Sample records for regulate compound leaf

  1. Compound Leaf Development and Evolution in the Legumes[W

    PubMed Central

    Champagne, Connie E.M.; Goliber, Thomas E.; Wojciechowski, Martin F.; Mei, Raymond W.; Townsley, Brad T.; Wang, Kan; Paz, Margie M.; Geeta, R.; Sinha, Neelima R.

    2007-01-01

    Across vascular plants, Class 1 KNOTTED1-like (KNOX1) genes appear to play a critical role in the development of compound leaves. An exception to this trend is found in the Fabaceae, where pea (Pisum sativum) uses UNIFOLIATA, an ortholog of the floral regulators FLORICAULA (FLO) and LEAFY (LFY), in place of KNOX1 genes to regulate compound leaf development. To assess the phylogenetic distribution of KNOX1-independent compound leaf development, a survey of KNOX1 protein expression across the Fabaceae was undertaken. The majority of compound-leafed Fabaceae have expression of KNOX1 proteins associated with developing compound leaves. However, in a large subclade of the Fabaceae, the inverted repeat–lacking clade (IRLC), of which pea is a member, KNOX1 expression is not associated with compound leaves. These data suggest that the FLO/LFY gene may function in place of KNOX1 genes in generating compound leaves throughout the IRLC. The contribution of FLO/LFY to leaf complexity in a member of the Fabaceae outside of the IRLC was examined by reducing expression of FLO/LFY orthologs in transgenic soybean (Glycine max). Transgenic plants with reduced FLO/LFY expression showed only slight reductions in leaflet number. Overexpression of a KNOX1 gene in alfalfa (Medicago sativa), a member of the IRLC, resulted in an increase in leaflet number. This implies that KNOX1 targets, which promote compound leaf development, are present in alfalfa and are still sensitive to KNOX1 regulation. These data suggest that KNOX1 genes and the FLO/LFY gene may have played partially overlapping roles in compound leaf development in ancestral Fabaceae but that the FLO/LFY gene took over this role in the IRLC. PMID:17993625

  2. Coordination of xylem hydraulics and stomatal regulation in keeping the integrity of xylem water transport in shoots of two compound-leaved tree species.

    PubMed

    Liu, Yan-Yan; Song, Jia; Wang, Miao; Li, Na; Niu, Cun-Yang; Hao, Guang-You

    2015-12-01

    Hydraulic segmentation between proximal and distal organs has been hypothesized to be an important protective mechanism for plants to minimize the detrimental effects of drought-induced hydraulic failure. Uncertainties still exist regarding the degree of segmentation and the role of stomatal regulation in keeping hydraulic integrity of organs at different hierarchies. In the present study, we measured hydraulic conductivity and vulnerability in stems, compound leaf petioles and leaflet laminas of Fraxinus mandshurica Rupr. and Juglans mandshurica Maxim. growing in Changbai Mountain of Northeast China to identify the main locality where hydraulic segmentation occurs along the shoot water transport pathway. Stomatal conductance in response to leaf water potential change was also measured to investigate the role of stomatal regulation in avoiding extensive transpiration-induced embolism. No major contrasts were found between stems and compound leaf petioles in either hydraulic conductivity or vulnerability to drought-induced embolism, whereas a large difference in hydraulic vulnerability exists between compound leaf petioles and leaflet laminas. Furthermore, in contrast to the relatively large safety margins in stems (4.13 and 2.04 MPa) and compound leaf petioles (1.33 and 1.93 MPa), leaflet lamina hydraulic systems have substantially smaller or even negative safety margins (-0.17 and 0.47 MPa) in F. mandshurica and J. mandshurica. Under unstressed water conditions, gas exchange may be better optimized by allowing leaflet vascular system function with small safety margins. In the meantime, hydraulic safety of compound leaf petioles and stems are guaranteed by their large safety margins. In facing severe drought stress, larger safety margins in stems than in compound leaf petioles would allow plants to minimize the risk of catastrophic embolism in stems by sacrificing the whole compound leaves. A strong coordination between hydraulic and stomatal regulation appears to play a critical role in balancing the competing efficiency and safety requirements for xylem water transport and use in plants. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  3. Pea Compound Leaf Architecture Is Regulated by Interactions among the Genes UNIFOLIATA, COCHLEATA, AFILA, and TENDRIL-LESS

    PubMed Central

    Gourlay, Campbell W.; Hofer, Julie M. I.; Ellis, T. H. Noel

    2000-01-01

    The compound leaf primordium of pea represents a marginal blastozone that initiates organ primordia, in an acropetal manner, from its growing distal region. The UNIFOLIATA (UNI) gene is important in marginal blastozone maintenance because loss or reduction of its function results in uni mutant leaves of reduced complexity. In this study, we show that UNI is expressed in the leaf blastozone over the period in which organ primordia are initiated and is downregulated at the time of leaf primordium determination. Prolonged UNI expression was associated with increased blastozone activity in the complex leaves of afila (af), cochleata (coch), and afila tendril-less (af tl) mutant plants. Our analysis suggests that UNI expression is negatively regulated by COCH in stipule primordia, by AF in proximal leaflet primordia, and by AF and TL in distal and terminal tendril primordia. We propose that the control of UNI expression by AF, TL, and COCH is important in the regulation of blastozone activity and pattern formation in the compound leaf primordium of the pea. PMID:10948249

  4. LYRATE Is a Key Regulator of Leaflet Initiation and Lamina Outgrowth in Tomato[C][W][OA

    PubMed Central

    David-Schwartz, Rakefet; Koenig, Daniel; Sinha, Neelima R.

    2009-01-01

    Development of the flattened laminar structure in plant leaves requires highly regulated cell division and expansion patterns. Although tight regulation of these processes is essential during leaf development, leaf shape is highly diverse across the plant kingdom, implying that patterning of growth must be amenable to evolutionary change. Here, we describe the molecular identification of the classical tomato (Solanum lycopersicum) mutant lyrate, which is impaired in outgrowth of leaflet primodia and laminar tissues during compound leaf development. We found that the lyrate phenotype results from a loss-of-function mutation of the tomato JAGGED homolog, a well-described positive regulator of cell division in lateral organs. We demonstrate that LYRATE coordinates lateral outgrowth in the compound leaves of tomato by interacting with both the KNOX and auxin transcriptional networks and suggest that evolutionary changes in LYRATE expression may contribute to the fundamental difference between compound and simple leaves. PMID:19820188

  5. Regulation of Compound Leaf Development by PHANTASTICA in Medicago truncatula1[C][W][OPEN

    PubMed Central

    Ge, Liangfa; Peng, Jianling; Berbel, Ana; Madueño, Francisco; Chen, Rujin

    2014-01-01

    Plant leaves, simple or compound, initiate as peg-like structures from the peripheral zone of the shoot apical meristem, which requires class I KNOTTED-LIKE HOMEOBOXI (KNOXI) transcription factors to maintain its activity. The MYB domain protein encoded by the ASYMMETRIC LEAVES1/ROUGH SHEATH2/PHANTASTICA (ARP) gene, together with other factors, excludes KNOXI gene expression from incipient leaf primordia to initiate leaves and specify leaf adaxial identity. However, the regulatory relationship between ARP and KNOXI is more complex in compound-leafed species. Here, we investigated the role of ARP and KNOXI genes in compound leaf development in Medicago truncatula. We show that the M. truncatula phantastica mutant exhibited severe compound leaf defects, including curling and deep serration of leaf margins, shortened petioles, increased rachises, petioles acquiring motor organ characteristics, and ectopic development of petiolules. On the other hand, the M. truncatula brevipedicellus mutant did not exhibit visible compound leaf defects. Our analyses show that the altered petiole development requires ectopic expression of ELONGATED PETIOLULE1, which encodes a lateral organ boundary domain protein, and that the distal margin serration requires the auxin efflux protein M. truncatula PIN-FORMED10 in the M. truncatula phantastica mutant. PMID:24218492

  6. Regulation of Compound Leaf Development in Medicago truncatula by Fused Compound Leaf1, a Class M KNOX Gene[C][W

    PubMed Central

    Peng, Jianling; Yu, Jianbin; Wang, Hongliang; Guo, Yingqing; Li, Guangming; Bai, Guihua; Chen, Rujin

    2011-01-01

    Medicago truncatula is a legume species belonging to the inverted repeat lacking clade (IRLC) with trifoliolate compound leaves. However, the regulatory mechanisms underlying development of trifoliolate leaves in legumes remain largely unknown. Here, we report isolation and characterization of fused compound leaf1 (fcl1) mutants of M. truncatula. Phenotypic analysis suggests that FCL1 plays a positive role in boundary separation and proximal-distal axis development of compound leaves. Map-based cloning indicates that FCL1 encodes a class M KNOX protein that harbors the MEINOX domain but lacks the homeodomain. Yeast two-hybrid assays show that FCL1 interacts with a subset of Arabidopsis thaliana BEL1-like proteins with slightly different substrate specificities from the Arabidopsis homolog KNATM-B. Double mutant analyses with M. truncatula single leaflet1 (sgl1) and palmate-like pentafoliata1 (palm1) leaf mutants show that fcl1 is epistatic to palm1 and sgl1 is epistatic to fcl1 in terms of leaf complexity and that SGL1 and FCL1 act additively and are required for petiole development. Previous studies have shown that the canonical KNOX proteins are not involved in compound leaf development in IRLC legumes. The identification of FCL1 supports the role of a truncated KNOX protein in compound leaf development in M. truncatula. PMID:22080596

  7. STM/BP-Like KNOXI Is Uncoupled from ARP in the Regulation of Compound Leaf Development in Medicago truncatula[C][W][OPEN

    PubMed Central

    Zhou, Chuanen; Han, Lu; Li, Guifen; Chai, Maofeng; Fu, Chunxiang; Cheng, Xiaofei; Wen, Jiangqi; Tang, Yuhong; Wang, Zeng-Yu

    2014-01-01

    Class I KNOTTED-like homeobox (KNOXI) genes are critical for the maintenance of the shoot apical meristem. The expression domain of KNOXI is regulated by ASYMMETRIC LEAVES1/ROUGHSHEATH2/PHANTASTICA (ARP) genes, which are associated with leaf morphology. In the inverted repeat-lacking clade (IRLC) of Fabaceae, the orthologs of LEAFY (LFY) function in place of KNOXI to regulate compound leaf development. Here, we characterized loss-of-function mutants of ARP (PHAN) and SHOOTMERISTEMLESS (STM)- and BREVIPEDICELLUS (BP)-like KNOXI in the model IRLC legume species Medicago truncatula. The function of ARP genes is species specific. The repression of STM/BP-like KNOXI genes in leaves is not mediated by PHAN, and no suppression of PHAN by STM/BP-like KNOXI genes was observed either, indicating that STM/BP-like KNOXI genes are uncoupled from PHAN in M. truncatula. Furthermore, comparative analyses of phenotypic output in response to ectopic expression of KNOXI and the M. truncatula LFY ortholog, SINGLE LEAFLET1 (SGL1), reveal that KNOXI and SGL1 regulate parallel pathways in leaf development. We propose that SGL1 probably functions in a stage-specific manner in the regulation of the indeterminate state of developing leaves in M. truncatula. PMID:24781113

  8. A knotted1-like homeobox protein regulates abscission in tomato by modulating the auxin pathway

    USDA-ARS?s Scientific Manuscript database

    KD1, a gene encoding a KNOTTED1-LIKE HOMEOBOX transcription factor is known to be involved, in tomato, in ontogeny of the compound leaf. KD1 is also highly expressed in both leaf and flower abscission zones. Reducing abundance of transcripts of this gene in tomato, using both virus induced gene sile...

  9. Down-regulation of SlIAA15 in tomato altered stem xylem development and production of volatile compounds in leaf exudates.

    PubMed

    Deng, Wei; Yan, Fang; Liu, Minchun; Wang, Xinyu; Li, Zhengguo

    2012-08-01

    The Aux/IAA family genes encode short-lived nuclear proteins that function as transcriptional regulators in auxin signal transduction. Aux/IAA genes have been reported to control many processes of plant development. Our recent study showed that down-regulation of SlIAA15 in tomato reduced apical dominance, altered pattern of axillary shoot development, increased lateral root formation and leaves thickness. The SlIAA15 suppressed lines display strong reduction of trichome density, suggesting that SlIAA15 is involved in trichome formation. Here, we reported that SlIAA15-suppressed transgenic lines display increased number of xylem cells compared to wild-type plants. Moreover, the monoterpene content in trichome exudates are significantly reduced in SlIAA15 down-regulated leaves. The results provide the roles of SlIAA15 in production of volatile compounds in leaf exudates and xylem development, clearly indicating that members of the Aux/IAA gene family can play distinct and specific functions. 

  10. Altitudinal variation of antioxidant components and capability in Indocalamus latifolius (Keng) McClure leaf.

    PubMed

    Ni, Qinxue; Wang, Zhiqiang; Xu, Guangzhi; Gao, Qianxin; Yang, Dongdong; Morimatsu, Fumiki; Zhang, Youzuo

    2013-01-01

    Indocalamus latifolius (Keng) McClure leaf is a popular food material in East Asia due to its antioxidant and anticorrosive activities. To utilize it more effectively, we investigated the discrepancy of antioxidant activities and active compound content in Indocalamus latifolius leaf along with the altitude change. Total flavonoids, phenolics, titerpenoids and eight characteristic active constituents, i.e, orientin, isoorientin, vitexin, homovitexin, p-coumaric acid, chlorogenic acid, caffeic acid, and ferulic acid, were determined by UV-spectrophotometer and synchronous RP-HPLC, respectively. Antioxidant activity was measured using DPPH and FRAP methods. Our data showed that the content of TP and TF, DPPH radical scavenging ability and ferric reduction power of Indocalamus latifolius leaf changed as altitude altered, with the trends of decreasing gradually when lower than 700 m and then increasing to 1,000 m. Chlorogenic acid and orientin were the main characteristic compounds in Indocalamus latifolius leaf and were also affected by altitude. Our result indicated that higher altitude with an adverse environment is conducive to secondary metabolite accumulation for Indocalamus latifolius. It would provide a theoretical basis to regulate the leaf collection conditions in the industrial use of Indocalamus latifolius leaf.

  11. Usual and unusual development of the dicot leaf: involvement of transcription factors and hormones.

    PubMed

    Fambrini, Marco; Pugliesi, Claudio

    2013-06-01

    Morphological diversity exhibited by higher plants is essentially related to the tremendous variation of leaf shape. With few exceptions, leaf primordia are initiated postembryonically at the flanks of a group of undifferentiated and proliferative cells within the shoot apical meristem (SAM) in characteristic position for the species and in a regular phyllotactic sequence. Auxin is critical for this process, because genes involved in auxin biosynthesis, transport, and signaling are required for leaf initiation. Down-regulation of transcription factors (TFs) and cytokinins are also involved in the light-dependent leaf initiation pathway. Furthermore, mechanical stresses in SAM determine the direction of cell division and profoundly influence leaf initiation suggesting a link between physical forces, gene regulatory networks and biochemical gradients. After the leaf is initiated, its further growth depends on cell division and cell expansion. Temporal and spatial regulation of these processes determines the size and the shape of the leaf, as well as the internal structure. A complex array of intrinsic signals, including phytohormones and TFs control the appropriate cell proliferation and differentiation to elaborate the final shape and complexity of the leaf. Here, we highlight the main determinants involved in leaf initiation, epidermal patterning, and elaboration of lamina shape to generate small marginal serrations, more deep lobes or a dissected compound leaf. We also outline recent advances in our knowledge of regulatory networks involved with the unusual pattern of leaf development in epiphyllous plants as well as leaf morphology aberrations, such as galls after pathogenic attacks of pests.

  12. Global transcriptome analysis of the maize (Zea mays L.) inbred line 08LF during leaf senescence initiated by pollination-prevention.

    PubMed

    Wu, Liancheng; Li, Mingna; Tian, Lei; Wang, Shunxi; Wu, Liuji; Ku, Lixia; Zhang, Jun; Song, Xiaoheng; Liu, Haiping; Chen, Yanhui

    2017-01-01

    In maize (Zea mays), leaf senescence acts as a nutrient recycling process involved in proteins, lipids, and nucleic acids degradation and transport to the developing sink. However, the molecular mechanisms of pre-maturation associated with pollination-prevention remain unclear in maize. To explore global gene expression changes during the onset and progression of senescence in maize, the inbred line 08LF, with severe early senescence caused by pollination prevention, was selected. Phenotypic observation showed that the onset of leaf senescence of 08LF plants occurred approximately 14 days after silking (DAS) by pollination prevention. Transcriptional profiling analysis of the leaf at six developmental stages during induced senescence revealed that a total of 5,432 differentially expressed genes (DEGs) were identified, including 2314 up-regulated genes and 1925 down-regulated genes. Functional annotation showed that the up-regulated genes were mainly enriched in multi-organism process and nitrogen compound transport, whereas down-regulated genes were involved in photosynthesis. Expression patterns and pathway enrichment analyses of early-senescence related genes indicated that these DEGs are involved in complex regulatory networks, especially in the jasmonic acid pathway. In addition, transcription factors from several families were detected, particularly the CO-like, NAC, ERF, GRAS, WRKY and ZF-HD families, suggesting that these transcription factors might play important roles in driving leaf senescence in maize as a result of pollination-prevention.

  13. A Role for APETALA1/FRUITFULL Transcription Factors in Tomato Leaf Development[C][W

    PubMed Central

    Burko, Yogev; Shleizer-Burko, Sharona; Yanai, Osnat; Shwartz, Ido; Zelnik, Iris Daphne; Jacob-Hirsch, Jasmine; Kela, Itai; Eshed-Williams, Leor; Ori, Naomi

    2013-01-01

    Flexible maturation rates underlie part of the diversity of leaf shape, and tomato (Solanum lycopersicum) leaves are compound due to prolonged organogenic activity of the leaf margin. The CINCINNATA -TEOSINTE BRANCHED1, CYCLOIDEA, PCF (CIN-TCP) transcription factor LANCEOLATE (LA) restricts this organogenic activity and promotes maturation. Here, we show that tomato APETALA1/FRUITFULL (AP1/FUL) MADS box genes are involved in tomato leaf development and are repressed by LA. AP1/FUL expression is correlated negatively with LA activity and positively with the organogenic activity of the leaf margin. LA binds to the promoters of the AP1/FUL genes MBP20 and TM4. Overexpression of MBP20 suppressed the simple-leaf phenotype resulting from upregulation of LA activity or from downregulation of class I knotted like homeobox (KNOXI) activity. Overexpression of a dominant-negative form of MBP20 led to leaf simplification and partly suppressed the increased leaf complexity of plants with reduced LA activity or increased KNOXI activity. Tomato plants overexpressing miR319, a negative regulator of several CIN-TCP genes including LA, flower with fewer leaves via an SFT-dependent pathway, suggesting that miR319-sensitive CIN-TCPs delay flowering in tomato. These results identify a role for AP1/FUL genes in vegetative development and show that leaf and plant maturation are regulated via partially independent mechanisms. PMID:23771895

  14. A role for APETALA1/fruitfull transcription factors in tomato leaf development.

    PubMed

    Burko, Yogev; Shleizer-Burko, Sharona; Yanai, Osnat; Shwartz, Ido; Zelnik, Iris Daphne; Jacob-Hirsch, Jasmine; Kela, Itai; Eshed-Williams, Leor; Ori, Naomi

    2013-06-01

    Flexible maturation rates underlie part of the diversity of leaf shape, and tomato (Solanum lycopersicum) leaves are compound due to prolonged organogenic activity of the leaf margin. The CINCINNATA-teosinte branched1, cycloidea, PCF (CIN-TCP) transcription factor lanceolate (LA) restricts this organogenic activity and promotes maturation. Here, we show that tomato APETALA1/fruitfull (AP1/FUL) MADS box genes are involved in tomato leaf development and are repressed by LA. AP1/FUL expression is correlated negatively with LA activity and positively with the organogenic activity of the leaf margin. LA binds to the promoters of the AP1/FUL genes MBP20 and TM4. Overexpression of MBP20 suppressed the simple-leaf phenotype resulting from upregulation of LA activity or from downregulation of class I knotted like homeobox (KNOXI) activity. Overexpression of a dominant-negative form of MBP20 led to leaf simplification and partly suppressed the increased leaf complexity of plants with reduced LA activity or increased KNOXI activity. Tomato plants overexpressing miR319, a negative regulator of several CIN-TCP genes including LA, flower with fewer leaves via an SFT-dependent pathway, suggesting that miR319-sensitive CIN-TCPs delay flowering in tomato. These results identify a role for AP1/FUL genes in vegetative development and show that leaf and plant maturation are regulated via partially independent mechanisms.

  15. Understanding of Leaf Development-the Science of Complexity.

    PubMed

    Malinowski, Robert

    2013-06-25

    The leaf is the major organ involved in light perception and conversion of solar energy into organic carbon. In order to adapt to different natural habitats, plants have developed a variety of leaf forms, ranging from simple to compound, with various forms of dissection. Due to the enormous cellular complexity of leaves, understanding the mechanisms regulating development of these organs is difficult. In recent years there has been a dramatic increase in the use of technically advanced imaging techniques and computational modeling in studies of leaf development. Additionally, molecular tools for manipulation of morphogenesis were successfully used for in planta verification of developmental models. Results of these interdisciplinary studies show that global growth patterns influencing final leaf form are generated by cooperative action of genetic, biochemical, and biomechanical inputs. This review summarizes recent progress in integrative studies on leaf development and illustrates how intrinsic features of leaves (including their cellular complexity) influence the choice of experimental approach.

  16. Understanding of Leaf Development—the Science of Complexity

    PubMed Central

    Malinowski, Robert

    2013-01-01

    The leaf is the major organ involved in light perception and conversion of solar energy into organic carbon. In order to adapt to different natural habitats, plants have developed a variety of leaf forms, ranging from simple to compound, with various forms of dissection. Due to the enormous cellular complexity of leaves, understanding the mechanisms regulating development of these organs is difficult. In recent years there has been a dramatic increase in the use of technically advanced imaging techniques and computational modeling in studies of leaf development. Additionally, molecular tools for manipulation of morphogenesis were successfully used for in planta verification of developmental models. Results of these interdisciplinary studies show that global growth patterns influencing final leaf form are generated by cooperative action of genetic, biochemical, and biomechanical inputs. This review summarizes recent progress in integrative studies on leaf development and illustrates how intrinsic features of leaves (including their cellular complexity) influence the choice of experimental approach. PMID:27137383

  17. Global transcriptome analysis of the maize (Zea mays L.) inbred line 08LF during leaf senescence initiated by pollination-prevention

    PubMed Central

    Wang, Shunxi; Wu, Liuji; Ku, Lixia; Zhang, Jun; Song, Xiaoheng; Liu, Haiping

    2017-01-01

    In maize (Zea mays), leaf senescence acts as a nutrient recycling process involved in proteins, lipids, and nucleic acids degradation and transport to the developing sink. However, the molecular mechanisms of pre-maturation associated with pollination-prevention remain unclear in maize. To explore global gene expression changes during the onset and progression of senescence in maize, the inbred line 08LF, with severe early senescence caused by pollination prevention, was selected. Phenotypic observation showed that the onset of leaf senescence of 08LF plants occurred approximately 14 days after silking (DAS) by pollination prevention. Transcriptional profiling analysis of the leaf at six developmental stages during induced senescence revealed that a total of 5,432 differentially expressed genes (DEGs) were identified, including 2314 up-regulated genes and 1925 down-regulated genes. Functional annotation showed that the up-regulated genes were mainly enriched in multi-organism process and nitrogen compound transport, whereas down-regulated genes were involved in photosynthesis. Expression patterns and pathway enrichment analyses of early-senescence related genes indicated that these DEGs are involved in complex regulatory networks, especially in the jasmonic acid pathway. In addition, transcription factors from several families were detected, particularly the CO-like, NAC, ERF, GRAS, WRKY and ZF-HD families, suggesting that these transcription factors might play important roles in driving leaf senescence in maize as a result of pollination-prevention. PMID:28973044

  18. CsPLDalpha1 and CsPLDgamma1 are differentially induced during leaf and fruit abscission and diurnally regulated in Citrus sinensis.

    PubMed

    Malladi, Anish; Burns, Jacqueline K

    2008-01-01

    Understanding leaf and fruit abscission is essential in order to develop strategies for controlling the process in fruit crops. Mechanisms involved in signalling leaf and fruit abscission upon induction by abscission agents were investigated in Citrus sinensis cv. 'Valencia'. Previous studies have suggested a role for phospholipid signalling; hence, two phospholipase D cDNA sequences, CsPLDalpha1 and CsPLDgamma1, were isolated and their role was examined. CsPLDalpha1 expression was reduced in leaves but unaltered in fruit peel tissue treated with an ethylene-releasing compound (ethephon), or a fruit-specific abscission agent, 5-chloro-3-methyl-4-nitro-1H-pyrazole (CMNP). By contrast, CsPLDgamma1 expression was up-regulated within 6 h (leaves) and 24 h (fruit peel) after treatment with ethephon or CMNP, respectively. CsPLDalpha1 expression was diurnally regulated in leaf blade but not fruit peel. CsPLDgamma1 exhibited strong diurnal oscillation in expression in leaves and fruit peel with peak expression around midday. While diurnal fluctuation in CsPLDalpha1 expression appeared to be light-entrained in leaves, CsPLDgamma1 expression was regulated by light and the circadian clock. The diurnal expression of both genes was modulated by ethylene-signalling. The ethephon-induced leaf abscission and the ethephon- and CMNP-induced decrease in fruit detachment force were enhanced by application during rising diurnal expression of CsPLDgamma1. The results indicate differential regulation of CsPLDalpha1 and CsPLDgamma1 in leaves and fruit, and suggest possible roles for PLD-dependent signalling in regulating abscission responses in citrus.

  19. CsPLDα1 and CsPLDγ1 are differentially induced during leaf and fruit abscission and diurnally regulated in Citrus sinensis

    PubMed Central

    Malladi, Anish; Burns, Jacqueline K.

    2008-01-01

    Understanding leaf and fruit abscission is essential in order to develop strategies for controlling the process in fruit crops. Mechanisms involved in signalling leaf and fruit abscission upon induction by abscission agents were investigated in Citrus sinensis cv. ‘Valencia’. Previous studies have suggested a role for phospholipid signalling; hence, two phospholipase D cDNA sequences, CsPLDα1 and CsPLDγ1, were isolated and their role was examined. CsPLDα1 expression was reduced in leaves but unaltered in fruit peel tissue treated with an ethylene-releasing compound (ethephon), or a fruit-specific abscission agent, 5-chloro-3-methyl-4-nitro-1H-pyrazole (CMNP). By contrast, CsPLDγ1 expression was up-regulated within 6 h (leaves) and 24 h (fruit peel) after treatment with ethephon or CMNP, respectively. CsPLDα1 expression was diurnally regulated in leaf blade but not fruit peel. CsPLDγ1 exhibited strong diurnal oscillation in expression in leaves and fruit peel with peak expression around midday. While diurnal fluctuation in CsPLDα1 expression appeared to be light-entrained in leaves, CsPLDγ1 expression was regulated by light and the circadian clock. The diurnal expression of both genes was modulated by ethylene-signalling. The ethephon-induced leaf abscission and the ethephon- and CMNP-induced decrease in fruit detachment force were enhanced by application during rising diurnal expression of CsPLDγ1. The results indicate differential regulation of CsPLDα1 and CsPLDγ1 in leaves and fruit, and suggest possible roles for PLD-dependent signalling in regulating abscission responses in citrus. PMID:18799715

  20. Antimicrobial compounds from leaf extracts of Jatropha curcas, Psidium guajava, and Andrographis paniculata.

    PubMed

    Rahman, M M; Ahmad, S H; Mohamed, M T M; Ab Rahman, M Z

    2014-01-01

    The present research was conducted to discover antimicrobial compounds in methanolic leaf extracts of Jatropha curcas and Andrographis paniculata and ethanolic leaf extract of Psidium guajava and the effectiveness against microbes on flower preservative solution of cut Mokara Red orchid flowers was evaluated. The leaves were analyzed using gas chromatography-mass spectrometry. A total of nine, 66, and 29 compounds were identified in J. curcas, P. guajava, and A. paniculata leaf extracts, with five (88.18%), four (34.66%), and three (50.47%) having unique antimicrobial compounds, respectively. The experimental design on vase life was conducted using a completely randomized design with 10 replications. The flower vase life was about 6 days in the solution containing the P. guajava and A. paniculata leaf extracts at 15 mg/L. Moreover, solution with leaf extracts of A. paniculata had the lowest bacterial count compared to P. guajava and J. curcas. Thus, these leaf extracts revealed the presence of relevant antimicrobial compounds. The leaf extracts have the potential as a cut flower solution to minimize microbial populations and extend flower vase life. However, the activities of specific antimicrobial compounds and double or triple combination leaf extracts to enhance the effectiveness to extend the vase life need to be tested.

  1. Antimicrobial Compounds from Leaf Extracts of Jatropha curcas, Psidium guajava, and Andrographis paniculata

    PubMed Central

    Rahman, M. M.; Ahmad, S. H.; Mohamed, M. T. M.; Ab Rahman, M. Z.

    2014-01-01

    The present research was conducted to discover antimicrobial compounds in methanolic leaf extracts of Jatropha curcas and Andrographis paniculata and ethanolic leaf extract of Psidium guajava and the effectiveness against microbes on flower preservative solution of cut Mokara Red orchid flowers was evaluated. The leaves were analyzed using gas chromatography-mass spectrometry. A total of nine, 66, and 29 compounds were identified in J. curcas, P. guajava, and A. paniculata leaf extracts, with five (88.18%), four (34.66%), and three (50.47%) having unique antimicrobial compounds, respectively. The experimental design on vase life was conducted using a completely randomized design with 10 replications. The flower vase life was about 6 days in the solution containing the P. guajava and A. paniculata leaf extracts at 15mg/L. Moreover, solution with leaf extracts of A. paniculata had the lowest bacterial count compared to P. guajava and J. curcas. Thus, these leaf extracts revealed the presence of relevant antimicrobial compounds. The leaf extracts have the potential as a cut flower solution to minimize microbial populations and extend flower vase life. However, the activities of specific antimicrobial compounds and double or triple combination leaf extracts to enhance the effectiveness to extend the vase life need to be tested. PMID:25250382

  2. Polyamine spermidine is an upstream negator of ethylene-regulated pathogenesis of botrytis cinerea in tomato leaf

    USDA-ARS?s Scientific Manuscript database

    Polyamines are biogenic polycationic compounds implicated in a number of processes including plant cell division, cell elongation, flowering, fruit set and development, fruit ripening, senescence and responses to abiotic stresses. Comparatively, little is known about their role in plant-microbe int...

  3. Native Environment Modulates Leaf Size and Response to Simulated Foliar Shade across Wild Tomato Species

    PubMed Central

    Filiault, Daniele L.; Kumar, Ravi; Jiménez-Gómez, José M.; Schrager, Amanda V.; Park, Daniel S.; Peng, Jie; Sinha, Neelima R.; Maloof, Julin N.

    2012-01-01

    The laminae of leaves optimize photosynthetic rates by serving as a platform for both light capture and gas exchange, while minimizing water losses associated with thermoregulation and transpiration. Many have speculated that plants maximize photosynthetic output and minimize associated costs through leaf size, complexity, and shape, but a unifying theory linking the plethora of observed leaf forms with the environment remains elusive. Additionally, the leaf itself is a plastic structure, responsive to its surroundings, further complicating the relationship. Despite extensive knowledge of the genetic mechanisms underlying angiosperm leaf development, little is known about how phenotypic plasticity and selective pressures converge to create the diversity of leaf shapes and sizes across lineages. Here, we use wild tomato accessions, collected from locales with diverse levels of foliar shade, temperature, and precipitation, as a model to assay the extent of shade avoidance in leaf traits and the degree to which these leaf traits correlate with environmental factors. We find that leaf size is correlated with measures of foliar shade across the wild tomato species sampled and that leaf size and serration correlate in a species-dependent fashion with temperature and precipitation. We use far-red induced changes in leaf length as a proxy measure of the shade avoidance response, and find that shade avoidance in leaves negatively correlates with the level of foliar shade recorded at the point of origin of an accession. The direction and magnitude of these correlations varies across the leaf series, suggesting that heterochronic and/or ontogenic programs are a mechanism by which selective pressures can alter leaf size and form. This study highlights the value of wild tomato accessions for studies of both morphological and light-regulated development of compound leaves, and promises to be useful in the future identification of genes regulating potentially adaptive plastic leaf traits. PMID:22253737

  4. Control of dissected leaf morphology by a Cys(2)His(2) zinc finger transcription factor in the model legume Medicago truncatula

    PubMed Central

    Yu, Jianbin; Ge, Liangfa; Wang, Hongliang; Berbel, Ana; Liu, Yu; Chen, Yuhui; Li, Guangming; Tadege, Million; Wen, Jiangqi; Cosson, Viviane; Mysore, Kirankumar S.; Ratet, Pascal; Madueño, Francisco; Bai, Guihua; Chen, Rujin

    2010-01-01

    Plant leaves are diverse in their morphology, reflecting to a large degree the plant diversity in the natural environment. How different leaf morphology is determined is not yet understood. The leguminous plant Medicago truncatula exhibits dissected leaves with three leaflets at the tip. We show that development of the trifoliate leaves is determined by the Cys(2)His(2) zinc finger transcription factor PALM1. Loss-of-function mutants of PALM1 develop dissected leaves with five leaflets clustered at the tip. We demonstrate that PALM1 binds a specific promoter sequence and down-regulates the expression of the M. truncatula LEAFY/UNIFOLIATA orthologue SINGLE LEAFLET1 (SGL1), encoding an indeterminacy factor necessary for leaflet initiation. Our data indicate that SGL1 is required for leaflet proliferation in the palm1 mutant. Interestingly, ectopic expression of PALM1 effectively suppresses the lobed leaf phenotype from overexpression of a class 1 KNOTTED1-like homeobox protein in Arabidopsis plants. Taken together, our results show that PALM1 acts as a determinacy factor, regulates the spatial-temporal expression of SGL1 during leaf morphogenesis and together with the LEAFY/UNIFOLIATA orthologue plays an important role in orchestrating the compound leaf morphology in M. truncatula. PMID:20498057

  5. Stomatal regulation, structural acclimation and metabolic shift towards defensive compounds reduce O3 load in birch under chronic O3 stress

    NASA Astrophysics Data System (ADS)

    Oksanen, E.; Riikonen, J.; Kontunen-Soppela, S.; Maenpaa, M.; Rousi, M.

    2009-12-01

    Northern forests are encountering new threats due to continuously increasing load of oxidative stress, e.g. due to rising tropospheric O3 levels, and simultaneous climate warming, which is more intense in northern latitudes as compared to global means. The proportion of silver birch (Betula pendula) in Finnish forests is expected to increase with climate warming. Unfortunately, we have growing evidence that the vitality and the carbon sink strength of birch trees are weakened under chronic O3 stress. In this study we investigated the effects of slightly elevated O3 concentration (1.3 x the ambient), temperature (T) and their combination on the antioxidant defense, gas exchange and leaf growth of Betula pendula saplings (clone 12) growing in open-field conditions over two growing seasons. The plants were measured for SLA (specific leaf area), total leaf area, net photosynthesis (Pn), stomatal conductance (gs), maximum rate of carboxylation (Vc,max), maximum rate of electron transport (Jmax), relative stomatal limitation to photosynthesis (ls), dark respiration (Rd), apoplastic concentrations of AA (ascorbic acid), DHA (dehydroascobate) and total ascorbate, the redox state of apoplastic ascorbate, and total antioxidant capacity. Elevated O3 enhanced the total antioxidant capacity in the apoplast in the first year of the experiment at the ambient T. However, during the second year of the experiment, the saplings responded to elevated O3 level by closing the stomata and by developing leaves with a lower leaf area per mass, rather than by accumulating ascorbate in the apoplast. O3 did not affect the total leaf area, whereas Pn was slightly and gs significantly reduced in the second year. Elevated T enhanced the total leaf area, Pn and Vc,max, redox state of ascorbate and total antioxidant capacity in the apoplast. The effects of T and O3 on total leaf area and net photosynthesis were counteractive. We were not able to detect significant differences in Rd between the treatments. Our results with birch suggest that (1) apoplastic AA plays only a minor and transient role in O3 defence whereas (2) stomatal regulation and structural plasticity of leaves are more important long-term mechanisms leading to O3 avoidance in chronic O3 stress with relatively low O3 concentrations. The role of antioxidant capacity was, however, modified by temperature in a complex manner. We should also remember that the clonal differences are wide in birch responses to O3 and therefore the role of AA in scavencing ROS in the apoplast maybe more important in other birch genotypes. Our previous studies with O3-stressed birches have indicated a considerable shift in leaf metabolome towards quercetin-phenolic compounds and chlorogenic acid, which have good radical-scavencing properties, and compounds related to leaf cuticular wax layer. Therefore we can conclude that the long-term protection of birch against chronic O3 stress in mainly composed of stomatal closure, secondary compounds and structural acclimation.

  6. Epidermal UV-A absorbance and whole-leaf flavonoid composition in pea respond more to solar blue light than to solar UV radiation.

    PubMed

    Siipola, Sari M; Kotilainen, Titta; Sipari, Nina; Morales, Luis O; Lindfors, Anders V; Robson, T Matthew; Aphalo, Pedro J

    2015-05-01

    Plants synthesize phenolic compounds in response to certain environmental signals or stresses. One large group of phenolics, flavonoids, is considered particularly responsive to ultraviolet (UV) radiation. However, here we demonstrate that solar blue light stimulates flavonoid biosynthesis in the absence of UV-A and UV-B radiation. We grew pea plants (Pisum sativum cv. Meteor) outdoors, in Finland during the summer, under five types of filters differing in their spectral transmittance. These filters were used to (1) attenuate UV-B; (2) attenuate UV-B and UV-A < 370 nm; (3) attenuate UV-B and UV-A; (4) attenuate UV-B, UV-A and blue light; and (5) as a control not attenuating these wavebands. Attenuation of blue light significantly reduced the flavonoid content in leaf adaxial epidermis and reduced the whole-leaf concentrations of quercetin derivatives relative to kaempferol derivatives. In contrast, UV-B responses were not significant. These results show that pea plants regulate epidermal UV-A absorbance and accumulation of individual flavonoids by perceiving complex radiation signals that extend into the visible region of the solar spectrum. Furthermore, solar blue light instead of solar UV-B radiation can be the main regulator of phenolic compound accumulation in plants that germinate and develop outdoors. © 2014 John Wiley & Sons Ltd.

  7. Effect of pre-bloom leaf removal on grape aroma composition and wine sensory profile of Semillon cultivar.

    PubMed

    Alessandrini, Massimiliano; Battista, Fabrizio; Panighel, Annarita; Flamini, Riccardo; Tomasi, Diego

    2018-03-01

    Early leaf removal at pre-bloom is an innovative viticultural practice for regulating yield components and improving grape quality. The effects of this technique on vine performance, grape composition and wine sensory profile of Semillon variety were assessed. Pre-bloom leaf removal enhanced canopy porosity, total soluble solids in musts and reduced cluster compactness. This practice had a strong effect on glycoside aroma precursors, in particular by increasing glycoside terpenols and norisoprenoids. Metabolites of linalool were the most responsive to leaf removal. Wine produced from defoliated vines was preferred in tasting trials for its more intense fruity notes and mouthfeel attributes. Pre-bloom leaf removal is a powerful technique for modifying canopy microclimate, vine yield, grape composition and wine quality. The increase of glycoside aroma compounds in treated grapes has potential positive effect in improving the sensory profile of the resulting wines. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  8. Different allocation of carbohydrates and phenolics in dehydrated leaves of triticale.

    PubMed

    Hura, Tomasz; Dziurka, Michał; Hura, Katarzyna; Ostrowska, Agnieszka; Dziurka, Kinga

    2016-09-01

    Carbohydrates are used in plant growth processes, osmotic regulation and secondary metabolism. A study of the allocation of carbohydrates to a target set of metabolites during triticale acclimation to soil drought was performed. The study included a semi-dwarf cultivar 'Woltario' and a long-stemmed cultivar 'Moderato', differing in the activity of the photosynthetic apparatus under optimum growth conditions. Differences were found in the quantitative and qualitative composition of individual carbohydrates and phenolic compounds, depending on the developmental stage and water availability. Soluble carbohydrates in the semi-dwarf 'Woltario' cv. under soil drought were utilized for synthesis of starch, soluble phenolic compounds and an accumulation of cell wall carbohydrates. In the typical 'Moderato' cv., soluble carbohydrates were primarily used for the synthesis of phenolic compounds that were then incorporated into cell wall structures. Increased content of cell wall-bound phenolics in 'Moderato' cv. improved the cell wall tightness and reduced the rate of leaf water loss. In 'Woltario' cv., the increase in cell osmotic potential due to an enhanced concentration of carbohydrates and proline was insufficient to slow down the rate of leaf water loss. The mechanism of cell wall tightening in response to leaf desiccation may be the main key in the process of triticale acclimation to soil drought. Copyright © 2016 Elsevier GmbH. All rights reserved.

  9. Light as a regulator of structural and chemical leaf defenses against insects in two Prunus species

    NASA Astrophysics Data System (ADS)

    Mąderek, Ewa; Zadworny, Marcin; Mucha, Joanna; Karolewski, Piotr

    2017-11-01

    Light is a key factor influencing competition between species, and the mechanisms by which trees overcome insect outbreaks can be associated with alternation of the leaves structure, which then prevent or promotes their susceptibility to herbivores. It was predicted that leaf tissue anatomy would likely be different in sun and shade leaves, with a gradual decline of leaves resistance coupled with reduction of accessible light. We quantified anatomical patterns and the distribution of defence compounds (phenols, total tannins, catechol tannins) within heavily grazed leaves of Prunus padus, native in Europe and Prunus serotina, an invasive to Central Europe. Both species were strongly attacked by folivorous insects when shrubs grew in the shade. In the sun, however only P. padus leaves were grazed, but P. serotina leaves were almost unaffected. We identified that anatomical characteristics are not linked to different P. padus and P. serotina leaf vulnerability to insects. Furthermore, the staining of defence compounds of P. serotina leaves grown in full sun revealed that the palisade mesophyll cells had a higher content of phenolic compounds and catechol tannins. Thus, our results indicate that a specific distribution of defence compounds, but not the anatomical relationships between palisade and spongy mesophyll, may be beneficial for P. serotina growth outside its natural range. The identified pattern of defence compounds distribution is linked to a lower susceptibility of P. serotina leaves to herbivores, and is associated with its invasiveness. This likely reflects that P. serotina is a stronger competitor than P. padus, especially at high sunlit sites i.e. gaps in the forest.

  10. Palmate-like pentafoliata1 encodes a novel Cys(2)His(2) zinc finger transcription factor essential for compound leaf morphogenesis in Medicago truncatula

    PubMed Central

    2010-01-01

    As the primary site for photosynthetic carbon fixation and the interface between plants and the environment, plant leaves play a key role in plant growth, biomass production and survival, and global carbon and oxygen cycles. Leaves can be simple with a single blade or compound with multiple units of blades known as leaflets. In a palmate-type compound leaf, leaflets are clustered at the tip of the leaf. In a pinnate-type compound leaf, on the other hand, leaflets are placed on a rachis in distance from each other. Higher orders of complexities such as bipinnate compound leaves of the “sensitive” plant, Mimosa pudica, also occur in nature. However, how different leaf morphologies are determined is still poorly understood. Medicago truncatula is a model legume closely related to alfalfa and soybean with trifoliate compound leaves. Recently, we have shown that Palmate-like Pentafoliata1 (PALM1) encodes a putative Cys(2) His(2) zinc finger transcription factor essential for compound leaf morphogenesis in M. truncatula. Here, we present our phylogenetic relationship analysis of PALM1 homologs from different species and demonstrate that PALM1 has transcriptional activity in the transactivation assay in yeast. PMID:20724826

  11. Stamina pistilloida, the Pea ortholog of Fim and UFO, is required for normal development of flowers, inflorescences, and leaves.

    PubMed

    Taylor, S; Hofer, J; Murfet, I

    2001-01-01

    Isolation and characterization of two severe alleles at the Stamina pistilloida (Stp) locus reveals that Stp is involved in a wide range of developmental processes in the garden pea. The most severe allele, stp-4, results in flowers consisting almost entirely of sepals and carpels. Production of ectopic secondary flowers in stp-4 plants suggests that Stp is involved in specifying floral meristem identity in pea. The stp mutations also reduce the complexity of the compound pea leaf, and primary inflorescences often terminate prematurely in an aberrant sepaloid flower. In addition, stp mutants were shorter than their wild-type siblings due to a reduction in cell number in their internodes. Fewer cells were also found in the epidermis of the leaf rachis of stp mutants. Examination of the effects of stp-4 in double mutant combinations with af, tl, det, and veg2-2-mutations known to influence leaf, inflorescence, and flower development in pea-suggests that Stp function is independent of these genes. A synergistic interaction between weak mutant alleles at Stp and Uni indicated that these two genes act together, possibly to regulate primordial growth. Molecular analysis revealed that Stp is the pea homolog of the Antirrhinum gene Fimbriata (Fim) and of UNUSUAL FLORAL ORGANS (UFO) from Arabidopsis. Differences between Fim/UFO and Stp mutant phenotypes and expression patterns suggest that expansion of Stp activity into the leaf was an important step during evolution of the compound leaf in the garden pea.

  12. Silencing SlMED18, tomato Mediator subunit 18 gene, restricts internode elongation and leaf expansion.

    PubMed

    Wang, Yunshu; Hu, Zongli; Zhang, Jianling; Yu, XiaoHui; Guo, Jun-E; Liang, Honglian; Liao, Changguang; Chen, Guoping

    2018-02-19

    Mediator complex, a conserved multi-protein, is necessary for controlling RNA polymerase II (Pol II) transcription in eukaryotes. Given little is known about them in tomato, a tomato Mediator subunit 18 gene was isolated and named SlMED18. To further explore the function of SlMED18, the transgenic tomato plants targeting SlMED18 by RNAi-mediated gene silencing were generated. The SlMED18-RNAi lines exhibited multiple developmental defects, including smaller size and slower growth rate of plant and significantly smaller compound leaves. The contents of endogenous bioactive GA 3 in SlMED18 silenced lines were slightly less than that in wild type. Furthermore, qRT-PCR analysis indicated that expression of gibberellins biosynthesis genes such as SlGACPS and SlGA20x2, auxin transport genes (PIN1, PIN4, LAX1 and LAX2) and several key regulators, KNOX1, KNOX2, PHAN and LANCEOLATE(LA), which involved in the leaf morphogenesis were significantly down-regulated in SlMED18-RNAi lines. These results illustrated that SlMED18 plays an essential role in regulating plant internode elongation and leaf expansion in tomato plants and it acts as a key positive regulator of gibberellins biosynthesis and signal transduction as well as auxin proper transport signalling. These findings are the basis for understanding the function of the individual Mediator subunits in tomato.

  13. Exogenous Supply of Pantoyl Lactone to Excised Leaves Increases their Pantothenate Levels

    PubMed Central

    RATHINASABAPATHI, BALA; RAMAN, SURESH BABU

    2005-01-01

    • Background and Aims All plants synthesize pantothenate but its synthesis and regulation are not well understood. The aim of this work is to study the effect of exogenous supply of precursor compounds on pantothenate levels in leaves. • Methods Precursor compounds were supplied in solution to excised leaves and the pantothenate content was measured using a microbial method. • Key Results Pantothenate levels in excised leaves of Limonium latifolium, tomato (Lycopersicon esculentum), bean (Phaseolus vulgaris) and grapefruit (Citrus × paradisi) were examined following an exogenous supply of the precursor compounds pantoyl lactone or β-alanine. Significantly higher levels of extractable pantothenate were found when pantoyl lactone was supplied, but not when β-alanine was supplied despite a measurable uptake of β-alanine into the leaf. • Conclusions The results suggested that the pantoate supply may be rate-limiting or regulating pantothenate synthesis in leaves. PMID:15767268

  14. Organic compounds leached from fast pyrolysis mallee leaf and bark biochars.

    PubMed

    Lievens, Caroline; Mourant, Daniel; Gunawan, Richard; Hu, Xun; Wang, Yi

    2015-11-01

    Characterization of organic compounds leached from biochars is essential in assessing the possible toxicity of the biochar to the soils' biota. In this study the nature of the leached organic compounds from Mallee biochars, produced from pyrolysis of Mallee leaf and bark in a fluidised-bed pyrolyser at 400 and 580°C was investigated. Light bio-oil compounds and aromatic organic compounds were investigated. The 'bio-oil like' light compounds from leaf and bark biochars 'surfaces were obtained after leaching the chars with a solvent, suitable to dissolve the respective bio-oils. GC/MS was implemented to investigate the leachates. Phenolics, which are potentially harmful toxins, were detected and their concentration shown to be dependent on the char's origin and the char production temperature. Further, to simulate biochars amendment to soils, the chars were leached with water. The water-leached aromatic compounds from leaf and bark biochars were characterized using UV-fluorescence spectroscopy. Those results suggested that biochars contain leachable compounds of which the nature and amount is dependent on the biomass feedstock, pyrolysis temperature and leaching time. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Traditional Aboriginal Preparation Alters the Chemical Profile of Carica papaya Leaves and Impacts on Cytotoxicity towards Human Squamous Cell Carcinoma.

    PubMed

    Nguyen, Thao T; Parat, Marie-Odile; Shaw, Paul N; Hewavitharana, Amitha K; Hodson, Mark P

    2016-01-01

    Carica papaya leaf decoction, an Australian Aboriginal remedy, has been used widely for its healing capabilities against cancer, with numerous anecdotal reports. In this study we investigated its in vitro cytotoxicity on human squamous cell carcinoma cells followed by metabolomic profiling of Carica papaya leaf decoction and leaf juice/brewed leaf juice to determine the effects imparted by the long heating process typical of the Aboriginal remedy preparation. MTT assay results showed that in comparison with the decoction, the leaf juice not only exhibited a stronger cytotoxic effect on SCC25 cancer cells, but also produced a significant cancer-selective effect as shown by tests on non-cancerous human keratinocyte HaCaT cells. Furthermore, evidence from testing brewed leaf juice on these two cell lines suggested that the brewing process markedly reduced the selective effect of Carica papaya leaf on SCC25 cancer cells. To tentatively identify the compounds that contribute to the distinct selective anticancer activity of leaf juice, an untargeted metabolomic approach employing Ultra High Performance Liquid Chromatography-Quadrupole Time of Flight-Mass Spectrometry followed by multivariate data analysis was applied. Some 90 and 104 peaks in positive and negative mode respectively were selected as discriminatory features from the chemical profile of leaf juice and >1500 putative compound IDs were obtained via database searching. Direct comparison of chromatographic and tandem mass spectral data to available reference compounds confirmed one feature as a match with its proposed authentic standard, namely pheophorbide A. However, despite pheophorbide A exhibiting cytotoxic activity on SCC25 cancer cells, it did not prove to be the compound contributing principally to the selective activity of leaf juice. With promising results suggesting stronger and more selective anticancer effects when compared to the Aboriginal remedy, Carica papaya leaf juice warrants further study to explore its activity on other cancer cell lines, as well as investigation to confirm the identity of compounds contributing to its selective effect, particularly those compounds altered by the long heating process applied during the traditional Aboriginal remedy preparation.

  16. Traditional Aboriginal Preparation Alters the Chemical Profile of Carica papaya Leaves and Impacts on Cytotoxicity towards Human Squamous Cell Carcinoma

    PubMed Central

    Nguyen, Thao T.; Parat, Marie-Odile; Shaw, Paul N.; Hewavitharana, Amitha K.; Hodson, Mark P.

    2016-01-01

    Carica papaya leaf decoction, an Australian Aboriginal remedy, has been used widely for its healing capabilities against cancer, with numerous anecdotal reports. In this study we investigated its in vitro cytotoxicity on human squamous cell carcinoma cells followed by metabolomic profiling of Carica papaya leaf decoction and leaf juice/brewed leaf juice to determine the effects imparted by the long heating process typical of the Aboriginal remedy preparation. MTT assay results showed that in comparison with the decoction, the leaf juice not only exhibited a stronger cytotoxic effect on SCC25 cancer cells, but also produced a significant cancer-selective effect as shown by tests on non-cancerous human keratinocyte HaCaT cells. Furthermore, evidence from testing brewed leaf juice on these two cell lines suggested that the brewing process markedly reduced the selective effect of Carica papaya leaf on SCC25 cancer cells. To tentatively identify the compounds that contribute to the distinct selective anticancer activity of leaf juice, an untargeted metabolomic approach employing Ultra High Performance Liquid Chromatography-Quadrupole Time of Flight-Mass Spectrometry followed by multivariate data analysis was applied. Some 90 and 104 peaks in positive and negative mode respectively were selected as discriminatory features from the chemical profile of leaf juice and >1500 putative compound IDs were obtained via database searching. Direct comparison of chromatographic and tandem mass spectral data to available reference compounds confirmed one feature as a match with its proposed authentic standard, namely pheophorbide A. However, despite pheophorbide A exhibiting cytotoxic activity on SCC25 cancer cells, it did not prove to be the compound contributing principally to the selective activity of leaf juice. With promising results suggesting stronger and more selective anticancer effects when compared to the Aboriginal remedy, Carica papaya leaf juice warrants further study to explore its activity on other cancer cell lines, as well as investigation to confirm the identity of compounds contributing to its selective effect, particularly those compounds altered by the long heating process applied during the traditional Aboriginal remedy preparation. PMID:26829042

  17. Detection of Chemicals Inhibiting Photorespiratory Senescence in a Large Scale Survival Chamber

    PubMed Central

    Manning, David T.; Campbell, Andrew J.; Chen, Tsong Meng; Tolbert, N. E.; Smith, E. Wayne

    1984-01-01

    A large scale survival chamber was developed as a screen for detecting chemical treatments that extend the survival time of illuminated soybean seedlings at CO2 concentrations below the compensation point. In theory, extended survival should indicate potential for improved crop performance via decreased photorespiration and increased photosynthetic efficiency. An automated control system regulated CO2 concentrations, temperature and plant watering during a continuous CO2-removal photoperiod of 72 hours. An endogenously controlled circadian rhythm of net photosynthesis occurred throughout the continuous light treatment. Spray applications of 3.49 millimolar 2-(4-chlorophenoxy)-2-methylpropanoic acid (CPMP) significantly decreased leaf chlorophyll loss, compared with the control, after 72 hours of subcompensation-point stress. Treatment with CPMP also consistently increased leaf chlorophyll per unit area under nonstress greenhouse conditions. These effects may be due to increases in specific leaf weight produced by CPMP although the compound did not consistently act as a height retardant. The compound, 3-butyl-2-hydroxy-4H-pyrido[1,2-a]pyrimidin-4-one (BHPP), inhibited senescence under low CO2 conditions but did not decrease leaf light transmission at ambient CO2 levels. The cytokinin N6-benzyladenine (BA) retarded low CO2 stress senescence although greening effects were not observed. Neither 2-hydroxy-3-butynoic acid (HBA) nor its butyl ester, inhibitors of glycolate oxidase, influenced low CO2 survival. Cyclohexanecarboxylic acid (CHCA) and sodium naphthenate had no effect upon subcompensation-point senescence. Antisenescence effects of CPMP, BHPP, and BA do not appear to be directly attributable to effects upon the competing carbon paths of photosynthesis and photorespiration. Protection against low CO2 stress and increased chlorophyll synthesis under nonstress conditions may represent separate effects upon plastids by some of the compounds. This screen will identify compounds which inhibit photorespiratory senescence without decreasing the CO2 compensation point. Images Fig. 1 PMID:16663949

  18. Stamina pistilloida, the Pea Ortholog of Fim and UFO, Is Required for Normal Development of Flowers, Inflorescences, and Leaves

    PubMed Central

    Taylor, Scott; Hofer, Julie; Murfet, Ian

    2001-01-01

    Isolation and characterization of two severe alleles at the Stamina pistilloida (Stp) locus reveals that Stp is involved in a wide range of developmental processes in the garden pea. The most severe allele, stp-4, results in flowers consisting almost entirely of sepals and carpels. Production of ectopic secondary flowers in stp-4 plants suggests that Stp is involved in specifying floral meristem identity in pea. The stp mutations also reduce the complexity of the compound pea leaf, and primary inflorescences often terminate prematurely in an aberrant sepaloid flower. In addition, stp mutants were shorter than their wild-type siblings due to a reduction in cell number in their internodes. Fewer cells were also found in the epidermis of the leaf rachis of stp mutants. Examination of the effects of stp-4 in double mutant combinations with af, tl, det, and veg2-2—mutations known to influence leaf, inflorescence, and flower development in pea—suggests that Stp function is independent of these genes. A synergistic interaction between weak mutant alleles at Stp and Uni indicated that these two genes act together, possibly to regulate primordial growth. Molecular analysis revealed that Stp is the pea homolog of the Antirrhinum gene Fimbriata (Fim) and of UNUSUAL FLORAL ORGANS (UFO) from Arabidopsis. Differences between Fim/UFO and Stp mutant phenotypes and expression patterns suggest that expansion of Stp activity into the leaf was an important step during evolution of the compound leaf in the garden pea. PMID:11158527

  19. Gastrophysa polygoni herbivory on Rumex confertus: Single leaf VOC induction and dose dependent herbivore attraction/repellence to individual compounds

    USDA-ARS?s Scientific Manuscript database

    We report large induction (> 65fold increases) of volatile organic compounds (VOCs) emitted from a single leaf of the invasive weed mossy sorrel, Rumex confertus Willd. (Polygonaceae), by herbivory of the dock leaf beetle, Gastrophysa polygoni L. (Coleoptera: Chrysomelidae). The R. confertus VOC ble...

  20. The content of phenolic compounds in leaf tissues of white (Aesculus hippocastanum L.) and red horse chestnut (Aesculus carea H.) colonized by the horse chestnut leaf miner (Cameraria ohridella Deschka & Dimić).

    PubMed

    Oszmiański, Jan; Kalisz, Stanisław; Aneta, Wojdyło

    2014-09-15

    Normally, plant phenolics are secondary metabolites involved in the defense mechanisms of plants against fungal pathogens. Therefore, in this study we attempted to quantify and characterize phenolic compounds in leaves of white and red horse chestnut with leaf miner larvae before and after Cameraria ohridella attack. A total of 17 phenolic compounds belonging to the hydroxycinnamic acid, flavan-3-ols and flavonol groups were identified and quantified in white and red horse chestnut leaf extracts. Significantly decreased concentrations of some phenolic compounds, especially of flavan-3-ols, were observed in infected leaves compared to the non-infected ones. Additionally, a higher content of polyphenolic compounds especially (-)-epicatechin and procyanidins in leaves of red-flowering than in white-flowering horse chestnut may explain their greater resistance to C. ohridella insects.

  1. Regulation of epinasty induced by 2,4-dichlorophenoxyacetic acid in pea and Arabidopsis plants.

    PubMed

    Pazmiño, D M; Rodríguez-Serrano, M; Sanz, M; Romero-Puertas, M C; Sandalio, L M

    2014-07-01

    The herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) causes uncontrolled cell division and malformed growth in plants, giving rise to leaf epinasty and stem curvature. In this study, mechanisms involved in the regulation of leaf epinasty induced by 2,4-D were studied using different chemicals involved in reactive oxygen species (ROS) accumulation (diphenyleniodonium, butylated hydroxyanisole, EDTA, allopurinol), calcium channels (LaCl3), protein phosphorylation (cantharidin, wortmannin) and ethylene emission/perception (aminoethoxyvinyl glycine, AgNO3). The effect of these compounds on the epinasty induced by 2,4-D was analysed in shoots and leaf strips from pea plants. For further insight into the effect of 2,4-D, studies were also made in Arabidopsis mutants deficient in ROS production (rbohD, rbohF, xdh), ethylene (ein 3-1, ctr 1-1, etr 1-1), abscisic acid (aba 3.1), and jasmonic acid (coi 1.1, jar 1.1, opr 3) pathways. The results suggest that ROS production, mainly ·OH, is essential in the development of epinasty triggered by 2,4-D. Epinasty was also found to be regulated by Ca2+, protein phosphorylation and ethylene, although all these factors act downstream of ROS production. The use of Arabidopsis mutants appears to indicate that abscisic and jasmonic acid are not involved in regulating epinasty, although they could be involved in other symptoms induced by 2,4-D. © 2014 German Botanical Society and The Royal Botanical Society of the Netherlands.

  2. Morus alba leaf extract mediates neuroprotection against glyphosate-induced toxicity and biochemical alterations in the brain.

    PubMed

    Rebai, Olfa; Belkhir, Manel; Boujelben, Adnen; Fattouch, Sami; Amri, Mohamed

    2017-04-01

    Recent studies demonstrate that glyphosate exposure is associated with oxidative stress and some neurological disorders such as Parkinson's pathology. Therefore, phytochemicals, in particular phenolic compounds, have attracted increasing attention as potential agents for neuroprotection. In the present study, we investigate the impact of glyphosate on the rat brain following i.p. injection and the possible molecular target of neuroprotective activity of the phenolic fraction from Morus alba leaf extract (MALE) and its ability to reduce oxidative damage in the brain. Wistar rats from 180 to 240 g were i.p. treated with a single dose of glyphosate (100 mg kg -1 b.w.) or MALE (100 μg mL -1  kg -1 b.w.) for 2 weeks. Brain homogenates were used to evaluate neurotoxicity induced by the pesticide. For this, biochemical parameters were measured. Data shows that MALE regulated oxidative stress and counteracted glyphosate-induced deleterious effects and oxidative damage in the brain, as it abrogated LDH, protein carbonyls, and malonyldialdehyde. MALE also appears to be able to scavenge H 2 O 2 levels, maintain iron and Ca 2+ homeostasis, and increase SOD activity. Thus, in vivo results showed that mulberry leaf extract is a potent protector against glyphosate-induced toxicity, and its protective effect could result from synergism or antagonism between the various bioactive phenolic compounds in the acetonic fraction from M. alba leaf extract.

  3. [Characteristics of the composition of Caucasian blackberry (Rubus caucasicus L.) leaves as a raw material for tea production].

    PubMed

    Melkadze, R G; Chichkovani, N Sh; Kakhniashvili, E Z

    2008-01-01

    The composition of Caucasian blackberry (Rubus caucasicus L.) six-leaf shoot was studied. The weight of the stem reached 50% of the total weight of the shoot. The content of moisture, extractive substances, and phenolic compounds was minimal at the beginning and end of the vegetation season. Phenolic compounds were represented by catechins, leukoanthocyanidins, and flavonols. The most abundant phenolic compounds in all parts of the blackberry shoot were leukoanthocyanidins, which accounted for approximately 50% of all compounds of this class. Phenolic compounds accumulated most actively in July and August. The average content of free amino acids in the blackberry leaf during the vegetation season was 26.68 mg/g. Among the total free amino acids, eleven have been identified, five of which proved to be essential (His, Arg, Met, Leu, Val) and accounted for 40% of the total amount of amino acids. The oxidability of acetone extract of the blackberry leaf was compared to the oxidability of total phenolic compounds and tea tannin. The tea product obtained from the blackberry leaf had good organoleptic parameters and a saturated extractive complex.

  4. Effect of supplemental ultraviolet radiation on the concentration of phytonutrients in green and red leaf lettuce (Lactuca sativa) cultivars

    NASA Astrophysics Data System (ADS)

    Britz, Steven; Caldwell, Charles; Mirecki, Roman; Slusser, James; Gao, Wei

    2005-08-01

    Eight cultivars each of red and green leaf lettuce were raised in a greenhouse with supplemental UV radiation, either UV-A (wavelengths greater than ca. 315 nm) or UV-A+UV-B (wavelengths greater than ca. 290 nm; 6.4 kJ m-2 daily biologically effective UV-B), or no supplemental UV (controls). Several phytonutrients were analyzed in leaf flours to identify lines with large differences in composition and response to UV-B. Red leaf lettuce had higher levels of phenolic acid esters, flavonols and anthocyanins than green lines. Both green and red lines exposed to UV-B for 9 days showed 2-3-fold increases in flavonoids compared to controls, but only 45% increases in phenolic acid esters, suggesting these compounds may be regulated by different mechanisms. There were large differences between cultivars in levels of phenolic compounds under control conditions and also large differences in UV-B effects. Among red varieties, cv. Galactic was notable for high levels of phenolics and a large response to UV-B. Among green varieties, cvs. Black-Seeded Simpson and Simpson Elite had large increases in phenolics with UV-B exposure. Photosynthetic pigments were also analyzed. Green leaf lettuce had high levels of pheophytin, a chlorophyll degradation product. Total chlorophylls (including pheophytin) were much lower in green compared to red varieties. Lutein, a carotenoid, was similar for green and red lines. Total chlorophylls and lutein increased 2-fold under supplemental UV-B in green lines but decreased slightly under UV-B in red lines. Lettuce appears to be a valuable crop to use to study phytochemical-environment interactions.

  5. Does Initial Leaf Chemistry Affect the Contribution of Insects, Fungi, and Bacteria to Leaf Breakdown in a Lowland Tropical Stream?

    NASA Astrophysics Data System (ADS)

    Ardon, M.; Pringle, C. M.

    2005-05-01

    We examined effects of initial leaf chemistry of six common riparian species on the relative contribution of fungi, bacteria, and invertebrates to leaf breakdown in a lowland stream in Costa Rica. We hypothesized that fungi and bacteria would contribute more to the breakdown of species with low concentrations of secondary (tannins and phenolics) and structural (cellulose and lignin) compounds, while invertebrates would be more important in the processing of species with high concentrations of secondary and structural compounds. We incubated single species leaf bags of six common riparian species, representing a range in secondary and structural compounds, in a third-order stream at La Selva Biological Station, Costa Rica. We measured leaf chemistry during the breakdown process. We determined fungal biomass using ergosterol methods, bacteria using DAPI counts, and invertebrate biomass using length-weight regressions. We then used biomass estimates for each group to determine their contribution to the overall breakdown process. Breakdown rates ranged from very fast (Trema integerima, k = 0.23 day-1) to slow (Zygia longifolia , k = 0.011 day-1). While analyses are still under way, preliminary results support our initial hypothesis that fungi contribute more to the break down of leaves from tree species with low concentrations of secondary and structural compounds.

  6. Post-veraison sunlight exposure induces MYB-mediated transcriptional regulation of anthocyanin and flavonol synthesis in berry skins of Vitis vinifera

    PubMed Central

    Matus, José Tomás; Loyola, Rodrigo; Vega, Andrea; Peña-Neira, Alvaro; Bordeu, Edmundo; Arce-Johnson, Patricio; Alcalde, José Antonio

    2009-01-01

    Anthocyanins, flavan-3-ols, and flavonols are the three major classes of flavonoid compounds found in grape berry tissues. Several viticultural practices increase flavonoid content in the fruit, but the underlying genetic mechanisms responsible for these changes have not been completely deciphered. The impact of post-veraison sunlight exposure on anthocyanin and flavonol accumulation in grape berry skin and its relation to the expression of different transcriptional regulators known to be involved in flavonoid synthesis was studied. Treatments consisting of removing or moving aside the basal leaves which shade berry clusters were applied. Shading did not affect sugar accumulation or gene expression of HEXOSE TRANSPORTER 1, although in the leaf removal treatment, these events were retarded during the first weeks of ripening. Flavonols were the most drastically reduced flavonoids following shading and leaf removal treatments, related to the reduced expression of FLAVONOL SYNTHASE 4 and its putative transcriptional regulator MYB12. Anthocyanin accumulation and the expression of CHS2, LDOX, OMT, UFGT, MYBA1, and MYB5a genes were also affected. Other regulatory genes were less affected or not affected at all by these treatments. Non-transcriptional control mechanisms for flavonoid synthesis are also suggested, especially during the initial stages of ripening. Although berries from the leaf removal treatment received more light than shaded fruits, malvidin-3-glucoside and total flavonol content was reduced compared with the treatment without leaf removal. This work reveals that flavonol-related gene expression responds rapidly to field changes in light levels, as shown by the treatment in which shaded fruits were exposed to light in the late stages of ripening. Taken together, this study establishes MYB-specific responsiveness for the effect of sun exposure and sugar transport on flavonoid synthesis. PMID:19129169

  7. Post-veraison sunlight exposure induces MYB-mediated transcriptional regulation of anthocyanin and flavonol synthesis in berry skins of Vitis vinifera.

    PubMed

    Matus, José Tomás; Loyola, Rodrigo; Vega, Andrea; Peña-Neira, Alvaro; Bordeu, Edmundo; Arce-Johnson, Patricio; Alcalde, José Antonio

    2009-01-01

    Anthocyanins, flavan-3-ols, and flavonols are the three major classes of flavonoid compounds found in grape berry tissues. Several viticultural practices increase flavonoid content in the fruit, but the underlying genetic mechanisms responsible for these changes have not been completely deciphered. The impact of post-veraison sunlight exposure on anthocyanin and flavonol accumulation in grape berry skin and its relation to the expression of different transcriptional regulators known to be involved in flavonoid synthesis was studied. Treatments consisting of removing or moving aside the basal leaves which shade berry clusters were applied. Shading did not affect sugar accumulation or gene expression of HEXOSE TRANSPORTER 1, although in the leaf removal treatment, these events were retarded during the first weeks of ripening. Flavonols were the most drastically reduced flavonoids following shading and leaf removal treatments, related to the reduced expression of FLAVONOL SYNTHASE 4 and its putative transcriptional regulator MYB12. Anthocyanin accumulation and the expression of CHS2, LDOX, OMT, UFGT, MYBA1, and MYB5a genes were also affected. Other regulatory genes were less affected or not affected at all by these treatments. Non-transcriptional control mechanisms for flavonoid synthesis are also suggested, especially during the initial stages of ripening. Although berries from the leaf removal treatment received more light than shaded fruits, malvidin-3-glucoside and total flavonol content was reduced compared with the treatment without leaf removal. This work reveals that flavonol-related gene expression responds rapidly to field changes in light levels, as shown by the treatment in which shaded fruits were exposed to light in the late stages of ripening. Taken together, this study establishes MYB-specific responsiveness for the effect of sun exposure and sugar transport on flavonoid synthesis.

  8. Preliminary phytochemical screening, Antibacterial potential and GC-MS analysis of two medicinal plant extracts.

    PubMed

    Vijayaram, Seerangaraj; Kannan, Suruli; Saravanan, Konda Mani; Vasantharaj, Seerangaraj; Sathiyavimal, Selvam; P, Palanisamy Senthilkumar

    2016-05-01

    The presence study was aimed to catalyze the primary metabolites and their confirmation by using GC-MS analysis and antibacterial potential of leaf extract of two important medicinal plant viz., Eucalyptus and Azadirachta indica. The antibacterial potential of the methanol leaf extract of the studied species was tested against Escherichia coli, Pseudomonas aeruginosa, Klebsiellap neumoniae, Streptococcus pyogens, Staphylococcus aureus using by agar well diffusion method. The higher zone of inhibition (16mm) was observed against the bacterium Pseudomonas aeruginosa at 100μl concentration of methanol leaf extract. Preliminary phytochemical analysis of studied species shows that presence of phytochemical compounds like steroids, phenolic compounds and flavonoids. GC-MS analysis confirms the occurrence of 20 different compounds in the methanol leaf extract of the both studied species.

  9. Chemical Characterization and in Vitro Cytotoxicity on Squamous Cell Carcinoma Cells of Carica papaya Leaf Extracts.

    PubMed

    Nguyen, Thao T; Parat, Marie-Odile; Hodson, Mark P; Pan, Jenny; Shaw, Paul N; Hewavitharana, Amitha K

    2015-12-24

    In traditional medicine, Carica papaya leaf has been used for a wide range of therapeutic applications including skin diseases and cancer. In this study, we investigated the in vitro cytotoxicity of aqueous and ethanolic extracts of Carica papaya leaves on the human oral squamous cell carcinoma SCC25 cell line in parallel with non-cancerous human keratinocyte HaCaT cells. Two out of four extracts showed a significantly selective effect towards the cancer cells and were found to contain high levels of phenolic and flavonoid compounds. The chromatographic and mass spectrometric profiles of the extracts obtained with Ultra High Performance Liquid Chromatography-Quadrupole Time of Flight-Mass Spectrometry were used to tentatively identify the bioactive compounds using comparative analysis. The principal compounds identified were flavonoids or flavonoid glycosides, particularly compounds from the kaempferol and quercetin families, of which several have previously been reported to possess anticancer activities. These results confirm that papaya leaf is a potential source of anticancer compounds and warrant further scientific investigation to validate the traditional use of papaya leaf to treat cancer.

  10. Chemical Characterization and in Vitro Cytotoxicity on Squamous Cell Carcinoma Cells of Carica Papaya Leaf Extracts

    PubMed Central

    Nguyen, Thao T.; Parat, Marie-Odile; Hodson, Mark P.; Pan, Jenny; Shaw, Paul N.; Hewavitharana, Amitha K.

    2015-01-01

    In traditional medicine, Carica papaya leaf has been used for a wide range of therapeutic applications including skin diseases and cancer. In this study, we investigated the in vitro cytotoxicity of aqueous and ethanolic extracts of Carica papaya leaves on the human oral squamous cell carcinoma SCC25 cell line in parallel with non-cancerous human keratinocyte HaCaT cells. Two out of four extracts showed a significantly selective effect towards the cancer cells and were found to contain high levels of phenolic and flavonoid compounds. The chromatographic and mass spectrometric profiles of the extracts obtained with Ultra High Performance Liquid Chromatography-Quadrupole Time of Flight-Mass Spectrometry were used to tentatively identify the bioactive compounds using comparative analysis. The principal compounds identified were flavonoids or flavonoid glycosides, particularly compounds from the kaempferol and quercetin families, of which several have previously been reported to possess anticancer activities. These results confirm that papaya leaf is a potential source of anticancer compounds and warrant further scientific investigation to validate the traditional use of papaya leaf to treat cancer. PMID:26712788

  11. What Is a Leaf? An Online Tutorial and Tests

    ERIC Educational Resources Information Center

    Burrows, Geoffrey

    2008-01-01

    A leaf is a fundamental unit in botany and understanding what constitutes a leaf is fundamental to many plant science activities. My observations and subsequent testing indicated that many students could not confidently and consistently recognise a leaf from a leaflet, or recognise basic leaf arrangements and the various types of compound or…

  12. Phenylalanine Is Required to Promote Specific Developmental Responses and Prevents Cellular Damage in Response to Ultraviolet Light in Soybean (Glycine max) during the Seed-to-Seedling Transition

    PubMed Central

    Sullivan, Joe H.; Muhammad, DurreShahwar; Warpeha, Katherine M.

    2014-01-01

    UV-radiation elicits a suite of developmental (photomorphogenic) and protective responses in plants, but responses early post-germination have received little attention, particularly in intensively bred plants of economic importance. We examined germination, hypocotyl elongation, leaf pubescence and subcellular responses of germinating and/or etiolated soybean (Glycine max (L.) Merr.) seedlings in response to treatment with discrete wavelengths of UV-A or UV-B radiation. We demonstrate differential responses of germinating/young soybean seedlings to a range of UV wavelengths that indicate unique signal transduction mechanisms regulate UV-initiated responses. We have investigated how phenylalanine, a key substrate in the phenylpropanoid pathway, may be involved in these responses. Pubescence may be a key location for phenylalanine-derived protective compounds, as UV-B irradiation increased pubescence and accumulation of UV-absorbing compounds within primary leaf pubescence, visualized by microscopy and absorbance spectra. Mass spectrometry analysis of pubescence indicated that sinapic esters accumulate in the UV-irradiated hairs compared to unirradiated primary leaf tissue. Deleterious effects of some UV-B wavelengths on germination and seedling responses were reduced or entirely prevented by inclusion of phenylalanine in the growth media. Key effects of phenylalanine were not duplicated by tyrosine or tryptophan or sucrose, nor is the specificity of response due to the absorbance of phenylalanine itself. These results suggest that in the seed-to-seedling transition, phenylalanine may be a limiting factor in the development of initial mechanisms of UV protection in the developing leaf. PMID:25549094

  13. Antioxidant compounds and activities of the stem, flower, and leaf extracts of the anti-smoking Thai medicinal plant: Vernonia cinerea Less

    PubMed Central

    Ketsuwan, Nitinet; Leelarungrayub, Jirakrit; Kothan, Suchart; Singhatong, Supawatchara

    2017-01-01

    Vernonia cinerea (VC) Less has been proposed as a medicinal plant with interesting activities, such as an aid for smoking cessation worldwide. Despite its previous clinical success in smoking cessation by exhibiting reduced oxidative stress, it has not been approved. The aim of this study was to investigate various antioxidant activity and active compounds that have not been approved, including the protective activity in human red blood cells (RBCs), from the stem, flower, and leaf extracts of VC Less in vitro. These extracts were tested for their antioxidant activity in scavenging 1,1-diphenyl-2-picrylhydrazyl (DPPH) radicals and analyzed by high-performance liquid chromatography (HPLC) for their active compounds: total tannin, five catechin (C) compounds (epicatechin gallate [ECG], C, epicatechin [EC], epigallocatechin gallate [EGCG], and (−)-epigallocatechin [EGC]), flavonoid, nitrite, nitrate, caffeine, and nicotine. Moreover, antioxidant activities of the extracts were evaluated in 2,2′-azobis(2-amidinopropane) dihydrochloride (AAPH)-treated RBCs. The results showed that the flower and leaf of VC Less had higher activity than the stem in scavenging DPPH radicals. The tannin content in the flower and leaf was higher than that in the stem. The leaf had the highest content of the five catechins (C, EC, EGCG, ECG, and EGC), the same as in the flavonoid, when compared to the stem and flower. Furthermore, the leaf extract had higher nitrate and nitrite than the stem. Nicotine content was found to be higher in the leaf when compared to the flower. In addition, the leaf showed protective activity in glutathione (GSH), malondialdehyde (MDA), and protein carbonyl, with a dose response in AAPH-oxidized RBCs, the same as in standard EGCG. Thus, this study concluded that radical scavenging and antioxidant compounds such as catechins, flavonoid, nitrate and nitrite, and nicotine are present in different VC Less parts and are included in the AAPH-oxidized RBC model. PMID:28243061

  14. Antioxidant compounds and activities of the stem, flower, and leaf extracts of the anti-smoking Thai medicinal plant: Vernonia cinerea Less.

    PubMed

    Ketsuwan, Nitinet; Leelarungrayub, Jirakrit; Kothan, Suchart; Singhatong, Supawatchara

    2017-01-01

    Vernonia cinerea (VC) Less has been proposed as a medicinal plant with interesting activities, such as an aid for smoking cessation worldwide. Despite its previous clinical success in smoking cessation by exhibiting reduced oxidative stress, it has not been approved. The aim of this study was to investigate various antioxidant activity and active compounds that have not been approved, including the protective activity in human red blood cells (RBCs), from the stem, flower, and leaf extracts of VC Less in vitro. These extracts were tested for their antioxidant activity in scavenging 1,1-diphenyl-2-picrylhydrazyl (DPPH) radicals and analyzed by high-performance liquid chromatography (HPLC) for their active compounds: total tannin, five catechin (C) compounds (epicatechin gallate [ECG], C, epicatechin [EC], epigallocatechin gallate [EGCG], and (-)-epigallocatechin [EGC]), flavonoid, nitrite, nitrate, caffeine, and nicotine. Moreover, antioxidant activities of the extracts were evaluated in 2,2'-azobis(2-amidinopropane) dihydrochloride (AAPH)-treated RBCs. The results showed that the flower and leaf of VC Less had higher activity than the stem in scavenging DPPH radicals. The tannin content in the flower and leaf was higher than that in the stem. The leaf had the highest content of the five catechins (C, EC, EGCG, ECG, and EGC), the same as in the flavonoid, when compared to the stem and flower. Furthermore, the leaf extract had higher nitrate and nitrite than the stem. Nicotine content was found to be higher in the leaf when compared to the flower. In addition, the leaf showed protective activity in glutathione (GSH), malondialdehyde (MDA), and protein carbonyl, with a dose response in AAPH-oxidized RBCs, the same as in standard EGCG. Thus, this study concluded that radical scavenging and antioxidant compounds such as catechins, flavonoid, nitrate and nitrite, and nicotine are present in different VC Less parts and are included in the AAPH-oxidized RBC model.

  15. Semi-volatile organic compounds at the leaf/atmosphere interface: numerical simulation of dispersal and foliar uptake.

    PubMed

    Riederer, Markus; Daiss, Andreas; Gilbert, Norbert; Köhle, Harald

    2002-08-01

    The behaviour of (semi-)volatile organic compounds at the interface between the leaf surface and the atmosphere was investigated by finite-element numerical simulation. Three model systems with increasing complexity and closeness to the real situation were studied. The three-dimensional model systems were translated into appropriate grid structures and diffusive and convective transport in the leaf/atmosphere interface was simulated. Fenpropimorph (cis-4-[3-(4-tert-butylphenyl)-2-methylpropyl]-2,6-dimethylmorpholine) and Kresoxim-methyl ((E)-methyl-2-methoxyimino-2-[2-(o-tolyloxy-methyl)phenyl] acetate) were used as model compounds. The simulation showed that under still and convective conditions the vapours emitted by a point source rapidly form stationary envelopes around the leaves. Vapour concentrations within these unstirred layers depend on the vapour pressure of the compound in question and on its affinity to the lipoid surface layers of the leaf (cuticular waxes, cutin). The rules deduced from the numerical simulation of organic vapour behaviour in the leaf/atmosphere interface are expected to help in assessing how (semi-)volatile plant products (e.g. hormones, pheromones, secondary metabolites) and xenobiotics (e.g. pesticides, pollutants) perform on plant surfaces.

  16. The colors of autumn leaves as symptoms of cellular recycling and defenses against environmental stresses.

    PubMed

    Ougham, Helen J; Morris, Phillip; Thomas, Howard

    2005-01-01

    The color changes that occur during foliar senescence are directly related to the regulation of nutrient mobilization and resorption from leaf cells, often under conditions of biotic and abiotic stress. Chlorophyll is degraded through a metabolic pathway that becomes specifically activated in senescence. Chlorophyll catabolic enzymes and genes have been identified and characterized and aspects of their regulation analyzed. Particular genetic interventions in the pathway lead to disruptions in protein mobilization and increased sensitivity to light-dependent cell damage and death. The chemistry and metabolism of carotenoid and anthocyanin pigments in senescing leaves are considered. Bright autumn colors observed in the foliage of some woody species have been hypothesized to act as a defense signal to potential insect herbivores. Critical consideration of the biochemical and physiological features of normal leaf senescence leads to the conclusion that accumulating or unmasking compounds with new colors are unlikely to represent a costly investment on the part of the tree. The influences of human evolutionary and social history on our own perception of autumn coloration are discussed. The possibility that insect herbivores may respond to volatiles emitted during leaf senescence, rather than to bright colors, is also presented. Finally, some new approaches to the analysis of protein recycling in senescence are briefly considered.

  17. Consequences of interspecific variation in defenses and herbivore host choice for the ecology and evolution of Inga, a speciose rainforest tree.

    PubMed

    Coley, Phyllis D; Endara, María-José; Kursar, Thomas A

    2018-06-01

    We summarize work on a speciose Neotropical tree genus, Inga (Fabaceae), examining how interspecific variation in anti-herbivore defenses may have evolved, how defenses shape host choice by herbivores and how they might regulate community composition and influence species radiations. Defenses of expanding leaves include secondary metabolites, extrafloral nectaries, rapid leaf expansion, trichomes, and synchrony and timing of leaf production. These six classes of defenses are orthogonal, supporting independent evolutionary trajectories. Moreover, only trichomes show a phylogenetic signature, suggesting evolutionary lability in nearly all defenses. The interspecific diversity in secondary metabolite profiles does not arise from the evolution of novel compounds, but from novel combinations of common compounds, presumably due to changes in gene regulation. Herbivore host choice is determined by plant defensive traits, not host phylogeny. Neighboring plants escape each other's pests if their defenses differ enough, thereby enforcing the high local diversity typical of tropical forests. Related herbivores feed on hosts with similar defenses, implying that there are phylogenetic constraints placed on the herbivore traits that are associated with host use. Divergence in defensive traits among Inga appears to be driven by herbivore pressure. However, the lack of congruence between herbivore and host phylogeny suggests that herbivores are tracking defenses, choosing hosts based on traits for which they already have adaptations. There is, therefore, an asymmetry in the host-herbivore evolutionary arms race.

  18. Changes in growth, leaf anatomy and pigment concentrations in pea under modulated UV-B field treatments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Day, T.A.; Howells, B.W.; Ruhland, C.T.

    1995-06-01

    In growth-chamber and greenhouse studies, garden pea is typically quite sensitive to enhanced UV-B radiation (280-320 nm). We assessed whether growth of pea was reduced under more ecologically relevant UV-B enhancements by employing modulated field lampbanks simulating 0, 16 or 24% ozone depletion. We also examined if these UV-B treatments altered leaf anatomy and concentrations of chlorophyll and UV-B-absorbing compounds, and whether this was dependent on leaf age. We used Pisum sativum mutant Argenteum which has an easily detachable epidermis that allowed us to compare concentrations in epidermal and mesophyll tissues. There were no significant UV-B effects on whole-plant growth.more » Of the 15 leaf-level parameters we examined, UV-B had a strong effect on only two parameters: the ratio of UV-B-absorbing compounds to chlorophyll (which increased with UV-B dose), and stomatal density of the adaxial surface (which decreased with UV-B dose). Chlorophyll concentrations tended to decrease, while the proportion of UV-B-absorbing compounds in the adaxial epidermis tended to increase with UV-B dose (p = 0.11 for both). In contrast to UV-B effects, we found strong leaf-age effects on nearly all parameters except the ratio of UV-B-absorbing compounds to chlorophyll, which remained relatively constant with leaf age.« less

  19. Development and Validation of an Analytical Methodology Based on Liquid Chromatography-Electrospray Tandem Mass Spectrometry for the Simultaneous Determination of Phenolic Compounds in Olive Leaf Extract.

    PubMed

    Cittan, Mustafa; Çelik, Ali

    2018-04-01

    A simple method was validated for the analysis of 31 phenolic compounds using liquid chromatography-electrospray tandem mass spectrometry. Proposed method was successfully applied to the determination of phenolic compounds in an olive leaf extract and 24 compounds were analyzed quantitatively. Olive biophenols were extracted from olive leaves by using microwave-assisted extraction with acceptable recovery values between 78.1 and 108.7%. Good linearities were obtained with correlation coefficients over 0.9916 from calibration curves of the phenolic compounds. The limits of quantifications were from 0.14 to 3.2 μg g-1. Intra-day and inter-day precision studies indicated that the proposed method was repeatable. As a result, it was confirmed that the proposed method was highly reliable for determination of the phenolic species in olive leaf extracts.

  20. Extraction of Volatile Flavor Compounds From Tobacco Leaf Through a Low-Density Polyethylene Membrane.

    PubMed

    Yokoi, Michinori; Shimoda, Mitsuya

    2017-03-01

    A low-density polyethylene (LDPE) membrane pouch method was developed to extract volatile flavor compounds from tobacco leaf. Tobacco leaf suspended in water was enclosed in a pouch prepared from a LDPE membrane of specific gravity 0.92 g/cm3 and 0.03 mm thickness and then extracted with diethyl ether. In comparison with direct solvent extraction, LDPE membrane excluded larger and higher boiling point compounds which could contaminate a gas chromatograph inlet and damage a column. Whilst being more convenient than a reduced-pressure steam distillation, it could extract volatile flavor compounds of wide range of molecular weight and polarity. Repeatabilities in the extracted amounts were ranged from 0.38% of 2.3-bipyridyl to 26% of β-ionone, and average value of 39 compounds was 5.9%. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  1. The effect of isosaponarin isolated from wasabi leaf on collagen synthesis in human fibroblasts and its underlying mechanism.

    PubMed

    Nagai, Masashi; Akita, Keiko; Yamada, Kazuno; Okunishi, Isao

    2010-07-01

    Wasabi has been used as an important spice in Japanese foods. The wasabi leaves were used as a cosmetic material, but its biological activities have not yet been examined. We investigated the effect of isosaponarin derived from wasabi leaf on collagen synthesis in human fibroblasts. The production of type I collagen in human fibroblasts was increased with treatment of wasabi leaf extract. Isosaponarin isolated from wasabi leaves belonged to the group of flavone glycoside, and was the key compound in collagen synthesis from the wasabi leaf ingredients. Isosaponarin increased the type I collagen production at the mRNA gene level. The treatment of isosaponarin did not influence the production of transforming growth factor-beta (TGF-beta) protein, but increased the production of TGF-beta type II receptor (TbetaR-II) protein and TbetaR-II mRNA. Prolyl 4-hydroxylase (P4H) protein and P4H mRNA were increased by treatment with isosaponarin. Heat shock protein 47 (HSP47) was not increased by treatment with isosaponarin. These results suggested that isosaponarin increased collagen synthesis in human fibroblasts, caused by up-regulated TbetaR-II and P4H production.

  2. SEMI-ROLLED LEAF1 Encodes a Putative Glycosylphosphatidylinositol-Anchored Protein and Modulates Rice Leaf Rolling by Regulating the Formation of Bulliform Cells1[W][OA

    PubMed Central

    Xiang, Jing-Jing; Zhang, Guang-Heng; Qian, Qian; Xue, Hong-Wei

    2012-01-01

    Leaf rolling is an important agronomic trait in rice (Oryza sativa) breeding and moderate leaf rolling maintains the erectness of leaves and minimizes shadowing between leaves, leading to improved photosynthetic efficiency and grain yields. Although a few rolled-leaf mutants have been identified and some genes controlling leaf rolling have been isolated, the molecular mechanisms of leaf rolling still need to be elucidated. Here we report the isolation and characterization of SEMI-ROLLED LEAF1 (SRL1), a gene involved in the regulation of leaf rolling. Mutants srl1-1 (point mutation) and srl1-2 (transferred DNA insertion) exhibit adaxially rolled leaves due to the increased numbers of bulliform cells at the adaxial cell layers, which could be rescued by complementary expression of SRL1. SRL1 is expressed in various tissues and is expressed at low levels in bulliform cells. SRL1 protein is located at the plasma membrane and predicted to be a putative glycosylphosphatidylinositol-anchored protein. Moreover, analysis of the gene expression profile of cells that will become epidermal cells in wild type but probably bulliform cells in srl1-1 by laser-captured microdissection revealed that the expression of genes encoding vacuolar H+-ATPase (subunits A, B, C, and D) and H+-pyrophosphatase, which are increased during the formation of bulliform cells, were up-regulated in srl1-1. These results provide the transcript profile of rice leaf cells that will become bulliform cells and demonstrate that SRL1 regulates leaf rolling through inhibiting the formation of bulliform cells by negatively regulating the expression of genes encoding vacuolar H+-ATPase subunits and H+-pyrophosphatase, which will help to understand the mechanism regulating leaf rolling. PMID:22715111

  3. Characterization of phenolic compounds and antinociceptive activity of Sempervivum tectorum L. leaf juice.

    PubMed

    Alberti, Ágnes; Béni, Szabolcs; Lackó, Erzsébet; Riba, Pál; Al-Khrasani, Mahmoud; Kéry, Ágnes

    2012-11-01

    Sempervivum tectorum L. (houseleek) leaf juice has been known as a traditional herbal remedy. The aim of the present study was the chemical characterization of its phenolic compounds and to develop quantitation methods for its main flavonol glycoside, as well as to evaluate its antinociceptive activity. Lyophilized houseleek leaf juice was studied by HPLC-DAD coupled to electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS) to identify flavonol glycosides, hydroxy-benzoic and hydroxy-cinnamic acids. Ten flavonol glycosides and sixteen phenolic acid compounds were identified or tentatively characterized. Structure of the main flavonol compound was identified by nuclear magnetic resonance spectroscopy. Three characteristic kaempferol glycosides were isolated and determined by LC-ESI-MS/MS with external calibration method, using the isolated compounds as standard. The main flavonol glycoside was also determined by HPLC-DAD. Validated HPLC-DAD and LC-ESI-MS/MS methods were developed to quantify kaempferol-3-O-rhamnosyl-glucoside-7-O-rhamnoside and two other kaempferol glycosides. Antinociceptive activity of houseleek leaf juice was investigated by writhing test of mice. Sempervivum extract significantly reduced pain in the mouse writhing test. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. Thin Layer Chromatography-Bioautography and Gas Chromatography-Mass Spectrometry of Antimicrobial Leaf Extracts from Philippine Piper betle L. against Multidrug-Resistant Bacteria.

    PubMed

    Valle, Demetrio L; Puzon, Juliana Janet M; Cabrera, Esperanza C; Rivera, Windell L

    2016-01-01

    This study isolated and identified the antimicrobial compounds of Philippine Piper betle L. leaf ethanol extracts by thin layer chromatography- (TLC-) bioautography and gas chromatography-mass spectrometry (GC-MS). Initially, TLC separation of the leaf ethanol extracts provided a maximum of eight compounds with R f values of 0.92, 0.86, 0.76, 0.53, 0.40, 0.25, 0.13, and 0.013, best visualized when inspected under UV 366 nm. Agar-overlay bioautography of the isolated compounds demonstrated two spots with R f values of 0.86 and 0.13 showing inhibitory activities against two Gram-positive multidrug-resistant (MDR) bacteria, namely, methicillin-resistant Staphylococcus aureus and vancomycin-resistant Enterococcus. The compound with an R f value of 0.86 also possessed inhibitory activity against Gram-negative MDR bacteria, namely, carbapenem-resistant Enterobacteriaceae-Klebsiella pneumoniae and metallo-β-lactamase-producing Acinetobacter baumannii. GC-MS was performed to identify the semivolatile and volatile compounds present in the leaf ethanol extracts. Six compounds were identified, four of which are new compounds that have not been mentioned in the medical literature. The chemical compounds isolated include ethyl diazoacetate, tris(trifluoromethyl)phosphine, heptafluorobutyrate, 3-fluoro-2-propynenitrite, 4-(2-propenyl)phenol, and eugenol. The results of this study could lead to the development of novel therapeutic agents capable of dealing with specific diseases that either have weakened reaction or are currently not responsive to existing drugs.

  5. Thin Layer Chromatography-Bioautography and Gas Chromatography-Mass Spectrometry of Antimicrobial Leaf Extracts from Philippine Piper betle L. against Multidrug-Resistant Bacteria

    PubMed Central

    Valle, Demetrio L.; Puzon, Juliana Janet M.; Cabrera, Esperanza C.

    2016-01-01

    This study isolated and identified the antimicrobial compounds of Philippine Piper betle L. leaf ethanol extracts by thin layer chromatography- (TLC-) bioautography and gas chromatography-mass spectrometry (GC-MS). Initially, TLC separation of the leaf ethanol extracts provided a maximum of eight compounds with R f values of 0.92, 0.86, 0.76, 0.53, 0.40, 0.25, 0.13, and 0.013, best visualized when inspected under UV 366 nm. Agar-overlay bioautography of the isolated compounds demonstrated two spots with R f values of 0.86 and 0.13 showing inhibitory activities against two Gram-positive multidrug-resistant (MDR) bacteria, namely, methicillin-resistant Staphylococcus aureus and vancomycin-resistant Enterococcus. The compound with an R f value of 0.86 also possessed inhibitory activity against Gram-negative MDR bacteria, namely, carbapenem-resistant Enterobacteriaceae-Klebsiella pneumoniae and metallo-β-lactamase-producing Acinetobacter baumannii. GC-MS was performed to identify the semivolatile and volatile compounds present in the leaf ethanol extracts. Six compounds were identified, four of which are new compounds that have not been mentioned in the medical literature. The chemical compounds isolated include ethyl diazoacetate, tris(trifluoromethyl)phosphine, heptafluorobutyrate, 3-fluoro-2-propynenitrite, 4-(2-propenyl)phenol, and eugenol. The results of this study could lead to the development of novel therapeutic agents capable of dealing with specific diseases that either have weakened reaction or are currently not responsive to existing drugs. PMID:27478476

  6. Evaluating water deficit and glyphosate treatment on the accumulation of phenolic compounds and photosynthesis rate in transgenic Codonopsis lanceolata (Siebold & Zucc.) Trautv. over-expressing γ-tocopherol methyltransferase (γ-tmt) gene.

    PubMed

    Ghimire, Bimal Kumar; Son, Na-Young; Kim, Seung-Hyun; Yu, Chang Yeon; Chung, Ill-Min

    2017-07-01

    The effect of water stress and herbicide treatment on the phenolic compound concentration and photosynthesis rate in transgenic Codonopsis lanceolata plants over-expressing the γ-tmt gene was investigated and compared to that in control non-transgenic C. lanceolata plants. The total phenolic compound content was investigated using high-performance liquid chromatography combined with diode array detection in C. lanceolata seedlings 3 weeks after water stress and treatment with glyphosate. Changes in the composition of phenolic compounds were observed in leaf and root extracts from transformed C. lanceolata plants following water stress and treatment with glyphosate. The total concentration of phenolic compounds in the leaf extracts of transgenic samples after water stress ranged from 3455.13 ± 40.48 to 8695.00 ± 45.44 µg g -1 dry weight (DW), whereas the total concentration phenolic compound in the leaf extracts of non-transgenic control samples was 5630.83 ± 45.91 µg g -1  DW. The predominant phenolic compounds that increased after the water stress in the transgenic leaf were (+) catechin, benzoic acid, chlorogenic acid, ferulic acid, gallic acid, rutin, vanillic acid, and veratric acid. The total concentration of phenolic compounds in the leaf extracts of transgenic samples after glyphosate treatment ranged from 4744.37 ± 81.81 to 12,051.02 ± 75.00 µg g -1 DW, whereas the total concentration of the leaf extracts of non-transgenic control samples after glyphosate treatment was 3778.28 ± 59.73 µg g -1 DW. Major phenolic compounds that increased in the transgenic C. lanceolata plants after glyphosate treatment included kaempherol, gallic acid, myricetin, p-hydroxybenzjoic acid, quercetin, salicylic acid, t-cinnamic acid, catechin, benzoicacid, ferulic acid, protocatechuic acid, veratric acid, and vanillic acid. Among these, vanillic acid showed the greatest increase in both leaf and root extracts from transgenic plants relative to those from control C. lanceolata plants following treatment with glyphosate, which could affect the 5-enol-pyruvyl shikimate-3-phosphate (EPSP) synthase, an enzyme in the shikimate pathway. We observed enhanced stomatal conductance (gs) and photosynthesis rate (A) in the transgenic plants treated with water stress and glyphosate treatment. The results of this study demonstrated large variations in the functioning of secondary metabolites pathway in response glyphosate and water stress in transgenic C. lanceolata.

  7. Determination of saponins and flavonoids in ivy leaf extracts using HPLC-DAD.

    PubMed

    Yu, Miao; Shin, Young June; Kim, Nanyoung; Yoo, Guijae; Park, SeonJu; Kim, Seung Hyun

    2015-04-01

    A new method for the determination of six compounds, chlorogenic acid, rutin, nicotiflorin, hederacoside C, hederasaponin B and α-hederin, in ivy leaf extracts using high-performance liquid chromatography with diode array detector was developed. The chromatographic separation was performed on a YMC Hydrosphere C18 analytical column using a gradient elution of 0.1% phosphoric acid and acetonitrile. The method was validated in terms of specificity, linearity (r(2) > 0.9999), precision [relative standard deviation (RSD) < 0.36%] and accuracy (97.4-103.8%). The limit of detection and limit of quantification were <20.32 and 61.56 ng for all analytes, respectively. The tested compounds were found to be stable in the ivy leaf extract from 0 to 48 h, and the RSD value for each compound was <0.90%. The validated method was successfully applied to quantify all six compounds in a 30% ethanol ivy leaf extract and 13 ivy leaf extract products. The results showed that all the tested products satisfied the minimum requirement for the content of hederacoside C. However, there were some differences between the contents of other constituents. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  8. Fatty Acid Profile, Phenolics and Flavonoids Contents in Olea europaea L. Callus Culture cv. cornicabra.

    PubMed

    Rodríguez-Hernandez, Ludwi; Nájera-Gomez, Humberto; Luján-Hidalgo, Maria Celína; Ruiz-Lau, Nancy; Lecona-Guzmán, Carlos Alberto; Abud-Archila, Miguel; Ruíz-Valdiviezo, Víctor Manuel; Gutiérrez-Miceli, Federico Antonio

    2018-05-01

    Olive trees are one of the most important oil crops in the world due to the sensorial and nutritional characteristics of olive oil, such as lipid composition and antioxidant content, and the medicinal properties of its leaves. In this paper, callus formation was induced using nodal segments of olive tree (Olea europaea cv. cornicabra) as explants. Fatty acid profile, total phenolic compounds and total flavonoid compounds were determined in callus culture after 15 weeks and compared with leaf and nodal segments tissues. There was no statistical difference in phenolic compounds among leaf, nodal segments and callus culture, whereas flavonoid compounds were higher in leaf. Fatty acid profile was similar in leaf, nodal segments and callus culture and was constituted by hexadecanoic acid, octadecanoic acid, cis-9-octadecenoic acid, cis-9,12-octadecadienoic acid, cis-9,12,15-octadecatrienoic acid. Hexadecanoic acid was the main fatty acid in callus, leaf and nodal segments with 35.0, 39.0 and 40.0% (w/w), of the lipid composition, respectively. With this paper, it is being reported for the first time the capacity of callus culture to accumulate fatty acids. Our results could serve to continue studying the production of fatty acids in callus cultivation as a biotechnological tool to improve different olive cultivars.

  9. Bioavailability of Bioactive Molecules from Olive Leaf Extracts and its Functional Value.

    PubMed

    Martín-Vertedor, Daniel; Garrido, María; Pariente, José Antonio; Espino, Javier; Delgado-Adámez, Jonathan

    2016-07-01

    Olive leaves are an important low-cost source of bioactive compounds. The present study aimed to examine the effect of in vitro digestibility of an olive leaf aqueous extract so as to prove the availability of its phenolic compounds as well as its antioxidant, antimicrobial, and anticancer activity after a simulated digestion process. The total phenolic content was significantly higher in the pure lyophilized extract. Phenolic compounds, however, decreased by 60% and 90% in simulated gastric fluid (SGF) and simulated intestinal fluid (SIF), respectively. Regarding antioxidant activity, it was reduced by 10% and 50% after gastric and intestinal digestion, respectively; despite this fact, high antioxidant capacity was found in both SGF and SIF. Moreover, the olive leaf extract showed an unusual combined antimicrobial action at low concentration, which suggested their great potential as nutraceuticals, particularly as a source of phenolic compounds. Finally, olive leaf extracts produced a general dose-dependent cytotoxic effect against U937 cells. To sum up, these findings suggest that the olive leaf aqueous extract maintains its beneficial properties after a simulated digestion process, and therefore its regular consumption could be helpful in the management and the prevention of oxidative stress-related chronic disease, bacterial infection, or even cancer. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  10. Compound-Specific Radiocarbon Dating Reveals the Age Distribution of Plant-Wax Biomarkers Exported to the Bengal Fan

    NASA Astrophysics Data System (ADS)

    Galy, V.; French, K. L.; Hein, C. J.; Haghipour, N.; Wacker, L.; Kudrass, H.; Eglinton, T. I.

    2017-12-01

    The stable isotope composition of leaf-wax compounds preserved in lacustrine and marine sediments has been widely used to reconstruct terrestrial paleo-environments. However, the timescales of plant-wax storage in continental reservoirs before riverine export are not well known, representing a key uncertainty in paleo-environment studies. We couple numerical models with bulk and leaf-wax fatty acid organic 13C and 14C signatures hosted in a high-deposition-rate sediment core from the Bengal shelf canyon in order to estimate storage timescales within the Ganges-Brahmaputra catchment area. The fatty acid 14C record reveals a muted nuclear weapons bomb spike, requiring that the Ganges-Brahmaputra river system exports a mixture of young and old (pre-aged) leaf-wax compounds. According to numerical simulations, 79-83% of the leaf-wax fatty acids in this core are sourced from continental reservoirs that store organic carbon on an average of 1000-1200 calendar years, while the remainder has an average age of 15 years. These results demonstrate that a majority of the leaf-wax compounds produced in the Ganges-Brahmaputra river basin was stored in soils, floodplains, and wetlands prior to its export to the Bengal Fan. We will discuss the implications of these findings for plant-wax based paleoenvironmental records.

  11. Laccase detoxification mediates the nutritional alliance between leaf-cutting ants and fungus-garden symbionts

    PubMed Central

    De Fine Licht, Henrik H.; Schiøtt, Morten; Rogowska-Wrzesinska, Adelina; Nygaard, Sanne; Roepstorff, Peter; Boomsma, Jacobus J.

    2013-01-01

    Leaf-cutting ants combine large-scale herbivory with fungus farming to sustain advanced societies. Their stratified colonies are major evolutionary achievements and serious agricultural pests, but the crucial adaptations that allowed this mutualism to become the prime herbivorous component of neotropical ecosystems has remained elusive. Here we show how coevolutionary adaptation of a specific enzyme in the fungal symbiont has helped leaf-cutting ants overcome plant defensive phenolic compounds. We identify nine putative laccase-coding genes in the fungal genome of Leucocoprinus gongylophorus cultivated by the leaf-cutting ant Acromyrmex echinatior. One of these laccases (LgLcc1) is highly expressed in the specialized hyphal tips (gongylidia) that the ants preferentially eat, and we confirm that these ingested laccase molecules pass through the ant guts and remain active when defecated on the leaf pulp that the ants add to their gardens. This accurate deposition ensures that laccase activity is highest where new leaf material enters the fungus garden, but where fungal mycelium is too sparse to produce extracellular enzymes in sufficient quantities to detoxify phenolic compounds. Phylogenetic analysis of LgLcc1 ortholog sequences from symbiotic and free-living fungi revealed significant positive selection in the ancestral lineage that gave rise to the gongylidia-producing symbionts of leaf-cutting ants and their non–leaf-cutting ant sister group. Our results are consistent with fungal preadaptation and subsequent modification of a particular laccase enzyme for the detoxification of secondary plant compounds during the transition to active herbivory in the ancestor of leaf-cutting ants between 8 and 12 Mya. PMID:23267060

  12. Laccase detoxification mediates the nutritional alliance between leaf-cutting ants and fungus-garden symbionts.

    PubMed

    De Fine Licht, Henrik H; Schiøtt, Morten; Rogowska-Wrzesinska, Adelina; Nygaard, Sanne; Roepstorff, Peter; Boomsma, Jacobus J

    2013-01-08

    Leaf-cutting ants combine large-scale herbivory with fungus farming to sustain advanced societies. Their stratified colonies are major evolutionary achievements and serious agricultural pests, but the crucial adaptations that allowed this mutualism to become the prime herbivorous component of neotropical ecosystems has remained elusive. Here we show how coevolutionary adaptation of a specific enzyme in the fungal symbiont has helped leaf-cutting ants overcome plant defensive phenolic compounds. We identify nine putative laccase-coding genes in the fungal genome of Leucocoprinus gongylophorus cultivated by the leaf-cutting ant Acromyrmex echinatior. One of these laccases (LgLcc1) is highly expressed in the specialized hyphal tips (gongylidia) that the ants preferentially eat, and we confirm that these ingested laccase molecules pass through the ant guts and remain active when defecated on the leaf pulp that the ants add to their gardens. This accurate deposition ensures that laccase activity is highest where new leaf material enters the fungus garden, but where fungal mycelium is too sparse to produce extracellular enzymes in sufficient quantities to detoxify phenolic compounds. Phylogenetic analysis of LgLcc1 ortholog sequences from symbiotic and free-living fungi revealed significant positive selection in the ancestral lineage that gave rise to the gongylidia-producing symbionts of leaf-cutting ants and their non-leaf-cutting ant sister group. Our results are consistent with fungal preadaptation and subsequent modification of a particular laccase enzyme for the detoxification of secondary plant compounds during the transition to active herbivory in the ancestor of leaf-cutting ants between 8 and 12 Mya.

  13. The content of phenolic compounds in leaf tissues of Aesculus glabra and Aesculus parviflora walt.

    PubMed

    Oszmiański, Jan; Kolniak-Ostek, Joanna; Biernat, Agata

    2015-01-28

    In plants, flavonoids play an important role in biological processes. They are involved in UV-scavenging, fertility and disease resistance. Therefore, in this study, we attempted to quantify and characterize phenolic compounds in Aesculus parviflora Walt. leaves and Aesculus glabra leaves partly suffering from attack by a leaf mining insect (C. ohridella). A total of 28 phenolic compounds belonging to the hydroxycinnamic acid, flavan-3-ols and flavonol groups were identified and quantified in Aesculus parviflora and A. glabra leaf extracts. Significantly decreased concentrations of some phenolic compounds, especially of flavan-3-ols, were observed in infected leaves compared to the non-infected ones. Additionally, a higher content of polymeric procyanidins in leaves of Aesculus parviflora than in Aesculus glabra may explain their greater resistance to C. ohridella insects.

  14. Non-targeted metabolite profiling highlights the potential of strawberry leaves as a resource for specific bioactive compounds.

    PubMed

    Kårlund, Anna; Hanhineva, Kati; Lehtonen, Marko; McDougall, Gordon J; Stewart, Derek; Karjalainen, Reijo O

    2017-05-01

    The non-edible parts of horticultural crops, such as leaves, contain substantial amounts of valuable bioactive compounds which are currently only little exploited. For example, strawberry (Fragaria × ananassa) leaves may be a promising bioresource for diverse health-related applications. However, product standardization sets a real challenge, especially when the leaf material comes from varying cultivars. The first step towards better quality control of berry fruit leaf-based ingredients and supplements is to understand metabolites present and their stability in different plant cultivars, so this study surveyed the distribution of potentially bioactive strawberry leaf metabolites in six different strawberry cultivars. Non-targeted metabolite profiling analysis using LC/qTOF-ESI-MS with data processing via principal component analysis and k-means clustering analysis was utilized to examine differences and commonalities between the leaf metabolite profiles. Quercetin and kaempferol derivatives were the dominant flavonol groups in strawberry leaves. Previously described and novel caffeic and chlorogenic acid derivatives were among the major phenolic acids. In addition, ellagitannins were one of the distinguishing compound classes in strawberry leaves. In general, strawberry leaves also contained high levels of octadecatrienoic acid derivatives, precursors of valuable odour compounds. The specific bioactive compounds found in the leaves of different strawberry cultivars offer the potential for the selection of optimized leaf materials for added-value food and non-food applications. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  15. Influence of vegetation structure on lidar-derived canopy height and fractional cover in forested riparian buffers during leaf-off and leaf-on conditions.

    PubMed

    Wasser, Leah; Day, Rick; Chasmer, Laura; Taylor, Alan

    2013-01-01

    Estimates of canopy height (H) and fractional canopy cover (FC) derived from lidar data collected during leaf-on and leaf-off conditions are compared with field measurements from 80 forested riparian buffer plots. The purpose is to determine if existing lidar data flown in leaf-off conditions for applications such as terrain mapping can effectively estimate forested riparian buffer H and FC within a range of riparian vegetation types. Results illustrate that: 1) leaf-off and leaf-on lidar percentile estimates are similar to measured heights in all plots except those dominated by deciduous compound-leaved trees where lidar underestimates H during leaf off periods; 2) canopy height models (CHMs) underestimate H by a larger margin compared to percentile methods and are influenced by vegetation type (conifer needle, deciduous simple leaf or deciduous compound leaf) and canopy height variability, 3) lidar estimates of FC are within 10% of plot measurements during leaf-on periods, but are underestimated during leaf-off periods except in mixed and conifer plots; and 4) depth of laser pulse penetration lower in the canopy is more variable compared to top of the canopy penetration which may influence within canopy vegetation structure estimates. This study demonstrates that leaf-off lidar data can be used to estimate forested riparian buffer canopy height within diverse vegetation conditions and fractional canopy cover within mixed and conifer forests when leaf-on lidar data are not available.

  16. Influence of Vegetation Structure on Lidar-derived Canopy Height and Fractional Cover in Forested Riparian Buffers During Leaf-Off and Leaf-On Conditions

    PubMed Central

    Wasser, Leah; Day, Rick; Chasmer, Laura; Taylor, Alan

    2013-01-01

    Estimates of canopy height (H) and fractional canopy cover (FC) derived from lidar data collected during leaf-on and leaf-off conditions are compared with field measurements from 80 forested riparian buffer plots. The purpose is to determine if existing lidar data flown in leaf-off conditions for applications such as terrain mapping can effectively estimate forested riparian buffer H and FC within a range of riparian vegetation types. Results illustrate that: 1) leaf-off and leaf-on lidar percentile estimates are similar to measured heights in all plots except those dominated by deciduous compound-leaved trees where lidar underestimates H during leaf off periods; 2) canopy height models (CHMs) underestimate H by a larger margin compared to percentile methods and are influenced by vegetation type (conifer needle, deciduous simple leaf or deciduous compound leaf) and canopy height variability, 3) lidar estimates of FC are within 10% of plot measurements during leaf-on periods, but are underestimated during leaf-off periods except in mixed and conifer plots; and 4) depth of laser pulse penetration lower in the canopy is more variable compared to top of the canopy penetration which may influence within canopy vegetation structure estimates. This study demonstrates that leaf-off lidar data can be used to estimate forested riparian buffer canopy height within diverse vegetation conditions and fractional canopy cover within mixed and conifer forests when leaf-on lidar data are not available. PMID:23382966

  17. Thermo-Regulation of Genes Mediating Motility and Plant Interactions in Pseudomonas syringae

    PubMed Central

    Hockett, Kevin L.; Burch, Adrien Y.; Lindow, Steven E.

    2013-01-01

    Pseudomonas syringae is an important phyllosphere colonist that utilizes flagellum-mediated motility both as a means to explore leaf surfaces, as well as to invade into leaf interiors, where it survives as a pathogen. We found that multiple forms of flagellum-mediated motility are thermo-suppressed, including swarming and swimming motility. Suppression of swarming motility occurs between 28° and 30°C, which coincides with the optimal growth temperature of P. syringae. Both fliC (encoding flagellin) and syfA (encoding a non-ribosomal peptide synthetase involved in syringafactin biosynthesis) were suppressed with increasing temperature. RNA-seq revealed 1440 genes of the P. syringae genome are temperature sensitive in expression. Genes involved in polysaccharide synthesis and regulation, phage and IS elements, type VI secretion, chemosensing and chemotaxis, translation, flagellar synthesis and motility, and phytotoxin synthesis and transport were generally repressed at 30°C, while genes involved in transcriptional regulation, quaternary ammonium compound metabolism and transport, chaperone/heat shock proteins, and hypothetical genes were generally induced at 30°C. Deletion of flgM, a key regulator in the transition from class III to class IV gene expression, led to elevated and constitutive expression of fliC regardless of temperature, but did not affect thermo-regulation of syfA. This work highlights the importance of temperature in the biology of P. syringae, as many genes encoding traits important for plant-microbe interactions were thermo-regulated. PMID:23527276

  18. Cholesterol esterase inhibitory activity of bioactives from leaves of Mangifera indica L

    PubMed Central

    Gururaja, G. M.; Mundkinajeddu, Deepak; Dethe, Shekhar M.; Sangli, Gopala K.; Abhilash, K.; Agarwal, Amit

    2015-01-01

    Background: In the earlier studies, methanolic extract of Mangifera indica L leaf was exhibited hypocholesterol activity. However, the bioactive compounds responsible for the same are not reported so far. Objective: To isolate the bioactive compounds with hypocholesterol activity from the leaf extract using cholesterol esterase inhibition assay which can be used for the standardization of extract. Materials and Methods: The leaf methanolic extract of M. indica (Sindoora variety) was partitioned with ethyl acetate and chromatographed on silica gel to yield twelve fractions and the activity was monitored by using cholesterol esterase inhibition assay. Active fractions were re-chromatographed to yield individual compounds. Results and Discussion: A major compound mangiferin present in the extract was screened along with other varieties of mango leaves for cholesterol esterase inhibition assay. However, the result indicates that compounds other than mangiferin may be active in the extract. Invitro pancreatic cholesterol esterase inhibition assay was used for bioactivity guided fractionation (BAGF) to yield bioactive compound for standardization of extract. Bioactivity guided fractionation afford the active fraction containing 3b-taraxerol with an IC50 value of 0.86μg/ml. Conclusion: This study demonstrates that M. indica methanol extract of leaf have significant hypocholesterol activity which is standardized with 3b-taraxerol, a standardized extract for hypocholesterol activity resulted in development of dietary supplement from leaves of Mangifera indica. PMID:26692750

  19. Large Drought-induced Variations in Oak Leaf Volatile Organic Compound Emissions during PINOT NOIR 2012

    EPA Pesticide Factsheets

    Leaf level oak isoprene emissions and co2/H2O exchange in the Ozarks, USABAGeron.csv is the speciated biomass displayed in Figure 1.Biomass Dry Weights.xlsx is used to convert leaf area to dry leaf biomass and is used in Figure 2.Daly Ozarks leaf ISOP.txt and MOFLUX_Isoprene Summary_refined Tcurve data.xlsx are the leaf isoprene emission rate files shown in Figure 2.Harley Aug12_Chris.xls is the leaf isoprene emission rate file shown in Figure 3.Daly Ozarks leaf.txt is the BVOC emissions file used for Figure 7 and Table 4.Drought IS.txt is the review data given in Table 2.Fig4 Aug10 2012 Harley.txt is shown in Figure 4.Fig 5 Aug14 2012 Harley.txt is shown in Figure 5.Daly Ozarks Leaf.txt is used in Fig 7.Drought IS.txt is used in Fig 8.This dataset is associated with the following publication:Geron , C., R. Daly , P. Harley, R. Rasmussen, R. Seco, A. Guenther, T. Karl, and L. Gu. Large Drought-Induced Variations in Oak Leaf Volatile Organic Compound Emissions during PINOT NOIR 2012. CHEMOSPHERE. Elsevier Science Ltd, New York, NY, USA, 146: 8-21, (2016).

  20. Leaf area and photosynthesis of newly emerged trifoliolate leaves are regulated by mature leaves in soybean.

    PubMed

    Wu, Yushan; Gong, Wanzhuo; Wang, Yangmei; Yong, Taiwen; Yang, Feng; Liu, Weigui; Wu, Xiaoling; Du, Junbo; Shu, Kai; Liu, Jiang; Liu, Chunyan; Yang, Wenyu

    2018-03-29

    Leaf anatomy and the stomatal development of developing leaves of plants have been shown to be regulated by the same light environment as that of mature leaves, but no report has yet been written on whether such a long-distance signal from mature leaves regulates the total leaf area of newly emerged leaves. To explore this question, we created an investigation in which we collected data on the leaf area, leaf mass per area (LMA), leaf anatomy, cell size, cell number, gas exchange and soluble sugar content of leaves from three soybean varieties grown under full sunlight (NS), shaded mature leaves (MS) or whole plants grown in shade (WS). Our results show that MS or WS cause a marked decline both in leaf area and LMA in newly developing leaves. Leaf anatomy also showed characteristics of shade leaves with decreased leaf thickness, palisade tissue thickness, sponge tissue thickness, cell size and cell numbers. In addition, in the MS and WS treatments, newly developed leaves exhibited lower net photosynthetic rate (Pn), stomatal conductance (Gs) and transpiration rate (E), but higher carbon dioxide (CO 2 ) concentration in the intercellular space (Ci) than plants grown in full sunlight. Moreover, soluble sugar content was significantly decreased in newly developed leaves in MS and WS treatments. These results clearly indicate that (1) leaf area, leaf anatomical structure, and photosynthetic function of newly developing leaves are regulated by a systemic irradiance signal from mature leaves; (2) decreased cell size and cell number are the major cause of smaller and thinner leaves in shade; and (3) sugars could possibly act as candidate signal substances to regulate leaf area systemically.

  1. Mosquito adulticidal activity of the leaf extracts of Spondias mombin L. against Aedes aegypti L. and isolation of active principles.

    PubMed

    Ajaegbu, Elijah Eze; Danga, Simon Pierre Yinyang; Chijoke, Ikemefuna Uzochukwu; Okoye, Festus Basden Chiedu

    2016-03-01

    Aedes aegypti is a domestic mosquito and one of the primary vectors for dengue and yellow fever. Since, it is a vector of deadly diseases, its control becomes essential. Medicinal plants may be an alternative to adulticidal agents since they contain rich source of bioactive compounds. This study was designed to determine the adulticidal activity of Spondias mombin leaf methanol crude extract, n-hexane, dichloromethane and ethyl acetate fractions against female adults of Ae. aegypti mosquitoes and isolate active compound(s) responsible for the bioactivity. All leaf extract and fractions were evaluated for adulticidal activity against Ae. aegypti mosquitoes. Adult mortality was observed after 24 h of exposure. The dichloromethane fraction was further purified being the most active fraction using silica gel column chromatography and the active compounds were identified with the aid of HPLC and LC-ESI-MS/MS. The LC50 and LC90 were determined by Probit analysis. Dichloromethane fraction was the most effective fraction with LC50 value of 2172.815 μg/ml. Compounds identified were mainly ellagic acid and 1-O-Galloyl-6-O-luteoyl-α-D-glucose. The S. mombin leaf extracts and fractions proved to be a strong candidate for a natural, safe and stable adulticide, alternative to synthetic adulticide.

  2. Phytohormones signaling and crosstalk regulating leaf angle in rice.

    PubMed

    Luo, Xiangyu; Zheng, Jingsheng; Huang, Rongyu; Huang, Yumin; Wang, Houcong; Jiang, Liangrong; Fang, Xuanjun

    2016-12-01

    Leaf angle is an important agronomic trait in rice (Oryza sativa L.). It affects both the efficiency of sunlight capture and nitrogen reservoirs. The erect leaf phenotype is suited for high-density planting and thus increasing crop yields. Many genes regulate leaf angle by affecting leaf structure, such as the lamina joint, mechanical tissues, and the midrib. Signaling of brassinosteroids (BR), auxin (IAA), and gibberellins (GA) plays important roles in the regulation of lamina joint bending in rice. In addition, the biosynthesis and signaling of BR are known to have dominant effects on leaf angle development. In this review, we summarize the factors and genes associated with the development of leaf angle in rice, outline the regulatory mechanisms based on the signaling of BR, IAA, and GA, and discuss the contribution of crosstalk between BR and IAA or GA in the formation of leaf angle. Promising lines of research in the transgenic engineering of rice leaf angle to increase grain yield are proposed.

  3. Leaf habit and woodiness regulate different leaf economy traits at a given nutrient supply.

    PubMed

    Ordoñez, Jenny C; van Bodegom, Peter M; Witte, Jan-Philip M; Bartholomeus, Ruud P; van Dobben, Han F; Aerts, Rien

    2010-11-01

    The large variation in the relationships between environmental factors and plant traits observed in natural communities exemplifies the alternative solutions that plants have developed in response to the same environmental limitations. Qualitative attributes, such as growth form, woodiness, and leaf habit can be used to approximate these alternative solutions. Here, we quantified the extent to which these attributes affect leaf trait values at a given resource supply level, using measured plant traits from 105 different species (254 observations) distributed across 50 sites in mesic to wet plant communities in The Netherlands. For each site, soil total N, soil total P, and water supply estimates were obtained by field measurements and modeling. Effects of growth forms, woodiness, and leaf habit on relations between leaf traits (SLA, specific leaf area; LNC, leaf nitrogen concentration; and LPC, leaf phosphorus concentration) vs. nutrient and water supply were quantified using maximum-likelihood methods and Bonferroni post hoc tests. The qualitative attributes explained 8-23% of the variance within sites in leaf traits vs. soil fertility relationships, and therefore they can potentially be used to make better predictions of global patterns of leaf traits in relation to nutrient supply. However, at a given soil fertility, the strength of the effect of each qualitative attribute was not the same for all leaf traits. These differences may imply a differential regulation of the leaf economy traits at a given nutrient supply, in which SLA and LPC seem to be regulated in accordance to changes in plant size and architecture while LNC seems to be primarily regulated at the leaf level by factors related to leaf longevity.

  4. Effect of regulated deficit irrigation on quality parameters, carotenoids and phenolics of diverse tomato varieties (Solanum lycopersicum L.).

    PubMed

    Coyago-Cruz, Elena; Corell, Mireia; Stinco, Carla M; Hernanz, Dolores; Moriana, Alfonso; Meléndez-Martínez, Antonio J

    2017-06-01

    This study aims to evaluate the effects of regulated deficit irrigation (RDI) and of cluster position (CI: first and second cluster; CII: third and fourth cluster; CIII: fifth and sixth cluster) on fruit quality parameters, carotenoids and phenolics in tomatoes. Three common ('Tigerella', 'Palamós' and 'Byelsa') and two cherry varieties ('Lazarino' and 'Summerbrix') were studied. The results showed that the regulated deficit irrigation with reduction of 40 and 50% in the leaf water potential in common and cherry tomatoes did not affect greatly the organoleptic quality of common tomatoes and 'Summerbrix', while cherry varieties were significantly affected with the cluster position. In most case, significant changes in the levels of carotenoids were observed depending on the treatment and the cluster position in all varieties. Significant changes with the treatment and no change with the cluster position were observed in phenolic compounds. Thus, in general, increased total carotenoid levels and reduced the content of phenolic compounds were observed. Considering the significance of changes in the levels of these groups of compounds it was concluded that 'Lazarino' was more susceptible to water deficit, whereas 'Summerbrix' and 'Palamós' were more resistant. On the other hand, the organoleptic and functional quality changed with the variety. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Vaccinium angustifolium (lowbush blueberry) leaf extract increases extravillous trophoblast cell migration and invasion in vitro.

    PubMed

    Ly, Christina; Ferrier, Jonathan; Gaudet, Jeremiah; Yockell-Lelièvre, Julien; Arnason, John Thor; Gruslin, Andrée; Bainbridge, Shannon

    2018-04-01

    Perturbations to extravillous trophoblast (EVT) cell migration and invasion are associated with the development of placenta-mediated diseases. Phytochemicals found in the lowbush blueberry plant (Vaccinium angustifolium) have been shown to influence cell migration and invasion in models of tumorigenesis and noncancerous, healthy cells, however never in EVT cells. We hypothesized that the phenolic compounds present in V. angustifolium leaf extract promote trophoblast migration and invasion. Using the HTR-8/SVneo human EVT cell line and Boyden chamber assays, the influence of V. angustifolium leaf extract (0 to 2 × 10 4  ng/ml) on trophoblast cell migration (n = 4) and invasion (n = 4) was determined. Cellular proliferation and viability were assessed using immunoreactivity to Ki67 (n = 3) and trypan blue exclusion assays (n = 3), respectively. At 20 ng/ml, V. angustifolium leaf extract increased HTR-8/SVneo cell migration and invasion (p < .01) and did not affect cell proliferation or viability. Chlorogenic acid was identified as a major phenolic compound of the leaf extract and the most active compound. Evidence from Western blot analysis (n = 3) suggests that the effects of the leaf extract and chlorogenic acid on trophoblast migration and invasion are mediated through an adenosine monophosphate-activated protein (AMP) kinase-dependent mechanism. Further investigations examining the potential therapeutic applications of this natural health product extract and its major chemical compounds in the context of placenta-mediated diseases are warranted. Copyright © 2018 John Wiley & Sons, Ltd.

  6. Antimicrobial, antibiofilm and antitumor activities of essential oil of Agastache rugosa from Xinjiang, China.

    PubMed

    Haiyan, Gong; Lijuan, He; Shaoyu, Li; Chen, Zhang; Ashraf, Muhammad Aqeel

    2016-07-01

    In the study, we evaluated chemical composition and antimicrobial, antibiofilm, and antitumor activities of essential oils from dried leaf essential oil of leaf and flower of Agastache rugosa for the first time. Essential oil of leaf and flower was evaluated with GC and GC-MS methods, and the essential oil of flower revealed the presence of 21 components, whose major compounds were pulegone (34.1%), estragole (29.5%), and p-Menthan-3-one (19.2%). 26 components from essential oil of leaf were identified, the major compounds were p-Menthan-3-one (48.8%) and estragole (20.8%). At the same time, essential oil of leaf, there is a very effective antimicrobial activity with MIC ranging from 9.4 to 42 μg ml(-1) and potential antibiofilm, antitumor activities for essential oils of flower and leaf essential oil of leaf. The study highlighted the diversity in two different parts of A. rugosa grown in Xinjiang region and other places, which have different active constituents. Our results showed that this native plant may be a good candidate for further biological and pharmacological investigations.

  7. Phytochemical screening and antioxidant activity of ethanolic extract and ethyl acetate fraction from basil leaf (Ocimum basilicum L.) by DPPH radical scavenging method

    NASA Astrophysics Data System (ADS)

    Warsi; Sholichah, A. R.

    2017-11-01

    Basil leaf (Ocimum basilicum L.) contains various compounds such as flavonoid, alkaloid, phenol and essential oil, so it needs to be fractionated to find out the flavonoid compound with the greatest potential as an antioxidant. This research was aimed to know the chemical compound, antioxidant potential of ethanolic extract and ethyl acetate fraction from basil leaf. The basil leaf was extracted by maceration using ethanol 70 %. The crude extract was fractionated with ethyl acetate. The ethanolic extract and ethyl acetate fraction were screened of phytochemical content including identification of flavonoids, alkaloids and polyphenolics. The antioxidant activity of the ethanolic extract and ethyl acetate fraction were tested qualitatively with 2,2-diphenyl-1-picrylhydrazyl (DPPH) and phosphomolybdate. Its antioxidant activity was determined quantitatively using DPPH radical scavenging method. Phytochemical screening test showed that ethanolic extract and ethyl acetate fraction from basil leaf contain flavonoids, polyphenolics, and alkaloids. The qualitative analysis of antioxidant activity of ethanolic extract and ethyl acetate fraction from basil leaf showed an antioxidant activity. The IC50 value of ethanolic extract, ethyl acetate fraction and quercetin were 1,374.00±6.20 389.00±1.00 2.10±0.01μg/mL, respectively. The research showed that antioxidant activity of the ethyl acetate fraction more potential than the ethanol extract of the basil leaf, but less than quercetin.

  8. Rates of in situ carbon mineralization in relation to land-use, microbial community and edaphic characteristics

    Treesearch

    M.S. Strickland; M.A. Callaham; C.A. Davies; C.L. Lauber; K. Ramirez; D.D. Richter; N. Fierer; M.A. Bradford

    2010-01-01

    Plant-derived carbon compounds enter soils in a number of forms; two of the most abundant being leaf litter and rhizodeposition. Our knowledge concerning the predominant controls on the cycling of leaf litter far outweighs that for rhizodeposition even though the constituents of rhizodeposits includes a cocktail of low molecular weight organic compounds which represent...

  9. Combined Effects of Early Season Leaf Removal and Climatic Conditions on Aroma Precursors in Sauvignon Blanc Grapes.

    PubMed

    Sivilotti, Paolo; Falchi, Rachele; Herrera, Jose Carlos; Škvarč, Branka; Butinar, Lorena; Sternad Lemut, Melita; Bubola, Marijan; Sabbatini, Paolo; Lisjak, Klemen; Vanzo, Andreja

    2017-09-27

    Early leaf removal around the cluster zone is a common technique applied in cool climate viticulture, to regulate yield components and improve fruit quality. Despite the increasing amount of information on early leaf removal and its impact on total soluble solids, anthocyanins, and polyphenols, less is known regarding aroma compounds. In order to verify the hypothesis that defoliation, applied before or after flowering, could impact the biosynthesis of thiol precursors, we performed a two year (2013 and 2014) experiment on Sauvignon blanc. We provided evidence that differential accumulation of thiol precursors in berries is affected by the timing of defoliation, and this impact was related to modifications in the biosynthetic pathway. Furthermore, the possible interaction between leaf removal treatment and seasonal weather conditions, and its effect on the biosynthesis of volatile precursors are discussed. Our results suggested that in Sauvignon blanc the relative proportion of 4-S-glutathionyl-4-methylpentan-2-one (G-4MSP) and 3-S-glutathionylhexan-1-ol (G-3SH) precursors can be affected by defoliation, and this could be related to the induction of two specific genes encoding glutathione-S-transferases (VvGST3 and VvGST5), while no significant effects on basic fruit chemical parameters, polyphenols, and methoxypyrazines were ascertained under our experimental conditions.

  10. Differentially phased leaf growth and movements in Arabidopsis depend on coordinated circadian and light regulation.

    PubMed

    Dornbusch, Tino; Michaud, Olivier; Xenarios, Ioannis; Fankhauser, Christian

    2014-10-01

    In contrast to vastly studied hypocotyl growth, little is known about diel regulation of leaf growth and its coordination with movements such as changes in leaf elevation angle (hyponasty). We developed a 3D live-leaf growth analysis system enabling simultaneous monitoring of growth and movements. Leaf growth is maximal several hours after dawn, requires light, and is regulated by daylength, suggesting coupling between growth and metabolism. We identify both blade and petiole positioning as important components of leaf movements in Arabidopsis thaliana and reveal a temporal delay between growth and movements. In hypocotyls, the combination of circadian expression of PHYTOCHROME INTERACTING FACTOR4 (PIF4) and PIF5 and their light-regulated protein stability drives rhythmic hypocotyl elongation with peak growth at dawn. We find that PIF4 and PIF5 are not essential to sustain rhythmic leaf growth but influence their amplitude. Furthermore, EARLY FLOWERING3, a member of the evening complex (EC), is required to maintain the correct phase between growth and movement. Our study shows that the mechanisms underlying rhythmic hypocotyl and leaf growth differ. Moreover, we reveal the temporal relationship between leaf elongation and movements and demonstrate the importance of the EC for the coordination of these phenotypic traits. © 2014 American Society of Plant Biologists. All rights reserved.

  11. Silencing OsSLR1 enhances the resistance of rice to the brown planthopper Nilaparvata lugens.

    PubMed

    Zhang, Jin; Luo, Ting; Wang, Wanwan; Cao, Tiantian; Li, Ran; Lou, Yonggen

    2017-10-01

    DELLA proteins, negative regulators of the gibberellin (GA) pathway, play important roles in plant growth, development and pathogen resistance by regulating multiple phytohormone signals. Yet, whether and how they regulate plant herbivore resistance remain unknown. We found that the expression of the rice DELLA gene OsSLR1 was down-regulated by an infestation of female adults of the brown planthopper (BPH) Nilaparvata lugens. On one hand, OsSLR1 positively regulated BPH-induced levels of two mitogen-activated protein kinase and four WRKY transcripts, and of jasmonic acid, ethylene and H 2 O 2 . On the other hand, silencing OsSLR1 enhanced constitutive levels of defence-related compounds, phenolic acids, lignin and cellulose, as well as the resistance of rice to BPH in the laboratory and in the field. The increased resistance in rice with silencing of OsSLR1 is probably due to impaired JA and ethylene pathways, and, at least in part, to the increased lignin level and mechanical hardness of rice leaf sheaths. Our findings illustrate that OsSLR1, acting as an early negative regulator, plays an important role in regulating the resistance of rice to BPH by activating appropriate defence-related signalling pathways and compounds. Moreover, our data also provide new insights into relationships between plant growth and defence. © 2017 John Wiley & Sons Ltd.

  12. NaJAZh Regulates a Subset of Defense Responses against Herbivores and Spontaneous Leaf Necrosis in Nicotiana attenuata Plants[C][W][OA

    PubMed Central

    Oh, Youngjoo; Baldwin, Ian T.; Gális, Ivan

    2012-01-01

    The JASMONATE ZIM DOMAIN (JAZ) proteins function as negative regulators of jasmonic acid signaling in plants. We cloned 12 JAZ genes from native tobacco (Nicotiana attenuata), including nine novel JAZs in tobacco, and examined their expression in plants that had leaves elicited by wounding or simulated herbivory. Most JAZ genes showed strong expression in the elicited leaves, but NaJAZg was mainly expressed in roots. Another novel herbivory-elicited gene, NaJAZh, was analyzed in detail. RNA interference suppression of this gene in inverted-repeat (ir)JAZh plants deregulated a specific branch of jasmonic acid-dependent direct and indirect defenses: irJAZh plants showed greater trypsin protease inhibitor activity, 17-hydroxygeranyllinalool diterpene glycosides accumulation, and emission of volatile organic compounds from leaves. Silencing of NaJAZh also revealed a novel cross talk in JAZ-regulated secondary metabolism, as irJAZh plants had significantly reduced nicotine levels. In addition, irJAZh spontaneously developed leaf necrosis during the transition to flowering. Because the lesions closely correlated with the elevated expression of programmed cell death genes and the accumulations of salicylic acid and hydrogen peroxide in the leaves, we propose a novel role of the NaJAZh protein as a repressor of necrosis and/or programmed cell death during plant development. PMID:22496510

  13. Leaf area compounds height-related hydraulic costs of water transport in Oregon White Oak trees.

    Treesearch

    N. Phillips; B. J. Bond; N. G. McDowell; Michael G. Ryan; A. Schauer

    2003-01-01

    The ratio of leaf to sapwood area generally decreases with tree size, presumably to moderate hydraulic costs of tree height. This study assessed consequences of tree size and leaf area on water flux in Quercus garryana Dougl. ex. Hook (Oregon White Oak), a species in which leaf to sapwood area ratio increases with tree size. We tested hypotheses that...

  14. Comparison of leaf gas exchange and stable isotope signature of water-soluble compounds along canopy gradients of co-occurring Douglas-fir and European beech.

    PubMed

    Bögelein, Rebekka; Hassdenteufel, Martin; Thomas, Frank M; Werner, Willy

    2012-07-01

    Combined δ(13) C and δ(18) O analyses of water-soluble leaf and twig phloem material were used to determine intrinsic water-use efficiency (iWUE) and variability of stomatal conductance at different crown positions in adult European beech (Fagus sylvatica) and Douglas-fir (Pseudotsuga menziesii) trees. Simultaneous gas exchange measurements allowed evaluation of the differences in calculating iWUE from leaf or phloem water-soluble compounds, and comparison with a semi-quantitative dual isotope model to infer variability of net photosynthesis (A(n) ) between the investigated crown positions. Estimates of iWUE from δ(13) C of leaf water-soluble organic matter (WSOM) outperformed the estimates from phloem compounds. In the beech crown, δ(13) C of leaf WSOM coincided clearly with gas exchange measurements. The relationship was not as reliable in the Douglas-fir. The differences in δ(18) O between leaf and phloem material were found to correlate with stomatal conductance. The semi-quantitative model approach was applicable for comparisons of daily average A(n) between different crown positions and trees. Intracanopy gradients were more pronounced in the beech than in the Douglas-fir, which reached higher values of iWUE at the respective positions, particularly under dry air conditions. © 2012 Blackwell Publishing Ltd.

  15. Secretory cavities and volatiles of Myrrhinium atropurpureum Schott var. atropurpureum (Myrtaceae): an endemic species collected in the restingas of Rio de Janeiro, Brazil.

    PubMed

    Victório, Cristiane Pimentel; Moreira, Claudio B; Souza, Marcelo da Costa; Sato, Alice; Arruda, Rosani do Carmo de Oliveira

    2011-07-01

    In this study, we investigated the leaf anatomy and the composition of volatiles in Myrrhinium atropurpureum var. atropurpureum endemic to Rio de Janeiro restingas. Particularly, leaf secretory structures were described using light microscopy, and histochemical tests were performed from fresh leaves to localize the secondary metabolites. To observe secretory cavities, fixed leaf samples were free-hand sectioned. To evaluate lipophilic compounds and terpenoids the following reagents were employed: Sudans III and IV, Red oil O and Nile blue. Leaf volatiles were characterized by gas chromatography after hydrodistillation (HD) or simultaneous distillation-extraction (SDE). Leaf analysis showed several cavities in mesophyll that are the main sites of lipophilic and terpenoid production. Monoterpenes, which represented more than 80% of the major volatiles, were characterized mainly by alpha- and beta-pinene and 1,8-cineole. In order to provide tools for M. atropurpureum identification, the following distinguishing characteristics were revealed by the following data: 1) adaxial face clear and densely punctuated by the presence of round or ellipsoidal secretory cavities randomly distributed in the mesophyll; 2) the presence of cells overlying the upper neck cells of secretory cavities; 3) the presence of numerous paracytic stomata distributed on the abaxial leaf surface, but absent in vein regions and leaf margin; and 4) non-glandular trichomes on both leaf surfaces. Our study of the compounds produced by the secretory cavities of M. atropurpureum led us to conclude that volatile terpenoid class are the main secretory compounds and that they consist of a high concentration of monoterpenes, which may indicate the phytotherapeutic importance of this plant.

  16. Biogenic volatile organic compound emissions from senescent maize leaves and a comparison with other leaf developmental stages

    NASA Astrophysics Data System (ADS)

    Mozaffar, A.; Schoon, N.; Bachy, A.; Digrado, A.; Heinesch, B.; Aubinet, M.; Fauconnier, M.-L.; Delaplace, P.; du Jardin, P.; Amelynck, C.

    2018-03-01

    Plants are the major source of Biogenic Volatile Organic Compounds (BVOCs) which have a large influence on atmospheric chemistry and the climate system. Therefore, understanding of BVOC emissions from all abundant plant species at all developmental stages is very important. Nevertheless, investigations on BVOC emissions from even the most widespread agricultural crop species are rare and mainly confined to the healthy green leaves. Senescent leaves of grain crop species could be an important source of BVOCs as almost all the leaves senesce on the field before being harvested. For these reasons, BVOC emission measurements have been performed on maize (Zea mays L.), one of the most cultivated crop species in the world, at all the leaf developmental stages. The measurements were performed in controlled environmental conditions using dynamic enclosures and proton transfer reaction mass spectrometry (PTR-MS). The main compounds emitted by senescent maize leaves were methanol (31% of the total cumulative BVOC emission on a mass of compound basis) and acetic acid (30%), followed by acetaldehyde (11%), hexenals (9%) and m/z 59 compounds (acetone/propanal) (7%). Important differences were observed in the temporal emission profiles of the compounds, and both yellow leaves during chlorosis and dry brown leaves after chlorosis were identified as important senescence-related BVOC sources. Total cumulative BVOC emissions from senescent maize leaves were found to be among the highest for senescent Poaceae plant species. BVOC emission rates varied strongly among the different leaf developmental stages, and senescent leaves showed a larger diversity of emitted compounds than leaves at earlier stages. Methanol was the compound with the highest emissions for all the leaf developmental stages and the contribution from the young-growing, mature, and senescent stages to the total methanol emission by a typical maize leaf was 61, 13, and 26%, respectively. This study shows that BVOC emissions from senescent maize leaves cannot be neglected and further investigations in field conditions are recommended to further constrain the BVOC emissions from this important C4 crop species.

  17. 7 CFR 29.3033 - Leaf.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 2 2013-01-01 2013-01-01 false Leaf. 29.3033 Section 29.3033 Agriculture Regulations... Leaf. Whole, unstemmed leaf. Leaf, when applied to tobacco in strip form, shall describe the divided unit of a whole leaf. [49 FR 16758, Apr. 20, 1984] ...

  18. 7 CFR 29.3033 - Leaf.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false Leaf. 29.3033 Section 29.3033 Agriculture Regulations... Leaf. Whole, unstemmed leaf. Leaf, when applied to tobacco in strip form, shall describe the divided unit of a whole leaf. [49 FR 16758, Apr. 20, 1984] ...

  19. 7 CFR 29.3033 - Leaf.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 2 2012-01-01 2012-01-01 false Leaf. 29.3033 Section 29.3033 Agriculture Regulations... Leaf. Whole, unstemmed leaf. Leaf, when applied to tobacco in strip form, shall describe the divided unit of a whole leaf. [49 FR 16758, Apr. 20, 1984] ...

  20. 7 CFR 29.3033 - Leaf.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 2 2014-01-01 2014-01-01 false Leaf. 29.3033 Section 29.3033 Agriculture Regulations... Leaf. Whole, unstemmed leaf. Leaf, when applied to tobacco in strip form, shall describe the divided unit of a whole leaf. [49 FR 16758, Apr. 20, 1984] ...

  1. 7 CFR 29.3033 - Leaf.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Leaf. 29.3033 Section 29.3033 Agriculture Regulations... Leaf. Whole, unstemmed leaf. Leaf, when applied to tobacco in strip form, shall describe the divided unit of a whole leaf. [49 FR 16758, Apr. 20, 1984] ...

  2. Phylloremediation of Air Pollutants: Exploiting the Potential of Plant Leaves and Leaf-Associated Microbes

    PubMed Central

    Wei, Xiangying; Lyu, Shiheng; Yu, Ying; Wang, Zonghua; Liu, Hong; Pan, Dongming; Chen, Jianjun

    2017-01-01

    Air pollution is air contaminated by anthropogenic or naturally occurring substances in high concentrations for a prolonged time, resulting in adverse effects on human comfort and health as well as on ecosystems. Major air pollutants include particulate matters (PMs), ground-level ozone (O3), sulfur dioxide (SO2), nitrogen dioxides (NO2), and volatile organic compounds (VOCs). During the last three decades, air has become increasingly polluted in countries like China and India due to rapid economic growth accompanied by increased energy consumption. Various policies, regulations, and technologies have been brought together for remediation of air pollution, but the air still remains polluted. In this review, we direct attention to bioremediation of air pollutants by exploiting the potentials of plant leaves and leaf-associated microbes. The aerial surfaces of plants, particularly leaves, are estimated to sum up to 4 × 108 km2 on the earth and are also home for up to 1026 bacterial cells. Plant leaves are able to adsorb or absorb air pollutants, and habituated microbes on leaf surface and in leaves (endophytes) are reported to be able to biodegrade or transform pollutants into less or nontoxic molecules, but their potentials for air remediation has been largely unexplored. With advances in omics technologies, molecular mechanisms underlying plant leaves and leaf associated microbes in reduction of air pollutants will be deeply examined, which will provide theoretical bases for developing leaf-based remediation technologies or phylloremediation for mitigating pollutants in the air. PMID:28804491

  3. Phylloremediation of Air Pollutants: Exploiting the Potential of Plant Leaves and Leaf-Associated Microbes.

    PubMed

    Wei, Xiangying; Lyu, Shiheng; Yu, Ying; Wang, Zonghua; Liu, Hong; Pan, Dongming; Chen, Jianjun

    2017-01-01

    Air pollution is air contaminated by anthropogenic or naturally occurring substances in high concentrations for a prolonged time, resulting in adverse effects on human comfort and health as well as on ecosystems. Major air pollutants include particulate matters (PMs), ground-level ozone (O 3 ), sulfur dioxide (SO 2 ), nitrogen dioxides (NO 2 ), and volatile organic compounds (VOCs). During the last three decades, air has become increasingly polluted in countries like China and India due to rapid economic growth accompanied by increased energy consumption. Various policies, regulations, and technologies have been brought together for remediation of air pollution, but the air still remains polluted. In this review, we direct attention to bioremediation of air pollutants by exploiting the potentials of plant leaves and leaf-associated microbes. The aerial surfaces of plants, particularly leaves, are estimated to sum up to 4 × 10 8 km 2 on the earth and are also home for up to 10 26 bacterial cells. Plant leaves are able to adsorb or absorb air pollutants, and habituated microbes on leaf surface and in leaves (endophytes) are reported to be able to biodegrade or transform pollutants into less or nontoxic molecules, but their potentials for air remediation has been largely unexplored. With advances in omics technologies, molecular mechanisms underlying plant leaves and leaf associated microbes in reduction of air pollutants will be deeply examined, which will provide theoretical bases for developing leaf-based remediation technologies or phylloremediation for mitigating pollutants in the air.

  4. Phenolic compounds from the leaf extract of artichoke (Cynara scolymus L.) and their antimicrobial activities.

    PubMed

    Zhu, Xianfeng; Zhang, Hongxun; Lo, Raymond

    2004-12-01

    A preliminary antimicrobial disk assay of chloroform, ethyl acetate, and n-butanol extracts of artichoke (Cynara scolymus L.) leaf extracts showed that the n-butanol fraction exhibited the most significant antimicrobial activities against seven bacteria species, four yeasts, and four molds. Eight phenolic compounds were isolated from the n-butanol soluble fraction of artichoke leaf extracts. On the basis of high-performance liquid chromatography/electrospray ionization mass spectrometry, tandem mass spectrometry, and nuclear magnetic resonance techniques, the structures of the isolated compounds were determined as the four caffeoylquinic acid derivatives, chlorogenic acid (1), cynarin (2), 3,5-di-O-caffeoylquinic acid (3), and 4,5-di-O-caffeoylquinic acid (4), and the four flavonoids, luteolin-7-rutinoside (5), cynaroside (6), apigenin-7-rutinoside (7), and apigenin-7-O-beta-D-glucopyranoside (8), respectively. The isolated compounds were examined for their antimicrobial activities on the above microorganisms, indicating that all eight phenolic compounds showed activity against most of the tested organisms. Among them, chlorogenic acid, cynarin, luteolin-7-rutinoside, and cynaroside exhibited a relatively higher activity than other compounds; in addition, they were more effective against fungi than bacteria. The minimum inhibitory concentrations of these compounds were between 50 and 200 microg/mL.

  5. High Concentration of Melatonin Regulates Leaf Development by Suppressing Cell Proliferation and Endoreduplication in Arabidopsis.

    PubMed

    Wang, Qiannan; An, Bang; Shi, Haitao; Luo, Hongli; He, Chaozu

    2017-05-05

    N -acetyl-5-methoxytryptamine (Melatonin), as a crucial messenger in plants, functions in adjusting biological rhythms, stress tolerance, plant growth and development. Several studies have shown the retardation effect of exogenous melatonin treatment on plant growth and development. However, the in vivo role of melatonin in regulating plant leaf growth and the underlying mechanism are still unclear. In this study, we found that high concentration of melatonin suppressed leaf growth in Arabidopsis by reducing both cell size and cell number. Further kinetic analysis of the fifth leaves showed that melatonin remarkably inhibited cell division rate. Additionally, flow cytometic analysis indicated that melatonin negatively regulated endoreduplication during leaf development. Consistently, the expression analysis revealed that melatonin regulated the transcriptional levels of key genes of cell cycle and ribosome. Taken together, this study suggests that high concentration of melatonin negatively regulated the leaf growth and development in Arabidopsis , through modulation of endoreduplication and the transcripts of cell cycle and ribosomal key genes.

  6. High Concentration of Melatonin Regulates Leaf Development by Suppressing Cell Proliferation and Endoreduplication in Arabidopsis

    PubMed Central

    Wang, Qiannan; An, Bang; Shi, Haitao; Luo, Hongli; He, Chaozu

    2017-01-01

    N-acetyl-5-methoxytryptamine (Melatonin), as a crucial messenger in plants, functions in adjusting biological rhythms, stress tolerance, plant growth and development. Several studies have shown the retardation effect of exogenous melatonin treatment on plant growth and development. However, the in vivo role of melatonin in regulating plant leaf growth and the underlying mechanism are still unclear. In this study, we found that high concentration of melatonin suppressed leaf growth in Arabidopsis by reducing both cell size and cell number. Further kinetic analysis of the fifth leaves showed that melatonin remarkably inhibited cell division rate. Additionally, flow cytometic analysis indicated that melatonin negatively regulated endoreduplication during leaf development. Consistently, the expression analysis revealed that melatonin regulated the transcriptional levels of key genes of cell cycle and ribosome. Taken together, this study suggests that high concentration of melatonin negatively regulated the leaf growth and development in Arabidopsis, through modulation of endoreduplication and the transcripts of cell cycle and ribosomal key genes. PMID:28475148

  7. Identification and characterization of a gibberellin-regulated protein, which is ASR5, in the basal region of rice leaf sheaths.

    PubMed

    Takasaki, Hironori; Mahmood, Tariq; Matsuoka, Makoto; Matsumoto, Hiroshi; Komatsu, Setsuko

    2008-04-01

    Gibberellins (GAs) regulate growth and development in higher plants. To identify GA-regulated proteins during rice leaf sheath elongation, a proteomic approach was used. Proteins from the basal region of leaf sheath in rice seedling treated with GA(3) were analyzed by fluorescence two-dimensional difference gel electrophoresis. The levels of abscisic acid-stress-ripening-inducible 5 protein (ASR5), elongation factor-1 beta, translationally controlled tumor protein, fructose-bisphosphate aldolase and a novel protein increased; whereas the level of RuBisCO subunit binding-protein decreased by GA(3) treatment. ASR5 out of these six proteins was significantly regulated by GA(3) at the protein level but not at the mRNA level in the basal region of leaf sheaths. Since this protein is regulated not only by abscisic acid but also by GA(3), these results indicate that ASR5 might be involved in plant growth in addition to stress in the basal regions of leaf sheaths.

  8. Phytochemical Constituents and Antimicrobial Activity of the Ethanol and Chloroform Crude Leaf Extracts of Spathiphyllum cannifolium (Dryand. ex Sims) Schott.

    PubMed

    Dhayalan, Arunachalam; Gracilla, Daniel E; Dela Peña, Renato A; Malison, Marilyn T; Pangilinan, Christian R

    2018-01-01

    The study investigated the medicinal properties of Spathiphyllum cannifolium (Dryand. ex Sims) Schott as a possible source of antimicrobial compounds. The phytochemical constituents were screened using qualitative methods and the antibacterial and antifungal activities were determined using agar well diffusion method. One-way analysis of variance and Fisher's least significant difference test were used. The phytochemical screening showed the presence of sterols, flavonoids, alkaloids, saponins, glycosides, and tannins in both ethanol and chloroform leaf extracts, but triterpenes were detected only in the ethanol leaf extract. The antimicrobial assay revealed that the chloroform leaf extract inhibited Candida albicans, Escherichia coli, Staphylococcus aureus, Bacillus subtilis, and Pseudomonas aeruginosa , whereas the ethanol leaf extract inhibited E. coli , S. aureus , and B. subtilis only. The ethanol and chloroform leaf extracts exhibited the highest zone of inhibition against B. subtilis . The antifungal assay showed that both the leaf extracts have no bioactivity against Aspergillus niger and C. albicans . Results suggest that chloroform is the better solvent for the extraction of antimicrobial compounds against the test organisms used in this study. Findings of this research will add new knowledge in advancing drug discovery and development in the Philippines.

  9. Virus-induced gene silencing of the two squalene synthase isoforms of apple tree (Malus × domestica L.) negatively impacts phytosterol biosynthesis, plastid pigmentation and leaf growth.

    PubMed

    Navarro Gallón, Sandra M; Elejalde-Palmett, Carolina; Daudu, Dimitri; Liesecke, Franziska; Jullien, Frédéric; Papon, Nicolas; Dugé de Bernonville, Thomas; Courdavault, Vincent; Lanoue, Arnaud; Oudin, Audrey; Glévarec, Gaëlle; Pichon, Olivier; Clastre, Marc; St-Pierre, Benoit; Atehortùa, Lucia; Yoshikawa, Nobuyuki; Giglioli-Guivarc'h, Nathalie; Besseau, Sébastien

    2017-07-01

    The use of a VIGS approach to silence the newly characterized apple tree SQS isoforms points out the biological function of phytosterols in plastid pigmentation and leaf development. Triterpenoids are beneficial health compounds highly accumulated in apple; however, their metabolic regulation is poorly understood. Squalene synthase (SQS) is a key branch point enzyme involved in both phytosterol and triterpene biosynthesis. In this study, two SQS isoforms were identified in apple tree genome. Both isoforms are located at the endoplasmic reticulum surface and were demonstrated to be functional SQS enzymes using an in vitro activity assay. MdSQS1 and MdSQS2 display specificities in their expression profiles with respect to plant organs and environmental constraints. This indicates a possible preferential involvement of each isoform in phytosterol and/or triterpene metabolic pathways as further argued using RNAseq meta-transcriptomic analyses. Finally, a virus-induced gene silencing (VIGS) approach was used to silence MdSQS1 and MdSQS2. The concomitant down-regulation of both MdSQS isoforms strongly affected phytosterol synthesis without alteration in triterpene accumulation, since triterpene-specific oxidosqualene synthases were found to be up-regulated to compensate metabolic flux reduction. Phytosterol deficiencies in silenced plants clearly disturbed chloroplast pigmentation and led to abnormal development impacting leaf division rather than elongation or differentiation. In conclusion, beyond the characterization of two SQS isoforms in apple tree, this work brings clues for a specific involvement of each isoform in phytosterol and triterpene pathways and emphasizes the biological function of phytosterols in development and chloroplast integrity. Our report also opens the door to metabolism studies in Malus domestica using the apple latent spherical virus-based VIGS method.

  10. Leaf Extracts of Mangifera indica L. Inhibit Quorum Sensing – Regulated Production of Virulence Factors and Biofilm in Test Bacteria

    PubMed Central

    Husain, Fohad M.; Ahmad, Iqbal; Al-thubiani, Abdullah S.; Abulreesh, Hussein H.; AlHazza, Ibrahim M.; Aqil, Farrukh

    2017-01-01

    Quorum sensing (QS) is a global gene regulatory mechanism in bacteria for various traits including virulence factors. Disabling QS system with anti-infective agent is considered as a potential strategy to prevent bacterial infection. Mangifera indica L. (mango) has been shown to possess various biological activities including anti-QS. This study investigates the efficacy of leaf extracts on QS-regulated virulence factors and biofilm formation in Gram negative pathogens. Mango leaf (ML) extract was tested for QS inhibition and QS-regulated virulence factors using various indicator strains. It was further correlated with the biofilm inhibition and confirmed by electron microscopy. Phytochemical analysis was carried out using ultra performance liquid chromatography (UPLC) and gas chromatography–mass spectrometry (GC-MS) analysis. In vitro evaluation of anti-QS activity of ML extracts against Chromobacterium violaceum revealed promising dose-dependent interference in violacein production, by methanol extract. QS inhibitory activity is also demonstrated by reduction in elastase (76%), total protease (56%), pyocyanin (89%), chitinase (55%), exopolysaccharide production (58%) and swarming motility (74%) in Pseudomonas aeruginosa PAO1 at 800 μg/ml concentration. Biofilm formation by P. aeruginosa PAO1 and Aeromonas hydrophila WAF38 was reduced considerably (36–82%) over control. The inhibition of biofilm was also observed by scanning electron microscopy. Moreover, ML extracts significantly reduced mortality of Caenorhabditis elegans pre-infected with PAO1 at the tested concentration. Phytochemical analysis of active extracts revealed very high content of phenolics in methanol extract and a total of 14 compounds were detected by GC-MS and UPLC. These findings suggest that phytochemicals from the ML could provide bioactive anti-infective and needs further investigation to isolate and uncover their therapeutic efficacy. PMID:28484444

  11. JAZ7 negatively regulates dark-induced leaf senescence in Arabidopsis

    PubMed Central

    Yu, Juan; Zhang, Yixiang; Di, Chao; Zhang, Qunlian; Zhang, Kang; Wang, Chunchao; You, Qi; Yan, Hong; Dai, Susie Y.; Yuan, Joshua S; Xu, Wenying; Su, Zhen

    2016-01-01

    JASMONATE ZIM-domain (JAZ) proteins play important roles in plant defence and growth by regulating jasmonate signalling. Through data mining, we discovered that the JAZ7 gene was up-regulated in darkness. In the dark, the jaz7 mutant displayed more severe leaf yellowing, quicker chlorophyll degradation, and higher hydrogen peroxide accumulation compared with wild-type (WT) plants. The mutant phenotype of dark-induced leaf senescence could be rescued in the JAZ7-complemented and -overexpression lines. Moreover, the double mutants of jaz7 myc2 and jaz7 coi1 exhibited delayed leaf senescence. We further employed GeneChip analysis to study the molecular mechanism. Some key genes down-regulated in the triple mutant myc2 myc3 myc4 were up-regulated in the jaz7 mutant under darkness. The Gene Ontology terms ‘leaf senescence’ and ‘cell death’ were significantly enriched in the differentially expressed genes. Combining the genetic and transcriptomic analyses together, we proposed a model whereby darkness can induce JAZ7, which might further block MYC2 to suppress dark-induced leaf senescence. In darkness, the mutation of JAZ7 might partially liberate MYC2/MYC3/MYC4 from suppression, leading the MYC proteins to bind to the G-box/G-box-like motifs in the promoters, resulting in the up-regulation of the downstream genes related to indole-glucosinolate biosynthesis, sulphate metabolism, callose deposition, and JA-mediated signalling pathways. In summary, our genetic and transcriptomic studies established the JAZ7 protein as an important regulator in dark-induced leaf senescence. PMID:26547795

  12. Influence of blue light on the leaf morphoanatomy of in vitro Kalanchoe pinnata (Lamarck) Persoon (Crassulaceae).

    PubMed

    Leal-Costa, Marcos Vinicius; Nascimento, Luana Beatriz dos Santos; Moreira, Nattacha dos Santos; Reinert, Fernanda; Costa, Sônia Soares; Lage, Celso Luiz Salgueiro; Tavares, Eliana Schwartz

    2010-10-01

    Kalanchoe pinnata (Lamarck) Persoon (Crassulaceae) (air plant, miracle leaf) is popularly used to treat gastrointestinal disorders and wounds. Recently, the species was tested to treat cutaneous leishmaniasis with successful results. This medicinal activity was associated with the phenolic fraction of the plant. Blue light induces biosynthesis of phenolic compounds and many changes in anatomical characteristics. We studied the effects of supplementary blue light on the leaf morphology of in vitro K. pinnata. Plants cultured under white light (W plants) only and white light plus blue light (WB plants) show petioles with plain-convex section, amphistomatic leaf blades with simple epidermis, homogeneous mesophyll with densely packed cells, and a single collateral vascular bundle in the midrib. W plants have longer branches, a larger number of nodes per branch, and smaller leaves, whereas WB plant leaves have a thicker upper epidermis and mesophyll. Leaf fresh weight and leaf dry weight were similar in both treatments. Phenolic idioblasts were observed in the plants supplemented with blue light, suggesting that blue light plays an important role in the biosynthesis of phenolic compounds in K. pinnata.

  13. Maize YABBY genes drooping leaf1 and drooping leaf2 affect agronomic traits by regulating leaf architecture

    USDA-ARS?s Scientific Manuscript database

    Leaf architectural traits, such as length, width and angle, directly influence canopy structure and light penetration, photosynthate production and overall yield. We discovered and characterized a maize (Zea mays) mutant with aberrant leaf architecture we named drooping leaf1 (drl1), as leaf blades ...

  14. 7 CFR 28.471 - Below Leaf Grade Cotton.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 2 2013-01-01 2013-01-01 false Below Leaf Grade Cotton. 28.471 Section 28.471... REGULATIONS COTTON CLASSING, TESTING, AND STANDARDS Standards Below Leaf Grade Cotton § 28.471 Below Leaf Grade Cotton. Below leaf grade cotton is American Upland cotton which is lower in leaf grade than Leaf...

  15. 7 CFR 28.471 - Below Leaf Grade Cotton.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Below Leaf Grade Cotton. 28.471 Section 28.471... REGULATIONS COTTON CLASSING, TESTING, AND STANDARDS Standards Below Leaf Grade Cotton § 28.471 Below Leaf Grade Cotton. Below leaf grade cotton is American Upland cotton which is lower in leaf grade than Leaf...

  16. 7 CFR 28.471 - Below Leaf Grade Cotton.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false Below Leaf Grade Cotton. 28.471 Section 28.471... REGULATIONS COTTON CLASSING, TESTING, AND STANDARDS Standards Below Leaf Grade Cotton § 28.471 Below Leaf Grade Cotton. Below leaf grade cotton is American Upland cotton which is lower in leaf grade than Leaf...

  17. 7 CFR 28.471 - Below Leaf Grade Cotton.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 2 2014-01-01 2014-01-01 false Below Leaf Grade Cotton. 28.471 Section 28.471... REGULATIONS COTTON CLASSING, TESTING, AND STANDARDS Standards Below Leaf Grade Cotton § 28.471 Below Leaf Grade Cotton. Below leaf grade cotton is American Upland cotton which is lower in leaf grade than Leaf...

  18. 7 CFR 28.471 - Below Leaf Grade Cotton.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 2 2012-01-01 2012-01-01 false Below Leaf Grade Cotton. 28.471 Section 28.471... REGULATIONS COTTON CLASSING, TESTING, AND STANDARDS Standards Below Leaf Grade Cotton § 28.471 Below Leaf Grade Cotton. Below leaf grade cotton is American Upland cotton which is lower in leaf grade than Leaf...

  19. 7 CFR 29.3525 - Leaf.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 2 2014-01-01 2014-01-01 false Leaf. 29.3525 Section 29.3525 Agriculture Regulations... Type 95) § 29.3525 Leaf. Whole, unstemmed leaf. Leaf, when applied to tobacco in strip form, shall describe the divided unit of a whole leaf. [49 FR 16759, Apr. 20, 1984] ...

  20. 7 CFR 29.3525 - Leaf.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 2 2012-01-01 2012-01-01 false Leaf. 29.3525 Section 29.3525 Agriculture Regulations... Type 95) § 29.3525 Leaf. Whole, unstemmed leaf. Leaf, when applied to tobacco in strip form, shall describe the divided unit of a whole leaf. [49 FR 16759, Apr. 20, 1984] ...

  1. 7 CFR 29.3525 - Leaf.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false Leaf. 29.3525 Section 29.3525 Agriculture Regulations... Type 95) § 29.3525 Leaf. Whole, unstemmed leaf. Leaf, when applied to tobacco in strip form, shall describe the divided unit of a whole leaf. [49 FR 16759, Apr. 20, 1984] ...

  2. 7 CFR 29.3525 - Leaf.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Leaf. 29.3525 Section 29.3525 Agriculture Regulations... Type 95) § 29.3525 Leaf. Whole, unstemmed leaf. Leaf, when applied to tobacco in strip form, shall describe the divided unit of a whole leaf. [49 FR 16759, Apr. 20, 1984] ...

  3. 7 CFR 29.3525 - Leaf.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 2 2013-01-01 2013-01-01 false Leaf. 29.3525 Section 29.3525 Agriculture Regulations... Type 95) § 29.3525 Leaf. Whole, unstemmed leaf. Leaf, when applied to tobacco in strip form, shall describe the divided unit of a whole leaf. [49 FR 16759, Apr. 20, 1984] ...

  4. Control of jasmonate biosynthesis and senescence by miR319 targets.

    PubMed

    Schommer, Carla; Palatnik, Javier F; Aggarwal, Pooja; Chételat, Aurore; Cubas, Pilar; Farmer, Edward E; Nath, Utpal; Weigel, Detlef

    2008-09-23

    Considerable progress has been made in identifying the targets of plant microRNAs, many of which regulate the stability or translation of mRNAs that encode transcription factors involved in development. In most cases, it is unknown, however, which immediate transcriptional targets mediate downstream effects of the microRNA-regulated transcription factors. We identified a new process controlled by the miR319-regulated clade of TCP (TEOSINTE BRANCHED/CYCLOIDEA/PCF) transcription factor genes. In contrast to other miRNA targets, several of which modulate hormone responses, TCPs control biosynthesis of the hormone jasmonic acid. Furthermore, we demonstrate a previously unrecognized effect of TCPs on leaf senescence, a process in which jasmonic acid has been proposed to be a critical regulator. We propose that miR319-controlled TCP transcription factors coordinate two sequential processes in leaf development: leaf growth, which they negatively regulate, and leaf senescence, which they positively regulate.

  5. Comparative Analysis of Chemical Composition, Antioxidant Activity and Quantitative Characterization of Some Phenolic Compounds in Selected Herbs and Spices in Different Solvent Extraction Systems.

    PubMed

    Sepahpour, Shabnam; Selamat, Jinap; Abdul Manap, Mohd Yazid; Khatib, Alfi; Abdull Razis, Ahmad Faizal

    2018-02-13

    This study evaluated the efficacy of various organic solvents (80% acetone, 80% ethanol, 80% methanol) and distilled water for extracting antioxidant phenolic compounds from turmeric, curry leaf, torch ginger and lemon grass extracts. They were analyzed regarding the total phenol and flavonoid contents, antioxidant activity and concentration of some phenolic compounds. Antioxidant activity was determined by the 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging assay and the ferric reducing antioxidant power (FRAP) assay. Quantification of phenolic compounds was carried out using high-performance liquid chromatography (HPLC). All the extracts possessed antioxidant activity, however, the different solvents showed different efficiencies in the extraction of phenolic compounds. Turmeric showed the highest DPPH values (67.83-13.78%) and FRAP (84.9-2.3 mg quercetin/g freeze-dried crude extract), followed by curry leaf, torch ginger and lemon grass. While 80% acetone was shown to be the most efficient solvent for the extraction of total phenolic compounds from turmeric, torch ginger and lemon grass (221.68, 98.10 and 28.19 mg GA/g freeze dried crude extract, respectively), for the recovery of phenolic compounds from curry leaf (92.23 mg GA/g freeze-dried crude extract), 80% ethanol was the most appropriate solvent. Results of HPLC revealed that the amount of phenolic compounds varied depending on the types of solvents used.

  6. A dynamic leaf gas-exchange strategy is conserved in woody plants under changing ambient CO2 : evidence from carbon isotope discrimination in paleo and CO2 enrichment studies

    Treesearch

    Steven L. Voelker; J. Renee Brooks; Frederick C. Meinzer; Rebecca Anderson; Martin K.-F. Bader; Giovanna Battipaglia; Katie M. Becklin; David Beerling; Didier Bert; Julio L. Betancourt; Todd E. Dawson; Jean-Christophe Domec; Richard P. Guyette; Christian K??rner; Steven W. Leavitt; Sune Linder; John D. Marshall; Manuel Mildner; Jerome Ogee; Irina Panyushkina; Heather J. Plumpton; Kurt S. Pregitzer; Matthias Saurer; Andrew R. Smith; Rolf T. W. Siegwolf; Michael C. Stambaugh; Alan F. Talhelm; Jacques C. Tardif; Peter K. Van de Water; Joy K. Ward; Lisa Wingate

    2016-01-01

    Rising atmospheric [CO2], ca, is expected to affect stomatal regulation of leaf gas-exchange of woody plants, thus influencing energy fluxes as well as carbon (C), water, and nutrient cycling of forests. Researchers have proposed various strategies for stomatal regulation of leaf gas-exchange that include maintaining a constant leaf internal [CO...

  7. Geranyl acetate esterase controls and regulates the level of geraniol in lemongrass (Cymbopogon flexuosus Nees ex Steud.) mutant cv. GRL-1 leaves.

    PubMed

    Ganjewala, Deepak; Luthra, Rajesh

    2009-01-01

    Essential oil isolated from lemongrass (Cymbopogon flexuosus) mutant cv. GRL-1 leaves is mainly composed of geraniol (G) and geranyl acetate (GA). The proportion of G and GA markedly fluctuates during leaf development. The proportions of GA and G in the essential oil recorded at day 10 after leaf emergence were approximately 59% and approximately 33% respectively. However, the level of GA went down from approximately 59 to approximately 3% whereas the level of G rose from approximately 33 to approximately 91% during the leaf growth period from day 10 to day 50. However, the decline in the level of GA was most pronounced in the early (day 10 to day 30) stage of leaf growth. The trend of changes in the proportion of GA and G has clearly indicated the role of an esterase that must be involved in the conversion of GA to G during leaf development. We isolated an esterase from leaves of different ages that converts GA into G and has been given the name geranyl acetate esterase (GAE). The GAE activity markedly varied during the leaf development cycle; it was closely correlated with the monoterpene (GA and G) composition throughout leaf development. GAE appeared as several isoenzymes but only three (GAE-I, GAE-II, and GAE-III) of them had significant GA cleaving activity. The GAE isoenzymes pattern was greatly influenced by the leaf developmental stages and so their GA cleaving activities. Like the GAE activity, GAE isoenzyme patterns were also found to be consistent with the monoterpene (GA and G) composition. GAE had an optimum pH at 8.5 and temperature at 30 degrees C. Besides GAE, a compound with phosphatase activity capable of hydrolyzing geranyl diphosphate (GPP) to produce geraniol has also been isolated.

  8. Contribution of flavonoids to the overall radical scavenging activity of olive (Olea europaea L.) leaf polar extracts.

    PubMed

    Goulas, Vlassios; Papoti, Vassiliki T; Exarchou, Vassiliki; Tsimidou, Maria Z; Gerothanassis, Ioannis P

    2010-03-24

    The contribution of flavonoids to the overall radical scavenging activity of olive leaf polar extracts, known to be good sources of oleuropein related compounds, was examined. Off line and on line HPLC-DPPH(*) assays were employed, whereas flavonoid content was estimated colorimetrically. Individual flavonoid composition was first assessed by RP-HPLC coupled with diode array and fluorescence detectors and verified by LC-MS detection system. Olive leaf was found a robust source of flavonoids regardless sampling parameters (olive cultivar, leaf age or sampling date). Total flavonoids accounted for the 13-27% of the total radical scavenging activity assessed using the on line protocol. Luteolin 7-O-glucoside was one of the dominant scavengers (8-25%). Taking into consideration frequency of appearance the contribution of luteolin (3-13%) was considered important, too. Our findings support that olive leaf, except for oleuropein and related compounds, is also a stable source of bioactive flavonoids.

  9. Column chromatography isolation of nicotine from tobacco leaf extract (Nicotiana tabaccum L.)

    NASA Astrophysics Data System (ADS)

    Fathi, Raden Muhammad; Fauzantoro, Ahmad; Rahman, Siti Fauziyah; Gozan, Misri

    2018-02-01

    Restrictions on the use of dried tobacco leaf for cigarette production must be accompanied by the development of non-cigarette alternative products that are made from tobacco leaves. One of the alternative that can be done is to use the nicotine compound in tobacco leaf extract as medical product, such as Parkinson's medication or to be used as active substance in biopesticide. Nicotine was isolated using column chromatography method with the variation of mobile phase mixture ratio (petroleum ether and ethanol), started from 8:2, 6:4, 4:6, 2:8, to 0:10. All of the chromatographic fraction from each mobile phase's ratio was then tested qualitatively using thin layer chromatography (TLC) and also quantitatively using HPLC instrument. The column chromatography process could isolate 4.006% of nicotine compound from 4.19% tobacco leaf extract's nicotine. It is also known that ethanol is a good solution to be used as chromatography's mobile phase for nicotine isolation from tobacco leaf extract.

  10. Proteomic Analysis Reveals the Leaf Color Regulation Mechanism in Chimera Hosta “Gold Standard” Leaves

    PubMed Central

    Yu, Juanjuan; Zhang, Jinzheng; Zhao, Qi; Liu, Yuelu; Chen, Sixue; Guo, Hongliang; Shi, Lei; Dai, Shaojun

    2016-01-01

    Leaf color change of variegated leaves from chimera species is regulated by fine-tuned molecular mechanisms. Hosta “Gold Standard” is a typical chimera Hosta species with golden-green variegated leaves, which is an ideal material to investigate the molecular mechanisms of leaf variegation. In this study, the margin and center regions of young and mature leaves from Hosta “Gold Standard”, as well as the leaves from plants after excess nitrogen fertilization were studied using physiological and comparative proteomic approaches. We identified 31 differentially expressed proteins in various regions and development stages of variegated leaves. Some of them may be related to the leaf color regulation in Hosta “Gold Standard”. For example, cytosolic glutamine synthetase (GS1), heat shock protein 70 (Hsp70), and chloroplastic elongation factor G (cpEF-G) were involved in pigment-related nitrogen synthesis as well as protein synthesis and processing. By integrating the proteomics data with physiological results, we revealed the metabolic patterns of nitrogen metabolism, photosynthesis, energy supply, as well as chloroplast protein synthesis, import and processing in various leaf regions at different development stages. Additionally, chloroplast-localized proteoforms involved in nitrogen metabolism, photosynthesis and protein processing implied that post-translational modifications were crucial for leaf color regulation. These results provide new clues toward understanding the mechanisms of leaf color regulation in variegated leaves. PMID:27005614

  11. Antihyperlipidemic effect of a Rhamnus alaternus leaf extract in Triton-induced hyperlipidemic rats and human HepG2 cells.

    PubMed

    Tacherfiout, Mustapha; Petrov, Petar D; Mattonai, Marco; Ribechini, Erika; Ribot, Joan; Bonet, M Luisa; Khettal, Bachra

    2018-05-01

    The Mediterranean buckthorn, Rhamnus alaternus L., is a plant used in traditional medicine in Mediterranean countries. We aimed at characterizing its phenolic compounds and explore potential antihyperlipidemic activity of this plant. The profile of phenolic compounds in R. alaternus leaf crude methanolic extract (CME) and its liquid-liquid extraction-derived fractions were analyzed by high-performance liquid chromatography/electrospray ionization tandem mass spectrometry (HPLC/ESI-MS 2 ). Effects of CME on: circulating lipids in rats with Triton WR-1339-induced hyperlipidemia, intracellular lipid accumulation and expression of genes of fatty acid metabolism in human hepatoma HepG2 cells, and adipogenesis in the 3T3-L1 murine adipocyte cell model were assessed. The HPLC/ESI-MS 2 analytical profile revealed a total of fifteen compounds, of which eleven were identified. Oral CME administration decreased blood levels of cholesterol and triacylglycerols in hyperlipidemic rats (by 60% and 70%, respectively, at 200 mg CME/kg). In HepG2 cells, CME exposure dose-dependently decreased intracellular lipids and up-regulated gene expression of carnitine palmitoyltransferase 1 involved in fatty acid oxidation. In the 3T3-L1 model, CME favored preadipocyte proliferation and adipogenesis, pointing to positive effects on adipose tissue expandability. These results suggest novel uses of R. alaternus by showing that its leaves are rich in flavonoids and flavonoid derivatives with an antihyperlipidemic effect in vivo and in hepatic cells. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  12. Systemic Induction of the Small Antibacterial Compound in the Leaf Exudate During Benzothiadiazole-elicited Systemic Acquired Resistance in Pepper

    PubMed Central

    Lee, Boyoung; Park, Yong-Soon; Yi, Hwe-Su; Ryu, Choong-Min

    2013-01-01

    Plants protect themselves from diverse potential pathogens by induction of the immune systems such as systemic acquired resistance (SAR). Most bacterial plant pathogens thrive in the intercellular space (apoplast) of plant tissues and cause symptoms. The apoplastic leaf exudate (LE) is believed to contain nutrients to provide food resource for phytopathogenic bacteria to survive and to bring harmful phytocompounds to protect plants against bacterial pathogens. In this study, we employed the pepper-Xanthomonas axonopodis system to assess whether apoplastic fluid from LE in pepper affects the fitness of X. axonopodis during the induction of SAR. The LE was extracted from pepper leaves 7 days after soil drench-application of a chemical trigger, benzothiadiazole (BTH). Elicitation of plant immunity was confirmed by significant up-regulation of four genes, CaPR1, CaPR4, CaPR9, and CaCHI2, by BTH treatment. Bacterial fitness was evaluated by measuring growth rate during cultivation with LE from BTH- or water-treated leaves. LE from BTH-treatment significantly inhibited bacterial growth when compared to that from the water-treated control. The antibacterial activity of LE from BTH-treated samples was not affected by heating at 100°C for 30 min. Although the antibacterial molecules were not precisely identified, the data suggest that small (less than 5 kDa), heat-stable compound(s) that are present in BTH-induced LE directly attenuate bacterial growth during the elicitation of plant immunity. PMID:25288963

  13. A dynamic leaf gas-exchange strategy is conserved in woody ...

    EPA Pesticide Factsheets

    Rising atmospheric [CO2], ca, is expected to affect stomatal regulation of leaf gas-exchange of woody plants, thus influencing energy fluxes as well as carbon (C), water and nutrient cycling of forests. Researchers have reported that stomata regulate leaf gas-exchange around “set points” that include a constant leaf internal [CO2], ci, a constant drawdown in CO2 (ca - ci), and a constant ci/ca. Because these set points can result in drastically different consequences for leaf gas-exchange, it will be essential for the accuracy of Earth systems models that generalizable patterns in leaf gas-exchange responses to ca be identified if any do exist. We hypothesized that the concept of optimal stomatal behavior, exemplified by woody plants shifting along a continuum of these set point strategies, would provide a unifying framework for understanding leaf gas-exchange responses to ca. We analyzed studies reporting C stable isotope ratio (δ13C) or photosynthetic discrimination (∆13C) from woody plant taxa that grew across ca spanning at least 100 ppm for each species investigated. From these data we calculated ci, and in combination with known or estimated ca, leaf gas-exchange regulation strategies were assessed. Overall, our analyses does not support the hypothesis that trees are canalized towards any of the proposed set points, particularly so for a constant ci. Rather, the results are consistent with the hypothesis that stomatal optimization regulates leaf gas

  14. Dock leaf beetle, Gastrophysa viridula Deg., herbivory on Mossy Sorrel, Rumex confertus Willd: Induced plant volatiles and beetle orientation responses

    USDA-ARS?s Scientific Manuscript database

    The invasive weed Rumex confertus Willd. (mossy sorrel) is fed upon and severely defoliated by Gastrophysa viridula Deg. (dock leaf beetle), a highly promising biological control agent for this weed. We report volatile organic compound (VOC) induction when one leaf on R. confertus was damaged by G. ...

  15. BIG LEAF is a regulator of organ size and adventitious root formation in poplar

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yordanov, Yordan S.; Ma, Cathleen; Yordanova, Elena

    Here we report the discovery through activation tagging and subsequent characterization of the BIG LEAF (BL) gene from poplar. In poplar, BL regulates leaf size via positively affecting cell proliferation. Up and downregulation of the gene led to increased and decreased leaf size, respectively, and these phenotypes corresponded to increased and decreased cell numbers. BL function encompasses the early stages of leaf development as native BL expression was specific to the shoot apical meristem and leaf primordia and was absent from the later stages of leaf development and other organs. Consistently, BL downregulation reduced leaf size at the earliest stagesmore » of leaf development. Ectopic expression in mature leaves resulted in continued growth most probably via sustained cell proliferation and thus the increased leaf size. In contrast to the positive effect on leaf growth, ectopic BL expression in stems interfered with and significantly reduced stem thickening, suggesting that BL is a highly specific activator of growth. Additionally, stem cuttings from BL overexpressing plants developed roots, whereas the wild type was difficult to root, demonstrating that BL is a positive regulator of adventitious rooting. Large transcriptomic changes in plants that overexpressed BL indicated that BL may have a broad integrative role, encompassing many genes linked to organ growth. Here, we conclude that BL plays a fundamental role in control of leaf size and thus may be a useful tool for modifying plant biomass productivity and adventitious rooting.« less

  16. BIG LEAF is a regulator of organ size and adventitious root formation in poplar

    PubMed Central

    Yordanov, Yordan S.; Ma, Cathleen; Yordanova, Elena; Meilan, Richard; Strauss, Steven H.; Busov, Victor B.

    2017-01-01

    Here we report the discovery through activation tagging and subsequent characterization of the BIG LEAF (BL) gene from poplar. In poplar, BL regulates leaf size via positively affecting cell proliferation. Up and downregulation of the gene led to increased and decreased leaf size, respectively, and these phenotypes corresponded to increased and decreased cell numbers. BL function encompasses the early stages of leaf development as native BL expression was specific to the shoot apical meristem and leaf primordia and was absent from the later stages of leaf development and other organs. Consistently, BL downregulation reduced leaf size at the earliest stages of leaf development. Ectopic expression in mature leaves resulted in continued growth most probably via sustained cell proliferation and thus the increased leaf size. In contrast to the positive effect on leaf growth, ectopic BL expression in stems interfered with and significantly reduced stem thickening, suggesting that BL is a highly specific activator of growth. In addition, stem cuttings from BL overexpressing plants developed roots, whereas the wild type was difficult to root, demonstrating that BL is a positive regulator of adventitious rooting. Large transcriptomic changes in plants that overexpressed BL indicated that BL may have a broad integrative role, encompassing many genes linked to organ growth. We conclude that BL plays a fundamental role in control of leaf size and thus may be a useful tool for modifying plant biomass productivity and adventitious rooting. PMID:28686626

  17. BIG LEAF is a regulator of organ size and adventitious root formation in poplar

    DOE PAGES

    Yordanov, Yordan S.; Ma, Cathleen; Yordanova, Elena; ...

    2017-07-07

    Here we report the discovery through activation tagging and subsequent characterization of the BIG LEAF (BL) gene from poplar. In poplar, BL regulates leaf size via positively affecting cell proliferation. Up and downregulation of the gene led to increased and decreased leaf size, respectively, and these phenotypes corresponded to increased and decreased cell numbers. BL function encompasses the early stages of leaf development as native BL expression was specific to the shoot apical meristem and leaf primordia and was absent from the later stages of leaf development and other organs. Consistently, BL downregulation reduced leaf size at the earliest stagesmore » of leaf development. Ectopic expression in mature leaves resulted in continued growth most probably via sustained cell proliferation and thus the increased leaf size. In contrast to the positive effect on leaf growth, ectopic BL expression in stems interfered with and significantly reduced stem thickening, suggesting that BL is a highly specific activator of growth. Additionally, stem cuttings from BL overexpressing plants developed roots, whereas the wild type was difficult to root, demonstrating that BL is a positive regulator of adventitious rooting. Large transcriptomic changes in plants that overexpressed BL indicated that BL may have a broad integrative role, encompassing many genes linked to organ growth. Here, we conclude that BL plays a fundamental role in control of leaf size and thus may be a useful tool for modifying plant biomass productivity and adventitious rooting.« less

  18. Leaf shape: genetic controls and environmental factors.

    PubMed

    Tsukaya, Hirokazu

    2005-01-01

    In recent years, many genes have been identified that are involved in the developmental processes of leaf morphogenesis. Here, I review the mechanisms of leaf shape control in a model plant, Arabidopsis thaliana, focusing on genes that fulfill special roles in leaf development. The lateral, two-dimensional expansion of leaf blades is highly dependent on the determination of the dorsoventrality of the primordia, a defining characteristic of leaves. Having a determinate fate is also a characteristic feature of leaves and is controlled by many factors. Lateral expansion is not only controlled by general regulators of cell cycling, but also by the multi-level regulation of meristematic activities, e.g., specific control of cell proliferation in the leaf-length direction, in leaf margins and in parenchymatous cells. In collaboration with the polarized control of leaf cell elongation, these redundant and specialized regulating systems for cell cycling in leaf lamina may realize the elegantly smooth, flat structure of leaves. The unified, flat shape of leaves is also dependent on the fine integration of cell proliferation and cell enlargement. Interestingly, while a decrease in the number of cells in leaf primordia can trigger a cell volume increase, an increase in the number of cells does not trigger a cell volume decrease. This phenomenon is termed compensation and suggests the existence of some systems for integration between cell cycling and cell enlargement in leaf primordia via cell-cell communication. The environmental adjustment of leaf expansion to light conditions and gravity is also summarized.

  19. BIG LEAF is a regulator of organ size and adventitious root formation in poplar.

    PubMed

    Yordanov, Yordan S; Ma, Cathleen; Yordanova, Elena; Meilan, Richard; Strauss, Steven H; Busov, Victor B

    2017-01-01

    Here we report the discovery through activation tagging and subsequent characterization of the BIG LEAF (BL) gene from poplar. In poplar, BL regulates leaf size via positively affecting cell proliferation. Up and downregulation of the gene led to increased and decreased leaf size, respectively, and these phenotypes corresponded to increased and decreased cell numbers. BL function encompasses the early stages of leaf development as native BL expression was specific to the shoot apical meristem and leaf primordia and was absent from the later stages of leaf development and other organs. Consistently, BL downregulation reduced leaf size at the earliest stages of leaf development. Ectopic expression in mature leaves resulted in continued growth most probably via sustained cell proliferation and thus the increased leaf size. In contrast to the positive effect on leaf growth, ectopic BL expression in stems interfered with and significantly reduced stem thickening, suggesting that BL is a highly specific activator of growth. In addition, stem cuttings from BL overexpressing plants developed roots, whereas the wild type was difficult to root, demonstrating that BL is a positive regulator of adventitious rooting. Large transcriptomic changes in plants that overexpressed BL indicated that BL may have a broad integrative role, encompassing many genes linked to organ growth. We conclude that BL plays a fundamental role in control of leaf size and thus may be a useful tool for modifying plant biomass productivity and adventitious rooting.

  20. Control of Carbon Assimilation and Partitioning by Jasmonate: An Accounting of Growth-Defense Tradeoffs.

    PubMed

    Havko, Nathan E; Major, Ian T; Jewell, Jeremy B; Attaran, Elham; Browse, John; Howe, Gregg A

    2016-01-15

    Plant growth is often constrained by the limited availability of resources in the microenvironment. Despite the continuous threat of attack from insect herbivores and pathogens, investment in defense represents a lost opportunity to expand photosynthetic capacity in leaves and absorption of nutrients and water by roots. To mitigate the metabolic expenditure on defense, plants have evolved inducible defense strategies. The plant hormone jasmonate (JA) is a key regulator of many inducible defenses. Synthesis of JA in response to perceived danger leads to the deployment of a variety of defensive structures and compounds, along with a potent inhibition of growth. Genetic studies have established an important role for JA in mediating tradeoffs between growth and defense. However, several gaps remain in understanding of how JA signaling inhibits growth, either through direct transcriptional control of JA-response genes or crosstalk with other signaling pathways. Here, we highlight recent progress in uncovering the role of JA in controlling growth-defense balance and its relationship to resource acquisition and allocation. We also discuss tradeoffs in the context of the ability of JA to promote increased leaf mass per area (LMA), which is a key indicator of leaf construction costs and leaf life span.

  1. Control of Carbon Assimilation and Partitioning by Jasmonate: An Accounting of Growth–Defense Tradeoffs

    PubMed Central

    Havko, Nathan E.; Major, Ian T.; Jewell, Jeremy B.; Attaran, Elham; Browse, John; Howe, Gregg A.

    2016-01-01

    Plant growth is often constrained by the limited availability of resources in the microenvironment. Despite the continuous threat of attack from insect herbivores and pathogens, investment in defense represents a lost opportunity to expand photosynthetic capacity in leaves and absorption of nutrients and water by roots. To mitigate the metabolic expenditure on defense, plants have evolved inducible defense strategies. The plant hormone jasmonate (JA) is a key regulator of many inducible defenses. Synthesis of JA in response to perceived danger leads to the deployment of a variety of defensive structures and compounds, along with a potent inhibition of growth. Genetic studies have established an important role for JA in mediating tradeoffs between growth and defense. However, several gaps remain in understanding of how JA signaling inhibits growth, either through direct transcriptional control of JA-response genes or crosstalk with other signaling pathways. Here, we highlight recent progress in uncovering the role of JA in controlling growth-defense balance and its relationship to resource acquisition and allocation. We also discuss tradeoffs in the context of the ability of JA to promote increased leaf mass per area (LMA), which is a key indicator of leaf construction costs and leaf life span. PMID:27135227

  2. Relationship between fresh-packaged spinach leaves exposed to continuous light or dark and bioactive contents: effects of cultivar, leaf size, and storage duration.

    PubMed

    Lester, Gene E; Makus, Donald J; Hodges, D Mark

    2010-03-10

    Current retail marketing conditions allow produce to receive artificial light 24 h per day during its displayed shelf life. Essential human-health vitamins [ascorbic acid (vit C), folate (vit B(9)), phylloquinone (vit K(1)), alpha-tocopherol (vit E), and the carotenoids lutein, violaxanthin, zeaxanthin, and beta-carotene (provit A)] also are essential for photosynthesis and are biosynthesized in plants by light conditions even under chilling temperatures. Spinach leaves, notably abundant in the aforementioned human-health compounds, were harvested from flat-leaf 'Lazio' and crinkle-leafed 'Samish' cultivars at peak whole-plant maturity as baby (top- and midcanopy) and larger (lower-canopy) leaves. Leaves were placed as a single layer in commercial, clear-polymer retail boxes and stored at 4 degrees C for up to 9 days under continuous light (26.9 micromol.m(2 ).s) or dark. Top-canopy, baby-leaf spinach generally had higher concentrations of all bioactive compounds, on a dry weight basis, with the exception of carotenoids, than bottom-canopy leaves. All leaves stored under continuous light generally had higher levels of all bioactive compounds, except beta-carotene and violaxanthin, and were more prone to wilting, especially the flat-leafed cultivar. All leaves stored under continuous darkness had declining or unchanged levels of the aforementioned bioactive compounds. Findings from this study revealed that spinach leaves exposed to simulated retail continuous light at 4 degrees C, in clear plastic containers, were overall more nutritionally dense (enriched) than leaves exposed to continuous darkness.

  3. 7 CFR 29.2528 - Leaf.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Leaf. 29.2528 Section 29.2528 Agriculture Regulations...-Cured Tobacco (u.s. Types 22, 23, and Foreign Type 96) § 29.2528 Leaf. Whole, unstemmed leaf. Leaf, when applied to tobacco in strip form, shall describe the divided unit of a whole leaf. [49 FR 16757, Apr. 20...

  4. 7 CFR 29.1028 - Leaf.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Leaf. 29.1028 Section 29.1028 Agriculture Regulations... Type 92) § 29.1028 Leaf. Whole, unstemmed leaf. Leaf, when applied to tobacco in strip form, shall describe the divided unit of a whole leaf. [49 FR 16755, Apr. 20, 1984. Redesignated at 51 FR 25027, July...

  5. 7 CFR 29.2528 - Leaf.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false Leaf. 29.2528 Section 29.2528 Agriculture Regulations...-Cured Tobacco (u.s. Types 22, 23, and Foreign Type 96) § 29.2528 Leaf. Whole, unstemmed leaf. Leaf, when applied to tobacco in strip form, shall describe the divided unit of a whole leaf. [49 FR 16757, Apr. 20...

  6. 7 CFR 29.2528 - Leaf.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 2 2012-01-01 2012-01-01 false Leaf. 29.2528 Section 29.2528 Agriculture Regulations...-Cured Tobacco (u.s. Types 22, 23, and Foreign Type 96) § 29.2528 Leaf. Whole, unstemmed leaf. Leaf, when applied to tobacco in strip form, shall describe the divided unit of a whole leaf. [49 FR 16757, Apr. 20...

  7. 7 CFR 29.1028 - Leaf.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 2 2013-01-01 2013-01-01 false Leaf. 29.1028 Section 29.1028 Agriculture Regulations... Type 92) § 29.1028 Leaf. Whole, unstemmed leaf. Leaf, when applied to tobacco in strip form, shall describe the divided unit of a whole leaf. [49 FR 16755, Apr. 20, 1984. Redesignated at 51 FR 25027, July...

  8. 7 CFR 29.1028 - Leaf.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 2 2012-01-01 2012-01-01 false Leaf. 29.1028 Section 29.1028 Agriculture Regulations... Type 92) § 29.1028 Leaf. Whole, unstemmed leaf. Leaf, when applied to tobacco in strip form, shall describe the divided unit of a whole leaf. [49 FR 16755, Apr. 20, 1984. Redesignated at 51 FR 25027, July...

  9. 7 CFR 29.1028 - Leaf.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false Leaf. 29.1028 Section 29.1028 Agriculture Regulations... Type 92) § 29.1028 Leaf. Whole, unstemmed leaf. Leaf, when applied to tobacco in strip form, shall describe the divided unit of a whole leaf. [49 FR 16755, Apr. 20, 1984. Redesignated at 51 FR 25027, July...

  10. 7 CFR 29.1028 - Leaf.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 2 2014-01-01 2014-01-01 false Leaf. 29.1028 Section 29.1028 Agriculture Regulations... Type 92) § 29.1028 Leaf. Whole, unstemmed leaf. Leaf, when applied to tobacco in strip form, shall describe the divided unit of a whole leaf. [49 FR 16755, Apr. 20, 1984. Redesignated at 51 FR 25027, July...

  11. 7 CFR 29.2528 - Leaf.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 2 2013-01-01 2013-01-01 false Leaf. 29.2528 Section 29.2528 Agriculture Regulations...-Cured Tobacco (u.s. Types 22, 23, and Foreign Type 96) § 29.2528 Leaf. Whole, unstemmed leaf. Leaf, when applied to tobacco in strip form, shall describe the divided unit of a whole leaf. [49 FR 16757, Apr. 20...

  12. 7 CFR 29.2528 - Leaf.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 2 2014-01-01 2014-01-01 false Leaf. 29.2528 Section 29.2528 Agriculture Regulations...-Cured Tobacco (u.s. Types 22, 23, and Foreign Type 96) § 29.2528 Leaf. Whole, unstemmed leaf. Leaf, when applied to tobacco in strip form, shall describe the divided unit of a whole leaf. [49 FR 16757, Apr. 20...

  13. A modified version of fluctuating asymmetry, potential for the analysis of Aesculus hippocastanum L. compound leaves.

    PubMed

    Velickovic, Miroslava

    2008-01-01

    My research interest was to create a new, simple and tractable mathematical framework for analyzing fluctuating asymmetry (FA) in Aesculus hippocastanum L. palmately compound leaves (each compound leaf with 7 obviate, serrate leaflets). FA, being random differences in the development of both sides of a bilaterally symmetrical character, has been proposed as an indicator of environmental and genetic stress. In the present paper the well-established Palmer's procedure for FA has been modified to improve the suitability of the chosen index (FA1) to be used in compound leaf asymmetry analysis. The processing steps are described in detail, allowing us to apply these modifications for the other Palmer's indices of FA as well as for the compound leaves of other plant species.

  14. An oilseed rape WRKY-type transcription factor regulates ROS accumulation and leaf senescence in Nicotiana benthamiana and Arabidopsis through modulating transcription of RbohD and RbohF.

    PubMed

    Yang, Liu; Ye, Chaofei; Zhao, Yuting; Cheng, Xiaolin; Wang, Yiqiao; Jiang, Yuan-Qing; Yang, Bo

    2018-06-01

    Overexpression of BnaWGR1 causes ROS accumulation and promotes leaf senescence. BnaWGR1 binds to promoters of RbohD and RbohF and regulates their expression. Manipulation of leaf senescence process affects agricultural traits of crop plants, including biomass, seed yield and stress resistance. Since delayed leaf senescence usually enhances tolerance to multiple stresses, we analyzed the function of specific MAPK-WRKY cascades in abiotic and biotic stress tolerance as well as leaf senescence in oilseed rape (Brassica napus L.), one of the important oil crops. In the present study, we showed that expression of one WRKY gene from oilseed rape, BnaWGR1, induced an accumulation of reactive oxygen species (ROS), cell death and precocious leaf senescence both in Nicotiana benthamiana and transgenic Arabidopsis (Arabidopsis thaliana). BnaWGR1 regulates the transcription of two genes encoding key enzymes implicated in production of ROS, that is, respiratory burst oxidase homolog (Rboh) D and RbohF. A dual-luciferase reporter assay confirmed the transcriptional regulation of RbohD and RbohF by BnaWGR1. In vitro electrophoresis mobility shift assay (EMSA) showed that BnaWGR1 could bind to W-box cis-elements within promoters of RbohD and RbohF. Moreover, RbohD and RbohF were significantly upregulated in transgenic Arabidopsis overexpressing BnaWGR1. In summary, these results suggest that BnaWGR1 could positively regulate leaf senescence through regulating the expression of RbohD and RbohF genes.

  15. Differential Gene Expression between Leaf and Rhizome in Atractylodes lancea: A Comparative Transcriptome Analysis

    PubMed Central

    Huang, Qianqian; Huang, Xiao; Deng, Juan; Liu, Hegang; Liu, Yanwen; Yu, Kun; Huang, Bisheng

    2016-01-01

    The rhizome of Atractylodes lancea is extensively used in the practice of Traditional Chinese Medicine because of its broad pharmacological activities. This study was designed to characterize the transcriptome profiling of the rhizome and leaf of Atractylodes lancea in an attempt to uncover the molecular mechanisms regulating rhizome formation and growth. Over 270 million clean reads were assembled into 92,366 unigenes, 58% of which are homologous with sequences in public protein databases (NR, Swiss-Prot, GO, and KEGG). Analysis of expression levels showed that genes involved in photosynthesis, stress response, and translation were the most abundant transcripts in the leaf, while transcripts involved in stress response, transcription regulation, translation, and metabolism were dominant in the rhizome. Tissue-specific gene analysis identified distinct gene families active in the leaf and rhizome. Differential gene expression analysis revealed a clear difference in gene expression pattern, identifying 1518 up-regulated genes and 3464 down-regulated genes in the rhizome compared with the leaf, including a series of genes related to signal transduction, primary and secondary metabolism. Transcription factor (TF) analysis identified 42 TF families, with 67 and 60 TFs up-regulated in the rhizome and leaf, respectively. A total of 104 unigenes were identified as candidates for regulating rhizome formation and development. These data offer an overview of the gene expression pattern of the rhizome and leaf and provide essential information for future studies on the molecular mechanisms of controlling rhizome formation and growth. The extensive transcriptome data generated in this study will be a valuable resource for further functional genomics studies of A. lancea. PMID:27066021

  16. The cell-cycle interactome: a source of growth regulators?

    PubMed

    Blomme, Jonas; Inzé, Dirk; Gonzalez, Nathalie

    2014-06-01

    When plants develop, cell proliferation and cell expansion are tightly controlled in order to generate organs with a determinate final size such as leaves. Several studies have demonstrated the importance of the cell proliferation phase for leaf growth, illustrating that cell-cycle regulation is crucial for correct leaf development. A large and complex set of interacting proteins that constitute the cell-cycle interactome controls the transition from one cell-cycle phase to another. Here, we review the current knowledge on cell-cycle regulators from this interactome affecting final leaf size when their expression is altered, mainly in Arabidopsis. In addition to the description of mutants of CYCLIN-DEPENDENT KINASES (CDKs), CYCLINS (CYCs), and their transcriptional and post-translational regulators, a phenotypic analysis of gain- and loss-of-function mutants for 27 genes encoding proteins that interact with cell-cycle proteins is presented. This compilation of information shows that when cell-cycle-related genes are mis-expressed, leaf growth is often altered and that, seemingly, three main trends appear to be crucial in the regulation of final organ size by cell-cycle-related genes: (i) cellular compensation; (ii) gene dosage; and (iii) correct transition through the G2/M phase by ANAPHASE PROMOTING COMPLEX/CYCLOSOME (APC/C) activation. In conclusion, this meta-analysis shows that the cell-cycle interactome is enriched in leaf growth regulators, and illustrates the potential to identify new leaf growth regulators among putative new cell-cycle regulators. © The Author 2013. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  17. Leaf water relations and net gas exchange responses of salinized Carrizo citrange seedlings during drought stress and recovery.

    PubMed

    Pérez-Pérez, J G; Syvertsen, J P; Botía, P; García-Sánchez, F

    2007-08-01

    Since salinity and drought stress can occur together, an assessment was made of their interacting effects on leaf water relations, osmotic adjustment and net gas exchange in seedlings of the relatively chloride-sensitive Carrizo citrange, Citrus sinensis x Poncirus trifoliata. Plants were fertilized with nutrient solution with or without additional 100 mm NaCl (salt and no-salt treatments). After 7 d, half of the plants were drought stressed by withholding irrigation water for 10 d. Thus, there were four treatments: salinized and non-salinized plants under drought-stress or well-watered conditions. After the drought period, plants from all stressed treatments were re-watered with nutrient solution without salt for 8 d to study recovery. Leaf water relations, gas exchange parameters, chlorophyll fluorescence, proline, quaternary ammonium compounds and leaf and root concentrations of Cl(-) and Na(+) were measured. Salinity increased leaf Cl(-) and Na(+) concentrations and decreased osmotic potential (Psi(pi)) such that leaf relative water content (RWC) was maintained during drought stress. However, in non-salinized drought-stressed plants, osmotic adjustment did not occur and RWC decreased. The salinity-induced osmotic adjustment was not related to any accumulation of proline, quaternary ammonium compounds or soluble sugars. Net CO(2) assimilation rate (A(CO2)) was reduced in leaves from all stressed treatments but the mechanisms were different. In non-salinized drought-stressed plants, lower A(CO2) was related to low RWC, whereas in salinized plants decreased A(CO2) was related to high levels of leaf Cl(-) and Na(+). A(CO2) recovered after irrigation in all the treatments except in previously salinized drought-stressed leaves which had lower RWC and less chlorophyll but maintained high levels of Cl(-), Na(+) and quaternary ammonium compounds after recovery. High leaf levels of Cl(-) and Na(+) after recovery apparently came from the roots. Plants preconditioned by salinity stress maintained a better leaf water status during drought stress due to osmotic adjustment and the accumulation of Cl(-) and Na(+). However, high levels of salt ions impeded recovery of leaf water status and photosynthesis after re-irrigation with non-saline water.

  18. TALE and Shape: How to Make a Leaf Different.

    PubMed

    Di Giacomo, Elisabetta; Iannelli, Maria Adelaide; Frugis, Giovanna

    2013-05-06

    The Three Amino acid Loop Extension (TALE) proteins constitute an ancestral superclass of homeodomain transcription factors conserved in animals, plants and fungi. In plants they comprise two classes, KNOTTED1-LIKE homeobox (KNOX) and BEL1-like homeobox (BLH or BELL, hereafter referred to as BLH), which are involved in shoot apical meristem (SAM) function, as well as in the determination and morphological development of leaves, stems and inflorescences. Selective protein-protein interactions between KNOXs and BLHs affect heterodimer subcellular localization and target affinity. KNOXs exert their roles by maintaining a proper balance between undifferentiated and differentiated cell state through the modulation of multiple hormonal pathways. A pivotal function of KNOX in evolutionary diversification of leaf morphology has been assessed. In the SAM of both simple- and compound-leafed seed species, downregulation of most class 1 KNOX (KNOX1) genes marks the sites of leaf primordia initiation. However, KNOX1 expression is re-established during leaf primordia development of compound-leafed species to maintain transient indeterminacy and morphogenetic activity at the leaf margins. Despite the increasing knowledge available about KNOX1 protein function in plant development, a comprehensive view on their downstream effectors remains elusive. This review highlights the role of TALE proteins in leaf initiation and morphological plasticity with a focus on recent advances in the identification of downstream target genes and pathways.

  19. Observation of Muntingia Calabura’s Leaf Extract as Feed Additive for Livestock Diet

    NASA Astrophysics Data System (ADS)

    Pujaningsih, R. I.; Sulistiyanto, B.; Sumarsih, S.

    2018-02-01

    Using of synthetic antioxidants in feedstuffs continuously can cause negative effect for the livestock. This study observed the constituent compounds of cherry leaf powder using format method of descriptive qualitative. Comparative study was done between young and old leaves to identify the content of antioxidant and antimicrobial. Based on the results of phytochemical tests that have been done, old cherry leaves contain compounds of flavonoids more than young cherry leaves. From the results of this study can be concluded that the results of old cherry leaf isolation using soxhlet extraction has antibacterial power against E. coli bacteria, and S. aureus at concentration of 75% have greater inhibitory ability.

  20. 7 CFR 29.3036 - Leaf surface.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 2 2014-01-01 2014-01-01 false Leaf surface. 29.3036 Section 29.3036 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Leaf surface. The smoothness or roughness of the web or lamina of a tobacco leaf. Leaf surface is...

  1. 7 CFR 29.3036 - Leaf surface.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 2 2012-01-01 2012-01-01 false Leaf surface. 29.3036 Section 29.3036 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Leaf surface. The smoothness or roughness of the web or lamina of a tobacco leaf. Leaf surface is...

  2. 7 CFR 29.3036 - Leaf surface.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Leaf surface. 29.3036 Section 29.3036 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Leaf surface. The smoothness or roughness of the web or lamina of a tobacco leaf. Leaf surface is...

  3. 7 CFR 29.3036 - Leaf surface.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false Leaf surface. 29.3036 Section 29.3036 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Leaf surface. The smoothness or roughness of the web or lamina of a tobacco leaf. Leaf surface is...

  4. 7 CFR 29.3036 - Leaf surface.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 2 2013-01-01 2013-01-01 false Leaf surface. 29.3036 Section 29.3036 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Leaf surface. The smoothness or roughness of the web or lamina of a tobacco leaf. Leaf surface is...

  5. Strigolactone Regulates Leaf Senescence in Concert with Ethylene in Arabidopsis.

    PubMed

    Ueda, Hiroaki; Kusaba, Makoto

    2015-09-01

    Leaf senescence is not a passive degenerative process; it represents a process of nutrient relocation, in which materials are salvaged for growth at a later stage or to produce the next generation. Leaf senescence is regulated by various factors, such as darkness, stress, aging, and phytohormones. Strigolactone is a recently identified phytohormone, and it has multiple functions in plant development, including repression of branching. Although strigolactone is implicated in the regulation of leaf senescence, little is known about its molecular mechanism of action. In this study, strigolactone biosynthesis mutant strains of Arabidopsis (Arabidopsis thaliana) showed a delayed senescence phenotype during dark incubation. The strigolactone biosynthesis genes MORE AXIALLY GROWTH3 (MAX3) and MAX4 were drastically induced during dark incubation and treatment with the senescence-promoting phytohormone ethylene, suggesting that strigolactone is synthesized in the leaf during leaf senescence. This hypothesis was confirmed by a grafting experiment using max4 as the stock and Columbia-0 as the scion, in which the leaves from the Columbia-0 scion senesced earlier than max4 stock leaves. Dark incubation induced the synthesis of ethylene independent of strigolactone. Strigolactone biosynthesis mutants showed a delayed senescence phenotype during ethylene treatment in the light. Furthermore, leaf senescence was strongly accelerated by the application of strigolactone in the presence of ethylene and not by strigolactone alone. These observations suggest that strigolactone promotes leaf senescence by enhancing the action of ethylene. Thus, dark-induced senescence is regulated by a two-step mechanism: induction of ethylene synthesis and consequent induction of strigolactone synthesis in the leaf. © 2015 American Society of Plant Biologists. All Rights Reserved.

  6. 7 CFR 29.1163 - Smoking Leaf (H Group).

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 2 2013-01-01 2013-01-01 false Smoking Leaf (H Group). 29.1163 Section 29.1163... REGULATIONS TOBACCO INSPECTION Standards Grades § 29.1163 Smoking Leaf (H Group). This group consists of... Quality Orange Smoking Leaf Mellow, open leaf structure, medium body, lean in oil, strong color intensity...

  7. 7 CFR 29.1163 - Smoking Leaf (H Group).

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 2 2012-01-01 2012-01-01 false Smoking Leaf (H Group). 29.1163 Section 29.1163... REGULATIONS TOBACCO INSPECTION Standards Grades § 29.1163 Smoking Leaf (H Group). This group consists of... Quality Orange Smoking Leaf Mellow, open leaf structure, medium body, lean in oil, strong color intensity...

  8. 7 CFR 29.1163 - Smoking Leaf (H Group).

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 2 2014-01-01 2014-01-01 false Smoking Leaf (H Group). 29.1163 Section 29.1163... REGULATIONS TOBACCO INSPECTION Standards Grades § 29.1163 Smoking Leaf (H Group). This group consists of... Quality Orange Smoking Leaf Mellow, open leaf structure, medium body, lean in oil, strong color intensity...

  9. 7 CFR 29.1163 - Smoking Leaf (H Group).

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false Smoking Leaf (H Group). 29.1163 Section 29.1163... REGULATIONS TOBACCO INSPECTION Standards Grades § 29.1163 Smoking Leaf (H Group). This group consists of... Quality Orange Smoking Leaf Mellow, open leaf structure, medium body, lean in oil, strong color intensity...

  10. 7 CFR 29.1163 - Smoking Leaf (H Group).

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Smoking Leaf (H Group). 29.1163 Section 29.1163... REGULATIONS TOBACCO INSPECTION Standards Grades § 29.1163 Smoking Leaf (H Group). This group consists of... Quality Orange Smoking Leaf Mellow, open leaf structure, medium body, lean in oil, strong color intensity...

  11. 7 CFR 30.31 - Classification of leaf tobacco.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 2 2013-01-01 2013-01-01 false Classification of leaf tobacco. 30.31 Section 30.31... REGULATIONS TOBACCO STOCKS AND STANDARDS Classification of Leaf Tobacco Covering Classes, Types and Groups of Grades § 30.31 Classification of leaf tobacco. For the purpose of this classification leaf tobacco shall...

  12. 7 CFR 30.31 - Classification of leaf tobacco.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 2 2012-01-01 2012-01-01 false Classification of leaf tobacco. 30.31 Section 30.31... REGULATIONS TOBACCO STOCKS AND STANDARDS Classification of Leaf Tobacco Covering Classes, Types and Groups of Grades § 30.31 Classification of leaf tobacco. For the purpose of this classification leaf tobacco shall...

  13. 7 CFR 30.31 - Classification of leaf tobacco.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Classification of leaf tobacco. 30.31 Section 30.31... REGULATIONS TOBACCO STOCKS AND STANDARDS Classification of Leaf Tobacco Covering Classes, Types and Groups of Grades § 30.31 Classification of leaf tobacco. For the purpose of this classification leaf tobacco shall...

  14. 7 CFR 30.31 - Classification of leaf tobacco.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false Classification of leaf tobacco. 30.31 Section 30.31... REGULATIONS TOBACCO STOCKS AND STANDARDS Classification of Leaf Tobacco Covering Classes, Types and Groups of Grades § 30.31 Classification of leaf tobacco. For the purpose of this classification leaf tobacco shall...

  15. 7 CFR 30.31 - Classification of leaf tobacco.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 2 2014-01-01 2014-01-01 false Classification of leaf tobacco. 30.31 Section 30.31... REGULATIONS TOBACCO STOCKS AND STANDARDS Classification of Leaf Tobacco Covering Classes, Types and Groups of Grades § 30.31 Classification of leaf tobacco. For the purpose of this classification leaf tobacco shall...

  16. Characterization of phenolic compounds in green and red oak-leaf lettuce cultivars by UHPLC-DAD-ESI-QToF/MS using MSE scan mode.

    PubMed

    Viacava, Gabriela E; Roura, Sara I; Berrueta, Luis A; Iriondo, Carmen; Gallo, Blanca; Alonso-Salces, Rosa M

    2017-12-01

    Lettuce (Lactuca sativa) is one of the most popular leafy vegetables in the world and constitutes a major dietary source of phenolic compounds with health-promoting properties. In particular, the demand for green and red oak-leaf lettuces has considerably increased in the last years but few data on their polyphenol composition are available. Moreover, the usage of analytical edge technology can provide new structural information and allow the identification of unknown polyphenols. In the present study, the phenolic profiles of green and red oak-leaf lettuce cultivars were exhaustively characterized by ultrahigh-performance liquid chromatography (UHPLC) coupled online to diode array detection (DAD), electrospray ionization (ESI), and quadrupole time-of-flight mass spectrometry (QToF/MS), using the MS E instrument acquisition mode for recording simultaneously exact masses of precursor and fragment ions. One hundred fifteen phenolic compounds were identified in the acidified hydromethanolic extract of freeze-dried lettuce leaves. Forty-eight of these compounds were tentatively identified for the first time in lettuce, and only 20 of them have been previously reported in oak-leaf lettuce cultivars in literature. Both oak-leaf lettuce cultivars presented similar phenolic composition, except for apigenin-glucuronide and dihydroxybenzoic acid, only detected in the green cultivar; and for luteolin-hydroxymalonylhexoside, an apigenin conjugate with molecular formula C 40 H 54 O 19 (monoisotopic MW = 838.3259 u), cyanidin-3-O-glucoside, cyanidin-3-O-(3″-O-malonyl)glucoside, cyanidin-3-O-(6″-O-malonyl)glucoside, and cyanidin-3-O-(6″-O-acetyl)glucoside, only found in the red cultivar. The UHPLC-DAD-ESI-QToF/MS E approach demonstrated to be a useful tool for the characterization of phenolic compounds in complex plant matrices. Copyright © 2017 John Wiley & Sons, Ltd.

  17. Identification of chemical compounds present in different fractions of Annona reticulata L. leaf by using GC-MS.

    PubMed

    Rout, Soumya P; Kar, Durga M

    2014-01-01

    GC-MS analysis of fractions prepared from hydro-alcoholic extract of Annona reticulata Linn (Family Annonaceae) leaf revealed the presence of 9,10-dimethyltricyclo[4.2.1.1(2,5)]decane-9,10-diol; 4-(1,5-dihydroxy-2,6,6-trimethylcyclohex-2-enyl)but-3-en-2-one; 3,7-dimethyl-6-nonen-1-ol acetate; 9-octadecenamide,(Z)-; glycerine; D-glucose,6-O-α-D-galactopyranosyl-; desulphosinigrin and α-methyl-D-mannopyranoside as few of the major compounds in different fractions. The presence of these compounds in the plant has been identified for the first time.

  18. Impact of elevated levels of atmospheric CO2 and herbivory on flavonoids of soybean (Glycine max Linnaeus).

    PubMed

    O'Neill, Bridget F; Zangerl, Arthur R; Dermody, Orla; Bilgin, Damla D; Casteel, Clare L; Zavala, Jorge A; DeLucia, Evan H; Berenbaum, May R

    2010-01-01

    Atmospheric levels of carbon dioxide (CO2) have been increasing steadily over the last century. Plants grown under elevated CO2 conditions experience physiological changes, particularly in phytochemical content, that can influence their suitability as food for insects. Flavonoids are important plant defense compounds and antioxidants that can have a large effect on leaf palatability and herbivore longevity. In this study, flavonoid content was examined in foliage of soybean (Glycine max Linnaeus) grown under ambient and elevated levels of CO2 and subjected to damage by herbivores in three feeding guilds: leaf skeletonizer (Popillia japonica Newman), leaf chewer (Vanessa cardui Linnaeus), and phloem feeder (Aphis glycines Matsumura). Flavonoid content also was examined in foliage of soybean grown under ambient and elevated levels of O3 and subjected to damage by the leaf skeletonizer P. japonica. The presence of the isoflavones genistein and daidzein and the flavonols quercetin and kaempferol was confirmed in all plants examined, as were their glycosides. All compounds significantly increased in concentration as the growing season progressed. Concentrations of quercetin glycosides were higher in plants grown under elevated levels of CO2. The majority of compounds in foliage were induced in response to leaf skeletonization damage but remained unchanged in response to non-skeletonizing feeding or phloem-feeding. Most compounds increased in concentration in plants grown under elevated levels of O3. Insects feeding on G. max foliage growing under elevated levels of CO2 may derive additional antioxidant benefits from their host plants as a consequence of the change in ratios of flavonoid classes. This nutritional benefit could lead to increased herbivore longevity and increased damage to soybean (and perhaps other crop plants) in the future.

  19. Photosynthetic capacity is negatively correlated with the concentration of leaf phenolic compounds across a range of different species

    PubMed Central

    Sumbele, Sally; Fotelli, Mariangela N.; Nikolopoulos, Dimosthenis; Tooulakou, Georgia; Liakoura, Vally; Liakopoulos, Georgios; Bresta, Panagiota; Dotsika, Elissavet; Adams, Mark A.; Karabourniotis, George

    2012-01-01

    Background and aims Phenolic compounds are the most commonly studied of all secondary metabolites because of their significant protective–defensive roles and their significant concentration in plant tissues. However, there has been little study on relationships between gas exchange parameters and the concentration of leaf phenolic compounds (total phenolics (TP) and condensed tannins (CT)) across a range of species. Therefore, we addressed the question: is there any correlation between photosynthetic capacity (Amax) and TP and CT across species from different ecosystems in different continents? Methodology A plethora of functional and structural parameters were measured in 49 plant species following different growth strategies from five sampling sites located in Greece and Australia. The relationships between several leaf traits were analysed by means of regression and principal component analysis. Principal results The results revealed a negative relationship between TP and CT and Amax among the different plant species, growth strategies and sampling sites, irrespective of expression (with respect to mass, area or nitrogen content). Principal component analysis showed that high concentrations of TP and CT are associated with thick, dense leaves with low nitrogen. This leaf type is characterized by low growth, Amax and transpiration rates, and is common in environments with low water and nutrient availability, high temperatures and high light intensities. Therefore, the high TP and CT in such leaves are compatible with the protective and defensive functions ascribed to them. Conclusions Our results indicate a functional integration between carbon gain and the concentration of leaf phenolic compounds that reflects the trade-off between growth and defence/protection demands, depending on the growth strategy adopted by each species. PMID:23050073

  20. Photosynthetic capacity is negatively correlated with the concentration of leaf phenolic compounds across a range of different species.

    PubMed

    Sumbele, Sally; Fotelli, Mariangela N; Nikolopoulos, Dimosthenis; Tooulakou, Georgia; Liakoura, Vally; Liakopoulos, Georgios; Bresta, Panagiota; Dotsika, Elissavet; Adams, Mark A; Karabourniotis, George

    2012-01-01

    Phenolic compounds are the most commonly studied of all secondary metabolites because of their significant protective-defensive roles and their significant concentration in plant tissues. However, there has been little study on relationships between gas exchange parameters and the concentration of leaf phenolic compounds (total phenolics (TP) and condensed tannins (CT)) across a range of species. Therefore, we addressed the question: is there any correlation between photosynthetic capacity (A(max)) and TP and CT across species from different ecosystems in different continents? A plethora of functional and structural parameters were measured in 49 plant species following different growth strategies from five sampling sites located in Greece and Australia. The relationships between several leaf traits were analysed by means of regression and principal component analysis. The results revealed a negative relationship between TP and CT and A(max) among the different plant species, growth strategies and sampling sites, irrespective of expression (with respect to mass, area or nitrogen content). Principal component analysis showed that high concentrations of TP and CT are associated with thick, dense leaves with low nitrogen. This leaf type is characterized by low growth, A(max) and transpiration rates, and is common in environments with low water and nutrient availability, high temperatures and high light intensities. Therefore, the high TP and CT in such leaves are compatible with the protective and defensive functions ascribed to them. Our results indicate a functional integration between carbon gain and the concentration of leaf phenolic compounds that reflects the trade-off between growth and defence/protection demands, depending on the growth strategy adopted by each species.

  1. 7 CFR 29.3648 - Thin Leaf (C Group).

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Thin Leaf (C Group). 29.3648 Section 29.3648... REGULATIONS TOBACCO INSPECTION Standards Grades § 29.3648 Thin Leaf (C Group). This group consists of leaves... specifications, and tolerances C1L Choice Quality Light-brown Thin Leaf. Ripe, thin, open leaf structure, smooth...

  2. 7 CFR 29.3647 - Heavy Leaf (B Group).

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false Heavy Leaf (B Group). 29.3647 Section 29.3647... REGULATIONS TOBACCO INSPECTION Standards Grades § 29.3647 Heavy Leaf (B Group). This group consists of leaves... specifications, and tolerances B1F Choice Quality Medium-brown Heavy Leaf. Ripe medium body, open leaf structure...

  3. 7 CFR 29.3647 - Heavy Leaf (B Group).

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 2 2013-01-01 2013-01-01 false Heavy Leaf (B Group). 29.3647 Section 29.3647... REGULATIONS TOBACCO INSPECTION Standards Grades § 29.3647 Heavy Leaf (B Group). This group consists of leaves... specifications, and tolerances B1F Choice Quality Medium-brown Heavy Leaf. Ripe medium body, open leaf structure...

  4. 7 CFR 29.3647 - Heavy Leaf (B Group).

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 2 2014-01-01 2014-01-01 false Heavy Leaf (B Group). 29.3647 Section 29.3647... REGULATIONS TOBACCO INSPECTION Standards Grades § 29.3647 Heavy Leaf (B Group). This group consists of leaves... specifications, and tolerances B1F Choice Quality Medium-brown Heavy Leaf. Ripe medium body, open leaf structure...

  5. 7 CFR 29.3648 - Thin Leaf (C Group).

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 2 2012-01-01 2012-01-01 false Thin Leaf (C Group). 29.3648 Section 29.3648... REGULATIONS TOBACCO INSPECTION Standards Grades § 29.3648 Thin Leaf (C Group). This group consists of leaves... specifications, and tolerances C1L Choice Quality Light-brown Thin Leaf. Ripe, thin, open leaf structure, smooth...

  6. 7 CFR 29.3648 - Thin Leaf (C Group).

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 2 2013-01-01 2013-01-01 false Thin Leaf (C Group). 29.3648 Section 29.3648... REGULATIONS TOBACCO INSPECTION Standards Grades § 29.3648 Thin Leaf (C Group). This group consists of leaves... specifications, and tolerances C1L Choice Quality Light-brown Thin Leaf. Ripe, thin, open leaf structure, smooth...

  7. 7 CFR 29.3648 - Thin Leaf (C Group).

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false Thin Leaf (C Group). 29.3648 Section 29.3648... REGULATIONS TOBACCO INSPECTION Standards Grades § 29.3648 Thin Leaf (C Group). This group consists of leaves... specifications, and tolerances C1L Choice Quality Light-brown Thin Leaf. Ripe, thin, open leaf structure, smooth...

  8. 7 CFR 29.3648 - Thin Leaf (C Group).

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 2 2014-01-01 2014-01-01 false Thin Leaf (C Group). 29.3648 Section 29.3648... REGULATIONS TOBACCO INSPECTION Standards Grades § 29.3648 Thin Leaf (C Group). This group consists of leaves... specifications, and tolerances C1L Choice Quality Light-brown Thin Leaf. Ripe, thin, open leaf structure, smooth...

  9. 7 CFR 29.3647 - Heavy Leaf (B Group).

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 2 2012-01-01 2012-01-01 false Heavy Leaf (B Group). 29.3647 Section 29.3647... REGULATIONS TOBACCO INSPECTION Standards Grades § 29.3647 Heavy Leaf (B Group). This group consists of leaves... specifications, and tolerances B1F Choice Quality Medium-brown Heavy Leaf. Ripe medium body, open leaf structure...

  10. The Use of RNA Sequencing and Correlation Network Analysis to Study Potential Regulators of Crabapple Leaf Color Transformation.

    PubMed

    Yang, Tuo; Li, Keting; Hao, Suxiao; Zhang, Jie; Song, Tingting; Tian, Ji; Yao, Yuncong

    2018-05-01

    Anthocyanins are plant pigments that contribute to the color of leaves, flowers and fruits, and that are beneficial to human health in the form of dietary antioxidants. The study of a transformable crabapple cultivar, 'India magic', which has red buds and green mature leaves, using mRNA profiling of four leaf developmental stages, allowed us to characterize molecular mechanisms regulating red color formation in early leaf development and the subsequent rapid down-regulation of anthocyanin biosynthesis. This analysis of differential gene expression during leaf development revealed that ethylene signaling-responsive genes are up-regulated during leaf pigmentation. Genes in the ethylene response factor (ERF), SPL, NAC, WRKY and MADS-box transcription factor (TF) families were identified in two weighted gene co-expression network analysis (WGCNA) modules as having a close relationship to anthocyanin accumulation. Analyses of network hub genes indicated that SPL TFs are located in central positions within anthocyanin-related modules. Furthermore, cis-motif and yeast one-hybrid assays suggested that several anthocyanin biosynthetic or regulatory genes are potential targets of SPL8 and SPL13B. Transient silencing of these two genes confirmed that they play a role in co-ordinating anthocyanin biosynthesis and crabapple leaf development. We present a high-resolution method for identifying regulatory modules associated with leaf pigmentation, which provides a platform for functional genomic studies of anthocyanin biosynthesis.

  11. Regulation and acclimation of leaf gas exchange in a piñon-juniper woodland exposed to three different precipitation regimes.

    PubMed

    Limousin, Jean-Marc; Bickford, Christopher P; Dickman, Lee T; Pangle, Robert E; Hudson, Patrick J; Boutz, Amanda L; Gehres, Nathan; Osuna, Jessica L; Pockman, William T; McDowell, Nate G

    2013-10-01

    Leaf gas-exchange regulation plays a central role in the ability of trees to survive drought, but forecasting the future response of gas exchange to prolonged drought is hampered by our lack of knowledge regarding potential acclimation. To investigate whether leaf gas-exchange rates and sensitivity to drought acclimate to precipitation regimes, we measured the seasonal variations of leaf gas exchange in a mature piñon-juniper Pinus edulis-Juniperus monosperma woodland after 3 years of precipitation manipulation. We compared trees receiving ambient precipitation with those in an irrigated treatment (+30% of ambient precipitation) and a partial rainfall exclusion (-45%). Treatments significantly affected leaf water potential, stomatal conductance and photosynthesis for both isohydric piñon and anisohydric juniper. Leaf gas exchange acclimated to the precipitation regimes in both species. Maximum gas-exchange rates under well-watered conditions, leaf-specific hydraulic conductance and leaf water potential at zero photosynthetic assimilation all decreased with decreasing precipitation. Despite their distinct drought resistance and stomatal regulation strategies, both species experienced hydraulic limitation on leaf gas exchange when precipitation decreased, leading to an intraspecific trade-off between maximum photosynthetic assimilation and resistance of photosynthesis to drought. This response will be most detrimental to the carbon balance of piñon under predicted increases in aridity in the southwestern USA. © 2013 John Wiley & Sons Ltd.

  12. Large drought-induced variations in oak leaf volatile organic compound emissions during PINOT NOIR 2012

    DOE PAGES

    Geron, Chris; Gu, Lianhong; Daly, Ryan; ...

    2015-12-17

    Here, leaf-level isoprene and monoterpene emissions were collected and analyzed from five of the most abundant oak (Quercus) species in Central Missouri's Ozarks Region in 2012 during PINOT NOIR (Particle Investigations at a Northern Ozarks Tower – NOx, Oxidants, Isoprene Research). June measurements, prior to the onset of severe drought, showed isoprene emission rates and leaf temperature responses similar to those previously reported in the literature and used in Biogenic Volatile Organic Compound (BVOC) emission models. During the peak of the drought in August, isoprene emission rates were substantially reduced, and response to temperature was dramatically altered, especially for themore » species in the red oak subgenus (Erythrobalanus).« less

  13. A dynamic leaf gas-exchange strategy is conserved in woody plants under changing ambient CO2: evidence from carbon isotope discrimination in paleo and CO2 enrichment studies

    EPA Science Inventory

    Rising atmospheric [CO2], ca, is expected to affect stomatal regulation of leaf gas-exchange of woody plants, thus influencing energy fluxes as well as carbon (C), water and nutrient cycling of forests. Researchers have reported that stomata regulate leaf gas-exchange around “set...

  14. The Arabidopsis RING-Type E3 Ligase TEAR1 Controls Leaf Development by Targeting the TIE1 Transcriptional Repressor for Degradation[OPEN

    PubMed Central

    Zhang, Jinzhe; Wei, Baoye; Yuan, Rongrong; Yu, Hao

    2017-01-01

    The developmental plasticity of leaf size and shape is important for leaf function and plant survival. However, the mechanisms by which plants form diverse leaves in response to environmental conditions are not well understood. Here, we identified TIE1-ASSOCIATED RING-TYPE E3 LIGASE1 (TEAR1) and found that it regulates leaf development by promoting the degradation of TCP INTERACTOR-CONTAINING EAR MOTIF PROTEIN1 (TIE1), an important repressor of CINCINNATA (CIN)-like TEOSINTE BRANCHED1/CYCLOIDEA/PCF (TCP) transcription factors, which are key for leaf development. TEAR1 contains a typical C3H2C3-type RING domain and has E3 ligase activity. We show that TEAR1 interacts with the TCP repressor TIE1, which is ubiquitinated in vivo and degraded by the 26S proteasome system. We demonstrate that TEAR1 is colocalized with TIE1 in nuclei and negatively regulates TIE1 protein levels. Overexpression of TEAR1 rescued leaf defects caused by TIE1 overexpression, whereas disruption of TEAR1 resulted in leaf phenotypes resembling those caused by TIE1 overexpression or TCP dysfunction. Deficiency in TEAR partially rescued the leaf defects of TCP4 overexpression line and enhanced the wavy leaf phenotypes of jaw-5D. We propose that TEAR1 positively regulates CIN-like TCP activity to promote leaf development by mediating the degradation of the TCP repressor TIE1. PMID:28100709

  15. Harnessing Genetic Variation in Leaf Angle to Increase Productivity of Sorghum bicolor

    PubMed Central

    Truong, Sandra K.; McCormick, Ryan F.; Rooney, William L.; Mullet, John E.

    2015-01-01

    The efficiency with which a plant intercepts solar radiation is determined primarily by its architecture. Understanding the genetic regulation of plant architecture and how changes in architecture affect performance can be used to improve plant productivity. Leaf inclination angle, the angle at which a leaf emerges with respect to the stem, is a feature of plant architecture that influences how a plant canopy intercepts solar radiation. Here we identify extensive genetic variation for leaf inclination angle in the crop plant Sorghum bicolor, a C4 grass species used for the production of grain, forage, and bioenergy. Multiple genetic loci that regulate leaf inclination angle were identified in recombinant inbred line populations of grain and bioenergy sorghum. Alleles of sorghum dwarf-3, a gene encoding a P-glycoprotein involved in polar auxin transport, are shown to change leaf inclination angle by up to 34° (0.59 rad). The impact of heritable variation in leaf inclination angle on light interception in sorghum canopies was assessed using functional-structural plant models and field experiments. Smaller leaf inclination angles caused solar radiation to penetrate deeper into the canopy, and the resulting redistribution of light is predicted to increase the biomass yield potential of bioenergy sorghum by at least 3%. These results show that sorghum leaf angle is a heritable trait regulated by multiple loci and that genetic variation in leaf angle can be used to modify plant architecture to improve sorghum crop performance. PMID:26323882

  16. Essential Oils of Hyptis pectinata Chemotypes: Isolation, Binary Mixtures and Acute Toxicity on Leaf-Cutting Ants.

    PubMed

    Feitosa-Alcantara, Rosana B; Bacci, Leandro; Blank, Arie F; Alves, Péricles B; Silva, Indira Morgana de A; Soares, Caroline A; Sampaio, Taís S; Nogueira, Paulo Cesar de L; Arrigoni-Blank, Maria de Fátima

    2017-04-12

    Leaf-cutting ants are pests of great economic importance due to the damage they cause to agricultural and forest crops. The use of organosynthetic insecticides is the main form of control of these insects. In order to develop safer technology, the objective of this work was to evaluate the formicidal activity of the essential oils of two Hyptis pectinata genotypes (chemotypes) and their major compounds on the leaf-cutting ants Acromyrmex balzani Emery and Atta sexdens rubropilosa Forel. Bioassays of exposure pathways (contact and fumigation) and binary mixtures of the major compounds were performed. The major compounds identified in the essential oils of H. pectinata were β-caryophyllene, caryophyllene oxide and calamusenone. The essential oils of H. pectinata were toxic to the ants in both exposure pathways. Essential oils were more toxic than their major compounds alone. The chemotype calamusenone was more toxic to A. balzani in both exposure pathways. A. sexdens rubropilosa was more susceptible to the essential oil of the chemotype β-caryophyllene in both exposure pathways. In general, the binary mixtures of the major compounds resulted in additive effect of toxicity. The essential oils of H. pectinata is a raw material of great potential for the development of new insecticides.

  17. Tracing C Fluxes From Leaf Litter To Microbial Respired CO2 And Specific Soil Compounds

    NASA Astrophysics Data System (ADS)

    Rubino, M.; Lubritto, C.; D'Onofrio, A.; Gleixner, G.; Terrasi, F.; Cotrufo, F. M.

    2004-12-01

    Despite litter decomposition is one of the major process controlling soil C stores and nutrient cycling, yet C dynamics during litter decay are poorly understood and quantified. Here we report the results of a laboratory experiment where 13C depleted leaf litter was incubated on a 13C enriched soil with the aims to: i) partition the C loss during litter decay into microbial respired-CO2 and C input into the soil; ii) identify the soil compounds where litter derived C is retained; iii) assess whether litter quality is a determinant of both the above processes. Three 13C-depleted leaf litter(delta13C ca. -43), differing in their degradability, were incubated on C4 soil (delta13C ca. -18) under laboratory controlled conditions for 8 months, with litter respiration and delta13C-CO2 being measured at regular intervals. At harvest, Compound Specific Isotope Analyses was performed on soil and litter samples in order to follow the fate of litter-derived C compounds in the various pools of SOMƒn The delta13C of soils carbohydrates, alkanes and Phospho Lipids Fatty Acids (PLFA) were measured, and the mixing model approach used to quantify the contribution of litter derived C to the specific compounds.

  18. A novel substance with allelopathic activity in Ginkgo biloba.

    PubMed

    Kato-Noguchi, Hisashi; Takeshita, Sayaka; Kimura, Fukiko; Ohno, Osamu; Suenaga, Kiyotake

    2013-12-15

    Ginkgo (Ginkgo biloba) is one of the oldest living tree species and has been widely used in traditional medicine. Leaf extracts of ginkgo, such as the standardized extract EGb761, have become one of the best-selling herbal products. However, no bioactive compound directed at plants has been reported in this species. Therefore, we investigated possible allelopathic activity and searched for allelopathically active substances in ginkgo leaves. An aqueous methanol leaf extract inhibited the growth of roots and shoots of garden cress (Lepidium sativum), lettuce (Lactuca sativa), timothy (Phleum pratense) and ryegrass (Lolium multiflorum) seedlings. The extract was purified by several chromatographic runs and an allelopathically active substance was isolated and identified by spectral analysis to be the novel compound 2-hydroxy-6-(10-hydroxypentadec-11-enyl)benzoic acid. The compound inhibited root and shoot growth of garden cress and timothy at concentrations greater than 3 μM. The activity of the compound was 10- to 52-fold that of nonanoic acid. These results suggest that 2-hydroxy-6-(10-hydroxypentadec-11-enyl)benzoic acid may contribute to the allelopathic effect caused by ginkgo leaf extract. The compound may also have potential as a template for the development of new plant control substances. Copyright © 2013 Elsevier GmbH. All rights reserved.

  19. C4 Cycles: Past, Present, and Future Research on C4 Photosynthesis

    PubMed Central

    Langdale, Jane A.

    2011-01-01

    In the late 1960s, a vibrant new research field was ignited by the discovery that instead of fixing CO2 into a C3 compound, some plants initially fix CO2 into a four-carbon (C4) compound. The term C4 photosynthesis was born. In the 20 years that followed, physiologists, biochemists, and molecular and developmental biologists grappled to understand how the C4 photosynthetic pathway was partitioned between two morphologically distinct cell types in the leaf. By the early 1990s, much was known about C4 biochemistry, the types of leaf anatomy that facilitated the pathway, and the patterns of gene expression that underpinned the biochemistry. However, virtually nothing was known about how the pathway was regulated. It should have been an exciting time, but many of the original researchers were approaching retirement, C4 plants were proving recalcitrant to genetic manipulation, and whole-genome sequences were not even a dream. In combination, these factors led to reduced funding and the failure to attract young people into the field; the endgame seemed to be underway. But over the last 5 years, there has been a resurgence of interest and funding, not least because of ambitious multinational projects that aim to increase crop yields by introducing C4 traits into C3 plants. Combined with new technologies, this renewed interest has resulted in the development of more sophisticated approaches toward understanding how the C4 pathway evolved, how it is regulated, and how it might be manipulated. The extent of this resurgence is manifest by the publication in 2011 of more than 650 pages of reviews on different aspects of C4. Here, I provide an overview of our current understanding, the questions that are being addressed, and the issues that lie ahead. PMID:22128120

  20. Plant leaves as indoor air passive samplers for volatile organic compounds (VOCs).

    PubMed

    Wetzel, Todd A; Doucette, William J

    2015-03-01

    Volatile organic compounds (VOCs) enter indoor environments through internal and external sources. Indoor air concentrations of VOCs vary greatly but are generally higher than outdoors. Plants have been promoted as indoor air purifiers for decades, but reports of their effectiveness differ. However, while air-purifying applications may be questionable, the waxy cuticle coating on leaves may provide a simple, cost-effective approach to sampling indoor air for VOCs. To investigate the potential use of plants as indoor air VOC samplers, a static headspace approach was used to examine the relationship between leaf and air concentrations, leaf lipid contents and octanol-air partition coefficients (Koa) for six VOCs and four plant species. The relationship between leaf and air concentrations was further examined in an actual residence after the introduction of several chlorinated VOC emission sources. Leaf-air concentration factors (LACFs), calculated from linear regressions of the laboratory headspace data, were found to increase as the solvent extractable leaf lipid content and Koa value of the VOC increased. In the studies conducted in the residence, leaf concentrations paralleled the changing air concentrations, indicating a relatively rapid air to leaf VOC exchange. Overall, the data from the laboratory and residential studies illustrate the potential for plant leaves to be used as cost effective, real-time indoor air VOC samplers. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Regulation of leaf hydraulics: from molecular to whole plant levels.

    PubMed

    Prado, Karine; Maurel, Christophe

    2013-01-01

    The water status of plant leaves is dependent on both stomatal regulation and water supply from the vasculature to inner tissues. The present review addresses the multiple physiological and mechanistic facets of the latter process. Inner leaf tissues contribute to at least a third of the whole resistance to water flow within the plant. Physiological studies indicated that leaf hydraulic conductance (K leaf) is highly dependent on the anatomy, development and age of the leaf and can vary rapidly in response to physiological or environmental factors such as leaf hydration, light, temperature, or nutrient supply. Differences in venation pattern provide a basis for variations in K leaf during development and between species. On a short time (hour) scale, the hydraulic resistance of the vessels can be influenced by transpiration-induced cavitations, wall collapses, and changes in xylem sap composition. The extravascular compartment includes all living tissues (xylem parenchyma, bundle sheath, and mesophyll) that transport water from xylem vessels to substomatal chambers. Pharmacological inhibition and reverse genetics studies have shown that this compartment involves water channel proteins called aquaporins (AQPs) that facilitate water transport across cell membranes. In many plant species, AQPs are present in all leaf tissues with a preferential expression in the vascular bundles. The various mechanisms that allow adjustment of K leaf to specific environmental conditions include transcriptional regulation of AQPs and changes in their abundance, trafficking, and intrinsic activity. Finally, the hydraulics of inner leaf tissues can have a strong impact on the dynamic responses of leaf water potential and stomata, and as a consequence on plant carbon economy and leaf expansion growth. The manipulation of these functions could help optimize the entire plant performance and its adaptation to extreme conditions over short and long time scales.

  2. Polyphenols benefits of olive leaf (Olea europaea L) to human health.

    PubMed

    Vogel, Patrícia; Kasper Machado, Isabel; Garavaglia, Juliano; Zani, Valdeni Terezinha; de Souza, Daiana; Morelo Dal Bosco, Simone

    2014-12-17

    The phenolic compounds present in olive leaves (Olea europaea L.) confer benefits to the human health. To review the scientific literature about the benefits of the polyphenols of olive leaves to human health. Literature review in the LILACS-BIREME, SciELO and MEDLINE databases for publications in English, Portuguese and Spanish with the descriptors "Olea europaea", "olive leaves", "olive leaf", "olive leaves extracts", "olive leaf extracts", "phenolic compounds", "polyphenols", "oleuropein", "chemical composition", and "health". There were identified 92 articles, but only 38 related to the objectives of the study and 9 articles cited in the works were included due to their relevance. The phenolic compounds present in olive leaves, especially the oleuropein, are associated to antioxidant, antihypertensive, hypoglycemic, hypocholesterolemic and cardioprotective activity. Furthermore, studies associate the oleuropein to an anti-inflammatory effect in trauma of the bone marrow and as a support in the treatment of obesity. Copyright AULA MEDICA EDICIONES 2014. Published by AULA MEDICA. All rights reserved.

  3. Responses of the two‐spotted oak buprestid, Agrilus biguttatus (Coleoptera: Buprestidae), to host tree volatiles

    PubMed Central

    Woodcock, Christine M; Sumner, Mary E; Caulfield, John C; Reed, Katy; Inward, Daegan JG; Leather, Simon R; Pickett, John A; Birkett, Michael A; Denman, Sandra

    2016-01-01

    Abstract BACKGROUND Agrilus bigutattus (Fabricius) is a forest pest of increasing importance in the United Kingdom. The larvae damage weakened native oaks and are thought to contribute to premature tree death. Suspected links with acute oak decline (AOD) are not yet confirmed, but AOD‐predisposed trees appear to become more susceptible to A. biguttatus attack. Thus, management may be necessary for control of this insect. To explore the possibility of monitoring beetle populations by baited traps, the host tree volatiles regulating A. biguttatus–oak interactions were studied. RESULTS Biologically active volatile organic compounds in dynamic headspace extracts of oak foliage and bark were identified initially by coupled gas chromatography–electroantennography (GC‐EAG) and GC–mass spectrometry (GC‐MS), and the structures were confirmed by GC coinjection with authentic compounds. Of two synthetic blends of these compounds comprising the active leaf volatiles, the simpler one containing three components evoked strongly positive behavioural responses in four‐arm olfactometer tests with virgin females and males, although fresh leaf material was more efficient than the blend. The other blend, comprising a five‐component mixture made up of bark volatiles, proved to be as behaviourally active for gravid females as bark tissue. CONCLUSIONS These initial results on A. biguttatus chemical ecology reveal aspects of the role of attractive tree volatiles in the host‐finding of beetles and underpin the development of semiochemically based surveillance strategies for this forest insect. © 2015 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry. PMID:26663022

  4. 7 CFR 29.3035 - Leaf structure.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Leaf structure. The cell development of a leaf as indicated by its porosity or solidity. (See Elements... 7 Agriculture 2 2010-01-01 2010-01-01 false Leaf structure. 29.3035 Section 29.3035 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing...

  5. 7 CFR 29.3035 - Leaf structure.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 2 2014-01-01 2014-01-01 false Leaf structure. 29.3035 Section 29.3035 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Leaf structure. The cell development of a leaf as indicated by its porosity or solidity. (See Elements...

  6. 7 CFR 29.3035 - Leaf structure.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false Leaf structure. 29.3035 Section 29.3035 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Leaf structure. The cell development of a leaf as indicated by its porosity or solidity. (See Elements...

  7. 7 CFR 29.3035 - Leaf structure.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 2 2012-01-01 2012-01-01 false Leaf structure. 29.3035 Section 29.3035 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Leaf structure. The cell development of a leaf as indicated by its porosity or solidity. (See Elements...

  8. 7 CFR 29.3035 - Leaf structure.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 2 2013-01-01 2013-01-01 false Leaf structure. 29.3035 Section 29.3035 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Leaf structure. The cell development of a leaf as indicated by its porosity or solidity. (See Elements...

  9. A detailed analysis of the leaf rolling mutant sll2 reveals complex nature in regulation of bulliform cell development in rice (Oryza sativa L.).

    PubMed

    Zhang, J-J; Wu, S-Y; Jiang, L; Wang, J-L; Zhang, X; Guo, X-P; Wu, C-Y; Wan, J-M

    2015-03-01

    Bulliform cells are large, thin-walled and highly vacuolated cells, and play an important role in controlling leaf rolling in response to drought and high temperature. However, the molecular mechanisms regulating bulliform cell development have not been well documented. Here, we report isolation and characterisation of a rice leaf-rolling mutant, named shallot-like 2 (sll2). The sll2 plants exhibit adaxially rolled leaves, starting from the sixth leaf stage, accompanied by increased photosynthesis and reduced plant height and tiller number. Histological analyses showed shrinkage of bulliform cells, resulting in inward-curved leaves. The mutant is recessive and revertible at a rate of 9%. The leaf rolling is caused by a T-DNA insertion. Cloning of the insertion using TAIL-PCR revealed that the T-DNA was inserted in the promoter region of LOC_Os07 g38664. Unexpectedly, the enhanced expression of LOC_Os07 g38664 by the 35S enhancer in the T-DNA is not responsible for the leaf rolling phenotype. Further, the enhancer also exerted a long-distance effect, including up-regulation of several bulliform cell-related genes. sll2 suppressed the outward leaf rolling of oul1 in the sll2oul1 double mutant. We conclude that leaf rolling in sll2 could be a result of the combined effect of multi-genes, implying a complex network in regulation of bulliform cell development. © 2014 German Botanical Society and The Royal Botanical Society of the Netherlands.

  10. Mutation of the OsSAC1 Gene, which Encodes an Endoplasmic Reticulum Protein with an Unknown Function, Causes Sugar Accumulation in Rice Leaves.

    PubMed

    Zhu, Xiaoyan; Shen, Wenqiang; Huang, Junyang; Zhang, Tianquan; Zhang, Xiaobo; Cui, Yuanjiang; Sang, Xianchun; Ling, Yinghua; Li, Yunfeng; Wang, Nan; Zhao, Fangmin; Zhang, Changwei; Yang, Zhenglin; He, Guanghua

    2018-03-01

    Sugars are the most abundant organic compounds produced by plants, and can be used to build carbon skeletons and generate energy. The sugar accumulation 1 (OsSAC1) gene encodes a protein with an unknown function that exhibits four N-terminal transmembrane regions and two conserved domains of unknown function, DUF4220 and DUF594. OsSAC1 was found to be poorly and specifically expressed at the bottoms of young leaves and in the developing leaf sheaths. Subcellular location results showed that OsSAC1 was co-localized with ER:mCherry and targeted the endoplasmic reticulum (ER). OsSAC1 has been found to affect sugar partitioning in rice (Oryza sativa). I2/KI starch staining, ultrastructure observations and starch content measurements indicated that more and larger starch granules accumulated in ossac1 source leaves than in wild-type (WT) source leaves. Additionally, higher sucrose and glucose concentrations accumulated in the ossac1 source leaves than in WT source leaves, whereas lower sucrose and glucose concentrations were observed in the ossac1 young leaves and developing leaf sheaths than in those of the WT. Much greater expression of OsAGPL1 and OsAGPS1 (responsible for starch synthesis) and significantly less expression of OscFBP1, OscFBP2, OsSPS1 and OsSPS11 (responsible for sucrose synthesis) and OsSWEET11, OsSWEET14 and OsSUT1 (responsible for sucrose loading) occurred in ossac1 source leaves than in WT source leaves. A greater amount of the rice plasmodesmatal negative regulator OsGSD1 was detected in ossac1 young leaves and developing leaf sheaths than in those of the WT. These results suggest that ER-targeted OsSAC1 may indirectly regulate sugar partitioning in carbon-demanding young leaves and developing leaf sheaths.

  11. Secondary ion mass spectrometry imaging and multivariate data analysis reveal co-aggregation patterns of Populus trichocarpa leaf surface compounds on a micrometer scale.

    PubMed

    Kulkarni, Purva; Dost, Mina; Bulut, Özgül Demir; Welle, Alexander; Böcker, Sebastian; Boland, Wilhelm; Svatoš, Aleš

    2018-01-01

    Spatially resolved analysis of a multitude of compound classes has become feasible with the rapid advancement in mass spectrometry imaging strategies. In this study, we present a protocol that combines high lateral resolution time-of-flight secondary ion mass spectrometry (TOF-SIMS) imaging with a multivariate data analysis (MVA) approach to probe the complex leaf surface chemistry of Populus trichocarpa. Here, epicuticular waxes (EWs) found on the adaxial leaf surface of P. trichocarpa were blotted on silicon wafers and imaged using TOF-SIMS at 10 μm and 1 μm lateral resolution. Intense M +● and M -● molecular ions were clearly visible, which made it possible to resolve the individual compound classes present in EWs. Series of long-chain aliphatic saturated alcohols (C 21 -C 30 ), hydrocarbons (C 25 -C 33 ) and wax esters (WEs; C 44 -C 48 ) were clearly observed. These data correlated with the 7 Li-chelation matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) analysis, which yielded mostly molecular adduct ions of the analyzed compounds. Subsequently, MVA was used to interrogate the TOF-SIMS dataset for identifying hidden patterns on the leaf's surface based on its chemical profile. After the application of principal component analysis (PCA), a small number of principal components (PCs) were found to be sufficient to explain maximum variance in the data. To further confirm the contributions from pure components, a five-factor multivariate curve resolution (MCR) model was applied. Two distinct patterns of small islets, here termed 'crystals', were apparent from the resulting score plots. Based on PCA and MCR results, the crystals were found to be formed by C 23 or C 29 alcohols. Other less obvious patterns observed in the PCs revealed that the adaxial leaf surface is coated with a relatively homogenous layer of alcohols, hydrocarbons and WEs. The ultra-high-resolution TOF-SIMS imaging combined with the MVA approach helped to highlight the diverse patterns underlying the leaf's surface. Currently, the methods available to analyze the surface chemistry of waxes in conjunction with the spatial information related to the distribution of compounds are limited. This study uses tools that may provide important biological insights into the composition of the wax layer, how this layer is repaired after mechanical damage or insect feeding, and which transport mechanisms are involved in deploying wax constituents to specific regions on the leaf surface. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  12. Application of an online post-column derivatization HPLC-DPPH assay to detect compounds responsible for antioxidant activity in Sonchus oleraceus L. leaf extracts.

    PubMed

    Ou, Zong-Quan; Schmierer, David M; Rades, Thomas; Larsen, Lesley; McDowell, Arlene

    2013-02-01

    To use an online assay to identify key antioxidants in Sonchus oleraceus leaf extracts and to investigate the effect of leaf position and extraction conditions on antioxidant concentration and activity. Separation of phytochemicals and simultaneous assessment of antioxidant activity were performed online using HPLC and post-column reaction with a free-radical reagent (2, 2-diphenylpicrylhydrazyl, DPPH). Active compounds were identified using nuclear magnetic resonance spectroscopy and mass spectrometry. We applied the online HPLC-DPPH radical assay to evaluate antioxidants in leaves from different positions on the plant and to assess the effect of pre-treatment of leaves with liquid N(2) before grinding, extraction time, extraction temperature and method of concentrating extracts. Key antioxidants identified in S. oleraceus leaf extracts were caftaric acid, chlorogenic acid and chicoric acid. Middle leaves contained the highest total amount of the three key antioxidant compounds, consisting mainly of chicoric acid. Pre-treatment with liquid N(2), increasing the extraction temperature and time and freeze-drying the extract did not enhance the yield of the key antioxidants. The online HPLC-DPPH radical assay was validated as a useful screening tool for investigating individual antioxidants in leaf extracts. Optimized extraction conditions were middle leaves pre-treated with liquid N(2), extraction at 25°C for 0.5 h and solvent removal by rotary evaporation. © 2012 The Authors. JPP © 2012. Royal Pharmaceutical Society.

  13. Leaf area index, leaf mass density, and allometric relationships derived from harvest of blue oaks in a California oak savanna

    Treesearch

    John F. Karlik; Alistair H. McKay

    2002-01-01

    Given the key role played by biogenic volatile organic compounds (BVOC) in tropospheric chemistry and regional air quality, it is critical to generate accurate BVOC emission inventories. Because oak species found in California often have high BVOC emission rates, and are often of large stature with corresponding large leaf masses, oaks may be the most important genus...

  14. Tropical dry forest trees and lianas differ in leaf economic spectrum traits but have overlapping water-use strategies.

    PubMed

    Werden, Leland K; Waring, Bonnie G; Smith-Martin, Christina M; Powers, Jennifer S

    2018-04-01

    Tree species in tropical dry forests employ a wide range of strategies to cope with seasonal drought, including regulation of hydraulic function. However, it is uncertain if co-occurring lianas also possess a diversity of strategies. For a taxonomically diverse group of 14 tree and 7 liana species, we measured morphological and hydraulic functional traits during an unusual drought and under non-drought conditions to determine (i) if trees have different water-use strategies than lianas and (ii) if relationships among these traits can be used to better understand how tree and liana species regulate diurnal leaf water potential (Ψdiurnal). In this Costa Rican tropical dry forest, lianas and trees had overlapping water-use strategies, but differed in many leaf economic spectrum traits. Specifically, we found that both lianas and trees employed a diversity of Ψdiurnal regulation strategies, which did not differ statistically. However, lianas and trees did significantly differ in terms of certain traits including leaf area, specific leaf area, petiole length, wood vessel diameter and xylem vessel density. All liana and tree species we measured fell along a continuum of isohydric (partial) to anisohydric (strict or extreme) Ψdiurnal regulation strategies, and leaf area, petiole length, stomatal conductance and wood vessel diameter correlated with these strategies. These findings contribute to a trait-based understanding of how plants regulate Ψdiurnal under both drought stress and sufficient water availability, and underscore that lianas and trees employ a similarly wide range of Ψdiurnal regulation strategies, despite having vastly different growth forms.

  15. Role of salicylic acid in resistance to cadmium stress in plants.

    PubMed

    Liu, Zhouping; Ding, Yanfei; Wang, Feijuan; Ye, Yaoyao; Zhu, Cheng

    2016-04-01

    We review and introduce the importance of salicylic acid in plants under cadmium stress, and provide insights into potential regulatory mechanisms for alleviating cadmium toxicity. Cadmium (Cd) is a widespread and potentially toxic environmental pollutant, originating mainly from rapid industrial processes, the application of fertilizers, manures and sewage sludge, and urban activities. It is easily taken up by plants, resulting in obvious toxicity symptoms, including growth retardation, leaf chlorosis, leaf and root necrosis, altered structures and ultrastructures, inhibition of photosynthesis, and cell death. Therefore, alleviating Cd toxicity in plants is a major aim of plant research. Salicylic acid (SA) is a ubiquitous plant phenolic compound that has been used in many plant species to alleviate Cd toxicity by regulating plant growth, reducing Cd uptake and distribution in plants, protecting membrane integrity and stability, scavenging reactive oxygen species and enhancing antioxidant defense system, improving photosynthetic capacity. Furthermore, SA functions as a signaling molecule involved in the expression of several important genes. Significant amounts of research have focused on understanding SA functions and signaling in plants under Cd stress, but several questions still remain unanswered. In this article, the influence of SA on Cd-induced stress in plants and the potential regulation mechanism for alleviating Cd toxicity are reviewed.

  16. FAMA Is an Essential Component for the Differentiation of Two Distinct Cell Types, Myrosin Cells and Guard Cells, in Arabidopsis[W

    PubMed Central

    Shirakawa, Makoto; Ueda, Haruko; Nagano, Atsushi J.; Shimada, Tomoo; Kohchi, Takayuki; Hara-Nishimura, Ikuko

    2014-01-01

    Brassicales plants, including Arabidopsis thaliana, have an ingenious two-compartment defense system, which sequesters myrosinase from the substrate glucosinolate and produces a toxic compound when cells are damaged by herbivores. Myrosinase is stored in vacuoles of idioblast myrosin cells. The molecular mechanism that regulates myrosin cell development remains elusive. Here, we identify the basic helix-loop-helix transcription factor FAMA as an essential component for myrosin cell development along Arabidopsis leaf veins. FAMA is known as a regulator of stomatal development. We detected FAMA expression in myrosin cell precursors in leaf primordia in addition to stomatal lineage cells. FAMA deficiency caused defects in myrosin cell development and in the biosynthesis of myrosinases THIOGLUCOSIDE GLUCOHYDROLASE1 (TGG1) and TGG2. Conversely, ectopic FAMA expression conferred myrosin cell characteristics to hypocotyl and root cells, both of which normally lack myrosin cells. The FAMA interactors ICE1/SCREAM and its closest paralog SCREAM2/ICE2 were essential for myrosin cell development. DNA microarray analysis identified 32 candidate genes involved in myrosin cell development under the control of FAMA. This study provides a common regulatory pathway that determines two distinct cell types in leaves: epidermal guard cells and inner-tissue myrosin cells. PMID:25304202

  17. 7 CFR 29.6023 - Leaf structure.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... INSPECTION Standards Definitions § 29.6023 Leaf structure. The cell development of a leaf as indicated by its... 7 Agriculture 2 2010-01-01 2010-01-01 false Leaf structure. 29.6023 Section 29.6023 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing...

  18. 7 CFR 29.1030 - Leaf structure.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Type 92) § 29.1030 Leaf structure. The cell development of a leaf as indicated by its porosity. (See... 7 Agriculture 2 2010-01-01 2010-01-01 false Leaf structure. 29.1030 Section 29.1030 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing...

  19. 7 CFR 29.3527 - Leaf structure.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Type 95) § 29.3527 Leaf structure. The cell development of a leaf as indicated by its porosity. (See... 7 Agriculture 2 2010-01-01 2010-01-01 false Leaf structure. 29.3527 Section 29.3527 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing...

  20. 7 CFR 29.1030 - Leaf structure.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false Leaf structure. 29.1030 Section 29.1030 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Type 92) § 29.1030 Leaf structure. The cell development of a leaf as indicated by its porosity. (See...

  1. 7 CFR 29.3527 - Leaf structure.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 2 2013-01-01 2013-01-01 false Leaf structure. 29.3527 Section 29.3527 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Type 95) § 29.3527 Leaf structure. The cell development of a leaf as indicated by its porosity. (See...

  2. 7 CFR 29.3527 - Leaf structure.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 2 2014-01-01 2014-01-01 false Leaf structure. 29.3527 Section 29.3527 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Type 95) § 29.3527 Leaf structure. The cell development of a leaf as indicated by its porosity. (See...

  3. 7 CFR 29.3527 - Leaf structure.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 2 2012-01-01 2012-01-01 false Leaf structure. 29.3527 Section 29.3527 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Type 95) § 29.3527 Leaf structure. The cell development of a leaf as indicated by its porosity. (See...

  4. 7 CFR 29.3527 - Leaf structure.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false Leaf structure. 29.3527 Section 29.3527 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Type 95) § 29.3527 Leaf structure. The cell development of a leaf as indicated by its porosity. (See...

  5. 7 CFR 29.6023 - Leaf structure.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 2 2012-01-01 2012-01-01 false Leaf structure. 29.6023 Section 29.6023 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... INSPECTION Standards Definitions § 29.6023 Leaf structure. The cell development of a leaf as indicated by its...

  6. 7 CFR 29.1030 - Leaf structure.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 2 2013-01-01 2013-01-01 false Leaf structure. 29.1030 Section 29.1030 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Type 92) § 29.1030 Leaf structure. The cell development of a leaf as indicated by its porosity. (See...

  7. 7 CFR 29.6023 - Leaf structure.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 2 2014-01-01 2014-01-01 false Leaf structure. 29.6023 Section 29.6023 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... INSPECTION Standards Definitions § 29.6023 Leaf structure. The cell development of a leaf as indicated by its...

  8. 7 CFR 29.1030 - Leaf structure.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 2 2012-01-01 2012-01-01 false Leaf structure. 29.1030 Section 29.1030 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Type 92) § 29.1030 Leaf structure. The cell development of a leaf as indicated by its porosity. (See...

  9. 7 CFR 29.6023 - Leaf structure.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false Leaf structure. 29.6023 Section 29.6023 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... INSPECTION Standards Definitions § 29.6023 Leaf structure. The cell development of a leaf as indicated by its...

  10. 7 CFR 29.6023 - Leaf structure.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 2 2013-01-01 2013-01-01 false Leaf structure. 29.6023 Section 29.6023 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... INSPECTION Standards Definitions § 29.6023 Leaf structure. The cell development of a leaf as indicated by its...

  11. 7 CFR 29.1030 - Leaf structure.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 2 2014-01-01 2014-01-01 false Leaf structure. 29.1030 Section 29.1030 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Type 92) § 29.1030 Leaf structure. The cell development of a leaf as indicated by its porosity. (See...

  12. Antiobesity effect of polyphenolic compounds from molokheiya (Corchorus olitorius L.) leaves in LDL receptor-deficient mice.

    PubMed

    Wang, Li; Yamasaki, Masayuki; Katsube, Takuya; Sun, Xufeng; Yamasaki, Yukikazu; Shiwaku, Kuninori

    2011-03-01

    Dietary supplementation with polyphenolic compounds is associated with reduced diet-induced obesity and metabolic disorders in humans. The antioxidative properties of polyphenolic compounds contribute to their antiobesity effect in animal experiments and human studies. The aim of the study was to investigate the antiobesity effect of polyphenolic compounds from molokheiya leaves in LDLR-/- mice fed high-fat diet and to elucidate the mechanism of this effect. Three groups of LDLR-/- mice were fed with a high-fat diet, supplemented with 0% (control), 1 or 3% molokheiya leaf powder (MLP). Gene expression in the liver associated with lipid and glucose metabolism was analyzed, and physical parameters and blood biochemistry were determined. Compared to controls, mice body weight gain (P = 0.003), liver weight (P = 0.001) and liver triglyceride levels (P = 0.005) were significantly lower in the two MLP groups. Epididymal adipose tissue weight (P = 0.003) was reduced in the 3% MLP group. Liver tissue gene expression of gp91phox (NOX2), involved in oxidative stress, was significantly down-regulated (P = 0.005), and PPARα and CPT1A, related to the activation of β-oxidation, were significantly up-regulated (P = 0.025 and 0.006, respectively) in the 3% MLP group compared to the control group. Our results demonstrate an antiobesity effect of polyphenolic compounds from molokheiya leaves and that this effect is associated with reduction in oxidative stress and enhancement of β-oxidation in the liver. Consumption of molokheiya leaves may be beneficial for preventing diet-induced obesity.

  13. Volatile components of vine leaves from two Portuguese grape varieties (Vitis vinifera L.), Touriga Nacional and Tinta Roriz, analysed by solid-phase microextraction.

    PubMed

    Fernandes, Bruno; Correia, Ana C; Cosme, Fernanda; Nunes, Fernando M; Jordão, António M

    2015-01-01

    The purpose of this work was to study the volatile composition of vine leaves and vine leaf infusion prepared from vine leaves collected at 30 and 60 days after grape harvest of two Vitis vinifera L. species. Eighteen volatile compounds were identified by gas chromatography-mass spectrometry in vine leaves and in vine leaf infusions. It was observed that the volatile compounds present in vine leaves are dependent on the time of harvest, with benzaldehyde being the major volatile present in vine leaves collected at 30 days after harvesting. There are significant differences in the volatile composition of the leaves from the two grape cultivars, especially in the sample collected at 60 days after grape harvest. This is not reflected in the volatile composition of the vine leaf infusion made from this two cultivars, the more important being the harvesting date for the volatile profile of vine leaf infusion than the vine leaves grape cultivar.

  14. Characterisation of odorants in roasted stem tea using gas chromatography-mass spectrometry and gas chromatography-olfactometry analysis.

    PubMed

    Sasaki, Tetsuya; Koshi, Erina; Take, Harumi; Michihata, Toshihide; Maruya, Masachika; Enomoto, Toshiki

    2017-04-01

    Roasted stem tea has a characteristic flavour, which is obtained by roasting tea stems, by-product of green tea production. This research aims to understand the characteristic odorants in roasted stem tea by comparing it to roasted leaf tea. We revealed potent odorants in commercial roasted stem tea using gas chromatography-mass spectrometry (GC-MS) and gas chromatography-olfactometry with aroma extract dilution analysis (AEDA). The difference between roasted stem and leaf tea derived from the same tea plants were investigated using GC-MS. Pyrazine compounds exhibited a roasted odour and high flavour dilution (FD) factors, as determined via AEDA. Roasted stem tea was richer in these pyrazines than roasted leaf tea. Geraniol and linalool exhibited high FD factors and a floral odour, and roasted stem tea was richer in these compounds than roasted leaf tea. These results may have a positive impact on the development of tea products. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Disc size regulation in the brood cell building behavior of leaf-cutter bee, Megachile tsurugensis

    NASA Astrophysics Data System (ADS)

    Kim, Jong-Yoon

    2007-12-01

    The leaf-cutter bee, Megachile tsurugensis, builds a brood cell in a preexisting tunnel with leaf discs that she cuts in decreasing sizes and assembles them like a Russian matryoshka doll. By experimentally manipulating the brood cell, it was investigated how she regulates the size of leaf discs that fit in the brood cell’s internal volume. When the internal volume was artificially increased by removing a bulk of leaf discs, she decreased the leaf disc size, although increasing it would have made the leaf disc more fitting in the increased internal volume. As a reverse manipulation, when the internal volume was decreased by inserting a group of inner layers of preassembled leaf discs to a brood cell, she decreased the leaf disc size, so that the leaf disc could fit in the decreased internal volume. These results suggest that she uses at least two different mechanisms to regulate the disc size: the use of some internal memory about the degree of building work accomplished in the first and of sensory feedback of dimensional information at the construction site in the second manipulation, respectively. It was concluded that a stigmergic mechanism, an immediate sensory feedback from the brood cell changed by the building work, alone cannot explain the details of the bee’s behavior particularly with respect to her initial response to the first manipulation. For a more complete explanation of the behavior exhibited by the solitary bee, two additional behavioral elements, reinforcement of building activity and processing of dimensional information, were discussed along with stigmergy.

  16. Disc size regulation in the brood cell building behavior of leaf-cutter bee, Megachile tsurugensis.

    PubMed

    Kim, Jong-yoon

    2007-12-01

    The leaf-cutter bee, Megachile tsurugensis, builds a brood cell in a preexisting tunnel with leaf discs that she cuts in decreasing sizes and assembles them like a Russian matryoshka doll. By experimentally manipulating the brood cell, it was investigated how she regulates the size of leaf discs that fit in the brood cell's internal volume. When the internal volume was artificially increased by removing a bulk of leaf discs, she decreased the leaf disc size, although increasing it would have made the leaf disc more fitting in the increased internal volume. As a reverse manipulation, when the internal volume was decreased by inserting a group of inner layers of preassembled leaf discs to a brood cell, she decreased the leaf disc size, so that the leaf disc could fit in the decreased internal volume. These results suggest that she uses at least two different mechanisms to regulate the disc size: the use of some internal memory about the degree of building work accomplished in the first and of sensory feedback of dimensional information at the construction site in the second manipulation, respectively. It was concluded that a stigmergic mechanism, an immediate sensory feedback from the brood cell changed by the building work, alone cannot explain the details of the bee's behavior particularly with respect to her initial response to the first manipulation. For a more complete explanation of the behavior exhibited by the solitary bee, two additional behavioral elements, reinforcement of building activity and processing of dimensional information, were discussed along with stigmergy.

  17. Can Stress-Induced Biochemical Differences drive Variation in the Hydrogen Isotope Composition of Leaf Wax n-Alkanes from Terrestrial Higher Plants?

    NASA Astrophysics Data System (ADS)

    Eley, Y.; Pedentchouk, N.; Dawson, L.

    2014-12-01

    Recent research has identified that interspecies variation in leaf wax n-alkane 2H/1H from plants growing at the same geographical location can exceed 100‰. These differences cannot easily be explained by mechanisms that influence the isotopic composition of leaf water. Biochemical processes are therefore likely to drive some of this variability. Currently, however, little is known about the relative importance of different biochemical processes in shaping n-alkane hydrogen isotope composition. To explore this issue, we combined n-alkane δ2H analysis with measurements of: (i) the percentage content of leaf C and N; and (ii) foliar δ15N, from seven plants growing at Stiffkey salt marsh, Norfolk, UK. These species differ biochemically in respect of the protective compounds they produce under salt or water stressed conditions, with monocots generally producing more carbohydrates, and dicots producing more nitrogenous compounds. We found that monocots had higher %C, while dicots had higher %N and 15N-enriched leaf tissue. We identified a systematic relationship between the nature of the dominant protective compound produced (carbohydrate vs. nitrogenous) and n-alkane 2H/1H: species with a greater proportion of carbohydrates have more negative δ2H values. These findings might imply that shifts in the relative contribution of H to pyruvate from NADPH (2H-depleted) and recycled carbohydrates (2H-enriched) can influence n-alkane δ2H. The 2H-depletion of monocot n-alkanes relative to dicots may therefore be due to a greater proportion of NADPH-derived H incorporated into pyruvate because of their enhanced demand for carbohydrates. The production of protective compounds in plant species is a common response to a range of abiotic stresses (e.g. high UV irradiation, drought, salinity, high/low temperature). Species-specific biochemical responses to stress could therefore influence n-alkane 2H/1H across a range of habitats. This study highlights the importance of detailed investigation of interrelated metabolic networks in a range of plants, to further constrain the isotope effects associated with the cycling of H in plant secondary compounds. Such research will be critical to further develop quantitative interpretations of leaf wax biomarker δ2H records in both modern and ancient contexts.

  18. Effects of mutations in the Arabidopsis Cold Shock Domain Protein 3 (AtCSP3) gene on leaf cell expansion.

    PubMed

    Yang, Yongil; Karlson, Dale

    2012-08-01

    The cold shock domain is among the most evolutionarily conserved nucleic acid binding domains from prokaryotes to higher eukaryotes, including plants. Although eukaryotic cold shock domain proteins have been extensively studied as transcriptional and post-transcriptional regulators during various developmental processes, their functional roles in plants remains poorly understood. In this study, AtCSP3 (At2g17870), which is one of four Arabidopsis thaliana c old s hock domain proteins (AtCSPs), was functionally characterized. Quantitative RT-PCR analysis confirmed high expression of AtCSP3 in reproductive and meristematic tissues. A homozygous atcsp3 loss-of-function mutant exhibits an overall reduced seedling size, stunted and orbicular rosette leaves, reduced petiole length, and curled leaf blades. Palisade mesophyll cells are smaller and more circular in atcsp3 leaves. Cell size analysis indicated that the reduced size of the circular mesophyll cells appears to be generated by a reduction of cell length along the leaf-length axis, resulting in an orbicular leaf shape. It was also determined that leaf cell expansion is impaired for lateral leaf development in the atcsp3 loss-of-function mutant, but leaf cell proliferation is not affected. AtCSP3 loss-of-function resulted in a dramatic reduction of LNG1 transcript, a gene that is involved in two-dimensional leaf polarity regulation. Transient subcellular localization of AtCSP3 in onion epidermal cells confirmed a nucleocytoplasmic localization pattern. Collectively, these data suggest that AtCSP3 is functionally linked to the regulation of leaf length by affecting LNG1 transcript accumulation during leaf development. A putative function of AtCSP3 as an RNA binding protein is also discussed in relation to leaf development.

  19. Relating Stomatal Conductance to Leaf Functional Traits.

    PubMed

    Kröber, Wenzel; Plath, Isa; Heklau, Heike; Bruelheide, Helge

    2015-10-12

    Leaf functional traits are important because they reflect physiological functions, such as transpiration and carbon assimilation. In particular, morphological leaf traits have the potential to summarize plants strategies in terms of water use efficiency, growth pattern and nutrient use. The leaf economics spectrum (LES) is a recognized framework in functional plant ecology and reflects a gradient of increasing specific leaf area (SLA), leaf nitrogen, phosphorus and cation content, and decreasing leaf dry matter content (LDMC) and carbon nitrogen ratio (CN). The LES describes different strategies ranging from that of short-lived leaves with high photosynthetic capacity per leaf mass to long-lived leaves with low mass-based carbon assimilation rates. However, traits that are not included in the LES might provide additional information on the species' physiology, such as those related to stomatal control. Protocols are presented for a wide range of leaf functional traits, including traits of the LES, but also traits that are independent of the LES. In particular, a new method is introduced that relates the plants' regulatory behavior in stomatal conductance to vapor pressure deficit. The resulting parameters of stomatal regulation can then be compared to the LES and other plant functional traits. The results show that functional leaf traits of the LES were also valid predictors for the parameters of stomatal regulation. For example, leaf carbon concentration was positively related to the vapor pressure deficit (vpd) at the point of inflection and the maximum of the conductance-vpd curve. However, traits that are not included in the LES added information in explaining parameters of stomatal control: the vpd at the point of inflection of the conductance-vpd curve was lower for species with higher stomatal density and higher stomatal index. Overall, stomata and vein traits were more powerful predictors for explaining stomatal regulation than traits used in the LES.

  20. The leaf volatile constituents of Isatis tinctoria by Solid-Phase Microextraction and Gas chromatography/Mass Spectrometry.

    PubMed

    Condurso, Cettina; Verzera, Antonella; Romeo, Vincenza; Ziino, Marisa; Trozzi, Alessandra; Ragusa, Salvatore

    2006-08-01

    The leaf volatile constituents of Isatis tinctoria L. (Brassicaceae) have been studied by Solid-Phase Microextraction and Gas chromatography/Mass Spectrometry (SPME/GC-MS). Seventy components were fully characterized by mass spectra, linear retention indices, and injection of standards; the average composition (ppm) as single components and classes of substances is reported. Aliphatic hydrocarbons, acids, alcohols, aldehydes and esters, aromatic aldehydes, esters and ethers, furans, isothiocyanates and thiocyanates, sulfurated compounds, nitriles, terpenes and sesquiterpenes were identified. Leaf volatiles in Isatis tinctoria L. were characterized by a high amount of isothiocyanates which accounted for about 40 % of the total volatile fraction. Isothiocyanates are important and characteristic flavour compounds in Brassica vegetables and the cancer chemo-protective attributes are recently responsible for their growing interest.

  1. 7 CFR 29.2662 - Heavy Leaf (B Group).

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 2 2014-01-01 2014-01-01 false Heavy Leaf (B Group). 29.2662 Section 29.2662... REGULATIONS TOBACCO INSPECTION Standards Grades § 29.2662 Heavy Leaf (B Group). This group consists of leaves... Leaf. Medium body, ripe, firm, oily, elastic, strong, bright finish, deep color intensity, normal width...

  2. 77 FR 36393 - Drawbridge Operation Regulation; Sacramento River, Isleton, CA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-19

    ... maintenance on the drawbridge. This deviation allows single leaf operation of the double leaf bascule style... required by 33 CFR 117.189(a). Navigation on the waterway is commercial and recreational. Either leaf of.... The opposite leaf will continue to operate normally, providing unlimited vertical clearance and 83...

  3. 7 CFR 29.2662 - Heavy Leaf (B Group).

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 2 2013-01-01 2013-01-01 false Heavy Leaf (B Group). 29.2662 Section 29.2662... REGULATIONS TOBACCO INSPECTION Standards Grades § 29.2662 Heavy Leaf (B Group). This group consists of leaves... Leaf. Medium body, ripe, firm, oily, elastic, strong, bright finish, deep color intensity, normal width...

  4. 7 CFR 29.2662 - Heavy Leaf (B Group).

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 2 2012-01-01 2012-01-01 false Heavy Leaf (B Group). 29.2662 Section 29.2662... REGULATIONS TOBACCO INSPECTION Standards Grades § 29.2662 Heavy Leaf (B Group). This group consists of leaves... Leaf. Medium body, ripe, firm, oily, elastic, strong, bright finish, deep color intensity, normal width...

  5. Identification of phenolic compounds from the leaf part of Teucrium pseudo-Scorodonia Desf. collected from Algeria.

    PubMed

    Belarbi, Karima; Atik-Bekkara, Fawzia; El Haci, Imad Abdelhamid; Bensaid, Ilhem; Bekhechi, Chahrazed

    2018-02-01

    In the present paper,we reported for the first time, the identification of the phenolic compounds in butanolic fraction obtained from the leaf part of Teucrium pseudo-Scorodonia Desf. collected from Algeria using RP-HPLC-PDA (Reversed Phase High Performance Liquid Chromatography/Photo Diode Array) technique. Several standards were used for this purpose. The analysis led to the identification of six phenolic acids (ferulic, sinapic, rosmarinic, syringique, caffeic, p-coumaric acids) and one flavonoid (rutin), the last one, has interesting pharmacological properties.

  6. Biological effect of fluoride on plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Collet, G.F.

    1969-10-01

    The action of several fluorine compounds was studied by means of hydroponics. Seedlings of several species were used. In leaves of Prunus armeniaca, a good correlation between the extent of necrosis and the leaf's total fluorine content was noted. Boron plays a spectacular role as it enhances the expected fluorine accumulation. Similar results were obtained with other plant material, an observation which suggests that this phenomenon is universal in plant life. Fluorine accumulation and leaf damage due to fluorine depend upon the chemical nature of the fluorine compound. 11 references, 3 figures, 2 tables.

  7. Arabidopsis Type II Phosphatidylinositol 4-Kinase PI4Kγ5 Regulates Auxin Biosynthesis and Leaf Margin Development through Interacting with Membrane-Bound Transcription Factor ANAC078

    PubMed Central

    Tan, Shu-Tang; Xue, Hong-Wei

    2016-01-01

    Normal leaf margin development is important for leaf morphogenesis and contributes to diverse leaf shapes in higher plants. We here show the crucial roles of an atypical type II phosphatidylinositol 4-kinase, PI4Kγ5, in Arabidopsis leaf margin development. PI4Kγ5 presents a dynamics expression pattern along with leaf development and a T-DNA mutant lacking PI4Kγ5, pi4kγ5–1, presents serrated leaves, which is resulted from the accelerated cell division and increased auxin concentration at serration tips. Studies revealed that PI4Kγ5 interacts with and phosphorylates a membrane-bound NAC transcription factor, ANAC078. Previous studies demonstrated that membrane-bound transcription factors regulate gene transcription by undergoing proteolytic process to translocate into nucleus, and ANAC078 undergoes proteolysis by cleaving off the transmembrane region and carboxyl terminal. Western blot analysis indeed showed that ANAC078 deleting of carboxyl terminal is significantly reduced in pi4kγ5–1, indicating that PI4Kγ5 is important for the cleavage of ANAC078. This is consistent with the subcellular localization observation showing that fluorescence by GFP-ANAC078 is detected at plasma membrane but not nucleus in pi4kγ5–1 mutant and that expression of ANAC078 deleting of carboxyl terminal, driven by PI4Kγ5 promoter, could rescue the leaf serration defects of pi4kγ5–1. Further analysis showed that ANAC078 suppresses the auxin synthesis by directly binding and regulating the expression of auxin synthesis-related genes. These results indicate that PI4Kγ5 interacts with ANAC078 to negatively regulate auxin synthesis and hence influences cell proliferation and leaf development, providing informative clues for the regulation of in situ auxin synthesis and cell division, as well as the cleavage and functional mechanism of membrane-bound transcription factors. PMID:27529511

  8. Assessment of the antimobial activity of olive leaf extract against foodborne bacterial pathogens

    USDA-ARS?s Scientific Manuscript database

    Olive leaf extract (OLE) has been used traditionally as an herbal supplement since it contains polyphenolic compounds with beneficial properties ranging from increasing energy levels, lowering blood pressure, and supporting the cardiovascular and immune systems. In addition to the beneficial effect...

  9. Potential impact of soil microbiomes on the leaf metabolome and on herbivore feeding behavior

    USDA-ARS?s Scientific Manuscript database

    : It is known that environmental factors can affect the biosynthesis of leaf metabolites. Similarly, specific pairwise plant-microbe interactions modulate specifically the plant’s metabolome by stimulating production of phytoalexins and other defense-related compounds. However, there is no informati...

  10. Contrasting cDNA-AFLP profiles between crown and leaf tissues of cold-acclimated wheat plants indicate differing regulatory circuitries for low temperature tolerance.

    PubMed

    Ganeshan, Seedhabadee; Sharma, Pallavi; Young, Lester; Kumar, Ashwani; Fowler, D Brian; Chibbar, Ravindra N

    2011-03-01

    Low-temperature (LT) tolerance in winter wheat (Triticum aestivum L.) is an economically important but complex trait. Four selected wheat genotypes, a winter hardy cultivar, Norstar, a tender spring cultivar, Manitou and two near-isogenic lines with Vrn-A1 (spring Norstar) and vrn-A1 (winter Manitou) alleles of Manitou and Norstar were cold-acclimated at 6°C and crown and leaf tissues were collected at 0, 2, 14, 21, 35, 42, 56 and 70 days of cold acclimation. cDNA-AFLP profiling was used to determine temporal expression profiles of transcripts during cold-acclimation in crown and leaf tissues, separately to determine if LT regulatory circuitries in crown and leaf tissues could be delineated using this approach. Screening 64 primer combinations identified 4,074 and 2,757 differentially expressed transcript-derived fragments (TDFs) out of which 38 and 16% were up-regulated as compared to 3 and 6% that were down-regulated in crown and leaf tissues, respectively. DNA sequencing of TDFs revealed sequences common to both tissues including genes coding for DEAD-box RNA helicase, choline-phosphate cytidylyltransferase and delta-1-pyrroline carboxylate synthetase. TDF specific to crown tissues included genes coding for phospahtidylinositol kinase, auxin response factor protein and brassinosteroid insensitive 1-associated receptor kinase. In leaf, genes such as methylene tetrahydrofolate reductase, NADH-cytochrome b5 reductase and malate dehydrogenase were identified. However, 30 and 14% of the DNA sequences from the crown and leaf tissues, respectively, were hypothetical or unknown proteins. Cluster analysis of up-, down-regulated and unique TDFs, DNA sequence and real-time PCR validation, infer that mechanisms operating in crown and leaf tissue in response to LT are differently regulated and warrant further studies.

  11. Characterization of a Null Allelic Mutant of the Rice NAL1 Gene Reveals Its Role in Regulating Cell Division

    PubMed Central

    Jiang, Dan; Fang, Jingjing; Lou, Lamei; Zhao, Jinfeng; Yuan, Shoujiang; Yin, Liang; Sun, Wei; Peng, Lixiang; Guo, Baotai; Li, Xueyong

    2015-01-01

    Leaf morphology is closely associated with cell division. In rice, mutations in Narrow leaf 1 (NAL1) show narrow leaf phenotypes. Previous studies have shown that NAL1 plays a role in regulating vein patterning and increasing grain yield in indica cultivars, but its role in leaf growth and development remains unknown. In this report, we characterized two allelic mutants of NARROW LEAF1 (NAL1), nal1-2 and nal1-3, both of which showed a 50% reduction in leaf width and length, as well as a dwarf culm. Longitudinal and transverse histological analyses of leaves and internodes revealed that cell division was suppressed in the anticlinal orientation but enhanced in the periclinal orientation in the mutants, while cell size remained unaltered. In addition to defects in cell proliferation, the mutants showed abnormal midrib in leaves. Map-based cloning revealed that nal1-2 is a null allelic mutant of NAL1 since both the whole promoter and a 404-bp fragment in the first exon of NAL1 were deleted, and that a 6-bp fragment was deleted in the mutant nal1-3. We demonstrated that NAL1 functions in the regulation of cell division as early as during leaf primordia initiation. The altered transcript level of G1- and S-phase-specific genes suggested that NAL1 affects cell cycle regulation. Heterogenous expression of NAL1 in fission yeast (Schizosaccharomyces pombe) further supported that NAL1 affects cell division. These results suggest that NAL1 controls leaf width and plant height through its effects on cell division. PMID:25658704

  12. Development of Long Chain Alkyl Diol δD as a Paleohydrological Proxy

    NASA Astrophysics Data System (ADS)

    Neary, A.; Russell, J. M.; Cordero, D.

    2017-12-01

    Understanding past hydroclimate is important to better understand and prepare for future climate changes. Past hydrological change is often studied through δD of lipid biomarkers preserved in sediment. Long chain alkyl diols are lipid biomarkers that are widely distributed in lake and marine sediments. These compounds are produced by certain species of diatoms and algae (Eustigmatophytes). Diol δD is expected to record relative precipitation and evaporation, and other lake surface processes. This would be a valuable addition to the repertoire of organic compounds used for hydrologic reconstruction, such as leaf waxes which record precipitation. While long chain alkyl diols present an opportunity to expand the range of compounds available for compound specific isotope analysis, studies of diol δD are scarce. This study aims to compare diol and leaf wax δD records from Lake Tanganyika spanning approximately the past 20 kyrs in order to elucidate the controlling factors on diol δD values and evaluate the effectiveness of such a record as a paleohydrological proxy. If viable, diol δD records could be used to gain a deeper understanding of past climates. δD leaf wax records have been previously measured in Lake Tanganyika cores (Tierney et al., 2008). This study measures δD of long chain alkyl diols from the same cores in order to compare records. Our current measurements show significant deviations of the diol record from the leaf wax record at times when large magnitude changes in the leaf wax record are occurring, such as a less pronounced Younger Dryas and a more gradual decrease in δD values after Heinrich 1 than the sudden shift expressed by the leaf wax record. In addition to generating a diol δD record through time at Lake Tanganyika, we have also measured diol δD in surface sediments from several east African lakes in order to examine the potential for a proxy calibration. A positive correlation between diol and lake water δD has been observed, suggesting that lake water δD is the primary control while other environmental factors may also effect diol δD values.

  13. 7 CFR 29.2663 - Thin Leaf (C Group).

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 2 2014-01-01 2014-01-01 false Thin Leaf (C Group). 29.2663 Section 29.2663... REGULATIONS TOBACCO INSPECTION Standards Grades § 29.2663 Thin Leaf (C Group). This group consists of leaves that are thin in body. Grades Grade names and specifications C1L Choice Light-brown Thin Leaf. Thin...

  14. 7 CFR 30.1 - Definitions of terms used in classification of leaf tobacco.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Definitions of terms used in classification of leaf... STANDARD CONTAINER REGULATIONS TOBACCO STOCKS AND STANDARDS Classification of Leaf Tobacco Covering Classes, Types and Groups of Grades § 30.1 Definitions of terms used in classification of leaf tobacco. For the...

  15. 7 CFR 51.1220 - Leaf or limb rub injury.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 2 2014-01-01 2014-01-01 false Leaf or limb rub injury. 51.1220 Section 51.1220 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards... Leaf or limb rub injury. “Leaf or limb rub injury” means that the scarring is not smooth, not light...

  16. 7 CFR 30.1 - Definitions of terms used in classification of leaf tobacco.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 2 2014-01-01 2014-01-01 false Definitions of terms used in classification of leaf... STANDARD CONTAINER REGULATIONS TOBACCO STOCKS AND STANDARDS Classification of Leaf Tobacco Covering Classes, Types and Groups of Grades § 30.1 Definitions of terms used in classification of leaf tobacco. For the...

  17. 7 CFR 29.2663 - Thin Leaf (C Group).

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false Thin Leaf (C Group). 29.2663 Section 29.2663... REGULATIONS TOBACCO INSPECTION Standards Grades § 29.2663 Thin Leaf (C Group). This group consists of leaves that are thin in body. Grades Grade names and specifications C1L Choice Light-brown Thin Leaf. Thin...

  18. 76 FR 55563 - Drawbridge Operation Regulation; Steamboat Slough, Grand Island, CA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-08

    ... maintenance on the drawbridge. This deviation allows single leaf operation of the double leaf bascule style.... Navigation on the waterway is commercial and recreational. Either leaf of the double bascule drawspan may be... allow Caltrans to conduct painting and maintenance on the bridge. The opposite leaf will continue to...

  19. 7 CFR 30.43 - Class 8; Foreign-grown cigar-leaf types.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 2 2014-01-01 2014-01-01 false Class 8; Foreign-grown cigar-leaf types. 30.43 Section... CONTAINER REGULATIONS TOBACCO STOCKS AND STANDARDS Classification of Leaf Tobacco Covering Classes, Types and Groups of Grades § 30.43 Class 8; Foreign-grown cigar-leaf types. No group divisions are...

  20. 7 CFR 29.2663 - Thin Leaf (C Group).

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Thin Leaf (C Group). 29.2663 Section 29.2663... REGULATIONS TOBACCO INSPECTION Standards Grades § 29.2663 Thin Leaf (C Group). This group consists of leaves that are thin in body. Grades Grade names and specifications C1L Choice Light-brown Thin Leaf. Thin...

  1. 7 CFR 30.1 - Definitions of terms used in classification of leaf tobacco.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false Definitions of terms used in classification of leaf... STANDARD CONTAINER REGULATIONS TOBACCO STOCKS AND STANDARDS Classification of Leaf Tobacco Covering Classes, Types and Groups of Grades § 30.1 Definitions of terms used in classification of leaf tobacco. For the...

  2. 7 CFR 30.1 - Definitions of terms used in classification of leaf tobacco.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 2 2013-01-01 2013-01-01 false Definitions of terms used in classification of leaf... STANDARD CONTAINER REGULATIONS TOBACCO STOCKS AND STANDARDS Classification of Leaf Tobacco Covering Classes, Types and Groups of Grades § 30.1 Definitions of terms used in classification of leaf tobacco. For the...

  3. 7 CFR 51.1220 - Leaf or limb rub injury.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 2 2013-01-01 2013-01-01 false Leaf or limb rub injury. 51.1220 Section 51.1220 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards... Leaf or limb rub injury. “Leaf or limb rub injury” means that the scarring is not smooth, not light...

  4. 7 CFR 30.43 - Class 8; Foreign-grown cigar-leaf types.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 2 2013-01-01 2013-01-01 false Class 8; Foreign-grown cigar-leaf types. 30.43 Section... CONTAINER REGULATIONS TOBACCO STOCKS AND STANDARDS Classification of Leaf Tobacco Covering Classes, Types and Groups of Grades § 30.43 Class 8; Foreign-grown cigar-leaf types. No group divisions are...

  5. 7 CFR 30.43 - Class 8; Foreign-grown cigar-leaf types.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false Class 8; Foreign-grown cigar-leaf types. 30.43 Section... CONTAINER REGULATIONS TOBACCO STOCKS AND STANDARDS Classification of Leaf Tobacco Covering Classes, Types and Groups of Grades § 30.43 Class 8; Foreign-grown cigar-leaf types. No group divisions are...

  6. 7 CFR 29.2663 - Thin Leaf (C Group).

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 2 2013-01-01 2013-01-01 false Thin Leaf (C Group). 29.2663 Section 29.2663... REGULATIONS TOBACCO INSPECTION Standards Grades § 29.2663 Thin Leaf (C Group). This group consists of leaves that are thin in body. Grades Grade names and specifications C1L Choice Light-brown Thin Leaf. Thin...

  7. 75 FR 23588 - Drawbridge Operation Regulation; Atlantic Intracoastal Waterway, Riviera Beach, FL

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-04

    .... This deviation allows the bridge to be placed on single- leaf operations. Double-leaf operations will... of Transportation requests a deviation allowing for single-leaf operations from May 10, 2010 through October 31, 2010. Double-leaf openings will be available with a four hour notice to the bridge tender...

  8. 7 CFR 29.2663 - Thin Leaf (C Group).

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 2 2012-01-01 2012-01-01 false Thin Leaf (C Group). 29.2663 Section 29.2663... REGULATIONS TOBACCO INSPECTION Standards Grades § 29.2663 Thin Leaf (C Group). This group consists of leaves that are thin in body. Grades Grade names and specifications C1L Choice Light-brown Thin Leaf. Thin...

  9. 7 CFR 30.43 - Class 8; Foreign-grown cigar-leaf types.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 2 2012-01-01 2012-01-01 false Class 8; Foreign-grown cigar-leaf types. 30.43 Section... CONTAINER REGULATIONS TOBACCO STOCKS AND STANDARDS Classification of Leaf Tobacco Covering Classes, Types and Groups of Grades § 30.43 Class 8; Foreign-grown cigar-leaf types. No group divisions are...

  10. 7 CFR 30.43 - Class 8; Foreign-grown cigar-leaf types.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Class 8; Foreign-grown cigar-leaf types. 30.43 Section... CONTAINER REGULATIONS TOBACCO STOCKS AND STANDARDS Classification of Leaf Tobacco Covering Classes, Types and Groups of Grades § 30.43 Class 8; Foreign-grown cigar-leaf types. No group divisions are...

  11. 7 CFR 30.1 - Definitions of terms used in classification of leaf tobacco.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 2 2012-01-01 2012-01-01 false Definitions of terms used in classification of leaf... STANDARD CONTAINER REGULATIONS TOBACCO STOCKS AND STANDARDS Classification of Leaf Tobacco Covering Classes, Types and Groups of Grades § 30.1 Definitions of terms used in classification of leaf tobacco. For the...

  12. The effect of glyphosate on import into a sink leaf of sugar beet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shieh, Wenjang; Geiger, D.R.

    1990-05-01

    The basis for glyphosate inducted limitation of carbon import into developing leaves was studied in sugar beet. To separate the effects of the herbicide on export from those on import, glyphosate was supplied to a developing leaf from two exporting source leaves which fed the sink leaf. Carbon import into the sink leaf was determined by supplying {sup 14}CO{sub 2} to a third source leaf which also supplies carbon to the monitored sink leaf. Import into the sink leaf decreased within 2 to 3 h after glyphosate application, even though photosynthesis and export in the source leaf supplying {sup 14}Cmore » were unaffected. Reduced import into the sink leaf was accompanied by increased import by the tap root. Elongation of the sink leaf was only slightly decreased following arrival of glyphosate. Photosynthesis by the sink leaf was not inhibited. The results to data support the view that import is slowed by the inhibition of synthesis of structural or storage compounds in the developing leaves.« less

  13. PHANTASTICA regulates leaf polarity and petiole identity in Medicago truncatula

    PubMed Central

    Ge, Liangfa; Chen, Rujin

    2014-01-01

    Establishment of proper polarities along the adaxial-abaxial, proximodistal, and medial-lateral axes is a critical step for the expansion of leaves from leaf primordia. It has been shown that the MYB domain protein, ASYMMETRIC LEAVES1/ROUGH SHEATH2/PHANTASTICA (collectively named ARP) plays an important role in this process. Loss of function of ARP leads to severe leaf polarity defects, such as abaxialized or needle-like leaves. In addition to its role in leaf polarity establishment, we have recently shown that the Medicago truncatula ARP gene, MtPHAN, also plays a role in leaf petiole identity regulation. We show that a mutation of MtPHAN results in petioles acquiring characteristics of the motor organ, pulvinus, including small epidermal cells with extensive cell surface modifications and altered vascular tissue development. Taken together, our results reveal a previously unidentified function of ARP in leaf development. PMID:24603499

  14. Maize YABBY Genes drooping leaf1 and drooping leaf2 Regulate Plant Architecture[OPEN

    PubMed Central

    Briggs, Sarah; Bradbury, Peter J.

    2017-01-01

    Leaf architecture directly influences canopy structure, consequentially affecting yield. We discovered a maize (Zea mays) mutant with aberrant leaf architecture, which we named drooping leaf1 (drl1). Pleiotropic mutations in drl1 affect leaf length and width, leaf angle, and internode length and diameter. These phenotypes are enhanced by natural variation at the drl2 enhancer locus, including reduced expression of the drl2-Mo17 allele in the Mo17 inbred. A second drl2 allele, produced by transposon mutagenesis, interacted synergistically with drl1 mutants and reduced drl2 transcript levels. The drl genes are required for proper leaf patterning, development and cell proliferation of leaf support tissues, and for restricting auricle expansion at the midrib. The paralogous loci encode maize CRABS CLAW co-orthologs in the YABBY family of transcriptional regulators. The drl genes are coexpressed in incipient and emergent leaf primordia at the shoot apex, but not in the vegetative meristem or stem. Genome-wide association studies using maize NAM-RIL (nested association mapping-recombinant inbred line) populations indicated that the drl loci reside within quantitative trait locus regions for leaf angle, leaf width, and internode length and identified rare single nucleotide polymorphisms with large phenotypic effects for the latter two traits. This study demonstrates that drl genes control the development of key agronomic traits in maize. PMID:28698237

  15. Olea europaea L. leaf extract and derivatives: antioxidant properties.

    PubMed

    Briante, Raffaella; Patumi, Maurizio; Terenziani, Stefano; Bismuto, Ettore; Febbraio, Ferdinando; Nucci, Roberto

    2002-08-14

    This paper reports a very simple and fast method to collect eluates with high amounts of hydroxytyrosol, biotransforming Olea europaea L. leaf extract by a thermophilic beta-glycosidase immobilized on chitosan. Some phenolic compounds in the leaf tissue and in the eluates obtained by biotransformation are identified. To propose the eluates as natural substances from a vegetal source, their antioxidant properties have been compared with those of the leaf extract from which they are originated. The eluates possess a higher concentration of simple phenols, characterized by a stronger antioxidant capacity, than those available in extra virgin olive oils and in many tablets of olive leaf extracts, commercially found as dietetic products and food integrators.

  16. Allelopathic activity and chemical constituents of walnut (Juglans regia) leaf litter in walnut-winter vegetable agroforestry system.

    PubMed

    Wang, Qian; Xu, Zheng; Hu, Tingxing; Rehman, Hafeez Ur; Chen, Hong; Li, Zhongbin; Ding, Bo; Hu, Hongling

    2014-01-01

    Walnut agroforestry systems have many ecological and economic benefits when intercropped with cool-season species. However, decomposing leaf litter is one of the main sources of allelochemicals in such systems. In this study, lettuce (Lactuca sativa var. angustata) was grown in the soil incorporated with walnut leaf litter to assess its allelopathic activity. Lettuce growth and physiological processes were inhibited by walnut leaf litter, especially during early growth stage (1-2 euphylla period) or with large amount of litter addition. The plants treated by small amount of leaf litter recovered their growth afterwards, while the inhibition for 180 g leaf litter persisted until harvest. Twenty-eight compounds were identified in the leaf litter, and several of them were reported to be phytotoxic, which may be responsible for the stress induced by walnut leaf litter. Thus, for highest economic value of vegetables such as lettuce, excessive incorporation of leaf litter should be discouraged.

  17. Eleutherococcus senticosus (Araliaceae) Leaf Morpho-Anatomy, Essential Oil Composition, and Its Biological Activity Against Aedes aegypti (Diptera: Culicidae).

    PubMed

    Zhai, Chunmei; Wang, Mei; Raman, Vijayasankar; Rehman, Junaid U; Meng, Yonghai; Zhao, Jianping; Avula, Bharathi; Wang, Yan-Hong; Khan, Zhenkun; Khan, Ikhlas A

    2017-05-01

    The roots of Eleutherococcus senticosus (Rupr. & Maxim.) Maxim., a well-known medicinal plant from Eastern Asia, are used worldwide for their known beneficial medicinal properties. Recently, the leaves have been used as an alternative to the roots. The present study was aimed at exploring the leaf essential oil as a potential source of compounds for mosquito management. Gas chromatography/mass spectrometry analysis of the leaf essential oil revealed 87 compounds, constituting 95.2% of the oil. α-Bisabolol (26.46%), β-caryophyllene (7.45%), germacrene D (6.87%), β-bisabolene (4.95%), and α-humulene (3.50%) were five of the major constituents. The essential oil was subjected to biting deterrence and repellent activity against mosquito Aedes aegypti. The biting deterrence of the oil produced a proportion not biting (PNB) value of 0.62 at 10 µg/cm2 as compared with 0.86 of control DEET (N,N-diethyl-3-methylbenzamide) at a standard dose of 25 nmol/cm2. Among individually selected compounds present in the oil (α-bisabolol, β-caryophyllene, α-humulene, and caryophyllene oxide), only α-bisabolol produced a PNB value of 0.80, equivalent to DEET at 25 nmol/cm2, whereas the others were not repellent. The artificial mixture (AMES-1) of these four selected compounds produced a relatively high PNB value of 0.80. The repellent activity measured by minimum effective dosage (MED) for α-bisabolol and α-humulene produced MED values of 0.094 and 0.104 mg/cm2, respectively, as compared with 0.023 mg/cm2 of DEET. The leaf essential oil, the artificial mixture (AMES-1), and other binary and tertiary combinations of major compounds showed no repellent activity. In addition, morpho-anatomical features of the leaf are provided for correct identification of the species. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  18. Activity of Cinnamomum osmophloeum leaf essential oil against Anopheles gambiae s.s

    PubMed Central

    2014-01-01

    Background The increasing status of insecticide resistant mosquitoes in sub-Saharan Africa is a threatening alert to the existing control efforts. All sibling species of An. gambiae complex have evolved insecticide resistance in wild populations for different approved classes of the insecticides currently in use in the field. An alternative compound for vector control is absolutely urgently needed. In this study, the larvicidal activity and chemical composition of the Cinnamomum osmophloeum leaf essential oils were investigated. Methods C. osmophloeum leaf essential oils were extracted by hydrodistillation in a Clevenger-type apparatus for 6 hours, and their chemical compositions identified using GC-MS. These oils were evaluated against An. gambiae s.s. in both laboratory and semi-field situations. The WHO test procedures for monitoring larvicidal efficacy in malaria vectors were used. Results The composition of C. osmophloeum leaf essential oil has been found to have 11 active compounds. The most abundant compound was trans-cinnamaldehyde (70.20%) and the least abundant was caryophyllene oxide (0.08%). The larvicidal activity was found to be dosage and time dependant both in laboratory and semi-field environments with mortality ranging from 0% to 100%. The LC50 value was found to vary from 22.18 to 58.15 μg/ml in the laboratory while in semi-field environments it was 11.91 to 63.63 μg/ml. The LC90 value was found to range between 57.71 to 91.54 μg/ml in the laboratory while in semi-field environments was 52.07 to 173.77 μg/ml. Mortality ranged from 13% to 100% in the laboratory while in semi-field environments it ranged between 43% to 100% within mortality recording time intervals of 12, 24, 48, and 72 hours. Conclusions The larvicidal activity shown by C. osmophloeum leaf essential oil is a promising alternative to existing larvicides or to be incorporated in integrated larval source management compounds for An. gambiae s.s control. The efficacy observed in this study is attributed to both major and minor compounds of the essential oils. PMID:24885613

  19. AN EVALUATION OF THREE EMPIRICAL AIR-TO-LEAF MODELS FOR POLYCHLORINATED DIBENZO-P-DIOXINS AND DIBENZOFURANS

    EPA Science Inventory

    Three empirical air-to-leaf models for estimating grass concentrations of polychlorinated dibenzo-p-dioxins and dibenzofurans (abbreviated dioxins and furans) from air concentrations of these compounds are described and tested against two field data sets. All are empirical in th...

  20. Large Drought-Induced Variations in Oak Leaf Volatile Organic Compound Emissions during PINOT NOIR 2012

    EPA Science Inventory

    Leaf-level isoprene and monoterpene emissions were collected and analyzed from five of the most abundant oak (Quercus) species in Central Missouri’s Ozarks Region in 2012 during PINOT NOIR (Particle Investigations at a Northern Ozarks Tower ‐ NOx, Oxidants, Isoprene Research). Ju...

  1. BrWRKY65, a WRKY Transcription Factor, Is Involved in Regulating Three Leaf Senescence-Associated Genes in Chinese Flowering Cabbage.

    PubMed

    Fan, Zhong-Qi; Tan, Xiao-Li; Shan, Wei; Kuang, Jian-Fei; Lu, Wang-Jin; Chen, Jian-Ye

    2017-06-08

    Plant-specific WRKY transcription factors (TFs) have been implicated to function as regulators of leaf senescence, but their association with postharvest leaf senescence of economically important leafy vegetables, is poorly understood. In this work, the characterization of a Group IIe WRKY TF, BrWRKY65, from Chinese flowering cabbage ( Brassica rapa var. parachinensis) is reported. The expression of BrWRKY65 was up-regulated following leaf chlorophyll degradation and yellowing during postharvest senescence. Subcellular localization and transcriptional activation assays showed that BrWRKY65 was localized in the nucleus and exhibited trans-activation ability. Further electrophoretic mobility shift assay (EMSA) and transient expression analysis clearly revealed that BrWRKY65 directly bound to the W-box motifs in the promoters of three senescence-associated genes ( SAGs ) such as BrNYC1 and BrSGR1 associated with chlorophyll degradation, and BrDIN1 , and subsequently activated their expressions. These findings demonstrate that BrWRKY65 may be positively associated with postharvest leaf senescence, at least partially, by the direct activation of SAGs . Taken together, these findings provide new insights into the transcriptional regulatory mechanism of postharvest leaf senescence in Chinese flowering cabbage.

  2. Functional Conservation of PISTILLATA Activity in a Pea Homolog Lacking the PI Motif1

    PubMed Central

    Berbel, Ana; Navarro, Cristina; Ferrándiz, Cristina; Cañas, Luis Antonio; Beltrán, José-Pío; Madueño, Francisco

    2005-01-01

    Current understanding of floral development is mainly based on what we know from Arabidopsis (Arabidopsis thaliana) and Antirrhinum majus. However, we can learn more by comparing developmental mechanisms that may explain morphological differences between species. A good example comes from the analysis of genes controlling flower development in pea (Pisum sativum), a plant with more complex leaves and inflorescences than Arabidopsis and Antirrhinum, and a different floral ontogeny. The analysis of UNIFOLIATA (UNI) and STAMINA PISTILLOIDA (STP), the pea orthologs of LEAFY and UNUSUAL FLORAL ORGANS, has revealed a common link in the regulation of flower and leaf development not apparent in Arabidopsis. While the Arabidopsis genes mainly behave as key regulators of flower development, where they control the expression of B-function genes, UNI and STP also contribute to the development of the pea compound leaf. Here, we describe the characterization of P. sativum PISTILLATA (PsPI), a pea MADS-box gene homologous to B-function genes like PI and GLOBOSA (GLO), from Arabidopsis and Antirrhinum, respectively. PsPI encodes for an atypical PI-type polypeptide that lacks the highly conserved C-terminal PI motif. Nevertheless, constitutive expression of PsPI in tobacco (Nicotiana tabacum) and Arabidopsis shows that it can specifically replace the function of PI, being able to complement the strong pi-1 mutant. Accordingly, PsPI expression in pea flowers, which is dependent on STP, is identical to PI and GLO. Interestingly, PsPI is also transiently expressed in young leaves, suggesting a role of PsPI in pea leaf development, a possibility that fits with the established role of UNI and STP in the control of this process. PMID:16113230

  3. Genes Involved in the Evolution of Herbivory by a Leaf-Mining, Drosophilid Fly

    PubMed Central

    Whiteman, Noah K.; Gloss, Andrew D.; Sackton, Timothy B.; Groen, Simon C.; Humphrey, Parris T.; Lapoint, Richard T.; Sønderby, Ida E.; Halkier, Barbara A.; Kocks, Christine; Ausubel, Frederick M.; Pierce, Naomi E.

    2012-01-01

    Herbivorous insects are among the most successful radiations of life. However, we know little about the processes underpinning the evolution of herbivory. We examined the evolution of herbivory in the fly, Scaptomyza flava, whose larvae are leaf miners on species of Brassicaceae, including the widely studied reference plant, Arabidopsis thaliana (Arabidopsis). Scaptomyza flava is phylogenetically nested within the paraphyletic genus Drosophila, and the whole genome sequences available for 12 species of Drosophila facilitated phylogenetic analysis and assembly of a transcriptome for S. flava. A time-calibrated phylogeny indicated that leaf mining in Scaptomyza evolved between 6 and 16 million years ago. Feeding assays showed that biosynthesis of glucosinolates, the major class of antiherbivore chemical defense compounds in mustard leaves, was upregulated by S. flava larval feeding. The presence of glucosinolates in wild-type (WT) Arabidopsis plants reduced S. flava larval weight gain and increased egg–adult development time relative to flies reared in glucosinolate knockout (GKO) plants. An analysis of gene expression differences in 5-day-old larvae reared on WT versus GKO plants showed a total of 341 transcripts that were differentially regulated by glucosinolate uptake in larval S. flava. Of these, approximately a third corresponded to homologs of Drosophila melanogaster genes associated with starvation, dietary toxin-, heat-, oxidation-, and aging-related stress. The upregulated transcripts exhibited elevated rates of protein evolution compared with unregulated transcripts. The remaining differentially regulated transcripts also contained a higher proportion of novel genes than the unregulated transcripts. Thus, the transition to herbivory in Scaptomyza appears to be coupled with the evolution of novel genes and the co-option of conserved stress-related genes. PMID:22813779

  4. The role of ANAC072 in the regulation of chlorophyll degradation during age- and dark-induced leaf senescence.

    PubMed

    Li, Shou; Gao, Jiong; Yao, Lingya; Ren, Guodong; Zhu, Xiaoyu; Gao, Shan; Qiu, Kai; Zhou, Xin; Kuai, Benke

    2016-08-01

    ANAC072 positively regulates both age- and dark-induced leaf senescence through activating the transcription of NYE1. Leaf senescence is integral to plant development, which is age-dependent and strictly regulated by internal and environmental signals. Although a number of senescence-related mutants and senescence-associated genes (SAGs) have been identified and characterized in the past decades, the general regulatory network of leaf senescence is still far from being elucidated. Here, we report the role of ANAC072, an SAG identified through bioinformatics analysis, in the regulation of chlorophyll degradation during natural and dark-induced leaf senescence. The expression of ANAC072 was increased with advancing leaf senescence in Arabidopsis. Leaf degreening was significantly delayed under normal or dark-induced conditions in anac072-1, a knockout mutant of ANAC072, with a higher chlorophyll level detected. In contrast, an overexpression mutant, anac072-2, with ANAC072 transcription markedly upregulated, showed an early leaf-yellowing phenotype. Consistently, senescent leaves of the loss-of-function mutant anac072-1 exhibited delays in the decrease of photosynthesis efficiency of photosystem II (F v/F m ratio) and the increase of plasma membrane ion leakage rate as compared with corresponding leaves of wild-type Col-0 plants, whereas the overexpression mutant anac072-2 showed opposite changes. Our data suggest that ANAC072 plays a positive role during natural and dark-induced leaf senescence. In addition, the transcript level of NYE1, a key regulatory gene in chlorophyll degradation, relied on the function of ANAC072. Combining these analyses with electrophoretic mobility shift assay and chromatin immunoprecipitation, we demonstrated that ANAC072 directly bound to the NYE1 promoter in vitro and in vivo, so ANAC072 may promote chlorophyll degradation by directly upregulating the expression of NYE1.

  5. Genetic Dissection of Leaf Development in Brassica rapa Using a Genetical Genomics Approach1[W

    PubMed Central

    Xiao, Dong; Wang, Huange; Basnet, Ram Kumar; Zhao, Jianjun; Lin, Ke; Hou, Xilin; Bonnema, Guusje

    2014-01-01

    The paleohexaploid crop Brassica rapa harbors an enormous reservoir of morphological variation, encompassing leafy vegetables, vegetable and fodder turnips (Brassica rapa, ssp. campestris), and oil crops, with different crops having very different leaf morphologies. In the triplicated B. rapa genome, many genes have multiple paralogs that may be regulated differentially and contribute to phenotypic variation. Using a genetical genomics approach, phenotypic data from a segregating doubled haploid population derived from a cross between cultivar Yellow sarson (oil type) and cultivar Pak choi (vegetable type) were used to identify loci controlling leaf development. Twenty-five colocalized phenotypic quantitative trait loci (QTLs) contributing to natural variation for leaf morphological traits, leaf number, plant architecture, and flowering time were identified. Genetic analysis showed that four colocalized phenotypic QTLs colocalized with flowering time and leaf trait candidate genes, with their cis-expression QTLs and cis- or trans-expression QTLs for homologs of genes playing a role in leaf development in Arabidopsis (Arabidopsis thaliana). The leaf gene BRASSICA RAPA KIP-RELATED PROTEIN2_A03 colocalized with QTLs for leaf shape and plant height; BRASSICA RAPA ERECTA_A09 colocalized with QTLs for leaf color and leaf shape; BRASSICA RAPA LONGIFOLIA1_A10 colocalized with QTLs for leaf size, leaf color, plant branching, and flowering time; while the major flowering time gene, BRASSICA RAPA FLOWERING LOCUS C_A02, colocalized with QTLs explaining variation in flowering time, plant architectural traits, and leaf size. Colocalization of these QTLs points to pleiotropic regulation of leaf development and plant architectural traits in B. rapa. PMID:24394778

  6. Dynamic Cytology and Transcriptional Regulation of Rice Lamina Joint Development1[OPEN

    PubMed Central

    2017-01-01

    Rice (Oryza sativa) leaf angle is determined by lamina joint and is an important agricultural trait determining leaf erectness and, hence, the photosynthesis efficiency and grain yield. Genetic studies reveal a complex regulatory network of lamina joint development; however, the morphological changes, cytological transitions, and underlying transcriptional programming remain to be elucidated. A systemic morphological and cytological study reveals a dynamic developmental process and suggests a common but distinct regulation of the lamina joint. Successive and sequential cell division and expansion, cell wall thickening, and programmed cell death at the adaxial or abaxial sides form the cytological basis of the lamina joint, and the increased leaf angle results from the asymmetric cell proliferation and elongation. Analysis of the gene expression profiles at four distinct developmental stages ranging from initiation to senescence showed that genes related to cell division and growth, hormone synthesis and signaling, transcription (transcription factors), and protein phosphorylation (protein kinases) exhibit distinct spatiotemporal patterns during lamina joint development. Phytohormones play crucial roles by promoting cell differentiation and growth at early stages or regulating the maturation and senescence at later stages, which is consistent with the quantitative analysis of hormones at different stages. Further comparison with the gene expression profile of leaf inclination1, a mutant with decreased auxin and increased leaf angle, indicates the coordinated effects of hormones in regulating lamina joint. These results reveal a dynamic cytology of rice lamina joint that is fine-regulated by multiple factors, providing informative clues for illustrating the regulatory mechanisms of leaf angle and plant architecture. PMID:28500269

  7. Dynamic Cytology and Transcriptional Regulation of Rice Lamina Joint Development.

    PubMed

    Zhou, Li-Juan; Xiao, Lang-Tao; Xue, Hong-Wei

    2017-07-01

    Rice ( Oryza sativa ) leaf angle is determined by lamina joint and is an important agricultural trait determining leaf erectness and, hence, the photosynthesis efficiency and grain yield. Genetic studies reveal a complex regulatory network of lamina joint development; however, the morphological changes, cytological transitions, and underlying transcriptional programming remain to be elucidated. A systemic morphological and cytological study reveals a dynamic developmental process and suggests a common but distinct regulation of the lamina joint. Successive and sequential cell division and expansion, cell wall thickening, and programmed cell death at the adaxial or abaxial sides form the cytological basis of the lamina joint, and the increased leaf angle results from the asymmetric cell proliferation and elongation. Analysis of the gene expression profiles at four distinct developmental stages ranging from initiation to senescence showed that genes related to cell division and growth, hormone synthesis and signaling, transcription (transcription factors), and protein phosphorylation (protein kinases) exhibit distinct spatiotemporal patterns during lamina joint development. Phytohormones play crucial roles by promoting cell differentiation and growth at early stages or regulating the maturation and senescence at later stages, which is consistent with the quantitative analysis of hormones at different stages. Further comparison with the gene expression profile of leaf inclination1 , a mutant with decreased auxin and increased leaf angle, indicates the coordinated effects of hormones in regulating lamina joint. These results reveal a dynamic cytology of rice lamina joint that is fine-regulated by multiple factors, providing informative clues for illustrating the regulatory mechanisms of leaf angle and plant architecture. © 2017 American Society of Plant Biologists. All Rights Reserved.

  8. Ecological regulation of black leaf streak disease driven by plant richness in banana agroecosystems.

    PubMed

    Poeydebat, Charlotte; Carval, Dominique; Tixier, Philippe; Daribo, Marie-Odette; De Lapeyre De Bellaire, Luc

    2018-05-04

    Black leaf streak disease (BLSD), caused by the fungus Mycosphaerella fijiensis, is an important threat to banana production. Although its control relies on costly and unsustainable use of fungicides, ecological regulation of BLSD linked to field-scale plant diversity has received little attention. We monitored banana phytometers in plots in banana-based fields where no fungicides were applied. Within each plot, we measured plant richness in three strata, canopy openness, necrotic leaf removal, Musa abundance and richness. We quantified ecological regulation of five BLSD parameters (inoculum sources, spore abundance, lesion density, incubation time, and the area under the disease progression curve) and identified, using structural equation modeling, the characteristics of the plant community and the mechanisms likely responsible for the regulation. Regulation occurred, but most effectively before lesion formation, and was mainly related to plant richness between 1.5 and 5m high. A barrier effect, rather than a dilution effect, more likely limited spore abundance. Our results support the hypothesis that the potential effects of plant richness on leaf-scale microclimate variability and on the diversity of epiphyllic microorganisms are involved in the regulation of incubation time and lesion density. Field-scale management of plant diversity may be a promising lever to foster ecological regulation of BLSD.

  9. Species-Independent Down-Regulation of Leaf Photosynthesis and Respiration in Response to Shading: Evidence from Six Temperate Tree Species

    PubMed Central

    Chen, Anping; Lichstein, Jeremy W.; Osnas, Jeanne L. D.; Pacala, Stephen W.

    2014-01-01

    The ability to down-regulate leaf maximum net photosynthetic capacity (Amax) and dark respiration rate (Rdark) in response to shading is thought to be an important adaptation of trees to the wide range of light environments that they are exposed to across space and time. A simple, general rule that accurately described this down-regulation would improve carbon cycle models and enhance our understanding of how forest successional diversity is maintained. In this paper, we investigated the light response of Amax and Rdark for saplings of six temperate forest tree species in New Jersey, USA, and formulated a simple model of down-regulation that could be incorporated into carbon cycle models. We found that full-sun values of Amax and Rdark differed significantly among species, but the rate of down-regulation (proportional decrease in Amax or Rdark relative to the full-sun value) in response to shade was not significantly species- or taxon-specific. Shade leaves of sun-grown plants appear to follow the same pattern of down-regulation in response to shade as leaves of shade-grown plants. Given the light level above a leaf and one species-specific number (either the full-sun Amax or full-sun Rdark), we provide a formula that can accurately predict the leaf's Amax and Rdark. We further show that most of the down regulation of per unit area Rdark and Amax is caused by reductions in leaf mass per unit area (LMA): as light decreases, leaves get thinner, while per unit mass Amax and Rdark remain approximately constant. PMID:24727745

  10. 7 CFR 30.36 - Class 1; flue-cured types and groups.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... REGULATIONS TOBACCO STOCKS AND STANDARDS Classification of Leaf Tobacco Covering Classes, Types and Groups of... extent, in Alabama. Groups applicable to types 11, 12, 13, and 14: A—Wrappers. B—Leaf. H—Smoking Leaf. C...

  11. 7 CFR 30.36 - Class 1; flue-cured types and groups.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... REGULATIONS TOBACCO STOCKS AND STANDARDS Classification of Leaf Tobacco Covering Classes, Types and Groups of... extent, in Alabama. Groups applicable to types 11, 12, 13, and 14: A—Wrappers. B—Leaf. H—Smoking Leaf. C...

  12. 7 CFR 30.37 - Class 2; fire-cured types and groups.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... REGULATIONS TOBACCO STOCKS AND STANDARDS Classification of Leaf Tobacco Covering Classes, Types and Groups of.... Groups applicable to types 21, 22, and 23: A—Wrappers. B—Heavy Leaf. C—Thin Leaf. X—Lugs. N—Nondescript...

  13. 7 CFR 30.36 - Class 1; flue-cured types and groups.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... REGULATIONS TOBACCO STOCKS AND STANDARDS Classification of Leaf Tobacco Covering Classes, Types and Groups of... extent, in Alabama. Groups applicable to types 11, 12, 13, and 14: A—Wrappers. B—Leaf. H—Smoking Leaf. C...

  14. 7 CFR 30.36 - Class 1; flue-cured types and groups.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... REGULATIONS TOBACCO STOCKS AND STANDARDS Classification of Leaf Tobacco Covering Classes, Types and Groups of... extent, in Alabama. Groups applicable to types 11, 12, 13, and 14: A—Wrappers. B—Leaf. H—Smoking Leaf. C...

  15. 7 CFR 30.36 - Class 1; flue-cured types and groups.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... REGULATIONS TOBACCO STOCKS AND STANDARDS Classification of Leaf Tobacco Covering Classes, Types and Groups of... extent, in Alabama. Groups applicable to types 11, 12, 13, and 14: A—Wrappers. B—Leaf. H—Smoking Leaf. C...

  16. 7 CFR 30.37 - Class 2; fire-cured types and groups.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... REGULATIONS TOBACCO STOCKS AND STANDARDS Classification of Leaf Tobacco Covering Classes, Types and Groups of.... Groups applicable to types 21, 22, and 23: A—Wrappers. B—Heavy Leaf. C—Thin Leaf. X—Lugs. N—Nondescript...

  17. 7 CFR 30.37 - Class 2; fire-cured types and groups.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... REGULATIONS TOBACCO STOCKS AND STANDARDS Classification of Leaf Tobacco Covering Classes, Types and Groups of.... Groups applicable to types 21, 22, and 23: A—Wrappers. B—Heavy Leaf. C—Thin Leaf. X—Lugs. N—Nondescript...

  18. 7 CFR 30.37 - Class 2; fire-cured types and groups.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... REGULATIONS TOBACCO STOCKS AND STANDARDS Classification of Leaf Tobacco Covering Classes, Types and Groups of.... Groups applicable to types 21, 22, and 23: A—Wrappers. B—Heavy Leaf. C—Thin Leaf. X—Lugs. N—Nondescript...

  19. 7 CFR 30.37 - Class 2; fire-cured types and groups.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... REGULATIONS TOBACCO STOCKS AND STANDARDS Classification of Leaf Tobacco Covering Classes, Types and Groups of.... Groups applicable to types 21, 22, and 23: A—Wrappers. B—Heavy Leaf. C—Thin Leaf. X—Lugs. N—Nondescript...

  20. Phytochemistry and heamatological potential of ethanol seed leaf and pulp extracts of Carica papaya (Linn.).

    PubMed

    Ikpeme, E V; Ekaluo, U B; Kooffreh, M E; Udensi, O

    2011-03-15

    This study was aimed at qualitative evaluation of the ethanol seed, leaf and pulp extracts of C. papaya for bioactive compounds and also to investigate their effect on the haematology in male albino rats. A 3 x 4 factorial experimental layout using randomized complete design was adopted. Results show that the phytochemicals found in seed, leaf and pulp were almost the same but however, in varying proportions. Present result also revealed that there were significant effects (p < 0.05) of the extracts on the heamatology of the treated rats, which was blamed on the varying and different variants ofbioactive compounds found in the extracts they were administered with. Suggestively, C. papaya extracts could be used to enhance the production of selected blood parameters, taking issue of dosage into consideration.

  1. Using Perls Staining to Trace the Iron Uptake Pathway in Leaves of a Prunus Rootstock Treated with Iron Foliar Fertilizers

    PubMed Central

    Rios, Juan J.; Carrasco-Gil, Sandra; Abadía, Anunciación; Abadía, Javier

    2016-01-01

    The aim of this study was to trace the Fe uptake pathway in leaves of Prunus rootstock (GF 677; Prunus dulcis × Prunus persica) plants treated with foliar Fe compounds using the Perls blue method, which detects labile Fe pools. Young expanded leaves of Fe-deficient plants grown in nutrient solution were treated with Fe-compounds using a brush. Iron compounds used were the ferrous salt FeSO4, the ferric salts Fe2(SO4)3 and FeCl3, and the chelate Fe(III)-EDTA, all of them at concentrations of 9 mM Fe. Leaf Fe concentration increases were measured at 30, 60, 90 min, and 24 h, and 70 μm-thick leaf transversal sections were obtained with a vibrating microtome and stained with Perls blue. In vitro results show that the Perls blue method is a good tool to trace the Fe uptake pathway in leaves when using Fe salts, but is not sensitive enough when using synthetic Fe(III)-chelates such as Fe(III)-EDTA and Fe(III)-IDHA. Foliar Fe fertilization increased leaf Fe concentrations with all Fe compounds used, with inorganic Fe salts causing larger leaf Fe concentration increases than Fe(III)-EDTA. Results show that Perls blue stain appeared within 30 min in the stomatal areas, indicating that Fe applied as inorganic salts was taken up rapidly via stomata. In the case of using FeSO4 a progression of the stain was seen with time toward vascular areas in the leaf blade and the central vein, whereas in the case of Fe(III) salts the stain mainly remained in the stomatal areas. Perls stain was never observed in the mesophyll areas, possibly due to the low concentration of labile Fe pools. PMID:27446123

  2. Sesquiterpene Lactone Composition and Cellular Nrf2 Induction of Taraxacum officinale Leaves and Roots and Taraxinic Acid β-d-Glucopyranosyl Ester.

    PubMed

    Esatbeyoglu, Tuba; Obermair, Betina; Dorn, Tabea; Siems, Karsten; Rimbach, Gerald; Birringer, Marc

    2017-01-01

    Taraxacum officinale, the common dandelion, is a plant of the Asteraceae family, which is used as a food and medical herb. Various secondary plant metabolites such as sesquiterpene lactones, triterpenoids, flavonoids, phenolic acids, coumarins, and steroids have been described to be present in T. officinale. Dandelion may exhibit various health benefits, including antioxidant, anti-inflammatory, and anticarcinogenic properties. We analyzed the leaves and roots of the common dandelion (T. officinale) using high-performance liquid chromatography/mass spectrometry to determine its sesquiterpene lactone composition. The main compound of the leaf extract taraxinic acid β-d-glucopyranosyl ester (1), a sesquiterpene lactone, was isolated and the structure elucidation was conducted by nuclear magnetic resonance spectrometry. The leaf extract and its main compound 1 activated the transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2) in human hepatocytes more significantly than the root extract. Furthermore, the leaf extract induced the Nrf2 target gene heme oxygenase 1. Overall, present data suggest that compound 1 may be one of the active principles of T. officinale.

  3. Antibacterial activity-guided purification and identification of a novel C-20 oxygenated ent-kaurane from Rabdosia serra (MAXIM.) HARA.

    PubMed

    Lin, Lianzhu; Zhu, Dashuai; Zou, Linwu; Yang, Bao; Zhao, Mouming

    2013-08-15

    The objective of this work was to conduct an activity-guided isolation of antibacterial compounds from Rabdosia serra. The ethanol extracts of R. serra leaf and stem were partitioned sequentially into petroleum ether, ethyl acetate, butanol and water fractions, respectively. The ethanol extract of leaf evidenced broad-spectrum antibacterial activity against gram-positive bacterial, including Bacillus subtilis, Bacillus cereus, Staphylococcus aureus, and Listeria monocytogenes. The ethyl acetate fractions of leaf and stem exhibited strong inhibition against gram-positive bacteria, and were then purified further. On the basis of antibacterial assay-guided purification, three phenolic compounds (rosmarinic acid, methyl rosmarinate and pedalitin) and four C-20 oxygenated ent-kauranes (effusanin E, lasiodin, rabdosichuanin D and a new compound namely effusanin F) were obtained, whose contents were determined by HPLC analysis. The broth microdilution method confirmed the important inhibition potential of C-20 oxygenated ent-kauranes with low minimum inhibitory concentration (MIC) values. Effusanin E, lasiodin and effusanin F could be useful for the development of new antibacterial agents. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. 7 CFR 30.44 - Class 9; foreign-grown types other than cigar leaf.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Class 9; foreign-grown types other than cigar leaf. 30... STANDARD CONTAINER REGULATIONS TOBACCO STOCKS AND STANDARDS Classification of Leaf Tobacco Covering Classes, Types and Groups of Grades § 30.44 Class 9; foreign-grown types other than cigar leaf. No group...

  5. 7 CFR 30.44 - Class 9; foreign-grown types other than cigar leaf.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 2 2014-01-01 2014-01-01 false Class 9; foreign-grown types other than cigar leaf. 30... STANDARD CONTAINER REGULATIONS TOBACCO STOCKS AND STANDARDS Classification of Leaf Tobacco Covering Classes, Types and Groups of Grades § 30.44 Class 9; foreign-grown types other than cigar leaf. No group...

  6. 7 CFR 30.44 - Class 9; foreign-grown types other than cigar leaf.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 2 2013-01-01 2013-01-01 false Class 9; foreign-grown types other than cigar leaf. 30... STANDARD CONTAINER REGULATIONS TOBACCO STOCKS AND STANDARDS Classification of Leaf Tobacco Covering Classes, Types and Groups of Grades § 30.44 Class 9; foreign-grown types other than cigar leaf. No group...

  7. 7 CFR 30.44 - Class 9; foreign-grown types other than cigar leaf.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 2 2012-01-01 2012-01-01 false Class 9; foreign-grown types other than cigar leaf. 30... STANDARD CONTAINER REGULATIONS TOBACCO STOCKS AND STANDARDS Classification of Leaf Tobacco Covering Classes, Types and Groups of Grades § 30.44 Class 9; foreign-grown types other than cigar leaf. No group...

  8. 7 CFR 30.44 - Class 9; foreign-grown types other than cigar leaf.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false Class 9; foreign-grown types other than cigar leaf. 30... STANDARD CONTAINER REGULATIONS TOBACCO STOCKS AND STANDARDS Classification of Leaf Tobacco Covering Classes, Types and Groups of Grades § 30.44 Class 9; foreign-grown types other than cigar leaf. No group...

  9. Quantitative and fingerprint analyses of Chinese sweet tea plant (Rubus Suavissimus S. Lee)

    PubMed Central

    Chou, Guixin; Xu, Shun-Jun; Liu, Dong; Koh, Gar Yee; Zhang, Jian; Liu, Zhijun

    2009-01-01

    Quality of botanical food is increasingly assessed by the content of multiple bioactive compounds. In this study we report, for the first time, an HPLC fingerprinting method for the quality evaluation of Rubus suavissimus leaves possessing multiple bioactivities. Five constituents, gallic acid, rutin, ellagic acid, rubusoside, and steviol monoside were quantified and used in developing qualitative chromatographic fingerprints. The limits of detection and quantification ranged from 0.29 μg/mL to 37.86 μg/mL. The relative standard deviations (RSDs) of intra- and inter-day precisions were no more than 3.14% and 3.01%, respectively. The average recoveries were between 93.1% and 97.5%. The developed method was validated in analyzing fourteen leaf samples with satisfactory results. The contents of the five marker compounds accounted for an average of about 6% w/w with a variability of 16% among the fourteen samples collected from a single site and year. Gallic acid was the least whereas steviol monoside the most variable compounds among the fourteen leaf samples. The characteristic compound rubusoside that is responsible for the sweet taste accounted for 5% of leaf weight. The validated method can now be used to quantitatively and qualitatively assess the quality of Rubus suavissimus leaves as traditional beverage or potential medicines. PMID:19138116

  10. Plant physiology and proteomics reveals the leaf response to drought in alfalfa (Medicago sativa L.)

    PubMed Central

    Aranjuelo, Iker; Molero, Gemma; Erice, Gorka; Avice, Jean Christophe; Nogués, Salvador

    2011-01-01

    Despite its relevance, protein regulation, metabolic adjustment, and the physiological status of plants under drought is not well understood in relation to the role of nitrogen fixation in nodules. In this study, nodulated alfalfa plants were exposed to drought conditions. The study determined the physiological, metabolic, and proteomic processes involved in photosynthetic inhibition in relation to the decrease in nitrogenase (Nase) activity. The deleterious effect of drought on alfalfa performance was targeted towards photosynthesis and Nase activity. At the leaf level, photosynthetic inhibition was mainly caused by the inhibition of Rubisco. The proteomic profile and physiological measurements revealed that the reduced carboxylation capacity of droughted plants was related to limitations in Rubisco protein content, activation state, and RuBP regeneration. Drought also decreased amino acid content such as asparagine, and glutamic acid, and Rubisco protein content indicating that N availability limitations were caused by Nase activity inhibition. In this context, drought induced the decrease in Rubisco binding protein content at the leaf level and proteases were up-regulated so as to degrade Rubisco protein. This degradation enabled the reallocation of the Rubisco-derived N to the synthesis of amino acids with osmoregulant capacity. Rubisco degradation under drought conditions was induced so as to remobilize Rubisco-derived N to compensate for the decrease in N associated with Nase inhibition. Metabolic analyses showed that droughted plants increased amino acid (proline, a major compound involved in osmotic regulation) and soluble sugar (D-pinitol) levels to contribute towards the decrease in osmotic potential (Ψs). At the nodule level, drought had an inhibitory effect on Nase activity. This decrease in Nase activity was not induced by substrate shortage, as reflected by an increase in total soluble sugars (TSS) in the nodules. Proline accumulation in the nodule could also be associated with an osmoregulatory response to drought and might function as a protective agent against ROS. In droughted nodules, the decrease in N2 fixation was caused by an increase in oxygen resistance that was induced in the nodule. This was a mechanism to avoid oxidative damage associated with reduced respiration activity and the consequent increase in oxygen content. This study highlighted that even though drought had a direct effect on leaves, the deleterious effects of drought on nodules also conditioned leaf responsiveness. PMID:20797998

  11. Combined Large-Scale Phenotyping and Transcriptomics in Maize Reveals a Robust Growth Regulatory Network1[OPEN

    PubMed Central

    Herman, Dorota; Slabbinck, Bram; Pè, Mario Enrico

    2016-01-01

    Leaves are vital organs for biomass and seed production because of their role in the generation of metabolic energy and organic compounds. A better understanding of the molecular networks underlying leaf development is crucial to sustain global requirements for food and renewable energy. Here, we combined transcriptome profiling of proliferative leaf tissue with in-depth phenotyping of the fourth leaf at later stages of development in 197 recombinant inbred lines of two different maize (Zea mays) populations. Previously, correlation analysis in a classical biparental mapping population identified 1,740 genes correlated with at least one of 14 traits. Here, we extended these results with data from a multiparent advanced generation intercross population. As expected, the phenotypic variability was found to be larger in the latter population than in the biparental population, although general conclusions on the correlations among the traits are comparable. Data integration from the two diverse populations allowed us to identify a set of 226 genes that are robustly associated with diverse leaf traits. This set of genes is enriched for transcriptional regulators and genes involved in protein synthesis and cell wall metabolism. In order to investigate the molecular network context of the candidate gene set, we integrated our data with publicly available functional genomics data and identified a growth regulatory network of 185 genes. Our results illustrate the power of combining in-depth phenotyping with transcriptomics in mapping populations to dissect the genetic control of complex traits and present a set of candidate genes for use in biomass improvement. PMID:26754667

  12. Combined Large-Scale Phenotyping and Transcriptomics in Maize Reveals a Robust Growth Regulatory Network.

    PubMed

    Baute, Joke; Herman, Dorota; Coppens, Frederik; De Block, Jolien; Slabbinck, Bram; Dell'Acqua, Matteo; Pè, Mario Enrico; Maere, Steven; Nelissen, Hilde; Inzé, Dirk

    2016-03-01

    Leaves are vital organs for biomass and seed production because of their role in the generation of metabolic energy and organic compounds. A better understanding of the molecular networks underlying leaf development is crucial to sustain global requirements for food and renewable energy. Here, we combined transcriptome profiling of proliferative leaf tissue with in-depth phenotyping of the fourth leaf at later stages of development in 197 recombinant inbred lines of two different maize (Zea mays) populations. Previously, correlation analysis in a classical biparental mapping population identified 1,740 genes correlated with at least one of 14 traits. Here, we extended these results with data from a multiparent advanced generation intercross population. As expected, the phenotypic variability was found to be larger in the latter population than in the biparental population, although general conclusions on the correlations among the traits are comparable. Data integration from the two diverse populations allowed us to identify a set of 226 genes that are robustly associated with diverse leaf traits. This set of genes is enriched for transcriptional regulators and genes involved in protein synthesis and cell wall metabolism. In order to investigate the molecular network context of the candidate gene set, we integrated our data with publicly available functional genomics data and identified a growth regulatory network of 185 genes. Our results illustrate the power of combining in-depth phenotyping with transcriptomics in mapping populations to dissect the genetic control of complex traits and present a set of candidate genes for use in biomass improvement. © 2016 American Society of Plant Biologists. All Rights Reserved.

  13. The Urban Forest Effects (UFORE) model: quantifying urban forest structure and functions

    Treesearch

    David J. Nowak; Daniel E. Crane

    2000-01-01

    The Urban Forest Effects (UFORE) computer model was developed to help managers and researchers quantify urban forest structure and functions. The model quantifies species composition and diversity, diameter distribution, tree density and health, leaf area, leaf biomass, and other structural characteristics; hourly volatile organic compound emissions (emissions that...

  14. Effects of UV-B radiation on growth, photosynthesis, UV-B-absorbing compounds and NADP-malic enzyme in bean (Phaseolus vulgaris L.) grown under different nitrogen conditions.

    PubMed

    Pinto, M E; Casati, P; Hsu, T P; Ku, M S; Edwards, G E

    1999-02-01

    The effects of UV-B radiation on growth, photosynthesis, UV-B-absorbing compounds and NADP-malic enzyme have been examined in different cultivars of Phaseolous vulgaris L. grown under 1 and 12 mM nitrogen. Low nitrogen nutrition reduces chlorophyll and soluble protein contents in the leaves and thus the photosynthesis rate and dry-matter accumulation. Chlorophyll, soluble protein and Rubisco contents and photosynthesis rate are not significantly altered by ambient levels of UV-B radiation (17 microW m-2, 290-320 nm, 4 h/day for one week). Comparative studies show that under high nitrogen, UV-B radiation slightly enhances leaf expansion and dry-matter accumulation in cultivar Pinto, but inhibits these parameters in Vilmorin. These results suggest that the UV-B effect on growth is mediated through leaf expansion, which is particularly sensitive to UV-B, and that Pinto is more tolerant than Vilmorin. The effect of UV-B radiation on UV-B-absorbing compounds and on NADP-malic enzyme (NADP-ME) activity is also examined. Both UV-B radiation and low-nitrogen nutrition enhance the content of UV-B-absorbing compounds, and among the three cultivars used, Pinto exhibits the highest increases and Arroz the lowest. The same trend is observed for the specific activity and content of NADP-ME. On a leaf-area basis, the amount of UV-B-absorbing compounds is highly correlated with the enzyme activity (r2 = 0.83), suggesting that NADP-ME plays a key role in biosynthesis of these compounds. Furthermore, the higher sensitivity of Vilmorin than Pinto to UV-B radiation appears to be related to the activity of NADP-ME and the capacity of the plants to accumulate UV-B-absorbing compounds.

  15. Physical Stability Studies of Semi-Solid Formulations from Natural Compounds Loaded with Chitosan Microspheres

    PubMed Central

    Acosta, Niuris; Sánchez, Elisa; Calderón, Laura; Cordoba-Diaz, Manuel; Cordoba-Diaz, Damián; Dom, Senne; Heras, Ángeles

    2015-01-01

    A chitosan-based hydrophilic system containing an olive leaf extract was designed and its antioxidant capacity was evaluated. Encapsulation of olive leaf extract in chitosan microspheres was carried out by a spray-drying process. The particles obtained with this technique were found to be spherical and had a positive surface charge, which is an indicator of mucoadhesiveness. FTIR and X-ray diffraction results showed that there are not specific interactions of polyphenolic compounds in olive leaf extract with the chitosan matrix. Stability and release studies of chitosan microspheres loaded with olive leaf extract before and after the incorporation into a moisturizer base were performed. The resulting data showed that the developed formulations were stable up to three months. The encapsulation efficiency was around 44% and the release properties of polyphenols from the microspheres were found to be pH dependent. At pH 7.4, polyphenols release was complete after 6 h; whereas the amount of polyphenols released was 40% after the same time at pH 5.5. PMID:26389926

  16. Analysis of the reaction products from micro-vial pyrolysis of the mixture glucose/proline and of a tobacco leaf extract:Search for Amadori intermediates.

    PubMed

    Mitsui, Kazuhisa; David, Frank; Tienpont, Bart; Sandra, Koen; Ochiai, Nobuo; Tamura, Hirotoshi; Sandra, Pat

    2015-11-27

    Micro-vial pyrolysis (PyroVial) was used to study the production of compounds important for the aroma of heat-treated natural products such as tobacco. Firstly, a mixture of glucose and proline was pyrolyzed as model, as this sugar and amino acid are also abundant in tobacco leaf (Nicotiana tobacum L.). The pyrolysate was analyzed using headspace-GC–MS, liquid injection GC–MS and LC–MS. Next, micro-vial pyrolysis in combination with LC–MS was applied to tobacco leaf extract. Using MS deconvolution, molecular feature extraction and differential analysis it was possible to identify Amadori intermediates of the Maillard reaction in the tobacco leaf extract. The intermediate disappeared as was the case for 1-deoxy-1-prolino-β-d-fructose or the concentration decreased in the pyrolysate compared to the original extract such as for the 1-deoxy-1-[2-(3-pyridyl)-1-pyrrolidinyl]-β-d-fructose isomers indicating that Amadori intermediates are important precursors for aroma compound formation.

  17. Anti-quorum sensing activity of Pistacia atlantica against Pseudomonas aeruginosa PAO1 and identification of its bioactive compounds.

    PubMed

    Kordbacheh, H; Eftekhar, F; Ebrahimi, S N

    2017-09-01

    Pseudomonas aeruginosa is a multidrug resistant opportunistic pathogen and an important cause of nosocomial infections. Quorum-sensing (QS) is a process in which bacterial cell-cell communication can regulates production of many virulence factors including pigment formation and the ability to form biofilm which is essential for establishment of chronic infections. We examined the inhibitory effect of Pistacia atlantica (Anacardiaceae) methanolic leaf extract and its bioactive components on biofilm formation and pigment production by P. aeruginosa PAO1. Fractionation of the methanolic leaf extract was carried out using HPLC based activity profiling. Identification of the active compounds was carried out by the integrated approach of HPLC-DAD and LC-MS followed by molecular docking analysis. Pistacia atlantica crude extract at 2 and 1 mg/mL, inhibited 92% and 79% biofilm formation, respectively. Minimum biofilm inhibitory concentration (MBIC) determined by microbroth dilution was 0.25 mg/mL with 39% inhibition. Pyocyanin production measured by spectrophotometry showed 100% and 83% inhibition at 2 and 1 mg/mL and minimum inhibitory concentration (MIC) was 0.5 mg/mL with 40% inhibition. Four active HPLC fractions (11, 15, 16 and 19) showed MBIC values of 0.06, 0.16, 0.10, 0.15 mg/mL, and MICs for pyocyanin production of 0.49, 0.31, 0.76, >0.30 mg/mL, respectively. The active compounds were identified as rutin (1), myricetin, 3-O-rutinoside (2) and kaempferol-3-O-rutinoside (4), all belonging to the flavonoid family. Molecular docking simulation of the active compounds showed that all had high affinity for LasR protein which is an important quorum-sensing signal receptor. The results of this study suggest that the active components of P. atlantica have high anti-QS activities and may have the potential for treatment of chronic infections caused by Pseudomonas aeruginosa. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. HPLC-ESI-QTOF-MS as a powerful analytical tool for characterising phenolic compounds in olive-leaf extracts.

    PubMed

    Quirantes-Piné, Rosa; Lozano-Sánchez, Jesús; Herrero, Miguel; Ibáñez, Elena; Segura-Carretero, Antonio; Fernández-Gutiérrez, Alberto

    2013-01-01

    Olea europaea L. leaves may be considered a cheap, easily available natural source of phenolic compounds. In a previous study we evaluated the possibility of obtaining bioactive phenolic compounds from olive leaves by pressurised liquid extraction (PLE) for their use as natural anti-oxidants. The alimentary use of these kinds of extract makes comprehensive knowledge of their composition essential. To undertake a comprehensive characterisation of two olive-leaf extracts obtained by PLE using high-performance liquid chromatography coupled to electrospray ionisation and quadrupole time-of-flight mass spectrometry (HPLC-ESI-QTOF-MS). Olive leaves were extracted by PLE using ethanol and water as extraction solvents at 150°C and 200°C respectively. Separation was carried out in a HPLC system equipped with a C₁₈-column working in a gradient elution programme coupled to ESI-QTOF-MS operating in negative ion mode. This analytical platform was able to detect 48 compounds and tentatively identify 31 different phenolic compounds in these extracts, including secoiridoids, simple phenols, flavonoids, cinnamic-acid derivatives and benzoic acids. Lucidumoside C was also identified for the first time in olive leaves. The coupling of HPLC-ESI-QTOF-MS led to the in-depth characterisation of the olive-leaf extracts on the basis of mass accuracy, true isotopic pattern and tandem mass spectrometry (MS/MS) spectra. We may conclude therefore that this analytical tool is very valuable in the study of phenolic compounds in plant matrices. Copyright © 2012 John Wiley & Sons, Ltd.

  19. Green technology approach towards herbal extraction method

    NASA Astrophysics Data System (ADS)

    Mutalib, Tengku Nur Atiqah Tengku Ab; Hamzah, Zainab; Hashim, Othman; Mat, Hishamudin Che

    2015-05-01

    The aim of present study was to compare maceration method of selected herbs using green and non-green solvents. Water and d-limonene are a type of green solvents while non-green solvents are chloroform and ethanol. The selected herbs were Clinacanthus nutans leaf and stem, Orthosiphon stamineus leaf and stem, Sesbania grandiflora leaf, Pluchea indica leaf, Morinda citrifolia leaf and Citrus hystrix leaf. The extracts were compared with the determination of total phenolic content. Total phenols were analyzed using a spectrophotometric technique, based on Follin-ciocalteau reagent. Gallic acid was used as standard compound and the total phenols were expressed as mg/g gallic acid equivalent (GAE). The most suitable and effective solvent is water which produced highest total phenol contents compared to other solvents. Among the selected herbs, Orthosiphon stamineus leaves contain high total phenols at 9.087mg/g.

  20. Can dual chlorophyll fluorescence excitation be used to assess the variation in the content of UV-absorbing phenolic compounds in leaves of temperate tree species along a light gradient?

    PubMed

    Barthod, Sandrine; Cerovic, Zoran; Epron, Daniel

    2007-01-01

    The present study assesses light-induced variations in phenolic compounds in leaves of saplings of two co-occurring temperate species (Acer platanoides L., and Fraxinus excelsior L.) along a light gradient using a new non-invasive optical method (Dualex). The Dualex-derived UV absorbance of leaf epidermis (the sum of the adaxial and abaxial faces, AUV) increased significantly with increasing light in both species. AUV values were correlated with absorbance of the leaf extract at 305 nm and 375 nm (A305 and A375) in both species with similar slopes for both species. However, a large difference in intercept was observed between the two species when A305 was regressed against AUV. Similarly, AUV values were well correlated with the amount of phenolics in the leaf extracts assessed by the Folin-Ciocalteu method, but slopes were significantly different for the two species. Thus, the UV-A epidermal transmittance, despite being a reliable indicator of the UV-screening capacity of the leaf epidermis, cannot be used for any quantitative estimate of UV-B screening capacity or of energetic requirement for leaf construction without a species-specific calibration.

  1. Green synthesis of silver nanoparticles from aqueous Aegle marmelos leaf extract

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jagajjanani Rao, K.; Paria, Santanu, E-mail: santanuparia@yahoo.com

    Graphical abstract: Silver nanoparticles capped with polyphenols present in Aegle marmelos leaf extract. Display Omitted Highlights: ► Silver nanoparticles are synthesized using Aegle marmelos leaf extract in aqueous media. ► Reduction reaction is fast and occurs at room temperature. ► The presence of polyphenols acts as in situ capping agent. -- Abstract: Synthesis of nanoparticles by green route is an emerging technique drawing more attention recently because of several advantages over the convention chemical routes. The present study reports one-pot synthesis and in situ stabilization of silver nanoparticles using Aegle marmelos leaf extract. Nanoparticles of almost uniform spherical size (∼60more » nm) were synthesized within ∼25 min reaction time at room temperature. The size of particles depends on the ratio of AgNO{sub 3} and leaf extract. The crystallinity, size, and shape of the nanoparticles were characterized by X-ray diffraction, dynamic light scattering, and scanning electron microscopy respectively. The size stability was attained by the capping effect of polyphenolic tannin compound, procatacheuate in the extract. The capped polyphenols can be removed from the particle surface by simple NaOH/methanol wash. The involvement of phenolic compounds in metal ion reduction and capping were supported by UV–visible spectroscopy, infrared spectroscopy, high performance liquid chromatography, and zeta potential measurements.« less

  2. Bidirectional exchange of biogenic volatiles with vegetation: emission sources, reactions, breakdown and deposition

    PubMed Central

    Niinemets, Ülo; Fares, Silvano; Harley, Peter; Jardine, Kolby J.

    2014-01-01

    Biogenic volatile organic compound (BVOC) emissions are widely modeled as inputs to atmospheric chemistry simulations. However, BVOC may interact with cellular structures and neighboring leaves in a complex manner during volatile diffusion from the sites of release to leaf boundary layer and during turbulent transport to the atmospheric boundary layer. Furthermore, recent observations demonstrate that the BVOC emissions are bidirectional, and uptake and deposition of BVOC and their oxidation products are the rule rather than the exception. This review summarizes current knowledge of within-leaf reactions of synthesized volatiles with reactive oxygen species (ROS), uptake, deposition and storage of volatiles and their oxidation products as driven by adsorption on leaf surface and solubilization and enzymatic detoxification inside leaves. The available evidence indicates that due to reactions with ROS and enzymatic metabolism, the BVOC gross production rates are much larger than previously thought. The degree to which volatiles react within leaves and can be potentially taken up by vegetation depends on compound reactivity, physicochemical characteristics, as well as their participation in leaf metabolism. We argue that future models should be based on the concept of bidirectional BVOC exchange and consider modification of BVOC sink/source strengths by within-leaf metabolism and storage. PMID:24635661

  3. An ABA-regulated and Golgi-localized protein phosphatase controls water loss during leaf senescence in Arabidopsis.

    PubMed

    Zhang, Kewei; Xia, Xiuying; Zhang, Yanyan; Gan, Su-Sheng

    2012-02-01

    It is known that a senescing leaf loses water faster than a non-senescing leaf and that ABA has an important role in promoting leaf senescence. However, questions such as why water loss is faster, how water loss is regulated, and how ABA functions in leaf senescence are not well understood. Here we report on the identification and functional analysis of a leaf senescence associated gene called SAG113. The RNA blot and GUS reporter analyses all show that SAG113 is expressed in senescing leaves and is induced by ABA in Arabidopsis. The SAG113 expression levels are significantly reduced in aba2 and abi4 mutants. A GFP fusion protein analysis revealed that SAG113 protein is localized in the Golgi apparatus. SAG113 encodes a protein phosphatase that belongs to the PP2C family and is able to functionally complement a yeast PP2C-deficient mutant TM126 (ptc1Δ). Leaf senescence is delayed in the SAG113 knockout mutant compared with that in the wild type, stomatal movement in the senescing leaves of SAG113 knockouts is more sensitive to ABA than that of the wild type, and the rate of water loss in senescing leaves of SAG113 knockouts is significantly reduced. In contrast, inducible over-expression of SAG113 results in a lower sensitivity of stomatal movement to ABA treatment, more rapid water loss, and precocious leaf senescence. No other aspects of growth and development, including seed germination, were observed. These findings suggest that SAG113, a negative regulator of ABA signal transduction, is specifically involved in the control of water loss during leaf senescence. © 2011 The Authors. The Plant Journal © 2011 Blackwell Publishing Ltd.

  4. Whole-plant versus leaf-level regulation of photosynthetic responses after partial defoliation in Eucalyptus globulus saplings.

    PubMed

    Eyles, Alieta; Pinkard, Elizabeth A; Davies, Noel W; Corkrey, Ross; Churchill, Keith; O'Grady, Anthony P; Sands, Peter; Mohammed, Caroline

    2013-04-01

    Increases in photosynthetic capacity (A1500) after defoliation have been attributed to changes in leaf-level biochemistry, water, and/or nutrient status. The hypothesis that transient photosynthetic responses to partial defoliation are regulated by whole-plant (e.g. source-sink relationships or changes in hydraulic conductance) rather than leaf-level mechanisms is tested here. Temporal variation in leaf-level gas exchange, chemistry, whole-plant soil-to-leaf hydraulic conductance (KP), and aboveground biomass partitioning were determined to evaluate mechanisms responsible for increases in A1500 of Eucalyptus globulus L. potted saplings. A1500 increased in response to debudding (B), partial defoliation (D), and combined B&D treatments by up to 36% at 5 weeks after treatment. Changes in leaf-level factors partly explained increases in A1500 of B and B&D treatments but not for D treatment. By week 5, saplings in B, B&D, and D treatments had similar leaf-specific KP to control trees by maintaining lower midday water potentials and higher transpiration rate per leaf area. Whole-plant source:sink ratios correlated strongly with A1500. Further, unlike KP, temporal changes in source:sink ratios tracked well with those observed for A1500. The results indicate that increases in A1500 after partial defoliation treatments were largely driven by an increased demand for assimilate by developing sinks rather than improvements in whole-plant water relations and changes in leaf-level factors. Three carbohydrates, galactional, stachyose, and, to a lesser extent, raffinose, correlated strongly with photosynthetic capacity, indicating that these sugars may function as signalling molecules in the regulation of longer term defoliation-induced gas exchange responses.

  5. Whole-plant versus leaf-level regulation of photosynthetic responses after partial defoliation in Eucalyptus globulus saplings

    PubMed Central

    Eyles, Alieta

    2013-01-01

    Increases in photosynthetic capacity (A1500) after defoliation have been attributed to changes in leaf-level biochemistry, water, and/or nutrient status. The hypothesis that transient photosynthetic responses to partial defoliation are regulated by whole-plant (e.g. source–sink relationships or changes in hydraulic conductance) rather than leaf-level mechanisms is tested here. Temporal variation in leaf-level gas exchange, chemistry, whole-plant soil-to-leaf hydraulic conductance (KP), and aboveground biomass partitioning were determined to evaluate mechanisms responsible for increases in A1500 of Eucalyptus globulus L. potted saplings. A1500 increased in response to debudding (B), partial defoliation (D), and combined B&D treatments by up to 36% at 5 weeks after treatment. Changes in leaf-level factors partly explained increases in A1500 of B and B&D treatments but not for D treatment. By week 5, saplings in B, B&D, and D treatments had similar leaf-specific KP to control trees by maintaining lower midday water potentials and higher transpiration rate per leaf area. Whole-plant source:sink ratios correlated strongly with A1500. Further, unlike KP, temporal changes in source:sink ratios tracked well with those observed for A1500. The results indicate that increases in A1500 after partial defoliation treatments were largely driven by an increased demand for assimilate by developing sinks rather than improvements in whole-plant water relations and changes in leaf-level factors. Three carbohydrates, galactional, stachyose, and, to a lesser extent, raffinose, correlated strongly with photosynthetic capacity, indicating that these sugars may function as signalling molecules in the regulation of longer term defoliation-induced gas exchange responses. PMID:23382548

  6. Regulation of leaf hydraulics: from molecular to whole plant levels

    PubMed Central

    Prado, Karine; Maurel, Christophe

    2013-01-01

    The water status of plant leaves is dependent on both stomatal regulation and water supply from the vasculature to inner tissues. The present review addresses the multiple physiological and mechanistic facets of the latter process. Inner leaf tissues contribute to at least a third of the whole resistance to water flow within the plant. Physiological studies indicated that leaf hydraulic conductance (Kleaf) is highly dependent on the anatomy, development and age of the leaf and can vary rapidly in response to physiological or environmental factors such as leaf hydration, light, temperature, or nutrient supply. Differences in venation pattern provide a basis for variations in Kleaf during development and between species. On a short time (hour) scale, the hydraulic resistance of the vessels can be influenced by transpiration-induced cavitations, wall collapses, and changes in xylem sap composition. The extravascular compartment includes all living tissues (xylem parenchyma, bundle sheath, and mesophyll) that transport water from xylem vessels to substomatal chambers. Pharmacological inhibition and reverse genetics studies have shown that this compartment involves water channel proteins called aquaporins (AQPs) that facilitate water transport across cell membranes. In many plant species, AQPs are present in all leaf tissues with a preferential expression in the vascular bundles. The various mechanisms that allow adjustment of Kleaf to specific environmental conditions include transcriptional regulation of AQPs and changes in their abundance, trafficking, and intrinsic activity. Finally, the hydraulics of inner leaf tissues can have a strong impact on the dynamic responses of leaf water potential and stomata, and as a consequence on plant carbon economy and leaf expansion growth. The manipulation of these functions could help optimize the entire plant performance and its adaptation to extreme conditions over short and long time scales. PMID:23874349

  7. The TIE1 Transcriptional Repressor Links TCP Transcription Factors with TOPLESS/TOPLESS-RELATED Corepressors and Modulates Leaf Development in Arabidopsis[W

    PubMed Central

    Tao, Qing; Guo, Dongshu; Wei, Baoye; Zhang, Fan; Pang, Changxu; Jiang, Hao; Zhang, Jinzhe; Wei, Tong; Gu, Hongya; Qu, Li-Jia; Qin, Genji

    2013-01-01

    Leaf size and shape are mainly determined by coordinated cell division and differentiation in lamina. The CINCINNATA (CIN)-like TEOSINTE BRANCHED1/CYCLOIDEA/PCF (TCP) transcription factors are key regulators of leaf development. However, the mechanisms that control TCP activities during leaf development are largely unknown. We identified the TCP Interactor containing EAR motif protein1 (TIE1), a novel transcriptional repressor, as a major modulator of TCP activities during leaf development. Overexpression of TIE1 leads to hyponastic and serrated leaves, whereas disruption of TIE1 causes epinastic leaves. TIE1 is expressed in young leaves and encodes a transcriptional repressor containing a C-terminal EAR motif, which mediates interactions with the TOPLESS (TPL)/TOPLESS-RELATED (TPR) corepressors. In addition, TIE1 physically interacts with CIN-like TCPs. We propose that TIE1 regulates leaf size and morphology by inhibiting the activities of TCPs through recruiting the TPL/TPR corepressors to form a tertiary complex at early stages of leaf development. PMID:23444332

  8. McMYB10 regulates coloration via activating McF3'H and later structural genes in ever-red leaf crabapple.

    PubMed

    Tian, Ji; Peng, Zhen; Zhang, Jie; Song, Tingting; Wan, Huihua; Zhang, Meiling; Yao, Yuncong

    2015-09-01

    The ever-red leaf trait, which is important for breeding ornamental and higher anthocyanin plants, rarely appears in Malus families, but little is known about the regulation of anthocyanin biosynthesis involved in the red leaves. In our study, HPLC analysis showed that the anthocyanin concentration in ever-red leaves, especially cyanidin, was significantly higher than that in evergreen leaves. The transcript level of McMYB10 was significantly correlated with anthocyanin synthesis between the 'Royalty' and evergreen leaf 'Flame' cultivars during leaf development. We also found the ever-red leaf colour cultivar 'Royalty' contained the known R6 : McMYB10 sequence, but was not in the evergreen leaf colour cultivar 'Flame', which have been reported in apple fruit. The distinction in promoter region maybe is the main reason why higher expression level of McMYB10 in red foliage crabapple cultivar. Furthermore, McMYB10 promoted anthocyanin biosynthesis in crabapple leaves and callus at low temperatures and during long-day treatments. Both heterologous expression in tobacco (Nicotiana tabacum) and Arabidopsis pap1 mutant, and homologous expression in crabapple and apple suggested that McMYB10 could promote anthocyanins synthesis and enhanced anthocyanin accumulation in plants. Interestingly, electrophoretic mobility shift assays, coupled with yeast one-hybrid analysis, revealed that McMYB10 positively regulates McF3'H via directly binding to AACCTAAC and TATCCAACC motifs in the promoter. To sum up, our results demonstrated that McMYB10 plays an important role in ever-red leaf coloration, by positively regulating McF3'H in crabapple. Therefore, our work provides new perspectives for ornamental fruit tree breeding. © 2015 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  9. Enhanced accumulation of atropine in Atropa belladonna transformed by Rac GTPase gene isolated from Scoparia dulcis.

    PubMed

    Asano, Kyouhei; Lee, Jung-Bum; Yamamura, Yoshimi; Kurosaki, Fumiya

    2013-12-01

    Leaf tissues of Atropa belladonna were transformed by Sdrac2, a Rac GTPase gene, that is isolated from Scoparia dulcis, and the change in atropine concentration of the transformants was examined. Re-differentiated A. belladonna overexpressing Sdrac2 accumulated considerable concentration of atropine in the leaf tissues, whereas the leaves of plants transformed by an empty vector accumulated only a very low concentration of the compound. A. belladonna transformed by CASdrac2, a modified Sdrac2 of which translate was expected to bind guanosine triphosphate (GTP) permanently, accumulated very high concentrations of atropine (approximately 2.4-fold excess to those found in the wild-type plant in its natural habitat). In sharp contrast, the atropine concentration in transformed A. belladonna prepared with negatively modified Sdrac2, DNSdrac2, expected to bind guanosine diphosphate instead of GTP, was very low. These results suggested that Rac GTPases play an important role in the regulation of secondary metabolism in plant cells and that overexpression of the gene(s) may be capable of enhancing the production of natural products accumulated in higher plant cells.

  10. Piper betle leaf extracts induced human hepatocellular carcinoma Hep3B cell death via MAPKs regulating the p73 pathway in vitro and in vivo.

    PubMed

    Wu, Pei-Fang; Tseng, Hsien-Chun; Chyau, Charng-Cherng; Chen, Jing-Hsien; Chou, Fen-Pi

    2014-12-01

    Extracts of Piper betle leaf (PBLs) are rich in bioactive compounds with potential chemopreventive ability. In this study, Hep3B cells which are p53 null were used to investigate the anti-tumor effect of PBLs in the cell and in the xenograft model. The results revealed that PBLs (0.1 to 1 mg mL(-1)) induced a dose- and time-dependent increase of cell toxicity. The underlying mechanisms as evidenced by flow cytometry and western blot analysis showed that PBLs triggered ATM, cAbl, and p73 expressions and activated JNK and p38 pathways that subsequently led to cell cycle arrest and mitochondria-dependent apoptosis. PBLs also inhibited tumor growth in Hep3B-bearing mice via inducing the MAPK-p73 pathway. Our results demonstrated the in vitro and in vivo anti-tumor potential of PBLs, supporting their application as a novel chemopreventive agent for the treatment of human hepatocellular carcinoma (HCC) in the future via targeting the p73 pathway.

  11. Helminthosporic acid functions as an agonist for gibberellin receptor.

    PubMed

    Miyazaki, Sho; Jiang, Kai; Kobayashi, Masatomo; Asami, Tadao; Nakajima, Masatoshi

    2017-11-01

    Helminthosporol was isolated from a fungus, Helminthosporium sativum, as a natural plant growth regulator in 1963. It showed gibberellin-like bioactivity that stimulated the growth of the second leaf sheath of rice. After studying the structure-activity relationship between the compound and some synthesized analogs, it was found that helminthosporic acid (H-acid) has higher gibberellin-like activity and chemical stability than helminthosporol. In this study, we showed that (1) H-acid displays gibberellin-like activities not only in rice but also in Arabidopsis, (2) it regulates the expression of gibberellin-related genes, (3) it induces DELLA degradation through binding with a gibberellin receptor (GID1), and (4) it forms the GID1-(H-acid)-DELLA complex to transduce the gibberellin signal in the same manner as gibberellin. This work shows that the H-acid mode of action acts as an agonist for gibberellin receptor.

  12. Palisade cell shape affects the light-induced chloroplast movements and leaf photosynthesis.

    PubMed

    Gotoh, Eiji; Suetsugu, Noriyuki; Higa, Takeshi; Matsushita, Tomonao; Tsukaya, Hirokazu; Wada, Masamitsu

    2018-01-24

    Leaf photosynthesis is regulated by multiple factors that help the plant to adapt to fluctuating light conditions. Leaves of sun-light-grown plants are thicker and contain more columnar palisade cells than those of shade-grown plants. Light-induced chloroplast movements are also essential for efficient leaf photosynthesis and facilitate efficient light utilization in leaf cells. Previous studies have demonstrated that leaves of most of the sun-grown plants exhibited no or very weak chloroplast movements and could accomplish efficient photosynthesis under strong light. To examine the relationship between palisade cell shape, chloroplast movement and distribution, and leaf photosynthesis, we used an Arabidopsis thaliana mutant, angustifolia (an), which has thick leaves that contain columnar palisade cells similar to those in the sun-grown plants. In the highly columnar cells of an mutant leaves, chloroplast movements were restricted. Nevertheless, under white light condition (at 120 µmol m -2 s -1 ), the an mutant plants showed higher chlorophyll content per unit leaf area and, thus, higher light absorption by the leaves than the wild type, which resulted in enhanced photosynthesis per unit leaf area. Our findings indicate that coordinated regulation of leaf cell shape and chloroplast movement according to the light conditions is pivotal for efficient leaf photosynthesis.

  13. Isolation and identification of plant phenolic compounds in birch leaves: Air pollution stress and leaf phenolics

    NASA Astrophysics Data System (ADS)

    Loponen, Jyrki Mikael

    Chromatographic (analytical and preparative HPLC), chemical (hydrolysis) and spectroscopic (UV, 1H NMR, 13C NMR and MS) techniques proved to be suitable tools for the structure identification of plant phenolic compounds. More than 30 individual phenolic compounds were detected and quantified. Detailed information of the structures of individual compounds was determined after isolation from birch leaves. Ten flavonoid glycosides were identified. Two of them, myricetin-3-O-α-L-(acetyl)-rhamnopyranoside and quercetin-3-O-α-L-(4/prime'-O-acetyl)- rhamnopyranoside, have been rarely found in birch leaves. Further, some characterized major phenolics with non- flavonoid structures in our study were 1-O-galloyl- β-D-(2-O-acetyl)-glucopyranose, gallic, chlorogenic, neochlorogenic, cis- and trans-forms of 3- and 5-p-coumaroylquinic acids. The presence of gallotannin group was evidenced by strong positive correlations between concentrations of these gallotannins (preliminary identified by HPLC and UV spectra) and the protein precipitation capacity of extracts. Content of gallotannins decreased with leaf growth and maturation. It is known that concentrations of phenolic compounds regularly increase in slowly growing stressed plants and therefore, it is natural that they are also sensitive to different forms of air pollution. Total content and the contents of some individual phenolics correlated negatively with the distance from the pollution source in our study area. In addition to comparing absolute concentrations of compounds in question, the within-tree correlations or within-tree variations of the relevant compounds between polluted and control areas were an alternative approach. Differences in pairwise correlations between the investigated leaf phenolic compounds indicated the competition between some gallotannins and p-coumaroylquinic acids on the polluted but not on the control site. Air pollution seems to be a stress factor for birch trees associated with accumulation, variability, as well as between-compound correlations of individual phenolics in leaves. Effects of atmospheric stress factors on phenolics with different structures result from the activation of the shikimate pathway.

  14. Molecular cloning and functional identification of sterol C24-methyltransferase gene from Tripterygium wilfordii.

    PubMed

    Guan, Hongyu; Zhao, Yujun; Su, Ping; Tong, Yuru; Liu, Yujia; Hu, Tianyuan; Zhang, Yifeng; Zhang, Xianan; Li, Jia; Wu, Xiaoyi; Huang, Luqi; Gao, Wei

    2017-09-01

    Sterol C24-methyltransferase (SMT) plays multiple important roles in plant growth and development. SMT1, which belongs to the family of transferases and transforms cycloartenol into 24-methylene cycloartenol, is involved in the biosynthesis of 24-methyl sterols. Here, we report the cloning and characterization of a cDNA encoding a sterol C24-methyltransferase from Tripterygium wilfordii ( TwSMT1 ). TwSMT1 (GenBank access number KU885950) is a 1530 bp cDNA with a 1041 bp open reading frame predicted to encode a 346-amino acid, 38.62 kDa protein. The polypeptide encoded by the SMT1 cDNA was expressed and purified as a recombinant protein from Escherichia coli ( E. coli ) and showed SMT activity. The expression of TwSMT1 was highly up-regulated in T. wilfordii cell suspension cultures treated with methyl jasmonate (MeJA). Tissue expression pattern analysis showed higher expression in the phellem layer compared to the other four organs (leaf, stem, xylem and phloem), which is about ten times that of the lowest expression in leaf. The results are meaningful for the study of sterol biosynthesis of T. wilfordii and will further lay the foundations for the research in regulating both the content of other main compounds and growth and development of T. wilfordii.

  15. UV-B Inhibits Leaf Growth through Changes in Growth Regulating Factors and Gibberellin Levels1[OPEN

    PubMed Central

    Fina, Julieta; AbdElgawad, Hamada; Prinsen, Els

    2017-01-01

    Ultraviolet-B (UV-B) radiation affects leaf growth in a wide range of species. In this work, we demonstrate that UV-B levels present in solar radiation inhibit maize (Zea mays) leaf growth without causing any other visible stress symptoms, including the accumulation of DNA damage. We conducted kinematic analyses of cell division and expansion to understand the impact of UV-B radiation on these cellular processes. Our results demonstrate that the decrease in leaf growth in UV-B-irradiated leaves is a consequence of a reduction in cell production and a shortened growth zone (GZ). To determine the molecular pathways involved in UV-B inhibition of leaf growth, we performed RNA sequencing on isolated GZ tissues of control and UV-B-exposed plants. Our results show a link between the observed leaf growth inhibition and the expression of specific cell cycle and developmental genes, including growth-regulating factors (GRFs) and transcripts for proteins participating in different hormone pathways. Interestingly, the decrease in the GZ size correlates with a decrease in the concentration of GA19, the immediate precursor of the active gibberellin, GA1, by UV-B in this zone, which is regulated, at least in part, by the expression of GRF1 and possibly other transcription factors of the GRF family. PMID:28400494

  16. Blue Light–Dependent Interaction between Cryptochrome2 and CIB1 Regulates Transcription and Leaf Senescence in Soybean[W

    PubMed Central

    Meng, Yingying; Li, Hongyu; Wang, Qin; Liu, Bin; Lin, Chentao

    2013-01-01

    Cryptochromes are blue light receptors that regulate light responses in plants, including various crops. The molecular mechanism of plant cryptochromes has been extensively investigated in Arabidopsis thaliana, but it has not been reported in any crop species. Here, we report a study of the mechanism of soybean (Glycine max) cryptochrome2 (CRY2a). We found that CRY2a regulates leaf senescence, which is a life history trait regulated by light and photoperiods via previously unknown mechanisms. We show that CRY2a undergoes blue light–dependent interaction with the soybean basic helix-loop-helix transcription activator CIB1 (for cryptochrome-interacting bHLH1) that specifically interacts with the E-box (CANNTG) DNA sequences. Analyses of transgenic soybean plants expressing an elevated or reduced level of the CRY2a or CIB1 demonstrate that CIB1 promotes leaf senescence, whereas CRY2a suppresses leaf senescence. Results of the gene expression and molecular interaction analyses support the hypothesis that CIB1 activates transcription of senescence-associated genes, such as WRKY DNA BINDING PROTEIN53b (WRKY53b), and leaf senescence. CIB1 interacts with the E-box–containing promoter sequences of the WRKY53b chromatin, whereas photoexcited CRY2a interacts with CIB1 to inhibit its DNA binding activity. These findings argue that CIB-dependent transcriptional regulation is an evolutionarily conserved CRY-signaling mechanism in plants, and this mechanism is opted in evolution to mediate light regulation of different aspects of plant development in different plant species. PMID:24272488

  17. Teratogenic effects of Mimosa tenuiflora in a rat model and possible role of N-methyl- and N,N-dimethyltryptamine.

    PubMed

    Gardner, Dale; Riet-Correa, Franklin; Lemos, Danilo; Welch, Kevin; Pfister, James; Panter, Kip

    2014-07-30

    Mimosa tenuiflora is a shrub/tree found in northeastern Brazil sometimes eaten by livestock and believed to be responsible for malformations observed in many animals from that region. The teratogenic compounds in M. tenuiflora are not known. This study used pregnant rats fed M. tenuiflora and components therefrom for bioassay and fractionation of possible teratogenic compounds. Rat pups were examined for cranial-facial defects and skeletal malformations. Experimental diets included M. tenuiflora leaf and seed material, extracts of leaf and seed, alkaloid extracts of leaf and seed, and N-methyltryptamine and N,N-dimethyltryptamine. Pups from mothers who received M. tenuiflora plant material, methanol extracts, alkaloid extracts, and purified N-methyltryptamines had a higher incidence of soft tissue cleft palate and skeletal malformations. Results are summarized as to the frequency of observed cleft palate and other noted malformations for each diet versus control.

  18. Antioxidant capacity, insecticidal ability and heat-oxidation stability of Tagetes lemmonii leaf extract.

    PubMed

    Ma, Chih-Ming; Cheng, Chih-Lun; Lee, Shang-Chieh; Hong, Gui-Bing

    2018-04-30

    The aim of this study was to examine the effect of process factors such as ethanol concentration, extraction time and temperature on the extraction yield and the bioactive contents of Tagetes lemmonii leaf extracts using response surface methodology (RSM). ANOVA results showed that the response variables were affected by the ethanol concentration to a very significant degree and by extraction temperature to a lesser degree. GC/MS characterization showed that the extract is rich in bioactive compounds and those present exhibited important biological activities such as antioxidant, insect repellence and insecticidal activities. The results from the toxicity assay demonstrate that the extract obtained from the leaves of Tagetes lemmonii was an effective insect toxin against Tribolium castaneum. The radical scavenging activity and p-anisidine test results of olive oil spiked with different concentrations of leaf extract showed that the phenolic compounds can retard lipid oxidation. Copyright © 2018 Elsevier Inc. All rights reserved.

  19. Release Profile of Andrographis paniculata Leaf Extract Nanocapsule as α-Glucosidase Inhibitors

    NASA Astrophysics Data System (ADS)

    Zahrani, K.; Imansari, F.; Utami, T. S.; Arbianti, R.

    2017-07-01

    Andrographis paniculata is one of 13 leading commodities Indonesian medicinal plants through the Ditjen POM. Andrographolide as main active compound has been shown to have many pharmacological activities, one of which is as α-glucosidase enzyme inhibitors which has clinical potential as an antitumor, antiviral, antidiabetic, and immunoregulator agents. This study aims to do nanoencapsulation of Andrographis paniculatar leaf extract to increase its active compound bioavailability and get a release profile through synthetic fluids media simulation. Nanoencapsulation with ionic gelation method result the encapsulation efficiency and loading capacity values of 73.47% and 46.29% at 2%: 1% of chitosan: STPP ratio. The maximum α-glucosidase inhibition of 37.17% was obtained at 16% concentration. Burst release at gastric pH conditions indicate that most of the drug (in this study is an Andrographis paniculata leaf extract) adsorbed on the surface of the nanoparticles an indicates that the kind of nanoparticle formed is nanosphere.

  20. 7 CFR 29.2278 - Leaf structure.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... structure. The cell development of a leaf as indicated by its porosity. (See chart, § 29.2351.) ... 7 Agriculture 2 2010-01-01 2010-01-01 false Leaf structure. 29.2278 Section 29.2278 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing...

  1. Phytohormones and microRNAs as sensors and regulators of leaf senescence: assigning macro roles to small molecules.

    PubMed

    Sarwat, Maryam; Naqvi, Afsar Raza; Ahmad, Parvaiz; Ashraf, Muhammad; Akram, Nudrat Aisha

    2013-12-01

    Ageing or senescence is an intricate and highly synchronized developmental phase in the life of plant parts including leaf. Senescence not only means death of a plant part, but during this process, different macromolecules undergo degradation and the resulting components are transported to other parts of the plant. During the period from when a leaf is young and green to the stage when it senesces, a multitude of factors such as hormones, environmental factors and senescence associated genes (SAGs) are involved. Plant hormones including salicylic acid, abscisic acid, jasmonic acid and ethylene advance leaf senescence, whereas others like cytokinins, gibberellins, and auxins delay this process. The environmental factors which generally affect plant development and growth, can hasten senescence, the examples being nutrient dearth, water stress, pathogen attack, radiations, high temperature and light intensity, waterlogging, and air, water or soil contamination. Other important influences include carbohydrate accumulation and high carbon/nitrogen level. To date, although several genes involved in this complex process have been identified, still not much information exists in the literature on the signalling mechanism of leaf senescence. Now, the Arabidopsis mutants have paved our way and opened new vistas to elucidate the signalling mechanism of leaf senescence for which various mutants are being utilized. Recent studies demonstrating the role of microRNAs in leaf senescence have reinforced our knowledge of this intricate process. This review provides a comprehensive and critical analysis of the information gained particularly on the roles of several plant growth regulators and microRNAs in regulation of leaf senescence. Copyright © 2013 Elsevier Inc. All rights reserved.

  2. Roles of miR319 and TCP Transcription Factors in Leaf Development1[OPEN

    PubMed Central

    2017-01-01

    Sophisticated regulation of gene expression, including microRNAs (miRNAs) and their target genes, is required for leaf differentiation, growth, and senescence. The impact of miR319 and its target TEOSINTE BRANCHED1, CYCLOIDEA, and PROLIFERATING CELL NUCLEAR ANTIGEN BINDING FACTOR (TCP) genes on leaf development has been extensively investigated, but the redundancies of these gene families often interfere with the evaluation of their function and regulation in the developmental context. Here, we present the genetic evidence of the involvement of the MIR319 and TCP gene families in Arabidopsis (Arabidopsis thaliana) leaf development. Single mutations in MIR319A and MIR319B genes moderately inhibited the formation of leaf serrations, whereas double mutations increased the extent of this inhibition and resulted in the formation of smooth leaves. Mutations in MIR319 and gain-of-function mutations in the TCP4 gene conferred resistance against miR319 and impaired the cotyledon boundary and leaf serration formation. These mutations functionally associated with CUP-SHAPED COTYLEDON genes, which regulate the cotyledon boundary and leaf serration formation. In contrast, loss-of-function mutations in miR319-targeted and nontargeted TCP genes cooperatively induced the formation of serrated leaves in addition to changes in the levels of their downstream gene transcript. Taken together, these findings demonstrate that the MIR319 and TCP gene families underlie robust and multilayer control of leaf development. This study also provides a framework toward future researches on redundant miRNAs and transcription factors in Arabidopsis and crop plants. PMID:28842549

  3. Roles of miR319 and TCP Transcription Factors in Leaf Development.

    PubMed

    Koyama, Tomotsugu; Sato, Fumihiko; Ohme-Takagi, Masaru

    2017-10-01

    Sophisticated regulation of gene expression, including microRNAs (miRNAs) and their target genes, is required for leaf differentiation, growth, and senescence. The impact of miR319 and its target TEOSINTE BRANCHED1 , CYCLOIDEA , and PROLIFERATING CELL NUCLEAR ANTIGEN BINDING FACTOR ( TCP ) genes on leaf development has been extensively investigated, but the redundancies of these gene families often interfere with the evaluation of their function and regulation in the developmental context. Here, we present the genetic evidence of the involvement of the MIR319 and TCP gene families in Arabidopsis ( Arabidopsis thaliana ) leaf development. Single mutations in MIR319A and MIR319B genes moderately inhibited the formation of leaf serrations, whereas double mutations increased the extent of this inhibition and resulted in the formation of smooth leaves. Mutations in MIR319 and gain-of-function mutations in the TCP4 gene conferred resistance against miR319 and impaired the cotyledon boundary and leaf serration formation. These mutations functionally associated with CUP-SHAPED COTYLEDON genes, which regulate the cotyledon boundary and leaf serration formation. In contrast, loss-of-function mutations in miR319-targeted and nontargeted TCP genes cooperatively induced the formation of serrated leaves in addition to changes in the levels of their downstream gene transcript. Taken together, these findings demonstrate that the MIR319 and TCP gene families underlie robust and multilayer control of leaf development. This study also provides a framework toward future researches on redundant miRNAs and transcription factors in Arabidopsis and crop plants. © 2017 American Society of Plant Biologists. All Rights Reserved.

  4. Leaf Oil Body Functions as a Subcellular Factory for the Production of a Phytoalexin in Arabidopsis1[W

    PubMed Central

    Shimada, Takashi L.; Takano, Yoshitaka; Shimada, Tomoo; Fujiwara, Masayuki; Fukao, Yoichiro; Mori, Masashi; Okazaki, Yozo; Saito, Kazuki; Sasaki, Ryosuke; Aoki, Koh; Hara-Nishimura, Ikuko

    2014-01-01

    Oil bodies are intracellular structures present in the seed and leaf cells of many land plants. Seed oil bodies are known to function as storage compartments for lipids. However, the physiological function of leaf oil bodies is unknown. Here, we show that leaf oil bodies function as subcellular factories for the production of a stable phytoalexin in response to fungal infection and senescence. Proteomic analysis of oil bodies prepared from Arabidopsis (Arabidopsis thaliana) leaves identified caleosin (CLO3) and α-dioxygenase (α-DOX1). Both CLO3 and α-DOX1 were localized on the surface of oil bodies. Infection with the pathogenic fungus Colletotrichum higginsianum promoted the formation of CLO3- and α-DOX1-positive oil bodies in perilesional areas surrounding the site of infection. α-DOX1 catalyzes the reaction from α-linolenic acid (a major fatty acid component of oil bodies) to an unstable compound, 2-hydroperoxy-octadecatrienoic acid (2-HPOT). Intriguingly, a combination of α-DOX1 and CLO3 produced a stable compound, 2-hydroxy-octadecatrienoic acid (2-HOT), from α-linolenic acid. This suggests that the colocalization of α-DOX1 and CLO3 on oil bodies might prevent the degradation of unstable 2-HPOT by efficiently converting 2-HPOT into the stable compound 2-HOT. We found that 2-HOT had antifungal activity against members of the genus Colletotrichum and that infection with C. higginsianum induced 2-HOT production. These results defined 2-HOT as an Arabidopsis phytoalexin. This study provides, to our knowledge, the first evidence that leaf oil bodies produce a phytoalexin under a pathological condition, which suggests a new mechanism of plant defense. PMID:24214535

  5. The effects of strawberry tree water leaf extract, arbutin and hydroquinone on haematological parameters and levels of primary DNA damage in white blood cells of rats.

    PubMed

    Jurica, Karlo; Brčić Karačonji, Irena; Kopjar, Nevenka; Shek-Vugrovečki, Ana; Cikač, Tihana; Benković, Vesna

    2018-04-06

    Strawberry tree (Arbutus unedo L., Ericaceae) leaves represent a potent source of biologically active compounds and have been used for a long to relieve symptoms of various health impairments and diseases. Two major compounds related to their beneficial activities in animals and humans are arbutin and hydroquinone. To establish potential benefit/risk ratio associated with daily oral administration of strawberry tree water leaf extract, arbutin and hydroquinone in doses expected to be non-toxic. We performed a 14-day and a 28-day study on male and female Lewis rats and evaluated main haematological parameters and the effects of treatments on the levels of primary DNA damage in white blood cells (WBC) using the alkaline comet assay. Our findings suggest no significant changes in the haematological parameters following prolonged exposure to strawberry tree water leaf extract, arbutin, and hydroquinone. However, hydroquinone causes increased, and extract as well as arbutin decreased WBC count in male rats compared to control after 14 days of treatment. DNA damage measured in WBC of rats treated with all compounds was below 10% of the DNA in the comet tail, which indicates low genotoxicity. The genotoxic potential of strawberry water leaf extract was within acceptable limits and reflected effects of a complex chemical composition upon DNA. We also observed slight gender- and exposure time- related differences in primary DNA damage in the leucocytes of control and treated rats. Future studies should investigate which doses of strawberry tree water leaf extract would be most promising for the potential use as a substitute for bearberry leaves for treatment of urinary infection. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Network and biosignature analysis for the integration of transcriptomic and metabolomic data to characterize leaf senescence process in sunflower.

    PubMed

    Moschen, Sebastián; Higgins, Janet; Di Rienzo, Julio A; Heinz, Ruth A; Paniego, Norma; Fernandez, Paula

    2016-06-06

    In recent years, high throughput technologies have led to an increase of datasets from omics disciplines allowing the understanding of the complex regulatory networks associated with biological processes. Leaf senescence is a complex mechanism controlled by multiple genetic and environmental variables, which has a strong impact on crop yield. Transcription factors (TFs) are key proteins in the regulation of gene expression, regulating different signaling pathways; their function is crucial for triggering and/or regulating different aspects of the leaf senescence process. The study of TF interactions and their integration with metabolic profiles under different developmental conditions, especially for a non-model organism such as sunflower, will open new insights into the details of gene regulation of leaf senescence. Weighted Gene Correlation Network Analysis (WGCNA) and BioSignature Discoverer (BioSD, Gnosis Data Analysis, Heraklion, Greece) were used to integrate transcriptomic and metabolomic data. WGCNA allowed the detection of 10 metabolites and 13 TFs whereas BioSD allowed the detection of 1 metabolite and 6 TFs as potential biomarkers. The comparative analysis demonstrated that three transcription factors were detected through both methodologies, highlighting them as potentially robust biomarkers associated with leaf senescence in sunflower. The complementary use of network and BioSignature Discoverer analysis of transcriptomic and metabolomic data provided a useful tool for identifying candidate genes and metabolites which may have a role during the triggering and development of the leaf senescence process. The WGCNA tool allowed us to design and test a hypothetical network in order to infer relationships across selected transcription factor and metabolite candidate biomarkers involved in leaf senescence, whereas BioSignature Discoverer selected transcripts and metabolites which discriminate between different ages of sunflower plants. The methodology presented here would help to elucidate and predict novel networks and potential biomarkers of leaf senescence in sunflower.

  7. The accumulation and localization of chalcone synthase in grapevine (Vitis vinifera L.).

    PubMed

    Wang, Huiling; Wang, Wei; Zhan, JiCheng; Yan, Ailing; Sun, Lei; Zhang, Guojun; Wang, Xiaoyue; Ren, Jiancheng; Huang, Weidong; Xu, Haiying

    2016-09-01

    Chalcone synthase (CHS, E.C.2.3.1.74) is the first committed enzyme in the flavonoid pathway. Previous studies have primarily focused on the cloning, expression and regulation of the gene at the transcriptional level. Little is yet known about the enzyme accumulation, regulation at protein level, as well as its localization in grapevine. In present study, the accumulation, tissue and subcellular localization of CHS in different grapevine tissues (Vitis vinifera L. Cabernet Sauvignon) were investigated via the techniques of Western blotting, immunohistochemical localization, immunoelectron microscopy and confocal microscopy. The results showed that CHS were mainly accumulated in the grape berry skin, leaves, stem tips and stem phloem, correlated with flavonoids accumulation. The accumulation of CHS is developmental dependent in grape berry skin and flesh. Immunohistochemical analysis revealed that CHS were primarily localized in the exocarp and vascular bundles of the fruits during berry development; in palisade, spongy tissues and vascular bundles of the leaves; in the primary phloem and pith ray in the stems; in the growth point, leaf primordium, and young leaves of leaf buds; and in the endoderm and primary phloem of grapevine roots. Furthermore, at the subcellular level, the cell wall, cytoplasm and nucleus localized patterns of CHS were observed in the grapevine vegetative tissue cells. Results above indicated that distribution of CHS in grapevine was organ-specific and tissue-specific. This work will provide new insight for the biosynthesis and regulation of diverse flavonoid compounds in grapevine. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  8. Seasonality of isoprenoid emissions from a primary rainforest in central Amazonia

    DOE PAGES

    Alves, Eliane G.; Jardine, Kolby; Tota, Julio; ...

    2016-03-23

    Tropical rainforests are an important source of isoprenoid and other volatile organic compound (VOC) emissions to the atmosphere. The seasonal variation of these compounds is however still poorly understood. In this study, vertical profiles of mixing ratios of isoprene, total monoterpenes and total sesquiterpenes, were measured within and above the canopy, in a primary rainforest in central Amazonia, using a proton transfer reaction – mass spectrometer (PTR-MS). Fluxes of these compounds from the canopy into the atmosphere were estimated from PTR-MS measurements by using an inverse Lagrangian transport model. Measurements were carried out continuously from September 2010 to January 2011,more » encompassing the dry and wet seasons. Mixing ratios were higher during the dry (isoprene – 2.68 ± 0.9 ppbv, total monoterpenes – 0.67 ± 0.3 ppbv; total sesquiterpenes – 0.09 ± 0.07 ppbv) than the wet season (isoprene – 1.66 ± 0.9 ppbv, total monoterpenes – 0.47 ± 0.2 ppbv; total sesquiterpenes – 0.03 ± 0.02 ppbv) for all compounds. Ambient air temperature and photosynthetically active radiation (PAR) behaved similarly. Daytime isoprene and total monoterpene mixing ratios were highest within the canopy, rather than near the ground or above the canopy. By comparison, daytime total sesquiterpene mixing ratios were highest near the ground. Daytime fluxes varied significantly between seasons for all compounds. The maximums for isoprene (2.53 ± 0.5 µmol m -2 h -1) and total monoterpenes (1.77 ± 0.05 µmol m -2 h -1) were observed in the late dry season, whereas the maximum for total sesquiterpenes was found during the dry-to-wet transition season (0.77 ± 0.1 µmol m -2 h -1). These flux estimates suggest that the canopy is the main source of isoprenoids emitted into the atmosphere for all seasons. However, uncertainties in turbulence parameterization near the ground could affect estimates of fluxes that come from the ground. Leaf phenology seemed to be an important driver of seasonal variation of isoprenoid emissions. Although remote sensing observations of changes in leaf area index were used to estimate leaf phenology, MEGAN 2.1 did not fully capture the behavior of seasonal emissions observed in this study. This could be a result of very local effects on the observed emissions, but also suggest that other parameters need to be better determined in biogenic volatile organic compound (BVOC) models. Our results support established findings that seasonality of isoprenoids are driven by seasonal changes in light, temperature and leaf phenology. However, they suggest that leaf phenology and its role on isoprenoid production and emission from tropical plant species needs to be better understood in order to develop mechanistic explanations for seasonal variation in emissions. This also may reduce the uncertainties of model estimates associated with the responses to environmental factors. Therefore, this study strongly encourages long-term measurements of isoprenoid emissions, environmental factors and leaf phenology from leaf to ecosystem scale, with the purpose of improving BVOC model approaches that can characterize seasonality of isoprenoid emissions from tropical rainforests.« less

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alves, Eliane G.; Jardine, Kolby; Tota, Julio

    Tropical rainforests are an important source of isoprenoid and other volatile organic compound (VOC) emissions to the atmosphere. The seasonal variation of these compounds is however still poorly understood. In this study, vertical profiles of mixing ratios of isoprene, total monoterpenes and total sesquiterpenes, were measured within and above the canopy, in a primary rainforest in central Amazonia, using a proton transfer reaction – mass spectrometer (PTR-MS). Fluxes of these compounds from the canopy into the atmosphere were estimated from PTR-MS measurements by using an inverse Lagrangian transport model. Measurements were carried out continuously from September 2010 to January 2011,more » encompassing the dry and wet seasons. Mixing ratios were higher during the dry (isoprene – 2.68 ± 0.9 ppbv, total monoterpenes – 0.67 ± 0.3 ppbv; total sesquiterpenes – 0.09 ± 0.07 ppbv) than the wet season (isoprene – 1.66 ± 0.9 ppbv, total monoterpenes – 0.47 ± 0.2 ppbv; total sesquiterpenes – 0.03 ± 0.02 ppbv) for all compounds. Ambient air temperature and photosynthetically active radiation (PAR) behaved similarly. Daytime isoprene and total monoterpene mixing ratios were highest within the canopy, rather than near the ground or above the canopy. By comparison, daytime total sesquiterpene mixing ratios were highest near the ground. Daytime fluxes varied significantly between seasons for all compounds. The maximums for isoprene (2.53 ± 0.5 µmol m -2 h -1) and total monoterpenes (1.77 ± 0.05 µmol m -2 h -1) were observed in the late dry season, whereas the maximum for total sesquiterpenes was found during the dry-to-wet transition season (0.77 ± 0.1 µmol m -2 h -1). These flux estimates suggest that the canopy is the main source of isoprenoids emitted into the atmosphere for all seasons. However, uncertainties in turbulence parameterization near the ground could affect estimates of fluxes that come from the ground. Leaf phenology seemed to be an important driver of seasonal variation of isoprenoid emissions. Although remote sensing observations of changes in leaf area index were used to estimate leaf phenology, MEGAN 2.1 did not fully capture the behavior of seasonal emissions observed in this study. This could be a result of very local effects on the observed emissions, but also suggest that other parameters need to be better determined in biogenic volatile organic compound (BVOC) models. Our results support established findings that seasonality of isoprenoids are driven by seasonal changes in light, temperature and leaf phenology. However, they suggest that leaf phenology and its role on isoprenoid production and emission from tropical plant species needs to be better understood in order to develop mechanistic explanations for seasonal variation in emissions. This also may reduce the uncertainties of model estimates associated with the responses to environmental factors. Therefore, this study strongly encourages long-term measurements of isoprenoid emissions, environmental factors and leaf phenology from leaf to ecosystem scale, with the purpose of improving BVOC model approaches that can characterize seasonality of isoprenoid emissions from tropical rainforests.« less

  10. Seasonality of isoprenoid emissions from a primary rainforest in central Amazonia

    NASA Astrophysics Data System (ADS)

    Alves, Eliane G.; Jardine, Kolby; Tota, Julio; Jardine, Angela; Yãnez-Serrano, Ana Maria; Karl, Thomas; Tavares, Julia; Nelson, Bruce; Gu, Dasa; Stavrakou, Trissevgeni; Martin, Scot; Artaxo, Paulo; Manzi, Antonio; Guenther, Alex

    2016-03-01

    Tropical rainforests are an important source of isoprenoid and other volatile organic compound (VOC) emissions to the atmosphere. The seasonal variation of these compounds is however still poorly understood. In this study, vertical profiles of mixing ratios of isoprene, total monoterpenes and total sesquiterpenes, were measured within and above the canopy, in a primary rainforest in central Amazonia, using a proton transfer reaction - mass spectrometer (PTR-MS). Fluxes of these compounds from the canopy into the atmosphere were estimated from PTR-MS measurements by using an inverse Lagrangian transport model. Measurements were carried out continuously from September 2010 to January 2011, encompassing the dry and wet seasons. Mixing ratios were higher during the dry (isoprene - 2.68 ± 0.9 ppbv, total monoterpenes - 0.67 ± 0.3 ppbv; total sesquiterpenes - 0.09 ± 0.07 ppbv) than the wet season (isoprene - 1.66 ± 0.9 ppbv, total monoterpenes - 0.47 ± 0.2 ppbv; total sesquiterpenes - 0.03 ± 0.02 ppbv) for all compounds. Ambient air temperature and photosynthetically active radiation (PAR) behaved similarly. Daytime isoprene and total monoterpene mixing ratios were highest within the canopy, rather than near the ground or above the canopy. By comparison, daytime total sesquiterpene mixing ratios were highest near the ground. Daytime fluxes varied significantly between seasons for all compounds. The maximums for isoprene (2.53 ± 0.5 µmol m-2 h-1) and total monoterpenes (1.77 ± 0.05 µmol m-2 h-1) were observed in the late dry season, whereas the maximum for total sesquiterpenes was found during the dry-to-wet transition season (0.77 ± 0.1 µmol m-2 h-1). These flux estimates suggest that the canopy is the main source of isoprenoids emitted into the atmosphere for all seasons. However, uncertainties in turbulence parameterization near the ground could affect estimates of fluxes that come from the ground. Leaf phenology seemed to be an important driver of seasonal variation of isoprenoid emissions. Although remote sensing observations of changes in leaf area index were used to estimate leaf phenology, MEGAN 2.1 did not fully capture the behavior of seasonal emissions observed in this study. This could be a result of very local effects on the observed emissions, but also suggest that other parameters need to be better determined in biogenic volatile organic compound (BVOC) models. Our results support established findings that seasonality of isoprenoids are driven by seasonal changes in light, temperature and leaf phenology. However, they suggest that leaf phenology and its role on isoprenoid production and emission from tropical plant species needs to be better understood in order to develop mechanistic explanations for seasonal variation in emissions. This also may reduce the uncertainties of model estimates associated with the responses to environmental factors. Therefore, this study strongly encourages long-term measurements of isoprenoid emissions, environmental factors and leaf phenology from leaf to ecosystem scale, with the purpose of improving BVOC model approaches that can characterize seasonality of isoprenoid emissions from tropical rainforests.

  11. Seasonality of isoprenoid emissions from a primary rainforest in central Amazonia

    NASA Astrophysics Data System (ADS)

    Alves, E. G.; Jardine, K.; Tota, J.; Jardine, A.; Yáñez-Serrano, A. M.; Karl, T.; Tavares, J.; Nelson, B.; Gu, D.; Stavrakou, T.; Martin, S.; Manzi, A.; Guenther, A.

    2015-10-01

    Tropical rainforests are an important source of isoprenoid and other Volatile Organic Compound (VOC) emissions to the atmosphere. The seasonal variation of these compounds is however still poorly understood. In this study, profiles were collected of the vertical profile of mixing ratios of isoprene, total monoterpenes and total sesquiterpenes, within and above the canopy, in a primary rainforest in central Amazonia, using a Proton Transfer Reaction-Mass Spectrometer (PTR-MS). Fluxes of these compounds from the canopy into the atmosphere were estimated from PTR-MS measurements by using an inverse Lagrangian transport model. Measurements were carried out continuously from September 2010 to January 2011, encompassing the dry and wet seasons. Mixing ratios were higher during the dry (isoprene - 2.68 ± 0.9 ppbv, total monoterpenes - 0.67 ± 0.3 ppbv; total sesquiterpenes - 0.09 ± 0.07 ppbv) than the wet season (isoprene - 1.66 ± 0.9 ppbv, total monoterpenes - 0.47 ± 0.2 ppbv; total sesquiterpenes - 0.03 ± 0.02 ppbv) for all compounds. Ambient air temperature and photosynthetically active radiation (PAR) behaved similarly. Daytime isoprene and total monoterpene mixing ratios were highest within the canopy, rather than near the ground or above the canopy. By comparison, daytime total sesquiterpene mixing ratios were highest near the ground. Daytime fluxes varied significantly between seasons for all compounds. The maximums for isoprene (2.53 ± 0.5 μmol m-2 h-1) and total monoterpenes (1.77 ± 0.05 μmol m-2 h-1) were observed in the late dry season, whereas the maximum for total sesquiterpenes was found during the dry-to-wet transition season (0.77 ± 0.1 μmol m-2 h-1). These flux estimates suggest that the canopy is the main source of isoprenoids to the atmosphere for all seasons. However, uncertainties in turbulence parameterization near the ground could affect estimates of fluxes that come from the ground. Leaf phenology seemed to be an important driver of seasonal variation of isoprenoid emissions. Although remote sensing observations of changes in leaf area index were used to estimate leaf phenology, MEGAN 2.1 did not fully capture the behavior of seasonal emissions observed in this study. This could be a result of very local effects on the observed emissions, but also suggest that other parameters need to be better determined in Biogenic Volatile Organic Compound (BVOC) models. Our results support established findings that seasonality of isoprenoids are driven by seasonal changes in light, temperature and leaf phenology. However, they suggest that leaf phenology and its role on isoprenoid production and emission from tropical plant species needs to be better understood in order to develop mechanistic explanations for seasonal variation in emissions. This also may reduce the uncertainties of model estimates associated with the responses to environmental factors. Therefore, this study strongly encourages long-term measurements of isoprenoid emissions, environmental factors and leaf phenology from leaf to ecosystem scale, with the purpose of improving BVOC model approaches that can characterize seasonality of isoprenoid emissions from tropical rainforests.

  12. AraC/XylS Family Stress Response Regulators Rob, SoxS, PliA, and OpiA in the Fire Blight Pathogen Erwinia amylovora

    PubMed Central

    Pletzer, Daniel; Schweizer, Gabriel

    2014-01-01

    Transcriptional regulators of the AraC/XylS family have been associated with multidrug resistance, organic solvent tolerance, oxidative stress, and virulence in clinically relevant enterobacteria. In the present study, we identified four homologous AraC/XylS regulators, Rob, SoxS, PliA, and OpiA, from the fire blight pathogen Erwinia amylovora Ea1189. Previous studies have shown that the regulators MarA, Rob, and SoxS from Escherichia coli mediate multiple-antibiotic resistance, primarily by upregulating the AcrAB-TolC efflux system. However, none of the four AraC/XylS regulators from E. amylovora was able to induce a multidrug resistance phenotype in the plant pathogen. Overexpression of rob led to a 2-fold increased expression of the acrA gene. However, the rob-overexpressing strain showed increased resistance to only a limited number of antibiotics. Furthermore, Rob was able to induce tolerance to organic solvents in E. amylovora by mechanisms other than efflux. We demonstrated that SoxS from E. amylovora is involved in superoxide resistance. A soxS-deficient mutant of Ea1189 was not able to grow on agar plates supplemented with the superoxide-generating agent paraquat. Furthermore, expression of soxS was induced by redox cycling agents. We identified two novel members of the AraC/XylS family in E. amylovora. PliA was highly upregulated during the early infection phase in apple rootstock and immature pear fruits. Multiple compounds were able to induce the expression of pliA, including apple leaf extracts, phenolic compounds, redox cycling agents, heavy metals, and decanoate. OpiA was shown to play a role in the regulation of osmotic and alkaline pH stress responses. PMID:24936054

  13. 7 CFR 30.39 - Class 4; cigar-filler types and groups.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... CONTAINER REGULATIONS TOBACCO STOCKS AND STANDARDS Classification of Leaf Tobacco Covering Classes, Types...-leaf tobacco commonly known as Pennsylvania Seedleaf or Pennsylvania Broadleaf, produced principally in... Stripped. Y—Farm Filler. N—Nondescript, as defined. (b) Type 42. That type of cigar-leaf tobacco commonly...

  14. 7 CFR 29.1029 - Leaf scrap.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false Leaf scrap. 29.1029 Section 29.1029 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Type 92) § 29.1029 Leaf scrap. A byproduct of stemmed and unstemmed tobacco. [42 FR 21092, Apr. 25...

  15. 7 CFR 30.39 - Class 4; cigar-filler types and groups.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... CONTAINER REGULATIONS TOBACCO STOCKS AND STANDARDS Classification of Leaf Tobacco Covering Classes, Types...-leaf tobacco commonly known as Pennsylvania Seedleaf or Pennsylvania Broadleaf, produced principally in... Stripped. Y—Farm Filler. N—Nondescript, as defined. (b) Type 42. That type of cigar-leaf tobacco commonly...

  16. 7 CFR 29.1029 - Leaf scrap.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 2 2013-01-01 2013-01-01 false Leaf scrap. 29.1029 Section 29.1029 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Type 92) § 29.1029 Leaf scrap. A byproduct of stemmed and unstemmed tobacco. [42 FR 21092, Apr. 25...

  17. 7 CFR 30.40 - Class 5; cigar-binder types and groups.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... CONTAINER REGULATIONS TOBACCO STOCKS AND STANDARDS Classification of Leaf Tobacco Covering Classes, Types...-leaf tobacco commonly known as Connecticut Valley Broadleaf or Connecticut Broadleaf, produced principally in the Connecticut River Valley. (b) Type 52. That type of cigar-leaf tobacco commonly known as...

  18. 7 CFR 30.40 - Class 5; cigar-binder types and groups.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... CONTAINER REGULATIONS TOBACCO STOCKS AND STANDARDS Classification of Leaf Tobacco Covering Classes, Types...-leaf tobacco commonly known as Connecticut Valley Broadleaf or Connecticut Broadleaf, produced principally in the Connecticut River Valley. (b) Type 52. That type of cigar-leaf tobacco commonly known as...

  19. 7 CFR 30.40 - Class 5; cigar-binder types and groups.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... CONTAINER REGULATIONS TOBACCO STOCKS AND STANDARDS Classification of Leaf Tobacco Covering Classes, Types...-leaf tobacco commonly known as Connecticut Valley Broadleaf or Connecticut Broadleaf, produced principally in the Connecticut River Valley. (b) Type 52. That type of cigar-leaf tobacco commonly known as...

  20. 7 CFR 30.39 - Class 4; cigar-filler types and groups.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... CONTAINER REGULATIONS TOBACCO STOCKS AND STANDARDS Classification of Leaf Tobacco Covering Classes, Types...-leaf tobacco commonly known as Pennsylvania Seedleaf or Pennsylvania Broadleaf, produced principally in... Stripped. Y—Farm Filler. N—Nondescript, as defined. (b) Type 42. That type of cigar-leaf tobacco commonly...

  1. 7 CFR 30.40 - Class 5; cigar-binder types and groups.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... CONTAINER REGULATIONS TOBACCO STOCKS AND STANDARDS Classification of Leaf Tobacco Covering Classes, Types...-leaf tobacco commonly known as Connecticut Valley Broadleaf or Connecticut Broadleaf, produced principally in the Connecticut River Valley. (b) Type 52. That type of cigar-leaf tobacco commonly known as...

  2. 7 CFR 30.40 - Class 5; cigar-binder types and groups.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... CONTAINER REGULATIONS TOBACCO STOCKS AND STANDARDS Classification of Leaf Tobacco Covering Classes, Types...-leaf tobacco commonly known as Connecticut Valley Broadleaf or Connecticut Broadleaf, produced principally in the Connecticut River Valley. (b) Type 52. That type of cigar-leaf tobacco commonly known as...

  3. 7 CFR 30.39 - Class 4; cigar-filler types and groups.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... CONTAINER REGULATIONS TOBACCO STOCKS AND STANDARDS Classification of Leaf Tobacco Covering Classes, Types...-leaf tobacco commonly known as Pennsylvania Seedleaf or Pennsylvania Broadleaf, produced principally in... Stripped. Y—Farm Filler. N—Nondescript, as defined. (b) Type 42. That type of cigar-leaf tobacco commonly...

  4. 7 CFR 29.1029 - Leaf scrap.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 2 2012-01-01 2012-01-01 false Leaf scrap. 29.1029 Section 29.1029 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Type 92) § 29.1029 Leaf scrap. A byproduct of stemmed and unstemmed tobacco. [42 FR 21092, Apr. 25...

  5. 7 CFR 30.39 - Class 4; cigar-filler types and groups.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... CONTAINER REGULATIONS TOBACCO STOCKS AND STANDARDS Classification of Leaf Tobacco Covering Classes, Types...-leaf tobacco commonly known as Pennsylvania Seedleaf or Pennsylvania Broadleaf, produced principally in... Stripped. Y—Farm Filler. N—Nondescript, as defined. (b) Type 42. That type of cigar-leaf tobacco commonly...

  6. 7 CFR 29.1029 - Leaf scrap.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Leaf scrap. 29.1029 Section 29.1029 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Type 92) § 29.1029 Leaf scrap. A byproduct of stemmed and unstemmed tobacco. [42 FR 21092, Apr. 25...

  7. 7 CFR 29.1029 - Leaf scrap.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 2 2014-01-01 2014-01-01 false Leaf scrap. 29.1029 Section 29.1029 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Type 92) § 29.1029 Leaf scrap. A byproduct of stemmed and unstemmed tobacco. [42 FR 21092, Apr. 25...

  8. Impact of UV-A radiation on the performance of aphids and whiteflies and on the leaf chemistry of their host plants.

    PubMed

    Dáder, Beatriz; Gwynn-Jones, Dylan; Moreno, Aránzazu; Winters, Ana; Fereres, Alberto

    2014-09-05

    Ultraviolet (UV) radiation directly regulates a multitude of herbivore life processes, in addition to indirectly affecting insect success via changes in plant chemistry and morphogenesis. Here we looked at plant and insect (aphid and whitefly) exposure to supplemental UV-A radiation in the glasshouse environment and investigated effects on insect population growth. Glasshouse grown peppers and eggplants were grown from seed inside cages covered by novel plastic filters, one transparent and the other opaque to UV-A radiation. At a 10-true leaf stage for peppers (53 days) and 4-true leaf stage for eggplants (34 days), plants were harvested for chemical analysis and infested by aphids and whiteflies, respectively. Clip-cages were used to introduce and monitor the insect fitness and populations of the pests studied. Insect pre-reproductive period, fecundity, fertility and intrinsic rate of natural increase were assessed. Crop growth was monitored weekly for 7 and 12 weeks throughout the crop cycle of peppers and eggplants, respectively. At the end of the insect fitness experiment, plants were harvested (68 days and 18-true leaf stage for peppers, and 104 days and 12-true leaf stage for eggplants) and leaves analysed for secondary metabolites, soluble carbohydrates, amino acids, total proteins and photosynthetic pigments. Our results demonstrate for the first time, that UV-A modulates plant chemistry with implications for insect pests. Both plant species responded directly to UV-A by producing shorter stems but this effect was only significant in pepper whilst UV-A did not affect the leaf area of either species. Importantly, in pepper, the UV-A treated plants contained higher contents of secondary metabolites, leaf soluble carbohydrates, free amino acids and total content of protein. Such changes in tissue chemistry may have indirectly promoted aphid performance. For eggplants, chlorophylls a and b, and carotenoid levels decreased with supplemental UV-A over the entire crop cycle but UV-A exposure did not affect leaf secondary metabolites. However, exposure to supplemental UV-A had a detrimental effect on whitefly development, fecundity and fertility presumably not mediated by plant cues as compounds implied in pest nutrition - proteins and sugars - were unaltered. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Comparative transcriptome analyses of three medicinal Forsythia species and prediction of candidate genes involved in secondary metabolisms.

    PubMed

    Sun, Luchao; Rai, Amit; Rai, Megha; Nakamura, Michimi; Kawano, Noriaki; Yoshimatsu, Kayo; Suzuki, Hideyuki; Kawahara, Nobuo; Saito, Kazuki; Yamazaki, Mami

    2018-05-07

    The three Forsythia species, F. suspensa, F. viridissima and F. koreana, have been used as herbal medicines in China, Japan and Korea for centuries and they are known to be rich sources of numerous pharmaceutical metabolites, forsythin, forsythoside A, arctigenin, rutin and other phenolic compounds. In this study, de novo transcriptome sequencing and assembly was performed on these species. Using leaf and flower tissues of F. suspensa, F. viridissima and F. koreana, 1.28-2.45-Gbp sequences of Illumina based pair-end reads were obtained and assembled into 81,913, 88,491 and 69,458 unigenes, respectively. Classification of the annotated unigenes in gene ontology terms and KEGG pathways was used to compare the transcriptome of three Forsythia species. The expression analysis of orthologous genes across all three species showed the expression in leaf tissues being highly correlated. The candidate genes presumably involved in the biosynthetic pathway of lignans and phenylethanoid glycosides were screened as co-expressed genes. They express highly in the leaves of F. viridissima and F. koreana. Furthermore, the three unigenes annotated as acyltransferase were predicted to be associated with the biosynthesis of acteoside and forsythoside A from the expression pattern and phylogenetic analysis. This study is the first report on comparative transcriptome analyses of medicinally important Forsythia genus and will serve as an important resource to facilitate further studies on biosynthesis and regulation of therapeutic compounds in Forsythia species.

  10. Interactive influence of leaf age, light intensity, and girdling on green ash foliar chemistry and emerald ash borer development

    Treesearch

    Yigen Chen; Therese M. Poland

    2009-01-01

    Biotic and abiotic environmental factors affect plant nutritional quality and defensive compounds that confer plant resistance to herbivory. Influence of leaf age, light availability, and girdling on foliar nutrition and defense of green ash (Fraxinus pennsylvanica Marsh) was examined in this study. Longevity of the emerald ash borer, ...

  11. Comparative evaluation of successive extracts of leaf and stem bark of Albizzia lebbeck for mast cell stabilization activity.

    PubMed

    Shashidhara, S; Bhandarkar, Anant V; Deepak, M

    2008-06-01

    Successive chloroform, methanol and water extracts of bark and leaves of Albizzia lebbeck were tested for its in vitro mast cell stabilizing effect against compound 48/80. Methanolic extract of leaf and methanolic and water extracts of bark have shown maximum activity comparable to that of disodium chromoglycate.

  12. Thidiazuron, a non-metablized cytokinin, shows promise in extending the life of potted plants

    USDA-ARS?s Scientific Manuscript database

    Application of low concentrations of thidiazuron (N-phenyl-N’-1,2,3-thiadiazol-5-yl urea, TDZ) has been shown to be a very effective means of delaying leaf yellowing in cut flowers such as alstroemeria, stock, lilies and tulips. We examined the possible use of this compound for delaying leaf yellow...

  13. Photosynthetic capacity regulation is uncoupled from nutrient limitation

    NASA Astrophysics Data System (ADS)

    Smith, N. G.; Keenan, T. F.; Prentice, I. C.; Wang, H.

    2017-12-01

    Ecosystem and Earth system models need information on leaf-level photosynthetic capacity, but to date typically rely on empirical estimates and an assumed dependence on nitrogen supply. Recent evidence suggests that leaf nitrogen is actively controlled though plant responses to photosynthetic demand. Here, we propose and test a theory of demand-driven coordination of photosynthetic processes, and use it to assess the relative roles of nutrient supply and photosynthetic demand. The theory captured 63% of observed variability in a global dataset of Rubisco carboxylation capacity (Vcmax; 3,939 values at 219 sites), suggesting that environmentally regulated biophysical costs and light availability are the first-order drivers of photosynthetic capacity. Leaf nitrogen, on the other hand, was a weak secondary driver of Vcmax, explaining less than 6% of additional observed variability. We conclude that leaf nutrient allocation is primarily driven by demand. Our theory offers a simple, robust strategy for dynamically predicting leaf-level photosynthetic capacity in global models.

  14. A growing Leaf as a Sheet of an Active Solid

    NASA Astrophysics Data System (ADS)

    Sharon, Eran

    A growing leaf is a thin sheet of active solid, which expands while obeying the laws of mechanics. The effective rheology of this active solid is nontrivial, allowing the leaf to increase its area by orders of magnitude, keeping its ''proper'' geometry. The questions of what the characteristics of the leaf growth field are and how it is regulated without any central ''headquarter'' are still open. I will present measurements of natural leaf growth with high time and space resolution. These show that the growth is a highly fluctuating process in both time and space. We suggest that the entire statistics of the growth field, not just its averages contain information important for the understanding of growth regulation. In another set of experiments we measure the effect of mechanical stress on deformation and growth. The measured effective rheology is viscoelastic with time varying parameters, indicating remodeling of the tissue in response to extended application of mechanical stress.

  15. Microscopic evaluation and physiochemical analysis of Dillenia indica leaf

    PubMed Central

    Kumar, S; Kumar, V; Prakash, Om

    2011-01-01

    Objective To study detail microscopic evaluation and physiochemical analysis of Dillenia indica (D. indica) leaf. Methods Fresh leaf sample and dried power of the leaf were studied macroscopically and microscopically. Preliminary phytochemical investigation of plant material was done. Other WHO recommended parameters for standardizations were also performed. Results The detail microscopy revealed the presence of anomocytic stomata, unicellular trichome, xylem fibres, calcium oxalate crystals, vascular bundles, etc. Leaf constants such as stomatal number, stomatal index, vein-islet number and veinlet termination numbers were also measured. Physiochemical parameters such as ash values, loss on drying, extractive values, percentage of foreign matters, swelling index, etc. were also determined. Preliminary phytochemical screening showed the presence of steroids, terpenoids, glycosides, fatty acids, flavonoids, phenolic compounds and carbohydrates. Conclusions The microscopic and physiochemical analysis of the D. indica leaf is useful in standardization for quality, purity and sample identification. PMID:23569789

  16. 7 CFR 29.3646 - Wrappers (A Group).

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... REGULATIONS TOBACCO INSPECTION Standards Grades § 29.3646 Wrappers (A Group). This group consists of leaves from the Heavy Leaf and the Thin Leaf groups. Cured leaves of the A group are very elastic, have small..., medium body, open leaf structure, smooth, rich in oil, clear finish, deep color intensity elastic...

  17. 7 CFR 29.3646 - Wrappers (A Group).

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... REGULATIONS TOBACCO INSPECTION Standards Grades § 29.3646 Wrappers (A Group). This group consists of leaves from the Heavy Leaf and the Thin Leaf groups. Cured leaves of the A group are very elastic, have small..., medium body, open leaf structure, smooth, rich in oil, clear finish, deep color intensity elastic...

  18. 7 CFR 29.3646 - Wrappers (A Group).

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... REGULATIONS TOBACCO INSPECTION Standards Grades § 29.3646 Wrappers (A Group). This group consists of leaves from the Heavy Leaf and the Thin Leaf groups. Cured leaves of the A group are very elastic, have small..., medium body, open leaf structure, smooth, rich in oil, clear finish, deep color intensity elastic...

  19. 7 CFR 29.3646 - Wrappers (A Group).

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... REGULATIONS TOBACCO INSPECTION Standards Grades § 29.3646 Wrappers (A Group). This group consists of leaves from the Heavy Leaf and the Thin Leaf groups. Cured leaves of the A group are very elastic, have small..., medium body, open leaf structure, smooth, rich in oil, clear finish, deep color intensity elastic...

  20. 7 CFR 29.3646 - Wrappers (A Group).

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... REGULATIONS TOBACCO INSPECTION Standards Grades § 29.3646 Wrappers (A Group). This group consists of leaves from the Heavy Leaf and the Thin Leaf groups. Cured leaves of the A group are very elastic, have small..., medium body, open leaf structure, smooth, rich in oil, clear finish, deep color intensity elastic...

  1. 76 FR 76297 - Drawbridge Operation Regulation; Willamette River, Portland, OR

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-07

    .... This deviation allows single leaf operations during rehabilitation and requires a two hour advance notification for a single leaf opening. DATES: This deviation is effective from 6 a.m. on December 1, 2011...: Multnomah County has requested to operate the Morrison Bascule Bridge with single leaf openings with two...

  2. Soil science: Heat-proof carbon compound

    NASA Astrophysics Data System (ADS)

    Prescott, Cindy

    2008-12-01

    Two-thirds of terrestrial carbon is stored as organic matter in soils, but its response to warming has yet to be resolved. A soil warming experiment in a Canadian forest has revealed that the leaf-derived compound cutin is resistant to decomposition under elevated temperatures.

  3. Genome wide association mapping for leaf

    USDA-ARS?s Scientific Manuscript database

    Cyanogenic glucosides are natural compounds found in over 1,000 species of angiosperms that produce HCN and are deemed undesirable for agricultural use. However, these compounds are important components of primary defensive mechanisms of many plant species. One of the best-studied cyanogenic gluco...

  4. Effect of guava (Psidium guajava L.) leaf extract on glucose uptake in rat hepatocytes.

    PubMed

    Cheng, Fang-Chi; Shen, Szu-Chuan; Wu, James Swi-Bea

    2009-06-01

    People in oriental countries, including Japan and Taiwan, boil guava leaves (Psidium guajava L.) in water and drink the extract as a folk medicine for diabetes. The present study investigated the enhancement of aqueous guava leaf extract on glucose uptake in rat clone 9 hepatocytes and searched for the active compound. The extract was eluted with MeOH-H(2)O solutions through Diaion, Sephadex, and MCI-gel columns to separate into fractions with different polarities. The uptake test of 2-[1-(14)C] deoxy-D-glucose in rat clone 9 hepatocytes was performed to evaluate the hypoglycemic effect of these fractions. The active compound was identified by nuclear magnetic resonance analysis and high-performance liquid chromatography (HPLC). The results revealed that phenolics are the principal component of the extract, that high polarity fractions of the guava leaf extract are enhancers to glucose uptake in rat clone 9 hepatocytes, and that quercetin is the major active compound. We suggest that quercetin in the aqueous extract of guava leaves promotes glucose uptake in liver cells, and contributes to the alleviation of hypoglycemia in diabetes as a consequence.

  5. Localization of production and emission of pollinator attractant on whole leaves of Chamaerops humilis (Arecaceae).

    PubMed

    Caissard, Jean-Claude; Meekijjironenroj, Aroonrat; Baudino, Sylvie; Anstett, Marie-Charlotte

    2004-08-01

    Volatile compounds, which frequently play important roles in plant-insect interaction, can be produced either by flowers to attract pollinators or by leaves to deter herbivores. The specialized structures associated with odor production differ in these two organs. The European dwarf palm Chamaerops humilis represents a unique intermediate between these two. In previous work, its leaves were shown to produce volatile organic compounds (VOCs) that attract pollinators only during flowering. Because the leaf sinuses look like a gland, the sinus was examined histologically and with environmental scanning electron microscopy (ESEM) for evidence that the sinus emits VOCs. Volatile compounds emitted by the different parts of the leaf were extracted by washes and headspace then analyzed by gas chromatograph-mass spectrometer (GC-MS). The sinus does not have the expected gland-like structure; the VOCs are actually produced by the whole leaf, even if the composition of the VOCs emitted by the sinus slightly differs. Thus, attraction of pollinators does not result from specialized secreting cells in leaves of flowering European dwarf palms. The results are discussed in the context of a convergent evolution of leaves toward petals.

  6. Light-mediated K(leaf) induction and contribution of both the PIP1s and PIP2s aquaporins in five tree species: walnut (Juglans regia) case study.

    PubMed

    Baaziz, Khaoula Ben; Lopez, David; Rabot, Amelie; Combes, Didier; Gousset, Aurelie; Bouzid, Sadok; Cochard, Herve; Sakr, Soulaiman; Venisse, Jean-Stephane

    2012-04-01

    Understanding the response of leaf hydraulic conductance (K(leaf)) to light is a challenge in elucidating plant-water relationships. Recent data have shown that the effect of light on K(leaf) is not systematically related to aquaporin regulation, leading to conflicting conclusions. Here we investigated the relationship between light, K(leaf), and aquaporin transcript levels in five tree species (Juglans regia L., Fagus sylvatica L., Quercus robur L., Salix alba L. and Populus tremula L.) grown in the same environmental conditions, but differing in their K(leaf) responses to light. Moreover, the K(leaf) was measured by two independent methods (high-pressure flow metre (HPFM) and evaporative flux method (EFM)) in the most (J. regia) and least (S. alba) responsive species and the transcript levels of aquaporins were analyzed in perfused and unperfused leaves. Here, we found that the light-induced K(leaf) value was closely related to stronger expression of both the PIP1 and PIP2 aquaporin genes in walnut (J. regia), but to stimulation of PIP1 aquaporins alone in F. sylvatica and Q. robur. In walnut, all newly identified aquaporins were found to be upregulated in the light and downregulated in the dark, further supporting the relationship between the light-mediated induction of K(leaf) and aquaporin expression in walnut. We also demonstrated that the K(leaf) response to light was quality-dependent, K(leaf) being 60% lower in the absence of blue light. This decrease in K(leaf) was correlated with strong downregulation of three PIP2 aquaporins and of all the PIP1 aquaporins tested. These data support a relationship between light-mediated K(leaf) regulation and the abundance of aquaporin transcripts in the walnut tree.

  7. Changes in the structural composition and reactivity of Acer rubrum leaf litter tannins exposed to warming and altered precipitation: climatic stress-induced tannins are more reactive.

    PubMed

    Tharayil, Nishanth; Suseela, Vidya; Triebwasser, Daniella J; Preston, Caroline M; Gerard, Patrick D; Dukes, Jeffrey S

    2011-07-01

    • Climate change could increase the frequency with which plants experience abiotic stresses, leading to changes in their metabolic pathways. These stresses may induce the production of compounds that are structurally and biologically different from constitutive compounds. • We studied how warming and altered precipitation affected the composition, structure, and biological reactivity of leaf litter tannins in Acer rubrum at the Boston-Area Climate Experiment, in Massachusetts, USA. • Warmer and drier climatic conditions led to higher concentrations of protective compounds, including flavonoids and cutin. The abundance and structure of leaf tannins also responded consistently to climatic treatments. Drought and warming in combination doubled the concentration of total tannins, which reached 30% of leaf-litter DW. This treatment also produced condensed tannins with lower polymerization and a greater proportion of procyanidin units, which in turn reduced sequestration of tannins by litter fiber. Furthermore, because of the structural flexibility of these tannins, litter from this treatment exhibited five times more enzyme (β-glucosidase) complexation capacity on a per-weight basis. Warmer and wetter conditions decreased the amount of foliar condensed tannins. • Our finding that warming and drought result in the production of highly reactive tannins is novel, and highly relevant to climate change research as these tannins, by immobilizing microbial enzymes, could slow litter decomposition and thus carbon and nutrient cycling in a warmer, drier world. © 2011 The Authors. New Phytologist © 2011 New Phytologist Trust.

  8. Pinot noir wine volatile and anthocyanin composition under different levels of vine fruit zone leaf removal.

    PubMed

    Feng, Hui; Skinkis, Patricia A; Qian, Michael C

    2017-01-01

    The impacts of fruit zone leaf removal on volatile and anthocyanin compositions of Pinot noir wine were investigated over two growing seasons. Wine volatiles were analyzed by multiple techniques, including headspace solid phase microextraction-GC-MS (HS-SPME-GC-MS), headspace-GC-FID (HS-GC-FID) and stir bar sorptive extraction-GC-MS (SBSE-GC-MS). Fruit zone leaf removal affected the concentration of many grape-derived volatile compounds such as terpene alcohols and C13-norisoprenoids in wine, although the degree of impact depended on the vintage year and severity of leaf removal. Fruit zone leaf removal resulted in greater concentrations of linalool, α-terpineol and β-damascenone but had no impact on other terpene alcohols or β-ionone. Fruit zone leaf removal had no consistent impact on C6 alcohols, volatile phenols, lactones, fermentation-derived alcohols, acids, or most esters. Fruit zone leaf removal increased anthocyanins in final wine. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Phenolic metabolites in leaves of the invasive shrub, Lonicera maackii, and their potential phytotoxic and anti-herbivore effects.

    PubMed

    Cipollini, Don; Stevenson, Randall; Enright, Stephanie; Eyles, Alieta; Bonello, Pierluigi

    2008-02-01

    Lonicera maackii is an invasive shrub in North America for which allelopathic effects toward other plants or herbivores have been suspected. We characterized the major phenolic metabolites present in methanol extracts of L. maackii leaves. In addition, we examined the effects of methanol-water extracts of L. maackii leaves on seed germination of a target plant species and on feeding preference and growth rate of a generalist insect herbivore. A total of 13 individual major and minor compounds were detected in crude leaf extracts by high-performance liquid chromatography coupled to electronspray ionization-tandem mass spectrometry (ESI-MS/MS). Extracts were dominated by two major flavones, apigenin and luteolin, and their glucoside derivatives, apigenin-7-glucoside and luteolin-7-glucoside. Quantities of these compounds, along with chlorogenic acid, varied between two sampling points. Leaf extracts that contained these compounds were inhibitory to seed germination of Arabidopsis thaliana. In addition, treatment of artificial diet with leaf extracts deterred feeding of the generalist herbivore, Spodoptera exigua, in choice experiments but had no effect on growth rate in short-term no-choice bioassays. Purified apigenin tended to deter feeding by S. exigua and inhibited seed germination of A. thaliana. We conclude that leaves of L. maackii contain phenolic compounds, including apigenin and chlorogenic acid, capable of having biological effects on other plants and insects.

  10. Gibberellin-regulated gene in the basal region of rice leaf sheath encodes basic helix-loop-helix transcription factor.

    PubMed

    Komatsu, Setsuko; Takasaki, Hironori

    2009-07-01

    Genes regulated by gibberellin (GA) during leaf sheath elongation in rice seedlings were identified using the transcriptome approach. mRNA from the basal regions of leaf sheaths treated with GA3 was analyzed by high-coverage gene expression profiling. 33,004 peaks were detected, and 30 transcripts showed significant changes in the presence of GA3. Among these, basic helix-loop-helix transcription factor (AK073385) was significantly upregulated. Quantitative PCR analysis confirmed that expression of AK073385 was controlled by GA3 in a time- and dose-dependent manner. Basic helix-loop-helix transcription factor (AK073385) is therefore involved in the regulation of gene expression by GA3.

  11. HPLC-based activity profiling for antiplasmodial compounds in the traditional Indonesian medicinal plant Carica papaya L.

    PubMed

    Julianti, Tasqiah; De Mieri, Maria; Zimmermann, Stefanie; Ebrahimi, Samad N; Kaiser, Marcel; Neuburger, Markus; Raith, Melanie; Brun, Reto; Hamburger, Matthias

    2014-08-08

    Leaf decoctions of Carica papaya have been traditionally used in some parts of Indonesia to treat and prevent malaria. Leaf extracts and fraction have been previously shown to possess antiplasmodial activity in vitro and in vivo. Antiplasmodial activity of extracts was confirmed and the active fractions in the extract were identified by HPLC-based activity profiling, a gradient HPLC fractionation of a single injection of the extract, followed by offline bioassay of the obtained microfractions. For preparative isolation of compounds, an alkaloidal fraction was obtained via adsorption on cationic ion exchange resin. Active compounds were purified by HPLC-MS and MPLC-ELSD. Structures were established by HR-ESI-MS and NMR spectroscopy. For compounds 5 and 7 absolute configuration was confirmed by comparison of experimental and calculated electronic circular dichroism (ECD) spectroscopy data, and by X-ray crystallography. Compounds were tested for bioactivity in vitro against four parasites (Trypanosoma brucei rhodesiense, Trypanosoma cruzi, Leishmania donovani, and Plasmodium falciparum), and in the Plasmodium berghei mouse model. Profiling indicated flavonoids and alkaloids in the active time windows. A total of nine compounds were isolated. Four were known flavonols--manghaslin, clitorin, rutin, and nicotiflorin. Five compounds isolated from the alkaloidal fraction were piperidine alkaloids. Compounds 5 and 6 were inactive carpamic acid and methyl carpamate, while three alkaloids 7-9 showed high antiplasmodial activity and low cytotoxicity. When tested in the Plasmodium berghei mouse model, carpaine (7) did not increase the survival time of animals. The antiplasmodial activity of papaya leaves could be linked to alkaloids. Among these, carpaine was highly active and selective in vitro. The high in vitro activity could not be substantiated with the in vivo murine model. Further investigations are needed to clarify the divergence between our negative in vivo results for carpaine, and previous reports of in vivo activity with papaya leaf extracts. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  12. RNAi-mediated downregulation of poplar plasma membrane intrinsic proteins (PIPs) changes plasma membrane proteome composition and affects leaf physiology.

    PubMed

    Bi, Zhen; Merl-Pham, Juliane; Uehlein, Norbert; Zimmer, Ina; Mühlhans, Stefanie; Aichler, Michaela; Walch, Axel Karl; Kaldenhoff, Ralf; Palme, Klaus; Schnitzler, Jörg-Peter; Block, Katja

    2015-10-14

    Plasma membrane intrinsic proteins (PIPs) are one subfamily of aquaporins that mediate the transmembrane transport of water. To reveal their function in poplar, we generated transgenic poplar plants in which the translation of PIP genes was downregulated by RNA interference investigated these plants with a comprehensive leaf plasma membrane proteome and physiome analysis. First, inhibition of PIP synthesis strongly altered the leaf plasma membrane protein composition. Strikingly, several signaling components and transporters involved in the regulation of stomatal movement were differentially regulated in transgenic poplars. Furthermore, hormonal crosstalk related to abscisic acid, auxin and brassinosteroids was altered, in addition to cell wall biosynthesis/cutinization, the organization of cellular structures and membrane trafficking. A physiological analysis confirmed the proteomic results. The leaves had wider opened stomata and higher net CO2 assimilation and transpiration rates as well as greater mesophyll conductance for CO2 (gm) and leaf hydraulic conductance (Kleaf). Based on these results, we conclude that PIP proteins not only play essential roles in whole leaf water and CO2 flux but have important roles in the regulation of stomatal movement. Copyright © 2015. Published by Elsevier B.V.

  13. Photosynthetic leaf area modulates tiller bud outgrowth in sorghum: Bud outgrowth is sensitive to leaf area

    DOE PAGES

    Kebrom, Tesfamichael H.; Mullet, John E.

    2014-12-12

    Shoot branches or tillers develop from axillary buds. The dormancy versus outgrowth fates of buds depends on genetic, environmental and hormonal signals. Defoliation inhibits bud outgrowth indicating the role of leaf-derived metabolic factors such as sucrose in bud outgrowth. In this study, the sensitivity of bud outgrowth to selective defoliation was investigated. At 6 d after planting (6 DAP), the first two leaves of sorghum were fully expanded and the third was partially emerged. Therefore, the leaves were selectively defoliated at 6 DAP and the length of the bud in the first leaf axil was measured at 8 DAP. Budmore » outgrowth was inhibited by defoliation of only 2 cm from the tip of the second leaf blade. The expression of dormancy and sucrose-starvation marker genes was up-regulated and cell cycle and sucrose-inducible genes was down-regulated during the first 24 h postdefoliation of the second leaf.At 48 h, the expression of these genes was similar to controls as the defoliated plant recovers. Our results demonstrate that small changes in photosynthetic leaf area affect the propensity of tiller buds for outgrowth. Therefore, variation in leaf area and photosynthetic activity should be included when integrating sucrose into models of shoot branching.« less

  14. Composition and antioxidant activities of leaf and root volatile oils of Morinda lucida.

    PubMed

    Okoh, Sunday O; Asekun, Olayinka T; Familoni, Oluwole B; Afolayan, Anthony J

    2011-10-01

    Morinda lucida (L.) Benth. (Rubiacae) is used in traditional medicine in many West African countries for the treatment of various human diseases. The leaves and roots of this plant were subjected to hydro-distillation to obtain volatile oils which were analyzed by high resolution GC/MS. Fifty compounds were identified in the leaf volatile oil and the major compounds were alpha-terpinene (17.8%) and beta-bisabolene (16.3%). In the root oil, 18 compounds were identified, the major constituents being 3-fluoro-p-anidine (51.8%) and hexadecanoic acid (12.0%). Antioxidant activities of the oils were examined using the DPPH, ABTS, reducing power and lipid peroxidation assays. All assays were concentration dependent with varying antioxidant potentials. The antioxidant activity of the root volatile oil of M. lucida was similar to that of the standard drugs used.

  15. Does oolong tea (Camellia sinensis) made from a combination of leaf and stem smell more aromatic than leaf-only tea? Contribution of the stem to oolong tea aroma.

    PubMed

    Zeng, Lanting; Zhou, Ying; Fu, Xiumin; Mei, Xin; Cheng, Sihua; Gui, Jiadong; Dong, Fang; Tang, Jinchi; Ma, Shengzhou; Yang, Ziyin

    2017-12-15

    The raw materials used to make oolong tea (Camellia sinensis) are a combination of leaf and stem. Oolong tea made from leaf and stem is thought to have a more aromatic smell than leaf-only tea. However, there is no available evidence to support the viewpoint. In this study, sensory evaluation and detailed characterization of emitted and internal volatiles (not readily emitted, but stored in samples) of dry oolong teas and infusions indicated that the presence of stem did not significantly improve the total aroma characteristics. During the enzyme-active processes, volatile monoterpenes and theanine were accumulated more abundantly in stem than in leaf, while jasmine lactone, indole, and trans-nerolidol were lower in stem than in leaf. Tissue-specific aroma-related gene expression and availability of precursors of aroma compounds resulted in different aroma distributions in leaf and stem. This study presents the first determination of the contribution of stem to oolong tea aroma. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Systems analysis of a maize leaf developmental gradient redefines the current C4 model and provides candidates for regulation.

    PubMed

    Pick, Thea R; Bräutigam, Andrea; Schlüter, Urte; Denton, Alisandra K; Colmsee, Christian; Scholz, Uwe; Fahnenstich, Holger; Pieruschka, Roland; Rascher, Uwe; Sonnewald, Uwe; Weber, Andreas P M

    2011-12-01

    We systematically analyzed a developmental gradient of the third maize (Zea mays) leaf from the point of emergence into the light to the tip in 10 continuous leaf slices to study organ development and physiological and biochemical functions. Transcriptome analysis, oxygen sensitivity of photosynthesis, and photosynthetic rate measurements showed that the maize leaf undergoes a sink-to-source transition without an intermediate phase of C(3) photosynthesis or operation of a photorespiratory carbon pump. Metabolome and transcriptome analysis, chlorophyll and protein measurements, as well as dry weight determination, showed continuous gradients for all analyzed items. The absence of binary on-off switches and regulons pointed to a morphogradient along the leaf as the determining factor of developmental stage. Analysis of transcription factors for differential expression along the leaf gradient defined a list of putative regulators orchestrating the sink-to-source transition and establishment of C(4) photosynthesis. Finally, transcriptome and metabolome analysis, as well as enzyme activity measurements, and absolute quantification of selected metabolites revised the current model of maize C(4) photosynthesis. All data sets are included within the publication to serve as a resource for maize leaf systems biology.

  17. Role of Aquaporins in a Composite Model of Water Transport in the Leaf.

    PubMed

    Yaaran, Adi; Moshelion, Menachem

    2016-06-30

    Water-transport pathways through the leaf are complex and include several checkpoints. Some of these checkpoints exhibit dynamic behavior that may be regulated by aquaporins (AQPs). To date, neither the relative weight of the different water pathways nor their molecular mechanisms are well understood. Here, we have collected evidence to support a putative composite model of water pathways in the leaf and the distribution of water across those pathways. We describe how water moves along a single transcellular path through the parenchyma and continues toward the mesophyll and stomata along transcellular, symplastic and apoplastic paths. We present evidence that points to a role for AQPs in regulating the relative weight of each path in the overall leaf water-transport system and the movement of water between these paths as a result of the integration of multiple signals, including transpiration demand, water potential and turgor. We also present a new theory, the hydraulic fuse theory, to explain effects of the leaf turgor-loss-point on water paths alternation and the subsequent reduction in leaf hydraulic conductivity. An improved understating of leaf water-balance management may lead to the development of crops that use water more efficiently, and responds better to environmental changes.

  18. Systems Analysis of a Maize Leaf Developmental Gradient Redefines the Current C4 Model and Provides Candidates for Regulation[W][OA

    PubMed Central

    Pick, Thea R.; Bräutigam, Andrea; Schlüter, Urte; Denton, Alisandra K.; Colmsee, Christian; Scholz, Uwe; Fahnenstich, Holger; Pieruschka, Roland; Rascher, Uwe; Sonnewald, Uwe; Weber, Andreas P.M.

    2011-01-01

    We systematically analyzed a developmental gradient of the third maize (Zea mays) leaf from the point of emergence into the light to the tip in 10 continuous leaf slices to study organ development and physiological and biochemical functions. Transcriptome analysis, oxygen sensitivity of photosynthesis, and photosynthetic rate measurements showed that the maize leaf undergoes a sink-to-source transition without an intermediate phase of C3 photosynthesis or operation of a photorespiratory carbon pump. Metabolome and transcriptome analysis, chlorophyll and protein measurements, as well as dry weight determination, showed continuous gradients for all analyzed items. The absence of binary on–off switches and regulons pointed to a morphogradient along the leaf as the determining factor of developmental stage. Analysis of transcription factors for differential expression along the leaf gradient defined a list of putative regulators orchestrating the sink-to-source transition and establishment of C4 photosynthesis. Finally, transcriptome and metabolome analysis, as well as enzyme activity measurements, and absolute quantification of selected metabolites revised the current model of maize C4 photosynthesis. All data sets are included within the publication to serve as a resource for maize leaf systems biology. PMID:22186372

  19. Transcriptomic analysis suggests a key role for SQUAMOSA PROMOTER BINDING PROTEIN LIKE, NAC and YUCCA genes in the heteroblastic development of the temperate rainforest tree Gevuina avellana (Proteaceae).

    PubMed

    Ostria-Gallardo, Enrique; Ranjan, Aashish; Chitwood, Daniel H; Kumar, Ravi; Townsley, Brad T; Ichihashi, Yasunori; Corcuera, Luis J; Sinha, Neelima R

    2016-04-01

    Heteroblasty, the temporal development of the meristem, can produce diverse leaf shapes within a plant. Gevuina avellana, a tree from the South American temperate rainforest shows strong heteroblasty affecting leaf shape, transitioning from juvenile simple leaves to highly pinnate adult leaves. Light availability within the forest canopy also modulates its leaf size and complexity. Here we studied how the interaction between the light environment and the heteroblastic progression of leaves is coordinated in this species. We used RNA-seq on the Illumina platform to compare the range of transcriptional responses in leaf primordia of G. avellana at different heteroblastic stages and growing under different light environments. We found a steady up-regulation of SQUAMOSA PROMOTER BINDING PROTEIN LIKE (SPL), NAC, YUCCA and AGAMOUS-LIKE genes associated with increases in age, leaf complexity, and light availability. In contrast, expression of TCP, TPR and KNOTTED1 homeobox genes showed a sustained down-regulation. Additionally, genes involved in auxin synthesis/transport and jasmonate activity were differentially expressed, indicating an active regulation of processes controlled by these hormones. Our large-scale transcriptional analysis of the leaf primordia of G. avellana sheds light on the integration of internal and external cues during heteroblastic development in this species. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  20. The use of laser light to enhance the uptake of foliar-applied substances into citrus (Citrus sinensis) leaves1

    PubMed Central

    Etxeberria, Ed; Gonzalez, Pedro; Fanton Borges, Ana; Brodersen, Craig

    2016-01-01

    Premise of the study: Uptake of foliar-applied substances across the leaf cuticle is central to world food production as well as for physiological investigations into phloem structure and function. Yet, despite the presence of stomata, foliar application as a delivery system can be extremely inefficient due to the low permeability of leaf surfaces to polar compounds. Methods: Using laser light to generate microscopic perforations in the leaf cuticle, we tested the penetration of several substances into the leaf, their uptake into the phloem, and their subsequent movement through the phloem tissue. Substances varied in their size, charge, and Stokes radius. Results: The phloem-mobile compounds 2-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino]-2-deoxyglucose (2-NBDG), lysine, Biocillin, adenosine triphosphate (ATP), trehalose, carboxyfluorescein-SE, and poly(amidomine) (PAMAM) dendrimer G-4 nanoparticles (4.5 nm in size) showed a high degree of mobility and were able to penetrate and be transported in the phloem. Discussion: Our investigation demonstrated the effectiveness of laser light technology in enhancing the penetration of foliar-applied substances into citrus leaves. The technology is also applicable to the study of phloem mobility of substances by providing a less invasive, highly repeatable, and more quantifiable delivery method. The implied superficial lesions to the leaf can be mitigated by applying a waxy coating. PMID:26819863

  1. The potential of papaya leaf extract in controlling Ganoderma boninense

    NASA Astrophysics Data System (ADS)

    Tay, Z. H.; Chong, K. P.

    2016-06-01

    Basal Stem Rot (BSR) disease causes significant losses to the oil palm industry. Numerous controls have been applied in managing the disease but no conclusive result was reported. This study investigated the antifungal potential of papaya leaf extracts against Ganoderma boninense, the causal pathogen of BSR. Among the five different solvents tested in extraction of compounds from papaya leaf, methanol and acetone gave the highest yield. In vitro antifungal activity of the methanol and acetone extracts were evaluated against G. boninense using agar dilution at four concentrations: 5 mg mL-1, 15 mg mL-1, 30 mg mL-1and 45 mg mL-1. The results indicated a positive correlation between the concentration of leaf extracts and the inhibition of G. boninense. ED50 of methanol and acetone crude extracts were determined to be 32.016 mg mL-1and 65.268 mg mL-1, respectively. The extracts were later semi-purified using solid phase extraction (SPE) and the nine bioactive compounds were identified: decanoic acid, 2-methyl-, Z,Z-10-12-Hexadecadien-1-ol acetate, dinonanoin monocaprylin, 2-chloroethyl oleate, phenol,4-(1-phenylethyl)-, phenol,2,4-bis(1-phenylethyl)-, phenol-2-(1-phenylethyl)-, ethyl iso-allocholate and 1- monolinoleoylglycerol trimethylsilyl ether. The findings suggest that papaya leaf extracts have the ability to inhibit the growth of G. boninense, where a higher concentration of the extract exhibits better inhibition effects.

  2. Changes in ultraviolet-B and visible optical properties and absorbing pigment concentrations in pecan leaves during a growing season

    Treesearch

    Yadong Qi; Shuju Bai; Gordon M. Heisler

    2003-01-01

    UV-B (280-320 nm) and visible (400-760 nm) spectral reflectance, transmittance, and absorptance; chlorophyll content; UV-B absorbing compound concentration; and leaf thickness were measured for pecan (Carya illinoensis) leaves over a growing season (April-October). Leaf samples were collected monthly from a pecan plantation located on the Southern...

  3. [Elimination of volatile compounds of leaf tobacco from air emissions using biofiltration].

    PubMed

    Zagustina, N A; Misharina, T A; Vepritskiĭ, A A; Zhukov, V G; Ruzhitskiĭ, A O; Terenina, M B; Krikunova, N I; Kulikova, A K; Popov, V O

    2012-01-01

    The composition of the volatile organic compounds (VOCs) of various leaf tobacco brands and their blends has been studied. The differences in the content of nicotine, solanone, tetramethyl hexadecenol, megastigmatrienones, and other compounds, determining the specific tobacco smell, have been revealed. A microbial consortium, which is able to deodorize simulated tobacco emissions and decompose nicotine, has been formed by long-term adaptation to the VOCs of tobacco leaves in a laboratory reactor, functioning as a trickle-bed biofilter. Such a biofilter eliminates 90% of the basic toxic compound (nicotine) and odor-active compounds; the filtration efficiency does not change for tobacco brands with different VOC concentrations or in the presence of foreign substances. The main strains, isolated from the formed consortium and participating in the nicotine decomposition process, belong to the genera Pseudomonas, Bacillus, and Rhodococcus. An examination of the biofilter trickling fluid has shown full decomposition of nicotine and odor-active VOCs. The compounds, revealed in the trickling fluid, did not have any odor and were nontoxic. The obtained results make it possible to conduct scaling of the biofiltration process to eliminate odor from air emissions in the tobacco industry.

  4. Leaf Volatile Compounds and Associated Gene Expression during Short-Term Nitrogen Deficient Treatments in Cucumis Seedlings

    PubMed Central

    Deng, Jie; Yu, Hong-Jun; Li, Yun-Yun; Zhang, Xiao-Meng; Liu, Peng; Li, Qiang; Jiang, Wei-Jie

    2016-01-01

    Nitrogen (N) is an important macronutrient for plant growth and development, but the regulatory mechanism of volatile compounds in response to N deficiency is not well understood, especially in cucumber, which consumes excessive N during growth. In this study, the major volatile compounds from cucumber leaves subjected to N deficiency were analyzed by GC-MS. A total of 24 volatile components were identified including 15 aldehydes, two ketones, two alkenes, and five other volatile compounds in 9930 leaves. Principal component analysis using volatile compounds from cucumber leaves provided good separation between N-sufficient and N-deficient treatments. The main volatiles in cucumber leaves were found to be C6 and C9 aldehydes, especially (E)-2-hexanal and (E,Z)-2,6-nonadienal. (E)-2-hexanal belonged to the C6 aldehyde and was the most abundant compound, whereas (E,Z)-2,6-nonadienal was the chief component of C9 aldehydes. During N-deficient treatment, short-chain volatile content was significantly improved at 5 day, other volatiles displayed significant reduction or no significantly changes in all sampling points. Improvement of short-chain volatiles was confirmed in the six other inbred lines at 5 day after N-deficient treatments. The expression analysis of 12 cucumber LOX genes and two HPL genes revealed that CsLOX19, CsLOX20, and CsLOX22 had common up-regulated expression patterns in response to N-deficient stress in most inbred lines; meanwhile, most sample points of CsHPL1 also had significant up-regulated expression patterns. This research focused on the relationship between volatiles in cucumber and different nitrogen environments to provide valuable insight into the effect of cultivation and management of the quality of cucumber and contributes to further research on volatile metabolism in cucumber. PMID:27827841

  5. Cuticle Biosynthesis in Tomato Leaves Is Developmentally Regulated by Abscisic Acid1[OPEN

    PubMed Central

    2017-01-01

    The expansion of aerial organs in plants is coupled with the synthesis and deposition of a hydrophobic cuticle, composed of cutin and waxes, which is critically important in limiting water loss. While the abiotic stress-related hormone abscisic acid (ABA) is known to up-regulate wax accumulation in response to drought, the hormonal regulation of cuticle biosynthesis during organ ontogeny is poorly understood. To address the hypothesis that ABA also mediates cuticle formation during organ development, we assessed the effect of ABA deficiency on cuticle formation in three ABA biosynthesis-impaired tomato mutants. The mutant leaf cuticles were thinner, had structural abnormalities, and had a substantial reduction in levels of cutin. ABA deficiency also consistently resulted in differences in the composition of leaf cutin and cuticular waxes. Exogenous application of ABA partially rescued these phenotypes, confirming that they were a consequence of reduced ABA levels. The ABA mutants also showed reduced expression of genes involved in cutin or wax formation. This difference was again countered by exogenous ABA, further indicating regulation of cuticle biosynthesis by ABA. The fruit cuticles were affected differently by the ABA-associated mutations, but in general were thicker. However, no structural abnormalities were observed, and the cutin and wax compositions were less affected than in leaf cuticles, suggesting that ABA action influences cuticle formation in an organ-dependent manner. These results suggest dual roles for ABA in regulating leaf cuticle formation: one that is fundamentally associated with leaf expansion, independent of abiotic stress, and another that is drought induced. PMID:28483881

  6. Cuticle Biosynthesis in Tomato Leaves Is Developmentally Regulated by Abscisic Acid.

    PubMed

    Martin, Laetitia B B; Romero, Paco; Fich, Eric A; Domozych, David S; Rose, Jocelyn K C

    2017-07-01

    The expansion of aerial organs in plants is coupled with the synthesis and deposition of a hydrophobic cuticle, composed of cutin and waxes, which is critically important in limiting water loss. While the abiotic stress-related hormone abscisic acid (ABA) is known to up-regulate wax accumulation in response to drought, the hormonal regulation of cuticle biosynthesis during organ ontogeny is poorly understood. To address the hypothesis that ABA also mediates cuticle formation during organ development, we assessed the effect of ABA deficiency on cuticle formation in three ABA biosynthesis-impaired tomato mutants. The mutant leaf cuticles were thinner, had structural abnormalities, and had a substantial reduction in levels of cutin. ABA deficiency also consistently resulted in differences in the composition of leaf cutin and cuticular waxes. Exogenous application of ABA partially rescued these phenotypes, confirming that they were a consequence of reduced ABA levels. The ABA mutants also showed reduced expression of genes involved in cutin or wax formation. This difference was again countered by exogenous ABA, further indicating regulation of cuticle biosynthesis by ABA. The fruit cuticles were affected differently by the ABA-associated mutations, but in general were thicker. However, no structural abnormalities were observed, and the cutin and wax compositions were less affected than in leaf cuticles, suggesting that ABA action influences cuticle formation in an organ-dependent manner. These results suggest dual roles for ABA in regulating leaf cuticle formation: one that is fundamentally associated with leaf expansion, independent of abiotic stress, and another that is drought induced. © 2017 American Society of Plant Biologists. All Rights Reserved.

  7. Systemic regulation of leaf anatomical structure, photosynthetic performance, and high-light tolerance in sorghum.

    PubMed

    Jiang, Chuang-Dao; Wang, Xin; Gao, Hui-Yuan; Shi, Lei; Chow, Wah Soon

    2011-03-01

    Leaf anatomy of C3 plants is mainly regulated by a systemic irradiance signal. Since the anatomical features of C4 plants are different from that of C3 plants, we investigated whether the systemic irradiance signal regulates leaf anatomical structure and photosynthetic performance in sorghum (Sorghum bicolor), a C4 plant. Compared with growth under ambient conditions (A), no significant changes in anatomical structure were observed in newly developed leaves by shading young leaves alone (YS). Shading mature leaves (MS) or whole plants (S), on the other hand, caused shade-leaf anatomy in newly developed leaves. By contrast, chloroplast ultrastructure in developing leaves depended only on their local light conditions. Functionally, shading young leaves alone had little effect on their net photosynthetic capacity and stomatal conductance, but shading mature leaves or whole plants significantly decreased these two parameters in newly developed leaves. Specifically, the net photosynthetic rate in newly developed leaves exhibited a positive linear correlation with that of mature leaves, as did stomatal conductance. In MS and S treatments, newly developed leaves exhibited severe photoinhibition under high light. By contrast, newly developed leaves in A and YS treatments were more resistant to high light relative to those in MS- and S-treated seedlings. We suggest that (1) leaf anatomical structure, photosynthetic capacity, and high-light tolerance in newly developed sorghum leaves were regulated by a systemic irradiance signal from mature leaves; and (2) chloroplast ultrastructure only weakly influenced the development of photosynthetic capacity and high-light tolerance. The potential significance of the regulation by a systemic irradiance signal is discussed.

  8. Quantitative gene-gene and gene-environment mapping for leaf shape variation using tree-based models

    USDA-ARS?s Scientific Manuscript database

    Leaf shape traits have long been a focus of many disciplines, but searching for complex genetic and environmental interactive mechanisms regulating leaf shape variation has not yet been well developed. The question of the respective roles of gene and environment and how they interplay to modulate l...

  9. 7 CFR 29.3647 - Heavy Leaf (B Group).

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Heavy Leaf (B Group). 29.3647 Section 29.3647... REGULATIONS TOBACCO INSPECTION Standards Grades § 29.3647 Heavy Leaf (B Group). This group consists of leaves which are medium to heavy in body and show little or no ground injury. Grades Grade names, minimum...

  10. 75 FR 50707 - Drawbridge Operation Regulation; Curtis Creek, Baltimore, MD

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-17

    ... double-leaf bascule drawbridge, has requested a temporary deviation from the current general operating... half of the draw spans to single-leaf operation. The drawbridge will operate as follows: (1) Closed to..., vessels openings will be provided if at least 48 hours advance notice is given; (2) Single leaf operation...

  11. 7 CFR 29.2438 - Thin Leaf (C Group).

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 2 2013-01-01 2013-01-01 false Thin Leaf (C Group). 29.2438 Section 29.2438... REGULATIONS TOBACCO INSPECTION Standards Grades § 29.2438 Thin Leaf (C Group). This group consists of leaves usually grown at the center portion of the stalk. These leaves normally have a rounded tip, are thinner in...

  12. 7 CFR 29.2438 - Thin Leaf (C Group).

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 2 2014-01-01 2014-01-01 false Thin Leaf (C Group). 29.2438 Section 29.2438... REGULATIONS TOBACCO INSPECTION Standards Grades § 29.2438 Thin Leaf (C Group). This group consists of leaves usually grown at the center portion of the stalk. These leaves normally have a rounded tip, are thinner in...

  13. 7 CFR 29.2438 - Thin Leaf (C Group).

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false Thin Leaf (C Group). 29.2438 Section 29.2438... REGULATIONS TOBACCO INSPECTION Standards Grades § 29.2438 Thin Leaf (C Group). This group consists of leaves usually grown at the center portion of the stalk. These leaves normally have a rounded tip, are thinner in...

  14. 7 CFR 29.2438 - Thin Leaf (C Group).

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Thin Leaf (C Group). 29.2438 Section 29.2438... REGULATIONS TOBACCO INSPECTION Standards Grades § 29.2438 Thin Leaf (C Group). This group consists of leaves usually grown at the center portion of the stalk. These leaves normally have a rounded tip, are thinner in...

  15. 7 CFR 29.2438 - Thin Leaf (C Group).

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 2 2012-01-01 2012-01-01 false Thin Leaf (C Group). 29.2438 Section 29.2438... REGULATIONS TOBACCO INSPECTION Standards Grades § 29.2438 Thin Leaf (C Group). This group consists of leaves usually grown at the center portion of the stalk. These leaves normally have a rounded tip, are thinner in...

  16. Overexpression of the Transcription Factors GmSHN1 and GmSHN9 Differentially Regulates Wax and Cutin Biosynthesis, Alters Cuticle Properties, and Changes Leaf Phenotypes in Arabidopsis.

    PubMed

    Xu, Yangyang; Wu, Hanying; Zhao, Mingming; Wu, Wang; Xu, Yinong; Gu, Dan

    2016-04-21

    SHINE (SHN/WIN) clade proteins, transcription factors of the plant-specific APETALA 2/ethylene-responsive element binding factor (AP2/ERF) family, have been proven to be involved in wax and cutin biosynthesis. Glycine max is an important economic crop, but its molecular mechanism of wax biosynthesis is rarely characterized. In this study, 10 homologs of Arabidopsis SHN genes were identified from soybean. These homologs were different in gene structures and organ expression patterns. Constitutive expression of each of the soybean SHN genes in Arabidopsis led to different leaf phenotypes, as well as different levels of glossiness on leaf surfaces. Overexpression of GmSHN1 and GmSHN9 in Arabidopsis exhibited 7.8-fold and 9.9-fold up-regulation of leaf cuticle wax productions, respectively. C31 and C29 alkanes contributed most to the increased wax contents. Total cutin contents of leaves were increased 11.4-fold in GmSHN1 overexpressors and 5.7-fold in GmSHN9 overexpressors, mainly through increasing C16:0 di-OH and dioic acids. GmSHN1 and GmSHN9 also altered leaf cuticle membrane ultrastructure and increased water loss rate in transgenic Arabidopsis plants. Transcript levels of many wax and cutin biosynthesis and leaf development related genes were altered in GmSHN1 and GmSHN9 overexpressors. Overall, these results suggest that GmSHN1 and GmSHN9 may differentially regulate the leaf development process as well as wax and cutin biosynthesis.

  17. Overexpression of the Transcription Factors GmSHN1 and GmSHN9 Differentially Regulates Wax and Cutin Biosynthesis, Alters Cuticle Properties, and Changes Leaf Phenotypes in Arabidopsis

    PubMed Central

    Xu, Yangyang; Wu, Hanying; Zhao, Mingming; Wu, Wang; Xu, Yinong; Gu, Dan

    2016-01-01

    SHINE (SHN/WIN) clade proteins, transcription factors of the plant-specific APETALA 2/ethylene-responsive element binding factor (AP2/ERF) family, have been proven to be involved in wax and cutin biosynthesis. Glycine max is an important economic crop, but its molecular mechanism of wax biosynthesis is rarely characterized. In this study, 10 homologs of Arabidopsis SHN genes were identified from soybean. These homologs were different in gene structures and organ expression patterns. Constitutive expression of each of the soybean SHN genes in Arabidopsis led to different leaf phenotypes, as well as different levels of glossiness on leaf surfaces. Overexpression of GmSHN1 and GmSHN9 in Arabidopsis exhibited 7.8-fold and 9.9-fold up-regulation of leaf cuticle wax productions, respectively. C31 and C29 alkanes contributed most to the increased wax contents. Total cutin contents of leaves were increased 11.4-fold in GmSHN1 overexpressors and 5.7-fold in GmSHN9 overexpressors, mainly through increasing C16:0 di-OH and dioic acids. GmSHN1 and GmSHN9 also altered leaf cuticle membrane ultrastructure and increased water loss rate in transgenic Arabidopsis plants. Transcript levels of many wax and cutin biosynthesis and leaf development related genes were altered in GmSHN1 and GmSHN9 overexpressors. Overall, these results suggest that GmSHN1 and GmSHN9 may differentially regulate the leaf development process as well as wax and cutin biosynthesis. PMID:27110768

  18. Antiinflammatory and analgesic effects of Psidium guajava Linn. (Myrtaceae) leaf aqueous extract in rats and mice.

    PubMed

    Ojewole, J A O

    2006-09-01

    In many parts of Africa, the leaf, stem-bark, and roots of Psidium guajava Linn. (Family: Myrtaceae) are used traditionally for the management, control, and/or treatment of an array of human disorders. In an effort to scientifically appraise some of the ethnomedical properties of P. guajava leaf, and probe its efficacy and safety, the present study was undertaken to examine the antiinflammatory and analgesic properties of the plant's leaf aqueous extract in some experimental animal paradigms. The antiinflammatory property of the aqueous leaf extract was investigated in rats, using fresh egg albumin-induced pedal (paw) edema, while the analgesic effect of the plant extract was evaluated by the "hot-plate" and "acetic acid" test models of pain in mice. Diclofenac (100 mg/kg, i.p.) and morphine (10 mg/kg, i.p.) were used respectively as standard, reference antiinflammatory and analgesic agents for comparison. P. guajava leaf aqueous extract (PGE, 50-800 mg/kg, i.p.) produced dose-dependent and significant (p < 0.05-0.001) inhibition of fresh egg albumin-induced acute inflammation (edema) in rats. The plant extract (PGE, 50-800 mg/kg, i.p.) also produced dose-dependent and significant (p < 0.05-0.001) analgesic effects against thermally and chemically induced nociceptive pain in mice. The numerous tannins, polyphenolic compounds, flavonoids, ellagic acid, triterpenoids, guiajaverin, quercetin, and other chemical compounds present in the plant are speculated to account for the observed antiinflammatory and analgesic effects of the plant's leaf extract. In summary, the findings of this experimental animal study indicate that the leaf aqueous extract of P. guajava possesses analgesic and antiinflammatory properties, and thus lend pharmacological credence to the suggested ethnomedical, folkloric uses of the plant in the management and/or control of painful, arthritic and other inflammatory conditions in some rural communities of Africa. (c) 2006 Prous Science. All rights reserved.

  19. Isolation, characterization and antifungal activity of very long chain alkane derivatives from Cinnamomum obtusifolium, Elaeocarpus lanceifolius and Baccaurea sapida

    NASA Astrophysics Data System (ADS)

    Bordoloi, Manobjyoti; Saikia, Surovi; Bordoloi, Prasanta K.; Kolita, Bhaskor; Dutta, Partha P.; Bhuyan, Purnajyoti D.; Dutta, Subhas C.; Rao, Paruchuri G.

    2017-08-01

    The aim of this study was to isolate and characterize bioactive secondary metabolites from the flora of the Indo-Burma biodiversity belt for controlling leaf blight disease of Solanum khasianum Clarke (Solanaceae) caused by Alternaria tenuissima and Alternaria alternata during commercial cultivation, the berries of which contains 1.80-3.45% solasodine, a major raw material for steroid drug industries. Three new and two white powdered compounds were extracted from Cinnamomum obtusifolium (Roxb.) Nees (Lauraceae), Elaeocarpus lanceifolius (Roxb.) (Elaeocarpaceae) and Baccaurea sapida (Roxb.) Mull. Arg. (Euphorbiaceae). New compounds were characterized as Triacontanoic acid (1), octatriacontan-1-ol (2) and dotriacontane (3) isolated from C. obtusfolium and E. lanceofolius by 1H, 13C NMR and mass spectroscopy respectively. Other two known compounds were palmitic acid (4) and oleic acid (5) and from B. sapida. Complete inhibition of pathogenic fungi A.tenuissima and A. alternata were observed for compound 2 and 3. Further, in-silico molecular binding analysis of these compounds towards endopolygalacturonase, β-isopropyl dehydrogenase, plasma membrane ATPase, calmodulin, ACR-toxin biosynthesis hydroxylase and synthatase peptide (transcription regulator of Amt-gene) of A. tenuissima and A.alternata revealed that they are effective in inhibiting multiple targets. The antifungal potential of three new isolated compounds from C. obtusifolium and E. lanceifolius is reported for the first time. The results indicate the possible use of triacontanoic acid, octatriacontan-1-ol and dotriacontane as potential antifungal agents.

  20. NATURAL VOLATILE ORGANIC COMPOUND EMISSION RATE ESTIMATES FOR U.S. WOODLAND LANDSCAPES

    EPA Science Inventory

    Volatile organic compound (VOC) emission rate factors are estimated for 49 tree genera based on a review of foliar emission rate measurements. oliar VOC emissions are grouped into three categories: isoprene, monoterpenes and other VOC'S. ypical emission rates at a leaf temperatur...

  1. CPK3-phosphorylated RhoGDI1 is essential in the development of Arabidopsis seedlings and leaf epidermal cells

    PubMed Central

    Wu, Yan

    2013-01-01

    The regulation of Rho of plants (ROP) in morphogenesis of leaf epidermal cells has been well studied, but the roles concerning regulators of ROPs such as RhoGDIs are poorly understood. This study reports that AtRhoGDI1 (GDI1) acts as a versatile regulator to modulate development of seedlings and leaf pavement cells. In mutant gdi1, leaf pavement cells showed shorter lobes in comparison with those in wild type. In GDI1-14 seedlings (GDI1-overexpression line) the growth of lobes in pavement cells was severely suppressed and the development of seedlings was altered. These results indicate that GDI1 plays an essential role in morphogenesis of epidermal pavement cells through modulating the ROP signalling pathways. The interaction between GDI1 and ROP2 or ROP6 was detected in the leaf pavement cells using FRET analysis. Dominant negative, not constitutively active, DN-rop6 could weaken the effect caused by overexpression of GDI1; because the pleiotropic phenotype of GDI1-14 plants was eliminated in the hybrid line GDI1-14 DN-rop6. GDI1 could be phosphorylated by CPK3. Three conserved Ser/Thr residues in GDI1 were determined as targeted amino acids for CPK3. Overexpression of GDI1(3D), not GDI1(3A), could rescue the abnormal growth phenotypes of gdi1-1 seedlings, demonstrating the impact of GDI1 phosphorylation in the development of Arabidopsis. In summary, these results suggest that GDI1 regulation in morphogenesis of seedlings and leaf pavement cells could be undergone through modulating the ROP signalling pathways and the phosphorylation of GDI1 by CPK3 was required for the developmental modulation in Arabidopsis. PMID:23846874

  2. Regulation of glutamine synthetase isoforms in two differentially drought-tolerant rice (Oryza sativa L.) cultivars under water deficit conditions.

    PubMed

    Singh, Kamal Krishna; Ghosh, Shilpi

    2013-02-01

    KEY MESSAGE : The regulation of GS isoforms by WD was organ specific. Two GS isoforms i.e. OsGS1;1 and OsGS2 were differentially regulated in IR-64 (drought-sensitive) and Khitish (drought-tolerant) cultivars of rice. Water deficit (WD) has adverse effect on rice (Oryza sativa L.) and acclimation requires essential reactions of primary metabolism to continue. Rice plants utilize ammonium as major nitrogen source, which is assimilated into glutamine by the reaction of Glutamine synthetase (GS, EC 6.3.1.2). Rice plants possess one gene (OsGS2) for chloroplastic GS2 and three genes (OsGS1;1, OsGS1;2 and OsGS1;3) for cytosolic GS1. Here, we report the effect of WD on regulation of GS isoforms in drought-sensitive (cv. IR-64) and drought-tolerant (cv. Khitish) rice cultivars. Under WD, total GS activity in root and leaf decreased significantly in IR-64 seedlings in comparison to Khitish seedlings. The reduced GS activity in IR-64 leaf was mainly due to decrease in GS2 activity, which correlated with decrease in corresponding transcript and polypeptide contents. GS1 transcript and polypeptide accumulated in leaf during WD, however, GS1 activity was maintained at a constant level. Total GS activity in stem of both the varieties was insensitive to WD. Among GS1 genes, OsGS1;1 expression was differently regulated by WD in the two rice varieties. Its transcript accumulated more abundantly in IR-64 leaf than in Khitish leaf. Following WD, OsGS1;1 mRNA level in stem and root tissues declined in IR-64 and enhanced in Khitish. A steady OsGS1;2 expression patterns were noted in leaf, stem and root of both the cultivars. Results suggest that OsGS2 and OsGS1;1 expression may contribute to drought tolerance of Khitish cultivar under WD conditions.

  3. Silver nano fabrication using leaf disc of Passiflora foetida Linn

    NASA Astrophysics Data System (ADS)

    Lade, Bipin D.; Patil, Anita S.

    2017-06-01

    The main purpose of the experiment is to develop a greener low cost SNP fabrication steps using factories of secondary metabolites from Passiflora leaf extract. Here, the leaf extraction process is omitted, and instead a leaf disc was used for stable SNP fabricated by optimizing parameters such as a circular leaf disc of 2 cm (1, 2, 3, 4, 5) instead of leaf extract and grade of pH (7, 8, 9, 11). The SNP synthesis reaction is tried under room temperature, sun, UV and dark condition. The leaf disc preparation steps are also discussed in details. The SNP obtained using (1 mM: 100 ml AgNO3+ singular leaf disc: pH 9, 11) is applied against featured room temperature and sun condition. The UV spectroscopic analysis confirms that sun rays synthesized SNP yields stable nano particles. The FTIR analysis confirms a large number of functional groups such as alkanes, alkyne, amines, aliphatic amine, carboxylic acid; nitro-compound, alcohol, saturated aldehyde and phenols involved in reduction of silver salt to zero valent ions. The leaf disc mediated synthesis of silver nanoparticles, minimizes leaf extract preparation step and eligible for stable SNP synthesis. The methods sun and room temperature based nano particles synthesized within 10 min would be use certainly for antimicrobial activity.

  4. Ginkgo biloba Responds to Herbivory by Activating Early Signaling and Direct Defenses

    PubMed Central

    Atsbaha Zebelo, Simon; Foti, Maria; Fliegmann, Judith; Bossi, Simone; Maffei, Massimo E.; Bertea, Cinzia M.

    2012-01-01

    Background Ginkgo biloba (Ginkgoaceae) is one of the most ancient living seed plants and is regarded as a living fossil. G. biloba has a broad spectrum of resistance or tolerance to many pathogens and herbivores because of the presence of toxic leaf compounds. Little is known about early and late events occurring in G. biloba upon herbivory. The aim of this study was to assess whether herbivory by the generalist Spodoptera littoralis was able to induce early signaling and direct defense in G. biloba by evaluating early and late responses. Methodology/Principal Findings Early and late responses in mechanically wounded leaves and in leaves damaged by S. littoralis included plasma transmembrane potential (Vm) variations, time-course changes in both cytosolic calcium concentration ([Ca2+]cyt) and H2O2 production, the regulation of genes correlated to terpenoid and flavonoid biosynthesis, the induction of direct defense compounds, and the release of volatile organic compounds (VOCs). The results show that G. biloba responded to hebivory with a significant Vm depolarization which was associated to significant increases in both [Ca2+]cyt and H2O2. Several defense genes were regulated by herbivory, including those coding for ROS scavenging enzymes and the synthesis of terpenoids and flavonoids. Metabolomic analyses revealed the herbivore-induced production of several flavonoids and VOCs. Surprisingly, no significant induction by herbivory was found for two of the most characteristic G. biloba classes of bioactive compounds; ginkgolides and bilobalides. Conclusions/Significance By studying early and late responses of G. biloba to herbivory, we provided the first evidence that this “living fossil” plant responds to herbivory with the same defense mechanisms adopted by the most recent angiosperms. PMID:22448229

  5. Black leaf streak disease affects starch metabolism in banana fruit.

    PubMed

    Saraiva, Lorenzo de Amorim; Castelan, Florence Polegato; Shitakubo, Renata; Hassimotto, Neuza Mariko Aymoto; Purgatto, Eduardo; Chillet, Marc; Cordenunsi, Beatriz Rosana

    2013-06-12

    Black leaf streak disease (BLSD), also known as black sigatoka, represents the main foliar disease in Brazilian banana plantations. In addition to photosynthetic leaf area losses and yield losses, this disease causes an alteration in the pre- and postharvest behavior of the fruit. The aim of this work was to investigate the starch metabolism of fruits during fruit ripening from plants infected with BLSD by evaluating carbohydrate content (i.e., starch, soluble sugars, oligosaccharides, amylose), phenolic compound content, phytohormones, enzymatic activities (i.e., starch phosphorylases, α- and β-amylase), and starch granules. The results indicated that the starch metabolism in banana fruit ripening is affected by BLSD infection. Fruit from infested plots contained unusual amounts of soluble sugars in the green stage and smaller starch granules and showed a different pattern of superficial degradation. Enzymatic activities linked to starch degradation were also altered by the disease. Moreover, the levels of indole-acetic acid and phenolic compounds indicated an advanced fruit physiological age for fruits from infested plots.

  6. Ethephon induced oxidative stress in the olive leaf abscission zone enables development of a selective abscission compound.

    PubMed

    Goldental-Cohen, S; Burstein, C; Biton, I; Ben Sasson, S; Sadeh, A; Many, Y; Doron-Faigenboim, A; Zemach, H; Mugira, Y; Schneider, D; Birger, R; Meir, S; Philosoph-Hadas, S; Irihomovitch, V; Lavee, S; Avidan, B; Ben-Ari, G

    2017-05-16

    Table olives (Olea europaea L.), despite their widespread production, are still harvested manually. The low efficiency of manual harvesting and the rising costs of labor have reduced the profitability of this crop. A selective abscission treatment, inducing abscission of fruits but not leaves, is crucial for the adoption of mechanical harvesting of table olives. In the present work we studied the anatomical and molecular differences between the three abscission zones (AZs) of olive fruits and leaves. The fruit abscission zone 3 (FAZ3), located between the fruit and the pedicel, was found to be the active AZ in mature fruits and is sensitive to ethephon, whereas FAZ2, between the pedicel and the rachis, is the flower active AZ as well as functioning as the most ethephon induced fruit AZ. We found anatomical differences between the leaf AZ (LAZ) and the two FAZs. Unlike the FAZs, the LAZ is characterized by small cells with less pectin compared to neighboring cells. In an attempt to differentiate between the fruit and leaf AZs, we examined the effect of treating olive-bearing trees with ethephon, an ethylene-releasing compound, with or without antioxidants, on the detachment force (DF) of fruits and leaves 5 days after the treatment. Ethephon treatment enhanced pectinase activity and reduced DF in all the three olive AZs. A transcriptomic analysis of the three olive AZs after ethephon treatment revealed induction of several genes encoding for hormones (ethylene, auxin and ABA), as well as for several cell wall degrading enzymes. However, up-regulation of cellulase genes was found only in the LAZ. Many genes involved in oxidative stress were induced by the ethephon treatment in the LAZ alone. In addition, we found that reactive oxygen species (ROS) mediated abscission in response to ethephon only in leaves. Thus, adding antioxidants such as ascorbic acid or butyric acid to the ethephon inhibited leaf abscission but enhanced fruit abscission. Our findings suggest that treating olive-bearing trees with a combination of ethephon and antioxidants reduces the detachment force (DF) of fruit without weakening that of the leaves. Hence, this selective abscission treatment may be used in turn to promote mechanized harvest of olives.

  7. Tissue distribution comparison between healthy and fatty liver rats after oral administration of hawthorn leaf extract.

    PubMed

    Yin, Jingjing; Qu, Jianguo; Zhang, Wenjie; Lu, Dongrui; Gao, Yucong; Ying, Xixiang; Kang, Tingguo

    2014-05-01

    Hawthorn leaves, a well-known traditional Chinese medicine, have been widely used for treating cardiovascular and fatty liver diseases. The present study aimed to investigate the therapeutic basis treating fatty liver disease by comparing the tissue distribution of six compounds of hawthorn leaf extract (HLE) in fatty liver rats and healthy rats after oral administration at first day, half month and one month, separately. Therefore, a sensitive and specific HPLC method with internal standard was developed and validated to determine chlorogenic acid, vitexin-4''-O-glucoside, vitexin-2''-O-rhamnoside, vitexin, rutin and hyperoside in the tissues including heart, liver, spleen, kidney, stomach and intestine. The results indicated that the six compounds in HLE presented some bioactivity in treating rat fatty liver as the concentrations of the six compounds varied significantly in inter- and intragroup comparisons (healthy and/or fatty liver group). Copyright © 2013 John Wiley & Sons, Ltd.

  8. Effects of elevated concentrations of atmospheric CO2 and tropospheric O3 on leaf litter production and chemistry in trembling aspen and paper birch communities

    Treesearch

    Lingli Liu; John S. King; Christian P. Giardina

    2005-01-01

    Human activities are increasing the concentrations of atmospheric carbon dioxide ([CO2]) and tropospheric ozone ([O3]), potentially leading to changes in the quantity and chemical quality of leaf litter inputs to forest soils. Because the quality and quantity of labile and recalcitrant carbon (C) compounds influence forest...

  9. 7 CFR 29.2437 - Heavy Leaf (B Group).

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 2 2013-01-01 2013-01-01 false Heavy Leaf (B Group). 29.2437 Section 29.2437... REGULATIONS TOBACCO INSPECTION Standards Grades § 29.2437 Heavy Leaf (B Group). This group consists of leaves usually grown at or above the center portion of the stalk. These leaves have a pointed tip, tend to fold...

  10. 7 CFR 29.2437 - Heavy Leaf (B Group).

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 2 2012-01-01 2012-01-01 false Heavy Leaf (B Group). 29.2437 Section 29.2437... REGULATIONS TOBACCO INSPECTION Standards Grades § 29.2437 Heavy Leaf (B Group). This group consists of leaves usually grown at or above the center portion of the stalk. These leaves have a pointed tip, tend to fold...

  11. 7 CFR 29.2437 - Heavy Leaf (B Group).

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 2 2014-01-01 2014-01-01 false Heavy Leaf (B Group). 29.2437 Section 29.2437... REGULATIONS TOBACCO INSPECTION Standards Grades § 29.2437 Heavy Leaf (B Group). This group consists of leaves usually grown at or above the center portion of the stalk. These leaves have a pointed tip, tend to fold...

  12. 77 FR 40509 - Drawbridge Operation Regulation; Oakland Inner Harbor Tidal Canal, Alameda, CA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-10

    ... Agency to perform necessary repairs on the drawbridge. This deviation allows single leaf operation of the double leaf bascule style drawbridge during the project. DATES: This deviation is effective from 7 a.m... leaf of the double bascule drawspan may be secured in the closed-to-navigation position from 7 a.m...

  13. 76 FR 13288 - Drawbridge Operation Regulation; Intracoastal Waterway (ICW), Inside Thorofare, Ventnor City, NJ

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-11

    ... facilitate cleaning and painting operations of the double-leaf bascule drawbridge. This deviation allows... Atlantic County who owns and operates this double-leaf bascule drawbridge, has requested a temporary... to single-leaf operation beginning at 7 a.m. on Tuesday, March 8, 2011, until and including 11:59 p.m...

  14. Impacts of tree height on leaf hydraulic architecture and stomatal control in Douglas-fir.

    Treesearch

    D.R. Woodruff; K.A. McCulloh; J.M. Warren; F.C. Meinzer; B.L. Gartner

    2007-01-01

    We investigated the mechanisms involved in the regulation of stomatal closure in Douglas-fir and evaluated the potential compensatory adjustments in response to increasing tree height. Stomatal closure was initiated at values of leaf water potential corresponding to nearly complete loss of leaf hydraulic conductance. Cryogenic scanning electron microscopic images...

  15. OLIGOCELLULA1/HIGH EXPRESSION OF OSMOTICALLY RESPONSIVE GENES15 Promotes Cell Proliferation With HISTONE DEACETYLASE9 and POWERDRESS During Leaf Development in Arabidopsis thaliana

    PubMed Central

    Suzuki, Marina; Shinozuka, Nanae; Hirakata, Tomohiro; Nakata, Miyuki T.; Demura, Taku; Tsukaya, Hirokazu; Horiguchi, Gorou

    2018-01-01

    Organ size regulation is dependent on the precise spatial and temporal regulation of cell proliferation and cell expansion. A number of transcription factors have been identified that play a key role in the determination of aerial lateral organ size, but their functional relationship to various chromatin modifiers has not been well understood. To understand how leaf size is regulated, we previously isolated the oligocellula1 (oli1) mutant of Arabidopsis thaliana that develops smaller first leaves than the wild type (WT) mainly due to a reduction in the cell number. In this study, we further characterized oli1 leaf phenotypes and identified the OLI1 gene as well as interaction partners of OLI1. Detailed characterizations of leaf development suggested that the cell proliferation rate in oli1 leaf primordia is lower than that in the WT. In addition, oli1 was associated with a slight delay of the progression from the juvenile to adult phases of leaf traits. A classical map-based approach demonstrated that OLI1 is identical to HIGH EXPRESSION OF OSMOTICALLY RESPONSIVE GENES15 (HOS15). HOS15/OLI1 encodes a homolog of human transducin β-like protein1 (TBL1). TBL1 forms a transcriptional repression complex with the histone deacetylase (HDAC) HDAC3 and either nuclear receptor co-repressor (N-CoR) or silencing mediator for retinoic acid and thyroid receptor (SMRT). We found that mutations in HISTONE DEACETYLASE9 (HDA9) and a switching-defective protein 3, adaptor 2, N-CoR, and transcription factor IIIB-domain protein gene, POWERDRESS (PWR), showed a small-leaf phenotype similar to oli1. In addition, hda9 and pwr did not further enhance the oli1 small-leaf phenotype, suggesting that these three genes act in the same pathway. Yeast two-hybrid assays suggested physical interactions, wherein PWR probably bridges HOS15/OLI1 and HDA9. Earlier studies suggested the roles of HOS15, HDA9, and PWR in transcriptional repression. Consistently, transcriptome analyses showed several genes commonly upregulated in the three mutants. From these findings, we propose a possibility that HOS15/OLI1, PWR, and HDA9 form an evolutionary conserved transcription repression complex that plays a positive role in the regulation of final leaf size. PMID:29774040

  16. LEAF, BRANCH, STAND & LANDSCAPE SCALE MEASUREMENTS OF VOLATILE ORGANIC COMPOUND FLUXES FROM U.S. WOODLANDS

    EPA Science Inventory

    Natural volatile organic compounds (VOC) fluxes were measured in three U.S. woodlands in summer 1993. Fluxes from individual leaves and branches were estimated with enclosure techniques and used to initialize and evaluate VOC emission model estimates. Ambient measurements were us...

  17. The chemical composition and antimicrobial activity of the leaf oil of Cupressus lusitanica from Monteverde, Costa Rica

    PubMed Central

    Hassanzadeh, Sara L.; Tuten, Jessika A.; Vogler, Bernhard; Setzer, William N.

    2010-01-01

    The essential oils from the leaves of three different individuals of Cupressus lusitanica were obtained by hydrodistillation and analyzed by gas chromatography - mass spectrometry. A total of 49 compounds were identified in the leaf oils. The major components of C. lusitanica leaf oil were α-pinene (40%-82%), limonene (4%-18%), isobornyl acetate (up to 10%) and cis-muurola-4(14),5-diene (up to 7%). The essential oil was screened for antimicrobial activity, and it showed antibacterial activity against Bacillus cereus and antifungal activity against Aspergillus niger. PMID:21808533

  18. Sea Buckthorn Leaf Extract Protects Jejunum and Bone Marrow of (60)Cobalt-Gamma-Irradiated Mice by Regulating Apoptosis and Tissue Regeneration.

    PubMed

    Bala, Madhu; Gupta, Manish; Saini, Manu; Abdin, M Z; Prasad, Jagdish

    2015-01-01

    A single dose (30 mg/kg body weight) of standardized sea buckthorn leaf extract (SBL-1), administered 30 min before whole body (60)Co-gamma-irradiation (lethal dose, 10 Gy), protected >90% of mice population. The purpose of this study was to investigate the mechanism of action of SBL-1 on jejunum and bone marrow, quantify key bioactive compounds, and analyze chemical composition of SBL-1. Study with 9-week-old inbred male Swiss albino Strain 'A' mice demonstrated that SBL-1 treatment before (60)Co-gamma-irradiation (10 Gy) significantly (p < 0.05) countered radiation induced decreases in jejunum crypts (1.27-fold), villi number (1.41-fold), villus height (1.25-fold), villus cellularity (2.27-fold), cryptal Paneth cells (1.89-fold), and Bcl2 level (1.54-fold). It countered radiation induced increases in cryptal apoptotic cells (1.64-fold) and Bax levels (1.88-fold). It also countered radiation (2 Gy and 3 Gy) induced bone marrow apoptosis (1.59-fold and 1.85-fold) and micronuclei frequency (1.72-fold and 2.6-fold). SBL-1 rendered radiation protection by promoting cryptal stem cells proliferation, by regulating apoptosis, and by countering radiation induced chromosomal damage. Quercetin, Ellagic acid, Gallic acid, high contents polyphenols, tannins, and thiols detected in SBL-1 may have contributed to radiation protection by neutralization of radiation induced oxidative species, supporting stem cell proliferation and tissue regeneration.

  19. Continuous exposure to the deterrents cis-jasmone and methyl jasmonate does not alter the behavioural responses of Frankliniella occidentalis

    PubMed Central

    Egger, Barbara; Spangl, Bernhard; Koschier, Elisabeth Helene

    2016-01-01

    Behavioural responses of Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae), a generalist, cell sap-feeding insect species with piercing-sucking mouthparts, after continuous exposure to two deterrent secondary plant compounds are investigated. We compared in choice assays on bean leaf discs, the settling, feeding, and oviposition preferences of F. occidentalis females that had no experience with the two fatty acid derivatives methyl jasmonate and cis-jasmone before testing (naïve thrips) vs. females that had been exposed to the deterrent compounds before testing (experienced thrips). The thrips were exposed to the deterrents at low or high concentrations for varied time periods and subsequently tested on bean leaf discs treated with the respective deterrent at either a low or a high concentration. Frankliniella occidentalis females avoided settling on the deterrent-treated bean leaf discs for an observation period of 6 h, independent of their previous experience. Our results demonstrate that feeding and oviposition deterrence of the jasmonates to the thrips were not altered by continuous exposure of the thrips to the jasmonates. Habituation was not induced, neither by exposure to the low concentration of the deterrents nor by exposure to the high concentration. These results indicate that the risk of habituation to two volatile deterrent compounds after repeated exposure is not evident in F. occidentalis. This makes the two compounds potential candidates to be integrated in pest management strategies. PMID:26726263

  20. Continuous exposure to the deterrents cis-jasmone and methyl jasmonate does not alter the behavioural responses of Frankliniella occidentalis.

    PubMed

    Egger, Barbara; Spangl, Bernhard; Koschier, Elisabeth Helene

    2016-01-01

    Behavioural responses of Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae), a generalist, cell sap-feeding insect species with piercing-sucking mouthparts, after continuous exposure to two deterrent secondary plant compounds are investigated. We compared in choice assays on bean leaf discs, the settling, feeding, and oviposition preferences of F. occidentalis females that had no experience with the two fatty acid derivatives methyl jasmonate and cis -jasmone before testing (naïve thrips) vs. females that had been exposed to the deterrent compounds before testing (experienced thrips). The thrips were exposed to the deterrents at low or high concentrations for varied time periods and subsequently tested on bean leaf discs treated with the respective deterrent at either a low or a high concentration. Frankliniella occidentalis females avoided settling on the deterrent-treated bean leaf discs for an observation period of 6 h, independent of their previous experience. Our results demonstrate that feeding and oviposition deterrence of the jasmonates to the thrips were not altered by continuous exposure of the thrips to the jasmonates. Habituation was not induced, neither by exposure to the low concentration of the deterrents nor by exposure to the high concentration. These results indicate that the risk of habituation to two volatile deterrent compounds after repeated exposure is not evident in F. occidentalis . This makes the two compounds potential candidates to be integrated in pest management strategies.

  1. Phytotoxic effects and chemical analysis of leaf extracts from three Phytolaccaceae species in South Korea.

    PubMed

    Kim, Yong Ok; Johnson, Jon D; Lee, Eun Ju

    2005-05-01

    We analyzed phenolic compounds and other elements in leaf extracts and compared morphology of three species of the Phytolaccaceae family found in South Korea. To test allelochemical effects of the three Phytolacca species, we also examined seed germination and dry weight of seedlings of Lactuca indica and Sonchus oleraceus treated with leaf extracts. The concentrations of total phenolic compounds were exotic Phytolacca esculenta (3.9 mg/l), native Phytolacca insularis (4.4 mg/l), and exotic Phytolacca americana (10.2 mg/l). There was no significant difference in concentrations between P. esculenta and P. insularis, but the concentration of total phenolics in P. americana was two times higher than either P. esculenta or P. insularis. Analysis of aqueous extracts by HPLC showed seven phenolic compounds (gallic acid, protocatechuic acid, chlorogenic acid, caffeic acid, m-hydroxybenzoic acid, p-coumaric acid, and cinnamic acid). Total phenolics in P. americana were eight to 16 times higher than either P. esculenta or P. insularis, respectively. P. americana inhibited seed germination and dry weight of the two assay species. The phytotoxic effects of the two Phytolacca species were different, despite the fact that P. esculenta and P. insularis had similar levels of total phenolic compounds. We also found that P. americana had invaded Ullung Island, which suggested that P. americana had excellent adaptability to the environment. The three species of Phytolaccaceae in South Korea can be distinguished by their different allelopathic potentials and morphologies.

  2. Molecular docking of bacosides with tryptophan hydroxylase: a model to understand the bacosides mechanism.

    PubMed

    Rajathei, David Mary; Preethi, Jayakumar; Singh, Hemant K; Rajan, Koilmani Emmanuvel

    2014-08-01

    Tryptophan hydroxylase (TPH) catalyses l-tryptophan into 5-hydroxy-l-tryptophan, which is the first and rate-limiting step of serotonin (5-HT) biosynthesis. Earlier, we found that TPH2 up-regulated in the hippocampus of postnatal rats after the oral treatment of Bacopa monniera leaf extract containing the active compound bacosides. However, the knowledge about the interactions between bacosides with TPH is limited. In this study, we take advantage of in silico approach to understand the interaction of bacoside-TPH complex using three different docking algorithms such as HexDock, PatchDock and AutoDock. All these three algorithms showed that bacoside A and A3 well fit into the cavity consists of active sites. Further, our analysis revealed that major active compounds bacoside A3 and A interact with different residues of TPH through hydrogen bond. Interestingly, Tyr235, Thr265 and Glu317 are the key residues among them, but none of them are either at tryptophan or BH4 binding region. However, its note worthy to mention that Tyr 235 is a catalytic sensitive residue, Thr265 is present in the flexible loop region and Glu317 is known to interacts with Fe. Interactions with these residues may critically regulate TPH function and thus serotonin synthesis. Our study suggested that the interaction of bacosides (A3/A) with TPH might up-regulate its activity to elevate the biosynthesis of 5-HT, thereby enhances learning and memory formation.

  3. Alteration in Auxin Homeostasis and Signaling by Overexpression Of PINOID Kinase Causes Leaf Growth Defects in Arabidopsis thaliana

    PubMed Central

    Saini, Kumud; Markakis, Marios N.; Zdanio, Malgorzata; Balcerowicz, Daria M.; Beeckman, Tom; De Veylder, Lieven; Prinsen, Els; Beemster, Gerrit T. S.; Vissenberg, Kris

    2017-01-01

    In plants many developmental processes are regulated by auxin and its directional transport. PINOID (PID) kinase helps to regulate this transport by influencing polar recruitment of PIN efflux proteins on the cellular membranes. We investigated how altered auxin levels affect leaf growth in Arabidopsis thaliana. Arabidopsis mutants and transgenic plants with altered PID expression levels were used to study the effect on auxin distribution and leaf development. Single knockouts showed small pleiotropic growth defects. Contrastingly, several leaf phenotypes related to changes in auxin concentrations and transcriptional activity were observed in PID overexpression (PIDOE) lines. Unlike in the knockout lines, the leaves of PIDOE lines showed an elevation in total indole-3-acetic acid (IAA). Accordingly, enhanced DR5-visualized auxin responses were detected, especially along the leaf margins. Kinematic analysis revealed that ectopic expression of PID negatively affects cell proliferation and expansion rates, yielding reduced cell numbers and small-sized cells in the PIDOE leaves. We used PIDOE lines as a tool to study auxin dose effects on leaf development and demonstrate that auxin, above a certain threshold, has a negative affect on leaf growth. RNA sequencing further showed how subtle PIDOE-related changes in auxin levels lead to transcriptional reprogramming of cellular processes. PMID:28659952

  4. Caffeine biosynthesis and degradation in tea [Camellia sinensis (L.) O. Kuntze] is under developmental and seasonal regulation.

    PubMed

    Mohanpuria, Prashant; Kumar, Vinay; Joshi, Robin; Gulati, Ashu; Ahuja, Paramvir Singh; Yadav, Sudesh Kumar

    2009-10-01

    To study caffeine biosynthesis and degradation, here we monitored caffeine synthase gene expression and caffeine and allantoin content in various tissues of four Camellia sinensis (L.) O. Kuntze cultivars during non-dormant (ND) and dormant (D) growth phases. Caffeine synthase expression as well as caffeine content was found to be higher in commercially utilized tissues like apical bud, 1st leaf, 2nd leaf, young stem, and was lower in old leaf during ND compared to D growth phase. Among fruit parts, fruit coats have higher caffeine synthase expression, caffeine content, and allantoin content. On contrary, allantoin content was found lower in the commercially utilized tissues and higher in old leaf. Results suggested that caffeine synthesis and degradation in tea appears to be under developmental and seasonal regulation.

  5. Characterization of bioactive compounds of Annona cherimola L. leaves using a combined approach based on HPLC-ESI-TOF-MS and NMR.

    PubMed

    Díaz-de-Cerio, Elixabet; Aguilera-Saez, Luis Manuel; Gómez-Caravaca, Ana María; Verardo, Vito; Fernández-Gutiérrez, Alberto; Fernández, Ignacio; Arráez-Román, David

    2018-06-01

    Annona cherimola Mill. (cherimoya) has widely been used as food crop. The leaves of this tree possess several health benefits, which are, in general, attributed mainly to its bioactive composition. However, literature concerning a comprehensive characterization based on a combined approach, which consists of nuclear magnetic resonance (NMR) and high-performance liquid chromatography coupled with time-of-flight mass spectrometry (HPLC-TOF-MS), from these leaves is scarce. Thus, the aim of this work was to study the polar profile of full extracts of cherimoya leaves by using these tools. Thus, a total of 77 compounds have been characterized, 12 of which were identified by both techniques. Briefly, 23 compounds were classified as amino acids, organic acids, carbohydrates, cholines, phenolic acid derivatives, and flavonoids by NMR, while 66 metabolites were divided into sugars, amino acids, phenolic acids and derivatives, flavonoids, phenylpropanoids, and other polar compounds by HPLC-TOF-MS. It is worth mentioning that different solvent mixtures were tested and the total phenolic content in the extracts quantified (TPC via HPLC-TOF-MS). The tendency observed was EtOH/water 80/20 (v/v) (17.0 ± 0.2 mg TPC/g leaf dry weight (d.w.)) ≥ acetone/water 70/30 (v/v) (16.1 ± 0.7 mg TPC/g leaf d.w.) > EtOH/water 70/30 (v/v) (14.0 ± 0.3 mg TPC/g leaf d.w.) > acetone/water 80/20 (v/v) (13.5 ± 0.4 mg TPC/g leaf d.w.). Importantly, flavonoids derivatives were between 63 and 76% of the TPC in those extracts. Major compounds were sucrose, glucose (α and β), and proline, and chlorogenic acid and rutin for NMR and HPLC-TOF-MS, respectively. Graphical abstract The combined use of LC-HRMS and NMR is a potential synergic combination for a comprehensive metabolite composition of cherimoya leaves.

  6. Stress Marker Signatures in Lesion Mimic Single and Double Mutants Identify a Crucial Leaf Age-Dependent Salicylic Acid Related Defense Signal.

    PubMed

    Kaurilind, Eve; Brosché, Mikael

    2017-01-01

    Plants are exposed to abiotic and biotic stress conditions throughout their lifespans that activates various defense programs. Programmed cell death (PCD) is an extreme defense strategy the plant uses to manage unfavorable environments as well as during developmentally induced senescence. Here we investigated the role of leaf age on the regulation of defense gene expression in Arabidopsis thaliana. Two lesion mimic mutants with misregulated cell death, catalase2 (cat2) and defense no death1 (dnd1) were used together with several double mutants to dissect signaling pathways regulating defense gene expression associated with cell death and leaf age. PCD marker genes showed leaf age dependent expression, with the highest expression in old leaves. The salicylic acid (SA) biosynthesis mutant salicylic acid induction deficient2 (sid2) had reduced expression of PCD marker genes in the cat2 sid2 double mutant demonstrating the importance of SA biosynthesis in regulation of defense gene expression. While the auxin- and jasmonic acid (JA)- insensitive auxin resistant1 (axr1) double mutant cat2 axr1 also led to decreased expression of PCD markers; the expression of several marker genes for SA signaling (ISOCHORISMATE SYNTHASE 1, PR1 and PR2) were additionally decreased in cat2 axr1 compared to cat2. The reduced expression of these SA markers genes in cat2 axr1 implicates AXR1 as a regulator of SA signaling in addition to its known role in auxin and JA signaling. Overall, the current study reinforces the important role of SA signaling in regulation of leaf age-related transcript signatures.

  7. Jasmonate Controls Leaf Growth by Repressing Cell Proliferation and the Onset of Endoreduplication while Maintaining a Potential Stand-By Mode1[W][OA

    PubMed Central

    Noir, Sandra; Bömer, Moritz; Takahashi, Naoki; Ishida, Takashi; Tsui, Tjir-Li; Balbi, Virginia; Shanahan, Hugh; Sugimoto, Keiko; Devoto, Alessandra

    2013-01-01

    Phytohormones regulate plant growth from cell division to organ development. Jasmonates (JAs) are signaling molecules that have been implicated in stress-induced responses. However, they have also been shown to inhibit plant growth, but the mechanisms are not well understood. The effects of methyl jasmonate (MeJA) on leaf growth regulation were investigated in Arabidopsis (Arabidopsis thaliana) mutants altered in JA synthesis and perception, allene oxide synthase and coi1-16B (for coronatine insensitive1), respectively. We show that MeJA inhibits leaf growth through the JA receptor COI1 by reducing both cell number and size. Further investigations using flow cytometry analyses allowed us to evaluate ploidy levels and to monitor cell cycle progression in leaves and cotyledons of Arabidopsis and/or Nicotiana benthamiana at different stages of development. Additionally, a novel global transcription profiling analysis involving continuous treatment with MeJA was carried out to identify the molecular players whose expression is regulated during leaf development by this hormone and COI1. The results of these studies revealed that MeJA delays the switch from the mitotic cell cycle to the endoreduplication cycle, which accompanies cell expansion, in a COI1-dependent manner and inhibits the mitotic cycle itself, arresting cells in G1 phase prior to the S-phase transition. Significantly, we show that MeJA activates critical regulators of endoreduplication and affects the expression of key determinants of DNA replication. Our discoveries also suggest that MeJA may contribute to the maintenance of a cellular “stand-by mode” by keeping the expression of ribosomal genes at an elevated level. Finally, we propose a novel model for MeJA-regulated COI1-dependent leaf growth inhibition. PMID:23439917

  8. HANABA TARANU regulates the shoot apical meristem and leaf development in cucumber (Cucumis sativus L.)

    PubMed Central

    Ding, Lian; Yan, Shuangshuang; Jiang, Li; Liu, Meiling; Zhang, Juan; Zhao, Jianyu; Zhao, Wensheng; Han, Ying-yan; Wang, Qian; Zhang, Xiaolan

    2015-01-01

    The shoot apical meristem (SAM) is essential for continuous organogenesis in higher plants, while the leaf is the primary source organ and the leaf shape directly affects the efficiency of photosynthesis. HANABA TARANU (HAN) encodes a GATA3-type transcription factor that functions in floral organ development, SAM organization, and embryo development in Arabidopsis, but is involved in suppressing bract outgrowth and promoting branching in grass species. Here the function of the HAN homologue CsHAN1 was characterized in cucumber, an important vegetable with great agricultural and economic value. CsHAN1 is predominantly expressed at the junction of the SAM and the stem, and can partially rescue the han-2 floral organ phenotype in Arabidopsis. Overexpression and RNAi of CsHAN1 transgenic cucumber resulted in retarded growth early after embryogenesis and produced highly lobed leaves. Further, it was found that CsHAN1 may regulate SAM development through regulating the WUSCHEL (WUS) and SHOOT MERISTEMLESS (STM) pathways, and mediate leaf development through a complicated gene regulatory network in cucumber. PMID:26320238

  9. Role of plant β-glucosidases in the dual defense system of iridoid glycosides and their hydrolyzing enzymes in Plantago lanceolata and Plantago major.

    PubMed

    Pankoke, Helga; Buschmann, Torsten; Müller, Caroline

    2013-10-01

    The typical defense compounds of Plantaginaceae are the iridoid glycosides, which retard growth and/or enhance mortality of non-adapted herbivores. In plants, glycosidic defense compounds and hydrolytic enzymes often form a dual defense system, in which the glycosides are activated by the enzymes to exert biological effects. Yet, little is known about the activating enzymes in iridoid glycoside-containing plants. To examine the role of plant-derived β-glucosidases in the dual defense system of two common plantain species, Plantago lanceolata and Plantago major, we determined the concentration of iridoid glycosides as well as the β-glucosidase activity in leaves of different age. To investigate the presence of other leaf metabolites potentially involved in plant defense, we used a metabolic fingerprinting approach with ultra-high performance liquid chromatography coupled with time-of-flight-mass spectrometry. According to the optimal defense hypothesis, more valuable parts such as young leaves should be better protected than less valuable parts. Therefore, we expected that both, the concentrations of defense compounds as well as the β-glucosidase activity, should be highest in younger leaves and decrease with increasing leaf age. Both species possessed β-glucosidase activity, which hydrolyzed aucubin, one of the two most abundant iridoid glycosides in both plant species, with high activity. In line with the optimal defense hypothesis, the β-glucosidase activity in both Plantago species as well as the concentration of defense-related metabolites such as iridoid glycosides correlated negatively to leaf age. When leaf extracts were incubated with bovine serum albumin and aucubin, SDS-PAGE revealed a protein-denaturing effect of the leaf extracts of both plantain species, suggesting that iridoid glycosides and plant β-glucosidase interact in a dual defense system. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Plant phenolics and absorption features in vegetation reflectance spectra near 1.66 μm

    NASA Astrophysics Data System (ADS)

    Kokaly, Raymond F.; Skidmore, Andrew K.

    2015-12-01

    Past laboratory and field studies have quantified phenolic substances in vegetative matter from reflectance measurements for understanding plant response to herbivores and insect predation. Past remote sensing studies on phenolics have evaluated crop quality and vegetation patterns caused by bedrock geology and associated variations in soil geochemistry. We examined spectra of pure phenolic compounds, common plant biochemical constituents, dry leaves, fresh leaves, and plant canopies for direct evidence of absorption features attributable to plant phenolics. Using spectral feature analysis with continuum removal, we observed that a narrow feature at 1.66 μm is persistent in spectra of manzanita, sumac, red maple, sugar maple, tea, and other species. This feature was consistent with absorption caused by aromatic Csbnd H bonds in the chemical structure of phenolic compounds and non-hydroxylated aromatics. Because of overlapping absorption by water, the feature was weaker in fresh leaf and canopy spectra compared to dry leaf measurements. Simple linear regressions of feature depth and feature area with polyphenol concentration in tea resulted in high correlations and low errors (% phenol by dry weight) at the dry leaf (r2 = 0.95, RMSE = 1.0%, n = 56), fresh leaf (r2 = 0.79, RMSE = 2.1%, n = 56), and canopy (r2 = 0.78, RMSE = 1.0%, n = 13) levels of measurement. Spectra of leaves, needles, and canopies of big sagebrush and evergreens exhibited a weak absorption feature centered near 1.63 μm, short ward of the phenolic compounds, possibly consistent with terpenes. This study demonstrates that subtle variation in vegetation spectra in the shortwave infrared can directly indicate biochemical constituents and be used to quantify them. Phenolics are of lesser abundance compared to the major plant constituents but, nonetheless, have important plant functions and ecological significance. Additional research is needed to advance our understanding of the spectral influences of plant phenolics and terpenes relative to dominant leaf biochemistry (water, chlorophyll, protein/nitrogen, cellulose, and lignin).

  11. A novel sesquiterpene glycoside from Loquat leaf alleviates oleic acid-induced steatosis and oxidative stress in HepG2 cells.

    PubMed

    Jian, Tunyu; Wu, Yuexian; Ding, Xiaoqin; Lv, Han; Ma, Li; Zuo, Yuanyuan; Ren, Bingru; Zhao, Lei; Tong, Bei; Chen, Jian; Li, Weilin

    2018-01-01

    Loquat (Eriobotrya japonica) leaf has displayed beneficial effect on metabolic syndrome. In our previously study, total sesquiterpene glycosides (TSG) isolated from Loquat leaf exhibited therapeutic effect on Non-alcoholic fatty liver disease (NAFLD) in vivo, but the accurate active compound remains unknown. Sesquiterpene glycoside 1 (SG1) is a novel compound, which is exclusively isolated from Loquat leaf, but its biological activity has been rarely reported. The present study was designed to evaluate the pharmacological effect of SG1, the main component of TSG, in oleic acid (OA)-induced HepG2 cell model of NAFLD with its related mechanisms of action. In this study, both SG1 and TSG were found to significantly reduce the lipid deposition in the cell model. They could also decrease total cholesterol (TC), triglyceride (TG) and intracellular free fatty acid (FFA) contents. Compared with OA-treated cells, the superoxide dismutase (SOD) level increased, and the malondialdehyde (MDA) and 4-hydroxynonenal levels respectively decreased after the administration of SG1 or TSG. The high dose of SG1 (140 μg/mL) displayed a similar therapeutic effect as TSG at 200 μg/mL. Both SG1 and TSG were found to suppress the expression of cytochrome P450 2E1 (CYP2E1) and the phosphorylation of c-jun terminal kinase (JNK) and its downstream target c-Jun in OA-treated cell. These results demonstrate again that TSG are probably the main responsible chemical profiles of Loquat leaf for the treatment of NAFLD, for which it can effectively improve OA-induced steatosis and reduce oxidative stress, probably by downregulating of CYP2E1 expression and JNK/c-Jun phosphorylation, while SG1 may be the principle compound. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  12. Overexpression of plum auxin receptor PslTIR1 in tomato alters plant growth, fruit development and fruit shelf-life characteristics.

    PubMed

    El-Sharkawy, I; Sherif, S; El Kayal, W; Jones, B; Li, Z; Sullivan, A J; Jayasankar, Subramanian

    2016-02-29

    TIR1-like proteins are F-box auxin receptors. Auxin binding to the F-box receptor proteins promotes the formation of SCF(TIR1) ubiquitin ligase complex that targets the auxin repressors, Aux/IAAs, for degradation via the ubiquitin/26S proteasome pathway. The release of auxin response factors (ARFs) from their Aux/IAA partners allows ARFs to mediate auxin-responsive changes in downstream gene transcription. In an attempt to understand the potential role of auxin during fruit development, a plum auxin receptor, PslTIR1, has previously been characterized at the cellular, biochemical and molecular levels, but the biological significance of this protein is still lacking. In the present study, tomato (Solanum lycopersicum) was used as a model to investigate the phenotypic and molecular changes associated with the overexpression of PslTIR1. The findings of the present study highlighted the critical role of PslTIR1 as positive regulator of auxin-signalling in coordinating the development of leaves and fruits. This was manifested by the entire leaf morphology of transgenic tomato plants compared to the wild-type compound leaf patterning. Moreover, transgenic plants produced parthenocarpic fruits, a characteristic property of auxin hypersensitivity. The autocatalytic ethylene production associated with the ripening of climacteric fruits was not significantly altered in transgenic tomato fruits. Nevertheless, the fruit shelf-life characteristics were affected by transgene presence, mainly through enhancing fruit softening rate. The short shelf-life of transgenic tomatoes was associated with dramatic upregulation of several genes encoding proteins involved in cell-wall degradation, which determine fruit softening and subsequent fruit shelf-life. The present study sheds light into the involvement of PslTIR1 in regulating leaf morphology, fruit development and fruit softening-associated ripening, but not autocatalytic ethylene production. The results demonstrate that auxin accelerates fruit softening independently of ethylene action and this is probably mediated through the upregulation of many cell-wall metabolism genes.

  13. Bioactive Compounds in Wild, In vitro Obtained, Ex vitro Adapted, and Acclimated Plants of Centaurea davidovii (Asteraceae).

    PubMed

    Trendafilova, Antoaneta; Jadranin, Milka; Gorgorov, Rossen; Stanilova, Marina

    2015-06-01

    In vitro cultures were initiated from a single seed of Centaurea davidovii. Whole plantlets were regenerated and cultivated for several months on agar-solidified nutrient media differing by their composition: basal MS medium, MS medium supplemented with plant growth regulators, and liquid MS medium. Plantlets were ex vitro adapted and successfully acclimated to open-air conditions; flowering was observed in some individuals in the first summer, and mass flowering during the second summer. The contents of the total flavonoids and the total phenolic compounds were determined spectrophotometrically in the leaves of the in vitro plantlets cultured on different media, and then compared with those in the leaves of the wild plants and in the leaves of the acclimated plants of the field plot. The sesquiterpene lactone 8α-(5'-hydroxyangeloyl)-salonitenolide was determined by HPLC in leaf samples of C. davidovii wild plants, in vitro obtained plantlets and ex vitro acclimated plants in the greenhouse and on the experimental field plot. The composition of the nutrient medium influenced the contents of all studied bioactive substances. The highest concentrations of all tested secondary metabolites were detected in the leaves of the acclimated plants during mass flowering, the content of the lactone reaching 56.2 mg/g DW, which was several times more than in the other leaf samples. The obtained results revealed both the effectiveness of biotechnological methods for propagation and conservation of rare and endangered plant species, and the possibility to use C. davidovii plants ex vitro acclimated to field conditions as a source of secondary metabolites with potential biological activity.

  14. Prospective bacterial quorum sensing inhibitors from Indian medicinal plant extracts.

    PubMed

    Tiwary, B K; Ghosh, R; Moktan, S; Ranjan, V K; Dey, P; Choudhury, D; Dutta, S; Deb, D; Das, A P; Chakraborty, R

    2017-07-01

    As virulence of many pathogenic bacteria is regulated by the phenomenon of quorum sensing (QS), the present study aimed to find the QS-inhibiting (QS-I) property (if any) in 61 Indian medicinal plants. The presence of QS-I compound in the leaf extract was evaluated by its ability to inhibit production of pigment in Chromobacterium violaceum MTCC 2656 (violacein) and Pseudomonas aeruginosa MTCC 2297 (pyocyanin) or swarming of P. aeruginosa MTCC 2297. Extracts of three plants, Astilbe rivularis, Fragaria nubicola and Osbeckia nepalensis, have shown a dose-dependent inhibition of violacein production with no negative effect on bacterial growth. Inhibition of pyocyanin pigment production and swarming motility in P. aeruginosa MTCC 2297 was also shown. Based on the results obtained by gas chromatography-mass spectroscopy (GC-MS) and thin-layer chromatography-direct bioautography (TLC-DB), it was concluded that triterpenes and flavonoid compounds found in the three plant extracts could have QS-I activity. A novel alternative prospect to prevent bacterial infections without inhibiting the growth is to apply chemicals that inhibit quorum sensing mechanism of the pathogens. Antiquorum property of 61 medicinal plants was evaluated by the ability of their leaf extract(s) to inhibit production of pigment (violacein in Chromobacterium violaceum MTCC 2656, pyocyanin in Pseudomonas aeruginosa MTCC 2297) or swarming in P. aeruginosa MTCC 2297. The most prospective plants (for the development of quorum sensing inhibitor), showing inhibition of violacein production without affecting bacterial growth, were Astilbe rivularis, Fragaria nubicola and Osbeckia nepalensis. © 2017 The Society for Applied Microbiology.

  15. Metabolic Response of Strawberry (Fragaria x ananassa) Leaves Exposed to the Angular Leaf Spot Bacterium (Xanthomonas fragariae).

    PubMed

    Kim, Min-Sun; Jin, Jong Sung; Kwak, Youn-Sig; Hwang, Geum-Sook

    2016-03-09

    Plants have evolved various defense mechanisms against biotic stress. The most common mechanism involves the production of metabolites that act as defense compounds. Bacterial angular leaf spot disease (Xanthomonas fragariae) of the strawberry (Fragaria x ananassa) has become increasingly destructive to strawberry leaves and plant production. In this study, we examined metabolic changes associated with the establishment of long-term bacterial disease stress using UPLC-QTOF mass spectrometry. Infected leaves showed decreased levels of gallic acid derivatives and ellagitannins, which are related to the plant defense system. The levels of phenylalanine, tryptophan, and salicylic acid as precursors of aromatic secondary metabolites were increased in inoculated leaves, whereas levels of coumaric acid, quinic acid, and flavonoids were decreased in infected plants, which are involved in the phenylpropanoid pathway. In addition, phenylalanine ammonia-lyase (PAL) activity, a key enzyme in the phenylpropanoid pathway, was decreased following infection. These results suggest that long-term bacterial disease stress may lead to down-regulation of select molecules of the phenylpropanoid metabolic pathway in strawberry leaves. This approach could be applied to explore the metabolic pathway associated with plant protection/breeding in strawberry leaves.

  16. Stomatal action directly feeds back on leaf turgor: new insights into the regulation of the plant water status from non-invasive pressure probe measurements.

    PubMed

    Ache, Peter; Bauer, Hubert; Kollist, Hannes; Al-Rasheid, Khaled A S; Lautner, Silke; Hartung, Wolfram; Hedrich, Rainer

    2010-06-01

    Uptake of CO(2) by the leaf is associated with loss of water. Control of stomatal aperture by volume changes of guard cell pairs optimizes the efficiency of water use. Under water stress, the protein kinase OPEN STOMATA 1 (OST1) activates the guard-cell anion release channel SLOW ANION CHANNEL-ASSOCIATED 1 (SLAC1), and thereby triggers stomatal closure. Plants with mutated OST1 and SLAC1 are defective in guard-cell turgor regulation. To study the effect of stomatal movement on leaf turgor using intact leaves of Arabidopsis, we used a new pressure probe to monitor transpiration and turgor pressure simultaneously and non-invasively. This probe permits routine easy access to parameters related to water status and stomatal conductance under physiological conditions using the model plant Arabidopsis thaliana. Long-term leaf turgor pressure recordings over several weeks showed a drop in turgor during the day and recovery at night. Thus pressure changes directly correlated with the degree of plant transpiration. Leaf turgor of wild-type plants responded to CO(2), light, humidity, ozone and abscisic acid (ABA) in a guard cell-specific manner. Pressure probe measurements of mutants lacking OST1 and SLAC1 function indicated impairment in stomatal responses to light and humidity. In contrast to wild-type plants, leaves from well-watered ost1 plants exposed to a dry atmosphere wilted after light-induced stomatal opening. Experiments with open stomata mutants indicated that the hydraulic conductance of leaf stomata is higher than that of the root-shoot continuum. Thus leaf turgor appears to rely to a large extent on the anion channel activity of autonomously regulated stomatal guard cells.

  17. Isoprene Emissions from Downy Oak under Water Limitation during an Entire Growing Season: What Cost for Growth?

    PubMed Central

    Genard-Zielinski, Anne-Cyrielle; Ormeño, Elena; Boissard, Christophe; Fernandez, Catherine

    2014-01-01

    Increases in the production of terpene- and phenolic-like compounds in plant species under abiotic stress conditions have been interpreted in physiological studies as a supplementary defense system due to their capacity to limit cell oxidation. From an ecological perspective however, these increases are only expected to confer competitive advantages if they do not imply a significant cost for the plant, that is, growth reduction. We investigated shifts of isoprene emissions, and to a lesser extent phenolic compound concentration, of Quercus pubescens Willd. from early leaf development to leaf senescence under optimal watering (control: C), mild and severe water stress (MS, SS). The impact of water stress was concomitantly assessed on plant physiological (chlorophyll fluorescence, stomatal conductance, net photosynthesis, water potential) functional (relative leaf water content, leaf mass per area ratio) and growth (aerial and root biomass) traits. Growth changes allowed to estimate the eventual costs related to the production of isoprene and phenolics. The total phenolic content was not modified under water stress whereas isoprene emissions were promoted under MS over the entire growing cycle despite the decline of Pn by 35%. Under SS, isoprene emissions remained similar to C all over the study despite the decline of Pn by 47% and were thereby clearly uncoupled to Pn leading to an overestimation of the isoprene emission factor by 44%. Under SS, maintenance of isoprene emissions and phenolic compound concentration resulted in very significant costs for the plants as growth rates were very significantly reduced. Under MS, increases of isoprene emission and maintenance of phenolic compound concentration resulted in moderate growth reduction. Hence, it is likely that investment in isoprene emissions confers Q. pubescens an important competitive advantage during moderate but not severe periods of water scarcity. Consequences of this response for air quality in North Mediterranean areas are also discussed. PMID:25383554

  18. Long-term experimental warming, shading and nutrient addition affect the concentration of phenolic compounds in arctic-alpine deciduous and evergreen dwarf shrubs.

    PubMed

    Hansen, Anja H; Jonasson, Sven; Michelsen, Anders; Julkunen-Tiitto, Riitta

    2006-02-01

    Environmental changes are likely to alter the chemical composition of plant tissues, including content and concentrations of secondary compounds, and thereby affect the food sources of herbivores. After 10 years of experimental increase of temperature, nutrient levels and light attenuation in a sub-arctic, alpine ecosystem, we investigated the effects on carbon based secondary compounds (CBSC) and nitrogen in one dominant deciduous dwarf shrub, Salix herbacea x polaris and two dominant evergreen dwarf shrubs, Cassiope tetragona and Vaccinium vitis-idaea throughout one growing season. The main aims were to compare the seasonal course and treatment effects on CBSC among the species, life forms and leaf cohorts and to examine whether the responses in different CBSC were consistent across compounds. The changes in leaf chemistry both during the season and in response to the treatments were higher in S. herbacea x polaris than in the corresponding current year's leaf cohort of the evergreen C. tetragona. The changes were also much higher than in the 1-year-old leaves of the two evergreens probably due to differences in dilution and turnover of CBSC in growing and mature leaves paired with different rates of allocation. Most low molecular weight phenolics in the current year's leaves decreased in all treatments. Condensed tannins and the tannin-to-N ratio, however, either increased or decreased, and the strength and even direction of the responses varied among the species and leaf cohorts, supporting views of influential factors additional to resource-based or developmental controls, as e.g. species specific or genetic controls of CBSC. The results indicate that there is no common response to environmental changes across species and substances. However, the pronounced treatment responses imply that the quality of the herbivore forage is likely to be strongly affected in a changing arctic environment, although both the direction and strength of the responses will be different among plant species, tissue types and substances.

  19. Isoprene emissions from downy oak under water limitation during an entire growing season: what cost for growth?

    PubMed

    Genard-Zielinski, Anne-Cyrielle; Ormeño, Elena; Boissard, Christophe; Fernandez, Catherine

    2014-01-01

    Increases in the production of terpene- and phenolic-like compounds in plant species under abiotic stress conditions have been interpreted in physiological studies as a supplementary defense system due to their capacity to limit cell oxidation. From an ecological perspective however, these increases are only expected to confer competitive advantages if they do not imply a significant cost for the plant, that is, growth reduction. We investigated shifts of isoprene emissions, and to a lesser extent phenolic compound concentration, of Quercus pubescens Willd. from early leaf development to leaf senescence under optimal watering (control: C), mild and severe water stress (MS, SS). The impact of water stress was concomitantly assessed on plant physiological (chlorophyll fluorescence, stomatal conductance, net photosynthesis, water potential) functional (relative leaf water content, leaf mass per area ratio) and growth (aerial and root biomass) traits. Growth changes allowed to estimate the eventual costs related to the production of isoprene and phenolics. The total phenolic content was not modified under water stress whereas isoprene emissions were promoted under MS over the entire growing cycle despite the decline of Pn by 35%. Under SS, isoprene emissions remained similar to C all over the study despite the decline of Pn by 47% and were thereby clearly uncoupled to Pn leading to an overestimation of the isoprene emission factor by 44%. Under SS, maintenance of isoprene emissions and phenolic compound concentration resulted in very significant costs for the plants as growth rates were very significantly reduced. Under MS, increases of isoprene emission and maintenance of phenolic compound concentration resulted in moderate growth reduction. Hence, it is likely that investment in isoprene emissions confers Q. pubescens an important competitive advantage during moderate but not severe periods of water scarcity. Consequences of this response for air quality in North Mediterranean areas are also discussed.

  20. UV radiation is the primary factor driving the variation in leaf phenolics across Chinese grasslands

    PubMed Central

    Chen, Litong; Niu, Kechang; Wu, Yi; Geng, Yan; Mi, Zhaorong; Flynn, Dan FB; He, Jin-Sheng

    2013-01-01

    Due to the role leaf phenolics in defending against ultraviolet B (UVB) under previously controlled conditions, we hypothesize that ultraviolet radiation (UVR) could be a primary factor driving the variation in leaf phenolics in plants over a large geographic scale. We measured leaf total phenolics, ultraviolet-absorbing compounds (UVAC), and corresponding leaf N, P, and specific leaf area (SLA) in 151 common species. These species were from 84 sites across the Tibetan Plateau and Inner Mongolian grasslands of China with contrasting UVR (354 vs. 161 mW/cm2 on average). Overall, leaf phenolics and UVAC were all significantly higher on the Tibetan Plateau than in the Inner Mongolian grasslands, independent of phylogenetic relationships between species. Regression analyses showed that the variation in leaf phenolics was strongly affected by climatic factors, particularly UVR, and soil attributes across all sites. Structural equation modeling (SEM) identified the primary role of UVR in determining leaf phenolic concentrations, after accounting for colinearities with altitude, climatic, and edaphic factors. In addition, phenolics correlated positively with UVAC and SLA, and negatively with leaf N and N: P. These relationships were steeper in the lower-elevation Inner Mongolian than on the Tibetan Plateau grasslands. Our data support that the variation in leaf phenolics is controlled mainly by UV radiation, implying high leaf phenolics facilitates the adaptation of plants to strong irradiation via its UV-screening and/or antioxidation functions, particularly on the Tibetan Plateau. Importantly, our results also suggest that leaf phenolics may influence on vegetation attributes and indirectly affect ecosystem processes by covarying with leaf functional traits. PMID:24363898

  1. Possible Roles of Strigolactones during Leaf Senescence

    PubMed Central

    Yamada, Yusuke; Umehara, Mikihisa

    2015-01-01

    Leaf senescence is a complicated developmental process that involves degenerative changes and nutrient recycling. The progress of leaf senescence is controlled by various environmental cues and plant hormones, including ethylene, jasmonic acid, salicylic acid, abscisic acid, cytokinins, and strigolactones. The production of strigolactones is induced in response to nitrogen and phosphorous deficiency. Strigolactones also accelerate leaf senescence and regulate shoot branching and root architecture. Leaf senescence is actively promoted in a nutrient-poor soil environment, and nutrients are transported from old leaves to young tissues and seeds. Strigolactones might act as important signals in response to nutrient levels in the rhizosphere. In this review, we discuss the possible roles of strigolactones during leaf senescence. PMID:27135345

  2. Mutations in CsPID encoding a Ser/Thr protein kinase are responsible for round leaf shape in cucumber (Cucumis sativus L.)

    USDA-ARS?s Scientific Manuscript database

    Leaf shape is an important plant architecture trait that is affected by plant hormones, especially auxin. In Arabidopsis, PINOID (PID), a regulator for the auxin polar transporter PIN (PIN-FORMED) affects leaf shape formation, but this function of PID in crop plants has not been well studied. From a...

  3. 75 FR 1705 - Drawbridge Operation Regulation; Intracoastal Waterway (ICW), Inside Thorofare, Ventnor City, NJ

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-13

    ... Avenue Bridge, at ICW mile 71.2, across Inside Thorofare, at Ventnor City. This bridge is a double-leaf... rehabilitation to one of the bascule leafs. DATES: This deviation is effective from 7 a.m. on January 20, 2010... Atlantic County who owns and operates this double-leaf bascule drawbridge, has requested a temporary...

  4. Phaeophleospora vochysiae Savi & Glienke sp. nov. Isolated from Vochysia divergens Found in the Pantanal, Brazil, Produces Bioactive Secondary Metabolites.

    PubMed

    Savi, Daiani C; Shaaban, Khaled A; Gos, Francielly Maria Wilke Ramos; Ponomareva, Larissa V; Thorson, Jon S; Glienke, Chirlei; Rohr, Jürgen

    2018-02-15

    Microorganisms associated with plants are highly diverse and can produce a large number of secondary metabolites, with antimicrobial, anti-parasitic and cytotoxic activities. We are particularly interested in exploring endophytes from medicinal plants found in the Pantanal, a unique and widely unexplored wetland in Brazil. In a bio-prospecting study, strains LGMF1213 and LGMF1215 were isolated as endophytes from Vochysia divergens, and by morphological and molecular phylogenetic analyses were characterized as Phaeophleospora vochysiae sp. nov. The chemical assessment of this species reveals three major compounds with high biological activity, cercoscosporin (1), isocercosporin (2) and the new compound 3-(sec-butyl)-6-ethyl-4,5-dihydroxy-2-methoxy-6-methylcyclohex-2-enone (3). Besides the isolation of P. vochysiae as endophyte, the production of cercosporin compounds suggest that under specific conditions this species causes leaf spots, and may turn into a pathogen, since leaf spots are commonly caused by species of Cercospora that produce related compounds. In addition, the new compound 3-(sec-butyl)-6-ethyl-4,5-dihydroxy-2-methoxy-6-methylcyclohex-2-enone showed considerable antimicrobial activity and low cytotoxicity, which needs further exploration.

  5. Drought Induces Distinct Growth Response, Protection, and Recovery Mechanisms in the Maize Leaf Growth Zone1[OPEN

    PubMed Central

    Avramova, Viktoriya; AbdElgawad, Hamada; Zhang, Zhengfeng; Fotschki, Bartosz; Casadevall, Romina; Vergauwen, Lucia; Knapen, Dries; Taleisnik, Edith; Guisez, Yves; Asard, Han; Beemster, Gerrit T.S.

    2015-01-01

    Drought is the most important crop yield-limiting factor, and detailed knowledge of its impact on plant growth regulation is crucial. The maize (Zea mays) leaf growth zone offers unique possibilities for studying the spatiotemporal regulation of developmental processes by transcriptional analyses and methods that require more material, such as metabolite and enzyme activity measurements. By means of a kinematic analysis, we show that drought inhibits maize leaf growth by inhibiting cell division in the meristem and cell expansion in the elongation zone. Through a microarray study, we observed the down-regulation of 32 of the 54 cell cycle genes, providing a basis for the inhibited cell division. We also found evidence for an up-regulation of the photosynthetic machinery and the antioxidant and redox systems. This was confirmed by increased chlorophyll content in mature cells and increased activity of antioxidant enzymes and metabolite levels across the growth zone, respectively. We demonstrate the functional significance of the identified transcriptional reprogramming by showing that increasing the antioxidant capacity in the proliferation zone, by overexpression of the Arabidopsis (Arabidopsis thaliana) iron-superoxide dismutase gene, increases leaf growth rate by stimulating cell division. We also show that the increased photosynthetic capacity leads to enhanced photosynthesis upon rewatering, facilitating the often-observed growth compensation. PMID:26297138

  6. Carbohydrate regulation of photosynthesis and respiration from branch girdling in four species of wet tropical rain forest trees.

    PubMed

    Asao, Shinichi; Ryan, Michael G

    2015-06-01

    How trees sense source-sink carbon balance remains unclear. One potential mechanism is a feedback from non-structural carbohydrates regulating photosynthesis and removing excess as waste respiration when the balance of photosynthesis against growth and metabolic activity changes. We tested this carbohydrate regulation of photosynthesis and respiration using branch girdling in four tree species in a wet tropical rainforest in Costa Rica. Because girdling severs phloem to stop carbohydrate export while leaving xylem intact to allow photosynthesis, we expected carbohydrates to accumulate in leaves to simulate a carbon imbalance. We varied girdling intensity by removing phloem in increments of one-quarter of the circumference (zero, one--quarter, half, three-quarters, full) and surrounded a target branch with fully girdled ones to create a gradient in leaf carbohydrate content. Light saturated photosynthesis rate was measured in situ, and foliar respiration rate and leaf carbohydrate content were measured after destructive harvest at the end of the treatment. Girdling intensity created no consistent or strong responses in leaf carbohydrates. Glucose and fructose slightly increased in all species by 3.4% per one-quarter girdle, total carbon content and leaf mass per area increased only in one species by 5.4 and 5.5% per one-quarter girdle, and starch did not change. Only full girdling lowered photosynthesis in three of four species by 59-69%, but the decrease in photosynthesis was unrelated to the increase in glucose and fructose content. Girdling did not affect respiration. The results suggest that leaf carbohydrate content remains relatively constant under carbon imbalance, and any changes are unlikely to regulate photosynthesis or respiration. Because girdling also stops the export of hormones and reactive oxygen species, girdling may induce physiological changes unrelated to carbohydrate accumulation and may not be an effective method to study carbohydrate feedback in leaves. In three species, removal of three-quarters of phloem area did not cause leaf carbohydrates to accumulate nor did it change photosynthesis or respiration, suggesting that phloem transport is flexible and transport rate per unit phloem can rapidly increase under an increase in carbohydrate supply relative to phloem area. Leaf carbohydrate content thus may be decoupled from whole plant carbon balance by phloem transport in some species, and carbohydrate regulation of photosynthesis and respiration may not be as common in trees as previous girdling studies suggest. Further studies in carbohydrate regulation should avoid using girdling as girdling can decrease photosynthesis through unintended means without the tested mechanisms of accumulating leaf carbohydrates. Published by Oxford University Press 2015. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  7. Unraveling the Effects of Plant Hydraulics on Stomatal Closure during Water Stress in Walnut

    PubMed Central

    Cochard, Hervé; Coll, Lluis; Le Roux, Xavier; Améglio, Thierry

    2002-01-01

    The objectives of the study were to identify the relevant hydraulic parameters associated with stomatal regulation during water stress and to test the hypothesis of a stomatal control of xylem embolism in walnut (Juglans regia × nigra) trees. The hydraulic characteristics of the sap pathway were experimentally altered with different methods to alter plant transpiration (Eplant) and stomatal conductance (gs). Potted trees were exposed to a soil water depletion to alter soil water potential (Ψsoil), soil resistance (Rsoil), and root hydraulic resistances (Rroot). Soil temperature was changed to alter Rroot alone. Embolism was created in the trunk to increase shoot resistance (Rshoot). Stomata closed in response to these stresses with the effect of maintaining the water pressure in the leaf rachis xylem (Prachis) above −1.4 MPa and the leaf water potential (Ψleaf) above −1.6 MPa. The same dependence of Eplant and gs on Prachis or Ψleaf was always observed. This suggested that stomata were not responding to changes in Ψsoil, Rsoil, Rroot, or Rshoot per se but rather to their impact on Prachis and/or Ψleaf. Leaf rachis was the most vulnerable organ, with a threshold Prachis for embolism induction of −1.4 MPa. The minimum Ψleaf values corresponded to leaf turgor loss point. This suggested that stomata are responding to leaf water status as determined by transpiration rate and plant hydraulics and that Prachis might be the physiological parameter regulated by stomatal closure during water stress, which would have the effect of preventing extensive developments of cavitation during water stress. PMID:11788773

  8. Two genera of Aulacoscelinae beetles reflexively bleed azoxyglycosides found in their host cycads.

    PubMed

    Prado, Alberto; Ledezma, Julieta; Cubilla-Rios, Luis; Bede, Jacqueline C; Windsor, Donald M

    2011-07-01

    Aulacoscelinae beetles have an ancient relationship with cycads (Cycadophyta: Zamiaceae), which contain highly toxic azoxyglycoside (AZG) compounds. How these "primitive" leaf beetles deal with such host-derived compounds remains largely unknown. Collections were made of adult Aulacoscelis appendiculata from Zamia cf. elegantissima in Panama, A. vogti from Dioon edule in Mexico, and Janbechynea paradoxa from Zamia boliviana in Bolivia. Total AZG levels were quantified in both cycad leaves and adult beetles by high performance liquid chromatography (HPLC). On average, cycad leaves contained between 0.5-0.8% AZG (frozen weight, FW), while adult beetles feeding on the same leaves contained even higher levels of the compounds (average 0.9-1.5% FW). High AZG levels were isolated from reflex bleeding secreted at the leg joints when beetles were disturbed. Nuclear magnetic resonance and mass spectroscopy identified two AZGs, cycasin and macrozamin, in the reflex bleeding; this is the first account of potentially plant-derived compounds in secretions of the Aulacoscelinae. These data as well as the basal phylogenetic position of the Aulacoscelinae suggest that sequestration of plant secondary metabolites appeared early in leaf beetle evolution.

  9. Isolation and identification of sea buckthorn (Hippophae rhamnoides) phenolics with antioxidant activity and α-glucosidase inhibitory effect.

    PubMed

    Kim, Ju-Sung; Kwon, Yong-Soo; Sa, Yeo-Jin; Kim, Myong-Jo

    2011-01-12

    This study was performed to evaluate the antioxidant and α-glucosidase inhibitory effects from the extract, fractions, and isolated compounds of sea buckthorn leaves. Six compounds, kaempferol-3-O-β-D-(6''-O-coumaryl) glycoside, 1-feruloyl-β-D-glucopyranoside, isorhamnetin-3-O-glucoside, quercetin 3-O-β-D-glucopyranoside, quercetin 3-O-β-D-glucopyranosyl-7-O-α-L-rhamnopyranoside, and isorhamnetin-3-O-rutinoside, were isolated from sea buckthorn leaf extracts. The butanol fraction (EC(50) = 1.81 μg/mL) along with quercetin 3-O-β-D-glucopyranoside (EC(50) = 1.86 μg/mL) had a higher DPPH radical-scavenging activity and showed stronger reducing power (OD(700) = 1.83 and 1.78, respectively). The butanol fraction (477 mg GAE/g) contained the highest amount of phenolic compounds and also the most powerful α-glucosidase inhibitory effect (86%) at 5 μg/mL. The results indicate that sea buckthorn leaf extracts could potentially be used for food additives and the development of useful natural compounds.

  10. Transcriptomic Analysis of Grapevine (cv. Summer Black) Leaf, Using the Illumina Platform

    PubMed Central

    Pervaiz, Tariq; Haifeng, Jia; Salman Haider, Muhammad; Cheng, Zhang; Cui, Mengjie; Wang, Mengqi; Cui, Liwen; Wang, Xicheng; Fang, Jinggui

    2016-01-01

    Proceeding to illumina sequencing, determining RNA integrity numbers for poly RNA were separated from each of the four developmental stages of cv. Summer Black leaves by using Illumina HiSeq™ 2000. The sums of 272,941,656 reads were generated from vitis vinifera leaf at four different developmental stages, with more than 27 billion nucleotides of the sequence data. At each growth stage, RNA samples were indexed through unique nucleic acid identifiers and sequenced. KEGG annotation results depicted that the highest number of transcripts in 2,963 (2Avs4A) followed by 1Avs4A (2,920), and 3Avs4A (2,294) out of 15,614 (71%) transcripts were recorded. In comparison, a total of 1,532 transcripts were annotated in GOs, including Cellular component, with the highest number in “Cell part” 251 out of 353 transcripts (71.1%), followed by intracellular organelle 163 out of 353 transcripts (46.2%), while in molecular function and metabolic process 375 out of 525 (71.4%) transcripts, multicellular organism process 40 out of 525 (7.6%) transcripts in biological process were most common in 1Avs2A. While in case of 1Avs3A, cell part 476 out of 662 transcripts (71.9%), and membrane-bounded organelle 263 out of 662 transcripts (39.7%) were recorded in Cellular component. In the grapevine transcriptome, during the initial stages of leaf development 1Avs2A showed single transcript was down-regulated and none of them were up-regulated. While in comparison of 1A to 3A showed one up-regulated (photosystem II reaction center protein C) and one down regulated (conserved gene of unknown function) transcripts, during the hormone regulating pathway namely SAUR-like auxin-responsive protein family having 2 up-regulated and 7 down-regulated transcripts, phytochrome-associated protein showed 1 up-regulated and 9 down-regulated transcripts, whereas genes associated with the Leucine-rich repeat protein kinase family protein showed 7 up-regulated and 1 down-regulated transcript, meanwhile Auxin Resistant 2 has single up-regulated transcript in second developmental stage, although 3 were down-regulated at lateral growth stages (3A and 4A). In the present study, 489 secondary metabolic pathways related genes were identified during leaf growth, which mainly includes alkaloid (40), anthocyanins (21), Diterpenoid (144), Monoterpenoid (90) and Flavonoids (93). Quantitative real-time PCR was applied to validate 10 differentially expressed transcripts patterns from flower, leaf and fruit metabolic pathways at different growth stages. PMID:26824474

  11. Chemoreception of the Seagrass Posidonia Oceanica by Benthic Invertebrates is Altered by Seawater Acidification.

    PubMed

    Zupo, Valerio; Maibam, Chingoileima; Buia, Maria Cristina; Gambi, Maria Cristina; Patti, Francesco Paolo; Scipione, Maria Beatrice; Lorenti, Maurizio; Fink, Patrick

    2015-08-01

    Several plants and invertebrates interact and communicate by means of volatile organic compounds (VOCs). These compounds may play the role of infochemicals, being able to carry complex information to selected species, thus mediating inter- or intra-specific communications. Volatile organic compounds derived from the wounding of marine diatoms, for example, carry information for several benthic and planktonic invertebrates. Although the ecological importance of VOCs has been demonstrated, both in terrestrial plants and in marine microalgae, their role as infochemicals has not been demonstrated in seagrasses. In addition, benthic communities, even the most complex and resilient, as those associated to seagrass meadows, are affected by ocean acidification at various levels. Therefore, the acidification of oceans could produce interference in the way seagrass-associated invertebrates recognize and choose their specific environments. We simulated the wounding of Posidonia oceanica leaves collected at two sites (a control site at normal pH, and a naturally acidified site) off the Island of Ischia (Gulf of Naples, Italy). We extracted the VOCs and tested a set of 13 species of associated invertebrates for their specific chemotactic responses in order to determine if: a) seagrasses produce VOCs playing the role of infochemicals, and b) their effects can be altered by seawater pH. Our results indicate that several invertebrates recognize the odor of wounded P. oceanica leaves, especially those strictly associated to the leaf stratum of the seagrass. Their chemotactic reactions may be modulated by the seawater pH, thus impairing the chemical communications in seagrass-associated communities in acidified conditions. In fact, 54% of the tested species exhibited a changed behavioral response in acidified waters (pH 7.7). Furthermore, the differences observed in the abundance of invertebrates, in natural vs. acidified field conditions, are in agreement with these behavioral changes. Therefore, leaf-produced infochemicals may influence the structure of P. oceanica epifaunal communities, and their effects can be regulated by seawater acidification.

  12. Light-regulated leaf expansion in two Populus species: dependence on developmentally controlled ion transport.

    PubMed

    Stiles, Kari A; Van Volkenburgh, Elizabeth

    2002-07-01

    Leaf growth responses to light have been compared in two species of Populus, P. deltoides and P. trichocarpa. These species differ markedly in morphology, anatomy, and dependence on light during leaf expansion. Light stimulates the growth rate and acidification of cell walls in P. trichocarpa but not in P. deltoides, whereas leaves of P. deltoides maintain growth in the dark. Light-induced growth is promoted in P. deltoides when cells are provided 50-100 mM KCl. In both species, light initially depolarizes, then hyperpolarizes mesophyll plasma membranes. However, in the dark, the resting E(m) of mesophyll cells in P. deltoides, but not in P. trichocarpa, is relatively insensitive to decade changes in external [K+]. Results suggest that light-stimulated leaf growth depends on developmentally regulated cellular mechanisms controlling ion fluxes across the plasma membrane. These developmental differences underlie species-level differences in growth and physiological responses to the photoenvironment.

  13. The cardioprotective power of leaves

    PubMed Central

    Boncler, Magdalena; Watala, Cezary

    2015-01-01

    Lack of physical activity, smoking and/or inappropriate diet can contribute to the increase of oxidative stress, in turn affecting the pathophysiology of cardiovascular diseases. Strong anti-oxidant properties of plant polyphenolic compounds might underlie their cardioprotective activity. This paper reviews recent findings on the anti-oxidant activity of plant leaf extracts and emphasizes their effects on blood platelets, leukocytes and endothelial cells – the targets orchestrating the development and progression of cardiovascular diseases. We also review the evidence linking supplementation with plant leaf extracts and the risk factors defining the metabolic syndrome. The data point to the importance of leaves as an alternative source of polyphenolic compounds in the human diet and their role in the prevention of cardiovascular diseases. PMID:26322095

  14. Leaf anatomy, BVOC emission and CO2 exchange of arctic plants following snow addition and summer warming.

    PubMed

    Schollert, Michelle; Kivimäenpää, Minna; Michelsen, Anders; Blok, Daan; Rinnan, Riikka

    2017-02-01

    Climate change in the Arctic is projected to increase temperature, precipitation and snowfall. This may alter leaf anatomy and gas exchange either directly or indirectly. Our aim was to assess whether increased snow depth and warming modify leaf anatomy and affect biogenic volatile organic compound (BVOC) emissions and CO 2 exchange of the widespread arctic shrubs Betula nana and Empetrum nigrum ssp. hermaphroditum METHODS: Measurements were conducted in a full-factorial field experiment in Central West Greenland, with passive summer warming by open-top chambers and snow addition using snow fences. Leaf anatomy was assessed using light microscopy and scanning electron microscopy. BVOC emissions were measured using a dynamic enclosure system and collection of BVOCs into adsorbent cartridges analysed by gas chromatography-mass spectrometry. Carbon dioxide exchange was measured using an infrared gas analyser. Despite a later snowmelt and reduced photosynthesis for B. nana especially, no apparent delays in the BVOC emissions were observed in response to snow addition. Only a few effects of the treatments were seen for the BVOC emissions, with sesquiterpenes being the most responsive compound group. Snow addition affected leaf anatomy by increasing the glandular trichome density in B. nana and modifying the mesophyll of E. hermaphroditum The open-top chambers thickened the epidermis of B. nana, while increasing the glandular trichome density and reducing the palisade:spongy mesophyll ratio in E. hermaphroditum CONCLUSIONS: Leaf anatomy was modified by both treatments already after the first winter and we suggest links between leaf anatomy, CO 2 exchange and BVOC emissions. While warming is likely to reduce soil moisture, melt water from a deeper snow pack alleviates water stress in the early growing season. The study emphasizes the ecological importance of changes in winter precipitation in the Arctic, which can interact with climate-warming effects. © The Author 2017. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  15. Leaf anatomy, BVOC emission and CO2 exchange of arctic plants following snow addition and summer warming

    PubMed Central

    Schollert, Michelle; Kivimäenpää, Minna; Michelsen, Anders; Blok, Daan; Rinnan, Riikka

    2017-01-01

    Background and Aims Climate change in the Arctic is projected to increase temperature, precipitation and snowfall. This may alter leaf anatomy and gas exchange either directly or indirectly. Our aim was to assess whether increased snow depth and warming modify leaf anatomy and affect biogenic volatile organic compound (BVOC) emissions and CO2 exchange of the widespread arctic shrubs Betula nana and Empetrum nigrum ssp. hermaphroditum. Methods Measurements were conducted in a full-factorial field experiment in Central West Greenland, with passive summer warming by open-top chambers and snow addition using snow fences. Leaf anatomy was assessed using light microscopy and scanning electron microscopy. BVOC emissions were measured using a dynamic enclosure system and collection of BVOCs into adsorbent cartridges analysed by gas chromatography–mass spectrometry. Carbon dioxide exchange was measured using an infrared gas analyser. Key Results Despite a later snowmelt and reduced photosynthesis for B. nana especially, no apparent delays in the BVOC emissions were observed in response to snow addition. Only a few effects of the treatments were seen for the BVOC emissions, with sesquiterpenes being the most responsive compound group. Snow addition affected leaf anatomy by increasing the glandular trichome density in B. nana and modifying the mesophyll of E. hermaphroditum. The open-top chambers thickened the epidermis of B. nana, while increasing the glandular trichome density and reducing the palisade:spongy mesophyll ratio in E. hermaphroditum. Conclusions Leaf anatomy was modified by both treatments already after the first winter and we suggest links between leaf anatomy, CO2 exchange and BVOC emissions. While warming is likely to reduce soil moisture, melt water from a deeper snow pack alleviates water stress in the early growing season. The study emphasizes the ecological importance of changes in winter precipitation in the Arctic, which can interact with climate-warming effects. PMID:28064192

  16. A novel protein RLS1 with NB-ARM domains is involved in chloroplast degradation during leaf senescence in rice.

    PubMed

    Jiao, Bin-Bin; Wang, Jian-Jun; Zhu, Xu-Dong; Zeng, Long-Jun; Li, Qun; He, Zu-Hua

    2012-01-01

    Leaf senescence, a type of programmed cell death (PCD) characterized by chlorophyll degradation, is important to plant growth and crop productivity. It emerges that autophagy is involved in chloroplast degradation during leaf senescence. However, the molecular mechanism(s) involved in the process is not well understood. In this study, the genetic and physiological characteristics of the rice rls1 (rapid leaf senescence 1) mutant were identified. The rls1 mutant developed small, yellow-brown lesions resembling disease scattered over the whole surfaces of leaves that displayed earlier senescence than those of wild-type plants. The rapid loss of chlorophyll content during senescence was the main cause of accelerated leaf senescence in rls1. Microscopic observation indicated that PCD was misregulated, probably resulting in the accelerated degradation of chloroplasts in rls1 leaves. Map-based cloning of the RLS1 gene revealed that it encodes a previously uncharacterized NB (nucleotide-binding site)-containing protein with an ARM (armadillo) domain at the carboxyl terminus. Consistent with its involvement in leaf senescence, RLS1 was up-regulated during dark-induced leaf senescence and down-regulated by cytokinin. Intriguingly, constitutive expression of RLS1 also slightly accelerated leaf senescence with decreased chlorophyll content in transgenic rice plants. Our study identified a previously uncharacterized NB-ARM protein involved in PCD during plant growth and development, providing a unique tool for dissecting possible autophagy-mediated PCD during senescence in plants.

  17. Estrogenic and serotonergic butenolides from the leaves of Piper hispidum Swingle (Piperaceae)

    PubMed Central

    Michel, Joanna L; Chen, Yegao; Zhang, Hongjie; Huang, Yue; Krunic, Alecjev; Orjala, Jimmy; Veliz, Mario; Soni, Kapil K.; Soejarto, Djaja Doel; Caceres, Armando; Perez, Alice; Mahady, Gail B

    2010-01-01

    Ethnopharmacological relevance Our previous work has demonstrated that several plants in the Piperaceae family are commonly used by the Q’eqchi Maya of Livingston, Guatemala to treat amenorrhea, dysmenorrhea, and pain. Extracts of Piper hispidum Swingle (Piperaceae), bound to the estrogen (ER) and serotonin (5-HT7) receptors. Aim of the study To investigate the estrogenic and serotonergic activities of P. hispidum extracts in functionalized assays, identify the active chemical constituents in the leaf extract, and test these compounds as agonists or antagonists of ER and 5-HT7. Materials and methods The effects of the P. hispidum leaf extracts were investigated in estrogen reporter gene and endogenous gene assays in MCF-7 cells to determine if the extracts acted as an estrogen agonist or antagonist. In addition, the active compounds were isolated using ER- and 5-HT7 receptor bioassay-guided fractionation. The structures of the purified compounds were identified using high-resolution LC-MS and NMR spectroscopic methods. The ER- and 5-HT7-agonist effects of the purified chemical constituents were tested in a 2ERE-reporter gene assay in MCF-7 cells and in serotonin binding and functionalized assays. Results Three butenolides including one new compound (1) were isolated from the leaves of P. hispidum, and their structures were determined. Compound 1 bound to the serotonin receptor 5-HT7 with IC50 values of 16.1 and 8.3 μM, respectively, and using GTP shift assays, compound 1 was found to be a partial agonist of the 5-HT7 receptor. The P. hispidum leaf extracts, as well as compounds 2 and 3 enhanced the expression of estrogen responsive reporter and endogenous genes in MCF-7 cells, demonstrating estrogen agonist effects. Conclusions Extracts of P. hispidum act as agonists of the ER and 5-HT7 receptors. Compound 1, a new natural product, identified as 9, 10-methylenedioxy-5,6-Z-fadyenolide, was isolated as the 5-HT7 agonist. Compounds 2 and 3 are reported for the first time in P. hispidum, and identified as the estrogen agonists. No inhibition of CYP450 was observed for any of these compounds in concentrations up to 1 μM. These activities are consistent with the Q’eqchi traditional use of the plant for the treatment of disorders associated with the female reproductive cycle. PMID:20304039

  18. Estrogenic and serotonergic butenolides from the leaves of Piper hispidum Swingle (Piperaceae).

    PubMed

    Michel, Joanna L; Chen, Yegao; Zhang, Hongjie; Huang, Yue; Krunic, Aleksej; Orjala, Jimmy; Veliz, Mario; Soni, Kapil K; Soejarto, Djaja Doel; Caceres, Armando; Perez, Alice; Mahady, Gail B

    2010-05-27

    Our previous work has demonstrated that several plants in the Piperaceae family are commonly used by the Q'eqchi Maya of Livingston, Guatemala to treat amenorrhea, dysmenorrhea, and pain. Extracts of Piper hispidum Swingle (Piperaceae), bound to the estrogen (ER) and serotonin (5-HT7) receptors. To investigate the estrogenic and serotonergic activities of Piper hispidum extracts in functionalized assays, identify the active chemical constituents in the leaf extract, and test these compounds as agonists or antagonists of ER and 5-HT7. The effects of the Piper hispidum leaf extracts were investigated in estrogen reporter gene and endogenous gene assays in MCF-7 cells to determine if the extracts acted as an estrogen agonist or antagonist. In addition, the active compounds were isolated using ER- and 5-HT7 receptor bioassay-guided fractionation. The structures of the purified compounds were identified using high-resolution LC-MS and NMR spectroscopic methods. The ER- and 5-HT7-agonist effects of the purified chemical constituents were tested in a 2ERE-reporter gene assay in MCF-7 cells and in serotonin binding and functionalized assays. Three butenolides including one new compound (1) were isolated from the leaves of Piper hispidum, and their structures were determined. Compound 1 bound to the serotonin receptor 5-HT(7) with IC(50) values of 16.1 and 8.3 microM, respectively, and using GTP shift assays, Compound 1 was found to be a partial agonist of the 5-HT(7) receptor. The Piper hispidum leaf extracts, as well as Compounds 2 and 3 enhanced the expression of estrogen responsive reporter and endogenous genes in MCF-7 cells, demonstrating estrogen agonist effects. Extracts of Piper hispidum act as agonists of the ER and 5-HT(7) receptors. Compound 1, a new natural product, identified as 9,10-methylenedioxy-5,6-Z-fadyenolide, was isolated as the 5-HT(7) agonist. Compounds 2 and 3 are reported for the first time in Piper hispidum, and identified as the estrogen agonists. No inhibition of CYP450 was observed for any of these compounds in concentrations up to 1 microM. These activities are consistent with the Q'eqchi traditional use of the plant for the treatment of disorders associated with the female reproductive cycle. Copyright 2010 Elsevier Ireland Ltd. All rights reserved.

  19. Increasing leaf hydraulic conductance with transpiration rate minimizes the water potential drawdown from stem to leaf

    PubMed Central

    Simonin, Kevin A.; Burns, Emily; Choat, Brendan; Barbour, Margaret M.; Dawson, Todd E.; Franks, Peter J.

    2015-01-01

    Leaf hydraulic conductance (k leaf) is a central element in the regulation of leaf water balance but the properties of k leaf remain uncertain. Here, the evidence for the following two models for k leaf in well-hydrated plants is evaluated: (i) k leaf is constant or (ii) k leaf increases as transpiration rate (E) increases. The difference between stem and leaf water potential (ΔΨstem–leaf), stomatal conductance (g s), k leaf, and E over a diurnal cycle for three angiosperm and gymnosperm tree species growing in a common garden, and for Helianthus annuus plants grown under sub-ambient, ambient, and elevated atmospheric CO2 concentration were evaluated. Results show that for well-watered plants k leaf is positively dependent on E. Here, this property is termed the dynamic conductance, k leaf(E), which incorporates the inherent k leaf at zero E, which is distinguished as the static conductance, k leaf(0). Growth under different CO2 concentrations maintained the same relationship between k leaf and E, resulting in similar k leaf(0), while operating along different regions of the curve owing to the influence of CO2 on g s. The positive relationship between k leaf and E minimized variation in ΔΨstem–leaf. This enables leaves to minimize variation in Ψleaf and maximize g s and CO2 assimilation rate over the diurnal course of evaporative demand. PMID:25547915

  20. The role of plasma membrane aquaporins in regulating the bundle sheath-mesophyll continuum and leaf hydraulics.

    PubMed

    Sade, Nir; Shatil-Cohen, Arava; Attia, Ziv; Maurel, Christophe; Boursiac, Yann; Kelly, Gilor; Granot, David; Yaaran, Adi; Lerner, Stephen; Moshelion, Menachem

    2014-11-01

    Our understanding of the cellular role of aquaporins (AQPs) in the regulation of whole-plant hydraulics, in general, and extravascular, radial hydraulic conductance in leaves (K(leaf)), in particular, is still fairly limited. We hypothesized that the AQPs of the vascular bundle sheath (BS) cells regulate K(leaf). To examine this hypothesis, AQP genes were silenced using artificial microRNAs that were expressed constitutively or specifically targeted to the BS. MicroRNA sequences were designed to target all five AQP genes from the PLASMA MEMBRANE-INTRINSIC PROTEIN1 (PIP1) subfamily. Our results show that the constitutively silenced PIP1 (35S promoter) plants had decreased PIP1 transcript and protein levels and decreased mesophyll and BS osmotic water permeability (P(f)), mesophyll conductance of CO2, photosynthesis, K(leaf), transpiration, and shoot biomass. Plants in which the PIP1 subfamily was silenced only in the BS (SCARECROW:microRNA plants) exhibited decreased mesophyll and BS Pf and decreased K(leaf) but no decreases in the rest of the parameters listed above, with the net result of increased shoot biomass. We excluded the possibility of SCARECROW promoter activity in the mesophyll. Hence, the fact that SCARECROW:microRNA mesophyll exhibited reduced P(f), but not reduced mesophyll conductance of CO2, suggests that the BS-mesophyll hydraulic continuum acts as a feed-forward control signal. The role of AQPs in the hierarchy of the hydraulic signal pathway controlling leaf water status under normal and limited-water conditions is discussed. © 2014 American Society of Plant Biologists. All Rights Reserved.

  1. The chrysanthemum leaf and root transcript profiling in response to salinity stress.

    PubMed

    Cheng, Peilei; Gao, Jiaojiao; Feng, Yitong; Zhang, Zixin; Liu, Yanan; Fang, Weimin; Chen, Sumei; Chen, Fadi; Jiang, Jiafu

    2018-06-23

    RNA-Seq was applied to capture the transcriptome of the leaf and root of non-treated and salinity-treated chrysanthemum cv. 'Jinba' plants. A total of 206,868 unigenes of mean length 849 nt and of N50 length 1363 nt was identified; of these about 64% (>132,000) could be functionally assigned. Depending on the severity of the salinity stress, differential transcription was observed for genes encoding proteins involved in osmotic adjustment, in ion transport, in reactive oxygen species scavenging and in the regulation of abscisic acid (ABA) signaling. The root stress response was dominated by the up-regulation of genes involved in ion transport and homeostasis, while that of the leaf reflected the plant's effort to make osmotic adjustments and to regulate ABA signaling. An array of known transcription factors (WRKY, AP2/ERF, MYB, bHLH and NAC) were differentially transcribed. Copyright © 2018. Published by Elsevier B.V.

  2. Increased leaf angle1, a Raf-like MAPKKK that interacts with a nuclear protein family, regulates mechanical tissue formation in the Lamina joint of rice.

    PubMed

    Ning, Jing; Zhang, Baocai; Wang, Nili; Zhou, Yihua; Xiong, Lizhong

    2011-12-01

    Mitogen-activated protein kinase kinase kinases (MAPKKKs), which function at the top level of mitogen-activated protein kinase cascades, are clustered into three groups. However, no Group C Raf-like MAPKKKs have yet been functionally identified. We report here the characterization of a rice (Oryza sativa) mutant, increased leaf angle1 (ila1), resulting from a T-DNA insertion in a Group C MAPKKK gene. The increased leaf angle in ila1 is caused by abnormal vascular bundle formation and cell wall composition in the leaf lamina joint, as distinct from the mechanism observed in brassinosteroid-related mutants. Phosphorylation assays revealed that ILA1 is a functional kinase with Ser/Thr kinase activity. ILA1 is predominantly resident in the nucleus and expressed in the vascular bundles of leaf lamina joints. Yeast two-hybrid screening identified six closely related ILA1 interacting proteins (IIPs) of unknown function. Using representative IIPs, the interaction of ILA1 and IIPs was confirmed in vivo. IIPs were localized in the nucleus and showed transactivation activity. Furthermore, ILA1 could phosphorylate IIP4, indicating that IIPs may be the downstream substrates of ILA1. Microarray analyses of leaf lamina joints provided additional evidence for alterations in mechanical strength in ila1. ILA1 is thus a key factor regulating mechanical tissue formation at the leaf lamina joint.

  3. 3D sorghum reconstructions from depth images identify QTL regulating shoot architecture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mccormick, Ryan F.; Truong, Sandra K.; Mullet, John E.

    Dissecting the genetic basis of complex traits is aided by frequent and nondestructive measurements. Advances in range imaging technologies enable the rapid acquisition of three-dimensional (3D) data from an imaged scene. A depth camera was used to acquire images of sorghum (Sorghum bicolor), an important grain, forage, and bioenergy crop, at multiple developmental time points from a greenhouse-grown recombinant inbred line population. A semiautomated software pipeline was developed and used to generate segmented, 3D plant reconstructions from the images. Automated measurements made from 3D plant reconstructions identified quantitative trait loci for standard measures of shoot architecture, such as shoot height,more » leaf angle, and leaf length, and for novel composite traits, such as shoot compactness. The phenotypic variability associated with some of the quantitative trait loci displayed differences in temporal prevalence; for example, alleles closely linked with the sorghum Dwarf3 gene, an auxin transporter and pleiotropic regulator of both leaf inclination angle and shoot height, influence leaf angle prior to an effect on shoot height. Furthermore, variability in composite phenotypes that measure overall shoot architecture, such as shoot compactness, is regulated by loci underlying component phenotypes like leaf angle. As such, depth imaging is an economical and rapid method to acquire shoot architecture phenotypes in agriculturally important plants like sorghum to study the genetic basis of complex traits.« less

  4. 3D sorghum reconstructions from depth images identify QTL regulating shoot architecture

    DOE PAGES

    Mccormick, Ryan F.; Truong, Sandra K.; Mullet, John E.

    2016-08-15

    Dissecting the genetic basis of complex traits is aided by frequent and nondestructive measurements. Advances in range imaging technologies enable the rapid acquisition of three-dimensional (3D) data from an imaged scene. A depth camera was used to acquire images of sorghum (Sorghum bicolor), an important grain, forage, and bioenergy crop, at multiple developmental time points from a greenhouse-grown recombinant inbred line population. A semiautomated software pipeline was developed and used to generate segmented, 3D plant reconstructions from the images. Automated measurements made from 3D plant reconstructions identified quantitative trait loci for standard measures of shoot architecture, such as shoot height,more » leaf angle, and leaf length, and for novel composite traits, such as shoot compactness. The phenotypic variability associated with some of the quantitative trait loci displayed differences in temporal prevalence; for example, alleles closely linked with the sorghum Dwarf3 gene, an auxin transporter and pleiotropic regulator of both leaf inclination angle and shoot height, influence leaf angle prior to an effect on shoot height. Furthermore, variability in composite phenotypes that measure overall shoot architecture, such as shoot compactness, is regulated by loci underlying component phenotypes like leaf angle. As such, depth imaging is an economical and rapid method to acquire shoot architecture phenotypes in agriculturally important plants like sorghum to study the genetic basis of complex traits.« less

  5. Repression of cell proliferation by miR319-regulated TCP4.

    PubMed

    Schommer, Carla; Debernardi, Juan M; Bresso, Edgardo G; Rodriguez, Ramiro E; Palatnik, Javier F

    2014-10-01

    Leaf development has been extensively studied on a genetic level. However, little is known about the interplay between the developmental regulators and the cell cycle machinery--a link that ultimately affects leaf form and size. miR319 is a conserved microRNA that regulates TCP transcription factors involved in multiple developmental pathways, including leaf development and senescence, organ curvature, and hormone biosynthesis and signaling. Here, we analyze the participation of TCP4 in the control of cell proliferation. A small increase in TCP4 activity has an immediate impact on leaf cell number, by significantly reducing cell proliferation. Plants with high TCP4 levels have a strong reduction in the expression of genes known to be active in G2-M phase of the cell cycle. Part of these effects is mediated by induction of miR396, which represses Growth-Regulating Factor (GRF) transcription factors. Detailed analysis revealed TCP4 to be a direct regulator of MIR396b. However, we found that TCP4 can control cell proliferation through additional pathways, and we identified a direct connection between TCP4 and ICK1/KRP1, a gene involved in the progression of the cell cycle. Our results show that TCP4 can activate different pathways that repress cell proliferation. © The Author 2014. Published by the Molecular Plant Shanghai Editorial Office in association with Oxford University Press on behalf of CSPB and IPPE, SIBS, CAS.

  6. Regulation of leaf-gas exchange strategies of woody plants under elevated CO2

    NASA Astrophysics Data System (ADS)

    Belmecheri, S.; Guerrieri, R.; Voelker, S.

    2016-12-01

    Estimates of vegetation water use efficiency (WUE) have increasingly been assessed using both eddy covariance and plant stable isotope techniques but these data have often lead to differing conclusions. Eddy covariance can provide forest ecosystem-level responses of coupled carbon and water exchanges to recent global change phenomena. These direct observations, however, are generally less than one or two decades, thus documenting ecosystem-level responses at elevated [CO2] concentrations (350-400 ppm). Therefore, eddy covariance data cannot directly address plant physiological mechanisms and adaptation to climate variability and anthropogenic factors, e.g., increasing atmospheric [CO2]. By contrast, tree based carbon isotope approaches can retrospectively assess intrinsic WUE over long periods and have documented physiological responses to ambient atmospheric [CO2] (ca), which have often been contextualized within generalized strategies for stomatal regulation of leaf gas-exchange. These include maintenance of a constant leaf internal [CO2] (ci), a constant drawdown in [CO2] (ca - ci), and a constant ci/ca . Tree carbon isotope studies, however, cannot account for changes in leaf area of individual trees or canopies, which makes scaling up a difficult task. The limitations of these different approaches to understanding how forest water use efficiency has been impacted by rising [CO2] has contributed to the uncertainty in global terrestrial carbon cycling and the "missing" terrestrial carbon sink. We examined stable C isotope ratios (d13C) from woody plants over a wide range of [CO2] (200-400 ppm) to test for patterns of ci-regulation in response to rising ca. The analyses are not consistent with any of the leaf gas-exchange regulation strategies noted above. The data suggest that ca - ci is still recently increasing in most species but that the rate of increase is less than expected from paleo trees which grew at much lower [CO2]. This evidence demonstrates that a broadly conserved suite of functional traits allow woody plants to adapt their leaf gas exchange to elevated [CO2]. To improve projections of how rising [CO2] will affect terrestrial carbon uptake, dynamic global vegetation models should incorporate leaf gas exchange responses that mimic these adaptive responses to [CO2].

  7. Hydrogen isotope composition of leaf wax n-alkanes in glaucous and non-glaucous varieties of wheat (Triticum spp.)

    NASA Astrophysics Data System (ADS)

    Pedentchouk, Nikolai; Eley, Yvette; Frizell-Armitage, Amelia; Uauy, Cristobal

    2015-04-01

    The use of the 2H/1H composition of terrestrial plants in climate and ecology studies depends on fundamental understanding of the processes within the plant that control fractionation of these two isotopes. Little is currently known about the extent of 2H/1H fractionation at different steps of biosynthesis, after the initial H uptake following leaf water photolysis. Knowing this effect is particularly important when seeking to interpret the 2H/1H composition of leaf wax biomarkers from plants that differ in the amount and type of individual compound classes in their leaf waxes. The purpose of this study was to investigate the link between the quantity and distribution of n-alkyl lipids in leaf waxes and their isotopic composition. We used a genetic approach to suppress glaucousness in 2 varieties of wheat (Alchemy and Malacca), which resulted in glaucous and non-glaucous phenotypes of both varieties. Both phenotypes were then grown outdoors under identical environmental conditions in central Norfolk, UK. At the end of the growing season, the plants were sampled for soil water, leaf water, and leaf wax isotopic measurements. Comparison of the leaf wax composition of the non-glaucous and glaucous phenotypes revealed that the non-glaucous varieties were characterised by the absence of diketones and a greater concentration of n-alkanes and primary alcohols.. Our results showed very small differences between glaucous and non-glaucous varieties with regard to soil (mean values, <2 per mil) and leaf (<1 per mil) water 2H/1H. Conversely, there was 15-20 and 10-15 per mil 2H-depletion in the C29 and C31 n-alkanes, respectively, from the non-glaucous phenotype. This 2H-depletion in the non-glaucous phenotype demonstrated that the suppression of diketone production and the increase in n-alkane and primary alcohol concentrations are linked with a shift in the 2H/1H composition of n-alkanes. The initial results of this work suggest that plants using the same environmental water, subjected to the same effects of evapotranspiration, but which differ in the amount and composition of leaf wax compounds, can exhibit large variation in their n-alkane 2H/1H. Our current work on determining the 2H/1H composition of other n-alkyl lipids from these plants will provide further details regarding the role of biosynthesis in controlling 2H/1H fractionation within leaf waxes.

  8. Hydrogen isotope composition of leaf wax n-alkanes in Arabidopsis lines with different transpiration rates

    NASA Astrophysics Data System (ADS)

    Pedentchouk, N.; Lawson, T.; Eley, Y.; McAusland, L.

    2012-04-01

    Stable isotopic compositions of oxygen and hydrogen are used widely to investigate modern and ancient water cycles. The D/H composition of organic compounds derived from terrestrial plants has recently attracted significant attention as a proxy for palaeohydrology. However, the role of various plant physiological and biochemical factors in controlling the D/H signature of leaf wax lipids in extant plants remains unclear. The focus of this study is to investigate the effect of plant transpiration on the D/H composition of n-alkanes in terrestrial plants. This experiment includes 4 varieties of Arabidopsis thaliana that differ with respect to stomatal density and stomatal geometry. All 4 varieties were grown indoors under identical temperature, relative humidity, light and watering regimes and then sampled for leaf wax and leaf water stable isotopic measurements. During growth, stomatal conductance to carbon dioxide and water vapour were also determined. We found that the plants varied significantly in terms of their transpiration rates. Transpiration rates were significantly higher in Arabidopsis ost1 and ost1-1 varieties (2.4 and 3.2 mmol m-2 s-1, respectively) than in Arabidopsis RbohD and Col-0 (1.5 and 1.4). However, hydrogen isotope measurements of n-alkanes extracted from leaf waxes revealed a very different pattern. Varieties ost1, ost1-1, and RbohD have very similar deltaD values of n-C29 alkane (-125, -128, and -127 per mil), whereas the deltaD value of Col-0 is more negative (-137 per mil). The initial results of this work suggest that plant transpiration is decoupled from the D/H composition of n-alkanes. In other words, physical processes that affect water vapour movement between the plant and its environment apparently cannot account for the stable hydrogen isotope composition of organic compounds that comprise leaf waxes. Additional, perhaps biochemical, processes that affect hydrogen isotope fractionation during photosynthesis might need to be invoked to explain the reason for this decoupling. Our current work that also includes leaf water isotopic measurements will provide further details regarding the role of transpiration in controlling the deltaD values of leaf lipids.

  9. Changes in key constituents of clonally propagated Artemisia annua L. during preparation of compressed leaf tablets for possible therapeutic use

    PubMed Central

    Weathers, Pamela J.; Towler, Melissa J.

    2014-01-01

    Artemisia annua L., long used as a tea infusion in traditional Chinese medicine, produces artemisinin. Although artemisinin is currently used as artemisinin-based combination therapy (ACT) against malaria, oral consumption of dried leaves from the plant showed efficacy and will be less costly than ACT. Many compounds in the plant have some antimalarial activity. Unknown, however, is how these plant components change as leaves are processed into tablets for oral consumption. Here we compared extracts from fresh and dried leaf biomass with compressed leaf tablets of A. annua. Using GC-MS, nineteen endogenous compounds, including artemisinin and several of its pathway metabolites, nine flavonoids, three monoterpenes, a coumarin, and two phenolic acids, were identified and quantified from solvent extracts to determine how levels of these compounds changed during processing. Results showed that compared to dried leaves, artemisinin, arteannuin B, artemisinic acid, chlorogenic acid, scopoletin, chrysoplenetin, and quercetin increased or remained stable with powdering and compression into tablets. Dihydroartemisinic acid, monoterpenes, and chrysoplenol-D decreased with tablet formation. Five target compounds were not detectable in any of the extracts of this cultivar. In contrast to the individually measured aglycone flavonoids, using the AlCl3 method, total flavonoids increased nearly fivefold during the tablet formation. To our knowledge this is the first study documenting changes that occurred in processing dried leaves of A. annua into tablets. These results will improve our understanding of the potential use of not only this medicinal herb, but also others to afford better quality control of intact plant material for therapeutic use. PMID:25228784

  10. Induction of Systemic Resistance against Insect Herbivores in Plants by Beneficial Soil Microbes

    PubMed Central

    Rashid, Md. Harun-Or; Chung, Young R.

    2017-01-01

    Soil microorganisms with growth-promoting activities in plants, including rhizobacteria and rhizofungi, can improve plant health in a variety of different ways. These beneficial microbes may confer broad-spectrum resistance to insect herbivores. Here, we provide evidence that beneficial microbes modulate plant defenses against insect herbivores. Beneficial soil microorganisms can regulate hormone signaling including the jasmonic acid, ethylene and salicylic acid pathways, thereby leading to gene expression, biosynthesis of secondary metabolites, plant defensive proteins and different enzymes and volatile compounds, that may induce defenses against leaf-chewing as well as phloem-feeding insects. In this review, we discuss how beneficial microbes trigger induced systemic resistance against insects by promoting plant growth and highlight changes in plant molecular mechanisms and biochemical profiles. PMID:29104585

  11. Morphological leaf variability in natural populations of Pistacia atlantica Desf. subsp. atlantica along climatic gradient: new features to update Pistacia atlantica subsp. atlantica key.

    PubMed

    El Zerey-Belaskri, Asma; Benhassaini, Hachemi

    2016-04-01

    The effect of bioclimate range on the variation in Pistacia atlantica Desf. subsp. atlantica leaf morphology was studied on 16 sites in Northwest Algeria. The study examined biometrically mature leaves totaling 3520 compound leaves. Fifteen characters (10 quantitative and 5 qualitative) were assessed on each leaf. For each quantitative character, the nested analysis of variance (ANOVA) was used to examine relative magnitude of variation at each level of the nested hierarchy. The correlation between the climatic parameters and the leaf morphology was examined. The statistical analysis applied on the quantitative leaf characters showed highly significant variation at the within-site level and between-site variation. The correlation coefficient (r) showed also an important correlation between climatic parameters and leaf morphology. The results of this study exhibited several values reported for the first time on the species, such as the length and the width of the leaf (reaching up to 24.5 cm/21.9 cm), the number of leaflets (up to 18 leaflets/leaf), and the petiole length of the terminal leaflet (reaching up to 3.4 cm). The original findings of this study are used to update the P. atlantica subsp. atlantica identification key.

  12. Isolation and characterization of allelopathic volatiles from mugwort (Artemisia vulgaris).

    PubMed

    Barney, Jacob N; Hay, Anthony G; Weston, Leslie A

    2005-02-01

    Several volatile allelochemicals were identified and characterized from fresh leaf tissue of three distinct populations of the invasive perennial weed, mugwort (Artemisia vulgaris). A unique bioassay was used to demonstrate the release of volatile allelochemicals from leaf tissues. Leaf volatiles were trapped and analyzed via gas chromatography coupled with mass spectrometry. Some of the components identified were terpenes, including camphor, eucalyptol, alpha-pinene, and beta-pinene. Those commercially available were tested individually to determine their phytotoxicity. Concentrations of detectable volatiles differed in both absolute and relative proportions among the mugwort populations. The three mugwort populations consisted of a taller, highly branched population (ITH-1); a shorter, lesser-branched population (ITH-2) (both grown from rhizome fragments from managed landscapes); and a population grown from seed with lobed leaves (VT). Considerable interspecific variation existed in leaf morphology and leaf surface chemistry. Bioassays revealed that none of the individual monoterpenes could account for the observed phytotoxicity imparted by total leaf volatiles, suggesting a synergistic effect or activity of a component not tested. Despite inability to detect a single dominant phytotoxic compound, decreases in total terpene concentration with increase in leaf age correlated with decreases in phytotoxicity. The presence of bioactive terpenoids in leaf surface chemistry of younger mugwort tissue suggests a potential role for terpenoids in mugwort establishment and proliferation in introduced habitats.

  13. Effects of neolignans from the stem bark of Magnolia obovata on plant pathogenic fungi.

    PubMed

    Choi, N H; Choi, G J; Min, B-S; Jang, K S; Choi, Y H; Kang, M S; Park, M S; Choi, J E; Bae, B K; Kim, J-C

    2009-06-01

    To characterize antifungal principles from the methanol extract of Magnolia obovata and to evaluate their antifungal activities against various plant pathogenic fungi. Four neolignans were isolated from stem bark of M. obovata as antifungal principles and identified as magnolol, honokiol, 4-methoxyhonokiol and obovatol. In mycelial growth inhibition assay, both magnolol and honokiol displayed more potent antifungal activity than 4-methoxyhonokiol and obovatol. Both magnolol and honokiol showed similar in vivo antifungal spectrum against seven plant diseases tested; both compounds effectively suppressed the development of rice blast, tomato late blight, wheat leaf rust and red pepper anthracnose. 4-Methoxyhonokiol and obovatol were highly active to only rice blast and wheat leaf rust respectively. The extract of M. obovata and four neolignans had potent in vivo antifungal activities against plant pathogenic fungi. Neolignans from Magnolia spp. can be used and suggested as a novel antifungal lead compound for the development of new fungicide and directly as a natural fungicide for the control of plant diseases such as rice blast and wheat leaf rust.

  14. AraC/XylS family stress response regulators Rob, SoxS, PliA, and OpiA in the fire blight pathogen Erwinia amylovora.

    PubMed

    Pletzer, Daniel; Schweizer, Gabriel; Weingart, Helge

    2014-09-01

    Transcriptional regulators of the AraC/XylS family have been associated with multidrug resistance, organic solvent tolerance, oxidative stress, and virulence in clinically relevant enterobacteria. In the present study, we identified four homologous AraC/XylS regulators, Rob, SoxS, PliA, and OpiA, from the fire blight pathogen Erwinia amylovora Ea1189. Previous studies have shown that the regulators MarA, Rob, and SoxS from Escherichia coli mediate multiple-antibiotic resistance, primarily by upregulating the AcrAB-TolC efflux system. However, none of the four AraC/XylS regulators from E. amylovora was able to induce a multidrug resistance phenotype in the plant pathogen. Overexpression of rob led to a 2-fold increased expression of the acrA gene. However, the rob-overexpressing strain showed increased resistance to only a limited number of antibiotics. Furthermore, Rob was able to induce tolerance to organic solvents in E. amylovora by mechanisms other than efflux. We demonstrated that SoxS from E. amylovora is involved in superoxide resistance. A soxS-deficient mutant of Ea1189 was not able to grow on agar plates supplemented with the superoxide-generating agent paraquat. Furthermore, expression of soxS was induced by redox cycling agents. We identified two novel members of the AraC/XylS family in E. amylovora. PliA was highly upregulated during the early infection phase in apple rootstock and immature pear fruits. Multiple compounds were able to induce the expression of pliA, including apple leaf extracts, phenolic compounds, redox cycling agents, heavy metals, and decanoate. OpiA was shown to play a role in the regulation of osmotic and alkaline pH stress responses. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  15. CLD1/SRL1 modulates leaf rolling by affecting cell wall formation, epidermis integrity and water homeostasis in rice.

    PubMed

    Li, Wen-Qiang; Zhang, Min-Juan; Gan, Peng-Fei; Qiao, Lei; Yang, Shuai-Qi; Miao, Hai; Wang, Gang-Feng; Zhang, Mao-Mao; Liu, Wen-Ting; Li, Hai-Feng; Shi, Chun-Hai; Chen, Kun-Ming

    2017-12-01

    Leaf rolling is considered as one of the most important agronomic traits in rice breeding. It has been previously reported that SEMI-ROLLED LEAF 1 (SRL1) modulates leaf rolling by regulating the formation of bulliform cells in rice (Oryza sativa); however, the regulatory mechanism underlying SRL1 has yet to be further elucidated. Here, we report the functional characterization of a novel leaf-rolling mutant, curled leaf and dwarf 1 (cld1), with multiple morphological defects. Map-based cloning revealed that CLD1 is allelic with SRL1, and loses function in cld1 through DNA methylation. CLD1/SRL1 encodes a glycophosphatidylinositol (GPI)-anchored membrane protein that modulates leaf rolling and other aspects of rice growth and development. The cld1 mutant exhibits significant decreases in cellulose and lignin contents in secondary cell walls of leaves, indicating that the loss of function of CLD1/SRL1 affects cell wall formation. Furthermore, the loss of CLD1/SRL1 function leads to defective leaf epidermis such as bulliform-like epidermal cells. The defects in leaf epidermis decrease the water-retaining capacity and lead to water deficits in cld1 leaves, which contribute to the main cause of leaf rolling. As a result of the more rapid water loss and lower water content in leaves, cld1 exhibits reduced drought tolerance. Accordingly, the loss of CLD1/SRL1 function causes abnormal expression of genes and proteins associated with cell wall formation, cuticle development and water stress. Taken together, these findings suggest that the functional roles of CLD1/SRL1 in leaf-rolling regulation are closely related to the maintenance of cell wall formation, epidermal integrity and water homeostasis. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  16. Retail display conditions of continuous light and dark on the disposition of vitamins in baby-leaf spinach

    USDA-ARS?s Scientific Manuscript database

    Human-health benefits from the consumption of fruits and vegetables are due to the many bioactive compounds in these foods. Many of these compounds are heavily influenced by genetics (i.e. cultivar) and the environment, especially the many pigments and vitamins that can degrade during processing an...

  17. 7 CFR 29.2662 - Heavy Leaf (B Group).

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE COMMODITY STANDARDS AND STANDARD CONTAINER... percent uniform, and 40 percent injury tolerance. B3M Good Mixed Color or Variegated Heavy Leaf. Medium to...

  18. 7 CFR 29.1225 - Key to standard grademarks.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE COMMODITY STANDARDS AND STANDARD CONTAINER.... Groups B—Leaf. H—Smoking Leaf. C—Cutters. X—Lugs. P—Primings. M—Mixed Group. N—Nondescript. S—Scrap...

  19. 7 CFR 29.1225 - Key to standard grademarks.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE COMMODITY STANDARDS AND STANDARD CONTAINER.... Groups B—Leaf. H—Smoking Leaf. C—Cutters. X—Lugs. P—Primings. M—Mixed Group. N—Nondescript. S—Scrap...

  20. 7 CFR 29.2437 - Heavy Leaf (B Group).

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE COMMODITY STANDARDS AND STANDARD CONTAINER... tolerance. B3M Good Mixed Color Heavy Leaf. Medium to heavy body, mature, firm, oily, semielastic, normal...

Top