenic values in CAM alpha(1B)-AR hearts. Radioligand binding indicated a selective decrease in the density of beta(1)-ARs in both CAM mice. However, G-proteins, cAMP, or the percentage of high and low affinity states were unchanged in either transgenic compared with control. These data demonstrate that CAM alpha(1A)- and alpha(1B)-ARs both down regulate beta(1)-AR-mediated inotropy in the mouse heart. However, alpha(1)-AR subtypes are coupled to different beta-AR mediated signaling pathways with the alpha(1B)-AR being pertussis toxin sensitive.

  2. MiR-24 alleviates cardiomyocyte apoptosis after myocardial infarction via targeting BIM.

    PubMed

    Pan, L-J; Wang, X; Ling, Y; Gong, H

    2017-07-01

    Ischemia hypoxia induces cardiomyocyte (CM) apoptosis in the process of acute myocardial infarction (AMI). It was showed that pro-apoptosis factor BIM participates in regulating tumor cell apoptosis under ischemia or hypoxia condition, while its role in CM apoptosis after AMI is still unclear. It was revealed that miR-24 expression was significantly reduced in myocardial tissue after AMI. Bioinformatics analysis exhibits that miR-24 is targeted to the 3'-UTR of BIM. This study aims to investigate the role of miR-24 in mediating BIM expression and CM apoptosis. Dual-luciferase assay was used to confirm the targeted regulation between miR-24 and BIM. Cells were cultured under ischemia hypoxia for 12 h after transfection for 48 h. Cell apoptosis was tested by using flow cytometry. The caspase activity was detected by using spectrophotometry. Wistar rats were divided into four groups, including Sham, AMI, AMI + agomir-control, and AMI + agomir-24 groups. Cardiac function was evaluated by using echocardiography. CM apoptosis was determined by using TUNEL. Infarction area was measured by using evans blue staining. MiR-24 targeted suppressed BIM expression. MiR-24 mimic and/or si-BIM transfection significantly declined the BIM expression, inhibited caspase-9 and caspase-3 activities, and reduced cell apoptosis in H9C2 cells. MiR-24 expression was decreased, while BIM levels were up-regulated in myocardium after AMI. Agomir-24 injection down-regulated the BIM expression in myocardium, reduced CM apoptosis, narrowed infarction area, and improved cardiac function in rats. MiR-24 was reduced, whereas BIM was enhanced in the CM after AMI. MiR-24 up-regulation plays a critical role in decreasing BIM expression, reducing CM apoptosis, and improving cardiac function after AMI.

  3. Parasympathetic Regulation and Parental Socialization of Emotion: Biopsychosocial Processes of Adjustment in Preschoolers

    ERIC Educational Resources Information Center

    Hastings, Paul D.; De, Ishani

    2008-01-01

    Variations in parents' emotion socialization have been linked to children's social competence (SC) and behavior problems, but parental influences do not act independently of children's characteristics. A biopsychosocial model was tested, in which children's parasympathetic regulation of cardiac function and paternal and maternal socialization of…

  4. Essential and Unexpected Role of YY1 to Promote Mesodermal Cardiac Differentiation

    PubMed Central

    Gregoire, Serge; Karra, Ravi; Passer, Derek; Deutsch, Marcus-Andre; Krane, Markus; Feistritzer, Rebecca; Sturzu, Anthony; Domian, Ibrahim; Saga, Yumiko; Wu, Sean M.

    2013-01-01

    Rational Cardiogenesis is regulated by a complex interplay between transcription factors. However, little is known about how these interactions regulate the transition from mesodermal precursors to cardiac progenitor cells (CPCs). Objective To identify novel regulators of mesodermal cardiac lineage commitment. Methods and Results We performed a bioinformatic-based transcription factor binding site analysis on upstream promoter regions of genes that are enriched in embryonic stem cell (ESC)-derived CPCs. From 32 candidate transcription factors screened, we found that YY1, a repressor of sarcomeric gene expression, is present in CPCs in vivo. Interestingly, we uncovered the ability of YY1 to transcriptionally activate Nkx2.5, a key marker of early cardiogenic commitment. YY1 regulates Nkx2.5 expression via a 2.1 kb cardiac-specific enhancer as demonstrated by in vitro luciferase-based assays and in vivo chromatin immunoprecipitation (ChIP) and genome-wide sequencing analysis. Furthermore, the ability of YY1 to activate Nkx2.5 expression depends on its cooperative interaction with Gata4 at a nearby chromatin. Cardiac mesoderm-specific loss-of-function of YY1 resulted in early embryonic lethality. This was corroborated in vitro by ESC-based assays where we show that the overexpression of YY1 enhanced the cardiogenic differentiation of ESCs into CPCs. Conclusion These results demonstrate an essential and unexpected role for YY1 to promote cardiogenesis as a transcriptional activator of Nkx2.5 and other CPC-enriched genes. PMID:23307821

  5. Diabetic cardiomyopathy: Where are we 40 years later?

    PubMed Central

    Sharma, Vijay; McNeill, John H

    2006-01-01

    Diabetic cardiomyopathy is a cardiac disease that arises as a result of the diabetic state, independent of vascular or valvular pathology. It manifests initially as asymptomatic diastolic dysfunction, which progresses to symptomatic heart failure. The compliance of the heart wall is decreased and contractile function is impaired. The pathophysiology is incompletely understood, but appears to be initiated both by hyperglycemia and changes in cardiac metabolism. These changes induce oxidative stress and activate a number of secondary messenger pathways, leading to cardiac hypertrophy, fibrosis and cell death. Alterations in contractile proteins and intracellular ions impair excitation-contraction coupling, while decreased autonomic responsiveness and autonomic neuropathy impair its regulation. Extensive structural abnormalities also occur, which have deleterious mechanical and functional consequences. PMID:16568154

  6. Decoding the Long Noncoding RNA During Cardiac Maturation: A Roadmap for Functional Discovery.

    PubMed

    Touma, Marlin; Kang, Xuedong; Zhao, Yan; Cass, Ashley A; Gao, Fuying; Biniwale, Reshma; Coppola, Giovanni; Xiao, Xinshu; Reemtsen, Brian; Wang, Yibin

    2016-10-01

    Cardiac maturation during perinatal transition of heart is critical for functional adaptation to hemodynamic load and nutrient environment. Perturbation in this process has major implications in congenital heart defects. Transcriptome programming during perinatal stages is an important information but incomplete in current literature, particularly, the expression profiles of the long noncoding RNAs (lncRNAs) are not fully elucidated. From comprehensive analysis of transcriptomes derived from neonatal mouse heart left and right ventricles, a total of 45 167 unique transcripts were identified, including 21 916 known and 2033 novel lncRNAs. Among these lncRNAs, 196 exhibited significant dynamic regulation along maturation process. By implementing parallel weighted gene co-expression network analysis of mRNA and lncRNA data sets, several lncRNA modules coordinately expressed in a developmental manner similar to protein coding genes, while few lncRNAs revealed chamber-specific patterns. Out of 2262 lncRNAs located within 50 kb of protein coding genes, 5% significantly correlate with the expression of their neighboring genes. The impact of Ppp1r1b-lncRNA on the corresponding partner gene Tcap was validated in cultured myoblasts. This concordant regulation was also conserved in human infantile hearts. Furthermore, the Ppp1r1b-lncRNA/Tcap expression ratio was identified as a molecular signature that differentiated congenital heart defect phenotypes. The study provides the first high-resolution landscape on neonatal cardiac lncRNAs and reveals their potential interaction with mRNA transcriptome during cardiac maturation. Ppp1r1b-lncRNA was identified as a regulator of Tcap expression, with dynamic interaction in postnatal cardiac development and congenital heart defects. © 2016 American Heart Association, Inc.

  7. The ATP-sensitive potassium (KATP) channel-encoded dSUR gene is required for Drosophila heart function and is regulated by tinman

    PubMed Central

    Akasaka, Takeshi; Klinedinst, Susan; Ocorr, Karen; Bustamante, Erika L.; Kim, Seung K.; Bodmer, Rolf

    2006-01-01

    The homeobox transcription factor Tinman plays an important role in the initiation of heart development. Later functions of Tinman, including the target genes involved in cardiac physiology, are less well studied. We focused on the dSUR gene, which encodes an ATP-binding cassette transmembrane protein that is expressed in the heart. Mammalian SUR genes are associated with KATP (ATP-sensitive potassium) channels, which are involved in metabolic homeostasis. We provide experimental evidence that Tinman directly regulates dSUR expression in the developing heart. We identified a cis-regulatory element in the first intron of dSUR, which contains Tinman consensus binding sites and is sufficient for faithful dSUR expression in the fly’s myocardium. Site-directed mutagenesis of this element shows that these Tinman sites are critical to dSUR expression, and further genetic manipulations suggest that the GATA transcription factor Pannier is synergistically involved in cardiac-restricted dSUR expression in vivo. Physiological analysis of dSUR knock-down flies supports the idea that dSUR plays a protective role against hypoxic stress and pacing-induced heart failure. Because dSUR expression dramatically decreases with age, it is likely to be a factor involved in the cardiac aging phenotype of Drosophila. dSUR provides a model for addressing how embryonic regulators of myocardial cell commitment can contribute to the establishment and maintenance of cardiac performance. PMID:16882722

  8. Macrophage migration inhibitory factor plays a permissive role in the maintenance of cardiac contractile function under starvation through regulation of autophagy.

    PubMed

    Xu, Xihui; Pacheco, Benjamin D; Leng, Lin; Bucala, Richard; Ren, Jun

    2013-08-01

    The cytokine macrophage migration inhibitory factor (MIF) protects the heart through AMPK activation. Autophagy, a conserved pathway for bulk degradation of intracellular proteins and organelles, helps preserve and recycle energy and nutrients for cells to survive under starvation. This study was designed to examine the role of MIF in cardiac homeostasis and autophagy regulation following an acute starvation challenge. Wild-type (WT) and MIF knockout mice were starved for 48 h. Echocardiographic data revealed little effect of starvation on cardiac geometry, contractile and intracellular Ca²⁺ properties. MIF deficiency unmasked an increase in left ventricular end-systolic diameter, a drop in fractional shortening associated with cardiomyocyte contractile and intracellular Ca²⁺ anomalies following starvation. Interestingly, the unfavourable effect of MIF deficiency was associated with interruption of starvation-induced autophagy. Furthermore, restoration of autophagy using rapamycin partially protected against starvation-induced cardiomyocyte contractile defects. In our in vitro model of starvation, neonatal mouse cardiomyocytes from WT and MIF-/- mice and H9C2 cells were treated with serum free-glucose free DMEM for 2 h. MIF depletion dramatically attenuated starvation-induced autophagic vacuole formation in neonatal mouse cardiomyocytes and exacerbated starvation-induced cell death in H9C2 cells. In summary, these results indicate that MIF plays a permissive role in the maintenance of cardiac contractile function under starvation by regulation of autophagy.

  9. Pharmacological identification of cholinergic receptor subtypes on Drosophila melanogaster larval heart.

    PubMed

    Malloy, Cole A; Ritter, Kyle; Robinson, Jonathan; English, Connor; Cooper, Robin L

    2016-01-01

    The Drosophila melanogaster heart is a popular model in which to study cardiac physiology and development. Progress has been made in understanding the role of endogenous compounds in regulating cardiac function in this model. It is well characterized that common neurotransmitters act on many peripheral and non-neuronal tissues as they flow through the hemolymph of insects. Many of these neuromodulators, including acetylcholine (ACh), have been shown to act directly on the D. melanogaster larval heart. ACh is a primary neurotransmitter in the central nervous system (CNS) of vertebrates and at the neuromuscular junctions on skeletal and cardiac tissue. In insects, ACh is the primary excitatory neurotransmitter of sensory neurons and is also prominent in the CNS. A full understanding regarding the regulation of the Drosophila cardiac physiology by the cholinergic system remains poorly understood. Here we use semi-intact D. melanogaster larvae to study the pharmacological profile of cholinergic receptor subtypes, nicotinic acetylcholine receptors (nAChRs) and muscarinic acetylcholine receptors (mAChRs), in modulating heart rate (HR). Cholinergic receptor agonists, nicotine and muscarine both increase HR, while nAChR agonist clothianidin exhibits no significant effect when exposed to an open preparation at concentrations as low as 100 nM. In addition, both nAChR and mAChR antagonists increase HR as well but also display capabilities of blocking agonist actions. These results provide evidence that both of these receptor subtypes display functional significance in regulating the larval heart's pacemaker activity.

  10. Aldolase promotes the development of cardiac hypertrophy by targeting AMPK signaling.

    PubMed

    Li, Yapeng; Zhang, Dianhong; Kong, Lingyao; Shi, Huiting; Tian, Xinyu; Gao, Lu; Liu, Yuzhou; Wu, Leiming; Du, Binbin; Huang, Zhen; Liang, Cui; Wang, Zheng; Yao, Rui; Zhang, Yanzhou

    2018-06-11

    Metabolic dysfunction is a hallmark of cardiac hypertrophy and heart failure. During cardiac failure, the metabolism of cardiomyocyte switches from fatty acid oxidation to glycolysis. However, the roles of key metabolic enzymes in cardiac hypertrophy are not understood fully. Here in the present work, we identified Aldolase A (AldoA) as a core regulator of cardiac hypertrophy. The mRNA and protein levels of AldoA were significantly up-regulated in transverse aortic constriction (TAC)- and isoproterenol (ISO)-induced hypertrophic mouse hearts. Overexpression of AldoA in cardiomyocytes promoted ISO-induced cardiomyocyte hypertrophy, whereas AldoA knockdown repressed cardiomyocyte hypertrophy. In addition, adeno-associated virus 9 (AAV9)-mediated in vivo knockdown of AldoA in the hearts rescued ISO-induced decrease in cardiac ejection fraction and fractional shortening and repressed cardiac hypertrophy. Mechanism study revealed that AldoA repressed the activation of AMP-dependent protein kinase (AMPK) signaling in a liver kinase B1 (LKB1)-dependent and AMP-independent manner. Inactivation of AMPK is a core mechanism underlying AldoA-mediated promotion of ISO-induced cardiomyocyte hypertrophy. By contrast, activation of AMPK with metformin and AICAR blocked AldoA function during cardiomyocyte hypertrophy. In summary, our data support the notion that AldoA-AMPK axis is a core regulatory signaling sensing energetic status and participates in cardiac hypertrophy. Copyright © 2018 Elsevier Inc. All rights reserved.

  11. A slow-releasing form of prostacyclin agonist (ONO1301SR) enhances endogenous secretion of multiple cardiotherapeutic cytokines and improves cardiac function in a rapid-pacing-induced model of canine heart failure.

    PubMed

    Shirasaka, Tomonori; Miyagawa, Shigeru; Fukushima, Satsuki; Saito, Atsuhiro; Shiozaki, Motoko; Kawaguchi, Naomasa; Matsuura, Nariaki; Nakatani, Satoshi; Sakai, Yoshiki; Daimon, Takashi; Okita, Yutaka; Sawa, Yoshiki

    2013-08-01

    Cardiac functional deterioration in dilated cardiomyopathy (DCM) is known to be reversed by intramyocardial up-regulation of multiple cardioprotective factors, whereas a prostacyclin analog, ONO1301, has been shown to paracrinally activate interstitial cells to release a variety of protective factors. We here hypothesized that intramyocardial delivery of a slow-releasing form of ONO1301 (ONO1301SR) might activate regional myocardium to up-regulate cardiotherapeutic factors, leading to regional and global functional recovery in DCM. ONO1301 elevated messenger RNA and protein level of hepatocyte growth factor, vascular endothelial growth factor, and stromal-derived factor-1 of normal human dermal fibroblasts in a dose-dependent manner in vitro. Intramyocardial delivery of ONO1301SR, which is ONO1301 mixed with polylactic and glycolic acid polymer (PLGA), but not that of PLGA only, yielded significant global functional recovery in a canine rapid pacing-induced DCM model, assessed by echocardiography and cardiac catheterization (n = 5 each). Importantly, speckle-tracking echocardiography unveiled significant regional functional recovery in the ONO1301-delivered territory, consistent to significantly increased vascular density, reduced interstitial collagen accumulation, attenuated myocyte hypertrophy, and reversed mitochondrial structure in the corresponding area. Intramyocardial delivery of ONO1301SR, which is a PLGA-coated slow-releasing form of ONO1301, up-regulated multiple cardiotherapeutic factors in the injected territory, leading to region-specific reverse left ventricular remodeling and consequently a global functional recovery in a rapid-pacing-induced canine DCM model, warranting a further preclinical study to optimize this novel drug-delivery system to treat DCM. Copyright © 2013 The American Association for Thoracic Surgery. Published by Mosby, Inc. All rights reserved.

  12. Cardiac microRNA-133 is down-regulated in thyroid hormone-mediated cardiac hypertrophy partially via Type 1 Angiotensin II receptor.

    PubMed

    Diniz, Gabriela Placoná; Lino, Caroline Antunes; Guedes, Elaine Castilho; Moreira, Luana do Nascimento; Barreto-Chaves, Maria Luiza Morais

    2015-09-01

    Elevated thyroid hormone (TH) levels induce cardiac hypertrophy partially via type 1 Angiotensin II receptor (AT1R). MicroRNAs (miRNAs) are key regulators of cardiac homeostasis, and miR-133 has been shown to be involved in cardiac hypertrophy. However, the potential role of miR-133 in cardiac growth induced by TH is unknown. Thus, we aimed to investigate the miR-133 expression, as well as its potential role in cardiac hypertrophy in response to TH. Wistar rats were subjected to hyperthyroidism combined or not with the AT1R blocker. T3 serum levels were assessed to confirm the hyperthyroid status. TH induced cardiac hypertrophy, as evidenced by higher cardiac weight/tibia length ratio and α-actin mRNA levels, which was prevented by AT1R blocker. miR-133 expression was decreased in TH-induced cardiac hypertrophy in part through the AT1R. Additionally, the cardiac mRNA levels of miR-133 targets, SERCA2a and calcineurin were increased in hyperthyroidism partially via AT1R, as evaluated by real-time RT-PCR. Interestingly, miR-133 levels were unchanged in T3-induced cardiomyocyte hypertrophy in vitro. However, a gain-of-function study revealed that miR-133 mimic blunted the T3-induced cardiomyocyte hypertrophy in vitro. Together, our data indicate that miR-133 expression is reduced in TH-induced cardiac hypertrophy partially by the AT1R and that miR-133 mimic prevents the cardiomyocyte hypertrophy in response to T3 in vitro. These findings provide new insights regarding the mechanisms involved in the cardiac growth mediated by TH, suggesting that miR-133 plays a key role in TH-induced cardiomyocyte hypertrophy.

  13. Postnatal Ablation of Foxm1 from Cardiomyocytes Causes Late Onset Cardiac Hypertrophy and Fibrosis without Exacerbating Pressure Overload-Induced Cardiac Remodeling

    PubMed Central

    Bolte, Craig; Zhang, Yufang; York, Allen; Kalin, Tanya V.; Schultz, Jo El J.; Molkentin, Jeffery D.; Kalinichenko, Vladimir V.

    2012-01-01

    Heart disease remains a leading cause of morbidity and mortality in the industrialized world. Hypertrophic cardiomyopathy is the most common genetic cardiovascular disorder and the most common cause of sudden cardiac death. Foxm1 transcription factor (also known as HFH-11B, Trident, Win or MPP2) plays an important role in the pathogenesis of various cancers and is a critical mediator of post-injury repair in multiple organs. Foxm1 has been previously shown to be essential for heart development and proliferation of embryonic cardiomyocytes. However, the role of Foxm1 in postnatal heart development and in cardiac injury has not been evaluated. To delete Foxm1 in postnatal cardiomyocytes, αMHC-Cre/Foxm1fl/fl mice were generated. Surprisingly, αMHC-Cre/Foxm1fl/fl mice exhibited normal cardiomyocyte proliferation at postnatal day seven and had no defects in cardiac structure or function but developed cardiac hypertrophy and fibrosis late in life. The development of cardiomyocyte hypertrophy and cardiac fibrosis in aged Foxm1-deficient mice was associated with reduced expression of Hey2, an important regulator of cardiac homeostasis, and increased expression of genes critical for cardiac remodeling, including MMP9, αSMA, fibronectin and vimentin. We also found that following aortic constriction Foxm1 mRNA and protein were induced in cardiomyocytes. However, Foxm1 deletion did not exacerbate cardiac hypertrophy or fibrosis following chronic pressure overload. Our results demonstrate that Foxm1 regulates genes critical for age-induced cardiomyocyte hypertrophy and cardiac fibrosis. PMID:23144938

  14. Sodium Butyrate Protects -Against High Fat Diet-Induced Cardiac Dysfunction and Metabolic Disorders in Type II Diabetic Mice.

    PubMed

    Zhang, Ling; Du, Jianfeng; Yano, Naohiro; Wang, Hao; Zhao, Yu Tina; Dubielecka, Patrycja M; Zhuang, Shougang; Chin, Y Eugene; Qin, Gangjian; Zhao, Ting C

    2017-08-01

    Histone deacetylases are recently identified to act as key regulators for cardiac pathophysiology and metabolic disorders. However, the function of histone deacetylase (HDAC) in controlling cardiac performance in Type II diabetes and obesity remains unknown. Here, we determine whether HDAC inhibition attenuates high fat diet (HFD)-induced cardiac dysfunction and improves metabolic features. Adult mice were fed with either HFD or standard chow food for 24 weeks. Starting at 12 weeks, mice were divided into four groups randomly, in which sodium butyrate (1%), a potent HDAC inhibitor, was provided to chow and HFD-fed mice in drinking water, respectively. Glucose intolerance, metabolic parameters, cardiac function, and remodeling were assessed. Histological analysis and cellular signaling were examined at 24 weeks following euthanization of mice. HFD-fed mice demonstrated myocardial dysfunction and profound interstitial fibrosis, which were attenuated by HDAC inhibition. HFD-induced metabolic syndrome features insulin resistance, obesity, hyperinsulinemia, hyperglycemia, lipid accumulations, and cardiac hypertrophy, these effects were prevented by HDAC inhibition. Furthermore, HDAC inhibition attenuated myocyte apoptosis, reduced production of reactive oxygen species, and increased angiogenesis in the HFD-fed myocardium. Notably, HFD induced decreases in MKK3, p38, p38 regulated/activated protein kinase (PRAK), and Akt-1, but not p44/42 phosphorylation, which were prevented by HDAC inhibition. These results suggest that HDAC inhibition plays a critical role to preserve cardiac performance and mitigate metabolic disorders in obesity and diabetes, which is associated with MKK3/p38/PRAK pathway. The study holds promise in developing a new therapeutic strategy in the treatment of Type II diabetic-induced heart failure and metabolic disorders. J. Cell. Biochem. 118: 2395-2408, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  15. Oncostatin M (OSM) protects against cardiac ischaemia/reperfusion injury in diabetic mice by regulating apoptosis, mitochondrial biogenesis and insulin sensitivity.

    PubMed

    Sun, Dongdong; Li, Shuang; Wu, Hao; Zhang, Mingming; Zhang, Xiaotian; Wei, Liping; Qin, Xing; Gao, Erhe

    2015-06-01

    Oncostatin M (OSM) exhibits many unique biological activities by activating Oβ receptor. However, its role in myocardial I/R injury in diabetic mice remains unknown. The involvement of OSM was assessed in diabetic mice which underwent myocardial I/R injury by OSM treatment or genetic deficiency of OSM receptor Oβ. Its mechanism on cardiomyocyte apoptosis, mitochondrial biogenesis and insulin sensitivity were further studied. OSM alleviated cardiac I/R injury by inhibiting cardiomyocyte apoptosis through inhibition of inositol pyrophosphate 7 (IP7) production, thus activating PI3K/Akt/BAD pathway, decreasing Bax expression while up-regulating Bcl-2 expression and decreasing the ratio of Bax to Bcl-2 in db/db mice. OSM enhanced mitochondrial biogenesis and mitochondrial function in db/db mice subjected to cardiac I/R injury. On the contrary, OSM receptor Oβ knockout exacerbated cardiac I/R injury, increased IP7 production, enhanced cardiomyocyte apoptosis, impaired mitochondrial biogenesis, glucose homoeostasis and insulin sensitivity in cardiac I/R injured diabetic mice. Inhibition of IP7 production by TNP (IP6K inhibitor) exerted similar effects of OSM. The mechanism of OSM on cardiac I/R injury in diabetic mice is partly associated with IP7/Akt and adenine mononucleotide protein kinase/PGC-1α pathway. OSM protects against cardiac I/R Injury by regulating apoptosis, insulin sensitivity and mitochondrial biogenesis in diabetic mice through inhibition of IP7 production. © 2015 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  16. Membrane estrogen receptor alpha is an important modulator of bone marrow C-Kit+ cells mediated cardiac repair after myocardial infarction

    PubMed Central

    Su, Feng; Zhang, Wentian; Liu, Jianfang

    2015-01-01

    It has been validated that c-kit positive (c-kit+) cells in infarcted myocardium are from bone marrow (BM). Given the recent study that in the heart, estrogen receptor alpha (ERα) is involved in adaptive mechanisms by supporting cardiomyocytes survival via post-infarct cardiac c-kit+ cells, we tested a novel hypothesis that membrane ERα (mERа) supports survival of BM c-kit+ cells and enhance protective paracrine function for cardiac repair. Our data showed that myocardial infarction (MI) leads to an increase in c-kit+ first in bone marrow and then specifically within the infarcted myocardium. Also up-regulated mERа in post-infarct BM c-kit+ cells was found in day 3 post MI. In vitro co-culture system, mERа+ enhances the beneficial effects of BM c-kit+ cells by increasing their viability and reducing apoptosis. Post-infarct c-kit+ mERа+ cells population expresses predominant ERα and holds self-renewal as well as cardiac differentiation potentials after MI. In vivo, BM c-kit+ cells reduced infarct size, fibrosis and improved cardiac function. In conclusion, BM c-kit+ mERа+ exerted significantly cardiac protection after MI. A potential important implication of this study is that the manipulation of BM c-kit+ stem cells with ERа-dependent fashion may be helpful in recovering functional performance after cardiac tissue injury. PMID:26191121

  17. The modified Yi qi decoction protects cardiac ischemia-reperfusion induced injury in rats.

    PubMed

    Yu, Xiao; Zhao, Xiao-Dong; Bao, Rong-Qi; Yu, Jia-Yu; Zhang, Guo-Xing; Chen, Jing-Wei

    2017-06-21

    To investigate the effects and involved mechanisms of the modified Yi Qi decoction (MYQ) in cardiac ischemia-reperfusion (IR) induced injury. Male Sprague-Dawley rats were subjected to a 30-min coronary arterial occlusion followed by reperfusion, low or high dose decoction of MYQ was administrated orally for 1 week or 1 month. Both in 1 week and 1 month IR rat groups, cardiac function indexes were significantly impaired compared with sham group rats, accompanied with higher ratio of infarct size to risk size, decreased expressions of sodium calcium exchanger (NCX1) and sarcoplasmic reticulum Ca 2+ -ATPase (Serca2a), and different expressions of autophagic proteins, Beclin-1 and LC3. Treatment with MYQ (low or high dose) for 1 week showed no marked beneficial effects on cardiac function and cardiac injury (ratio of infarct size to risk size), although expressions of anti-apoptotic protein, Bcl-2, NCX1 and Serca2a were increased. Treatment with MYQ (low or high dose) for 1 month showed significantly improved effects on cardiac function and cardiac injury (ratio of infarct size to risk size), accompanied with increase of Bcl-2, NCX1 and Serca2a expressions, and decrease of Bax (a pro-apoptotic protein) and Beclin-1 expressions. The results show that MYQ have potential therapeutic effects on IR-induced cardiac injury, which may be through regulation of apoptotic proteins, cytosolic Ca 2+ handling proteins and autophagic proteins signal pathways.

  18. FGF10/FGFR2b signaling is essential for cardiac fibroblast development and growth of the myocardium

    PubMed Central

    Vega-Hernández, Mónica; Kovacs, Attila; De Langhe, Stijn; Ornitz, David M.

    2011-01-01

    The epicardium serves as a source of growth factors that regulate myocardial proliferation and as a source of epicardial-derived cells (EPDC), which give rise to interstitial cardiac fibroblasts and perivascular cells. These progenitors populate the compact myocardium to become part of the mature coronary vasculature and fibrous skeleton of the heart. Little is known about the mechanisms that regulate EPDC migration into the myocardium or the functions carried out by these cells once they enter the myocardium. However, it has been proposed that cardiac fibroblasts are important for growth of the heart during late gestation and are a source of homeostatic factors in the adult. Here, we identify a myocardial to epicardial fibroblast growth factor (FGF) signal, mediated by FGF10 and FGFR2b, that is essential for movement of cardiac fibroblasts into the compact myocardium. Inactivation of this signaling pathway results in fewer epicardial derived cells within the compact myocardium, decreased myocardial proliferation and a resulting smaller thin-walled heart. PMID:21750042

  19. Metabolic alterations derived from absence of Two-Pore Channel 1 at cardiac level.

    PubMed

    Garcia-Rua, Vanessa; Feijoo-Bandin, Sandra; Garcia-Vence, Maria; Aragon-Herrera, Alana; Bravo, Susana B; Rodriguez-Penas, Diego; Mosquera-Leal, Ana; Lear, Pamela V; Parrington, John; Alonso, Jana; Rosello-Lleti, Esther; Portoles, Manuel; Rivera, Miguel; Gonzalez-Juanatey, Jose Ramon; Lago, Francisca

    2016-12-01

    Two-pore channels (TPCs or TPCNs) are novel voltage-gated ion channels that have been postulated to act as Ca2+ and/or Na+ channels expressed exclusively in acidic organelles such as endosomes and lysosomes. TPCNs participate in the regulation of diverse biological processes and recently have been proposed to be involved in the pathophysiology of metabolic disorders such as obesity, fatty liver disease and type 2 diabetes mellitus. Due to the importance of these pathologies in the development of cardiovascular diseases, we aimed to study the possible role of two-pore channel 1 (TPCN1) in the regulation of cardiac metabolism. To explore the cardiac function of TPCN1, we developed proteomic approaches as 2-DE-MALDI-MS and LC-MALDI-MS in the cardiac left ventricle of TPCN1 KO and WT mice, and found alterations in several proteins implicated in glucose and fatty acid metabolism in TPCN1 KO vs. WT mice. The results confirmed the altered expression of HFABP, a key fatty acid transport protein, and of enolase and PGK1, the key enzymes in the glycolytic process. Finally, in vitro experiments performed in neonatal rat cardiomyocytes, in which TPCN1 was silenced using siRNAs, confirmed that the downregulation of TPCN1 gene expression increased 2-deoxy-D-[3H]-glucose uptake and GLUT4 mobilization into cell peripherals in cardiac cells. Our results are the first to suggest a potential role for TPCNs in cardiac metabolism regulation.

  20. Urotensin II inhibited the proliferation of cardiac side population cells in mice during pressure overload by JNK-LRP6 signalling

    PubMed Central

    Chen, Zhidan; Xu, Jiahong; Ye, Yong; Li, Yang; Gong, Hui; Zhang, Guoping; Wu, Jian; jia, Jianguo; Liu, Ming; Chen, Ying; Yang, Chunjie; Tang, Yu; Zhu, Yichun; Ge, Junbo; Zou, Yunzeng

    2014-01-01

    Cardiac side population cells (CSPs) are promising cell resource for the regeneration in diseased heart as intrinsic cardiac stem cells. However, the relative low ratio of CSPs in the heart limited the ability of CSPs to repair heart and improve cardiac function effectively under pathophysiological condition. Which factors limiting the proliferation of CSPs in diseased heart are unclear. Here, we show that urotensin II (UII) regulates the proliferation of CSPs by c-Jun N-terminal kinase (JNK) and low density lipoprotein receptor-related protein 6 (LRP6) signalling during pressure overload. Pressure overload greatly upregulated UII level in plasma, UII receptor (UT) antagonist, urantide, promoted CSPs proliferation and improved cardiac dysfunction during chronic pressure overload. In cultured CSPs subjected to mechanical stretch (MS), UII significantly inhibited the proliferation by UT. Nanofluidic proteomic immunoassay showed that it is the JNK activation, but not the extracellular signal-regulated kinase signalling, that involved in the UII-inhibited- proliferation of CSPs during pressure overload. Further analysis in vitro indicated UII-induced-phospho-JNK regulates phosphorylation of LRP6 in cultured CSPs after MS, which is important in the inhibitory effect of UII on the CSPs during pressure overload. In conclusion, UII inhibited the proliferation of CSPs by JNK/LRP6 signalling during pressure overload. Pharmacological inhibition of UII promotes CSPs proliferation in mice, offering a possible therapeutic approach for cardiac failure induced by pressure overload. PMID:24447593

  1. CIP, a cardiac Isl1-interacting protein, represses cardiomyocyte hypertrophy

    PubMed Central

    Huang, Zhan-Peng; Seok, Hee Young; Zhou, Bin; Chen, Jinghai; Chen, Jian-Fu; Tao, Yazhong; Pu, William T.; Wang, Da-Zhi

    2012-01-01

    Rationale Mammalian heart has minimal regenerative capacity. In response to mechanical or pathological stress, the heart undergoes cardiac remodeling. Pressure and volume overload in the heart cause increased size (hypertrophic growth) of cardiomyocytes. Whereas the regulatory pathways that activate cardiac hypertrophy have been well established, the molecular events that inhibit or repress cardiac hypertrophy are less known. Objective To identify and investigate novel regulators that modulate cardiac hypertrophy. Methods and Results Here, we report the identification, characterization and functional examination of CIP, a novel cardiac Isl1-interacting protein. CIP was identified from a bioinformatic search for novel cardiac-expressed genes in mouse embryonic hearts. CIP encodes a nuclear protein without recognizable motifs. Northern blotting, in situ hybridization and reporter gene tracing demonstrated that CIP is highly expressed in cardiomyocytes of developing and adult hearts. Yeast-two-hybrid screening identified Isl1, a LIM/homeodomain transcription factor essential for the specification of cardiac progenitor cells in the second heart field, as a co-factor of CIP. CIP directly interacted with Isl1 and we mapped the domains of these two proteins which mediate their interaction. We show that CIP represses the transcriptional activity of Isl1 in the activation of the MEF2C enhancer. The expression of CIP was dramatically reduced in hypertrophic cardiomyocytes. Most importantly, overexpression of CIP repressed agonist-induced cardiomyocyte hypertrophy. Conclusions Our studies therefore identify CIP a novel regulator of cardiac hypertrophy. PMID:22343712

  2. Fndc5 knockdown induced suppression of mitochondrial integrity and significantly decreased cardiac differentiation of mouse embryonic stem cells.

    PubMed

    Nazem, Shima; Rabiee, Farzaneh; Ghaedi, Kamran; Babashah, Sadegh; Sadeghizadeh, Majid; Nasr-Esfahani, Mohammad Hossein

    2018-06-01

    Fibronectin type III domain-containing 5 protein (Fndc5) is a glycosylated protein with elevated expression in high energy demanded tissues as heart, brain, and muscle. It has been shown that upregulation of Fndc5 is regulated by peroxisome proliferator-activated receptor-γ coactivator-1 alpha (PGC-1α), which is known as a master regulator of mitochondrial function and biogenesis. Also, our group indicated that Fndc5 expression increases gradually during cardiac differentiation of mouse embryonic stem cells (mESCs). In this paper, to clarify the importance of Fndc5 in cardiac differentiation, we south to knock down Fndc5 expression by generation a stably transduced mESC line that derives the expression of a short hairpin RNA (shRNA) against Fndc5 gene following doxycycline (Dox) induction. Knock-down of Fndc5 demonstrated a considerable decrease in expression of cardiac progenitor and cardiomyocyte markers. Considering the fact that mitochondria play a crucial role in cardiac differentiation of ESCs, we investigated the role of Fndc5, as a downstream target of PGC1-α, on mitochondrial indices. Results showed that expression of nuclear encoded mitochondrial genes including PGC1-α, Atp5b, Ndufb5, and SOD2 significantly decreased. Moreover, mitochondrial membrane potential (ΔΨm) and relative ATP content of cardiomyocytes decreased markedly with relative ROS level increase. Together, our results suggest that Fndc5 attenuates process of cardiac differentiation of mESCs which is associated with modulation of mitochondrial function and gene expression. © 2017 Wiley Periodicals, Inc.

  3. C1QTNF1 attenuates angiotensin II-induced cardiac hypertrophy via activation of the AMPKa pathway.

    PubMed

    Wu, Leiming; Gao, Lu; Zhang, Dianhong; Yao, Rui; Huang, Zhen; Du, Binbin; Wang, Zheng; Xiao, Lili; Li, Pengcheng; Li, Yapeng; Liang, Cui; Zhang, Yanzhou

    2018-06-01

    Complement C1q tumor necrosis factor related proteins (C1QTNFs) have been reported to have diverse biological influence on the cardiovascular system. C1QTNF1 is a member of the CTRP superfamily. C1QTNF1 is expressed in the myocardium; however, its function in myocytes has not yet been investigated. To systematically investigate the roles of C1QTNF1 in angiotensin II (Ang II)-induced cardiac hypertrophy. C1QTNF1 knock-out mice were used with the aim of determining the role of C1QTNF1 in cardiac hypertrophy in the adult heart. Data from experiments showed that C1QTNF1 was up-regulated during cardiac hypertrophic processes, which were triggered by increased reactive oxygen species. C1QTNF1 deficiency accelerated cardiac hypertrophy, fibrosis, inflammation responses, and oxidative stress with deteriorating cardiac dysfunction in the Ang II-induced cardiac hypertrophy mouse model. We identified C1QTNF1 as a negative regulator of cardiomyocyte hypertrophy in Ang II-stimulated neonatal rat cardiomyocytes using the recombinant human globular domain of C1QTNF1 and C1QTNF1 siRNA. Injection of the recombinant human globular domain of C1QTNF1 also suppressed the Ang II-induced cardiac hypertrophic response in vivo. The anti-hypertrophic effects of C1QTNF1 rely on AMPKa activation, which inhibits mTOR P70S6K phosphorylation. An AMPKa inhibitor abrogated the anti-hypertrophic effects of the recombinant human globular domain of C1QTNF1 both in vivo and vitro. Moreover, C1QTNF1-mediated AMPKa activation was triggered by the inhibition of PDE1-4, which subsequently activated the cAMP/PKA/LKB1 pathway. Our results demonstrated that C1QTNF1 improves cardiac function and inhibits cardiac hypertrophy and fibrosis by increasing and activating AMPKa, suggesting that C1QTNF1 could be a therapeutic target for cardiac hypertrophy and heart failure. Copyright © 2018 Elsevier Inc. All rights reserved.

  4. Hypoxia-induced decrease of UCP3 gene expression in rat heart parallels metabolic gene switching but fails to affect mitochondrial respiratory coupling.

    PubMed

    Essop, M Faadiel; Razeghi, Peter; McLeod, Chris; Young, Martin E; Taegtmeyer, Heinrich; Sack, Michael N

    2004-02-06

    Mitochondrial uncoupling proteins 2 and 3 (UCP2 and UCP3) are postulated to contribute to antioxidant defense, nutrient partitioning, and energy efficiency in the heart. To distinguish isotype function in response to metabolic stress we measured cardiac mitochondrial function and cardiac UCP gene expression following chronic hypobaric hypoxia. Isolated mitochondrial O(2) consumption and ATP synthesis rate were reduced but respiratory coupling was unchanged compared to normoxic groups. Concurrently, left ventricular UCP3 mRNA levels were significantly decreased with hypoxia (p<0.05) while UCP2 levels remained unchanged versus controls. Diminished UCP3 expression was associated with coordinate regulation of counter-regulatory metabolic genes. From these data, we propose a role for UCP3 in the regulation of fatty acid oxidation in the heart as opposed to uncoupling of mitochondria. Moreover, the divergent hypoxia-induced regulation of UCP2 and UCP3 supports distinct mitochondrial regulatory functions of these inner mitochondrial membrane proteins in the heart in response to metabolic stress.

  5. Kinetics of Mechanical Stretch-Induced Nitric Oxide Production in Rat Ventricular Cardiac Myocytes.

    PubMed

    Shim, A L; Mitrokhin, V M; Gorbacheva, L R; Savinkova, I G; Pustovit, K B; Mladenov, M I; Kamkin, A G

    2017-09-01

    Discrete mechanical stretch of isolated spontaneously contracting cardiac myocytes was employed to examine the kinetics of NO production in these cells. NO oscillations were detected with fluorescent dye 4-amino-5-methylamino-2',7'-difluorofluorescein diacetate. The mechanisms underlying stretch-induced changes in NO concentration remain unclear and further studies are needed to evaluate the role of NO oscillation in the regulation of cardiomyocyte function.

  6. Bilateral Renal Denervation Ameliorates Isoproterenol-Induced Heart Failure through Downregulation of the Brain Renin-Angiotensin System and Inflammation in Rat

    PubMed Central

    Li, Jian-Dong; Cheng, Ai-Yuan; Huo, Yan-Li; Fan, Jie; Zhang, Yu-Ping; Fang, Zhi-Qin; Sun, Hong-Sheng; Peng, Wei; Zhang, Jin-Shun

    2016-01-01

    Heart failure (HF) is characterized by cardiac dysfunction along with autonomic unbalance that is associated with increased renin-angiotensin system (RAS) activity and elevated levels of proinflammatory cytokines (PICs). Renal denervation (RD) has been shown to improve cardiac function in HF, but the protective mechanisms remain unclear. The present study tested the hypothesis that RD ameliorates isoproterenol- (ISO-) induced HF through regulation of brain RAS and PICs. Chronic ISO infusion resulted in remarked decrease in blood pressure (BP) and increase in heart rate and cardiac dysfunction, which was accompanied by increased BP variability and decreased baroreflex sensitivity and HR variability. Most of these adverse effects of ISO on cardiac and autonomic function were reversed by RD. Furthermore, ISO upregulated mRNA and protein expressions of several components of the RAS and PICs in the lamina terminalis and hypothalamic paraventricular nucleus, two forebrain nuclei involved in cardiovascular regulations. RD significantly inhibited the upregulation of these genes. Either intracerebroventricular AT1-R antagonist, irbesartan, or TNF-α inhibitor, etanercept, mimicked the beneficial actions of RD in the ISO-induced HF. The results suggest that the RD restores autonomic balance and ameliorates ISO-induced HF and that the downregulated RAS and PICs in the brain contribute to these beneficial effects of RD. PMID:27746855

  7. Regulation of mitochondrial energy production in cardiac cells of rainbow trout (Oncorhynchus mykiss).

    PubMed

    Birkedal, R; Gesser, H

    2004-04-01

    In skinned rat cardiac fibres, mitochondrial affinity for endogenous ADP generated by creatine kinase and Ca2+-activated ATPases is higher than for exogenous ADP added to the surrounding medium, suggesting that mitochondria are functionally coupled to creatine kinase and ATPases. Such a coupling may be weaker or absent in ectothermic vertebrate cardiac cells, because they typically have less elaborate intracellular membrane structures, higher glycolytic capacity and lower working temperature. Therefore, we examined skinned cardiac fibres from rainbow trout at 10 degrees C. The apparent mitochondrial affinity for endogenous ADP was obtained by stimulation with ATP and recording of the release of ADP into the surrounding medium. The apparent affinity for endogenous ADP was much higher than for exogenous ADP suggesting a functional coupling between mitochondria and ATPases. The apparent affinity for exogenous ADP and ATP was increased by creatine or an increase in Ca2+-activity, which should increase intrafibrillar turnover of ATP to ADP. In conclusion, ADP seems to be channelled from creatine kinase and ATPases to mitochondria without being released to the surrounding medium. Thus, despite difference in structure, temperature and metabolic capacity, trout myocardium resembles that of rat with regard to the regulation of mitochondrial respiration. Copyright 2004 Springer-Verlag

  8. Cardiomyocyte Overexpression of FABP4 Aggravates Pressure Overload-Induced Heart Hypertrophy.

    PubMed

    Zhang, Ji; Qiao, Congzhen; Chang, Lin; Guo, Yanhong; Fan, Yanbo; Villacorta, Luis; Chen, Y Eugene; Zhang, Jifeng

    2016-01-01

    Fatty acid binding protein 4 (FABP4) is a member of the intracellular lipid-binding protein family, responsible for the transportation of fatty acids. It is considered to express mainly in adipose tissues, and be strongly associated with inflammation, obesity, diabetes and cardiovasculardiseases. Here we report that FABP4 is also expressed in cardiomyocytes and plays an important role in regulating heart function under pressure overload. We generated heart-specific transgenic FABP4 (FABP4-TG) mice using α myosin-heavy chain (α-MHC) promoter and human FABP4 sequence, resulting in over-expression of FABP4 in cardiomyocytes. The FABP4-TG mice displayed normal cardiac morphology and contractile function. When they were subjected to the transverse aorta constriction (TAC) procedure, the FABP4-TG mice developed more cardiac hypertrophy correlated with significantly increased ERK phosphorylation, compared with wild type controls. FABP4 over-expression in cardiomyocytes activated phosphor-ERK signal and up-regulate the expression of cardiac hypertrophic marker genes. Conversely, FABP4 induced phosphor-ERK signal and hypertrophic gene expressions can be markedly inhibited by an ERK inhibitor PD098059 as well as the FABP4 inhibitor BMS309403. These results suggest that FABP4 over-expression in cardiomyocytes can aggravate the development of cardiac hypertrophy through the activation of ERK signal pathway.

  9. Cardiomyocyte Overexpression of FABP4 Aggravates Pressure Overload-Induced Heart Hypertrophy

    PubMed Central

    Zhang, Ji; Qiao, Congzhen; Chang, Lin; Guo, Yanhong; Fan, Yanbo; Villacorta, Luis; Chen, Y. Eugene; Zhang, Jifeng

    2016-01-01

    Fatty acid binding protein 4 (FABP4) is a member of the intracellular lipid-binding protein family, responsible for the transportation of fatty acids. It is considered to express mainly in adipose tissues, and be strongly associated with inflammation, obesity, diabetes and cardiovasculardiseases. Here we report that FABP4 is also expressed in cardiomyocytes and plays an important role in regulating heart function under pressure overload. We generated heart-specific transgenic FABP4 (FABP4-TG) mice using α myosin-heavy chain (α-MHC) promoter and human FABP4 sequence, resulting in over-expression of FABP4 in cardiomyocytes. The FABP4-TG mice displayed normal cardiac morphology and contractile function. When they were subjected to the transverse aorta constriction (TAC) procedure, the FABP4-TG mice developed more cardiac hypertrophy correlated with significantly increased ERK phosphorylation, compared with wild type controls. FABP4 over-expression in cardiomyocytes activated phosphor-ERK signal and up-regulate the expression of cardiac hypertrophic marker genes. Conversely, FABP4 induced phosphor-ERK signal and hypertrophic gene expressions can be markedly inhibited by an ERK inhibitor PD098059 as well as the FABP4 inhibitor BMS309403. These results suggest that FABP4 over-expression in cardiomyocytes can aggravate the development of cardiac hypertrophy through the activation of ERK signal pathway. PMID:27294862

  10. Cannabinoid receptor 1 inhibition improves cardiac function and remodelling after myocardial infarction and in experimental metabolic syndrome.

    PubMed

    Slavic, Svetlana; Lauer, Dilyara; Sommerfeld, Manuela; Kemnitz, Ulrich Rudolf; Grzesiak, Aleksandra; Trappiel, Manuela; Thöne-Reineke, Christa; Baulmann, Johannes; Paulis, Ludovit; Kappert, Kai; Kintscher, Ulrich; Unger, Thomas; Kaschina, Elena

    2013-07-01

    The cannabinoid receptors, CB1 and CB2, are expressed in the heart, but their role under pathological conditions remains controversial. This study examined the effect of CB1 receptor blockade on cardiovascular functions after experimental MI and in experimental metabolic syndrome. MI was induced in Wistar rats by permanent ligation of the left coronary artery. Treatment with the CB1 receptor antagonist rimonabant (10 mg/kg i.p. daily) started 7 days before or 6 h after MI and continued for 6 weeks. Haemodynamic parameters were measured via echocardiography and intracardiac Samba catheter. CB1 blockade improved systolic and diastolic heart function, decreased cardiac collagen and hydroxyproline content and down-regulated TGF-β1. Additionally, rimonabant decreased arterial stiffness, normalised QRS complex duration and reduced brain natriuretic peptide levels in serum. In primary cardiac fibroblasts, rimonabant decreased MMP-9 activity and TGF-β1 expression. Furthermore, rimonabant improved depressed systolic function of spontaneously hypertensive obese rats and reduced weight gain. Blocking of CB1 receptor with rimonabant improves cardiac functions in the early and late stages after MI, decreases arterial stiffness and reduces cardiac remodelling. Rimonabant also has cardioprotective actions in rats characterised by the metabolic syndrome. Inhibition of proteolysis and TGF-β1 expression and reduced collagen content by rimonabant may attenuate destruction of the extracellular matrix and decrease fibrosis after MI.

  11. Application of the Principles of Systems Biology and Wiener’s Cybernetics for Analysis of Regulation of Energy Fluxes in Muscle Cells in Vivo

    PubMed Central

    Guzun, Rita; Saks, Valdur

    2010-01-01

    The mechanisms of regulation of respiration and energy fluxes in the cells are analyzed based on the concepts of systems biology, non-equilibrium steady state kinetics and applications of Wiener’s cybernetic principles of feedback regulation. Under physiological conditions cardiac function is governed by the Frank-Starling law and the main metabolic characteristic of cardiac muscle cells is metabolic homeostasis, when both workload and respiration rate can be changed manifold at constant intracellular level of phosphocreatine and ATP in the cells. This is not observed in skeletal muscles. Controversies in theoretical explanations of these observations are analyzed. Experimental studies of permeabilized fibers from human skeletal muscle vastus lateralis and adult rat cardiomyocytes showed that the respiration rate is always an apparent hyperbolic but not a sigmoid function of ADP concentration. It is our conclusion that realistic explanations of regulation of energy fluxes in muscle cells require systemic approaches including application of the feedback theory of Wiener’s cybernetics in combination with detailed experimental research. Such an analysis reveals the importance of limited permeability of mitochondrial outer membrane for ADP due to interactions of mitochondria with cytoskeleton resulting in quasi-linear dependence of respiration rate on amplitude of cyclic changes in cytoplasmic ADP concentrations. The system of compartmentalized creatine kinase (CK) isoenzymes functionally coupled to ANT and ATPases, and mitochondrial-cytoskeletal interactions separate energy fluxes (mass and energy transfer) from signalling (information transfer) within dissipative metabolic structures – intracellular energetic units (ICEU). Due to the non-equilibrium state of CK reactions, intracellular ATP utilization and mitochondrial ATP regeneration are interconnected by the PCr flux from mitochondria. The feedback regulation of respiration occurring via cyclic fluctuations of cytosolic ADP, Pi and Cr/PCr ensures metabolic stability necessary for normal function of cardiac cells. PMID:20479996

  12. Functional optical coherence tomography for live dynamic analysis of mouse embryonic cardiogenesis

    NASA Astrophysics Data System (ADS)

    Wang, Shang; Lopez, Andrew L.; Larina, Irina V.

    2018-02-01

    Blood flow, heart contraction, and tissue stiffness are important regulators of cardiac morphogenesis and function during embryonic development. Defining how these factors are integrated is critically important to advance prevention, diagnostics, and treatment of congenital heart defects. Mammalian embryonic development is taking place deep within the female body, which makes cardiodynamic imaging and analysis during early developmental stages in humans inaccessible. With thousands of mutant lines available and well-established genetic manipulation tools, mouse is a great model to understand how biomechanical factors are integrated with molecular pathways to regulate cardiac function and development. Dynamic imaging and quantitative analysis of the biomechanics of live mouse embryos have become increasingly important, which demands continuous advancements in imaging techniques and live assessment approaches. This has been one of the major drives to keep pushing the frontier of embryonic imaging for better resolution, higher speed, deeper penetration, and more diverse and effective contrasts. Optical coherence tomography (OCT) has played a significant role in addressing such demands, and its features in non-labeling imaging, 3D capability, a large working distance, and various functional derivatives allow OCT to cover a number of specific applications in embryonic imaging. Recently, our group has made several technical improvements in using OCT to probe the biomechanical aspects of live developing mouse embryos at early stages. These include the direct volumetric structural and functional imaging of the cardiodynamics, four-dimensional quantitative Doppler imaging and analysis of the cardiac blood flow, and fourdimensional blood flow separation from the cardiac wall tissue in the beating embryonic heart. Here, we present a short review of these studies together with brief descriptions of the previous work that demonstrate OCT as a valuable and useful imaging tool for the research in developmental cardiology.

  13. Double Knockdown of Prolyyl Hydroxylase and Factor Inhibiting HIF with Non-Viral Minicircle Gene Therapy Enhances Stem Cell Mobilization and Angiogenesis After Myocardial Infarction

    PubMed Central

    Huang, Mei; Nguyen, Patricia; Jia, Fangjun; Hu, Shijun; Gong, Yongquan; de Almeida, Patricia E.; Wang, Li; Nag, Divya; Kay, Mark A.; Giaccia, Amato J; Robbins, Robert C.; Wu, Joseph C.

    2011-01-01

    Background Under normoxic conditions, hypoxia inducible factor-1 alpha (HIF-1α) is rapidly degraded by two hydroxylases, prolyl hydroxylase (PHD) and factor inhibiting HIF-1 (FIH). Because HIF-1α mediates the cardioprotective response to ischemic injury, its up-regulation may be an effective therapeutic option for ischemic heart failure. Methods and Results PHD and FIH were cloned from mouse embryonic stem cells. The best candidate short hairpin sequences for inhibiting PHD isoenzyme 2 (shPHD2) and FIH (shFIH) were inserted into novel non-viral minicircle vectors. In vitro studies after cell transfection of mouse C2C12 myoblasts, HL-1 atrial myocytes, and c-kit+ cardiac progenitor cells (CPCs) demonstrated higher expression of angiogenesis factors in the double knockdown group compared to the single knockdown and shScramble control groups. To confirm in vitro data, shRNA minicircle vectors were injected intramyocardially following LAD ligation in adult FVB mice (n=60). Functional studies using magnetic resonance imaging (MRI), echocardiography, and pressure-volume (PV) loops showed greater improvement in cardiac function in the double knockdown group. To assess mechanism(s) of this functional recovery, we performed a cell trafficking experiment, which demonstrated significantly greater recruitment of bone marrow cells to the ischemic myocardium in the double knockdown group. Fluorescence activated cell sorting (FACS) showed significantly higher activation of endogenous c-kit+ cardiac progenitor cells. Immunostaining showed increased neovascularization and decreased apoptosis in areas of injured myocardium. Finally, western blots and laser capture microdissection (LCM) analysis confirmed up-regulation of HIF-1α protein and angiogenesis genes, respectively. Conclusions We demonstrated that HIF-1α up-regulation by double knockdown of PHD and FIH synergistically increases stem cell mobilization and myocardial angiogenesis, leading to improved cardiac function. PMID:21911818

  14. p38α Mitogen-Activated Protein Kinase Plays a Critical Role in Cardiomyocyte Survival but Not in Cardiac Hypertrophic Growth in Response to Pressure Overload

    PubMed Central

    Nishida, Kazuhiko; Yamaguchi, Osamu; Hirotani, Shinichi; Hikoso, Shungo; Higuchi, Yoshiharu; Watanabe, Tetsuya; Takeda, Toshihiro; Osuka, Soh; Morita, Takashi; Kondoh, Gen; Uno, Yoshihiro; Kashiwase, Kazunori; Taniike, Masayuki; Nakai, Atsuko; Matsumura, Yasushi; Miyazaki, Jun-ichi; Sudo, Tatsuhiko; Hongo, Kenichi; Kusakari, Yoichiro; Kurihara, Satoshi; Chien, Kenneth R.; Takeda, Junji; Hori, Masatsugu; Otsu, Kinya

    2004-01-01

    The molecular mechanism for the transition from cardiac hypertrophy, an adaptive response to biomechanical stress, to heart failure is poorly understood. The mitogen-activated protein kinase p38α is a key component of stress response pathways in various types of cells. In this study, we attempted to explore the in vivo physiological functions of p38α in hearts. First, we generated mice with floxed p38α alleles and crossbred them with mice expressing the Cre recombinase under the control of the α-myosin heavy-chain promoter to obtain cardiac-specific p38α knockout mice. These cardiac-specific p38α knockout mice were born normally, developed to adulthood, were fertile, exhibited a normal life span, and displayed normal global cardiac structure and function. In response to pressure overload to the left ventricle, they developed significant levels of cardiac hypertrophy, as seen in controls, but also developed cardiac dysfunction and heart dilatation. This abnormal response to pressure overload was accompanied by massive cardiac fibrosis and the appearance of apoptotic cardiomyocytes. These results demonstrate that p38α plays a critical role in the cardiomyocyte survival pathway in response to pressure overload, while cardiac hypertrophic growth is unaffected despite its dramatic down-regulation. PMID:15572667

  15. Dual function of the UNC-45b chaperone with myosin and GATA4 in cardiac development

    PubMed Central

    Chen, Daisi; Li, Shumin; Singh, Ram; Spinette, Sarah; Sedlmeier, Reinhard; Epstein, Henry F.

    2012-01-01

    Summary Cardiac development requires interplay between the regulation of gene expression and the assembly of functional sarcomeric proteins. We report that UNC-45b recessive loss-of-function mutations in C3H and C57BL/6 inbred mouse strains cause arrest of cardiac morphogenesis at the formation of right heart structures and failure of contractile function. Wild-type C3H and C57BL/6 embryos at the same stage, E9.5, form actively contracting right and left atria and ventricles. The known interactions of UNC-45b as a molecular chaperone are consistent with diminished accumulation of the sarcomeric myosins, but not their mRNAs, and the resulting decreased contraction of homozygous mutant embryonic hearts. The novel finding that GATA4 accumulation is similarly decreased at the protein but not mRNA levels is also consistent with the function of UNC-45b as a chaperone. The mRNAs of known downstream targets of GATA4 during secondary cardiac field development, the cardiogenic factors Hand1, Hand2 and Nkx-2.5, are also decreased, consistent with the reduced GATA4 protein accumulation. Direct binding studies show that the UNC-45b chaperone forms physical complexes with both the alpha and beta cardiac myosins and the cardiogenic transcription factor GATA4. Co-expression of UNC-45b with GATA4 led to enhanced transcription from GATA promoters in naïve cells. These novel results suggest that the heart-specific UNC-45b isoform functions as a molecular chaperone mediating contractile function of the sarcomere and gene expression in cardiac development. PMID:22553207

  16. Modulation of myocardial energetics: An important category of agents in the multimodal treatment of coronary artery disease and heart failure.

    PubMed

    Dalal, Jamshed J; Mishra, Sundeep

    The combined and relative contribution of glucose and fatty acid oxidation generates myocardial energy, which regulates the cardiac function and efficiency. Any dysregulation in this metabolic homeostasis can adversely affect the function of heart and contribute to cardiac conditions such as angina and heart failure. Metabolic agents ameliorate this internal metabolic anomaly, by shifting the energy production pathway from free fatty acids to glucose, resulting in a better performance of the heart. Metabolic therapy is relatively a new modality, which functions through optimization of cardiac substrate metabolism. Among the metabolic therapies, trimetazidine and ranolazine are the agents presently available in India. In the present review, we would like to present the metabolic perspective of pathophysiology of coronary artery disease and heart failure, and metabolic therapy by using trimetazidine and ranolazine. Copyright © 2017. Published by Elsevier B.V.

  17. Dynamic Organization of lncRNA and Circular RNA Regulators Collectively Controlled Cardiac Differentiation in Humans.

    PubMed

    Li, Yongsheng; Zhang, Jinwen; Huo, Caiqin; Ding, Na; Li, Junyi; Xiao, Jun; Lin, Xiaoyu; Cai, Benzhi; Zhang, Yunpeng; Xu, Juan

    2017-10-01

    Advances in developmental cardiology have increased our understanding of the early aspects of heart differentiation. However, understanding noncoding RNA (ncRNA) transcription and regulation during this process remains elusive. Here, we constructed transcriptomes for both long noncoding RNAs (lncRNAs) and circular RNAs (circRNAs) in four important developmental stages ranging from early embryonic to cardiomyocyte based on high-throughput sequencing datasets, which indicate the high stage-specific expression patterns of two ncRNA types. Additionally, higher similarities of samples within each stage were found, highlighting the divergence of samples collected from distinct cardiac developmental stages. Next, we developed a method to identify numerous lncRNA and circRNA regulators whose expression was significantly stage-specific and shifted gradually and continuously during heart differentiation. We inferred that these ncRNAs are important for the stages of cardiac differentiation. Moreover, transcriptional regulation analysis revealed that the expression of stage-specific lncRNAs is controlled by known key stage-specific transcription factors (TFs). In addition, circRNAs exhibited dynamic expression patterns independent from their host genes. Functional enrichment analysis revealed that lncRNAs and circRNAs play critical roles in pathways that are activated specifically during heart differentiation. We further identified candidate TF-ncRNA-gene network modules for each differentiation stage, suggesting the dynamic organization of lncRNAs and circRNAs collectively controlled cardiac differentiation, which may cause heart-related diseases when defective. Our study provides a foundation for understanding the dynamic regulation of ncRNA transcriptomes during heart differentiation and identifies the dynamic organization of novel key lncRNAs and circRNAs to collectively control cardiac differentiation. Copyright © 2017. Published by Elsevier B.V.

  18. Microtubule Actin Cross-Linking Factor 1 Regulates Cardiomyocyte Microtubule Distribution and Adaptation to Hemodynamic Overload

    PubMed Central

    Kwak, Dongmin; Wang, Huan; Liu, Xiaoyu; Hu, Xinli; Bache, Robert J.; Chen, Yingjie

    2013-01-01

    Aberrant cardiomyocyte microtubule growth is a feature of pressure overload induced cardiac hypertrophy believed to contribute to left ventricular (LV) dysfunction. Microtubule Actin Cross-linking Factor 1 (MACF1/Acf7) is a 600 kd spectraplakin that stabilizes and guides microtubule growth along actin filaments. MACF1 is expressed in the heart, but its impact on cardiac microtubules, and how this influences cardiac structure, function, and adaptation to hemodynamic overload is unknown. Here we used inducible cardiac-specific MACF1 knockout mice (MACF1 KO) to determine the impact of MACF1 on cardiac microtubules and adaptation to pressure overload (transverse aortic constriction (TAC).In adult mouse hearts, MACF1 expression was low under basal conditions, but increased significantly in response to TAC. While MACF1 KO had no observable effect on heart size or function under basal conditions, MACF1 KO exacerbated TAC induced LV hypertrophy, LV dilation and contractile dysfunction. Interestingly, subcellular fractionation of ventricular lysates revealed that MACF1 KO altered microtubule distribution in response to TAC, so that more tubulin was associated with the cell membrane fraction. Moreover, TAC induced microtubule redistribution into this cell membrane fraction in both WT and MACF1 KO mice correlated strikingly with the level of contractile dysfunction (r2 = 0.786, p<.001). MACF1 disruption also resulted in reduction of membrane caveolin 3 levels, and increased levels of membrane PKCα and β1 integrin after TAC, suggesting MACF1 function is important for spatial regulation of several physiologically relevant signaling proteins during hypertrophy. Together, these data identify for the first time, a role for MACF1 in cardiomyocyte microtubule distribution and in adaptation to hemodynamic overload. PMID:24086300

  19. Microtubule Actin Cross-linking Factor 1 regulates cardiomyocyte microtubule distribution and adaptation to hemodynamic overload.

    PubMed

    Fassett, John T; Xu, Xin; Kwak, Dongmin; Wang, Huan; Liu, Xiaoyu; Hu, Xinli; Bache, Robert J; Chen, Yingjie

    2013-01-01

    Aberrant cardiomyocyte microtubule growth is a feature of pressure overload induced cardiac hypertrophy believed to contribute to left ventricular (LV) dysfunction. Microtubule Actin Cross-linking Factor 1 (MACF1/Acf7) is a 600 kd spectraplakin that stabilizes and guides microtubule growth along actin filaments. MACF1 is expressed in the heart, but its impact on cardiac microtubules, and how this influences cardiac structure, function, and adaptation to hemodynamic overload is unknown. Here we used inducible cardiac-specific MACF1 knockout mice (MACF1 KO) to determine the impact of MACF1 on cardiac microtubules and adaptation to pressure overload (transverse aortic constriction (TAC).In adult mouse hearts, MACF1 expression was low under basal conditions, but increased significantly in response to TAC. While MACF1 KO had no observable effect on heart size or function under basal conditions, MACF1 KO exacerbated TAC induced LV hypertrophy, LV dilation and contractile dysfunction. Interestingly, subcellular fractionation of ventricular lysates revealed that MACF1 KO altered microtubule distribution in response to TAC, so that more tubulin was associated with the cell membrane fraction. Moreover, TAC induced microtubule redistribution into this cell membrane fraction in both WT and MACF1 KO mice correlated strikingly with the level of contractile dysfunction (r(2) = 0.786, p<.001). MACF1 disruption also resulted in reduction of membrane caveolin 3 levels, and increased levels of membrane PKCα and β1 integrin after TAC, suggesting MACF1 function is important for spatial regulation of several physiologically relevant signaling proteins during hypertrophy. Together, these data identify for the first time, a role for MACF1 in cardiomyocyte microtubule distribution and in adaptation to hemodynamic overload.

  20. Exercise training improves cardiac function in infarcted rabbits: involvement of autophagic function and fatty acid utilization.

    PubMed

    Chen, Ching-Yi; Hsu, Hsiu-Ching; Lee, Bai-Chin; Lin, Hung-Ju; Chen, Ying-Hsien; Huang, Hui-Chun; Ho, Yi-Lwun; Chen, Ming-Fong

    2010-04-01

    To explore whether exercise can improve cardiac function in a post-myocardial infarction (MI) rabbit model and to determine contributing factors in the left ventricle (LV). Adult male New Zealand White rabbits (2.5-3 kg) underwent MI by ligation of the left anterior descending coronary artery. For 8 weeks after surgery, sham-operated, and post-MI rabbits were housed under sedentary conditions or assigned to a 4-week treadmill exercise protocol at a speed of 1.0 km/h for 30 min 5 days per week, then sacrificed. The non-infarcted region of the LV was harvested for further analysis. MI decreased left ventricular ejection fraction (LVEF) and increased thiobarbituric acid reactive substances (TBARS) generation in the LV. Exercise improved the cardiac function of MI rabbits. Left ventricular LC3II/LC3I (microtubule-associated protein light chain 3) in the MI group was 2.1-fold higher than that of the sham group, exercise significantly decreased LC3II/LC3I in the MI group. MI down-regulated the expression of heart-type fatty acid binding protein (h-FABP), and exercise up-regulated h-FABP. In addition, LVEF had a significantly positive correlation with h-FABP and a negative correlation with LC3II/LC3I. Exercise induced change in autophagic function and fatty acid utilization may contribute to the improvement in ventricular function in the infarcted heart.

  1. MicroRNAs in Heart Failure, Cardiac Transplantation, and Myocardial Recovery: Biomarkers with Therapeutic Potential.

    PubMed

    Shah, Palak; Bristow, Michael R; Port, J David

    2017-12-01

    Heart failure is increasing in prevalence with a lack of recently developed therapies that produce major beneficial effects on its associated mortality. MicroRNAs are small non-coding RNA molecules that regulate gene expression, are differentially regulated in heart failure, and are found in the circulation serving as a biomarker of heart failure. Data suggests that microRNAs may be used to detect allograft rejection in cardiac transplantation and may predict the degree of myocardial recovery in patients with a left ventricular assist device or treated with beta-blocker therapy. Given their role in regulating cellular function, microRNAs are an intriguing target for oligonucleotide therapeutics, designed to mimic or antagonize (antagomir) their biological effects. We review the current state of microRNAs as biomarkers of heart failure and associated conditions, the mechanisms by which microRNAs control cellular function, and how specific microRNAs may be targeted with novel therapeutics designed to treat heart failure.

  2. Crude oil exposures reveal roles for intracellular calcium cycling in haddock craniofacial and cardiac development

    PubMed Central

    Sørhus, Elin; Incardona, John P.; Karlsen, Ørjan; Linbo, Tiffany; Sørensen, Lisbet; Nordtug, Trond; van der Meeren, Terje; Thorsen, Anders; Thorbjørnsen, Maja; Jentoft, Sissel; Edvardsen, Rolf B.; Meier, Sonnich

    2016-01-01

    Recent studies have shown that crude oil exposure affects cardiac development in fish by disrupting excitation-contraction (EC) coupling. We previously found that eggs of Atlantic haddock (Melanogrammus aeglefinus) bind dispersed oil droplets, potentially leading to more profound toxic effects from uptake of polycyclic aromatic hydrocarbons (PAHs). Using lower concentrations of dispersed crude oil (0.7–7 μg/L ∑PAH), here we exposed a broader range of developmental stages over both short and prolonged durations. We quantified effects on cardiac function and morphogenesis, characterized novel craniofacial defects, and examined the expression of genes encoding potential targets underlying cardiac and craniofacial defects. Because of oil droplet binding, a 24-hr exposure was sufficient to create severe cardiac and craniofacial abnormalities. The specific nature of the craniofacial abnormalities suggests that crude oil may target common craniofacial and cardiac precursor cells either directly or indirectly by affecting ion channels and intracellular calcium in particular. Furthermore, down-regulation of genes encoding specific components of the EC coupling machinery suggests that crude oil disrupts excitation-transcription coupling or normal feedback regulation of ion channels blocked by PAHs. These data support a unifying hypothesis whereby depletion of intracellular calcium pools by crude oil-derived PAHs disrupts several pathways critical for organogenesis in fish. PMID:27506155

  3. Cardiomyocyte-expressed farnesoid-X-receptor is a novel apoptosis mediator and contributes to myocardial ischaemia/reperfusion injury

    PubMed Central

    Pu, Jun; Yuan, Ancai; Shan, Peiren; Gao, Erhe; Wang, Xiaoliang; Wang, Yajing; Lau, Wayne Bond; Koch, Walter; Ma, Xin-Liang; He, Ben

    2013-01-01

    Aims Emerging evidence indicates that nuclear receptors play a critical regulatory role in cardiovascular physiology/pathology. Recently, farnesoid-X-receptor (FXR), a member of the metabolic nuclear receptor superfamily, has been demonstrated to be expressed in vascular cells, with important roles in vascular physiology/pathology. However, the potential cardiac function of FXR remains unclear. We investigated the cardiac expression and biological function of FXR. Methods and results Farnesoid-X-receptor was detected in both isolated neonatal rat cardiac myocytes and fibroblasts. Natural and synthetic FXR agonists upregulated cardiac FXR expression, stimulated myocyte apoptosis, and reduced myocyte viability dose- and time-dependently. Mechanistic studies demonstrated that FXR agonists disrupted mitochondria, characterized by mitochondrial permeability transition pores activation, mitochondrial potential dissipation, cytochrome c release, and both caspase-9 and -3 activation. Such mitochondrial apoptotic responses were abolished by siRNA-mediated silencing of endogenous FXR or pharmacological inhibition of mitochondrial death signalling. Furthermore, low levels of FXR were detected in the adult mouse heart, with significant (∼2.0-fold) upregulation after myocardial ischaemia/reperfusion (MI/R). Pharmacological inhibition or genetic ablation of FXR significantly reduced myocardial apoptosis by 29.0–53.4%, decreased infarct size by 23.4–49.7%, and improved cardiac function in ischaemic/reperfused myocardium. Conclusion These results demonstrate that nuclear receptor FXR acts as a novel functional receptor in cardiac tissue, regulates apoptosis in cardiomyocytes, and contributes to MI/R injury. PMID:22307460

  4. Complete cardiac regeneration in a mouse model of myocardial infarction.

    PubMed

    Haubner, Bernhard Johannes; Adamowicz-Brice, Martyna; Khadayate, Sanjay; Tiefenthaler, Viktoria; Metzler, Bernhard; Aitman, Tim; Penninger, Josef M

    2012-12-01

    Cardiac remodeling and subsequent heart failure remain critical issues after myocardial infarction despite improved treatment and reperfusion strategies. Recently, complete cardiac regeneration has been demonstrated in fish and newborn mice following resection of the cardiac apex. However, it remained entirely unclear whether the mammalian heart can also completely regenerate following a complex cardiac ischemic injury. We established a protocol to induce a severe heart attack in one-day-old mice using left anterior descending artery (LAD) ligation. LAD ligation triggered substantial cardiac injury in the left ventricle defined by Caspase 3 activation and massive cell death. Ischemia-induced cardiomyocyte death was also visible on day 4 after LAD ligation. Remarkably, 7 days after the initial ischemic insult, we observed complete cardiac regeneration without any signs of tissue damage or scarring. This tissue regeneration translated into long-term normal heart functions as assessed by echocardiography. In contrast, LAD ligations in 7-day-old mice resulted in extensive scarring comparable to adult mice, indicating that the regenerative capacity for complete cardiac healing after heart attacks can be traced to the first week after birth. RNAseq analyses of hearts on day 1, day 3, and day 10 and comparing LAD-ligated and sham-operated mice surprisingly revealed a transcriptional programme of major changes in genes mediating mitosis and cell division between days 1, 3 and 10 postnatally and a very limited set of genes, including genes regulating cell cycle and extracellular matrix synthesis, being differentially regulated in the regenerating hearts. We present for the first time a mammalian model of complete cardiac regeneration following a severe ischemic cardiac injury. This novel model system provides the unique opportunity to uncover molecular and cellular pathways that can induce cardiac regeneration after ischemic injury, findings that one day could be translated to human heart attack patients.

  5. Inhibition of Let-7 microRNA attenuates myocardial remodeling and improves cardiac function postinfarction in mice

    PubMed Central

    Tolonen, Anna-Maria; Magga, Johanna; Szabó, Zoltán; Viitala, Pirkko; Gao, Erhe; Moilanen, Anne-Mari; Ohukainen, Pauli; Vainio, Laura; Koch, Walter J; Kerkelä, Risto; Ruskoaho, Heikki; Serpi, Raisa

    2014-01-01

    The members of lethal-7 (Let-7) microRNA (miRNA) family are involved in regulation of cell differentiation and reprogramming of somatic cells into induced pluripotent stem cells. However, their function in the heart is not known. In this study, we examined the effect of inhibiting the function of Let-7c miRNA on the progression of postinfarction left ventricular (LV) remodeling in mice. Myocardial infarction was induced with permanent ligation of left anterior descending coronary artery with a 4-week follow-up period. Let-7c miRNA was inhibited with a specific antagomir administered intravenously. The inhibition of Let-7c miRNA downregulated the levels of mature Let-7c miRNA and its other closely related members of Let-7 family in the heart and resulted in increased expression of pluripotency-associated genes Oct4 and Sox2 in cardiac fibroblasts in vitro and in adult mouse heart in vivo. Importantly, Let-7c inhibitor prevented the deterioration of cardiac function postinfarction, as demonstrated by preserved LV ejection fraction and elevated cardiac output. Improvement in cardiac function by Let-7c inhibitor postinfarction was associated with decreased apoptosis, reduced fibrosis, and reduction in the number of discoidin domain receptor 2–positive fibroblasts, while the number of c-kit+ cardiac stem cells and Ki-67+ proliferating cells remained unaltered. In conclusion, inhibition of Let-7 miRNA may be beneficial for the prevention of postinfarction LV remodeling and progression of heart failure. PMID:25505600

  6. Inhibitor of lysyl oxidase improves cardiac function and the collagen/MMP profile in response to volume overload.

    PubMed

    El Hajj, Elia C; El Hajj, Milad C; Ninh, Van K; Gardner, Jason D

    2018-05-18

    The cardiac extracellular matrix is a complex architectural network that serves many functions including providing structural and biochemical support to surrounding cells, and regulating intercellular signaling pathways. Cardiac function is directly affected by extracellular matrix (ECM) composition, and alterations of the ECM contribute to progression of heart failure. Initially, collagen deposition is an adaptive response that aims to preserve tissue integrity and maintain normal ventricular function. However, the synergistic effects of the pro-inflammatory and pro-fibrotic responses induce a vicious cycle which causes excess activation of myofibroblasts, significantly increasing collagen deposition and accumulation in the matrix. Further, excess synthesis and activation of the enzyme lysyl oxidase (LOX) during disease increases collagen cross-linking, which significantly increases collagen resistance to degradation by matrix metalloproteinases (MMPs). In this study, the aortocaval fistula model of volume overload (VO) was used to determine whether LOX inhibition could prevent adverse changes in the ECM and subsequent cardiac dysfunction. The major findings from this study are that LOX inhibition: (a) prevented VO-induced increases in LV wall stress, (b) partially attenuated VO-induced ventricular hypertrophy, (c) completely blocked the increases in fibrotic proteins, including collagens, MMPs, and their tissue inhibitors (TIMPs), and (d) prevented the VO-induced decline in cardiac function. It remains unclear whether a direct interaction between LOX and MMPs exists; however our studies suggest a potential link between the two since LOX inhibition completely attenuated the VO-induced increases in MMPs. Overall, our studies demonstrate key cardioprotective effects of LOX inhibition against adverse cardiac remodeling due to chronic VO.

  7. Knockout of Eva1a leads to rapid development of heart failure by impairing autophagy

    PubMed Central

    Zhang, Shu; Lin, Xin; Li, Ge; Shen, Xue; Niu, Di; Lu, Guang; Fu, Xin; Chen, Yingyu; Cui, Ming; Bai, Yun

    2017-01-01

    EVA1A (Eva-1 homologue A) is a novel lysosome and endoplasmic reticulum-associated protein that can regulate cell autophagy and apoptosis. Eva1a is expressed in the myocardium, but its function in myocytes has not yet been investigated. Therefore, we generated inducible, cardiomyocyte-specific Eva1a knockout mice with an aim to determine the role of Eva1a in cardiac remodelling in the adult heart. Data from experiments showed that loss of Eva1a in the adult heart increased cardiac fibrosis, promoted cardiac hypertrophy, and led to cardiomyopathy and death. Further investigation suggested that this effect was associated with impaired autophagy and increased apoptosis in Eva1a knockout hearts. Moreover, knockout of Eva1a activated Mtor signalling and the subsequent inhibition of autophagy. In addition, Eva1a knockout hearts showed disorganized sarcomere structure and mitochondrial misalignment and aggregation, leading to the lack of ATP generation. Collectively, these data demonstrated that Eva1a improves cardiac function and inhibits cardiac hypertrophy and fibrosis by increasing autophagy. In conclusion, our results demonstrated that Eva1a may have an important role in maintaining cardiac homeostasis. PMID:28151473

  8. Computer modeling of siRNA knockdown effects indicates an essential role of the Ca2+ channel alpha2delta-1 subunit in cardiac excitation-contraction coupling.

    PubMed

    Tuluc, Petronel; Kern, Georg; Obermair, Gerald J; Flucher, Bernhard E

    2007-06-26

    L-type Ca(2+) currents determine the shape of cardiac action potentials (AP) and the magnitude of the myoplasmic Ca(2+) signal, which regulates the contraction force. The auxiliary Ca(2+) channel subunits alpha(2)delta-1 and beta(2) are important regulators of membrane expression and current properties of the cardiac Ca(2+) channel (Ca(V)1.2). However, their role in cardiac excitation-contraction coupling is still elusive. Here we addressed this question by combining siRNA knockdown of the alpha(2)delta-1 subunit in a muscle expression system with simulation of APs and Ca(2+) transients by using a quantitative computer model of ventricular myocytes. Reconstitution of dysgenic muscle cells with Ca(V)1.2 (GFP-alpha(1C)) recapitulates key properties of cardiac excitation-contraction coupling. Concomitant depletion of the alpha(2)delta-1 subunit did not perturb membrane expression or targeting of the pore-forming GFP-alpha(1C) subunit into junctions between the outer membrane and the sarcoplasmic reticulum. However, alpha(2)delta-1 depletion shifted the voltage dependence of Ca(2+) current activation by 9 mV to more positive potentials, and it slowed down activation and inactivation kinetics approximately 2-fold. Computer modeling revealed that the altered voltage dependence and current kinetics exert opposing effects on the function of ventricular myocytes that in total cause a 60% prolongation of the AP and a 2-fold increase of the myoplasmic Ca(2+) concentration during each contraction. Thus, the Ca(2+) channel alpha(2)delta-1 subunit is not essential for normal Ca(2+) channel targeting in muscle but is a key determinant of normal excitation and contraction of cardiac muscle cells, and a reduction of alpha(2)delta-1 function is predicted to severely perturb normal heart function.

  9. Functional TRPV2 and TRPV4 channels in human cardiac c-kit(+) progenitor cells.

    PubMed

    Che, Hui; Xiao, Guo-Sheng; Sun, Hai-Ying; Wang, Yan; Li, Gui-Rong

    2016-06-01

    The cellular physiology and biology of human cardiac c-kit(+) progenitor cells has not been extensively characterized and remains an area of active research. This study investigates the functional expression of transient receptor potential vanilloid (TRPV) and possible roles for this ion channel in regulating proliferation and migration of human cardiac c-kit(+) progenitor cells. We found that genes coding for TRPV2 and TRPV4 channels and their proteins are significantly expressed in human c-kit(+) cardiac stem cells. Probenecid, an activator of TRPV2, induced an increase in intracellular Ca(2+) (Ca(2+) i ), an effect that may be attenuated or abolished by the TRPV2 blocker ruthenium red. The TRPV4 channel activator 4α-phorbol 12-13-dicaprinate induced Ca(2+) i oscillations, which can be inhibited by the TRPV4 blocker RN-1734. The alteration of Ca(2+) i by probenecid or 4α-phorbol 12-13-dicprinate was dramatically inhibited in cells infected with TRPV2 short hairpin RNA (shRNA) or TRPV4 shRNA. Silencing TRPV2, but not TRPV4, significantly reduced cell proliferation by arresting cells at the G0/G1 boundary of the cell cycle. Cell migration was reduced by silencing TRPV2 or TRPV4. Western blot revealed that silencing TRPV2 decreased expression of cyclin D1, cyclin E, pERK1/2 and pAkt, whereas silencing TRPV4 only reduced pAkt expression. Our results demonstrate for the first time that functional TRPV2 and TRPV4 channels are abundantly expressed in human cardiac c-kit(+) progenitor cells. TRPV2 channels, but not TRPV4 channels, participate in regulating cell cycle progression; moreover, both TRPV2 and TRPV4 are involved in migration of human cardiac c-kit(+) progenitor cells. © 2016 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  10. Sickle cell anemia mice develop a unique cardiomyopathy with restrictive physiology

    PubMed Central

    Bakeer, Nihal; James, Jeanne; Roy, Swarnava; Wansapura, Janaka; Shanmukhappa, Shiva Kumar; Lorenz, John N.; Osinska, Hanna; Backer, Kurt; Huby, Anne-Cecile; Shrestha, Archana; Niss, Omar; Fleck, Robert; Quinn, Charles T.; Taylor, Michael D.; Purevjav, Enkhsaikhan; Aronow, Bruce J.; Towbin, Jeffrey A.; Malik, Punam

    2016-01-01

    Cardiopulmonary complications are the leading cause of mortality in sickle cell anemia (SCA). Elevated tricuspid regurgitant jet velocity, pulmonary hypertension, diastolic, and autonomic dysfunction have all been described, but a unifying pathophysiology and mechanism explaining the poor prognosis and propensity to sudden death has been elusive. Herein, SCA mice underwent a longitudinal comprehensive cardiac analysis, combining state-of-the-art cardiac imaging with electrocardiography, histopathology, and molecular analysis to determine the basis of cardiac dysfunction. We show that in SCA mice, anemia-induced hyperdynamic physiology was gradually superimposed with restrictive physiology, characterized by progressive left atrial enlargement and diastolic dysfunction with preserved systolic function. This phenomenon was absent in WT mice with experimentally induced chronic anemia of similar degree and duration. Restrictive physiology was associated with microscopic cardiomyocyte loss and secondary fibrosis detectable as increased extracellular volume by cardiac-MRI. Ultrastructural mitochondrial changes were consistent with severe chronic hypoxia/ischemia and sarcomere diastolic-length was shortened. Transcriptome analysis revealed up-regulation of genes involving angiogenesis, extracellular-matrix, circadian-rhythm, oxidative stress, and hypoxia, whereas ion-channel transport and cardiac conduction were down-regulated. Indeed, progressive corrected QT prolongation, arrhythmias, and ischemic changes were noted in SCA mice before sudden death. Sudden cardiac death is common in humans with restrictive cardiomyopathies and long QT syndromes. Our findings may thus provide a unifying cardiac pathophysiology that explains the reported cardiac abnormalities and sudden death seen in humans with SCA. PMID:27503873

  11. Recurrent myocardial infarction: Mechanisms of free-floating adaptation and autonomic derangement in networked cardiac neural control.

    PubMed

    Kember, Guy; Ardell, Jeffrey L; Shivkumar, Kalyanam; Armour, J Andrew

    2017-01-01

    The cardiac nervous system continuously controls cardiac function whether or not pathology is present. While myocardial infarction typically has a major and catastrophic impact, population studies have shown that longer-term risk for recurrent myocardial infarction and the related potential for sudden cardiac death depends mainly upon standard atherosclerotic variables and autonomic nervous system maladaptations. Investigative neurocardiology has demonstrated that autonomic control of cardiac function includes local circuit neurons for networked control within the peripheral nervous system. The structural and adaptive characteristics of such networked interactions define the dynamics and a new normal for cardiac control that results in the aftermath of recurrent myocardial infarction and/or unstable angina that may or may not precipitate autonomic derangement. These features are explored here via a mathematical model of cardiac regulation. A main observation is that the control environment during pathology is an extrapolation to a setting outside prior experience. Although global bounds guarantee stability, the resulting closed-loop dynamics exhibited while the network adapts during pathology are aptly described as 'free-floating' in order to emphasize their dependence upon details of the network structure. The totality of the results provide a mechanistic reasoning that validates the clinical practice of reducing sympathetic efferent neuronal tone while aggressively targeting autonomic derangement in the treatment of ischemic heart disease.

  12. Top-down Mass Spectrometry of Cardiac Myofilament Proteins in Health and Disease

    PubMed Central

    Ying, Peng; Serife, Ayaz-Guner; Deyang, Yu; Ying, Ge

    2014-01-01

    Myofilaments are composed of thin and thick filaments which coordinate with each other to regulate muscle contraction and relaxation. Posttranslational modifications (PTMs) together with genetic variations and alternative splicing of the myofilament proteins play essential roles in regulating cardiac contractility in health and disease. Therefore, a comprehensive characterization of the myofilament proteins in physiological and pathological conditions is essential for better understanding the molecular basis of cardiac function and dysfunction. Due to the vast complexity and dynamic nature of proteins, it is challenging to obtain a holistic view of myofilament protein modifications. In recent years, top-down mass spectrometry (MS) has emerged as a powerful approach to study isoform composition and PTMs of proteins owing to its advantage of complete sequence coverage and its ability to identify PTMs and sequence variants without a priori knowledge. In this review, we will discuss the application of top-down MS to study cardiac myofilaments and highlight the insights it provides into the understanding of molecular mechanisms in contractile dysfunction of heart failure. Particularly, recent results of cardiac troponin and tropomyosin modifications will be elaborated. The limitations and perspectives on the use of top-down MS for myofilament protein characterization will also be briefly discussed. PMID:24945106

  13. MicroRNA-155 attenuates late sepsis-induced cardiac dysfunction through JNK and β-arrestin 2.

    PubMed

    Zhou, Yu; Song, Yan; Shaikh, Zahir; Li, Hui; Zhang, Haiju; Caudle, Yi; Zheng, Shouhua; Yan, Hui; Hu, Dan; Stuart, Charles; Yin, Deling

    2017-07-18

    Cardiac dysfunction is correlated with detrimental prognosis of sepsis and contributes to a high risk of mortality. After an initial hyperinflammatory reaction, most patients enter a protracted state of immunosuppression (late sepsis) that alters both innate and adaptive immunity. The changes of cardiac function in late sepsis are not yet known. MicroRNA-155 (miR-155) is previously found to play important roles in both regulations of immune activation and cardiac function. In this study, C57BL/6 mice were operated to develop into early and late sepsis phases, and miR-155 mimic was injected through the tail vein 48 h after cecal ligation and puncture (CLP). The effect of miR-155 on CLP-induced cardiac dysfunction was explored in late sepsis. We found that increased expression of miR-155 in the myocardium protected against cardiac dysfunction in late sepsis evidenced by attenuating sepsis-reduced cardiac output and enhancing left ventricular systolic function. We also observed that miR-155 markedly reduced the infiltration of macrophages and neutrophils into the myocardium and attenuated the inflammatory response via suppression of JNK signaling pathway. Moreover, overexpression of β-arrestin 2 (Arrb2) exacerbated the mice mortality and immunosuppression in late sepsis. Furthermore, transfection of miR-155 mimic reduced Arrb2 expression, and then restored immunocompetence and improved survival in late septic mice. We conclude that increased miR-155 expression through systemic administration of miR-155 mimic attenuates cardiac dysfunction and improves late sepsis survival by targeting JNK associated inflammatory signaling and Arrb2 mediated immunosuppression.

  14. American ginseng acutely regulates contractile function of rat heart.

    PubMed

    Jiang, Mao; Murias, Juan M; Chrones, Tom; Sims, Stephen M; Lui, Edmund; Noble, Earl G

    2014-01-01

    Chronic ginseng treatments have been purported to improve cardiac performance. However reports of acute administration of ginseng on cardiovascular function remain controversial and potential mechanisms are not clear. In this study, we examined the effects of acute North American ginseng (Panax quinquefolius) administration on rat cardiac contractile function by using electrocardiogram (ECG), non-invasive blood pressure (BP) measurement, and Langendorff isolated, spontaneously beating, perfused heart measurements (LP). Eight-week old male Sprague-Dawley rats (n = 8 per group) were gavaged with a single dose of water-soluble American ginseng at 300 mg/kg body weight. Heart rate (HR) and BP were measured prior to and at 1 and 24 h after gavaging (ECG and BP). Additional groups were used for each time point for Langendorff measurements. HR was significantly decreased (ECG: 1 h: 6 ± 0.2%, 24 h: 8 ± 0.3%; BP: 1 h: 8.8 ± 0.2%, 24 h: 13 ± 0.4% and LP: 1 h: 22 ± 0.4%, 24 h: 19 ± 0.4%) in rats treated with water-soluble ginseng compared with pre or control measures. An initial marked decrease in left ventricular developed pressure was observed in LP hearts but BP changes were not observed in BP group. A direct inhibitory effect of North American ginseng was observed on cardiac contractile function in LP rats and on fluorescence measurement of intracellular calcium transient in freshly isolated cardiac myocytes when exposed to ginseng (1 and 10 μg/ml). Collectively these data present evidence of depressed cardiac contractile function by acute administration of North American ginseng in rat. This acute reduction in cardiac contractile function appears to be intrinsic to the myocardium.

  15. c-Myc Alters Substrate Utilization and O-GlcNAc Protein Posttranslational Modifications without Altering Cardiac Function during Early Aortic Constriction

    PubMed Central

    Ledee, Dolena; Smith, Lincoln; Bruce, Margaret; Kajimoto, Masaki; Isern, Nancy; Portman, Michael A.; Olson, Aaron K.

    2015-01-01

    Hypertrophic stimuli cause transcription of the proto-oncogene c-Myc (Myc). Prior work showed that myocardial knockout of c-Myc (Myc) attenuated hypertrophy and decreased expression of metabolic genes after aortic constriction. Accordingly, we assessed the interplay between Myc, substrate oxidation and cardiac function during early pressure overload hypertrophy. Mice with cardiac specific, inducible Myc knockout (MycKO-TAC) and non-transgenic littermates (Cont-TAC) were subjected to transverse aortic constriction (TAC; n = 7/group). Additional groups underwent sham surgery (Cont-Sham and MycKO-Sham, n = 5 per group). After two weeks, function was measured in isolated working hearts along with substrate fractional contributions to the citric acid cycle by using perfusate with 13C labeled mixed fatty acids, lactate, ketone bodies and unlabeled glucose and insulin. Cardiac function was similar between groups after TAC although +dP/dT and -dP/dT trended towards improvement in MycKO-TAC versus Cont-TAC. In sham hearts, Myc knockout did not affect cardiac function or substrate preferences for the citric acid cycle. However, Myc knockout altered fractional contributions during TAC. The unlabeled fractional contribution increased in MycKO-TAC versus Cont-TAC, whereas ketone and free fatty acid fractional contributions decreased. Additionally, protein posttranslational modifications by O-GlcNAc were significantly greater in Cont-TAC versus both Cont-Sham and MycKO-TAC. In conclusion, Myc alters substrate preferences for the citric acid cycle during early pressure overload hypertrophy without negatively affecting cardiac function. Myc also affects protein posttranslational modifications by O-GlcNAc during hypertrophy, which may regulate Myc-induced metabolic changes. PMID:26266538

  16. American ginseng acutely regulates contractile function of rat heart

    PubMed Central

    Jiang, Mao; Murias, Juan M.; Chrones, Tom; Sims, Stephen M.; Lui, Edmund; Noble, Earl G.

    2014-01-01

    Chronic ginseng treatments have been purported to improve cardiac performance. However reports of acute administration of ginseng on cardiovascular function remain controversial and potential mechanisms are not clear. In this study, we examined the effects of acute North American ginseng (Panax quinquefolius) administration on rat cardiac contractile function by using electrocardiogram (ECG), non-invasive blood pressure (BP) measurement, and Langendorff isolated, spontaneously beating, perfused heart measurements (LP). Eight-week old male Sprague–Dawley rats (n = 8 per group) were gavaged with a single dose of water-soluble American ginseng at 300 mg/kg body weight. Heart rate (HR) and BP were measured prior to and at 1 and 24 h after gavaging (ECG and BP). Additional groups were used for each time point for Langendorff measurements. HR was significantly decreased (ECG: 1 h: 6 ± 0.2%, 24 h: 8 ± 0.3%; BP: 1 h: 8.8 ± 0.2%, 24 h: 13 ± 0.4% and LP: 1 h: 22 ± 0.4%, 24 h: 19 ± 0.4%) in rats treated with water-soluble ginseng compared with pre or control measures. An initial marked decrease in left ventricular developed pressure was observed in LP hearts but BP changes were not observed in BP group. A direct inhibitory effect of North American ginseng was observed on cardiac contractile function in LP rats and on fluorescence measurement of intracellular calcium transient in freshly isolated cardiac myocytes when exposed to ginseng (1 and 10 μg/ml). Collectively these data present evidence of depressed cardiac contractile function by acute administration of North American ginseng in rat. This acute reduction in cardiac contractile function appears to be intrinsic to the myocardium. PMID:24672484

  17. Interleukin 1 and Tumor Necrosis Factor Inhibit Cardiac Myocyte β -adrenergic Responsiveness

    NASA Astrophysics Data System (ADS)

    Gulick, Tod; Chung, Mina K.; Pieper, Stephen J.; Lange, Louis G.; Schreiner, George F.

    1989-09-01

    Reversible congestive heart failure can accompany cardiac allograft rejection and inflammatory myocarditis, conditions associated with an immune cell infiltrate of the myocardium. To determine whether immune cell secretory products alter cardiac muscle metabolism without cytotoxicity, we cultured cardiac myocytes in the presence of culture supernatants from activated immune cells. We observed that these culture supernatants inhibit β -adrenergic agonist-mediated increases in cultured cardiac myocyte contractility and intracellular cAMP accumulation. The myocyte contractile response to increased extracellular Ca2+ concentration is unaltered by prior exposure to these culture supernatants, as is the increase in myocyte intracellular cAMP concentration in response to stimulation with forskolin, a direct adenyl cyclase activator. Inhibition occurs in the absence of alteration in β -adrenergic receptor density or ligand binding affinity. Suppressive activity is attributable to the macrophage-derived cytokines interleukin 1 and tumor necrosis factor. Thus, these observations describe a role for defined cytokines in regulating the hormonal responsiveness and function of contractile cells. The effects of interleukin 1 and tumor necrosis factor on intracellular cAMP accumulation may be a model for immune modulation of other cellular functions dependent upon cyclic nucleotide metabolism. The uncoupling of agonist-occupied receptors from adenyl cyclase suggests that β -receptor or guanine nucleotide binding protein function is altered by the direct or indirect action of cytokines on cardiac muscle cells.

  18. Roles of Sensory Nerves in the Regulation of Radiation-Induced Structural and Functional Changes in the Heart

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sridharan, Vijayalakshmi; Tripathi, Preeti; Sharma, Sunil

    Purpose: Radiation-induced heart disease (RIHD) is a chronic severe side effect of radiation therapy of intrathoracic and chest wall tumors. The heart contains a dense network of sensory neurons that not only are involved in monitoring of cardiac events such as ischemia and reperfusion but also play a role in cardiac tissue homeostasis, preconditioning, and repair. The purpose of this study was to examine the role of sensory nerves in RIHD. Methods and Materials: Male Sprague-Dawley rats were administered capsaicin to permanently ablate sensory nerves, 2 weeks before local image-guided heart x-ray irradiation with a single dose of 21 Gy.more » During the 6 months of follow-up, heart function was assessed with high-resolution echocardiography. At 6 months after irradiation, cardiac structural and molecular changes were examined with histology, immunohistochemistry, and Western blot analysis. Results: Capsaicin pretreatment blunted the effects of radiation on myocardial fibrosis and mast cell infiltration and activity. By contrast, capsaicin pretreatment caused a small but significant reduction in cardiac output 6 months after irradiation. Capsaicin did not alter the effects of radiation on cardiac macrophage number or indicators of autophagy and apoptosis. Conclusions: These results suggest that sensory nerves, although they play a predominantly protective role in radiation-induced cardiac function changes, may eventually enhance radiation-induced myocardial fibrosis and mast cell activity.« less

  19. Electromechanical Conditioning of Adult Progenitor Cells Improves Recovery of Cardiac Function After Myocardial Infarction

    PubMed Central

    Llucià‐Valldeperas, Aida; Soler‐Botija, Carolina; Gálvez‐Montón, Carolina; Roura, Santiago; Prat‐Vidal, Cristina; Perea‐Gil, Isaac; Sanchez, Benjamin; Bragos, Ramon; Vunjak‐Novakovic, Gordana

    2016-01-01

    Abstract Cardiac cells are subjected to mechanical and electrical forces, which regulate gene expression and cellular function. Therefore, in vitro electromechanical stimuli could benefit further integration of therapeutic cells into the myocardium. Our goals were (a) to study the viability of a tissue‐engineered construct with cardiac adipose tissue‐derived progenitor cells (cardiac ATDPCs) and (b) to examine the effect of electromechanically stimulated cardiac ATDPCs within a myocardial infarction (MI) model in mice for the first time. Cardiac ATDPCs were electromechanically stimulated at 2‐millisecond pulses of 50 mV/cm at 1 Hz and 10% stretching during 7 days. The cells were harvested, labeled, embedded in a fibrin hydrogel, and implanted over the infarcted area of the murine heart. A total of 39 animals were randomly distributed and sacrificed at 21 days: groups of grafts without cells and with stimulated or nonstimulated cells. Echocardiography and gene and protein analyses were also carried out. Physiologically stimulated ATDPCs showed increased expression of cardiac transcription factors, structural genes, and calcium handling genes. At 21 days after implantation, cardiac function (measured as left ventricle ejection fraction between presacrifice and post‐MI) increased up to 12% in stimulated grafts relative to nontreated animals. Vascularization and integration with the host blood supply of grafts with stimulated cells resulted in increased vessel density in the infarct border region. Trained cells within the implanted fibrin patch expressed main cardiac markers and migrated into the underlying ischemic myocardium. To conclude, synchronous electromechanical cell conditioning before delivery may be a preferred alternative when considering strategies for heart repair after myocardial infarction. Stem Cells Translational Medicine 2017;6:970–981 PMID:28297585

  20. Electromechanical Conditioning of Adult Progenitor Cells Improves Recovery of Cardiac Function After Myocardial Infarction.

    PubMed

    Llucià-Valldeperas, Aida; Soler-Botija, Carolina; Gálvez-Montón, Carolina; Roura, Santiago; Prat-Vidal, Cristina; Perea-Gil, Isaac; Sanchez, Benjamin; Bragos, Ramon; Vunjak-Novakovic, Gordana; Bayes-Genis, Antoni

    2017-03-01

    Cardiac cells are subjected to mechanical and electrical forces, which regulate gene expression and cellular function. Therefore, in vitro electromechanical stimuli could benefit further integration of therapeutic cells into the myocardium. Our goals were (a) to study the viability of a tissue-engineered construct with cardiac adipose tissue-derived progenitor cells (cardiac ATDPCs) and (b) to examine the effect of electromechanically stimulated cardiac ATDPCs within a myocardial infarction (MI) model in mice for the first time. Cardiac ATDPCs were electromechanically stimulated at 2-millisecond pulses of 50 mV/cm at 1 Hz and 10% stretching during 7 days. The cells were harvested, labeled, embedded in a fibrin hydrogel, and implanted over the infarcted area of the murine heart. A total of 39 animals were randomly distributed and sacrificed at 21 days: groups of grafts without cells and with stimulated or nonstimulated cells. Echocardiography and gene and protein analyses were also carried out. Physiologically stimulated ATDPCs showed increased expression of cardiac transcription factors, structural genes, and calcium handling genes. At 21 days after implantation, cardiac function (measured as left ventricle ejection fraction between presacrifice and post-MI) increased up to 12% in stimulated grafts relative to nontreated animals. Vascularization and integration with the host blood supply of grafts with stimulated cells resulted in increased vessel density in the infarct border region. Trained cells within the implanted fibrin patch expressed main cardiac markers and migrated into the underlying ischemic myocardium. To conclude, synchronous electromechanical cell conditioning before delivery may be a preferred alternative when considering strategies for heart repair after myocardial infarction. Stem Cells Translational Medicine 2017;6:970-981. © 2016 The Authors Stem Cells Translational Medicine published by Wiley Periodicals, Inc. on behalf of AlphaMed Press.

  1. Nucleostemin Rejuvenates Cardiac Progenitor Cells and Antagonizes Myocardial Aging

    PubMed Central

    Hariharan, Nirmala; Quijada, Pearl; Mohsin, Sadia; Joyo, Anya; Samse, Kaitlen; Monsanto, Megan; De La Torre, Andrea; Avitabile, Daniele; Ormachea, Lucia; McGregor, Michael J.; Tsai, Emily J; Sussman, Mark A.

    2015-01-01

    BACKGROUND Functional decline in stem cell-mediated regeneration contributes to aging associated with cellular senescence in c-kit+ cardiac progenitor cells (CPCs). Clinical implementation of CPC-based therapy with elderly patients would benefit tremendously from understanding molecular characteristics of senescence to antagonize aging. Nucleostemin (NS) is a nucleolar protein regulating stem cell proliferation and pluripotency. OBJECTIVES The goal is to demonstrate that NS preserves characteristics associated with “stemness” in CPCs and antagonizes myocardial senescence and aging. METHODS CPCs isolated from human fetal (FhCPC) and adult failing (AhCPC) hearts, as well as young (YCPC) and old mice (OCPC), were studied for senescence characteristics and NS expression. Heterozygous knockout mice with one functional allele of NS (NS+/−) were used to demonstrate that NS preserves myocardial structure and function and slows characteristics of aging. RESULTS NS expression is decreased in AhCPCs relative to FhCPC, correlating with lowered proliferation potential and shortened telomere length. AhCPC characteristics resemble OCPCs, which have a phenotype induced by NS silencing, resulting in cell flattening, senescence, multinucleated cells, decreased S phase progression, diminished expression of stemness markers and up-regulation of p53 and p16. CPC senescence resulting from NS loss is partially p53 dependent and is rescued by concurrent silencing of p53. Mechanistically, NS induction correlates with Pim-1 kinase-mediated stabilization of c-Myc. Engineering OCPCs and AhCPCs to overexpress NS decreases senescent and multinucleated cells, restores morphology, and antagonizes senescence, thereby preserving phenotypic properties of “stemness.” Early cardiac aging with decline in cardiac function, increase in senescence markers p53 and p16, telomere attrition, and accompanied CPC exhaustion is evident in NS+/− mice. CONCLUSIONS Youthful properties and antagonism of senescence in CPCs and the myocardium is consistent with a role for NS downstream from Pim-1 signaling that enhances cardiac regeneration. PMID:25593054

  2. Phosphorylation of serine96 of histidine-rich calcium-binding protein by the Fam20C kinase functions to prevent cardiac arrhythmia

    PubMed Central

    Pollak, Adam J.; Haghighi, Kobra; Kunduri, Swati; Arvanitis, Demetrios A.; Liu, Guan-Sheng; Singh, Vivek P.; Gonzalez, David J.; Sanoudou, Despina; Wiley, Sandra E.; Dixon, Jack E.; Kranias, Evangelia G.

    2017-01-01

    Precise Ca cycling through the sarcoplasmic reticulum (SR), a Ca storage organelle, is critical for proper cardiac muscle function. This cycling initially involves SR release of Ca via the ryanodine receptor, which is regulated by its interacting proteins junctin and triadin. The sarco/endoplasmic reticulum Ca ATPase (SERCA) pump then refills SR Ca stores. Histidine-rich Ca-binding protein (HRC) resides in the lumen of the SR, where it contributes to the regulation of Ca cycling by protecting stressed or failing hearts. The common Ser96Ala human genetic variant of HRC strongly correlates with life-threatening ventricular arrhythmias in patients with idiopathic dilated cardiomyopathy. However, the underlying molecular pathways of this disease remain undefined. Here, we demonstrate that family with sequence similarity 20C (Fam20C), a recently characterized protein kinase in the secretory pathway, phosphorylates HRC on Ser96. HRC Ser96 phosphorylation was confirmed in cells and human hearts. Furthermore, a Ser96Asp HRC variant, which mimics constitutive phosphorylation of Ser96, diminished delayed aftercontractions in HRC null cardiac myocytes. This HRC phosphomimetic variant was also able to rescue the aftercontractions elicited by the Ser96Ala variant, demonstrating that phosphorylation of Ser96 is critical for the cardioprotective function of HRC. Phosphorylation of HRC on Ser96 regulated the interactions of HRC with both triadin and SERCA2a, suggesting a unique mechanism for regulation of SR Ca homeostasis. This demonstration of the role of Fam20C-dependent phosphorylation in heart disease will open new avenues for potential therapeutic approaches against arrhythmias. PMID:28784772

  3. Msx1 and Msx2 are functional interacting partners of T-box factors in the regulation of Connexin43.

    PubMed

    Boogerd, Kees-Jan; Wong, L Y Elaine; Christoffels, Vincent M; Klarenbeek, Meinke; Ruijter, Jan M; Moorman, Antoon F M; Barnett, Phil

    2008-06-01

    T-box factors Tbx2 and Tbx3 play key roles in the development of the cardiac conduction system, atrioventricular canal, and outflow tract of the heart. They regulate the gap-junction-encoding gene Connexin43 (Cx43) and other genes critical for heart development and function. Discovering protein partners of Tbx2 and Tbx3 will shed light on the mechanisms by which these factors regulate these gene programs. Employing an yeast 2-hybrid screen and subsequent in vitro pull-down experiments we demonstrate that muscle segment homeobox genes Msx1 and Msx2 are able to bind the cardiac T-box proteins Tbx2, Tbx3, and Tbx5. This interaction, as that of the related Nkx2.5 protein, is supported by the T-box and homeodomain alone. Overlapping spatiotemporal expression patterns of Msx1 and Msx2 together with the T-box genes during cardiac development in mouse and chicken underscore the biological significance of this interaction. We demonstrate that Msx proteins together with Tbx2 and Tbx3 suppress Cx43 promoter activity and down regulate Cx43 gene activity in a rat heart-derived cell line. Using chromatin immunoprecipitation analysis we demonstrate that Msx1 can bind the Cx43 promoter at a conserved binding site located in close proximity to a previously defined T-box binding site, and that the activity of Msx proteins on this promoter appears dependent in the presence of Tbx3. Msx1 and Msx2 can function in concert with the T-box proteins to suppress Cx43 and other working myocardial genes.

  4. Adenosine regulation of microtubule dynamics in cardiac hypertrophy.

    PubMed

    Fassett, John T; Xu, Xin; Hu, Xinli; Zhu, Guangshuo; French, Joel; Chen, Yingjie; Bache, Robert J

    2009-08-01

    There is evidence that endogenous extracellular adenosine reduces cardiac hypertrophy and heart failure in mice subjected to chronic pressure overload, but the mechanism by which adenosine exerts these protective effects is unknown. Here, we identified a novel role for adenosine in regulation of the cardiac microtubule cytoskeleton that may contribute to its beneficial effects in the overloaded heart. In neonatal cardiomyocytes, phenylephrine promoted hypertrophy and reorganization of the cytoskeleton, which included accumulation of sarcomeric proteins, microtubules, and desmin. Treatment with adenosine or the stable adenosine analog 2-chloroadenosine, which decreased hypertrophy, specifically reduced accumulation of microtubules. In hypertrophied cardiomyocytes, 2-chloroadenosine or adenosine treatment preferentially targeted stabilized microtubules (containing detyrosinated alpha-tubulin). Consistent with a role for endogenous adenosine in reducing microtubule stability, levels of detyrosinated microtubules were elevated in hearts of CD73 knockout mice (deficient in extracellular adenosine production) compared with wild-type mice (195%, P < 0.05). In response to aortic banding, microtubules increased in hearts of wild-type mice; this increase was exaggerated in CD73 knockout mice, with significantly greater amounts of tubulin partitioning into the cold-stable Triton-insoluble fractions. The levels of this stable cytoskeletal fraction of tubulin correlated strongly with the degree of heart failure. In agreement with a role for microtubule stabilization in promoting cardiac dysfunction, colchicine treatment of aortic-banded mice reduced hypertrophy and improved cardiac function compared with saline-treated controls. These results indicate that microtubules contribute to cardiac dysfunction and identify, for the first time, a role for adenosine in regulating cardiomyocyte microtubule dynamics.

  5. Genome-Wide Screens for In Vivo Tinman Binding Sites Identify Cardiac Enhancers with Diverse Functional Architectures

    PubMed Central

    Jin, Hong; Stojnic, Robert; Adryan, Boris; Ozdemir, Anil; Stathopoulos, Angelike; Frasch, Manfred

    2013-01-01

    The NK homeodomain factor Tinman is a crucial regulator of early mesoderm patterning and, together with the GATA factor Pannier and the Dorsocross T-box factors, serves as one of the key cardiogenic factors during specification and differentiation of heart cells. Although the basic framework of regulatory interactions driving heart development has been worked out, only about a dozen genes involved in heart development have been designated as direct Tinman target genes to date, and detailed information about the functional architectures of their cardiac enhancers is lacking. We have used immunoprecipitation of chromatin (ChIP) from embryos at two different stages of early cardiogenesis to obtain a global overview of the sequences bound by Tinman in vivo and their linked genes. Our data from the analysis of ∼50 sequences with high Tinman occupancy show that the majority of such sequences act as enhancers in various mesodermal tissues in which Tinman is active. All of the dorsal mesodermal and cardiac enhancers, but not some of the others, require tinman function. The cardiac enhancers feature diverse arrangements of binding motifs for Tinman, Pannier, and Dorsocross. By employing these cardiac and non-cardiac enhancers in machine learning approaches, we identify a novel motif, termed CEE, as a classifier for cardiac enhancers. In vivo assays for the requirement of the binding motifs of Tinman, Pannier, and Dorsocross, as well as the CEE motifs in a set of cardiac enhancers, show that the Tinman sites are essential in all but one of the tested enhancers; although on occasion they can be functionally redundant with Dorsocross sites. The enhancers differ widely with respect to their requirement for Pannier, Dorsocross, and CEE sites, which we ascribe to their different position in the regulatory circuitry, their distinct temporal and spatial activities during cardiogenesis, and functional redundancies among different factor binding sites. PMID:23326246

  6. Cystic Fibrosis Gene Encodes a cAMP-Dependent Chloride Channel in Heart

    NASA Astrophysics Data System (ADS)

    Hart, Padraig; Warth, John D.; Levesque, Paul C.; Collier, Mei Lin; Geary, Yvonne; Horowitz, Burton; Hume, Joseph R.

    1996-06-01

    cAMP-dependent chloride channels in heart contribute to autonomic regulation of action potential duration and membrane potential and have been inferred to be due to cardiac expression of the epithelial cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel. In this report, a cDNA from rabbit ventricle was isolated and sequenced, which encodes an exon 5 splice variant (exon 5-) of CFTR, with >90% identity to human CFTR cDNA present in epithelial cells. Expression of this cDNA in Xenopus oocytes gave rise to robust cAMP-activated chloride currents that were absent in control water-injected oocytes. Antisense oligodeoxynucleotides directed against CFTR significnatly reduced the density of cAMP-dependent chloride currents in acutely cultured myocytes, thereby establishing a direct functional link between cardiac expression of CFTR protein and an endogenous chloride channel in native cardiac myocytes.

  7. NKX2-5 regulates human cardiomyogenesis via a HEY2 dependent transcriptional network.

    PubMed

    Anderson, David J; Kaplan, David I; Bell, Katrina M; Koutsis, Katerina; Haynes, John M; Mills, Richard J; Phelan, Dean G; Qian, Elizabeth L; Leitoguinho, Ana Rita; Arasaratnam, Deevina; Labonne, Tanya; Ng, Elizabeth S; Davis, Richard P; Casini, Simona; Passier, Robert; Hudson, James E; Porrello, Enzo R; Costa, Mauro W; Rafii, Arash; Curl, Clare L; Delbridge, Lea M; Harvey, Richard P; Oshlack, Alicia; Cheung, Michael M; Mummery, Christine L; Petrou, Stephen; Elefanty, Andrew G; Stanley, Edouard G; Elliott, David A

    2018-04-10

    Congenital heart defects can be caused by mutations in genes that guide cardiac lineage formation. Here, we show deletion of NKX2-5, a critical component of the cardiac gene regulatory network, in human embryonic stem cells (hESCs), results in impaired cardiomyogenesis, failure to activate VCAM1 and to downregulate the progenitor marker PDGFRα. Furthermore, NKX2-5 null cardiomyocytes have abnormal physiology, with asynchronous contractions and altered action potentials. Molecular profiling and genetic rescue experiments demonstrate that the bHLH protein HEY2 is a key mediator of NKX2-5 function during human cardiomyogenesis. These findings identify HEY2 as a novel component of the NKX2-5 cardiac transcriptional network, providing tangible evidence that hESC models can decipher the complex pathways that regulate early stage human heart development. These data provide a human context for the evaluation of pathogenic mutations in congenital heart disease.

  8. Curcumin promotes cardiac repair and ameliorates cardiac dysfunction following myocardial infarction

    PubMed Central

    Wang, Ning-Ping; Wang, Zhang-Feng; Tootle, Stephanie; Philip, Tiji; Zhao, Zhi-Qing

    2012-01-01

    BACKGROUND AND PURPOSE Curcumin, the natural yellow pigment extracted from the rhizomes of the plant curcuma longa, has been demonstrated to exhibit a variety of potent beneficial effects, acting as an antioxidant, anti-inflammatory and anti-fibrotic. In this study we tested the hypothesis that curcumin attenuates maladaptive cardiac repair and improves cardiac function after ischaemia and reperfusion by reducing degradation of extracellular matrix (ECM) and inhibiting synthesis of collagens via TGFβ/Smad-mediated signalling pathway. EXPERIMENTAL APPROACH Sprague-Dawley rats were subjected to 45 min of ischaemia followed by 7, 21 and 42 days of reperfusion respectively. Curcumin was fed orally at a dose of 150 mg·kg−1·day−1 only during reperfusion. KEY RESULTS Curcumin reduced the level of malondialdehyde, inhibited activity of MMPs, preserved ECM from degradation and attenuated collagen deposition, as it reduced the extent of collagen-rich scar and increased mass of viable myocardium. In addition to reducing collagen synthesis and fibrosis in the ischaemic/reperfused myocardium, curcumin significantly down-regulated the expression of TGFβ1 and phospho-Smad2/3, and up-regulated Smad7 and also increased the population of α-smooth muscle actin expressing myofibroblasts within the infarcted myocardium relative to the control. Echocardiography showed it significantly improved left ventricular end-diastolic volume, stroke volume and ejection fraction. The wall thickness of the infarcted middle anterior septum in the curcumin group was also greater than that in the control group. CONCLUSION AND IMPLICATIONS Dietary curcumin is effective at inhibiting maladaptive cardiac repair and preserving cardiac function after ischaemia and reperfusion. Curcumin has potential as a treatment for patients who have had a heart attack. PMID:22823335

  9. Deletion of thioredoxin-interacting protein improves cardiac inotropic reserve in the streptozotocin-induced diabetic heart.

    PubMed

    Myers, Ronald B; Fomovsky, Gregory M; Lee, Samuel; Tan, Max; Wang, Bing F; Patwari, Parth; Yoshioka, Jun

    2016-06-01

    Although the precise pathogenesis of diabetic cardiac damage remains unclear, potential mechanisms include increased oxidative stress, autonomic nervous dysfunction, and altered cardiac metabolism. Thioredoxin-interacting protein (Txnip) was initially identified as an inhibitor of the antioxidant thioredoxin but is now recognized as a member of the arrestin superfamily of adaptor proteins that classically regulate G protein-coupled receptor signaling. Here we show that Txnip plays a key role in diabetic cardiomyopathy. High glucose levels induced Txnip expression in rat cardiomyocytes in vitro and in the myocardium of streptozotocin-induced diabetic mice in vivo. While hyperglycemia did not induce cardiac dysfunction at baseline, β-adrenergic challenge revealed a blunted myocardial inotropic response in diabetic animals (24-wk-old male and female C57BL/6;129Sv mice). Interestingly, diabetic mice with cardiomyocyte-specific deletion of Txnip retained a greater cardiac response to β-adrenergic stimulation than wild-type mice. This benefit in Txnip-knockout hearts was not related to the level of thioredoxin activity or oxidative stress. Unlike the β-arrestins, Txnip did not interact with β-adrenergic receptors to desensitize downstream signaling. However, our proteomic and functional analyses demonstrated that Txnip inhibits glucose transport through direct binding to glucose transporter 1 (GLUT1). An ex vivo analysis of perfused hearts further demonstrated that the enhanced functional reserve afforded by deletion of Txnip was associated with myocardial glucose utilization during β-adrenergic stimulation. These data provide novel evidence that hyperglycemia-induced Txnip is responsible for impaired cardiac inotropic reserve by direct regulation of insulin-independent glucose uptake through GLUT1 and plays a role in the development of diabetic cardiomyopathy. Copyright © 2016 the American Physiological Society.

  10. Design and characterization of the first peptidomimetic molecule that prevents acidification-induced closure of cardiac gap junctions

    PubMed Central

    Verma, Vandana; Larsen, Bjarne Due; Coombs, Wanda; Lin, Xianming; Sarrou, Eliana; Taffet, Steven M.; Delmar, Mario

    2010-01-01

    Background Gap junctions are potential targets for pharmacological intervention. We have previously developed a series of peptide sequences that prevent closure of Cx43 channels, bind to cardiac Cx43 and prevent acidification-induced uncoupling of cardiac gap junctions. Objective We aimed to identify and validate the minimum core active structure in peptides containing an RR-N/Q-Y motif. Based on that information, we sought to generate a peptidomimetic molecule that acts on the chemical regulation of Cx43 channels. Methods Experiments were based on a combination of biochemical, spectroscopic and electrophysiological techniques, as well as molecular modeling of active pharmacophores with Cx43 activity. Results Molecular modeling analysis indicated that the functional elements of the side chains in the motif RRXY form a triangular structure. Experimental data revealed that compounds containing such a structure bind to Cx43 and prevent Cx43 chemical gating. These results provided us with the first platform for drug design targeted to the carboxyl terminal of Cx43. Using that platform, we designed and validated a peptidomimetic compound (ZP2519; molecular weight 619 Da) that prevented octanol-induced uncoupling of Cx43 channels, and pH gating of cardiac gap junctions. Conclusion Structure-based drug design can be applied to the development of pharmacophores that act directly on Cx43. Small molecules containing these pharmacophores can serve as tools to determine the role of gap junction regulation in the control of cardiac rhythm. Future studies will determine whether these compounds can function as pharmacological agents for the treatment of a selected subset of cardiac arrhythmias. PMID:20601149

  11. C-Myc Induced Compensated Cardiac Hypertrophy Increases Free Fatty Acid Utilization for the Citric Acid Cycle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olson, Aaron; Ledee, Dolena; Iwamoto, Kate

    The protooncogene C-Myc (Myc) regulates cardiac hypertrophy. Myc promotes compensated cardiac function, suggesting that the operative mechanisms differ from those leading to heart failure. Myc regulation of substrate metabolism is a reasonable target, as Myc alters metabolism in other tissues. We hypothesize that Myc-induced shifts in substrate utilization signal and promote compensated hypertrophy. We used cardiac specific Myc-inducible C57/BL6 male mice between 4-6 months old that develop hypertrophy with tamoxifen (tam). Isolated working hearts and 13Carbon (13C )-NMR were used to measure function and fractional contributions (Fc) to the citric acid cycle by using perfusate containing 13C-labeled free fatty acids,more » acetoacetate, lactate, unlabeled glucose and insulin. Studies were performed at pre-hypertrophy (3-days tam, 3dMyc), established hypertrophy (7-days tam, 7dMyc) or vehicle control (cont). Non-transgenic siblings (NTG) received 7-days tam or vehicle to assess drug effect. Hypertrophy was confirmed by echocardiograms and heart weights. Western blots were performed on key metabolic enzymes. Hypertrophy occurred in 7dMyc only. Cardiac function did not differ between groups. Tam alone did not affect substrate contribution in NTG. Substrate utilization was not significantly altered in 3dMyc versus cont. The free fatty acid FC was significantly greater in 7dMyc vs cont with decreased unlabeled Fc, which is predominately exogenous glucose. Free fatty acid flux to the citric acid cycle increased while lactate flux was diminished in 7dMyc compared to cont. Total protein levels of a panel of key metabolic enzymes were unchanged; however total protein O-GlcNAcylation was increased in 7dMyc. Substrate utilization changes did not precede hypertrophy; therefore they are not the primary signal for cardiac growth in this model. Free fatty acid utilization and oxidation increase at established hypertrophy. Understanding the mechanisms whereby this change maintained compensated function could provide useful information for developing metabolic therapies to treat heart failure. The molecular signaling for this metabolic change may occur through O-GlcNAcylation.« less

  12. DOT1L regulates dystrophin expression and is critical for cardiac function

    PubMed Central

    Nguyen, Anh T.; Xiao, Bin; Neppl, Ronald L.; Kallin, Eric M.; Li, Juan; Chen, Taiping; Wang, Da-Zhi; Xiao, Xiao; Zhang, Yi

    2011-01-01

    Histone methylation plays an important role in regulating gene expression. One such methylation occurs at Lys 79 of histone H3 (H3K79) and is catalyzed by the yeast DOT1 (disruptor of telomeric silencing) and its mammalian homolog, DOT1L. Previous studies have demonstrated that germline disruption of Dot1L in mice resulted in embryonic lethality. Here we report that cardiac-specific knockout of Dot1L results in increased mortality rate with chamber dilation, increased cardiomyocyte cell death, systolic dysfunction, and conduction abnormalities. These phenotypes mimic those exhibited in patients with dilated cardiomyopathy (DCM). Mechanistic studies reveal that DOT1L performs its function in cardiomyocytes through regulating Dystrophin (Dmd) transcription and, consequently, stability of the Dystrophin–glycoprotein complex important for cardiomyocyte viability. Importantly, expression of a miniDmd can largely rescue the DCM phenotypes, indicating that Dmd is a major target mediating DOT1L function in cardiomyocytes. Interestingly, analysis of available gene expression data sets indicates that DOT1L is down-regulated in idiopathic DCM patient samples compared with normal controls. Therefore, our study not only establishes a critical role for DOT1L-mediated H3K79 methylation in cardiomyocyte function, but also reveals the mechanism underlying the role of DOT1L in DCM. In addition, our study may open new avenues for the diagnosis and treatment of human heart disease. PMID:21289070

  13. Effect of hypokinesia on cardiac contractile function and nervous regulation of the heart

    NASA Technical Reports Server (NTRS)

    Meyerson, F. Z.; Kapelko, V. I.; Gorina, M. S.; Shchegolkov, A. N.; Larinov, N. P.

    1980-01-01

    Longterm hypokinesia caused cardiac deadaptation in rabbits, which resulted in the diminishing of the left ventricular rate of contraction and relaxation, joined later by decreased vascular resistance. As a results, the ejection rate as well as stroke volume and cardiac output were normal. The decrease of the relaxation speed was more obvious at a high heart rate and results in shortening of the diastolic pause and diminishing of cardiac output. Hearts of the hypokinetic animals were characterized by normal maximal pressure developed by a unit of muccardial mass aorta clamping, decreased adrenoreactivity, and increased cholinoreactivity. This complex of changes is contrary to changes observed in adaptation to exercise, but is similar to changes observed in compensatory hypertrophy of the heart.

  14. Defective branched chain amino acid catabolism contributes to cardiac dysfunction and remodeling following myocardial infarction.

    PubMed

    Wang, Wei; Zhang, Fuyang; Xia, Yunlong; Zhao, Shihao; Yan, Wenjun; Wang, Helin; Lee, Yan; Li, Congye; Zhang, Ling; Lian, Kun; Gao, Erhe; Cheng, Hexiang; Tao, Ling

    2016-11-01

    Cardiac metabolic remodeling is a central event during heart failure (HF) development following myocardial infarction (MI). It is well known that myocardial glucose and fatty acid dysmetabolism contribute to post-MI cardiac dysfunction and remodeling. However, the role of amino acid metabolism in post-MI HF remains elusive. Branched chain amino acids (BCAAs) are an important group of essential amino acids and function as crucial nutrient signaling in mammalian animals. The present study aimed to determine the role of cardiac BCAA metabolism in post-MI HF progression. Utilizing coronary artery ligation-induced murine MI models, we found that myocardial BCAA catabolism was significantly impaired in response to permanent MI, therefore leading to an obvious elevation of myocardial BCAA abundance. In MI-operated mice, oral BCAA administration further increased cardiac BCAA levels, activated the mammalian target of rapamycin (mTOR) signaling, and exacerbated cardiac dysfunction and remodeling. These data demonstrate that BCAAs act as a direct contributor to post-MI cardiac pathologies. Furthermore, these BCAA-mediated deleterious effects were improved by rapamycin cotreatment, revealing an indispensable role of mTOR in BCAA-mediated adverse effects on cardiac function/structure post-MI. Of note, pharmacological inhibition of branched chain ketoacid dehydrogenase kinase (BDK), a negative regulator of myocardial BCAA catabolism, significantly improved cardiac BCAA catabolic disorders, reduced myocardial BCAA levels, and ameliorated post-MI cardiac dysfunction and remodeling. In conclusion, our data provide the evidence that impaired cardiac BCAA catabolism directly contributes to post-MI cardiac dysfunction and remodeling. Moreover, improving cardiac BCAA catabolic defects may be a promising therapeutic strategy against post-MI HF. Copyright © 2016 the American Physiological Society.

  15. Amalaki rasayana, a traditional Indian drug enhances cardiac mitochondrial and contractile functions and improves cardiac function in rats with hypertrophy.

    PubMed

    Kumar, Vikas; Aneesh, Kumar A; Kshemada, K; Ajith, Kumar G S; Binil, Raj S S; Deora, Neha; Sanjay, G; Jaleel, A; Muraleedharan, T S; Anandan, E M; Mony, R S; Valiathan, M S; Santhosh, Kumar T R; Kartha, C C

    2017-08-17

    We evaluated the cardioprotective effect of Amalaki Rasayana (AR), a rejuvenating Ayurvedic drug prepared from Phyllanthus emblica fruits in the reversal of remodeling changes in pressure overload left ventricular cardiac hypertrophy (LVH) and age-associated cardiac dysfunction in male Wistar rats. Six groups (aging groups) of 3 months old animals were given either AR or ghee and honey (GH) orally; seventh group was untreated. Ascending aorta was constricted using titanium clips in 3 months old rats (N = 24; AC groups) and after 6 months, AR or GH was given for further 12 months to two groups; one group was untreated. Histology, gene and protein expression analysis were done in heart tissues. Chemical composition of AR was analyzed by HPLC, HPTLC and LC-MS. AR intake improved (P < 0.05) cardiac function in aging rats and decreased LVH (P < 0.05) in AC rats as well as increased (P < 0.05) fatigue time in treadmill exercise in both groups. In heart tissues of AR administered rats of both the groups, SERCA2, CaM, Myh11, antioxidant, autophagy, oxidative phosphorylation and TCA cycle proteins were up regulated. ADRB1/2 and pCREB expression were increased; pAMPK, NF-kB were decreased. AR has thus a beneficial effect on myocardial energetics, muscle contractile function and exercise tolerance capacity.

  16. Connexin 43 and ATP-sensitive potassium channels crosstalk: a missing link in hypoxia/ischemia stress.

    PubMed

    Ahmad Waza, Ajaz; Ahmad Bhat, Shabir; Ul Hussain, Mahboob; Ganai, Bashir A

    2018-02-01

    Connexin 43 (Cx43) is a gap junction protein expressed in various tissues and organs of vertebrates. Besides functioning as a gap junction, Cx43 also regulates diverse cellular processes like cell growth and differentiation, cell migration, cell survival, etc. Cx43 is critical for normal cardiac functioning and is therefore abundantly expressed in cardiomyocytes. On the other hand, ATP-sensitive potassium (K ATP ) channels are metabolic sensors converting metabolic changes into electrical activity. These channels are important in maintaining the neurotransmitter release, smooth muscle relaxation, cardiac action potential repolarization, normal physiology of cellular repolarization, insulin secretion and immune function. Cx43 and K ATP channels are part of the same signaling pathway, regulating cell survival during stress conditions and ischemia/hypoxia preconditioning. However, the underlying molecular mechanism for their combined role in ischemia/hypoxia preconditioning is largely unknown. The current review focuses on understanding the molecular mechanism responsible for the coordinated role of Cx43 and K ATP channel protein in protecting cardiomyocytes against ischemia/hypoxia stress.

  17. Ramipril restores PPARβ/δ and PPARγ expressions and reduces cardiac NADPH oxidase but fails to restore cardiac function and accompanied myosin heavy chain ratio shift in severe anthracycline-induced cardiomyopathy in rat.

    PubMed

    Cernecka, Hana; Doka, Gabriel; Srankova, Jasna; Pivackova, Lenka; Malikova, Eva; Galkova, Kristina; Kyselovic, Jan; Krenek, Peter; Klimas, Jan

    2016-11-15

    We hypothesized that peroxisome proliferator-activated receptors (PPARs) might be involved in a complex protective action of ACE inhibitors (ACEi) in anthracyclines-induced cardiomyopathy. For purpose of study, we compared effects of ramipril on cardiac dysfunction, cardiac failure markers and PPAR isoforms in moderate and severe chronic daunorubicin-induced cardiomyopathy. Male Wistar rats were administered with a single intravenous injection of daunorubicin: 5mg/kg (moderate cardiomyopathy), or 15mg/kg (severe cardiomyopathy) or co-administered with daunorubicin and ramipril (1mg/kg/d, orally) or vehicle for 8 weeks. Left ventricular function was measured invasively under anesthesia. Cardiac mRNA levels of heart failure markers (ANP, Myh6, Myh7, Myh7b) and PPARs (alpha, beta/delta and gama) were measured by qRT-PCR. Protein expression of NADPH subunit (gp91phox) was measured by Western blot. Moderate cardiomyopathy exhibited only minor cardiac dysfunction what was corrected by ramipril. In severe cardiomyopathy, hemodynamic dysfunction remained unaltered upon ramipril although it decreased the significantly up-regulated cardiac ANP mRNA expression. Simultaneously, while high-dose daunorubicin significantly decreased PPARbeta/delta and PPARgama mRNA, ramipril normalized these abnormalities. Similarly, ramipril reduced altered levels of oxidative stress-related gp91phox. On the other hand, ramipril was unable to correct both the significantly decreased relative abundance of Myh6 and increased Myh7 mRNA levels, respectively. In conclusion, ramipril had a protective effect on cardiac function exclusively in moderate chronic daunorubicin-induced cardiomyopathy. Although it normalized abnormal PPARs expression and exerted also additional protective effects also in severe cardiomyopathy, it was insufficient to influence impaired cardiac function probably because of a shift in myosin heavy chain isoform content. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Gualou Xiebai Decoction, a Traditional Chinese Medicine, Prevents Cardiac Reperfusion Injury of Hyperlipidemia Rat via Energy Modulation.

    PubMed

    Yan, Lu-Lu; Zhang, Wei-Yang; Wei, Xiao-Hong; Yan, Li; Pan, Chun-Shui; Yu, Yang; Fan, Jing-Yu; Liu, Yu-Ying; Zhou, Hua; Han, Jing-Yan; Yao, Xin-Sheng

    2018-01-01

    Background: Gualou Xiebai Decoction (GLXB) is a classic prescription of Chinese medicine used for the treatment of cardiac problems. The present study was designed to explore the effect and mechanism of GLXB on ischemia/reperfusion (I/R) induced disorders in myocardial structure and function, focusing on the regulation of energy metabolism and the RhoA/ROCK pathway. Methods: After hyperlipidemic rat model was established by oral administration of high fat diet, the rats were treated with GLXB for 6 weeks and subjected to 30 min occlusion of the left anterior descending coronary artery (LADCA) followed by 90 min reperfusion to elicit I/R challenge. Myocardial infarct size was assessed by Evans blue-TTC staining. Myocardial blood flow (MBF) and cardiac function were evaluated. Enzyme-linked immunosorbent assay was performed to examine the content of ATP, ADP, AMP, CK, CK-MB, LDH, cTnT, cTnI, and IL-6. Double staining of F-actin and terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling was conducted to assess myocardial apoptosis. Expressions of ATP synthase subunit δ (ATP 5D), and RhoA and ROCK were determined by Western blotting. Results: Administration with GLXB at high dose for 6 weeks protected heart against I/R-induced MBF decrease, myocardial infarction and apoptosis, ameliorated I/R-caused impairment of cardiac function and myocardial structure, restored the decrease in the ratio of ADP/ATP and AMP/ATP, and the expression of ATP 5D with inhibiting the expression of RhoA and ROCK. Conclusions: Treatment with GLXB effectively protects myocardial structure and function from I/R challenge, possibly via regulating energy metabolism involving inactivation of RhoA/ROCK signaling pathway.

  19. Passive hind-limb cycling improves cardiac function and reduces cardiovascular disease risk in experimental spinal cord injury.

    PubMed

    West, Christopher R; Crawford, Mark A; Poormasjedi-Meibod, Malihe-Sadat; Currie, Katharine D; Fallavollita, Andre; Yuen, Violet; McNeill, John H; Krassioukov, Andrei V

    2014-04-15

    Spinal cord injury (SCI) causes altered autonomic control and severe physical deconditioning that converge to drive maladaptive cardiac remodelling. We used a clinically relevant experimental model to investigate the cardio-metabolic responses to SCI and to establish whether passive hind-limb cycling elicits a cardio-protective effect. Initially, 21 male Wistar rats were evenly assigned to three groups: uninjured control (CON), T3 complete SCI (SCI) or T3 complete SCI plus passive hind-limb cycling (SCI-EX; 2 × 30 min day(-1), 5 days week(-1) for 4 weeks beginning 6 days post-SCI). On day 32, cardio-metabolic function was assessed using in vivo echocardiography, ex vivo working heart assessments, cardiac histology/molecular biology and blood lipid profiles. Twelve additional rats (n = 6 SCI and n = 6 SCI-EX) underwent in vivo echocardiography and basal haemodynamic assessments pre-SCI and at days 7, 14 and 32 post-SCI to track temporal cardiovascular changes. Compared with CON, SCI exhibited a rapid and sustained reduction in left ventricular dimensions and function that ultimately manifested as reduced contractility, increased myocardial collagen deposition and an up-regulation of transforming growth factor beta-1 (TGFβ1) and mothers against decapentaplegic homolog 3 (Smad3) mRNA. For SCI-EX, the initial reduction in left ventricular dimensions and function at day 7 post-SCI was completely reversed by day 32 post-SCI, and there were no differences in myocardial contractility between SCI-EX and CON. Collagen deposition was similar between SCI-EX and CON. TGFβ1 and Smad3 were down-regulated in SCI-EX. Blood lipid profiles were improved in SCI-EX versus SCI. We provide compelling novel evidence that passive hind-limb cycling prevents cardiac dysfunction and reduces cardiovascular disease risk in experimental SCI.

  20. Effect of head-down-tilt bed rest and hypovolemia on dynamic regulation of heart rate and blood pressure

    NASA Technical Reports Server (NTRS)

    Iwasaki, K. I.; Zhang, R.; Zuckerman, J. H.; Pawelczyk, J. A.; Levine, B. D.; Blomqvist, C. G. (Principal Investigator)

    2000-01-01

    Adaptation to head-down-tilt bed rest leads to an apparent abnormality of baroreflex regulation of cardiac period. We hypothesized that this "deconditioning response" could primarily be a result of hypovolemia, rather than a unique adaptation of the autonomic nervous system to bed rest. To test this hypothesis, nine healthy subjects underwent 2 wk of -6 degrees head-down bed rest. One year later, five of these same subjects underwent acute hypovolemia with furosemide to produce the same reductions in plasma volume observed after bed rest. We took advantage of power spectral and transfer function analysis to examine the dynamic relationship between blood pressure (BP) and R-R interval. We found that 1) there were no significant differences between these two interventions with respect to changes in numerous cardiovascular indices, including cardiac filling pressures, arterial pressure, cardiac output, or stroke volume; 2) normalized high-frequency (0.15-0.25 Hz) power of R-R interval variability decreased significantly after both conditions, consistent with similar degrees of vagal withdrawal; 3) transfer function gain (BP to R-R interval), used as an index of arterial-cardiac baroreflex sensitivity, decreased significantly to a similar extent after both conditions in the high-frequency range; the gain also decreased similarly when expressed as BP to heart rate x stroke volume, which provides an index of the ability of the baroreflex to alter BP by modifying systemic flow; and 4) however, the low-frequency (0.05-0.15 Hz) power of systolic BP variability decreased after bed rest (-22%) compared with an increase (+155%) after acute hypovolemia, suggesting a differential response for the regulation of vascular resistance (interaction, P < 0.05). The similarity of changes in the reflex control of the circulation under both conditions is consistent with the hypothesis that reductions in plasma volume may be largely responsible for the observed changes in cardiac baroreflex control after bed rest. However, changes in vasomotor function associated with these two conditions may be different and may suggest a cardiovascular remodeling after bed rest.

  1. Vildagliptin and caloric restriction for cardioprotection in pre-diabetic rats.

    PubMed

    Tanajak, Pongpan; Pintana, Hiranya; Siri-Angkul, Natthaphat; Khamseekaew, Juthamas; Apaijai, Nattayaporn; Chattipakorn, Siriporn C; Chattipakorn, Nipon

    2017-02-01

    Long-term high-fat diet (HFD) consumption causes cardiac dysfunction. Although calorie restriction (CR) has been shown to be useful in obesity, we hypothesized that combined CR with dipeptidyl peptidase-4 (DPP-4) inhibitor provides greater efficacy than monotherapy in attenuating cardiac dysfunction and metabolic impairment in HFD-induced obese-insulin resistant rats. Thirty male Wistar rats were divided into 2 groups to be fed on either a normal diet (ND, n = 6) or a HFD (n = 24) for 12 weeks. Then, HFD rats were divided into 4 subgroups (n = 6/subgroup) to receive just the vehicle, CR diet (60% of mean energy intake and changed to ND), vildagliptin (3 mg/kg/day) or combined CR and vildagliptin for 4 weeks. Metabolic parameters, heart rate variability (HRV), cardiac mitochondrial function, left ventricular (LV) and fibroblast growth factor (FGF) 21 signaling pathway were determined. Rats on a HFD developed insulin and FGF21 resistance, oxidative stress, cardiac mitochondrial dysfunction and impaired LV function. Rats on CR alone showed both decreased body weight and visceral fat accumulation, whereas vildagliptin did not alter these parameters. Rats in CR, vildagliptin and CR plus vildagliptin subgroups had improved insulin sensitivity and oxidative stress. However, vildagliptin improved heart rate variability (HRV), cardiac mitochondrial function and LV function better than the CR. Chronic HFD consumption leads to obese-insulin resistance and FGF21 resistance. Although CR is effective in improving metabolic regulation, vildagliptin provides greater efficacy in preventing cardiac dysfunction by improving anti-apoptosis and FGF21 signaling pathways and attenuating cardiac mitochondrial dysfunction in obese-insulin-resistant rats. © 2017 Society for Endocrinology.

  2. Clinical neurocardiology defining the value of neuroscience‐based cardiovascular therapeutics

    PubMed Central

    Ajijola, Olujimi A.; Anand, Inder; Armour, J. Andrew; Chen, Peng‐Sheng; Esler, Murray; De Ferrari, Gaetano M.; Fishbein, Michael C.; Goldberger, Jeffrey J.; Harper, Ronald M.; Joyner, Michael J.; Khalsa, Sahib S.; Kumar, Rajesh; Lane, Richard; Mahajan, Aman; Po, Sunny; Schwartz, Peter J.; Somers, Virend K.; Valderrabano, Miguel; Vaseghi, Marmar; Zipes, Douglas P.

    2016-01-01

    Abstract The autonomic nervous system regulates all aspects of normal cardiac function, and is recognized to play a critical role in the pathophysiology of many cardiovascular diseases. As such, the value of neuroscience‐based cardiovascular therapeutics is increasingly evident. This White Paper reviews the current state of understanding of human cardiac neuroanatomy, neurophysiology, pathophysiology in specific disease conditions, autonomic testing, risk stratification, and neuromodulatory strategies to mitigate the progression of cardiovascular diseases. PMID:27114333

  3. Identification of biochemical adaptations in hyper- or hypocontractile hearts from phospholamban mutant mice by expression proteomics.

    PubMed

    Pan, Yan; Kislinger, Thomas; Gramolini, Anthony O; Zvaritch, Elena; Kranias, Evangelia G; MacLennan, David H; Emili, Andrew

    2004-02-24

    Phospholamban (PLN) is a critical regulator of cardiac contractility through its binding to and regulation of the activity of the sarco(endo)plasmic reticulum Ca2+ ATPase. To uncover biochemical adaptations associated with extremes of cardiac muscle contractility, we used high-throughput gel-free tandem MS to monitor differences in the relative abundance of membrane proteins in standard microsomal fractions isolated from the hearts of PLN-null mice (PLN-KO) with high contractility and from transgenic mice overexpressing a superinhibitory PLN mutant in a PLN-null background (I40A-KO) with diminished contractility. Significant differential expression was detected for a subset of the 782 proteins identified, including known membrane-associated biomarkers, components of signaling pathways, and previously uninvestigated proteins. Proteins involved in fat and carbohydrate metabolism and proteins linked to G protein-signaling pathways activating protein kinase C were enriched in I40A-KO cardiac muscle, whereas proteins linked to enhanced contractile function were enriched in PLN-KO mutant hearts. These data demonstrate that Ca2+ dysregulation, leading to elevated or depressed cardiac contractility, induces compensatory biochemical responses.

  4. [Modifications in myocardial energy metabolism in diabetic patients

    NASA Technical Reports Server (NTRS)

    Grynberg, A.

    2001-01-01

    The capacity of cardiac myocyte to regulate ATP production to face any change in energy demand is a major determinant of cardiac function. Because FA is the main heart fuel (although the most expensive one in oxygen, and prompt to induce deleterious effects), this process is based on a balanced fatty acid (FA) metabolism. Several pathological situations are associated with an accumulation of FA or derivatives, or with an excessive b-oxidation. The diabetic cardiomyocyte is characterised by an over consumption of FA. The control of the FA/glucose balance clearly appears as a new strategy for cytoprotection, particularly in diabetes and requires a reduced FA contribution to ATP production. Cardiac myocytes can control FA mitochondrial entry, but display weak ability to control FA uptake, thus the fate of non beta-oxidized FA appear as a new impairment for the cell. Both the trigger and the regulation of cardiac contraction result from membrane activity, and the other major FA function in the myocardium is their role in membrane homeostasis, through the phospholipid synthesis and remodeling pathways. Sudden death, hypercatecholaminemia, diabetes and heart failure have been associated with an altered PUFA content in cardiac membranes. Experimental data suggest that the 2 metabolic pathways involved in membrane homeostasis may represent therapeutic targets for cytoprotection. The drugs that increase cardiac phospholipid turnover (trimetazidine, ranolazine,...) display anti-ischemic non hemodynamic effect. This effect is based on a redirection of FA utilization towards phospholipid synthesis, which decrease their availability for energy production. A nutritional approach gave also promising results. Besides its anti-arrhythmic effect, the dietary docosahexaenoic acid is able to reduce FA energy consumption and hence oxygen demand. The cardiac metabolic pathways involving FA should be considered as a whole, precariously balanced. The diabetic heart being characterised by a different metabolic "status" with similarities to that of myocardium in coronary disease. Diabetes and other chronic cardiac diseases share common FA metabolism disorders leading to an altered energy balance, a decrease in long chain polyunsaturated Fas, and altered FA profiles in cardiac membranes. These disturbances, however, do not represent independent therapeutic targets, and should be considered as a whole.

  5. The Role of Baseline Vagal Tone in Dealing with a Stressor during Face to Face and Computer-Based Social Interactions.

    PubMed

    Rigoni, Daniele; Morganti, Francesca; Braibanti, Paride

    2017-01-01

    Facing a stressor involves a cardiac vagal tone response and a feedback effect produced by social interaction in visceral regulation. This study evaluated the contribution of baseline vagal tone and of social engagement system (SES) functioning on the ability to deal with a stressor. Participants ( n = 70) were grouped into a minimized social interaction condition (procedure administered through a PC) and a social interaction condition (procedure administered by an experimenter). The State Trait Anxiety Inventory, the Social Interaction Anxiety Scale, the Emotion Regulation Questionnaire and a debriefing questionnaire were completed by the subjects. The baseline vagal tone was registered during the baseline, stressor and recovery phases. The collected results highlighted a significant effect of the baseline vagal tone on vagal suppression. No effect of minimized vs. social interaction conditions on cardiac vagal tone during stressor and recovery phases was detected. Cardiac vagal tone and the results of the questionnaires appear to be not correlated. The study highlighted the main role of baseline vagal tone on visceral regulation. Some remarks on SES to be deepen in further research were raised.

  6. Eccentric and concentric cardiac hypertrophy induced by exercise training: microRNAs and molecular determinants.

    PubMed

    Fernandes, T; Soci, U P R; Oliveira, E M

    2011-09-01

    Among the molecular, biochemical and cellular processes that orchestrate the development of the different phenotypes of cardiac hypertrophy in response to physiological stimuli or pathological insults, the specific contribution of exercise training has recently become appreciated. Physiological cardiac hypertrophy involves complex cardiac remodeling that occurs as an adaptive response to static or dynamic chronic exercise, but the stimuli and molecular mechanisms underlying transduction of the hemodynamic overload into myocardial growth are poorly understood. This review summarizes the physiological stimuli that induce concentric and eccentric physiological hypertrophy, and discusses the molecular mechanisms, sarcomeric organization, and signaling pathway involved, also showing that the cardiac markers of pathological hypertrophy (atrial natriuretic factor, β-myosin heavy chain and α-skeletal actin) are not increased. There is no fibrosis and no cardiac dysfunction in eccentric or concentric hypertrophy induced by exercise training. Therefore, the renin-angiotensin system has been implicated as one of the regulatory mechanisms for the control of cardiac function and structure. Here, we show that the angiotensin II type 1 (AT1) receptor is locally activated in pathological and physiological cardiac hypertrophy, although with exercise training it can be stimulated independently of the involvement of angiotensin II. Recently, microRNAs (miRs) have been investigated as a possible therapeutic approach since they regulate the translation of the target mRNAs involved in cardiac hypertrophy; however, miRs in relation to physiological hypertrophy have not been extensively investigated. We summarize here profiling studies that have examined miRs in pathological and physiological cardiac hypertrophy. An understanding of physiological cardiac remodeling may provide a strategy to improve ventricular function in cardiac dysfunction.

  7. Early testosterone replacement attenuates intracellular calcium dyshomeostasis in the heart of testosterone-deprived male rats.

    PubMed

    Weerateerangkul, Punate; Shinlapawittayatorn, Krekwit; Palee, Siripong; Apaijai, Nattayaporn; Chattipakorn, Siriporn C; Chattipakorn, Nipon

    2017-11-01

    Testosterone deficiency in elderly men increases the risk of cardiovascular disease. In bilateral orchiectomized (ORX) animals, impaired cardiac Ca 2+ regulation was observed, and this impairment could be improved by testosterone replacement, indicating the important role of testosterone in cardiac Ca 2+ regulation. However, the temporal changes of Ca 2+ dyshomeostasis in testosterone-deprived conditions are unclear. Moreover, the effects of early vs. late testosterone replacement are unknown. We hypothesized that the longer the deprivation of testosterone, the greater the impairment of cardiac Ca 2+ homeostasis, and that early testosterone replacement can effectively reduce this adverse effect. Male Wistar rats were randomly divided into twelve groups, four sets of three. The first set were ORX for 2, 4 and 8 weeks, the second set were sham-operated groups of the same periods, the third set were ORX for 8 weeks coupled with a subcutaneous injection of vehicle (control), testosterone during weeks 1-8 (early replacement) or testosterone during weeks 5-8 (late replacement), and finally the 12-week sham-operated, ORX and ORX treated with testosterone groups. Cardiac Ca 2+ transients (n=4-5/group), L-type calcium current (I Ca-L ) (n=4/group), Ca 2+ regulatory proteins (n=6/group) and cardiac function (n=5/group) were determined. In the ORX rats, impaired cardiac Ca 2+ transients and reduced I Ca-L were observed initially 4 weeks after ORX as shown by decreased Ca 2+ transient amplitude, rising rate and maximum and average decay rates. No alteration of Ca 2+ regulatory proteins such as the L-type Ca 2+ channels, ryanodine receptor type 2, Na + -Ca 2+ exchangers and SERCA2a were observed. Early testosterone replacement markedly improved cardiac Ca 2+ transients, whereas late testosterone replacement did not. The cardiac contractility was also improved after early testosterone replacement. Impaired cardiac Ca 2+ homeostasis is time-dependent after testosterone deprivation. Early testosterone replacement improves cardiac Ca 2+ transient regulation and contractility, suggesting the necessity of early intervention in conditions of testosterone-deprivation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Pitx2 promotes heart repair by activating the antioxidant response after cardiac injury

    PubMed Central

    Tao, Ge; Kahr, Peter C.; Morikawa, Yuka; Zhang, Min; Rahmani, Mahdis; Heallen, Todd R.; Li, Lele; Sun, Zhao; Olson, Eric N.; Amendt, Brad A.; Martin, James F.

    2016-01-01

    Summary Myocardial infarction results in compromised myocardial function with heart failure due to insufficient cardiomyocyte self-renewal1. Unlike lower vertebrates, mammalian hearts only have a transient neonatal renewal capacity2. Reactivating primitive reparative ability in the mature heart requires knowledge of the mechanisms promoting early heart repair. By testing an established Hippo-deficient heart regeneration model for renewal promoting factors, we found that Pitx2 expression was induced in injured, Hippo-deficient ventricles. Pitx2-deficient neonatal hearts failed to repair after apex resection while Pitx2-gain-of-function in adult cardiomyocytes conferred reparative ability after myocardial infarction. Genomic analyses indicated that Pitx2 activated genes encoding electron transport chain components and reactive oxygen species scavengers. A subset of Pitx2 target genes was cooperatively regulated with the Hippo effector, Yap. Furthermore, Nrf2, a regulator of antioxidant response3, directly regulated Pitx2 expression and subcellular localization. Pitx2 mutant myocardium had elevated reactive oxygen species levels while antioxidant supplementation suppressed the Pitx2-loss-of-function phenotype. These findings reveal a genetic pathway, activated by tissue damage that is essential for cardiac repair. PMID:27251288

  9. Pitx2 promotes heart repair by activating the antioxidant response after cardiac injury.

    PubMed

    Tao, Ge; Kahr, Peter C; Morikawa, Yuka; Zhang, Min; Rahmani, Mahdis; Heallen, Todd R; Li, Lele; Sun, Zhao; Olson, Eric N; Amendt, Brad A; Martin, James F

    2016-06-02

    Myocardial infarction results in compromised myocardial function and heart failure owing to insufficient cardiomyocyte self-renewal. Unlike many vertebrates, mammalian hearts have only a transient neonatal renewal capacity. Reactivating primitive reparative ability in the mature mammalian heart requires knowledge of the mechanisms that promote early heart repair. By testing an established Hippo-deficient heart regeneration mouse model for factors that promote renewal, here we show that the expression of Pitx2 is induced in injured, Hippo-deficient ventricles. Pitx2-deficient neonatal mouse hearts failed to repair after apex resection, whereas adult mouse cardiomyocytes with Pitx2 gain-of-function efficiently regenerated after myocardial infarction. Genomic analyses indicated that Pitx2 activated genes encoding electron transport chain components and reactive oxygen species scavengers. A subset of Pitx2 target genes was cooperatively regulated with the Hippo pathway effector Yap. Furthermore, Nrf2, a regulator of the antioxidant response, directly regulated the expression and subcellular localization of Pitx2. Pitx2 mutant myocardium had increased levels of reactive oxygen species, while antioxidant supplementation suppressed the Pitx2 loss-of-function phenotype. These findings reveal a genetic pathway activated by tissue damage that is essential for cardiac repair.

  10. Annexin A7 deficiency potentiates cardiac NFAT activity promoting hypertrophic signaling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Voelkl, Jakob; Alesutan, Ioana; Pakladok, Tatsiana

    Highlights: • Cardiac Anxa7 expression was up-regulated following TAC. • The hypertrophic response following TAC was augmented in Anxa7-deficient mice. • Silencing of Anxa7 increased indicators of HL-1 cardiomyocytes hypertrophy. • Silencing of Anxa7 induced Nfatc1 nuclear translocation. • Silencing of Anxa7 enhanced NFAT-dependent transcriptional activity. - Abstract: Annexin A7 (Anxa7) is a cytoskeletal protein interacting with Ca{sup 2+} signaling which in turn is a crucial factor for cardiac remodeling following cardiac injury. The present study explored whether Anxa7 participates in the regulation of cardiac stress signaling. To this end, mice lacking functional Anxa7 (anxa7{sup −/−}) and wild-type mice (anxa7{supmore » +/+}) were investigated following pressure overload by transverse aortic constriction (TAC). In addition, HL-1 cardiomyocytes were silenced with Anxa7 siRNA and treated with isoproterenol. Transcript levels were determined by quantitative RT-PCR, transcriptional activity by luciferase reporter assay and protein abundance by Western blotting and confocal microscopy. As a result, TAC treatment increased the mRNA and protein levels of Anxa7 in wild-type mice. Moreover, TAC increased heart weight to body weight ratio and the cardiac mRNA levels of αSka, Nppb, Col1a1, Col3a1 and Rcan1, effects more pronounced in anxa7{sup −/−} mice than in anxa7{sup +/+} mice. Silencing of Anxa7 in HL-1 cardiomyocytes significantly increased nuclear localization of Nfatc1. Furthermore, Anxa7 silencing increased NFAT-dependent transcriptional activity as well as αSka, Nppb, and Rcan1 mRNA levels both, under control conditions and following β-adrenergic stimulation by isoproterenol. These observations point to an important role of annexin A7 in the regulation of cardiac NFAT activity and hypertrophic response following cardiac stress conditions.« less

  11. Analyzing Gene Expression Profiles with Preliminary Validations in Cardiac Hypertrophy Induced by Pressure-overload.

    PubMed

    Gao, Jing; Li, Yuhong; Wang, Tongmei; Shi, Zhuo; Zhang, Yiqi; Liu, Shuang; Wen, Pushuai; Ma, Chunyan

    2018-03-06

    The aim of this study was to identify the key genes involved in the cardiac hypertrophy (CH) induced by pressure overload. mRNA microarray dataset GSE5500 and GSE18801 were downloaded from GEO database, and differentially expressed genes (DEGs) were screened using Limma package; then, functional and pathway enrichment analysis were performed for common DEGs using DAVID database. Furthermore, the top DEGs were further validated using qPCR in the hypertrophic heart tissue induced by Isoprenaline (ISO). A total of 113 common DEGs with absolute fold change >0.5, including 60 significantly up-regulated DEGs and 53 down-regulated DEGs were obtained. GO term enrichment analysis suggested that common up-regulated DEG mainly enriched in neutrophil chemotaxis, extracellular fibril organization and cell proliferation, and the common down-regulated genes were significantly enriched in ion transport, endoplasmic reticulum and dendritic spine. KEGG pathway analysis found that the common DEGs were mainly enriched in ECM-receptor interaction, phagosome, and focal adhesion. Additionally, the expression of Mfap4, Ltbp2, Aspn, Serpina3n, and Cnksr1 were up-regulated in the model of cardiac hypertrophy, while the expression of Anp32a was down-regulated. The current study identified the key deregulated genes and pathways involved in the CH, which could shed new light to understand the mechanism of CH.

  12. Effects of High Dietary HEME Iron and Radiation on Cardiovascular Function

    NASA Technical Reports Server (NTRS)

    Westby, Christian M.; Brown, A. K.; Platts, S. H.

    2012-01-01

    The radiation related health risks to astronauts is of particular concern to NASA. Data support that exposure to radiation is associated with a number of disorders including a heightened risk for cardiovascular diseases. Independent of radiation, altered nutrient status (e.g. high dietary iron) also increases ones risk for cardiovascular disease. However, it is unknown whether exposure to radiation in combination with high dietary iron further increases ones cardiovascular risk. The intent of our proposal is to generate compulsory data examining the combined effect of radiation exposure and iron overload on sensitivity to radiation injury to address HRP risks: 1) Risk Factor of Inadequate Nutrition; 2) Risk of Cardiac Rhythm Problems; and 3) Risk of Degenerative Tissue or other Health Effects from Space Radiation. Towards our goal we propose two distinct pilot studies using the following specific aims: Vascular Aim 1: To determine the short-term consequences of the independent and combined effects of exposure to gamma radiation and elevated body iron stores on measures of endothelial function and cell viability and integrity. We hypothesize that animals that have high body iron stores and are exposed to gamma radiation will show a greater reduction in endothelial dependent nitric oxid production and larger pathological changes in endothelial integrity than animals that have only 1 of those treatments (either high iron stores or exposure to gamma radiation). Vascular Aim 2: Identify and compare the effects of gamma radiation and elevated body iron stores on the genetic and epigenetic regulation of proteins associated with endothelial cell function. We hypothesize that modifications of epigenetic control and posttranslational expression of proteins associated with endothelial cell function will be differentially altered in rats with high body iron stores and exposed to gamma radiation compared to rats with only 1 type of treatment. Cardiac Aim 1: To determine the short-term consequences of the independent and combined effects of gamma radiation and elevated body iron stores on measures of cardiac structure. We hypothesize that modifications to cardiac structure and function will be greater in rats with high body iron stores and exposed to gamma radiation than in rats that have only 1 of those treatments. Cardiac Aim 2: Identify and compare the effects of gamma radiation and elevated body iron stores on the genetic and epigenetic regulation of proteins associated with cardiac structure and function. We hypothesize that modifications of epigenetic control and posttranslational expression of proteins associated with cardiac contractile function will be differentially altered in rats with high body iron stores and exposed to gamma radiation compared to rats with only 1 type of treatment.

  13. Cardiomyocyte-Specific Ablation of Med1 Subunit of the Mediator Complex Causes Lethal Dilated Cardiomyopathy in Mice.

    PubMed

    Jia, Yuzhi; Chang, Hsiang-Chun; Schipma, Matthew J; Liu, Jing; Shete, Varsha; Liu, Ning; Sato, Tatsuya; Thorp, Edward B; Barger, Philip M; Zhu, Yi-Jun; Viswakarma, Navin; Kanwar, Yashpal S; Ardehali, Hossein; Thimmapaya, Bayar; Reddy, Janardan K

    2016-01-01

    Mediator, an evolutionarily conserved multi-protein complex consisting of about 30 subunits, is a key component of the polymerase II mediated gene transcription. Germline deletion of the Mediator subunit 1 (Med1) of the Mediator in mice results in mid-gestational embryonic lethality with developmental impairment of multiple organs including heart. Here we show that cardiomyocyte-specific deletion of Med1 in mice (csMed1-/-) during late gestational and early postnatal development by intercrossing Med1fl/fl mice to α-MyHC-Cre transgenic mice results in lethality within 10 days after weaning due to dilated cardiomyopathy-related ventricular dilation and heart failure. The csMed1-/- mouse heart manifests mitochondrial damage, increased apoptosis and interstitial fibrosis. Global gene expression analysis revealed that loss of Med1 in heart down-regulates more than 200 genes including Acadm, Cacna1s, Atp2a2, Ryr2, Pde1c, Pln, PGC1α, and PGC1β that are critical for calcium signaling, cardiac muscle contraction, arrhythmogenic right ventricular cardiomyopathy, dilated cardiomyopathy and peroxisome proliferator-activated receptor regulated energy metabolism. Many genes essential for oxidative phosphorylation and proper mitochondrial function such as genes coding for the succinate dehydrogenase subunits of the mitochondrial complex II are also down-regulated in csMed1-/- heart contributing to myocardial injury. Data also showed up-regulation of about 180 genes including Tgfb2, Ace, Atf3, Ctgf, Angpt14, Col9a2, Wisp2, Nppa, Nppb, and Actn1 that are linked to cardiac muscle contraction, cardiac hypertrophy, cardiac fibrosis and myocardial injury. Furthermore, we demonstrate that cardiac specific deletion of Med1 in adult mice using tamoxifen-inducible Cre approach (TmcsMed1-/-), results in rapid development of cardiomyopathy and death within 4 weeks. We found that the key findings of the csMed1-/- studies described above are highly reproducible in TmcsMed1-/- mouse heart. Collectively, these observations suggest that Med1 plays a critical role in the maintenance of heart function impacting on multiple metabolic, compensatory and reparative pathways with a likely therapeutic potential in the management of heart failure.

  14. Cardiac Nitric Oxide Synthases and Na⁺/K⁺-ATPase in the Rat Model of Polycystic Ovary Syndrome Induced by Dihydrotestosterone.

    PubMed

    Tepavčević, S; Milutinović, D V; Macut, D; Stanišić, J; Nikolić, M; Božić-Antić, I; Rodaljević, S; Bjekić-Macut, J; Matić, G; Korićanac, G

    2015-05-01

    Nitric oxide synthases (NOSs) and Na(+)/K(+)-ATPase are enzymes essential for regular functioning of the heart. Since both enzymes are under insulin and androgen regulation and since insulin action and androgen level were disturbed in polycystic ovary syndrome (PCOS), we hypothesized that cardiac nitric oxide (NO) production and sodium/potassium transport would be deteriorated in PCOS. To test our hypothesis we introduced animal model of PCOS based on dihydrotestosterone (DHT) treatment of female Wistar rats and analyzed protein expression, phosphorylation or subcellular localization of endothelial NOS (eNOS), inducible NOS (iNOS) and alpha subunits of Na(+)/K(+)-ATPase in the heart. Obtained results indicate that DHT treatment significantly decreased cardiac eNOS protein level and activating phosphorylation at serine 1,177, while inhibitory phosphorylation at threonine 495 was increased. In contrast to expression of eNOS, iNOS protein level in the heart of DHT-treated rats was significantly elevated. Furthermore, cardiac protein level of alpha 1 subunit of the ATPase, as well as its plasma membrane content, were decreased in rats with PCOS. In line with this, alpha 2 subunit protein level in fraction of plasma membranes was also significantly below control level. In conclusion, DHT treatment impaired effectiveness of NOSs and Na(+)/K(+)-ATPase in the female rat heart. Regarding the importance of NO production and sodium/potassium transport in the cardiac contraction and blood flow regulation, it implicates strong consequences of PCOS for heart functioning. © Georg Thieme Verlag KG Stuttgart · New York.

  15. c-Myc alters substrate utilization and O-GlcNAc protein posttranslational modifications without altering cardiac function during early aortic constriction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ledee, Dolena; Smith, Lincoln; Bruce, Margaret

    Pressure overload cardiac hypertrophy alters substrate metabolism. Prior work showed that myocardial inactivation of c-Myc (Myc) attenuated hypertrophy and decreased expression of metabolic genes after aortic constriction. Accordingly, we hypothesize that Myc regulates substrate preferences for the citric acid cycle during pressure overload hypertrophy from transverse aortic constriction (TAC) and that these metabolic changes impact cardiac function and growth. To test this hypothesis, we subjected mice with cardiac specific, inducible Myc inactivation (MycKO-TAC) and non-transgenic littermates (Cont-TAC) to transverse aortic constriction (TAC; n=7/group). A separate group underwent sham surgery (Sham, n=5). After two weeks, function was measured in isolated workingmore » hearts along with substrate fractional contributions to the citric acid cycle by using perfusate with 13C labeled mixed fatty acids, lactate, ketone bodies and unlabeled glucose and insulin. Cardiac function was similar between groups after TAC although +dP/dT and -dP/dT trended towards improvement in MycKO-TAC versus Cont-TAC. Compared to Sham, Cont-TAC had increased free fatty acid fractional contribution with a concurrent decrease in unlabeled (predominately glucose) contribution. The changes in free fatty acid and unlabeled fractional contributions were abrogated by Myc inactivation during TAC (MycKO-TAC). Additionally, protein posttranslational modification by O-GlcNAc was significantly greater in Cont-TAC versus both Sham and MycKO-TAC. Lastly, Myc alters substrate preferences for the citric acid cycle during early pressure overload hypertrophy without negatively affecting cardiac function. Myc also affects protein posttranslational modifications by O-GlcNAc during hypertrophy.« less

  16. c-Myc alters substrate utilization and O-GlcNAc protein posttranslational modifications without altering cardiac function during early aortic constriction

    DOE PAGES

    Ledee, Dolena; Smith, Lincoln; Bruce, Margaret; ...

    2015-08-12

    Pressure overload cardiac hypertrophy alters substrate metabolism. Prior work showed that myocardial inactivation of c-Myc (Myc) attenuated hypertrophy and decreased expression of metabolic genes after aortic constriction. Accordingly, we hypothesize that Myc regulates substrate preferences for the citric acid cycle during pressure overload hypertrophy from transverse aortic constriction (TAC) and that these metabolic changes impact cardiac function and growth. To test this hypothesis, we subjected mice with cardiac specific, inducible Myc inactivation (MycKO-TAC) and non-transgenic littermates (Cont-TAC) to transverse aortic constriction (TAC; n=7/group). A separate group underwent sham surgery (Sham, n=5). After two weeks, function was measured in isolated workingmore » hearts along with substrate fractional contributions to the citric acid cycle by using perfusate with 13C labeled mixed fatty acids, lactate, ketone bodies and unlabeled glucose and insulin. Cardiac function was similar between groups after TAC although +dP/dT and -dP/dT trended towards improvement in MycKO-TAC versus Cont-TAC. Compared to Sham, Cont-TAC had increased free fatty acid fractional contribution with a concurrent decrease in unlabeled (predominately glucose) contribution. The changes in free fatty acid and unlabeled fractional contributions were abrogated by Myc inactivation during TAC (MycKO-TAC). Additionally, protein posttranslational modification by O-GlcNAc was significantly greater in Cont-TAC versus both Sham and MycKO-TAC. Lastly, Myc alters substrate preferences for the citric acid cycle during early pressure overload hypertrophy without negatively affecting cardiac function. Myc also affects protein posttranslational modifications by O-GlcNAc during hypertrophy.« less

  17. Metabolic Dysfunction Consistent with Premature Aging Results from Deletion of Pim Kinases

    PubMed Central

    Din, Shabana; Konstandin, Mathias H; Johnson, Bevan; Emathinger, Jacqueline; Völkers, Mirko; Toko, Haruhiro; Collins, Brett; Ormachea, Lucy; Samse, Kaitlen; Kubli, Dieter A; De La Torre, Andrea; Kraft, Andrew S; Gustafsson, Asa B; Kelly, Daniel P; Sussman, Mark A

    2014-01-01

    Rationale The senescent cardiac phenotype is accompanied by changes in mitochondrial function and biogenesis causing impairment in energy provision. The relationship between myocardial senescence and Pim kinases deserves attention since Pim-1 kinase is cardioprotective, in part, by preservation of mitochondrial integrity. Study of the pathological effects resulting from genetic deletion of all Pim kinase family members could provide important insight regarding cardiac mitochondrial biology and the aging phenotype. Objective Demonstrate myocardial senescence is promoted by loss of Pim leading to premature aging and aberrant mitochondrial function. Methods and Results Cardiac myocyte senescence was evident at three months of age in Pim Triple KnockOut (PTKO) mice, where all three isoforms of Pim kinase family members are genetically deleted. Cellular hypertrophic remodeling and fetal gene program activation was followed by heart failure at six months in PTKO mice. Metabolic dysfunction is an underlying cause of cardiac senescence and instigates a decline in cardiac function. Altered mitochondrial morphology is evident consequential to Pim deletion together with decreased ATP levels and increased phosphorylated AMPK, exposing an energy deficiency in PTKO mice. Expression of the genes encoding master regulators of mitochondrial biogenesis, PPARγ coactivator-1 (PGC-1) α and β were diminished in PTKO hearts, as were downstream targets included in mitochondrial energy transduction, including fatty acid oxidation. Reversal of the dysregulated metabolic phenotype was observed by overexpressing c-Myc, a downstream target of Pim kinases. Conclusion Pim kinases prevent premature cardiac aging and maintain a healthy pool of functional mitochondria leading to efficient cellular energetics. PMID:24916111

  18. Novel mechanism of cardiac protection by valsartan: synergetic roles of TGF-β1 and HIF-1α in Ang II-mediated fibrosis after myocardial infarction

    PubMed Central

    Sui, Xizhong; Wei, Hongchao; Wang, Dacheng

    2015-01-01

    Transforming growth factor (TGF)-β1 is a known factor in angiotensin II (Ang II)-mediated cardiac fibrosis after myocardial infarction (MI). Hypoxia inducible factor-1 (Hif-1α) was recently demonstrated to involve in the tissue fibrosis and influenced by Ang II. However, whether Hif-1α contributed to the Ang II-mediated cardiac fibrosis after MI, and whether interaction or synergetic roles between Hif-1α and TGF-β pathways existed in the process was unclear. In vitro, cardiac cells were incubated under hypoxia or Ang II to mimic ischaemia. In vivo, valsartan was intravenously injected into Sprague–Dawley rats with MI daily for 1 week; saline and hydralazine (another anti-hypertensive agent like valsartan) was used as control. The fibrosis-related proteins were detected by Western blotting. Cardiac structure and function were assessed with multimodality methods. We demonstrated in vitro that hypoxia would induce the up-regulation of Ang II, TGF-β/Smad and Hif-1α, which further induced collagen accumulation. By blocking with valsartan, a blocker of Ang II type I (AT1) receptor, we confirmed that the up-regulation of TGF-β/Smad and Hif-1α was through the Ang II-mediated pathway. By administering TGF-β or dimethyloxalylglycine, we determined that both TGF-β/Smad and Hif-1α contributed to Ang II-mediated collagen accumulation and a synergetic effect between them was observed. Consistent with in vitro results, valsartan significantly attenuated the expression of TGF-β/Smad, Hif-1α and fibrosis-related protein in rats after MI. Heart function, infarcted size, wall thickness as well as myocardial vascularization of ischaemic hearts were also significantly improved by valsartan compared with saline and hydralazine. Our study may provide novel insights into the mechanisms of Ang II-induced cardiac fibrosis as well as into the cardiac protection of valsartan. PMID:25823960

  19. Egr-1 mediated cardiac miR-99 family expression diverges physiological hypertrophy from pathological hypertrophy.

    PubMed

    Ramasamy, Subbiah; Velmurugan, Ganesan; Rekha, Balakrishnan; Anusha, Sivakumar; Shanmugha Rajan, K; Shanmugarajan, Suresh; Ramprasath, Tharmarajan; Gopal, Pandi; Tomar, Dhanendra; Karthik, Karuppusamy V; Verma, Suresh Kumar; Garikipati, Venkata Naga Srikanth; Sudarsan, Rajan

    2018-04-01

    The physiological cardiac hypertrophy is an adaptive condition without myocyte cell death, while pathological hypertrophy is a maladaptive condition associated with myocyte cell death. This study explores the miRNome of α-2M-induced physiologically hypertrophied cardiomyocytes and the role of miRNA-99 family during cardiac hypertrophy. Physiological and pathological cardiac hypertrophy was induced in H9c2 cardiomyoblast cell lines using α-2M and isoproterenol respectively. Total RNA isolation and small RNA sequencing were executed for physiological hypertrophy model. The differentially expressed miRNAs and its target mRNAs were validated in animal models. Transcription factor binding sites were predicted in the promoter of specific miRNAs and validated by ChIP-PCR. Subsequently, the selected miRNA was functionally characterized by overexpression and silencing. The effects of silencing of upstream regulator and downstream target gene were studied. Analysis of small RNA reads revealed the differential expression of a large set of miRNAs during hypertrophy, of which miR-99 family was highly downregulated upon α-2M treatment. However, this miR-99 family expression was upregulated during pathological hypertrophy and confirmed in animal models. ChIP-PCR confirms the binding of Egr-1 transcription factor to the miR-99 promoter. Further, silencing of Egr-1 decreased the expression of miR-99. The overexpression or silencing of miR-99 diverges the physiological hypertrophy to pathological hypertrophy and vice versa by regulating Akt-1 pathway. Silencing of Akt-1 replicates the effect of overexpression of miR-99. The results proved Egr-1 mediated regulation of miR-99 family that plays a key role in determining the fate of cardiac hypertrophy by regulating Akt-1 signaling. Copyright © 2018 Elsevier Inc. All rights reserved.

  20. Increased Efferent Cardiac Sympathetic Nerve Activity and Defective Intrinsic Heart Rate Regulation in Type 2 Diabetes.

    PubMed

    Thaung, H P Aye; Baldi, J Chris; Wang, Heng-Yu; Hughes, Gillian; Cook, Rosalind F; Bussey, Carol T; Sheard, Phil W; Bahn, Andrew; Jones, Peter P; Schwenke, Daryl O; Lamberts, Regis R

    2015-08-01

    Elevated sympathetic nerve activity (SNA) coupled with dysregulated β-adrenoceptor (β-AR) signaling is postulated as a major driving force for cardiac dysfunction in patients with type 2 diabetes; however, cardiac SNA has never been assessed directly in diabetes. Our aim was to measure the sympathetic input to and the β-AR responsiveness of the heart in the type 2 diabetic heart. In vivo recording of SNA of the left efferent cardiac sympathetic branch of the stellate ganglion in Zucker diabetic fatty rats revealed an elevated resting cardiac SNA and doubled firing rate compared with nondiabetic rats. Ex vivo, in isolated denervated hearts, the intrinsic heart rate was markedly reduced. Contractile and relaxation responses to β-AR stimulation with dobutamine were compromised in externally paced diabetic hearts, but not in diabetic hearts allowed to regulate their own heart rate. Protein levels of left ventricular β1-AR and Gs (guanine nucleotide binding protein stimulatory) were reduced, whereas left ventricular and right atrial β2-AR and Gi (guanine nucleotide binding protein inhibitory regulatory) levels were increased. The elevated resting cardiac SNA in type 2 diabetes, combined with the reduced cardiac β-AR responsiveness, suggests that the maintenance of normal cardiovascular function requires elevated cardiac sympathetic input to compensate for changes in the intrinsic properties of the diabetic heart. © 2015 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  1. In Vitro Cardiomyogenic Potential of Human Amniotic Fluid Stem Cells

    PubMed Central

    Guan, Xuan; Delo, Dawn M.; Atala, Anthony; Soker, Shay

    2010-01-01

    Stem cell therapy for damaged cardiac tissue is currently limited by a number of factors, including the inability to obtain sufficient cell numbers, the potential tumorigenicity of certain types of stem cells, and the possible link between stem cell therapy and the development of malignant arrhythmias. In this study, we investigated whether human amniotic fluid-derived stem (hAFS) cells could be a potential source of cells for cardiac cell therapy by testing the in vitro differentiation capabilities. Undifferentiated hAFS cells express several cardiac genes, including the transcription factor mef2, the gap junction connexin43, and H- and N-cadherin. A 24-hour incubation with 5-aza-2′–deoxycytidine (5-AZA-dC) induced hAFS cell differentiation along the cardiac lineage. Evidence for this differentiation included morphological changes, up-regulation of cardiac-specific genes (cardiac troponin I and cardiac troponin T) and redistribution of connexin43, as well as down-regulation of the stem cell marker SRY-box 2 (sox2). When co-cultured with neonatal rat cardiomyocytes (NRCs), hAFS cells formed both mechanical and electrical connections with the NRCs. Dye transfer experiments showed that calcein dye could be transferred from NRCs to hAFS cells through cellular connections. The gap junction connexin 43 likely involved in the communication between the two cell types, because 12-O-Tetradecanoylphorbol 13-acetate (TPA) could partially block cellular crosstalk. We conclude that hAFS cells can be differentiated into a cardiomyocyte-like phenotype and can establish functional communication with NRCs. Thus, hAFS cells may potentially be used for cardiac cell therapy. PMID:20687122

  2. [Specific features of the functional state of the cardiorespiratory system in athletes differing in the types of muscular activity during the preparatory period of the training cycle].

    PubMed

    Ivanova, N B

    2011-01-01

    The present study of the functional state of the cadiorespiratory system included athletes engaged in cyclic team sports. The state of the cardiorespiratory system was estimated from the measurement of central hemodynamics and cardiac rhythm variability, results of electrocardiography, spirography, and pneumotachography performed during the preparatory period for the training cycle. It was shown that the cardiovascular and respiratory systems as well as vegetative regulation of the cardiac rhythm of the athletes under examination underwent differently directed structural modification depending on the specific patterns of muscular activity.

  3. FOXO3a regulates BNIP3 and modulates mitochondrial calcium, dynamics, and function in cardiac stress

    PubMed Central

    Kohlbrenner, Erik; Gamb, Scott I.; Guenzel, Adam J.; Klaus, Katherine; Fayyaz, Ahmed U.; Nair, K. Sreekumaran; Hajjar, Roger J.

    2016-01-01

    The forkhead box O3a (FOXO3a) transcription factor has been shown to regulate glucose metabolism, muscle atrophy, and cell death in postmitotic cells. Its role in regulation of mitochondrial and myocardial function is not well studied. Based on previous work, we hypothesized that FOXO3a, through BCL2/adenovirus E1B 19-kDa protein-interacting protein 3 (BNIP3), modulates mitochondrial morphology and function in heart failure (HF). We modulated the FOXO3a-BNIP3 pathway in normal and phenylephrine (PE)-stressed adult cardiomyocytes (ACM) in vitro and developed a cardiotropic adeno-associated virus serotype 9 encoding dominant-negative FOXO3a (AAV9.dn-FX3a) for gene delivery in a rat model of HF with preserved ejection fraction (HFpEF). We found that FOXO3a upregulates BNIP3 expression in normal and PE-stressed ACM, with subsequent increases in mitochondrial Ca2+, leading to decreased mitochondrial membrane potential, mitochondrial fragmentation, and apoptosis. Whereas dn-FX3a attenuated the increase in BNIP3 expression and its consequences in PE-stressed ACM, AAV9.dn-FX3a delivery in an experimental model of HFpEF decreased BNIP3 expression, reversed adverse left ventricular remodeling, and improved left ventricular systolic and, particularly, diastolic function, with improvements in mitochondrial structure and function. Moreover, AAV9.dn-FX3a restored phospholamban phosphorylation at S16 and enhanced dynamin-related protein 1 phosphorylation at S637. Furthermore, FOXO3a upregulates maladaptive genes involved in mitochondrial apoptosis, autophagy, and cardiac atrophy. We conclude that FOXO3a activation in cardiac stress is maladaptive, in that it modulates Ca2+ cycling, Ca2+ homeostasis, and mitochondrial dynamics and function. Our results suggest an important role of FOXO3a in HF, making it an attractive potential therapeutic target. Listen to this article's corresponding podcast at http://ajpheart.podbean.com/e/role-of-foxo3a-in-heart-failure/. PMID:27694219

  4. Regulation of Cardiac Stress Signaling by Protein Kinase D1

    PubMed Central

    Harrison, Brooke C.; Kim, Mi-Sung; van Rooij, Eva; Plato, Craig F.; Papst, Philip J.; Vega, Rick B.; McAnally, John A.; Richardson, James A.; Bassel-Duby, Rhonda; Olson, Eric N.; McKinsey, Timothy A.

    2006-01-01

    In response to pathological stresses such as hypertension or myocardial infarction, the heart undergoes a remodeling process that is associated with myocyte hypertrophy, myocyte death, and fibrosis. Histone deacetylase 5 (HDAC5) is a transcriptional repressor of cardiac remodeling that is subject to phosphorylation-dependent neutralization in response to stress signaling. Recent studies have suggested a role for protein kinase C (PKC) and its downstream effector, protein kinase D1 (PKD1), in the control of HDAC5 phosphorylation. While PKCs are well-documented regulators of cardiac signaling, the function of PKD1 in heart muscle remains unclear. Here, we demonstrate that PKD1 catalytic activity is stimulated in cardiac myocytes by diverse hypertrophic agonists that signal through G protein-coupled receptors (GPCRs) and Rho GTPases. PKD1 activation in cardiomyocytes occurs through PKC-dependent and -independent mechanisms. In vivo, cardiac PKD1 is activated in multiple rodent models of pathological cardiac remodeling. PKD1 activation correlates with phosphorylation-dependent nuclear export of HDAC5, and reduction of endogenous PKD1 expression with small interfering RNA suppresses HDAC5 shuttling and associated cardiomyocyte growth. Conversely, ectopic overexpression of constitutively active PKD1 in mouse heart leads to dilated cardiomyopathy. These findings support a role for PKD1 in the control of pathological remodeling of the heart via its ability to phosphorylate and neutralize HDAC5. PMID:16648482

  5. Redox regulation of electrophilic signaling by reactive persulfides in cardiac cells.

    PubMed

    Nishida, Motohiro; Nishimura, Akiyuki; Matsunaga, Tetsuro; Motohashi, Hozumi; Kasamatsu, Shingo; Akaike, Takaaki

    2017-08-01

    Maintaining a redox balance by means of precisely controlled systems that regulate production, and elimination, and metabolism of electrophilic substances (electrophiles) is essential for normal cardiovascular function. Electrophilic signaling is mainly regulated by endogenous electrophiles that are generated from reactive oxygen species, nitric oxide, and the derivative reactive species of nitric oxide during stress responses, as well as by exogenous electrophiles including compounds in foods and environmental pollutants. Among electrophiles formed endogenously, 8-nitroguanosine 3',5'-cyclic monophosphate (8-nitro-cGMP) has unique cell signaling functions, and pathways for its biosynthesis, signaling mechanism, and metabolism in cells have been clarified. Reactive persulfide species such as cysteine persulfides and polysulfides that are endogenously produced in cells are likely to be involved in 8-nitro-cGMP metabolism. These new aspects of redox biology may stimulate innovative and multidisciplinary research in cardiovascular physiology and pathophysiology. In our review, we focus on the redox-dependent regulation of electrophilic signaling via reduction and metabolism of electrophiles by reactive persulfides in cardiac cells, and we include suggestions for a new therapeutic strategy for cardiovascular disease. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Parkin regulation of CHOP modulates susceptibility to cardiac endoplasmic reticulum stress.

    PubMed

    Han, Kim; Hassanzadeh, Shahin; Singh, Komudi; Menazza, Sara; Nguyen, Tiffany T; Stevens, Mark V; Nguyen, An; San, Hong; Anderson, Stasia A; Lin, Yongshun; Zou, Jizhong; Murphy, Elizabeth; Sack, Michael N

    2017-05-18

    The regulatory control of cardiac endoplasmic reticulum (ER) stress is incompletely characterized. As ER stress signaling upregulates the E3-ubiquitin ligase Parkin, we investigated the role of Parkin in cardiac ER stress. Parkin knockout mice exposed to aortic constriction-induced cardiac pressure-overload or in response to systemic tunicamycin (TM) developed adverse ventricular remodeling with excessive levels of the ER regulatory C/EBP homologous protein CHOP. CHOP was identified as a Parkin substrate and its turnover was Parkin-dose and proteasome-dependent. Parkin depletion in cardiac HL-1 cells increased CHOP levels and enhanced susceptibility to TM-induced cell death. Parkin reconstitution rescued this phenotype and the contribution of excess CHOP to this ER stress injury was confirmed by reduction in TM-induced cell death when CHOP was depleted in Parkin knockdown cardiomyocytes. Isogenic Parkin mutant iPSC-derived cardiomyocytes showed exaggerated ER stress induced CHOP and apoptotic signatures and myocardium from subjects with dilated cardiomyopathy showed excessive Parkin and CHOP induction. This study identifies that Parkin functions to blunt excessive CHOP to prevent maladaptive ER stress-induced cell death and adverse cardiac ventricular remodeling. Additionally, Parkin is identified as a novel post-translational regulatory moderator of CHOP stability and uncovers an additional stress-modifying function of this E3-ubiquitin ligase.

  7. Recurrent myocardial infarction: Mechanisms of free-floating adaptation and autonomic derangement in networked cardiac neural control

    PubMed Central

    Ardell, Jeffrey L.; Shivkumar, Kalyanam; Armour, J. Andrew

    2017-01-01

    The cardiac nervous system continuously controls cardiac function whether or not pathology is present. While myocardial infarction typically has a major and catastrophic impact, population studies have shown that longer-term risk for recurrent myocardial infarction and the related potential for sudden cardiac death depends mainly upon standard atherosclerotic variables and autonomic nervous system maladaptations. Investigative neurocardiology has demonstrated that autonomic control of cardiac function includes local circuit neurons for networked control within the peripheral nervous system. The structural and adaptive characteristics of such networked interactions define the dynamics and a new normal for cardiac control that results in the aftermath of recurrent myocardial infarction and/or unstable angina that may or may not precipitate autonomic derangement. These features are explored here via a mathematical model of cardiac regulation. A main observation is that the control environment during pathology is an extrapolation to a setting outside prior experience. Although global bounds guarantee stability, the resulting closed-loop dynamics exhibited while the network adapts during pathology are aptly described as ‘free-floating’ in order to emphasize their dependence upon details of the network structure. The totality of the results provide a mechanistic reasoning that validates the clinical practice of reducing sympathetic efferent neuronal tone while aggressively targeting autonomic derangement in the treatment of ischemic heart disease. PMID:28692680

  8. Cardiac-specific ablation of the E3 ubiquitin ligase Mdm2 leads to oxidative stress, broad mitochondrial deficiency and early death

    PubMed Central

    Hauck, Ludger; Stanley-Hasnain, Shanna; Fung, Amelia; Grothe, Daniela; Rao, Vivek; Mak, Tak W.

    2017-01-01

    The maintenance of normal heart function requires proper control of protein turnover. The ubiquitin-proteasome system is a principal regulator of protein degradation. Mdm2 is the main E3 ubiquitin ligase for p53 in mitotic cells thereby regulating cellular growth, DNA repair, oxidative stress and apoptosis. However, which of these Mdm2-related activities are preserved in differentiated cardiomyocytes has yet to be determined. We sought to elucidate the role of Mdm2 in the control of normal heart function. We observed markedly reduced Mdm2 mRNA levels accompanied by highly elevated p53 protein expression in the hearts of wild type mice subjected to myocardial infarction or trans-aortic banding. Accordingly, we generated conditional cardiac-specific Mdm2 gene knockout (Mdm2f/f;mcm) mice. In adulthood, Mdm2f/f;mcm mice developed spontaneous cardiac hypertrophy, left ventricular dysfunction with early mortality post-tamoxifen. A decreased polyubiquitination of myocardial p53 was observed, leading to its stabilization and activation, in the absence of acute stress. In addition, transcriptomic analysis of Mdm2-deficient hearts revealed that there is an induction of E2f1 and c-Myc mRNA levels with reduced expression of the Pgc-1a/Ppara/Esrrb/g axis and Pink1. This was associated with a significant degree of cardiomyocyte apoptosis, and an inhibition of redox homeostasis and mitochondrial bioenergetics. All these processes are early, Mdm2-associated events and contribute to the development of pathological hypertrophy. Our genetic and biochemical data support a role for Mdm2 in cardiac growth control through the regulation of p53, the Pgc-1 family of transcriptional coactivators and the pivotal antioxidant Pink1. PMID:29267372

  9. Genome-wide compendium and functional assessment of in vivo heart enhancers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dickel, Diane E.; Barozzi, Iros; Zhu, Yiwen

    Whole-genome sequencing is identifying growing numbers of non-coding variants in human disease studies, but the lack of accurate functional annotations prevents their interpretation. We describe the genome-wide landscape of distant-acting enhancers active in the developing and adult human heart, an organ whose impairment is a predominant cause of mortality and morbidity. Using integrative analysis of > 35 epigenomic data sets from mouse and human pre-and postnatal hearts we created a comprehensive reference of > 80,000 putative human heart enhancers. To illustrate the importance of enhancers in the regulation of genes involved in heart disease, we deleted the mouse orthologs ofmore » two human enhancers near cardiac myosin genes. In both cases, we observe in vivo expression changes and cardiac phenotypes consistent with human heart disease. Our study provides a comprehensive catalogue of human heart enhancers for use in clinical whole-genome sequencing studies and highlights the importance of enhancers for cardiac function.« less

  10. KCNE4 and KCNE5: K+ channel regulation and cardiac arrhythmogenesis

    PubMed Central

    Abbott, Geoffrey W.

    2016-01-01

    KCNE proteins are single transmembrane-segment voltage-gated potassium (Kv) channel ancillary subunits that exhibit a diverse range of physiological functions. Human KCNE gene mutations are associated with various pathophysiological states, most notably cardiac arrhythmias. Of the five isoforms in the human KCNE gene family, KCNE4 and the X-linked KCNE5 are, to date, the least-studied. Recently, however, interest in these neglected genes has been stoked by their putative association with debilitating or lethal cardiac arrhythmias. The sometimes-overlapping functional effects of KCNE4 and KCNE5 vary depending on both their Kv α subunit partner and on other ancillary subunits within the channel complex, but mostly fall into two contrasting categories either inhibition, or fine-tuning of gating kinetics. This review covers current knowledge regarding the molecular mechanisms of KCNE4 and KCNE5 function, human disease associations, and findings from very recent studies of cardiovascular pathophysiology in Kcne4−/− mice. PMID:27484720

  11. Genome-wide compendium and functional assessment of in vivo heart enhancers

    DOE PAGES

    Dickel, Diane E.; Barozzi, Iros; Zhu, Yiwen; ...

    2016-10-05

    Whole-genome sequencing is identifying growing numbers of non-coding variants in human disease studies, but the lack of accurate functional annotations prevents their interpretation. We describe the genome-wide landscape of distant-acting enhancers active in the developing and adult human heart, an organ whose impairment is a predominant cause of mortality and morbidity. Using integrative analysis of > 35 epigenomic data sets from mouse and human pre-and postnatal hearts we created a comprehensive reference of > 80,000 putative human heart enhancers. To illustrate the importance of enhancers in the regulation of genes involved in heart disease, we deleted the mouse orthologs ofmore » two human enhancers near cardiac myosin genes. In both cases, we observe in vivo expression changes and cardiac phenotypes consistent with human heart disease. Our study provides a comprehensive catalogue of human heart enhancers for use in clinical whole-genome sequencing studies and highlights the importance of enhancers for cardiac function.« less

  12. KCNE4 and KCNE5: K(+) channel regulation and cardiac arrhythmogenesis.

    PubMed

    Abbott, Geoffrey W

    2016-11-30

    KCNE proteins are single transmembrane-segment voltage-gated potassium (Kv) channel ancillary subunits that exhibit a diverse range of physiological functions. Human KCNE gene mutations are associated with various pathophysiological states, most notably cardiac arrhythmias. Of the five isoforms in the human KCNE gene family, KCNE4 and the X-linked KCNE5 are, to date, the least-studied. Recently, however, interest in these neglected genes has been stoked by their putative association with debilitating or lethal cardiac arrhythmias. The sometimes-overlapping functional effects of KCNE4 and KCNE5 vary depending on both their Kv α subunit partner and on other ancillary subunits within the channel complex, but mostly fall into two contrasting categories - either inhibition, or fine-tuning of gating kinetics. This review covers current knowledge regarding the molecular mechanisms of KCNE4 and KCNE5 function, human disease associations, and findings from very recent studies of cardiovascular pathophysiology in Kcne4(-/-) mice. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Genome-wide compendium and functional assessment of in vivo heart enhancers

    PubMed Central

    Dickel, Diane E.; Barozzi, Iros; Zhu, Yiwen; Fukuda-Yuzawa, Yoko; Osterwalder, Marco; Mannion, Brandon J.; May, Dalit; Spurrell, Cailyn H.; Plajzer-Frick, Ingrid; Pickle, Catherine S.; Lee, Elizabeth; Garvin, Tyler H.; Kato, Momoe; Akiyama, Jennifer A.; Afzal, Veena; Lee, Ah Young; Gorkin, David U.; Ren, Bing; Rubin, Edward M.; Visel, Axel; Pennacchio, Len A.

    2016-01-01

    Whole-genome sequencing is identifying growing numbers of non-coding variants in human disease studies, but the lack of accurate functional annotations prevents their interpretation. We describe the genome-wide landscape of distant-acting enhancers active in the developing and adult human heart, an organ whose impairment is a predominant cause of mortality and morbidity. Using integrative analysis of >35 epigenomic data sets from mouse and human pre- and postnatal hearts we created a comprehensive reference of >80,000 putative human heart enhancers. To illustrate the importance of enhancers in the regulation of genes involved in heart disease, we deleted the mouse orthologs of two human enhancers near cardiac myosin genes. In both cases, we observe in vivo expression changes and cardiac phenotypes consistent with human heart disease. Our study provides a comprehensive catalogue of human heart enhancers for use in clinical whole-genome sequencing studies and highlights the importance of enhancers for cardiac function. PMID:27703156

  14. An essential cell-autonomous role for hepcidin in cardiac iron homeostasis

    PubMed Central

    Lakhal-Littleton, Samira; Wolna, Magda; Chung, Yu Jin; Christian, Helen C; Heather, Lisa C; Brescia, Marcella; Ball, Vicky; Diaz, Rebeca; Santos, Ana; Biggs, Daniel; Clarke, Kieran; Davies, Benjamin; Robbins, Peter A

    2016-01-01

    Hepcidin is the master regulator of systemic iron homeostasis. Derived primarily from the liver, it inhibits the iron exporter ferroportin in the gut and spleen, the sites of iron absorption and recycling respectively. Recently, we demonstrated that ferroportin is also found in cardiomyocytes, and that its cardiac-specific deletion leads to fatal cardiac iron overload. Hepcidin is also expressed in cardiomyocytes, where its function remains unknown. To define the function of cardiomyocyte hepcidin, we generated mice with cardiomyocyte-specific deletion of hepcidin, or knock-in of hepcidin-resistant ferroportin. We find that while both models maintain normal systemic iron homeostasis, they nonetheless develop fatal contractile and metabolic dysfunction as a consequence of cardiomyocyte iron deficiency. These findings are the first demonstration of a cell-autonomous role for hepcidin in iron homeostasis. They raise the possibility that such function may also be important in other tissues that express both hepcidin and ferroportin, such as the kidney and the brain. DOI: http://dx.doi.org/10.7554/eLife.19804.001 PMID:27897970

  15. The Role of Oxygen Sensors, Hydroxylases, and HIF in Cardiac Function and Disease.

    PubMed

    Townley-Tilson, W H Davin; Pi, Xinchun; Xie, Liang

    2015-01-01

    Ischemic heart disease is the leading cause of death worldwide. Oxygen-sensing proteins are critical components of the physiological response to hypoxia and reperfusion injury, but the role of oxygen and oxygen-mediated effects is complex in that they can be cardioprotective or deleterious to the cardiac tissue. Over 200 oxygen-sensing proteins mediate the effects of oxygen tension and use oxygen as a substrate for posttranslational modification of other proteins. Hydroxylases are an essential component of these oxygen-sensing proteins. While a major role of hydroxylases is regulating the transcription factor HIF, we investigate the increasing scope of hydroxylase substrates. This review discusses the importance of oxygen-mediated effects in the heart as well as how the field of oxygen-sensing proteins is expanding, providing a more complete picture into how these enzymes play a multifaceted role in cardiac function and disease. We also review how oxygen-sensing proteins and hydroxylase function could prove to be invaluable in drug design and therapeutic targets for heart disease.

  16. Inhibition of the Mitochondrial Fission Protein Drp1 Improves Survival in a Murine Cardiac Arrest Model

    PubMed Central

    Sharp, Willard W.; Beiser, David G.; Fang, Yong Hu; Han, Mei; Piao, Lin; Varughese, Justin; Archer, Stephen L.

    2015-01-01

    Objectives Survival following sudden cardiac arrest is poor despite advances in cardiopulmonary resuscitation (CPR) and the use of therapeutic hypothermia. Dynamin related protein 1 (Drp1), a regulator of mitochondrial fission, is an important determinant of reactive oxygen species generation, myocardial necrosis, and left ventricular function following ischemia/reperfusion injury, but its role in cardiac arrest is unknown. We hypothesized that Drp1 inhibition would improve survival, cardiac hemodynamics, and mitochondrial function in an in vivo model of cardiac arrest. Design Laboratory investigation. Setting University laboratory Interventions Anesthetized and ventilated adult female C57BL/6 wild-type mice underwent an 8-min KCl induced cardiac arrest followed by 90 seconds of CPR. Mice were then blindly randomized to a single intravenous injection of Mdivi-1 (0.24 mg/kg), a small molecule Drp1 inhibitor or vehicle (DMSO). Measurements and Main Results Following resuscitation from cardiac arrest, mitochondrial fission was evidenced by Drp1 translocation to the mitochondrial membrane and a decrease in mitochondrial size. Mitochondrial fission was associated with increased lactate and evidence of oxidative damage. Mdivi-1 administration during CPR inhibited Drp1 activation, preserved mitochondrial morphology, and decreased oxidative damage. Mdivi-1 also reduced the time to return of spontaneous circulation (ROSC) 116±4 vs. 143±7 sec (p<. 001) during CPR and enhanced myocardial performance post-ROSC. These improvements were associated with significant increases in survival (65% vs. 33%) and improved neurological scores up to 72 hours post cardiac arrest. Conclusions Post cardiac arrest inhibition of Drp1 improves time to ROSC and myocardial hemodynamics resulting in improved survival and neurological outcomes in a murine model of cardiac arrest. Pharmacological targeting of mitochondrial fission may be a promising therapy for cardiac arrest. PMID:25599491

  17. Inhibition of Signal Transducer and Activator of Transcription 3 (STAT3) Attenuates Interleukin-6 (IL-6)-induced Collagen Synthesis and Resultant Hypertrophy in Rat Heart

    PubMed Central

    Mir, Saiful Anam; Chatterjee, Arunachal; Mitra, Arkadeep; Pathak, Kanchan; Mahata, Sushil K.; Sarkar, Sagartirtha

    2012-01-01

    IL-6 has been shown to play a major role in collagen up-regulation process during cardiac hypertrophy, although the precise mechanism is still not known. In this study we have analyzed the mechanism by which IL-6 modulates cardiac hypertrophy. For the in vitro model, IL-6-treated cultured cardiac fibroblasts were used, whereas the in vivo cardiac hypertrophy model was generated by renal artery ligation in adult male Wistar rats (Rattus norvegicus). During induction of hypertrophy, increased phosphorylation of STAT1, STAT3, MAPK, and ERK proteins was observed both in vitro and in vivo. Treatment of fibroblasts with specific inhibitors for STAT1 (fludarabine, 50 μm), STAT3 (S31-201, 10 μm), p38 MAPK (SB203580, 10 μm), and ERK1/2 (U0126, 10 μm) resulted in down-regulation of IL-6-induced phosphorylation of specific proteins; however, only S31-201 and SB203580 inhibited collagen biosynthesis. In ligated rats in vivo, only STAT3 inhibitors resulted in significant decrease in collagen synthesis and hypertrophy markers such as atrial natriuretic factor and β-myosin heavy chain. In addition, decreased heart weight to body weight ratio and improved cardiac function as measured by echocardiography was evident in animals treated with STAT3 inhibitor or siRNA. Compared with IL-6 neutralization, more pronounced down-regulation of collagen synthesis and regression of hypertrophy was observed with STAT3 inhibition, suggesting that STAT3 is the major downstream signaling molecule and a potential therapeutic target for cardiac hypertrophy. PMID:22157761

  18. Shikonin ameliorates isoproterenol (ISO)-induced myocardial damage through suppressing fibrosis, inflammation, apoptosis and ER stress.

    PubMed

    Yang, Jun; Wang, Zhao; Chen, Dong-Lin

    2017-09-01

    Shikonin, isolated from the roots of herbal plant Lithospermum erythrorhizon, is a naphthoquinone. It has been reported to exert beneficial anti-inflammatory effects and anti-oxidant properties in various diseases. Isoproterenol (ISO) has been widely used to establish cardiac injury in vivo and in vitro. However, shikonin function in ISO-induced cardiac injury remains uncertain. In our study, we attempted to investigate the efficiency and possible molecular mechanism of shikonin in cardiac injury treatment induced by ISO. In vivo, C57BL6 mice were subcutaneously injected with 5mg/kg ISO to induce heart failure. And mice were given a gavage of shikonin (2 or 4mg/kg/d, for four weeks). Cardiac function, fibrosis indices, inflammation response, apoptosis and endoplasmic reticulum (ER) stress were calculated. Pathological alterations, fibrosis-, inflammation-, apoptosis- and ER stress-related molecules were examined. In ISO-induced cardiac injury, shikonin significantly ameliorated heart function, decreased myocardial fibrosis, suppressed inflammation, attenuated apoptosis and ER stress through impeding collagen accumulation, Toll like receptor 4/nuclear transcription factor κB (TLR4/NF-κB), Caspase-3 and glucose-regulated protein 78 (GRP78) signaling pathways activity, relieving heart failure in vivo. Also, in vitro, shikonin attenuated ISO-induced cardiac muscle cells by reducing fibrosis, inflammation, apoptosis and ER stress. Our findings indicated that shikonin treatment attenuated ISO-induced heart injury, providing an effective therapeutic strategy for heart failure treatment for future. Copyright © 2017. Published by Elsevier Masson SAS.

  19. Mitochondrial Dynamics in Diabetic Cardiomyopathy

    PubMed Central

    Galloway, Chad A.

    2015-01-01

    Abstract Significance: Cardiac function is energetically demanding, reliant on efficient well-coupled mitochondria to generate adenosine triphosphate and fulfill the cardiac demand. Predictably then, mitochondrial dysfunction is associated with cardiac pathologies, often related to metabolic disease, most commonly diabetes. Diabetic cardiomyopathy (DCM), characterized by decreased left ventricular function, arises independently of coronary artery disease and atherosclerosis. Dysregulation of Ca2+ handling, metabolic changes, and oxidative stress are observed in DCM, abnormalities reflected in alterations in mitochondrial energetics. Cardiac tissue from DCM patients also presents with altered mitochondrial morphology, suggesting a possible role of mitochondrial dynamics in its pathological progression. Recent Advances: Abnormal mitochondrial morphology is associated with pathologies across diverse tissues, suggesting that this highly regulated process is essential for proper cell maintenance and physiological homeostasis. Highly structured cardiac myofibers were hypothesized to limit alterations in mitochondrial morphology; however, recent work has identified morphological changes in cardiac tissue, specifically in DCM. Critical Issues: Mitochondrial dysfunction has been reported independently from observations of altered mitochondrial morphology in DCM. The temporal relationship and causative nature between functional and morphological changes of mitochondria in the establishment/progression of DCM is unclear. Future Directions: Altered mitochondrial energetics and morphology are not only causal for but also consequential to reactive oxygen species production, hence exacerbating oxidative damage through reciprocal amplification, which is integral to the progression of DCM. Therefore, targeting mitochondria for DCM will require better mechanistic characterization of morphological distortion and bioenergetic dysfunction. Antioxid. Redox Signal. 22, 1545–1562. PMID:25738230

  20. Cardiac arrhythmia and thyroid dysfunction: a novel genetic link

    PubMed Central

    Purtell, Kerry; Roepke, Torsten K.; Abbott, Geoffrey W.

    2010-01-01

    Inherited Long QT Syndrome, a cardiac arrhythmia that predisposes to the often lethal ventricular fibrillation, is commonly linked to mutations in KCNQ1. The KCNQ1 voltage-gated K+ channel α subunit passes ventricular myocyte K+ current that helps bring a timely end to each heart-beat. KCNQ1, like many K+ channel α subunits, is regulated by KCNE β subunits, inherited mutations in which also associate with Long QT Syndrome. KCNQ1 and KCNE mutations are also associated with atrial fibrillation. It has long been known that thyroid status strongly influences cardiac function, and that thyroid dysfunction causes abnormal cardiac structure and rhythm. We recently discovered that KCNQ1 and KCNE2 form a thyroid-stimulating hormone-stimulated K+ channel in the thyroid that is required for normal thyroid hormone biosynthesis. Here, we review this novel genetic link between cardiac and thyroid physiology and pathology, and its potential influence upon future therapeutic strategies in cardiac and thyroid disease. PMID:20688187

  1. Altered sarcoplasmic reticulum calcium cycling—targets for heart failure therapy

    PubMed Central

    Kho, Changwon; Lee, Ahyoung; Hajjar, Roger J.

    2013-01-01

    Cardiac myocyte function is dependent on the synchronized movements of Ca2+ into and out of the cell, as well as between the cytosol and sarcoplasmic reticulum. These movements determine cardiac rhythm and regulate excitation–contraction coupling. Ca2+ cycling is mediated by a number of critical Ca2+-handling proteins and transporters, such as L-type Ca2+ channels (LTCCs) and sodium/calcium exchangers in the sarcolemma, and sarcoplasmic/endoplasmic reticulum calcium ATPase 2a (SERCA2a), ryanodine receptors, and cardiac phospholamban in the sarcoplasmic reticulum. The entry of Ca2+ into the cytosol through LTCCs activates the release of Ca2+ from the sarcoplasmic reticulum through ryanodine receptor channels and initiates myocyte contraction, whereas SERCA2a and cardiac phospholamban have a key role in sarcoplasmic reticulum Ca2+ sequesteration and myocyte relaxation. Excitation–contraction coupling is regulated by phosphorylation of Ca2+-handling proteins. Abnormalities in sarcoplasmic reticulum Ca2+ cycling are hallmarks of heart failure and contribute to the pathophysiology and progression of this disease. Correcting impaired intracellular Ca2+ cycling is a promising new approach for the treatment of heart failure. Novel therapeutic strategies that enhance myocyte Ca2+ homeostasis could prevent and reverse adverse cardiac remodeling and improve clinical outcomes in patients with heart failure. PMID:23090087

  2. MicroRNA-214 protects the mouse heart from ischemic injury by controlling Ca2+ overload and cell death

    PubMed Central

    Aurora, Arin B.; Mahmoud, Ahmed I.; Luo, Xiang; Johnson, Brett A.; van Rooij, Eva; Matsuzaki, Satoshi; Humphries, Kenneth M.; Hill, Joseph A.; Bassel-Duby, Rhonda; Sadek, Hesham A.; Olson, Eric N.

    2012-01-01

    Early reperfusion of ischemic cardiac tissue remains the most effective intervention for improving clinical outcome following myocardial infarction. However, abnormal increases in intracellular Ca2+ during myocardial reperfusion can cause cardiomyocyte death and consequent loss of cardiac function, referred to as ischemia/reperfusion (IR) injury. Therapeutic modulation of Ca2+ handling provides some cardioprotection against the paradoxical effects of restoring blood flow to the heart, highlighting the significance of Ca2+ overload to IR injury. Cardiac IR is also accompanied by dynamic changes in the expression of microRNAs (miRNAs); for example, miR-214 is upregulated during ischemic injury and heart failure, but its potential role in these processes is unknown. Here, we show that genetic deletion of miR-214 in mice causes loss of cardiac contractility, increased apoptosis, and excessive fibrosis in response to IR injury. The cardioprotective roles of miR-214 during IR injury were attributed to repression of the mRNA encoding sodium/calcium exchanger 1 (Ncx1), a key regulator of Ca2+ influx; and to repression of several downstream effectors of Ca2+ signaling that mediate cell death. These findings reveal a pivotal role for miR-214 as a regulator of cardiomyocyte Ca2+ homeostasis and survival during cardiac injury. PMID:22426211

  3. Local sympathetic denervation attenuates myocardial inflammation and improves cardiac function after myocardial infarction in mice

    PubMed Central

    Ziegler, Karin A; Ahles, Andrea; Wille, Timo; Kerler, Julia; Ramanujam, Deepak; Engelhardt, Stefan

    2018-01-01

    Abstract Aims Cardiac inflammation has been suggested to be regulated by the sympathetic nervous system (SNS). However, due to the lack of methodology to surgically eliminate the myocardial SNS in mice, neuronal control of cardiac inflammation remains ill-defined. Here, we report a procedure for local cardiac sympathetic denervation in mice and tested its effect in a mouse model of heart failure post-myocardial infarction. Methods and results Upon preparation of the carotid bifurcation, the right and the left superior cervical ganglia were localized and their pre- and postganglionic branches dissected before removal of the ganglion. Ganglionectomy led to an almost entire loss of myocardial sympathetic innervation in the left ventricular anterior wall. When applied at the time of myocardial infarction (MI), cardiac sympathetic denervation did not affect acute myocardial damage and infarct size. In contrast, cardiac sympathetic denervation significantly attenuated chronic consequences of MI, including myocardial inflammation, myocyte hypertrophy, and overall cardiac dysfunction. Conclusion These data suggest a critical role for local sympathetic control of cardiac inflammation. Our model of myocardial sympathetic denervation in mice should prove useful to further dissect the molecular mechanisms underlying cardiac neural control. PMID:29186414

  4. Comparative proteomic analysis reveals heart toxicity induced by chronic arsenic exposure in rats.

    PubMed

    Huang, Qingyu; Xi, Guochen; Alamdar, Ambreen; Zhang, Jie; Shen, Heqing

    2017-10-01

    Arsenic is a widespread metalloid in the environment, which poses a broad spectrum of adverse effects on human health. However, a global view of arsenic-induced heart toxicity is still lacking, and the underlying molecular mechanisms remain unclear. By performing a comparative quantitative proteomic analysis, the present study aims to investigate the alterations of proteome profile in rat heart after long-term exposure to arsenic. As a result, we found that the abundance of 81 proteins were significantly altered by arsenic treatment (35 up-regulated and 46 down-regulated). Among these, 33 proteins were specifically associated with cardiovascular system development and function, including heart development, heart morphology, cardiac contraction and dilation, and other cardiovascular functions. It is further proposed that the aberrant regulation of 14 proteins induced by arsenic would disturb cardiac contraction and relaxation, impair heart morphogenesis and development, and induce thrombosis in rats, which is mediated by the Akt/p38 MAPK signaling pathway. Overall, these findings will augment our knowledge of the involved mechanisms and develop useful biomarkers for cardiotoxicity induced by environmental arsenic exposure. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. RNA Splicing: Regulation and Dysregulation in the Heart.

    PubMed

    van den Hoogenhof, Maarten M G; Pinto, Yigal M; Creemers, Esther E

    2016-02-05

    RNA splicing represents a post-transcriptional mechanism to generate multiple functional RNAs or proteins from a single transcript. The evolution of RNA splicing is a prime example of the Darwinian function follows form concept. A mutation that leads to a new mRNA (form) that encodes for a new functional protein (function) is likely to be retained, and this way, the genome has gradually evolved to encode for genes with multiple isoforms, thereby creating an enormously diverse transcriptome. Advances in technologies to characterize RNA populations have led to a better understanding of RNA processing in health and disease. In the heart, alternative splicing is increasingly being recognized as an important layer of post-transcriptional gene regulation. Moreover, the recent identification of several cardiac splice factors, such as RNA-binding motif protein 20 and SF3B1, not only provided important insight into the mechanisms underlying alternative splicing but also revealed how these splicing factors impact functional properties of the heart. Here, we review our current knowledge of alternative splicing in the heart, with a particular focus on the major and minor spliceosome, the factors controlling RNA splicing, and the role of alternative splicing in cardiac development and disease. © 2016 American Heart Association, Inc.

  6. Eya4 Induces Hypertrophy via Regulation of p27kip1.

    PubMed

    Williams, Tatjana; Hundertmark, Moritz; Nordbeck, Peter; Voll, Sabine; Arias-Loza, Paula Anahi; Oppelt, Daniel; Mühlfelder, Melanie; Schraut, Susanna; Elsner, Ines; Czolbe, Martin; Seidlmayer, Lea; Heinze, Britta; Hahner, Stefanie; Heinze, Katrin; Schönberger, Jost; Jakob, Peter; Ritter, Oliver

    2015-12-01

    E193, a heterozygous truncating mutation in the human transcription cofactor Eyes absent 4 (Eya4), causes hearing impairment followed by dilative cardiomyopathy. In this study, we first show Eya4 and E193 alter the expression of p27(kip1) in vitro, suggesting Eya4 is a negative regulator of p27. Next, we generated transgenic mice with cardiac-specific overexpression of Eya4 or E193. Luciferase and chromatin immunoprecipitation assays confirmed Eya4 and E193 bind and regulate p27 expression in a contradictory manner. Activity and phosphorylation status of the downstream molecules casein kinase-2α and histone deacetylase 2 were significantly elevated in Eya4- but significantly reduced in E193-overexpressing animals compared with wild-type littermates. Magnetic resonance imaging and hemodynamic analysis indicate Eya4-overexpression results in an age-dependent development of hypertrophy already under baseline conditions with no obvious functional effects, whereas E193 animals develop onset of dilative cardiomyopathy as seen in human E193 patients. Both cardiac phenotypes were aggravated on pressure overload. Finally, we identified a new heterozygous truncating Eya4 mutation, E215, which leads to similar clinical features of disease and a stable myocardial expression of the mutant protein as seen with E193. Our results implicate Eya4/Six1 regulates normal cardiac function via p27/casein kinase-2α/histone deacetylase 2 and indicate that mutations within this transcriptional complex and signaling cascade lead to the development of cardiomyopathy. © 2015 American Heart Association, Inc.

  7. Altered Calcium Dynamics in Cardiac Cells Grown on Silane-Modified Surfaces

    PubMed Central

    Ravenscroft-Chang, Melissa S.; Stohlman, Jayna; Molnar, Peter; Natarajan, Anupama; Canavan, Heather E.; Teliska, Maggie; Stancescu, Maria; Krauthamer, Victor; Hickman, J.J.

    2013-01-01

    Chemically defined surfaces were created using self-assembled monolayers (SAMs) of hydrophobic and hydrophilic silanes as models for implant coatings, and the morphology and physiology of cardiac myocytes plated on these surfaces were studied in vitro. We focused on changes in intracellular Ca2+ because of its essential role in regulating heart cell function. The SAM-modified coverslips were analyzed using X-ray Photoelectron Spectroscopy to verify composition. The morphology and physiology of the cardiac cells were examined using fluorescence microscopy and intracellular Ca2+ imaging. The imaging experiments used the fluorescent ratiometric dye fura-2, AM to establish both the resting Ca2+ concentration and the dynamic responses to electrical stimulation. A significant difference in excitation-induced Ca2+ changes on the different silanated surfaces was observed. However, no significant change was noted based on the morphological analysis. This result implies a difference in internal Ca2+ dynamics, and thus cardiac function, occurs when the composition of the surface is different, and this effect is independent of cellular morphology. This finding has implications for histological examination of tissues surrounding implants, the choice of materials that could be beneficial as implant coatings and understanding of cell-surface interactions in cardiac systems. PMID:19828193

  8. Cardiac microvascular rarefaction in hyperthyroidism-induced left ventricle dysfunction.

    PubMed

    Freitas, Felipe; Estato, Vanessa; Carvalho, Vinícius Frias; Torres, Rafael Carvalho; Lessa, Marcos Adriano; Tibiriçá, Eduardo

    2013-10-01

    The pathophysiology underlying hyperthyroidism-induced left ventricle (LV) dysfunction and hypertrophy directly involves the heart and indirectly involves the neuroendocrine systems. The effects of hyperthyroidism on the microcirculation are still controversial in experimental models. We investigated the effects of hyperthyroidism on the cardiac function and microcirculation of an experimental rat model. Male Wistar rats (170-250 g) were divided into two groups: the euthyroid group (n = 10), which was treated with 0.9% saline solution, and the hyperthyroid group (n = 10), which was treated with l-thyroxine (600 μg/kg/day, i.p.) during 14 days. An echocardiographic study was performed to evaluate the alterations in cardiac function, structure and geometry. The structural capillary density and the expression of angiotensin II AT1 receptor in the LV were analyzed using histochemistry and immunohistochemistry, respectively. Hyperthyroidism was found to induce profound cardiovascular alterations, such as systolic hypertension, tachycardia, LV dysfunction, cardiac hypertrophy, and myocardial fibrosis. This study demonstrates the existence of structural capillary rarefaction and the down-regulation of the cardiac angiotensin II AT1 receptor in the myocardium of hyperthyroid rats in comparison with euthyroid rats. Microvascular rarefaction may be involved in the pathophysiology of hyperthyroidism-induced cardiovascular alterations. © 2013 John Wiley & Sons Ltd.

  9. Different gene expression in human heart tissue and progenitor cells from control and diabetic subjects: relevance to the pathogenesis of human diabetic cardiomyopathy.

    PubMed

    de Cillis, Emanuela; Leonardini, Anna; Laviola, Luigi; Giorgino, Francesco; Tupputi Schinosa, Luigi de Luca; Bortone, Alessandro Santo

    2010-04-01

    The The aim of our study is to investigate the molecular mechanisms of diabetic cardiomyopathy through the identification of remarkable genes for the myocardial function that are expressed differently between diabetic and normal subjects. Moreover, we intend to characterize both in human myocardial tissue and in the related cardiac progenitor cells the pattern of gene expression and the levels of expression and protein activation of molecular effectors involved in the regulation of the myocardial function and differentiation to clarify whether in specific human pathological conditions (type 2 diabetes mellitus, cardiac failure, coronary artery disease) specific alterations of the aforementioned factors could take place. Thirty-five patients scheduled for coronary artery bypass grafting (CABG) or for aortic or mitral valve replacement were recruited into the study. There were 13 men and 22 women with a mean age of 64.8 +/- 13.4 years. A list of anamnestic, anthropometric, clinical, and instrumental data required for an optimal phenotypical characterization of the patients is reported. The small cardiac biopsy specimens were placed in the nourishing buffer, in a sterile tube provided the day of the procedure, to maintain the stability of the sample for several hours at room temperature. The cells were isolated by a dedicated protocol and then cultured in vitro. The sample was processed for total RNA extraction and levels of gene expression and protein activation of molecular effectors involved in the regulation of function and differentiation of human myocardium was analyzed. In particular, cardiac genes that modulate the oxidative stress response or the stress induced by pro-inflammatory cytokines (p66Shc, SOCS-1, SOCS-3) were analyzed. From a small sample of myocardium cardiac stem cells and cardiomyoblasts were also isolated and characterized. These cells showed a considerable proliferative capacity due to the fact that they demonstrate stability up to the eleventh passage. Analysis of gene expression in a subgroup of subjects showed the trend of a decrease in levels of expression of cardiac-specific transcription genes and oxidative stress-related proteins in tissues of diabetic patients compared with controls subjects. This trend is not confirmed in isolated cells. As for the coronary artery disease, diabetic cardiomyopathy could be associated with a reduction of the cardiac stem and progenitor cells pool. The expansion of the cardiac resident cells pool could be associated with a preservation of cardiac performance, suggesting that a preserved stamina compartment can counteract the impact of diabetes on the myocardium.

  10. Ablation of the Right Cardiac Vagus Nerve Reduces Acetylcholine Content without Changing the Inflammatory Response during Endotoxemia.

    PubMed

    Plaschke, Konstanze; Do, Thuc Quyen Monica; Uhle, Florian; Brenner, Thorsten; Weigand, Markus A; Kopitz, Jürgen

    2018-02-01

    Acetylcholine is the main transmitter of the parasympathetic vagus nerve. According to the cholinergic anti-inflammatory pathway (CAP) concept, acetylcholine has been shown to be important for signal transmission within the immune system and also for a variety of other functions throughout the organism. The spleen is thought to play an important role in regulating the CAP. In contrast, the existence of a "non-neuronal cardiac cholinergic system" that influences cardiac innervation during inflammation has been hypothesized, with recent publications introducing the heart instead of the spleen as a possible interface between the immune and nervous systems. To prove this hypothesis, we investigated whether selectively disrupting vagal stimulation of the right ventricle plays an important role in rat CAP regulation during endotoxemia. We performed a selective resection of the right cardiac branch of the Nervus vagus (VGX) with a corresponding sham resection in vehicle-injected and endotoxemic rats. Rats were injected with lipopolysaccharide (LPS, 1 mg/kg body weight, intravenously) and observed for 4 h. Intraoperative blood gas analysis was performed, and hemodynamic parameters were assessed using a left ventricular pressure-volume catheter. Rat hearts and blood were collected, and the expression and concentration of proinflammatory cytokines using quantitative reverse transcription polymerase chain reaction and enzyme-linked immunosorbent assay were measured, respectively. Four hours after injection, LPS induced a marked deterioration in rat blood gas parameters such as pH value, potassium, base excess, glucose, and lactate. The mean arterial blood pressure and the end-diastolic volume had decreased significantly. Further, significant increases in blood cholinesterases and in proinflammatory (IL-1β, IL-6, TNF-α) cytokine concentration and gene expression were obtained. Right cardiac vagus nerve resection (VGX) led to a marked decrease in heart acetylcholine concentration and an increase in cardiac acetylcholinesterase activity. Without LPS, VGX changed rat hemodynamic parameters, including heart frequency, cardiac output, and end-diastolic volume. In contrast, VGX during endotoxemia did not significantly change the concentration and expression of proinflammatory cytokines in the heart. In conclusion we demonstrate that right cardiac vagal innervation regulates cardiac acetylcholine content but neither improves nor worsens systemic inflammation.

  11. Ablation of the Right Cardiac Vagus Nerve Reduces Acetylcholine Content without Changing the Inflammatory Response during Endotoxemia

    PubMed Central

    Plaschke, Konstanze; Do, Thuc Quyen Monica; Brenner, Thorsten; Weigand, Markus A.; Kopitz, Jürgen

    2018-01-01

    Acetylcholine is the main transmitter of the parasympathetic vagus nerve. According to the cholinergic anti-inflammatory pathway (CAP) concept, acetylcholine has been shown to be important for signal transmission within the immune system and also for a variety of other functions throughout the organism. The spleen is thought to play an important role in regulating the CAP. In contrast, the existence of a “non-neuronal cardiac cholinergic system” that influences cardiac innervation during inflammation has been hypothesized, with recent publications introducing the heart instead of the spleen as a possible interface between the immune and nervous systems. To prove this hypothesis, we investigated whether selectively disrupting vagal stimulation of the right ventricle plays an important role in rat CAP regulation during endotoxemia. We performed a selective resection of the right cardiac branch of the Nervus vagus (VGX) with a corresponding sham resection in vehicle-injected and endotoxemic rats. Rats were injected with lipopolysaccharide (LPS, 1 mg/kg body weight, intravenously) and observed for 4 h. Intraoperative blood gas analysis was performed, and hemodynamic parameters were assessed using a left ventricular pressure-volume catheter. Rat hearts and blood were collected, and the expression and concentration of proinflammatory cytokines using quantitative reverse transcription polymerase chain reaction and enzyme-linked immunosorbent assay were measured, respectively. Four hours after injection, LPS induced a marked deterioration in rat blood gas parameters such as pH value, potassium, base excess, glucose, and lactate. The mean arterial blood pressure and the end-diastolic volume had decreased significantly. Further, significant increases in blood cholinesterases and in proinflammatory (IL-1β, IL-6, TNF-α) cytokine concentration and gene expression were obtained. Right cardiac vagus nerve resection (VGX) led to a marked decrease in heart acetylcholine concentration and an increase in cardiac acetylcholinesterase activity. Without LPS, VGX changed rat hemodynamic parameters, including heart frequency, cardiac output, and end-diastolic volume. In contrast, VGX during endotoxemia did not significantly change the concentration and expression of proinflammatory cytokines in the heart. In conclusion we demonstrate that right cardiac vagal innervation regulates cardiac acetylcholine content but neither improves nor worsens systemic inflammation. PMID:29389905

  12. Interleukin-27 induces the endothelial differentiation in Sca-1+ cardiac resident stem cells.

    PubMed

    Tanaka, Tomohiro; Obana, Masanori; Mohri, Tomomi; Ebara, Masaki; Otani, Yuta; Maeda, Makiko; Fujio, Yasushi

    2015-10-01

    Cytokines play important roles in cardiac repair and regeneration. Recently, we demonstrated that interleukin (IL)-6 family cytokines induce the endothelial differentiation of Sca-1+ cardiac resident stem cells through STAT3/Pim-1 signaling pathway. In contrast, the biological functions of IL-12 family cytokines in heart remain to be elucidated, though they show structural homology with IL-6. In the present study, we examined the effects of IL-12 family cytokines on the transdifferentiation of cardiac Sca-1+ cells into cardiac cells. RT-PCR analyses revealed that IL-27 receptor α (IL-27Rα), but not IL-12R or IL-23R, was expressed in cardiac Sca-1+ cells. The transcript expression of IL-27 was elevated in murine hearts in cardiac injury models. Intriguingly, IL-27 stimulation for 14 days induced the endothelial cell (EC) marker genes, such as CD-31 and VE-cadherin. Immunoblot analyses clarified that IL-27 treatment rapidly phosphorylated STAT3. IL-27 upregulated the expression of Pim-1, but the overexpression of dominant negative STAT3 abrogated the induction of Pim-1 by IL-27. Finally, adenoviral transfection of dominant negative Pim-1 inhibited IL-27-induced EC differentiation of cardiac Sca-1+ cells. These findings demonstrated that IL-27 promoted the commitment of cardiac stem cells into the EC lineage, possibly leading to neovascularization as a novel biological function. IL-27 could not only regulate the inflammation but also contribute to the maintenance of the tissue homeostasis through stem cell differentiation at inflammatory sites. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  13. Macrophage Colony-Stimulating Factor Improves Cardiac Function after Ischemic Injury by Inducing Vascular Endothelial Growth Factor Production and Survival of Cardiomyocytes

    PubMed Central

    Okazaki, Tatsuma; Ebihara, Satoru; Asada, Masanori; Yamanda, Shinsuke; Saijo, Yoshifumi; Shiraishi, Yasuyuki; Ebihara, Takae; Niu, Kaijun; Mei, He; Arai, Hiroyuki; Yambe, Tomoyuki

    2007-01-01

    Macrophage colony-stimulating factor (M-CSF), known as a hematopoietic growth factor, induces vascular endothelial growth factor (VEGF) production from skeletal muscles. However, the effects of M-CSF on cardiomyocytes have not been reported. Here, we show M-CSF increases VEGF production from cardiomyocytes, protects cardiomyocytes and myotubes from cell death, and improves cardiac function after ischemic injury. In mice, M-CSF increased VEGF production in hearts and in freshly isolated cardiomyocytes, which showed M-CSF receptor expression. In rat cell line H9c2 cardiomyocytes and myotubes, M-CSF induced VEGF production via the Akt signaling pathway, and M-CSF pretreatment protected these cells from H2O2-induced cell death. M-CSF activated Akt and extracellular signal-regulated kinase signaling pathways and up-regulated downstream anti-apoptotic Bcl-xL expression in these cells. Using goats as a large animal model of myocardial infarction, we found that M-CSF treatment after the onset of myocardial infarction by permanent coronary artery ligation promoted angiogenesis in ischemic hearts but did not reduce the infarct area. M-CSF pretreatment of the goat myocardial infarction model by coronary artery occlusion-reperfusion improved cardiac function, as assessed by hemodynamic parameters and echocardiography. These results suggest M-CSF might be a novel therapeutic agent for ischemic heart disease. PMID:17717142

  14. Characterization of Glutamatergic Neurons in the Rat Atrial Intrinsic Cardiac Ganglia that Project to the Cardiac Ventricular Wall

    PubMed Central

    Wang, Ting; Miller, Kenneth E.

    2016-01-01

    The intrinsic cardiac nervous system modulates cardiac function by acting as an integration site for regulating autonomic efferent cardiac output. This intrinsic system is proposed to be composed of a short cardio-cardiac feedback control loop within the cardiac innervation hierarchy. For example, electrophysiological studies have postulated the presence of sensory neurons in intrinsic cardiac ganglia for regional cardiac control. There is still a knowledge gap, however, about the anatomical location and neurochemical phenotype of sensory neurons inside intrinsic cardiac ganglia. In the present study, rat intrinsic cardiac ganglia neurons were characterized neurochemically with immunohistochemistry using glutamatergic markers: vesicular glutamate transporters 1 and 2 (VGLUT1; VGLUT2), and glutaminase (GLS), the enzyme essential for glutamate production. Glutamatergic neurons (VGLUT1/VGLUT2/GLS) in the ICG that have axons to the ventricles were identified by retrograde tracing of wheat germ agglutinin-horseradish peroxidase (WGA-HRP) injected in the ventricular wall. Co-labeling of VGLUT1, VGLUT2, and GLS with the vesicular acetylcholine transporter (VAChT) was used to evaluate the relationship between post-ganglionic autonomic neurons and glutamatergic neurons. Sequential labeling of VGLUT1 and VGLUT2 in adjacent tissue sections was used to evaluate the co-localization of VGLUT1 and VGLUT2 in ICG neurons. Our studies yielded the following results: (1) intrinsic cardiac ganglia contain glutamatergic neurons with GLS for glutamate production and VGLUT1 and 2 for transport of glutamate into synaptic vesicles; (2) atrial intrinsic cardiac ganglia contain neurons that project to ventricle walls and these neurons are glutamatergic; (3) many glutamatergic ICG neurons also were cholinergic, expressing VAChT. (4) VGLUT1 and VGLUT2 co-localization occurred in ICG neurons with variation of their protein expression level. Investigation of both glutamatergic and cholinergic ICG neurons could help in better understanding the function of the intrinsic cardiac nervous system. PMID:27167082

  15. Mechanistic Role of Thioredoxin 2 in Heart Failure.

    PubMed

    Chen, Chaofei; Chen, Haixuan; Zhou, Huanjiao Jenny; Ji, Weidong; Min, Wang

    2017-01-01

    Thioredoxin 2 (Trx2) is a pivotal mitochondrial protein that regulates redox signaling. The mitochondrial Trx2 is expressed ubiquitously, but it is found at the highest levels in metabolically active tissues like the heart. Global gene knockout of Trx2 results in embryonic lethality, likely due to the increased cellular oxidative stress. Moreover, mice with cardiac-specific Trx2 deletion develop spontaneous dilated cardiomyopathy (DCM), correlating with increased apoptosis stress kinase-1 (ASK1) signaling and increased cardiomyocyte apoptosis. Cardiomyocyte apoptosis is a common mechanism in the pathogenesis of heart failure. Our results show that Trx2 is essential for maintaining cardiac function. In this chapter, we summarize the key mechanistic role of Trx2 in preserving cardiac function by suppressing mitochondrial reactive oxygen species (ROS) generation and by inhibiting ASK1-dependent apoptosis in heart failure. Trx2 and ASK1 represent promising targets to develop therapeutic strategies for the treatment of DCM and heart failure.

  16. Harmony Behind the Trumped-Shaped Vessel: the Essential Role of the Ductus Venosus in Fetal Medicine.

    PubMed

    Turan, Sifa; Turan, Ozhan M

    2018-03-15

    The ductus venosus is a fetal vessel that functions importantly in the transfer of oxygen-and nutrient-rich blood from the umbilical vein to vital organs. Its control under active regulation and its anatomy result in a flow-velocity profile that is typically forward throughout the cardiac cycle. This forward cardiac function reflects afterload, cardiac contractility, compliance, and vascular volume changes. Ductus venosus assessment gives valuable information under different fetal conditions. For example, during first trimester screening, an abnormal ductus venosus measurement changes the screening result. Assessment of ductus venosus in twin-to-twin transfusion syndrome is an essential element of staging. In fetal growth restriction, an abnormal waveform mandates imminent delivery. In this review, we will discuss the role of ductus venosus assessment and its role in antenatal management and outcome prediction in certain fetal conditions throughout pregnancy.

  17. Harmony Behind the Trumped-Shaped Vessel: the Essential Role of the Ductus Venosus in Fetal Medicine

    PubMed Central

    Turan, Sifa; Turan, Ozhan M.

    2018-01-01

    The ductus venosus is a fetal vessel that functions importantly in the transfer of oxygen-and nutrient-rich blood from the umbilical vein to vital organs. Its control under active regulation and its anatomy result in a flow-velocity profile that is typically forward throughout the cardiac cycle. This forward cardiac function reflects afterload, cardiac contractility, compliance, and vascular volume changes. Ductus venosus assessment gives valuable information under different fetal conditions. For example, during first trimester screening, an abnormal ductus venosus measurement changes the screening result. Assessment of ductus venosus in twin-to-twin transfusion syndrome is an essential element of staging. In fetal growth restriction, an abnormal waveform mandates imminent delivery. In this review, we will discuss the role of ductus venosus assessment and its role in antenatal management and outcome prediction in certain fetal conditions throughout pregnancy. PMID:29553462

  18. Stress-dependent dilated cardiomyopathy in mice with cardiomyocyte-restricted inactivation of cyclic GMP-dependent protein kinase I

    PubMed Central

    Frantz, Stefan; Klaiber, Michael; Baba, Hideo A.; Oberwinkler, Heike; Völker, Katharina; Gaβner, Birgit; Bayer, Barbara; Abeβer, Marco; Schuh, Kai; Feil, Robert; Hofmann, Franz; Kuhn, Michaela

    2013-01-01

    Aims Cardiac hypertrophy is a common and often lethal complication of arterial hypertension. Elevation of myocyte cyclic GMP levels by local actions of endogenous atrial natriuretic peptide (ANP) and C-type natriuretic peptide (CNP) or by pharmacological inhibition of phosphodiesterase-5 was shown to counter-regulate pathological hypertrophy. It was suggested that cGMP-dependent protein kinase I (cGKI) mediates this protective effect, although the role in vivo is under debate. Here, we investigated whether cGKI modulates myocyte growth and/or function in the intact organism. Methods and results To circumvent the systemic phenotype associated with germline ablation of cGKI, we inactivated the murine cGKI gene selectively in cardiomyocytes by Cre/loxP-mediated recombination. Mice with cardiomyocyte-restricted cGKI deletion exhibited unaltered cardiac morphology and function under resting conditions. Also, cardiac hypertrophic and contractile responses to β-adrenoreceptor stimulation by isoprenaline (at 40 mg/kg/day during 1 week) were unaltered. However, angiotensin II (Ang II, at 1000 ng/kg/min for 2 weeks) or transverse aortic constriction (for 3 weeks) provoked dilated cardiomyopathy with marked deterioration of cardiac function. This was accompanied by diminished expression of the [Ca2+]i-regulating proteins SERCA2a and phospholamban (PLB) and a reduction in PLB phosphorylation at Ser16, the specific target site for cGKI, resulting in altered myocyte Ca2+i homeostasis. In isolated adult myocytes, CNP, but not ANP, stimulated PLB phosphorylation, Ca2+i-handling, and contractility via cGKI. Conclusion These results indicate that the loss of cGKI in cardiac myocytes compromises the hypertrophic program to pathological stimulation, rendering the heart more susceptible to dysfunction. In particular, cGKI mediates stimulatory effects of CNP on myocyte Ca2+i handling and contractility. PMID:22199120

  19. Global phosphoproteomic profiling reveals perturbed signaling in a mouse model of dilated cardiomyopathy

    PubMed Central

    Kuzmanov, Uros; Guo, Hongbo; Buchsbaum, Diana; Cosme, Jake; Abbasi, Cynthia; Isserlin, Ruth; Sharma, Parveen; Gramolini, Anthony O.; Emili, Andrew

    2016-01-01

    Phospholamban (PLN) plays a central role in Ca2+ homeostasis in cardiac myocytes through regulation of the sarco(endo)plasmic reticulum Ca2+-ATPase 2A (SERCA2A) Ca2+ pump. An inherited mutation converting arginine residue 9 in PLN to cysteine (R9C) results in dilated cardiomyopathy (DCM) in humans and transgenic mice, but the downstream signaling defects leading to decompensation and heart failure are poorly understood. Here we used precision mass spectrometry to study the global phosphorylation dynamics of 1,887 cardiac phosphoproteins in early affected heart tissue in a transgenic R9C mouse model of DCM compared with wild-type littermates. Dysregulated phosphorylation sites were quantified after affinity capture and identification of 3,908 phosphopeptides from fractionated whole-heart homogenates. Global statistical enrichment analysis of the differential phosphoprotein patterns revealed selective perturbation of signaling pathways regulating cardiovascular activity in early stages of DCM. Strikingly, dysregulated signaling through the Notch-1 receptor, recently linked to cardiomyogenesis and embryonic cardiac stem cell development and differentiation but never directly implicated in DCM before, was a prominently perturbed pathway. We verified alterations in Notch-1 downstream components in early symptomatic R9C transgenic mouse cardiomyocytes compared with wild type by immunoblot analysis and confocal immunofluorescence microscopy. These data reveal unexpected connections between stress-regulated cell signaling networks, specific protein kinases, and downstream effectors essential for proper cardiac function. PMID:27742792

  20. Cardiac Vagal Regulation and Early Peer Status

    ERIC Educational Resources Information Center

    Graziano, Paulo A.; Keane, Susan P.; Calkins, Susan D.

    2007-01-01

    A sample of 341 5 1/2-year-old children participating in an ongoing longitudinal study was the focus of a study on the relation between cardiac vagal regulation and peer status. To assess cardiac vagal regulation, resting measures of respiratory sinus arrhythmia (RSA) and RSA change (suppression) to 3 cognitively and emotionally challenging tasks…

  1. Premature Ventricular Contraction Coupling Interval Variability Destabilizes Cardiac Neuronal and Electrophysiological Control: Insights From Simultaneous Cardioneural Mapping.

    PubMed

    Hamon, David; Rajendran, Pradeep S; Chui, Ray W; Ajijola, Olujimi A; Irie, Tadanobu; Talebi, Ramin; Salavatian, Siamak; Vaseghi, Marmar; Bradfield, Jason S; Armour, J Andrew; Ardell, Jeffrey L; Shivkumar, Kalyanam

    2017-04-01

    Variability in premature ventricular contraction (PVC) coupling interval (CI) increases the risk of cardiomyopathy and sudden death. The autonomic nervous system regulates cardiac electrical and mechanical indices, and its dysregulation plays an important role in cardiac disease pathogenesis. The impact of PVCs on the intrinsic cardiac nervous system, a neural network on the heart, remains unknown. The objective was to determine the effect of PVCs and CI on intrinsic cardiac nervous system function in generating cardiac neuronal and electric instability using a novel cardioneural mapping approach. In a porcine model (n=8), neuronal activity was recorded from a ventricular ganglion using a microelectrode array, and cardiac electrophysiological mapping was performed. Neurons were functionally classified based on their response to afferent and efferent cardiovascular stimuli, with neurons that responded to both defined as convergent (local reflex processors). Dynamic changes in neuronal activity were then evaluated in response to right ventricular outflow tract PVCs with fixed short, fixed long, and variable CI. PVC delivery elicited a greater neuronal response than all other stimuli ( P <0.001). Compared with fixed short and long CI, PVCs with variable CI had a greater impact on neuronal response ( P <0.05 versus short CI), particularly on convergent neurons ( P <0.05), as well as neurons receiving sympathetic ( P <0.05) and parasympathetic input ( P <0.05). The greatest cardiac electric instability was also observed after variable (short) CI PVCs. Variable CI PVCs affect critical populations of intrinsic cardiac nervous system neurons and alter cardiac repolarization. These changes may be critical for arrhythmogenesis and remodeling, leading to cardiomyopathy. © 2017 American Heart Association, Inc.

  2. Thioredoxin-2 Inhibits Mitochondrial ROS Generation and ASK1 Activity to Maintain Cardiac Function

    PubMed Central

    Huang, Qunhua; Zhou, Huanjiao Jenny; Zhang, Haifeng; Huang, Yan; Hinojosa-Kirschenbaum, Ford; Fan, Peidong; Yao, Lina; Belardinelli, Luiz; Tellides, George; Giordano, Frank J.; Budas, Grant R.; Min, Wang

    2015-01-01

    Background Thioredoxin 2 (Trx2) is a key mitochondrial protein which regulates cellular redox and survival by suppressing mitochondrial ROS generation and by inhibiting apoptosis stress kinase-1 (ASK1)-dependent apoptotic signaling. To date, the role of the mitochondrial Trx2 system in heart failure pathogenesis has not been investigated. Methods and Results Western blot and histological analysis revealed that Trx2 protein expression levels were reduced in hearts from patients with dilated cardiomyopathy (DCM), with a concomitant increase in increased ASK1 phosphorylation/activity. Cardiac-specific Trx2 knockout mice (Trx2-cKO). Trx2-cKO mice develop spontaneous DCM at 1 month of age with increased heart size, reduced ventricular wall thickness, and a progressive decline in left ventricular (LV) contractile function, resulting in mortality due to heart failure by ~4 months of age. The progressive decline in cardiac function observed in Trx2-cKO mice was accompanied by disruption of mitochondrial ultrastructure, mitochondrial membrane depolarization, increased mitochondrial ROS generation and reduced ATP production, correlating with increased ASK1 signaling and increased cardiomyocyte apoptosis. Chronic administration of a highly selective ASK1 inhibitor improved cardiac phenotype and reduced maladaptive LV remodeling with significant reductions in oxidative stress, apoptosis, fibrosis and cardiac failure. Cellular data from Trx2-deficient cardiomyocytes demonstrated that ASK1 inhibition reduced apoptosis and reduced mitochondrial ROS generation. Conclusions Our data support an essential role for mitochondrial Trx2 in preserving cardiac function by suppressing mitochondrial ROS production and ASK1-dependent apoptosis. Inhibition of ASK1 represents a promising therapeutic strategy for the treatment of dilated cardiomyopathy and heart failure. PMID:25628390

  3. Cardiac Myocyte Cell Cycle Control in Development, Disease and Regeneration

    PubMed Central

    Ahuja, Preeti; Sdek, Patima; Maclellan, W. Robb

    2009-01-01

    Cardiac myocytes rapidly proliferate during fetal life but exit the cell cycle soon after birth in mammals. Although the extent to which adult cardiac myocytes are capable of cell cycle reentry is controversial and species-specific differences may exist, it appears that for the vast majority of adult cardiac myocytes the predominant form of growth postnatally is an increase in cell size (hypertrophy) not number. Unfortunately, this limits the ability of the heart to restore function after any significant injury. Interst in novel regenerative therapies has led to the accumulation of much information on the mechanisms that regulate the rapid proliferation of cardiac myocytes in utero, their cell cycle exit in the perinatal period and the permanent arrest (terminal differentiation) in adult myocytes. The recent identification of cardiac progenitor cells capable of giving rise to cardiac myocyte-like cells has challenged the dogma that the heart is a terminally differentiated organ and opened new prospects for cardiac regeneration. In this review, we summarize the current understanding of cardiomyocyte cell cycle control in normal development and disease. In addition, we also discuss the potential usefulness of cardiomyocyte self-renewal as well as feasibility of therapeutic manipulation of the cardiac myocyte cell cycle for cardiac regeneration. PMID:17429040

  4. Braveheart, a long non-coding RNA required for cardiovascular lineage commitment

    PubMed Central

    Klattenhoff, Carla; Scheuermann, Johanna C.; Surface, Lauren E.; Bradley, Robert K.; Fields, Paul A.; Steinhauser, Matthew L.; Ding, Huiming; Butty, Vincent L.; Torrey, Lillian; Haas, Simon; Abo, Ryan; Tabebordbar, Mohammadsharif; Lee, Richard T.; Burge, Christopher B.; Boyer, Laurie A.

    2013-01-01

    Summary Long noncoding RNAs (lncRNAs) are often expressed in a development-specific manner, yet little is known about their roles in lineage commitment. Here, we identified Braveheart (Bvht), a heart-associated lncRNA in mouse. Using multiple embryonic stem cell (ESC) differentiation strategies, we show that Bvht is required for progression of nascent mesoderm towards a cardiac fate. We find that Bvht is necessary for activation of a core cardiovascular gene network and functions upstream of MesP1 (mesoderm posterior 1), a master regulator of a common multipotent cardiovascular progenitor. We also show that Bvht interacts with SUZ12, a component of Polycomb Repressive Complex 2 (PRC2), during cardiomyocyte differentiation suggesting that Bvht mediates epigenetic regulation of cardiac commitment. Finally, we demonstrate a role for Bvht in maintaining cardiac fate in neonatal cardiomyocytes. Together, our work provides evidence for a long noncoding RNA with critical roles in the establishment of the cardiovascular lineage during mammalian development. PMID:23352431

  5. Signaling Pathways in Cardiac Myocyte Apoptosis

    PubMed Central

    Xia, Peng; Liu, Yuening

    2016-01-01

    Cardiovascular diseases, the number 1 cause of death worldwide, are frequently associated with apoptotic death of cardiac myocytes. Since cardiomyocyte apoptosis is a highly regulated process, pharmacological intervention of apoptosis pathways may represent a promising therapeutic strategy for a number of cardiovascular diseases and disorders including myocardial infarction, ischemia/reperfusion injury, chemotherapy cardiotoxicity, and end-stage heart failure. Despite rapid growth of our knowledge in apoptosis signaling pathways, a clinically applicable treatment targeting this cellular process is currently unavailable. To help identify potential innovative directions for future research, it is necessary to have a full understanding of the apoptotic pathways currently known to be functional in cardiac myocytes. Here, we summarize recent progress in the regulation of cardiomyocyte apoptosis by multiple signaling molecules and pathways, with a focus on the involvement of these pathways in the pathogenesis of heart disease. In addition, we provide an update regarding bench to bedside translation of this knowledge and discuss unanswered questions that need further investigation. PMID:28101515

  6. c-Ski, Smurf2, and Arkadia as regulators of TGF-beta signaling: new targets for managing myofibroblast function and cardiac fibrosis.

    PubMed

    Cunnington, Ryan H; Nazari, Mansoreh; Dixon, Ian M C

    2009-10-01

    Recent studies demonstrate the critical role of the extracellular matrix in the organization of parenchymal cells in the heart. Thus, an understanding of the modes of regulation of matrix production by cardiac myofibroblasts is essential. Transforming growth factor beta (TGF-beta) signaling is transduced through the canonical Smad pathway, and the involvement of this pathway in matrix synthesis and other processes requires precise control. Inhibition of Smad signaling may be achieved at the receptor level through the targeting of the TGF-beta type I receptors with an inhibitory Smad7/Smurf2 complex, or at the transcriptional level through c-Ski/receptor-Smad/co-mediator Smad4 interactions. Conversely, Arkadia protein intensifies TGF-beta-induced effects by marking c-Ski and inhibitory Smad7 for destruction. The study of these TGF-beta mediators is essential for future treatment of fibrotic disease, and this review highlights recent relevant findings that may impact our understanding of cardiac fibrosis.

  7. DYRK2 negatively regulates cardiomyocyte growth by mediating repressor function of GSK-3β on eIF2Bε.

    PubMed

    Weiss, Celine S; Ochs, Marco M; Hagenmueller, Marco; Streit, Marcus R; Malekar, Pratima; Riffel, Johannes H; Buss, Sebastian J; Weiss, Karl H; Sadoshima, Junichi; Katus, Hugo A; Hardt, Stefan E

    2013-01-01

    A prerequisite of hypertrophic response of the myocardium is an increase in protein synthesis. A central regulator of translation initiation is Eukaryotic initiation factor 2B (eIF2B). Here we assessed the hypothesis that regulation of protein synthesis via eIF2Bε is essential to cardiac hypertrophic response in vivo. Two transgenic mouse lines were generated with cardiac restricted overexpression of eIF2Bε or its mutant eIF2Bε-eIFS(535)A, which cannot be inactivated by phosphorylation through GSK-3β. (1) Under baseline conditions eIF2Bε transgenic mice showed no difference in cardiac phenotype compared to wild type, whereas in the mutant eIF2Bε-S(535)A an increase in LV/tibia length (7.5 ± 0.4 mg/mm vs. 6.2 ± 0.2 mg/mm, p<0.001) and cardiomyocyte cross sectional area (13004 ± 570 vs. 10843 ± 347 RU, p<0.01) was observed. (2) Cardiac overexpression of eIF2Bε did not change the response of the heart to pathologic stress induced by chronic isoproterenol treatment. (3) Cardiac overexpression of the eIF2Bε transgene was followed by overexpression of DYRK2 which is known to prime the inhibitory action of GSK-3β on eIF2Bε, while DYRK1A and GSK-3β itself were not increased. (4) In C57BL/6 mice after 48 h of isoproterenol-stimulation or aortic banding, eIF2Bε was increased and DYRK2 was concomitantly decreased. (5) In line with these in vivo findings, siRNA knockdown of DYRK2 in cultured cardiomyocytes resulted in decreased levels of p(S535)- eIF2Bε, (6) whereas adenoviral induced overexpression of DYRK2 was accompanied by clearly increased phosphorylation of eIF2Bε, indicating a coordinated response pattern (7) Adenoviral induced overexpression of DYRK2 leads to significantly reduced cardiomyocyte size and diminishes hypertrophic response to adrenergic stimulation. The interaction of GSK-3β and its priming kinase DYRK2 regulate the activity of eIF2Bε in cardiac myocytes. DYRK2 is a novel negative regulator of cardiomyocyte growth. DYRK2 could serve as a therapeutic option to regulate myocardial growth.

  8. Anti-thymocyte globulin induces neoangiogenesis and preserves cardiac function after experimental myocardial infarction.

    PubMed

    Lichtenauer, Michael; Mildner, Michael; Werba, Gregor; Beer, Lucian; Hoetzenecker, Konrad; Baumgartner, Andrea; Hasun, Matthias; Nickl, Stefanie; Mitterbauer, Andreas; Zimmermann, Matthias; Gyöngyösi, Mariann; Podesser, Bruno Karl; Klepetko, Walter; Ankersmit, Hendrik Jan

    2012-01-01

    Acute myocardial infarction (AMI) followed by ventricular remodeling is the major cause of congestive heart failure and death in western world countries. Of relevance are reports showing that infusion of apoptotic leucocytes or anti-lymphocyte serum after AMI reduces myocardial necrosis and preserves cardiac function. In order to corroborate this therapeutic mechanism, the utilization of an immunosuppressive agent with a comparable mechanism, such as anti-thymocyte globulin (ATG) was evaluated in this study. AMI was induced in rats by ligation of the left anterior descending artery. Initially after the onset of ischemia, rabbit ATG (10 mg/rat) was injected intravenously. In vitro and in vivo experiments showed that ATG induced a pronounced release of pro-angiogenic and chemotactic factors. Moreover, paracrine factors released from ATG co-incubated cell cultures conferred a down-regulation of p53 in cardiac myocytes. Rats that were injected with ATG evidenced higher numbers of CD68+ macrophages in the ischemic myocardium. Animals injected with ATG evidenced less myocardial necrosis, showed a significant reduction of infarct dimension and an improvement of post-AMI remodeling after six weeks (infarct dimension 24.9% vs. 11.4%, p<0.01). Moreover, a higher vessel density in the peri-infarct region indicated a better collateralization in rats that were injected with ATG. These data indicate that ATG, a therapeutic agent successfully applied in clinical transplant immunology, triggered cardioprotective effects after AMI that salvaged ischemic myocardium by down-regulation of p53. This might have raised the resistance against apoptotic cell death during ischemia. The combination of these mechanisms seems to be causative for improved cardiac function and less ventricular remodeling after experimental AMI.

  9. Role of NAD+ and mitochondrial sirtuins in cardiac and renal diseases

    PubMed Central

    Hershberger, Kathleen A.; Martin, Angelical S.; Hirschey, Matthew D.

    2017-01-01

    The coenzyme nicotinamide adenine dinucleotide (NAD+) has key roles in the regulation of redox status and energy metabolism. NAD+ depletion is emerging as a major contributor to the pathogenesis of cardiac and renal diseases and NAD+ repletion strategies have shown therapeutic potential as a means to restore healthy metabolism and physiological function. The pleotropic roles of NAD+ enable several possible avenues by which repletion of this coenzyme could have therapeutic efficacy. In particular, NAD+ functions as a co-substrate in deacylation reactions carried out by the sirtuin family of enzymes. These NAD+-dependent deacylases control several aspects of metabolism and a wealth of data suggests that boosting sirtuin activity via NAD+ supplementation might be a promising therapy for cardiac and renal pathologies. This Review summarizes the role of NAD+ metabolism in the heart and kidney, and highlights the mitochondrial sirtuins as mediators of some of the beneficial effects of NAD+-boosting therapies in preclinical animal models. We surmise that modulating the NAD+–sirtuin axis is a clinically relevant approach to develop new therapies for cardiac and renal diseases. PMID:28163307

  10. Role of NAD+ and mitochondrial sirtuins in cardiac and renal diseases.

    PubMed

    Hershberger, Kathleen A; Martin, Angelical S; Hirschey, Matthew D

    2017-04-01

    The coenzyme nicotinamide adenine dinucleotide (NAD + ) has key roles in the regulation of redox status and energy metabolism. NAD + depletion is emerging as a major contributor to the pathogenesis of cardiac and renal diseases and NAD + repletion strategies have shown therapeutic potential as a means to restore healthy metabolism and physiological function. The pleotropic roles of NAD + enable several possible avenues by which repletion of this coenzyme could have therapeutic efficacy. In particular, NAD + functions as a co-substrate in deacylation reactions carried out by the sirtuin family of enzymes. These NAD + -dependent deacylases control several aspects of metabolism and a wealth of data suggests that boosting sirtuin activity via NAD + supplementation might be a promising therapy for cardiac and renal pathologies. This Review summarizes the role of NAD + metabolism in the heart and kidney, and highlights the mitochondrial sirtuins as mediators of some of the beneficial effects of NAD + -boosting therapies in preclinical animal models. We surmise that modulating the NAD + -sirtuin axis is a clinically relevant approach to develop new therapies for cardiac and renal diseases.

  11. Impact of cardiac hypertrophy on arterial and cardiopulmonary baroreflex control of renal sympathetic nerve activity in anaesthetized rats.

    PubMed

    Flanagan, Evelyn T; Buckley, Maria M; Aherne, Claire M; Lainis, Fredolin; Sattar, Munavvar; Johns, Edward J

    2008-09-01

    This study aimed to quantify the effect of cardiac hypertrophy induced with isoprenaline and caffeine on reflex regulation of renal sympathetic nerve activity by the arterial and cardiopulmonary baroreceptors. Male Wistar rats, untreated or given water containing caffeine and subcutaneous (s.c.) isoprenaline every 72 h for 2 weeks or thyroxine s.c. for 7 days, were anaesthetized and prepared for measurement of renal sympathetic nerve activity or cardiac indices. Both isoprenaline-caffeine and thyroxine treatment blunted weight gain but increased heart weight and heart weight to body weight ratio by 40 and 14% (both P<0.01), respectively. In the isoprenaline-caffeine group, the maximal rate of change of left ventricular pressure and the contractility index were higher by 17 and 14% (both P<0.01), respectively, compared with untreated rats. In the isoprenaline-caffeine-treated rats, baroreflex gain curve sensitivity was depressed by approximately 30% (P<0/05), while the mid-point blood pressure was lower, by 15% (P<0/05), and the range of the curve was 60% (P<0.05) greater than in the untreated rats. An acute intravenous infusion of a saline load decreased renal sympathetic nerve activity by 42% (P<0.05) in the untreated rats but had no effect in the isoprenaline-caffeine- or the thyroxine-treated groups. The isoprenaline-caffeine treatment induced cardiac hypertrophy with raised cardiac performance and an associated depression in the reflex regulation of renal sympathetic nerve activity by both high- and low-pressure baroreceptors. The thyroxine-induced cardiac hypertrophy also blunted the low-pressure baroreceptor-mediated renal sympatho-inhibition. These findings demonstrate that in cardiac hypertrophy without impaired cardiac function, there is a blunted baroreceptor control of renal sympathetic outflow.

  12. Myofilament Calcium Sensitivity: Mechanistic Insight into TnI Ser-23/24 and Ser-150 Phosphorylation Integration

    PubMed Central

    Salhi, Hussam E.; Hassel, Nathan C.; Siddiqui, Jalal K.; Brundage, Elizabeth A.; Ziolo, Mark T.; Janssen, Paul M. L.; Davis, Jonathan P.; Biesiadecki, Brandon J.

    2016-01-01

    Troponin I (TnI) is a major regulator of cardiac muscle contraction and relaxation. During physiological and pathological stress, TnI is differentially phosphorylated at multiple residues through different signaling pathways to match cardiac function to demand. The combination of these TnI phosphorylations can exhibit an expected or unexpected functional integration, whereby the function of two phosphorylations are different than that predicted from the combined function of each individual phosphorylation alone. We have shown that TnI Ser-23/24 and Ser-150 phosphorylation exhibit functional integration and are simultaneously increased in response to cardiac stress. In the current study, we investigated the functional integration of TnI Ser-23/24 and Ser-150 to alter cardiac contraction. We hypothesized that Ser-23/24 and Ser-150 phosphorylation each utilize distinct molecular mechanisms to alter the TnI binding affinity within the thin filament. Mathematical modeling predicts that Ser-23/24 and Ser-150 phosphorylation affect different TnI affinities within the thin filament to distinctly alter the Ca2+-binding properties of troponin. Protein binding experiments validate this assertion by demonstrating pseudo-phosphorylated Ser-150 decreases the affinity of isolated TnI for actin, whereas Ser-23/24 pseudo-phosphorylation is not different from unphosphorylated. Thus, our data supports that TnI Ser-23/24 affects TnI-TnC binding, while Ser-150 phosphorylation alters TnI-actin binding. By measuring force development in troponin-exchanged skinned myocytes, we demonstrate that the Ca2+ sensitivity of force is directly related to the amount of phosphate present on TnI. Furthermore, we demonstrate that Ser-150 pseudo-phosphorylation blunts Ser-23/24-mediated decreased Ca2+-sensitive force development whether on the same or different TnI molecule. Therefore, TnI phosphorylations can integrate across troponins along the myofilament. These data demonstrate that TnI Ser-23/24 and Ser-150 phosphorylation regulates muscle contraction in part by modulating different TnI interactions in the thin filament and it is the combination of these differential mechanisms that provides understanding of their functional integration. PMID:28018230

  13. Arrhythmogenic KCNE gene variants: current knowledge and future challenges

    PubMed Central

    Crump, Shawn M.; Abbott, Geoffrey W.

    2014-01-01

    There are twenty-five known inherited cardiac arrhythmia susceptibility genes, all of which encode either ion channel pore-forming subunits or proteins that regulate aspects of ion channel biology such as function, trafficking, and localization. The human KCNE gene family comprises five potassium channel regulatory subunits, sequence variants in each of which are associated with cardiac arrhythmias. KCNE gene products exhibit promiscuous partnering and in some cases ubiquitous expression, hampering efforts to unequivocally correlate each gene to specific native potassium currents. Likewise, deducing the molecular etiology of cardiac arrhythmias in individuals harboring rare KCNE gene variants, or more common KCNE polymorphisms, can be challenging. In this review we provide an update on putative arrhythmia-causing KCNE gene variants, and discuss current thinking and future challenges in the study of molecular mechanisms of KCNE-associated cardiac rhythm disturbances. PMID:24478792

  14. Effects of acute and chronic exercise in patients with essential hypertension: benefits and risks.

    PubMed

    Gkaliagkousi, Eugenia; Gavriilaki, Eleni; Douma, Stella

    2015-04-01

    The importance of regular physical activity in essential hypertension has been extensively investigated over the last decades and has emerged as a major modifiable factor contributing to optimal blood pressure control. Aerobic exercise exerts its beneficial effects on the cardiovascular system by promoting traditional cardiovascular risk factor regulation, as well as by favorably regulating sympathetic nervous system (SNS) activity, molecular effects, cardiac, and vascular function. Benefits of resistance exercise need further validation. On the other hand, acute exercise is now an established trigger of acute cardiac events. A number of possible pathophysiological links have been proposed, including SNS, vascular function, coagulation, fibrinolysis, and platelet function. In order to fully interpret this knowledge into clinical practice, we need to better understand the role of exercise intensity and duration in this pathophysiological cascade and in special populations. Further studies in hypertensive patients are also warranted in order to clarify the possibly favorable effect of antihypertensive treatment on exercise-induced effects. © American Journal of Hypertension, Ltd 2014. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  15. Estrogen regulates histone deacetylases to prevent cardiac hypertrophy

    PubMed Central

    Pedram, Ali; Razandi, Mahnaz; Narayanan, Ramesh; Dalton, James T.; McKinsey, Timothy A.; Levin, Ellis R.

    2013-01-01

    The development and progression of cardiac hypertrophy often leads to heart failure and death, and important modulators of hypertrophy include the histone deacetylase proteins (HDACs). Estrogen inhibits cardiac hypertrophy and progression in animal models and humans. We therefore investigated the influence of 17-β-estradiol on the production, localization, and functions of prohypertrophic (class I) and antihypertrophic (class II) HDACs in cultured neonatal rat cardiomyocytes. 17-β-Estradiol or estrogen receptor β agonists dipropylnitrile and β-LGND2 comparably suppressed angiotensin II–induced HDAC2 (class I) production, HDAC-activating phosphorylation, and the resulting prohypertrophic mRNA expression. In contrast, estrogenic compounds derepressed the opposite effects of angiotensin II on the same parameters for HDAC4 and 5 (class II), resulting in retention of these deacetylases in the nucleus to inhibit hypertrophic gene expression. Key aspects were confirmed in vivo from the hearts of wild-type but not estrogen receptor β (ERβ) gene–deleted mice administered angiotensin II and estrogenic compounds. Our results identify a novel dual regulation of cardiomyocyte HDACs, shown here for the antihypertrophic sex steroid acting at ERβ. This mechanism potentially supports using ERβ agonists as HDAC modulators to treat cardiac disease. PMID:24152730

  16. Long Noncoding RNA (lncRNA) n379519 Promotes Cardiac Fibrosis in Post-Infarct Myocardium by Targeting miR-30.

    PubMed

    Wang, Xiaxia; Yong, Chunming; Yu, Kai; Yu, Renchao; Zhang, Rui; Yu, Lingfan; Li, Shan; Cai, Shanglang

    2018-06-11

    BACKGROUND Abnormally expressed long noncoding RNAs (lncRNAs) are recognized as one of the key causes of cardiac diseases. However, the role of lncRNA in cardiac fibrosis remains largely unknown. MATERIAL AND METHODS The experiment was divided into 4 groups: a sham operation group, a myocardial infarction (MI) group, a lentivirus group (LV-si-n379519), and a lentivirus control (LV-NC) group. The adenovirus expression vectors LV-si-n379519 and LV-NC were constructed and transfected into mice. Echocardiography, HE staining, and Masson staining were performed to detect the heart function and collagen volume fraction in each group. RT-PCR was used to detect the expression level of n379519, miR-30, collagen I, and collagen III. In vitro, cardiac fibroblasts (CFs) were cultured and the relationship between n379519 and miR-30 was verified using luciferase reporter vector, n379519 siRNA, and miR-30 inhibitor. RESULTS The expression of n379519 was markedly upregulated in the hearts of mice with MI and in the fibrotic CFs. Knockdown of endogenous n379519 by its siRNA improved the heart function and reduced collagen deposition and the process of cardiac fibrosis. Further experiments showed the opposite trend of expression between n379519 and miR-30. Bioinformatics analysis and luciferase reporter assay indicated that n379519 directly binds to miR-30. Moreover, miR-30 inhibitor abrogated the collagen synthesis inhibition induced by n379519. CONCLUSIONS These findings reveal a novel function of n379519-miR-30 axis as a negative regulator for the treatment of MI-induced cardiac fibrosis and the associated cardiac dysfunction.

  17. Mass Transport: Circulatory System with Emphasis on Nonendothermic Species.

    PubMed

    Crossley, Dane A; Burggren, Warren W; Reiber, Carl L; Altimiras, Jordi; Rodnick, Kenneth J

    2016-12-06

    Mass transport can be generally defined as movement of material matter. The circulatory system then is a biological example given its role in the movement in transporting gases, nutrients, wastes, and chemical signals. Comparative physiology has a long history of providing new insights and advancing our understanding of circulatory mass transport across a wide array of circulatory systems. Here we focus on circulatory function of nonmodel species. Invertebrates possess diverse convection systems; that at the most complex generate pressures and perform at a level comparable to vertebrates. Many invertebrates actively modulate cardiovascular function using neuronal, neurohormonal, and skeletal muscle activity. In vertebrates, our understanding of cardiac morphology, cardiomyocyte function, and contractile protein regulation by Ca2+ highlights a high degree of conservation, but differences between species exist and are coupled to variable environments and body temperatures. Key regulators of vertebrate cardiac function and systemic blood pressure include the autonomic nervous system, hormones, and ventricular filling. Further chemical factors regulating cardiovascular function include adenosine, natriuretic peptides, arginine vasotocin, endothelin 1, bradykinin, histamine, nitric oxide, and hydrogen sulfide, to name but a few. Diverse vascular morphologies and the regulation of blood flow in the coronary and cerebral circulations are also apparent in nonmammalian species. Dynamic adjustments of cardiovascular function are associated with exercise on land, flying at high altitude, prolonged dives by marine mammals, and unique morphology, such as the giraffe. Future studies should address limits of gas exchange and convective transport, the evolution of high arterial pressure across diverse taxa, and the importance of the cardiovascular system adaptations to extreme environments. © 2017 American Physiological Society. Compr Physiol 7:17-66, 2017. Copyright © 2017 John Wiley & Sons, Inc.

  18. Cyclin D2 is a critical mediator of exercise-induced cardiac hypertrophy.

    PubMed

    Luckey, Stephen W; Haines, Chris D; Konhilas, John P; Luczak, Elizabeth D; Messmer-Kratzsch, Antke; Leinwand, Leslie A

    2017-12-01

    A number of signaling pathways underlying pathological cardiac hypertrophy have been identified. However, few studies have probed the functional significance of these signaling pathways in the context of exercise or physiological pathways. Exercise studies were performed on females from six different genetic mouse models that have been shown to exhibit alterations in pathological cardiac adaptation and hypertrophy. These include mice expressing constitutively active glycogen synthase kinase-3β (GSK-3βS9A), an inhibitor of CaMK II (AC3-I), both GSK-3βS9A and AC3-I (GSK-3βS9A/AC3-I), constitutively active Akt (myrAkt), mice deficient in MAPK/ERK kinase kinase-1 (MEKK1 -/- ), and mice deficient in cyclin D2 (cyclin D2 -/- ). Voluntary wheel running performance was similar to NTG littermates for five of the mouse lines. Exercise induced significant cardiac growth in all mouse models except the cyclin D2 -/- mice. Cardiac function was not impacted in the cyclin D2 -/- mice and studies using a phospho-antibody array identified six proteins with increased phosphorylation (greater than 150%) and nine proteins with decreased phosphorylation (greater than 33% decrease) in the hearts of exercised cyclin D2 -/- mice compared to exercised NTG littermate controls. Our results demonstrate that unlike the other hypertrophic signaling molecules tested here, cyclin D2 is an important regulator of both pathologic and physiological hypertrophy. Impact statement This research is relevant as the hypertrophic signaling pathways tested here have only been characterized for their role in pathological hypertrophy, and not in the context of exercise or physiological hypertrophy. By using the same transgenic mouse lines utilized in previous studies, our findings provide a novel and important understanding for the role of these signaling pathways in physiological hypertrophy. We found that alterations in the signaling pathways tested here had no impact on exercise performance. Exercise induced cardiac growth in all of the transgenic mice except for the mice deficient in cyclin D2. In the cyclin D2 null mice, cardiac function was not impacted even though the hypertrophic response was blunted and a number of signaling pathways are differentially regulated by exercise. These data provide the field with an understanding that cyclin D2 is a key mediator of physiological hypertrophy.

  19. The Role of Baseline Vagal Tone in Dealing with a Stressor during Face to Face and Computer-Based Social Interactions

    PubMed Central

    Rigoni, Daniele; Morganti, Francesca; Braibanti, Paride

    2017-01-01

    Facing a stressor involves a cardiac vagal tone response and a feedback effect produced by social interaction in visceral regulation. This study evaluated the contribution of baseline vagal tone and of social engagement system (SES) functioning on the ability to deal with a stressor. Participants (n = 70) were grouped into a minimized social interaction condition (procedure administered through a PC) and a social interaction condition (procedure administered by an experimenter). The State Trait Anxiety Inventory, the Social Interaction Anxiety Scale, the Emotion Regulation Questionnaire and a debriefing questionnaire were completed by the subjects. The baseline vagal tone was registered during the baseline, stressor and recovery phases. The collected results highlighted a significant effect of the baseline vagal tone on vagal suppression. No effect of minimized vs. social interaction conditions on cardiac vagal tone during stressor and recovery phases was detected. Cardiac vagal tone and the results of the questionnaires appear to be not correlated. The study highlighted the main role of baseline vagal tone on visceral regulation. Some remarks on SES to be deepen in further research were raised. PMID:29234291

  20. Diminished Autophagy Limits Cardiac Injury in Mouse Models of Type 1 Diabetes*

    PubMed Central

    Xu, Xianmin; Kobayashi, Satoru; Chen, Kai; Timm, Derek; Volden, Paul; Huang, Yuan; Gulick, James; Yue, Zhenyu; Robbins, Jeffrey; Epstein, Paul N.; Liang, Qiangrong

    2013-01-01

    Cardiac autophagy is inhibited in type 1 diabetes. However, it remains unknown if the reduced autophagy contributes to the pathogenesis of diabetic cardiomyopathy. We addressed this question using mouse models with gain- and loss-of-autophagy. Autophagic flux was inhibited in diabetic hearts when measured at multiple time points after diabetes induction by streptozotocin as assessed by protein levels of microtubule-associated protein light chain 3 form 2 (LC3-II) or GFP-LC3 puncta in the absence and presence of the lysosome inhibitor bafilomycin A1. Autophagy in diabetic hearts was further reduced in beclin 1- or Atg16-deficient mice but was restored partially or completely by overexpression of beclin 1 to different levels. Surprisingly, diabetes-induced cardiac damage was substantially attenuated in beclin 1- and Atg16-deficient mice as shown by improved cardiac function as well as reduced levels of oxidative stress, interstitial fibrosis, and myocyte apoptosis. In contrast, diabetic cardiac damage was dose-dependently exacerbated by beclin 1 overexpression. The cardioprotective effects of autophagy deficiency were reproduced in OVE26 diabetic mice. These effects were associated with partially restored mitophagy and increased expression and mitochondrial localization of Rab9, an essential regulator of a non-canonical alternative autophagic pathway. Together, these findings demonstrate that the diminished autophagy is an adaptive response that limits cardiac dysfunction in type 1 diabetes, presumably through up-regulation of alternative autophagy and mitophagy. PMID:23658055

  1. Cardiac myosin binding protein C regulates postnatal myocyte cytokinesis

    PubMed Central

    Jiang, Jianming; Burgon, Patrick G.; Wakimoto, Hiroko; Onoue, Kenji; Gorham, Joshua M.; O’Meara, Caitlin C.; Fomovsky, Gregory; McConnell, Bradley K.; Lee, Richard T.; Seidman, J. G.; Seidman, Christine E.

    2015-01-01

    Homozygous cardiac myosin binding protein C-deficient (Mybpct/t) mice develop dramatic cardiac dilation shortly after birth; heart size increases almost twofold. We have investigated the mechanism of cardiac enlargement in these hearts. Throughout embryogenesis myocytes undergo cell division while maintaining the capacity to pump blood by rapidly disassembling and reforming myofibrillar components of the sarcomere throughout cell cycle progression. Shortly after birth, myocyte cell division ceases. Cardiac MYBPC is a thick filament protein that regulates sarcomere organization and rigidity. We demonstrate that many Mybpct/t myocytes undergo an additional round of cell division within 10 d postbirth compared with their wild-type counterparts, leading to increased numbers of mononuclear myocytes. Short-hairpin RNA knockdown of Mybpc3 mRNA in wild-type mice similarly extended the postnatal window of myocyte proliferation. However, adult Mybpct/t myocytes are unable to fully regenerate the myocardium after injury. MYBPC has unexpected inhibitory functions during postnatal myocyte cytokinesis and cell cycle progression. We suggest that human patients with homozygous MYBPC3-null mutations develop dilated cardiomyopathy, coupled with myocyte hyperplasia (increased cell number), as observed in Mybpct/t mice. Human patients, with heterozygous truncating MYBPC3 mutations, like mice with similar mutations, have hypertrophic cardiomyopathy. However, the mechanism leading to hypertrophic cardiomyopathy in heterozygous MYBPC3+/− individuals is myocyte hypertrophy (increased cell size), whereas the mechanism leading to cardiac dilation in homozygous Mybpc3−/− mice is primarily myocyte hyperplasia. PMID:26153423

  2. Mechanisms of epigenetic and cell-type specific regulation of Hey target genes in ES cells and cardiomyocytes.

    PubMed

    Weber, David; Heisig, Julia; Kneitz, Susanne; Wolf, Elmar; Eilers, Martin; Gessler, Manfred

    2015-02-01

    Hey bHLH transcription factors are critical effectors of Notch signaling. During mammalian heart development they are expressed in atrial and ventricular cardiomyocytes and in the developing endocardium. Hey knockout mice suffer from lethal cardiac defects, such as ventricular septum defects, valve defects and cardiomyopathy. Despite this functional relevance, little is known about the regulation of downstream targets in relevant cell types. The objective of this study was to elucidate the regulatory mechanisms by which Hey proteins affect gene expression in a cell type specific manner. We used an in vitro cardiomyocyte differentiation system with inducible Hey1 or Hey2 expression to study target gene regulation in cardiomyocytes (CM) generated from murine embryonic stem cells (ESC). The effects of Hey1 and Hey2 are largely redundant, but cell type specific. The number of regulated genes is comparable between ESC and CM, but the total number of binding sites is much higher, especially in ESC, targeting mainly genes involved in transcriptional regulation and developmental processes. Repression by Hey proteins generally correlates with the extent of Hey-binding to target promoters, Hdac recruitment and lower histone acetylation. Functionally, treatment with the Hdac inhibitor TSA abolished Hey target gene regulation. However, in CM the repressive effect of Hey-binding is lost for a subset of genes. These also lack Hey-dependent histone deacetylation in CM and are enriched for binding sites of cardiac specific activators like Srf, Nkx2-5, and Gata4. Ectopic Nkx2-5 overexpression in ESC blocks Hey-mediated repression of these genes. Thus, Hey proteins mechanistically repress target genes via Hdac recruitment and histone deacetylation. In CM Hey-repression is counteracted by cardiac activators, which recruit histone acetylases and prevent Hey mediated deacetylation and subsequent repression for a subset of genes. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. [Improvement and the mechanism of cardiac function by knockdown of ADAM10 in adriamycin-induced cardiomyopathy rats].

    PubMed

    Li, Xiaoou; Xie, Lili; He, Bing; Huang, Wei

    2018-01-01

    Objective To study the role of a disintegrin and metalloproteinase10 (ADAM10) in shedding neural cadherin (N-cadherin) and develop an approach to interfere the process of ventricular remodeling in adriamycin-induced cardiomyopathy (ACM) rats. Methods In a rat model of ACM, the effects of intraperitoneal injection of the lentiviral RNAi vector of ADAM10 on the morphology of cardiomyocytes and contractile function were observed by HE staining and color Doppler echocardiography. The expressions of N-cadherin and C-terminal fragment 1 (CTF1) were detected by Western blotting and immunohistochemistry. Results In the in vivo experiment, a large amount of fluorescence was seen in the isolated primary cardiomyocytes, which indicated that the transfection in the rat model was successful. In the treatment group, the morphology of cardiomyocytes and function of the heart were evidently improved, N-cadherin protein expression was remarkably up-regulated and CTF1 protein was obviously down-regulated compared with the model group. Conclusion Knock-down of ADAM10 increases N-cadherin expression and decreases CTF1 expression, thus improves cardiac function in the rat model of ACM.

  4. [Individual peculiarities of adaptation to long-term space flights: 24-hour heart rhythm monitoring

    NASA Technical Reports Server (NTRS)

    Baevskii, R. M.; Bogomolov, V. V.; Gol'dberger, A. L.; Nikulina, G. A.; Charl'z, D. B.; Goldberger, A. L. (Principal Investigator); Charles, J. B. (Principal Investigator)

    2000-01-01

    Presented are results of studying 24-hr variability of the cardiac rhythm which characterizes individual difference in reactions of two crew members to the same set of stresses during a 115-day MIR mission. Spacelab (USA) cardiorecorders were used. Data of monitoring revealed significantly different baseline health statuses of the cosmonauts. These functional differences were also observed in the mission. In one of the cosmonauts, the cardiac regulation changed over to a more economic functioning with the autonomous balance shifted towards enhanced sympathetic activity. After 2-3 months on mission he had almost recovered pre-launch level of regulation. In the other, the regulatory system was appreciably strained at the beginning of the mission as compared with preflight baseline. Later on, on flight months 2-3, this strain kept growing till a drastic depletion of the functional reserve. On return to Earth, this was manifested by a strong stress reaction with a sharp decline in power of high-frequency and grow in power of very low frequency components of the heart rhythm. The data suggest that adaptation to space flight and reactions in the readaptation period are dependent on initial health status of crew members, and functional reserve.

  5. The Transcription Factor Atonal homolog 8 Regulates Gata4 and Friend of Gata-2 during Vertebrate Development

    PubMed Central

    Rawnsley, David R.; Xiao, Jiping; Lee, John S.; Liu, Xi; Mericko-Ishizuka, Patricia; Kumar, Vinayak; He, Jie; Basu, Arindam; Lu, MinMin; Lynn, Francis C.; Pack, Michael; Gasa, Rosa; Kahn, Mark L.

    2013-01-01

    GATA and Friend of GATA (FOG) form a transcriptional complex that plays a key role in cardiovascular development in both fish and mammals. In the present study we demonstrate that the basic helix-loop-helix transcription factor Atonal homolog 8 (Atoh8) is required for development of the heart in fish but not in mice. Genetic studies reveal that Atoh8 interacts specifically with Gata4 and Fog1 during development of the heart and swim bladder in the fish. Biochemical studies reveal that ATOH8, GATA4, and FOG2 associate in a single complex in vitro. In contrast to fish, ATOH8-deficient mice exhibit normal cardiac development and loss of ATOH8 does not alter cardiac development in Gata4+/− mice. This species difference in the role of ATOH8 is explained in part by LacZ and GFP reporter alleles that reveal restriction of Atoh8 expression to atrial but not ventricular myocardium in the mouse. Our findings identify ATOH8 as a novel regulator of GATA-FOG function that is required for cardiac development in the fish but not the mouse. Whether ATOH8 modulates GATA-FOG function at other sites or in more subtle ways in mammals is not yet known. PMID:23836893

  6. MicroRNA-320 is Involved in the Regulation of Cardiac Ischemia/Reperfusion Injury by Targeting Hsp20

    PubMed Central

    Ren, Xiao-Ping; Wang, Xiaohong; Sartor, Maureen A.; Jones, Keith; Qian, Jiang; Nicolaou, Persoulla; Pritchard, Tracy J.; Fan, Guo-Chang

    2009-01-01

    Background Recent studies have identified critical roles for microRNAs (miRNAs) in a variety of cellular processes, including regulation of cardiomyocyte death. However, the signature of miRNA expression and possible roles of miRNA in the ischemic heart have been less well-studied. Methods and Results Here we performed miRNA arrays to detect the expression pattern of miRNAs in murine hearts subjected to ischemia/reperfusion (I/R) in vivo and ex vivo. Surprisingly, we found that only miR-320 expression was significantly decreased in the hearts upon I/R in vivo and ex vivo. This was further confirmed by Taqman RT-PCR. Gain-of-function and loss-of-function approaches were employed in cultured adult rat cardiomyocytes to investigate the functional roles of miR-320. Overexpression of miR-320 enhanced cardiomyocyte death and apoptosis, while knock-down was cytoprotective, upon simulated I/R. Furthermore, transgenic mice with cardiac-specific overexpression of miR-320 revealed an increased extent of apoptosis and infarction size in the hearts upon I/R in vivo and ex vivo, relative to the WT controls. Conversely, in vivo treatment with antagomir-320 reduced the infarction size, relative to the administration of mutant antagomir-320 and saline controls. Using Target-Scan software and proteomic analysis, we identified Hsp20, a known cardioprotective protein, as an important candidate target for miR-320. This was validated experimentally by utilizing a luciferase/GFP reporter activity assay and examining the expression of Hsp20 upon miR-320 overexpression and knockdown in cardiomyocytes. Conclusions Our data demonstrate that miR-320 is involved in the regulation of I/R-induced cardiac injury and dysfunction via antithetical regulation of Hsp20. Thus, miR-320 may constitute a new therapeutic target for ischemic heart diseases. PMID:19380620

  7. Cardiac Hypertrophy is Positively Regulated by MicroRNA-24 in Rats

    PubMed Central

    Gao, Juan; Zhu, Min; Liu, Rui-Feng; Zhang, Jian-Shu; Xu, Ming

    2018-01-01

    Background: MicroRNA-24 (miR-24) plays an important role in heart failure by reducing the efficiency of myocardial excitation-contraction coupling. Prolonged cardiac hypertrophy may lead to heart failure, but little is known about the role of miR-24 in cardiac hypertrophy. This study aimed to preliminarily investigate the function of miR-24 and its mechanisms in cardiac hypertrophy. Methods: Twelve Sprague-Dawley rats with a body weight of 50 ± 5 g were recruited and randomly divided into two groups: a transverse aortic constriction (TAC) group and a sham surgery group. Hypertrophy index was measured and calculated by echocardiography and hematoxylin and eosin staining. TargetScans algorithm-based prediction was used to search for the targets of miR-24, which was subsequently confirmed by a real-time polymerase chain reaction and luciferase assay. Immunofluorescence labeling was used to measure the cell surface area, and 3H-leucine incorporation was used to detect the synthesis of total protein in neonatal rat cardiac myocytes (NRCMs) with the overexpression of miR-24. In addition, flow cytometry was performed to observe the alteration in the cell cycle. Statistical analysis was carried out with GraphPad Prism v5.0 and SPSS 19.0. A two-sided P < 0.05 was considered as the threshold for significance. Results: The expression of miR-24 was abnormally increased in TAC rat cardiac tissue (t = −2.938, P < 0.05). TargetScans algorithm-based prediction demonstrated that CDKN1B (p27, Kip1), a cell cycle regulator, was a putative target of miR-24, and was confirmed by luciferase assay. The expression of p27 was decreased in TAC rat cardiac tissue (t = 2.896, P < 0.05). The overexpression of miR-24 in NRCMs led to the decreased expression of p27 (t = 4.400, P < 0.01), and decreased G0/G1 arrest in cell cycle and cardiomyocyte hypertrophy. Conclusion: MiR-24 promotes cardiac hypertrophy partly by affecting the cell cycle through down-regulation of p27 expression. PMID:29786048

  8. Cardiac Hypertrophy is Positively Regulated by MicroRNA‑24 in Rats

    PubMed

    Gao, Juan; Zhu, Min; Liu, Rui-Feng; Zhang, Jian-Shu; Xu, Ming

    2018-06-05

    MicroRNA-24 (miR-24) plays an important role in heart failure by reducing the efficiency of myocardial excitation-contraction coupling. Prolonged cardiac hypertrophy may lead to heart failure, but little is known about the role of miR-24 in cardiac hypertrophy. This study aimed to preliminarily investigate the function of miR-24 and its mechanisms in cardiac hypertrophy. Twelve Sprague-Dawley rats with a body weight of 50 ± 5 g were recruited and randomly divided into two groups: a transverse aortic constriction (TAC) group and a sham surgery group. Hypertrophy index was measured and calculated by echocardiography and hematoxylin and eosin staining. TargetScans algorithm-based prediction was used to search for the targets of miR-24, which was subsequently confirmed by a real-time polymerase chain reaction and luciferase assay. Immunofluorescence labeling was used to measure the cell surface area, and 3 H-leucine incorporation was used to detect the synthesis of total protein in neonatal rat cardiac myocytes (NRCMs) with the overexpression of miR-24. In addition, flow cytometry was performed to observe the alteration in the cell cycle. Statistical analysis was carried out with GraphPad Prism v5.0 and SPSS 19.0. A two-sided P < 0.05 was considered as the threshold for significance. The expression of miR-24 was abnormally increased in TAC rat cardiac tissue (t = -2.938, P < 0.05). TargetScans algorithm-based prediction demonstrated that CDKN1B (p27, Kip1), a cell cycle regulator, was a putative target of miR-24, and was confirmed by luciferase assay. The expression of p27 was decreased in TAC rat cardiac tissue (t = 2.896, P < 0.05). The overexpression of miR-24 in NRCMs led to the decreased expression of p27 (t = 4.400, P < 0.01), and decreased G0/G1 arrest in cell cycle and cardiomyocyte hypertrophy. MiR-24 promotes cardiac hypertrophy partly by affecting the cell cycle through down-regulation of p27 expression.

  9. The effects of the modulation of NMDA receptors by homocysteine thiolactone and dizocilpine on cardiodynamics and oxidative stress in isolated rat heart.

    PubMed

    Srejovic, Ivan; Jakovljevic, Vladimir; Zivkovic, Vladimir; Barudzic, Nevena; Radovanovic, Ana; Stanojlovic, Olivera; Djuric, Dragan M

    2015-03-01

    In light of the limited data concerning the role of N-methyl-D-aspartate (NMDA) receptors in cardiac function, the aim of the present study was to determine the role of NMDA receptors in cardiac function, as well as the possible role played by the oxidative stress induced by the overstimulation of NMDA receptors in isolated rat heart. The hearts of male, Wistar albino rats (n = 24, 12 in each experimental group, BM 180-200 g) were retrogradely perfused at a constant perfusion pressure (70 cm H₂O₂), using the Langendorff technique, and cardiodynamic parameters were determined during the subsequent administration of DL-homocysteine thiolactone (DL-Hcy TLHC) alone, the combination of DL-Hcy TLHC and dizocilpine (MK-801), and MK-801 alone. In the second experimental group, the order of the administration of each of the substances was reversed. The oxidative stress biomarkers, including thiobarbituric acid reactive substances (TBARS), NO(2)(-), O(2)(-) and H₂O₂, were each determined spectrophotometrically. DL-Hcy TLHC and MK-801 depressed cardiac function. DL-Hcy TLHC decreased oxidative stress, a finding that contrasted with the results of the experiments in which MK-801 was administered first. The findings of this study were suggestive of the likely role played by NMDA receptors in the regulation of cardiac function and coronary circulation in isolated rat heart.

  10. Fermitins, the Orthologs of Mammalian Kindlins, Regulate the Development of a Functional Cardiac Syncytium in Drosophila melanogaster

    PubMed Central

    Catterson, James H.; Heck, Margarete M. S.; Hartley, Paul S.

    2013-01-01

    The vertebrate Kindlins are an evolutionarily conserved family of proteins critical for integrin signalling and cell adhesion. Kindlin-2 (KIND2) is associated with intercalated discs in mice, suggesting a role in cardiac syncytium development; however, deficiency of Kind2 leads to embryonic lethality. Morpholino knock-down of Kind2 in zebrafish has a pleiotropic effect on development that includes the heart. It therefore remains unclear whether cardiomyocyte Kind2 expression is required for cardiomyocyte junction formation and the development of normal cardiac function. To address this question, the expression of Fermitin 1 and Fermitin 2 (Fit1, Fit2), the two Drosophila orthologs of Kind2, was silenced in Drosophila cardiomyocytes. Heart development was assessed in adult flies by immunological methods and videomicroscopy. Silencing both Fit1 and Fit2 led to a severe cardiomyopathy characterised by the failure of cardiomyocytes to develop as a functional syncytium and loss of synchrony between cardiomyocytes. A null allele of Fit1 was generated but this had no impact on the heart. Similarly, the silencing of Fit2 failed to affect heart function. In contrast, the silencing of Fit2 in the cardiomyocytes of Fit1 null flies disrupted syncytium development, leading to severe cardiomyopathy. The data definitively demonstrate a role for Fermitins in the development of a functional cardiac syncytium in Drosophila. The findings also show that the Fermitins can functionally compensate for each other in order to control syncytium development. These findings support the concept that abnormalities in cardiomyocyte KIND2 expression or function may contribute to cardiomyopathies in humans. PMID:23690969

  11. Cardiac gene transfer of short hairpin RNA directed against phospholamban effectively knocks down gene expression but causes cellular toxicity in canines.

    PubMed

    Bish, Lawrence T; Sleeper, Meg M; Reynolds, Caryn; Gazzara, Jeffrey; Withnall, Elanor; Singletary, Gretchen E; Buchlis, George; Hui, Daniel; High, Katherine A; Gao, Guangping; Wilson, James M; Sweeney, H Lee

    2011-08-01

    Derangements in calcium cycling have been described in failing hearts, and preclinical studies have suggested that therapies aimed at correcting this defect can lead to improvements in cardiac function and survival. One strategy to improve calcium cycling would be to inhibit phospholamban (PLB), the negative regulator of SERCA2a that is upregulated in failing hearts. The goal of this study was to evaluate the safety and efficacy of using adeno-associated virus (AAV)-mediated cardiac gene transfer of short hairpin RNA (shRNA) to knock down expression of PLB. Six dogs were treated with self-complementary AAV serotype 6 (scAAV6) expressing shRNA against PLB. Three control dogs were treated with empty AAV6 capsid, and two control dogs were treated with scAAV6 expressing dominant negative PLB. Vector was delivered via a percutaneously inserted cardiac injection catheter. PLB mRNA and protein expression were analyzed in three of six shRNA dogs between days 16 and 26. The other three shRNA dogs and five control dogs were monitored long-term to assess cardiac safety. PLB mRNA was reduced 16-fold, and PLB protein was reduced 5-fold, with treatment. Serum troponin elevation and depressed cardiac function were observed in the shRNA group only at 4 weeks. An enzyme-linked immunospot assay failed to detect any T cells reactive to AAV6 capsid in peripheral blood mononuclear cells, heart, or spleen. Microarray analysis revealed alterations in cardiac expression of several microRNAs with shRNA treatment. AAV6-mediated cardiac gene transfer of shRNA effectively knocks down PLB expression but is associated with severe cardiac toxicity. Toxicity may result from dysregulation of endogenous microRNA pathways.

  12. 8-Oxoguanine DNA glycosylase 1 (ogg1) maintains the function of cardiac progenitor cells during heart formation in zebrafish

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan, Lifeng; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 210029; Zhou, Yong

    Genomic damage may devastate the potential of progenitor cells and consequently impair early organogenesis. We found that ogg1, a key enzyme initiating the base-excision repair, was enriched in the embryonic heart in zebrafish. So far, little is known about DNA repair in cardiogenesis. Here, we addressed the critical role of ogg1 in cardiogenesis for the first time. ogg1 mainly expressed in the anterior lateral plate mesoderm (ALPM), the primary heart tube, and subsequently the embryonic myocardium by in situ hybridisation. Loss of ogg1 resulted in severe cardiac morphogenesis and functional abnormalities, including the short heart length, arrhythmia, decreased cardiomyocytes andmore » nkx2.5{sup +} cardiac progenitor cells. Moreover, the increased apoptosis and repressed proliferation of progenitor cells caused by ogg1 deficiency might contribute to the heart phenotype. The microarray analysis showed that the expression of genes involved in embryonic heart tube morphogenesis and heart structure were significantly changed due to the lack of ogg1. Among those, foxh1 is an important partner of ogg1 in the cardiac development in response to DNA damage. Our work demonstrates the requirement of ogg1 in cardiac progenitors and heart development in zebrafish. These findings may be helpful for understanding the aetiology of congenital cardiac deficits. - Highlights: • A key DNA repair enzyme ogg1 is expressed in the embryonic heart in zebrafish. • We found that ogg1 is essential for normal cardiac morphogenesis in zebrafish. • The production of embryonic cardiomyocytes requires appropriate ogg1 expression. • Ogg1 critically regulated proliferation of cardiac progenitor cells in zebrafish. • foxh1 is a partner of ogg1 in the cardiac development in response to DNA damage.« less

  13. Cardiac Gene Transfer of Short Hairpin RNA Directed Against Phospholamban Effectively Knocks Down Gene Expression but Causes Cellular Toxicity in Canines

    PubMed Central

    Sleeper, Meg M.; Reynolds, Caryn; Gazzara, Jeffrey; Withnall, Elanor; Singletary, Gretchen E.; Buchlis, George; Hui, Daniel; High, Katherine A.; Gao, Guangping; Wilson, James M.; Sweeney, H. Lee

    2011-01-01

    Abstract Derangements in calcium cycling have been described in failing hearts, and preclinical studies have suggested that therapies aimed at correcting this defect can lead to improvements in cardiac function and survival. One strategy to improve calcium cycling would be to inhibit phospholamban (PLB), the negative regulator of SERCA2a that is upregulated in failing hearts. The goal of this study was to evaluate the safety and efficacy of using adeno-associated virus (AAV)-mediated cardiac gene transfer of short hairpin RNA (shRNA) to knock down expression of PLB. Six dogs were treated with self-complementary AAV serotype 6 (scAAV6) expressing shRNA against PLB. Three control dogs were treated with empty AAV6 capsid, and two control dogs were treated with scAAV6 expressing dominant negative PLB. Vector was delivered via a percutaneously inserted cardiac injection catheter. PLB mRNA and protein expression were analyzed in three of six shRNA dogs between days 16 and 26. The other three shRNA dogs and five control dogs were monitored long-term to assess cardiac safety. PLB mRNA was reduced 16-fold, and PLB protein was reduced 5-fold, with treatment. Serum troponin elevation and depressed cardiac function were observed in the shRNA group only at 4 weeks. An enzyme-linked immunospot assay failed to detect any T cells reactive to AAV6 capsid in peripheral blood mononuclear cells, heart, or spleen. Microarray analysis revealed alterations in cardiac expression of several microRNAs with shRNA treatment. AAV6-mediated cardiac gene transfer of shRNA effectively knocks down PLB expression but is associated with severe cardiac toxicity. Toxicity may result from dysregulation of endogenous microRNA pathways. PMID:21542669

  14. Functional subcellular distribution of β1- and β2-adrenergic receptors in rat ventricular cardiac myocytes

    PubMed Central

    Cros, Caroline; Brette, Fabien

    2013-01-01

    β-adrenergic stimulation is a key regulator of cardiac function. The localization of major cardiac adrenergic receptors (β1 and β2) has been investigated using biochemical and biophysical approaches and has led to contradictory results. This study investigates the functional subcellular localization of β1- and β2-adrenergic receptors in rat ventricular myocytes using a physiological approach. Ventricular myocytes were isolated from the hearts of rat and detubulated using formamide. Physiological cardiac function was measured as Ca2+ transient using Fura-2-AM and cell shortening. Selective activation of β1- and β2-adrenergic receptors was induced with isoproterenol (0.1 μmol/L) and ICI-118,551 (0.1 μmol/L); and with salbutamol (10 μmol/L) and atenolol (1 μmol/L), respectively. β1- and β2-adrenergic stimulations induced a significant increase in Ca2+ transient amplitude and cell shortening in intact rat ventricular myocytes (i.e., surface sarcolemma and t-tubules) and in detubulated cells (depleted from t-tubules, surface sarcolemma only). Both β1- and β2-adrenergic receptors stimulation caused a greater effect on Ca2+ transient and cell shortening in detubulated myocytes than in control myocytes. Quantitative analysis indicates that β1-adrenergic stimulation is ∼3 times more effective at surface sarcolemma compared to t-tubules, whereas β2- adrenergic stimulation occurs almost exclusively at surface sarcolemma (∼100 times more effective). These physiological data demonstrate that in rat ventricular myocytes, β1-adrenergic receptors are functionally present at surface sarcolemma and t-tubules, while β2-adrenergic receptors stimulation occurs only at surface sarcolemma of cardiac cells. PMID:24303124

  15. Intramuscular injection of human umbilical cord-derived mesenchymal stem cells improves cardiac function in dilated cardiomyopathy rats.

    PubMed

    Mao, Chenggang; Hou, Xu; Wang, Benzhen; Chi, Jingwei; Jiang, Yanjie; Zhang, Caining; Li, Zipu

    2017-01-28

    Stem cells provide a promising candidate for the treatment of the fatal pediatric dilated cardiomyopathy (DCM). This study aimed to investigate the effects of intramuscular injection of human umbilical cord-derived mesenchymal stem cells (hUCMSCs) on the cardiac function of a DCM rat model. A DCM model was established by intraperitoneal injections of doxorubicin in Sprague-Dawley rats. hUCMSCs at different concentrations or cultured medium were injected via limb skeletal muscles, with blank medium injected as the control. The rats were monitored for 4 weeks, meanwhile BNP, cTNI, VEGF, HGF, GM-CSF, and LIF in the peripheral blood were examined by ELISA, and cardiac function was monitored by echocardiography (Echo-CG). Finally, the expression of IGF-1, HGF, and VEGF in the myocardium was examined by histoimmunochemistry and real-time PCR, and the ultrastructure of the myocardium was examined by electron microscopy. Injection of hUCMSCs markedly improved cardiac function in the DCM rats by significantly elevating left ventricular ejection fraction (LVEF) and left ventricular fraction shortening (LVFS). The BNP and cTNI levels in the peripheral blood were reduced by hUCMSCs, while HGF, LIF, GM-CSF, and VEGF were increased by hUCMSCs. Expression of IGF-1, HGF, and VEGF in the myocardium from the DCM rats was significantly increased by hUCMSC injection. Furthermore, hUCMSCs protected the ultrastructure of cardiomyocytes by attenuating mitochondrial swelling and maintaining sarcolemma integrity. Intramuscular injection of UCMSCs can improve DCM-induced cardiac function impairment and protect the myocardium. These effects may be mediated by regulation of relevant cytokines in serum and the myocardium.

  16. Tropomodulin Capping of Actin Filaments in Striated Muscle Development and Physiology

    PubMed Central

    Gokhin, David S.; Fowler, Velia M.

    2011-01-01

    Efficient striated muscle contraction requires precise assembly and regulation of diverse actin filament systems, most notably the sarcomeric thin filaments of the contractile apparatus. By capping the pointed ends of actin filaments, tropomodulins (Tmods) regulate actin filament assembly, lengths, and stability. Here, we explore the current understanding of the expression patterns, localizations, and functions of Tmods in both cardiac and skeletal muscle. We first describe the mechanisms by which Tmods regulate myofibril assembly and thin filament lengths, as well as the roles of closely related Tmod family variants, the leiomodins (Lmods), in these processes. We also discuss emerging functions for Tmods in the sarcoplasmic reticulum. This paper provides abundant evidence that Tmods are key structural regulators of striated muscle cytoarchitecture and physiology. PMID:22013379

  17. Loss of microRNA-22 prevents high-fat diet induced dyslipidemia and increases energy expenditure without affecting cardiac hypertrophy.

    PubMed

    Diniz, Gabriela Placoná; Huang, Zhan-Peng; Liu, Jianming; Chen, Jinghai; Ding, Jian; Fonseca, Renata Inzinna; Barreto-Chaves, Maria Luiza; Donato, Jose; Hu, Xiaoyun; Wang, Da-Zhi

    2017-12-15

    Obesity is associated with development of diverse diseases, including cardiovascular diseases and dyslipidemia. MiRNA-22 (miR-22) is a critical regulator of cardiac function and targets genes involved in metabolic processes. Previously, we generated miR-22 null mice and we showed that loss of miR-22 blunted cardiac hypertrophy induced by mechanohormornal stress. In the present study, we examined the role of miR-22 in the cardiac and metabolic alterations promoted by high-fat (HF) diet. We found that loss of miR-22 attenuated the gain of fat mass and prevented dyslipidemia induced by HF diet, although the body weight gain, or glucose intolerance and insulin resistance did not seem to be affected. Mechanistically, loss of miR-22 attenuated the increased expression of genes involved in lipogenesis and inflammation mediated by HF diet. Similarly, we found that miR-22 mediates metabolic alterations and inflammation induced by obesity in the liver. However, loss of miR-22 did not appear to alter HF diet induced cardiac hypertrophy or fibrosis in the heart. Our study therefore establishes miR-22 as an important regulator of dyslipidemia and suggests it may serve as a potential candidate in the treatment of dyslipidemia associated with obesity. © 2017 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  18. Passive hind-limb cycling improves cardiac function and reduces cardiovascular disease risk in experimental spinal cord injury

    PubMed Central

    West, Christopher R; Crawford, Mark A; Poormasjedi-Meibod, Malihe-Sadat; Currie, Katharine D; Fallavollita, Andre; Yuen, Violet; McNeill, John H; Krassioukov, Andrei V

    2014-01-01

    Spinal cord injury (SCI) causes altered autonomic control and severe physical deconditioning that converge to drive maladaptive cardiac remodelling. We used a clinically relevant experimental model to investigate the cardio-metabolic responses to SCI and to establish whether passive hind-limb cycling elicits a cardio-protective effect. Initially, 21 male Wistar rats were evenly assigned to three groups: uninjured control (CON), T3 complete SCI (SCI) or T3 complete SCI plus passive hind-limb cycling (SCI-EX; 2 × 30 min day−1, 5 days week−1 for 4 weeks beginning 6 days post-SCI). On day 32, cardio-metabolic function was assessed using in vivo echocardiography, ex vivo working heart assessments, cardiac histology/molecular biology and blood lipid profiles. Twelve additional rats (n = 6 SCI and n = 6 SCI-EX) underwent in vivo echocardiography and basal haemodynamic assessments pre-SCI and at days 7, 14 and 32 post-SCI to track temporal cardiovascular changes. Compared with CON, SCI exhibited a rapid and sustained reduction in left ventricular dimensions and function that ultimately manifested as reduced contractility, increased myocardial collagen deposition and an up-regulation of transforming growth factor beta-1 (TGFβ1) and mothers against decapentaplegic homolog 3 (Smad3) mRNA. For SCI-EX, the initial reduction in left ventricular dimensions and function at day 7 post-SCI was completely reversed by day 32 post-SCI, and there were no differences in myocardial contractility between SCI-EX and CON. Collagen deposition was similar between SCI-EX and CON. TGFβ1 and Smad3 were down-regulated in SCI-EX. Blood lipid profiles were improved in SCI-EX versus SCI. We provide compelling novel evidence that passive hind-limb cycling prevents cardiac dysfunction and reduces cardiovascular disease risk in experimental SCI. PMID:24535438

  19. Mitochondrial proteome disruption in the diabetic heart through targeted epigenetic regulation at the mitochondrial heat shock protein 70 (mtHsp70) nuclear locus.

    PubMed

    Shepherd, Danielle L; Hathaway, Quincy A; Nichols, Cody E; Durr, Andrya J; Pinti, Mark V; Hughes, Kristen M; Kunovac, Amina; Stine, Seth M; Hollander, John M

    2018-06-01

    >99% of the mitochondrial proteome is nuclear-encoded. The mitochondrion relies on a coordinated multi-complex process for nuclear genome-encoded mitochondrial protein import. Mitochondrial heat shock protein 70 (mtHsp70) is a key component of this process and a central constituent of the protein import motor. Type 2 diabetes mellitus (T2DM) disrupts mitochondrial proteomic signature which is associated with decreased protein import efficiency. The goal of this study was to manipulate the mitochondrial protein import process through targeted restoration of mtHsp70, in an effort to restore proteomic signature and mitochondrial function in the T2DM heart. A novel line of cardiac-specific mtHsp70 transgenic mice on the db/db background were generated and cardiac mitochondrial subpopulations were isolated with proteomic evaluation and mitochondrial function assessed. MicroRNA and epigenetic regulation of the mtHsp70 gene during T2DM were also evaluated. MtHsp70 overexpression restored cardiac function and nuclear-encoded mitochondrial protein import, contributing to a beneficial impact on proteome signature and enhanced mitochondrial function during T2DM. Further, transcriptional repression at the mtHsp70 genomic locus through increased localization of H3K27me3 during T2DM insult was observed. Our results suggest that restoration of a key protein import constituent, mtHsp70, provides therapeutic benefit through attenuation of mitochondrial and contractile dysfunction in T2DM. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Cardiac Fibroblasts Adopt Osteogenic Fates and Can Be Targeted to Attenuate Pathological Heart Calcification.

    PubMed

    Pillai, Indulekha C L; Li, Shen; Romay, Milagros; Lam, Larry; Lu, Yan; Huang, Jie; Dillard, Nathaniel; Zemanova, Marketa; Rubbi, Liudmilla; Wang, Yibin; Lee, Jason; Xia, Ming; Liang, Owen; Xie, Ya-Hong; Pellegrini, Matteo; Lusis, Aldons J; Deb, Arjun

    2017-02-02

    Mammalian tissues calcify with age and injury. Analogous to bone formation, osteogenic cells are thought to be recruited to the affected tissue and induce mineralization. In the heart, calcification of cardiac muscle leads to conduction system disturbances and is one of the most common pathologies underlying heart blocks. However the cell identity and mechanisms contributing to pathological heart muscle calcification remain unknown. Using lineage tracing, murine models of heart calcification and in vivo transplantation assays, we show that cardiac fibroblasts (CFs) adopt an osteoblast cell-like fate and contribute directly to heart muscle calcification. Small-molecule inhibition of ENPP1, an enzyme that is induced upon injury and regulates bone mineralization, significantly attenuated cardiac calcification. Inhibitors of bone mineralization completely prevented ectopic cardiac calcification and improved post injury heart function. Taken together, these findings highlight the plasticity of fibroblasts in contributing to ectopic calcification and identify pharmacological targets for therapeutic development. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Genetic dissection of cardiac growth control pathways

    NASA Technical Reports Server (NTRS)

    MacLellan, W. R.; Schneider, M. D.

    2000-01-01

    Cardiac muscle cells exhibit two related but distinct modes of growth that are highly regulated during development and disease. Cardiac myocytes rapidly proliferate during fetal life but exit the cell cycle irreversibly soon after birth, following which the predominant form of growth shifts from hyperplastic to hypertrophic. Much research has focused on identifying the candidate mitogens, hypertrophic agonists, and signaling pathways that mediate these processes in isolated cells. What drives the proliferative growth of embryonic myocardium in vivo and the mechanisms by which adult cardiac myocytes hypertrophy in vivo are less clear. Efforts to answer these questions have benefited from rapid progress made in techniques to manipulate the murine genome. Complementary technologies for gain- and loss-of-function now permit a mutational analysis of these growth control pathways in vivo in the intact heart. These studies have confirmed the importance of suspected pathways, have implicated unexpected pathways as well, and have led to new paradigms for the control of cardiac growth.

  2. Molecular and immunohistochemical analyses of cardiac troponin T during cardiac development in the Mexican axolotl, Ambystoma mexicanum.

    PubMed

    Zhang, C; Pietras, K M; Sferrazza, G F; Jia, P; Athauda, G; Rueda-de-Leon, E; Rveda-de-Leon, E; Maier, J A; Dube, D K; Lemanski, S L; Lemanski, L F

    2007-01-01

    The Mexican axolotl, Ambystoma mexicanum, is an excellent animal model for studying heart development because it carries a naturally occurring recessive genetic mutation, designated gene c, for cardiac nonfunction. The double recessive mutants (c/c) fail to form organized myofibrils in the cardiac myoblasts resulting in hearts that fail to beat. Tropomyosin expression patterns have been studied in detail and show dramatically decreased expression in the hearts of homozygous mutant embryos. Because of the direct interaction between tropomyosin and troponin T (TnT), and the crucial functions of TnT in the regulation of striated muscle contraction, we have expanded our studies on this animal model to characterize the expression of the TnT gene in cardiac muscle throughout normal axolotl development as well as in mutant axolotls. In addition, we have succeeded in cloning the full-length cardiac troponin T (cTnT) cDNA from axolotl hearts. Confocal microscopy has shown a substantial, but reduced, expression of TnT protein in the mutant hearts when compared to normal during embryonic development. 2006 Wiley-Liss, Inc.

  3. Transgenic over-expression of YY1 induces pathologic cardiac hypertrophy in a sex-specific manner

    PubMed Central

    Stauffer, Brian L.; Dockstader, Karen; Russell, Gloria; Hijmans, Jamie; Walker, Lisa; Cecil, Mackenzie; Demos-Davies, Kimberly; Medway, Allen; McKinsey, Timothy A.; Sucharov, Carmen C.

    2015-01-01

    YY1 can activate or repress transcription of various genes. In cardiac myocytes in culture YY1 has been shown to regulate expression of several genes involved in myocyte pathology. YY1 can also acutely protect the heart against detrimental changes in gene expression. In this study we show that cardiac over-expression of YY1 induces pathologic cardiac hypertrophy in male mice, measured by changes in gene expression and lower ejection fraction/fractional shortening. In contrast, female animals are protected against pathologic gene expression changes and cardiac dysfunction. Furthermore, we show that YY1 regulates, in a sex-specific manner, the expression of mammalian enable (Mena), a factor that regulates cytoskeletal actin dynamics and whose expression is increased in several models of cardiac pathology, and that Mena expression in humans with heart failure is sex-dependent. Finally, we show that sex differences in YY1 expression are also observed in human heart failure. In summary, this is the first work to show that YY1 has a sex-specific effect in the regulation of cardiac pathology. PMID:25935483

  4. Cellular apoptosis and cardiac dysfunction in STZ-induced diabetic rats attenuated by anthocyanins via activation of IGFI-R/PI3K/Akt survival signaling.

    PubMed

    Huang, Pei-Chen; Wang, Guei-Jane; Fan, Ming-Jen; Asokan Shibu, Marthandam; Liu, Yin-Tso; Padma Viswanadha, Vijaya; Lin, Yi-Lin; Lai, Chao-Hung; Chen, Yu-Feng; Liao, Hung-En; Huang, Chih-Yang

    2017-12-01

    Anthocyanins are known cyto-protective agents against various stress conditions. In this study cardio-protective effect of anthocyanins from black rice against diabetic mellitus (DM) was evaluated using a streptozotocin (STZ)-induced DM rat model. Five-week-old male Wistar rats were administered with STZ (55 mg kg -1 , IP) to induce DM; rats in the treatment group received 250 mg oral anthocyanin/kg/day during the 4-week treatment period. DM and the control rats received normal saline through oral gavage. The results reveal that STZ-induced DM elevates myocardial apoptosis and associated proapoptotic proteins but down-regulates the proteins of IGF1R mediated survival signaling mechanism. Furthermore, the functional parameters such as the ejection-fraction and fraction-shortening in the DM rat hearts declined considerably. However, the rats treated with anthocyanins significantly reduced apoptosis and the associated proapoptotic proteins and further increased the survival signals to restore the cardiac functions in DM rats. Anthocyanin supplementation enhances cardiomyocyte survival and restores cardiac function. © 2017 Wiley Periodicals, Inc.

  5. Novel mechanism of cardiac protection by valsartan: synergetic roles of TGF-β1 and HIF-1α in Ang II-mediated fibrosis after myocardial infarction.

    PubMed

    Sui, Xizhong; Wei, Hongchao; Wang, Dacheng

    2015-08-01

    Transforming growth factor (TGF)-β1 is a known factor in angiotensin II (Ang II)-mediated cardiac fibrosis after myocardial infarction (MI). Hypoxia inducible factor-1 (Hif-1α) was recently demonstrated to involve in the tissue fibrosis and influenced by Ang II. However, whether Hif-1α contributed to the Ang II-mediated cardiac fibrosis after MI, and whether interaction or synergetic roles between Hif-1α and TGF-β pathways existed in the process was unclear. In vitro, cardiac cells were incubated under hypoxia or Ang II to mimic ischaemia. In vivo, valsartan was intravenously injected into Sprague-Dawley rats with MI daily for 1 week; saline and hydralazine (another anti-hypertensive agent like valsartan) was used as control. The fibrosis-related proteins were detected by Western blotting. Cardiac structure and function were assessed with multimodality methods. We demonstrated in vitro that hypoxia would induce the up-regulation of Ang II, TGF-β/Smad and Hif-1α, which further induced collagen accumulation. By blocking with valsartan, a blocker of Ang II type I (AT1) receptor, we confirmed that the up-regulation of TGF-β/Smad and Hif-1α was through the Ang II-mediated pathway. By administering TGF-β or dimethyloxalylglycine, we determined that both TGF-β/Smad and Hif-1α contributed to Ang II-mediated collagen accumulation and a synergetic effect between them was observed. Consistent with in vitro results, valsartan significantly attenuated the expression of TGF-β/Smad, Hif-1α and fibrosis-related protein in rats after MI. Heart function, infarcted size, wall thickness as well as myocardial vascularization of ischaemic hearts were also significantly improved by valsartan compared with saline and hydralazine. Our study may provide novel insights into the mechanisms of Ang II-induced cardiac fibrosis as well as into the cardiac protection of valsartan. © 2015 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  6. Common threads in cardiac fibrosis, infarct scar formation, and wound healing.

    PubMed

    Czubryt, Michael P

    2012-11-01

    Wound healing, cardiac fibrosis, and infarct scar development, while possessing distinct features, share a number of key functional similarities, including extracellular matrix synthesis and remodeling by fibroblasts and myofibroblasts. Understanding the underlying mechanisms that are common to these processes may suggest novel therapeutic approaches for pathologic situations such as fibrosis, or defective wound healing such as hypertrophic scarring or keloid formation. This manuscript will briefly review the major steps of wound healing, and will contrast this process with how cardiac infarct scar formation or interstitial fibrosis occurs. The feasibility of targeting common pro-fibrotic growth factor signaling pathways will be discussed. Finally, the potential exploitation of novel regulators of wound healing and fibrosis (ski and scleraxis), will be examined.

  7. The renin-angiotensin system in thyroid disorders and its role in cardiovascular and renal manifestations.

    PubMed

    Vargas, Félix; Rodríguez-Gómez, Isabel; Vargas-Tendero, Pablo; Jimenez, Eugenio; Montiel, Mercedes

    2012-04-01

    Thyroid disorders are among the most common endocrine diseases and affect virtually all physiological systems, with an especially marked impact on cardiovascular and renal systems. This review summarizes the effects of thyroid hormones on the renin-angiotensin system (RAS) and the participation of the RAS in the cardiovascular and renal manifestations of thyroid disorders. Thyroid hormones are important regulators of cardiac and renal mass, vascular function, renal sodium handling, and consequently blood pressure (BP). The RAS acts globally to control cardiovascular and renal functions, while RAS components act systemically and locally in individual organs. Various authors have implicated the systemic and local RAS in the mediation of functional and structural changes in cardiovascular and renal tissues due to abnormal thyroid hormone levels. This review analyzes the influence of thyroid hormones on RAS components and discusses the role of the RAS in BP, cardiac mass, vascular function, and renal abnormalities in thyroid disorders.

  8. The intrinsic circadian clock within the cardiomyocyte directly regulates myocardial gene expression, metabolism, and function

    USDA-ARS?s Scientific Manuscript database

    Circadian rhythms have been firmly established in both cardiovascular physiology (e.g., heart rate, cardiac output) and pathophysiology (e.g., arrhythmias). These phenomena have been attributed primarily to circadian rhythms in neurohumoral influences, such as sympathetic activity. Virtually every...

  9. ERBB2 Deficiency Alters an E2F-1-Dependent Adaptive Stress Response and Leads to Cardiac Dysfunction

    PubMed Central

    Perry, Marie-Claude; Dufour, Catherine R.; Eichner, Lillian J.; Tsang, David W. K.; Deblois, Geneviève; Muller, William J.

    2014-01-01

    The tyrosine kinase receptor ERBB2 is required for normal development of the heart and is a potent oncogene in breast epithelium. Trastuzumab, a monoclonal antibody targeting ERBB2, improves the survival of breast cancer patients, but cardiac dysfunction is a major side effect of the drug. The molecular mechanisms underlying how ERBB2 regulates cardiac function and why trastuzumab is cardiotoxic remain poorly understood. We show here that ERBB2 hypomorphic mice develop cardiac dysfunction that mimics the side effects observed in patients treated with trastuzumab. We demonstrate that this phenotype is related to the critical role played by ERBB2 in cardiac homeostasis and physiological hypertrophy. Importantly, genetic and therapeutic reduction of ERBB2 activity in mice, as well as ablation of ERBB2 signaling by trastuzumab or siRNAs in human cardiomyocytes, led to the identification of an impaired E2F-1-dependent genetic program critical for the cardiac adaptive stress response. These findings demonstrate the existence of a previously unknown mechanistic link between ERBB2 and E2F-1 transcriptional activity in heart physiology and trastuzumab-induced cardiac dysfunction. PMID:25246633

  10. Bile acid excess induces cardiomyopathy and metabolic dysfunctions in the heart

    PubMed Central

    Desai, Moreshwar; Mathur, Bhoomika; Eblimit, Zeena; Vasquez, Hernan; Taegtmeyer, Heinrich; Karpen, Saul; Penny, Daniel J.; Moore, David D.; Anakk, Sayeepriyadarshini

    2017-01-01

    Cardiac dysfunction in patients with liver cirrhosis is strongly associated with increased serum bile acid concentrations. Here we show that excess bile acids decrease fatty acid oxidation in cardiomyocytes and can cause heart dysfunction, a cardiac syndrome that we term Cholecardia. Fxr; Shp double knockout (DKO) mice, a model for bile acid overload, display cardiac hypertrophy, bradycardia, and exercise intolerance. In addition, DKO mice exhibit an impaired cardiac response to catecholamine challenge. Consistent with this decreased cardiac function, we show that elevated serum bile acids reduce cardiac fatty acid oxidation both in vivo and ex vivo. We find that increased bile acid levels suppress expression of Pgc1α, a key regulator of fatty acid metabolism, and that Pgc1α overexpression in cardiac cells was able to rescue the bile acid-mediated reduction in fatty acid oxidation genes. Importantly, intestinal bile acid sequestration with cholestyramine was sufficient to reverse the observed heart dysfunction in the DKO mice. Conclusions Overall, we propose that decreased Pgc1α expression contributes to the metabolic dysfunction in Cholecardia, and that reducing serum bile acid concentrations will be beneficial against metabolic and pathological changes in the heart. PMID:27774647

  11. Diadenosine tetraphosphate-gating of cardiac K(ATP) channels requires intact actin cytoskeleton.

    PubMed

    Jovanović, S; Jovanović, A

    2001-09-01

    Diadenosine polyphosphates (ApnA) have been recently discovered in the heart, and their levels found to be regulated by ischemia. These signaling molecules are believed to regulate cellular processes that alarm a cell to metabolic stress. In particular, changes in cardiac diadenosine polyphosphates (ApnA) levels may contribute to the regulation of ATP-sensitive K+ (K(ATP)) channel activity, an ion channel that couples the cellular metabolic state with membrane excitability. A feature of myocardial ischemia is the disruption of the actin cytoskeleton which critically regulates the behavior of K(ATP) channels. Whether the integrity of actin microfilaments regulates the interaction of ApnA with K(ATP) channels is not known. The inside-out configuration of the patch-clamp technique was applied to cardiomyocytes isolated from guinea-pig heart. Following patch excision, the prototype dinucleotide, diadenosine tetraphosphate (Ap4A), inhibited K(ATP) channel opening. Treatment of the internal side of membrane patches with either cytochalasin B or DNase I, disrupters of the actin cytoskeleton, prevented Ap4A-induced inhibition of K(ATP) channel opening. Application of purified actin to DNase-treated membrane patches restored the ability of Ap4A to close K(ATP) channels. This study shows that inhibition of cardiac K(ATP) channel by Ap4A, a putative alarmone, requires intact subsarcolemmal actin network. Such interaction between K(ATP) channels, the cardiomyocyte cytoskeleton and intracellular Ap4A could affect different channel-dependent functions.

  12. Cardiac Dysautonomia in Huntington's Disease.

    PubMed

    Abildtrup, Mads; Shattock, Michael

    2013-01-01

    Huntington's disease is a fatal, hereditary, neurodegenerative disorder best known for its clinical triad of progressive motor impairment, cognitive deficits and psychiatric disturbances. Although a disease of the central nervous system, mortality surveys indicate that heart disease is a leading cause of death. The nature of such cardiac abnormalities remains unknown. Clinical findings indicate a high prevalence of autonomic nervous system dysfunction - dysautonomia - which may be a result of pathology of the central autonomic network. Dysautonomia can have profound effects on cardiac health, and pronounced autonomic dysfunction can be associated with neurogenic arrhythmias and sudden cardiac death. Significant advances in the knowledge of neural mechanisms in cardiac disease have recently been made which further aid our understanding of cardiac mortality in Huntington's disease. Even so, despite the evidence of aberrant autonomic activity the potential cardiac consequences of autonomic dysfunction have been somewhat ignored. In fact, underlying cardiac abnormalities such as arrhythmias have been part of the exclusion criteria in clinical autonomic Huntington's disease research. A comprehensive analysis of cardiac function in Huntington's disease patients is warranted. Further experimental and clinical studies are needed to clarify how the autonomic nervous system is controlled and regulated in higher, central areas of the brain - and how these regions may be altered in neurological pathology, such as Huntington's disease. Ultimately, research will hopefully result in an improvement of management with the aim of preventing early death in Huntington's disease from cardiac causes.

  13. Cardiac Hypertrophy Is Inhibited by a Local Pool of cAMP Regulated by Phosphodiesterase 2.

    PubMed

    Zoccarato, Anna; Surdo, Nicoletta C; Aronsen, Jan M; Fields, Laura A; Mancuso, Luisa; Dodoni, Giuliano; Stangherlin, Alessandra; Livie, Craig; Jiang, He; Sin, Yuan Yan; Gesellchen, Frank; Terrin, Anna; Baillie, George S; Nicklin, Stuart A; Graham, Delyth; Szabo-Fresnais, Nicolas; Krall, Judith; Vandeput, Fabrice; Movsesian, Matthew; Furlan, Leonardo; Corsetti, Veronica; Hamilton, Graham; Lefkimmiatis, Konstantinos; Sjaastad, Ivar; Zaccolo, Manuela

    2015-09-25

    Chronic elevation of 3'-5'-cyclic adenosine monophosphate (cAMP) levels has been associated with cardiac remodeling and cardiac hypertrophy. However, enhancement of particular aspects of cAMP/protein kinase A signaling seems to be beneficial for the failing heart. cAMP is a pleiotropic second messenger with the ability to generate multiple functional outcomes in response to different extracellular stimuli with strict fidelity, a feature that relies on the spatial segregation of the cAMP pathway components in signaling microdomains. How individual cAMP microdomains affect cardiac pathophysiology remains largely to be established. The cAMP-degrading enzymes phosphodiesterases (PDEs) play a key role in shaping local changes in cAMP. Here we investigated the effect of specific inhibition of selected PDEs on cardiac myocyte hypertrophic growth. Using pharmacological and genetic manipulation of PDE activity, we found that the rise in cAMP resulting from inhibition of PDE3 and PDE4 induces hypertrophy, whereas increasing cAMP levels via PDE2 inhibition is antihypertrophic. By real-time imaging of cAMP levels in intact myocytes and selective displacement of protein kinase A isoforms, we demonstrate that the antihypertrophic effect of PDE2 inhibition involves the generation of a local pool of cAMP and activation of a protein kinase A type II subset, leading to phosphorylation of the nuclear factor of activated T cells. Different cAMP pools have opposing effects on cardiac myocyte cell size. PDE2 emerges as a novel key regulator of cardiac hypertrophy in vitro and in vivo, and its inhibition may have therapeutic applications. © 2015 American Heart Association, Inc.

  14. Prediction of atrial fibrillation recurrence after cardioversion-interaction analysis of cardiac autonomic regulation.

    PubMed

    Seeck, A; Rademacher, W; Fischer, C; Haueisen, J; Surber, R; Voss, A

    2013-03-01

    Today atrial fibrillation (AF) is the most common cardiac arrhythmia in clinical practice accounting for approximately one third of hospitalizations and accompanied with a 5 fold increased risk for ischemic stroke and a 1.5 fold increased mortality risk. The role of the cardiac regulation system in AF recurrence after electrical cardioversion (CV) is still unclear. The aim of this study was to investigate the autonomic regulation by analyzing the interaction between heart rate and blood pressure using novel methods of nonlinear interaction dynamics, namely joint symbolic dynamics (JSD) and segmented Poincaré plot analysis (SPPA). For the first time, we applied SPPA to analyze the interaction between two time series. Introducing a parameter set of two indices, one derived from JSD and one from SPPA, the linear discriminant function analysis revealed an overall accuracy of 89% (sensitivity 91.7%, specificity 86.7%) for the classification between patients with stable sinus rhythm (group SR, n = 15) and with AF recurrence (group REZ, n = 12). This study proves that the assessment of the autonomic regulation by analyzing the coupling of heart rate and systolic blood pressure provides a potential tool for the prediction of AF recurrence after CV and could aid in the adjustment of therapeutic options for patients with AF. Copyright © 2012 IPEM. Published by Elsevier Ltd. All rights reserved.

  15. Diverse structures, functions and uses of FK506 binding proteins.

    PubMed

    Bonner, Julia Maeve; Boulianne, Gabrielle L

    2017-10-01

    FK506 (Tacrolimus), isolated from Streptomyces tsukubaenis is a powerful immunosuppressant shown to inhibit T cell activation. FK506 mediated immunosuppression requires the formation of a complex between FK506, a FK506 binding protein (FKBP) and calcineurin. Numerous FKBPs have been identified in a wide range of species, from single celled organisms to humans. FKBPs show peptidylprolyl cis/trans isomerase (PPIase) activity and have been shown to affect a wide range of cellular processes including protein folding, receptor signaling and apoptosis. FKBPs also affect numerous biological functions in addition to immunosuppression including regulation of cardiac function, neuronal function and development and have been implicated in several diseases including cardiac disease, cancer and neurodegenerative diseases such as Alzheimer's disease. More recently, FKBPs have proven useful as molecular tools for studying protein interactions, localization and functions. This review provides an overview of the current state of knowledge of FKBPs and their numerous biological functions and uses. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Impact of disease-causing mutations on inter-domain interactions in cMyBP-C: a steered molecular dynamics study.

    PubMed

    Krishnamoorthy, Navaneethakrishnan; Gajendrarao, Poornima; Olivotto, Iacopo; Yacoub, Magdi

    2017-07-01

    The molecular interactions of the sarcomeric proteins are essential in the regulation of various cardiac functions. Mutations in the gene MYBPC3 coding for cardiac myosin-binding protein-C (cMyBP-C), a multi-domain protein, are the most common cause of hypertrophic cardiomyopathy (HCM). The N-terminal complex, C1-motif-C2 is a central region in cMyBP-C for the regulation of cardiac muscle contraction. However, the mechanism of binding/unbinding of this complex during health and disease is unknown. Here, we study possible mechanisms of unbinding using steered molecular dynamics simulations for the complex in the wild type, in single mutations (E258K in C1, E441K in C2), as well as in a double mutation (E258K in C1 + E441K in C2), which are associated with severe HCM. The observed molecular events and the calculation of force utilized for the unbinding suggest the following: (i) double mutation can encourage the formation of rigid complex that required large amount of force and long-time to unbind, (ii) C1 appears to start to unbind ahead of C2 regardless of the mutation, and (iii) unbinding of C2 requires larger amount of force than C1. This molecular insight suggests that key HCM-causing mutations might significantly modify the native affinity required for the assembly of the domains in cMyBP-C, which is essential for normal cardiac function.

  17. Long-Duration Space Flight Provokes Pathologic Q-Tc Interval Prolongation

    NASA Technical Reports Server (NTRS)

    D'Aunno, DOminick S.; Dougherty, Anne H.; DeBlock, Heidi F.; Meck, Janice V.

    2002-01-01

    Space flight has a profound influence on the cardiovascular and autonomic nervous systems. Alterations in baroreflex function, plasma catecholamine concentrations, and arterial pressure regulation have been observed. Changes in autonomic regulation of cardiac function may lead to serious rhythm disturbances. In fact, ventricular tachycardia has been reported during long-duration space flight. The study aim was to determine the effects of space flight on cardiac conduction. Methods and Results: Electrocardiograms (ECGs) and serum electrolytes were obtained before and after short-duration (SD) (4-16 days) and long-duration (LD) (4-6 months) missions. Holter recordings were obtained from 3 different subjects before, during and after a 4-month mission. P-R, R-R, and Q-T intervals were measured manually in a random, blinded fashion and Bazzet's formula used to correct the Q-T interval (Q-Tc). Space flight had no clinically significant effect on electrolyte concentrations. P-R and RR intervals were decreased after SD flight (p<0.05) and recovered 3 days after landing. In the same subjects, P-R and Q-Tc intervals were prolonged after LD flight (p<0.01). Clinically significant Q-Tc prolongation (>0.44 sec) occurred during the first month of flight and persisted until 3 days after landing (p<0.01). Conclusions - Space flight alters cardiac conduction with more ominous changes seen with LD missions. Alterations in autonomic tone may explain ECG changes associated with space flight. Primary cardiac changes may also contribute to the conduction changes with LD flight. Q-Tc prolongation may predispose astronauts to ventricular arrhythmias during and after long-duration space flight.

  18. Various Regulatory Modes for Circadian Rhythmicity and Sexual Dimorphism in the Non-Neuronal Cardiac Cholinergic System.

    PubMed

    Oikawa, Shino; Kai, Yuko; Mano, Asuka; Ohata, Hisayuki; Nemoto, Takahiro; Kakinuma, Yoshihiko

    2017-08-01

    Cardiomyocytes possess a non-neuronal cardiac cholinergic system (NNCCS) regulated by a positive feedback system; however, its other regulatory mechanisms remain to be elucidated, which include the epigenetic control or regulation by the female sex steroid, estrogen. Here, the NNCCS was shown to possess a circadian rhythm; its activity was upregulated in the light-off phase via histone acetyltransferase (HAT) activity and downregulated in the light-on phase. Disrupting the circadian rhythm altered the physiological choline acetyltransferase (ChAT) expression pattern. The NNCCS circadian rhythm may be regulated by miR-345, independently of HAT, causing decreased cardiac ChAT expression. Murine cardiac ChAT expression and ACh contents were increased more in female hearts than in male hearts. This upregulation was downregulated by treatment with the estrogen receptor antagonist tamoxifen, and in contrast, estrogen reciprocally regulated cardiac miR-345 expression. These results suggest that the NNCCS is regulated by the circadian rhythm and is affected by sexual dimorphism.

  19. Sympathetic Nervous System Modulation of Inflammation and Remodeling in the Hypertensive Heart

    PubMed Central

    Levick, Scott P.; Murray, David B.; Janicki, Joseph S.; Brower, Gregory L.

    2010-01-01

    Chronic activation of the sympathetic nervous system (SNS) is a key component of cardiac hypertrophy and fibrosis. However, previous studies have provided evidence to also implicate inflammatory cells, including mast cells, in the development of cardiac fibrosis. The current study investigated the potential interaction of cardiac mast cells with the SNS. Eight week old male SHR were sympathectomized to establish the effect of the SNS on cardiac mast cell density, myocardial remodeling and cytokine production in the hypertensive heart. Age-matched WKY served as controls. Cardiac fibrosis and hypertension were significantly attenuated and left ventricular mass normalized while cardiac mast cell density was markedly increased in sympathectomized SHR. Sympathectomy normalized myocardial levels of IFN-γ, IL-6 and IL-10, but had no effect on IL-4. The effect of norepinephrine and substance P on isolated cardiac mast cell activation was investigated as potential mechanisms of interaction between the two. Only substance P elicited mast cell degranulation. Substance P was also shown to induce the production of angiotensin II by a mixed population of isolated cardiac inflammatory cells, including mast cells, lymphocytes and macrophages. These results demonstrate the ability of neuropeptides to regulate inflammatory cell function, providing a potential mechanism by which the SNS and afferent nerves may interact with inflammatory cells in the hypertensive heart. PMID:20048196

  20. Class I HDACs Regulate Angiotensin II-Dependent Cardiac Fibrosis via Fibroblasts and Circulating Fibrocytes

    PubMed Central

    Williams, Sarah M.; Golden-Mason, Lucy; Ferguson, Bradley S.; Douglas, Katherine B.; Cavasin, Maria A.; Demos-Davies, Kim; Yeager, Michael E.; Stenmark, Kurt R.; McKinsey, Timothy A.

    2014-01-01

    Fibrosis, which is defined as excessive accumulation of fibrous connective tissue, contributes to the pathogenesis of numerous diseases involving diverse organ systems. Cardiac fibrosis predisposes individuals to myocardial ischemia, arrhythmias and sudden death, and is commonly associated with diastolic dysfunction. Histone deacetylase (HDAC) inhibitors block cardiac fibrosis in pre-clinical models of heart failure. However, which HDAC isoforms govern cardiac fibrosis, and the mechanisms by which they do so, remains unclear. Here, we show that selective inhibition of class I HDACs potently suppresses angiotensin II (Ang II)-mediated cardiac fibrosis by targeting two key effector cell populations, cardiac fibroblasts and bone marrow-derived fibrocytes. Class I HDAC inhibition blocks cardiac fibroblast cell cycle progression through derepression of the genes encoding the cyclin-dependent kinase (CDK) inhibitors, p15 and p57. In contrast, class I HDAC inhibitors block agonist-dependent differentiation of fibrocytes through a mechanism involving repression of ERK1/2 signaling. These findings define novel roles for class I HDACs in the control of pathological cardiac fibrosis. Furthermore, since fibrocytes have been implicated in the pathogenesis of a variety of human diseases, including heart, lung and kidney failure, our results suggest broad utility for isoform-selective HDAC inhibitors as anti-fibrotic agents that function, in part, by targeting these circulating mesenchymal cells. PMID:24374140

  1. Spaceflight alters autonomic regulation of arterial pressure in humans

    NASA Technical Reports Server (NTRS)

    Fritsch-Yelle, Janice M.; Charles, John B.; Jones, Michele M.; Beightol, Larry A.; Eckberg, Dwain L.

    1994-01-01

    Spaceflight is associated with decreased orthostatic tolerance after landing. Short-duration spaceflight (4 - 5 days) impairs one neutral mechanism: the carotid baroreceptor-cardiac reflex. To understand the effects of longer-duration spaceflight on baroreflex function, we measured R-R interval power spectra, antecubital vein plasma catecholamine levels, carotid baroreceptor-cardiac reflex responses, responses to Valsalva maneuvers, and orthostatic tolerance in 16 astronauts before and after shuttle missions lasting 8 - 14 days. We found the following changes between preflight and landing day: (1) orthostatic tolerance decreased; (2) R-R interval spectral power in the 0.05- to 0.15-Hz band increased; (3) plasma norepinephrine and epinephrine levels increased; (4) the slope, range, and operational point of the carotid baroreceptor cardiac reflex response decreased; and (5) blood pressure and heart rate responses to Valsalva maneuvers were altered. Autonomic changes persisted for several days after landing. These results provide further evidence of functionally relevent reductions in parasympathetic and increases in sympathetic influences on arterial pressure control after spaceflight.

  2. Cardiac vagal control and children’s adaptive functioning: A meta-analysis

    PubMed Central

    Graziano, Paulo; Derefinko, Karen

    2014-01-01

    Polyvagal theory has influenced research on the role of cardiac vagal control, indexed by respiratory sinus arrhythmia withdrawal (RSA-W) during challenging states, in children’s self-regulation. However, it remains unclear how well RSA-W predicts adaptive functioning (AF) outcomes and whether certain caveats of measuring RSA (e.g., respiration) significantly impact these associations. A meta-analysis of 44 studies (n = 4,996 children) revealed small effect sizes such that greater levels of RSA-W were related to fewer externalizing, internalizing, and cognitive/academic problems. In contrast, RSA-W was differentially related to children’s social problems according to sample type (community vs. clinical/at-risk). The relations between RSA-W and children’s AF outcomes were stronger among studies that co-varied baseline RSA and in Caucasian children (no effect was found for respiration). Children from clinical/at-risk samples displayed lower levels of baseline RSA and RSA-W compared to children from community samples. Theoretical/practical implications for the study of cardiac vagal control are discussed. PMID:23648264

  3. miR-155 functions downstream of angiotensin II receptor subtype 1 and calcineurin to regulate cardiac hypertrophy.

    PubMed

    Yang, Yong; Zhou, Yong; Cao, Zheng; Tong, Xin Zhu; Xie, Hua Qiang; Luo, Tao; Hua, Xian Ping; Wang, Han Qin

    2016-09-01

    Cardiac hypertrophy is characterized by maladaptive tissue remodeling that may lead to heart failure or sudden death. MicroRNAs (miRs) are negative regulators of angiotensin II and the angiotensin II receptor subtype 1 (AGTR 1 ), which are two components involved in cardiac hypertrophy. In the present study, the interaction between angiotensin II receptor subtype 1 (AGTR 1 ) signaling and miR-155 was investigated. Rat H9C2 (2-1) cardiomyocytes were transfected with miR-155 analogues or inhibitors, then stimulated with angiotensin II to induce cardiac hypertrophy. miR-155 expression was revealed to be altered following transfection with chemically-modified miR-155 analogues and inhibitors in rat cardiomyocytes. In cell cardiac hypertrophy models, the cell surface area, AGTR 1 , atrial natriuretic peptide and myosin heavy chain-β mRNA expression levels were revealed to be lower in cells stimulated with miR-155 analogue-transfected cells treated with angiotensin II compared with cells stimulated with angiotensin alone (P<0.05), as determined using reverse transcription-polymerase chain reaction (PCR), quantitative PCR and western blot analyses. Furthermore, calcineurin mRNA and protein, intracellular free calcium and nuclear factor of activated T-cells-4 proteins were downregulated in miR-155 analogue-transfected cells treated with angiotensin II, as compared with cells stimulated with angiotensin II alone (P<0.05). In conclusion, the current study indicates that miR-155 may improve cardiac hypertrophy by downregulating AGTR 1 and suppressing the calcium signaling pathways activated by AGTR 1 .

  4. A cardiac pathway of cyclic GMP-independent signaling of guanylyl cyclase A, the receptor for atrial natriuretic peptide

    PubMed Central

    Klaiber, Michael; Dankworth, Beatrice; Kruse, Martin; Hartmann, Michael; Nikolaev, Viacheslav O.; Yang, Ruey-Bing; Völker, Katharina; Gaßner, Birgit; Oberwinkler, Heike; Feil, Robert; Freichel, Marc; Groschner, Klaus; Skryabin, Boris V.; Frantz, Stefan; Birnbaumer, Lutz; Pongs, Olaf; Kuhn, Michaela

    2011-01-01

    Cardiac atrial natriuretic peptide (ANP) regulates arterial blood pressure, moderates cardiomyocyte growth, and stimulates angiogenesis and metabolism. ANP binds to the transmembrane guanylyl cyclase (GC) receptor, GC-A, to exert its diverse functions. This process involves a cGMP-dependent signaling pathway preventing pathological [Ca2+]i increases in myocytes. In chronic cardiac hypertrophy, however, ANP levels are markedly increased and GC-A/cGMP responses to ANP are blunted due to receptor desensitization. Here we show that, in this situation, ANP binding to GC-A stimulates a unique cGMP-independent signaling pathway in cardiac myocytes, resulting in pathologically elevated intracellular Ca2+ levels. This pathway involves the activation of Ca2+‐permeable transient receptor potential canonical 3/6 (TRPC3/C6) cation channels by GC-A, which forms a stable complex with TRPC3/C6 channels. Our results indicate that the resulting cation influx activates voltage-dependent L-type Ca2+ channels and ultimately increases myocyte Ca2+i levels. These observations reveal a dual role of the ANP/GC-A–signaling pathway in the regulation of cardiac myocyte Ca2+i homeostasis. Under physiological conditions, activation of a cGMP-dependent pathway moderates the Ca2+i-enhancing action of hypertrophic factors such as angiotensin II. By contrast, a cGMP-independent pathway predominates under pathophysiological conditions when GC-A is desensitized by high ANP levels. The concomitant rise in [Ca2+]i might increase the propensity to cardiac hypertrophy and arrhythmias. PMID:22027011

  5. Exploring Regulatory Mechanisms of Atrial Myocyte Hypertrophy of Mitral Regurgitation through Gene Expression Profiling Analysis: Role of NFAT in Cardiac Hypertrophy

    PubMed Central

    Chang, Tzu-Hao; Chen, Mien-Cheng; Chang, Jen-Ping; Huang, Hsien-Da; Ho, Wan-Chun; Lin, Yu-Sheng; Pan, Kuo-Li; Huang, Yao-Kuang; Liu, Wen-Hao; Wu, Chia-Chen

    2016-01-01

    Background Left atrial enlargement in mitral regurgitation (MR) predicts a poor prognosis. The regulatory mechanisms of atrial myocyte hypertrophy of MR patients remain unknown. Methods and Results This study comprised 14 patients with MR, 7 patients with aortic valve disease (AVD), and 6 purchased samples from normal subjects (NC). We used microarrays, enrichment analysis and quantitative RT-PCR to study the gene expression profiles in the left atria. Microarray results showed that 112 genes were differentially up-regulated and 132 genes were differentially down-regulated in the left atria between MR patients and NC. Enrichment analysis of differentially expressed genes demonstrated that “NFAT in cardiac hypertrophy” pathway was not only one of the significant associated canonical pathways, but also the only one predicted with a non-zero score of 1.34 (i.e. activated) through Ingenuity Pathway Analysis molecule activity predictor. Ingenuity Pathway Analysis Global Molecular Network analysis exhibited that the highest score network also showed high association with cardiac related pathways and functions. Therefore, 5 NFAT associated genes (PPP3R1, PPP3CB, CAMK1, MEF2C, PLCE1) were studies for validation. The mRNA expressions of PPP3CB and MEF2C were significantly up-regulated, and CAMK1 and PPP3R1 were significantly down-regulated in MR patients compared to NC. Moreover, MR patients had significantly increased mRNA levels of PPP3CB, MEF2C and PLCE1 compared to AVD patients. The atrial myocyte size of MR patients significantly exceeded that of the AVD patients and NC. Conclusions Differentially expressed genes in the “NFAT in cardiac hypertrophy” pathway may play a critical role in the atrial myocyte hypertrophy of MR patients. PMID:27907007

  6. Physiology and Functioning: Parents' Vagal Tone, Emotion Socialization, and Children's Emotion Knowledge

    ERIC Educational Resources Information Center

    Perlman, Susan B.; Camras, Linda A.; Pelphrey, Kevin A.

    2008-01-01

    This study examined relationships among parents' physiological regulation, their emotion socialization behaviors, and their children's emotion knowledge. Parents' resting cardiac vagal tone was measured, and parents provided information regarding their socialization behaviors and family emotional expressiveness. Their 4- or 5-year-old children (N…

  7. Premature Ventricular Contraction Coupling Interval Variability Destabilizes Cardiac Neuronal and Electrophysiological Control: Insights from Simultaneous Cardio-Neural Mapping

    PubMed Central

    Hamon, David; Rajendran, Pradeep S.; Chui, Ray W.; Ajijola, Olujimi A.; Irie, Tadanobu; Talebi, Ramin; Salavatian, Siamak; Vaseghi, Marmar; Bradfield, Jason S.; Armour, J. Andrew; Ardell, Jeffrey L.; Shivkumar, Kalyanam

    2017-01-01

    Background Variability in premature ventricular contraction (PVC) coupling interval (CI) increases the risk of cardiomyopathy and sudden death. The autonomic nervous system regulates cardiac electrical and mechanical indices, and its dysregulation plays an important role in cardiac disease pathogenesis. The impact of PVCs on the intrinsic cardiac nervous system (ICNS), a neural network on the heart, remains unknown. The objective was to determine the effect of PVCs and CI on ICNS function in generating cardiac neuronal and electrical instability using a novel cardio-neural mapping approach. Methods and Results In a porcine model (n=8) neuronal activity was recorded from a ventricular ganglion using a microelectrode array, and cardiac electrophysiological mapping was performed. Neurons were functionally classified based on their response to afferent and efferent cardiovascular stimuli, with neurons that responded to both defined as convergent (local reflex processors). Dynamic changes in neuronal activity were then evaluated in response to right ventricular outflow tract PVCs with fixed short, fixed long, and variable CI. PVC delivery elicited a greater neuronal response than all other stimuli (P<0.001). Compared to fixed short and long CI, PVCs with variable CI had a greater impact on neuronal response (P<0.05 versus short CI), particularly on convergent neurons (P<0.05), as well as neurons receiving sympathetic (P<0.05) and parasympathetic input (P<0.05). The greatest cardiac electrical instability was also observed following variable (short) CI PVCs. Conclusions Variable CI PVCs affect critical populations of ICNS neurons and alter cardiac repolarization. These changes may be critical for arrhythmogenesis and remodeling leading to cardiomyopathy. PMID:28408652

  8. Chronic Cardiac-Targeted RNA Interference for the Treatment of Heart Failure Restores Cardiac Function and Reduces Pathological Hypertrophy

    PubMed Central

    Suckau, Lennart; Fechner, Henry; Chemaly, Elie; Krohn, Stefanie; Hadri, Lahouaria; Kockskämper, Jens; Westermann, Dirk; Bisping, Egbert; Ly, Hung; Wang, Xiaomin; Kawase, Yoshiaki; Chen, Jiqiu; Liang, Lifan; Sipo, Isaac; Vetter, Roland; Weger, Stefan; Kurreck, Jens; Erdmann, Volker; Tschope, Carsten; Pieske, Burkert; Lebeche, Djamel; Schultheiss, Heinz-Peter; Hajjar, Roger J.; Poller, Wolfgang Ch.

    2009-01-01

    Background RNA interference (RNAi) has the potential to be a novel therapeutic strategy in diverse areas of medicine. We report on targeted RNAi for the treatment of heart failure (HF), an important disorder in humans resulting from multiple etiologies. Successful treatment of HF is demonstrated in a rat model of transaortic banding by RNAi targeting of phospholamban (PLB), a key regulator of cardiac Ca2+ homeostasis. Whereas gene therapy rests on recombinant protein expression as its basic principle, RNAi therapy employs regulatory RNAs to achieve its effect. Methods and Results We describe structural requirements to obtain high RNAi activity from adenoviral (AdV) and adeno-associated virus (AAV9) vectors and show that an AdV short hairpin RNA vector (AdV-shRNA) silenced PLB in cardiomyocytes (NRCMs) and improved hemodynamics in HF rats 1 month after aortic root injection. For simplified long-term therapy we developed a dimeric cardiotropic AAV vector (rAAV9-shPLB) delivering RNAi activity to the heart via intravenous injection. Cardiac PLB protein was reduced to 25% and SERCA2a suppression in the HF groups was rescued. In contrast to traditional vectors rAAV9 shows high affinity for myocardium, but low affinity for liver and other organs. rAAV9-shPLB therapy restored diastolic (LVEDP, dp/dtmin, Tau) and systolic (fractional shortening) functional parameters to normal range. The massive cardiac dilation was normalized and the cardiac hypertrophy, cardiomyocyte diameter and cardiac fibrosis significantly reduced. Importantly, there was no evidence of microRNA deregulation or hepatotoxicity during these RNAi therapies. Conclusion Our data show, for the first time, high efficacy of an RNAi therapeutic strategy in a cardiac disease. PMID:19237664

  9. Notch3 Ameliorates Cardiac Fibrosis After Myocardial Infarction by Inhibiting the TGF-β1/Smad3 Pathway.

    PubMed

    Zhang, Mingming; Pan, Xietian; Zou, Qian; Xia, Yuesheng; Chen, Jiangwei; Hao, Qimeng; Wang, Haichang; Sun, Dongdong

    2016-10-01

    Notch3 and TGF-β1 signaling play a key role in the pathogenesis and progression of chronic cardiovascular disease. However, whether Notch3 protects against myocardial infarction (MI) and the underlying mechanisms remains unknown. C57BL/6 mice were randomized to be treated with Notch3 siRNA (siNotch3) or lentivirus carrying Notch3 cDNA (Notch3) before coronary artery ligation. Four weeks after constructing MI model, cardiac function and fibrosis were compared between groups. The cardiac fibroblast cells (CFs) were isolated from newborn C57BL/6 mice (1-3 days old) and transfected with lentivirus carrying Notch3 cDNA. TGF-β1 (5 ng/ml), a well-known pro-fibrotic factor, was administered 72 h after Notch3 cDNA administration in CFs. The related proteins of fibrosis such as a-smooth muscle actin (a-SMA), Type I collagen, metalloprotease (MMP)-9 and the tissue inhibitor of metalloproteinases (TIMP)-2 were examined by western blot analysis. Notch3 cDNA treatment attenuated cardiac damage and inhibited fibrosis in mice with MI. Meanwhile, Notch3 siRNA administration aggravated cardiac function damage and markedly enhanced cardiac fibrosis in mice with MI. Overexpression of Notch3 inhibited TGF-β1-induced fibroblast-myofibroblast transition of mouse cardiac fibroblast cells, as evidenced by down-regulating a-SMA and Type I collagen expression. Notch3 cDNA treatment also increased MMP-9 expression and decreased TIMP-2 expression in the TGF-β1-stimulated cells. This study indicates that Notch3 is an important protective factor for cardiac fibrosis in a MI model, and the protective effect of Notch3 is attributable to its action on TGF-β1/Smad3 signaling.

  10. Transcriptional Reversion of Cardiac Myocyte Fate During Mammalian Cardiac Regeneration

    PubMed Central

    O’Meara, Caitlin C.; Wamstad, Joseph A.; Gladstone, Rachel; Fomovsky, Gregory M.; Butty, Vincent L.; Shrikumar, Avanti; Gannon, Joseph; Boyer, Laurie A.; Lee, Richard T.

    2014-01-01

    Rationale Neonatal mice have the capacity to regenerate their hearts in response to injury, but this potential is lost after the first week of life. The transcriptional changes that underpin mammalian cardiac regeneration have not been fully characterized at the molecular level. Objective The objectives of our study were to determine if myocytes revert the transcriptional phenotype to a less differentiated state during regeneration and to systematically interrogate the transcriptional data to identify and validate potential regulators of this process. Methods and Results We derived a core transcriptional signature of injury-induced cardiac myocyte regeneration in mouse by comparing global transcriptional programs in a dynamic model of in vitro and in vivo cardiac myocyte differentiation, in vitro cardiac myocyte explant model, as well as a neonatal heart resection model. The regenerating mouse heart revealed a transcriptional reversion of cardiac myocyte differentiation processes including reactivation of latent developmental programs similar to those observed during de-stabilization of a mature cardiac myocyte phenotype in the explant model. We identified potential upstream regulators of the core network, including interleukin 13 (IL13), which induced cardiac myocyte cell cycle entry and STAT6/STAT3 signaling in vitro. We demonstrate that STAT3/periostin and STAT6 signaling are critical mediators of IL13 signaling in cardiac myocytes. These downstream signaling molecules are also modulated in the regenerating mouse heart. Conclusions Our work reveals new insights into the transcriptional regulation of mammalian cardiac regeneration and provides the founding circuitry for identifying potential regulators for stimulating heart regeneration. PMID:25477501

  11. Cardiac Expression of Human Type 2 Iodothyronine Deiodinase Increases Glucose Metabolism and Protects Against Doxorubicin-induced Cardiac Dysfunction in Male Mice

    PubMed Central

    Hong, Eun-Gyoung; Kim, Brian W.; Young Jung, Dae; Hun Kim, Jong; Yu, Tim; Seixas Da Silva, Wagner; Friedline, Randall H.; Bianco, Suzy D.; Seslar, Stephen P.; Wakimoto, Hiroko; Berul, Charles I.; Russell, Kerry S.; Won Lee, Ki; Larsen, P. Reed; Bianco, Antonio C.

    2013-01-01

    Altered glucose metabolism in the heart is an important characteristic of cardiovascular and metabolic disease. Because thyroid hormones have major effects on peripheral metabolism, we examined the metabolic effects of heart-selective increase in T3 using transgenic mice expressing human type 2 iodothyronine deiodinase (D2) under the control of the α-myosin heavy chain promoter (MHC-D2). Hyperinsulinemic-euglycemic clamps showed normal whole-body glucose disposal but increased hepatic insulin action in MHC-D2 mice as compared to wild-type (WT) littermates. Insulin-stimulated glucose uptake in heart was not altered, but basal myocardial glucose metabolism was increased by more than two-fold in MHC-D2 mice. Myocardial lipid levels were also elevated in MHC-D2 mice, suggesting an overall up-regulation of cardiac metabolism in these mice. The effects of doxorubicin (DOX) treatment on cardiac function and structure were examined using M-mode echocardiography. DOX treatment caused a significant reduction in ventricular fractional shortening and resulted in more than 50% death in WT mice. In contrast, MHC-D2 mice showed increased survival rate after DOX treatment, and this was associated with a six-fold increase in myocardial glucose metabolism and improved cardiac function. Myocardial activity and expression of AMPK, GLUT1, and Akt were also elevated in MHC-D2 and WT mice following DOX treatment. Thus, our findings indicate an important role of thyroid hormone in cardiac metabolism and further suggest a protective role of glucose utilization in DOX-mediated cardiac dysfunction. PMID:23861374

  12. Loss of Prox1 in striated muscle causes slow to fast skeletal muscle fiber conversion and dilated cardiomyopathy.

    PubMed

    Petchey, Louisa K; Risebro, Catherine A; Vieira, Joaquim M; Roberts, Tom; Bryson, John B; Greensmith, Linda; Lythgoe, Mark F; Riley, Paul R

    2014-07-01

    Correct regulation of troponin and myosin contractile protein gene isoforms is a critical determinant of cardiac and skeletal striated muscle development and function, with misexpression frequently associated with impaired contractility or disease. Here we reveal a novel requirement for Prospero-related homeobox factor 1 (Prox1) during mouse heart development in the direct transcriptional repression of the fast-twitch skeletal muscle genes troponin T3, troponin I2, and myosin light chain 1. A proportion of cardiac-specific Prox1 knockout mice survive beyond birth with hearts characterized by marked overexpression of fast-twitch genes and postnatal development of a fatal dilated cardiomyopathy. Through conditional knockout of Prox1 from skeletal muscle, we demonstrate a conserved requirement for Prox1 in the repression of troponin T3, troponin I2, and myosin light chain 1 between cardiac and slow-twitch skeletal muscle and establish Prox1 ablation as sufficient to cause a switch from a slow- to fast-twitch muscle phenotype. Our study identifies conserved roles for Prox1 between cardiac and skeletal muscle, specifically implicated in slow-twitch fiber-type specification, function, and cardiomyopathic disease.

  13. Loss of Prox1 in striated muscle causes slow to fast skeletal muscle fiber conversion and dilated cardiomyopathy

    PubMed Central

    Petchey, Louisa K.; Risebro, Catherine A.; Vieira, Joaquim M.; Roberts, Tom; Bryson, John B.; Greensmith, Linda; Lythgoe, Mark F.; Riley, Paul R.

    2014-01-01

    Correct regulation of troponin and myosin contractile protein gene isoforms is a critical determinant of cardiac and skeletal striated muscle development and function, with misexpression frequently associated with impaired contractility or disease. Here we reveal a novel requirement for Prospero-related homeobox factor 1 (Prox1) during mouse heart development in the direct transcriptional repression of the fast-twitch skeletal muscle genes troponin T3, troponin I2, and myosin light chain 1. A proportion of cardiac-specific Prox1 knockout mice survive beyond birth with hearts characterized by marked overexpression of fast-twitch genes and postnatal development of a fatal dilated cardiomyopathy. Through conditional knockout of Prox1 from skeletal muscle, we demonstrate a conserved requirement for Prox1 in the repression of troponin T3, troponin I2, and myosin light chain 1 between cardiac and slow-twitch skeletal muscle and establish Prox1 ablation as sufficient to cause a switch from a slow- to fast-twitch muscle phenotype. Our study identifies conserved roles for Prox1 between cardiac and skeletal muscle, specifically implicated in slow-twitch fiber-type specification, function, and cardiomyopathic disease. PMID:24938781

  14. The amelioration of cardiac dysfunction after myocardial infarction by the injection of keratin biomaterials derived from human hair.

    PubMed

    Shen, Deliang; Wang, Xiaofang; Zhang, Li; Zhao, Xiaoyan; Li, Jingyi; Cheng, Ke; Zhang, Jinying

    2011-12-01

    Cardiac dysfunction following acute myocardial infarction is a major cause of advanced cardiomyopathy. Conventional pharmacological therapies rely on prompt reperfusion and prevention of repetitive maladaptive pathways. Keratin biomaterials can be manufactured in an autologous fashion and are effective in various models of tissue regeneration. However, its potential application in cardiac regeneration has not been tested. Keratin biomaterials were derived from human hair and its structure morphology, carryover of beneficial factors, biocompatibility with cardiomyocytes, and in vivo degradation profile were characterized. After delivery into infarcted rat hearts, the keratin scaffolds were efficiently infiltrated by cardiomyocytes and endothelial cells. Injection of keratin biomaterials promotes angiogenesis but does not exacerbate inflammation in the post-MI hearts. Compared to control-injected animals, keratin biomaterials-injected animals exhibited preservation of cardiac function and attenuation of adverse ventricular remodeling over the 8 week following time course. Tissue western blot analysis revealed up-regulation of beneficial factors (BMP4, NGF, TGF-beta) in the keratin-injected hearts. The salient functional benefits, the simplicity of manufacturing and the potentially autologous nature of this biomaterial provide impetus for further translation to the clinic. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. PH domain leucine-rich repeat protein phosphatase 2 (PHLPP2) regulates G-protein-coupled receptor kinase 5 (GRK5)-induced cardiac hypertrophy in vitro.

    PubMed

    Yeh, Szu-Tsen; Zambrano, Cristina M; Koch, Walter J; Purcell, Nicole H

    2018-05-25

    PH domain leucine-rich repeat protein phosphatase (PHLPP) is a serine/threonine phosphatase that has been shown to regulate cell growth and survival through dephosphorylation of several members of the AGC family of kinases. G-protein-coupled receptor kinase 5 (GRK5) is an AGC kinase that regulates phenylephrine (PE)-induced cardiac hypertrophy through its noncanonical function of directly targeting proteins to the nucleus to regulate transcription. Here we investigated the possibility that the PHLPP2 isoform can regulate GRK5-induced cardiomyocyte hypertrophy in neonatal rat ventricular myocytes (NRVMs). We show that removal of PHLPP2 by siRNA induces hypertrophic growth of NRVMs as measured by cell size changes at baseline, potentiated PE-induced cell size changes, and re-expression of fetal genes atrial natriuretic factor and brain natriuretic peptide. Endogenous GRK5 and PHLPP2 were found to interact in NRVMs, and PE-induced nuclear accumulation of GRK5 was enhanced upon down-regulation of PHLPP2. Conversely, overexpression of PHLPP2 blocked PE-induced hypertrophic growth, re-expression of fetal genes, and nuclear accumulation of GRK5, which depended on its phosphatase activity. Finally, using siRNA against GRK5, we found that GRK5 was necessary for the hypertrophic response induced by PHLPP2 knockdown. Our findings demonstrate for the first time a novel regulation of GRK5 by the phosphatase PHLPP2, which modulates hypertrophic growth. Understanding the signaling pathways affected by PHLPP2 has potential for new therapeutic targets in the treatment of cardiac hypertrophy and failure. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  16. TRPV4 channels: physiological and pathological role in cardiovascular system.

    PubMed

    Randhawa, Puneet Kaur; Jaggi, Amteshwar Singh

    2015-11-01

    TRPV4 channels are non-selective cation channels permeable to Ca(2+), Na(+), and Mg(2+) ions. Recently, TRPV4 channels have received considerable attention as these channels are widely expressed in the cardiovascular system including endothelial cells, cardiac fibroblasts, vascular smooth muscles, and peri-vascular nerves. Therefore, these channels possibly play a pivotal role in the maintenance of cardiovascular homeostasis. TRPV4 channels critically regulate flow-induced arteriogenesis, TGF-β1-induced differentiation of cardiac fibroblasts into myofibroblasts, and heart failure-induced pulmonary edema. These channels also mediate hypoxia-induced increase in proliferation and migration of pulmonary artery smooth muscle cells and progression of pulmonary hypertension. These channels also maintain flow-induced vasodilation and preserve vascular function by directly activating Ca(2+)-dependent KCa channels. Furthermore, these may also induce vasodilation and maintain blood pressure indirectly by evoking the release of NO, CGRP, and substance P. The present review discusses the evidences and the potential mechanisms implicated in diverse responses including arteriogenesis, cardiac remodeling, congestive heart failure-induced pulmonary edema, pulmonary hypertension, flow-induced dilation, regulation of blood pressure, and hypoxic preconditioning.

  17. Protein O-linked ß-N-acetylglucosamine: A novel effector of cardiomyocyte metabolism and function

    PubMed Central

    Darley-Usmar, Victor M.; Ball, Lauren E.; Chatham, John C.

    2014-01-01

    The post-translational modification of serine and threonine residues of nuclear and cytoplasmic proteins by the O-linked attachment of the monosaccharide ß-N-acetyl-glucosamine (O-GlcNAc) is emerging as an important mechanism for the regulation of numerous biological processes critical for normal cell function. Active synthesis of O-GlcNAc is essential for cell viability and acute activation of pathways resulting in increased protein O-GlcNAc levels improves the tolerance of cells to a wide range of stress stimuli. Conversely sustained increases in O-GlcNAc levels have been implicated in numerous chronic disease states, especially as a pathogenic contributor to diabetic complications. There has been increasing interest in the role of O-GlcNAc in the heart and vascular system and acute activation of O-GlcNAc levels have been shown to reduce ischemia/reperfusion injury attenuate vascular injury responses as well mediate some of the detrimental effects of diabetes and hypertension on cardiac and vascular function. Here we provide an overview of our current understanding of pathways regulating protein O-GlcNAcylation, summarize the different methodologies for identifying and characterizing O-GlcNAcylated proteins and subsequently focus on two emerging areas: 1) the role of O-GlcNAc as a potential regulator of cardiac metabolism and 2) the cross talk between O-GlcNAc and reactive oxygen species. PMID:21878340

  18. MicroRNA-150 protects the mouse heart from ischaemic injury by regulating cell death

    PubMed Central

    Tang, Yaoping; Wang, Yongchao; Park, Kyoung-mi; Hu, Qiuping; Teoh, Jian-peng; Broskova, Zuzana; Ranganathan, Punithavathi; Jayakumar, Calpurnia; Li, Jie; Su, Huabo; Tang, Yaoliang; Ramesh, Ganesan; Kim, Il-man

    2015-01-01

    Aims Cardiac injury is accompanied by dynamic changes in the expression of microRNAs (miRs). For example, miR-150 is down-regulated in patients with acute myocardial infarction, atrial fibrillation, dilated and ischaemic cardiomyopathy as well as in various mouse heart failure (HF) models. Circulating miR-150 has been recently proposed as a better biomarker of HF than traditional clinical markers such as brain natriuretic peptide. We recently showed using the β-arrestin-biased β-blocker, carvedilol that β-arrestin1-biased β1-adrenergic receptor cardioprotective signalling stimulates the processing of miR-150 in the heart. However, the potential role of miR-150 in ischaemic injury and HF is unknown. Methods and results Here, we show that genetic deletion of miR-150 in mice causes abnormalities in cardiac structural and functional remodelling after MI. The cardioprotective roles of miR-150 during ischaemic injury were in part attributed to direct repression of the pro-apoptotic genes egr2 (zinc-binding transcription factor induced by ischaemia) and p2x7r (pro-inflammatory ATP receptor) in cardiomyocytes. Conclusion These findings reveal a pivotal role for miR-150 as a regulator of cardiomyocyte survival during cardiac injury. PMID:25824147

  19. Characterization of glutamatergic neurons in the rat atrial intrinsic cardiac ganglia that project to the cardiac ventricular wall.

    PubMed

    Wang, Ting; Miller, Kenneth E

    2016-08-04

    The intrinsic cardiac nervous system modulates cardiac function by acting as an integration site for regulating autonomic efferent cardiac output. This intrinsic system is proposed to be composed of a short cardio-cardiac feedback control loop within the cardiac innervation hierarchy. For example, electrophysiological studies have postulated the presence of sensory neurons in intrinsic cardiac ganglia (ICG) for regional cardiac control. There is still a knowledge gap, however, about the anatomical location and neurochemical phenotype of sensory neurons inside ICG. In the present study, rat ICG neurons were characterized neurochemically with immunohistochemistry using glutamatergic markers: vesicular glutamate transporters 1 and 2 (VGLUT1; VGLUT2), and glutaminase (GLS), the enzyme essential for glutamate production. Glutamatergic neurons (VGLUT1/VGLUT2/GLS) in the ICG that have axons to the ventricles were identified by retrograde tracing of wheat germ agglutinin-horseradish peroxidase (WGA-HRP) injected in the ventricular wall. Co-labeling of VGLUT1, VGLUT2, and GLS with the vesicular acetylcholine transporter (VAChT) was used to evaluate the relationship between post-ganglionic autonomic neurons and glutamatergic neurons. Sequential labeling of VGLUT1 and VGLUT2 in adjacent tissue sections was used to evaluate the co-localization of VGLUT1 and VGLUT2 in ICG neurons. Our studies yielded the following results: (1) ICG contain glutamatergic neurons with GLS for glutamate production and VGLUT1 and 2 for transport of glutamate into synaptic vesicles; (2) atrial ICG contain neurons that project to ventricle walls and these neurons are glutamatergic; (3) many glutamatergic ICG neurons also were cholinergic, expressing VAChT; (4) VGLUT1 and VGLUT2 co-localization occurred in ICG neurons with variation of their protein expression level. Investigation of both glutamatergic and cholinergic ICG neurons could help in better understanding the function of the intrinsic cardiac nervous system. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  20. Regression of Pathological Cardiac Hypertrophy: Signaling Pathways and Therapeutic Targets

    PubMed Central

    Hou, Jianglong; Kang, Y. James

    2012-01-01

    Pathological cardiac hypertrophy is a key risk factor for heart failure. It is associated with increased interstitial fibrosis, cell death and cardiac dysfunction. The progression of pathological cardiac hypertrophy has long been considered as irreversible. However, recent clinical observations and experimental studies have produced evidence showing the reversal of pathological cardiac hypertrophy. Left ventricle assist devices used in heart failure patients for bridging to transplantation not only improve peripheral circulation but also often cause reverse remodeling of the geometry and recovery of the function of the heart. Dietary supplementation with physiologically relevant levels of copper can reverse pathological cardiac hypertrophy in mice. Angiogenesis is essential and vascular endothelial growth factor (VEGF) is a constitutive factor for the regression. The action of VEGF is mediated by VEGF receptor-1, whose activation is linked to cyclic GMP-dependent protein kinase-1 (PKG-1) signaling pathways, and inhibition of cyclic GMP degradation leads to regression of pathological cardiac hypertrophy. Most of these pathways are regulated by hypoxia-inducible factor. Potential therapeutic targets for promoting the regression include: promotion of angiogenesis, selective enhancement of VEGF receptor-1 signaling pathways, stimulation of PKG-1 pathways, and sustention of hypoxia-inducible factor transcriptional activity. More exciting insights into the regression of pathological cardiac hypertrophy are emerging. The time of translating the concept of regression of pathological cardiac hypertrophy to clinical practice is coming. PMID:22750195

  1. Myocardial Autophagy after Severe Burn in Rats

    PubMed Central

    Zhang, Qiong; Shi, Xiao-hua; Huang, Yue-sheng

    2012-01-01

    Background Autophagy plays a major role in myocardial ischemia and hypoxia injury. The present study investigated the effects of autophagy on cardiac dysfunction in rats after severe burn. Methods Protein expression of the autophagy markers LC3 and Beclin 1 were determined at 0, 1, 3, 6, and 12 h post-burn in Sprague Dawley rats subjected to 30% total body surface area 3rd degree burns. Autophagic, apoptotic, and oncotic cell death were evaluated in the myocardium at each time point by immunofluorescence. Changes of cardiac function were measured in a Langendorff model of isolated heart at 6 h post-burn, and the autophagic response was measured following activation by Rapamycin and inhibition by 3-methyladenine (3-MA). The angiotensin converting enzyme inhibitor enalaprilat, the angiotensin receptor I blocker losartan, and the reactive oxygen species inhibitor diphenylene iodonium (DPI) were also applied to the ex vivo heart model to examine the roles of these factors in post-burn cardiac function. Results Autophagic cell death was first observed in the myocardium at 3 h post-burn, occurring in 0.008 ± 0.001% of total cardiomyocytes, and continued to increase to a level of 0.022 ± 0.005% by 12 h post-burn. No autophagic cell death was observed in control hearts. Compared with apoptosis, autophagic cell death occurred earlier and in larger quantities. Rapamycin enhanced autophagy and decreased cardiac function in isolated hearts 6 h post-burn, while 3-MA exerted the opposite response. Enalaprilat, losartan, and DPI all inhibited autophagy and enhanced heart function. Conclusion Myocardial autophagy is enhanced in severe burns and autophagic cell death occurred early at 3 h post-burn, which may contribute to post-burn cardiac dysfunction. Angiotensin II and reactive oxygen species may play important roles in this process by regulating cell signaling transduction. PMID:22768082

  2. Functionalized Dendrimer-Based Delivery of Angiotensin Type 1 Receptor siRNA for Preserving Cardiac Function Following Infarction

    PubMed Central

    Liu, Jie; Gu, Catherine; Cabigas, E. Bernadette; Pendergrass, Karl D.; Brown, Milton E.; Luo, Ying; Davis, Michael E.

    2013-01-01

    Cardiovascular disease (CVD) is the leading cause of death throughout the world and much pathology is associated with upregulation of inflammatory genes. Gene silencing using RNA interference is a powerful tool in regulating gene expression, but its application in CVDs has been prevented by the lack of efficient delivery systems. We report here the development of tadpole dendrimeric materials for siRNA delivery in a rat ischemia-reperfusion (IR) model. Angiotensin II (Ang II) type 1 receptor (AT1R), the major receptor that mediates most adverse effects of Ang II, was chosen to be the silencing targeting. Among the three tadpole dendrimers synthesized, the oligo-arginine conjugated dendrimer loaded with siRNA demonstrated effective down-regulation in AT1R expression in cardiomyocytes in vitro. When the dendrimeric material was applied in vivo, the siRNA delivery prevented the increase in AT1R levels and significantly improved cardiac function recovery compared to saline injection or empty dendrimer treated groups after IR injury. These experiments demonstrate a potential treatment for dysfunction caused by IR injury and may represent an alternative to AT1R blockade. PMID:23433774

  3. Application of Acute Maximal Exercise to Enhance Mechanisms Underlying Blood Pressure Regulation and Orthostatic Tolerance After Exposure to Simulated Microgravity

    NASA Technical Reports Server (NTRS)

    Convertino, V. A.; Engelke, K. A.; Doerr, D. F.

    1999-01-01

    Development of orthostatic hypotension and intolerance in astronauts who return to earth following a spaceflight mission represents a significant operational concern to NASA. Reduced plasma volume, vascular resistance, and baroreflex responsiveness following exposure to actual and ground-based analogs of microgravity have been associated with orthostatic instability, suggesting that these mechanisms may contribute alone or in combination to compromise of blood pressure regulation after spaceflight. It therefore seems reasonable that development of procedures designed to reverse or restore the effects of microgravity on regulatory mechanisms of blood volume, vascular resistance and cardiac function should provide some protection against postflight orthostatic intolerance. Several investigations have provided evidence that a single bout of exhaustive dynamic exercise enhances functions of mechanisms responsible for blood pressure stability. Therefore, the purpose of our research project was to conduct a series of experiments using ground-based analogs of reduced gravity (i.e., prolonged restriction to the upright standing posture) in human subjects to investigate the hypothesis that a single bout of dynamic maximal exercise would restore blood volume, vascular resistance and cardiac function and improve blood pressure stability.

  4. Electrical stimulation as a biomimicry tool for regulating muscle cell behavior

    PubMed Central

    Ahadian, Samad; Ostrovidov, Serge; Hosseini, Vahid; Kaji, Hirokazu; Ramalingam, Murugan; Bae, Hojae; Khademhosseini, Ali

    2013-01-01

    There is a growing need to understand muscle cell behaviors and to engineer muscle tissues to replace defective tissues in the body. Despite a long history of the clinical use of electric fields for muscle tissues in vivo, electrical stimulation (ES) has recently gained significant attention as a powerful tool for regulating muscle cell behaviors in vitro. ES aims to mimic the electrical environment of electroactive muscle cells (e.g., cardiac or skeletal muscle cells) by helping to regulate cell-cell and cell-extracellular matrix (ECM) interactions. As a result, it can be used to enhance the alignment and differentiation of skeletal or cardiac muscle cells and to aid in engineering of functional muscle tissues. Additionally, ES can be used to control and monitor force generation and electrophysiological activity of muscle tissues for bio-actuation and drug-screening applications in a simple, high-throughput, and reproducible manner. In this review paper, we briefly describe the importance of ES in regulating muscle cell behaviors in vitro, as well as the major challenges and prospective potential associated with ES in the context of muscle tissue engineering. PMID:23823664

  5. Electrical stimulation as a biomimicry tool for regulating muscle cell behavior.

    PubMed

    Ahadian, Samad; Ostrovidov, Serge; Hosseini, Vahid; Kaji, Hirokazu; Ramalingam, Murugan; Bae, Hojae; Khademhosseini, Ali

    2013-01-01

    There is a growing need to understand muscle cell behaviors and to engineer muscle tissues to replace defective tissues in the body. Despite a long history of the clinical use of electric fields for muscle tissues in vivo, electrical stimulation (ES) has recently gained significant attention as a powerful tool for regulating muscle cell behaviors in vitro. ES aims to mimic the electrical environment of electroactive muscle cells (e.g., cardiac or skeletal muscle cells) by helping to regulate cell-cell and cell-extracellular matrix (ECM) interactions. As a result, it can be used to enhance the alignment and differentiation of skeletal or cardiac muscle cells and to aid in engineering of functional muscle tissues. Additionally, ES can be used to control and monitor force generation and electrophysiological activity of muscle tissues for bio-actuation and drug-screening applications in a simple, high-throughput, and reproducible manner. In this review paper, we briefly describe the importance of ES in regulating muscle cell behaviors in vitro, as well as the major challenges and prospective potential associated with ES in the context of muscle tissue engineering.

  6. AKAPs: The Architectural Underpinnings of Local cAMP signaling

    PubMed Central

    Kritzer, Michael D.; Li, Jinliang; Dodge-Kafka, Kimberly; Kapiloff, Michael S.

    2011-01-01

    The cAMP-dependent protein kinase A (PKA) is targeted to specific compartments in the cardiac myocyte by A-kinase anchoring proteins (AKAPs), a diverse set of scaffold proteins that have been implicated in the regulation of excitation-contraction coupling and cardiac remodeling. AKAPs bind not only PKA, but also a large variety of structural and signaling molecules. In this review, we discuss the basic concepts underlying compartmentation of cAMP and PKA signaling, as well as a few of the individual AKAPs that have been shown to be functionally relevant in the heart. PMID:21600214

  7. The role of the anterodorsal thalami nuclei in the regulation of adrenal medullary function, beta-adrenergic cardiac receptors and anxiety responses in maternally deprived rats under stressful conditions.

    PubMed

    Suárez, M M; Rivarola, M A; Molina, S M; Levin, G M; Enders, J; Paglini, P

    2004-09-01

    Maternal separation can interfere with growth and development of the brain and represents a significant risk factor for adult psychopathology. In rodents, prolonged separation from the mother affects the behavioral and endocrine responses to stress for the lifetime of the animal. Limbic structures such as the anterodorsal thalamic nuclei (ADTN) play an important role in the control of neuroendocrine and sympathetic-adrenal function. In view of these findings we hypothesized that the function of the ADTN may be affected in an animal model of maternal deprivation. To test this hypothesis female rats were isolated 4.5 h daily, during the first 3 weeks of life and tested as adults. We evaluated plasma epinephrine (E) and norepinephrine (NE), cardiac adrenoreceptors and anxiety responses after maternal deprivation and variable chronic stress (VCS) in ADTN-lesioned rats. Thirty days after ADTN lesion, in non-maternally deprived rats basal plasma NE concentration was greater and cardiac beta-adrenoreceptor density was lower than that in the sham-lesioned group. Maternal deprivation induced a significant increase in basal plasma NE concentration, which was greater in lesioned rats, and cardiac beta-adrenoreceptor density was decreased in lesioned rats. After VCS plasma catecholamine concentration was much greater in non-maternally deprived rats than in maternally-deprived rats; cardiac beta-adrenoreceptor density was decreased by VCS in both maternally-deprived and non-deprived rats, but more so in non-deprived rats, and further decreased by the ADTN lesion. In the plus maze test, the number of open arm entries was greater in the maternally deprived and in the stressed rats. Thus, sympathetic-adrenal medullary activation produced by VCS was much greater in non-deprived rats, and was linked to a down regulation of myocardial beta-adrenoceptors. The ADTN are not responsible for the reduced catecholamine responses to stress in maternally-deprived rats. Maternal deprivation or chronic stress also induced a long term anxiolytic effect, which was also not affected by ADTN lesion.

  8. Isolation and characterization of Xenopus laevis homologs of the mouse inv gene and functional analysis of the conserved calmodulin binding sites.

    PubMed

    Yasuhiko, Yukuto; Shiokawa, Koichiro; Mochizuki, Toshio; Asashima, Makoto; Yokoyama, Takahiko

    2006-04-01

    The homozygous inv (inversion of embryonic turning) mouse mutant shows situs inversus and polycystic kidney disease, both of which result from the lack of the inv gene. Previously, we suggested that inv may be important for the left-right axis formation, not only in mice but also in Xenopus, and that calmodulin regulates this inv protein function. Here, we isolated and characterized two Xenopus laevis homologs (Xinv-1 and Xinv-2) of the mouse inv gene, and performed functional analysis of the conserved IQ motifs that interact with calmodulin. Xinv-1 expresses early in development in the same manner as mouse inv does. Unexpectedly, a full-length Xenopus inv mRNA did not randomize cardiac orientation when injected into Xenopus embryos, which is different from mouse inv mRNA. Contrary to mouse inv mRNA, Xenopus inv mRNA with mutated IQ randomized cardiac orientation. The present study indicates that calmodulin binding sites (IQ motifs) are crucial in controlling the biological activity of both mouse and Xenopus inv proteins. Although mouse and Xenopus inv genes have a quite similar structure, the interaction with calmodulin and IQ motifs of Xenopus inv and mouse inv proteins may regulate their function in different ways.

  9. Advances in the study on endogenous sulfur dioxide in the cardiovascular system.

    PubMed

    Tian, Hong

    2014-01-01

    This review summarized the current advances in understanding the role of the novel gasotransmitter, sulfur dioxide (SO2), in the cardiovascular system. Articles on the advances in the study of the role of endogenous sulfur dioxide in the cardiovascular system were accessed from PubMed and CNKI from 2003 to 2013, using keywords such as "endogenous sulfur dioxide" and "cardiovascular system". Articles with regard to the role of SO2 in the regulation of cardiovascular system were selected. Recently, scientists discovered that an endogenous SO2 pathway is present in the cardiovascular system and exerts physiologically significant effects, such as regulation of the cardiac function and the pathogenesis of various cardiopulmonary diseases such as hypoxic pulmonary hypertension, hypertension, coronary atherosclerosis, and cardiac ischemia-reperfusion (I/R) injury, in the cardiovascular system. Endogenous SO2 is a novel member of the gasotransmitter family in addition to the nitric oxide (NO), carbon monoxide (CO), and hydrogen sulfide (H2S). Studies indicated that it has a role in regulating the cardiovascular disease.

  10. Therapeutic potential of microRNAs in heart failure.

    PubMed

    Dorn, Gerald W

    2010-05-01

    There is an ongoing explosion of information about microRNAs (miRs) in cardiac disease. These small noncoding RNAs regulate protein expression by destabilization and translational inhibition of target mRNAs. Similar to mRNAs, miRs are regulated in cardiac hypertrophy and heart failure, but miR expression profiles appear to be more sensitive than mRNA signatures to changes in clinical status, suggesting that miR levels in myocardium or plasma could enhance clinical diagnostics. Single miRs can target dozens or hundreds of different mRNAs, complicating attempts to determine their individual physiologic effects. However, manipulating individual miRs by overexpression or gene ablation in experimental models has begun to unravel this conundrum: Single miRs tend to regulate numerous effectors within the same functional pathway, producing a coherent physiologic response via multiple parallel perturbations. miRs are attractive nodal therapeutic targets, and stable miR mimetics (agomiRs) and antagonists (antagomiRs) are being evaluated to prevent or reverse heart failure.

  11. From Syncitium to Regulated Pump: A Cardiac Muscle Cellular Update

    ERIC Educational Resources Information Center

    Korzick, Donna H.

    2011-01-01

    The primary purpose of this article is to present a basic overview of some key teaching concepts that should be considered for inclusion in an six- to eight-lecture introductory block on the regulation of cardiac performance for graduate students. Within the context of cardiac excitation-contraction coupling, this review incorporates information…

  12. Overnutrition and maternal obesity in sheep pregnancy alter the JNK-IRS-1 signaling cascades and cardiac function in the fetal heart

    PubMed Central

    Wang, Jingying; Ma, Heng; Tong, Chao; Zhang, Hanying; Lawlis, Gavin B.; Li, Yuanda; Zang, Mengwei; Ren, Jun; Nijland, Mark J.; Ford, Stephen P.; Nathanielsz, Peter W.; Li, Ji

    2010-01-01

    Maternal obesity in pregnancy predisposes offspring to insulin resistance and associated cardiovascular disease. Here, we used a well-established sheep model to investigate the effects of maternal obesity on cardiac functions. Multiparous ewes were assigned to a control (CON) diet [100% of National Research Council (NRC) recommendations] or an obesogenic (OB) diet (150% of NRC recommendations) from 60 d before conception to necropsy on d 135 of pregnancy. Fetal blood glucose and insulin were increased (P<0.01, n=8) in OB (35.09±2.03 mg/dl and 3.40±1.43 μU/ml, respectively) vs. CON ewes (23.80±1.38 mg/dl and 0.769±0.256 μU/ml). Phosphorylation of AMP-activated protein kinase (AMPK), a cardioprotective signaling pathway, was reduced (P<0.05), while the stress signaling pathway, p38 MAPK, was up-regulated (P<0.05) in OB maternal and fetal hearts. Phosphorylation of c-Jun N-terminal kinase (JNK) and insulin receptor substrate-1 (IRS-1) at Ser-307 were increased (P<0.05) in OB fetal heart associated with lower downstream PI3K-Akt activity (P<0.05), indicating impaired cardiac insulin signaling. Although OB fetal hearts exhibited a normal contractile function vs. CON fetal hearts during basal perfusion, they developed an impaired heart-rate-left-ventricular-developed pressure product in response to high workload stress. Taken together, fetuses of OB mothers demonstrate alterations in cardiac PI3K-Akt, AMPK, and JNK-IRS-1 signaling pathways that would predispose them to insulin resistance and cardiac dysfunction.—Wang, J., Ma, H., Tong, C., Zhang, H., Lawlis, G. B., Li, Y., Zang, M., Ren, J., Nijland, M. J., Ford, S. P., Nathanielsz, P. W., Li, J. Overnutrition and maternal obesity in sheep pregnancy alter the JNK-IRS-1 signaling cascades and cardiac function in the fetal heart. PMID:20110268

  13. Influencing factors of NT-proBNP level inheart failure patients with different cardiacfunctions and correlation with prognosis.

    PubMed

    Xu, Liang; Chen, Yanchun; Ji, Yanni; Yang, Song

    2018-06-01

    Factors influencing N-terminal pro-brain natriuretic peptide (NT-proBNP) level in heart failure patients with different cardiac functions were identified to explore the correlations with prognosis. Eighty heart failure patients with different cardiac functions treated in Yixing People's Hospital from January 2016 to June 2017 were selected, and divided into two groups (group with cardiac function in class II and below and group with cardiac function in class III and above), according to the cardiac function classification established by New York Heart Association (NYHA). Blood biochemical test and outcome analysis were conducted to measure serum NT-proBNP and matrix metalloproteinase-9 (MMP-9) levels in patients with different cardiac functions, and correlations between levels of NT-proBNP and MMP-9 and left ventricular ejection fraction (LVEF) level were analyzed in patients with different cardiac functions at the same time. In addition, risk factors for heart failure in patients with different cardiac functions were analyzed. Compared with the group with cardiac function in class III and above, the group with cardiac function in class II and below had significantly lower serum NT-proBNP and MMP-9 levels (p<0.05). For echocardiogram indexes, left ventricular end-diastolic diameter (LVEDD) and left ventricular end-systolic diameter (LVESD) in the group with cardiac function in class II and below were obviously lower than those in the group with cardiac function in class III and above (p<0.05), while LVEF was higher in group with cardiac function in class II and below than that in group with cardiac function in class III and above (p<0.05). NT-proBNP and MMP-9 levels were negatively correlated with LVEF level [r=-0.8517 and -0.8517, respectively, p<0.001 (<0.05)]. Cardiac function in class III and above, increased NT-proBNP, increased MMP-9 and decreased LVEF were relevant risk factors and independent risk factors for heart failure in patients with different cardiac functions. NT-proBNP and MMP-9 levels are negatively correlated with LVEF in patients regardless of the cardiac function class. Therefore, attention should be paid to patients who have cardiac function in class III and above, increased NT-proBNP and MMP-9 levels and decreased LVEF in clinical practices, so as to actively prevent and treat heart failure.

  14. Deep sea minerals prolong life span of streptozotocin-induced diabetic rats by compensatory augmentation of the IGF-I-survival signaling and inhibition of apoptosis.

    PubMed

    Liao, Hung-En; Shibu, Marthandam Asokan; Kuo, Wei-Wen; Pai, Pei-Ying; Ho, Tsung-Jung; Kuo, Chia-Hua; Lin, Jing-Ying; Wen, Su-Ying; Viswanadha, Vijaya Padma; Huang, Chih-Yang

    2016-07-01

    Consumption of deep sea minerals (DSM), such as magnesium, calcium, and potassium, is known to reduce hypercholesterolemia-induced myocardial hypertrophy and cardiac-apoptosis and provide protection against cardiovascular diseases. Heart diseases develop as a lethal complication among diabetic patients usually due to hyperglycemia-induced cardiac-apoptosis that causes severe cardiac-damages, heart failure, and reduced life expectancy. In this study, we investigated the potential of DSM and its related cardio-protection to increase the life expectancy in diabetic rats. In this study, a heart failure rat model was developed by using streptozotocin (65 mg kg(-1) ) IP injection. Different doses of DSM-1× (37 mg kg(-1) day(-1) ), 2× (74 mg kg(-1) day(-1) ) and 3× (111 mg kg(-1) day(-1) ), were administered to the rats through gavages for 4 weeks. The positive effects of DSM on the survival rate of diabetes rats were determined with respect to the corresponding effects of MgSO4 . Further, to understand the mechanism by which DSM enhances the survival of diabetic rats, their potential to regulate cardiac-apoptosis and control cardiac-dysfunction were examined. Echocardiogram, tissue staining, TUNEL assay, and Western blotting assay were used to investigate modulations in the myocardial contractile function and related signaling protein expression. The results showed that DSM regulate apoptosis and complement the cardiomyocyte proliferation by enhancing survival mechanisms. Moreover DSM significantly reduced the mortality rate and enhanced the survival rate of diabetic rats. Experimental results show that DSM administration can be an effective strategy to improve the life expectancy of diabetic subjects by improving cardiac-cell proliferation and by controlling cardiac-apoptosis and associated cardiac-dysfunction. © 2015 Wiley Periodicals, Inc. Environ Toxicol 31: 769-781, 2016. © 2015 Wiley Periodicals, Inc.

  15. In vivo imaging of the Drosophila Melanogaster heart using a novel optical coherence tomography microscope

    NASA Astrophysics Data System (ADS)

    Izatt, Susan D.; Choma, Michael A.; Israel, Steven; Wessells, Robert J.; Bodmer, Rolf; Izatt, Joseph A.

    2005-03-01

    Real time in vivo optical coherence tomography (OCT) imaging of the adult fruit fly Drosophila melanogaster heart using a newly designed OCT microscope allows accurate assessment of cardiac anatomy and function. D. melanogaster has been used extensively in genetic research for over a century, but in vivo evaluation of the heart has been limited by available imaging technology. The ability to assess phenotypic changes with micrometer-scale resolution noninvasively in genetic models such as D. melanogaster is needed in the advancing fields of developmental biology and genetics. We have developed a dedicated small animal OCT imaging system incorporating a state-of-the-art, real time OCT scanner integrated into a standard stereo zoom microscope which allows for simultaneous OCT and video imaging. System capabilities include A-scan, B-scan, and M-scan imaging as well as automated 3D volumetric acquisition and visualization. Transverse and sagittal B-mode scans of the four chambered D. melanogaster heart have been obtained with the OCT microscope and are consistent with detailed anatomical studies from the literature. Further analysis by M-mode scanning is currently under way to assess cardiac function as a function of age and sex by determination of shortening fraction and ejection fraction. These studies create control cardiac data on the wild type D. melanogaster, allowing subsequent evaluation of phenotypic cardiac changes in this model after regulated genetic mutation.

  16. Kruppel-like Factor 4 Protein Regulates Isoproterenol-induced Cardiac Hypertrophy by Modulating Myocardin Expression and Activity*

    PubMed Central

    Yoshida, Tadashi; Yamashita, Maho; Horimai, Chihiro; Hayashi, Matsuhiko

    2014-01-01

    Kruppel-like factor 4 (KLF4) plays an important role in vascular diseases, including atherosclerosis and vascular injury. Although KLF4 is expressed in the heart in addition to vascular cells, the role of KLF4 in cardiac disease has not been fully determined. The goals of this study were to investigate the role of KLF4 in cardiac hypertrophy and to determine the underlying mechanisms. Cardiomyocyte-specific Klf4 knockout (CM Klf4 KO) mice were generated by the Cre/LoxP technique. Cardiac hypertrophy was induced by chronic infusion of the β-adrenoreceptor agonist isoproterenol (ISO). Results showed that ISO-induced cardiac hypertrophy was enhanced in CM Klf4 KO mice compared with control mice. Accelerated cardiac hypertrophy in CM Klf4 KO mice was accompanied by the augmented cellular enlargement of cardiomyocytes as well as the exaggerated expression of fetal cardiac genes, including atrial natriuretic factor (Nppa). Additionally, induction of myocardin, a transcriptional cofactor regulating fetal cardiac genes, was enhanced in CM Klf4 KO mice. Interestingly, KLF4 regulated Nppa expression by modulating the expression and activity of myocardin, providing a mechanical basis for accelerated cardiac hypertrophy in CM Klf4 KO mice. Moreover, we showed that KLF4 mediated the antihypertrophic effect of trichostatin A, a histone deacetylase inhibitor, because ISO-induced cardiac hypertrophy in CM Klf4 KO mice was attenuated by olmesartan, an angiotensin II type 1 antagonist, but not by trichostatin A. These results provide novel evidence that KLF4 is a regulator of cardiac hypertrophy by modulating the expression and the activity of myocardin. PMID:25100730

  17. Revealing New Mouse Epicardial Cell Markers through Transcriptomics

    PubMed Central

    Bochmann, Lars; Sarathchandra, Padmini; Mori, Federica; Lara-Pezzi, Enrique; Lazzaro, Domenico; Rosenthal, Nadia

    2010-01-01

    Background The epicardium has key functions during myocardial development, by contributing to the formation of coronary endothelial and smooth muscle cells, cardiac fibroblasts, and potentially cardiomyocytes. The epicardium plays a morphogenetic role by emitting signals to promote and maintain cardiomyocyte proliferation. In a regenerative context, the adult epicardium might comprise a progenitor cell population that can be induced to contribute to cardiac repair. Although some genes involved in epicardial function have been identified, a detailed molecular profile of epicardial gene expression has not been available. Methodology Using laser capture microscopy, we isolated the epicardial layer from the adult murine heart before or after cardiac infarction in wildtype mice and mice expressing a transgenic IGF-1 propeptide (mIGF-1) that enhances cardiac repair, and analyzed the transcription profile using DNA microarrays. Principal Findings Expression of epithelial genes such as basonuclin, dermokine, and glycoprotein M6A are highly enriched in the epicardial layer, which maintains expression of selected embryonic genes involved in epicardial development in mIGF-1 transgenic hearts. After myocardial infarct, a subset of differentially expressed genes are down-regulated in the epicardium representing an epicardium-specific signature that responds to injury. Conclusion This study presents the description of the murine epicardial transcriptome obtained from snap frozen tissues, providing essential information for further analysis of this important cardiac cell layer. PMID:20596535

  18. Role of Autophagy in Metabolic Syndrome-Associated Heart Disease

    PubMed Central

    Ren, Sidney Y.; Xu, Xihui

    2014-01-01

    Metabolic syndrome (MetS) is a constellation of multiple metabolic risk factors including abdominal obesity, glucose intolerance, insulin resistance, dyslipidemia and hypertension. Over the past decades, the prevalence of metabolic syndrome has increased dramatically, imposing a devastating, pandemic health threat. More importantly, individuals with metabolic syndrome are at an increased risk of diabetes mellitus and overall cardiovascular diseases. One of the common comorbidities of metabolic syndrome is heart anomalies leading to the loss of cardiomyocytes, cardiac dysfunction and ultimately heart failure. Up-to-date, a plethora cell signaling pathways have been postulated for the pathogenesis of cardiac complications in obesity including lipotoxicity, inflammation, oxidative stress, apoptosis and sympathetic overactivation although the precise mechanism of action underscoring obesity-associated heart dysfunction remains elusive. Recent evidence has indicated a potential role of protein quality control in components of metabolic syndrome. Within the protein quality control system, the autophagy-lysosome pathway is an evolutionarily conserved pathway responsible for bulk degradation of large intracellular organelles and protein aggregates. Autophagy has been demonstrated to play an indispensible role in the maintenance of cardiac geometry and function under both physiological and pathological conditions. Accumulating studies have demonstrated that autophagy plays a pivotal role in the etiology of cardiac anomalies under obesity and metabolic syndrome. In this mini review, we will discuss on how autophagy is involved in the regulation of cardiac function in obesity and metabolic syndrome. PMID:24810277

  19. Emotion suppression moderates the quadratic association between RSA and executive function

    PubMed Central

    Spangler, Derek P.; Bell, Martha Ann; Deater-Deckard, Kirby

    2016-01-01

    There is uncertainty about whether respiratory sinus arrhythmia (RSA), a cardiac marker of adaptive emotion regulation, is involved in relatively low or high executive function performance. In the present study, we investigated: (1) whether RSA during rest and tasks predict both relatively low and high executive function within a larger quadratic association among the two variables, and (2) the extent to which this quadratic trend was moderated by individual differences in emotion regulation. To achieve these aims, a sample of ethnically and socioeconomically diverse women self-reported reappraisal and emotion suppression. They next experienced a two-minute resting period during which ECG was continually assessed. In the next phase, the women completed an array of executive function and non-executive cognitive tasks while ECG was measured throughout. As anticipated, resting RSA showed a quadratic association with executive function that was strongest for high suppression. These results suggest that relatively high resting RSA may predict poor executive function ability when emotion regulation consumes executive control resources needed for ongoing cognitive performance. PMID:26018941

  20. p38 MAPK-dependent small HSP27 and αB-crystallin phosphorylation in regulation of myocardial function following cardioplegic arrest.

    PubMed

    Clements, Richard T; Feng, Jun; Cordeiro, Brenda; Bianchi, Cesario; Sellke, Frank W

    2011-05-01

    We previously demonstrated that myocardial p38 mitogen-activated protein kinase (MAPK) and heat shock protein 27 (HSP27) are phosphorylated following cardioplegic arrest in patients undergoing cardiac surgery and correlate with reduced cardiac function. The following studies were performed to determine whether inhibition of p38 MAPK and/or overexpression of nonphosphorylatable HSP27 improves cardiac function following cardioplegic arrest. Langendorff-perfused isolated rat hearts were subjected to 2 h of intermittent cold cardioplegia followed by 30 min of reperfusion. Hearts were treated with (CP+SB) or without (CP) the p38 MAPK inhibitor SB-203580 (5 μM) supplied in the cardioplegia. Sham-treated hearts served as controls. In separate experiments, isolated rat ventricular myocytes infected with either green fluorescent protein (GFP) or a nonphosphorylatable HSP27 mutant (3A-HSP27) were subjected to 3 h of cold hypoxic cardioplegia and simulated reperfusion (CP) followed by video microscopy and length change measurements. Baseline parameters of cardiac function were similar between groups [left ventricular developed pressure (LVDP), 119 ± 4.9 mmHg; positive and negative first derivatives of LV pressure (± dP/dt), 3,139 ± 245 and 2, 314 ± 110 mmHg/s]. CP resulted in reduced cardiac function (LVDP, 72.2 ± 5.8 mmHg; ± dP/dt, 2,076 ± 231 and -1,317 ± 156 mmHg/s) compared with baseline. Treatment with 5 μM SB-203580 significantly improved CP-induced cardiac function (LVDP, 101.9 ± 0 mmHg; ± dP/dt, 2,836 ± 163 and -2,108 ± 120 mmHg/s; P = 0.03, 0.01, and 0.04, CP+SB vs. CP). Inhibition of p38 MAPK significantly lowered CP-induced p38 MAPK, HSP27, and αB-crystallin (cryAB) phosphorylation. In vitro CP decreased myocyte length changes from 10.3 ± 1.5% (GFP) to 5.7 ± 0.8% (GFP+CP). Infection with 3A-HSP27 completely rescued CP-induced decreased myocyte contraction (11.1 ± 1.0%). However, infection with 3A-HSP27 did not block the endogenous HSP27 response. We conclude that inhibition of p38 MAPK and subsequent HSP27 and cryAB phosphorylation and/or overexpression of nonphosphorylatable HSP27 significantly improves cardiac performance following cardioplegic arrest. Modulation of HSP27 phosphorylation may improve myocardial stunning following cardiac surgery.

  1. Rho-associated kinases play an essential role in cardiac morphogenesis and cardiomyocyte proliferation.

    PubMed

    Zhao, Zhiyong; Rivkees, Scott A

    2003-01-01

    Rho-associated coiled-coil kinases (ROCKs), initially identified as effectors for Rho GTPases, play a role in cardiac cell physiology and are also expressed in the developing heart. However, their role in cardiac development is not known. To investigate the role of these kinases in cardiac development, we examined cardiac development in cultured murine embryos treated with the ROCK inhibitor Y27632. After inhibition of ROCK activity, we found disturbed cardiac chamber formation and trabeculation. To further examine the mechanisms by which ROCK blockade causes cardiac hypoplasia, we assessed programmed cell death and cell proliferation in the hearts. We found decreased cell proliferation in the Y27632-treated hearts, but no changes in programmed cell death. We further observed that ROCK inhibition decreased cardiac myocyte proliferation, suggesting that ROCK kinases regulate cardiomyocyte division. To identify factors involved in ROCK action in regulation of cardiac cell division, we examined expression of cell cycle proteins by using Western blot analysis. We found that ROCK blockade decreased expression of cell cycle proteins, cyclin D3, CDK6, and p27(KIP1) in the hearts and cardiomyocytes, which are required for initiation of cell cycle and G1/S phase transition. These observations show that ROCK kinases play a role in cardiac development and that ROCK kinases regulate cardiac cell proliferation and cell cycle protein expression. Copyright 2002 Wiley-Liss, Inc.

  2. Beneficial effects of edaravone, a novel antioxidant, in rats with dilated cardiomyopathy

    PubMed Central

    Arumugam, Somasundaram; Thandavarayan, Rajarajan A; Veeraveedu, Punniyakoti T; Nakamura, Takashi; Arozal, Wawaimuli; Sari, Flori R; Giridharan, Vijayasree V; Soetikno, Vivian; Palaniyandi, Suresh S; Harima, Meilei; Suzuki, Kenji; Nagata, Masaki; Kodama, Makoto; Watanabe, Kenichi

    2012-01-01

    Edaravone, a novel antioxidant, acts by trapping hydroxyl radicals, quenching active oxygen and so on. Its cardioprotective activity against experimental autoimmune myocarditis (EAM) was reported. Nevertheless, it remains to be determined whether edaravone protects against cardiac remodelling in dilated cardiomyopathy (DCM). The present study was undertaken to assess whether edaravone attenuates myocardial fibrosis, and examine the effect of edaravone on cardiac function in rats with DCM after EAM. Rat model of EAM was prepared by injection with porcine cardiac myosin 28 days after immunization, we administered edaravone intraperitoneally at 3 and 10 mg/kg/day to rats for 28 days. The results were compared with vehicle-treated rats with DCM. Cardiac function, by haemodynamic and echocardiographic study and histopathology were performed. Left ventricular (LV) expression of NADPH oxidase subunits (p47phox, p67phox, gp91phox and Nox4), fibrosis markers (TGF-β1 and OPN), endoplasmic reticulum (ER) stress markers (GRP78 and GADD 153) and apoptosis markers (cytochrome C and caspase-3) were measured by Western blotting. Edaravone-treated DCM rats showed better cardiac function compared with those of the vehicle-treated rats. In addition, LV expressions of NADPH oxidase subunits levels were significantly down-regulated in edaravone-treated rats. Furthermore, the number of collagen-III positive cells in the myocardium of edaravone-treated rats was lower compared with those of the vehicle-treated rats. Our results suggest that edaravone ameliorated the progression of DCM by modulating oxidative and ER stress-mediated myocardial apoptosis and fibrosis. PMID:22268705

  3. Human induced pluripotent stem cell-derived beating cardiac tissues on paper.

    PubMed

    Wang, Li; Xu, Cong; Zhu, Yujuan; Yu, Yue; Sun, Ning; Zhang, Xiaoqing; Feng, Ke; Qin, Jianhua

    2015-11-21

    There is a growing interest in using paper as a biomaterial scaffold for cell-based applications. In this study, we made the first attempt to fabricate a paper-based array for the culture, proliferation, and direct differentiation of human induced pluripotent stem cells (hiPSCs) into functional beating cardiac tissues and create "a beating heart on paper." This array was simply constructed by binding a cured multi-well polydimethylsiloxane (PDMS) mold with common, commercially available paper substrates. Three types of paper material (print paper, chromatography paper and nitrocellulose membrane) were tested for adhesion, proliferation and differentiation of human-derived iPSCs. We found that hiPSCs grew well on these paper substrates, presenting a three-dimensional (3D)-like morphology with a pluripotent property. The direct differentiation of human iPSCs into functional cardiac tissues on paper was also achieved using our modified differentiation approach. The cardiac tissue retained its functional activities on the coated print paper and chromatography paper with a beating frequency of 40-70 beats per min for up to three months. Interestingly, human iPSCs could be differentiated into retinal pigment epithelium on nitrocellulose membrane under the conditions of cardiac-specific induction, indicating the potential roles of material properties and mechanical cues that are involved in regulating stem cell differentiation. Taken together, these results suggest that different grades of paper could offer great opportunities as bioactive, low-cost, and 3D in vitro platforms for stem cell-based high-throughput drug testing at the tissue/organ level and for tissue engineering applications.

  4. Cardiac acetylcholine inhibits ventricular remodeling and dysfunction under pathologic conditions.

    PubMed

    Roy, Ashbeel; Dakroub, Mouhamed; Tezini, Geisa C S V; Liu, Yin; Guatimosim, Silvia; Feng, Qingping; Salgado, Helio C; Prado, Vania F; Prado, Marco A M; Gros, Robert

    2016-02-01

    Autonomic dysfunction is a characteristic of cardiac disease and decreased vagal activity is observed in heart failure. Rodent cardiomyocytes produce de novo ACh, which is critical in maintaining cardiac homeostasis. We report that this nonneuronal cholinergic system is also found in human cardiomyocytes, which expressed choline acetyltransferase (ChAT) and the vesicular acetylcholine transporter (VAChT). Furthermore, VAChT expression was increased 3- and 1.5-fold at the mRNA and protein level, respectively, in ventricular tissue from patients with heart failure, suggesting increased ACh secretion in disease. We used mice with genetic deletion of cardiomyocyte-specific VAChT or ChAT and mice overexpressing VAChT to test the functional significance of cholinergic signaling. Mice deficient for VAChT displayed an 8% decrease in fractional shortening and 13% decrease in ejection fraction compared with angiotensin II (Ang II)-treated control animals, suggesting enhanced ventricular dysfunction and pathologic remodeling in response to Ang II. Similar results were observed in ChAT-deficient mice. Conversely, no decline in ventricular function was observed in Ang II-treated VAChT overexpressors. Furthermore, the fibrotic area was significantly greater (P < 0.05) in Ang II-treated VAChT-deficient mice (3.61 ± 0.64%) compared with wild-type animals (2.24 ± 0.11%). In contrast, VAChT overexpressing mice did not display an increase in collagen deposition. Our results provide new insight into cholinergic regulation of cardiac function, suggesting that a compensatory increase in cardiomyocyte VAChT levels may help offset cardiac remodeling in heart failure. © FASEB.

  5. Signal-dependent repression of DUSP5 by class I HDACs controls nuclear ERK activity and cardiomyocyte hypertrophy.

    PubMed

    Ferguson, Bradley S; Harrison, Brooke C; Jeong, Mark Y; Reid, Brian G; Wempe, Michael F; Wagner, Florence F; Holson, Edward B; McKinsey, Timothy A

    2013-06-11

    Cardiac hypertrophy is a strong predictor of morbidity and mortality in patients with heart failure. Small molecule histone deacetylase (HDAC) inhibitors have been shown to suppress cardiac hypertrophy through mechanisms that remain poorly understood. We report that class I HDACs function as signal-dependent repressors of cardiac hypertrophy via inhibition of the gene encoding dual-specificity phosphatase 5 (DUSP5) DUSP5, a nuclear phosphatase that negatively regulates prohypertrophic signaling by ERK1/2. Inhibition of DUSP5 by class I HDACs requires activity of the ERK kinase, mitogen-activated protein kinase kinase (MEK), revealing a self-reinforcing mechanism for promotion of cardiac ERK signaling. In cardiac myocytes treated with highly selective class I HDAC inhibitors, nuclear ERK1/2 signaling is suppressed in a manner that is absolutely dependent on DUSP5. In contrast, cytosolic ERK1/2 activation is maintained under these same conditions. Ectopic expression of DUSP5 in cardiomyocytes results in potent inhibition of agonist-dependent hypertrophy through a mechanism involving suppression of the gene program for hypertrophic growth. These findings define unique roles for class I HDACs and DUSP5 as integral components of a regulatory signaling circuit that controls cardiac hypertrophy.

  6. New strategies for improving stem cell therapy in ischemic heart disease.

    PubMed

    Huang, Peisen; Tian, Xiaqiu; Li, Qing; Yang, Yuejin

    2016-11-01

    Stem cell therapy is a promising approach to the treatment of ischemic heart disease via replenishing cell loss after myocardial infarction. Both preclinical studies and clinical trials have indicated that cardiac function improved consistently, but very modestly after cell-based therapy. This mainly attributed to low cell survival rate, engraftment and functional integration, which became the major challenges to regenerative medicine. In recent years, several new cell types have been developed to regenerate cardiomyocytes and novel delivery approaches helped to increase local cell retention. New strategies, such as cell pretreatment, gene-based therapy, tissue engineering, extracellular vesicles application and immunologic regulation, have surged and brought about improved cell survival and functional integration leading to better therapeutic effects after cell transplantation. In this review, we summarize these new strategies targeting at challenges of cardiac regenerative medicine and discuss recent evidences that may hint their effectiveness in the future clinical settings.

  7. Discovery and progress of direct cardiac reprogramming.

    PubMed

    Kojima, Hidenori; Ieda, Masaki

    2017-06-01

    Cardiac disease remains a major cause of death worldwide. Direct cardiac reprogramming has emerged as a promising approach for cardiac regenerative therapy. After the discovery of MyoD, a master regulator for skeletal muscle, other single cardiac reprogramming factors (master regulators) have been sought. Discovery of cardiac reprogramming factors was inspired by the finding that multiple, but not single, transcription factors were needed to generate induced pluripotent stem cells (iPSCs) from fibroblasts. We first reported a combination of cardiac-specific transcription factors, Gata4, Mef2c, and Tbx5 (GMT), that could convert mouse fibroblasts into cardiomyocyte-like cells, which were designated as induced cardiomyocyte-like cells (iCMs). Following our first report of cardiac reprogramming, many researchers, including ourselves, demonstrated an improvement in cardiac reprogramming efficiency, in vivo direct cardiac reprogramming for heart regeneration, and cardiac reprogramming in human cells. However, cardiac reprogramming in human cells and adult fibroblasts remains inefficient, and further efforts are needed. We believe that future research elucidating epigenetic barriers and molecular mechanisms of direct cardiac reprogramming will improve the reprogramming efficiency, and that this new technology has great potential for clinical applications.

  8. Complex inhibition of autophagy by mitochondrial aldehyde dehydrogenase shortens lifespan and exacerbates cardiac aging.

    PubMed

    Zhang, Yingmei; Wang, Cong; Zhou, Jingmin; Sun, Aijun; Hueckstaedt, Lindsay K; Ge, Junbo; Ren, Jun

    2017-08-01

    Autophagy, a conservative degradation process for long-lived and damaged proteins, participates in a cascade of biological processes including aging. A number of autophagy regulators have been identified. Here we demonstrated that mitochondrial aldehyde dehydrogenase (ALDH2), an enzyme with the most common single point mutation in humans, governs cardiac aging through regulation of autophagy. Myocardial mechanical and autophagy properties were examined in young (4months) and old (26-28months) wild-type (WT) and global ALDH2 transgenic mice. ALDH2 overexpression shortened lifespan by 7.7% without affecting aging-associated changes in plasma metabolic profiles. Myocardial function was compromised with aging associated with cardiac hypertrophy, the effects were accentuated by ALDH2. Aging overtly suppressed autophagy and compromised autophagy flux, the effects were exacerbated by ALDH2. Aging dampened phosphorylation of JNK, Bcl-2, IKKβ, AMPK and TSC2 while promoting phosphorylation of mTOR, the effects of which were exaggerated by ALDH2. Co-immunoprecipitation revealed increased dissociation between Bcl-2 and Beclin-1 (result of decreased Bcl-2 phosphorylation) in aging, the effect of which was exacerbated with ALDH2. Chronic treatment of the autophagy inducer rapamycin alleviated aging-induced cardiac dysfunction in both WT and ALDH2 mice. Moreover, activation of JNK and inhibition of either Bcl-2 or IKKβ overtly attenuated ALDH2 activation-induced accentuation of cardiomyocyte aging. Examination of the otherwise elderly individuals revealed a positive correlation between cardiac function/geometry and ALDH2 gene mutation. Taken together, our data revealed that ALDH2 enzyme may suppress myocardial autophagy possibly through a complex JNK-Bcl-2 and IKKβ-AMPK-dependent mechanism en route to accentuation of myocardial remodeling and contractile dysfunction in aging. This article is part of a Special Issue entitled: Genetic and epigenetic control of heart failure - edited by Jun Ren & Megan Yingmei Zhang. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. MiR-133 promotes cardiac reprogramming by directly repressing Snai1 and silencing fibroblast signatures.

    PubMed

    Muraoka, Naoto; Yamakawa, Hiroyuki; Miyamoto, Kazutaka; Sadahiro, Taketaro; Umei, Tomohiko; Isomi, Mari; Nakashima, Hanae; Akiyama, Mizuha; Wada, Rie; Inagawa, Kohei; Nishiyama, Takahiko; Kaneda, Ruri; Fukuda, Toru; Takeda, Shu; Tohyama, Shugo; Hashimoto, Hisayuki; Kawamura, Yoshifumi; Goshima, Naoki; Aeba, Ryo; Yamagishi, Hiroyuki; Fukuda, Keiichi; Ieda, Masaki

    2014-07-17

    Fibroblasts can be directly reprogrammed into cardiomyocyte-like cells (iCMs) by overexpression of cardiac transcription factors or microRNAs. However, induction of functional cardiomyocytes is inefficient, and molecular mechanisms of direct reprogramming remain undefined. Here, we demonstrate that addition of miR-133a (miR-133) to Gata4, Mef2c, and Tbx5 (GMT) or GMT plus Mesp1 and Myocd improved cardiac reprogramming from mouse or human fibroblasts by directly repressing Snai1, a master regulator of epithelial-to-mesenchymal transition. MiR-133 overexpression with GMT generated sevenfold more beating iCMs from mouse embryonic fibroblasts and shortened the duration to induce beating cells from 30 to 10 days, compared to GMT alone. Snai1 knockdown suppressed fibroblast genes, upregulated cardiac gene expression, and induced more contracting iCMs with GMT transduction, recapitulating the effects of miR-133 overexpression. In contrast, overexpression of Snai1 in GMT/miR-133-transduced cells maintained fibroblast signatures and inhibited generation of beating iCMs. MiR-133-mediated Snai1 repression was also critical for cardiac reprogramming in adult mouse and human cardiac fibroblasts. Thus, silencing fibroblast signatures, mediated by miR-133/Snai1, is a key molecular roadblock during cardiac reprogramming. © 2014 The Authors.

  10. MiR-133 promotes cardiac reprogramming by directly repressing Snai1 and silencing fibroblast signatures

    PubMed Central

    Muraoka, Naoto; Yamakawa, Hiroyuki; Miyamoto, Kazutaka; Sadahiro, Taketaro; Umei, Tomohiko; Isomi, Mari; Nakashima, Hanae; Akiyama, Mizuha; Wada, Rie; Inagawa, Kohei; Nishiyama, Takahiko; Kaneda, Ruri; Fukuda, Toru; Takeda, Shu; Tohyama, Shugo; Hashimoto, Hisayuki; Kawamura, Yoshifumi; Goshima, Naoki; Aeba, Ryo; Yamagishi, Hiroyuki; Fukuda, Keiichi; Ieda, Masaki

    2014-01-01

    Fibroblasts can be directly reprogrammed into cardiomyocyte-like cells (iCMs) by overexpression of cardiac transcription factors or microRNAs. However, induction of functional cardiomyocytes is inefficient, and molecular mechanisms of direct reprogramming remain undefined. Here, we demonstrate that addition of miR-133a (miR-133) to Gata4, Mef2c, and Tbx5 (GMT) or GMT plus Mesp1 and Myocd improved cardiac reprogramming from mouse or human fibroblasts by directly repressing Snai1, a master regulator of epithelial-to-mesenchymal transition. MiR-133 overexpression with GMT generated sevenfold more beating iCMs from mouse embryonic fibroblasts and shortened the duration to induce beating cells from 30 to 10 days, compared to GMT alone. Snai1 knockdown suppressed fibroblast genes, upregulated cardiac gene expression, and induced more contracting iCMs with GMT transduction, recapitulating the effects of miR-133 overexpression. In contrast, overexpression of Snai1 in GMT/miR-133-transduced cells maintained fibroblast signatures and inhibited generation of beating iCMs. MiR-133-mediated Snai1 repression was also critical for cardiac reprogramming in adult mouse and human cardiac fibroblasts. Thus, silencing fibroblast signatures, mediated by miR-133/Snai1, is a key molecular roadblock during cardiac reprogramming. PMID:24920580

  11. Amelioration of High Fructose-Induced Cardiac Hypertrophy by Naringin.

    PubMed

    Park, Jung Hyun; Ku, Hyeong Jun; Kim, Jae Kyeom; Park, Jeen-Woo; Lee, Jin Hyup

    2018-06-21

    Heart failure is a frequent unfavorable outcome of pathological cardiac hypertrophy. Recent increase in dietary fructose consumption mirrors the rise in prevalence of cardiovascular diseases such as cardiac hypertrophy leading to concerns raised by public health experts. Mitochondria, comprising 30% of cardiomyocyte volume, play a central role in modulating redox-dependent cellular processes such as metabolism and apoptosis. Furthermore, mitochondrial dysfunction is a key cause of pathogenesis of fructose-induced cardiac hypertrophy. Naringin, a major flavanone glycoside in citrus species, has displayed strong antioxidant potential in models of oxidative stress. In this study, we evaluated protective effects of naringin against fructose-induced cardiac hypertrophy and associated mechanisms of action, using in vitro and in vivo models. We found that naringin suppressed mitochondrial ROS production and mitochondrial dysfunction in cardiomyocytes exposed to fructose and consequently reduced cardiomyocyte hypertrophy by regulating AMPK-mTOR signaling axis. Furthermore, naringin counteracted fructose-induced cardiomyocyte apoptosis, and this function of naringin was linked to its ability to inhibit ROS-dependent ATM-mediated p53 signaling. This result was supported by observations in in vivo mouse model of cardiac hypertrophy. These findings indicate a novel role for naringin in protecting against fructose-induced cardiac hypertrophy and suggest unique therapeutic strategies for prevention of cardiovascular diseases.

  12. Deficiency in AMPK attenuates ethanol-induced cardiac contractile dysfunction through inhibition of autophagosome formation

    PubMed Central

    Guo, Rui; Ren, Jun

    2012-01-01

    Aims Binge drinking often triggers compromised myocardial contractile function while activating AMP-activated protein kinase (AMPK). Given the role of AMPK in the initiation of autophagy through the mammalian target of rapamycin complex 1 (mTORC1) and Unc51-like kinase (ULK1), this study was designed to examine the impact of AMPK deficiency on cardiac function and the mechanism involved with a focus on autophagy following an acute ethanol challenge. Methods and results Wild-type (WT) and transgenic mice overexpressing a kinase-dead (KD) α2 isoform (K45R mutation) of AMPK were challenged with ethanol. Glucose tolerance, echocardiography, Langendorff heart and cardiomyocyte contractile function, autophagy, and autophagic signalling including AMPK, acetyl-CoA carboxylase (ACC), mTOR, the mTORC1-associated protein Raptor, and ULK1 were examined. Ethanol exposure triggered glucose intolerance and compromised cardiac contraction accompanied by increased phosphorylation of AMPK and ACC as well as autophagosome accumulation (increased LC3II and p62), the effects of which were attenuated or mitigated by AMPK deficiency or inhibition. Ethanol dampened and stimulated, respectively, the phosphorylation of mTOR and Raptor, the effects of which were abolished by AMPK deficiency. ULK1 phosphorylation at Ser757 and Ser777 was down-regulated and up-regulated, respectively, by ethanol, the effect of which was nullified by AMPK deficiency or inhibition. Moreover, the ethanol challenge enhanced LC3 puncta in H9c2 cells and promoted cardiac contractile dysfunction, and these effects were ablated by the inhibition of autophagy or AMPK. Lysosomal inhibition failed to accentuate ethanol-induced increases in LC3II and p62. Conclusion In summary, these data suggest that ethanol exposure may trigger myocardial dysfunction through a mechanism associated with AMPK-mTORC1-ULK1-mediated autophagy. PMID:22451512

  13. miR-139-5p inhibits isoproterenol-induced cardiac hypertrophy by targetting c-Jun.

    PubMed

    Ming, Su; Shui-Yun, Wang; Wei, Qiu; Jian-Hui, Li; Ru-Tai, Hui; Lei, Song; Mei, Jia; Hui, Wang; Ji-Zheng, Wang

    2018-04-27

    Hypertrophic cardiomyopathy (HCM) is a serious monogenic disease characterized by cardiac hypertrophy, fibrosis, sudden cardiac death, and heart failure. Previously, we identified that miR-139-5p was down-regulated in HCM patients. However, the regulatory effects of miR-139-5p remain unclear. Thus, we investigated the role of miR-139-5p in the regulation of cardiac hypertrophy. The expression of miR-139-5p in left ventricular tissues in HCM patients and mice subjected to transverse aortic constriction (TAC) was significantly down-regulated. Knockdown of miR-139-5p expression in neonatal rat cardiomyocytes (NRCMs) induced cardiomyocyte enlargement and increased atrial natriuretic polypeptide (ANP) expression. Overexpression of miR-139-5p antagonized isoproterenol (ISO)-induced cardiomyocyte enlargement and ANP/brain natriuretic peptide (BNP) up-regulation. More importantly, we found that c-Jun expression was inhibited by miR-139-5p in NRCMs. Knockdown of c-Jun expression significantly attenuated cardiac hypertrophy induced by miR-139-5p deprivation. Our data indicated that miR-139-5p was down-regulated in the hearts of HCM patients and that it inhibited cardiac hypertrophy by targetting c-Jun expression. © 2018 The Author(s).

  14. An MRM-based workflow for quantifying cardiac mitochondrial protein phosphorylation in murine and human tissue.

    PubMed

    Lam, Maggie P Y; Scruggs, Sarah B; Kim, Tae-Young; Zong, Chenggong; Lau, Edward; Wang, Ding; Ryan, Christopher M; Faull, Kym F; Ping, Peipei

    2012-08-03

    The regulation of mitochondrial function is essential for cardiomyocyte adaptation to cellular stress. While it has long been understood that phosphorylation regulates flux through metabolic pathways, novel phosphorylation sites are continually being discovered in all functionally distinct areas of the mitochondrial proteome. Extracting biologically meaningful information from these phosphorylation sites requires an adaptable, sensitive, specific and robust method for their quantification. Here we report a multiple reaction monitoring-based mass spectrometric workflow for quantifying site-specific phosphorylation of mitochondrial proteins. Specifically, chromatographic and mass spectrometric conditions for 68 transitions derived from 23 murine and human phosphopeptides, and their corresponding unmodified peptides, were optimized. These methods enabled the quantification of endogenous phosphopeptides from the outer mitochondrial membrane protein VDAC, and the inner membrane proteins ANT and ETC complexes I, III and V. The development of this quantitative workflow is a pivotal step for advancing our knowledge and understanding of the regulatory effects of mitochondrial protein phosphorylation in cardiac physiology and pathophysiology. This article is part of a Special Issue entitled: Translational Proteomics. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. Angiotensin-converting enzyme 2 is subject to post-transcriptional regulation by miR-421.

    PubMed

    Lambert, Daniel W; Lambert, Louise A; Clarke, Nicola E; Hooper, Nigel M; Porter, Karen E; Turner, Anthony J

    2014-08-01

    ACE2 (angiotensin converting enzyme 2) plays a critical role in the local tissue RAS (renin-angiotensin system) by hydrolysing the potent hypertensive and mitogenic peptide AngII (angiotensin II). Changes in the levels of ACE2 have been observed in a number of pathologies, including cardiovascular disease, but little is known of the mechanisms regulating its expression. In the present study, therefore, the potential role of miRNAs in the regulation of ACE2 expression in primary human cardiac myofibroblasts was examined. Putative miRNA-binding sites were identified in the 3'-UTR of the ACE2 transcript using online prediction algorithms. Two of these, miR-200b and miR-421, were selected for further analysis. A reporter system using the 3'-UTR of ACE2 fused to the coding region of firefly luciferase was used to determine the functionality of the identified binding sites in vitro. This identified miR-421, but not miR-200b, as a potential regulator of ACE2. The ability of miR-421, an miRNA implicated in the development of thrombosis, to down-regulate ACE2 expression was subsequently confirmed by Western blot analysis of both primary cardiac myofibroblasts and transformed cells transfected with a synthetic miR-421 precursor. Real-time PCR analysis of miR-421 revealed widespread expression in human tissues. miR-421 levels in cardiac myofibroblasts showed significant inter-patient variability, in keeping with the variability of ACE2 expression we have observed previously. In conclusion, the present study is the first to demonstrate that ACE2 may be subject to post-transcriptional regulation and reveals a novel potential therapeutic target, miR-421, which could be exploited to modulate ACE2 expression in disease.

  16. Sirtuin 1 protects the aging heart from contractile dysfunction mediated through the inhibition of endoplasmic reticulum stress-mediated apoptosis in cardiac-specific Sirtuin 1 knockout mouse model.

    PubMed

    Hsu, Yu-Juei; Hsu, Shih-Che; Hsu, Chiao-Po; Chen, Yen-Hui; Chang, Yung-Lung; Sadoshima, Junichi; Huang, Shih-Ming; Tsai, Chien-Sung; Lin, Chih-Yuan

    2017-02-01

    The longevity regulator Sirtuin 1 is an NAD + -dependent histone deacetylase that regulates endoplasmic reticulum stress and influences cardiomyocyte apoptosis during cardiac contractile dysfunction induced by aging. The mechanism underlying Sirtuin 1 function in cardiac contractile dysfunction related to aging has not been completely elucidated. We evaluated cardiac contractile function, endoplasmic reticulum stress, apoptosis, and oxidative stress in 6- and 12month-old cardiac-specific Sirtuin 1 knockout (Sirt1 -/- ) and control (Sirt1 f/f ) mice using western blotting and immunohistochemistry. Mice were injected with a protein disulphide isomerase inhibitor. For in vitro analysis, cultured H9c2 cardiomyocytes were exposed to either a Sirtuin 1 inhibitor or activator, with or without a mitochondrial inhibitor, to evaluate the effects of Sirtuin 1 on endoplasmic reticulum stress, nitric oxide synthase expression, and apoptosis. The effects of protein disulphide isomerase inhibition on oxidative stress and ER stress-related apoptosis were also investigated. Compared with 6-month-old Sirt1 f/f mice, marked impaired contractility was observed in 12-month-old Sirt1 -/- mice. These findings were consistent with increased endoplasmic reticulum stress and apoptosis in the myocardium. Measures of oxidative stress and nitric oxide synthase expression were significantly higher in Sirt1 -/- mice compared with those in Sirt1 f/f mice at 6months. In vitro experiments revealed increased endoplasmic reticulum stress-mediated apoptosis in H9c2 cardiomyocytes treated with a Sirtuin 1 inhibitor; the effects were ameliorated by a Sirtuin 1 activator. Moreover, consistent with the in vitro findings, impaired cardiac contractility was demonstrated in Sirt1 -/- mice injected with a protein disulphide isomerase inhibitor. The present study demonstrates that the aging heart is characterized by contractile dysfunction associated with increased oxidative stress and endoplasmic reticulum stress and Sirtuin 1 might have the ability to protect the aging hearts from the inhibition of endoplasmic reticulum-mediated apoptosis. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  17. Let-7 family of microRNA is required for maturation and adult-like metabolism in stem cell-derived cardiomyocytes

    PubMed Central

    Kuppusamy, Kavitha T.; Jones, Daniel C.; Sperber, Henrik; Madan, Anup; Fischer, Karin A.; Rodriguez, Marita L.; Pabon, Lil; Zhu, Wei-Zhong; Tulloch, Nathaniel L.; Yang, Xiulan; Sniadecki, Nathan J.; Laflamme, Michael A.; Murry, Charles E.; Ruohola-Baker, Hannele

    2015-01-01

    In metazoans, transition from fetal to adult heart is accompanied by a switch in energy metabolism-glycolysis to fatty acid oxidation. The molecular factors regulating this metabolic switch remain largely unexplored. We first demonstrate that the molecular signatures in 1-year (y) matured human embryonic stem cell-derived cardiomyocytes (hESC-CMs) are similar to those seen in in vivo-derived mature cardiac tissues, thus making them an excellent model to study human cardiac maturation. We further show that let-7 is the most highly up-regulated microRNA (miRNA) family during in vitro human cardiac maturation. Gain- and loss-of-function analyses of let-7g in hESC-CMs demonstrate it is both required and sufficient for maturation, but not for early differentiation of CMs. Overexpression of let-7 family members in hESC-CMs enhances cell size, sarcomere length, force of contraction, and respiratory capacity. Interestingly, large-scale expression data, target analysis, and metabolic flux assays suggest this let-7–driven CM maturation could be a result of down-regulation of the phosphoinositide 3 kinase (PI3K)/AKT protein kinase/insulin pathway and an up-regulation of fatty acid metabolism. These results indicate let-7 is an important mediator in augmenting metabolic energetics in maturing CMs. Promoting maturation of hESC-CMs with let-7 overexpression will be highly significant for basic and applied research. PMID:25964336

  18. Quantitative proteomics and systems analysis of cultured H9C2 cardiomyoblasts during differentiation over time supports a 'function follows form' model of differentiation.

    PubMed

    Kankeu, Cynthia; Clarke, Kylie; Van Haver, Delphi; Gevaert, Kris; Impens, Francis; Dittrich, Anna; Roderick, H Llewelyn; Passante, Egle; Huber, Heinrich J

    2018-05-17

    The rat cardiomyoblast cell line H9C2 has emerged as a valuable tool for studying cardiac development, mechanisms of disease and toxicology. We present here a rigorous proteomic analysis that monitored the changes in protein expression during differentiation of H9C2 cells into cardiomyocyte-like cells over time. Quantitative mass spectrometry followed by gene ontology (GO) enrichment analysis revealed that early changes in H9C2 differentiation are related to protein pathways of cardiac muscle morphogenesis and sphingolipid synthesis. These changes in the proteome were followed later in the differentiation time-course by alterations in the expression of proteins involved in cation transport and beta-oxidation. Studying the temporal profile of the H9C2 proteome during differentiation in further detail revealed eight clusters of co-regulated proteins that can be associated with early, late, continuous and transient up- and downregulation. Subsequent reactome pathway analysis based on these eight clusters further corroborated and detailed the results of the GO analysis. Specifically, this analysis confirmed that proteins related to pathways in muscle contraction are upregulated early and transiently, and proteins relevant to extracellular matrix organization are downregulated early. In contrast, upregulation of proteins related to cardiac metabolism occurs at later time points. Finally, independent validation of the proteomics results by immunoblotting confirmed hereto unknown regulators of cardiac structure and ionic metabolism. Our results are consistent with a 'function follows form' model of differentiation, whereby early and transient alterations of structural proteins enable subsequent changes that are relevant to the characteristic physiology of cardiomyocytes.

  19. Sequential Ligand-Dependent Notch Signaling Activation Regulates Valve Primordium Formation and Morphogenesis.

    PubMed

    MacGrogan, Donal; D'Amato, Gaetano; Travisano, Stanislao; Martinez-Poveda, Beatriz; Luxán, Guillermo; Del Monte-Nieto, Gonzalo; Papoutsi, Tania; Sbroggio, Mauro; Bou, Vanesa; Gomez-Del Arco, Pablo; Gómez, Manuel Jose; Zhou, Bin; Redondo, Juan Miguel; Jiménez-Borreguero, Luis J; de la Pompa, José Luis

    2016-05-13

    The Notch signaling pathway is crucial for primitive cardiac valve formation by epithelial-mesenchymal transition, and NOTCH1 mutations cause bicuspid aortic valve; however, the temporal requirement for the various Notch ligands and receptors during valve ontogeny is poorly understood. The aim of this study is to determine the functional specificity of Notch in valve development. Using cardiac-specific conditional targeted mutant mice, we find that endothelial/endocardial deletion of Mib1-Dll4-Notch1 signaling, possibly favored by Manic-Fringe, is specifically required for cardiac epithelial-mesenchymal transition. Mice lacking endocardial Jag1, Notch1, or RBPJ displayed enlarged valve cusps, bicuspid aortic valve, and septal defects, indicating that endocardial Jag1 to Notch1 signaling is required for post-epithelial-mesenchymal transition valvulogenesis. Valve dysmorphology was associated with increased mesenchyme proliferation, indicating that Jag1-Notch1 signaling restricts mesenchyme cell proliferation non-cell autonomously. Gene profiling revealed upregulated Bmp signaling in Jag1-mutant valves, providing a molecular basis for the hyperproliferative phenotype. Significantly, the negative regulator of mesenchyme proliferation, Hbegf, was markedly reduced in Jag1-mutant valves. Hbegf expression in embryonic endocardial cells could be readily activated through a RBPJ-binding site, identifying Hbegf as an endocardial Notch target. Accordingly, addition of soluble heparin-binding EGF-like growth factor to Jag1-mutant outflow tract explant cultures rescued the hyperproliferative phenotype. During cardiac valve formation, Dll4-Notch1 signaling leads to epithelial-mesenchymal transition and cushion formation. Jag1-Notch1 signaling subsequently restrains Bmp-mediated valve mesenchyme proliferation by sustaining Hbegf-EGF receptor signaling. Our studies identify a mechanism of signaling cross talk during valve morphogenesis involved in the origin of congenital heart defects associated with reduced NOTCH function. © 2016 American Heart Association, Inc.

  20. Regulation of basal and reserve cardiac pacemaker function by interactions of cAMP mediated PKA-dependent Ca2+ cycling with surface membrane channels

    PubMed Central

    Vinogradova, Tatiana M.; Lakatta, Edward G.

    2009-01-01

    Decades of intensive research of primary cardiac pacemaker, the sinoatrial node, have established potential roles of specific membrane channels in the generation of the diastolic depolarization, the major mechanism allowing sinoatrial node cells generate spontaneous beating. During the last three decades, multiple studies made either in the isolated sinoatrial node or sinoatrial node cells have demonstrated a pivotal role of Ca2+ and, specifically Ca2+-release from sarcoplasmic reticulum, for spontaneous beating of cardiac pacemaker. Recently, spontaneous, rhythmic local subsarcolemmal Ca2+ releases from ryanodine receptors during late half of the diastolic depolarization have been implicated as a vital factor in the generation of sinoatrial node cells spontaneous firing. Local Ca2+ releases are driven by a unique combination of high basal cAMP production by adenylyl cyclases, high basal cAMP degradation by phosphodiesterases and a high level of cAMP-mediated PKA-dependent phosphorylation. These local Ca2+ releases activate an inward Na+-Ca2+ exchange current which accelerates the terminal diastolic depolarization rate and, thus, controls the spontaneous pacemaker firing. Both the basal primary pacemaker beating rate and its modulation via β-adrenergic receptor stimulation appear to be critically dependent upon intact RyR function and local subsarcolemmal sarcoplasmic reticulum generated Ca2+ releases. This review aspires to integrate the traditional viewpoint that has emphasized the supremacy of the ensemble of surface membrane ion channels in spontaneous firing of the primary cardiac pacemaker, and these novel perspectives of cAMP-mediated PKA-dependent Ca2+ cycling in regulation of the heart pacemaker clock, both in the basal state and during β-adrenergic receptor stimulation. PMID:19573534

  1. Impact of Leukocyte Function-Associated Antigen-1 Blockade on Endogenous Allospecific T Cells to Multiple Minor Histocompatibility Antigen Mismatched Cardiac Allograft.

    PubMed

    Kwun, Jean; Farris, Alton B; Song, Hyunjin; Mahle, William T; Burlingham, William J; Knechtle, Stuart J

    2015-12-01

    Blocking leukocyte function-associated antigen (LFA)-1 in organ transplant recipients prolongs allograft survival. However, the precise mechanisms underlying the therapeutic potential of LFA-1 blockade in preventing chronic rejection are not fully elucidated. Cardiac allograft vasculopathy (CAV) is the preeminent cause of late cardiac allograft failure characterized histologically by concentric intimal hyperplasia. Anti-LFA-1 monoclonal antibody was used in a multiple minor antigen-mismatched, BALB.B (H-2B) to C57BL/6 (H-2B), cardiac allograft model. Endogenous donor-specific CD8 T cells were tracked down using major histocompatibility complex multimers against the immunodominant H4, H7, H13, H28, and H60 minor Ags. The LFA-1 blockade prevented acute rejection and preserved palpable beating quality with reduced CD8 T-cell graft infiltration. Interestingly, less CD8 T cell infiltration was secondary to reduction of T-cell expansion rather than less trafficking. The LFA-1 blockade significantly suppressed the clonal expansion of minor histocompatibility antigen-specific CD8 T cells during the expansion and contraction phase. The CAV development was evaluated with morphometric analysis at postoperation day 100. The LFA-1 blockade profoundly attenuated neointimal hyperplasia (61.6 vs 23.8%; P < 0.05), CAV-affected vessel number (55.3 vs 15.9%; P < 0.05), and myocardial fibrosis (grade 3.29 vs 1.8; P < 0.05). Finally, short-term LFA-1 blockade promoted long-term donor-specific regulation, which resulted in attenuated transplant arteriosclerosis. Taken together, LFA-1 blockade inhibits initial endogenous alloreactive T-cell expansion and induces more regulation. Such a mechanism supports a pulse tolerance induction strategy with anti-LFA-1 rather than long-term treatment.

  2. Mechanosensitive Gene Regulation by Myocardin-Related Transcription Factors is Required for Cardiomyocyte Integrity in Load-Induced Ventricular Hypertrophy.

    PubMed

    Trembley, Michael A; Quijada, Pearl; Agullo-Pascual, Esperanza; Tylock, Kevin M; Colpan, Mert; Dirkx, Ronald A; Myers, Jason R; Mickelsen, Deanne M; de Mesy Bentley, Karen; Rothenberg, Eli; Moravec, Christine S; Alexis, Jeffrey D; Gregorio, Carol C; Dirksen, Robert T; Delmar, Mario; Small, Eric M

    2018-05-01

    Background -Hypertrophic cardiomyocyte (CM) growth and dysfunction accompanies various forms of heart disease. The mechanisms responsible for transcriptional changes that impact cardiac physiology and the transition to heart failure (HF) are not well understood. The intercalated disc (ID) is a specialized intercellular junction coupling CM electrical activity and force transmission, and is gaining attention as a mechanosensitive signaling hub and hotspot for causative mutations in cardiomyopathy. Methods -Transmission electron microscopy, confocal microscopy, and single-molecule localization microscopy (SMLM) were used to examine changes in ID structure and protein localization in the murine and human heart. We conducted detailed cardiac functional assessment and transcriptional profiling of mice lacking myocardin-related transcription factor-A (MRTF-A) and -B specifically in adult CMs to evaluate the role of mechanosensitive regulation of gene expression in load-induced ventricular remodeling. Results -We found that MRTFs localize to IDs in the healthy human heart and accumulate in the nucleus in heart failure (HF). Although mice lacking MRTFs in adult CMs display normal cardiac physiology at baseline, pressure overload leads to rapid HF characterized by sarcomere disarray, ID disintegration, chamber dilation and wall thinning, cardiac functional decline, and partially penetrant acute lethality. Transcriptional profiling reveals a program of actin cytoskeleton and CM adhesion genes driven by MRTFs during pressure overload. Indeed, conspicuous remodeling of gap junctions at IDs identified by SMLM may partially stem from a reduction in Mapre1 expression, which we show is a direct mechanosensitive MRTF target. Conclusions -Taken together, our study describes a novel paradigm in which MRTFs control an acute mechanosensitive signaling circuit that coordinates crosstalk between the actin and microtubule cytoskeleton and maintains ID integrity and CM homeostasis in heart disease.

  3. Folliculin (Flcn) inactivation leads to murine cardiac hypertrophy through mTORC1 deregulation

    PubMed Central

    Hasumi, Yukiko; Baba, Masaya; Hasumi, Hisashi; Huang, Ying; Lang, Martin; Reindorf, Rachel; Oh, Hyoung-bin; Sciarretta, Sebastiano; Nagashima, Kunio; Haines, Diana C.; Schneider, Michael D.; Adelstein, Robert S.; Schmidt, Laura S.; Sadoshima, Junichi; Marston Linehan, W.

    2014-01-01

    Cardiac hypertrophy, an adaptive process that responds to increased wall stress, is characterized by the enlargement of cardiomyocytes and structural remodeling. It is stimulated by various growth signals, of which the mTORC1 pathway is a well-recognized source. Here, we show that loss of Flcn, a novel AMPK–mTOR interacting molecule, causes severe cardiac hypertrophy with deregulated energy homeostasis leading to dilated cardiomyopathy in mice. We found that mTORC1 activity was upregulated in Flcn-deficient hearts, and that rapamycin treatment significantly reduced heart mass and ameliorated cardiac dysfunction. Phospho-AMP-activated protein kinase (AMPK)-alpha (T172) was reduced in Flcn-deficient hearts and nonresponsive to various stimulations including metformin and AICAR (5-amino-1-β-D-ribofuranosyl-imidazole-4-carboxamide). ATP levels were elevated and mitochondrial function was increased in Flcn-deficient hearts, suggesting that excess energy resulting from up-regulated mitochondrial metabolism under Flcn deficiency might attenuate AMPK activation. Expression of Ppargc1a, a central molecule for mitochondrial metabolism, was increased in Flcn-deficient hearts and indeed, inactivation of Ppargc1a in Flcn-deficient hearts significantly reduced heart mass and prolonged survival. Ppargc1a inactivation restored phospho-AMPK-alpha levels and suppressed mTORC1 activity in Flcn-deficient hearts, suggesting that up-regulated Ppargc1a confers increased mitochondrial metabolism and excess energy, leading to inactivation of AMPK and activation of mTORC1. Rapamycin treatment did not affect the heart size of Flcn/Ppargc1a doubly inactivated hearts, further supporting the idea that Ppargc1a is the critical element leading to deregulation of the AMPK–mTOR-axis and resulting in cardiac hypertrophy under Flcn deficiency. These data support an important role for Flcn in cardiac homeostasis in the murine model. PMID:24908670

  4. Never in mitosis gene A related kinase-6 attenuates pressure overload-induced activation of the protein kinase B pathway and cardiac hypertrophy.

    PubMed

    Bian, Zhouyan; Liao, Haihan; Zhang, Yan; Wu, Qingqing; Zhou, Heng; Yang, Zheng; Fu, Jinrong; Wang, Teng; Yan, Ling; Shen, Difei; Li, Hongliang; Tang, Qizhu

    2014-01-01

    Cardiac hypertrophy appears to be a specialized form of cellular growth that involves the proliferation control and cell cycle regulation. NIMA (never in mitosis, gene A)-related kinase-6 (Nek6) is a cell cycle regulatory gene that could induce centriole duplication, and control cell proliferation and survival. However, the exact effect of Nek6 on cardiac hypertrophy has not yet been reported. In the present study, the loss- and gain-of-function experiments were performed in Nek6 gene-deficient (Nek6-/-) mice and Nek6 overexpressing H9c2 cells to clarify whether Nek6 which promotes the cell cycle also mediates cardiac hypertrophy. Cardiac hypertrophy was induced by transthoracic aorta constriction (TAC) and then evaluated by echocardiography, pathological and molecular analyses in vivo. We got novel findings that the absence of Nek6 promoted cardiac hypertrophy, fibrosis and cardiac dysfunction, which were accompanied by a significant activation of the protein kinase B (Akt) signaling in an experimental model of TAC. Consistent with this, the overexpression of Nek6 prevented hypertrophy in H9c2 cells induced by angiotonin II and inhibited Akt signaling in vitro. In conclusion, our results demonstrate that the cell cycle regulatory gene Nek6 is also a critical signaling molecule that helps prevent cardiac hypertrophy and inhibits the Akt signaling pathway.

  5. Cardiac distribution of the binding sites for natriuretic peptides in vertebrates.

    PubMed

    Cerra, M C

    1994-12-01

    Natriuretic peptides are hormones that play an important role in the cardiovascular control of mammalian and non-mammalian vertebrates. They have been classified into four groups. Of these, ANP (atrial natriuretic peptide), BNP (brain atriuretic peptides), CNP (C-type natriuretic peptide) are detected in cardiac and non cardiac tissues of all vertebrates; while VNP (ventricular natriuretic peptide) has been isolated only from the fish ventricle. All peptides have shown a high degree of sequence homology. The expression of the three principal types of natriuretic peptide (ANP, BNP and CNP) in cardiac tissues is developmentally and functionally regulated in a highly tissue-specific manner. Three types of natriuretic peptide receptors have been identified in numerous target tissues. Two receptors are transmembrane guanylyl cyclases (ANPR-A and ANPR-B) that mediate biological effects of natriuretic peptides; the third one (ANPR-C) has no guanylyl cyclase and is called "clearance receptor." The presence of natriuretic peptide binding sites in the heart suggests new aspects of paracrine control of cardiac function. A relevant localization of natriuretic peptide receptors was found in those cardiac regions particularly suitable for monitoring blood volume and pressure oscillations such as the inflow tract and the outflow tract. For example, in birds (quail) the highest levels of natriuretic peptide receptors were detected in the inflow tract represented by the vena cava. In both fish and birds, the outflow chamber, the bulbus cordis, had a high number of natriuretic peptide binding sites. In mammals, a remarkable concentration of natriuretic peptide receptors was also observed in the coronary vessels. This zoning of cardiac natriuretic peptide receptors indicates an intracardiac action of the hormones and adds a humoral dimension to the morphofunctional design of the vertebrate heart.

  6. Microarray Analysis of Differential Gene Expression Profile Between Human Fetal and Adult Heart.

    PubMed

    Geng, Zhimin; Wang, Jue; Pan, Lulu; Li, Ming; Zhang, Jitai; Cai, Xueli; Chu, Maoping

    2017-04-01

    Although many changes have been discovered during heart maturation, the genetic mechanisms involved in the changes between immature and mature myocardium have only been partially elucidated. Here, gene expression profile changed between the human fetal and adult heart was characterized. A human microarray was applied to define the gene expression signatures of the fetal (13-17 weeks of gestation, n = 4) and adult hearts (30-40 years old, n = 4). Gene ontology analyses, pathway analyses, gene set enrichment analyses, and signal transduction network were performed to predict the function of the differentially expressed genes. Ten mRNAs were confirmed by quantificational real-time polymerase chain reaction. 5547 mRNAs were found to be significantly differentially expressed. "Cell cycle" was the most enriched pathway in the down-regulated genes. EFGR, IGF1R, and ITGB1 play a central role in the regulation of heart development. EGFR, IGF1R, and FGFR2 were the core genes regulating cardiac cell proliferation. The quantificational real-time polymerase chain reaction results were concordant with the microarray data. Our data identified the transcriptional regulation of heart development in the second trimester and the potential regulators that play a prominent role in the regulation of heart development and cardiac cells proliferation.

  7. LncRNA ZFAS1 as a SERCA2a Inhibitor to Cause Intracellular Ca2+ Overload and Contractile Dysfunction in a Mouse Model of Myocardial Infarction.

    PubMed

    Zhang, Ying; Jiao, Lei; Sun, Lihua; Li, Yanru; Gao, Yuqiu; Xu, Chaoqian; Shao, Yingchun; Li, Mengmeng; Li, Chunyan; Lu, Yanjie; Pan, Zhenwei; Xuan, Lina; Zhang, Yiyuan; Li, Qingqi; Yang, Rui; Zhuang, Yuting; Zhang, Yong; Yang, Baofeng

    2018-05-11

    Ca 2+ homeostasis-a critical determinant of cardiac contractile function-is critically regulated by SERCA2a (sarcoplasmic reticulum Ca 2+ -ATPase 2a). Our previous study has identified ZFAS1 as a new lncRNA biomarker of acute myocardial infarction (MI). To evaluate the effects of ZFAS1 on SERCA2a and the associated Ca 2+ homeostasis and cardiac contractile function in the setting of MI. ZFAS1 expression was robustly increased in cytoplasm and sarcoplasmic reticulum in a mouse model of MI and a cellular model of hypoxia. Knockdown of endogenous ZFAS1 by virus-mediated silencing shRNA partially abrogated the ischemia-induced contractile dysfunction. Overexpression of ZFAS1 in otherwise normal mice created similar impairment of cardiac function as that observed in MI mice. Moreover, at the cellular level, ZFAS1 overexpression weakened the contractility of cardiac muscles. At the subcellular level, ZFAS1 deleteriously altered the Ca 2+ transient leading to intracellular Ca 2+ overload in cardiomyocytes. At the molecular level, ZFAS1 was found to directly bind SERCA2a protein and to limit its activity, as well as to repress its expression. The effects of ZFAS1 were readily reversible on knockdown of this lncRNA. Notably, a sequence domain of ZFAS1 gene that is conserved across species mimicked the effects of the full-length ZFAS1 . Mutation of this domain or application of an antisense fragment to this conserved region efficiently canceled out the deleterious actions of ZFAS1 . ZFAS1 had no significant effects on other Ca 2+ -handling regulatory proteins. ZFAS1 is an endogenous SERCA2a inhibitor, acting by binding to SERCA2a protein to limit its intracellular level and inhibit its activity, and a contributor to the impairment of cardiac contractile function in MI. Therefore, anti- ZFAS1 might be considered as a new therapeutic strategy for preserving SERCA2a activity and cardiac function under pathological conditions of the heart. © 2018 The Authors.

  8. Associations between attention, affect and cardiac activity in a single yoga session for female cancer survivors: an enactive neurophenomenology-based approach.

    PubMed

    Mackenzie, Michael J; Carlson, Linda E; Paskevich, David M; Ekkekakis, Panteleimon; Wurz, Amanda J; Wytsma, Kathryn; Krenz, Katie A; McAuley, Edward; Culos-Reed, S Nicole

    2014-07-01

    Yoga practice is reported to lead to improvements in quality of life, psychological functioning, and symptom indices in cancer survivors. Importantly, meditative states experienced within yoga practice are correlated to neurophysiological systems that moderate both focus of attention and affective valence. The current study used a mixed methods approach based in neurophenomenology to investigate associations between attention, affect, and cardiac activity during a single yoga session for female cancer survivors. Yoga practice was associated with a linear increase in associative attention and positive affective valence, while shifts in cardiac activity were related to the intensity of each yoga sequence. Changes in attention and affect were predicted by concurrently assessed cardiac activity. Awareness of breathing, physical movement, and increased relaxation were reported by participants as potential mechanisms for yoga's salutary effects. While yoga practice shares commonalities with exercise and relaxation training, yoga may serve primarily as a promising meditative attention-affect regulation training methodology. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Insulin-Like Growth Factor I (IGF-1) Deficiency Ameliorates Sex Difference in Cardiac Contractile Function and Intracellular Ca2+ Homeostasis

    PubMed Central

    Ceylan-Isik, Asli F.; Li, Qun; Ren, Jun

    2011-01-01

    Sex difference in cardiac contractile function exists which may contribute to the different prevalence in cardiovascular diseases between genders. However, the precise mechanisms of action behind sex difference in cardiac function are still elusive. Given that sex difference exists in insulin-like growth factor I (IGF-1) cascade, this study is designed to evaluate the impact of severe liver IGF-1 deficiency (LID) on sex difference in cardiac function. Echocardiographic, cardiomyocyte contractile and intracellular Ca2+ properties were evaluated including ventricular geometry, fractional shortening, peak shortening, maximal velocity of shortening/relengthening (± dL/dt), time-to-peak shortening (TPS), time-to-90% relengthening (TR90), fura-fluorescence intensity (FFI) and intracellular Ca2+ clearance. Female C57 mice exhibited significantly higher plasma IGF-1 levels than their male counterpart. LID mice possessed comparably low IGF-1 levels in both sexes. Female C57 and LID mice displayed lower body, heart and liver weights compared to male counterparts. Echocardiographic analysis revealed larger LV mass in female C57 but not LID mice without sex difference in other cardiac geometric indices. Myocytes from female C57 mice exhibited reduced peak shortening, ± dL/dt, longer TPS, TR90 and intracellular Ca2+ clearance compared with males. Interestingly, this sex difference was greatly attenuated or abolished by IGF-1 deficiency. Female C57 mice displayed significantly decreased mRNA and protein levels of Na+-Ca2+ exchanger, SERCA2a and phosphorylated phospholamban as well as SERCA activity compared with male C57 mice. These sex differences in Ca2+ regulatory proteins were abolished or overtly attenuated by IGF-1 deficiency. In summary, our data suggested that IGF-1 deficiency may significantly attenuated or mitigate the sex difference in cardiomyocyte contractile function associated with intracellular Ca2+ regulation. PMID:21763763

  10. Insulin-like growth factor I (IGF-1) deficiency ameliorates sex difference in cardiac contractile function and intracellular Ca(2+) homeostasis.

    PubMed

    Ceylan-Isik, Asli F; Li, Qun; Ren, Jun

    2011-10-10

    Sex difference in cardiac contractile function exists which may contribute to the different prevalence in cardiovascular diseases between genders. However, the precise mechanisms of action behind sex difference in cardiac function are still elusive. Given that sex difference exists in insulin-like growth factor I (IGF-1) cascade, this study is designed to evaluate the impact of severe liver IGF-1 deficiency (LID) on sex difference in cardiac function. Echocardiographic, cardiomyocyte contractile and intracellular Ca(2+) properties were evaluated including ventricular geometry, fractional shortening, peak shortening, maximal velocity of shortening/relengthening (±dL/dt), time-to-peak shortening (TPS), time-to-90% relengthening (TR(90)), fura-fluorescence intensity (FFI) and intracellular Ca(2+) clearance. Female C57 mice exhibited significantly higher plasma IGF-1 levels than their male counterpart. LID mice possessed comparably low IGF-1 levels in both sexes. Female C57 and LID mice displayed lower body, heart and liver weights compared to male counterparts. Echocardiographic analysis revealed larger LV mass in female C57 but not LID mice without sex difference in other cardiac geometric indices. Myocytes from female C57 mice exhibited reduced peak shortening, ±dL/dt, longer TPS, TR(90) and intracellular Ca(2+) clearance compared with males. Interestingly, this sex difference was greatly attenuated or abolished by IGF-1 deficiency. Female C57 mice displayed significantly decreased mRNA and protein levels of Na(+)-Ca(2+) exchanger, SERCA2a and phosphorylated phospholamban as well as SERCA activity compared with male C57 mice. These sex differences in Ca(2+) regulatory proteins were abolished or overtly attenuated by IGF-1 deficiency. In summary, our data suggested that IGF-1 deficiency may significantly attenuated or mitigate the sex difference in cardiomyocyte contractile function associated with intracellular Ca(2+) regulation. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  11. The relationship between erythrocyte membrane fatty acid levels and cardiac autonomic function in obese children.

    PubMed

    Mustafa, Gulgun; Kursat, Fidanci Muzaffer; Ahmet, Tas; Alparslan, Genc Fatih; Omer, Gunes; Sertoglu, Erdem; Erkan, Sarı; Ediz, Yesilkaya; Turker, Turker; Ayhan, Kılıc

    Childhood obesity is a worldwide health concern. Studies have shown autonomic dysfunction in obese children. The exact mechanism of this dysfunction is still unknown. The aim of this study was to assess the relationship between erythrocyte membrane fatty acid (EMFA) levels and cardiac autonomic function in obese children using heart rate variability (HRV). A total of 48 obese and 32 healthy children were included in this case-control study. Anthropometric and biochemical data, HRV indices, and EMFA levels in both groups were compared statistically. HRV parameters including standard deviation of normal-to-normal R-R intervals (NN), root mean square of successive differences, the number of pairs of successive NNs that differ by >50 ms (NN50), the proportion of NN50 divided by the total number of NNs, high-frequency power, and low-frequency power were lower in obese children compared to controls, implying parasympathetic impairment. Eicosapentaenoic acid and docosahexaenoic acid levels were lower in the obese group (p<0.001 and p=0.012, respectively). In correlation analysis, in the obese group, body mass index standard deviation and linoleic acid, arachidonic acid, triglycerides, and high-density lipoprotein levels showed a linear correlation with one or more HRV parameter, and age, eicosapentaenoic acid, and systolic and diastolic blood pressure correlated with mean heart rate. In linear regression analysis, age, dihomo-gamma-linolenic acid, linoleic acid, arachidonic acid, body mass index standard deviation, systolic blood pressure, triglycerides, low-density lipoprotein and high-density lipoprotein were related to HRV parameters, implying an effect on cardiac autonomic function. There is impairment of cardiac autonomic function in obese children. It appears that levels of EMFAs such as linoleic acid, arachidonic acid and dihomo-gamma-linolenic acid play a role in the regulation of cardiac autonomic function in obese children. Copyright © 2017 Sociedade Portuguesa de Cardiologia. Publicado por Elsevier España, S.L.U. All rights reserved.

  12. Loss of β-adrenergic-stimulated phosphorylation of CaV1.2 channels on Ser1700 leads to heart failure.

    PubMed

    Yang, Linghai; Dai, Dao-Fu; Yuan, Can; Westenbroek, Ruth E; Yu, Haijie; West, Nastassya; de la Iglesia, Horacio O; Catterall, William A

    2016-12-06

    L-type Ca 2+ currents conducted by voltage-gated calcium channel 1.2 (Ca V 1.2) initiate excitation-contraction coupling in the heart, and altered expression of Ca V 1.2 causes heart failure in mice. Here we show unexpectedly that reducing β-adrenergic regulation of Ca V 1.2 channels by mutation of a single PKA site, Ser1700, in the proximal C-terminal domain causes reduced contractile function, cardiac hypertrophy, and heart failure without changes in expression, localization, or function of the Ca V 1.2 protein in the mutant mice (SA mice). These deficits were aggravated with aging. Dual mutation of Ser1700 and a nearby casein-kinase II site (Thr1704) caused accelerated hypertrophy, heart failure, and death in mice with these mutations (STAA mice). Cardiac hypertrophy was increased by voluntary exercise and by persistent β-adrenergic stimulation. PKA expression was increased, and PKA sites Ser2808 in ryanodine receptor type-2, Ser16 in phospholamban, and Ser23/24 in troponin-I were hyperphosphorylated in SA mice, whereas phosphorylation of substrates for calcium/calmodulin-dependent protein kinase II was unchanged. The Ca 2+ pool in the sarcoplasmic reticulum was increased, the activity of calcineurin was elevated, and calcineurin inhibitors improved contractility and ameliorated cardiac hypertrophy. Cardio-specific expression of the SA mutation also caused reduced contractility and hypertrophy. These results suggest engagement of compensatory mechanisms, which initially may enhance the contractility of individual myocytes but eventually contribute to an increased sensitivity to cardiovascular stress and to heart failure in vivo. Our results demonstrate that normal regulation of Ca V 1.2 channels by phosphorylation of Ser1700 in cardiomyocytes is required for cardiovascular homeostasis and normal physiological regulation in vivo.

  13. Nuclear accumulation of myocyte muscle LIM protein is regulated by heme oxygenase 1 and correlates with cardiac function in the transition to failure

    PubMed Central

    Paudyal, Anju; Dewan, Sukriti; Ikie, Cindy; Whalley, Benjamin J; de Tombe, Pieter P.

    2016-01-01

    Key points The present study investigated the mechanism associated with impaired cardiac mechanosensing that leads to heart failure by examining the factors regulating muscle LIM protein subcellular distribution in myocytes.In myocytes, muscle LIM protein subcellular distribution is regulated by cell contractility rather than passive stretch via heme oxygenase‐1 and histone deacetylase signalling. The result of the present study provide new insights into mechanotransduction in cardiac myocytes.Myocyte mechanosensitivity, as indicated by the muscle LIM protein ratio, is also correlated with cardiac function in the transition to failure in a guinea‐pig model of disease. This shows that the loss mechanosensitivity plays an important role during the transition to failure in the heart.The present study provides the first indication that mechanosensing could be modified pharmacologically during the transition to heart failure. Abstract Impaired mechanosensing leads to heart failure and a decreased ratio of cytoplasmic to nuclear CSRP3/muscle LIM protein (MLP ratio) is associated with a loss of mechanosensitivity. In the present study, we tested whether passive or active stress/strain was important in modulating the MLP ratio and determined whether this correlated with heart function during the transition to failure. We exposed cultured neonatal rat myocytes to a 10% cyclic mechanical stretch at 1 Hz, or electrically paced myocytes at 6.8 V (1 Hz) for 48 h. The MLP ratio decreased by 50% (P < 0.05, n = 4) only in response to electrical pacing, suggesting impaired mechanosensitivity. Inhibition of contractility with 10 μm blebbistatin resulted in an ∼3‐fold increase in the MLP ratio (n = 8, P < 0.05), indicating that myocyte contractility regulates nuclear MLP. Inhibition of histone deacetylase (HDAC) signalling with trichostatin A increased nuclear MLP following passive stretch, suggesting that HDACs block MLP nuclear accumulation. Inhibition of heme oxygenase1 (HO‐1) activity with protoporphyrin IX zinc(II) blocked MLP nuclear accumulation. To examine how mechanosensitivity changes during the transition to heart failure, we studied a guinea‐pig model of angiotensin II infusion (400 ng kg–1 min–1) over 12 weeks. Using subcellular fractionation, we showed that the MLP ratio increased by 88% (n = 4, P < 0.01) during compensated hypertrophy but decreased significantly during heart failure (P < 0.001, n = 4). The MLP ratio correlated significantly with the E/A ratio (r = 0.71, P < 0.01, n = 12), a clinical measure of diastolic function. These data indicate for the first time that myocyte mechanosensitivity as indicated by the MLP ratio is regulated primarily by myocyte contractility via HO‐1 and HDAC signalling. PMID:26847743

  14. Use of Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes (hiPSC-CMs) to Monitor Compound Effects on Cardiac Myocyte Signaling Pathways.

    PubMed

    Guo, Liang; Eldridge, Sandy; Furniss, Mike; Mussio, Jodie; Davis, Myrtle

    2015-09-01

    There is a need to develop mechanism-based assays to better inform risk of cardiotoxicity. Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) are rapidly gaining acceptance as a biologically relevant in vitro model for use in drug discovery and cardiotoxicity screens. Utilization of hiPSC-CMs for mechanistic investigations would benefit from confirmation of the expression and activity of cellular pathways that are known to regulate cardiac myocyte viability and function. This unit describes an approach to demonstrate the presence and function of signaling pathways in hiPSC-CMs and the effects of treatments on these pathways. We present a workflow that employs protocols to demonstrate protein expression and functional integrity of signaling pathway(s) of interest and to characterize biological consequences of signaling modulation. These protocols utilize a unique combination of structural, functional, and biochemical endpoints to interrogate compound effects on cardiomyocytes. Copyright © 2015 John Wiley & Sons, Inc.

  15. Cardiac-specific disruption of the c-raf-1 gene induces cardiac dysfunction and apoptosis

    PubMed Central

    Yamaguchi, Osamu; Watanabe, Tetsuya; Nishida, Kazuhiko; Kashiwase, Kazunori; Higuchi, Yoshiharu; Takeda, Toshihiro; Hikoso, Shungo; Hirotani, Shinichi; Asahi, Michio; Taniike, Masayuki; Nakai, Atsuko; Tsujimoto, Ikuko; Matsumura, Yasushi; Miyazaki, Jun-ichi; Chien, Kenneth R.; Matsuzawa, Atsushi; Sadamitsu, Chiharu; Ichijo, Hidenori; Baccarini, Manuela; Hori, Masatsugu; Otsu, Kinya

    2004-01-01

    The Raf/MEK/extracellular signal–regulated kinase (ERK) signaling pathway regulates diverse cellular processes such as proliferation, differentiation, and apoptosis and is implicated as an important contributor to the pathogenesis of cardiac hypertrophy and heart failure. To examine the in vivo role of Raf-1 in the heart, we generated cardiac muscle–specific Raf-1–knockout (Raf CKO) mice with Cre-loxP–mediated recombination. The mice demonstrated left ventricular systolic dysfunction and heart dilatation without cardiac hypertrophy or lethality. The Raf CKO mice showed a significant increase in the number of apoptotic cardiomyocytes. The expression level and activation of MEK1/2 or ERK showed no difference, but the kinase activity of apoptosis signal–regulating kinase 1 (ASK1), JNK, or p38 increased significantly compared with that in controls. The ablation of ASK1 rescued heart dysfunction and dilatation as well as cardiac fibrosis. These results indicate that Raf-1 promotes cardiomyocyte survival through a MEK/ERK–independent mechanism. PMID:15467832

  16. Cardiac function and cognition in older community-dwelling cardiac patients.

    PubMed

    Eggermont, Laura H P; Aly, Mohamed F A; Vuijk, Pieter J; de Boer, Karin; Kamp, Otto; van Rossum, Albert C; Scherder, Erik J A

    2017-11-01

    Cognitive deficits have been reported in older cardiac patients. An underlying mechanism for these findings may be reduced cardiac function. The relationship between cardiac function as represented by different echocardiographic measures and different cognitive function domains in older cardiac patients remains unknown. An older (≥70 years) heterogeneous group of 117 community-dwelling cardiac patients under medical supervision by a cardiologist underwent thorough echocardiographic assessment including left ventricular ejection fraction, cardiac index, left atrial volume index, left ventricular mass index, left ventricular diastolic function, and valvular calcification. During a home visit, a neuropsychological assessment was performed within 7.1 ± 3.8 months after echocardiographic assessment; the neuropsychological assessment included three subtests of a word-learning test (encoding, recall, recognition) to examine one memory function domain and three executive function tests, including digit span backwards, Trail Making Test B minus A, and the Stroop colour-word test. Regression analyses showed no significant linear or quadratic associations between any of the echocardiographic functions and the cognitive function measures. None of the echocardiographic measures as representative of cardiac function was correlated with memory or executive function in this group of community-dwelling older cardiac patients. These findings contrast with those of previous studies. © 2017 Japanese Psychogeriatric Society.

  17. Overexpression of Catalase Diminishes Oxidative Cysteine Modifications of Cardiac Proteins

    PubMed Central

    Yao, Chunxiang; Behring, Jessica B.; Shao, Di; Sverdlov, Aaron L.; Whelan, Stephen A.; Elezaby, Aly; Yin, Xiaoyan; Siwik, Deborah A.; Seta, Francesca; Costello, Catherine E.; Cohen, Richard A.; Matsui, Reiko; Colucci, Wilson S.; McComb, Mark E.; Bachschmid, Markus M.

    2015-01-01

    Reactive protein cysteine thiolates are instrumental in redox regulation. Oxidants, such as hydrogen peroxide (H2O2), react with thiolates to form oxidative post-translational modifications, enabling physiological redox signaling. Cardiac disease and aging are associated with oxidative stress which can impair redox signaling by altering essential cysteine thiolates. We previously found that cardiac-specific overexpression of catalase (Cat), an enzyme that detoxifies excess H2O2, protected from oxidative stress and delayed cardiac aging in mice. Using redox proteomics and systems biology, we sought to identify the cysteines that could play a key role in cardiac disease and aging. With a ‘Tandem Mass Tag’ (TMT) labeling strategy and mass spectrometry, we investigated differential reversible cysteine oxidation in the cardiac proteome of wild type and Cat transgenic (Tg) mice. Reversible cysteine oxidation was measured as thiol occupancy, the ratio of total available versus reversibly oxidized cysteine thiols. Catalase overexpression globally decreased thiol occupancy by ≥1.3 fold in 82 proteins, including numerous mitochondrial and contractile proteins. Systems biology analysis assigned the majority of proteins with differentially modified thiols in Cat Tg mice to pathways of aging and cardiac disease, including cellular stress response, proteostasis, and apoptosis. In addition, Cat Tg mice exhibited diminished protein glutathione adducts and decreased H2O2 production from mitochondrial complex I and II, suggesting improved function of cardiac mitochondria. In conclusion, our data suggest that catalase may alleviate cardiac disease and aging by moderating global protein cysteine thiol oxidation. PMID:26642319

  18. Dual developmental role of transcriptional regulator Ets1 in Xenopus cardiac neural crest vs. heart mesoderm

    PubMed Central

    Nie, Shuyi; Bronner, Marianne E.

    2015-01-01

    Aims Ets1 is an important transcription factor that is expressed in both the cardiac neural crest (NC) and heart mesoderm of vertebrate embryos. Moreover, Ets1 deletion in humans results in congenital heart abnormalities. To clarify the functional contributions of Ets1 in cardiac NC vs. heart mesoderm, we performed tissue-targeted loss-of-function analysis to compare the relative roles of Ets1 in these two tissues during heart formation using Xenopus embryos as a model system. Methods and results We confirmed by in situ hybridization analysis that Ets1 is expressed in NC and heart mesoderm during embryogenesis. Using a translation-blocking antisense morpholino to knockdown Ets1 protein selectively in the NC, we observed defects in NC delamination from the neural tube, collective cell migration, as well as segregation of NC streams in the cranial and cardiac regions. Many cardiac NC cells failed to reach their destination in the heart, resulting in defective aortic arch artery formation. A different set of defects was noted when Ets1 knockdown was targeted to heart mesoderm. The formation of the primitive heart tube was dramatically delayed and the endocardial tissue appeared depleted. As a result, the conformation of the heart was severely disrupted. In addition, the outflow tract septum was missing, and trabeculae formation in the ventricle was abolished. Conclusion Our study shows that Ets1 is required in both the cardiac NC and heart mesoderm, albeit for different aspects of heart formation. Our results reinforce the suggestion that proper interaction between these tissues is critical for normal heart development. PMID:25691536

  19. Endogenous digitalis-like factors.

    PubMed

    Schoner, W

    1992-01-01

    The postulate of a natriuretic factor inhibiting the sodium pump in the kidney led to the detection of increased concentrations of endogenous digitalis-like factors in blood after salt loading, in essential hypertension, in pregnancy-induced hypertension and in chronic hypervolaemia. The recent isolation of ouabain or a close isomer thereof from human plasma and the demonstration of a compound similar if not identical to digoxin in adrenals and human urine shows that mammals like non-vertebrates and toads may synthesize cardiac glycosides in their adrenals and possibly in hypothalamus. The hypothalamus also forms other compounds of unknown structure which bind to the cardiac glycoside receptor site. The differential functions of endogenously formed ouabain and of a digoxin-like substance are unclear. The detailed knowledge of the physiological role of both endogenously formed cardiac glycosides in the regulation of blood pressure has still to be worked out.

  20. Stratification Pattern of Static and Scale-Invariant Dynamic Measures of Heartbeat Fluctuations Across Sleep Stages in Young and Elderly

    PubMed Central

    Schmitt, Daniel T.; Stein, Phyllis K.; Ivanov, Plamen Ch.

    2010-01-01

    Cardiac dynamics exhibit complex variability characterized by scale-invariant and nonlinear temporal organization related to the mechanism of neuroautonomic control, which changes with physiologic states and pathologic conditions. Changes in sleep regulation during sleep stages are also related to fluctuations in autonomic nervous activity. However, the interaction between sleep regulation and cardiac autonomic control remains not well understood. Even less is known how this interaction changes with age, as aspects of both cardiac dynamics and sleep regulation differ in healthy elderly compared to young subjects. We hypothesize that because of the neuroautonomic responsiveness in young subjects, fractal and nonlinear features of cardiac dynamics exhibit a pronounced stratification pattern across sleep stages, while in elderly these features will remain unchanged due to age-related loss of cardiac variability and decline of neuroautonomic responsiveness. We analyze the variability and the temporal fractal organization of heartbeat fluctuations across sleep stages in both young and elderly. We find that independent linear and nonlinear measures of cardiac control consistently exhibit the same ordering in their values across sleep stages, forming a robust stratification pattern. Despite changes in sleep architecture and reduced heart rate variability in elderly subjects, this stratification surprisingly does not break down with advanced age. Moreover, the difference between sleep stages for some linear, fractal, and nonlinear measures exceeds the difference between young and elderly, suggesting that the effect of sleep regulation on cardiac dynamics is significantly stronger than the effect of healthy aging. Quantifying changes in this stratification pattern may provide insights into how alterations in sleep regulation contribute to increased cardiac risk. PMID:19203874

Top