Zubo, Yan O.; Blakley, Ivory Clabaugh; Yamburenko, Maria V.; Worthen, Jennifer M.; Street, Ian H.; Franco-Zorrilla, José M.; Zhang, Wenjing; Raines, Tracy; Kieber, Joseph J.; Loraine, Ann E.
2017-01-01
The plant hormone cytokinin affects a diverse array of growth and development processes and responses to the environment. How a signaling molecule mediates such a diverse array of outputs and how these response pathways are integrated with other inputs remain fundamental questions in plant biology. To this end, we characterized the transcriptional network initiated by the type-B ARABIDOPSIS RESPONSE REGULATORs (ARRs) that mediate the cytokinin primary response, making use of chromatin immunoprecipitation sequencing (ChIP-seq), protein-binding microarrays, and transcriptomic approaches. By ectopic overexpression of ARR10, Arabidopsis lines hypersensitive to cytokinin were generated and used to clarify the role of cytokinin in regulation of various physiological responses. ChIP-seq was used to identify the cytokinin-dependent targets for ARR10, thereby defining a crucial link between the cytokinin primary-response pathway and the transcriptional changes that mediate physiological responses to this phytohormone. Binding of ARR10 was induced by cytokinin with binding sites enriched toward the transcriptional start sites for both induced and repressed genes. Three type-B ARR DNA-binding motifs, determined by use of protein-binding microarrays, were enriched at ARR10 binding sites, confirming their physiological relevance. WUSCHEL was identified as a direct target of ARR10, with its cytokinin-enhanced expression resulting in enhanced shooting in tissue culture. Results from our analyses shed light on the physiological role of the type-B ARRs in regulating the cytokinin response, mechanism of type-B ARR activation, and basis by which cytokinin regulates diverse aspects of growth and development as well as responses to biotic and abiotic factors. PMID:28673986
Regulation, Signaling, and Physiological Functions of G-Proteins.
Syrovatkina, Viktoriya; Alegre, Kamela O; Dey, Raja; Huang, Xin-Yun
2016-09-25
Heterotrimeric guanine-nucleotide-binding regulatory proteins (G-proteins) mainly relay the information from G-protein-coupled receptors (GPCRs) on the plasma membrane to the inside of cells to regulate various biochemical functions. Depending on the targeted cell types, tissues, and organs, these signals modulate diverse physiological functions. The basic schemes of heterotrimeric G-proteins have been outlined. In this review, we briefly summarize what is known about the regulation, signaling, and physiological functions of G-proteins. We then focus on a few less explored areas such as the regulation of G-proteins by non-GPCRs and the physiological functions of G-proteins that cannot be easily explained by the known G-protein signaling pathways. There are new signaling pathways and physiological functions for G-proteins to be discovered and further interrogated. With the advancements in structural and computational biological techniques, we are closer to having a better understanding of how G-proteins are regulated and of the specificity of G-protein interactions with their regulators. Copyright © 2016 Elsevier Ltd. All rights reserved.
Wang, Lin-Ing; Lin, Yu-Sheng; Liu, Kung-Hung; Jong, Ambrose Y.; Shen, Wei-Chiang
2011-01-01
Cryptococcus neoformans is a ubiquitously distributed human pathogen. It is also a model system for studying fungal virulence, physiology and differentiation. Light is known to inhibit sexual development via the evolutionarily conserved white collar proteins in C. neoformans. To dissect molecular mechanisms regulating this process, we have identified the SSN8 gene whose mutation suppresses the light-dependent CWC1 overexpression phenotype. Characterization of sex-related phenotypes revealed that Ssn8 functions as a negative regulator in both heterothallic a-α mating and same-sex mating processes. In addition, Ssn8 is involved in the suppression of other physiological processes including invasive growth, and production of capsule and melanin. Interestingly, Ssn8 is also required for the maintenance of cell wall integrity and virulence. Our gene expression studies confirmed that deletion of SSN8 results in de-repression of genes involved in sexual development and melanization. Epistatic and yeast two hybrid studies suggest that C. neoformans Ssn8 plays critical roles downstream of the Cpk1 MAPK cascade and Ste12 and possibly resides at one of the major branches downstream of the Cwc complex in the light-mediated sexual development pathway. Taken together, our studies demonstrate that the conserved Mediator protein Ssn8 functions as a global regulator which negatively regulates diverse physiological and developmental processes and is required for virulence in C. neoformans. PMID:21559476
Regulation and physiological functions of mammalian phospholipase C.
Nakamura, Yoshikazu; Fukami, Kiyoko
2017-04-01
Phospholipase C (PLC) is a key enzyme in phosphoinositide metabolism. PLC hydrolyses phosphatidylinositol 4,5-bis-phosphate to generate two second messengers, inositol 1,4,5-trisphosphate and diacylglycerol, that generate diverse cellular responses. PLC is activated by various signalling molecules, including Ca2+, heterometric G proteins, small G proteins, and receptor/non-receptor tyrosine kinases. In addition to their enzymatic activity, some PLC subtypes also function as a guanine nucleotide exchange factor, GTPase-activating protein, and adaptor protein, independent of their lipase activity. There are 13 PLC isozymes in mammals, and they are categorized into six classes based on structure. Generation and analysis of genetically modified mice has revealed the unexpectedly diverse physiological functions of PLC isozymes. Although all PLC isozymes catalyze the same reaction, each PLC isozyme has unique physiological functions. This review focuses on the regulation and physiological functions of PLCs. © The Authors 2017. Published by Oxford University Press on behalf of the Japanese Biochemical Society. All rights reserved.
Nielsen, Morten Schak; Axelsen, Lene Nygaard; Sorgen, Paul L.; Verma, Vandana; Delmar, Mario; Holstein-Rathlou, Niels-Henrik
2013-01-01
Gap junctions are essential to the function of multicellular animals, which require a high degree of coordination between cells. In vertebrates, gap junctions comprise connexins and currently 21 connexins are known in humans. The functions of gap junctions are highly diverse and include exchange of metabolites and electrical signals between cells, as well as functions, which are apparently unrelated to intercellular communication. Given the diversity of gap junction physiology, regulation of gap junction activity is complex. The structure of the various connexins is known to some extent; and structural rearrangements and intramolecular interactions are important for regulation of channel function. Intercellular coupling is further regulated by the number and activity of channels present in gap junctional plaques. The number of connexins in cell-cell channels is regulated by controlling transcription, translation, trafficking, and degradation; and all of these processes are under strict control. Once in the membrane, channel activity is determined by the conductive properties of the connexin involved, which can be regulated by voltage and chemical gating, as well as a large number of posttranslational modifications. The aim of the present article is to review our current knowledge on the structure, regulation, function, and pharmacology of gap junctions. This will be supported by examples of how different connexins and their regulation act in concert to achieve appropriate physiological control, and how disturbances of connexin function can lead to disease. © 2012 American Physiological Society. Compr Physiol 2:1981-2035, 2012. PMID:23723031
Thoresen, Todd; Lenz, Martin; Gardel, Margaret L.
2013-01-01
Diverse myosin II isoforms regulate contractility of actomyosin bundles in disparate physiological processes by variations in both motor mechanochemistry and the extent to which motors are clustered into thick filaments. Although the role of mechanochemistry is well appreciated, the extent to which thick filament length regulates actomyosin contractility is unknown. Here, we study the contractility of minimal actomyosin bundles formed in vitro by mixtures of F-actin and thick filaments of nonmuscle, smooth, and skeletal muscle myosin isoforms with varied length. Diverse myosin II isoforms guide the self-organization of distinct contractile units within in vitro bundles with shortening rates similar to those of in vivo myofibrils and stress fibers. The tendency to form contractile units increases with the thick filament length, resulting in a bundle shortening rate proportional to the length of constituent myosin thick filament. We develop a model that describes our data, providing a framework in which to understand how diverse myosin II isoforms regulate the contractile behaviors of disordered actomyosin bundles found in muscle and nonmuscle cells. These experiments provide insight into physiological processes that use dynamic regulation of thick filament length, such as smooth muscle contraction. PMID:23442916
X chromosome regulation: diverse patterns in development, tissues and disease
Deng, Xinxian; Berletch, Joel B.; Nguyen, Di K.; Disteche, Christine M.
2014-01-01
Genes on the mammalian X chromosome are present in one copy in males and two copies in females. The complex mechanisms that regulate the X chromosome lead to evolutionary and physiological variability in gene expression between species, the sexes, individuals, developmental stages, tissues and cell types. In early development, delayed and incomplete X chromosome inactivation (XCI) in some species causes variability in gene expression. Additional diversity stems from escape from XCI and from mosaicism or XCI skewing in females. This causes sex-specific differences that manifest as differential gene expression and associated phenotypes. Furthermore, the complexity and diversity of X dosage regulation affect the severity of diseases caused by X-linked mutations. PMID:24733023
Chromatin regulation at the frontier of synthetic biology.
Keung, Albert J; Joung, J Keith; Khalil, Ahmad S; Collins, James J
2015-03-01
As synthetic biology approaches are extended to diverse applications throughout medicine, biotechnology and basic biological research, there is an increasing need to engineer yeast, plant and mammalian cells. Eukaryotic genomes are regulated by the diverse biochemical and biophysical states of chromatin, which brings distinct challenges, as well as opportunities, over applications in bacteria. Recent synthetic approaches, including 'epigenome editing', have allowed the direct and functional dissection of many aspects of physiological chromatin regulation. These studies lay the foundation for biomedical and biotechnological engineering applications that could take advantage of the unique combinatorial and spatiotemporal layers of chromatin regulation to create synthetic systems of unprecedented sophistication.
Chromatin regulation at the frontier of synthetic biology
Keung, Albert J.; Joung, J. Keith; Khalil, Ahmad S.; Collins, James J.
2016-01-01
As synthetic biology approaches are extended to diverse applications throughout medicine, biotechnology and basic biological research, there is an increasing need to engineer yeast, plant and mammalian cells. Eukaryotic genomes are regulated by the diverse biochemical and biophysical states of chromatin, which brings distinct challenges, as well as opportunities, over applications in bacteria. Recent synthetic approaches, including `epigenome editing', have allowed the direct and functional dissection of many aspects of physiological chromatin regulation. These studies lay the foundation for biomedical and biotechnological engineering applications that could take advantage of the unique combinatorial and spatiotemporal layers of chromatin regulation to create synthetic systems of unprecedented sophistication. PMID:25668787
Thoresen, Todd; Lenz, Martin; Gardel, Margaret L
2013-02-05
Diverse myosin II isoforms regulate contractility of actomyosin bundles in disparate physiological processes by variations in both motor mechanochemistry and the extent to which motors are clustered into thick filaments. Although the role of mechanochemistry is well appreciated, the extent to which thick filament length regulates actomyosin contractility is unknown. Here, we study the contractility of minimal actomyosin bundles formed in vitro by mixtures of F-actin and thick filaments of nonmuscle, smooth, and skeletal muscle myosin isoforms with varied length. Diverse myosin II isoforms guide the self-organization of distinct contractile units within in vitro bundles with shortening rates similar to those of in vivo myofibrils and stress fibers. The tendency to form contractile units increases with the thick filament length, resulting in a bundle shortening rate proportional to the length of constituent myosin thick filament. We develop a model that describes our data, providing a framework in which to understand how diverse myosin II isoforms regulate the contractile behaviors of disordered actomyosin bundles found in muscle and nonmuscle cells. These experiments provide insight into physiological processes that use dynamic regulation of thick filament length, such as smooth muscle contraction. Copyright © 2013 Biophysical Society. Published by Elsevier Inc. All rights reserved.
USDA-ARS?s Scientific Manuscript database
The conserved cellular metabolites nitric oxide (NO) and oleic acid (18:1) are well-known regulators of disease physiologies in diverse organism. We show that NO production in plants is regulated via 18:1. Reduction in 18:1 levels, via a genetic mutation in the 18:1-synthesizing gene SUPPRESSOR OF S...
McFadyen-Ketchum, Lisa Schlueter; Hurwich-Reiss, Eliana; Stiles, Allison A.; Mendoza, Marina M.; Badanes, Lisa S.; Dmitrieva, Julia; Watamura, Sarah Enos
2017-01-01
Research Findings Although there is a well-established relationship between economic stress and children’s self-regulation, few studies have examined this relationship in children of Hispanic immigrants (COHIs), a rapidly growing population. In a sample of preschool children (N = 165), we examined whether economic stress predicted teacher evaluations of children’s self-regulation, whether economic stress predicted children’s physiological reactivity (via cortisol levels), and whether economic stress had a similar effect on self-regulation and children’s cortisol for COHI versus nonimmigrant children. Greater economic stress was associated with poorer child self-regulation and heightened physiological reactivity across a challenging classroom task for the sample as a whole. However, when we examined children by group, greater economic stress was associated with poorer teacher-reported self-regulation for nonimmigrant children only. In contrast, greater economic stress was related to greater cortisol reactivity across a challenge task for COHIs but not for nonimmigrants. Practice or Policy Results demonstrate the importance of considering physiological indices of self-regulation (heightened stress physiology), in addition to traditional external indices (teacher report), when assessing self-regulation or risk more generally among preschool samples that are diverse in terms of ethnicity, economic risk, and parents’ nativity. PMID:28943740
Blood Pressure Regulation XI: Overview and Future Research Directions
Raven, Peter B.; Chapleau, Mark W.
2014-01-01
While the importance of regulating arterial blood pressure within a ‘normal’ range is widely appreciated, the definition of ‘normal’ and the means by which humans and other species regulate blood pressure under various conditions remain hotly debated. The effects of diverse physiological, pathological and environmental challenges on blood pressure and the mechanisms that attempt to maintain it at an optimal level are reviewed and critically analyzed in a series of articles published in this themed issue of the European Journal of Applied Physiology. We summarize here the major points made in these reviews, with emphasis on unifying concepts of regulatory mechanisms and future directions for research. PMID:24463603
Regulation of Tissue Growth by the Mammalian Hippo Signaling Pathway
Watt, Kevin I.; Harvey, Kieran F.; Gregorevic, Paul
2017-01-01
The integrative control of diverse biological processes such as proliferation, differentiation, apoptosis and metabolism is essential to maintain cellular and tissue homeostasis. Disruption of these underlie the development of many disease states including cancer and diabetes, as well as many of the complications that arise as a consequence of aging. These biological outputs are governed by many cellular signaling networks that function independently, and in concert, to convert changes in hormonal, mechanical and metabolic stimuli into alterations in gene expression. First identified in Drosophila melanogaster as a powerful mediator of cell division and apoptosis, the Hippo signaling pathway is a highly conserved regulator of mammalian organ size and functional capacity in both healthy and diseased tissues. Recent studies have implicated the pathway as an effector of diverse physiological cues demonstrating an essential role for the Hippo pathway as an integrative component of cellular homeostasis. In this review, we will: (a) outline the critical signaling elements that constitute the mammalian Hippo pathway, and how they function to regulate Hippo pathway-dependent gene expression and tissue growth, (b) discuss evidence that shows this pathway functions as an effector of diverse physiological stimuli and (c) highlight key questions in this developing field. PMID:29225579
Augimeri, Richard V.; Varley, Andrew J.; Strap, Janice L.
2015-01-01
Bacterial cellulose (BC) serves as a molecular glue to facilitate intra- and inter-domain interactions in nature. Biosynthesis of BC-containing biofilms occurs in a variety of Proteobacteria that inhabit diverse ecological niches. The enzymatic and regulatory systems responsible for the polymerization, exportation, and regulation of BC are equally as diverse. Though the magnitude and environmental consequences of BC production are species-specific, the common role of BC-containing biofilms is to establish close contact with a preferred host to facilitate efficient host–bacteria interactions. Universally, BC aids in attachment, adherence, and subsequent colonization of a substrate. Bi-directional interactions influence host physiology, bacterial physiology, and regulation of BC biosynthesis, primarily through modulation of intracellular bis-(3′→5′)-cyclic diguanylate (c-di-GMP) levels. Depending on the circumstance, BC producers exhibit a pathogenic or symbiotic relationship with plant, animal, or fungal hosts. Rhizobiaceae species colonize plant roots, Pseudomonadaceae inhabit the phyllosphere, Acetobacteriaceae associate with sugar-loving insects and inhabit the carposphere, Enterobacteriaceae use fresh produce as vehicles to infect animal hosts, and Vibrionaceae, particularly Aliivibrio fischeri, colonize the light organ of squid. This review will highlight the diversity of the biosynthesis and regulation of BC in nature by discussing various examples of Proteobacteria that use BC-containing biofilms to facilitate host–bacteria interactions. Through discussion of current data we will establish new directions for the elucidation of BC biosynthesis, its regulation and its ecophysiological roles. PMID:26635751
Tropomodulin Capping of Actin Filaments in Striated Muscle Development and Physiology
Gokhin, David S.; Fowler, Velia M.
2011-01-01
Efficient striated muscle contraction requires precise assembly and regulation of diverse actin filament systems, most notably the sarcomeric thin filaments of the contractile apparatus. By capping the pointed ends of actin filaments, tropomodulins (Tmods) regulate actin filament assembly, lengths, and stability. Here, we explore the current understanding of the expression patterns, localizations, and functions of Tmods in both cardiac and skeletal muscle. We first describe the mechanisms by which Tmods regulate myofibril assembly and thin filament lengths, as well as the roles of closely related Tmod family variants, the leiomodins (Lmods), in these processes. We also discuss emerging functions for Tmods in the sarcoplasmic reticulum. This paper provides abundant evidence that Tmods are key structural regulators of striated muscle cytoarchitecture and physiology. PMID:22013379
USDA-ARS?s Scientific Manuscript database
To understand how the proghrelin system functions in regulating growth hormone release and food intake as well as defining its pleiotropic roles in such diverse physiological processes as energy homeostasis, gastrointestinal tract function and reproduction requires detailed knowledge of the structur...
Smolt physiology and endocrinology
McCormick, Stephen D.; McCormick, Stephen D.; Farrell, Anthony Peter; Brauner, Colin J.
2013-01-01
Hormones play a critical role in maintaining body fluid balance in euryhaline fishes during changes in environmental salinity. The neuroendocrine axis senses osmotic and ionic changes, then signals and coordinates tissue-specific responses to regulate water and ion fluxes. Rapid-acting hormones, e.g. angiotensins, cope with immediate challenges by controlling drinking rate and the activity of ion transporters in the gill, gut, and kidney. Slow-acting hormones, e.g. prolactin and growth hormone/insulin-like growth factor-1, reorganize the body for long-term acclimation by altering the abundance of ion transporters and through cell proliferation and differentiation of ionocytes and other osmoregulatory cells. Euryhaline species exist in all groups of fish, including cyclostomes, and cartilaginous and teleost fishes. The diverse strategies for responding to changes in salinity have led to differential regulation and tissue-specific effects of hormones. Combining traditional physiological approaches with genomic, transcriptomic, and proteomic analyses will elucidate the patterns and diversity of the endocrine control of euryhalinity.
The Neuroendocrine Regulation of Food Intake in Fish: A Review of Current Knowledge
Volkoff, Helene
2016-01-01
Fish are the most diversified group of vertebrates and, although progress has been made in the past years, only relatively few fish species have been examined to date, with regards to the endocrine regulation of feeding in fish. In fish, as in mammals, feeding behavior is ultimately regulated by central effectors within feeding centers of the brain, which receive and process information from endocrine signals from both brain and peripheral tissues. Although basic endocrine mechanisms regulating feeding appear to be conserved among vertebrates, major physiological differences between fish and mammals and the diversity of fish, in particular in regard to feeding habits, digestive tract anatomy and physiology, suggest the existence of fish- and species-specific regulating mechanisms. This review provides an overview of hormones known to regulate food intake in fish, emphasizing on major hormones and the main fish groups studied to date. PMID:27965528
Molecular Mechanisms of Fibroblast Growth Factor Signaling in Physiology and Pathology
Belov, Artur A.; Mohammadi, Moosa
2013-01-01
Fibroblast growth factors (FGFs) signal in a paracrine or endocrine fashion to mediate a myriad of biological activities, ranging from issuing developmental cues, maintaining tissue homeostasis, and regulating metabolic processes. FGFs carry out their diverse functions by binding and dimerizing FGF receptors (FGFRs) in a heparan sulfate (HS) cofactor- or Klotho coreceptor-assisted manner. The accumulated wealth of structural and biophysical data in the past decade has transformed our understanding of the mechanism of FGF signaling in human health and development, and has provided novel concepts in receptor tyrosine kinase (RTK) signaling. Among these contributions are the elucidation of HS-assisted receptor dimerization, delineation of the molecular determinants of ligand–receptor specificity, tyrosine kinase regulation, receptor cis-autoinhibition, and tyrosine trans-autophosphorylation. These structural studies have also revealed how disease-associated mutations highjack the physiological mechanisms of FGFR regulation to contribute to human diseases. In this paper, we will discuss the structurally and biophysically derived mechanisms of FGF signaling, and how the insights gained may guide the development of therapies for treatment of a diverse array of human diseases. PMID:23732477
Molecular mechanisms of fibroblast growth factor signaling in physiology and pathology.
Belov, Artur A; Mohammadi, Moosa
2013-06-01
Fibroblast growth factors (FGFs) signal in a paracrine or endocrine fashion to mediate a myriad of biological activities, ranging from issuing developmental cues, maintaining tissue homeostasis, and regulating metabolic processes. FGFs carry out their diverse functions by binding and dimerizing FGF receptors (FGFRs) in a heparan sulfate (HS) cofactor- or Klotho coreceptor-assisted manner. The accumulated wealth of structural and biophysical data in the past decade has transformed our understanding of the mechanism of FGF signaling in human health and development, and has provided novel concepts in receptor tyrosine kinase (RTK) signaling. Among these contributions are the elucidation of HS-assisted receptor dimerization, delineation of the molecular determinants of ligand-receptor specificity, tyrosine kinase regulation, receptor cis-autoinhibition, and tyrosine trans-autophosphorylation. These structural studies have also revealed how disease-associated mutations highjack the physiological mechanisms of FGFR regulation to contribute to human diseases. In this paper, we will discuss the structurally and biophysically derived mechanisms of FGF signaling, and how the insights gained may guide the development of therapies for treatment of a diverse array of human diseases.
Molecular diversity of PBAN family peptides from fire ants
USDA-ARS?s Scientific Manuscript database
Insect neuropeptides are produced in the central or peripheral nerve tissues, and released to regulate various physiological and behavioral actions during development and reproduction. The PBAN (Pheromone Biosynthesis Activating Neuropeptide)/Pyrokinin peptide family is a major neuropeptide family c...
Oxidative Stress, Unfolded Protein Response, and Apoptosis in Developmental Toxicity
Kupsco, Allison; Schlenk, Daniel
2016-01-01
Physiological development requires precise spatiotemporal regulation of cellular and molecular processes. Disruption of these key events can generate developmental toxicity in the form of teratogenesis or mortality. The mechanism behind many developmental toxicants remains unknown. While recent work has focused on the unfolded protein response (UPR), oxidative stress, and apoptosis in the pathogenesis of disease, few studies have addressed their relationship in developmental toxicity. Redox regulation, UPR, and apoptosis are essential for physiological development and can be disturbed by a variety of endogenous and exogenous toxicants to generate lethality and diverse malformations. This review examines the current knowledge of the role of oxidative stress, UPR, and apoptosis in physiological development as well as in developmental toxicity, focusing on studies and advances in vertebrates model systems. PMID:26008783
The Role of Auxiliary Subunits for the Functional Diversity of Voltage-Gated Calcium Channels
Campiglio, Marta; Flucher, Bernhard E
2015-01-01
Voltage-gated calcium channels (VGCCs) represent the sole mechanism to convert membrane depolarization into cellular functions like secretion, contraction, or gene regulation. VGCCs consist of a pore-forming α1 subunit and several auxiliary channel subunits. These subunits come in multiple isoforms and splice-variants giving rise to a stunning molecular diversity of possible subunit combinations. It is generally believed that specific auxiliary subunits differentially regulate the channels and thereby contribute to the great functional diversity of VGCCs. If auxiliary subunits can associate and dissociate from pre-existing channel complexes, this would allow dynamic regulation of channel properties. However, most auxiliary subunits modulate current properties very similarly, and proof that any cellular calcium channel function is indeed modulated by the physiological exchange of auxiliary subunits is still lacking. In this review we summarize available information supporting a differential modulation of calcium channel functions by exchange of auxiliary subunits, as well as experimental evidence in support of alternative functions of the auxiliary subunits. At the heart of the discussion is the concept that, in their native environment, VGCCs function in the context of macromolecular signaling complexes and that the auxiliary subunits help to orchestrate the diverse protein–protein interactions found in these calcium channel signalosomes. Thus, in addition to a putative differential modulation of current properties, differential subcellular targeting properties and differential protein–protein interactions of the auxiliary subunits may explain the need for their vast molecular diversity. J. Cell. Physiol. 999: 00–00, 2015. © 2015 The Authors. Journal of Cellular Physiology Published by Wiley Periodicals, Inc. J. Cell. Physiol. 230: 2019–2031, 2015. © 2015 Wiley Periodicals, Inc. PMID:25820299
Reilly, Patrick T; Yu, Yun; Hamiche, Ali; Wang, Lishun
2014-01-01
The acidic (leucine-rich) nuclear phosphoprotein 32 kDa (ANP32) family is composed of small, evolutionarily conserved proteins characterized by an N-terminal leucine-rich repeat domain and a C-terminal low-complexity acidic region. The mammalian family members (ANP32A, ANP32B, and ANP32E) are ascribed physiologically diverse functions including chromatin modification and remodelling, apoptotic caspase modulation, protein phosphatase inhibition, as well as regulation of intracellular transport. In addition to reviewing the widespread literature on the topic, we present a concept of the ANP32s as having a whip-like structure. We also present hypotheses that ANP32C and other intronless sequences should not currently be considered bona fide family members, that their disparate necessity in development may be due to compensatory mechanisms, that their contrasting roles in cancer are likely context-dependent, along with an underlying hypothesis that ANP32s represent an important node of physiological regulation by virtue of their diverse biochemical activities. PMID:25156960
Necroptosis: Modules and molecular switches with therapeutic implications.
Arora, Deepika; Sharma, Pradeep Kumar; Siddiqui, Mohammed Haris; Shukla, Yogeshwer
2017-06-01
Among the various programmed cell death (PCD) pathways, "Necroptosis" has gained much importance as a novel paradigm of cell death. This pathway has emerged as a backup mechanism when physiologically conserved PCD (apoptosis) is non-functional either genetically or pathogenically. The expanding spectrum of necroptosis from physiological development to diverse patho-physiological disorders, including xenobiotics-mediated toxicity has now grabbed the attention worldwide. The efficient role of necroptosis regulators in disease development and management are under constant examination. In fact, few regulators (e.g. MLKL) have already paved their way towards clinical trials and others are in queue. In this review, emphasis has been paid to the various contributing factors and molecular switches that can regulate necroptosis. Here we linked the overview of current knowledge of this enigmatic signaling with magnitude of therapeutics that may underpin the opportunities for novel therapeutic approaches to suppress the pathogenesis of necroptosis-driven disorders. Copyright © 2017 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.
Adenylyl cyclases in the digestive system.
Sabbatini, Maria Eugenia; Gorelick, Fred; Glaser, Shannon
2014-06-01
Adenylyl cyclases (ACs) are a group of widely distributed enzymes whose functions are very diverse. There are nine known transmembrane AC isoforms activated by Gαs. Each has its own pattern of expression in the digestive system and differential regulation of function by Ca(2+) and other intracellular signals. In addition to the transmembrane isoforms, one AC is soluble and exhibits distinct regulation. In this review, the basic structure, regulation and physiological roles of ACs in the digestive system are discussed. Copyright © 2014 Elsevier Inc. All rights reserved.
Adenylyl cyclases in the digestive system
Sabbatini, Maria Eugenia; Gorelick, Fred; Glaser, Shannon
2015-01-01
Adenylyl cyclases (ACs) are a group of widely distributed enzymes whose functions are very diverse. There are nine known transmembrane AC isoforms activated by Gαs. Each has its own pattern of expression in the digestive system and differential regulation of function by Ca2+ and other intracellular signals. In addition to the transmembrane isoforms, one AC is soluble and exhibits distinct regulation. In this review, the basic structure, regulation and physiological roles of ACs in the digestive system are discussed. PMID:24521753
Zhou, Yu; Wang, Liyun; Park, Sung-Soo; Martin, Bronwen; Wang, Rui; Becker, Kevin G.; Wood, William H.; Zhang, Yongqing; Peers, Chris; Maudsley, Stuart
2011-01-01
The central nervous system normally functions at O2 levels which would be regarded as hypoxic by most other tissues. However, most in vitro studies of neurons and astrocytes are conducted under hyperoxic conditions without consideration of O2-dependent cellular adaptation. We analyzed the reactivity of astrocytes to 1, 4 and 9% O2 tensions compared to the cell culture standard of 20% O2, to investigate their ability to sense and translate this O2 information to transcriptional activity. Variance of ambient O2 tension for rat astrocytes resulted in profound changes in ribosomal activity, cytoskeletal and energy-regulatory mechanisms and cytokine-related signaling. Clustering of transcriptional regulation patterns revealed four distinct response pattern groups that directionally pivoted around the 4% O2 tension, or demonstrated coherent ascending/decreasing gene expression patterns in response to diverse oxygen tensions. Immune response and cell cycle/cancer-related signaling pathway transcriptomic subsets were significantly activated with increasing hypoxia, whilst hemostatic and cardiovascular signaling mechanisms were attenuated with increasing hypoxia. Our data indicate that variant O2 tensions induce specific and physiologically-focused transcript regulation patterns that may underpin important physiological mechanisms that connect higher neurological activity to astrocytic function and ambient oxygen environments. These strongly defined patterns demonstrate a strong bias for physiological transcript programs to pivot around the 4% O2 tension, while uni-modal programs that do not, appear more related to pathological actions. The functional interaction of these transcriptional ‘programs’ may serve to regulate the dynamic vascular responsivity of the central nervous system during periods of stress or heightened activity. PMID:21738745
The liver in regulation of iron homeostasis.
Rishi, Gautam; Subramaniam, V Nathan
2017-09-01
The liver is one of the largest and most functionally diverse organs in the human body. In addition to roles in detoxification of xenobiotics, digestion, synthesis of important plasma proteins, gluconeogenesis, lipid metabolism, and storage, the liver also plays a significant role in iron homeostasis. Apart from being the storage site for excess body iron, it also plays a vital role in regulating the amount of iron released into the blood by enterocytes and macrophages. Since iron is essential for many important physiological and molecular processes, it increases the importance of liver in the proper functioning of the body's metabolism. This hepatic iron-regulatory function can be attributed to the expression of many liver-specific or liver-enriched proteins, all of which play an important role in the regulation of iron homeostasis. This review focuses on these proteins and their known roles in the regulation of body iron metabolism. Copyright © 2017 the American Physiological Society.
The Orphan Nuclear Receptors at Their 25th Year Reunion
Mullican, Shannon E.; DiSpirito, Joanna R.; Lazar, Mitchell A.
2013-01-01
The Nuclear Receptor superfamily includes many receptors identified based on their similarity to steroid hormone receptors but without a known ligand. The study of how these receptors are diversely regulated to interact with genomic regions to control a plethora of biological processes has provided critical insight into development, physiology and the molecular pathology of disease. Here we provide a compendium of these so-called Orphan Receptors, and focus on what has been learned about their modes of action, physiological functions, and therapeutic promise. PMID:24096517
JNK Signaling: Regulation and Functions Based on Complex Protein-Protein Partnerships
Zeke, András; Misheva, Mariya
2016-01-01
SUMMARY The c-Jun N-terminal kinases (JNKs), as members of the mitogen-activated protein kinase (MAPK) family, mediate eukaryotic cell responses to a wide range of abiotic and biotic stress insults. JNKs also regulate important physiological processes, including neuronal functions, immunological actions, and embryonic development, via their impact on gene expression, cytoskeletal protein dynamics, and cell death/survival pathways. Although the JNK pathway has been under study for >20 years, its complexity is still perplexing, with multiple protein partners of JNKs underlying the diversity of actions. Here we review the current knowledge of JNK structure and isoforms as well as the partnerships of JNKs with a range of intracellular proteins. Many of these proteins are direct substrates of the JNKs. We analyzed almost 100 of these target proteins in detail within a framework of their classification based on their regulation by JNKs. Examples of these JNK substrates include a diverse assortment of nuclear transcription factors (Jun, ATF2, Myc, Elk1), cytoplasmic proteins involved in cytoskeleton regulation (DCX, Tau, WDR62) or vesicular transport (JIP1, JIP3), cell membrane receptors (BMPR2), and mitochondrial proteins (Mcl1, Bim). In addition, because upstream signaling components impact JNK activity, we critically assessed the involvement of signaling scaffolds and the roles of feedback mechanisms in the JNK pathway. Despite a clarification of many regulatory events in JNK-dependent signaling during the past decade, many other structural and mechanistic insights are just beginning to be revealed. These advances open new opportunities to understand the role of JNK signaling in diverse physiological and pathophysiological states. PMID:27466283
Regulation of Strigolactone Biosynthesis by Gibberellin Signaling.
Ito, Shinsaku; Yamagami, Daichi; Umehara, Mikihisa; Hanada, Atsushi; Yoshida, Satoko; Sasaki, Yasuyuki; Yajima, Shunsuke; Kyozuka, Junko; Ueguchi-Tanaka, Miyako; Matsuoka, Makoto; Shirasu, Ken; Yamaguchi, Shinjiro; Asami, Tadao
2017-06-01
Strigolactones (SLs) are a class of plant hormones that regulate diverse physiological processes, including shoot branching and root development. They also act as rhizosphere signaling molecules to stimulate the germination of root parasitic weeds and the branching of arbuscular mycorrhizal fungi. Although various types of cross talk between SLs and other hormones have been reported in physiological analyses, the cross talk between gibberellin (GA) and SLs is poorly understood. We screened for chemicals that regulate the level of SLs in rice ( Oryza sativa ) and identified GA as, to our knowledge, a novel SL-regulating molecule. The regulation of SL biosynthesis by GA is dependent on the GA receptor GID1 and F-box protein GID2. GA treatment also reduced the infection of rice plants by the parasitic plant witchers weed ( Striga hermonthica ). These data not only demonstrate, to our knowledge, the novel plant hormone cross talk between SL and GA, but also suggest that GA can be used to control parasitic weed infections. © 2017 American Society of Plant Biologists. All Rights Reserved.
Regulation of Strigolactone Biosynthesis by Gibberellin Signaling1[OPEN
Ito, Shinsaku; Yamagami, Daichi; Umehara, Mikihisa; Hanada, Atsushi; Sasaki, Yasuyuki; Yajima, Shunsuke; Kyozuka, Junko; Ueguchi-Tanaka, Miyako; Matsuoka, Makoto; Yamaguchi, Shinjiro
2017-01-01
Strigolactones (SLs) are a class of plant hormones that regulate diverse physiological processes, including shoot branching and root development. They also act as rhizosphere signaling molecules to stimulate the germination of root parasitic weeds and the branching of arbuscular mycorrhizal fungi. Although various types of cross talk between SLs and other hormones have been reported in physiological analyses, the cross talk between gibberellin (GA) and SLs is poorly understood. We screened for chemicals that regulate the level of SLs in rice (Oryza sativa) and identified GA as, to our knowledge, a novel SL-regulating molecule. The regulation of SL biosynthesis by GA is dependent on the GA receptor GID1 and F-box protein GID2. GA treatment also reduced the infection of rice plants by the parasitic plant witchers weed (Striga hermonthica). These data not only demonstrate, to our knowledge, the novel plant hormone cross talk between SL and GA, but also suggest that GA can be used to control parasitic weed infections. PMID:28404726
Balhana, Ricardo J C; Singla, Ashima; Sikder, Mahmudul Hasan; Withers, Mike; Kendall, Sharon L
2015-06-27
Mycobacteria inhabit diverse niches and display high metabolic versatility. They can colonise both humans and animals and are also able to survive in the environment. In order to succeed, response to environmental cues via transcriptional regulation is required. In this study we focused on the TetR family of transcriptional regulators (TFTRs) in mycobacteria. We used InterPro to classify the entire complement of transcriptional regulators in 10 mycobacterial species and these analyses showed that TFTRs are the most abundant family of regulators in all species. We identified those TFTRs that are conserved across all species analysed and those that are unique to the pathogens included in the analysis. We examined genomic contexts of 663 of the conserved TFTRs and observed that the majority of TFTRs are separated by 200 bp or less from divergently oriented genes. Analyses of divergent genes indicated that the TFTRs control diverse biochemical functions not limited to efflux pumps. TFTRs typically bind to palindromic motifs and we identified 11 highly significant novel motifs in the upstream regions of divergently oriented TFTRs. The C-terminal ligand binding domain from the TFTR complement in M. tuberculosis showed great diversity in amino acid sequence but with an overall architecture common to other TFTRs. This study suggests that mycobacteria depend on TFTRs for the transcriptional control of a number of metabolic functions yet the physiological role of the majority of these regulators remain unknown.
USDA-ARS?s Scientific Manuscript database
The Middle East-Asia Minor 1 (MEAM1) whitefly, Bemisia tabaci (Gennadius) is an economically important pest of food, fiber, and ornamental crops. This pest has evolved a number of adaptations to overcome physiological challenges, including 1) the ability to regulate osmotic stress between gut lumen ...
Peptidase inhibitors in tick physiology.
Parizi, L F; Ali, A; Tirloni, L; Oldiges, D P; Sabadin, G A; Coutinho, M L; Seixas, A; Logullo, C; Termignoni, C; DA Silva Vaz, I
2018-06-01
Peptidase inhibitors regulate a wide range of physiological processes involved in the interaction between hematophagous parasites and their hosts, including tissue remodeling, the immune response and blood coagulation. In tick physiology, peptidase inhibitors have a crucial role in adaptation to improve parasitism mechanisms, facilitating blood feeding by interfering with defense-related host peptidases. Recently, a larger number of studies on this topic led to the description of several new tick inhibitors displaying interesting novel features, for example a role in pathogen transmission to the host. A comprehensive review discussing these emerging concepts can therefore shed light on peptidase inhibitor functions, their relevance to tick physiology and their potential applications. Here, we summarize and examine the general characteristics, functional diversity and action of tick peptidase inhibitors with known physiological roles in the tick-host-pathogen interaction. © 2017 The Royal Entomological Society.
RNAi pathways in Mucor: A tale of proteins, small RNAs and functional diversity.
Torres-Martínez, Santiago; Ruiz-Vázquez, Rosa M
2016-05-01
The existence of an RNA-mediated silencing mechanism in the opportunistic fungal pathogen Mucor circinelloides was first described in the early 2000. Since then, Mucor has reached an outstanding position within the fungal kingdom as a model system to achieve a deeper understanding of regulation of endogenous functions by the RNA interference (RNAi) machinery. M. circinelloides combines diverse components of its RNAi machinery to carry out functions not only limited to the defense against invasive nucleic acids, but also to regulate expression of its own genes by producing different classes of endogenous small RNA molecules (esRNAs). The recent discovery of a novel RNase that participates in a new RNA degradation pathway adds more elements to the gene silencing-mediated regulation. This review focuses on esRNAs in M. circinelloides, the different pathways involved in their biogenesis, and their roles in regulating specific physiological and developmental processes in response to environmental signals, highlighting the complexity of silencing-mediated regulation in fungi. Copyright © 2015 Elsevier Inc. All rights reserved.
JNK Signaling: Regulation and Functions Based on Complex Protein-Protein Partnerships.
Zeke, András; Misheva, Mariya; Reményi, Attila; Bogoyevitch, Marie A
2016-09-01
The c-Jun N-terminal kinases (JNKs), as members of the mitogen-activated protein kinase (MAPK) family, mediate eukaryotic cell responses to a wide range of abiotic and biotic stress insults. JNKs also regulate important physiological processes, including neuronal functions, immunological actions, and embryonic development, via their impact on gene expression, cytoskeletal protein dynamics, and cell death/survival pathways. Although the JNK pathway has been under study for >20 years, its complexity is still perplexing, with multiple protein partners of JNKs underlying the diversity of actions. Here we review the current knowledge of JNK structure and isoforms as well as the partnerships of JNKs with a range of intracellular proteins. Many of these proteins are direct substrates of the JNKs. We analyzed almost 100 of these target proteins in detail within a framework of their classification based on their regulation by JNKs. Examples of these JNK substrates include a diverse assortment of nuclear transcription factors (Jun, ATF2, Myc, Elk1), cytoplasmic proteins involved in cytoskeleton regulation (DCX, Tau, WDR62) or vesicular transport (JIP1, JIP3), cell membrane receptors (BMPR2), and mitochondrial proteins (Mcl1, Bim). In addition, because upstream signaling components impact JNK activity, we critically assessed the involvement of signaling scaffolds and the roles of feedback mechanisms in the JNK pathway. Despite a clarification of many regulatory events in JNK-dependent signaling during the past decade, many other structural and mechanistic insights are just beginning to be revealed. These advances open new opportunities to understand the role of JNK signaling in diverse physiological and pathophysiological states. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Mass Transport: Circulatory System with Emphasis on Nonendothermic Species.
Crossley, Dane A; Burggren, Warren W; Reiber, Carl L; Altimiras, Jordi; Rodnick, Kenneth J
2016-12-06
Mass transport can be generally defined as movement of material matter. The circulatory system then is a biological example given its role in the movement in transporting gases, nutrients, wastes, and chemical signals. Comparative physiology has a long history of providing new insights and advancing our understanding of circulatory mass transport across a wide array of circulatory systems. Here we focus on circulatory function of nonmodel species. Invertebrates possess diverse convection systems; that at the most complex generate pressures and perform at a level comparable to vertebrates. Many invertebrates actively modulate cardiovascular function using neuronal, neurohormonal, and skeletal muscle activity. In vertebrates, our understanding of cardiac morphology, cardiomyocyte function, and contractile protein regulation by Ca2+ highlights a high degree of conservation, but differences between species exist and are coupled to variable environments and body temperatures. Key regulators of vertebrate cardiac function and systemic blood pressure include the autonomic nervous system, hormones, and ventricular filling. Further chemical factors regulating cardiovascular function include adenosine, natriuretic peptides, arginine vasotocin, endothelin 1, bradykinin, histamine, nitric oxide, and hydrogen sulfide, to name but a few. Diverse vascular morphologies and the regulation of blood flow in the coronary and cerebral circulations are also apparent in nonmammalian species. Dynamic adjustments of cardiovascular function are associated with exercise on land, flying at high altitude, prolonged dives by marine mammals, and unique morphology, such as the giraffe. Future studies should address limits of gas exchange and convective transport, the evolution of high arterial pressure across diverse taxa, and the importance of the cardiovascular system adaptations to extreme environments. © 2017 American Physiological Society. Compr Physiol 7:17-66, 2017. Copyright © 2017 John Wiley & Sons, Inc.
Watts-Williams, Stephanie J; Cavagnaro, Timothy R; Tyerman, Stephen D
2018-06-22
Association with arbuscular mycorrhizal fungi (AMF) can impact on plant water relations; mycorrhizal plants can exhibit increased stomatal conductance (g s ) and root hydraulic conductance (normalised to root dry weight, L o ), and altered expression of aquaporins (AQP). Many factors regulate such responses, however, plant intraspecific diversity effects have yet to be explored. Twenty geographically diverse accessions of Medicago truncatula were inoculated with the AMF Funneliformis mosseae or mock-inoculated, and grown under well-watered conditions. Biomass, g s , shoot nutrient concentrations and mycorrhizal colonisation were measured in all accessions, and L o and gene expression in five accessions. The diverse accessions varied in physiology and gene expression; some accessions were also larger or had higher g s when colonised by F. mosseae. In the five accessions, L o was higher in two accessions when colonised by AMF, and also maintained within a much smaller range than the mock-inoculated plants. Expression of MtPIP1 correlated with both g s and L o , and when plants were more than 3% colonised, mycorrhizal colonisation correlated with L o . Accession and AMF treatments had profound effects on M. truncatula, including several measures of plant water relations. Correlations between response variables, especially between molecular and physiological variables, across genotypes, highlight the findings of this study. This article is protected by copyright. All rights reserved.
Assay of Plasma Membrane H+-ATPase in Plant Tissues under Abiotic Stresses.
Janicka, Małgorzata; Wdowikowska, Anna; Kłobus, Grażyna
2018-01-01
Plasma membrane (PM) H + -ATPase, which generates the proton gradient across the outer membrane of plant cells, plays a fundamental role in the regulation of many physiological processes fundamental for growth and development of plants. It is involved in the uptake of nutrients from external solutions, their loading into phloem and long-distance transport, stomata aperture and gas exchange, pH homeostasis in cytosol, cell wall loosening, and cell expansion. The crucial role of the enzyme in resistance of plants to abiotic and biotic stress factors has also been well documented. Such great diversity of physiological functions linked to the activity of one enzyme requires a suitable and complex regulation of H + -ATPase. This regulation comprises the transcriptional as well as post-transcriptional levels. Herein, we describe the techniques that can be useful for the analysis of the plasma membrane proton pump modifications at genetic and protein levels under environmental factors.
Ursache, Alexandra; Noble, Kimberly G; Blair, Clancy
2015-01-01
Several studies have investigated associations between socioeconomic status (SES) and indicators of children's physiological and cognitive self-regulation. Although objective measures of family SES may be good proxies for families' experiences of disadvantage, less is known about subjective aspects of families' experiences. We hypothesize that subjective social status (SSS) and perceived stress may be important independent predictors of children's stress physiology and executive functioning (EF). Eighty-two children from diverse SES backgrounds were administered EF measures and provided saliva samples for cortisol assay. Caregivers reported on objective SES, SSS, and perceived stress. Results suggest that SES and SSS are both independently and positively related to EF. In models predicting stress physiology, higher perceived stress was associated with lower baseline cortisol. Moreover, SES and age interacted to predict cortisol levels such that among younger children, lower SES was associated with higher cortisol, whereas among older children, lower SES was associated with lower cortisol. Results highlight the importance of considering both objective and subjective indicators of families' SES and stressful experiences in relation to multiple aspects of children's self-regulation.
Regulation of potassium transport and signaling in plants.
Wang, Yi; Wu, Wei-Hua
2017-10-01
As an essential macronutrient, potassium (K + ) plays crucial roles in diverse physiological processes during plant growth and development. The K + concentration in soils is relatively low and fluctuating. Plants are able to perceive external K + changes and generate chemical and physical signals in plant cells. The signals can be transducted across the plasma membrane and into the cytosol, and eventually regulates the downstream targets, particularly K + channels and transporters. As a result, K + homeostasis in plant cells is modulated, which facilitates plant adaptation to K + deficient conditions. This minireview focuses on the latest research progress in the diverse functions of K + channels and transporters as well as their regulatory mechanisms in plant response to low-K + stress. Copyright © 2017 Elsevier Ltd. All rights reserved.
Regulators of Slc4 bicarbonate transporter activity
Thornell, Ian M.; Bevensee, Mark O.
2015-01-01
The Slc4 family of transporters is comprised of anion exchangers (AE1-4), Na+-coupled bicarbonate transporters (NCBTs) including electrogenic Na/bicarbonate cotransporters (NBCe1 and NBCe2), electroneutral Na/bicarbonate cotransporters (NBCn1 and NBCn2), and the electroneutral Na-driven Cl-bicarbonate exchanger (NDCBE), as well as a borate transporter (BTR1). These transporters regulate intracellular pH (pHi) and contribute to steady-state pHi, but are also involved in other physiological processes including CO2 carriage by red blood cells and solute secretion/reabsorption across epithelia. Acid-base transporters function as either acid extruders or acid loaders, with the Slc4 proteins moving HCO−3 either into or out of cells. According to results from both molecular and functional studies, multiple Slc4 proteins and/or associated splice variants with similar expected effects on pHi are often found in the same tissue or cell. Such apparent redundancy is likely to be physiologically important. In addition to regulating pHi, a HCO−3 transporter contributes to a cell's ability to fine tune the intracellular regulation of the cotransported/exchanged ion(s) (e.g., Na+ or Cl−). In addition, functionally similar transporters or splice variants with different regulatory profiles will optimize pH physiology and solute transport under various conditions or within subcellular domains. Such optimization will depend on activated signaling pathways and transporter expression profiles. In this review, we will summarize and discuss both well-known and more recently identified regulators of the Slc4 proteins. Some of these regulators include traditional second messengers, lipids, binding proteins, autoregulatory domains, and less conventional regulators. The material presented will provide insight into the diversity and physiological significance of multiple members within the Slc4 gene family. PMID:26124722
Regulators of Slc4 bicarbonate transporter activity.
Thornell, Ian M; Bevensee, Mark O
2015-01-01
The Slc4 family of transporters is comprised of anion exchangers (AE1-4), Na(+)-coupled bicarbonate transporters (NCBTs) including electrogenic Na/bicarbonate cotransporters (NBCe1 and NBCe2), electroneutral Na/bicarbonate cotransporters (NBCn1 and NBCn2), and the electroneutral Na-driven Cl-bicarbonate exchanger (NDCBE), as well as a borate transporter (BTR1). These transporters regulate intracellular pH (pHi) and contribute to steady-state pHi, but are also involved in other physiological processes including CO2 carriage by red blood cells and solute secretion/reabsorption across epithelia. Acid-base transporters function as either acid extruders or acid loaders, with the Slc4 proteins moving HCO(-) 3 either into or out of cells. According to results from both molecular and functional studies, multiple Slc4 proteins and/or associated splice variants with similar expected effects on pHi are often found in the same tissue or cell. Such apparent redundancy is likely to be physiologically important. In addition to regulating pHi, a HCO(-) 3 transporter contributes to a cell's ability to fine tune the intracellular regulation of the cotransported/exchanged ion(s) (e.g., Na(+) or Cl(-)). In addition, functionally similar transporters or splice variants with different regulatory profiles will optimize pH physiology and solute transport under various conditions or within subcellular domains. Such optimization will depend on activated signaling pathways and transporter expression profiles. In this review, we will summarize and discuss both well-known and more recently identified regulators of the Slc4 proteins. Some of these regulators include traditional second messengers, lipids, binding proteins, autoregulatory domains, and less conventional regulators. The material presented will provide insight into the diversity and physiological significance of multiple members within the Slc4 gene family.
USDA-ARS?s Scientific Manuscript database
The plant hormones regulate many physiological processes including apple fruit ripening by integrating diverse developmental cues and environmental signals. In addition to the well-characterized role of ethylene, jasmonic acid (JA) and its derivatives have also been suggested to play an important ro...
Tight junctions and the modulation of barrier function in disease
2008-01-01
Tight junctions create a paracellular barrier in epithelial and endothelial cells protecting them from the external environment. Two different classes of integral membrane proteins constitute the tight junction strands in epithelial cells and endothelial cells, occludin and members of the claudin protein family. In addition, cytoplasmic scaffolding molecules associated with these junctions regulate diverse physiological processes like proliferation, cell polarity and regulated diffusion. In many diseases, disruption of this regulated barrier occurs. This review will briefly describe the molecular composition of the tight junctions and then present evidence of the link between tight junction dysfunction and disease. PMID:18415116
Neuropeptide diversity and the regulation of social behavior in New World primates
French, Jeffrey A.; Taylor, Jack H.; Mustoe, Aaryn C.; Cavanaugh, Jon
2016-01-01
Oxytocin (OT) and vasopressin (AVP) are important hypothalamic neuropeptides that regulate peripheral physiology, and have emerged as important modulators of brain function, particularly in the social realm. OT structure and the genes that ultimately determine structure are highly conserved among diverse eutherian mammals, but recent discoveries have identified surprising variability in OT and peptide structure in New World monkeys (NWM), with five new OT variants identified to date. This review explores these new findings in light of comparative OT/AVP ligand evolution, documents coevolutionary changes in the oxytocin and vasopressin receptors (OTR and V1aR), and highlights the distribution of neuropeptidergic neurons and receptors in the primate brain. Finally, the behavioral consequences of OT and AVP in regulating NWM sociality are summarized, demonstrating important neuromodulatory effects of these compounds and OT ligand-specific influences in certain social domains. PMID:27020799
Novel metabolic and physiological functions of branched chain amino acids: a review.
Zhang, Shihai; Zeng, Xiangfang; Ren, Man; Mao, Xiangbing; Qiao, Shiyan
2017-01-01
It is widely known that branched chain amino acids (BCAA) are not only elementary components for building muscle tissue but also participate in increasing protein synthesis in animals and humans. BCAA (isoleucine, leucine and valine) regulate many key signaling pathways, the most classic of which is the activation of the mTOR signaling pathway. This signaling pathway connects many diverse physiological and metabolic roles. Recent years have witnessed many striking developments in determining the novel functions of BCAA including: (1) Insufficient or excessive levels of BCAA in the diet enhances lipolysis. (2) BCAA, especially isoleucine, play a major role in enhancing glucose consumption and utilization by up-regulating intestinal and muscular glucose transporters. (3) Supplementation of leucine in the diet enhances meat quality in finishing pigs. (4) BCAA are beneficial for mammary health, milk quality and embryo growth. (5) BCAA enhance intestinal development, intestinal amino acid transportation and mucin production. (6) BCAA participate in up-regulating innate and adaptive immune responses. In addition, abnormally elevated BCAA levels in the blood (decreased BCAA catabolism) are a good biomarker for the early detection of obesity, diabetes and other metabolic diseases. This review will provide some insights into these novel metabolic and physiological functions of BCAA.
Annotation and prediction of stress and workload from physiological and inertial signals.
Ghosh, Arindam; Danieli, Morena; Riccardi, Giuseppe
2015-08-01
Continuous daily stress and high workload can have negative effects on individuals' physical and mental well-being. It has been shown that physiological signals may support the prediction of stress and workload. However, previous research is limited by the low diversity of signals concurring to such predictive tasks and controlled experimental design. In this paper we present 1) a pipeline for continuous and real-life acquisition of physiological and inertial signals 2) a mobile agent application for on-the-go event annotation and 3) an end-to-end signal processing and classification system for stress and workload from diverse signal streams. We study physiological signals such as Galvanic Skin Response (GSR), Skin Temperature (ST), Inter Beat Interval (IBI) and Blood Volume Pulse (BVP) collected using a non-invasive wearable device; and inertial signals collected from accelerometer and gyroscope sensors. We combine them with subjects' inputs (e.g. event tagging) acquired using the agent application, and their emotion regulation scores. In our experiments we explore signal combination and selection techniques for stress and workload prediction from subjects whose signals have been recorded continuously during their daily life. The end-to-end classification system is described for feature extraction, signal artifact removal, and classification. We show that a combination of physiological, inertial and user event signals provides accurate prediction of stress for real-life users and signals.
Orphan Nuclear Receptors as Targets for Drug Development
Mukherjee, Subhajit
2012-01-01
Orphan nuclear receptors regulate diverse biological processes. These important molecules are ligand-activated transcription factors that act as natural sensors for a wide range of steroid hormones and xenobiotic ligands. Because of their importance in regulating various novel signaling pathways, recent research has focused on identifying xenobiotics targeting these receptors for the treatment of multiple human diseases. In this review, we will highlight these receptors in several physiologic and pathophysiologic actions and demonstrate how their functions can be exploited for the successful development of newer drugs. PMID:20372994
Functional diversity of voltage-sensing phosphatases in two urodele amphibians.
Mutua, Joshua; Jinno, Yuka; Sakata, Souhei; Okochi, Yoshifumi; Ueno, Shuichi; Tsutsui, Hidekazu; Kawai, Takafumi; Iwao, Yasuhiro; Okamura, Yasushi
2014-07-16
Voltage-sensing phosphatases (VSPs) share the molecular architecture of the voltage sensor domain (VSD) with voltage-gated ion channels and the phosphoinositide phosphatase region with the phosphatase and tensin homolog (PTEN), respectively. VSPs enzymatic activities are regulated by the motions of VSD upon depolarization. The physiological role of these proteins has remained elusive, and insights may be gained by investigating biological variations in different animal species. Urodele amphibians are vertebrates with potent activities of regeneration and also show diverse mechanisms of polyspermy prevention. We cloned cDNAs of VSPs from the testes of two urodeles; Hynobius nebulosus and Cynops pyrrhogaster, and compared their expression and voltage-dependent activation. Their molecular architecture is highly conserved in both Hynobius VSP (Hn-VSP) and Cynops VSP (Cp-VSP), including the positively-charged arginine residues in the S4 segment of the VSD and the enzymatic active site for substrate binding, yet the C-terminal C2 domain of Hn-VSP is significantly shorter than that of Cp-VSP and other VSP orthologs. RT-PCR analysis showed that gene expression pattern was distinct between two VSPs. The voltage sensor motions and voltage-dependent phosphatase activities were investigated electrophysiologically by expression in Xenopus oocytes. Both VSPs showed "sensing" currents, indicating that their voltage sensor domains are functional. The phosphatase activity of Cp-VSP was found to be voltage dependent, as shown by its ability to regulate the conductance of coexpressed GIRK2 channels, but Hn-VSP lacked such phosphatase activity due to the truncation of its C2 domain. © 2014 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.
A structure-function analysis of ion transport in crustacean gills and excretory organs.
Freire, Carolina A; Onken, Horst; McNamara, John C
2008-11-01
Osmotic and ionic regulation in the Crustacea is mostly accomplished by the multifunctional gills, together with the excretory organs. In addition to their role in gas exchange, the gills constitute organs of active, transepithelial, ion transport, an activity of major importance that underlies many essential physiological functions like osmoregulation, calcium homeostasis, ammonium excretion and extracellular pH regulation. This review focuses on structure-function relationships in crustacean gills and excretory effectors, from the organ to molecular levels of organization. We address the diversity of structural architectures encountered in different crustacean gill types, and in constituent cell types, before examining the physiological mechanisms of Na(+), Cl(-), Ca(2+) and NH(4)(+) transport, and of acid-base equivalents, based on findings obtained over the last two decades employing advanced techniques. The antennal and maxillary glands constitute the principal crustacean excretory organs, which have received less attention in functional studies. We examine the diversity present in antennal and maxillary gland architecture, highlighting the structural similarities between both organ types, and we analyze the functions ascribed to each glandular segment. Emphasis is given to volume and osmoregulatory functions, capacity to produce dilute urine in freshwater crustaceans, and the effect of acclimation salinity on urine volume and composition. The microanatomy and diversity of function ascribed to gills and excretory organs are appraised from an evolutionary perspective, and suggestions made as to future avenues of investigation that may elucidate evolutionary and adaptive trends underpinning the invasion and exploitation of novel habitats.
Proteins regulating the biosynthesis and inactivation of neuromodulatory fatty acid amides.
Patricelli, M P; Cravatt, B F
2001-01-01
Fatty acid amides (FAAs) represent a growing family of biologically active lipids implicated in a diverse range of cellular and physiological processes. At present, two general types of fatty acid amides, the N-acylethanolamines (NAEs) and the fatty acid primary amides (FAPAs), have been identified as potential physiological neuromodulators/neurotransmitters in mammals. Representative members of these two subfamilies include the endocannabinoid NAE anandamide and the sleep-inducing FAPA oleamide. In this Chapter, molecular mechanisms proposed for the biosynthesis and inactivation of FAAs are critically evaluated, with an emphasis placed on the biochemical and cell biological properties of proteins thought to mediate these processes.
Circadian Regulation of Pineal Gland Rhythmicity
Borjigin, Jimo; Zhang, L. Samantha; Calinescu, Anda-Alexandra
2011-01-01
The pineal gland is a neuroendocrine organ of the brain. Its main task is to synthesize and secrete melatonin, a nocturnal hormone with diverse physiological functions. This review will focus on the central and pineal mechanisms in generation of mammalian pineal rhythmicity including melatonin production. In particular, this review covers the following topics: (1) local control of serotonin and melatonin rhythms; (2) neurotransmitters involved in central control of melatonin; (3) plasticity of the neural circuit controlling melatonin production; (4) role of clock genes in melatonin formation; (5) phase control of pineal rhythmicity; (6) impact of light at night on pineal rhythms; and (7) physiological function of the pineal rhythmicity. PMID:21782887
Small peptide signaling pathways modulating macronutrient utilization in plants.
de Bang, Thomas C; Lay, Katerina S; Scheible, Wolf-Rüdiger; Takahashi, Hideki
2017-10-01
Root system architecture (RSA) and physiological functions define macronutrient uptake efficiency. Small signaling peptides (SSPs), that act in manners similar to hormones, and their cognate receptors transmit signals both locally and systemically. Several SSPs controlling morphological and physiological traits of roots have been identified to be associated with macronutrient uptake. Recent development in plant genome research has provided an avenue toward systems-based identification and prediction of additional SSPs. This review highlights recent studies on SSP pathways important for optimization of macronutrient uptake and provides new insights into the diversity of SSPs regulated in response to changes in macronutrient availabilities. Copyright © 2017 Elsevier Ltd. All rights reserved.
The physiology of a local renin-angiotensin system in the pancreas.
Leung, Po Sing
2007-04-01
The systemic renin-angiotensin system (RAS) plays an important role in regulating blood pressure, electrolyte and fluid homeostasis. However, local RASs also exist in diverse tissues and organs, where they play a multitude of autocrine, paracrine and intracrine physiological roles. The existence of a local RAS is now recognized in pancreatic acinar, islet, duct, endothelial and stellate cells, the expression of which is modulated in response to physiological and pathophysiological stimuli such as hypoxia, pancreatitis, islet transplantation, hyperglycaemia, and diabetes mellitus. This pancreatic RAS has been proposed to have important endocrine and exocrine roles in the pancreas, regulating local blood flow, duct cell sodium bicarbonate secretion, acinar cell digestive enzyme secretion, islet beta-cell (pro)insulin biosynthesis, and thus, glucose-stimulated insulin release, delta-cell somatostatin secretion, and pancreatic cell proliferation and differentiation. It may further mediate oxidative stress-induced cell inflammation, apoptosis and fibrosis. Further exploration of this system would probably offer new insights into the pathogenesis of pancreatitis, diabetes, cystic fibrosis and pancreatic cancer formation. New therapeutic targets and strategies might thus be suggested.
The physiology of a local renin–angiotensin system in the pancreas
Leung, Po Sing
2007-01-01
The systemic renin–angiotensin system (RAS) plays an important role in regulating blood pressure, electrolyte and fluid homeostasis. However, local RASs also exist in diverse tissues and organs, where they play a multitude of autocrine, paracrine and intracrine physiological roles. The existence of a local RAS is now recognized in pancreatic acinar, islet, duct, endothelial and stellate cells, the expression of which is modulated in response to physiological and pathophysiological stimuli such as hypoxia, pancreatitis, islet transplantation, hyperglycaemia, and diabetes mellitus. This pancreatic RAS has been proposed to have important endocrine and exocrine roles in the pancreas, regulating local blood flow, duct cell sodium bicarbonate secretion, acinar cell digestive enzyme secretion, islet beta-cell (pro)insulin biosynthesis, and thus, glucose-stimulated insulin release, delta-cell somatostatin secretion, and pancreatic cell proliferation and differentiation. It may further mediate oxidative stress-induced cell inflammation, apoptosis and fibrosis. Further exploration of this system would probably offer new insights into the pathogenesis of pancreatitis, diabetes, cystic fibrosis and pancreatic cancer formation. New therapeutic targets and strategies might thus be suggested. PMID:17218353
Clouse, Steven D.
2011-01-01
Brassinosteroids (BRs) are endogenous plant hormones essential for the proper regulation of multiple physiological processes required for normal plant growth and development. Since their discovery more than 30 years ago, extensive research on the mechanisms of BR action using biochemistry, mutant studies, proteomics and genome-wide transcriptome analyses, has helped refine the BR biosynthetic pathway, identify the basic molecular components required to relay the BR signal from perception to gene regulation, and expand the known physiological responses influenced by BRs. These mechanistic advances have helped answer the intriguing question of how BRs can have such dramatic pleiotropic effects on a broad range of diverse developmental pathways and have further pointed to BR interactions with other plant hormones and environmental cues. This chapter briefly reviews historical aspects of BR research and then summarizes the current state of knowledge on BR biosynthesis, metabolism and signal transduction. Recent studies uncovering novel phosphorelays and gene regulatory networks through which BR influences both vegetative and reproductive development are examined and placed in the context of known BR physiological responses including cell elongation and division, vascular differentiation, flowering, pollen development and photomorphogenesis. PMID:22303275
Cork, Sarah M.
2011-01-01
While G-protein-coupled receptors (GPCRs) have received considerable attention for their biological activity in a diversity of physiological functions and have become targets for therapeutic intervention in many diseases, the function of the cell adhesion subfamily of GPCRs remains poorly understood. Within this group, the family of brain angiogenesis inhibitor molecules (BAI1-3) has become increasingly appreciated for their diverse roles in biology and disease. In particular, recent findings suggest emerging roles for BAI1 in the regulation of phenomena including phagocytosis, synaptogenesis, and the inhibition of tumor growth and angiogenesis via the processing of its extracellular domain into secreted vasculostatins. Here we summarize the known biological features of the BAI proteins, including their structure, proteolysis events, and interacting partners, and their recently identified ability to regulate certain signaling pathways. Finally, we discuss the potential of the BAIs as therapeutics or targets for diseases as varied as cancer, stroke, and schizophrenia. PMID:21509575
Exploring the Crosstalk between Adipose Tissue and the Cardiovascular System.
Akoumianakis, Ioannis; Akawi, Nadia; Antoniades, Charalambos
2017-09-01
Obesity is a clinical entity critically involved in the development and progression of cardiovascular disease (CVD), which is characterised by variable expansion of adipose tissue (AT) mass across the body as well as by phenotypic alterations in AT. AT is able to secrete a diverse spectrum of biologically active substances called adipocytokines, which reach the cardiovascular system via both endocrine and paracrine routes, potentially regulating a variety of physiological and pathophysiological responses in the vasculature and heart. Such responses include regulation of inflammation and oxidative stress as well as cell proliferation, migration and hypertrophy. Furthermore, clinical observations such as the "obesity paradox," namely the fact that moderately obese patients with CVD have favourable clinical outcome, strongly indicate that the biological "quality" of AT may be far more crucial than its overall mass in the regulation of CVD pathogenesis. In this work, we describe the anatomical and biological diversity of AT in health and metabolic disease; we next explore its association with CVD and, importantly, novel evidence for its dynamic crosstalk with the cardiovascular system, which could regulate CVD pathogenesis.
Exploring the Crosstalk between Adipose Tissue and the Cardiovascular System
2017-01-01
Obesity is a clinical entity critically involved in the development and progression of cardiovascular disease (CVD), which is characterised by variable expansion of adipose tissue (AT) mass across the body as well as by phenotypic alterations in AT. AT is able to secrete a diverse spectrum of biologically active substances called adipocytokines, which reach the cardiovascular system via both endocrine and paracrine routes, potentially regulating a variety of physiological and pathophysiological responses in the vasculature and heart. Such responses include regulation of inflammation and oxidative stress as well as cell proliferation, migration and hypertrophy. Furthermore, clinical observations such as the “obesity paradox,” namely the fact that moderately obese patients with CVD have favourable clinical outcome, strongly indicate that the biological “quality” of AT may be far more crucial than its overall mass in the regulation of CVD pathogenesis. In this work, we describe the anatomical and biological diversity of AT in health and metabolic disease; we next explore its association with CVD and, importantly, novel evidence for its dynamic crosstalk with the cardiovascular system, which could regulate CVD pathogenesis. PMID:28955384
Ong, Gregory S Y; Young, Morag J
2017-01-01
The mineralocorticoid receptor (MR) and mineralocorticoids regulate epithelial handling of electrolytes, and induces diverse effects on other tissues. Traditionally, the effects of MR were ascribed to ligand-receptor binding and activation of gene transcription. However, the MR also utilises a number of intracellular signalling cascades, often by transactivating unrelated receptors, to change cell function more rapidly. Although aldosterone is the physiological mineralocorticoid, it is not the sole ligand for MR. Tissue-selective and mineralocorticoid-specific effects are conferred through the enzyme 11β-hydroxysteroid dehydrogenase 2, cellular redox status and properties of the MR itself. Furthermore, not all aldosterone effects are mediated via MR, with implication of the involvement of other membrane-bound receptors such as GPER. This review will describe the ligands, receptors and intracellular mechanisms available for mineralocorticoid hormone and receptor signalling and illustrate their complex interactions in physiology and disease. © 2017 Society for Endocrinology.
PHYSIOLOGY OF ION TRANSPORT ACROSS THE TONOPLAST OF HIGHER PLANTS.
Barkla, Bronwyn J.; Pantoja, Omar
1996-06-01
The vacuole of plant cells plays an important role in the homeostasis of the cell. It is involved in the regulation of cytoplasmic pH, sequestration of toxic ions and xenobiotics, regulation of cell turgor, storage of amino acids, sugars and CO2 in the form of malate, and possibly as a source for elevating cytoplasmic calcium. All these activities are driven by two primary active transport mechanisms present in the vacuolar membrane (tonoplast). These two mechanisms employ high-energy metabolites to pump protons into the vacuole, establishing a proton electrochemical potential that mediates the transport of a diverse range of solutes. Within the past few years, great advances at the molecular and functional levels have been made on the characterization and identification of these mechanisms. The aim of this review is to summarize these studies in the context of the physiology of the plant cell.
Krüppel-like factors are effectors of nuclear receptor signaling
Knoedler, Joseph R.; Denver, Robert J.
2015-01-01
Binding of steroid and thyroid hormones to their cognate nuclear receptors (NRs) impacts virtually every aspect of postembryonic development, physiology and behavior, and inappropriate signaling by NRs may contribute to disease. While NRs regulate genes by direct binding to hormone response elements in the genome, their actions may depend on the activity of other transcription factors (TFs) that may or may not bind DNA. The Krüppel-like family of transcription factors (KLF) is an evolutionarily conserved class of DNA-binding proteins that influence many aspects of development and physiology. Several members of this family have been shown to play diverse roles in NR signaling. For example, KLFs 1) act as accessory transcription factors for NR actions, 2) regulate expression of NR genes, and 3) as gene products of primary NR response genes function as key players in NR-dependent transcriptional networks. In mouse models, deletion of different KLFs leads to aberrant transcriptional and physiological responses to hormones, underscoring the importance of these proteins in the regulation of hormonal signaling. Understanding the functional relationships between NRs and KLFs will yield important insights into mechanisms of NR signaling. In this review we present a conceptual framework for understanding how KLFs participate in NR signaling, and we provide examples of how these proteins function to effect hormone action. PMID:24642391
α-Tocopherol and Hippocampal Neural Plasticity in Physiological and Pathological Conditions
Ambrogini, Patrizia; Betti, Michele; Galati, Claudia; Di Palma, Michael; Lattanzi, Davide; Savelli, David; Galli, Francesco; Cuppini, Riccardo; Minelli, Andrea
2016-01-01
Neuroplasticity is an “umbrella term” referring to the complex, multifaceted physiological processes that mediate the ongoing structural and functional modifications occurring, at various time- and size-scales, in the ever-changing immature and adult brain, and that represent the basis for fundamental neurocognitive behavioral functions; in addition, maladaptive neuroplasticity plays a role in the pathophysiology of neuropsychiatric dysfunctions. Experiential cues and several endogenous and exogenous factors can regulate neuroplasticity; among these, vitamin E, and in particular α-tocopherol (α-T), the isoform with highest bioactivity, exerts potent effects on many plasticity-related events in both the physiological and pathological brain. In this review, the role of vitamin E/α-T in regulating diverse aspects of neuroplasticity is analyzed and discussed, focusing on the hippocampus, a brain structure that remains highly plastic throughout the lifespan and is involved in cognitive functions. Vitamin E-mediated influences on hippocampal synaptic plasticity and related cognitive behavior, on post-natal development and adult hippocampal neurogenesis, as well as on cellular and molecular disruptions in kainate-induced temporal seizures are described. Besides underscoring the relevance of its antioxidant properties, non-antioxidant functions of vitamin E/α-T, mainly involving regulation of cell signaling molecules and their target proteins, have been highlighted to help interpret the possible mechanisms underlying the effects on neuroplasticity. PMID:27983697
Reitzel, Adam M; Tarrant, Ann M; Levy, Oren
2013-07-01
The circadian clock is a molecular network that translates predictable environmental signals, such as light levels, into organismal responses, including behavior and physiology. Regular oscillations of the molecular components of the clock enable individuals to anticipate regularly fluctuating environmental conditions. Cnidarians play important roles in benthic and pelagic marine environments and also occupy a key evolutionary position as the likely sister group to the bilaterians. Together, these attributes make members of this phylum attractive as models for testing hypotheses on roles for circadian clocks in regulating behavior, physiology, and reproduction as well as those regarding the deep evolutionary conservation of circadian regulatory pathways in animal evolution. Here, we review and synthesize the field of cnidarian circadian biology by discussing the diverse effects of daily light cycles on cnidarians, summarizing the molecular evidence for the conservation of a bilaterian-like circadian clock in anthozoan cnidarians, and presenting new empirical data supporting the presence of a conserved feed-forward loop in the starlet sea anemone, Nematostella vectensis. Furthermore, we discuss critical gaps in our current knowledge about the cnidarian clock, including the functions directly regulated by the clock and the precise molecular interactions that drive the oscillating gene-expression patterns. We conclude that the field of cnidarian circadian biology is moving rapidly toward linking molecular mechanisms with physiology and behavior.
Prohibitin( PHB) roles in granulosa cell physiology.
Chowdhury, Indrajit; Thomas, Kelwyn; Thompson, Winston E
2016-01-01
Ovarian granulosa cells (GC) play an important role in the growth and development of the follicle in the process known as folliculogenesis. In the present review, we focus on recent developments in prohibitin (PHB) research in relation to GC physiological functions. PHB is a member of a highly conserved eukaryotic protein family containing the repressor of estrogen activity (REA)/stomatin/PHB/flotillin/HflK/C (SPFH) domain (also known as the PHB domain) found in diverse species from prokaryotes to eukaryotes. PHB is ubiquitously expressed in a circulating free form or is present in multiple cellular compartments including mitochondria, nucleus and plasma membrane. In mitochondria, PHB is anchored to the mitochondrial inner membrane and forms complexes with the ATPases associated with proteases having diverse cellular activities. PHB continuously shuttles between the mitochondria, cytosol and nucleus. In the nucleus, PHB interacts with various transcription factors and modulates transcriptional activity directly or through interactions with chromatin remodeling proteins. Many functions have been attributed to the mitochondrial and nuclear PHB complexes such as cellular differentiation, anti-proliferation, morphogenesis and maintenance of the functional integrity of the mitochondria. However, to date, the regulation of PHB expression patterns and GC physiological functions are not completely understood.
Body temperatures of selected amphibian and reptile species.
Raske, Matthew; Lewbart, Gregory A; Dombrowski, Daniel S; Hale, Peyton; Correa, Maria; Christian, Larry S
2012-09-01
Ectothermic vertebrates are a diverse group of animals that rely on external sources to maintain a preferred body temperature. Amphibians and reptiles have a preferred optimal temperature zone that allows for optimal biological function. Physiologic processes in ectotherms are influenced by temperature; these animals have capabilities in which they make use of behavioral and physiologic mechanisms to thermoregulate. Core body, ambient air, body surface, and surface/water temperatures were obtained from six ectothermic species including one anuran, two snakes, two turtles, and one alligator. Clinically significant differences between core body temperature and ambient temperature were noted in the black rat snake, corn snake, and eastern box turtle. No significant differences were found between core body and ambient temperature for the American alligator, bullfrog, mata mata turtle, dead spotted turtle, or dead mole king snake. This study indicates some ectotherms are able to regulate their body temperatures independent of their environment. Body temperature of ectotherms is an important component that clinicians should consider when selecting and providing therapeutic care. Investigation of basic physiologic parameters (heart rate, respiratory rate, and body temperature) from a diverse population of healthy ectothermic vertebrates may provide baseline data for a systematic health care approach.
Sniffing on microbes: diverse roles of microbial volatile organic compounds in plant health.
Bitas, Vasileios; Kim, Hye-Seon; Bennett, Joan W; Kang, Seogchan
2013-08-01
Secreted proteins and metabolites play diverse and critical roles in organismal and organism-environment interactions. Volatile organic compounds (VOC) can travel far from the point of production through the atmosphere, porous soils, and liquid, making them ideal info-chemicals for mediating both short- and long-distance intercellular and organismal interactions. Critical ecological roles for animal- and plant-derived VOC in directing animal behaviors and for VOC as a language for plant-to-plant communication and regulators of various physiological processes have been well documented. Similarly, microbial VOC appear to be involved in antagonism, mutualism, intra- and interspecies regulation of cellular and developmental processes, and modification of their surrounding environments. However, the available knowledge of how microbial VOC affect other organisms is very limited. Evidence supporting diverse roles of microbial VOC with the focus on their impact on plant health is reviewed here. Given the vast diversity of microbes in nature and the critical importance of microbial communities associated with plants for their ecology and fitness, systematic exploration of microbial VOC and characterization of their biological functions and ecological roles will likely uncover novel mechanisms for controlling diverse biological processes critical to plant health and will also offer tangible practical benefits in addressing agricultural and environmental problems.
Scaffolding protein RanBPM and its interactions in diverse signaling pathways in health and disease.
Das, Soumyadip; Haq, Saba; Ramakrishna, Suresh
2018-04-01
Ran-binding protein in the microtubule-organizing center (RanBPM) is an evolutionarily conserved, nucleocytoplasmic scaffolding protein involved in various cellular processes and several signal transduction pathways. RanBPM has a crucial role in mediating disease pathology by interacting with diverse proteins to regulate their functions. Previously, we compiled diverse cellular functions of RanBPM. Since then the functions of RanBPM have increased exponentially. In this article, we have updated the functions of RanBPM through its manifold interactions that have been investigated to date, according to their roles in protein stability, transcriptional activity, cellular development, neurobiology, and the cell cycle. Our review provides a complete guide on RanBPM interactors, the physiological role of RanBPM in cellular functions, and potential applications in disease therapeutics.
Reconstitution reveals motor activation for intraflagellar transport.
Mohamed, Mohamed A A; Stepp, Willi L; Ökten, Zeynep
2018-05-01
The human body represents a notable example of ciliary diversification. Extending from the surface of most cells, cilia accomplish a diverse set of tasks. Predictably, mutations in ciliary genes cause a wide range of human diseases such as male infertility and blindness. In Caenorhabditis elegans sensory cilia, this functional diversity appears to be traceable to the differential regulation of the kinesin-2-powered intraflagellar-transport (IFT) machinery. Here we reconstituted the first, to our knowledge, functional multi-component IFT complex that is deployed in the sensory cilia of C. elegans. Our bottom-up approach revealed the molecular basis of specific motor recruitment to the IFT trains. We identified the key component that incorporates homodimeric kinesin-2 into its physiologically relevant context, which in turn allosterically activates the motor for efficient transport. These results will enable the molecular delineation of IFT regulation, which has eluded understanding since its discovery more than two decades ago.
Hormonal control of euryhalinity
Takei, Yoshio; McCormick, Stephen D.; McCormick, Stephen D.; Farrell, Anthony Peter; Brauner, Colin J.
2013-01-01
Hormones play a critical role in maintaining body fluid balance in euryhaline fishes during changes in environmental salinity. The neuroendocrine axis senses osmotic and ionic changes, then signals and coordinates tissue-specific responses to regulate water and ion fluxes. Rapid-acting hormones, e.g. angiotensins, cope with immediate challenges by controlling drinking rate and the activity of ion transporters in the gill, gut, and kidney. Slow-acting hormones, e.g. prolactin and growth hormone/insulin-like growth factor-1, reorganize the body for long-term acclimation by altering the abundance of ion transporters and through cell proliferation and differentiation of ionocytes and other osmoregulatory cells. Euryhaline species exist in all groups of fish, including cyclostomes, and cartilaginous and teleost fishes. The diverse strategies for responding to changes in salinity have led to differential regulation and tissue-specific effects of hormones. Combining traditional physiological approaches with genomic, transcriptomic, and proteomic analyses will elucidate the patterns and diversity of the endocrine control of euryhalinity.
Tapia, Pablo; Fernández-Galilea, Marta; Robledo, Fermín; Mardones, Pablo; Galgani, José E; Cortés, Víctor A
2018-05-01
The discovery of metabolically active brown adipose tissue (BAT) in adult humans has fuelled the research of diverse aspects of this previously neglected tissue. BAT is solely present in mammals and its clearest physiological role is non-shivering thermogenesis, owing to the capacity of brown adipocytes to dissipate metabolic energy as heat. Recently, a number of other possible functions have been proposed, including direct regulation of glucose and lipid homeostasis and the secretion of a number of factors with diverse regulatory actions. Herein, we review recent advances in general biological knowledge of BAT and discuss the possible implications of this tissue in human metabolic health. In particular, we confront the claimed thermogenic potential of BAT for human energy balance and body mass regulation, mostly based on animal studies, with the most recent quantifications of human BAT. © 2017 Cambridge Philosophical Society.
Diversity in arrestin function.
Kendall, Ryan T; Luttrell, Louis M
2009-09-01
The termination of heptahelical receptor signaling is a multilevel process coordinated, in large part, by members of the arrestin family of proteins. Arrestin binding to agonist-occupied receptors promotes desensitization by interrupting receptor-G protein coupling, while simultaneously recruiting machinery for receptor endocytosis, vesicular trafficking, and receptor fate determination. By simultaneously binding other proteins, arrestins also act as ligand-regulated scaffolds that recruit protein and lipid kinase, phosphatase, phosphodiesterase, and ubiquitin ligase activity into receptor-based multiprotein 'signalsome' complexes. Arrestin-binding thus 'switches' receptors from a transient G protein-coupled state to a persistent arrestin-coupled state that continues to signal as the receptor transits intracellular compartments. While it is clear that signalsome assembly has profound effects on the duration and spatial characteristics of heptahelical receptor signals, the physiologic functions of this novel signaling mechanism are poorly understood. Growing evidence suggests that signalsomes regulate such diverse processes as endocytosis and exocytosis, cell migration, survival, and contractility.
Costa, José Hélio; Arnholdt-Schmitt, Birgit
2017-01-01
The alternative oxidase (AOX) gene family is a hot candidate for functional marker development that could help plant breeding on yield stability through more robust plants based on multi-stress tolerance. However, there is missing knowledge on the interplay between gene family members that might interfere with the efficiency of marker development. It is common view that AOX1 and AOX2 have different physiological roles. Nevertheless, both family member groups act in terms of molecular-biochemical function as "typical" alternative oxidases and co-regulation of AOX1 and AOX2 had been reported. Although conserved sequence differences had been identified, the basis for differential effects on physiology regulation is not sufficiently explored.This protocol gives instructions for a bioinformatics approach that supports discovering potential interaction of AOX family members in regulating growth and development. It further provides a strategy to elucidate the relevance of gene sequence diversity and copy number variation for final functionality in target tissues and finally the whole plant. Thus, overall this protocol provides the means for efficiently identifying plant AOX variants as functional marker candidates related to growth and development.
Yang, Kai; Jackson, Michael F.; MacDonald, John F.
2014-01-01
G Protein Coupled Receptors (GPCRs) are the largest family of receptors whose ligands constitute nearly a third of prescription drugs in the market. They are widely involved in diverse physiological functions including learning and memory. NMDA receptors (NMDARs), which belong to the ionotropic glutamate receptor family, are likewise ubiquitously expressed in the central nervous system (CNS) and play a pivotal role in learning and memory. Despite its critical contribution to physiological and pathophysiological processes, few pharmacological interventions aimed directly at regulating NMDAR function have been developed to date. However, it is well established that NMDAR function is precisely regulated by cellular signalling cascades recruited downstream of G protein coupled receptor (GPCR) stimulation. Accordingly, the downstream regulation of NMDARs likely represents an important determinant of outcome following treatment with neuropsychiatric agents that target selected GPCRs. Importantly, the functional consequence of such regulation on NMDAR function varies, based not only on the identity of the GPCR, but also on the cell type in which relevant receptors are expressed. Indeed, the mechanisms responsible for regulating NMDARs by GPCRs involve numerous intracellular signalling molecules and regulatory proteins that vary from one cell type to another. In the present article, we highlight recent findings from studies that have uncovered novel mechanisms by which selected GPCRs regulate NMDAR function and consequently NMDAR-dependent plasticity. PMID:24562329
Yamashiro, Sawako; Gokhin, David S.; Kimura, Sumiko; Nowak, Roberta B.; Fowler, Velia M.
2012-01-01
Tropomodulins are a family of four proteins (Tmods 1–4) that cap the pointed ends of actin filaments in actin cytoskeletal structures in a developmentally regulated and tissue-specific manner. Unique among capping proteins, Tmods also bind tropomyosins (TMs), which greatly enhance the actin filament pointed-end capping activity of Tmods. Tmods are defined by a tropomyosin (TM)-regulated/Pointed-End Actin Capping (TM-Cap) domain in their unstructured N-terminal portion, followed by a compact, folded Leucine-Rich Repeat/Pointed-End Actin Capping (LRR-Cap) domain. By inhibiting actin monomer association and dissociation from pointed ends, Tmods regulate regulate actin dynamics and turnover, stabilizing actin filament lengths and cytoskeletal architecture. In this review, we summarize the genes, structural features, molecular and biochemical properties, actin regulatory mechanisms, expression patterns, and cell and tissue functions of Tmods. By understanding Tmods’ functions in the context of their molecular structure, actin regulation, binding partners, and related variants (leiomodins 1–3), we can draw broad conclusions that can explain the diverse morphological and functional phenotypes that arise from Tmod perturbation experiments in vitro and in vivo. Tmod-based stabilization and organization of intracellular actin filament networks provide key insights into how the emergent properties of the actin cytoskeleton drive tissue morphogenesis and physiology. PMID:22488942
Rosado-Souza, Laise; Scossa, Federico; Chaves, Izabel S; Kleessen, Sabrina; Salvador, Luiz F D; Milagre, Jocimar C; Finger, Fernando; Bhering, Leonardo L; Sulpice, Ronan; Araújo, Wagner L; Nikoloski, Zoran; Fernie, Alisdair R; Nunes-Nesi, Adriano
2015-09-01
Collectively, the results presented improve upon the utility of an important genetic resource and attest to a complex genetic basis for differences in both leaf metabolism and fruit morphology between natural populations. Diversity of accessions within the same species provides an alternative method to identify physiological and metabolic traits that have large effects on growth regulation, biomass and fruit production. Here, we investigated physiological and metabolic traits as well as parameters related to plant growth and fruit production of 49 phenotypically diverse pepper accessions of Capsicum chinense grown ex situ under controlled conditions. Although single-trait analysis identified up to seven distinct groups of accessions, working with the whole data set by multivariate analyses allowed the separation of the 49 accessions in three clusters. Using all 23 measured parameters and data from the geographic origin for these accessions, positive correlations between the combined phenotypes and geographic origin were observed, supporting a robust pattern of isolation-by-distance. In addition, we found that fruit set was positively correlated with photosynthesis-related parameters, which, however, do not explain alone the differences in accession susceptibility to fruit abortion. Our results demonstrated that, although the accessions belong to the same species, they exhibit considerable natural intraspecific variation with respect to physiological and metabolic parameters, presenting diverse adaptation mechanisms and being a highly interesting source of information for plant breeders. This study also represents the first study combining photosynthetic, primary metabolism and growth parameters for Capsicum to date.
miR-11 regulates pupal size of Drosophila melanogaster via directly targeting Ras85D.
Li, Yao; Li, Shengjie; Jin, Ping; Chen, Liming; Ma, Fei
2017-01-01
MicroRNAs play diverse roles in various physiological processes during Drosophila development. In the present study, we reported that miR-11 regulates pupal size during Drosophila metamorphosis via targeting Ras85D with the following evidences: pupal size was increased in the miR-11 deletion mutant; restoration of miR-11 in the miR-11 deletion mutant rescued the increased pupal size phenotype observed in the miR-11 deletion mutant; ectopic expression of miR-11 in brain insulin-producing cells (IPCs) and whole body shows consistent alteration of pupal size; Dilps and Ras85D expressions were negatively regulated by miR-11 in vivo; miR-11 targets Ras85D through directly binding to Ras85D 3'-untranslated region in vitro; removal of one copy of Ras85D in the miR-11 deletion mutant rescued the increased pupal size phenotype observed in the miR-11 deletion mutant. Thus, our current work provides a novel mechanism of pupal size determination by microRNAs during Drosophila melanogaster metamorphosis. Copyright © 2017 the American Physiological Society.
Mycobacterium tuberculosis Transcription Machinery: Ready To Respond to Host Attacks
Flentie, Kelly; Garner, Ashley L.
2016-01-01
Regulating responses to stress is critical for all bacteria, whether they are environmental, commensal, or pathogenic species. For pathogenic bacteria, successful colonization and survival in the host are dependent on adaptation to diverse conditions imposed by the host tissue architecture and the immune response. Once the bacterium senses a hostile environment, it must enact a change in physiology that contributes to the organism's survival strategy. Inappropriate responses have consequences; hence, the execution of the appropriate response is essential for survival of the bacterium in its niche. Stress responses are most often regulated at the level of gene expression and, more specifically, transcription. This minireview focuses on mechanisms of regulating transcription initiation that are required by Mycobacterium tuberculosis to respond to the arsenal of defenses imposed by the host during infection. In particular, we highlight how certain features of M. tuberculosis physiology allow this pathogen to respond swiftly and effectively to host defenses. By enacting highly integrated and coordinated gene expression changes in response to stress, M. tuberculosis is prepared for battle against the host defense and able to persist within the human population. PMID:26883824
AKAP-scaffolding proteins and regulation of cardiac physiology
Mauban, JRH; O'Donnell, M; Warrier, S; Manni, S; Bond, M
2009-01-01
A kinase anchoring proteins (AKAPs) compose a growing list of diverse but functionally related proteins defined by their ability to bind to the regulatory subunit of protein kinase A. AKAPs perform an integral role in the spatiotemporal modulation of a multitude of cellular signaling pathways. This review highlights the extensive role of AKAPs in cardiac excitation/contraction coupling and cardiac physiology. The literature shows that particular AKAPs are involved in cardiac Ca2+ influx, release, re-uptake, and myocyte repolarization. Studies have also suggested roles for AKAPs in cardiac remodeling. Transgenic studies show functional effects of AKAPs, not only in the cardiovascular system, but in other organ systems as well. PMID:19364910
Gruszka, Damian
2013-01-01
Brassinosteroids (BRs) are a class of steroid hormones regulating a wide range of physiological processes during the plant life cycle from seed development to the modulation of flowering and senescence. The last decades, and recent years in particular, have witnessed a significant advance in the elucidation of the molecular mechanisms of BR signaling from perception by the transmembrane receptor complex to the regulation of transcription factors influencing expression of the target genes. Application of the new approaches shed light on the molecular functions of the key players regulating the BR signaling cascade and allowed identification of new factors. Recent studies clearly indicated that some of the components of BR signaling pathway act as multifunctional proteins involved in other signaling networks regulating diverse physiological processes, such as photomorphogenesis, cell death control, stomatal development, flowering, plant immunity to pathogens and metabolic responses to stress conditions, including salinity. Regulation of some of these processes is mediated through a crosstalk between BR signalosome and the signaling cascades of other hormones, including auxin, abscisic acid, ethylene and salicylic acid. Unravelling the complicated mechanisms of BR signaling and its interconnections with other molecular networks may be of great importance for future practical applications in agriculture. PMID:23615468
Physiological and pathophysiological functions of SIRT1.
Wojcik, M; Mac-Marcjanek, K; Wozniak, L A
2009-03-01
The human SIRT1 is a nuclear enzyme from the class III histone deacetylases (HDACs) which is widely distributed in mammalian tissues. A variety of SIRT1 substrates hints that this protein is involved in the regulation of diverse biological processes, including cell survival, apoptosis, gluconeogenesis, adipogenesis, lipolysis, stress resistance, muscle differentiation, and insulin secretion. This review emphasizes catalytic properties of SIRT1 and its role in apoptosis, insulin pathway, and neuron survival.
Siegle, Greg J; D'Andrea, Wendy; Jones, Neil; Hallquist, Michael N; Stepp, Stephanie D; Fortunato, Andrea; Morse, Jennifer Q; Pilkonis, Paul A
2015-11-01
Prolonged psychophysiological reactions to negative information have long been associated with negative thinking and feeling. This association is operationalized in the RDoC negative affect construct of loss, which is nominally indexed by prolonged physiological reactivity, cognitive loss-related constructs such as rumination and guilt, and more feeling-related constructs such as sadness, crying, and anhedonia. These associations have not been tested explicitly. If thinking and feeling aspects of loss reflect different physiological mechanisms, as might be suggested by their putative neurobiology, different intervention pathways might be suggested. Here we examined the extent to which self-reported negative thinking and feeling constructs were associated with prolonged pupillary reactivity following negative words and a subsequent cognitive distractor in a diverse heterogeneously diagnosed sample of N=84 participants. We also considered indices of abuse and variables associated with borderline personality disorder as possible moderators. Consistently, feeling-related negative affect constructs were related to prolonged pupillary reactivity during the distractor after a negative stimulus whereas thinking-related constructs were not. These data suggest that people who have sustained physiological reactions to emotional stimuli may be more strongly characterized by non-linguistic negative feelings than explicit cognitions related to loss. Sustained physiological reactions could reflect efforts to regulate feeling states. In contrast to cognitive and affective variables, abuse was associated with decreased physiological reactivity, consistent with decreased neural engagement. Interventions that target mechanisms underlying feelings and their regulation may be more mechanistically specific to sustained reactivity than those which directly address cognitions. Copyright © 2015. Published by Elsevier B.V.
Multiple Regulatory Systems Coordinate DNA Replication with Cell Growth in Bacillus subtilis
Murray, Heath; Koh, Alan
2014-01-01
In many bacteria the rate of DNA replication is linked with cellular physiology to ensure that genome duplication is coordinated with growth. Nutrient-mediated growth rate control of DNA replication initiation has been appreciated for decades, however the mechanism(s) that connects these cell cycle activities has eluded understanding. In order to help address this fundamental question we have investigated regulation of DNA replication in the model organism Bacillus subtilis. Contrary to the prevailing view we find that changes in DnaA protein level are not sufficient to account for nutrient-mediated growth rate control of DNA replication initiation, although this regulation does require both DnaA and the endogenous replication origin. We go on to report connections between DNA replication and several essential cellular activities required for rapid bacterial growth, including respiration, central carbon metabolism, fatty acid synthesis, phospholipid synthesis, and protein synthesis. Unexpectedly, the results indicate that multiple regulatory systems are involved in coordinating DNA replication with cell physiology, with some of the regulatory systems targeting oriC while others act in a oriC-independent manner. We propose that distinct regulatory systems are utilized to control DNA replication in response to diverse physiological and chemical changes. PMID:25340815
Multiple regulatory systems coordinate DNA replication with cell growth in Bacillus subtilis.
Murray, Heath; Koh, Alan
2014-10-01
In many bacteria the rate of DNA replication is linked with cellular physiology to ensure that genome duplication is coordinated with growth. Nutrient-mediated growth rate control of DNA replication initiation has been appreciated for decades, however the mechanism(s) that connects these cell cycle activities has eluded understanding. In order to help address this fundamental question we have investigated regulation of DNA replication in the model organism Bacillus subtilis. Contrary to the prevailing view we find that changes in DnaA protein level are not sufficient to account for nutrient-mediated growth rate control of DNA replication initiation, although this regulation does require both DnaA and the endogenous replication origin. We go on to report connections between DNA replication and several essential cellular activities required for rapid bacterial growth, including respiration, central carbon metabolism, fatty acid synthesis, phospholipid synthesis, and protein synthesis. Unexpectedly, the results indicate that multiple regulatory systems are involved in coordinating DNA replication with cell physiology, with some of the regulatory systems targeting oriC while others act in a oriC-independent manner. We propose that distinct regulatory systems are utilized to control DNA replication in response to diverse physiological and chemical changes.
Condition-dependent chemosignals in reproductive behavior of lizards.
Martín, José; López, Pilar
2015-02-01
This article is part of a Special Issue "Chemosignals and Reproduction". Many lizards have diverse glands that produce chemosignals used in intraspecific communication and that can have reproductive consequences. For example, information in chemosignals of male lizards can be used in intrasexual competition to identify and assess the fighting potential or dominance status of rival males either indirectly through territorial scent-marks or during agonistic encounters. Moreover, females of several lizard species "prefer" to establish or spend more time on areas scent-marked by males with compounds signaling a better health or body condition or a higher genetic compatibility, which can have consequences for their mating success and inter-sexual selection processes. We review here recent studies that suggest that the information content of chemosignals of lizards may be reliable because several physiological and endocrine processes would regulate the proportions of chemical compounds available for gland secretions. Because chemosignals are produced by the organism or come from the diet, they should reflect physiological changes, such as different hormonal levels (e.g. testosterone or corticosterone) or different health states (e.g. parasitic infections, immune response), and reflect the quality of the diet of an individual. More importantly, some compounds that may function as chemosignals also have other important functions in the organism (e.g. as antioxidants or regulating the immune system), so there could be trade-offs between allocating these compounds to attending physiological needs or to produce costly sexual "chemical ornaments". All these factors may contribute to maintain chemosignals as condition-dependent sexual signals, which can inform conspecifics on the characteristics and state of the sender and allow making behavioral decisions with reproductive consequences. To understand the evolution of chemical secretions of lizards as sexual signals and their relevance in reproduction, future studies should examine what information the signals are carrying, the physiological processes that can maintain the reliability of the message and how diverse behavioral responses to chemosignals may influence reproductive success. Copyright © 2014 Elsevier Inc. All rights reserved.
Reitzel, Adam M.; Tarrant, Ann M.; Levy, Oren
2013-01-01
The circadian clock is a molecular network that translates predictable environmental signals, such as light levels, into organismal responses, including behavior and physiology. Regular oscillations of the molecular components of the clock enable individuals to anticipate regularly fluctuating environmental conditions. Cnidarians play important roles in benthic and pelagic marine environments and also occupy a key evolutionary position as the likely sister group to the bilaterians. Together, these attributes make members of this phylum attractive as models for testing hypotheses on roles for circadian clocks in regulating behavior, physiology, and reproduction as well as those regarding the deep evolutionary conservation of circadian regulatory pathways in animal evolution. Here, we review and synthesize the field of cnidarian circadian biology by discussing the diverse effects of daily light cycles on cnidarians, summarizing the molecular evidence for the conservation of a bilaterian-like circadian clock in anthozoan cnidarians, and presenting new empirical data supporting the presence of a conserved feed-forward loop in the starlet sea anemone, Nematostella vectensis. Furthermore, we discuss critical gaps in our current knowledge about the cnidarian clock, including the functions directly regulated by the clock and the precise molecular interactions that drive the oscillating gene-expression patterns. We conclude that the field of cnidarian circadian biology is moving rapidly toward linking molecular mechanisms with physiology and behavior. PMID:23620252
The sympathetic nervous system and the physiologic consequences of spaceflight: a hypothesis
NASA Technical Reports Server (NTRS)
Robertson, D.; Convertino, V. A.; Vernikos, J.
1994-01-01
Many of the physiologic consequences of weightlessness and the cardiovascular abnormalities on return from space could be due, at least in part, to alterations in the regulation of the autonomic nervous system. In this article, the authors review the rationale and evidence for an autonomic mediation of diverse changes that occur with spaceflight, including the anemia and hypovolemia of weightlessness and the tachycardia and orthostatic intolerance on return from space. This hypothesis is supported by studies of two groups of persons known to have low catecholamine levels: persons subjected to prolonged bedrest and persons with syndromes characterized by low circulating catecholamines (Bradbury-Eggleston syndrome and dopamine beta-hydroxylase deficiency). Both groups exhibit the symptoms mentioned. The increasing evidence that autonomic mechanisms underlie many of the physiologic consequences of weightlessness suggests that new pharmacologic approaches (such as administration of beta-blockers and/or sympathomimetic amines) based on these findings may attenuate these unwanted effects.
2010-01-01
Background MicroRNAs (miRNAs) are a class of small non-coding regulatory RNAs that regulate gene expression by guiding target mRNA cleavage or translational inhibition. MiRNAs can have large-scale regulatory effects on development and stress response in plants. Results To test whether miRNAs play roles in regulating response to powdery mildew infection and heat stress in wheat, by using Solexa high-throughput sequencing we cloned the small RNA from wheat leaves infected by preponderant physiological strain Erysiphe graminis f. sp. tritici (Egt) or by heat stress treatment. A total of 153 miRNAs were identified, which belong to 51 known and 81 novel miRNA families. We found that 24 and 12 miRNAs were responsive to powdery mildew infection and heat stress, respectively. We further predicted that 149 target genes were potentially regulated by the novel wheat miRNA. Conclusions Our results indicated that diverse set of wheat miRNAs were responsive to powdery mildew infection and heat stress and could function in wheat responses to both biotic and abiotic stresses. PMID:20573268
Recinos, David A.; Sekedat, Matthew D.; Hernandez, Adriana; Cohen, Taylor Sitarik; Sakhtah, Hassan; Prince, Alice S.; Price-Whelan, Alexa; Dietrich, Lars E. P.
2012-01-01
Evolutionary biologists have postulated that several fitness advantages may be conferred by the maintenance of duplicate genes, including environmental adaptation resulting from differential regulation. We examined the expression and physiological contributions of two redundant operons in the adaptable bacterium Pseudomonas aeruginosa PA14. These operons, phzA1-G1 (phz1) and phzA2-G2 (phz2), encode nearly identical sets of proteins that catalyze the synthesis of phenazine-1-carboxylic acid, the precursor for several phenazine derivatives. Phenazines perform diverse roles in P. aeruginosa physiology and act as virulence factors during opportunistic infections of plant and animal hosts. Although reports have indicated that phz1 is regulated by the Pseudomonas quinolone signal, factors controlling phz2 expression have not been identified, and the relative contributions of these redundant operons to phenazine biosynthesis have not been evaluated. We found that in liquid cultures, phz1 was expressed at higher levels than phz2, although phz2 showed a greater contribution to phenazine production. In colony biofilms, phz2 was expressed at high levels, whereas phz1 expression was not detectable, and phz2 was responsible for virtually all phenazine production. Analysis of mutants defective in quinolone signal synthesis revealed a critical role for 4-hydroxy-2-heptylquinoline in phz2 induction. Finally, deletion of phz2, but not of phz1, decreased lung colonization in a murine model of infection. These results suggest that differential regulation of the redundant phz operons allows P. aeruginosa to adapt to diverse environments. PMID:23129634
IA channels: diverse regulatory mechanisms.
Carrasquillo, Yarimar; Nerbonne, Jeanne M
2014-04-01
In many peripheral and central neurons, A-type K(+) currents, IA, have been identified and shown to be key determinants in shaping action potential waveforms and repetitive firing properties, as well as in the regulation of synaptic transmission and synaptic plasticity. The functional properties and physiological roles of native neuronal IA, however, have been shown to be quite diverse in different types of neurons. Accumulating evidence suggests that this functional diversity is generated by multiple mechanisms, including the expression and subcellular distributions of IA channels encoded by different voltage-gated K(+) (Kv) channel pore-forming (α) subunits, interactions of Kv α subunits with cytosolic and/or transmembrane accessory subunits and regulatory proteins and post-translational modifications of channel subunits. Several recent reports further suggest that local protein translation in the dendrites of neurons and interactions between IA channels with other types of voltage-gated ion channels further expands the functional diversity of native neuronal IA channels. Here, we review the diverse molecular mechanisms that have been shown or proposed to underlie the functional diversity of native neuronal IA channels.
Mammalian Krüppel-Like Factors in Health and Diseases
McConnell, Beth B.; Yang, Vincent W.
2010-01-01
The Krüppel-like factor (KLF) family of transcription factors regulates diverse biological processes that include proliferation, differentiation, growth, development, survival, and responses to external stress. Seventeen mammalian KLFs have been identified, and numerous studies have been published that describe their basic biology and contribution to human diseases. KLF proteins have received much attention because of their involvement in the development and homeostasis of numerous organ systems. KLFs are critical regulators of physiological systems that include the cardiovascular, digestive, respiratory, hematological, and immune systems and are involved in disorders such as obesity, cardiovascular disease, cancer, and inflammatory conditions. Furthermore, KLFs play an important role in reprogramming somatic cells into induced pluripotent stem (iPS) cells and maintaining the pluripotent state of embryonic stem cells. As research on KLF proteins progresses, additional KLF functions and associations with disease are likely to be discovered. Here, we review the current knowledge of KLF proteins and describe common attributes of their biochemical and physiological functions and their pathophysiological roles. PMID:20959618
Aquaporin structure-function relationships: water flow through plant living cells.
Zhao, Chang-Xing; Shao, Hong-Bo; Chu, Li-Ye
2008-04-01
Plant aquaporins play an important role in water uptake and movement-an aquaporin that opens and closes a gate that regulates water movement in and out of cells. Some plant aquaporins also play an important role in response to water stress. Since their discovery, advancing knowledge of their structures and properties led to an understanding of the basic features of the water transport mechanism and increased illumination to water relations. Meanwhile, molecular and functional characterization of aquaporins has revealed the significance of their regulation in response to the adverse environments such as salinity and drought. This paper reviews the structure, species diversity, physiology function, regulation of plant aquaporins, and the relations between environmental factors and plant aquaporins. Complete understanding of aquaporin function and regulation is to integrate those mechanisms in time and space and to well regulate the permeation of water across biological membranes under changing environmental and developmental conditions.
A role for SR proteins in plant stress responses.
Duque, Paula
2011-01-01
Members of the SR (serine/arginine-rich) protein gene family are key players in the regulation of alternative splicing, an important means of generating proteome diversity and regulating gene expression. In plants, marked changes in alternative splicing are induced by a wide variety of abiotic stresses, suggesting a role for this highly versatile gene regulation mechanism in the response to environmental cues. In support of this notion, the expression of plant SR proteins is stress-regulated at multiple levels, with environmental signals controlling their own alternative splicing patterns, phosphorylation status and subcellular distribution. Most importantly, functional links between these RNA-binding proteins and plant stress tolerance are beginning to emerge, including a role in the regulation of abscisic acid (ABA) signaling. Future identification of the physiological mRNA targets of plant SR proteins holds much promise for the elucidation of the molecular mechanisms underlying their role in the response to abiotic stress.
A role for SR proteins in plant stress responses
2011-01-01
Members of the SR (serine/arginine-rich) protein gene family are key players in the regulation of alternative splicing, an important means of generating proteome diversity and regulating gene expression. In plants, marked changes in alternative splicing are induced by a wide variety of abiotic stresses, suggesting a role for this highly versatile gene regulation mechanism in the response to environmental cues. In support of this notion, the expression of plant SR proteins is stress-regulated at multiple levels, with environmental signals controlling their own alternative splicing patterns, phosphorylation status and subcellular distribution. Most importantly, functional links between these RNA-binding proteins and plant stress tolerance are beginning to emerge, including a role in the regulation of abscisic acid (ABA) signaling. Future identification of the physiological mRNA targets of plant SR proteins holds much promise for the elucidation of the molecular mechanisms underlying their role in the response to abiotic stress. PMID:21258207
Beltran-Povea, Amparo; Caballano-Infantes, Estefania; Salguero-Aranda, Carmen; Martín, Franz; Soria, Bernat; Bedoya, Francisco J; Tejedo, Juan R; Cahuana, Gladys M
2015-01-01
Stem cell pluripotency and differentiation are global processes regulated by several pathways that have been studied intensively over recent years. Nitric oxide (NO) is an important molecule that affects gene expression at the level of transcription and translation and regulates cell survival and proliferation in diverse cell types. In embryonic stem cells NO has a dual role, controlling differentiation and survival, but the molecular mechanisms by which it modulates these functions are not completely defined. NO is a physiological regulator of cell respiration through the inhibition of cytochrome c oxidase. Many researchers have been examining the role that NO plays in other aspects of metabolism such as the cellular bioenergetics state, the hypoxia response and the relationship of these areas to stem cell stemness. PMID:25914767
Fu, Huihui; Yuan, Jie; Gao, Haichun
2015-10-15
Facultative bacteria can grow under either oxic or anoxic conditions. While oxygen provides substantial advantages in energy yield by respiration, it can become life-threatening because of reactive oxygen species that derive from the molecule naturally. Thus, to survive and thrive in a given niche, these bacteria have to constantly regulate physiological processes to make maximum benefits from oxygen respiration while restraining oxidative stress. Molecular mechanisms and physiological consequences of oxidative stress have been under extensive investigation for decades, mostly on research model Escherichia coli, from which our understanding of bacterial oxidative stress response is largely derived. Nevertheless, given that bacteria live in enormously diverse environments, to cope with oxidative stress different strategies are conceivably developed. Copyright © 2015 Elsevier Inc. All rights reserved.
Astrocyte Elevated Gene-1 (AEG-1): a multifunctional regulator of normal and abnormal physiology
Yoo, Byoung Kwon; Emdad, Luni; Lee, Seok-Geun; Su, Zao-zhong; Santhekadur, Prasanna; Chen, Dong; Gredler, Rachel; Fisher, Paul B.; Sarkar, Devanand
2011-01-01
Since its initial identification and cloning in 2002, Astrocyte Elevated Gene-1 (AEG-1), also known as metadherin (MTDH), 3D3 and LYsine-RIch CEACAM1 co-isolated (LYRIC), has emerged as an important oncogene that is overexpressed in all cancers analyzed so far. Examination of a large cohort of patient samples representing diverse cancer indications has revealed progressive increase in AEG-1 expression with stages and grades of the disease and an inverse relationship between AEG-1 expression level and patient prognosis. AEG-1 functions as a bona fide oncogene by promoting transformation. In addition, it plays a significant role in invasion, metastasis, angiogenesis and chemoresistance, all important hallmarks of an aggressive cancer. AEG-1 is also implicated in diverse physiological and pathological processes, such as development, inflammation, neurodegeneration, migraine and Huntington disease. AEG-1 is a highly basic protein with a transmembrane domain and multiple nuclear localization signals and it is present in the cell membrane, cytoplasm, nucleus, nucleolus and endoplasmic reticulum. In each location, AEG-1 interacts with specific proteins thereby modulating diverse intracellular processes the combination of which contributes to its pleiotrophic properties. The present review provides a snapshot of the current literature along with future perspectives on this unique molecule. PMID:21256156
Soil type and species diversity influence selection on physiology in Panicum virgatum
USDA-ARS?s Scientific Manuscript database
Species diversity influences the productivity and stability of plant communities, but its effect on the evolution of species within those communities is poorly understood. In this study, we tested whether species diversity and soil type influence selection on physiology in switchgrass (Panicum virga...
Singh, Ruchi; Gupta, Pankhuri; Khan, Furqan; Singh, Susheel Kumar; Sanchita; Mishra, Tripti; Kumar, Anil; Dhawan, Sunita Singh; Shirke, Pramod Arvind
2018-07-01
In general medicinal plants grown under water limiting conditions show much higher concentrations of secondary metabolites in comparison to control plants. In the present study, Withania somnifera plants were subjected to water stress and data related to drought tolerance phenomenon was collected and a putative mechanistic concept considering growth responses, physiological behaviour, and metabolite content and gene expression aspects is presented. Drought induced metabolic and physiological responses as well as drastic decrease in CO 2 uptake due to stomatal limitations. As a result, the consumption of reduction equivalents (NADPH 2+ ) for CO 2 assimilation via the calvin cycle declines significantly resulting in the generation of a large oxidative stress and an oversupply of antioxidant enzymes. Drought also results in the shifting of metabolic processes towards biosynthetic activities that consume reduction equivalents. Thus, biosynthesis of reduced compounds (isoprenoids, phenols and alkaloids) is enhanced. The dynamics of various metabolites have been discussed in the light of gene expression analysis of control and drought treated leaves. Gene encoding enzymes of pathways leading to glucose, fructose and fructan production, conversion of triose phosphates to hexoses and hexose phosphorylation were up-regulated in the drought stressed leaves. The down-regulated Calvin cycle genes were co-ordinately regulated with the down-regulation of chloroplast triosephosphate/phosphate translocator, cytoplasmic fructose-1,6-bisphosphate aldolase and fructose bisphosphatase. Expression of gene encoding Squalene Synthase (SQS) was highly upregulated under drought stress which is responsible for the diversion of carbon flux towards withanolides biosynthesis from isoprenoid pathway. Copyright © 2018 Elsevier B.V. All rights reserved.
Genetics of Mitochondrial Disease.
Saneto, Russell P
2017-01-01
Mitochondria are intracellular organelles responsible for adenosine triphosphate production. The strict control of intracellular energy needs require proper mitochondrial functioning. The mitochondria are under dual controls of mitochondrial DNA (mtDNA) and nuclear DNA (nDNA). Mitochondrial dysfunction can arise from changes in either mtDNA or nDNA genes regulating function. There are an estimated ∼1500 proteins in the mitoproteome, whereas the mtDNA genome has 37 proteins. There are, to date, ∼275 genes shown to give rise to disease. The unique physiology of mitochondrial functioning contributes to diverse gene expression. The onset and range of phenotypic expression of disease is diverse, with onset from neonatal to seventh decade of life. The range of dysfunction is heterogeneous, ranging from single organ to multisystem involvement. The complexity of disease expression has severely limited gene discovery. Combining phenotypes with improvements in gene sequencing strategies are improving the diagnosis process. This chapter focuses on the interplay of the unique physiology and gene discovery in the current knowledge of genetically derived mitochondrial disease. Copyright © 2017 Elsevier Inc. All rights reserved.
Mitochondria targeting by environmental stressors: Implications for redox cellular signaling.
Blajszczak, Chuck; Bonini, Marcelo G
2017-11-01
Mitochondria are cellular powerhouses as well as metabolic and signaling hubs regulating diverse cellular functions, from basic physiology to phenotypic fate determination. It is widely accepted that reactive oxygen species (ROS) generated in mitochondria participate in the regulation of cellular signaling, and that some mitochondria chronically operate at a high ROS baseline. However, it is not completely understood how mitochondria adapt to persistently high ROS states and to environmental stressors that disturb the redox balance. Here we will review some of the current concepts regarding how mitochondria resist oxidative damage, how they are replaced when excessive oxidative damage compromises function, and the effect of environmental toxicants (i.e. heavy metals) on the regulation of mitochondrial ROS (mtROS) production and subsequent impact. Copyright © 2017 Elsevier B.V. All rights reserved.
López-Ráez, Juan A.; Verhage, Adriaan; Fernández, Iván; García, Juan M.; Azcón-Aguilar, Concepción; Flors, Victor; Pozo, María J.
2010-01-01
Arbuscular mycorrhizal (AM) symbioses are mutualistic associations between soil fungi and most vascular plants. The symbiosis significantly affects the host physiology in terms of nutrition and stress resistance. Despite the lack of host range specificity of the interaction, functional diversity between AM fungal species exists. The interaction is finely regulated according to plant and fungal characters, and plant hormones are believed to orchestrate the modifications in the host plant. Using tomato as a model, an integrative analysis of the host response to different mycorrhizal fungi was performed combining multiple hormone determination and transcriptional profiling. Analysis of ethylene-, abscisic acid-, salicylic acid-, and jasmonate-related compounds evidenced common and divergent responses of tomato roots to Glomus mosseae and Glomus intraradices, two fungi differing in their colonization abilities and impact on the host. Both hormonal and transcriptional analyses revealed, among others, regulation of the oxylipin pathway during the AM symbiosis and point to a key regulatory role for jasmonates. In addition, the results suggest that specific responses to particular fungi underlie the differential impact of individual AM fungi on plant physiology, and particularly on its ability to cope with biotic stresses. PMID:20378666
Do Trees Grow on Money? Auxin as the Currency of the Cellular Economy
Stewart, Jodi L.; Nemhauser, Jennifer L.
2010-01-01
Auxin plays a role in nearly every aspect of a plant's life. Signals from the developmental program, physiological status, and encounters with other organisms all converge on the auxin pathway. The molecular mechanisms facilitating these interactions are diverse; yet, common themes emerge. Auxin can be regulated by modulating rates of biosynthesis, conjugation, and transport, as well as sensitivity of a cell to the auxin signal. In this article, we describe some well-studied examples of auxin's interactions with other pathways. PMID:20182619
Phosphoproteomics links glycogen synthase kinase-3 to RNA splicing.
Khoa, Le Tran Phuc; Dou, Yali
2017-11-03
Protein kinases play essential biological roles by phosphorylating a diverse range of signaling molecules, but deciphering their direct physiological targets remains a challenge. A new study by Shinde et al. uses phosphoproteomics to identify glycogen synthase kinase-3 (GSK-3) substrates in mouse embryonic stem cells (mESCs), providing a broad profile of GSK-3 activity and defining a new role for this central kinase in regulating RNA splicing. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
DIRECTIONAL FLUID TRANSPORT ACROSS ORGAN-BLOOD BARRIERS: PHYSIOLOGY AND CELL BIOLOGY
Caceres, Paulo S.; Benedicto, Ignacio; Lehmann, Guillermo L.; Rodriguez-Boulan, Enrique J.
2018-01-01
Directional fluid flow is an essential process for embryo development as well as for organ and organism homeostasis. Here, we review the diverse structure of various organ-blood barriers, the driving forces, transporters and polarity mechanisms that regulate fluid transport across them, focusing on kidney-, eye- and brain-blood barriers. We end by discussing how cross-talk between barrier epithelial and endothelial cells, perivascular cells and basement membrane signaling contribute to generate and maintain organ-blood barriers. PMID:28003183
Plant cell surface receptor-mediated signaling - a common theme amid diversity.
He, Yunxia; Zhou, Jinggeng; Shan, Libo; Meng, Xiangzong
2018-01-29
Sessile plants employ a diverse array of plasma membrane-bound receptors to perceive endogenous and exogenous signals for regulation of plant growth, development and immunity. These cell surface receptors include receptor-like kinases (RLKs) and receptor-like proteins (RLPs) that harbor different extracellular domains for perception of distinct ligands. Several RLK and RLP signaling pathways converge at the somatic embryogenesis receptor kinases (SERKs), which function as shared co-receptors. A repertoire of receptor-like cytoplasmic kinases (RLCKs) associate with the receptor complexes to relay intracellular signaling. Downstream of the receptor complexes, mitogen-activated protein kinase (MAPK) cascades are among the key signaling modules at which the signals converge, and these cascades regulate diverse cellular and physiological responses through phosphorylation of different downstream substrates. In this Review, we summarize the emerging common theme that underlies cell surface receptor-mediated signaling pathways in Arabidopsis thaliana : the dynamic association of RLKs and RLPs with specific co-receptors and RLCKs for signal transduction. We further discuss how signaling specificities are maintained through modules at which signals converge, with a focus on SERK-mediated receptor signaling. © 2018. Published by The Company of Biologists Ltd.
Mayford, Mark; Siegelbaum, Steven A.; Kandel, Eric R.
2012-01-01
The synapse is the functional unit of the brain. During the last several decades we have acquired a great deal of information on its structure, molecular components, and physiological function. It is clear that synapses are morphologically and molecularly diverse and that this diversity is recruited to different functions. One of the most intriguing findings is that the size of the synaptic response in not invariant, but can be altered by a variety of homo- and heterosynaptic factors such as past patterns of use or modulatory neurotransmitters. Perhaps the most difficult challenge in neuroscience is to design experiments that reveal how these basic building blocks of the brain are put together and how they are regulated to mediate the information flow through neural circuits that is necessary to produce complex behaviors and store memories. In this review we will focus on studies that attempt to uncover the role of synaptic plasticity in the regulation of whole-animal behavior by learning and memory. PMID:22496389
Dynamic and diverse sugar signaling
Li, Lei; Sheen, Jen
2016-01-01
Sugars fuel life and exert numerous regulatory actions that are fundamental to all life forms. There are two principal mechanisms underlie sugar “perception and signal transduction” in biological systems. Direct sensing and signaling is triggered via sugar-binding sensors with a broad range of affinity and specificity, whereas sugar-derived bioenergetic molecules and metabolites modulate signaling proteins and indirectly relay sugar signals. This review discusses the emerging sugar signals and potential sugar sensors discovered in plant systems. The findings leading to informative understanding of physiological regulation by sugars are considered and assessed. Comparative transcriptome analyses highlight the primary and dynamic sugar responses and reveal the convergent and specific regulators of key biological processes in the sugar-signaling network. PMID:27423125
Activation and Function of the MAPKs and Their Substrates, the MAPK-Activated Protein Kinases
Cargnello, Marie; Roux, Philippe P.
2011-01-01
Summary: The mitogen-activated protein kinases (MAPKs) regulate diverse cellular programs by relaying extracellular signals to intracellular responses. In mammals, there are more than a dozen MAPK enzymes that coordinately regulate cell proliferation, differentiation, motility, and survival. The best known are the conventional MAPKs, which include the extracellular signal-regulated kinases 1 and 2 (ERK1/2), c-Jun amino-terminal kinases 1 to 3 (JNK1 to -3), p38 (α, β, γ, and δ), and ERK5 families. There are additional, atypical MAPK enzymes, including ERK3/4, ERK7/8, and Nemo-like kinase (NLK), which have distinct regulation and functions. Together, the MAPKs regulate a large number of substrates, including members of a family of protein Ser/Thr kinases termed MAPK-activated protein kinases (MAPKAPKs). The MAPKAPKs are related enzymes that respond to extracellular stimulation through direct MAPK-dependent activation loop phosphorylation and kinase activation. There are five MAPKAPK subfamilies: the p90 ribosomal S6 kinase (RSK), the mitogen- and stress-activated kinase (MSK), the MAPK-interacting kinase (MNK), the MAPK-activated protein kinase 2/3 (MK2/3), and MK5 (also known as p38-regulated/activated protein kinase [PRAK]). These enzymes have diverse biological functions, including regulation of nucleosome and gene expression, mRNA stability and translation, and cell proliferation and survival. Here we review the mechanisms of MAPKAPK activation by the different MAPKs and discuss their physiological roles based on established substrates and recent discoveries. PMID:21372320
Analysis of miRNA expression profiles in melatonin-exposed GC-1 spg cell line.
Zhu, Xiaoling; Chen, Shuxiong; Jiang, Yanwen; Xu, Ying; Zhao, Yun; Chen, Lu; Li, Chunjin; Zhou, Xu
2018-02-05
Melatonin is an endocrine neurohormone secreted by pinealocytes in the pineal gland. It exerts diverse physiological effects, such as circadian rhythm regulator and antioxidant. However, the functional importance of melatonin in spermatogenesis regulation remains unclear. The objectives of this study are to: (1) detect melatonin affection on miRNA expression profiles in GC-1 spg cells by miRNA deep sequencing (DeepSeq) and (2) define melatonin affected miRNA-mRNA interactions and associated biological processes using bioinformatics analysis. GC-1 spg cells were cultured with melatonin (10 -7 M) for 24h. DeepSeq data were validated using quantitative real-time reverse transcription polymerase chain reaction analysis (qRT-PCR). A total of 176 miRNA expressions were found to be significantly different between two groups (fold change of >2 or <0.5 and FDR<0.05). Among these expressions, 171 were up-regulated, and 5 were down-regulated. Ontology analysis of biological processes of these targets indicated a variety of biological functions. Pathway analysis indicated that the predicted targets were involved in cancers, apoptosis and signaling pathways, such as VEGF, TNF, Ras and Notch. Results implicated that melatonin could regulate the expression of miRNA to perform its physiological effects in GC-1 spg cells. These results should be useful to investigate the biological function of miRNAs regulated by melatonin in spermatogenesis and testicular germ cell tumor. Copyright © 2017 Elsevier B.V. All rights reserved.
Seino, Susumu
2003-01-01
K(ATP) channels are present in pancreatic and extrapancreatic tissues such as heart and smooth muscle, and display diverse molecular composition. They contain two different structural subunits: an inwardly rectifying potassium channel subunit (Kir6.x) and a sulfonylurea receptor (SURX). Recent studies on genetically engineered Kir6.2 knockout mice have provided a better understanding of the physiological and pathophysiological roles of Kir6.2-containing K(ATP) channels. Kir6.2/SUR1 has a pivotal role in pancreatic insulin secretion. Kir6.2/SUR2A mediates the effects of K(ATP) channels openers on cardiac excitability and contractility and contributes to ischemic preconditioning. However, controversy remains on the physiological properties of the K(ATP) channels in vascular smooth muscle cells. Kir6.1 knockout mice exhibit sudden cardiac death due to cardiac ischemia, indicating that Kir6.1 rather than Kir6.2 is critical in the regulation of vascular tone. This article summarizes current understanding of the physiology and pathophysiology of Kir6.1- and Kir6.2-containing K(ATP) channels.
Brennan, Reid S; Galvez, Fernando; Whitehead, Andrew
2015-04-15
The killifish Fundulus heteroclitus is an estuarine species with broad physiological plasticity, enabling acclimation to diverse stressors. Previous work suggests that freshwater populations expanded their physiology to accommodate low salinity environments; however, it is unknown whether this compromises their tolerance to high salinity. We used a comparative approach to investigate the mechanisms of a derived freshwater phenotype and the fate of an ancestral euryhaline phenotype after invasion of a freshwater environment. We compared physiological and transcriptomic responses to high- and low-salinity stress in fresh and brackish water populations and found an enhanced plasticity to low salinity in the freshwater population coupled with a reduced ability to acclimate to high salinity. Transcriptomic data identified genes with a conserved common response, a conserved salinity-dependent response and responses associated with population divergence. Conserved common acclimation responses revealed stress responses and alterations in cell-cycle regulation as important mechanisms in the general osmotic response. Salinity-specific responses included the regulation of genes involved in ion transport, intracellular calcium, energetic processes and cellular remodeling. Genes diverged between populations were primarily those showing salinity-specific expression and included those regulating polyamine homeostasis and the cell cycle. Additionally, when populations were matched with their native salinity, expression patterns were consistent with the concept of 'transcriptomic resilience', suggesting local adaptation. These findings provide insight into the fate of a plastic phenotype after a shift in environmental salinity and help to reveal mechanisms allowing for euryhalinity. © 2015. Published by The Company of Biologists Ltd.
A Potassium-Dependent Oxygen Sensing Pathway Regulates Plant Root Hydraulics.
Shahzad, Zaigham; Canut, Matthieu; Tournaire-Roux, Colette; Martinière, Alexandre; Boursiac, Yann; Loudet, Olivier; Maurel, Christophe
2016-09-22
Aerobic organisms survive low oxygen (O2) through activation of diverse molecular, metabolic, and physiological responses. In most plants, root water permeability (in other words, hydraulic conductivity, Lpr) is downregulated under O2 deficiency. Here, we used a quantitative genetics approach in Arabidopsis to clone Hydraulic Conductivity of Root 1 (HCR1), a Raf-like MAPKKK that negatively controls Lpr. HCR1 accumulates and is functional under combined O2 limitation and potassium (K(+)) sufficiency. HCR1 regulates Lpr and hypoxia responsive genes, through the control of RAP2.12, a key transcriptional regulator of the core anaerobic response. A substantial variation of HCR1 in regulating Lpr is observed at the Arabidopsis species level. Thus, by combinatorially integrating two soil signals, K(+) and O2 availability, HCR1 modulates the resilience of plants to multiple flooding scenarios. Copyright © 2016 Elsevier Inc. All rights reserved.
A Pivotal Role of DELLAs in Regulating Multiple Hormone Signals.
Davière, Jean-Michel; Achard, Patrick
2016-01-04
Plant phenotypic plasticity is controlled by diverse hormone pathways, which integrate and convey information from multiple developmental and environmental signals. Moreover, in plants many processes such as growth, development, and defense are regulated in similar ways by multiple hormones. Among them, gibberellins (GAs) are phytohormones with pleiotropic actions, regulating various growth processes throughout the plant life cycle. Previous work has revealed extensive interplay between GAs and other hormones, but the molecular mechanism became apparent only recently. Molecular and physiological studies have demonstrated that DELLA proteins, considered as master negative regulators of GA signaling, integrate multiple hormone signaling pathways through physical interactions with transcription factors or regulatory proteins from different families. In this review, we summarize the latest progress in GA signaling and its direct crosstalk with the main phytohormone signaling, emphasizing the multifaceted role of DELLA proteins with key components of major hormone signaling pathways. Copyright © 2016 The Author. Published by Elsevier Inc. All rights reserved.
Ishii, Genichiro; Aoyagi, Kazuhiko; Sasaki, Hiroki; Ochiai, Atsushi
2015-01-01
Background Fibroblasts are the principal stromal cells that exist in whole organs and play vital roles in many biological processes. Although the functional diversity of fibroblasts has been estimated, a comprehensive analysis of fibroblasts from the whole body has not been performed and their transcriptional diversity has not been sufficiently explored. The aim of this study was to elucidate the transcriptional diversity of human fibroblasts within the whole body. Methods Global gene expression analysis was performed on 63 human primary fibroblasts from 13 organs. Of these, 32 fibroblasts from gastrointestinal organs (gastrointestinal fibroblasts: GIFs) were obtained from a pair of 2 anatomical sites: the submucosal layer (submucosal fibroblasts: SMFs) and the subperitoneal layer (subperitoneal fibroblasts: SPFs). Using hierarchical clustering analysis, we elucidated identifiable subgroups of fibroblasts and analyzed the transcriptional character of each subgroup. Results In unsupervised clustering, 2 major clusters that separate GIFs and non-GIFs were observed. Organ- and anatomical site-dependent clusters within GIFs were also observed. The signature genes that discriminated GIFs from non-GIFs, SMFs from SPFs, and the fibroblasts of one organ from another organ consisted of genes associated with transcriptional regulation, signaling ligands, and extracellular matrix remodeling. Conclusions GIFs are characteristic fibroblasts with specific gene expressions from transcriptional regulation, signaling ligands, and extracellular matrix remodeling related genes. In addition, the anatomical site- and organ-dependent diversity of GIFs was also discovered. These features of GIFs contribute to their specific physiological function and homeostatic maintenance, and create a functional diversity of the gastrointestinal tract. PMID:26046848
Dexter, Franklin; Epstein, Richard H; Thenuwara, Kokila; Lubarsky, David A
2017-11-22
Multiple previous studies have shown that having a large diversity of procedures has a substantial impact on quality management of hospital surgical suites. At hospitals with substantial diversity, unless sophisticated statistical methods suitable for rare events are used, anesthesiologists working in surgical suites will have inaccurate predictions of surgical blood usage, case durations, cost accounting and price transparency, times remaining in late running cases, and use of intraoperative equipment. What is unknown is whether large diversity is a feature of only a few very unique set of hospitals nationwide (eg, the largest hospitals in each state or province). The 2013 United States Nationwide Readmissions Database was used to study heterogeneity among 1981 hospitals in their diversities of physiologically complex surgical procedures (ie, the procedure codes). The diversity of surgical procedures performed at each hospital was quantified using a summary measure, the number of different physiologically complex surgical procedures commonly performed at the hospital (ie, 1/Herfindahl). A total of 53.9% of all hospitals commonly performed <10 physiologically complex procedures (lower 99% confidence limit [CL], 51.3%). A total of 14.2% (lower 99% CL, 12.4%) of hospitals had >3-fold larger diversity (ie, >30 commonly performed physiologically complex procedures). Larger hospitals had greater diversity than the small- and medium-sized hospitals (P < .0001). Teaching hospitals had greater diversity than did the rural and urban nonteaching hospitals (P < .0001). A total of 80.0% of the 170 large teaching hospitals commonly performed >30 procedures (lower 99% CL, 71.9% of hospitals). However, there was considerable variability among the large teaching hospitals in their diversity (interquartile range of the numbers of commonly performed physiologically complex procedures = 19.3; lower 99% CL, 12.8 procedures). The diversity of procedures represents a substantive differentiator among hospitals. Thus, the usefulness of statistical methods for operating room management should be expected to be heterogeneous among hospitals. Our results also show that "large teaching hospital" alone is an insufficient description for accurate prediction of the extent to which a hospital sustains the operational and financial consequences of performing a wide diversity of surgical procedures. Future research can evaluate the extent to which hospitals with very large diversity are indispensable in their catchment area.
Wu, Long-Jun; Sweet, Tara-Beth
2010-01-01
Transient receptor potential (TRP) channels are a large family of ion channel proteins, surpassed in number in mammals only by voltage-gated potassium channels. TRP channels are activated and regulated through strikingly diverse mechanisms, making them suitable candidates for cellular sensors. They respond to environmental stimuli such as temperature, pH, osmolarity, pheromones, taste, and plant compounds, and intracellular stimuli such as Ca2+ and phosphatidylinositol signal transduction pathways. However, it is still largely unknown how TRP channels are activated in vivo. Despite the uncertainties, emerging evidence using TRP channel knockout mice indicates that these channels have broad function in physiology. Here we review the recent progress on the physiology, pharmacology and pathophysiological function of mammalian TRP channels. PMID:20716668
Belle, Jad I; Nijnik, Anastasia
2014-05-01
Posttranslational modifications of histone H2A through the attachment of ubiquitin or poly-ubiquitin conjugates are common in mammalian genomes and play an important role in the regulation of chromatin structure, gene expression, and DNA repair. Histone H2A deubiquitinases (H2A-DUBs) are a group of structurally diverse enzymes that catalyze the removal ubiquitin from histone H2A. In this review we provide a concise summary of the mechanisms that mediate histone H2A ubiquitination in mammalian cells, and review our current knowledge of mammalian H2A-DUBs, their biochemical activities, and recent developments in our understanding of their functions in mammalian physiology. Copyright © 2014 Elsevier Ltd. All rights reserved.
Functional assembly of Kv7.1/Kv7.5 channels with emerging properties on vascular muscle physiology.
Oliveras, Anna; Roura-Ferrer, Meritxell; Solé, Laura; de la Cruz, Alicia; Prieto, Angela; Etxebarria, Ainhoa; Manils, Joan; Morales-Cano, Daniel; Condom, Enric; Soler, Concepció; Cogolludo, Angel; Valenzuela, Carmen; Villarroel, Alvaro; Comes, Núria; Felipe, Antonio
2014-07-01
Voltage-dependent K(+) (Kv) channels from the Kv7 family are expressed in blood vessels and contribute to cardiovascular physiology. Although Kv7 channel blockers trigger muscle contractions, Kv7 activators act as vasorelaxants. Kv7.1 and Kv7.5 are expressed in many vessels. Kv7.1 is under intense investigation because Kv7.1 blockers fail to modulate smooth muscle reactivity. In this study, we analyzed whether Kv7.1 and Kv7.5 may form functional heterotetrameric channels increasing the channel diversity in vascular smooth muscles. Kv7.1 and Kv7.5 currents elicited in arterial myocytes, oocyte, and mammalian expression systems suggest the formation of heterotetrameric complexes. Kv7.1/Kv7.5 heteromers, exhibiting different pharmacological characteristics, participate in the arterial tone. Kv7.1/Kv7.5 associations were confirmed by coimmunoprecipitation, fluorescence resonance energy transfer, and fluorescence recovery after photobleaching experiments. Kv7.1/Kv7.5 heterotetramers were highly retained at the endoplasmic reticulum. Studies in HEK-293 cells, heart, brain, and smooth and skeletal muscles demonstrated that the predominant presence of Kv7.5 stimulates release of Kv7.1/Kv7.5 oligomers out of lipid raft microdomains. Electrophysiological studies supported that KCNE1 and KCNE3 regulatory subunits further increased the channel diversity. Finally, the analysis of rat isolated myocytes and human blood vessels demonstrated that Kv7.1 and Kv7.5 exhibited a differential expression, which may lead to channel diversity. Kv7.1 and Kv7.5 form heterotetrameric channels increasing the diversity of structures which fine-tune blood vessel reactivity. Because the lipid raft localization of ion channels is crucial for cardiovascular physiology, Kv7.1/Kv7.5 heteromers provide efficient spatial and temporal regulation of smooth muscle function. Our results shed light on the debate about the contribution of Kv7 channels to vasoconstriction and hypertension. © 2014 American Heart Association, Inc.
Diverse functions of 24(S)-hydroxycholesterol in the brain.
Noguchi, Noriko; Saito, Yoshiro; Urano, Yasuomi
2014-04-11
24(S)-hydroxycholesterol (24S-OHC) which is enzymatically produced in the brain plays important physiological roles in maintaining brain cholesterol homeostasis. We found that 24S-OHC at sub-lethal concentrations down-regulated amyloid precursor protein (APP) trafficking via enhancement of the complex formation of APP with up-regulated glucose-regulated protein 78, an endoplasmic reticulum chaperone. In accordance with this mechanism, 24S-OHC suppressed amyloid-β production in human neuroblastoma SH-SY5Y cells. Furthermore, 24S-OHC at sub-lethal concentrations induced adaptive responses via transcriptional activation of the liver X receptor signaling pathway, thereby protecting neuronal cells against the forthcoming oxidative stress induced by 7-ketocholesterol. On the other hand, we found that high concentrations of 24S-OHC induced apoptosis in T-lymphoma Jurkat cells which endogenously expressed caspase-8, and induced necroptosis - a form of programmed necrosis - in neuronal SH-SY5Y cells which expressed no caspase-8. In this Article, we show the diverse functions of 24S-OHC and consider the possible importance of controlling 24S-OHC levels in the brain for preventing neurodegenerative diseases. Copyright © 2014 Elsevier Inc. All rights reserved.
The Impact of Protein Phosphorylation on Chlamydial Physiology
Claywell, Ja E.; Matschke, Lea M.; Fisher, Derek J.
2016-01-01
Chlamydia are Gram negative bacterial pathogens responsible for disease in humans and economically important domesticated animals. As obligate intracellular bacteria, they must gain entry into a host cell where they propagate within a parasitophorous organelle that serves as an interactive interface between the bacterium and the host. Nutrient acquisition, growth, and evasion of host defense mechanisms occur from this location. In addition to these cellular and bacterial dynamics, Chlamydia differentiate between two morphologically distinct forms, the elementary body and reticulate body, that are optimized for either extracellular or intracellular survival, respectively. The mechanisms regulating and mediating these diverse physiological events remain largely unknown. Reversible phosphorylation, including classical two-component signaling systems, partner switching mechanisms, and the more recently appreciated bacterial Ser/Thr/Tyr kinases and phosphatases, has gained increasing attention for its role in regulating important physiological processes in bacteria including metabolism, development, and virulence. Phosphorylation modulates these events via rapid and reversible modification of protein substrates leading to changes in enzyme activity, protein oligomerization, cell signaling, and protein localization. The characterization of several conserved chlamydial protein kinases and phosphatases along with phosphoproteome analysis suggest that Chlamydia are capable of global and growth stage-specific protein phosphorylation. This mini review will highlight the current knowledge of protein phosphorylation in Chlamydia and its potential role in chlamydial physiology and, consequently, virulence. Comparisons with other minimal genome intracellular bacterial pathogens also will be addressed with the aim of illustrating the importance of this understudied regulatory mechanism on pathogenesis and the principle questions that remain unanswered. PMID:28066729
Newton, Fay G.; zur Lage, Petra I.; Karak, Somdatta; Moore, Daniel J.; Göpfert, Martin C.; Jarman, Andrew P.
2012-01-01
Summary Cilia have evolved hugely diverse structures and functions to participate in a wide variety of developmental and physiological processes. Ciliary specialization requires differences in gene expression, but few transcription factors are known to regulate this, and their molecular function is unclear. Here, we show that the Drosophila Forkhead box (Fox) gene, fd3F, is required for specialization of the mechanosensory cilium of chordotonal (Ch) neurons. fd3F regulates genes for Ch-specific axonemal dyneins and TRPV ion channels, which are required for sensory transduction, and retrograde transport genes, which are required to differentiate their distinct motile and sensory ciliary zones. fd3F is reminiscent of vertebrate Foxj1, a motile cilia regulator, but fd3F regulates motility genes as part of a broader sensory regulation program. Fd3F cooperates with the pan-ciliary transcription factor, Rfx, to regulate its targets directly. This illuminates pathways involved in ciliary specialization and the molecular mechanism of transcription factors that regulate them. PMID:22698283
EZH2 in Cancer Progression and Potential Application in Cancer Therapy: A Friend or Foe?
Yan, Ke-Sin; Lin, Chia-Yuan; Liao, Tan-Wei; Peng, Cheng-Ming; Lee, Shou-Chun; Liu, Yi-Jui; Chan, Wing P.; Chou, Ruey-Hwang
2017-01-01
Enhancer of zeste homolog 2 (EZH2), a histone methyltransferase, catalyzes tri-methylation of histone H3 at Lys 27 (H3K27me3) to regulate gene expression through epigenetic machinery. EZH2 functions as a double-facet molecule in regulation of gene expression via repression or activation mechanisms, depending on the different cellular contexts. EZH2 interacts with both histone and non-histone proteins to modulate diverse physiological functions including cancer progression and malignancy. In this review article, we focused on the updated information regarding microRNAs (miRNAs) and long non coding RNAs (lncRNAs) in regulation of EZH2, the oncogenic and tumor suppressive roles of EZH2 in cancer progression and malignancy, as well as current pre-clinical and clinical trials of EZH2 inhibitors. PMID:28561778
Hypothalamic Leptin and Ghrelin Signaling as Targets for Improvement in Metabolic Control.
Frago, Laura M; Chowen, Julie A
2015-01-01
Metabolic homeostasis requires a tight balance between energy intake and energy expenditure; hence, the physiological circuits implicated in the regulation of energy metabolism must be able to quickly adjust to changes in either side of the equation. Circulating orexigenic and anorexigenic factors, including ghrelin and leptin, are produced in the gastrointestinal tract and adipose tissue, respectively, in relation to an individual's nutritional status. These signals interact with central metabolic circuits to regulate the production and secretion of neuropeptides implicated in the control of appetite and energy expenditure. However, this physiological equilibrium can be perturbed by diverse processes, with weight gain occurring due to a positive energy balance and weight loss taking place if there is a negative energy balance. If a situation of positive energy balance continues for an extended period of time, excess weight is accumulated and this can eventually result in obesity. Obesity has become one of the most important health problems facing the industrialized world, indicating that metabolic equilibrium is frequently disrupted. Understanding how and why this occurs will allow new therapeutical targets to be identified.
Inhibition of pectin methyl esterase activity by green tea catechins.
Lewis, Kristin C; Selzer, Tzvia; Shahar, Chen; Udi, Yael; Tworowski, Dmitry; Sagi, Irit
2008-10-01
Pectin methyl esterases (PMEs) and their endogenous inhibitors are involved in the regulation of many processes in plant physiology, ranging from tissue growth and fruit ripening to parasitic plant haustorial formation and host invasion. Thus, control of PME activity is critical for enhancing our understanding of plant physiological processes and regulation. Here, we report on the identification of epigallocatechin gallate (EGCG), a green tea component, as a natural inhibitor for pectin methyl esterases. In a gel assay for PME activity, EGCG blocked esterase activity of pure PME as well as PME extracts from citrus and from parasitic plants. Fluorometric tests were used to determine the IC50 for a synthetic substrate. Molecular docking analysis of PME and EGCG suggests close interaction of EGCG with the catalytic cleft of PME. Inhibition of PME by the green tea compound, EGCG, provides the means to study the diverse roles of PMEs in cell wall metabolism and plant development. In addition, this study introduces the use of EGCG as natural product to be used in the food industry and agriculture.
Hou, Qiu-Li; Chen, Er-Hu; Jiang, Hong-Bo; Yu, Shuai-Feng; Yang, Pei-Jin; Liu, Xiao-Qiang; Park, Yoonseong; Wang, Jin-Jun; Smagghe, Guy
2018-01-01
Corazonin (Crz) is a widely distributed neuropeptide (or neurohormone) in insects with diverse physiological functions. The present study aimed to reveal the functions of Crz and its receptor (CrzR) in the regulation of sexual behavior and fertility in male Bactrocera dorsalis. Tissue-specific expression analyses showed that the BdCrz transcript was most abundant in the central nervous system (CNS), and the BdCrzR transcript was most abundant in both the fat body and CNS. Immunochemical localization confirmed that three pairs of Crz-immunoreactive neurons are located in the dorsolateral protocerebrum region of male adult brain. Importantly, RNAi-mediated Crz knockdown lengthened mating duration in males, and knockdown of Crz or CrzR strongly decreased male fertility in the following 3 days, while the courtship behavior and mating efficiency were not affected. The reduced number of sperm in the reproductive organs of mated females indicated that Crz knockdown in males reduced sperm transfer. The findings of this study indicate that Crz contributes to the reproductive physiology of the oriental fruit fly B. dorsalis by regulating sperm transfer in male adults.
Hou, Qiu-Li; Chen, Er-Hu; Jiang, Hong-Bo; Yu, Shuai-Feng; Yang, Pei-Jin; Liu, Xiao-Qiang; Park, Yoonseong; Wang, Jin-Jun; Smagghe, Guy
2018-01-01
Corazonin (Crz) is a widely distributed neuropeptide (or neurohormone) in insects with diverse physiological functions. The present study aimed to reveal the functions of Crz and its receptor (CrzR) in the regulation of sexual behavior and fertility in male Bactrocera dorsalis . Tissue-specific expression analyses showed that the BdCrz transcript was most abundant in the central nervous system (CNS), and the BdCrzR transcript was most abundant in both the fat body and CNS. Immunochemical localization confirmed that three pairs of Crz-immunoreactive neurons are located in the dorsolateral protocerebrum region of male adult brain. Importantly, RNAi-mediated Crz knockdown lengthened mating duration in males, and knockdown of Crz or CrzR strongly decreased male fertility in the following 3 days, while the courtship behavior and mating efficiency were not affected. The reduced number of sperm in the reproductive organs of mated females indicated that Crz knockdown in males reduced sperm transfer. The findings of this study indicate that Crz contributes to the reproductive physiology of the oriental fruit fly B. dorsalis by regulating sperm transfer in male adults.
Integrated regulation of PIKK-mediated stress responses by AAA+ proteins RUVBL1 and RUVBL2
Izumi, Natsuko; Yamashita, Akio; Ohno, Shigeo
2012-01-01
Proteins of the phosphatidylinositol 3-kinase-related protein kinase (PIKK) family are activated by various cellular stresses, including DNA damage, premature termination codon and nutritional status, and induce appropriate cellular responses. The importance of PIKK functions in the maintenance of genome integrity, accurate gene expression and the proper control of cell growth/proliferation is established. Recently, ATPase associated diverse cellular activities (AAA+) proteins RUVBL1 and RUVBL2 (RUVBL1/2) have been shown to be common regulators of PIKKs. The RUVBL1/2 complex regulates PIKK-mediated stress responses through physical interactions with PIKKs and by controlling PIKK mRNA levels. In this review, the functions of PIKKs in stress responses are outlined and the physiological significance of the integrated regulation of PIKKs by the RUVBL1/2 complex is presented. We also discuss a putative “PIKK regulatory chaperone complex” including other PIKK regulators, Hsp90 and the Tel2 complex. PMID:22540023
NASA Astrophysics Data System (ADS)
Schneider, F. D.; Morsdorf, F.; Schmid, B.; Petchey, O. L.; Hueni, A.; Schimel, D.; Schaepman, M. E.
2016-12-01
Forest functional traits offer a mechanistic link between ecological processes and community structure and assembly rules. However, measuring functional traits of forests in a continuous and consistent way is particularly difficult due to the complexity of in-situ measurements and geo-referencing. New imaging spectroscopy measurements overcome these limitations allowing to map physiological traits on broad spatial scales. We mapped leaf chlorophyll, carotenoids and leaf water content over 900 ha of temperate mixed forest (Fig. 1a). The selected traits are functionally important because they are indicating the photosynthetic potential of trees, leaf longevity and protection, as well as tree water and drought stress. Spatially continuous measurements on the scale of individual tree crowns allowed to assess functional diversity patterns on a range of ecological extents. We used indexes of functional richness, divergence and evenness to map different aspects of diversity. Fig. 1b shows an example of physiological richness at an extent of 240 m radius. We compared physiological to morphological diversity patterns, derived based on plant area index, canopy height and foliage height diversity. Our results show that patterns of physiological and morphological diversity generally agree, independently measured by airborne imaging spectroscopy and airborne laser scanning, respectively. The occurrence of disturbance areas and mixtures of broadleaf and needle trees were the main drivers of the observed diversity patterns. Spatial patterns at varying extents and richness-area relationships indicated that environmental filtering is the predominant community assembly process. Our results demonstrate the potential for mapping physiological and morphological diversity in a temperate mixed forest between and within species on scales relevant to study community assembly and structure from space and test the corresponding measurement schemes.
A Proteomic Study of Brassinosteroid Response in Arabidopsis
Deng, Zhiping; Zhang, Xin; Tang, Wenqiang; Oses-Prieto, Juan A; Suzuki, Nagi; Gendron, Joshua M; Chen, Huanjing; Guan, Shenheng; Chalkley, Robert J.; Peterman, T. Kaye; Burlingame, Alma L.; Wang, Zhi-Yong
2010-01-01
Summary The plant steroid hormones brassinosteroids (BRs) play an important role in a wide range of developmental and physiological processes. How BR signaling regulates diverse processes remains unclear. To understand the molecular details of BR responses, we have performed a proteomic study of BR-regulated proteins in Arabidopsis using two-dimensional difference gel electrophoresis (2-D DIGE) coupled with liquid chromatography-tandem mass spectrometry (LC-MS/MS). We identified 42 BR-regulated proteins, which are predicted to play potential roles in BR regulation of specific cellular processes, such as signaling, cytoskeleton rearrangement, vesicle trafficking, and biosynthesis of hormones and vitamins. Analyses of the BR insensitive mutant bri1-116 and BR hypersensitive mutant bzr1-1D identified 5 proteins (PATL1, PATL2, THI1, AtMDAR3 and NADP-ME2) affected by both BR-treatment and in the mutants, suggesting their importance in BR action. Selected proteins were further studied using insertion knockout mutants or immunoblotting. Interestingly, about 80% of the BR-responsive proteins were not identified in previous microarray studies, and direct comparison between protein- and RNA changes in BR mutants revealed a very weak correlation. RT-PCR analysis of selected genes revealed gene-specific kinetic relationships between RNA and protein responses. Furthermore, BR-regulated posttranslational modification of BiP2 protein was detected as spot shifts in 2-D DIGE. This study provides novel insights into the molecular networks that link BR signaling to specific cellular and physiological responses. PMID:17848588
NASA Technical Reports Server (NTRS)
Wilson, James W.; Ramamurthy, Rajee; Porwollik, Steffen; McClelland, Michael; Hammond, Timothy; Allen, Pat; Ott, C. Mark; Pierson, Duane L.; Nickerson, Cheryl A.
2002-01-01
The low-shear environment of optimized rotation suspension culture allows both eukaryotic and prokaryotic cells to assume physiologically relevant phenotypes that have led to significant advances in fundamental investigations of medical and biological importance. This culture environment has also been used to model microgravity for ground-based studies regarding the impact of space flight on eukaryotic and prokaryotic physiology. We have previously demonstrated that low-shear modeled microgravity (LSMMG) under optimized rotation suspension culture is a novel environmental signal that regulates the virulence, stress resistance, and protein expression levels of Salmonella enterica serovar Typhimurium. However, the mechanisms used by the cells of any species, including Salmonella, to sense and respond to LSMMG and identities of the genes involved are unknown. In this study, we used DNA microarrays to elucidate the global transcriptional response of Salmonella to LSMMG. When compared with identical growth conditions under normal gravity (1 x g), LSMMG differentially regulated the expression of 163 genes distributed throughout the chromosome, representing functionally diverse groups including transcriptional regulators, virulence factors, lipopolysaccharide biosynthetic enzymes, iron-utilization enzymes, and proteins of unknown function. Many of the LSMMG-regulated genes were organized in clusters or operons. The microarray results were further validated by RT-PCR and phenotypic analyses, and they indicate that the ferric uptake regulator is involved in the LSMMG response. The results provide important insight about the Salmonella LSMMG response and could provide clues for the functioning of known Salmonella virulence systems or the identification of uncharacterized bacterial virulence strategies.
Stress-induced O-GlcNAcylation: an adaptive process of injured cells.
Martinez, Marissa R; Dias, Thiago Braido; Natov, Peter S; Zachara, Natasha E
2017-02-08
In the 30 years, since the discovery of nucleocytoplasmic glycosylation, O -GlcNAc has been implicated in regulating cellular processes as diverse as protein folding, localization, degradation, activity, post-translational modifications, and interactions. The cell co-ordinates these molecular events, on thousands of cellular proteins, in concert with environmental and physiological cues to fine-tune epigenetics, transcription, translation, signal transduction, cell cycle, and metabolism. The cellular stress response is no exception: diverse forms of injury result in dynamic changes to the O -GlcNAc subproteome that promote survival. In this review, we discuss the biosynthesis of O -GlcNAc, the mechanisms by which O -GlcNAc promotes cytoprotection, and the clinical significance of these data. © 2017 The Author(s); published by Portland Press Limited on behalf of the Biochemical Society.
Dissecting the hypothalamic pathways that underlie innate behaviors.
Zha, Xi; Xu, Xiaohong
2015-12-01
Many complex behaviors that do not require learning are displayed and are termed innate. Although traditionally the subject matter of ethology, innate behaviors offer a unique entry point for neuroscientists to dissect the physiological mechanisms governing complex behaviors. Since the last century, converging evidence has implicated the hypothalamus as the central brain area that controls innate behaviors. Recent studies using cutting-edge tools have revealed that genetically-defined populations of neurons residing in distinct hypothalamic nuclei and their associated neural pathways regulate the initiation and maintenance of diverse behaviors including feeding, sleep, aggression, and parental care. Here, we review the newly-defined hypothalamic pathways that regulate each innate behavior. In addition, emerging general principles of the neural control of complex behaviors are discussed.
Transcription Regulation in Archaea
Gehring, Alexandra M.; Walker, Julie E.
2016-01-01
The known diversity of metabolic strategies and physiological adaptations of archaeal species to extreme environments is extraordinary. Accurate and responsive mechanisms to ensure that gene expression patterns match the needs of the cell necessitate regulatory strategies that control the activities and output of the archaeal transcription apparatus. Archaea are reliant on a single RNA polymerase for all transcription, and many of the known regulatory mechanisms employed for archaeal transcription mimic strategies also employed for eukaryotic and bacterial species. Novel mechanisms of transcription regulation have become apparent by increasingly sophisticated in vivo and in vitro investigations of archaeal species. This review emphasizes recent progress in understanding archaeal transcription regulatory mechanisms and highlights insights gained from studies of the influence of archaeal chromatin on transcription. PMID:27137495
Chemical Probes of Histone Lysine Methyltransferases
2015-01-01
Growing evidence suggests that histone methyltransferases (HMTs, also known as protein methyltransferases (PMTs)) play an important role in diverse biological processes and human diseases by regulating gene expression and the chromatin state. Therefore, HMTs have been increasingly recognized by the biomedical community as a class of potential therapeutic targets. High quality chemical probes of HMTs, as tools for deciphering their physiological functions and roles in human diseases and testing therapeutic hypotheses, are critical for advancing this promising field. In this review, we focus on the discovery, characterization, and biological applications of chemical probes for HMTs. PMID:25423077
Mitochondrial Ubiquitin Ligase in Cardiovascular Disorders.
Yu, Tao; Zhang, Yinfeng; Li, Pei-Feng
2017-01-01
Mitochondrial dynamics play a critical role in cellular responses and physiological process. However, their dysregulation leads to a functional degradation, which results in a diverse array of common disorders, including cardiovascular disease. In this background, the mitochondrial ubiquitin ligase has been attracting substantial research interest in recent years. Mitochondrial ubiquitin ligase is localized in the mitochondrial outer membrane, where it plays an essential role in the regulation of mitochondrial dynamics and apoptosis. In this chapter, we provide a comprehensive overview of the functions of mitochondrial ubiquitin ligases identified hitherto, with a special focus on cardiovascular disorders.
de Sousa, Karina Pires; Atouguia, Jorge; Silva, Marcelo Sousa
2010-05-01
Metalloproteinases (MMP) belong to the family of cation dependent endopeptidases that degrade matrices at physiological pH and to cleave extracellular matrix proteins. They play an important role in diverse physiological and pathological processes; not only there diverse types of MMP differ in structure and functionally, but also their enzymatic activity is regulated at multiple levels. Trying to shed some light over the processes that govern the pathology of African Trypanosomiasis, the aim of the present study was to examine the proteolytic activity of the crude trypanosome protein extract obtained from the bloodstream forms of Trypanosoma brucei brucei parasites. We hereby report the partial biochemical characterization of a neutral Trypanosoma brucei-metalloproteinase that displays marked proteolytic activities on gelatin and casein, with a molecular mass of approximately 40 kDa, whose activity is strongly dependent of pH and temperature. Furthermore, we show that this activity can be inhibited by classical MMP inhibitors such as EDTA, EGTA, phenantroline, and also by tetracycline and derivatives. This study has a relevant role in the search for new therapeutical targets, for the use of metalloproteinases inhibitors as treatment strategies, or as enhancement to trypanocidal drugs used in the treatment of the disease.
Global transcriptome analysis of eukaryotic genes affected by gromwell extract.
Bang, Soohyun; Lee, Dohyun; Kim, Hanhe; Park, Jiyong; Bahn, Yong-Sun
2014-02-01
Gromwell is known to have diverse pharmacological, cosmetic and nutritional benefits for humans. Nevertheless, the biological influence of gromwell extract (GE) on the general physiology of eukaryotic cells remains unknown. In this study a global transcriptome analysis was performed to identify genes affected by the addition of GE with Cryptococcus neoformans as the model system. In response to GE treatment, genes involved in signal transduction were immediately regulated, and the evolutionarily conserved sets of genes involved in the core cellular functions, including DNA replication, RNA transcription/processing and protein translation/processing, were generally up-regulated. In contrast, a number of genes involved in carbohydrate metabolism and transport, inorganic ion transport and metabolism, post-translational modification/protein turnover/chaperone functions and signal transduction were down-regulated. Among the GE-responsive genes that are also evolutionarily conserved in the human genome, the expression patterns of YSA1, TPO2, CFO1 and PZF1 were confirmed by northern blot analysis. Based on the functional characterization of some GE-responsive genes, it was found that GE treatment may promote cellular tolerance against a variety of environmental stresses in eukaryotes. GE treatment affects the expression levels of a significant portion of the Cryptococcus genome, implying that GE significantly affects the general physiology of eukaryotic cells. © 2013 Society of Chemical Industry.
Novel Regulatory Small RNAs in Streptococcus pyogenes
Tesorero, Rafael A.; Yu, Ning; Wright, Jordan O.; Svencionis, Juan P.; Cheng, Qiang; Kim, Jeong-Ho; Cho, Kyu Hong
2013-01-01
Streptococcus pyogenes (Group A Streptococcus or GAS) is a Gram-positive bacterial pathogen that has shown complex modes of regulation of its virulence factors to cause diverse diseases. Bacterial small RNAs are regarded as novel widespread regulators of gene expression in response to environmental signals. Recent studies have revealed that several small RNAs (sRNAs) have an important role in S. pyogenes physiology and pathogenesis by regulating gene expression at the translational level. To search for new sRNAs in S. pyogenes, we performed a genomewide analysis through computational prediction followed by experimental verification. To overcome the limitation of low accuracy in computational prediction, we employed a combination of three different computational algorithms (sRNAPredict, eQRNA and RNAz). A total of 45 candidates were chosen based on the computational analysis, and their transcription was analyzed by reverse-transcriptase PCR and Northern blot. Through this process, we discovered 7 putative novel trans-acting sRNAs. Their abundance varied between different growth phases, suggesting that their expression is influenced by environmental or internal signals. Further, to screen target mRNAs of an sRNA, we employed differential RNA sequencing analysis. This study provides a significant resource for future study of small RNAs and their roles in physiology and pathogenesis of S. pyogenes. PMID:23762235
Coping with Stresses: Roles of Calcium- and Calcium/Calmodulin-Regulated Gene Expression[W][OA
Reddy, Anireddy S.N.; Ali, Gul S.; Celesnik, Helena; Day, Irene S.
2011-01-01
Abiotic and biotic stresses are major limiting factors of crop yields and cause billions of dollars of losses annually around the world. It is hoped that understanding at the molecular level how plants respond to adverse conditions and adapt to a changing environment will help in developing plants that can better cope with stresses. Acquisition of stress tolerance requires orchestration of a multitude of biochemical and physiological changes, and most of these depend on changes in gene expression. Research during the last two decades has established that different stresses cause signal-specific changes in cellular Ca2+ level, which functions as a messenger in modulating diverse physiological processes that are important for stress adaptation. In recent years, many Ca2+ and Ca2+/calmodulin (CaM) binding transcription factors (TFs) have been identified in plants. Functional analyses of some of these TFs indicate that they play key roles in stress signaling pathways. Here, we review recent progress in this area with emphasis on the roles of Ca2+- and Ca2+/CaM-regulated transcription in stress responses. We will discuss emerging paradigms in the field, highlight the areas that need further investigation, and present some promising novel high-throughput tools to address Ca2+-regulated transcriptional networks. PMID:21642548
The role of alternative splicing coupled to nonsense-mediated mRNA decay in human disease.
da Costa, Paulo J; Menezes, Juliane; Romão, Luísa
2017-10-01
Alternative pre-mRNA splicing (AS) affects gene expression as it generates proteome diversity. Nonsense-mediated mRNA decay (NMD) is a surveillance pathway that recognizes and selectively degrades mRNAs carrying premature translation-termination codons (PTCs), preventing the production of truncated proteins that could result in disease. Several studies have also implicated NMD in the regulation of steady-state levels of physiological mRNAs. In addition, it is known that several regulated AS events do not lead to generation of protein products, as they lead to transcripts that carry PTCs and thus, they are committed to NMD. Indeed, an estimated one-third of naturally occurring, alternatively spliced mRNAs is targeted for NMD, being AS coupled to NMD (AS-NMD) an efficient strategy to regulate gene expression. In this review, we will focus on how AS mechanism operates and how can be coupled to NMD to fine-tune gene expression levels. Furthermore, we will demonstrate the physiological significance of the interplay among AS and NMD in human disease, such as cancer and neurological disorders. The understanding of how AS-NMD orchestrates expression of vital genes is of utmost importance for the advance in diagnosis, prognosis and treatment of many human disorders. Copyright © 2017 Elsevier Ltd. All rights reserved.
The Molecular Ecophysiology of Programmed Cell Death in Marine Phytoplankton
NASA Astrophysics Data System (ADS)
Bidle, Kay D.
2015-01-01
Planktonic, prokaryotic, and eukaryotic photoautotrophs (phytoplankton) share a diverse and ancient evolutionary history, during which time they have played key roles in regulating marine food webs, biogeochemical cycles, and Earth's climate. Because phytoplankton represent the basis of marine ecosystems, the manner in which they die critically determines the flow and fate of photosynthetically fixed organic matter (and associated elements), ultimately constraining upper-ocean biogeochemistry. Programmed cell death (PCD) and associated pathway genes, which are triggered by a variety of nutrient stressors and are employed by parasitic viruses, play an integral role in determining the cell fate of diverse photoautotrophs in the modern ocean. Indeed, these multifaceted death pathways continue to shape the success and evolutionary trajectory of diverse phytoplankton lineages at sea. Research over the past two decades has employed physiological, biochemical, and genetic techniques to provide a novel, comprehensive, mechanistic understanding of the factors controlling this key process. Here, I discuss the current understanding of the genetics, activation, and regulation of PCD pathways in marine model systems; how PCD evolved in unicellular photoautotrophs; how it mechanistically interfaces with viral infection pathways; how stress signals are sensed and transduced into cellular responses; and how novel molecular and biochemical tools are revealing the impact of PCD genes on the fate of natural phytoplankton assemblages.
ANF-RGC gene motif 669WTAPELL675 is vital for blood pressure regulation: Biochemical mechanism
Duda, Teresa; Pertzev, Alexandre; Sharma, Rameshwar K.
2013-01-01
ANF-RGC is the prototype membrane guanylate cyclase, both the receptor and the signal transducer of the hormones ANF and BNP. After binding them at the extracellular domain it, at its intracellular domain, signals activation of the C-terminal catalytic module and accelerates production of the second messenger, cyclic GMP. This, in turn, controls the physiological processes of blood pressure, cardiovascular function, and fluid secretion, and others: metabolic syndrome, obesity and apoptosis. What is the biochemical mechanism by which this single molecule controls these diverse processes, explicitly of the blood pressure regulation is the subject of the present study. In line with the concept that the structural modules of ANF-RGC are designed to respond to more than one, yet distinctive signals, the study demonstrates the construction of a novel ANF-RGC-In-gene-669WTAPELL675 mouse model. Through this model, the study establishes that 669WTAPELL675 is a vital ANF signal transducer motif of the guanylate cyclase. Its striking physiological features linked with their biochemistry are that (1) it controls the hormonally-dependent cyclic GMP production in the kidney and the adrenal gland; (3) its deletion causes hypertension, and (3) cardiac hypertrophy; and (4) these mice show higher levels of the plasma aldosterone. For the first time, a mere 7-amino acid encoded motif of the mouse gene has been directly linked with the physiological control of the blood pressure regulation, a detailed biochemistry of this linkage has been established and a model for this linkage has been offered. PMID:23464624
Attachment Status and Mother-Preschooler Parasympathetic Response to the Strange Situation Procedure
Smith, Justin D.; Woodhouse, Susan S.; Clark, Caron A. C.; Skowron, Elizabeth A.
2016-01-01
Background Early attachment relationships are important for children’s development of behavioral and physiological regulation strategies. Parasympathetic nervous system activity, indexed by respiratory sinus arrhythmia (RSA), is a key indicator of self-regulation, with links to numerous developmental outcomes. Attachment-related changes in and associations between mother and child RSA during the Strange Situation procedure (SSP) can elucidate individual differences in physiological response to stress that are important for understanding the development of and intervention for psychopathology. Methods A sample of 142 at-risk mothers and preschool-age children participated in the SSP and provided time-synchronized RSA data during the 7 episodes, which included 2 separations and 2 reunions. Attachment classifications were obtained using the Cassidy and Marvin (1992) coding system. Linear mixed-effects models were constructed to examine attachment-related change in RSA during the SSP and the concordance between mother and child RSA over time. Results Findings demonstrated attachment-related differences in children’s RSA. Secure children’s RSA was relatively stable over time, whereas insecure–avoidant children showed RSA increases during the first separation and insecure–resistant children’s RSA declined across the SSP. Mothers showed RSA withdrawal during separation regardless of child’s attachment classification. Mother–child RSA showed a positive concordance that was strongest in the insecure–resistant group, compared with the other groups. Conclusions Results support attachment theories concerning parasympathetic response to stress and the role of the mother–child relationship in physiological regulation. Our findings advance previous research by focusing on at-risk mother–preschooler dyads within diverse attachment classifications. PMID:26738633
Regulation of TRP channels by steroids: Implications in physiology and diseases.
Kumar, Ashutosh; Kumari, Shikha; Majhi, Rakesh Kumar; Swain, Nirlipta; Yadav, Manoj; Goswami, Chandan
2015-09-01
While effects of different steroids on the gene expression and regulation are well established, it is proven that steroids can also exert rapid non-genomic actions in several tissues and cells. In most cases, these non-genomic rapid effects of steroids are actually due to intracellular mobilization of Ca(2+)- and other ions suggesting that Ca(2+) channels are involved in such effects. Transient Receptor Potential (TRP) ion channels or TRPs are the largest group of non-selective and polymodal ion channels which cause Ca(2+)-influx in response to different physical and chemical stimuli. While non-genomic actions of different steroids on different ion channels have been established to some extent, involvement of TRPs in such functions is largely unexplored. In this review, we critically analyze the literature and summarize how different steroids as well as their metabolic precursors and derivatives can exert non-genomic effects by acting on different TRPs qualitatively and/or quantitatively. Such effects have physiological repercussion on systems such as in sperm cells, immune cells, bone cells, neuronal cells and many others. Different TRPs are also endogenously expressed in diverse steroid-producing tissues and thus may have importance in steroid synthesis as well, a process which is tightly controlled by the intracellular Ca(2+) concentrations. Tissue and cell-specific expression of TRP channels are also regulated by different steroids. Understanding of the crosstalk between TRP channels and different steroids may have strong significance in physiological, endocrinological and pharmacological context and in future these compounds can also be used as potential biomedicine. Copyright © 2014 Elsevier Inc. All rights reserved.
What is conservation physiology? Perspectives on an increasingly integrated and essential science†
Cooke, Steven J.; Sack, Lawren; Franklin, Craig E.; Farrell, Anthony P.; Beardall, John; Wikelski, Martin; Chown, Steven L.
2013-01-01
Globally, ecosystems and their constituent flora and fauna face the localized and broad-scale influence of human activities. Conservation practitioners and environmental managers struggle to identify and mitigate threats, reverse species declines, restore degraded ecosystems, and manage natural resources sustainably. Scientific research and evidence are increasingly regarded as the foundation for new regulations, conservation actions, and management interventions. Conservation biologists and managers have traditionally focused on the characteristics (e.g. abundance, structure, trends) of populations, species, communities, and ecosystems, and simple indicators of the responses to environmental perturbations and other human activities. However, an understanding of the specific mechanisms underlying conservation problems is becoming increasingly important for decision-making, in part because physiological tools and knowledge are especially useful for developing cause-and-effect relationships, and for identifying the optimal range of habitats and stressor thresholds for different organisms. When physiological knowledge is incorporated into ecological models, it can improve predictions of organism responses to environmental change and provide tools to support management decisions. Without such knowledge, we may be left with simple associations. ‘Conservation physiology’ has been defined previously with a focus on vertebrates, but here we redefine the concept universally, for application to the diversity of taxa from microbes to plants, to animals, and to natural resources. We also consider ‘physiology’ in the broadest possible terms; i.e. how an organism functions, and any associated mechanisms, from development to bioenergetics, to environmental interactions, through to fitness. Moreover, we consider conservation physiology to include a wide range of applications beyond assisting imperiled populations, and include, for example, the eradication of invasive species, refinement of resource management strategies to minimize impacts, and evaluation of restoration plans. This concept of conservation physiology emphasizes the basis, importance, and ecological relevance of physiological diversity at a variety of scales. Real advances in conservation and resource management require integration and inter-disciplinarity. Conservation physiology and its suite of tools and concepts is a key part of the evidence base needed to address pressing environmental challenges. PMID:27293585
Orexins and appetite regulation.
Rodgers, R J; Ishii, Y; Halford, J C G; Blundell, J E
2002-10-01
Initial research on the functional significance of two novel hypothalamic neuropeptides, orexin-A and orexin-B, suggested an important role in appetite regulation. Since then, however, these peptides have also been shown to influence a wide range of other physiological and behavioural processes. In this paper, we review the now quite extensive literature on orexins and appetite control, and consider their additional effects within this context. Although the evidence for orexin (particularly orexin-A and the orexin-1 receptor) involvement in many aspects of ingestive physiology and behaviour is incontrovertible, central administration of orexins is also associated with increased EEG arousal and wakefulness, locomotor activity and grooming, sympathetic and HPA activity, and pain thresholds. Since the orexin system is selectively activated by signals indicating severe nutritional depletion, it would be highly adaptive for a hungry animal not only to seek sustenance but also to remain fully alert to dangers in the environment. Crucial evidence indicates that orexin-A increases food intake by delaying the onset of a behaviourally normal satiety sequence. In contrast, a selective orexin-1 receptor antagonist (SB-334867) suppresses food intake and advances the onset of a normal satiety sequence. These data suggest that orexin-1 receptors mediate the episodic signalling of satiety and appear to bridge the transition from eating to resting in the rats' feeding-sleep cycle. The argument is developed that the diverse physiological and behavioural effects of orexins can best be understood in terms of an integrated set of reactions which function to rectify nutritional status without compromising personal survival. Indeed, many of the non-ingestive effects of orexin administration are identical to the cluster of active defences mediated via the lateral and dorsolateral columns of the midbrain periaqueductal gray matter, i.e., somatomotor activation, vigilance, tachycardia, hypertension and non-opioid analgesia. In our view, therefore, the LH orexin system is very well placed to orchestrate the diverse subsystems involved in foraging under potentially dangerous circumstances, i.e., finding and ingesting food without oneself becoming a meal for someone else.
di Pietro, Magali; Vialaret, Jérôme; Li, Guo-Wei; Hem, Sonia; Prado, Karine; Rossignol, Michel; Maurel, Christophe; Santoni, Véronique
2013-12-01
In plants, aquaporins play a crucial role in regulating root water transport in response to environmental and physiological cues. Controls achieved at the post-translational level are thought to be of critical importance for regulating aquaporin function. To investigate the general molecular mechanisms involved, we performed, using the model species Arabidopsis, a comprehensive proteomic analysis of root aquaporins in a large set of physiological contexts. We identified nine physiological treatments that modulate root hydraulics in time frames of minutes (NO and H2O2 treatments), hours (mannitol and NaCl treatments, exposure to darkness and reversal with sucrose, phosphate supply to phosphate-starved roots), or days (phosphate or nitrogen starvation). All treatments induced inhibition of root water transport except for sucrose supply to dark-grown plants and phosphate resupply to phosphate-starved plants, which had opposing effects. Using a robust label-free quantitative proteomic methodology, we identified 12 of 13 plasma membrane intrinsic protein (PIP) aquaporin isoforms, 4 of the 10 tonoplast intrinsic protein isoforms, and a diversity of post-translational modifications including phosphorylation, methylation, deamidation, and acetylation. A total of 55 aquaporin peptides displayed significant changes after treatments and enabled the identification of specific and as yet unknown patterns of response to stimuli. The data show that the regulation of PIP and tonoplast intrinsic protein abundance was involved in response to a few treatments (i.e. NaCl, NO, and nitrate starvation), whereas changes in the phosphorylation status of PIP aquaporins were positively correlated to changes in root hydraulic conductivity in the whole set of treatments. The identification of in vivo deamidated forms of aquaporins and their stimulus-induced changes in abundance may reflect a new mechanism of aquaporin regulation. The overall work provides deep insights into the in vivo post-translational events triggered by environmental constraints and their possible role in regulating plant water status.
Rottstock, Tanja; Joshi, Jasmin; Kummer, Volker; Fischer, Markus
2014-07-01
Fungal plant pathogens are common in natural communities where they affect plant physiology, plant survival, and biomass production. Conversely, pathogen transmission and infection may be regulated by plant community characteristics such as plant species diversity and functional composition that favor pathogen diversity through increases in host diversity while simultaneously reducing pathogen infection via increased variability in host density and spatial heterogeneity. Therefore, a comprehensive understanding of multi-host multi-pathogen interactions is of high significance in the context of biodiversity-ecosystem functioning. We investigated the relationship between plant diversity and aboveground obligate parasitic fungal pathogen ("pathogens" hereafter) diversity and infection in grasslands of a long-term, large-scale, biodiversity experiment with varying plant species (1-60 species) and plant functional group diversity (1-4 groups). To estimate pathogen infection of the plant communities, we visually assessed pathogen-group presence (i.e., rusts, powdery mildews, downy mildews, smuts, and leaf-spot diseases) and overall infection levels (combining incidence and severity of each pathogen group) in 82 experimental plots on all aboveground organs of all plant species per plot during four surveys in 2006. Pathogen diversity, assessed as the cumulative number of pathogen groups on all plant species per plot, increased log-linearly with plant species diversity. However, pathogen incidence and severity, and hence overall infection, decreased with increasing plant species diversity. In addition, co-infection of plant individuals by two or more pathogen groups was less likely with increasing plant community diversity. We conclude that plant community diversity promotes pathogen-community diversity while at the same time reducing pathogen infection levels of plant individuals.
Mechanically induced intercellular calcium communication in confined endothelial structures.
Junkin, Michael; Lu, Yi; Long, Juexuan; Deymier, Pierre A; Hoying, James B; Wong, Pak Kin
2013-03-01
Calcium signaling in the diverse vascular structures is regulated by a wide range of mechanical and biochemical factors to maintain essential physiological functions of the vasculature. To properly transmit information, the intercellular calcium communication mechanism must be robust against various conditions in the cellular microenvironment. Using plasma lithography geometric confinement, we investigate mechanically induced calcium wave propagation in networks of human umbilical vein endothelial cells organized. Endothelial cell networks with confined architectures were stimulated at the single cell level, including using capacitive force probes. Calcium wave propagation in the network was observed using fluorescence calcium imaging. We show that mechanically induced calcium signaling in the endothelial networks is dynamically regulated against a wide range of probing forces and repeated stimulations. The calcium wave is able to propagate consistently in various dimensions from monolayers to individual cell chains, and in different topologies from linear patterns to cell junctions. Our results reveal that calcium signaling provides a robust mechanism for cell-cell communication in networks of endothelial cells despite the diversity of the microenvironmental inputs and complexity of vascular structures. Copyright © 2012 Elsevier Ltd. All rights reserved.
Aceituno-Valenzuela, Uri; Covarrubias, María Paz; Aguayo, María Francisca; Valenzuela-Riffo, Felipe; Espinoza, Analía; Gaete-Eastman, Carlos; Herrera, Raúl; Handford, Michael; Norambuena, Lorena
2018-05-19
The equilibrium between protein synthesis and degradation is key to maintaining efficiency in different physiological processes. The proteinase inhibitor cystatin regulates protease activities in different developmental and physiological contexts. Here we describe for the first time the identification and the biological function of the cysteine protease inhibitor cystatin of Fragaria chiloensis, FchCYS1. Based on primary sequence and 3D-structural homology modelling, FchCYS1 is a type II phytocystatin with high identity to other cystatins of the Fragaria genus. Both the papain-like and the legumain-like protease inhibitory domains are indeed functional, based on in vitro assays performed with Escherichia coli protein extracts containing recombinant FchCYS1. FchCYS1 is differentially-expressed in achenes of F. chiloensis fruits, with highest expression as the fruit reaches the ripened stage, suggesting a role in preventing degradation of storage proteins that will nourish the embryo during seed germination. Furthermore, FchCYS1 responds transcriptionally to the application of salicylic acid and to mechanical injury, strongly suggesting that FchCYS1 could be involved in the response against pathogen attack. Overall these results point to a role for FchCYS1 in diverse physiological processes in F. chiloensis. Copyright © 2018 Elsevier Masson SAS. All rights reserved.
Wu, Changgong; Parrott, Andrew M.; Fu, Cexiong; Liu, Tong; Marino, Stefano M.; Gladyshev, Vadim N.; Jain, Mohit R.; Baykal, Ahmet T.; Li, Qing; Oka, Shinichi; Sadoshima, Junichi; Beuve, Annie; Simmons, William J.
2011-01-01
Abstract Despite the significance of redox post-translational modifications (PTMs) in regulating diverse signal transduction pathways, the enzymatic systems that catalyze reversible and specific oxidative or reductive modifications have yet to be firmly established. Thioredoxin 1 (Trx1) is a conserved antioxidant protein that is well known for its disulfide reductase activity. Interestingly, Trx1 is also able to transnitrosylate or denitrosylate (defined as processes to transfer or remove a nitric oxide entity to/from substrates) specific proteins. An intricate redox regulatory mechanism has recently been uncovered that accounts for the ability of Trx1 to catalyze these different redox PTMs. In this review, we will summarize the available evidence in support of Trx1 as a specific disulfide reductase, and denitrosylation and transnitrosylation agent, as well as the biological significance of the diverse array of Trx1-regulated pathways and processes under different physiological contexts. The dramatic progress in redox proteomics techniques has enabled the identification of an increasing number of proteins, including peroxiredoxin 1, whose disulfide bond formation and nitrosylation status are regulated by Trx1. This review will also summarize the advancements of redox proteomics techniques for the identification of the protein targets of Trx1-mediated PTMs. Collectively, these studies have shed light on the mechanisms that regulate Trx1-mediated reduction, transnitrosylation, and denitrosylation of specific target proteins, solidifying the role of Trx1 as a master regulator of redox signal transduction. Antioxid. Redox Signal. 15, 2565–2604. PMID:21453190
Diseases of Pulmonary Surfactant Homeostasis
Whitsett, Jeffrey A.; Wert, Susan E.; Weaver, Timothy E.
2015-01-01
Advances in physiology and biochemistry have provided fundamental insights into the role of pulmonary surfactant in the pathogenesis and treatment of preterm infants with respiratory distress syndrome. Identification of the surfactant proteins, lipid transporters, and transcriptional networks regulating their expression has provided the tools and insights needed to discern the molecular and cellular processes regulating the production and function of pulmonary surfactant prior to and after birth. Mutations in genes regulating surfactant homeostasis have been associated with severe lung disease in neonates and older infants. Biophysical and transgenic mouse models have provided insight into the mechanisms underlying surfactant protein and alveolar homeostasis. These studies have provided the framework for understanding the structure and function of pulmonary surfactant, which has informed understanding of the pathogenesis of diverse pulmonary disorders previously considered idiopathic. This review considers the pulmonary surfactant system and the genetic causes of acute and chronic lung disease caused by disruption of alveolar homeostasis. PMID:25621661
Baslam, Marouane; Oikawa, Kazusato; Kitajima-Koga, Aya; Kaneko, Kentaro; Mitsui, Toshiaki
2016-09-01
The diversity of protein targeting pathways to plastids and their regulation in response to developmental and metabolic status is a key issue in the regulation of cellular function in plants. The general import pathways that target proteins into and across the plastid envelope with changes in gene expression are critical for plant development by regulating the response to physiological and metabolic changes within the cell. Glycoprotein targeting to complex plastids involves routing through the secretory pathway, among others. However, the mechanisms of trafficking via this system remain poorly understood. The present article discusses our results in site-specific N-glycosylation of nucleotide pyrophosphatase/phosphodiesterases (NPPs) glycoproteins and highlights protein delivery in Golgi/plastid pathway via the secretory pathway. Furthermore, we outline the hypotheses that explain the mechanism for importing vesicles trafficking with nucleus-encoded proteins into plastids.
Damsgaard, Christian; Gam, Le Thi Hong; Tuong, Dang Diem; Thinh, Phan Vinh; Huong Thanh, Do Thi; Wang, Tobias; Bayley, Mark
2015-05-01
The evolution of accessory air-breathing structures is typically associated with reduction of the gills, although branchial ion transport remains pivotal for acid-base and ion regulation. Therefore, air-breathing fishes are believed to have a low capacity for extracellular pH regulation during a respiratory acidosis. In the present study, we investigated acid-base regulation during hypercapnia in the air-breathing fish Pangasianodon hypophthalmus in normoxic and hypoxic water at 28-30°C. Contrary to previous studies, we show that this air-breathing fish has a pronounced ability to regulate extracellular pH (pHe) during hypercapnia, with complete metabolic compensation of pHe within 72 h of exposure to hypoxic hypercapnia with CO2 levels above 34 mmHg. The high capacity for pHe regulation relies on a pronounced ability to increase levels of HCO3(-) in the plasma. Our study illustrates the diversity in the physiology of air-breathing fishes, such that generalizations across phylogenies may be difficult. © 2015. Published by The Company of Biologists Ltd.
RNA-Seq Reveals an Integrated Immune Response in Nucleated Erythrocytes
Morera, Davinia; Roher, Nerea; Ribas, Laia; Balasch, Joan Carles; Doñate, Carmen; Callol, Agnes; Boltaña, Sebastian; Roberts, Steven; Goetz, Giles; Goetz, Frederick W.; MacKenzie, Simon A.
2011-01-01
Background Throughout the primary literature and within textbooks, the erythrocyte has been tacitly accepted to have maintained a unique physiological role; namely gas transport and exchange. In non-mammalian vertebrates, nucleated erythrocytes are present in circulation throughout the life cycle and a fragmented series of observations in mammals support a potential role in non-respiratory biological processes. We hypothesised that nucleated erythrocytes could actively participate via ligand-induced transcriptional re-programming in the immune response. Methodology/Principal Findings Nucleated erythrocytes from both fish and birds express and regulate specific pattern recognition receptor (PRR) mRNAs and, thus, are capable of specific pathogen associated molecular pattern (PAMP) detection that is central to the innate immune response. In vitro challenge with diverse PAMPs led to de novo specific mRNA synthesis of both receptors and response factors including interferon-alpha (IFNα) that exhibit a stimulus-specific polysomal shift supporting active translation. RNA-Seq analysis of the PAMP (Poly (I∶C), polyinosinic∶polycytidylic acid)-erythrocyte response uncovered diverse cohorts of differentially expressed mRNA transcripts related to multiple physiological systems including the endocrine, reproductive and immune. Moreover, erythrocyte-derived conditioned mediums induced a type-1 interferon response in macrophages thus supporting an integrative role for the erythrocytes in the immune response. Conclusions/Significance We demonstrate that nucleated erythrocytes in non-mammalian vertebrates spanning significant phylogenetic distance participate in the immune response. RNA-Seq studies highlight a mRNA repertoire that suggests a previously unrecognized integrative role for the erythrocytes in other physiological systems. PMID:22046430
The engine of the reef: photobiology of the coral–algal symbiosis
Roth, Melissa S.
2014-01-01
Coral reef ecosystems thrive in tropical oligotrophic oceans because of the relationship between corals and endosymbiotic dinoflagellate algae called Symbiodinium. Symbiodinium convert sunlight and carbon dioxide into organic carbon and oxygen to fuel coral growth and calcification, creating habitat for these diverse and productive ecosystems. Light is thus a key regulating factor shaping the productivity, physiology, and ecology of the coral holobiont. Similar to all oxygenic photoautotrophs, Symbiodinium must safely harvest sunlight for photosynthesis and dissipate excess energy to prevent oxidative stress. Oxidative stress is caused by environmental stressors such as those associated with global climate change, and ultimately leads to breakdown of the coral–algal symbiosis known as coral bleaching. Recently, large-scale coral bleaching events have become pervasive and frequent threatening and endangering coral reefs. Because the coral–algal symbiosis is the biological engine producing the reef, the future of coral reef ecosystems depends on the ecophysiology of the symbiosis. This review examines the photobiology of the coral–algal symbiosis with particular focus on the photophysiological responses and timescales of corals and Symbiodinium. Additionally, this review summarizes the light environment and its dynamics, the vulnerability of the symbiosis to oxidative stress, the abiotic and biotic factors influencing photosynthesis, the diversity of the coral–algal symbiosis, and recent advances in the field. Studies integrating physiology with the developing “omics” fields will provide new insights into the coral–algal symbiosis. Greater physiological and ecological understanding of the coral–algal symbiosis is needed for protection and conservation of coral reefs. PMID:25202301
Gut instincts: microbiota as a key regulator of brain development, ageing and neurodegeneration
Dinan, Timothy G.
2016-01-01
Abstract There is a growing realisation that the gut–brain axis and its regulation by the microbiota may play a key role in the biological and physiological basis of neurodevelopmental, age‐related and neurodegenerative disorders. The routes of communication between the microbiota and brain are being unravelled and include the vagus nerve, gut hormone signalling, the immune system, tryptophan metabolism or by way of microbial metabolites such as short chain fatty acids. The importance of early life gut microbiota in shaping future health outcomes is also emerging. Disturbances of this composition by way of antibiotic exposure, lack of breastfeeding, infection, stress and the environmental influences coupled with the influence of host genetics can result in long‐term effects on physiology and behaviour, at least in animal models. It is also worth noting that mode of delivery at birth influences microbiota composition with those born by Caesarean section having a distinctly different microbiota in early life to those born per vaginum. At the other extreme of life, ageing is associated with a narrowing in microbial diversity and healthy ageing correlates with a diverse microbiome. Recently, the gut microbiota has been implicated in a variety of conditions including depression, autism, schizophrenia and Parkinson's disease. There is still considerable debate as to whether or not the gut microbiota changes are core to the pathophysiology of such conditions or are merely epiphenomenal. It is plausible that such neuropsychiatric disorders might be treated in the future by targeting the microbiota either by microbiota transplantation, antibiotics or psychobiotics. PMID:27641441
Neuropeptides as Regulators of Behavior in Insects.
Schoofs, Liliane; De Loof, Arnold; Van Hiel, Matthias Boris
2017-01-31
Neuropeptides are by far the largest and most diverse group of signaling molecules in multicellular organisms. They are ancient molecules important in regulating a multitude of processes. Their small proteinaceous character allowed them to evolve and radiate quickly into numerous different molecules. On average, hundreds of distinct neuropeptides are present in animals, sometimes with unique classes that do not occur in distantly related species. Acting as neurotransmitters, neuromodulators, hormones, or growth factors, they are extremely diverse and are involved in controlling growth, development, ecdysis, digestion, diuresis, and many more physiological processes. Neuropeptides are also crucial in regulating myriad behavioral actions associated with feeding, courtship, sleep, learning and memory, stress, addiction, and social interactions. In general, behavior ensures that an organism can survive in its environment and is defined as any action that can change an organism's relationship to its surroundings. Even though the mode of action of neuropeptides in insects has been vigorously studied, relatively little is known about most neuropeptides and only a few model insects have been investigated. Here, we provide an overview of the roles neuropeptides play in insect behavior. We conclude that multiple neuropeptides need to work in concert to coordinate certain behaviors. Additionally, most neuropeptides studied to date have more than a single function.
Digestive capacity predicts diet diversity in Neotropical frugivorous bats.
Saldaña-Vázquez, Romeo A; Ruiz-Sanchez, Eduardo; Herrera-Alsina, Leonel; Schondube, Jorge E
2015-09-01
1. Predicting the diet diversity of animals is important to basic and applied ecology. Knowledge of diet diversity in animals helps us understand niche partitioning, functional diversity and ecosystem services such as pollination, pest control and seed dispersal. 2. There is a negative relationship between the length of the digestive tract and diet diversity in animals; however, the role of digestive physiology in determining diet diversity has been ignored. This is especially important in vertebrates with powered flight because, unlike non-flying vertebrates, they have limitations that may constrain gut size. 3. Here, we evaluate the relationship between digestive capacity and diet diversity in Carollinae and Stenodermatinae frugivorous bats. These bats disperse the seeds of plants that are key to Neotropical forest regeneration. 4. Our results show that digestive capacity is a good predictor of diet diversity in Carollinae and Stenodermatinae frugivorous bats (R(2) = 0·77). 5. Surprisingly, the most phylogenetically closely related species were not similar in their digestive capacity or diet diversity. The lack of a phylogenetic signal for the traits evaluated implies differences in digestive physiology and diet in closely related species. 6. Our results highlight the predictive usefulness of digestive physiology for understanding the feeding ecology of animals. © 2015 The Authors. Journal of Animal Ecology © 2015 British Ecological Society.
Spasojevic, Marko J.; Grace, James B.; Harrison, Susan; Damschen, Ellen Ingman
2013-01-01
1. The physiological tolerance hypothesis proposes that plant species richness is highest in warm and/or wet climates because a wider range of functional strategies can persist under such conditions. Functional diversity metrics, combined with statistical modeling, offer new ways to test whether diversity-environment relationships are consistent with this hypothesis. 2. In a classic study by R. H. Whittaker (1960), herb species richness declined from mesic (cool, moist, northerly) slopes to xeric (hot, dry, southerly) slopes. Building on this dataset, we measured four plant functional traits (plant height, specific leaf area, leaf water content and foliar C:N) and used them to calculate three functional diversity metrics (functional richness, evenness, and dispersion). We then used a structural equation model to ask if ‘functional diversity’ (modeled as the joint responses of richness, evenness, and dispersion) could explain the observed relationship of topographic climate gradients to species richness. We then repeated our model examining the functional diversity of each of the four traits individually. 3. Consistent with the physiological tolerance hypothesis, we found that functional diversity was higher in more favorable climatic conditions (mesic slopes), and that multivariate functional diversity mediated the relationship of the topographic climate gradient to plant species richness. We found similar patterns for models focusing on individual trait functional diversity of leaf water content and foliar C:N. 4. Synthesis. Our results provide trait-based support for the physiological tolerance hypothesis, suggesting that benign climates support more species because they allow for a wider range of functional strategies.
Wilson, James W.; Ramamurthy, Rajee; Porwollik, Steffen; McClelland, Michael; Hammond, Timothy; Allen, Pat; Ott, C. Mark; Pierson, Duane L.; Nickerson, Cheryl A.
2002-01-01
The low-shear environment of optimized rotation suspension culture allows both eukaryotic and prokaryotic cells to assume physiologically relevant phenotypes that have led to significant advances in fundamental investigations of medical and biological importance. This culture environment has also been used to model microgravity for ground-based studies regarding the impact of space flight on eukaryotic and prokaryotic physiology. We have previously demonstrated that low-shear modeled microgravity (LSMMG) under optimized rotation suspension culture is a novel environmental signal that regulates the virulence, stress resistance, and protein expression levels of Salmonella enterica serovar Typhimurium. However, the mechanisms used by the cells of any species, including Salmonella, to sense and respond to LSMMG and identities of the genes involved are unknown. In this study, we used DNA microarrays to elucidate the global transcriptional response of Salmonella to LSMMG. When compared with identical growth conditions under normal gravity (1 × g), LSMMG differentially regulated the expression of 163 genes distributed throughout the chromosome, representing functionally diverse groups including transcriptional regulators, virulence factors, lipopolysaccharide biosynthetic enzymes, iron-utilization enzymes, and proteins of unknown function. Many of the LSMMG-regulated genes were organized in clusters or operons. The microarray results were further validated by RT-PCR and phenotypic analyses, and they indicate that the ferric uptake regulator is involved in the LSMMG response. The results provide important insight about the Salmonella LSMMG response and could provide clues for the functioning of known Salmonella virulence systems or the identification of uncharacterized bacterial virulence strategies. PMID:12370447
Kim, Okseon; Jeong, Yujeong; Lee, Hyunseung; Hong, Sun-Sun; Hong, Sungwoo
2011-04-14
Phosphatidylinositol 3-kinase α (PI3Kα) is an important regulator of intracellular signaling pathways, controlling remarkably diverse arrays of physiological processes. Because the PI3K pathway is frequently up-regulated in human cancers, the inhibition of PI3Kα can be a promising approach to cancer therapy. In this study, we have designed and synthesized a new series of imidazo[1,2-a]pyridine derivatives as PI3Kα inhibitors through the fragment-growing strategy. By varying groups at the 3- and 6-positions of imidazo[1,2-a]pyridines, we studied the structure-activity relationships (SAR) profiles and identified a series of potent PI3Kα inhibitors. Representative derivatives showed good activity in cellular proliferation and apoptosis assays. Moreover, these inhibitors exhibited noteworthy antiangiogenic activity.
Kisspeptin Signaling in the Brain
Oakley, Amy E.; Clifton, Donald K.; Steiner, Robert A.
2009-01-01
Kisspeptin (a product of the Kiss1 gene) and its receptor (GPR54 or Kiss1r) have emerged as key players in the regulation of reproduction. Mutations in humans or genetically targeted deletions in mice of either Kiss1 or Kiss1r cause profound hypogonadotropic hypogonadism. Neurons that express Kiss1/kisspeptin are found in discrete nuclei in the hypothalamus, as well as other brain regions in many vertebrates, and their distribution, regulation, and function varies widely across species. Kisspeptin neurons directly innervate and stimulate GnRH neurons, which are the final common pathway through which the brain regulates reproduction. Kisspeptin neurons are sexually differentiated with respect to cell number and transcriptional activity in certain brain nuclei, and some kisspeptin neurons express other cotransmitters, including dynorphin and neurokinin B (whose physiological significance is unknown). Kisspeptin neurons express the estrogen receptor and the androgen receptor, and these cells are direct targets for the action of gonadal steroids in both male and female animals. Kisspeptin signaling in the brain has been implicated in mediating the negative feedback action of sex steroids on gonadotropin secretion, generating the preovulatory GnRH/LH surge, triggering and guiding the tempo of sexual maturation at puberty, controlling seasonal reproduction, and restraining reproductive activity during lactation. Kisspeptin signaling may also serve diverse functions outside of the classical realm of reproductive neuroendocrinology, including the regulation of metastasis in certain cancers, vascular dynamics, placental physiology, and perhaps even higher-order brain function. PMID:19770291
Dasuri, Kalavathi; Ebenezer, Philip; Fernandez-Kim, Sun Ok; Zhang, Le; Gao, Zhanguo; Bruce-Keller, Annadora J; Freeman, Linnea R; Keller, Jeffrey N
2013-01-01
Lipid peroxidation products such as 4-hydroxynonenal (HNE) are known to be increased in response to oxidative stress, and are known to cause dysfunction and pathology in a variety of tissues during periods of oxidative stress. The aim of the current study was to determine the chronic (repeated HNE exposure) and acute effects of physiological concentrations of HNE toward multiple aspects of adipocyte biology using differentiated 3T3-L1 adipocytes. Our studies demonstrate that acute and repeated exposure of adipocytes to physiological concentrations of HNE is sufficient to promote subsequent oxidative stress, impaired adipogenesis, alter the expression of adipokines, and increase lipolytic gene expression and subsequent increase in free fatty acid (FFA) release. These results provide an insight in to the role of HNE-induced oxidative stress in regulation of adipocyte differentiation and adipose dysfunction. Taken together, these data indicate a potential role for HNE promoting diverse effects toward adipocyte homeostasis and adipocyte differentiation, which may be important to the pathogenesis observed in obesity and metabolic syndrome.
Functional diversity of potassium channel voltage-sensing domains.
Islas, León D
2016-01-01
Voltage-gated potassium channels or Kv's are membrane proteins with fundamental physiological roles. They are composed of 2 main functional protein domains, the pore domain, which regulates ion permeation, and the voltage-sensing domain, which is in charge of sensing voltage and undergoing a conformational change that is later transduced into pore opening. The voltage-sensing domain or VSD is a highly conserved structural motif found in all voltage-gated ion channels and can also exist as an independent feature, giving rise to voltage sensitive enzymes and also sustaining proton fluxes in proton-permeable channels. In spite of the structural conservation of VSDs in potassium channels, there are several differences in the details of VSD function found across variants of Kvs. These differences are mainly reflected in variations in the electrostatic energy needed to open different potassium channels. In turn, the differences in detailed VSD functioning among voltage-gated potassium channels might have physiological consequences that have not been explored and which might reflect evolutionary adaptations to the different roles played by Kv channels in cell physiology.
Functional diversity of potassium channel voltage-sensing domains
Islas, León D.
2016-01-01
Abstract Voltage-gated potassium channels or Kv's are membrane proteins with fundamental physiological roles. They are composed of 2 main functional protein domains, the pore domain, which regulates ion permeation, and the voltage-sensing domain, which is in charge of sensing voltage and undergoing a conformational change that is later transduced into pore opening. The voltage-sensing domain or VSD is a highly conserved structural motif found in all voltage-gated ion channels and can also exist as an independent feature, giving rise to voltage sensitive enzymes and also sustaining proton fluxes in proton-permeable channels. In spite of the structural conservation of VSDs in potassium channels, there are several differences in the details of VSD function found across variants of Kvs. These differences are mainly reflected in variations in the electrostatic energy needed to open different potassium channels. In turn, the differences in detailed VSD functioning among voltage-gated potassium channels might have physiological consequences that have not been explored and which might reflect evolutionary adaptations to the different roles played by Kv channels in cell physiology. PMID:26794852
Kurt H. Johnsen; John R. Seiler
1996-01-01
We conducted a greenhouse experiment to determine: (1) if diverse provenances of black spruce (Picea mariana (Mill.) B.S.P.) respond similarly in growth, phenology and physiology to an approximately 300 ppm increase in atmospheric CO2...
Mechanisms of CaMKII Activation in the Heart.
Erickson, Jeffrey R
2014-01-01
Calcium/calmodulin (Ca(2+)/CaM) dependent protein kinase II (CaMKII) has emerged as a key nodal protein in the regulation of cardiac physiology and pathology. Due to the particularly elegant relationship between the structure and function of the kinase, CaMKII is able to translate a diverse set of signaling events into downstream physiological effects. While CaMKII is typically autoinhibited at basal conditions, prolonged rapid Ca(2+) cycling can activate the kinase and allow post-translational modifications that depend critically on the biochemical environment of the heart. These modifications result in sustained, autonomous CaMKII activation and have been associated with pathological cardiac signaling. Indeed, improved understanding of CaMKII activation mechanisms could potentially lead to new clinical therapies for the treatment or prevention of cardiovascular disease. Here we review the known mechanisms of CaMKII activation and discuss some of the pathological signaling pathways in which they play a role.
Dynamics of Lung Defense in Pneumonia: Resistance, Resilience, and Remodeling
Quinton, Lee J.; Mizgerd, Joseph P.
2015-01-01
Pneumonia is initiated by microbes in the lung, but physiological processes integrating responses across diverse cell types and organ systems dictate the outcome of respiratory infection. Resistance, or actions of the host to eradicate living microbes, in the lungs involves a combination of innate and adaptive immune responses triggered by air-space infection. Resilience, or the ability of the host tissues to withstand the physiologically damaging effects of microbial and immune activities, is equally complex, precisely regulated, and determinative. Both immune resistance and tissue resilience are dynamic and change throughout the lifetime, but we are only beginning to understand such remodeling and how it contributes to the incidence of severe pneumonias, which diminishes as childhood progresses and then increases again among the elderly. Here, we review the concepts of resistance, resilience, and remodeling as they apply to pneumonia, highlighting recent advances and current significant knowledge gaps. PMID:25148693
The importance of cytosolic glutamine synthetase in nitrogen assimilation and recycling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bernard, S.M.; Habash, D.Z.
2009-07-02
Glutamine synthetase assimilates ammonium into amino acids, thus it is a key enzyme for nitrogen metabolism. The cytosolic isoenzymes of glutamine synthetase assimilate ammonium derived from primary nitrogen uptake and from various internal nitrogen recycling pathways. In this way, cytosolic glutamine synthetase is crucial for the remobilization of protein-derived nitrogen. Cytosolic glutamine synthetase is encoded by a small family of genes that are well conserved across plant species. Members of the cytosolic glutamine synthetase gene family are regulated in response to plant nitrogen status, as well as to environmental cues, such as nitrogen availability and biotic/abiotic stresses. The complex regulationmore » of cytosolic glutamine synthetase at the transcriptional to post-translational levels is key to the establishment of a specific physiological role for each isoenzyme. The diverse physiological roles of cytosolic glutamine synthetase isoenzymes are important in relation to current agricultural and ecological issues.« less
Wang, Liying; Cao, Chunwei; Wang, Fang; Zhao, Jianguo; Li, Wei
2017-09-03
RNF20/Bre1 mediated H2B ubiquitination (H2Bub) has various physiologic functions. Recently, we found that H2Bub participates in meiotic recombination by promoting chromatin relaxation during meiosis. We then analyzed the phylogenetic relationships among the E3 ligase for H2Bub, its E2 Rad6 and their partner WW domain-containing adaptor with a coiled-coil (WAC) or Lge1, and found that the molecular mechanism underlying H2Bub is evolutionarily conserved from yeast to mammals. However, RNF20 has diverse physiologic functions in different organisms, which might be caused by the evolutionary divergency of their domain/motif architectures. In the current extra view, we not only elucidate the evolutionarily conserved molecular mechanism underlying H2Bub, but also discuss the diverse physiologic functions of RNF20 during meiosis.
NASA Technical Reports Server (NTRS)
Palsson, Olafur S. (Inventor); Harris, Randall L., Sr. (Inventor); Pope, Alan T. (Inventor)
2002-01-01
Apparatus and methods for modulating the control authority (i.e., control function) of a computer simulation or game input device (e.g., joystick, button control) using physiological information so as to affect the user's ability to impact or control the simulation or game with the input device. One aspect is to use the present invention, along with a computer simulation or game, to affect physiological state or physiological self-regulation according to some programmed criterion (e.g., increase, decrease, or maintain) in order to perform better at the game task. When the affected physiological state or physiological self-regulation is the target of self-regulation or biofeedback training, the simulation or game play reinforces therapeutic changes in the physiological signal(s).
Transposable elements re-wire and fine-tune the transcriptome.
Cowley, Michael; Oakey, Rebecca J
2013-01-01
What good are transposable elements (TEs)? Although their activity can be harmful to host genomes and can cause disease, they nevertheless represent an important source of genetic variation that has helped shape genomes. In this review, we examine the impact of TEs, collectively referred to as the mobilome, on the transcriptome. We explore how TEs-particularly retrotransposons-contribute to transcript diversity and consider their potential significance as a source of small RNAs that regulate host gene transcription. We also discuss a critical role for the mobilome in engineering transcriptional networks, permitting coordinated gene expression, and facilitating the evolution of novel physiological processes.
Winiarski, D Anne; Schechter, Julia C; Brennan, Patricia A; Foster, Sharon L; Cunningham, Phillippe B; Whitmore, Elizabeth A
2017-09-01
This study examined whether physiological and behavioral indicators of emotion dysregulation assessed over the course of Multisystemic Therapy (MST) were related to treatment response. Participants were 180 ethnically diverse adolescents ( n =120 males), ranging in age from 12 to 17 years. Treatment response was assessed through therapist report and official arrest records. Changes in cortisol reactivity and changes in scores on a behavioral dysregulation subscale of the Child Behavior Checklist were used as indicators of emotion dysregulation. Hierarchical linear modeling analyses examined whether a less favorable treatment response was associated with cortisol reactivity measures (a) collected early in treatment and (b) over the course of treatment, as well as with behavioral reports of emotion dysregulation reported (c) early in treatment, and (d) over the course of treatment. Sex was explored as a moderator of these associations. Results indicated that both cortisol and behavioral indices of emotion dysregulation early in treatment and over the course of therapy predicted treatment responsiveness. This relationship was moderated by sex: girls were more likely to evidence a pattern of increasing emotion regulation prior to successful therapy response. The results lend further support to the notion of incorporating emotion regulation techniques into treatment protocols for delinquent behavior.
Drosophila Fip200 is an essential regulator of autophagy that attenuates both growth and aging.
Kim, Myungjin; Park, Hae Li; Park, Hwan-Woo; Ro, Seung-Hyun; Nam, Samuel G; Reed, John M; Guan, Jun-Lin; Lee, Jun Hee
2013-08-01
Autophagy-related 1 (Atg1)/Unc-51-like protein kinases (ULKs) are evolutionarily conserved proteins that play critical physiological roles in controlling autophagy, cell growth and neurodevelopment. RB1-inducible coiled-coil 1 (RB1CC1), also known as PTK2/FAK family-interacting protein of 200 kDa (FIP200) is a recently discovered binding partner of ULK1. Here we isolated the Drosophila RB1CC1/FIP200 homolog (Fip200/CG1347) and showed that it mediates Atg1-induced autophagy as a genetically downstream component in diverse physiological contexts. Fip200 loss-of-function mutants experienced severe mobility loss associated with neuronal autophagy defects and neurodegeneration. The Fip200 mutants were also devoid of both developmental and starvation-induced autophagy in salivary gland and fat body, while having no defects in axonal transport and projection in developing neurons. Interestingly, moderate downregulation of Fip200 accelerated both developmental growth and aging, accompanied by target of rapamycin (Tor) signaling upregulation. These results suggest that Fip200 is a critical downstream component of Atg1 and specifically mediates Atg1's autophagy-, aging- and growth-regulating functions.
Drosophila Fip200 is an essential regulator of autophagy that attenuates both growth and aging
Kim, Myungjin; Park, Hae Li; Park, Hwan-Woo; Ro, Seung-Hyun; Nam, Samuel G.; Reed, John M.; Guan, Jun-Lin; Lee, Jun Hee
2013-01-01
Autophagy-related 1 (Atg1)/Unc-51-like protein kinases (ULKs) are evolutionarily conserved proteins that play critical physiological roles in controlling autophagy, cell growth and neurodevelopment. RB1-inducible coiled-coil 1 (RB1CC1), also known as PTK2/FAK family-interacting protein of 200 kDa (FIP200) is a recently discovered binding partner of ULK1. Here we isolated the Drosophila RB1CC1/FIP200 homolog (Fip200/CG1347) and showed that it mediates Atg1-induced autophagy as a genetically downstream component in diverse physiological contexts. Fip200 loss-of-function mutants experienced severe mobility loss associated with neuronal autophagy defects and neurodegeneration. The Fip200 mutants were also devoid of both developmental and starvation-induced autophagy in salivary gland and fat body, while having no defects in axonal transport and projection in developing neurons. Interestingly, moderate downregulation of Fip200 accelerated both developmental growth and aging, accompanied by target of rapamycin (Tor) signaling upregulation. These results suggest that Fip200 is a critical downstream component of Atg1 and specifically mediates Atg1’s autophagy-, aging- and growth-regulating functions. PMID:23819996
The Alzheimer's Amyloid-Degrading Peptidase, Neprilysin: Can We Control It?
Nalivaeva, N. N.; Belyaev, N. D.; Zhuravin, I. A.; Turner, A. J.
2012-01-01
The amyloid cascade hypothesis of Alzheimer's disease (AD) postulates that accumulation in the brain of amyloid β-peptide (Aβ) is the primary trigger for neuronal loss specific to this pathology. In healthy brain, Aβ levels are regulated by a dynamic equilibrium between Aβ release from the amyloid precursor protein (APP) and its removal by perivascular drainage or by amyloid-degrading enzymes (ADEs). During the last decade, the ADE family was fast growing, and currently it embraces more than 20 members. There are solid data supporting involvement of each of them in Aβ clearance but a zinc metallopeptidase neprilysin (NEP) is considered as a major ADE. NEP plays an important role in brain function due to its role in terminating neuropeptide signalling and its decrease during ageing or after such pathologies as hypoxia or ischemia contribute significantly to the development of AD pathology. The recently discovered mechanism of epigenetic regulation of NEP by the APP intracellular domain (AICD) opens new avenues for its therapeutic manipulation and raises hope for developing preventive strategies in AD. However, consideration needs to be given to the diverse physiological roles of NEP. This paper critically evaluates general biochemical and physiological functions of NEP and their therapeutic relevance. PMID:22900228
Regulation of IP 3 Receptors by IP 3 and Ca 2+
NASA Astrophysics Data System (ADS)
Taylor, Colin W.; Swatton, Jane E.
Inositol 1,4,5-trisphosphate ( IP 3) receptors are intracellular Ca 2+ channels that mediate release of Ca 2+ from intracellular stores. The channels are oligomeric assemblies of four subunits, each of which has an N-terminal IP 3-binding domain and each of which contributes to formation of the Ca 2+ channel. In mammals, three different genes encode IP 3 receptors subunits and the type 1 receptor (and perhaps the type 2 receptor) is also expressed as splice variants. Further diversity arises from assembly of the receptor in hetero- and homo-tetrameric channels. The subtypes differ in their expression and regulation, but they share the key property of being regulated by both IP3 and cytosolic Ca 2+. All three mammalian IP 3 subtypes, and probably also the IP 3 receptors expressed in invertebrates, are biphasically regulated by cytosolic Ca2+, although the underlying mechanisms appear to differ between subtypes. The interactions between IP 3 and Ca 2+ in controlling IP 3 receptor gating, and the physiological significance of such regulation will be reviewed.
Impact of Serine/Threonine Protein Kinases on the Regulation of Sporulation in Bacillus subtilis.
Pompeo, Frédérique; Foulquier, Elodie; Galinier, Anne
2016-01-01
Bacteria possess many kinases that catalyze phosphorylation of proteins on diverse amino acids including arginine, cysteine, histidine, aspartate, serine, threonine, and tyrosine. These protein kinases regulate different physiological processes in response to environmental modifications. For example, in response to nutritional stresses, the Gram-positive bacterium Bacillus subtilis can differentiate into an endospore; the initiation of sporulation is controlled by the master regulator Spo0A, which is activated by phosphorylation. Spo0A phosphorylation is carried out by a multi-component phosphorelay system. These phosphorylation events on histidine and aspartate residues are labile, highly dynamic and permit a temporal control of the sporulation initiation decision. More recently, another kind of phosphorylation, more stable yet still dynamic, on serine or threonine residues, was proposed to play a role in spore maintenance and spore revival. Kinases that perform these phosphorylation events mainly belong to the Hanks family and could regulate spore dormancy and spore germination. The aim of this mini review is to focus on the regulation of sporulation in B. subtilis by these serine and threonine phosphorylation events and the kinases catalyzing them.
Regulation of transport processes across the tonoplast
Neuhaus, H. Ekkehard; Trentmann, Oliver
2014-01-01
In plants, the vacuole builds up the cellular turgor and represents an important component in cellular responses to diverse stress stimuli. Rapid volume changes of cells, particularly of motor cells, like guard cells, are caused by variation of osmolytes and consequently of the water contents in the vacuole. Moreover, directed solute uptake into or release out of the large central vacuole allows adaptation of cytosolic metabolite levels according to the current physiological requirements and specific cellular demands. Therefore, solute passage across the vacuolar membrane, the tonoplast, has to be tightly regulated. Important principles in vacuolar transport regulation are changes of tonoplast transport protein abundances by differential expression of genes or changes of their activities, e.g., due to post-translational modification or by interacting proteins. Because vacuolar transport is in most cases driven by an electro-chemical gradient altered activities of tonoplast proton pumps significantly influence vacuolar transport capacities. Intense studies on individual tonoplast proteins but also unbiased system biological approaches have provided important insights into the regulation of vacuolar transport. This short review refers to selected examples of tonoplast proteins and their regulation, with special focus on protein phosphorylation. PMID:25309559
Photomorphogenic responses to ultraviolet-B light.
Jenkins, Gareth I
2017-11-01
Exposure to ultraviolet B (UV-B) light regulates numerous aspects of plant metabolism, morphology and physiology through the differential expression of hundreds of genes. Photomorphogenic responses to UV-B are mediated by the photoreceptor UV RESISTANCE LOCUS8 (UVR8). Considerable progress has been made in understanding UVR8 action: the structural basis of photoreceptor function, how interaction with CONSTITUTIVELY PHOTOMORPHOGENIC 1 initiates signaling and how REPRESSOR OF UV-B PHOTOMORPHOGENESIS proteins negatively regulate UVR8 action. In addition, recent research shows that UVR8 mediates several responses through interaction with other signaling pathways, in particular auxin signaling. Nevertheless, many aspects of UVR8 action remain poorly understood. Most research to date has been undertaken with Arabidopsis, and it is important to explore the functions and regulation of UVR8 in diverse plant species. Furthermore, it is essential to understand how UVR8, and UV-B signaling in general, regulates processes under natural growth conditions. Ultraviolet B regulates the expression of many genes through UVR8-independent pathways, but the activity and importance of these pathways in plants growing in sunlight are poorly understood. © 2017 John Wiley & Sons Ltd.
Multiple layers of posttranslational regulation refine circadian clock activity in Arabidopsis.
Seo, Pil Joon; Mas, Paloma
2014-01-01
The circadian clock is a cellular time-keeper mechanism that regulates biological rhythms with a period of ~24 h. The circadian rhythms in metabolism, physiology, and development are synchronized by environmental cues such as light and temperature. In plants, proper matching of the internal circadian time with the external environment confers fitness advantages on plant survival and propagation. Accordingly, plants have evolved elaborated regulatory mechanisms that precisely control the circadian oscillations. Transcriptional feedback regulation of several clock components has been well characterized over the past years. However, the importance of additional regulatory mechanisms such as chromatin remodeling, protein complexes, protein phosphorylation, and stability is only starting to emerge. The multiple layers of circadian regulation enable plants to properly synchronize with the environmental cycles and to fine-tune the circadian oscillations. This review focuses on the diverse posttranslational events that regulate circadian clock function. We discuss the mechanistic insights explaining how plants articulate a high degree of complexity in their regulatory networks to maintain circadian homeostasis and to generate highly precise waveforms of circadian expression and activity.
Influence of Pollen Nutrition on Honey Bee Health: Do Pollen Quality and Diversity Matter?
Di Pasquale, Garance; Salignon, Marion; Le Conte, Yves; Belzunces, Luc P.; Decourtye, Axel; Kretzschmar, André; Suchail, Séverine; Brunet, Jean-Luc; Alaux, Cédric
2013-01-01
Honey bee colonies are highly dependent upon the availability of floral resources from which they get the nutrients (notably pollen) necessary to their development and survival. However, foraging areas are currently affected by the intensification of agriculture and landscape alteration. Bees are therefore confronted to disparities in time and space of floral resource abundance, type and diversity, which might provide inadequate nutrition and endanger colonies. The beneficial influence of pollen availability on bee health is well-established but whether quality and diversity of pollen diets can modify bee health remains largely unknown. We therefore tested the influence of pollen diet quality (different monofloral pollens) and diversity (polyfloral pollen diet) on the physiology of young nurse bees, which have a distinct nutritional physiology (e.g. hypopharyngeal gland development and vitellogenin level), and on the tolerance to the microsporidian parasite Nosema ceranae by measuring bee survival and the activity of different enzymes potentially involved in bee health and defense response (glutathione-S-transferase (detoxification), phenoloxidase (immunity) and alkaline phosphatase (metabolism)). We found that both nurse bee physiology and the tolerance to the parasite were affected by pollen quality. Pollen diet diversity had no effect on the nurse bee physiology and the survival of healthy bees. However, when parasitized, bees fed with the polyfloral blend lived longer than bees fed with monofloral pollens, excepted for the protein-richest monofloral pollen. Furthermore, the survival was positively correlated to alkaline phosphatase activity in healthy bees and to phenoloxydase activities in infected bees. Our results support the idea that both the quality and diversity (in a specific context) of pollen can shape bee physiology and might help to better understand the influence of agriculture and land-use intensification on bee nutrition and health. PMID:23940803
Influence of pollen nutrition on honey bee health: do pollen quality and diversity matter?
Di Pasquale, Garance; Salignon, Marion; Le Conte, Yves; Belzunces, Luc P; Decourtye, Axel; Kretzschmar, André; Suchail, Séverine; Brunet, Jean-Luc; Alaux, Cédric
2013-01-01
Honey bee colonies are highly dependent upon the availability of floral resources from which they get the nutrients (notably pollen) necessary to their development and survival. However, foraging areas are currently affected by the intensification of agriculture and landscape alteration. Bees are therefore confronted to disparities in time and space of floral resource abundance, type and diversity, which might provide inadequate nutrition and endanger colonies. The beneficial influence of pollen availability on bee health is well-established but whether quality and diversity of pollen diets can modify bee health remains largely unknown. We therefore tested the influence of pollen diet quality (different monofloral pollens) and diversity (polyfloral pollen diet) on the physiology of young nurse bees, which have a distinct nutritional physiology (e.g. hypopharyngeal gland development and vitellogenin level), and on the tolerance to the microsporidian parasite Nosemaceranae by measuring bee survival and the activity of different enzymes potentially involved in bee health and defense response (glutathione-S-transferase (detoxification), phenoloxidase (immunity) and alkaline phosphatase (metabolism)). We found that both nurse bee physiology and the tolerance to the parasite were affected by pollen quality. Pollen diet diversity had no effect on the nurse bee physiology and the survival of healthy bees. However, when parasitized, bees fed with the polyfloral blend lived longer than bees fed with monofloral pollens, excepted for the protein-richest monofloral pollen. Furthermore, the survival was positively correlated to alkaline phosphatase activity in healthy bees and to phenoloxydase activities in infected bees. Our results support the idea that both the quality and diversity (in a specific context) of pollen can shape bee physiology and might help to better understand the influence of agriculture and land-use intensification on bee nutrition and health.
Rurek, Michał; Czołpińska, Magdalena; Pawłowski, Tomasz Andrzej; Krzesiński, Włodzimierz; Spiżewski, Tomasz
2018-01-01
Complex proteomic and physiological approaches for studying cold and heat stress responses in plant mitochondria are still limited. Variations in the mitochondrial proteome of cauliflower (Brassica oleracea var. botrytis) curds after cold and heat and after stress recovery were assayed by two-dimensional polyacrylamide gel electrophoresis (2D PAGE) in relation to mRNA abundance and respiratory parameters. Quantitative analysis of the mitochondrial proteome revealed numerous stress-affected protein spots. In cold, major downregulations in the level of photorespiratory enzymes, porine isoforms, oxidative phosphorylation (OXPHOS) and some low-abundant proteins were observed. In contrast, carbohydrate metabolism enzymes, heat-shock proteins, translation, protein import, and OXPHOS components were involved in heat response and recovery. Several transcriptomic and metabolic regulation mechanisms are also suggested. Cauliflower plants appeared less susceptible to heat; closed stomata in heat stress resulted in moderate photosynthetic, but only minor respiratory impairments, however, photosystem II performance was unaffected. Decreased photorespiration corresponded with proteomic alterations in cold. Our results show that cold and heat stress not only operate in diverse modes (exemplified by cold-specific accumulation of some heat shock proteins), but exert some associations at molecular and physiological levels. This implies a more complex model of action of investigated stresses on plant mitochondria. PMID:29547512
The WNKs: atypical protein kinases with pleiotropic actions
McCormick, James A.; Ellison, David H.
2011-01-01
WNKs are serine/threonine kinases that comprise a unique branch of the kinome. They are so-named owing to the unusual placement of an essential catalytic lysine. WNKs have now been identified in diverse organisms. In humans and other mammals, four genes encoding WNKs. WNKs are widely expressed at the message level, although data on protein expression is more limited. Soon after the WNKs were identified, mutations in genes encoding WNK 1 and 4 were determined to cause the human disease, Familial Hyperkalemic Hypertension (also known as pseudohypoaldosteronism II, or Gordon’s Syndrome). For this reason, a major focus of investigation has been to dissect the role of WNK kinases in renal regulation of ion transport. More recently, a different mutation in WNK1 was identified as the cause of hereditary sensory and autonomic neuropathy type II (HSANII), an early-onset autosomal disease of peripheral sensory nerves. Thus, the WNKs represent an important family of potential targets for the treatment of human disease, and further elucidation of their physiological actions outside of the kidney and brain is necessary. In this review, we describe the gene structure and mechanisms regulating expression and activity of the WNKs. Subsequently, we outline substrates and targets of WNKs, and effects of WNKs on cellular physiology, both in the kidney and elsewhere. Next, consequences of these effects on integrated physiological function are outlined. Finally, we discuss the known and putative pathophysiological relevance of the WNKs. PMID:21248166
Herde, Marco; Howe, Gregg A
2014-07-01
Species diversity in terrestrial ecosystems is influenced by plant defense compounds that alter the behavior, physiology, and host preference of insect herbivores. Although it is established that insects evolved the ability to detoxify specific allelochemicals, the mechanisms by which polyphagous insects cope with toxic compounds in diverse host plants are not well understood. Here, we used defended and non-defended plant genotypes to study how variation in chemical defense affects midgut responses of the lepidopteran herbivore Trichoplusia ni, which is a pest of a wide variety of native and cultivated plants. The genome-wide midgut transcriptional response of T. ni larvae to glucosinolate-based defenses in the crucifer Arabidopsis thaliana was characterized by strong induction of genes encoding Phase I and II detoxification enzymes. In contrast, the response of T. ni to proteinase inhibitors and other jasmonate-regulated defenses in tomato (Solanum lycopersicum) was dominated by changes in the expression of digestive enzymes and, strikingly, concomitant repression of transcripts encoding detoxification enzymes. Unbiased proteomic analyses of T. ni feces demonstrated that tomato defenses remodel the complement of T.ni digestive enzymes, which was associated with increased amounts of serine proteases and decreased lipase protein abundance upon encountering tomato defense chemistry. These collective results indicate that T. ni adjusts its gut physiology to the presence of host plant-specific chemical defenses, and further suggest that plants may exploit this digestive flexibility as a defensive strategy to suppress the production of enzymes that detoxify allelochemicals. Copyright © 2014 Elsevier Ltd. All rights reserved.
Serup, Palle; Gustavsen, Carsten; Klein, Tino; Potter, Leah A.; Lin, Robert; Mullapudi, Nandita; Wandzioch, Ewa; Hines, Angela; Davis, Ashley; Bruun, Christine; Engberg, Nina; Petersen, Dorthe R.; Peterslund, Janny M. L.; MacDonald, Raymond J.; Grapin-Botton, Anne; Magnuson, Mark A.; Zaret, Kenneth S.
2012-01-01
SUMMARY Extracellular signals in development, physiology, homeostasis and disease often act by regulating transcription. Herein we describe a general method and specific resources for determining where and when such signaling occurs in live animals and for systematically comparing the timing and extent of different signals in different cellular contexts. We used recombinase-mediated cassette exchange (RMCE) to test the effect of successively deleting conserved genomic regions of the ubiquitously active Rosa26 promoter and substituting the deleted regions for regulatory sequences that respond to diverse extracellular signals. We thereby created an allelic series of embryonic stem cells and mice, each containing a signal-responsive sentinel with different fluorescent reporters that respond with sensitivity and specificity to retinoic acids, bone morphogenic proteins, activin A, Wnts or Notch, and that can be adapted to any pathway that acts via DNA elements. PMID:22888097
Proteolytic Degradation of Amyloid β-Protein
Saido, Takaomi; Leissring, Malcolm A.
2012-01-01
The amyloid β-protein (Aβ) is subject to proteolytic degradation by a diverse array of peptidases and proteinases, known collectively as Aβ-degrading proteases (AβDPs). A growing number of AβDPs have been identified, which, under physiological and/or pathophysiological conditions, contribute significantly to the determination of endogenous cerebral Aβ levels. Despite more than a decade of investigation, the complete set of AβDPs remains to be established, and our understanding of even well-established AβDPs is incomplete. Nevertheless, the study of known AβDPs has contributed importantly to our understanding of the molecular pathogenesis of Alzheimer disease (AD) and has inspired the development of several novel therapeutic approaches to the regulation of cerebral Aβ levels. In this article, we discuss the general features of Aβ degradation and introduce the best-characterized AβDPs, focusing on their diverse properties and the numerous conceptual insights that have emerged from the study of each. PMID:22675659
2015-01-01
Estrogens are critical mediators of multiple and diverse physiologic effects throughout the body in both sexes, including the reproductive, cardiovascular, endocrine, nervous, and immune systems. As such, alterations in estrogen function play important roles in many diseases and pathophysiological conditions (including cancer), exemplified by the lower prevalence of many diseases in premenopausal women. Estrogens mediate their effects through multiple cellular receptors, including the nuclear receptor family (ERα and ERβ) and the G protein–coupled receptor (GPCR) family (GPR30/G protein–coupled estrogen receptor [GPER]). Although both receptor families can initiate rapid cell signaling and transcriptional regulation, the nuclear receptors are traditionally associated with regulating gene expression, whereas GPCRs are recognized as mediating rapid cellular signaling. Estrogen-activated pathways are not only the target of multiple therapeutic agents (e.g., tamoxifen, fulvestrant, raloxifene, and aromatase inhibitors) but are also affected by a plethora of phyto- and xeno-estrogens (e.g., genistein, coumestrol, bisphenol A, dichlorodiphenyltrichloroethane). Because of the existence of multiple estrogen receptors with overlapping ligand specificities, expression patterns, and signaling pathways, the roles of the individual receptors with respect to the diverse array of endogenous and exogenous ligands have been challenging to ascertain. The identification of GPER-selective ligands however has led to a much greater understanding of the roles of this receptor in normal physiology and disease as well as its interactions with the classic estrogen receptors ERα and ERβ and their signaling pathways. In this review, we describe the history and characterization of GPER over the past 15 years focusing on the pharmacology of steroidal and nonsteroidal compounds that have been employed to unravel the biology of this most recently recognized estrogen receptor. PMID:26023144
Prossnitz, Eric R; Arterburn, Jeffrey B
2015-07-01
Estrogens are critical mediators of multiple and diverse physiologic effects throughout the body in both sexes, including the reproductive, cardiovascular, endocrine, nervous, and immune systems. As such, alterations in estrogen function play important roles in many diseases and pathophysiological conditions (including cancer), exemplified by the lower prevalence of many diseases in premenopausal women. Estrogens mediate their effects through multiple cellular receptors, including the nuclear receptor family (ERα and ERβ) and the G protein-coupled receptor (GPCR) family (GPR30/G protein-coupled estrogen receptor [GPER]). Although both receptor families can initiate rapid cell signaling and transcriptional regulation, the nuclear receptors are traditionally associated with regulating gene expression, whereas GPCRs are recognized as mediating rapid cellular signaling. Estrogen-activated pathways are not only the target of multiple therapeutic agents (e.g., tamoxifen, fulvestrant, raloxifene, and aromatase inhibitors) but are also affected by a plethora of phyto- and xeno-estrogens (e.g., genistein, coumestrol, bisphenol A, dichlorodiphenyltrichloroethane). Because of the existence of multiple estrogen receptors with overlapping ligand specificities, expression patterns, and signaling pathways, the roles of the individual receptors with respect to the diverse array of endogenous and exogenous ligands have been challenging to ascertain. The identification of GPER-selective ligands however has led to a much greater understanding of the roles of this receptor in normal physiology and disease as well as its interactions with the classic estrogen receptors ERα and ERβ and their signaling pathways. In this review, we describe the history and characterization of GPER over the past 15 years focusing on the pharmacology of steroidal and nonsteroidal compounds that have been employed to unravel the biology of this most recently recognized estrogen receptor. Copyright © 2015 by The American Society for Pharmacology and Experimental Therapeutics.
Glycogen synthase kinase 3: more than a namesake.
Rayasam, Geetha Vani; Tulasi, Vamshi Krishna; Sodhi, Reena; Davis, Joseph Alex; Ray, Abhijit
2009-03-01
Glycogen synthase kinase 3 (GSK3), a constitutively acting multi-functional serine threonine kinase is involved in diverse physiological pathways ranging from metabolism, cell cycle, gene expression, development and oncogenesis to neuroprotection. These diverse multiple functions attributed to GSK3 can be explained by variety of substrates like glycogen synthase, tau protein and beta catenin that are phosphorylated leading to their inactivation. GSK3 has been implicated in various diseases such as diabetes, inflammation, cancer, Alzheimer's and bipolar disorder. GSK3 negatively regulates insulin-mediated glycogen synthesis and glucose homeostasis, and increased expression and activity of GSK3 has been reported in type II diabetics and obese animal models. Consequently, inhibitors of GSK3 have been demonstrated to have anti-diabetic effects in vitro and in animal models. However, inhibition of GSK3 poses a challenge as achieving selectivity of an over achieving kinase involved in various pathways with multiple substrates may lead to side effects and toxicity. The primary concern is developing inhibitors of GSK3 that are anti-diabetic but do not lead to up-regulation of oncogenes. The focus of this review is the recent advances and the challenges surrounding GSK3 as an anti-diabetic therapeutic target.
Autophagy and its implication in human oral diseases.
Tan, Ya-Qin; Zhang, Jing; Zhou, Gang
2017-02-01
Macroautophagy/autophagy is a conserved lysosomal degradation process essential for cell physiology and human health. By regulating apoptosis, inflammation, pathogen clearance, immune response and other cellular processes, autophagy acts as a modulator of pathogenesis and is a potential therapeutic target in diverse diseases. With regard to oral disease, autophagy can be problematic either when it is activated or impaired, because this process is involved in diverse functions, depending on the specific disease and its level of progression. In particular, activated autophagy functions as a cytoprotective mechanism under environmental stress conditions, which regulates tumor growth and mediates resistance to anticancer treatment in established tumors. During infections and inflammation, activated autophagy selectively delivers microbial antigens to the immune systems, and is therefore connected to the elimination of intracellular pathogens. Impaired autophagy contributes to oxidative stress, genomic instability, chronic tissue damage, inflammation and tumorigenesis, and is involved in aberrant bacterial clearance and immune priming. Hence, substantial progress in the study of autophagy provides new insights into the pathogenesis of oral diseases. This review outlines the mechanisms of autophagy, and highlights the emerging roles of this process in oral cancer, periapical lesions, periodontal diseases, and oral candidiasis.
Autophagy and its implication in human oral diseases
Tan, Ya-Qin; Zhang, Jing; Zhou, Gang
2017-01-01
ABSTRACT Macroautophagy/autophagy is a conserved lysosomal degradation process essential for cell physiology and human health. By regulating apoptosis, inflammation, pathogen clearance, immune response and other cellular processes, autophagy acts as a modulator of pathogenesis and is a potential therapeutic target in diverse diseases. With regard to oral disease, autophagy can be problematic either when it is activated or impaired, because this process is involved in diverse functions, depending on the specific disease and its level of progression. In particular, activated autophagy functions as a cytoprotective mechanism under environmental stress conditions, which regulates tumor growth and mediates resistance to anticancer treatment in established tumors. During infections and inflammation, activated autophagy selectively delivers microbial antigens to the immune systems, and is therefore connected to the elimination of intracellular pathogens. Impaired autophagy contributes to oxidative stress, genomic instability, chronic tissue damage, inflammation and tumorigenesis, and is involved in aberrant bacterial clearance and immune priming. Hence, substantial progress in the study of autophagy provides new insights into the pathogenesis of oral diseases. This review outlines the mechanisms of autophagy, and highlights the emerging roles of this process in oral cancer, periapical lesions, periodontal diseases, and oral candidiasis. PMID:27764582
Stow, Lisa R.; Jacobs, Mollie E.; Wingo, Charles S.; Cain, Brian D.
2011-01-01
Over two decades of research have demonstrated that the peptide hormone endothelin-1 (ET-1) plays multiple, complex roles in cardiovascular, neural, pulmonary, reproductive, and renal physiology. Differential and tissue-specific production of ET-1 must be tightly regulated in order to preserve these biologically diverse actions. The primary mechanism thought to control ET-1 bioavailability is the rate of transcription from the ET-1 gene (edn1). Studies conducted on a variety of cell types have identified key transcription factors that govern edn1 expression. With few exceptions, the cis-acting elements bound by these factors have been mapped in the edn1 regulatory region. Recent evidence has revealed new roles for some factors originally believed to regulate edn1 in a tissue or hormone-specific manner. In addition, other mechanisms involved in epigenetic regulation and mRNA stability have emerged as important processes for regulated edn1 expression. The goal of this review is to provide a comprehensive overview of the specific factors and signaling systems that govern edn1 activity at the molecular level.—Stow, L. R., Jacobs, M. E., Wingo, C. S., Cain, B. D. Endothelin-1 gene regulation. PMID:20837776
Metabolic regulation in solventogenic clostridia: regulators, mechanisms and engineering.
Yang, Yunpeng; Nie, Xiaoqun; Jiang, Yuqian; Yang, Chen; Gu, Yang; Jiang, Weihong
2018-02-22
Solventogenic clostridia, a group of important industrial microorganisms, have exceptional substrate and product diversity, capable of producing a series of two-carbon and even long-chain chemicals and fuels by using various substrates, including sugars, cellulose and hemicellulose, and C1 gases. For the sake of in-depth understanding and engineering these anaerobic microorganisms for broader applications, studies on metabolic regulation of solventogenic clostridia had been extensively carried out during the past ten years, based on the rapid development of various genetic tools. To date, a number of regulators that are essential for cell physiological and metabolic processes have been identified in clostridia, and the relevant mechanisms have also been dissected, providing a wealth of valuable information for metabolic engineering. Here, we reviewed the latest research progresses on the metabolic regulation for chemical production and substrate utilization in solventogenic clostridia, by focusing on three typical Clostridium species, the saccharolytic C. acetobutylicum and C. beijerinckii, as well as the gas-fermenting C. ljungdahlii. On this basis, future directions in the study and remodeling of clostridial regulation systems, were proposed for effective modification of these industrially important anaerobes. Copyright © 2018 Elsevier Inc. All rights reserved.
RanBPM: a potential therapeutic target for modulating diverse physiological disorders.
Das, Soumyadip; Suresh, Bharathi; Kim, Hyongbum Henry; Ramakrishna, Suresh
2017-12-01
The Ran-binding protein microtubule-organizing center (RanBPM) is a highly conserved nucleocytoplasmic protein involved in a variety of intracellular signaling pathways that control diverse cellular functions. RanBPM interacts with proteins that are linked to various diseases, including Alzheimer's disease (AD), schizophrenia (SCZ), and cancer. In this article, we define the characteristics of the scaffolding protein RanBPM and focus on its interaction partners in diverse physiological disorders, such as neurological diseases, fertility disorders, and cancer. Copyright © 2017 Elsevier Ltd. All rights reserved.
Zhang, Min; Xu, Yanping; Li, Linfang; Wei, Shulei; Zhang, Shicui; Liu, Zhenhui
2013-02-01
CD36, as one member of scavenger receptor class B (SRB) family, is a transmembrane glycoprotein and has been associated with diverse normal physiological processes and pathological conditions. However, little is known about it in amphioxus, a model organism for insights into the origin and evolution of vertebrates. In this paper, CD36 homologs in amphioxus were identified. Evolutionary analysis suggested that amphioxus BfCD36F-a/b, which were more similar to vertebrate CD36, might represent the primitive form before the splitting of CD36, SRB1 and SRB2 genes during evolution. Then the BjCD36F-a cDNA was cloned from Branchiostoma japonicum using RACE technology. Real-time PCR and in situ hybridization revealed the expression of BjCD36F-a in all the tissues detected with the highest expression in the hepatic caecum. The BjCD36F-a expression was obviously up-regulated after feeding and down-regulated during fasting, indicating a role of BjCD36F-a in feeding regulation. Besides, the up-regulation expression of BjCD36F-a transcripts was also found after either Lipoteichoic acid (LTA) treatment in the BjCD36F-a-transfected FG cells or Escherichia coli (E. coli) challenge in vivo, implying an immune-related function for BjCD36F-a. Collectively, we identify and characterize a conserved gene that is important in the fundamental process of immune and nutritional regulation. These are the first such data in amphioxus, laying a foundation for further study of their physiological functions. Copyright © 2012 Elsevier Ltd. All rights reserved.
Analysis of Chromobacterium sp. natural isolates from different Brazilian ecosystems
Lima-Bittencourt, Cláudia I; Astolfi-Filho, Spartaco; Chartone-Souza, Edmar; Santos, Fabrício R; Nascimento, Andréa MA
2007-01-01
Background Chromobacterium violaceum is a free-living bacterium able to survive under diverse environmental conditions. In this study we evaluate the genetic and physiological diversity of Chromobacterium sp. isolates from three Brazilian ecosystems: Brazilian Savannah (Cerrado), Atlantic Rain Forest and Amazon Rain Forest. We have analyzed the diversity with molecular approaches (16S rRNA gene sequences and amplified ribosomal DNA restriction analysis) and phenotypic surveys of antibiotic resistance and biochemistry profiles. Results In general, the clusters based on physiological profiles included isolates from two or more geographical locations indicating that they are not restricted to a single ecosystem. The isolates from Brazilian Savannah presented greater physiologic diversity and their biochemical profile was the most variable of all groupings. The isolates recovered from Amazon and Atlantic Rain Forests presented the most similar biochemical characteristics to the Chromobacterium violaceum ATCC 12472 strain. Clusters based on biochemical profiles were congruent with clusters obtained by the 16S rRNA gene tree. According to the phylogenetic analyses, isolates from the Amazon Rain Forest and Savannah displayed a closer relationship to the Chromobacterium violaceum ATCC 12472. Furthermore, 16S rRNA gene tree revealed a good correlation between phylogenetic clustering and geographic origin. Conclusion The physiological analyses clearly demonstrate the high biochemical versatility found in the C. violaceum genome and molecular methods allowed to detect the intra and inter-population diversity of isolates from three Brazilian ecosystems. PMID:17584942
Genetic dissection of GABAergic neural circuits in mouse neocortex
Taniguchi, Hiroki
2014-01-01
Diverse and flexible cortical functions rely on the ability of neural circuits to perform multiple types of neuronal computations. GABAergic inhibitory interneurons significantly contribute to this task by regulating the balance of activity, synaptic integration, spiking, synchrony, and oscillation in a neural ensemble. GABAergic interneurons display a high degree of cellular diversity in morphology, physiology, connectivity, and gene expression. A considerable number of subtypes of GABAergic interneurons diversify modes of cortical inhibition, enabling various types of information processing in the cortex. Thus, comprehensively understanding fate specification, circuit assembly, and physiological function of GABAergic interneurons is a key to elucidate the principles of cortical wiring and function. Recent advances in genetically encoded molecular tools have made a breakthrough to systematically study cortical circuitry at the molecular, cellular, circuit, and whole animal levels. However, the biggest obstacle to fully applying the power of these to analysis of GABAergic circuits was that there were no efficient and reliable methods to express them in subtypes of GABAergic interneurons. Here, I first summarize cortical interneuron diversity and current understanding of mechanisms, by which distinct classes of GABAergic interneurons are generated. I then review recent development in genetically encoded molecular tools for neural circuit research, and genetic targeting of GABAergic interneuron subtypes, particularly focusing on our recent effort to develop and characterize Cre/CreER knockin lines. Finally, I highlight recent success in genetic targeting of chandelier cells, the most unique and distinct GABAergic interneuron subtype, and discuss what kind of questions need to be addressed to understand development and function of cortical inhibitory circuits. PMID:24478631
Physiological Regulation at 9 Months of Age in Infants Prenatally Exposed to Cigarettes
ERIC Educational Resources Information Center
Schuetze, Pamela; Eiden, Rina D.; Colder, Craig R.; Gray, Teresa R.; Huestis, Marilyn A.
2013-01-01
The primary purpose of this study was to examine the association between prenatal cigarette exposure and physiological regulation at 9 months of age. Specifically, we explored the possibility that any association between prenatal cigarette exposure and infant physiological regulation was moderated by postnatal environmental tobacco smoke (ETS)…
Pfliegler, W P; Sipiczki, M
2016-12-01
Simple and efficient genotyping methods are widely used to assess the diversity of a large number of microbial strains, e.g. wine yeasts isolated from a specific geographical area or a vintage. Such methods are often also the first to be applied, to decrease the number of strains deemed interesting for a more time-consuming physiological characterization. Here, we aimed to use a physiologically characterized strain collection of 69 Saccharomyces cerevisiae strains from Hungarian wine regions to determine whether geographical origin or physiological similarity can be recovered by clustering the strains with one or two simultaneously used variations of interdelta genotyping. Our results indicate that although a detailed clustering with high resolution can be achieved with this method, the clustering of strains is largely contrasting when different primer sets are used and it does not recover geographical or physiological groups. Genotyping is routinely used for assessing the diversity of a large number of isolates/strains of a single species, e.g. a collection of wine yeasts. We tested the efficiency of interdelta genotyping on a collection of Saccharomyces wine yeasts from four wine regions of Hungary that was previously characterized physiologically. Interdelta fingerprinting recovered neither physiological nor geographical similarities, and in addition, the two different primer pairs widely used for this method showed conflicting and barely comparable results. Thus, this method does not necessarily represent the true diversity of a strain collection, but detailed clustering may be achieved by the combined use of primer sets. © 2016 The Society for Applied Microbiology.
Clarifying the Roles of Homeostasis and Allostasis in Physiological Regulation
Ramsay, Douglas S.; Woods, Stephen C.
2014-01-01
Homeostasis, the dominant explanatory framework for physiological regulation, has undergone significant revision in recent years, with contemporary models differing significantly from the original formulation. Allostasis, an alternative view of physiological regulation, goes beyond its homeostatic roots, offering novel insights relevant to our understanding and treatment of several chronic health conditions. Despite growing enthusiasm for allostasis, the concept remains diffuse, due in part to ambiguity as to how the term is understood and used, impeding meaningful translational and clinical research on allostasis. Here we provide a more focused understanding of homeostasis and allostasis by explaining how both play a role in physiological regulation, and a critical analysis of regulation suggests how homeostasis and allostasis can be distinguished. Rather than focusing on changes in the value of a regulated variable (e.g., body temperature, body adiposity, or reward), research investigating the activity and relationship among the multiple regulatory loops that influence the value of these regulated variables may be the key to distinguishing homeostasis and allostasis. The mechanisms underlying physiological regulation and dysregulation are likely to have important implications for health and disease. PMID:24730599
Alpha-Secretase ADAM10 Regulation: Insights into Alzheimer’s Disease Treatment
Peron, Rafaela; Vatanabe, Izabela Pereira; Manzine, Patricia Regina; Camins, Antoni
2018-01-01
ADAM (a disintegrin and metalloproteinase) is a family of widely expressed, transmembrane and secreted proteins of approximately 750 amino acids in length with functions in cell adhesion and proteolytic processing of the ectodomains of diverse cell-surface receptors and signaling molecules. ADAM10 is the main α-secretase that cleaves APP (amyloid precursor protein) in the non-amyloidogenic pathway inhibiting the formation of β-amyloid peptide, whose accumulation and aggregation leads to neuronal degeneration in Alzheimer’s disease (AD). ADAM10 is a membrane-anchored metalloprotease that sheds, besides APP, the ectodomain of a large variety of cell-surface proteins including cytokines, adhesion molecules and notch. APP cleavage by ADAM10 results in the production of an APP-derived fragment, sAPPα, which is neuroprotective. As increased ADAM10 activity protects the brain from β-amyloid deposition in AD, this strategy has been proved to be effective in treating neurodegenerative diseases, including AD. Here, we describe the physiological mechanisms regulating ADAM10 expression at different levels, aiming to propose strategies for AD treatment. We report in this review on the physiological regulation of ADAM10 at the transcriptional level, by epigenetic factors, miRNAs and/or translational and post-translational levels. In addition, we describe the conditions that can change ADAM10 expression in vitro and in vivo, and discuss how this knowledge may help in AD treatment. Regulation of ADAM10 is achieved by multiple mechanisms that include transcriptional, translational and post-translational strategies, which we will summarize in this review. PMID:29382156
Hepatic signaling by the mechanistic target of rapamycin complex 2 (mTORC2)
Lamming, Dudley W.; Demirkan, Gokhan; Boylan, Joan M.; Mihaylova, Maria M.; Peng, Tao; Ferreira, Jonathan; Neretti, Nicola; Salomon, Arthur; Sabatini, David M.; Gruppuso, Philip A.
2014-01-01
The mechanistic target of rapamycin (mTOR) exists in two complexes that regulate diverse cellular processes. mTOR complex 1 (mTORC1), the canonical target of rapamycin, has been well studied, whereas the physiological role of mTORC2 remains relatively uncharacterized. In mice in which the mTORC2 component Rictor is deleted in liver [Rictor-knockout (RKO) mice], we used genomic and phosphoproteomic analyses to characterize the role of hepatic mTORC2 in vivo. Overnight food withdrawal followed by refeeding was used to activate mTOR signaling. Rapamycin was administered before refeeding to specify mTORC2-mediated events. Hepatic mTORC2 regulated a complex gene expression and post-translational network that affects intermediary metabolism, ribosomal biogenesis, and proteasomal biogenesis. Nearly all changes in genes related to intermediary metabolic regulation were replicated in cultured fetal hepatocytes, indicating a cell-autonomous effect of mTORC2 signaling. Phosphoproteomic profiling identified mTORC2-related signaling to 144 proteins, among which were metabolic enzymes and regulators. A reduction of p38 MAPK signaling in the RKO mice represents a link between our phosphoproteomic and gene expression results. We conclude that hepatic mTORC2 exerts a broad spectrum of biological effects under physiological conditions. Our findings provide a context for the development of targeted therapies to modulate mTORC2 signaling.—Lamming, D. W., Demirkan, G., Boylan, J. M., Mihaylova, M. M., Peng, T., Ferreira, J., Neretti, N., Salomon, A., Sabatini, D. M., Gruppuso, P. A. Hepatic signaling by the mechanistic target of rapamycin complex 2 (mTORC2). PMID:24072782
Beyond desensitization: physiological relevance of arrestin-dependent signaling.
Luttrell, Louis M; Gesty-Palmer, Diane
2010-06-01
Heptahelical G protein-coupled receptors are the most diverse and therapeutically important family of receptors in the human genome. Ligand binding activates heterotrimeric G proteins that transmit intracellular signals by regulating effector enzymes or ion channels. G protein signaling is terminated, in large part, by arrestin binding, which uncouples the receptor and G protein and targets the receptor for internalization. It is clear, however, that heptahelical receptor signaling does not end with desensitization. Arrestins bind a host of catalytically active proteins and serve as ligand-regulated scaffolds that recruit protein and lipid kinase, phosphatase, phosphodiesterase, and ubiquitin ligase activity into the receptor-arrestin complex. Although many of these arrestin-bound effectors serve to modulate G protein signaling, degrading second messengers and regulating endocytosis and trafficking, other signals seem to extend beyond the receptor-arrestin complex to regulate such processes as protein translation and gene transcription. Although these findings have led to a re-envisioning of heptahelical receptor signaling, little is known about the physiological roles of arrestin-dependent signaling. In vivo, the duality of arrestin function makes it difficult to dissociate the consequences of arrestin-dependent desensitization from those that might be ascribed to arrestin-mediated signaling. Nonetheless, recent evidence generated using arrestin knockouts, G protein-uncoupled receptor mutants, and arrestin pathway-selective "biased agonists" is beginning to reveal that arrestin signaling plays important roles in the retina, central nervous system, cardiovascular system, bone remodeling, immune system, and cancer. Understanding the signaling roles of arrestins may foster the development of pathway-selective drugs that exploit these pathways for therapeutic benefit.
Beyond Desensitization: Physiological Relevance of Arrestin-Dependent Signaling
Luttrell, Louis M.
2010-01-01
Heptahelical G protein-coupled receptors are the most diverse and therapeutically important family of receptors in the human genome. Ligand binding activates heterotrimeric G proteins that transmit intracellular signals by regulating effector enzymes or ion channels. G protein signaling is terminated, in large part, by arrestin binding, which uncouples the receptor and G protein and targets the receptor for internalization. It is clear, however, that heptahelical receptor signaling does not end with desensitization. Arrestins bind a host of catalytically active proteins and serve as ligand-regulated scaffolds that recruit protein and lipid kinase, phosphatase, phosphodiesterase, and ubiquitin ligase activity into the receptor-arrestin complex. Although many of these arrestin-bound effectors serve to modulate G protein signaling, degrading second messengers and regulating endocytosis and trafficking, other signals seem to extend beyond the receptor-arrestin complex to regulate such processes as protein translation and gene transcription. Although these findings have led to a re-envisioning of heptahelical receptor signaling, little is known about the physiological roles of arrestin-dependent signaling. In vivo, the duality of arrestin function makes it difficult to dissociate the consequences of arrestin-dependent desensitization from those that might be ascribed to arrestin-mediated signaling. Nonetheless, recent evidence generated using arrestin knockouts, G protein-uncoupled receptor mutants, and arrestin pathway-selective “biased agonists” is beginning to reveal that arrestin signaling plays important roles in the retina, central nervous system, cardiovascular system, bone remodeling, immune system, and cancer. Understanding the signaling roles of arrestins may foster the development of pathway-selective drugs that exploit these pathways for therapeutic benefit. PMID:20427692
New ligands for melanocortin receptors.
Kaelin, C B; Candille, S I; Yu, B; Jackson, P; Thompson, D A; Nix, M A; Binkley, J; Millhauser, G L; Barsh, G S
2008-12-01
Named originally for their effects on peripheral end organs, the melanocortin system controls a diverse set of physiological processes through a series of five G-protein-coupled receptors and several sets of small peptide ligands. The central melanocortin system plays an essential role in homeostatic regulation of body weight, in which two alternative ligands, alpha-melanocyte-stimulating hormone and agouti-related protein, stimulate and inhibit receptor signaling in several key brain regions that ultimately affect food intake and energy expenditure. Much of what we know about the relationship between central melanocortin signaling and body weight regulation stems from genetic studies. Comparative genomic studies indicate that melanocortin receptors used for controlling pigmentation and body weight regulation existed more than 500 million years ago in primitive vertebrates, but that fine-grained control of melanocortin receptors through neuropeptides and endogenous antagonists developed more recently. Recent studies based on dog coat-color genetics revealed a new class of melanocortin ligands, the beta-defensins, which reveal the potential for cross talk between the melanocortin and the immune systems.
Central role for ferritin in the day/night regulation of iron homeostasis in marine phytoplankton
Botebol, Hugo; Lesuisse, Emmanuel; Šuták, Robert; Six, Christophe; Lozano, Jean-Claude; Schatt, Philippe; Vergé, Valérie; Kirilovsky, Amos; Morrissey, Joe; Léger, Thibaut; Camadro, Jean-Michel; Gueneugues, Audrey; Bowler, Chris; Blain, Stéphane; Bouget, François-Yves
2015-01-01
In large regions of the open ocean, iron is a limiting resource for phytoplankton. The reduction of iron quota and the recycling of internal iron pools are among the diverse strategies that phytoplankton have evolved to allow them to grow under chronically low ambient iron levels. Phytoplankton species also have evolved strategies to cope with sporadic iron supply such as long-term storage of iron in ferritin. In the picophytoplanktonic species Ostreococcus we report evidence from observations both in the field and in laboratory cultures that ferritin and the main iron-binding proteins involved in photosynthesis and nitrate assimilation pathways show opposite diurnal expression patterns, with ferritin being maximally expressed during the night. Biochemical and physiological experiments using a ferritin knock-out line subsequently revealed that this protein plays a central role in the diel regulation of iron uptake and recycling and that this regulation of iron homeostasis is essential for cell survival under iron limitation. PMID:26553998
Central role for ferritin in the day/night regulation of iron homeostasis in marine phytoplankton.
Botebol, Hugo; Lesuisse, Emmanuel; Šuták, Robert; Six, Christophe; Lozano, Jean-Claude; Schatt, Philippe; Vergé, Valérie; Kirilovsky, Amos; Morrissey, Joe; Léger, Thibaut; Camadro, Jean-Michel; Gueneugues, Audrey; Bowler, Chris; Blain, Stéphane; Bouget, François-Yves
2015-11-24
In large regions of the open ocean, iron is a limiting resource for phytoplankton. The reduction of iron quota and the recycling of internal iron pools are among the diverse strategies that phytoplankton have evolved to allow them to grow under chronically low ambient iron levels. Phytoplankton species also have evolved strategies to cope with sporadic iron supply such as long-term storage of iron in ferritin. In the picophytoplanktonic species Ostreococcus we report evidence from observations both in the field and in laboratory cultures that ferritin and the main iron-binding proteins involved in photosynthesis and nitrate assimilation pathways show opposite diurnal expression patterns, with ferritin being maximally expressed during the night. Biochemical and physiological experiments using a ferritin knock-out line subsequently revealed that this protein plays a central role in the diel regulation of iron uptake and recycling and that this regulation of iron homeostasis is essential for cell survival under iron limitation.
The NOTCH1-autophagy interaction: Regulating self-eating for survival.
Sarin, Apurva; Marcel, Nimi
2017-02-01
T-cell subsets in the mammalian immune system use varied mechanisms for survival, a demand imposed by the diverse and dynamic niches that they function in. In a recent study, we showed that survival of natural T-regulatory cells (Tregs) was determined by spatially regulated NOTCH1 activity signaling leading to the activation of macroautophagy/autophagy. While this interaction was revealed in experimental conditions of limited nutrient availability in vitro, the consequences of this interaction were confirmed in the context of immune physiology. Consistently, disrupting NOTCH signaling or the autophagy cascade was deleterious to Tregs. At the molecular level, ligand-activated NOTCH1, which is enriched outside the nucleus in Tregs, was detected in complexes that included specific molecular intermediates controlling the progression of autophagy. Mitochondria were a prominent cellular target, with organelle remodeling and function dependent on NOTCH1 signaling to autophagy. It is tempting to speculate that the link between autophagy and the developmental regulator NOTCH1 identified in this work may be conserved in other biological contexts.
Yap, Karen; Makeyev, Eugene V
2013-09-01
Eukaryotic gene expression is orchestrated on a genome-wide scale through several post-transcriptional mechanisms. Of these, alternative pre-mRNA splicing expands the proteome diversity and modulates mRNA stability through downstream RNA quality control (QC) pathways including nonsense-mediated decay (NMD) of mRNAs containing premature termination codons and nuclear retention and elimination (NRE) of intron-containing transcripts. Although originally identified as mechanisms for eliminating aberrant transcripts, a growing body of evidence suggests that NMD and NRE coupled with deliberate changes in pre-mRNA splicing patterns are also used in a number of biological contexts for deterministic control of gene expression. Here we review recent studies elucidating molecular mechanisms and biological significance of these gene regulation strategies with a specific focus on their roles in nervous system development and physiology. This article is part of a Special Issue entitled 'RNA and splicing regulation in neurodegeneration'. Copyright © 2013 Elsevier Inc. All rights reserved.
Visualization and classification of physiological failure modes in ensemble hemorrhage simulation
NASA Astrophysics Data System (ADS)
Zhang, Song; Pruett, William Andrew; Hester, Robert
2015-01-01
In an emergency situation such as hemorrhage, doctors need to predict which patients need immediate treatment and care. This task is difficult because of the diverse response to hemorrhage in human population. Ensemble physiological simulations provide a means to sample a diverse range of subjects and may have a better chance of containing the correct solution. However, to reveal the patterns and trends from the ensemble simulation is a challenging task. We have developed a visualization framework for ensemble physiological simulations. The visualization helps users identify trends among ensemble members, classify ensemble member into subpopulations for analysis, and provide prediction to future events by matching a new patient's data to existing ensembles. We demonstrated the effectiveness of the visualization on simulated physiological data. The lessons learned here can be applied to clinically-collected physiological data in the future.
The interaction and integration of auxin signaling components.
Hayashi, Ken-ichiro
2012-06-01
IAA, a naturally occurring auxin, is a simple signaling molecule that regulates many diverse steps of plant development. Auxin essentially coordinates plant development through transcriptional regulation. Auxin binds to TIR1/AFB nuclear receptors, which are F-box subunits of the SCF ubiquitin ligase complex. The auxin signal is then modulated by the quantitative and qualitative responses of the Aux/IAA repressors and the auxin response factor (ARF) transcription factors. The specificity of the auxin-regulated gene expression profile is defined by several factors, such as the expression of these regulatory proteins, their post-transcriptional regulation, their stability and the affinity between these regulatory proteins. Auxin-binding protein 1 (ABP1) is a candidate protein for an auxin receptor that is implicated in non-transcriptional auxin signaling. ABP1 also affects TIR1/AFB-mediated auxin-responsive gene expression, implying that both the ABP1 and TIR1/AFB signaling machineries coordinately control auxin-mediated physiological events. Systematic approaches using the comprehensive mapping of the expression and interaction of signaling modules and computational modeling would be valuable for integrating our knowledge of auxin signals and responses.
Crowther, Andrew J; Song, Juan
2014-08-01
Adult neural stem cells (NSCs) reside in a restricted microenvironment, where their development is controlled by subtle and presently underexplored cues. This raises a significant question: what instructions must be provided by this supporting niche to regulate NSC development and functions? Signaling from the niche is proposed to control many aspects of NSC behavior, including balancing the quiescence and proliferation of NSCs, determining the cell division mode (symmetric versus asymmetric), and preventing premature depletion of stem cells to maintain neurogenesis throughout life. Interactions between neurogenic niches and NSCs also govern the homeostatic regulation of adult neurogenesis under diverse physiological, environmental, and pathological conditions. An important implication from revisiting many previously-identifi ed regulatory factors is that most of them (e.g., the antidepressant fluoxetine and exercise) affect gross neurogenesis by acting downstream of NSCs at the level of intermediate progenitors and neuroblasts, while leaving the NSC pool unaffected. Therefore, it is critically important to address how various niche components, signaling pathways, and environmental stimuli differentially regulate distinct stages of adult neurogenesis.
Rajendran, Ramkumar; Garva, Richa; Krstic-Demonacos, Marija; Demonacos, Constantinos
2011-01-01
Transcription is regulated by acetylation/deacetylation reactions of histone and nonhistone proteins mediated by enzymes called KATs and HDACs, respectively. As a major mechanism of transcriptional regulation, protein acetylation is a key controller of physiological processes such as cell cycle, DNA damage response, metabolism, apoptosis, and autophagy. The deacetylase activity of class III histone deacetylases or sirtuins depends on the presence of NAD(+) (nicotinamide adenine dinucleotide), and therefore, their function is closely linked to cellular energy consumption. This activity of sirtuins connects the modulation of chromatin dynamics and transcriptional regulation under oxidative stress to cellular lifespan, glucose homeostasis, inflammation, and multiple aging-related diseases including cancer. Here we provide an overview of the recent developments in relation to the diverse biological activities associated with sirtuin enzymes and stress responsive transcription factors, DNA damage, and oxidative stress and relate the involvement of sirtuins in the regulation of these processes to oncogenesis. Since the majority of the molecular mechanisms implicated in these pathways have been described for Sirt1, this sirtuin family member is more extensively presented in this paper.
Information Integration and Communication in Plant Growth Regulation.
Chaiwanon, Juthamas; Wang, Wenfei; Zhu, Jia-Ying; Oh, Eunkyoo; Wang, Zhi-Yong
2016-03-10
Plants are equipped with the capacity to respond to a large number of diverse signals, both internal ones and those emanating from the environment, that are critical to their survival and adaption as sessile organisms. These signals need to be integrated through highly structured intracellular networks to ensure coherent cellular responses, and in addition, spatiotemporal actions of hormones and peptides both orchestrate local cell differentiation and coordinate growth and physiology over long distances. Further, signal interactions and signaling outputs vary significantly with developmental context. This review discusses our current understanding of the integrated intracellular and intercellular signaling networks that control plant growth. Copyright © 2016 Elsevier Inc. All rights reserved.
Yang, De; Han, Zhen; Oppenheim, Joost J
2017-11-01
More than a decade has passed since the conceptualization of the "alarmin" hypothesis. The alarmin family has been expanding in terms of both number and the concept. It has recently become clear that alarmins play important roles as initiators and participants in a diverse range of physiological and pathophysiological processes such as host defense, regulation of gene expression, cellular homeostasis, wound healing, inflammation, allergy, autoimmunity, and oncogenesis. Here, we provide a general view on the participation of alarmins in the induction of innate and adaptive immune responses, as well as their contribution to tumor immunity. Published 2017. This article is a U.S. Government work and is in the public domain in the USA.
Current and future prospects for CRISPR-based tools in bacteria
Luo, Michelle L.; Leenay, Ryan T.; Beisel, Chase L.
2015-01-01
CRISPR-Cas systems have rapidly transitioned from intriguing prokaryotic defense systems to powerful and versatile biomolecular tools. This article reviews how these systems have been translated into technologies to manipulate bacterial genetics, physiology, and communities. Recent applications in bacteria have centered on multiplexed genome editing, programmable gene regulation, and sequence-specific antimicrobials, while future applications can build on advances in eukaryotes, the rich natural diversity of CRISPR-Cas systems, and the untapped potential of CRISPR-based DNA acquisition. Overall, these systems have formed the basis of an ever-expanding genetic toolbox and hold tremendous potential for our future understanding and engineering of the bacterial world. PMID:26460902
Transposable Elements Re-Wire and Fine-Tune the Transcriptome
Cowley, Michael; Oakey, Rebecca J.
2013-01-01
What good are transposable elements (TEs)? Although their activity can be harmful to host genomes and can cause disease, they nevertheless represent an important source of genetic variation that has helped shape genomes. In this review, we examine the impact of TEs, collectively referred to as the mobilome, on the transcriptome. We explore how TEs—particularly retrotransposons—contribute to transcript diversity and consider their potential significance as a source of small RNAs that regulate host gene transcription. We also discuss a critical role for the mobilome in engineering transcriptional networks, permitting coordinated gene expression, and facilitating the evolution of novel physiological processes. PMID:23358118
Information Integration and Communication in Plant Growth Regulation
Chaiwanon, Juthamas; Wang, Wenfei; Zhu, Jia-Ying; Oh, Eunkyoo; Wang, Zhi-Yong
2016-01-01
Plants are equipped with the capacity to respond to a large number of diverse signals, both internal ones and those emanating from the environment, that are critical to their survival and adaption as sessile organisms. These signals need to be integrated through highly structured intracellular networks to ensure coherent cellular responses, and in addition, spatiotemporal actions of hormones and peptides both orchestrate local cell differentiation and coordinate growth and physiology over long distances. Further, signal interactions and signaling outputs vary significantly with developmental context. This review discusses our current understanding of the integrated intracellular and intercellular signaling networks that control plant growth. PMID:26967291
Fibrocytes: Bringing New Insights Into Mechanisms of Inflammation and Fibrosis
Keeley, Ellen C.; Mehrad, Borna; Strieter, Robert M.
2009-01-01
Regeneration and fibrosis are integral parts of the recovery process following tissue injury, and impaired regulation of these mechanisms is a hallmark of many chronic diseases. A population of bone marrow-derived mesenchymal progenitor cells known as fibrocytes, play an important role in tissue remodeling and fibrosis in both physiologic and pathologic settings. In this review we summarize the key concepts regarding the pathophysiology of wound healing and fibrosis, and present data to support the contention that circulating fibrocytes are important in both normal repair process and aberrant healing and fibrotic damage associated with a diverse set of disease states. PMID:19850147
Lau, Hiu E; Chalasani, Sreekanth H
2014-09-01
Insulin signaling plays a critical role in coupling external changes to animal physiology and behavior. Despite remarkable conservation in the insulin signaling pathway components across species, divergence in the mechanism and function of the signal is evident. Focusing on recent findings from C. elegans, D. melanogaster and mammals, we discuss the role of insulin signaling in regulating adult neuronal function and behavior. In particular, we describe the transcription-dependent and transcription-independent aspects of insulin signaling across these three species. Interestingly, we find evidence of diverse mechanisms underlying complex networks of peptide action in modulating nervous system function.
NASA Astrophysics Data System (ADS)
Sheward, Rosie M.; Poulton, Alex J.; Gibbs, Samantha J.; Daniels, Chris J.; Bown, Paul R.
2017-03-01
Coccolithophores are an abundant phytoplankton group that exhibit remarkable diversity in their biology, ecology and calcitic exoskeletons (coccospheres). Their extensive fossil record is a testament to their important biogeochemical role and is a valuable archive of biotic responses to environmental change stretching back over 200 million years. However, to realise the full potential of this archive for (palaeo-)biology and biogeochemistry requires an understanding of the physiological processes that underpin coccosphere architecture. Using culturing experiments on four modern coccolithophore species (Calcidiscus leptoporus, Calcidiscus quadriperforatus, Helicosphaera carteri and Coccolithus braarudii) from three long-lived families, we investigate how coccosphere architecture responds to shifts from exponential (rapid cell division) to stationary (slowed cell division) growth phases as cell physiology reacts to nutrient depletion. These experiments reveal statistical differences in coccosphere size and the number of coccoliths per cell between these two growth phases, specifically that cells in exponential-phase growth are typically smaller with fewer coccoliths, whereas cells experiencing growth-limiting nutrient depletion have larger coccosphere sizes and greater numbers of coccoliths per cell. Although the exact numbers are species-specific, these growth-phase shifts in coccosphere geometry demonstrate that the core physiological responses of cells to nutrient depletion result in increased coccosphere sizes and coccoliths per cell across four different coccolithophore families (Calcidiscaceae, Coccolithaceae, Isochrysidaceae and Helicosphaeraceae), a representative diversity of this phytoplankton group. Building on this, the direct comparison of coccosphere geometries in modern and fossil coccolithophores enables a proxy for growth phase to be developed that can be used to investigate growth responses to environmental change throughout their long evolutionary history. Our data also show that changes in growth rate and coccoliths per cell associated with growth-phase shifts can substantially alter cellular calcite production. Coccosphere geometry is therefore a valuable tool for accessing growth information in the fossil record, providing unprecedented insights into the response of species to environmental change and the potential biogeochemical consequences.
GPER/GPR30 knockout mice: effects of GPER on metabolism
Sharma, Geetanjali; Prossnitz, Eric R.
2015-01-01
i. Summary Endogenous estrogens, predominantly 17β-estradiol (E2), mediate various very diverse effects throughout the body in both normal physiology and disease. Actions include development (including puberty) and reproduction as well as additional effects throughout life in the metabolic, endocrine, musculoskeletal, nervous, cardiovascular and immune systems. The actions of E2 have traditionally been attributed to the classical nuclear estrogen receptors (ERα and ERβ) that largely mediate transcriptional/genomic activities. However, more recently the G protein-coupled estrogen receptor GPER/GPR30 has become recognized as an essential mediator of certain, and particularly rapid, signaling events in response to E2. Murine genetic knockout (KO) models represent an important approach to understand the mechanisms of E2 action in physiology and disease. Studies of GPER KO mice over the last years have revealed functions for GPER in the regulation of obesity, insulin resistance and glucose intolerance, among other areas of (patho)physiology. This chapter focuses on methods for the evaluation of metabolic parameters in vivo and ex vivo with an emphasis on glucose homeostasis and metabolism through the use of glucose and insulin tolerance tests, pancreatic islet and adipocyte isolation and characterization. PMID:26585159
GPER/GPR30 Knockout Mice: Effects of GPER on Metabolism.
Sharma, Geetanjali; Prossnitz, Eric R
2016-01-01
Endogenous estrogens, predominantly 17β-estradiol (E2), mediate various diverse effects throughout the body in both normal physiology and disease. Actions include development (including puberty) and reproduction as well as additional effects throughout life in the metabolic, endocrine, musculoskeletal, nervous, cardiovascular, and immune systems. The actions of E2 have traditionally been attributed to the classical nuclear estrogen receptors (ERα and ERβ) that largely mediate transcriptional/genomic activities. However, more recently the G protein-coupled estrogen receptor GPER/GPR30 has become recognized as an essential mediator of certain, and particularly rapid, signaling events in response to E2. Murine genetic knockout (KO) models represent an important approach to understand the mechanisms of E2 action in physiology and disease. Studies of GPER KO mice over the last years have revealed functions for GPER in the regulation of obesity, insulin resistance and glucose intolerance, among other areas of (patho)physiology. This chapter focuses on methods for the evaluation of metabolic parameters in vivo and ex vivo with an emphasis on glucose homeostasis and metabolism through the use of glucose and insulin tolerance tests, pancreatic islet and adipocyte isolation and characterization.
Prohibitin (PHB) roles in granulosa cell physiology
Chowdhury, Indrajit; Thomas, Kelwyn; Thompson, Winston E.
2015-01-01
Ovarian granulosa cells (GC) play an important role in the growth and development of the follicle in the process known as folliculogenesis. In the present review, we focus on the recent developments in prohibitin (PHB) research in relation to GC physiological functions. PHB is a member of highly conserved eukaryotic protein family containing the repressor of estrogen activity (REA)/stomatin/prohibitin/flotillin/HflK/C (SPFH) domain [also known as the PHB domain] found in divergent species from prokaryotes to eukaryotes. PHB is ubiquitously expressed either in circulating free form or is present in multiple cellular compartments including mitochondria, nucleus and plasma membrane. In mitochondria, PHB is anchored to the mitochondrial inner membrane (IMM), and form complexes with the ATPases Associated with diverse cellular Activities (m-AAA) proteases. PHB continuously shuttles between the mitochondria, cytosol and nucleus. In the nucleus, PHB interacts with various transcription factors and modulate transcriptional activity directly or through interactions with chromatin remodeling proteins. Multiple functions have been attributed to the mitochondrial and nuclear prohibitin complexes such as cellular differentiation, anti-proliferation, morphogenesis and maintaining the functional integrity of the mitochondria. However, to date, the regulation of PHB expression patterns and GC physiological functions are not completely understood. PMID:26496733
Marín-Guirao, Lazaro; Ruiz, Juan M; Dattolo, Emanuela; Garcia-Munoz, Rocio; Procaccini, Gabriele
2016-06-27
The increase in extreme heat events associated to global warming threatens seagrass ecosystems, likely by affecting key plant physiological processes such as photosynthesis and respiration. Understanding species' ability to acclimate to warming is crucial to better predict their future trends. Here, we study tolerance to warming in two key Mediterranean seagrasses, Posidonia oceanica and Cymodocea nodosa. Stress responses of shallow and deep plants were followed during and after short-term heat exposure in mesocosms by coupling photo-physiological measures with analysis of expression of photosynthesis and stress-related genes. Contrasting tolerance and capacity to heat acclimation were shown by shallow and deep P. oceanica ecotypes. While shallow plants acclimated through respiratory homeostasis and activation of photo-protective mechanisms, deep ones experienced photosynthetic injury and impaired carbon balance. This suggests that P. oceanica ecotypes are thermally adapted to local conditions and that Mediterranean warming will likely diversely affect deep and shallow meadow stands. On the other hand, contrasting mechanisms of heat-acclimation were adopted by the two species. P. oceanica regulates photosynthesis and respiration at the level of control plants while C. nodosa balances both processes at enhanced rates. These acclimation discrepancies are discussed in relation to inherent attributes of the two species.
NASA Astrophysics Data System (ADS)
Marín-Guirao, Lazaro; Ruiz, Juan M.; Dattolo, Emanuela; Garcia-Munoz, Rocio; Procaccini, Gabriele
2016-06-01
The increase in extreme heat events associated to global warming threatens seagrass ecosystems, likely by affecting key plant physiological processes such as photosynthesis and respiration. Understanding species’ ability to acclimate to warming is crucial to better predict their future trends. Here, we study tolerance to warming in two key Mediterranean seagrasses, Posidonia oceanica and Cymodocea nodosa. Stress responses of shallow and deep plants were followed during and after short-term heat exposure in mesocosms by coupling photo-physiological measures with analysis of expression of photosynthesis and stress-related genes. Contrasting tolerance and capacity to heat acclimation were shown by shallow and deep P. oceanica ecotypes. While shallow plants acclimated through respiratory homeostasis and activation of photo-protective mechanisms, deep ones experienced photosynthetic injury and impaired carbon balance. This suggests that P. oceanica ecotypes are thermally adapted to local conditions and that Mediterranean warming will likely diversely affect deep and shallow meadow stands. On the other hand, contrasting mechanisms of heat-acclimation were adopted by the two species. P. oceanica regulates photosynthesis and respiration at the level of control plants while C. nodosa balances both processes at enhanced rates. These acclimation discrepancies are discussed in relation to inherent attributes of the two species.
The Physiology of Protein S-acylation
Chamberlain, Luke H.; Shipston, Michael J.
2015-01-01
Protein S-acylation, the only fully reversible posttranslational lipid modification of proteins, is emerging as a ubiquitous mechanism to control the properties and function of a diverse array of proteins and consequently physiological processes. S-acylation results from the enzymatic addition of long-chain lipids, most typically palmitate, onto intracellular cysteine residues of soluble and transmembrane proteins via a labile thioester linkage. Addition of lipid results in increases in protein hydrophobicity that can impact on protein structure, assembly, maturation, trafficking, and function. The recent explosion in global S-acylation (palmitoyl) proteomic profiling as a result of improved biochemical tools to assay S-acylation, in conjunction with the recent identification of enzymes that control protein S-acylation and de-acylation, has opened a new vista into the physiological function of S-acylation. This review introduces key features of S-acylation and tools to interrogate this process, and highlights the eclectic array of proteins regulated including membrane receptors, ion channels and transporters, enzymes and kinases, signaling adapters and chaperones, cell adhesion, and structural proteins. We highlight recent findings correlating disruption of S-acylation to pathophysiology and disease and discuss some of the major challenges and opportunities in this rapidly expanding field. PMID:25834228
A simple theoretical framework for understanding heterogeneous differentiation of CD4+ T cells
2012-01-01
Background CD4+ T cells have several subsets of functional phenotypes, which play critical yet diverse roles in the immune system. Pathogen-driven differentiation of these subsets of cells is often heterogeneous in terms of the induced phenotypic diversity. In vitro recapitulation of heterogeneous differentiation under homogeneous experimental conditions indicates some highly regulated mechanisms by which multiple phenotypes of CD4+ T cells can be generated from a single population of naïve CD4+ T cells. Therefore, conceptual understanding of induced heterogeneous differentiation will shed light on the mechanisms controlling the response of populations of CD4+ T cells under physiological conditions. Results We present a simple theoretical framework to show how heterogeneous differentiation in a two-master-regulator paradigm can be governed by a signaling network motif common to all subsets of CD4+ T cells. With this motif, a population of naïve CD4+ T cells can integrate the signals from their environment to generate a functionally diverse population with robust commitment of individual cells. Notably, two positive feedback loops in this network motif govern three bistable switches, which in turn, give rise to three types of heterogeneous differentiated states, depending upon particular combinations of input signals. We provide three prototype models illustrating how to use this framework to explain experimental observations and make specific testable predictions. Conclusions The process in which several types of T helper cells are generated simultaneously to mount complex immune responses upon pathogenic challenges can be highly regulated, and a simple signaling network motif can be responsible for generating all possible types of heterogeneous populations with respect to a pair of master regulators controlling CD4+ T cell differentiation. The framework provides a mathematical basis for understanding the decision-making mechanisms of CD4+ T cells, and it can be helpful for interpreting experimental results. Mathematical models based on the framework make specific testable predictions that may improve our understanding of this differentiation system. PMID:22697466
Coral physiology and microbiome dynamics under combined warming and ocean acidification
Dalcin Martins, Paula; Wilkins, Michael J.; Johnston, Michael D.; Warner, Mark E.; Cai, Wei-Jun; Melman, Todd F.; Hoadley, Kenneth D.; Pettay, D. Tye; Levas, Stephen; Schoepf, Verena
2018-01-01
Rising seawater temperature and ocean acidification threaten the survival of coral reefs. The relationship between coral physiology and its microbiome may reveal why some corals are more resilient to these global change conditions. Here, we conducted the first experiment to simultaneously investigate changes in the coral microbiome and coral physiology in response to the dual stress of elevated seawater temperature and ocean acidification expected by the end of this century. Two species of corals, Acropora millepora containing the thermally sensitive endosymbiont C21a and Turbinaria reniformis containing the thermally tolerant endosymbiont Symbiodinium trenchi, were exposed to control (26.5°C and pCO2 of 364 μatm) and treatment (29.0°C and pCO2 of 750 μatm) conditions for 24 days, after which we measured the microbial community composition. These microbial findings were interpreted within the context of previously published physiological measurements from the exact same corals in this study (calcification, organic carbon flux, ratio of photosynthesis to respiration, photosystem II maximal efficiency, total lipids, soluble animal protein, soluble animal carbohydrates, soluble algal protein, soluble algal carbohydrate, biomass, endosymbiotic algal density, and chlorophyll a). Overall, dually stressed A. millepora had reduced microbial diversity, experienced large changes in microbial community composition, and experienced dramatic physiological declines in calcification, photosystem II maximal efficiency, and algal carbohydrates. In contrast, the dually stressed coral T. reniformis experienced a stable and more diverse microbiome community with minimal physiological decline, coupled with very high total energy reserves and particulate organic carbon release rates. Thus, the microbiome changed and microbial diversity decreased in the physiologically sensitive coral with the thermally sensitive endosymbiotic algae but not in the physiologically tolerant coral with the thermally tolerant endosymbiont. Our results confirm recent findings that temperature-stress tolerant corals have a more stable microbiome, and demonstrate for the first time that this is also the case under the dual stresses of ocean warming and acidification. We propose that coral with a stable microbiome are also more physiologically resilient and thus more likely to persist in the future, and shape the coral species diversity of future reef ecosystems. PMID:29338021
Coral physiology and microbiome dynamics under combined warming and ocean acidification.
Grottoli, Andréa G; Dalcin Martins, Paula; Wilkins, Michael J; Johnston, Michael D; Warner, Mark E; Cai, Wei-Jun; Melman, Todd F; Hoadley, Kenneth D; Pettay, D Tye; Levas, Stephen; Schoepf, Verena
2018-01-01
Rising seawater temperature and ocean acidification threaten the survival of coral reefs. The relationship between coral physiology and its microbiome may reveal why some corals are more resilient to these global change conditions. Here, we conducted the first experiment to simultaneously investigate changes in the coral microbiome and coral physiology in response to the dual stress of elevated seawater temperature and ocean acidification expected by the end of this century. Two species of corals, Acropora millepora containing the thermally sensitive endosymbiont C21a and Turbinaria reniformis containing the thermally tolerant endosymbiont Symbiodinium trenchi, were exposed to control (26.5°C and pCO2 of 364 μatm) and treatment (29.0°C and pCO2 of 750 μatm) conditions for 24 days, after which we measured the microbial community composition. These microbial findings were interpreted within the context of previously published physiological measurements from the exact same corals in this study (calcification, organic carbon flux, ratio of photosynthesis to respiration, photosystem II maximal efficiency, total lipids, soluble animal protein, soluble animal carbohydrates, soluble algal protein, soluble algal carbohydrate, biomass, endosymbiotic algal density, and chlorophyll a). Overall, dually stressed A. millepora had reduced microbial diversity, experienced large changes in microbial community composition, and experienced dramatic physiological declines in calcification, photosystem II maximal efficiency, and algal carbohydrates. In contrast, the dually stressed coral T. reniformis experienced a stable and more diverse microbiome community with minimal physiological decline, coupled with very high total energy reserves and particulate organic carbon release rates. Thus, the microbiome changed and microbial diversity decreased in the physiologically sensitive coral with the thermally sensitive endosymbiotic algae but not in the physiologically tolerant coral with the thermally tolerant endosymbiont. Our results confirm recent findings that temperature-stress tolerant corals have a more stable microbiome, and demonstrate for the first time that this is also the case under the dual stresses of ocean warming and acidification. We propose that coral with a stable microbiome are also more physiologically resilient and thus more likely to persist in the future, and shape the coral species diversity of future reef ecosystems.
Emerging Trends in Epigenetic Regulation of Nutrient Deficiency Response in Plants.
Sirohi, Gunjan; Pandey, Bipin K; Deveshwar, Priyanka; Giri, Jitender
2016-03-01
Diverse environmental stimuli largely affect the ionic balance of soil, which have a direct effect on growth and crop yield. Details are fast emerging on the genetic/molecular regulators, at whole-genome levels, of plant responses to mineral deficiencies in model and crop plants. These genetic regulators determine the root architecture and physiological adaptations for better uptake and utilization of minerals from soil. Recent evidence also shows the potential roles of epigenetic mechanisms in gene regulation, driven by minerals imbalance. Mineral deficiency or sufficiency leads to developmental plasticity in plants for adaptation, which is preceded by a change in the pattern of gene expression. Notably, such changes at molecular levels are also influenced by altered chromatin structure and methylation patterns, or involvement of other epigenetic components. Interestingly, many of the changes induced by mineral deficiency are also inheritable in the form of epigenetic memory. Unravelling these mechanisms in response to mineral deficiency would further advance our understanding of this complex plant response. Further studies on such approaches may serve as an exciting interaction model of epigenetic and genetic regulations of mineral homeostasis in plants and designing strategies for crop improvement.
Voltage-Gated Proton Channels: Molecular Biology, Physiology, and Pathophysiology of the HV Family
2013-01-01
Voltage-gated proton channels (HV) are unique, in part because the ion they conduct is unique. HV channels are perfectly selective for protons and have a very small unitary conductance, both arguably manifestations of the extremely low H+ concentration in physiological solutions. They open with membrane depolarization, but their voltage dependence is strongly regulated by the pH gradient across the membrane (ΔpH), with the result that in most species they normally conduct only outward current. The HV channel protein is strikingly similar to the voltage-sensing domain (VSD, the first four membrane-spanning segments) of voltage-gated K+ and Na+ channels. In higher species, HV channels exist as dimers in which each protomer has its own conduction pathway, yet gating is cooperative. HV channels are phylogenetically diverse, distributed from humans to unicellular marine life, and perhaps even plants. Correspondingly, HV functions vary widely as well, from promoting calcification in coccolithophores and triggering bioluminescent flashes in dinoflagellates to facilitating killing bacteria, airway pH regulation, basophil histamine release, sperm maturation, and B lymphocyte responses in humans. Recent evidence that hHV1 may exacerbate breast cancer metastasis and cerebral damage from ischemic stroke highlights the rapidly expanding recognition of the clinical importance of hHV1. PMID:23589829
The G protein-coupled estrogen receptor GPER in health and disease
Prossnitz, Eric R.; Barton, Matthias
2012-01-01
Estrogens mediate profound effects throughout the body, and regulate physiological and pathological processes in both women and men. The decreased incidence of many diseases in premenopausal women is attributed to the presence of 17β-estradiol, the predominant and most potent endogenous estrogen. In addition to endogenous estrogens, however, several manmade and plant-derived molecules also exhibit estrogenic activity. Traditionally, the actions of 17β-estradiol are ascribed to two nuclear estrogen receptors (ERs), ERα and ERβ, which function as ligand-activated transcription factors. However, 17β-estradiol also mediates rapid signaling events via pathways that involve transmembrane ERs, such as G-protein-coupled ER 1, (GPER, formerly known as GPR30). In the past 10 years, GPER has been implicated in both rapid signaling and transcriptional regulation. With the discovery of GPER-selective ligands that can selectively modulate GPER function in cell experiments and preclinical studies, and the use of GPER-knockout mice, many more potential roles for GPER are currently being elucidated. This Review highlights the physiological roles of GPER in the reproductive, nervous, endocrine, immune and cardiovascular systems, as well as its pathological roles in a diverse array of disorders including cancer. GPER is emerging as a novel therapeutic target and prognostic indicator for these diseases. PMID:21844907
The G-protein-coupled estrogen receptor GPER in health and disease.
Prossnitz, Eric R; Barton, Matthias
2011-08-16
Estrogens mediate profound effects throughout the body and regulate physiological and pathological processes in both women and men. The low prevalence of many diseases in premenopausal women is attributed to the presence of 17β-estradiol, the predominant and most potent endogenous estrogen. In addition to endogenous estrogens, several man-made and plant-derived molecules, such as bisphenol A and genistein, also exhibit estrogenic activity. Traditionally, the actions of 17β-estradiol are ascribed to two nuclear estrogen receptors (ERs), ERα and ERβ, which function as ligand-activated transcription factors. However, 17β-estradiol also mediates rapid signaling events via pathways that involve transmembrane ERs, such as G-protein-coupled ER 1 (GPER; formerly known as GPR30). In the past 10 years, GPER has been implicated in both rapid signaling and transcriptional regulation. With the discovery of GPER-selective ligands that can selectively modulate GPER function in vitro and in preclinical studies and with the use of Gper knockout mice, many more potential roles for GPER are being elucidated. This Review highlights the physiological roles of GPER in the reproductive, nervous, endocrine, immune and cardiovascular systems, as well as its pathological roles in a diverse array of disorders including cancer, for which GPER is emerging as a novel therapeutic target and prognostic indicator.
Redox Biology in Neurological Function, Dysfunction, and Aging.
Franco, Rodrigo; Vargas, Marcelo R
2018-04-23
Reduction oxidation (redox) reactions are central to life and when altered, they can promote disease progression. In the brain, redox homeostasis is recognized to be involved in all aspects of central nervous system (CNS) development, function, aging, and disease. Recent studies have uncovered the diverse nature by which redox reactions and homeostasis contribute to brain physiology, and when dysregulated to pathological consequences. Redox reactions go beyond what is commonly described as oxidative stress and involve redox mechanisms linked to signaling and metabolism. In contrast to the nonspecific nature of oxidative damage, redox signaling involves specific oxidation/reduction reactions that regulate a myriad of neurological processes such as neurotransmission, homeostasis, and degeneration. This Forum is focused on the role of redox metabolism and signaling in the brain. Six review articles from leading scientists in the field that appraise the role of redox metabolism and signaling in different aspects of brain biology including neurodevelopment, neurotransmission, aging, neuroinflammation, neurodegeneration, and neurotoxicity are included. An original research article exemplifying these concepts uncovers a novel link between oxidative modifications, redox signaling, and neurodegeneration. This Forum highlights the recent advances in the field and we hope it encourages future research aimed to understand the mechanisms by which redox metabolism and signaling regulate CNS physiology and pathophysiology. Antioxid. Redox Signal. 00, 000-000.
Dutta, Aditya; Choudhary, Pratibha; Caruana, Julie; Raina, Ramesh
2017-09-01
Histone methylation is known to dynamically regulate diverse developmental and physiological processes. Histone methyl marks are written by methyltransferases and erased by demethylases, and result in modification of chromatin structure to repress or activate transcription. However, little is known about how histone methylation may regulate defense mechanisms and flowering time in plants. Here we report characterization of JmjC DOMAIN-CONTAINING PROTEIN 27 (JMJ27), an Arabidopsis JHDM2 (JmjC domain-containing histone demethylase 2) family protein, which modulates defense against pathogens and flowering time. JMJ27 is a nuclear protein containing a zinc-finger motif and a catalytic JmjC domain with conserved Fe(II) and α-ketoglutarate binding sites, and displays H3K9me1/2 demethylase activity both in vitro and in vivo. JMJ27 is induced in response to virulent Pseudomonas syringae pathogens and is required for resistance against these pathogens. JMJ27 is a negative modulator of WRKY25 (a repressor of defense) and a positive modulator of several pathogenesis-related (PR) proteins. Additionally, loss of JMJ27 function leads to early flowering. JMJ27 negatively modulates the major flowering regulator CONSTANS (CO) and positively modulates FLOWERING LOCUS C (FLC). Taken together, our results indicate that JMJ27 functions as a histone demethylase to modulate both physiological (defense) and developmental (flowering time) processes in Arabidopsis. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.
Plant Sterols: Diversity, Biosynthesis, and Physiological Functions.
Valitova, J N; Sulkarnayeva, A G; Minibayeva, F V
2016-08-01
Sterols, which are isoprenoid derivatives, are structural components of biological membranes. Special attention is now being given not only to their structure and function, but also to their regulatory roles in plants. Plant sterols have diverse composition; they exist as free sterols, sterol esters with higher fatty acids, sterol glycosides, and acylsterol glycosides, which are absent in animal cells. This diversity of types of phytosterols determines a wide spectrum of functions they play in plant life. Sterols are precursors of a group of plant hormones, the brassinosteroids, which regulate plant growth and development. Furthermore, sterols participate in transmembrane signal transduction by forming lipid microdomains. The predominant sterols in plants are β-sitosterol, campesterol, and stigmasterol. These sterols differ in the presence of a methyl or an ethyl group in the side chain at the 24th carbon atom and are named methylsterols or ethylsterols, respectively. The balance between 24-methylsterols and 24-ethylsterols is specific for individual plant species. The present review focuses on the key stages of plant sterol biosynthesis that determine the ratios between the different types of sterols, and the crosstalk between the sterol and sphingolipid pathways. The main enzymes involved in plant sterol biosynthesis are 3-hydroxy-3-methylglutaryl-CoA reductase, C24-sterol methyltransferase, and C22-sterol desaturase. These enzymes are responsible for maintaining the optimal balance between sterols. Regulation of the ratios between the different types of sterols and sterols/sphingolipids can be of crucial importance in the responses of plants to stresses.
Impact of gestational chronodisruption on fetal cardiac genomics.
Galdames, Hugo A; Torres-Farfan, Claudia; Spichiger, Carlos; Mendez, Natalia; Abarzua-Catalan, Lorena; Alonso-Vazquez, Pamela; Richter, Hans G
2014-01-01
We recently reported that gestational chronodisruption induces fetal growth restriction and marked effects on fetal adrenal physiology. Here, whole-transcriptome profiling was used to test whether gestational chronodisruption modifies gene expression in the fetal heart, potentially altering cardiac development. At day 10 of gestation (E10), pregnant rats were randomized in two groups: constant light (LL) and control 12 h light/12 h dark photoperiod (LD). RNA isolated from E18 heart was subjected to microarray analysis (Affymetrix platform for 28,000 genes). Integrated transcriptional changes were assessed by gene ontology and pathway analysis. Significant differential expression was found for 383 transcripts in LL relative to LD fetal heart (280 up-regulated and 103 down-regulated); with 42 of them displaying a 1.5-fold or greater change in gene expression. Deregulated markers of cardiovascular disease accounted for alteration of diverse gene networks in LL fetal heart, including local steroidogenesis and vascular calcification, as well as cardiac hypertrophy, stenosis and necrosis/cell death. DNA integrity was also overrepresented, including a 2.1-fold increase of Hmga1 mRNA, which encodes for a profuse architectural transcription factor. microRNA analysis revealed up-regulation of miRNAs 218-1 and 501 and concurrent down-regulation of their validated target genes. In addition, persistent down-regulation of Kcnip2 mRNA and hypertrophy of the left ventricle were found in the heart from 90 days-old offspring from LL mothers. The dysregulation of a relevant fraction of the fetal cardiac transcriptome, together with the diversity and complexity of the gene networks altered by gestational chronodisruption, suggest enduring molecular changes which may shape the hypertrophy observed in the left ventricle of adult LL offspring. © 2013.
A global analysis of adaptive evolution of operons in cyanobacteria.
Memon, Danish; Singh, Abhay K; Pakrasi, Himadri B; Wangikar, Pramod P
2013-02-01
Operons are an important feature of prokaryotic genomes. Evolution of operons is hypothesized to be adaptive and has contributed significantly towards coordinated optimization of functions. Two conflicting theories, based on (i) in situ formation to achieve co-regulation and (ii) horizontal gene transfer of functionally linked gene clusters, are generally considered to explain why and how operons have evolved. Furthermore, effects of operon evolution on genomic traits such as intergenic spacing, operon size and co-regulation are relatively less explored. Based on the conservation level in a set of diverse prokaryotes, we categorize the operonic gene pair associations and in turn the operons as ancient and recently formed. This allowed us to perform a detailed analysis of operonic structure in cyanobacteria, a morphologically and physiologically diverse group of photoautotrophs. Clustering based on operon conservation showed significant similarity with the 16S rRNA-based phylogeny, which groups the cyanobacterial strains into three clades. Clade C, dominated by strains that are believed to have undergone genome reduction, shows a larger fraction of operonic genes that are tightly packed in larger sized operons. Ancient operons are in general larger, more tightly packed, better optimized for co-regulation and part of key cellular processes. A sub-clade within Clade B, which includes Synechocystis sp. PCC 6803, shows a reverse trend in intergenic spacing. Our results suggest that while in situ formation and vertical descent may be a dominant mechanism of operon evolution in cyanobacteria, optimization of intergenic spacing and co-regulation are part of an ongoing process in the life-cycle of operons.
A robust automated system elucidates mouse home cage behavioral structure
Goulding, Evan H.; Schenk, A. Katrin; Juneja, Punita; MacKay, Adrienne W.; Wade, Jennifer M.; Tecott, Laurence H.
2008-01-01
Patterns of behavior exhibited by mice in their home cages reflect the function and interaction of numerous behavioral and physiological systems. Detailed assessment of these patterns thus has the potential to provide a powerful tool for understanding basic aspects of behavioral regulation and their perturbation by disease processes. However, the capacity to identify and examine these patterns in terms of their discrete levels of organization across diverse behaviors has been difficult to achieve and automate. Here, we describe an automated approach for the quantitative characterization of fundamental behavioral elements and their patterns in the freely behaving mouse. We demonstrate the utility of this approach by identifying unique features of home cage behavioral structure and changes in distinct levels of behavioral organization in mice with single gene mutations altering energy balance. The robust, automated, reproducible quantification of mouse home cage behavioral structure detailed here should have wide applicability for the study of mammalian physiology, behavior, and disease. PMID:19106295
Uncovering Novel Roles of Nonneuronal Cells in Body Weight Homeostasis and Obesity
Argente, Jesús
2013-01-01
Glial cells, which constitute more than 50% of the mass of the central nervous system and greatly outnumber neurons, are at the vanguard of neuroendocrine research in metabolic control and obesity. Historically relegated to roles of structural support and protection, diverse functions have been gradually attributed to this heterogeneous class of cells with their protagonism in crescendo in all areas of neuroscience during the past decade. However, this dramatic increase in attention bestowed upon glial cells has also emphasized our vast lack of knowledge concerning many aspects of their physiological functions, let alone their participation in numerous pathologies. This minireview focuses on the recent advances in our understanding of how glial cells participate in the physiological regulation of appetite and systemic metabolism as well as their role in the pathophysiological response to poor nutrition and secondary complications associated with obesity. Moreover, we highlight some of the existing lagoons of knowledge in this increasingly important area of investigation. PMID:23798599
Alternative splicing in plant immunity.
Yang, Shengming; Tang, Fang; Zhu, Hongyan
2014-06-10
Alternative splicing (AS) occurs widely in plants and can provide the main source of transcriptome and proteome diversity in an organism. AS functions in a range of physiological processes, including plant disease resistance, but its biological roles and functional mechanisms remain poorly understood. Many plant disease resistance (R) genes undergo AS, and several R genes require alternatively spliced transcripts to produce R proteins that can specifically recognize pathogen invasion. In the finely-tuned process of R protein activation, the truncated isoforms generated by AS may participate in plant disease resistance either by suppressing the negative regulation of initiation of immunity, or by directly engaging in effector-triggered signaling. Although emerging research has shown the functional significance of AS in plant biotic stress responses, many aspects of this topic remain to be understood. Several interesting issues surrounding the AS of R genes, especially regarding its functional roles and regulation, will require innovative techniques and additional research to unravel.
A Model-Based Cluster Analysis of Maternal Emotion Regulation and Relations to Parenting Behavior.
Shaffer, Anne; Whitehead, Monica; Davis, Molly; Morelen, Diana; Suveg, Cynthia
2017-10-15
In a diverse community sample of mothers (N = 108) and their preschool-aged children (M age = 3.50 years), this study conducted person-oriented analyses of maternal emotion regulation (ER) based on a multimethod assessment incorporating physiological, observational, and self-report indicators. A model-based cluster analysis was applied to five indicators of maternal ER: maternal self-report, observed negative affect in a parent-child interaction, baseline respiratory sinus arrhythmia (RSA), and RSA suppression across two laboratory tasks. Model-based cluster analyses revealed four maternal ER profiles, including a group of mothers with average ER functioning, characterized by socioeconomic advantage and more positive parenting behavior. A dysregulated cluster demonstrated the greatest challenges with parenting and dyadic interactions. Two clusters of intermediate dysregulation were also identified. Implications for assessment and applications to parenting interventions are discussed. © 2017 Family Process Institute.
Stress responses during ageing: molecular pathways regulating protein homeostasis.
Kyriakakis, Emmanouil; Princz, Andrea; Tavernarakis, Nektarios
2015-01-01
The ageing process is characterized by deterioration of physiological function accompanied by frailty and ageing-associated diseases. The most broadly and well-studied pathways influencing ageing are the insulin/insulin-like growth factor 1 signaling pathway and the dietary restriction pathway. Recent studies in diverse organisms have also delineated emerging pathways, which collectively or independently contribute to ageing. Among them the proteostatic-stress-response networks, inextricably affect normal ageing by maintaining or restoring protein homeostasis to preserve proper cellular and organismal function. In this chapter, we survey the involvement of heat stress and endoplasmic reticulum stress responses in the regulation of longevity, placing emphasis on the cross talk between different response mechanisms and their systemic effects. We further discuss novel insights relevant to the molecular pathways mediating these stress responses that may facilitate the development of innovative interventions targeting age-related pathologies such as diabetes, cancer, cardiovascular and neurodegenerative diseases.
NAD+ and SIRT3 control microtubule dynamics and reduce susceptibility to antimicrotubule agents
Harkcom, William T.; Ghosh, Ananda K.; Sung, Matthew S.; Matov, Alexandre; Brown, Kevin D.; Giannakakou, Paraskevi; Jaffrey, Samie R.
2014-01-01
Nicotinamide adenine dinucleotide (NAD+) is an endogenous enzyme cofactor and cosubstrate that has effects on diverse cellular and physiologic processes, including reactive oxygen species generation, mitochondrial function, apoptosis, and axonal degeneration. A major goal is to identify the NAD+-regulated cellular pathways that may mediate these effects. Here we show that the dynamic assembly and disassembly of microtubules is markedly altered by NAD+. Furthermore, we show that the disassembly of microtubule polymers elicited by microtubule depolymerizing agents is blocked by increasing intracellular NAD+ levels. We find that these effects of NAD+ are mediated by the activation of the mitochondrial sirtuin sirtuin-3 (SIRT3). Overexpression of SIRT3 prevents microtubule disassembly and apoptosis elicited by antimicrotubule agents and knockdown of SIRT3 prevents the protective effects of NAD+ on microtubule polymers. Taken together, these data demonstrate that NAD+ and SIRT3 regulate microtubule polymerization and the efficacy of antimicrotubule agents. PMID:24889606
Burges, Aritz; Epelde, Lur; Blanco, Fernando; Becerril, José M; Garbisu, Carlos
2017-04-15
Mining sites shelter a characteristic biodiversity with large potential for the phytoremediation of metal contaminated soils. Endophytic plant growth-promoting bacteria were isolated from two metal-(hyper)accumulator plant species growing in a metal contaminated mine soil. After characterizing their plant growth-promoting traits, consortia of putative endophytes were used to carry out an endophyte-assisted phytoextraction experiment using Noccaea caerulescens and Rumex acetosa (singly and in combination) under controlled conditions. We evaluated the influence of endophyte-inoculated plants on soil physicochemical and microbial properties, as well as plant physiological parameters and metal concentrations. Data interpretation through the grouping of soil properties within a set of ecosystem services was also carried out. When grown together, we observed a 41 and 16% increase in the growth of N. caerulescens and R. acetosa plants, respectively, as well as higher values of Zn phytoextraction and soil microbial biomass and functional diversity. Inoculation of the consortia of putative endophytes did not lead to higher values of plant metal uptake, but it improved the plants' physiological status, by increasing the content of chlorophylls and carotenoids by up to 28 and 36%, respectively, indicating a reduction in the stress level of plants. Endophyte-inoculation also stimulated soil microbial communities: higher values of acid phosphatase activity (related to the phosphate solubilising traits of the endophytes), bacterial and fungal abundance, and structural diversity. The positive effects of plant growth and endophyte inoculation on soil properties were reflected in an enhancement of some ecosystem services (biodiversity, nutrient cycling, water flow regulation, water purification and contamination control). Copyright © 2016 Elsevier B.V. All rights reserved.
Röling, Wilfred F. M.; van Bodegom, Peter M.
2014-01-01
Molecular ecology approaches are rapidly advancing our insights into the microorganisms involved in the degradation of marine oil spills and their metabolic potentials. Yet, many questions remain open: how do oil-degrading microbial communities assemble in terms of functional diversity, species abundances and organization and what are the drivers? How do the functional properties of microorganisms scale to processes at the ecosystem level? How does mass flow among species, and which factors and species control and regulate fluxes, stability and other ecosystem functions? Can generic rules on oil-degradation be derived, and what drivers underlie these rules? How can we engineer oil-degrading microbial communities such that toxic polycyclic aromatic hydrocarbons are degraded faster? These types of questions apply to the field of microbial ecology in general. We outline how recent advances in single-species systems biology might be extended to help answer these questions. We argue that bottom-up mechanistic modeling allows deciphering the respective roles and interactions among microorganisms. In particular constraint-based, metagenome-derived community-scale flux balance analysis appears suited for this goal as it allows calculating degradation-related fluxes based on physiological constraints and growth strategies, without needing detailed kinetic information. We subsequently discuss what is required to make these approaches successful, and identify a need to better understand microbial physiology in order to advance microbial ecology. We advocate the development of databases containing microbial physiological data. Answering the posed questions is far from trivial. Oil-degrading communities are, however, an attractive setting to start testing systems biology-derived models and hypotheses as they are relatively simple in diversity and key activities, with several key players being isolated and a high availability of experimental data and approaches. PMID:24723922
Röling, Wilfred F M; van Bodegom, Peter M
2014-01-01
Molecular ecology approaches are rapidly advancing our insights into the microorganisms involved in the degradation of marine oil spills and their metabolic potentials. Yet, many questions remain open: how do oil-degrading microbial communities assemble in terms of functional diversity, species abundances and organization and what are the drivers? How do the functional properties of microorganisms scale to processes at the ecosystem level? How does mass flow among species, and which factors and species control and regulate fluxes, stability and other ecosystem functions? Can generic rules on oil-degradation be derived, and what drivers underlie these rules? How can we engineer oil-degrading microbial communities such that toxic polycyclic aromatic hydrocarbons are degraded faster? These types of questions apply to the field of microbial ecology in general. We outline how recent advances in single-species systems biology might be extended to help answer these questions. We argue that bottom-up mechanistic modeling allows deciphering the respective roles and interactions among microorganisms. In particular constraint-based, metagenome-derived community-scale flux balance analysis appears suited for this goal as it allows calculating degradation-related fluxes based on physiological constraints and growth strategies, without needing detailed kinetic information. We subsequently discuss what is required to make these approaches successful, and identify a need to better understand microbial physiology in order to advance microbial ecology. We advocate the development of databases containing microbial physiological data. Answering the posed questions is far from trivial. Oil-degrading communities are, however, an attractive setting to start testing systems biology-derived models and hypotheses as they are relatively simple in diversity and key activities, with several key players being isolated and a high availability of experimental data and approaches.
Construction and screening of marine metagenomic libraries.
Weiland, Nancy; Löscher, Carolin; Metzger, Rebekka; Schmitz, Ruth
2010-01-01
Marine microbial communities are highly diverse and have evolved during extended evolutionary processes of physiological adaptations under the influence of a variety of ecological conditions and selection pressures. They harbor an enormous diversity of microbes with still unknown and probably new physiological characteristics. Besides, the surfaces of marine multicellular organisms are typically covered by a consortium of epibiotic bacteria and act as barriers, where diverse interactions between microorganisms and hosts take place. Thus, microbial diversity in the water column of the oceans and the microbial consortia on marine tissues of multicellular organisms are rich sources for isolating novel bioactive compounds and genes. Here we describe the sampling, construction of large-insert metagenomic libraries from marine habitats and exemplarily one function based screen of metagenomic clones.
Insulin transport into the brain.
Gray, Sarah M; Barrett, Eugene J
2018-05-30
While there is a growing consensus that insulin has diverse and important regulatory actions on the brain, seemingly important aspects of brain insulin physiology are poorly understood. Examples include: what is the insulin concentration within brain interstitial fluid under normal physiologic conditions; whether insulin is made in the brain and acts locally; does insulin from the circulation cross the blood-brain barrier or the blood-CSF barrier in a fashion that facilitates its signaling in brain; is insulin degraded within the brain; do privileged areas with a "leaky" blood-brain barrier serve as signaling nodes for transmitting peripheral insulin signaling; does insulin action in the brain include regulation of amyloid peptides; whether insulin resistance is a cause or consequence of processes involved in cognitive decline. Heretofore, nearly all studies examining brain insulin physiology have employed techniques and methodologies that do not appreciate the complex fluid compartmentation and flow throughout the brain. This review attempts to provide a status report on historical and recent work that begins to address some of these issues. It is undertaken in an effort to suggest a framework for studies going forward. Such studies are inevitably influenced by recent physiologic and genetic studies of insulin accessing and acting in brain, discoveries relating to brain fluid dynamics and the interplay of cerebrospinal fluid, brain interstitial fluid, and brain lymphatics, and advances in clinical neuroimaging that underscore the dynamic role of neurovascular coupling.
Melia, Tisha; Hao, Pengying; Yilmaz, Feyza
2015-01-01
Long intergenic noncoding RNAs (lincRNAs) are increasingly recognized as key chromatin regulators, yet few studies have characterized lincRNAs in a single tissue under diverse conditions. Here, we analyzed 45 mouse liver RNA sequencing (RNA-Seq) data sets collected under diverse conditions to systematically characterize 4,961 liver lincRNAs, 59% of them novel, with regard to gene structures, species conservation, chromatin accessibility, transcription factor binding, and epigenetic states. To investigate the potential for functionality, we focused on the responses of the liver lincRNAs to growth hormone stimulation, which imparts clinically relevant sex differences to hepatic metabolism and liver disease susceptibility. Sex-biased expression characterized 247 liver lincRNAs, with many being nuclear RNA enriched and regulated by growth hormone. The sex-biased lincRNA genes are enriched for nearby and correspondingly sex-biased accessible chromatin regions, as well as sex-biased binding sites for growth hormone-regulated transcriptional activators (STAT5, hepatocyte nuclear factor 6 [HNF6], FOXA1, and FOXA2) and transcriptional repressors (CUX2 and BCL6). Repression of female-specific lincRNAs in male liver, but not that of male-specific lincRNAs in female liver, was associated with enrichment of H3K27me3-associated inactive states and poised (bivalent) enhancer states. Strikingly, we found that liver-specific lincRNA gene promoters are more highly species conserved and have a significantly higher frequency of proximal binding by liver transcription factors than liver-specific protein-coding gene promoters. Orthologs for many liver lincRNAs were identified in one or more supraprimates, including two rat lincRNAs showing the same growth hormone-regulated, sex-biased expression as their mouse counterparts. This integrative analysis of liver lincRNA chromatin states, transcription factor occupancy, and growth hormone regulation provides novel insights into the expression of sex-specific lincRNAs and their potential for regulation of sex differences in liver physiology and disease. PMID:26459762
Integrating physiological regulation with stem cell and tissue homeostasis
Nakada, Daisuke; Levi, Boaz P.; Morrison, Sean J.
2015-01-01
Summary Stem cells are uniquely able to self-renew, to undergo multilineage differentiation, and to persist throughout life in a number of tissues. Stem cells are regulated by a combination of shared and tissue-specific mechanisms and are distinguished from restricted progenitors by differences in transcriptional and epigenetic regulation. Emerging evidence suggests that other aspects of cellular physiology, including mitosis, signal transduction, and metabolic regulation also differ between stem cells and their progeny. These differences may allow stem cells to be regulated independently of differentiated cells in response to circadian rhythms, changes in metabolism, diet, exercise, mating, aging, infection, and disease. This allows stem cells to sustain homeostasis or to remodel relevant tissues in response to physiological change. Stem cells are therefore not only regulated by short-range signals that maintain homeostasis within their tissue of origin, but also by long-range signals that integrate stem cell function with systemic physiology. PMID:21609826
Zdanowski, Marek K; Weglenski, Piotr; Golik, Pawel; Sasin, Joanna M; Borsuk, Piotr; Zmuda, Magdalena J; Stankovic, Anna
2004-11-01
The total number of bacteria and culturable bacteria in Adélie penguin (Pygoscelis adeliae) guano was determined during 42 days of decomposition in a location adjacent to the rookery in Admiralty Bay, King George Island, Antarctica. Of the culturable bacteria, 72 randomly selected colonies were described using 49 morpho-physiological tests, 27 of which were subsequently considered significant in characterizing and differentiating the isolates. On the basis of the nucleotide sequence of a fragment of the 16S rRNA gene in each of 72 pure isolates, three major phylogenetic groups were identified, namely the Moraxellaceae/Pseudomonadaceae (29 isolates), the Flavobacteriaceae (14), and the Micrococcaceae (29). Grouping of the isolates on the basis of morpho-physiological tests (whether 49 or 27 parameters) showed similar results to those based on 16S rRNA gene sequences. Clusters were characterized by considerable intra-cluster variation in both 16S rRNA gene sequences and morpho-physiological responses. High diversity in abundance and morphometry of total bacterial communities during penguin guano decomposition was supported by image analysis of epifluorescence micrographs. The results indicate that the bacterial community in penguin guano is not only one of the richest in Antarctica, but is extremely diverse, both phylogenetically and morpho-physiologically.
Li, Ting; Liu, Lena; Zhang, Lee; Liu, Nannan
2014-09-29
G-protein-coupled receptors regulate signal transduction pathways and play diverse and pivotal roles in the physiology of insects, however, the precise function of GPCRs in insecticide resistance remains unclear. Using quantitative RT-PCR and functional genomic methods, we, for the first time, explored the function of GPCRs and GPCR-related genes in insecticide resistance of mosquitoes, Culex quinquefasciatus. A comparison of the expression of 115 GPCR-related genes at a whole genome level between resistant and susceptible Culex mosquitoes identified one and three GPCR-related genes that were up-regulated in highly resistant Culex mosquito strains, HAmCq(G8) and MAmCq(G6), respectively. To characterize the function of these up-regulated GPCR-related genes in resistance, the up-regulated GPCR-related genes were knockdown in HAmCq(G8) and MAmCq(G6) using RNAi technique. Knockdown of these four GPCR-related genes not only decreased resistance of the mosquitoes to permethrin but also repressed the expression of four insecticide resistance-related P450 genes, suggesting the role of GPCR-related genes in resistance is involved in the regulation of resistance P450 gene expression. This results help in understanding of molecular regulation of resistance development in Cx. quinquefasciatus.
Yamashita, Michiko; Inoue, Kazuki; Saeki, Noritaka; Ideta-Otsuka, Maky; Yanagihara, Yuta; Sawada, Yuichiro; Sakakibara, Iori; Lee, Jiwon; Ichikawa, Koichi; Kamei, Yoshiaki; Iimura, Tadahiro; Igarashi, Katsuhide; Takada, Yasutsugu; Imai, Yuuki
2018-01-08
Transcriptional regulation can be tightly orchestrated by epigenetic regulators. Among these, ubiquitin-like with PHD and RING finger domains 1 (Uhrf1) is reported to have diverse epigenetic functions, including regulation of DNA methylation. However, the physiological functions of Uhrf1 in skeletal tissues remain unclear. Here, we show that limb mesenchymal cell-specific Uhrf1 conditional knockout mice ( Uhrf1 Δ Limb/ Δ Limb ) exhibit remarkably shortened long bones that have morphological deformities due to dysregulated chondrocyte differentiation and proliferation. RNA-seq performed on primary cultured chondrocytes obtained from Uhrf1 Δ Limb/ Δ Limb mice showed abnormal chondrocyte differentiation. In addition, integrative analyses using RNA-seq and MBD-seq revealed that Uhrf1 deficiency decreased genome-wide DNA methylation and increased gene expression through reduced DNA methylation in the promoter regions of 28 genes, including Hspb1 , which is reported to be an IL1-related gene and to affect chondrocyte differentiation. Hspb1 knockdown in cKO chondrocytes can normalize abnormal expression of genes involved in chondrocyte differentiation, such as Mmp13 These results indicate that Uhrf1 governs cell type-specific transcriptional regulation by controlling the genome-wide DNA methylation status and regulating consequent cell differentiation and skeletal maturation. © 2018. Published by The Company of Biologists Ltd.
Seo, Sang Woo; Gao, Ye; Kim, Donghyuk; Szubin, Richard; Yang, Jina; Cho, Byung-Kwan; Palsson, Bernhard O
2017-05-19
A transcription factor (TF), OmpR, plays a critical role in transcriptional regulation of the osmotic stress response in bacteria. Here, we reveal a genome-scale OmpR regulon in Escherichia coli K-12 MG1655. Integrative data analysis reveals that a total of 37 genes in 24 transcription units (TUs) belong to OmpR regulon. Among them, 26 genes show more than two-fold changes in expression level in an OmpR knock-out strain. Specifically, we find that: 1) OmpR regulates mostly membrane-located gene products involved in diverse fundamental biological processes, such as narU (encoding nitrate/nitrite transporter), ompX (encoding outer membrane protein X), and nuoN (encoding NADH:ubiquinone oxidoreductase); 2) by investigating co-regulation of entire sets of genes regulated by other stress-response TFs, stresses are surprisingly independently regulated among each other; and, 3) a detailed investigation of the physiological roles of the newly discovered OmpR regulon genes reveals that activation of narU represents a novel strategy to significantly improve osmotic stress tolerance of E. coli. Thus, the genome-scale approach to elucidating regulons comprehensively identifies regulated genes and leads to fundamental discoveries related to stress responses.
Rustom, Amin
2016-06-01
Tunnelling nanotubes (TNTs) are increasingly recognized as central players in a multitude of cellular mechanisms and diseases. Although their existence and functions in animal organisms are still elusive, emerging evidence suggests that they are involved in developmental processes, tissue regeneration, viral infections or pathogen transfer, stem cell differentiation, immune responses as well as initiation and progression of neurodegenerative disorders and cancer (see Sisakhtnezhad & Khosravi 2015 Eur. J. Cell Biol. 94, 429-443. (doi:10.1016/j.ejcb.2015.06.010)). A broader field of vision, including their striking functional and structural resemblance with nanotube-mediated phenomena found throughout the phylogenetic tree, from plants down to bacteria, points to a universal, conserved and tightly regulated mechanism of cellular assemblies. Based on our initial definition of TNTs as open-ended channels mediating membrane continuity between connected cells (Rustom et al. 2004 Science 303, 1007-1010. (doi:10.1126/science.1093133)), it is suggested that animal tissues represent supercellular assemblies that-besides opening discrete communication pathways-balance diverse stress factors caused by pathological changes or fluctuating physiological and environmental conditions, such as oxidative stress or nutrient shortage. By combining current knowledge about nanotube formation, intercellular transfer and communication phenomena as well as associated molecular pathways, a model evolves, predicting that the linkage between reactive oxygen species, TNT-based supercellularity and the intercellular shuttling of materials will have significant impact on diverse body functions, such as cell survival, redox/metabolic homeostasis and mitochondrial heteroplasmy. It implies that TNTs are intimately linked to the physiological and pathological state of animal cells and represent a central joint element of diverse diseases, such as neurodegenerative disorders, diabetes or cancer. © 2016 The Authors.
Zhang, Liang; Yang, Shuhui; Xu, Yanchun; Dahmer, Thomas D
2014-11-01
Hair and feathers are composed of keratin and are indigestible, inalimental and unpalatable for carnivores. However, carnivores often ingest hair and feathers during feeding or when grooming. We hypothesized that ingestion of hair and feathers changes species diversity and relative abundance of bacteria in the gut of carnivores. To test this hypothesis, we added disinfected poultry down feathers to the normal diet of captive Arctic foxes (Alopex lagopus). We then used fluorescently labeled terminal restriction fragments (T-RFs) to examine changes in fecal bacterial diversity and abundance. The results showed that the number of bacterial species increased significantly after feather ingestion, but that total abundance was unchanged. This demonstrated that addition of disinfected feathers to the diet stimulated increased production among less abundant bacteria, resulting in a balancing of relative abundance of different bacterial species, or that some newly-ingested microbial species would colonize the gut because a suitable microhabitat had become available. This implies that the overall production of bacterial metabolites would be made up of a greater range of substances after feather ingestion. On one hand, the host's immune response would be more diverse, increasing the capacity of the immune system to regulate gut microflora. On the other hand, the animal's physiological performance would also be affected. For wild animals, such altered physiological traits would be subjected to natural selection, and, hence, persistent geographic differences in the character of ingested feathers or fur would drive speciation. © 2013 International Society of Zoological Sciences, Institute of Zoology/Chinese Academy of Sciences and Wiley Publishing Asia Pty Ltd.
Harrison, Tondi M.
2010-01-01
Objective To compare physiologic regulation and the effect of maternal sensitive caregiving during feeding on physiologic regulation in healthy infants and in infants with transposition of the great arteries (TGA). Design Descriptive, two group, repeated measures. Setting Three children's hospitals in the Midwest. Participants A convenience sample of 15 infants with TGA matched with 16 healthy infants. Methods Measures of physiologic regulation before, during, and after feeding and quality of maternal affect and behavior during feeding were collected post-operatively at two weeks and two months of age. Results At two weeks, infants with TGA demonstrated impaired physiologic regulation with feedings when compared with healthy infants. Healthy infants of more sensitive mothers were more likely to demonstrate a physiologically adaptive response during feeding. Maternal effect on physiologic regulation was not observed in infants with TGA. No differences between groups were found at two months. Conclusions For infants with TGA, effects of surgical recovery and limited contact with their mothers relative to healthy infants may have outweighed the supportive effect of maternal sensitivity during feeding in the early weeks of life. Further research is needed to identify ways of enhancing the regulatory effect of maternal behavior on infants with heart defects. PMID:19614886
Dhamrait, Sukhbir S; Maubaret, Cecilia; Pedersen-Bjergaard, Ulrik; Brull, David J; Gohlke, Peter; Payne, John R; World, Michael; Thorsteinsson, Birger; Humphries, Steve E; Montgomery, Hugh E
2016-07-01
Uncoupling proteins (UCPs) regulate mitochondrial function, and thus cellular metabolism. Angiotensin-converting enzyme (ACE) is the central component of endocrine and local tissue renin-angiotensin systems (RAS), which also regulate diverse aspects of whole-body metabolism and mitochondrial function (partly through altering mitochondrial UCP expression). We show that ACE expression also appears to be regulated by mitochondrial UCPs. In genetic analysis of two unrelated populations (healthy young UK men and Scandinavian diabetic patients) serum ACE (sACE) activity was significantly higher amongst UCP3-55C (rather than T) and UCP2 I (rather than D) allele carriers. RNA interference against UCP2 in human umbilical vein endothelial cells reduced UCP2 mRNA sixfold (P < 0·01) whilst increasing ACE expression within a physiological range (<1·8-fold at 48 h; P < 0·01). Our findings suggest novel hypotheses. Firstly, cellular feedback regulation may occur between UCPs and ACE. Secondly, cellular UCP regulation of sACE suggests a novel means of crosstalk between (and mutual regulation of) cellular and endocrine metabolism. This might partly explain the reduced risk of developing diabetes and metabolic syndrome with RAS antagonists and offer insight into the origins of cardiovascular disease in which UCPs and ACE both play a role. © 2016 The Authors. BioEssays published by WILEY Periodicals, Inc.
Maubaret, Cecilia; Pedersen‐Bjergaard, Ulrik; Brull, David J.; Gohlke, Peter; Payne, John R.; World, Michael; Thorsteinsson, Birger; Humphries, Steve E.; Montgomery, Hugh E.
2015-01-01
Uncoupling proteins (UCPs) regulate mitochondrial function, and thus cellular metabolism. Angiotensin‐converting enzyme (ACE) is the central component of endocrine and local tissue renin–angiotensin systems (RAS), which also regulate diverse aspects of whole‐body metabolism and mitochondrial function (partly through altering mitochondrial UCP expression). We show that ACE expression also appears to be regulated by mitochondrial UCPs. In genetic analysis of two unrelated populations (healthy young UK men and Scandinavian diabetic patients) serum ACE (sACE) activity was significantly higher amongst UCP3‐55C (rather than T) and UCP2 I (rather than D) allele carriers. RNA interference against UCP2 in human umbilical vein endothelial cells reduced UCP2 mRNA sixfold (P < 0·01) whilst increasing ACE expression within a physiological range (<1·8‐fold at 48 h; P < 0·01). Our findings suggest novel hypotheses. Firstly, cellular feedback regulation may occur between UCPs and ACE. Secondly, cellular UCP regulation of sACE suggests a novel means of crosstalk between (and mutual regulation of) cellular and endocrine metabolism. This might partly explain the reduced risk of developing diabetes and metabolic syndrome with RAS antagonists and offer insight into the origins of cardiovascular disease in which UCPs and ACE both play a role. PMID:27347560
Dhamrait, Sukhbir S; Maubaret, Cecilia; Pedersen-Bjergaard, Ulrik; Brull, David J; Gohlke, Peter; Payne, John R; World, Michael; Thorsteinsson, Birger; Humphries, Steve E; Montgomery, Hugh E
2016-01-01
Uncoupling proteins (UCPs) regulate mitochondrial function, and thus cellular metabolism. Angiotensin-converting enzyme (ACE) is the central component of endocrine and local tissue renin-angiotensin systems (RAS), which also regulate diverse aspects of whole-body metabolism and mitochondrial function (partly through altering mitochondrial UCP expression). We show that ACE expression also appears to be regulated by mitochondrial UCPs. In genetic analysis of two unrelated populations ( healthy young UK men and Scandinavian diabetic patients ) serum ACE (sACE) activity was significantly higher amongst UCP3-55C (rather than T) and UCP2 I (rather than D) allele carriers. RNA interference against UCP2 in human umbilical vein endothelial cells reduced UCP2 mRNA sixfold ( P < 0·01) whilst increasing ACE expression within a physiological range (<1·8-fold at 48 h; P < 0·01). Our findings suggest novel hypotheses. Firstly, cellular feedback regulation may occur between UCPs and ACE. Secondly, cellular UCP regulation of sACE suggests a novel means of crosstalk between (and mutual regulation of) cellular and endocrine metabolism. This might partly explain the reduced risk of developing diabetes and metabolic syndrome with RAS antagonists and offer insight into the origins of cardiovascular disease in which UCPs and ACE both play a role.
Stergiopoulos, Athanasios; Elkouris, Maximilianos; Politis, Panagiotis K.
2015-01-01
Over the last decades, adult neurogenesis in the central nervous system (CNS) has emerged as a fundamental process underlying physiology and disease. Recent evidence indicates that the homeobox transcription factor Prox1 is a critical intrinsic regulator of neurogenesis in the embryonic CNS and adult dentate gyrus (DG) of the hippocampus, acting in multiple ways and instructed by extrinsic cues and intrinsic factors. In the embryonic CNS, Prox1 is mechanistically involved in the regulation of proliferation vs. differentiation decisions of neural stem cells (NSCs), promoting cell cycle exit and neuronal differentiation, while inhibiting astrogliogenesis. During the complex differentiation events in adult hippocampal neurogenesis, Prox1 is required for maintenance of intermediate progenitors (IPs), differentiation and maturation of glutamatergic interneurons, as well as specification of DG cell identity over CA3 pyramidal fate. The mechanism by which Prox1 exerts multiple functions involves distinct signaling pathways currently not fully highlighted. In this mini-review, we thoroughly discuss the Prox1-dependent phenotypes and molecular pathways in adult neurogenesis in relation to different upstream signaling cues and cell fate determinants. In addition, we discuss the possibility that Prox1 may act as a cross-talk point between diverse signaling cascades to achieve specific outcomes during adult neurogenesis. PMID:25674048
Glycogen synthase kinase 3: more than a namesake
Rayasam, Geetha Vani; Tulasi, Vamshi Krishna; Sodhi, Reena; Davis, Joseph Alex; Ray, Abhijit
2009-01-01
Glycogen synthase kinase 3 (GSK3), a constitutively acting multi-functional serine threonine kinase is involved in diverse physiological pathways ranging from metabolism, cell cycle, gene expression, development and oncogenesis to neuroprotection. These diverse multiple functions attributed to GSK3 can be explained by variety of substrates like glycogen synthase, τ protein and β catenin that are phosphorylated leading to their inactivation. GSK3 has been implicated in various diseases such as diabetes, inflammation, cancer, Alzheimer's and bipolar disorder. GSK3 negatively regulates insulin-mediated glycogen synthesis and glucose homeostasis, and increased expression and activity of GSK3 has been reported in type II diabetics and obese animal models. Consequently, inhibitors of GSK3 have been demonstrated to have anti-diabetic effects in vitro and in animal models. However, inhibition of GSK3 poses a challenge as achieving selectivity of an over achieving kinase involved in various pathways with multiple substrates may lead to side effects and toxicity. The primary concern is developing inhibitors of GSK3 that are anti-diabetic but do not lead to up-regulation of oncogenes. The focus of this review is the recent advances and the challenges surrounding GSK3 as an anti-diabetic therapeutic target. British Journal of Pharmacology (2009) doi:10.1111/j.1476-5381.2008.00085.x PMID:19366350
Androgen dependent mechanisms of pro-angiogenic networks in placental and tumor development.
Metzler, Veronika M; de Brot, Simone; Robinson, Robert S; Jeyapalan, Jennie N; Rakha, Emad; Walton, Thomas; Gardner, David S; Lund, Emma F; Whitchurch, Jonathan; Haigh, Daisy; Lochray, Jack M; Robinson, Brian D; Allegrucci, Cinzia; Fray, Rupert G; Persson, Jenny L; Ødum, Niels; Miftakhova, Regina R; Rizvanov, Albert A; Hughes, Ieuan A; Tadokoro-Cuccaro, Rieko; Heery, David M; Rutland, Catrin S; Mongan, Nigel P
2017-08-01
The placenta and tumors share important characteristics, including a requirement to establish effective angiogenesis. In the case of the placenta, optimal angiogenesis is required to sustain the blood flow required to maintain a successful pregnancy, whereas in tumors establishing new blood supplies is considered a key step in supporting metastases. Therefore the development of novel angiogenesis inhibitors has been an area of active research in oncology. A subset of the molecular processes regulating angiogenesis are well understood in the context of both early placentation and tumorigenesis. In this review we focus on the well-established role of androgen regulation of angiogenesis in cancer and relate these mechanisms to placental angiogenesis. The physiological actions of androgens are mediated by the androgen receptor (AR), a ligand dependent transcription factor. Androgens and the AR are essential for normal male embryonic development, puberty and lifelong health. Defects in androgen signalling are associated with a diverse range of clinical disorders in men and women including disorders of sex development (DSD), polycystic ovary syndrome in women and many cancers. We summarize the diverse molecular mechanisms of androgen regulation of angiogenesis and infer the potential significance of these pathways to normal and pathogenic placental function. Finally, we offer potential research applications of androgen-targeting molecules developed to treat cancer as investigative tools to help further delineate the role of androgen signalling in placental function and maternal and offspring health in animal models. Copyright © 2017 Elsevier Ltd. All rights reserved.
Neuroprotective Mechanisms of Taurine against Ischemic Stroke.
Menzie, Janet; Prentice, Howard; Wu, Jang-Yen
2013-06-03
Ischemic stroke exhibits a multiplicity of pathophysiological mechanisms. To address the diverse pathophysiological mechanisms observed in ischemic stroke investigators seek to find therapeutic strategies that are multifaceted in their action by either investigating multipotential compounds or by using a combination of compounds. Taurine, an endogenous amino acid, exhibits a plethora of physiological functions. It exhibits antioxidative properties, stabilizes membrane, functions as an osmoregulator, modulates ionic movements, reduces the level of pro-inflammators, regulates intracellular calcium concentration; all of which contributes to its neuroprotective effect. Data are accumulating that show the neuroprotective mechanisms of taurine against stroke pathophysiology. In this review, we describe the neuroprotective mechanisms employed by taurine against ischemic stroke and its use in clinical trial for ischemic stroke.
Alternative Polyadenylation in Human Diseases
Chang, Jae-Woong; Yeh, Hsin-Sung
2017-01-01
Varying length of messenger RNA (mRNA) 3′-untranslated region is generated by alternating the usage of polyadenylation sites during pre-mRNA processing. It is prevalent through all eukaryotes and has emerged as a key mechanism for controlling gene expression. Alternative polyadenylation (APA) plays an important role for cell growth, proliferation, and differentiation. In this review, we discuss the functions of APA related with various physiological conditions including cellular metabolism, mRNA processing, and protein diversity in a variety of disease models. We also discuss the molecular mechanisms underlying APA regulation, such as variations in the concentration of mRNA processing factors and RNA-binding proteins, as well as global transcriptome changes under cellular signaling pathway. PMID:29271615
The digestive tract of Drosophila melanogaster.
Lemaitre, Bruno; Miguel-Aliaga, Irene
2013-01-01
The digestive tract plays a central role in the digestion and absorption of nutrients. Far from being a passive tube, it provides the first line of defense against pathogens and maintains energy homeostasis by exchanging neuronal and endocrine signals with other organs. Historically neglected, the gut of the fruit fly Drosophila melanogaster has recently come to the forefront of Drosophila research. Areas as diverse as stem cell biology, neurobiology, metabolism, and immunity are benefitting from the ability to study the genetics of development, growth regulation, and physiology in the same organ. In this review, we summarize our knowledge of the Drosophila digestive tract, with an emphasis on the adult midgut and its functional underpinnings.
Regulated portals of entry into the cell
NASA Astrophysics Data System (ADS)
Conner, Sean D.; Schmid, Sandra L.
2003-03-01
The plasma membrane is the interface between cells and their harsh environment. Uptake of nutrients and all communication among cells and between cells and their environment occurs through this interface. `Endocytosis' encompasses several diverse mechanisms by which cells internalize macromolecules and particles into transport vesicles derived from the plasma membrane. It controls entry into the cell and has a crucial role in development, the immune response, neurotransmission, intercellular communication, signal transduction, and cellular and organismal homeostasis. As the complexity of molecular interactions governing endocytosis are revealed, it has become increasingly clear that it is tightly coordinated and coupled with overall cell physiology and thus, must be viewed in a broader context than simple vesicular trafficking.
Zhang, Fei-Fei; Luo, Yu-Hao; Wang, Hui; Zhao, Liang
2016-01-01
Long non-coding RNAs (lncRNAs), a newly discovered class of ncRNA molecules, have been widely accepted as crucial regulators of various diseases including cancer. Increasing numbers of studies have demonstrated that lncRNAs are involved in diverse physiological and pathophysiological processes, such as cell cycle progression, chromatin remodeling, gene transcription, and posttranscriptional processing. Aberrant expression of lncRNAs frequently occurs in gastrointestinal cancer and plays emerging roles in cancer metastasis. In this review, we focus on and outline the regulatory functions of recently identified metastasis-associated lncRNAs, and evaluate the potential roles of lncRNAs as novel diagnostic biomarkers and therapeutic targets in gastrointestinal cancer. PMID:27818589
Structural-functional diversity of the natural oligopeptides.
Zamyatnin, Alexander A
2018-03-01
Natural oligopeptides may regulate nearly all vital processes. To date, the chemical structures of many oligopeptides have been identified from >2000 organisms representing all the biological kingdoms. We have considered a number of mathematical (sequence length), chemical, physical, and biological features of an array of natural oligopeptides on the basis of the oligopeptide EROP-Moscow database (http://erop.inbi.ras.ru, 15,351 entries) data. There is the substantial difference of these substances from polypeptide molecules of proteins according to their physicochemical characteristics. These characteristics may be critical for understanding the molecular mechanisms of the action of oligopeptides that lead to the development of physiological effects. Copyright © 2017 Elsevier Ltd. All rights reserved.
Current and future prospects for CRISPR-based tools in bacteria.
Luo, Michelle L; Leenay, Ryan T; Beisel, Chase L
2016-05-01
CRISPR-Cas systems have rapidly transitioned from intriguing prokaryotic defense systems to powerful and versatile biomolecular tools. This article reviews how these systems have been translated into technologies to manipulate bacterial genetics, physiology, and communities. Recent applications in bacteria have centered on multiplexed genome editing, programmable gene regulation, and sequence-specific antimicrobials, while future applications can build on advances in eukaryotes, the rich natural diversity of CRISPR-Cas systems, and the untapped potential of CRISPR-based DNA acquisition. Overall, these systems have formed the basis of an ever-expanding genetic toolbox and hold tremendous potential for our future understanding and engineering of the bacterial world. © 2015 Wiley Periodicals, Inc.
Tinkering with the tinkerer: pollution versus evolution.
Fox, G A
1995-01-01
Pollutants can act as powerful selective forces by altering genetic variability, its intergenerational transfer, and the size, functional viability, adaptability, and survival of future generations. It is at the level of the cell and the individual that meiosis occurs, that genetic diversity is maintained, and behavior, reproduction, growth, and survival occur and are regulated. It is at this level that evolutionary processes occur and most pollutants exert their toxic effects. Chronic exposure to chemicals contributes to the cumulative stress on individuals and disrupts physiological processes and chemically mediated communication thereby threatening the diversity and long-term survival of sexually reproducing biota. Regional or global effects of pollution on the atmosphere, hydrosphere, and lithosphere have indirectly altered Earth's life-support systems, thereby modifying trace metal balance, reproduction, and incidence of UV-B-induced DNA damage in biota. By altering the competitive ability and survival of species, chemical pollutants potentially threaten evolutionary processes and the biodiversity and function of intercepting ecosystems. PMID:7556031
Stam, Floor J.; Hendricks, Timothy J.; Zhang, Jingming; Geiman, Eric J.; Francius, Cedric; Labosky, Patricia A.; Clotman, Frederic; Goulding, Martyn
2012-01-01
The spinal cord contains a diverse array of physiologically distinct interneuron cell types that subserve specialized roles in somatosensory perception and motor control. The mechanisms that generate these specialized interneuronal cell types from multipotential spinal progenitors are not known. In this study, we describe a temporally regulated transcriptional program that controls the differentiation of Renshaw cells (RCs), an anatomically and functionally discrete spinal interneuron subtype. We show that the selective activation of the Onecut transcription factors Oc1 and Oc2 during the first wave of V1 interneuron neurogenesis is a key step in the RC differentiation program. The development of RCs is additionally dependent on the forkhead transcription factor Foxd3, which is more broadly expressed in postmitotic V1 interneurons. Our demonstration that RCs are born, and activate Oc1 and Oc2 expression, in a narrow temporal window leads us to posit that neuronal diversity in the developing spinal cord is established by the composite actions of early spatial and temporal determinants. PMID:22115757
ERIC Educational Resources Information Center
Willemen, Agnes M.; Schuengel, Carlo; Koot, Hans M.
2009-01-01
Background: Psychopathology in youth appears to be linked to deficits in regulating affective responses to stressful situations. In children, high-quality parental support facilitates affect regulation. However, in adolescence, the role of parent-child interaction in the regulation of affect is unclear. This study examined physiological reactivity…
FT-IR Study Reveals Intrinsically Disordered Nature of Heat Shock Protein 90
NASA Astrophysics Data System (ADS)
Xie, Aihua; Neto, David; Balch, Maurie; Hendriks, Johnny; Causey, Oliver; Deng, Junpeng; Matts, Robert
Heat shock protein 90 (Hsp90) is a highly conserved chaperone protein that enables the proper folding of a large number of structurally diverse proteins (a.k.a., clients) in the crowded cytosolic environment and plays a key role in regulating the heat shock response. A long standing open question is how Hsp90 accommodates the structural diversity of a large cohort of client proteins? We report ATR FTIR study on structural properties of Hsp90 C-terminal domain (CTD) and their temperature dependences. Effects of temperature on Hsp90 structure are dissected into the C-terminal domain (CTD) and the N-terminal/middle domain (NTMD). One of our major findings reveals that within a narrow temperature window across the physiological temperatures (35 to 45 C), Hsp90CTD exhibits significant increases in protein aggregation and increases in unordered structures. Despite the intrinsically disordered nature of Hsp90CTD, it retains a protected hydrophobic core at 40 C. Implications of these results will be discussed in the light of the structural dynamics and client diversity of Hsp90. AX is grateful for Grant supports from OCAST HR10-078 and NSF MRI DBI1338097.
Fadiran, Emmanuel Olutayo; Parrish, L. Jo; Griffith, Rachel A.; Weiss, Eleanor; Carter, Christine
2012-01-01
Abstract There is mounting scientific evidence pointing to genetic or physiologic distinctions between genders and among racial and ethnic groups that influence disease risk and severity and response to treatment. The diverse enrollment of subjects engaged in clinical trials research is, thus, critical to developing safer and more effective drugs and medical devices. However, in the United States, there are striking disparities in clinical trial participation. To address this problem, the Food and Drug Administration (FDA) Office of Women's Health and the Society for Women's Health Research (SWHR) together convened the 2-day meeting, Dialogues on Diversifying Clinical Trials. The conference was held in Washington, DC, on September 22–23, 2011, and brought together a wide range of speakers from clinical research, industry, and regulatory agencies. Here, we present the major findings discussed at this meeting about female and minority patients and physicians and their willingness to participate in clinical trials and the barriers that sponsors face in recruiting a diverse trial population. We also discuss some recommendations for improving trial diversity through new technologies and greater efficiency in trial regulation and review. PMID:22747427
Stevens, Richard G.; Blask, David E.; Brainard, George C.; Hansen, Johnni; Lockley, Steven W.; Provencio, Ignacio; Rea, Mark S.; Reinlib, Leslie
2007-01-01
Light, including artificial light, has a range of effects on human physiology and behavior and can therefore alter human physiology when inappropriately timed. One example of potential light-induced disruption is the effect of light on circadian organization, including the production of several hormone rhythms. Changes in light–dark exposure (e.g., by nonday occupation or transmeridian travel) shift the timing of the circadian system such that internal rhythms can become desynchronized from both the external environment and internally with each other, impairing our ability to sleep and wake at the appropriate times and compromising physiologic and metabolic processes. Light can also have direct acute effects on neuroendocrine systems, for example, in suppressing melatonin synthesis or elevating cortisol production that may have untoward long-term consequences. For these reasons, the National Institute of Environmental Health Sciences convened a workshop of a diverse group of scientists to consider how best to conduct research on possible connections between lighting and health. According to the participants in the workshop, there are three broad areas of research effort that need to be addressed. First are the basic biophysical and molecular genetic mechanisms for phototransduction for circadian, neuroendocrine, and neurobehavioral regulation. Second are the possible physiologic consequences of disrupting these circadian regulatory processes such as on hormone production, particularly melatonin, and normal and neoplastic tissue growth dynamics. Third are effects of light-induced physiologic disruption on disease occurrence and prognosis, and how prevention and treatment could be improved by application of this knowledge. PMID:17805428
NASA Technical Reports Server (NTRS)
Wallace-Robinson, Janice; Dickson, Katherine J.; Hess, Elizabeth; Powers, Janet V.
1992-01-01
A 10-year cumulative bibliography of publications resulting from research supported by the Regulatory Physiology discipline of the Space Physiology and Countermeasures Program of NASA's Life Sciences Division is provided. Primary subjects included in this bibliography are circadian rhythms, endocrinology, fluid and electrolyte regulation, hematology, immunology, metabolism and nutrition, temperature regulation, and general regulatory physiology. General physiology references are also included. Principal investigators whose research tasks resulted in publication are identified by asterisk. Publications are identified by a record number corresponding with their entry in the Life Sciences Bibliographic Database, maintained at the George Washington University.
Transcriptional regulators of Na,K-ATPase subunits
Li, Zhiqin; Langhans, Sigrid A.
2015-01-01
The Na,K-ATPase classically serves as an ion pump creating an electrochemical gradient across the plasma membrane that is essential for transepithelial transport, nutrient uptake and membrane potential. In addition, Na,K-ATPase also functions as a receptor, a signal transducer and a cell adhesion molecule. With such diverse roles, it is understandable that the Na,K-ATPase subunits, the catalytic α-subunit, the β-subunit and the FXYD proteins, are controlled extensively during development and to accommodate physiological needs. The spatial and temporal expression of Na,K-ATPase is partially regulated at the transcriptional level. Numerous transcription factors, hormones, growth factors, lipids, and extracellular stimuli modulate the transcription of the Na,K-ATPase subunits. Moreover, epigenetic mechanisms also contribute to the regulation of Na,K-ATPase expression. With the ever growing knowledge about diseases associated with the malfunction of Na,K-ATPase, this review aims at summarizing the best-characterized transcription regulators that modulate Na,K-ATPase subunit levels. As abnormal expression of Na,K-ATPase subunits has been observed in many carcinoma, we will also discuss transcription factors that are associated with epithelial-mesenchymal transition, a crucial step in the progression of many tumors to malignant disease. PMID:26579519
Actin assembly factors regulate the gelation kinetics and architecture of F-actin networks.
Falzone, Tobias T; Oakes, Patrick W; Sees, Jennifer; Kovar, David R; Gardel, Margaret L
2013-04-16
Dynamic regulation of the actin cytoskeleton is required for diverse cellular processes. Proteins regulating the assembly kinetics of the cytoskeletal biopolymer F-actin are known to impact the architecture of actin cytoskeletal networks in vivo, but the underlying mechanisms are not well understood. Here, we demonstrate that changes to actin assembly kinetics with physiologically relevant proteins profilin and formin (mDia1 and Cdc12) have dramatic consequences on the architecture and gelation kinetics of otherwise biochemically identical cross-linked F-actin networks. Reduced F-actin nucleation rates promote the formation of a sparse network of thick bundles, whereas increased nucleation rates result in a denser network of thinner bundles. Changes to F-actin elongation rates also have marked consequences. At low elongation rates, gelation ceases and a solution of rigid bundles is formed. By contrast, rapid filament elongation accelerates dynamic arrest and promotes gelation with minimal F-actin density. These results are consistent with a recently developed model of how kinetic constraints regulate network architecture and underscore how molecular control of polymer assembly is exploited to modulate cytoskeletal architecture and material properties. Copyright © 2013 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Actin Assembly Factors Regulate the Gelation Kinetics and Architecture of F-actin Networks
Falzone, Tobias T.; Oakes, Patrick W.; Sees, Jennifer; Kovar, David R.; Gardel, Margaret L.
2013-01-01
Dynamic regulation of the actin cytoskeleton is required for diverse cellular processes. Proteins regulating the assembly kinetics of the cytoskeletal biopolymer F-actin are known to impact the architecture of actin cytoskeletal networks in vivo, but the underlying mechanisms are not well understood. Here, we demonstrate that changes to actin assembly kinetics with physiologically relevant proteins profilin and formin (mDia1 and Cdc12) have dramatic consequences on the architecture and gelation kinetics of otherwise biochemically identical cross-linked F-actin networks. Reduced F-actin nucleation rates promote the formation of a sparse network of thick bundles, whereas increased nucleation rates result in a denser network of thinner bundles. Changes to F-actin elongation rates also have marked consequences. At low elongation rates, gelation ceases and a solution of rigid bundles is formed. By contrast, rapid filament elongation accelerates dynamic arrest and promotes gelation with minimal F-actin density. These results are consistent with a recently developed model of how kinetic constraints regulate network architecture and underscore how molecular control of polymer assembly is exploited to modulate cytoskeletal architecture and material properties. PMID:23601318
The development of regulatory functions from birth to 5 years: insights from premature infants.
Feldman, Ruth
2009-01-01
This study examined physiological, emotional, and attentional regulatory functions as predictors of self-regulation in 125 infants followed 7 times from birth to 5 years. Physiological regulation was assessed by neonatal vagal tone and sleep-wake cyclicity; emotion regulation by response to stress at 3, 6, and 12 months; and attention regulation by focused attention and delayed response in the 2nd year. Executive functions, behavior adaptation, and self-restraint were measured at 5 years. Regulatory functions showed stability across time, measures, and levels. Structural modeling demonstrated both mediated paths from physiological to self-regulation through emotional and attentional processes and direct continuity between vagal tone and each level of regulation. Results support the coherence of the regulation construct and are consistent with neurobiological models on self and consciousness.
Rab proteins: The key regulators of intracellular vesicle transport
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhuin, Tanmay; Roy, Jagat Kumar, E-mail: jkroy@bhu.ac.in
2014-10-15
Vesicular/membrane trafficking essentially regulates the compartmentalization and abundance of proteins within the cells and contributes in many signalling pathways. This membrane transport in eukaryotic cells is a complex process regulated by a large and diverse array of proteins. A large group of monomeric small GTPases; the Rabs are essential components of this membrane trafficking route. Most of the Rabs are ubiquitously expressed proteins and have been implicated in vesicle formation, vesicle motility/delivery along cytoskeleton elements and docking/fusion at target membranes through the recruitment of effectors. Functional impairments of Rabs affecting transport pathways manifest different diseases. Rab functions are accompanied bymore » cyclical activation and inactivation of GTP-bound and GDP-bound forms between the cytosol and membranes which is regulated by upstream regulators. Rab proteins are characterized by their distinct sub-cellular localization and regulate a wide variety of endocytic, transcytic and exocytic transport pathways. Mutations of Rabs affect cell growth, motility and other biological processes. - Highlights: • Rab proteins regulate different signalling pathways. • Deregulation of Rabs is the fundamental causes of a variety of human diseases. • This paper gives potential directions in developing therapeutic targets. • This paper also gives ample directions for modulating pathways central to normal physiology. • These are the huge challenges for drug discovery and delivery in near future.« less
Redox proteomics for the assessment of redox-related posttranslational regulation in plants.
Mock, Hans-Peter; Dietz, Karl-Josef
2016-08-01
The methodological developments of in vivo and in vitro protein labeling and subsequent detection enable sensitive and specific detection of redox modifications. Such methods are presently applied to diverse cells and tissues, subproteomes and developmental as well as environmental conditions. The chloroplast proteome is particularly suitable for such kind of studies, because redox regulation of chloroplast proteins is well established, many plastid proteins are abundant, redox network components have been inventoried in great depth, and functional consequences explored. Thus the repertoire of redox-related posttranslational modifications on the one hand side and their abundance on the other pose a challenge for the near future to understand their contribution to physiological regulation. The various posttranslational redox modifications are introduced, followed by a description of the available proteomics methods. The significance of the redox-related posttranslational modification is exemplarily worked out using established examples from photosynthesis. This article is part of a Special Issue entitled: Plant Proteomics--a bridge between fundamental processes and crop production, edited by Dr. Hans-Peter Mock. Copyright © 2016. Published by Elsevier B.V.
Target of Rapamycin Complex 2 Regulates Actin Polarization and Endocytosis via Multiple Pathways*
Rispal, Delphine; Eltschinger, Sandra; Stahl, Michael; Vaga, Stefania; Bodenmiller, Bernd; Abraham, Yann; Filipuzzi, Ireos; Movva, N. Rao; Aebersold, Ruedi; Helliwell, Stephen B.; Loewith, Robbie
2015-01-01
Target of rapamycin is a Ser/Thr kinase that operates in two conserved multiprotein complexes, TORC1 and TORC2. Unlike TORC1, TORC2 is insensitive to rapamycin, and its functional characterization is less advanced. Previous genetic studies demonstrated that TORC2 depletion leads to loss of actin polarization and loss of endocytosis. To determine how TORC2 regulates these readouts, we engineered a yeast strain in which TORC2 can be specifically and acutely inhibited by the imidazoquinoline NVP-BHS345. Kinetic analyses following inhibition of TORC2, supported with quantitative phosphoproteomics, revealed that TORC2 regulates these readouts via distinct pathways as follows: rapidly through direct protein phosphorylation cascades and slowly through indirect changes in the tensile properties of the plasma membrane. The rapid signaling events are mediated in large part through the phospholipid flippase kinases Fpk1 and Fpk2, whereas the slow signaling pathway involves increased plasma membrane tension resulting from a gradual depletion of sphingolipids. Additional hits in our phosphoproteomic screens highlight the intricate control TORC2 exerts over diverse aspects of eukaryote cell physiology. PMID:25882841
SOCS3, a Major Regulator of Infection and Inflammation
Carow, Berit; Rottenberg, Martin E.
2014-01-01
In this review, we describe the role of suppressor of cytokine signaling-3 (SOCS3) in modulating the outcome of infections and autoimmune diseases as well as the underlying mechanisms. SOCS3 regulates cytokine or hormone signaling usually preventing, but in some cases aggravating, a variety of diseases. A main role of SOCS3 results from its binding to both the JAK kinase and the cytokine receptor, which results in the inhibition of STAT3 activation. Available data also indicate that SOCS3 can regulate signaling via other STATs than STAT3 and also controls cellular pathways unrelated to STAT activation. SOCS3 might either act directly by hampering JAK activation or by mediating the ubiquitination and subsequent proteasome degradation of the cytokine/growth factor/hormone receptor. Inflammation and infection stimulate SOCS3 expression in different myeloid and lymphoid cell populations as well as in diverse non-hematopoietic cells. The accumulated data suggest a relevant program coordinated by SOCS3 in different cell populations, devoted to the control of immune homeostasis in physiological and pathological conditions such as infection and autoimmunity. PMID:24600449
Goulielmaki, Evi; Chalari, Anna; Withers-Martinez, Chrislaine; Siden-Kiamos, Inga; Matuschewski, Kai
2017-01-01
Site-2 proteases (S2P) belong to the M50 family of metalloproteases, which typically perform essential roles by mediating activation of membrane–bound transcription factors through regulated intramembrane proteolysis (RIP). Protease-dependent liberation of dormant transcription factors triggers diverse cellular responses, such as sterol regulation, Notch signalling and the unfolded protein response. Plasmodium parasites rely on regulated proteolysis for controlling essential pathways throughout the life cycle. In this study we examine the Plasmodium-encoded S2P in a murine malaria model and show that it is expressed in all stages of Plasmodium development. Localisation studies by endogenous gene tagging revealed that in all invasive stages the protein is in close proximity to the nucleus. Ablation of PbS2P by reverse genetics leads to reduced growth rates during liver and blood infection and, hence, virulence attenuation. Strikingly, absence of PbS2P was compatible with parasite life cycle progression in the mosquito and mammalian hosts under physiological conditions, suggesting redundant or dispensable roles in vivo. PMID:28107409
Koussis, Konstantinos; Goulielmaki, Evi; Chalari, Anna; Withers-Martinez, Chrislaine; Siden-Kiamos, Inga; Matuschewski, Kai; Loukeris, Thanasis G
2017-01-01
Site-2 proteases (S2P) belong to the M50 family of metalloproteases, which typically perform essential roles by mediating activation of membrane-bound transcription factors through regulated intramembrane proteolysis (RIP). Protease-dependent liberation of dormant transcription factors triggers diverse cellular responses, such as sterol regulation, Notch signalling and the unfolded protein response. Plasmodium parasites rely on regulated proteolysis for controlling essential pathways throughout the life cycle. In this study we examine the Plasmodium-encoded S2P in a murine malaria model and show that it is expressed in all stages of Plasmodium development. Localisation studies by endogenous gene tagging revealed that in all invasive stages the protein is in close proximity to the nucleus. Ablation of PbS2P by reverse genetics leads to reduced growth rates during liver and blood infection and, hence, virulence attenuation. Strikingly, absence of PbS2P was compatible with parasite life cycle progression in the mosquito and mammalian hosts under physiological conditions, suggesting redundant or dispensable roles in vivo.
Kang, Heemin; Zhang, Kunyu; Wong, Dexter Siu Hong; Han, Fengxuan; Li, Bin; Bian, Liming
2018-04-21
Macrophages are multifunctional immune cells with diverse physiological functions such as fighting against infection, influencing progression of pathologies, maintaining homeostasis, and regenerating tissues. Macrophages can be induced to adopt distinct polarized phenotypes, such as classically activated pro-inflammatory (M1) phenotypes or alternatively activated anti-inflammatory and pro-healing (M2), to execute diverse and dynamic immune functions. However, unbalanced polarizations of macrophage can lead to various pathologies, such as atherosclerosis, obesity, tumor, and asthma. Thus, the capability to remotely control macrophage phenotypes is important to the success of treating many pathological conditions involving macrophages. In this study, we developed an upconversion nanoparticle (UCNP)-based photoresponsive nanocarrier for near-infrared (NIR) light-mediated control of intracellular calcium levels to regulate macrophage polarization. UCNP was coated with mesoporous silica (UCNP@mSiO 2 ), into which loaded calcium regulators that can either supply or deplete calcium ions. UCNP@mSiO 2 was chemically modified through serial coupling of photocleavable linker and Arg-Gly-Asp (RGD) peptide-bearing molecular cap via cyclodextrin-adamantine host-guest complexation. The RGD-bearing cap functioned as the photolabile gating structure to control the release of calcium regulators and facilitated the cellular uptake of UCNP@mSiO 2 nanocarrier. The upconverted UV light emission from the UCNP@mSiO 2 under NIR light excitation triggered the cleavage of cap and intracellular release of calcium regulators, thereby allowing temporal regulation on the intracellular calcium levels. Application of NIR light through skin tissue promoted M1 or M2 polarization of macrophages, by elevating or depleting intracellular calcium levels, respectively. To the best of our knowledge, this is the first demonstration of NIR light-mediated remote control on macrophage polarization. This photoresponsive nanocarrier offers the potential to remotely manipulate in vivo immune functions, such as inflammation or tissue regeneration, via NIR light-controlled macrophage polarization. Copyright © 2018 Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
Blandon, Alysia Y.; Calkins, Susan D.; Keane, Susan P.; O'Brien, Marion
2008-01-01
Trajectories of emotion regulation processes were examined in a community sample of 269 children across the ages of 4 to 7 using hierarchical linear modeling. Maternal depressive symptomatology (Symptom Checklist-90) and children's physiological reactivity (respiratory sinus arrhythmia [RSA]) and vagal regulation ([delta]RSA) were explored as…
Canine gastrointestinal physiology: Breeds variations that can influence drug absorption.
Oswald, Hayley; Sharkey, Michele; Pade, Devendra; Martinez, Marilyn N
2015-11-01
Although all dogs belong to Canis lupus familiaris, the physiological diversity resulting from selective breeding can lead to wide interbreed variability in drug pharmacokinetics (PK) or in oral drug product performance. It is important to understand this diversity in order to predict the impact of drug product formulation attributes on in vivo dissolution and absorption characteristics across the canine population when the dog represents the targeted patient population. Based upon published information, this review addresses breed differences in gastrointestinal (GI) physiology and discusses the in vivo implications of these differences. In addition to the importance of such information for understanding the variability that may exist in the performance of oral dosage forms in dogs for the purpose of developing canine therapeutics, an appreciation of breed differences in GI physiology can improve our prediction of oral drug formulation performance when we extrapolate bioavailability results from the dog to the humans, and vice versa. In this literature review, we examine reports of breed associated diversity in GI anatomy and morphology, gastric emptying time (GET), oro-cecal transit time (OCTT), small intestinal transit time (SITT), large intestinal transit time (LITT), intestinal permeability, sodium/potassium fecal concentrations, intestinal flora, and fecal moisture content. Published by Elsevier B.V.
Kaniewska, Paulina; Chan, Chon-Kit Kenneth; Kline, David; Ling, Edmund Yew Siang; Rosic, Nedeljka; Edwards, David; Hoegh-Guldberg, Ove; Dove, Sophie
2015-01-01
Tropical reef-building coral stress levels will intensify with the predicted rising atmospheric CO2 resulting in ocean temperature and acidification increase. Most studies to date have focused on the destabilization of coral-dinoflagellate symbioses due to warming oceans, or declining calcification due to ocean acidification. In our study, pH and temperature conditions consistent with the end-of-century scenarios of the Intergovernmental Panel on Climate Change (IPCC) caused major changes in photosynthesis and respiration, in addition to decreased calcification rates in the coral Acropora millepora. Population density of symbiotic dinoflagellates (Symbiodinium) under high levels of ocean acidification and temperature (Representative Concentration Pathway, RCP8.5) decreased to half of that found under present day conditions, with photosynthetic and respiratory rates also being reduced by 40%. These physiological changes were accompanied by evidence for gene regulation of calcium and bicarbonate transporters along with components of the organic matrix. Metatranscriptomic RNA-Seq data analyses showed an overall down regulation of metabolic transcripts, and an increased abundance of transcripts involved in circadian clock control, controlling the damage of oxidative stress, calcium signaling/homeostasis, cytoskeletal interactions, transcription regulation, DNA repair, Wnt signaling and apoptosis/immunity/ toxins. We suggest that increased maintenance costs under ocean acidification and warming, and diversion of cellular ATP to pH homeostasis, oxidative stress response, UPR and DNA repair, along with metabolic suppression, may underpin why Acroporid species tend not to thrive under future environmental stress. Our study highlights the potential increased energy demand when the coral holobiont is exposed to high levels of ocean warming and acidification.
Kaniewska, Paulina; Chan, Chon-Kit Kenneth; Kline, David; Ling, Edmund Yew Siang; Rosic, Nedeljka; Edwards, David; Hoegh-Guldberg, Ove; Dove, Sophie
2015-01-01
Tropical reef-building coral stress levels will intensify with the predicted rising atmospheric CO2 resulting in ocean temperature and acidification increase. Most studies to date have focused on the destabilization of coral-dinoflagellate symbioses due to warming oceans, or declining calcification due to ocean acidification. In our study, pH and temperature conditions consistent with the end-of-century scenarios of the Intergovernmental Panel on Climate Change (IPCC) caused major changes in photosynthesis and respiration, in addition to decreased calcification rates in the coral Acropora millepora. Population density of symbiotic dinoflagellates (Symbiodinium) under high levels of ocean acidification and temperature (Representative Concentration Pathway, RCP8.5) decreased to half of that found under present day conditions, with photosynthetic and respiratory rates also being reduced by 40%. These physiological changes were accompanied by evidence for gene regulation of calcium and bicarbonate transporters along with components of the organic matrix. Metatranscriptomic RNA-Seq data analyses showed an overall down regulation of metabolic transcripts, and an increased abundance of transcripts involved in circadian clock control, controlling the damage of oxidative stress, calcium signaling/homeostasis, cytoskeletal interactions, transcription regulation, DNA repair, Wnt signaling and apoptosis/immunity/ toxins. We suggest that increased maintenance costs under ocean acidification and warming, and diversion of cellular ATP to pH homeostasis, oxidative stress response, UPR and DNA repair, along with metabolic suppression, may underpin why Acroporid species tend not to thrive under future environmental stress. Our study highlights the potential increased energy demand when the coral holobiont is exposed to high levels of ocean warming and acidification. PMID:26510159
Kenkel, C D; Meyer, E; Matz, M V
2013-08-01
Recent evidence suggests that corals can acclimatize or adapt to local stress factors through differential regulation of their gene expression. Profiling gene expression in corals from diverse environments can elucidate the physiological processes that may be responsible for maximizing coral fitness in their natural habitat and lead to a better understanding of the coral's capacity to survive the effects of global climate change. In an accompanying paper, we show that Porites astreoides from thermally different reef habitats exhibit distinct physiological responses when exposed to 6 weeks of chronic temperature stress in a common garden experiment. Here, we describe expression profiles obtained from the same corals for a panel of 9 previously reported and 10 novel candidate stress response genes identified in a pilot RNA-Seq experiment. The strongest expression change was observed in a novel candidate gene potentially involved in calcification, SLC26, a member of the solute carrier family 26 anion exchangers, which was down-regulated by 92-fold in bleached corals relative to controls. The most notable signature of divergence between coral populations was constitutive up-regulation of metabolic genes in corals from the warmer inshore location, including the gluconeogenesis enzymes pyruvate carboxylase and phosphoenolpyruvate carboxykinase and the lipid beta-oxidation enzyme acyl-CoA dehydrogenase. Our observations highlight several molecular pathways that were not previously implicated in the coral stress response and suggest that host management of energy budgets might play an adaptive role in holobiont thermotolerance. © 2013 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Hook, Vivian; Bandeira, Nuno
2015-12-01
Neuropeptides regulate intercellular signaling as neurotransmitters of the central and peripheral nervous systems, and as peptide hormones in the endocrine system. Diverse neuropeptides of distinct primary sequences of various lengths, often with post-translational modifications, coordinate and integrate regulation of physiological functions. Mass spectrometry-based analysis of the diverse neuropeptide structures in neuropeptidomics research is necessary to define the full complement of neuropeptide signaling molecules. Human neuropeptidomics has notable importance in defining normal and dysfunctional neuropeptide signaling in human health and disease. Neuropeptidomics has great potential for expansion in translational research opportunities for defining neuropeptide mechanisms of human diseases, providing novel neuropeptide drug targets for drug discovery, and monitoring neuropeptides as biomarkers of drug responses. In consideration of the high impact of human neuropeptidomics for health, an observed gap in this discipline is the few published articles in human neuropeptidomics compared with, for example, human proteomics and related mass spectrometry disciplines. Focus on human neuropeptidomics will advance new knowledge of the complex neuropeptide signaling networks participating in the fine control of neuroendocrine systems. This commentary review article discusses several human neuropeptidomics accomplishments that illustrate the rapidly expanding diversity of neuropeptides generated by protease processing of pro-neuropeptide precursors occurring within the secretory vesicle proteome. Of particular interest is the finding that human-specific cathepsin V participates in producing enkephalin and likely other neuropeptides, indicating unique proteolytic mechanisms for generating human neuropeptides. The field of human neuropeptidomics has great promise to solve new mechanisms in disease conditions, leading to new drug targets and therapeutic agents for human diseases.
Intergenerational Transmission of Aggression: Physiological Regulatory Processes
Margolin, Gayla; Ramos, Michelle C.; Timmons, Adela C.; Miller, Kelly F.; Han, Sohyun C.
2015-01-01
Children who grow up in aggressive households are at risk of having problems with physiological regulation, but researchers have not investigated physiology as a mechanism in the intergenerational transmission of aggression. In this article, we posit that physiological regulation, particularly during stressful interpersonal interactions, may shed light on sensitivity to conflict, It can also inform our understanding of associations between childhood exposure to aggression in families of origin and aggression against partners in adolescence or adulthood. In support of this model, we highlight findings showing that childhood exposure to family aggression relates to physiological regulation across the life span, and that reactions to physiological stress concurrently relate to aggression against intimate partners. Emerging evidence from research on biological processes during stressful interpersonal interactions raises questions about what is adaptive for individuals from aggressive families, particularly as past family experiences intersect with the challenges of new relationships. PMID:26929773
Großkinsky, Dominik K; Syaifullah, Syahnada Jaya; Roitsch, Thomas
2018-02-12
The study of senescence in plants is complicated by diverse levels of temporal and spatial dynamics as well as the impact of external biotic and abiotic factors and crop plant management. Whereas the molecular mechanisms involved in developmentally regulated leaf senescence are very well understood, in particular in the annual model plant species Arabidopsis, senescence of other organs such as the flower, fruit, and root is much less studied as well as senescence in perennials such as trees. This review addresses the need for the integration of multi-omics techniques and physiological phenotyping into holistic phenomics approaches to dissect the complex phenomenon of senescence. That became feasible through major advances in the establishment of various, complementary 'omics' technologies. Such an interdisciplinary approach will also need to consider knowledge from the animal field, in particular in relation to novel regulators such as small, non-coding RNAs, epigenetic control and telomere length. Such a characterization of phenotypes via the acquisition of high-dimensional datasets within a systems biology approach will allow us to systematically characterize the various programmes governing senescence beyond leaf senescence in Arabidopsis and to elucidate the underlying molecular processes. Such a multi-omics approach is expected to also spur the application of results from model plants to agriculture and their verification for sustainable and environmentally friendly improvement of crop plant stress resilience and productivity and contribute to improvements based on postharvest physiology for the food industry and the benefit of its customers. © The Author(s) 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Atkinson, Sophie; Marguerat, Samuel; Bitton, Danny; Bachand, Francois; Rodriguez-Lopez, Maria; Rallis, Charalampos; Lemay, Jean-Francois; Cotobal, Cristina; Malecki, Michal; Smialowski, Pawel; Mata, Juan; Korber, Philipp; Bahler, Jurg
2018-06-18
Long non-coding RNAs (lncRNAs), which are longer than 200 nucleotides but often unstable, contribute a substantial and diverse portion to pervasive non-coding transcriptomes. Most lncRNAs are poorly annotated and understood, although several play important roles in gene regulation and diseases. Here we systematically uncover and analyse lncRNAs in Schizosaccharomyces pombe. Based on RNA-seq data from twelve RNA-processing mutants and nine physiological conditions, we identify 5775 novel lncRNAs, nearly 4-times the previously annotated lncRNAs. The expression of most lncRNAs becomes strongly induced under the genetic and physiological perturbations, most notably during late meiosis. Most lncRNAs are cryptic and suppressed by three RNA-processing pathways: the nuclear exosome, cytoplasmic exonuclease, and RNAi. Double-mutant analyses reveal substantial coordination and redundancy among these pathways. We classify lncRNAs by their dominant pathway into cryptic unstable transcripts (CUTs), Xrn1-sensitive unstable transcripts (XUTs), and Dicer-sensitive unstable transcripts (DUTs). XUTs and DUTs are enriched for antisense lncRNAs, while CUTs are often bidirectional and actively translated. The cytoplasmic exonuclease, along with RNAi, dampens the expression of thousands of lncRNAs and mRNAs that become induced during meiosis. Antisense lncRNA expression mostly negatively correlates with sense mRNA expression in the physiological, but not the genetic conditions. Intergenic and bidirectional lncRNAs emerge from nucleosome-depleted regions, upstream of positioned nucleosomes. Our results highlight both similarities and differences to lncRNA regulation in budding yeast. This broad survey of the lncRNA repertoire and characteristics in S. pombe, and the interwoven regulatory pathways that target lncRNAs, provides a rich framework for their further functional analyses. Published by Cold Spring Harbor Laboratory Press for the RNA Society.
Zündorf, Gregor
2011-01-01
Abstract The intracellular free calcium concentration subserves complex signaling roles in brain. Calcium cations (Ca2+) regulate neuronal plasticity underlying learning and memory and neuronal survival. Homo- and heterocellular control of Ca2+ homeostasis supports brain physiology maintaining neural integrity. Ca2+ fluxes across the plasma membrane and between intracellular organelles and compartments integrate diverse cellular functions. A vast array of checkpoints controls Ca2+, like G protein-coupled receptors, ion channels, Ca2+ binding proteins, transcriptional networks, and ion exchangers, in both the plasma membrane and the membranes of mitochondria and endoplasmic reticulum. Interactions between Ca2+ and reactive oxygen species signaling coordinate signaling, which can be either beneficial or detrimental. In neurodegenerative disorders, cellular Ca2+-regulating systems are compromised. Oxidative stress, perturbed energy metabolism, and alterations of disease-related proteins result in Ca2+-dependent synaptic dysfunction, impaired plasticity, and neuronal demise. We review Ca2+ control processes relevant for physiological and pathophysiological conditions in brain tissue. Dysregulation of Ca2+ is decisive for brain cell death and degeneration after ischemic stroke, long-term neurodegeneration in Alzheimer's disease, Parkinson's disease, Huntington's disease, inflammatory processes, such as in multiple sclerosis, epileptic sclerosis, and leucodystrophies. Understanding the underlying molecular processes is of critical importance for the development of novel therapeutic strategies to prevent neurodegeneration and confer neuroprotection. Antioxid. Redox Signal. 14, 1275–1288. PMID:20615073
Yañez-Guerra, Luis Alfonso; Delroisse, Jérôme; Barreiro-Iglesias, Antón; Slade, Susan E; Scrivens, James H; Elphick, Maurice R
2018-05-08
Neuropeptides are diverse and evolutionarily ancient regulators of physiological/behavioural processes in animals. Here we have investigated the evolution and comparative physiology of luqin-type neuropeptide signalling, which has been characterised previously in protostomian invertebrates. Phylogenetic analysis indicates that luqin-type receptors and tachykinin-type receptors are paralogous and probably originated in a common ancestor of the Bilateria. In the deuterostomian lineage, luqin-type signalling has been lost in chordates but interestingly it has been retained in ambulacrarians. Therefore, here we characterised luqin-type signalling for the first time in an ambulacrarian - the starfish Asterias rubens (phylum Echinodermata). A luqin-like neuropeptide with a C-terminal RWamide motif (ArLQ; EEKTRFPKFMRW-NH 2 ) was identified as the ligand for two luqin-type receptors in A. rubens, ArLQR1 and ArLQR2. Furthermore, analysis of the expression of the ArLQ precursor using mRNA in situ hybridisation revealed expression in the nervous system, digestive system and locomotory organs (tube feet) and in vitro pharmacology revealed that ArLQ causes dose-dependent relaxation of tube feet. Accordingly, previous studies have revealed that luqin-type signalling regulates feeding and locomotor activity in protostomes. In conclusion, our phylogenetic analysis combined with characterisation of luqin-type signalling in a deuterostome has provided new insights into neuropeptide evolution and function in the animal kingdom.
Alternative modes of client binding enable functional plasticity of Hsp70
NASA Astrophysics Data System (ADS)
Mashaghi, Alireza; Bezrukavnikov, Sergey; Minde, David P.; Wentink, Anne S.; Kityk, Roman; Zachmann-Brand, Beate; Mayer, Matthias P.; Kramer, Günter; Bukau, Bernd; Tans, Sander J.
2016-11-01
The Hsp70 system is a central hub of chaperone activity in all domains of life. Hsp70 performs a plethora of tasks, including folding assistance, protection against aggregation, protein trafficking, and enzyme activity regulation, and interacts with non-folded chains, as well as near-native, misfolded, and aggregated proteins. Hsp70 is thought to achieve its many physiological roles by binding peptide segments that extend from these different protein conformers within a groove that can be covered by an ATP-driven helical lid. However, it has been difficult to test directly how Hsp70 interacts with protein substrates in different stages of folding and how it affects their structure. Moreover, recent indications of diverse lid conformations in Hsp70-substrate complexes raise the possibility of additional interaction mechanisms. Addressing these issues is technically challenging, given the conformational dynamics of both chaperone and client, the transient nature of their interaction, and the involvement of co-chaperones and the ATP hydrolysis cycle. Here, using optical tweezers, we show that the bacterial Hsp70 homologue (DnaK) binds and stabilizes not only extended peptide segments, but also partially folded and near-native protein structures. The Hsp70 lid and groove act synergistically when stabilizing folded structures: stabilization is abolished when the lid is truncated and less efficient when the groove is mutated. The diversity of binding modes has important consequences: Hsp70 can both stabilize and destabilize folded structures, in a nucleotide-regulated manner; like Hsp90 and GroEL, Hsp70 can affect the late stages of protein folding; and Hsp70 can suppress aggregation by protecting partially folded structures as well as unfolded protein chains. Overall, these findings in the DnaK system indicate an extension of the Hsp70 canonical model that potentially affects a wide range of physiological roles of the Hsp70 system.
Ren, Junxiao; Li, Yanmin; Xu, Naiyi; Li, Hong; Li, Cuicui; Han, Ruili; Wang, Yanbin; Li, Zhuanjian; Kang, Xiangtao; Liu, Xiaojun; Tian, Yadong
2017-01-01
The melanocortin receptor accessory proteins (MRAP and MRAP2) are small single-pass transmembrane proteins that regulate the biological functions of the melanocortin receptor (MCR) family. MCRs comprise five receptors (MC1R-MC5R) with diverse physiological roles in mammals. Five MCR members and two MRAPs were also predicted in the chicken (Gallus gallus) genome. However, little is known about their expression, regulation and biological functions. In this study, we cloned the MRAP and MRAP2 genes. Sequencing analysis revealed that the functional domains of MRAP and MRAP2 were conserved among species, suggesting that the physiological roles of chicken MRAP and MRAP2 could be similar to their mammalian counterparts. Tissue expression analysis demonstrated that MRAP was expressed in the adrenal gland, liver, spleen, glandular stomach and lungs, while MRAP2 is predominantly expressed in the adrenal gland. All five MCRs were present in the adrenal gland, but showed different expression patterns in other tissues. The MC5R was the only MCR member that was expressed in the chicken liver. The expression levels of MRAP in chicken liver were significantly increased at sexual maturity stage, and were significantly up-regulated (P<0.05) when chickens and chicken primary hepatocytes were treated with 17β-estradiol in vivo and in vitro, respectively; however, expression levels of PPARγ were down-regulated, and no effect on MC5R was observed. Our results suggested that estrogen could stimulate the expression of MRAP in the liver of chicken through inhibiting the expression of transcription regulation factor PPARγ, and MRAP might play its biological role in a different way rather than forming an MRAP/MC2R complex in chicken liver during the egg-laying period. Copyright © 2016 Elsevier Inc. All rights reserved.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 48 Federal Acquisition Regulations System 5 2010-10-01 2010-10-01 false Diversity. 970.2671 Section 970.2671 Federal Acquisition Regulations System DEPARTMENT OF ENERGY AGENCY SUPPLEMENTARY REGULATIONS DOE MANAGEMENT AND OPERATING CONTRACTS Other Socioeconomic Programs 970.2671 Diversity. ...
Effects of 18 pharmaceuticals on the physiological diversity of edaphic microorganisms.
Pino-Otín, Mª Rosa; Muñiz, Selene; Val, Jonatan; Navarro, Enrique
2017-10-01
Pharmaceutical residues can enter the terrestrial environment through the application of recycled water and contaminated biosolids to agricultural soils, were edaphic microfauna can would be threatened. This study thus assessed the effect of 18 widely consumed pharmaceuticals, belonging to four groups: antibiotics, non-steroidal anti-inflammatory drugs (NSAIDs), blood lipid-lowering agents (BLLA) and β-blockers, on the physiology of soil microbial communities from a ecological crop field. Biolog EcoPlates, containing 31 of the most common carbon sources found in forest and crop soils, were used to calculate both the averaged well colour development (AWCD), as an indicator of the entire capacity of degrading carbon sources, and the diversity of carbon source utilization, as an indicator of the physiological diversity. The results show that pharmaceuticals impact microbial communities by changing the ability of microbes to metabolize different carbon sources, thus affecting the metabolic diversity of the soil community. The toxicity of the pharmaceuticals was inversely related to the log K ow ; indeed, NSAIDs were the least toxic and antibiotics were the most toxic, while BLLA and β-blockers presented intermediate toxicity. The antibiotic sulfamethoxazole imposed the greatest impact on microbial communities at concentrations from 100 mg/L, followed by the other two antibiotics (trimethoprim and tetracycline) and the β-blocker nadolol. Other chemical parameters (i.e. melting point, molecular weight, pK a or solubility) had little influence on toxicity. Microbial communities exposed to pharmaceuticals having similar physicochemical characteristics presented similar physiological diversity patterns of carbon substrate utilization. These results suggest that the repeated amendment of agricultural soils with biosolids or sludges containing pharmaceutical residuals may result in soil concentrations of concern regarding key ecological functions (i.e. the carbon cycle). Copyright © 2017 Elsevier B.V. All rights reserved.
Barua, Deepak; Butler, Colleen; Tisdale, Tracy E.; Donohue, Kathleen
2012-01-01
Background and Aims Despite the intense interest in phenological adaptation to environmental change, the fundamental character of natural variation in germination is almost entirely unknown. Specifically, it is not known whether different genotypes within a species are germination specialists to particular conditions, nor is it known what physiological mechanisms of germination regulation vary in natural populations and how they are associated with responses to particular environmental factors. Methods We used a set of recombinant inbred genotypes of Arabidopsis thaliana, in which linkage disequilibrium has been disrupted over seven generations, to test for genetic variation and covariation in germination responses to distinct environmental factors. We then examined physiological mechanisms associated with those responses, including seed-coat permeability and sensitivity to the phytohormones gibberellic acid (GA) and abscisic acid (ABA). Key Results Genetic variation for germination was environment-dependent, but no evidence for specialization of germination to different conditions was found. Hormonal sensitivities also exhibited significant genetic variation, but seed-coat properties did not. GA sensitivity was associated with germination responses to multiple environmental factors, but seed-coat permeability and ABA sensitivity were associated with specific germination responses, suggesting that an evolutionary change in GA sensitivity could affect germination in multiple environments, but that of ABA sensitivity may affect germination under more restricted conditions. Conclusions The physiological mechanisms of germination responses to specific environmental factors therefore can influence the ability to adapt to diverse seasonal environments encountered during colonization of new habitats or with future predicted climate change. PMID:22012958
Infant Regulatory Disorders: Temperamental, Physiological, and Behavioral Features
Dale, Lourdes P.; O‘Hara, Emily A.; Keen, Julie; Porges, Stephen W.
2010-01-01
Successful development during the first year of life is dependent on the infant’s ability to regulate behavioral and physiological state in response to unpredictable environmental challenges. While most infants develop skills to self-soothe and regulate behavior, a subset lacks these skills and develops regulatory disorders (RD). Objectives To evaluate the component features of RD by determining if infants with RD differ from typically developing infants on measures of temperament, respiratory sinus arrhythmia, heart rate, and mother-infant interactions. Methods Parents of 50 9-month old infants completed behavioral questionnaires that provided information necessary to complete the Regulatory Disorders Checklist, which evaluates for difficulties in self-regulation and hypersensitivities. Infants with difficulties in both domains were assigned to the RD group. Mothers and their infants were videotaped interacting for 10 minutes. Infant heart rate was monitored before and during the mental development test. Results The RD group (n=10) was more temperamentally difficult and exhibited atypical physiological regulation relative to infants with difficulties in either self-regulation or hypersensitivity (n=25) or infants with no difficulties (n=15). During the mother-infant interactions, the RD group exhibited more high-level withdrawal behaviors, including verbal and physical protests, although there were no differences in the quantity and quality of the maternal approaches. Conclusion Infants with RD have both temperamental and physiological regulation difficulties, and may be in a physiologically state that makes it difficult to moderate behavior in response to social demands. Mothers of RD infants might be taught to modify their behavior to help their infants regulate behavioral and physiological state. PMID:21057324
Pairwise diversity ranking of polychotomous features for ensemble physiological signal classifiers.
Gupta, Lalit; Kota, Srinivas; Molfese, Dennis L; Vaidyanathan, Ravi
2013-06-01
It is well known that fusion classifiers for physiological signal classification with diverse components (classifiers or data sets) outperform those with less diverse components. Determining component diversity, therefore, is of the utmost importance in the design of fusion classifiers that are often employed in clinical diagnostic and numerous other pattern recognition problems. In this article, a new pairwise diversity-based ranking strategy is introduced to select a subset of ensemble components, which when combined will be more diverse than any other component subset of the same size. The strategy is unified in the sense that the components can be classifiers or data sets. Moreover, the classifiers and data sets can be polychotomous. Classifier-fusion and data-fusion systems are formulated based on the diversity-based selection strategy, and the application of the two fusion strategies are demonstrated through the classification of multichannel event-related potentials. It is observed that for both classifier and data fusion, the classification accuracy tends to increase/decrease when the diversity of the component ensemble increases/decreases. For the four sets of 14-channel event-related potentials considered, it is shown that data fusion outperforms classifier fusion. Furthermore, it is demonstrated that the combination of data components that yield the best performance, in a relative sense, can be determined through the diversity-based selection strategy.
Functions and Mechanisms of Sleep
Zielinski, Mark R.; McKenna, James T.; McCarley, Robert W.
2017-01-01
Sleep is a complex physiological process that is regulated globally, regionally, and locally by both cellular and molecular mechanisms. It occurs to some extent in all animals, although sleep expression in lower animals may be co-extensive with rest. Sleep regulation plays an intrinsic part in many behavioral and physiological functions. Currently, all researchers agree there is no single physiological role sleep serves. Nevertheless, it is quite evident that sleep is essential for many vital functions including development, energy conservation, brain waste clearance, modulation of immune responses, cognition, performance, vigilance, disease, and psychological state. This review details the physiological processes involved in sleep regulation and the possible functions that sleep may serve. This description of the brain circuitry, cell types, and molecules involved in sleep regulation is intended to further the reader’s understanding of the functions of sleep. PMID:28413828
NMR fluid measurements of commonly used rat strains when subjected to SQ normotonic or hypertonic salines, as well as physiologic comparisons to sedentary and exercised subjects.This dataset is associated with the following publication:Gordon , C., P. Phillips , and A. Johnstone. A Noninvasive Method to Study Regulation of Extracellular Fluid Volume in Rats Using Nuclear Magnetic Resonance. American Journal of Physiology- Renal Physiology. American Physiological Society, Bethesda, MD, USA, 310(5): 426-31, (2016).
Neuropeptide action in insects and crustaceans.
Mykles, Donald L; Adams, Michael E; Gäde, Gerd; Lange, Angela B; Marco, Heather G; Orchard, Ian
2010-01-01
Physiological processes are regulated by a diverse array of neuropeptides that coordinate organ systems. The neuropeptides, many of which act through G protein-coupled receptors, affect the levels of cyclic nucleotides (cAMP and cGMP) and Ca(2+) in target tissues. In this perspective, their roles in molting, osmoregulation, metabolite utilization, and cardiovascular function are highlighted. In decapod crustaceans, inhibitory neuropeptides (molt-inhibiting hormone and crustacean hyperglycemic hormone) suppress the molting gland through cAMP- and cGMP-mediated signaling. In insects, the complex movements during ecdysis are controlled by ecdysis-triggering hormone and a cascade of downstream neuropeptides. Adipokinetic/hypertrehalosemic/hyperprolinemic hormones mobilize energy stores in response to increased locomotory activity. Crustacean cardioacceleratory (cardioactive) peptide, proctolin, and FMRFamide-related peptides act on the heart, accessory pulsatile organs, and excurrent ostia to control hemolymph distribution to tissues. The osmoregulatory challenge of blood gorging in Rhodnius prolixus requires the coordinated release of serotonin and diuretic and antidiuretic hormones acting on the midgut and Malpighian tubules. These studies illustrate how multiple neuropeptides allow for flexibility in response to physiological challenges.
Glycomics: revealing the dynamic ecology and evolution of sugar molecules.
Springer, Stevan A; Gagneux, Pascal
2016-03-01
Sugars are the most functionally and structurally diverse molecules in the biological world. Glycan structures range from tiny single monosaccharide units to giant chains thousands of units long. Some glycans are branched, their monosaccharides linked together in many different combinations and orientations. Some exist as solitary molecules; others are conjugated to proteins and lipids and alter their collective functional properties. In addition to structural and storage roles, glycan molecules participate in and actively regulate physiological and developmental processes. Glycans also mediate cellular interactions within and between individuals. Their roles in ecology and evolution are pivotal, but not well studied because glycan biochemistry requires different methods than standard molecular biology practice. The properties of glycans are in some ways convenient, and in others challenging. Glycans vary on organismal timescales, and in direct response to physiological and ecological conditions. Their mature structures are physical records of both genetic and environmental influences during maturation. We describe the scope of natural glycan variation and discuss how studying glycans will allow researchers to further integrate the fields of ecology and evolution. Copyright © 2015 Elsevier B.V. All rights reserved.
The Diverse Roles of Arrestin Scaffolds in G Protein-Coupled Receptor Signaling.
Peterson, Yuri K; Luttrell, Louis M
2017-07-01
The visual/ β -arrestins, a small family of proteins originally described for their role in the desensitization and intracellular trafficking of G protein-coupled receptors (GPCRs), have emerged as key regulators of multiple signaling pathways. Evolutionarily related to a larger group of regulatory scaffolds that share a common arrestin fold, the visual/ β -arrestins acquired the capacity to detect and bind activated GPCRs on the plasma membrane, which enables them to control GPCR desensitization, internalization, and intracellular trafficking. By acting as scaffolds that bind key pathway intermediates, visual/ β -arrestins both influence the tonic level of pathway activity in cells and, in some cases, serve as ligand-regulated scaffolds for GPCR-mediated signaling. Growing evidence supports the physiologic and pathophysiologic roles of arrestins and underscores their potential as therapeutic targets. Circumventing arrestin-dependent GPCR desensitization may alleviate the problem of tachyphylaxis to drugs that target GPCRs, and find application in the management of chronic pain, asthma, and psychiatric illness. As signaling scaffolds, arrestins are also central regulators of pathways controlling cell growth, migration, and survival, suggesting that manipulating their scaffolding functions may be beneficial in inflammatory diseases, fibrosis, and cancer. In this review we examine the structure-function relationships that enable arrestins to perform their diverse roles, addressing arrestin structure at the molecular level, the relationship between arrestin conformation and function, and sites of interaction between arrestins, GPCRs, and nonreceptor-binding partners. We conclude with a discussion of arrestins as therapeutic targets and the settings in which manipulating arrestin function might be of clinical benefit. Copyright © 2017 by The American Society for Pharmacology and Experimental Therapeutics.
Neuroprotective Mechanisms of Taurine against Ischemic Stroke
Menzie, Janet; Prentice, Howard; Wu, Jang-Yen
2013-01-01
Ischemic stroke exhibits a multiplicity of pathophysiological mechanisms. To address the diverse pathophysiological mechanisms observed in ischemic stroke investigators seek to find therapeutic strategies that are multifaceted in their action by either investigating multipotential compounds or by using a combination of compounds. Taurine, an endogenous amino acid, exhibits a plethora of physiological functions. It exhibits antioxidative properties, stabilizes membrane, functions as an osmoregulator, modulates ionic movements, reduces the level of pro-inflammators, regulates intracellular calcium concentration; all of which contributes to its neuroprotective effect. Data are accumulating that show the neuroprotective mechanisms of taurine against stroke pathophysiology. In this review, we describe the neuroprotective mechanisms employed by taurine against ischemic stroke and its use in clinical trial for ischemic stroke. PMID:24961429
Valentine, Rudy J.; Ruderman, Neil B.
2014-01-01
Although a correlation exists between obesity and insulin resistance, roughly 25 % of obese individuals are insulin sensitive. AMP-activated protein kinase (AMPK) is a cellular energy sensor that among its many actions, integrates diverse physiological signals to restore energy balance. In addition, in many situations it also increases insulin sensitivity. In this context, AMPK activity is decreased in very obese individuals undergoing bariatric surgery who are insulin resistant compared to equally obese patients who are insulin sensitive. In this review, we will both explore what distinguishes these individuals, and evaluate the evidence that diminished AMPK is associated with insulin resistance and metabolic syndrome-associated disorders in other circumstances. PMID:24891985
Proteomic analysis of the enterocyte brush border
McConnell, Russell E.; Benesh, Andrew E.; Mao, Suli; Tabb, David L.
2011-01-01
The brush border domain at the apex of intestinal epithelial cells is the primary site of nutrient absorption in the intestinal tract and the primary surface of interaction with microbes that reside in the lumen. Because the brush border is positioned at such a critical physiological interface, we set out to create a comprehensive list of the proteins that reside in this domain using shotgun mass spectrometry. The resulting proteome contains 646 proteins with diverse functions. In addition to the expected collection of nutrient processing and transport components, we also identified molecules expected to function in the regulation of actin dynamics, membrane bending, and extracellular adhesion. These results provide a foundation for future studies aimed at defining the molecular mechanisms underpinning brush border assembly and function. PMID:21330445
Nguyen, Thao T; Brenu, Ekua W; Staines, Don R; Marshall-Gradisnik, Sonya M
2014-01-01
MicroRNAs (miRNA) are small (~22 nucleotide] non-coding RNA molecules originally characterised as nonsense or junk DNA. Emerging research suggests that these molecules have diverse regulatory roles in an array of molecular, cellular and physiological processes. MiRNAs are versatile and highly stable molecules, therefore, they are able to exist as intracellular or extracellular miRNAs. The purpose of this paper is to review the function and role of miRNAs in the intracellular space with specific focus on the interactions between miRNAs and organelles such as the mitochondria and the rough endoplasmic reticulum. Understanding the role of miRNAs in the intracellular space may be vital in understanding the mechanism of certain diseases.
Regulation of inflammation by microbiota interactions with the host.
Blander, J Magarian; Longman, Randy S; Iliev, Iliyan D; Sonnenberg, Gregory F; Artis, David
2017-07-19
The study of the intestinal microbiota has begun to shift from cataloging individual members of the commensal community to understanding their contributions to the physiology of the host organism in health and disease. Here, we review the effects of the microbiome on innate and adaptive immunological players from epithelial cells and antigen-presenting cells to innate lymphoid cells and regulatory T cells. We discuss recent studies that have identified diverse microbiota-derived bioactive molecules and their effects on inflammation within the intestine and distally at sites as anatomically remote as the brain. Finally, we highlight new insights into how the microbiome influences the host response to infection, vaccination and cancer, as well as susceptibility to autoimmune and neurodegenerative disorders.
Architectural Physics: Lighting.
ERIC Educational Resources Information Center
Hopkinson, R. G.
The author coordinates the many diverse branches of knowledge which have dealt with the field of lighting--physiology, psychology, engineering, physics, and architectural design. Part I, "The Elements of Architectural Physics", discusses the physiological aspects of lighting, visual performance, lighting design, calculations and measurements of…
Physiology and immunology of mucosal barriers in catfish (Ictalurus spp.)
USDA-ARS?s Scientific Manuscript database
The mucosal barriers of catfish (Ictalurus spp.) constitute the first line of defense against pathogen invasion while simultaneously carrying out a diverse array of other critical physiological processes, including nutrient adsorption, osmoregulation, waste excretion, and environmental sensing. Catf...
NASA Technical Reports Server (NTRS)
Spiering, Barry A.; Lee, Stuart M. C.; Mulavara, Ajitkumar P.; Bentley, Jason, R.; Buxton, Roxanne E.; Lawrence, Emily L.; Sinka, Joseph; Guilliams, Mark E.; Ploutz-Snyder, Lori L.; Bloomberg, Jacob J.
2010-01-01
Spaceflight affects nearly every physiological system. Spaceflight-induced alterations in physiological function translate to decrements in functional performance. Purpose: To develop a test battery for quickly and safely assessing diverse indices of neuromuscular performance. I. Quickly: Battery of tests can be completed in approx.30-40 min. II. Safely: a) No eccentric muscle actions or impact forces. b) Tests present little challenge to postural stability. III. Diverse indices: a) Strength: Excellent reliability (ICC = 0.99) b) Central activation: Very good reliability (ICC = 0.87) c) Power: Excellent reliability (ICC = 0.99) d) Endurance: Total work has excellent reliability (ICC = 0.99) e) Force steadiness: Poor reliability (ICC = 0.20 - 0.60) National
R4 RGS Proteins: Regulation of G Protein Signaling and Beyond
Bansal, Geetanjali; Druey, Kirk M.; Xie, Zhihui
2007-01-01
The Regulators of G protein Signaling (RGS) proteins were initially characterized as inhibitors of signal transduction cascades initiated by G-protein-coupled receptors (GPCRs) because of their ability to increase the intrinsic GTPase activity of heterotrimeric G proteins. This GTPase accelerating (GAP) activity enhances G protein deactivation and promotes desensitization. However, in addition to this signature trait, emerging data have revealed an expanding network of proteins, lipids, and ions that interact with RGS proteins and confer additional regulatory functions. This review highlights recent advances in our understanding of the physiological functions of one subfamily of RGS proteins with a high degree of homology (B/R4) gleaned from recent studies of knockout mice or cells with reduced RGS expression. We also discuss some of the newly-appreciated interactions of RGS proteins with cellular factors that suggest RGS control of several components of G-protein-mediated pathways as well as a diverse array of non-GPCR-mediated biological responses. PMID:18006065
Apple F-Box Protein MdMAX2 Regulates Plant Photomorphogenesis and Stress Response.
An, Jian-Ping; Li, Rui; Qu, Feng-Jia; You, Chun-Xiang; Wang, Xiao-Fei; Hao, Yu-Jin
2016-01-01
MAX2 (MORE AXILLARY GROWTH2) is involved in diverse physiological processes, including photomorphogenesis, the abiotic stress response, as well as karrikin and strigolactone signaling-mediated shoot branching. In this study, MdMAX2, an F-box protein that is a homolog of Arabidopsis MAX2, was identified and characterized. Overexpression of MdMAX2 in apple calli enhanced the accumulation of anthocyanin. Ectopic expression of MdMAX2 in Arabidopsis exhibited photomorphogenesis phenotypes, including increased anthocyanin content and decreased hypocotyl length. Further study indicated that MdMAX2 might promote plant photomorphogenesis by affecting the auxin signaling as well as other plant hormones. Transcripts of MdMAX2 were noticeably up-regulated in response to NaCl and Mannitol treatments. Moreover, compared with the wild-type, the MdMAX2 -overexpressing apple calli and Arabidopsis exhibited increased tolerance to salt and drought stresses. Taken together, these results suggest that MdMAX2 plays a positive regulatory role in plant photomorphogenesis and stress response.
Probing Leader Cells in Endothelial Collective Migration by Plasma Lithography Geometric Confinement
Yang, Yongliang; Jamilpour, Nima; Yao, Baoyin; Dean, Zachary S.; Riahi, Reza; Wong, Pak Kin
2016-01-01
When blood vessels are injured, leader cells emerge in the endothelium to heal the wound and restore the vasculature integrity. The characteristics of leader cells during endothelial collective migration under diverse physiological conditions, however, are poorly understood. Here we investigate the regulation and function of endothelial leader cells by plasma lithography geometric confinement generated. Endothelial leader cells display an aggressive phenotype, connect to follower cells via peripheral actin cables and discontinuous adherens junctions, and lead migrating clusters near the leading edge. Time-lapse microscopy, immunostaining, and particle image velocimetry reveal that the density of leader cells and the speed of migrating clusters are tightly regulated in a wide range of geometric patterns. By challenging the cells with converging, diverging and competing patterns, we show that the density of leader cells correlates with the size and coherence of the migrating clusters. Collectively, our data provide evidence that leader cells control endothelial collective migration by regualting the migrating clusters. PMID:26936382
Komar, Carolyn M
2005-01-01
The peroxisome proliferator-activated receptors (PPARs) are a family of transcription factors involved in varied and diverse processes such as steroidogenesis, angiogenesis, tissue remodeling, cell cycle, apoptosis, and lipid metabolism. These processes are critical for normal ovarian function, and all three PPAR family members – alpha, delta, and gamma, are expressed in the ovary. Most notably, the expression of PPARgamma is limited primarily to granulosa cells in developing follicles, and is regulated by luteinizing hormone (LH). Although much has been learned about the PPARs since their initial discovery, very little is known regarding their function in ovarian tissue. This review highlights what is known about the roles of PPARs in ovarian cells, and discusses potential mechanisms by which PPARs could influence ovarian function. Because PPARs are activated by drugs currently in clinical use (fibrates and thiazolidinediones), it is important to understand their role in the ovary, and how manipulation of their activity may impact ovarian physiology as well as ovarian pathology. PMID:16131403
Yang, Yongliang; Jamilpour, Nima; Yao, Baoyin; Dean, Zachary S; Riahi, Reza; Wong, Pak Kin
2016-03-03
When blood vessels are injured, leader cells emerge in the endothelium to heal the wound and restore the vasculature integrity. The characteristics of leader cells during endothelial collective migration under diverse physiological conditions, however, are poorly understood. Here we investigate the regulation and function of endothelial leader cells by plasma lithography geometric confinement generated. Endothelial leader cells display an aggressive phenotype, connect to follower cells via peripheral actin cables and discontinuous adherens junctions, and lead migrating clusters near the leading edge. Time-lapse microscopy, immunostaining, and particle image velocimetry reveal that the density of leader cells and the speed of migrating clusters are tightly regulated in a wide range of geometric patterns. By challenging the cells with converging, diverging and competing patterns, we show that the density of leader cells correlates with the size and coherence of the migrating clusters. Collectively, our data provide evidence that leader cells control endothelial collective migration by regualting the migrating clusters.
CREB at the Crossroads of Activity-Dependent Regulation of Nervous System Development and Function.
Belgacem, Yesser H; Borodinsky, Laura N
2017-01-01
The central nervous system is a highly plastic network of cells that constantly adjusts its functions to environmental stimuli throughout life. Transcription-dependent mechanisms modify neuronal properties to respond to external stimuli regulating numerous developmental functions, such as cell survival and differentiation, and physiological functions such as learning, memory, and circadian rhythmicity. The discovery and cloning of the cyclic adenosine monophosphate (cAMP) responsive element binding protein (CREB) constituted a big step toward deciphering the molecular mechanisms underlying neuronal plasticity. CREB was first discovered in learning and memory studies as a crucial mediator of activity-dependent changes in target gene expression that in turn impose long-lasting modifications of the structure and function of neurons. In this chapter, we review the molecular and signaling mechanisms of neural activity-dependent recruitment of CREB and its cofactors. We discuss the crosstalk between signaling pathways that imprints diverse spatiotemporal patterns of CREB activation allowing for the integration of a wide variety of stimuli.
Kreuzer, Kenneth N.
2013-01-01
Recent advances in the area of bacterial DNA damage responses are reviewed here. The SOS pathway is still the major paradigm of bacterial DNA damage response, and recent studies have clarified the mechanisms of SOS induction and key physiological roles of SOS including a very major role in genetic exchange and variation. When considering diverse bacteria, it is clear that SOS is not a uniform pathway with one purpose, but rather a platform that has evolved for differing functions in different bacteria. Relating in part to the SOS response, the field has uncovered multiple apparent cell-cycle checkpoints that assist cell survival after DNA damage and remarkable pathways that induce programmed cell death in bacteria. Bacterial DNA damage responses are also much broader than SOS, and several important examples of LexA-independent regulation will be reviewed. Finally, some recent advances that relate to the replication and repair of damaged DNA will be summarized. PMID:24097899
Pando, Jasmine M.; Karlinsey, Joyce E.; Lara, Jimmie C.; Libby, Stephen J.
2017-01-01
ABSTRACT The Rcs phosphorelay and Psp (phage shock protein) systems are envelope stress responses that are highly conserved in gammaproteobacteria. The Rcs regulon was found to be strongly induced during metal deprivation of Salmonella enterica serovar Typhimurium lacking the Psp response. Nineteen genes activated by the RcsA-RcsB response regulator make up an operon responsible for the production of colanic acid capsular polysaccharide, which promotes biofilm development. Despite more than half a century of research, the physiological function of colanic acid has remained elusive. Here we show that Rcs-dependent colanic acid production maintains the transmembrane electrical potential and proton motive force in cooperation with the Psp response. Production of negatively charged exopolysaccharide covalently bound to the outer membrane may enhance the surface potential by increasing the local proton concentration. This provides a unifying mechanism to account for diverse Rcs/colanic acid-related phenotypes, including susceptibility to membrane-damaging agents and biofilm formation. PMID:28588134
Novel RAAS agonists and antagonists: clinical applications and controversies.
Romero, Cesar A; Orias, Marcelo; Weir, Matthew R
2015-04-01
The renin-angiotensin-aldosterone system (RAAS) regulates blood pressure homeostasis and vascular injury and repair responses. The RAAS was originally thought to be an endocrine system critically important in regulating blood pressure homeostasis. Yet, important local forms of the RAAS have been described in many tissues, which are mostly independent of the systemic RAAS. These systems have been associated with diverse physiological functions, but also with inflammation, fibrosis and target-organ damage. Pharmacological modulation of the RAAS has brought about important advances in preventing morbidity and mortality associated with cardiovascular disease. Yet, traditional RAAS blockers such as angiotensin converting enzyme (ACE) inhibitors and angiotensin receptor blockers (ARBs) only reduce the risk of disease progression in patients with established cardiovascular or renal disease by ∼20% compared with other therapies. As more components of the RAAS are described, other potential therapeutic targets emerge, which could provide improved cardiovascular and renal protection beyond that provided by an ACE inhibitor or ARB. This Review summarizes the present and future pharmacological manipulation of this important system.
Ahmad Waza, Ajaz; Ahmad Bhat, Shabir; Ul Hussain, Mahboob; Ganai, Bashir A
2018-02-01
Connexin 43 (Cx43) is a gap junction protein expressed in various tissues and organs of vertebrates. Besides functioning as a gap junction, Cx43 also regulates diverse cellular processes like cell growth and differentiation, cell migration, cell survival, etc. Cx43 is critical for normal cardiac functioning and is therefore abundantly expressed in cardiomyocytes. On the other hand, ATP-sensitive potassium (K ATP ) channels are metabolic sensors converting metabolic changes into electrical activity. These channels are important in maintaining the neurotransmitter release, smooth muscle relaxation, cardiac action potential repolarization, normal physiology of cellular repolarization, insulin secretion and immune function. Cx43 and K ATP channels are part of the same signaling pathway, regulating cell survival during stress conditions and ischemia/hypoxia preconditioning. However, the underlying molecular mechanism for their combined role in ischemia/hypoxia preconditioning is largely unknown. The current review focuses on understanding the molecular mechanism responsible for the coordinated role of Cx43 and K ATP channel protein in protecting cardiomyocytes against ischemia/hypoxia stress.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hasin-Brumshtein, Yehudit; Khan, Arshad H.; Hormozdiari, Farhad
2016-09-13
Previous studies had shown that the integration of genome wide expression profiles, in metabolic tissues, with genetic and phenotypic variance, provided valuable insight into the underlying molecular mechanisms. We used RNA-Seq to characterize hypothalamic transcriptome in 99 inbred strains of mice from the Hybrid Mouse Diversity Panel (HMDP), a reference resource population for cardiovascular and metabolic traits. We report numerous novel transcripts supported by proteomic analyses, as well as novel non coding RNAs. High resolution genetic mapping of transcript levels in HMDP, reveals bothlocalandtransexpression Quantitative Trait Loci (eQTLs) demonstrating 2transeQTL 'hotspots' associated with expression of hundreds of genes. We alsomore » report thousands of alternative splicing events regulated by genetic variants. Finally, comparison with about 150 metabolic and cardiovascular traits revealed many highly significant associations. Our data provide a rich resource for understanding the many physiologic functions mediated by the hypothalamus and their genetic regulation.« less
Snx3 regulates recycling of the transferrin receptor and iron assimilation
Chen, Caiyong; Garcia-Santos, Daniel; Ishikawa, Yuichi; Seguin, Alexandra; Li, Liangtao; Fegan, Katherine H.; Hildick-Smith, Gordon J.; Shah, Dhvanit I.; Cooney, Jeffrey D.; Chen, Wen; King, Matthew J.; Yien, Yvette Y.; Schultz, Iman J.; Anderson, Heidi; Dalton, Arthur J.; Freedman, Matthew L.; Kingsley, Paul D.; Palis, James; Hattangadi, Shilpa M.; Lodish, Harvey F.; Ward, Diane M.; Kaplan, Jerry; Maeda, Takahiro; Ponka, Prem; Paw, Barry H.
2013-01-01
SUMMARY Sorting of endocytic ligands and receptors is critical for diverse cellular processes. The physiological significance of endosomal sorting proteins in vertebrates, however, remains largely unknown. Here we report that sorting nexin 3 (Snx3) facilitates the recycling of transferrin receptor (Tfrc), and thus is required for the proper delivery of iron to erythroid progenitors. Snx3 is highly expressed in vertebrate hematopoietic tissues. Silencing of Snx3 results in anemia and hemoglobin defects in vertebrates due to impaired transferrin (Tf)-mediated iron uptake and its accumulation in early endosomes. This impaired iron assimilation can be complemented with non-Tf iron chelates. We show that Snx3 and Vps35, a component of the retromer, interact with Tfrc to sort it to the recycling endosomes. Our findings uncover a role of Snx3 in regulating Tfrc recycling, iron homeostasis, and erythropoiesis. Thus, the identification of Snx3 provides a genetic tool for exploring erythropoiesis and disorders of iron metabolism. PMID:23416069
Modulation of neuronal signal transduction and memory formation by synaptic zinc.
Sindreu, Carlos; Storm, Daniel R
2011-01-01
The physiological role of synaptic zinc has remained largely enigmatic since its initial detection in hippocampal mossy fibers over 50 years ago. The past few years have witnessed a number of studies highlighting the ability of zinc ions to regulate ion channels and intracellular signaling pathways implicated in neuroplasticity, and others that shed some light on the elusive role of synaptic zinc in learning and memory. Recent behavioral studies using knock-out mice for the synapse-specific zinc transporter ZnT-3 indicate that vesicular zinc is required for the formation of memories dependent on the hippocampus and the amygdala, two brain centers that are prominently innervated by zinc-rich fibers. A common theme emerging from this research is the activity-dependent regulation of the Erk1/2 mitogen-activated-protein kinase pathway by synaptic zinc through diverse mechanisms in neurons. Here we discuss current knowledge on how synaptic zinc may play a role in cognition through its impact on neuronal signaling.
Modulation of Neuronal Signal Transduction and Memory Formation by Synaptic Zinc
Sindreu, Carlos; Storm, Daniel R.
2011-01-01
The physiological role of synaptic zinc has remained largely enigmatic since its initial detection in hippocampal mossy fibers over 50 years ago. The past few years have witnessed a number of studies highlighting the ability of zinc ions to regulate ion channels and intracellular signaling pathways implicated in neuroplasticity, and others that shed some light on the elusive role of synaptic zinc in learning and memory. Recent behavioral studies using knock-out mice for the synapse-specific zinc transporter ZnT-3 indicate that vesicular zinc is required for the formation of memories dependent on the hippocampus and the amygdala, two brain centers that are prominently innervated by zinc-rich fibers. A common theme emerging from this research is the activity-dependent regulation of the Erk1/2 mitogen-activated-protein kinase pathway by synaptic zinc through diverse mechanisms in neurons. Here we discuss current knowledge on how synaptic zinc may play a role in cognition through its impact on neuronal signaling. PMID:22084630
Regulation of specialised metabolites in Actinobacteria – expanding the paradigms
Hoskisson, Paul A.
2018-01-01
Summary The increase in availability of actinobacterial whole genome sequences has revealed huge numbers of specialised metabolite biosynthetic gene clusters, encoding a range of bioactive molecules such as antibiotics, antifungals, immunosuppressives and anticancer agents. Yet the majority of these clusters are not expressed under standard laboratory conditions in rich media. Emerging data from studies of specialised metabolite biosynthesis suggest that the diversity of regulatory mechanisms is greater than previously thought and these act at multiple levels, through a range of signals such as nutrient limitation, intercellular signalling and competition with other organisms. Understanding the regulation and environmental cues that lead to the production of these compounds allows us to identify the role that these compounds play in their natural habitat as well as provide tools to exploit this untapped source of specialised metabolites for therapeutic uses. Here, we provide an overview of novel regulatory mechanisms that act in physiological, global and cluster‐specific regulatory manners on biosynthetic pathways in Actinobacteria and consider these alongside their ecological and evolutionary implications. PMID:29457705
Success stories and emerging themes in conservation physiology.
Madliger, Christine L; Cooke, Steven J; Crespi, Erica J; Funk, Jennifer L; Hultine, Kevin R; Hunt, Kathleen E; Rohr, Jason R; Sinclair, Brent J; Suski, Cory D; Willis, Craig K R; Love, Oliver P
2016-01-01
The potential benefits of physiology for conservation are well established and include greater specificity of management techniques, determination of cause-effect relationships, increased sensitivity of health and disturbance monitoring and greater capacity for predicting future change. While descriptions of the specific avenues in which conservation and physiology can be integrated are readily available and important to the continuing expansion of the discipline of 'conservation physiology', to date there has been no assessment of how the field has specifically contributed to conservation success. However, the goal of conservation physiology is to foster conservation solutions and it is therefore important to assess whether physiological approaches contribute to downstream conservation outcomes and management decisions. Here, we present eight areas of conservation concern, ranging from chemical contamination to invasive species to ecotourism, where physiological approaches have led to beneficial changes in human behaviour, management or policy. We also discuss the shared characteristics of these successes, identifying emerging themes in the discipline. Specifically, we conclude that conservation physiology: (i) goes beyond documenting change to provide solutions; (ii) offers a diversity of physiological metrics beyond glucocorticoids (stress hormones); (iii) includes approaches that are transferable among species, locations and times; (iv) simultaneously allows for human use and benefits to wildlife; and (v) is characterized by successes that can be difficult to find in the primary literature. Overall, we submit that the field of conservation physiology has a strong foundation of achievements characterized by a diversity of conservation issues, taxa, physiological traits, ecosystem types and spatial scales. We hope that these concrete successes will encourage the continued evolution and use of physiological tools within conservation-based research and management plans.
Zhou, Jin; Lyu, Yihua; Richlen, Mindy; Anderson, Donald M.; Cai, Zhonghua
2017-01-01
Algae are ubiquitous in the marine environment, and the ways in which they interact with bacteria are of particular interest in marine ecology field. The interactions between primary producers and bacteria impact the physiology of both partners, alter the chemistry of their environment, and shape microbial diversity. Although algal-bacterial interactions are well known and studied, information regarding the chemical-ecological role of this relationship remains limited, particularly with respect to quorum sensing (QS), which is a system of stimuli and response correlated to population density. In the microbial biosphere, QS is pivotal in driving community structure and regulating behavioral ecology, including biofilm formation, virulence, antibiotic resistance, swarming motility, and secondary metabolite production. Many marine habitats, such as the phycosphere, harbour diverse populations of microorganisms and various signal languages (such as QS-based autoinducers). QS-mediated interactions widely influence algal-bacterial symbiotic relationships, which in turn determine community organization, population structure, and ecosystem functioning. Understanding infochemicals-mediated ecological processes may shed light on the symbiotic interactions between algae host and associated microbes. In this review, we summarize current achievements about how QS modulates microbial behavior, affects symbiotic relationships, and regulates phytoplankton chemical ecological processes. Additionally, we present an overview of QS-modulated co-evolutionary relationships between algae and bacterioplankton, and consider the potential applications and future perspectives of QS. PMID:28966438
Kaltner, H; Gabius, H-J
2012-04-01
Lectin histochemistry has revealed cell-type-selective glycosylation. It is under dynamic and spatially controlled regulation. Since their chemical properties allow carbohydrates to reach unsurpassed structural diversity in oligomers, they are ideal for high density information coding. Consequently, the concept of the sugar code assigns a functional dimension to the glycans of cellular glycoconjugates. Indeed, multifarious cell processes depend on specific recognition of glycans by their receptors (lectins), which translate the sugar-encoded information into effects. Duplication of ancestral genes and the following divergence of sequences account for the evolutionary dynamics in lectin families. Differences in gene number can even appear among closely related species. The adhesion/growth-regulatory galectins are selected as an instructive example to trace the phylogenetic diversification in several animals, most of them popular models in developmental and tumor biology. Chicken galectins are identified as a low-level-complexity set, thus singled out for further detailed analysis. The various operative means for establishing protein diversity among the chicken galectins are delineated, and individual characteristics in expression profiles discerned. To apply this galectin-fingerprinting approach in histopathology has potential for refining differential diagnosis and for obtaining prognostic assessments. On the grounds of in vitro work with tumor cells a strategically orchestrated co-regulation of galectin expression with presentation of cognate glycans is detected. This coordination epitomizes the far-reaching physiological significance of sugar coding.
Roux, Philippe P.; Blenis, John
2004-01-01
Conserved signaling pathways that activate the mitogen-activated protein kinases (MAPKs) are involved in relaying extracellular stimulations to intracellular responses. The MAPKs coordinately regulate cell proliferation, differentiation, motility, and survival, which are functions also known to be mediated by members of a growing family of MAPK-activated protein kinases (MKs; formerly known as MAPKAP kinases). The MKs are related serine/threonine kinases that respond to mitogenic and stress stimuli through proline-directed phosphorylation and activation of the kinase domain by extracellular signal-regulated kinases 1 and 2 and p38 MAPKs. There are currently 11 vertebrate MKs in five subfamilies based on primary sequence homology: the ribosomal S6 kinases, the mitogen- and stress-activated kinases, the MAPK-interacting kinases, MAPK-activated protein kinases 2 and 3, and MK5. In the last 5 years, several MK substrates have been identified, which has helped tremendously to identify the biological role of the members of this family. Together with data from the study of MK-knockout mice, the identities of the MK substrates indicate that they play important roles in diverse biological processes, including mRNA translation, cell proliferation and survival, and the nuclear genomic response to mitogens and cellular stresses. In this article, we review the existing data on the MKs and discuss their physiological functions based on recent discoveries. PMID:15187187
Jeon, Jae-Pyo; Thakur, Dhananjay P; Tian, Jin-Bin; So, Insuk; Zhu, Michael X
2016-05-15
Transient receptor potential canonical 4 (TRPC4) forms non-selective cation channels implicated in the regulation of diverse physiological functions. Previously, TRPC4 was shown to be activated by the Gi/o subgroup of heterotrimeric G-proteins involving Gαi/o, rather than Gβγ, subunits. Because the lifetime and availability of Gα-GTP are regulated by regulators of G-protein signalling (RGS) and Gαi/o-Loco (GoLoco) domain-containing proteins via their GTPase-activating protein (GAP) and guanine-nucleotide-dissociation inhibitor (GDI) functions respectively, we tested how RGS and GoLoco domain proteins affect TRPC4 currents activated via Gi/o-coupled receptors. Using whole-cell patch-clamp recordings, we show that both RGS and GoLoco proteins [RGS4, RGS6, RGS12, RGS14, LGN or activator of G-protein signalling 3 (AGS3)] suppress receptor-mediated TRPC4 activation without causing detectable basal current or altering surface expression of the channel protein. The inhibitory effects are dependent on the GAP and GoLoco domains and facilitated by enhancing membrane targeting of the GoLoco protein AGS3. In addition, RGS, but not GoLoco, proteins accelerate desensitization of receptor-activation evoked TRPC4 currents. The inhibitory effects of RGS and GoLoco domains are additive and are most prominent with RGS12 and RGS14, which contain both RGS and GoLoco domains. Our data support the notion that the Gα, but not Gβγ, arm of the Gi/o signalling is involved in TRPC4 activation and unveil new roles for RGS and GoLoco domain proteins in fine-tuning TRPC4 activities. The versatile and diverse functions of RGS and GoLoco proteins in regulating G-protein signalling may underlie the complexity of receptor-operated TRPC4 activation in various cell types under different conditions. © 2016 The Author(s). published by Portland Press Limited on behalf of the Biochemical Society.
St Clair Gibson, A; Swart, J; Tucker, R
2018-02-01
Either central (brain) or peripheral (body physiological system) control mechanisms, or a combination of these, have been championed in the last few decades in the field of Exercise Sciences as how physiological activity and fatigue processes are regulated. In this review, we suggest that the concept of 'central' or 'peripheral' mechanisms are both artificial constructs that have 'straight-jacketed' research in the field, and rather that competition between psychological and physiological homeostatic drives is central to the regulation of both, and that governing principles, rather than distinct physical processes, underpin all physical system and exercise regulation. As part of the Integrative Governor theory we develop in this review, we suggest that both psychological and physiological drives and requirements are underpinned by homeostatic principles, and that regulation of the relative activity of each is by dynamic negative feedback activity, as the fundamental general operational controller. Because of this competitive, dynamic interplay, we propose that the activity in all systems will oscillate, that these oscillations create information, and comparison of this oscillatory information with either prior information, current activity, or activity templates create efferent responses that change the activity in the different systems in a similarly dynamic manner. Changes in a particular system are always the result of perturbations occurring outside the system itself, the behavioural causative 'history' of this external activity will be evident in the pattern of the oscillations, and awareness of change occurs as a result of unexpected rather than planned change in physiological activity or psychological state.
The Development of Regulatory Functions from Birth to 5 Years: Insights from Premature Infants
ERIC Educational Resources Information Center
Feldman, Ruth
2009-01-01
This study examined physiological, emotional, and attentional regulatory functions as predictors of self-regulation in 125 infants followed 7 times from birth to 5 years. Physiological regulation was assessed by neonatal vagal tone and sleep-wake cyclicity; emotion regulation by response to stress at 3, 6, and 12 months; and attention regulation…
Computer simulation studies in fluid and calcium regulation and orthostatic intolerance
NASA Technical Reports Server (NTRS)
1985-01-01
The systems analysis approach to physiological research uses mathematical models and computer simulation. Major areas of concern during prolonged space flight discussed include fluid and blood volume regulation; cardiovascular response during shuttle reentry; countermeasures for orthostatic intolerance; and calcium regulation and bone atrophy. Potential contributions of physiologic math models to future flight experiments are examined.
Molecular physiology of weight regulation in mice and humans
Leibel, RL
2009-01-01
Evolutionary considerations relating to efficiency in reproduction, and survival in hostile environments, suggest that body energy stores are sensed and actively regulated, with stronger physiological and behavioral responses to loss than gain of stored energy. Many physiological studies support this inference, and suggest that a critical axis runs between body fat and the hypothalamus. The molecular cloning of leptin and its receptor—projects based explicitly on the search for elements in this axis—confirmed the existence of this axis and provided important tools with which to understand its molecular physiology. Demonstration of the importance of this soma-brain reciprocal connection in body weight regulation in humans has been pursued using both classical genetic approaches and studies of physiological responses to experimental weight perturbation. This paper reviews the history of the rationale and methodology of the cloning of leptin (Lep) and the leptin receptor (Lepr), and describes some of the clinical investigation characterizing this axis. PMID:19136999
ERIC Educational Resources Information Center
Tufts, Mark; Higgins-Opitz, Susan B.
2014-01-01
Health Science students at the University of KwaZulu-Natal perform better in their professional modules compared with their physiology modules. The pass rates of physiology service modules have steadily declined over the years. While a system is in place to identify "at-risk" students, it is only activated after the first semester. As a…
Physiological correlates of emotional reactivity and regulation in early adolescents.
Latham, Melissa D; Cook, Nina; Simmons, Julian G; Byrne, Michelle L; Kettle, Jonathan W L; Schwartz, Orli; Vijayakumar, Nandita; Whittle, Sarah; Allen, Nicholas B
2017-07-01
Few studies have examined physiological correlates of emotional reactivity and regulation in adolescents, despite the occurrence in this group of significant developmental changes in emotional functioning. The current study employed multiple physiological measures (i.e., startle-elicited eyeblink and ERP, skin conductance, facial EMG) to assess the emotional reactivity and regulation of 113 early adolescents in response to valenced images. Reactivity was measured while participants viewed images, and regulation was measured when they were asked to discontinue or maintain their emotional reactions to the images. Adolescent participants did not exhibit fear-potentiated startle blink. However, they did display affect-consistent zygomatic and corrugator activity during reactivity, as well as inhibition of some of these facial patterns during regulation. Skin conductance demonstrated arousal dependent activity during reactivity, and overall decreases during regulation. These findings suggest that early adolescents display reactivity to valenced pictures, but not to startle probes. Psychophysiological patterns during emotion regulation indicate additional effort and/or attention during the regulation process. Copyright © 2017 Elsevier B.V. All rights reserved.
Molecular genetics of biosurfactant synthesis in microorganisms.
Satpute, Surekha K; Bhuyan, Smita S; Pardesi, Karishma R; Mujumdar, Shilpa S; Dhakephalkar, Prashant K; Shete, Ashvini M; Chopade, Balu A
2010-01-01
Biosurfactant (BS)/bioemulsifier (BE) produced by varied microorganisms exemplify immense structural/functional diversity and consequently signify the involvement of particular molecular machinery in their biosynthesis. The present chapter aims to compile information on molecular genetics of BS/BE production in microorganisms. Polymer synthesis in Acinetobacter species is controlled by an intricate operon system and its further excretion being controlled by enzymes. Quorum sensing system (QSS) plays a fundamental role in rhamnolipid and surfactin synthesis. Depending upon the cell density, signal molecules (autoinducers) of regulatory pathways accomplish the biosynthesis of BS. The regulation of serrawettin production by Serratia is believed to be through non ribosomal peptide synthetases (NRPSs) and N-acylhomoserine lactones (AHLs) encoded by QSS located on mobile transposon. This regulation is under positive as well as negative control of QSS operon products. In case of yeast and fungi, glycolipid precursor production is catalyzed by genes that encode enzyme cytochrome P450 monooxygenase. BS/BE production is dictated by genes present on the chromosomes. This chapter also gives a glimpse of recent biotechnological developments which helped to realize molecular genetics of BS/BE production in microorganisms. Hyper-producing recombinants as well as mutant strains have been constructed successfully to improve the yield and quality of BS/BE. Thus promising biotechnological advances have expanded the applicability of BS/BE in therapeutics, cosmetics, agriculture, food, beverages and bioremediation etc. In brief, our knowledge on genetics of BS/BE production in prokaryotes is extensive as compared to yeast and fungi. Meticulous and concerted study will lead to an understanding of the molecular phenomena in unexplored microbes. In addition to this, recent promising advances will facilitate in broadening applications of BS/BE to diverse fields. Over the decades, valuable information on molecular genetics of BS/BE has been generated and this strong foundation would facilitate application oriented output of the surfactant industry and broaden its use in diverse fields. To accomplish our objectives, interaction among experts from diverse fields likes microbiology, physiology, biochemistry, molecular biology and genetics is indispensable.
Soil microbial community profiles and functional diversity in limestone cedar glades
Cartwright, Jennifer M.; Dzantor, E. Kudjo; Momen, Bahram
2016-01-01
Rock outcrop ecosystems, such as limestone cedar glades (LCGs), are known for their rare and endemic plant species adapted to high levels of abiotic stress. Soils in LCGs are thin (< 25 cm), soil-moisture conditions fluctuate seasonally between xeric and saturated, and summer soil temperatures commonly exceed 48 °C. The effects of these stressors on soil microbial communities (SMC) remain largely unstudied, despite the importance of SMC-plant interactions in regulating the structure and function of terrestrial ecosystems. SMC profiles and functional diversity were characterized in LCGs using community level physiological profiling (CLPP) and plate-dilution frequency assays (PDFA). Most-probable number (MPN) estimates and microbial substrate-utilization diversity (H) were positively related to soil thickness, soil organic matter (OM), soil water content, and vegetation density, and were diminished in alkaline soil relative to circumneutral soil. Soil nitrate showed no relationship to SMCs, suggesting lack of N-limitation. Canonical correlation analysis indicated strong correlations between microbial CLPP patterns and several physical and chemical properties of soil, primarily temperature at the ground surface and at 4-cm depth, and secondarily soil-water content, enabling differentiation by season. Thus, it was demonstrated that several well-described abiotic determinants of plant community structure in this ecosystem are also reflected in SMC profiles.
Parasitism and the biodiversity-functioning relationship
Frainer, André; McKie, Brendan G.; Amundsen, Per-Arne; Knudsen, Rune; Lafferty, Kevin D.
2018-01-01
Biodiversity affects ecosystem functioning.Biodiversity may decrease or increase parasitism.Parasites impair individual hosts and affect their role in the ecosystem.Parasitism, in common with competition, facilitation, and predation, could regulate BD-EF relationships.Parasitism affects host phenotypes, including changes to host morphology, behavior, and physiology, which might increase intra- and interspecific functional diversity.The effects of parasitism on host abundance and phenotypes, and on interactions between hosts and the remaining community, all have potential to alter community structure and BD-EF relationships.Global change could facilitate the spread of invasive parasites, and alter the existing dynamics between parasites, communities, and ecosystems.Species interactions can influence ecosystem functioning by enhancing or suppressing the activities of species that drive ecosystem processes, or by causing changes in biodiversity. However, one important class of species interactions – parasitism – has been little considered in biodiversity and ecosystem functioning (BD-EF) research. Parasites might increase or decrease ecosystem processes by reducing host abundance. Parasites could also increase trait diversity by suppressing dominant species or by increasing within-host trait diversity. These different mechanisms by which parasites might affect ecosystem function pose challenges in predicting their net effects. Nonetheless, given the ubiquity of parasites, we propose that parasite–host interactions should be incorporated into the BD-EF framework.
NASA Astrophysics Data System (ADS)
Peng, Chong; Sui, Zhenghong; Zhou, Wei; Hu, Yiyi; Mi, Ping; Jiang, Minjie; Li, Xiaodong; Ruan, Xudong
2018-06-01
Gracilariopsis lemaneiformis is an economically important agarophyte, which contains high quality gel and shows a high growth rate. Wild population of G. lemaneiformis displayed resident divergence, though with a low genetic diversity as was revealed by amplified fragment length polymorphism (AFLP) and simple sequence repeat (SSR) analyses. In addition, different strains of G. lemaneiformis are diverse in morphology. The highly inconsistence between genetic background and physiological characteristics recommends strongly to the regulation at epigenetic level. In this study, the DNA methylation change in G. lemaneiformis among different generation branches and under different temperature stresses was assessed using methylation sensitive amplified polymorphism (MSAP) technique. It was shown that DNA methylation level among different generation branches was diverse. The full and total methylated DNA level was the lowest in the second generation branch and the highest in the third generation. The total methylation level was 61.11%, 60.88% and 64.12% at 15°C, 22°C and 26°C, respectively. Compared with the control group (22°C), the fully methylated and totally methylated ratios were increased in both experiment groups (15°C and 26°C). All of the cytosine methylation/demethylation transform (CMDT) was further analyzed. High temperature treatment could induce more CMDT than low temperature treatment did.
Carbone, David L.; Handa, Robert J.
2012-01-01
The neurotrophin, brain-derived neurotrophic factor (BDNF), is recognized as a key component in the regulation of central nervous system ontogeny, homeostasis and adult neuroplasticity. The importance of BDNF in central nervous system development and function is well documented by numerous reports from animal studies linking abnormal BDNF signaling to metabolic disturbances and anxiety or depressive-like behavior. Despite the diverse roles for BDNF in nearly all aspects of central nervous system physiology, the regulation of BDNF expression, as well as our understanding of the signaling mechanisms associated with this neurotrophin, remains incomplete. However, links between sex hormones such as estradiol and testosterone, as well as endogenous and synthetic glucocorticoids, have emerged as important mediators of BDNF expression and function. Examples of such regulation include brain region-specific induction of Bdnf mRNA in response to estradiol. Additional studies have also documented regulation of the expression of the high-affinity BDNF receptor TrkB by estradiol, thus implicating sex steroids not only in the regulation of BDNF expression, but on mechanisms of signaling associated with it. In addition to gonadal steroids, further evidence also suggests functional interaction between BDNF and glucocorticoids, such as in the regulation of corticotrophin-releasing hormone and other important neuropeptides. In this review, we provide an overview of the roles played by selected sex or stress hormones in the regulation of BDNF expression and signaling in the central nervous system PMID:23211562
Small RNA-mediated regulation in bacteria: A growing palette of diverse mechanisms.
Dutta, Tanmay; Srivastava, Shubhangi
2018-05-20
Small RNAs (sRNAs) in bacteria have evolved with diverse mechanisms to balance their target gene expression in response to changes in the environment. Accumulating studies on bacterial regulatory processes firmly established that sRNAs modulate their target gene expression generally at the posttranscriptional level. Identification of large number of sRNAs by advanced technologies, like deep sequencing, tilling microarray, indicates the existence of a plethora of distinctive sRNA-mediated regulatory mechanisms in bacteria. Types of the novel mechanisms are increasing with the discovery of new sRNAs. Complementary base pairing between sRNAs and target RNAs assisted by RNA chaperones like Hfq and ProQ, in many occasions, to regulate the cognate gene expression is prevalent in sRNA mechanisms. sRNAs, in most studied cases, can directly base pair with target mRNA to remodel its expression. Base pairing can happen either in the untranslated regions or in the coding regions of mRNA to activate/repress its translation. sRNAs also act as target mimic to titrate away different regulatory RNAs from its target. Other mechanism includes the sequestration of regulatory proteins, especially transcription factors, by sRNAs. Numerous sRNAs, following analogous mechanism, are widespread in bacteria, and thus, has drawn immense attention for the development of RNA-based technologies. Nevertheless, typical sRNA mechanisms are also discovered to be confined in some bacteria. Analysis of the sRNA mechanisms unravels their existence in both the single step processes and the complex regulatory networks with a global effect on cell physiology. This review deals with the diverse array of mechanisms, which sRNAs follow to maintain bacterial lifestyle. Copyright © 2018 Elsevier B.V. All rights reserved.
Regulation of Manganese Antioxidants by Nutrient Sensing Pathways in Saccharomyces cerevisiae
Reddi, Amit R.; Culotta, Valeria C.
2011-01-01
In aerobic organisms, protection from oxidative damage involves the combined action of enzymatic and nonproteinaceous cellular factors that collectively remove harmful reactive oxygen species. One class of nonproteinaceous antioxidants includes small molecule complexes of manganese (Mn) that can scavenge superoxide anion radicals and provide a backup for superoxide dismutase enzymes. Such Mn antioxidants have been identified in diverse organisms; however, nothing regarding their physiology in the context of cellular adaptation to stress was known. Using a molecular genetic approach in Bakers’ yeast, Saccharomyces cerevisiae, we report that the Mn antioxidants can fall under control of the same pathways used for nutrient sensing and stress responses. Specifically, a serine/threonine PAS-kinase, Rim15p, that is known to integrate phosphate, nitrogen, and carbon sensing, can also control Mn antioxidant activity in yeast. Rim15p is negatively regulated by the phosphate-sensing kinase complex Pho80p/Pho85p and by the nitrogen-sensing Akt/S6 kinase homolog, Sch9p. We observed that loss of either of these upstream kinase sensors dramatically inhibited the potency of Mn as an antioxidant. Downstream of Rim15p are transcription factors Gis1p and the redundant Msn2/Msn4p pair that typically respond to nutrient and stress signals. Both transcription factors were found to modulate the potency of the Mn antioxidant but in opposing fashions: loss of Gis1p was seen to enhance Mn antioxidant activity whereas loss of Msn2/4p greatly suppressed it. Our observed roles for nutrient and stress response kinases and transcription factors in regulating the Mn antioxidant underscore its physiological importance in aerobic fitness. PMID:21926297
Success stories and emerging themes in conservation physiology
Madliger, Christine L.; Cooke, Steven J.; Crespi, Erica J.; Funk, Jennifer L.; Hultine, Kevin R.; Hunt, Kathleen E.; Rohr, Jason R.; Sinclair, Brent J.; Suski, Cory D.; Willis, Craig K. R.; Love, Oliver P.
2016-01-01
The potential benefits of physiology for conservation are well established and include greater specificity of management techniques, determination of cause–effect relationships, increased sensitivity of health and disturbance monitoring and greater capacity for predicting future change. While descriptions of the specific avenues in which conservation and physiology can be integrated are readily available and important to the continuing expansion of the discipline of ‘conservation physiology’, to date there has been no assessment of how the field has specifically contributed to conservation success. However, the goal of conservation physiology is to foster conservation solutions and it is therefore important to assess whether physiological approaches contribute to downstream conservation outcomes and management decisions. Here, we present eight areas of conservation concern, ranging from chemical contamination to invasive species to ecotourism, where physiological approaches have led to beneficial changes in human behaviour, management or policy. We also discuss the shared characteristics of these successes, identifying emerging themes in the discipline. Specifically, we conclude that conservation physiology: (i) goes beyond documenting change to provide solutions; (ii) offers a diversity of physiological metrics beyond glucocorticoids (stress hormones); (iii) includes approaches that are transferable among species, locations and times; (iv) simultaneously allows for human use and benefits to wildlife; and (v) is characterized by successes that can be difficult to find in the primary literature. Overall, we submit that the field of conservation physiology has a strong foundation of achievements characterized by a diversity of conservation issues, taxa, physiological traits, ecosystem types and spatial scales. We hope that these concrete successes will encourage the continued evolution and use of physiological tools within conservation-based research and management plans. PMID:27382466
The paranasal sinuses: the last frontier in craniofacial biology.
Márquez, Samuel
2008-11-01
This special issue of the Anatomical Record explores the presence and diversity of paranasal sinuses in distinct vertebrate groups. The following topics are addressed in particular: dinosaur physiology; development; physiology; adaptation; imaging; and primate systematics. A variety of approaches and techniques are used to examine and characterize the diversity of paranasal sinus pneumatization in a wide spectrum of vertebrates. These range from dissection to histology, from plain X-rays to computer tomography, from comparative anatomy to natural experimental settings, from mathematical computation to computer model simulation, and 2D to 3D reconstructions. The articles in this issue are a combination of literature review and new, hypothesis-driven anatomical research that highlights the complexities of paranasal sinus growth and development; ontogenetic and disease processes; physiology; paleontology; primate systematics; and human evolution. The issue incorporates a wide variety of vertebrates, encompassing a period of over 65 million years, in an effort to offer insight into the diversity of the paranasal sinus complexes through time and space, and thereby providing a greater understanding and appreciation of these special spaces within the cranium. Copyright 2008 Wiley-Liss, Inc.
Hassa, Paul O; Hottiger, Michael O
2008-01-01
Poly-ADP-ribose metabolism plays a mayor role in a wide range of biological processes, such as maintenance of genomic stability, transcriptional regulation, energy metabolism and cell death. Poly-ADP-ribose polymerases (PARPs) are an ancient family of enzymes, as evidenced by the poly-ADP-ribosylating activities reported in dinoflagellates and archaebacteria and by the identification of Parp-like genes in eubacterial and archaeabacterial genomes. Six genes encoding "bona fide" PARP enzymes have been identified in mammalians: PARP1, PARP2, PARP3, PARP4/vPARP, PARP5/Tankyrases-1 and PARP6/Tankyrases-2. The best studied of these enzymes PARP1 plays a primary role in the process of poly-ADP-ribosylation. PARP1-mediated poly-ADP-ribosylation has been implicated in the pathogenesis of cancer, inflammatory and neurodegenerative disorders. This review will summarize the novel findings and concepts for PARP enzymes and their poly-ADP-ribosylation activity in the regulation of physiological and pathophysiological processes. A special focus is placed on the proposed molecular mechanisms involved in these processes, such as signaling, regulation of telomere dynamics, remodeling of chromatin structure and transcriptional regulation. A potential functional cross talk between PARP family members and other NAD+-consuming enzymes is discussed.
Song, Eun-Hye; Kim, Hyun-Ju; Jeong, Jaesik; Chung, Hyun-Jung; Kim, Han-Yong; Bang, Eunjung; Hong, Young-Shick
2016-04-20
Rice grain metabolites are important for better understanding of the plant physiology of various rice cultivars and thus for developing rice cultivars aimed at providing diverse processed products. However, the variation of global metabolites in rice grains has rarely been explored. Here, we report the identification of intra- or intercellular metabolites in rice (Oryza sativa L.) grain powder using a (1)H high-resolution magic angle spinning (HR-MAS) NMR-based metabolomic approach. Compared with nonwaxy rice cultivars, marked accumulation of lipid metabolites such as fatty acids, phospholipids, and glycerophosphocholine in the grains of waxy rice cultivars demonstrated the distinct metabolic regulation and adaptation of each cultivar for effective growth during future germination, which may be reflected by high levels of glutamate, aspartate, asparagine, alanine, and sucrose. Therefore, this study provides important insights into the metabolic variations of diverse rice cultivars and their associations with environmental conditions and genetic backgrounds, with the aim of facilitating efficient development and the improvement of rice grain quality through inbreeding with genetic or chemical modification and mutation.
Liu, Yi; Zhang, Cuiping; Li, Zhenyu; Wang, Chi; Jia, Jianhang; Gao, Tianyan; Hildebrandt, Gerhard; Zhou, Daohong; Bondada, Subbarao; Ji, Peng; St Clair, Daret; Liu, Jinze; Zhan, Changguo; Geiger, Hartmut; Wang, Shuxia; Liang, Ying
2017-04-11
Natural genetic diversity offers an important yet largely untapped resource to decipher the molecular mechanisms regulating hematopoietic stem cell (HSC) function. Latexin (Lxn) is a negative stem cell regulatory gene identified on the basis of genetic diversity. By using an Lxn knockout mouse model, we found that Lxn inactivation in vivo led to the physiological expansion of the entire hematopoietic hierarchy. Loss of Lxn enhanced the competitive repopulation capacity and survival of HSCs in a cell-intrinsic manner. Gene profiling of Lxn-null HSCs showed altered expression of genes enriched in cell-matrix and cell-cell interactions. Thrombospondin 1 (Thbs1) was a potential downstream target with a dramatic downregulation in Lxn-null HSCs. Enforced expression of Thbs1 restored the Lxn inactivation-mediated HSC phenotypes. This study reveals that Lxn plays an important role in the maintenance of homeostatic hematopoiesis, and it may lead to development of safe and effective approaches to manipulate HSCs for clinical benefit. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.
Turner, Marie F.; Heuberger, Adam L.; Kirkwood, Jay S.; ...
2016-07-11
Metabolomics is an emerging method to improve our understanding of how genetic diversity affects phenotypic variation in plants. Recent studies have demonstrated that genotype has a major influence on biochemical variation in several types of plant tissues, however, the association between metabolic variation and variation in morphological and physiological traits is largely unknown. Sorghum bicolor (L.) is an important food and fuel crop with extensive genetic and phenotypic variation. Sorghum lines have been bred for differing phenotypes beneficial for production of grain (food), stem sugar (food, fuel), and cellulosic biomass (forage, fuel), and these varying phenotypes are the end productsmore » of innate metabolic programming which determines how carbon is allocated during plant growth and development. Further, sorghum has been adapted among highly diverse environments. Because of this geographic and phenotypic variation, the sorghum metabolome is expected to be highly divergent; however, metabolite variation in sorghum has not been characterized. Here, we utilize a phenotypically diverse panel of sorghum breeding lines to identify associations between leaf metabolites and morpho-physiological traits. The panel (11 lines) exhibited significant variation for 21 morpho-physiological traits, as well as broader trends in variation by sorghum type (grain vs. biomass types). Variation was also observed for cell wall constituents (glucan, xylan, lignin, ash). Non-targeted metabolomics analysis of leaf tissue showed that 956 of 1181 metabolites varied among the lines (81%, ANOVA, FDR adjusted p < 0.05). Both univariate and multivariate analyses determined relationships between metabolites and morpho-physiological traits, and 384 metabolites correlated with at least one trait (32%, p < 0.05), including many secondary metabolites such as glycosylated flavonoids and chlorogenic acids. The use of metabolomics to explain relationships between two or more morpho-physiological traits was explored and showed chlorogenic and shikimic acid to be associated with photosynthesis, early plant growth and final biomass measures in sorghum. In conclusion, taken together, this study demonstrates the integration of metabolomics with morpho-physiological datasets to elucidate links between plant metabolism, growth, and architecture.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Turner, Marie F.; Heuberger, Adam L.; Kirkwood, Jay S.
Metabolomics is an emerging method to improve our understanding of how genetic diversity affects phenotypic variation in plants. Recent studies have demonstrated that genotype has a major influence on biochemical variation in several types of plant tissues, however, the association between metabolic variation and variation in morphological and physiological traits is largely unknown. Sorghum bicolor (L.) is an important food and fuel crop with extensive genetic and phenotypic variation. Sorghum lines have been bred for differing phenotypes beneficial for production of grain (food), stem sugar (food, fuel), and cellulosic biomass (forage, fuel), and these varying phenotypes are the end productsmore » of innate metabolic programming which determines how carbon is allocated during plant growth and development. Further, sorghum has been adapted among highly diverse environments. Because of this geographic and phenotypic variation, the sorghum metabolome is expected to be highly divergent; however, metabolite variation in sorghum has not been characterized. Here, we utilize a phenotypically diverse panel of sorghum breeding lines to identify associations between leaf metabolites and morpho-physiological traits. The panel (11 lines) exhibited significant variation for 21 morpho-physiological traits, as well as broader trends in variation by sorghum type (grain vs. biomass types). Variation was also observed for cell wall constituents (glucan, xylan, lignin, ash). Non-targeted metabolomics analysis of leaf tissue showed that 956 of 1181 metabolites varied among the lines (81%, ANOVA, FDR adjusted p < 0.05). Both univariate and multivariate analyses determined relationships between metabolites and morpho-physiological traits, and 384 metabolites correlated with at least one trait (32%, p < 0.05), including many secondary metabolites such as glycosylated flavonoids and chlorogenic acids. The use of metabolomics to explain relationships between two or more morpho-physiological traits was explored and showed chlorogenic and shikimic acid to be associated with photosynthesis, early plant growth and final biomass measures in sorghum. In conclusion, taken together, this study demonstrates the integration of metabolomics with morpho-physiological datasets to elucidate links between plant metabolism, growth, and architecture.« less
Focus on the emerging new fields of network physiology and network medicine
NASA Astrophysics Data System (ADS)
Ivanov, Plamen Ch; Liu, Kang K. L.; Bartsch, Ronny P.
2016-10-01
Despite the vast progress and achievements in systems biology and integrative physiology in the last decades, there is still a significant gap in understanding the mechanisms through which (i) genomic, proteomic and metabolic factors and signaling pathways impact vertical processes across cells, tissues and organs leading to the expression of different disease phenotypes and influence the functional and clinical associations between diseases, and (ii) how diverse physiological systems and organs coordinate their functions over a broad range of space and time scales and horizontally integrate to generate distinct physiologic states at the organism level. Two emerging fields, network medicine and network physiology, aim to address these fundamental questions. Novel concepts and approaches derived from recent advances in network theory, coupled dynamical systems, statistical and computational physics show promise to provide new insights into the complexity of physiological structure and function in health and disease, bridging the genetic and sub-cellular level with inter-cellular interactions and communications among integrated organ systems and sub-systems. These advances form first building blocks in the methodological formalism and theoretical framework necessary to address fundamental problems and challenges in physiology and medicine. This ‘focus on’ issue contains 26 articles representing state-of-the-art contributions covering diverse systems from the sub-cellular to the organism level where physicists have key role in laying the foundations of these new fields.
Melatonin: Pharmacology, Functions and Therapeutic Benefits
Tordjman, Sylvie; Chokron, Sylvie; Delorme, Richard; Charrier, Annaëlle; Bellissant, Eric; Jaafari, Nemat; Fougerou, Claire
2017-01-01
Abstract: Background: Melatonin synchronizes central but also peripheral oscillators (fetal adrenal gland, pancreas, liver, kidney, heart, lung, fat, gut, etc.), allowing temporal organization of biological functions through circadian rhythms (24-hour cycles) in relation to periodic environmental changes and therefore adaptation of the individual to his/her internal and external environment. Measures of melatonin are considered the best peripheral indices of human circadian timing based on an internal 24-hour clock. Methods: First, the pharmacology of melatonin (biosynthesis and circadian rhythms, pharmacokinetics and mechanisms of action) is described, allowing a better understanding of the short and long term effects of melatonin following its immediate or prolonged release. Then, research related to the physiological effects of melatonin is reviewed. Results: The physiological effects of melatonin are various and include detoxification of free radicals and antioxidant actions, bone formation and protection, reproduction, and cardiovascular, immune or body mass regulation. Also, protective and therapeutic effects of melatonin are reported, especially with regard to brain or gastrointestinal protection, psychiatric disorders, cardiovascular diseases and oncostatic effects. Conclusion: This review highlights the high number and diversity of major melatonin effects and opens important perspectives for measuring melatonin as a biomarker (biomarker of early identification of certain disorders and also biomarker of their follow-up) and using melatonin with clinical preventive and therapeutic applications in newborns, children and adults based on its physiological regulatory effects. PMID:28503116
Janciauskiene, S
2001-03-26
Serine proteinase inhibitors (Serpins) are irreversible suicide inhibitors of proteases that regulate diverse physiological processes such as coagulation, fibrinolysis, complement activation, angiogenesis, apoptosis, inflammation, neoplasia and viral pathogenesis. The molecular structure and physical properties of serpins permit these proteins to adopt a number of variant conformations under physiological conditions including the native inhibitory form and several inactive, non-inhibitory forms, such as complexes with protease or other ligands, cleaved, polymerised and oxidised. Alterations of a serpin which affect its structure and/or secretion and thus reduce its functional levels may result in pathology. Serpin dysfunction has been implicated in thrombosis, emphysema, liver cirrhosis, immune hypersensitivity and mental disorders. The loss of inhibitory activity of serpins necessarily results in an imbalance between proteases and their inhibitors, but it may also have other physiological effects through the generation of abnormal concentrations of modified, non-inhibitory forms of serpins. Although these forms of inhibitory serpins are detected in tissues and fluids recovered from inflammatory sites, the important questions of which conditions result in generation of different molecular forms of serpins, what biological function these forms have, and which of them are directly linked to pathologies and/or may be useful markers for characterisation of disease states, remain to be answered. Elucidation of the biological activities of non-inhibitory forms of serpins may provide useful insights into the pathogenesis of diseases and suggest new therapeutic strategies.
Conner, Matthew T; Conner, Alex C; Bland, Charlotte E; Taylor, Luke H J; Brown, James E P; Parri, H Rheinallt; Bill, Roslyn M
2012-03-30
The control of cellular water flow is mediated by the aquaporin (AQP) family of membrane proteins. The structural features of the family and the mechanism of selective water passage through the AQP pore are established, but there remains a gap in our knowledge of how water transport is regulated. Two broad possibilities exist. One is controlling the passage of water through the AQP pore, but this only has been observed as a phenomenon in some plant and microbial AQPs. An alternative is controlling the number of AQPs in the cell membrane. Here, we describe a novel pathway in mammalian cells whereby a hypotonic stimulus directly induces intracellular calcium elevations through transient receptor potential channels, which trigger AQP1 translocation. This translocation, which has a direct role in cell volume regulation, occurs within 30 s and is dependent on calmodulin activation and phosphorylation of AQP1 at two threonine residues by protein kinase C. This direct mechanism provides a rationale for the changes in water transport that are required in response to constantly changing local cellular water availability. Moreover, because calcium is a pluripotent and ubiquitous second messenger in biological systems, the discovery of its role in the regulation of AQP translocation has ramifications for diverse physiological and pathophysiological processes, as well as providing an explanation for the rapid regulation of water flow that is necessary for cell homeostasis.
ING2 (inhibitor of growth protein-2) plays a crucial role in preimplantation development.
Zhou, Lin; Wang, Pei; Zhang, Juanjuan; Heng, Boon Chin; Tong, Guo Qing
2016-02-01
ING2 (inhibitor of growth protein-2) is a member of the ING-gene family and participates in diverse cellular processes involving tumor suppression, DNA repair, cell cycle regulation, and cellular senescence. As a subunit of the Sin3 histone deacetylase complex co-repressor complex, ING2 binds to H3K4me3 to regulate chromatin modification and gene expression. Additionally, ING2 recruits histone methyltransferase (HMT) activity for gene repression, which is independent of the HDAC class I or II pathway. However, the physiological function of ING2 in mouse preimplantation embryo development has not yet been characterized previously. The expression, localization and function of ING2 during preimplantation development were investigated in this study. We showed increasing expression of ING2 within the nucleus from the 4-cell embryo stage onwards; and that down-regulation of ING2 expression by endoribonuclease-prepared small interfering RNA (esiRNA) microinjection results in developmental arrest during the morula to blastocyst transition. Embryonic cells microinjected with ING2-specific esiRNA exhibited decreased blastulation rate compared to the negative control. Further investigation of the underlying mechanism indicated that down-regulation of ING2 significantly increased expression of p21, whilst decreasing expression of HDAC1. These results suggest that ING2 may play a crucial role in the process of preimplantation embryo development through chromatin regulation.
Phosphoinositides: Tiny Lipids With Giant Impact on Cell Regulation
2013-01-01
Phosphoinositides (PIs) make up only a small fraction of cellular phospholipids, yet they control almost all aspects of a cell's life and death. These lipids gained tremendous research interest as plasma membrane signaling molecules when discovered in the 1970s and 1980s. Research in the last 15 years has added a wide range of biological processes regulated by PIs, turning these lipids into one of the most universal signaling entities in eukaryotic cells. PIs control organelle biology by regulating vesicular trafficking, but they also modulate lipid distribution and metabolism via their close relationship with lipid transfer proteins. PIs regulate ion channels, pumps, and transporters and control both endocytic and exocytic processes. The nuclear phosphoinositides have grown from being an epiphenomenon to a research area of its own. As expected from such pleiotropic regulators, derangements of phosphoinositide metabolism are responsible for a number of human diseases ranging from rare genetic disorders to the most common ones such as cancer, obesity, and diabetes. Moreover, it is increasingly evident that a number of infectious agents hijack the PI regulatory systems of host cells for their intracellular movements, replication, and assembly. As a result, PI converting enzymes began to be noticed by pharmaceutical companies as potential therapeutic targets. This review is an attempt to give an overview of this enormous research field focusing on major developments in diverse areas of basic science linked to cellular physiology and disease. PMID:23899561
Bernardo, Joseph; Ossola, Ryan J; Spotila, James; Crandall, Keith A
2007-12-22
Global warming is now recognized as the dominant threat to biodiversity because even protected populations and habitats are susceptible. Nonetheless, current criteria for evaluating species' relative endangerment remain purely ecological, and the accepted conservation strategies of habitat preservation and population management assume that species can mount ecological responses if afforded protection. The insidious threat from climate change is that it will attenuate or preclude ecological responses by species that are physiologically constrained; yet, quantitative, objective criteria for assessing relative susceptibility of diverse taxa to warming-induced stress are wanting. We explored the utility of using interspecies physiological variation for this purpose by relating species' physiological phenotypes to landscape patterns of ecological and genetic exchange. Using a salamander model system in which ecological, genetic and physiological diversity are well characterized, we found strong quantitative relationships of basal metabolic rates (BMRs) to both macroecological and phylogeographic patterns, with decreasing BMR leading to dispersal limitation (small contemporary ranges with marked phylogeographic structure). Measures of intrinsic physiological tolerance, which vary systematically with macroecological and phylogeographic patterns, afford objective criteria for assessing endangerment across a wide range of species and should be incorporated into conservation assessment criteria that currently rely exclusively upon ecological predictors.
Bunik, Victoria; Artiukhov, Artem; Aleshin, Vasily; Mkrtchyan, Garik
2016-12-14
Glutamate dehydrogenase (GDH) of animal cells is usually considered to be a mitochondrial enzyme. However, this enzyme has recently been reported to be also present in nucleus, endoplasmic reticulum and lysosomes. These extramitochondrial localizations are associated with moonlighting functions of GDH, which include acting as a serine protease or an ATP-dependent tubulin-binding protein. Here, we review the published data on kinetics and localization of multiple forms of animal GDH taking into account the splice variants, post-translational modifications and GDH isoenzymes, found in humans and apes. The kinetic properties of human GLUD1 and GLUD2 isoenzymes are shown to be similar to those published for GDH1 and GDH2 from bovine brain. Increased functional diversity and specific regulation of GDH isoforms due to alternative splicing and post-translational modifications are also considered. In particular, these structural differences may affect the well-known regulation of GDH by nucleotides which is related to recent identification of thiamine derivatives as novel GDH modulators. The thiamine-dependent regulation of GDH is in good agreement with the fact that the non-coenzyme forms of thiamine, i.e., thiamine triphosphate and its adenylated form are generated in response to amino acid and carbon starvation.
Calcium delivery and storage in plant leaves: exploring the link with water flow.
Gilliham, Matthew; Dayod, Maclin; Hocking, Bradleigh J; Xu, Bo; Conn, Simon J; Kaiser, Brent N; Leigh, Roger A; Tyerman, Stephen D
2011-04-01
Calcium (Ca) is a unique macronutrient with diverse but fundamental physiological roles in plant structure and signalling. In the majority of crops the largest proportion of long-distance calcium ion (Ca(2+)) transport through plant tissues has been demonstrated to follow apoplastic pathways, although this paradigm is being increasingly challenged. Similarly, under certain conditions, apoplastic pathways can dominate the proportion of water flow through plants. Therefore, tissue Ca supply is often found to be tightly linked to transpiration. Once Ca is deposited in vacuoles it is rarely redistributed, which results in highly transpiring organs amassing large concentrations of Ca ([Ca]). Meanwhile, the nutritional flow of Ca(2+) must be regulated so it does not interfere with signalling events. However, water flow through plants is itself regulated by Ca(2+), both in the apoplast via effects on cell wall structure and stomatal aperture, and within the symplast via Ca(2+)-mediated gating of aquaporins which regulates flow across membranes. In this review, an integrated model of water and Ca(2+) movement through plants is developed and how this affects [Ca] distribution and water flow within tissues is discussed, with particular emphasis on the role of aquaporins.
GSK3 as a Sensor Determining Cell Fate in the Brain.
Cole, Adam R
2012-01-01
Glycogen synthase kinase 3 (GSK3) is an unusual serine/threonine kinase that controls many neuronal functions, including neurite outgrowth, synapse formation, neurotransmission, and neurogenesis. It mediates these functions by phosphorylating a wide range of substrates involved in gene transcription, metabolism, apoptosis, cytoskeletal dynamics, signal transduction, lipid membrane dynamics, and trafficking, amongst others. This complicated list of diverse substrates generally follow a more simple pattern: substrates negatively regulated by GSK3-mediated phosphorylation favor a proliferative/survival state, while substrates positively regulated by GSK3 favor a more differentiated/functional state. Accordingly, GSK3 activity is higher in differentiated cells than undifferentiated cells and physiological (Wnt, growth factors) and pharmacological inhibitors of GSK3 promote the proliferative capacity of embryonic stem cells. In the brain, the level of GSK3 activity influences neural progenitor cell proliferation/differentiation in neuroplasticity and repair, as well as efficient neurotransmission in differentiated adult neurons. While defects in GSK3 activity are unlikely to be the primary cause of neurodegenerative diseases, therapeutic regulation of its activity to promote a proliferative/survival versus differentiated/mature functional environment in the brain could be a powerful strategy for treatment of neurodegenerative and other mental disorders.
GSK3 as a Sensor Determining Cell Fate in the Brain
Cole, Adam R.
2012-01-01
Glycogen synthase kinase 3 (GSK3) is an unusual serine/threonine kinase that controls many neuronal functions, including neurite outgrowth, synapse formation, neurotransmission, and neurogenesis. It mediates these functions by phosphorylating a wide range of substrates involved in gene transcription, metabolism, apoptosis, cytoskeletal dynamics, signal transduction, lipid membrane dynamics, and trafficking, amongst others. This complicated list of diverse substrates generally follow a more simple pattern: substrates negatively regulated by GSK3-mediated phosphorylation favor a proliferative/survival state, while substrates positively regulated by GSK3 favor a more differentiated/functional state. Accordingly, GSK3 activity is higher in differentiated cells than undifferentiated cells and physiological (Wnt, growth factors) and pharmacological inhibitors of GSK3 promote the proliferative capacity of embryonic stem cells. In the brain, the level of GSK3 activity influences neural progenitor cell proliferation/differentiation in neuroplasticity and repair, as well as efficient neurotransmission in differentiated adult neurons. While defects in GSK3 activity are unlikely to be the primary cause of neurodegenerative diseases, therapeutic regulation of its activity to promote a proliferative/survival versus differentiated/mature functional environment in the brain could be a powerful strategy for treatment of neurodegenerative and other mental disorders. PMID:22363258
The plasma membrane: Penultimate regulator of ADAM sheddase function.
Reiss, Karina; Bhakdi, Sucharit
2017-11-01
ADAM10 and ADAM17 are the best characterized members of the ADAM (A Disintegrin and Metalloproteinase) - family of transmembrane proteases. Both are involved diverse physiological and pathophysiological processes. ADAMs are known to be regulated by posttranslational mechanisms. However, emerging evidence indicates that the plasma membrane with its unique dynamic properties may additionally play an important role in controlling sheddase function. Membrane events that could contribute to regulation of ADAM-function are summarized. Surface expression of peptidolytic activity should be differentiated from ADAM-sheddase function since the latter additionally requires that the protease finds its substrate in the lipid bilayer. We propose that this is achieved through horizontal and vertical reorganization of membrane nanoarchitecture coordinately occurring at the sites of sheddase activation. Reshuffling of nanodomains thereby guides traffic of enzyme and substrate to each other. For ADAM17 phosphatidylserine exposure is required to then induce its shedding function. The novel concept that physicochemical properties of the lipid bilayer govern the action of ADAM-proteases may be extendable to other functional proteins that act at the cell surface. This article is part of a Special Issue entitled: Proteolysis as a Regulatory Event in Pathophysiology edited by Stefan Rose-John. Copyright © 2017. Published by Elsevier B.V.
Kruppel-like factor 15 is required for the cardiac adaptive response to fasting.
Sugi, Keiki; Hsieh, Paishiun N; Ilkayeva, Olga; Shelkay, Shamanthika; Moroney, Bridget; Baadh, Palvir; Haynes, Browning; Pophal, Megan; Fan, Liyan; Newgard, Christopher B; Prosdocimo, Domenick A; Jain, Mukesh K
2018-01-01
Cardiac metabolism is highly adaptive in response to changes in substrate availability, as occur during fasting. This metabolic flexibility is essential to the maintenance of contractile function and is under the control of a group of select transcriptional regulators, notably the nuclear receptor family of factors member PPARα. However, the diversity of physiologic and pathologic states through which the heart must sustain function suggests the possible existence of additional transcriptional regulators that play a role in matching cardiac metabolism to energetic demand. Here we show that cardiac KLF15 is required for the normal cardiac response to fasting. Specifically, we find that cardiac function is impaired upon fasting in systemic and cardiac specific Klf15-null mice. Further, cardiac specific Klf15-null mice display a fasting-dependent accumulation of long chain acylcarnitine species along with a decrease in expression of the carnitine translocase Slc25a20. Treatment with a diet high in short chain fatty acids relieves the KLF15-dependent long chain acylcarnitine accumulation and impaired cardiac function in response to fasting. Our observations establish KLF15 as a critical mediator of the cardiac adaptive response to fasting through its regulation of myocardial lipid utilization.
Cyanobacterial diversity and halotolerance in a variable hypersaline environment.
Kirkwood, Andrea E; Buchheim, Julie A; Buchheim, Mark A; Henley, William J
2008-04-01
The Great Salt Plains (GSP) in north-central Oklahoma, USA is an expansive salt flat (approximately 65 km(2)) that is part of the federally protected Salt Plains National Wildlife Refuge. The GSP serves as an ideal environment to study the microbial diversity of a terrestrial, hypersaline system that experiences wide fluctuations in freshwater influx and diel temperature. Our study assessed cyanobacterial diversity at the GSP by focusing on the taxonomic and physiological diversity of GSP isolates, and the 16S rRNA phylogenetic diversity of isolates and environmental clones from three sites (north, central, and south). Taxonomic diversity of isolates was limited to a few genera (mostly Phormidium and Geitlerinema), but physiological diversity based on halotolerance ranges was strikingly more diverse, even between strains of the same phylotype. The phylogenetic tree revealed diversity that spanned a number of cyanobacterial lineages, although diversity at each site was dominated by only a few phylotypes. Unlike other hypersaline systems, a number of environmental clones from the GSP were members of the heterocystous lineage. Although a number of cyanobacterial isolates were close matches with prevalent environmental clones, it is not certain if these clones reflect the same halotolerance ranges of their matching isolates. This caveat is based on the notable disparities we found between strains of the same phylotype and their inherent halotolerance. Our findings support the hypothesis that variable or poikilotrophic environments promote diversification, and in particular, select for variation in ecotype more than phylotype.
Beta-arrestin biased agonism/antagonism at cardiovascular seven transmembrane-spanning receptors.
Lymperopoulos, Anastasios
2012-01-01
Heptahelical, G protein-coupled or seven transmembrane-spanning receptors, such as the β-adrenergic and the angiotensin II type 1 receptors, are the most diverse and therapeutically important family of receptors in the human genome, playing major roles in the physiology of various organs/tissues including the heart and blood vessels. Ligand binding activates heterotrimeric G proteins that transmit intracellular signals by regulating effector enzymes or ion channels. G protein signaling is terminated, in large part, by phosphorylation of the agonist-bound receptor by the G-protein coupled receptor kinases (GRKs), followed by βarrestin binding, which uncouples the phosphorylated receptor from the G protein and subsequently targets the receptor for internalization. As the receptor-βarrestin complex enters the cell, βarrestin-1 and -2, the two mammalian βarrestin isoforms, serve as ligand-regulated scaffolds that recruit a host of intracellular proteins and signal transducers, thus promoting their own wave of signal transduction independently of G-proteins. A constantly increasing number of studies over the past several years have begun to uncover specific roles played by these ubiquitously expressed receptor adapter proteins in signal transduction of several important heptahelical receptors regulating the physiology of various organs/ systems, including the cardiovascular (CV) system. Thus, βarrestin-dependent signaling has increasingly been implicated in CV physiology and pathology, presenting several exciting opportunities for therapeutic intervention in the treatment of CV disorders. Additionally, the discovery of this novel mode of heptahelical receptor signaling via βarrestins has prompted a revision of classical pharmacological concepts such as receptor agonism/antagonism, as well as introduction of new terms such as "biased signaling", which refers to ligand-specific activation of selective signal transduction pathways by the very same receptor. The present review gives an overview of the current knowledge in the field of βarrestin-dependent signaling, with a specific focus on CV heptahelical receptor βarrestin-mediated signaling and on "biased" CV heptahelical receptor ligands that promote or inhibit it. Exciting new possibilities for cardiovascular therapeutics arising from the delineation of this βarrestin-dependent signaling are also discussed.
Does corticosterone mediate predator-induced responses of larval Hylarana indica?
Joshi, A M; Wadekar, N V; Gramapurohit, N P
2017-09-15
Prey-predator interactions have been studied extensively in terms of morphological and behavioural responses of prey to predation risk using diverse model systems. However, the underlying physiological changes associated with morphological, behavioural or life historical responses have been rarely investigated. Herein, we studied the effect of chronic predation risk on larval growth and metamorphosis of Hylarana indica and the underlying physiological changes in prey tadpoles. In the first experiment, tadpoles were exposed to a caged predator from Gosner stage 25-42 to record growth and metamorphosis. Further, whole body corticosterone (CORT) was measured to determine the physiological changes underlying morphological and life historical responses of these prey tadpoles. Surprisingly, tadpoles experiencing continuous predation risk grew and developed faster and metamorphosed at a larger size. Interestingly, these tadpoles had significantly lower CORT levels. In the second experiment, tadpoles were exposed to predation risk (PR) or PR+CORT from stage 25-42 to determine the role of CORT in mediating predator-induced responses of H. indica. Tadpoles facing continuous predation risk grew and developed faster and metamorphosed at a larger size reinforcing the results of the first experiment. However, when CORT was administered along with predation risk, tadpoles grew and developed slowly leading to delayed metamorphosis. Interestingly, growth and metamorphic traits of tadpoles exposed to PR+CORT were comparable to those of the control group indicating that exogenous CORT nullified the positive effect of predation risk. Apparently, CORT mediates predator-induced morphological responses of H. indica tadpoles by regulating their physiology. Copyright © 2016 Elsevier Inc. All rights reserved.
Structure, function and translational relevance of aquaporin dual water and ion channels.
Yool, Andrea J; Campbell, Ewan M
2012-01-01
Aquaporins have been assumed to be selective for water alone, and aquaglyceroporins are accepted as carrying water and small uncharged solutes including glycerol. This review presents an expanded view of aquaporins as channels with more complex mechanisms of regulation and diverse repertoires of substrate permeabilities than were originally appreciated in the early establishment of the field. The role of aquaporins as dual water and gated ion channels is likely to have physiological and potentially translational relevance, and can be evaluated with newly developed molecular and pharmacological tools. Ion channel activity has been shown for Aquaporins -0, -1, and -6, Drosphila Big Brain, and plant Nodulin-26. Although the concept of ion channel function in aquaporins remains controversial, research advances are beginning to define not only the ion channel function but also the detailed molecular mechanisms that govern and mediate the multifunctional capabilities. With regard to physiological relevance, the adaptive benefit of expression of ion channel activity in aquaporins, implied by amino acid sequence conservation of the ion channel gating domains, suggests they provide more than water or glycerol and solute transport. Dual ion and water channels are of interest for understanding the modulation of transmembrane fluid gradients, volume regulation, and possible signal transduction in tissues expressing classes of aquaporins that have the dual function capability. Other aquaporin classes might be found in future work to have ion channel activities, pending identification of the possible signaling pathways that could govern activation. Copyright © 2012 Elsevier Ltd. All rights reserved.
Neuropeptides, via specific receptors, regulate T cell adhesion to fibronectin.
Levite, M; Cahalon, L; Hershkoviz, R; Steinman, L; Lider, O
1998-01-15
The ability of T cells to adhere to and interact with components of the blood vessel walls and the extracellular matrix is essential for their extravasation and migration into inflamed sites. We have found that the beta1 integrin-mediated adhesion of resting human T cells to fibronectin, a major glycoprotein component of the extracellular matrix, is induced by physiologic concentrations of three neuropeptides: calcitonin gene-related protein (CGRP), neuropeptide Y, and somatostatin; each acts via its own specific receptor on the T cell membrane. In contrast, substance P (SP), which coexists with CGRP in the majority of peripheral endings of sensory nerves, including those innervating the lymphoid organs, blocks T cell adhesion to fibronectin when induced by CGRP, neuropeptide Y, somatostatin, macrophage inflammatory protein-1beta, and PMA. Inhibition of T cell adhesion was obtained both by the intact SP peptide and by its 1-4 N-terminal and its 4-11, 5-11, and 6-11 C-terminal fragments, used at similar nanomolar concentrations. The inhibitory effects of the parent SP peptide and its fragments were abrogated by an SP NK-1 receptor antagonist, suggesting they all act through the same SP NK-1 receptor. These findings suggest that neuropeptides, by activating their specific T cell-expressed receptors, can provide the T cells with both positive (proadhesive) and negative (antiadhesive) signals and thereby regulate their function. Thus, neuropeptides may influence diverse physiologic processes involving integrins, including leukocyte-mediated migration and inflammation.
Keller, Alexander; Grimmer, Gudrun; Steffan-Dewenter, Ingolf
2013-01-01
Microbial activity is known to have profound impact on bee ecology and physiology, both by beneficial and pathogenic effects. Most information about such associations is available for colony-building organisms, and especially the honey bee. There, active manipulations through worker bees result in a restricted diversity of microbes present within the colony environment. Microbial diversity in solitary bee nests remains unstudied, although their larvae face a very different situation compared with social bees by growing up in isolated compartments. Here, we assessed the microbiota present in nests and pre-adults of Osmia bicornis, the red mason bee, by culture-independent pyrosequencing. We found high bacterial diversity not comparable with honey bee colonies. We identified a variety of bacteria potentially with positive or negative interactions for bee larvae. However, most of the other diverse bacteria present in the nests seem to originate from environmental sources through incorporated nest building material and stored pollen. This diversity of microorganisms may cause severe larval mortality and require specific physiological or symbiotic adaptations against microbial threats. They may however also profit from such a diverse environment through gain of mutualistic partners. We conclude that further studies of microbiota interaction in solitary bees will improve the understanding of fitness components and populations dynamics. PMID:24205188
Keller, Alexander; Grimmer, Gudrun; Steffan-Dewenter, Ingolf
2013-01-01
Microbial activity is known to have profound impact on bee ecology and physiology, both by beneficial and pathogenic effects. Most information about such associations is available for colony-building organisms, and especially the honey bee. There, active manipulations through worker bees result in a restricted diversity of microbes present within the colony environment. Microbial diversity in solitary bee nests remains unstudied, although their larvae face a very different situation compared with social bees by growing up in isolated compartments. Here, we assessed the microbiota present in nests and pre-adults of Osmia bicornis, the red mason bee, by culture-independent pyrosequencing. We found high bacterial diversity not comparable with honey bee colonies. We identified a variety of bacteria potentially with positive or negative interactions for bee larvae. However, most of the other diverse bacteria present in the nests seem to originate from environmental sources through incorporated nest building material and stored pollen. This diversity of microorganisms may cause severe larval mortality and require specific physiological or symbiotic adaptations against microbial threats. They may however also profit from such a diverse environment through gain of mutualistic partners. We conclude that further studies of microbiota interaction in solitary bees will improve the understanding of fitness components and populations dynamics.
Davies, Wayne I.L.; Tamai, T. Katherine; Zheng, Lei; Fu, Josephine K.; Rihel, Jason; Foster, Russell G.; Whitmore, David; Hankins, Mark W.
2015-01-01
Light affects animal physiology and behavior more than simply through classical visual, image-forming pathways. Nonvisual photoreception regulates numerous biological systems, including circadian entrainment, DNA repair, metabolism, and behavior. However, for the majority of these processes, the photoreceptive molecules involved are unknown. Given the diversity of photophysiological responses, the question arises whether a single photopigment or a greater diversity of proteins within the opsin superfamily detect photic stimuli. Here, a functional genomics approach identified the full complement of photopigments in a highly light-sensitive model vertebrate, the zebrafish (Danio rerio), and characterized their tissue distribution, expression levels, and biochemical properties. The results presented here reveal the presence of 42 distinct genes encoding 10 classical visual photopigments and 32 nonvisual opsins, including 10 novel opsin genes comprising four new pigment classes. Consistent with the presence of light-entrainable circadian oscillators in zebrafish, all adult tissues examined expressed two or more opsins, including several novel opsins. Spectral and electrophysiological analyses of the new opsins demonstrate that they form functional photopigments, each with unique chromophore-binding and wavelength specificities. This study has revealed a remarkable number and diversity of photopigments in zebrafish, the largest number so far discovered for any vertebrate. Found in amphibians, reptiles, birds, and all three mammalian clades, most of these genes are not restricted to teleosts. Therefore, nonvisual light detection is far more complex than initially appreciated, which has significant biological implications in understanding photoreception in vertebrates. PMID:26450929
Barzantny, Helena; Schröder, Jasmin; Strotmeier, Jasmin; Fredrich, Eugenie; Brune, Iris; Tauch, Andreas
2012-06-15
Lipophilic corynebacteria are involved in the generation of volatile odorous products in the process of human body odor formation by degrading skin lipids and specific odor precursors. Therefore, these bacteria represent appropriate model systems for the cosmetic industry to examine axillary malodor formation on the molecular level. To understand the transcriptional control of metabolic pathways involved in this process, the transcriptional regulatory network of the lipophilic axilla isolate Corynebacterium jeikeium K411 was reconstructed from the complete genome sequence. This bioinformatic approach detected a gene-regulatory repertoire of 83 candidate proteins, including 56 DNA-binding transcriptional regulators, nine two-component systems, nine sigma factors, and nine regulators with diverse physiological functions. Furthermore, a cross-genome comparison among selected corynebacterial species of the taxonomic cluster 3 revealed a common gene-regulatory repertoire of 44 transcriptional regulators, including the MarR-like regulator Jk0257, which is exclusively encoded in the genomes of this taxonomical subline. The current network reconstruction comprises 48 transcriptional regulators and 674 gene-regulatory interactions that were assigned to five interconnected functional modules. Most genes involved in lipid degradation are under the combined control of the global cAMP-sensing transcriptional regulator GlxR and the LuxR-family regulator RamA, probably reflecting the essential role of lipid degradation in C. jeikeium. This study provides the first genome-scale in silico analysis of the transcriptional regulation of metabolism in a lipophilic bacterium involved in the formation of human body odor. Copyright © 2012 Elsevier B.V. All rights reserved.
Harnessing Proteasome Dynamics and Allostery in Drug Design
Osmulski, Pawel A.
2014-01-01
Abstract Significance: The proteasome is the essential protease that is responsible for regulated cleavage of the bulk of intracellular proteins. Its central role in cellular physiology has been exploited in therapies against aggressive cancers where proteasome-specific competitive inhibitors that block proteasome active centers are very effectively used. However, drugs regulating this essential protease are likely to have broader clinical usefulness. The non-catalytic sites of the proteasome emerge as an attractive alternative target in search of highly specific and diverse proteasome regulators. Recent Advances: Crystallographic models of the proteasome leave the false impression of fixed structures with minimal molecular dynamics lacking long-distance allosteric signaling. However, accumulating biochemical and structural observations strongly support the notion that the proteasome is regulated by precise allosteric interactions arising from protein dynamics, encouraging the active search for allosteric regulators. Here, we discuss properties of several promising compounds that affect substrate gating and processing in antechambers, and interactions of the catalytic core with regulatory proteins. Critical Issues: Given the structural complexity of proteasome assemblies, it is a painstaking process to better understand their allosteric regulation and molecular dynamics. Here, we discuss the challenges and achievements in this field. We place special emphasis on the role of atomic force microscopy imaging in probing the allostery and dynamics of the proteasome, and in dissecting the mechanisms involving small-molecule allosteric regulators. Future Directions: New small-molecule allosteric regulators may become a next generation of drugs targeting the proteasome, which is critical to the development of new therapies in cancers and other diseases. Antioxid. Redox Signal. 21, 2286–2301. PMID:24410482
Owiti, Judith; Grossmann, Jonas; Gehrig, Peter; Dessimoz, Christophe; Laloi, Christophe; Hansen, Maria Benn; Gruissem, Wilhelm; Vanderschuren, Hervé
2011-07-01
The short storage life of harvested cassava roots is an important constraint that limits the full potential of cassava as a commercial food crop in developing countries. We investigated the molecular changes during physiological deterioration of cassava root after harvesting using isobaric tags for relative and absolute quantification (iTRAQ) of proteins in soluble and non-soluble fractions prepared during a 96 h post-harvest time course. Combining bioinformatic approaches to reduce information redundancy for unsequenced or partially sequenced plant species, we established a comprehensive proteome map of the cassava root and identified quantitatively regulated proteins. Up-regulation of several key proteins confirmed that physiological deterioration of cassava root after harvesting is an active process, with 67 and 170 proteins, respectively, being up-regulated early and later after harvesting. This included regulated proteins that had not previously been associated with physiological deterioration after harvesting, such as linamarase, glutamic acid-rich protein, hydroxycinnamoyl transferase, glycine-rich RNA binding protein, β-1,3-glucanase, pectin methylesterase, maturase K, dehydroascorbate reductase, allene oxide cyclase, and proteins involved in signal pathways. To confirm the regulation of these proteins, activity assays were performed for selected enzymes. Together, our results show that physiological deterioration after harvesting is a highly regulated complex process involving proteins that are potential candidates for biotechnology approaches to reduce such deterioration. © 2011 The Authors. The Plant Journal © 2011 Blackwell Publishing Ltd.
USDA-ARS?s Scientific Manuscript database
Evaluation of sugarcane cultivars with diverse genetic background under similar location can help in better understanding cultivar response to environment and in identifying various physiological traits that could lead to improved yields. The objective of this study was to evaluate the growth, yield...
Endogenous generation of hydrogen sulfide and its regulation in Shewanella oneidensis
Wu, Genfu; Li, Ning; Mao, Yinting; Zhou, Guangqi; Gao, Haichun
2015-01-01
Hydrogen sulfide (H2S) has been recognized as a physiological mediator with a variety of functions across all domains of life. In this study, mechanisms of endogenous H2S generation in Shewanella oneidensis were investigated. As a research model with highly diverse anaerobic respiratory pathways, the microorganism is able to produce H2S by respiring on a variety of sulfur-containing compounds with SirACD and PsrABC enzymatic complexes, as well as through cysteine degradation with three enzymes, MdeA, SO_1095, and SseA. We showed that the SirACD and PsrABC complexes, which are predominantly, if not exclusively, responsible for H2S generation via respiration of sulfur species, do not interplay with each other. Strikingly, a screen for regulators controlling endogenous H2S generation by transposon mutagenesis identified global regulator Crp to be essential to all H2S-generating processes. In contrast, Fnr and Arc, two other global regulators that have a role in respiration, are dispensable in regulating H2S generation via respiration of sulfur species. Interestingly, Arc is involved in the H2S generation through cysteine degradation by repressing expression of the mdeA gene. We further showed that expression of the sirA and psrABC operons is subjected to direct regulation of Crp, but the mechanisms underlying the requirement of Crp for H2S generation through cysteine degradation remain elusive. PMID:25972854
The importance of being dead: cell death mechanisms assessment in anti-sarcoma therapy.
Rello-Varona, Santiago; Herrero-Martín, David; Lagares-Tena, Laura; López-Alemany, Roser; Mulet-Margalef, Núria; Huertas-Martínez, Juan; Garcia-Monclús, Silvia; García Del Muro, Xavier; Muñoz-Pinedo, Cristina; Tirado, Oscar Martínez
2015-01-01
Cell death can occur through different mechanisms, defined by their nature and physiological implications. Correct assessment of cell death is crucial for cancer therapy success. Sarcomas are a large and diverse group of neoplasias from mesenchymal origin. Among cell death types, apoptosis is by far the most studied in sarcomas. Albeit very promising in other fields, regulated necrosis and other cell death circumstances (as so-called "autophagic cell death" or "mitotic catastrophe") have not been yet properly addressed in sarcomas. Cell death is usually quantified in sarcomas by unspecific assays and in most cases the precise sequence of events remains poorly characterized. In this review, our main objective is to put into context the most recent sarcoma cell death findings in the more general landscape of different cell death modalities.
Lysophosphatidic Acid (LPA) Signaling in Human and Ruminant Reproductive Tract
Wocławek-Potocka, Izabela; Rawińska, Paulina; Kowalczyk-Zieba, Ilona; Boruszewska, Dorota; Sinderewicz, Emilia; Waśniewski, Tomasz; Skarzynski, Dariusz Jan
2014-01-01
Lysophosphatidic acid (LPA) through activating its G protein-coupled receptors (LPAR 1–6) exerts diverse cellular effects that in turn influence several physiological processes including reproductive function of the female. Studies in various species of animals and also in humans have identified important roles for the receptor-mediated LPA signaling in multiple aspects of human and animal reproductive tract function. These aspects range from ovarian and uterine function, estrous cycle regulation, early embryo development, embryo implantation, decidualization to pregnancy maintenance and parturition. LPA signaling can also have pathological consequences, influencing aspects of endometriosis and reproductive tissue associated tumors. The review describes recent progress in LPA signaling research relevant to human and ruminant reproduction, pointing at the cow as a relevant model to study LPA influence on the human reproductive performance. PMID:24744506
Liu, Boyang; Garcia, Edwin A; Korbonits, Márta
2011-11-01
Ghrelin is a 28 amino acid peptide hormone that is produced both centrally and peripherally. Regulated by the ghrelin O-acyl transferase enzyme, ghrelin exerts its action through the growth hormone secretagogue receptor, and is implicated in a diverse range of physiological processes. These implications have placed the ghrelin signaling pathway at the center of a large number of candidate gene and genome-wide studies which aim to identify the genetic basis of human heterogeneity. In this review we summarize the available data on the genetic variability of ghrelin, its receptor and its regulatory enzyme, and their association with obesity, stature, type 2 diabetes, cardiovascular disease, eating disorders, and reward seeking behavior. Copyright © 2011 Elsevier Inc. All rights reserved.
Clinical trials of GMP products in the gene therapy field.
Bamford, Kathleen B
2011-01-01
Advances in gene therapy are increasingly leading to clinical assessment in many fields of medicine with diverse approaches. The basic science stems from approaches aimed at different functions such as correcting a missing/abnormal gene, altering the proportion or expression of normal genes to augment a physiological process or using this principle to destroy malignant or infected cells. As the technology advances, it is increasingly important to ensure that clinical trials answer the questions that need to be asked. In this chapter we review examples of published clinical trials, resources for accessing information about registered trials, the process of regulating trials, good clinical practice, and good manufacturing practice as well as summarising the approach taken by regulatory authorities in reviewing applications for the introduction of products for use in the clinic.
Chemical chronobiology: Toward drugs manipulating time.
Wallach, Thomas; Kramer, Achim
2015-06-22
Circadian clocks are endogenous timing systems orchestrating the daily regulation of a huge variety of physiological, metabolic and behavioral processes. These clocks are important for health - in mammals, their disruption leads to a diverse number of pathologies. While genetic and biochemical approaches largely uncovered the molecular bases of circadian rhythm generation, chemical biology strategies targeting the circadian oscillator by small chemical compounds are increasingly developed. Here, we review the recent progress in the identification of small molecules modulating circadian rhythms. We focus on high-throughput screening approaches using circadian bioluminescence reporter cell lines as well as describe alternative mechanistic screens. Furthermore, we discuss the potential for chemical optimization of small molecule ligands with regard to the recent progress in structural chronobiology. Copyright © 2015 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
Minireview: The Year in Review of Estrogen Regulation of Metabolism
2012-01-01
Gonadal steroids are critical regulators of physiology, yet we approach physiology and science with the simplest perspective/model, the male one. Female models of whole animal physiology are complex to study and, therefore, are often not used in research. Estrogens are one of the sex hormones that we know are important for both men and women. Estrogens regulate key features of metabolism such as food intake, body weight, glucose homeostasis/insulin sensitivity, body fat distribution, lipolysis/lipogenesis, inflammation, locomotor activity, energy expenditure, reproduction, and cognition. Furthermore, estrogens have multiple sites of action including some unexpected ones, which was demonstrated elegantly through a series of papers this year. PMID:23051593
Katz, Deirdre A; Harris, Alexis; Abenavoli, Rachel; Greenberg, Mark T; Jennings, Patricia A
2018-04-01
Studies show teaching is a highly stressful profession and that chronic work stress is associated with adverse health outcomes. This study analysed physiological markers of stress and self-reported emotion regulation strategies in a group of middle school teachers over 1 year. Chronic physiological stress was assessed with diurnal cortisol measures at three time points over 1 year (fall, spring, fall). The aim of this longitudinal study was to investigate the changes in educators' physiological level of stress. Results indicate that compared to those in the fall, cortisol awakening responses were blunted in the spring. Further, this effect was ameliorated by the summer break. Additionally, self-reported use of the emotion regulation strategy reappraisal buffered the observed blunting that occurred in the spring. Copyright © 2017 John Wiley & Sons, Ltd.
The potential for co-evolution of CO2-concentrating mechanisms and Rubisco in diatoms.
Young, Jodi N; Hopkinson, Brian M
2017-06-01
Diatoms are a diverse group of unicellular algae that contribute significantly to global photosynthetic carbon fixation and export in the modern ocean, and are an important source of microfossils for paleoclimate reconstructions. Because of their importance in the environment, diatoms have been a focus of study on the physiology and ecophysiology of carbon fixation, in particular their CO2-concentrating mechanisms (CCMs) and Rubisco characteristics. While carbon fixation in diatoms is not as well understood as in certain model aquatic photoautotrophs, a greater number of species have been examined in diatoms. Recent work has highlighted a large diversity in the function, physiology, and kinetics of both the CCM and Rubisco between different diatom species. This diversity was unexpected since it has generally been assumed that CCMs and Rubiscos were similar within major algal lineages as the result of selective events deep in evolutionary history, and suggests a more recent co-evolution between the CCM and Rubisco within diatoms. This review explores our current understanding of the diatom CCM and highlights the diversity of both the CCM and Rubisco kinetics. We will suggest possible environmental, physiological, and evolutionary drivers for the co-evolution of the CCM and Rubisco in diatoms. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Sun, Hong-Min; Zhang, Tao; Yu, Li-Yan; Sen, Keya; Zhang, Yu-Qin
2015-01-01
The goal of this study was to gain insight into the diversity of culturable actinobacteria in desert soil crusts and to determine the physiological characteristics of the predominant actinobacterial group in these crusts. Culture-dependent method was employed to obtain actinobacterial strains from desert soil samples collected from Shapotou National Desert Ecological Reserve (NDER) located in Tengger Desert, China. A total of 376 actinobacterial strains were isolated and 16S rRNA gene sequences analysis indicated that these isolates belonged to 29 genera within 18 families, among which the members of the family Geodermatophilaceae were predominant. The combination of 16S rRNA gene information and the phenotypic data allowed these newly-isolated Geodermatophilaceae members to be classified into 33 "species clusters," 11 of which represented hitherto unrecognized species. Fermentation broths from 19.7% of the isolated strains showed activity in at least one of the six screens for antibiotic activity. These isolates exhibited bio-diversity in enzymatic characteristics and carbon utilization profiles. The physiological characteristics of the isolates from different types of crusts or bare sand samples were specific to their respective micro-ecological environments. Our study revealed that members of the family Geodermatophilaceae were ubiquitous, abundant, and diverse in Shapotou NDER, and these strains may represent a new major group of potential functional actinobacteria in desert soil.
Metabolic-flux dependent regulation of microbial physiology.
Litsios, Athanasios; Ortega, Álvaro D; Wit, Ernst C; Heinemann, Matthias
2018-04-01
According to the most prevalent notion, changes in cellular physiology primarily occur in response to altered environmental conditions. Yet, recent studies have shown that changes in metabolic fluxes can also trigger phenotypic changes even when environmental conditions are unchanged. This suggests that cells have mechanisms in place to assess the magnitude of metabolic fluxes, that is, the rate of metabolic reactions, and use this information to regulate their physiology. In this review, we describe recent evidence for metabolic flux-sensing and flux-dependent regulation. Furthermore, we discuss how such sensing and regulation can be mechanistically achieved and present a set of new candidates for flux-signaling metabolites. Similar to metabolic-flux sensing, we argue that cells can also sense protein translation flux. Finally, we elaborate on the advantages that flux-based regulation can confer to cells. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
Thyroid Hormones and Growth in Health and Disease
Tarım, Ömer
2011-01-01
Thyroid hormones regulate growth by several mechanisms. In addition to their negative feedback effect on the stimulatory hormones thyrotropin-releasing hormone (TRH) and thyrotropin (TSH), thyroid hormones also regulate their receptors in various physiological and pathological conditions. Up-regulation and down-regulation of the thyroid receptors fine-tune the biological effects exerted by the thyroid hormones. Interestingly, the deiodinase enzyme system is another intrinsic regulator of thyroid physiology that adjusts the availability of thyroid hormones to the tissues, which is essential for normal growth and development. Almost all chronic diseases of childhood impair growth and development. Every disease may have a unique mechanism to halt linear growth, but reduced serum concentration or diminished local availability of thyroid hormones seems to be a common pathway. Therefore, the effects of systemic diseases on thyroid physiology must be taken into consideration in the evaluation of growth retardation in affected children. Conflict of interest:None declared. PMID:21750631
Bailey, Ulla-Maja; Punyadeera, Chamindie; Cooper-White, Justin J; Schulz, Benjamin L
2012-12-12
Saliva is a crucial biofluid for oral health and is also of increasing importance as a non-invasive source of disease biomarkers. Salivary alpha-amylase is an abundant protein in saliva, and changes in amylase expression have been previously associated with a variety of diseases and conditions. Salivary alpha-amylase is subject to a high diversity of post-translational modifications, including physiological proteolysis in the oral cavity. Here we developed methodology for rapid sample preparation and non-targeted LC-ESI-MS/MS analysis of saliva from healthy subjects and observed an extreme diversity of alpha-amylase proteolytic isoforms. Our results emphasize the importance of consideration of post-translational events such as proteolysis in proteomic studies, biomarker discovery and validation, particularly in saliva. Copyright © 2012 Elsevier B.V. All rights reserved.
Kinetic Adaptations of Myosins for their Diverse Cellular Functions
Heissler, Sarah M.; Sellers, James R.
2016-01-01
Members of the myosin superfamily are involved in all aspects of eukaryotic life. Their function ranges from the transport of organelles and cargos to the generation of membrane tension, and the contraction of muscle. The diversity of physiological functions is remarkable, given that all enzymatically active myosins follow a conserved mechanoenzymatic cycle in which the hydrolysis of ATP to ADP and inorganic phosphate is coupled to either actin-based transport or tethering of actin to defined cellular compartments. Kinetic capacities and limitations of a myosin are determined by the extent to with actin can accelerate the hydrolysis of ATP and the release of the hydrolysis products and are indispensably linked to its physiological tasks. This review focuses on kinetic competencies that – together with structural adaptations – result in myosins with unique mechanoenzymatic properties targeted to their diverse cellular function. PMID:26929436
Genetic and DNA Methylation Changes in Cotton (Gossypium) Genotypes and Tissues
Osabe, Kenji; Clement, Jenny D.; Bedon, Frank; Pettolino, Filomena A.; Ziolkowski, Lisa; Llewellyn, Danny J.; Finnegan, E. Jean; Wilson, Iain W.
2014-01-01
In plants, epigenetic regulation is important in normal development and in modulating some agronomic traits. The potential contribution of DNA methylation mediated gene regulation to phenotypic diversity and development in cotton was investigated between cotton genotypes and various tissues. DNA methylation diversity, genetic diversity, and changes in methylation context were investigated using methylation-sensitive amplified polymorphism (MSAP) assays including a methylation insensitive enzyme (BsiSI), and the total DNA methylation level was measured by high-performance liquid chromatography (HPLC). DNA methylation diversity was greater than the genetic diversity in the selected cotton genotypes and significantly different levels of DNA methylation were identified between tissues, including fibre. The higher DNA methylation diversity (CHG methylation being more diverse than CG methylation) in cotton genotypes suggest epigenetic regulation may be important for cotton, and the change in DNA methylation between fibre and other tissues hints that some genes may be epigenetically regulated for fibre development. The novel approach using BsiSI allowed direct comparison between genetic and epigenetic diversity, and also measured CC methylation level that cannot be detected by conventional MSAP. PMID:24465864
Genetic and DNA methylation changes in cotton (Gossypium) genotypes and tissues.
Osabe, Kenji; Clement, Jenny D; Bedon, Frank; Pettolino, Filomena A; Ziolkowski, Lisa; Llewellyn, Danny J; Finnegan, E Jean; Wilson, Iain W
2014-01-01
In plants, epigenetic regulation is important in normal development and in modulating some agronomic traits. The potential contribution of DNA methylation mediated gene regulation to phenotypic diversity and development in cotton was investigated between cotton genotypes and various tissues. DNA methylation diversity, genetic diversity, and changes in methylation context were investigated using methylation-sensitive amplified polymorphism (MSAP) assays including a methylation insensitive enzyme (BsiSI), and the total DNA methylation level was measured by high-performance liquid chromatography (HPLC). DNA methylation diversity was greater than the genetic diversity in the selected cotton genotypes and significantly different levels of DNA methylation were identified between tissues, including fibre. The higher DNA methylation diversity (CHG methylation being more diverse than CG methylation) in cotton genotypes suggest epigenetic regulation may be important for cotton, and the change in DNA methylation between fibre and other tissues hints that some genes may be epigenetically regulated for fibre development. The novel approach using BsiSI allowed direct comparison between genetic and epigenetic diversity, and also measured CC methylation level that cannot be detected by conventional MSAP.
Aguirre von Wobeser, Eneas; Ibelings, Bas W.; Bok, Jasper; Krasikov, Vladimir; Huisman, Jef; Matthijs, Hans C.P.
2011-01-01
Physiological adaptation and genome-wide expression profiles of the cyanobacterium Synechocystis sp. strain PCC 6803 in response to gradual transitions between nitrogen-limited and light-limited growth conditions were measured in continuous cultures. Transitions induced changes in pigment composition, light absorption coefficient, photosynthetic electron transport, and specific growth rate. Physiological changes were accompanied by reproducible changes in the expression of several hundred open reading frames, genes with functions in photosynthesis and respiration, carbon and nitrogen assimilation, protein synthesis, phosphorus metabolism, and overall regulation of cell function and proliferation. Cluster analysis of the nearly 1,600 regulated open reading frames identified eight clusters, each showing a different temporal response during the transitions. Two large clusters mirrored each other. One cluster included genes involved in photosynthesis, which were up-regulated during light-limited growth but down-regulated during nitrogen-limited growth. Conversely, genes in the other cluster were down-regulated during light-limited growth but up-regulated during nitrogen-limited growth; this cluster included several genes involved in nitrogen uptake and assimilation. These results demonstrate complementary regulation of gene expression for two major metabolic activities of cyanobacteria. Comparison with batch-culture experiments revealed interesting differences in gene expression between batch and continuous culture and illustrates that continuous-culture experiments can pick up subtle changes in cell physiology and gene expression. PMID:21205618
Physiological and Cognitive Effects of Expressive Dissonance
ERIC Educational Resources Information Center
Robinson, Jennifer L.; Demaree, Heath A.
2007-01-01
Emotional well-being depends in part on affect modulation. The present study extends research on emotion regulation by assessing the physiological and cognitive effects of a novel response-focused regulation strategy, termed "expressive dissonance." Expressive dissonance refers to the incongruence between an emotional state (e.g., sadness) and a…
Experiencing and Regulating Sadness: Physiological and Cognitive Effects
ERIC Educational Resources Information Center
Robinson, Jennifer L.; Demaree, Heath A.
2009-01-01
No prior study has examined the two most prominent response-focused regulation strategies (suppression and exaggeration) using a within-subjects design. Utilizing this design allows for a direct comparison of physiological patterns and cognitive impairment associated with such efforts. One hundred and nine participants were asked to view a series…
Barber, Annika F; Erion, Renske; Holmes, Todd C; Sehgal, Amita
2016-12-01
Circadian clocks regulate much of behavior and physiology, but the mechanisms by which they do so remain poorly understood. While cyclic gene expression is thought to underlie metabolic rhythms, little is known about cycles in cellular physiology. We found that Drosophila insulin-producing cells (IPCs), which are located in the pars intercerebralis and lack an autonomous circadian clock, are functionally connected to the central circadian clock circuit via DN1 neurons. Insulin mediates circadian output by regulating the rhythmic expression of a metabolic gene (sxe2) in the fat body. Patch clamp electrophysiology reveals that IPCs display circadian clock-regulated daily rhythms in firing event frequency and bursting proportion under light:dark conditions. The activity of IPCs and the rhythmic expression of sxe2 are additionally regulated by feeding, as demonstrated by night feeding-induced changes in IPC firing characteristics and sxe2 levels in the fat body. These findings indicate circuit-level regulation of metabolism by clock cells in Drosophila and support a role for the pars intercerebralis in integrating circadian control of behavior and physiology. © 2016 Barber et al.; Published by Cold Spring Harbor Laboratory Press.
Leerkes, Esther M.; Su, Jinni; Calkins, Susan D.; O’Brien, Marion; Supple, Andrew J.
2017-01-01
The extent to which indices of maternal physiological arousal (skin conductance augmentation) and regulation (vagal withdrawal) while parenting predict infant attachment disorganization and behavior problems directly or indirectly via maternal sensitivity was examined in a sample of 259 mothers and their infants. Two covariates, maternal self-reported emotional risk and AAI attachment coherence were assessed prenatally. Mothers’ physiological arousal and regulation were measured during parenting tasks when infants were 6 months old. Maternal sensitivity was observed during distress-eliciting tasks when infants were 6 and 14 months old, and an average sensitivity score was calculated. Attachment disorganization was observed during the Strange Situation when infants were 14 months old and mothers reported on infants’ behavior problems when infants were 27 months old. Over and above covariates, mothers’ arousal and regulation while parenting interacted to predict infant attachment disorganization and behavior problems such that maternal arousal was associated with higher attachment disorganization and behavior problems when maternal regulation was low but not when maternal regulation was high. This effect was direct and not explained by maternal sensitivity. Results suggest that maternal physiological dysregulation while parenting places infants at risk for psychopathology. PMID:26902983
Leerkes, Esther M; Su, Jinni; Calkins, Susan D; O'Brien, Marion; Supple, Andrew J
2017-02-01
The extent to which indices of maternal physiological arousal (skin conductance augmentation) and regulation (vagal withdrawal) while parenting predict infant attachment disorganization and behavior problems directly or indirectly via maternal sensitivity was examined in a sample of 259 mothers and their infants. Two covariates, maternal self-reported emotional risk and Adult Attachment Interview attachment coherence were assessed prenatally. Mothers' physiological arousal and regulation were measured during parenting tasks when infants were 6 months old. Maternal sensitivity was observed during distress-eliciting tasks when infants were 6 and 14 months old, and an average sensitivity score was calculated. Attachment disorganization was observed during the Strange Situation when infants were 14 months old, and mothers reported on infants' behavior problems when infants were 27 months old. Over and above covariates, mothers' arousal and regulation while parenting interacted to predict infant attachment disorganization and behavior problems such that maternal arousal was associated with higher attachment disorganization and behavior problems when maternal regulation was low but not when maternal regulation was high. This effect was direct and not explained by maternal sensitivity. The results suggest that maternal physiological dysregulation while parenting places infants at risk for psychopathology.
Kolbert, Zsuzsanna; Feigl, Gábor; Bordé, Ádám; Molnár, Árpád; Erdei, László
2017-04-01
Nitric oxide (NO) and related molecules (reactive nitrogen species) regulate diverse physiological processes mainly through posttranslational modifications such as protein tyrosine nitration (PTN). PTN is a covalent and specific modification of tyrosine (Tyr) residues resulting in altered protein structure and function. In the last decade, great efforts have been made to reveal candidate proteins, target Tyr residues and functional consequences of nitration in plants. This review intends to evaluate the accumulated knowledge about the biochemical mechanism, the structural and functional consequences and the selectivity of plants' protein nitration and also about the decomposition or conversion of nitrated proteins. At the same time, this review emphasizes yet unanswered or uncertain questions such as the reversibility/irreversibility of tyrosine nitration, the involvement of proteasomes in the removal of nitrated proteins or the effect of nitration on Tyr phosphorylation. The different NO producing systems of algae and higher plants raise the possibility of diversely regulated protein nitration. Therefore studying PTN from an evolutionary point of view would enrich our present understanding with novel aspects. Plant proteomic research can be promoted by the application of computational prediction tools such as GPS-YNO 2 and iNitro-Tyr software. Using the reference Arabidopsis proteome, Authors performed in silico analysis of tyrosine nitration in order to characterize plant tyrosine nitroproteome. Nevertheless, based on the common results of the present prediction and previous experiments the most likely nitrated proteins were selected thus recommending candidates for detailed future research. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Signaling network of the Btk family kinases.
Qiu, Y; Kung, H J
2000-11-20
The Btk family kinases represent new members of non-receptor tyrosine kinases, which include Btk/Atk, Itk/Emt/Tsk, Bmx/Etk, and Tec. They are characterized by having four structural modules: PH (pleckstrin homology) domain, SH3 (Src homology 3) domain, SH2 (Src homology 2) domain and kinase (Src homology 1) domain. Increasing evidence suggests that, like Src-family kinases, Btk family kinases play central but diverse modulatory roles in various cellular processes. They participate in signal transduction in response to virtually all types of extracellular stimuli which are transmitted by growth factor receptors, cytokine receptors, G-protein coupled receptors, antigen-receptors and integrins. They are regulated by many non-receptor tyrosine kinases such as Src, Jak, Syk and FAK family kinases. In turn, they regulate many of major signaling pathways including those of PI3K, PLCgamma and PKC. Both genetic and biochemical approaches have been used to dissect the signaling pathways and elucidate their roles in growth, differentiation and apoptosis. An emerging new role of this family of kinases is cytoskeletal reorganization and cell motility. The physiological importance of these kinases was amply demonstrated by their link to the development of immunodeficiency diseases, due to germ-line mutations. The present article attempts to review the structure and functions of Btk family kinases by summarizing our current knowledge on the interacting partners associated with the different modules of the kinases and the diverse signaling pathways in which they are involved.
Wie, Jinhong; Jeong, SeungJoo; Kwak, Misun; Myeong, Jongyun; Chae, MeeRee; Park, Jong Kwan; Lee, Sung Won; So, Insuk
2017-06-01
The transient receptor potential (TRP) protein superfamily consists of a diverse group of cation channels that bear structural similarities to the fruit fly Drosophila TRP. The TRP superfamily is distinct from other groups of ion channels in displaying a large diversity in ion selectivity, modes of activation, and physiological functions. Classical TRP (transient receptor potential canonical (TRPC)) channels are activated by stimulation of Gq-PLC-coupled receptors and modulated by phosphorylation. The cyclic guanosine monophosphate (cGMP)-PKG pathway is involved in the regulation of TRPC3 and TRPC6 channels. Phosphodiesterase (PDE) 5 inhibitor induced muscle relaxation in corporal smooth muscle cells and was used to treat erectile dysfunction by inhibiting cGMP degradation. Here, we report the functional relationship between TRPC4 and cGMP. In human embryonic kidney (HEK) 293 cells overexpressing TRPC4, cGMP selectively activated TRPC4 channels and increased cytosolic calcium level through TRPC4 channel. We investigated phosphorylation sites in TRPC4 channels and identified S688 as an important phosphorylation site for the cGMP-PKG pathway. Cyclic GMP also activated TRPC4-like current with doubly rectifying current-voltage relationship in prostate smooth muscle cell lines. Taken together, these results show that TRPC4 is phosphorylated by the cGMP-PKG pathway and might be an important target for modulating prostate function by PDE5 inhibitors.
Microbial communities in carbonate rocks-from soil via groundwater to rocks.
Meier, Aileen; Singh, Manu K; Kastner, Anne; Merten, Dirk; Büchel, Georg; Kothe, Erika
2017-09-01
Microbial communities in soil, groundwater, and rock of two sites in limestone were investigated to determine community parameters differentiating habitats in two lithostratigraphic untis. Lower Muschelkalk and Middle Muschelkalk associated soils, groundwater, and rock samples showed different, but overlapping microbial communities linked to carbon fluxes. The microbial diversities in soil were highest, groundwater revealed overlapping taxa but lower diversity, and rock samples were predominantly characterized by endospore forming bacteria and few archaea. Physiological profiles could establish a differentiation between habitats (soil, groundwater, rock). From community analyses and physiological profiles, different element cycles in limestone could be identified for the three habitats. While in soil, nitrogen cycling was identified as specific determinant, in rock methanogenesis linked carbonate rock to atmospheric methane cycles. These patterns specifically allowed for delineation of lithostratigraphic connections to physiological parameters. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Selective Enrichment and Direct Analysis of Protein S-Palmitoylation Sites.
Thinon, Emmanuelle; Fernandez, Joseph P; Molina, Henrik; Hang, Howard C
2018-05-04
S-Fatty-acylation is the covalent attachment of long chain fatty acids, predominately palmitate (C16:0, S-palmitoylation), to cysteine (Cys) residues via a thioester linkage on proteins. This post-translational and reversible lipid modification regulates protein function and localization in eukaryotes and is important in mammalian physiology and human diseases. While chemical labeling methods have improved the detection and enrichment of S-fatty-acylated proteins, mapping sites of modification and characterizing the endogenously attached fatty acids are still challenging. Here, we describe the integration and optimization of fatty acid chemical reporter labeling with hydroxylamine-mediated enrichment of S-fatty-acylated proteins and direct tagging of modified Cys residues to selectively map lipid modification sites. This afforded improved enrichment and direct identification of many protein S-fatty-acylation sites compared to previously described methods. Notably, we directly identified the S-fatty-acylation sites of IFITM3, an important interferon-stimulated inhibitor of virus entry, and we further demonstrated that the highly conserved Cys residues are primarily modified by palmitic acid. The methods described here should facilitate the direct analysis of protein S-fatty-acylation sites and their endogenously attached fatty acids in diverse cell types and activation states important for mammalian physiology and diseases.
Modular extracellular sensor architecture for engineering mammalian cell-based devices.
Daringer, Nichole M; Dudek, Rachel M; Schwarz, Kelly A; Leonard, Joshua N
2014-12-19
Engineering mammalian cell-based devices that monitor and therapeutically modulate human physiology is a promising and emerging frontier in clinical synthetic biology. However, realizing this vision will require new technologies enabling engineered circuitry to sense and respond to physiologically relevant cues. No existing technology enables an engineered cell to sense exclusively extracellular ligands, including proteins and pathogens, without relying upon native cellular receptors or signal transduction pathways that may be subject to crosstalk with native cellular components. To address this need, we here report a technology we term a Modular Extracellular Sensor Architecture (MESA). This self-contained receptor and signal transduction platform is maximally orthogonal to native cellular processes and comprises independent, tunable protein modules that enable performance optimization and straightforward engineering of novel MESA that recognize novel ligands. We demonstrate ligand-inducible activation of MESA signaling, optimization of receptor performance using design-based approaches, and generation of MESA biosensors that produce outputs in the form of either transcriptional regulation or transcription-independent reconstitution of enzymatic activity. This systematic, quantitative platform characterization provides a framework for engineering MESA to recognize novel ligands and for integrating these sensors into diverse mammalian synthetic biology applications.
Naufahu, Jane; Cunliffe, Adam D; Murray, Joanne F
2013-01-01
Melanin-concentrating hormone (MCH) is an anabolic neuropeptide with multiple and diverse physiological functions including a key role in energy homoeostasis. Rodent studies have shown that the ablation of functional MCH results in a lean phenotype, increased energy expenditure and resistance to diet-induced obesity. These findings have generated interest among pharmaceutical companies vigilant for potential anti-obesity agents. Nutritional status affects reproductive physiology and behaviours, thereby optimising reproductive success and the ability to meet energetic demands. This complex control system entails the integration of direct or indirect peripheral stimuli with central effector systems and involves numerous mediators. A role for MCH in the reproductive axis has emerged, giving rise to the premise that MCH may serve as an integratory mediator between those discrete systems that regulate energy balance and reproductive function. Hence, this review focuses on published evidence concerning i) the role of MCH in energy homoeostasis and ii) the regulatory role of MCH in the reproductive axis. The question as to whether the MCH system mediates the integration of energy homoeostasis with the neuroendocrine reproductive axis and, if so, by what means has received limited coverage in the literature; evidence to date and current theories are summarised herein.
Insect capa neuropeptides impact desiccation and cold tolerance
Terhzaz, Selim; Teets, Nicholas M.; Cabrero, Pablo; Henderson, Louise; Ritchie, Michael G.; Nachman, Ronald J.; Dow, Julian A. T.; Denlinger, David L.; Davies, Shireen-A.
2015-01-01
The success of insects is linked to their impressive tolerance to environmental stress, but little is known about how such responses are mediated by the neuroendocrine system. Here we show that the capability (capa) neuropeptide gene is a desiccation- and cold stress-responsive gene in diverse dipteran species. Using targeted in vivo gene silencing, physiological manipulations, stress-tolerance assays, and rationally designed neuropeptide analogs, we demonstrate that the Drosophila melanogaster capa neuropeptide gene and its encoded peptides alter desiccation and cold tolerance. Knockdown of the capa gene increases desiccation tolerance but lengthens chill coma recovery time, and injection of capa peptide analogs can reverse both phenotypes. Immunohistochemical staining suggests that capa accumulates in the capa-expressing Va neurons during desiccation and nonlethal cold stress but is not released until recovery from each stress. Our results also suggest that regulation of cellular ion and water homeostasis mediated by capa peptide signaling in the insect Malpighian (renal) tubules is a key physiological mechanism during recovery from desiccation and cold stress. This work augments our understanding of how stress tolerance is mediated by neuroendocrine signaling and illustrates the use of rationally designed peptide analogs as agents for disrupting protective stress tolerance. PMID:25730885
Lee, Sooyeon
2016-01-01
Lactation is a dynamic process that has evolved to produce a complex biological fluid that provides nutritive and nonnutritive factors to the nursing offspring. It has long been assumed that once lactation is successfully initiated, the primary factor regulating milk production is infant demand. Thus, most interventions have focused on improving breastfeeding education and early lactation support. However, in addition to infant demand, increasing evidence from studies conducted in experimental animal models, production animals, and breastfeeding women suggests that a diverse array of maternal factors may also affect milk production and composition. In this review, we provide an overview of our current understanding of the role of maternal genetics and modifiable factors, such as diet and environmental exposures, on reproductive endocrinology, lactation physiology, and the ability to successfully produce milk. To identify factors that may affect lactation in women, we highlight some information gleaned from studies in experimental animal models and production animals. Finally, we highlight the gaps in current knowledge and provide commentary on future research opportunities aimed at improving lactation outcomes in breastfeeding women to improve the health of mothers and their infants. PMID:27354238
CellLineNavigator: a workbench for cancer cell line analysis
Krupp, Markus; Itzel, Timo; Maass, Thorsten; Hildebrandt, Andreas; Galle, Peter R.; Teufel, Andreas
2013-01-01
The CellLineNavigator database, freely available at http://www.medicalgenomics.org/celllinenavigator, is a web-based workbench for large scale comparisons of a large collection of diverse cell lines. It aims to support experimental design in the fields of genomics, systems biology and translational biomedical research. Currently, this compendium holds genome wide expression profiles of 317 different cancer cell lines, categorized into 57 different pathological states and 28 individual tissues. To enlarge the scope of CellLineNavigator, the database was furthermore closely linked to commonly used bioinformatics databases and knowledge repositories. To ensure easy data access and search ability, a simple data and an intuitive querying interface were implemented. It allows the user to explore and filter gene expression, focusing on pathological or physiological conditions. For a more complex search, the advanced query interface may be used to query for (i) differentially expressed genes; (ii) pathological or physiological conditions; or (iii) gene names or functional attributes, such as Kyoto Encyclopaedia of Genes and Genomes pathway maps. These queries may also be combined. Finally, CellLineNavigator allows additional advanced analysis of differentially regulated genes by a direct link to the Database for Annotation, Visualization and Integrated Discovery (DAVID) Bioinformatics Resources. PMID:23118487
The physiological diversity and similarity of ten Quercus species
Shi-Jean S. Sung; M.N. Angelov; R.R. Doong; W.R. Harms; Paul P. Kormanik; C.C. Black
1994-01-01
Based on anatomical, photosynthetic, and biochemical data, the range of physiological differences and similarities was defined for ten Quercus species. There were no correlations between species' site adaptability, leaf anatomy and photosynthetic rate (A). It is concluded from these data that each oak species must be treated individually when incorporated into...
MicroRNA-200c: A Novel Way to Attack Breast Cancer Metastases by Restoring the Epithelial Phenotype
2012-02-01
complex relationships and reveal the extent to whichmiRNAs are involved with SHRs in normal physiology and the pathobiology of steroid hormoneene regulation...proges- terone counteracts estrogen-mediated proliferation. To determine whethermiRNAs play a physiological role inmodulating hormonal control of gene...effect on uterine physiology to ate is the finding that P4/PGR affects uterine contractility during abor via regulation of ZEB1 and the miR-200 family
Thoma, M V; Scholz, U; Ehlert, U; Nater, U M
2012-01-01
Music listening has been suggested to have short-term beneficial effects. The aim of this study was to investigate the association and potential mediating mechanisms between various aspects of habitual music-listening behaviour and physiological and psychological functioning. An internet-based survey was conducted in university students, measuring habitual music-listening behaviour, emotion regulation, stress reactivity, as well as physiological and psychological functioning. A total of 1230 individuals (mean = 24.89 ± 5.34 years, 55.3% women) completed the questionnaire. Quantitative aspects of habitual music-listening behaviour, i.e. average duration of music listening and subjective relevance of music, were not associated with physiological and psychological functioning. In contrast, qualitative aspects, i.e. reasons for listening (especially 'reducing loneliness and aggression', and 'arousing or intensifying specific emotions') were significantly related to physiological and psychological functioning (all p = 0.001). These direct effects were mediated by distress-augmenting emotion regulation and individual stress reactivity. The habitual music-listening behaviour appears to be a multifaceted behaviour that is further influenced by dispositions that are usually not related to music listening. Consequently, habitual music-listening behaviour is not obviously linked to physiological and psychological functioning.
Envisioning, quantifying, and managing thermal regimes on river networks
E. Ashley Steel; Timothy J. Beechie; Christian E. Torgersen; Aimee H. Fullerton
2017-01-01
Water temperatures fluctuate in time and space, creating diverse thermal regimes on river networks. Temporal variability in these thermal landscapes has important biological and ecological consequences because of nonlinearities in physiological reactions; spatial diversity in thermal landscapes provides aquatic organisms with options to maximize growth and survival....
Emotion regulation and emotion coherence: evidence for strategy-specific effects.
Dan-Glauser, Elise S; Gross, James J
2013-10-01
One of the central tenets of emotion theory is that emotions involve coordinated changes across experiential, behavioral, and physiological response domains. Surprisingly little is known, however, about how the strength of this emotion coherence is altered when people try to regulate their emotions. To address this issue, we recorded experiential, behavioral, and physiological responses while participants watched negative and positive pictures. Cross-correlations were used to quantify emotion coherence. Study 1 tested how two types of suppression (expressive and physiological) influence coherence. Results showed that both strategies decreased the response coherence measured in negative and positive contexts. Study 2 tested how multichannel suppression (simultaneously targeting expressive and physiological responses) and acceptance influence emotion coherence. Results again showed that suppression decreased coherence. By contrast, acceptance was not significantly different from the unregulated condition. These findings help to clarify the nature of emotion response coherence by showing how different forms of emotion regulation may differentially affect it.
Wei, Jiankai; Zhang, Xiaojun; Yu, Yang; Li, Fuhua; Xiang, Jianhai
2014-09-01
The Pacific white shrimp (Litopenaeus vannamei), with high commercial value, has a typical metamorphosis pattern by going through embryo, nauplius, zoea, mysis and postlarvae during early development. Its diets change continually in this period, and a high mortality of larvae also occurs in this period. Since there is a close relationship between diets and digestive enzymes, a comprehensive investigation about the types and expression patterns of all digestive enzyme genes during early development of L. vannamei is of considerable significance for shrimp diets and larvae culture. Using RNA-Seq data, the types and expression characteristics of the digestive enzyme genes were analyzed during five different development stages (embryo, nauplius, zoea, mysis and postlarvae) in L. vannamei. Among the obtained 66,815 unigenes, 296 were annotated as 16 different digestive enzymes including five types of carbohydrase, seven types of peptidase and four types of lipase. Such a diverse suite of enzymes illustrated the capacity of L. vannamei to exploit varied diets to fit their nutritional requirements. The analysis of their dynamic expression patterns during development also indicated the importance of transcriptional regulation to adapt to the diet transition. Our study revealed the diverse and dynamic features of digestive enzymes during early development of L. vannamei. These results would provide support to better understand the physiological changes during diet transition. Copyright © 2014 Elsevier Inc. All rights reserved.
Keeling, Christopher I; Bohlmann, Jörg
2006-01-01
Insects select their hosts, but trees cannot select which herbivores will feed upon them. Thus, as long-lived stationary organisms, conifers must resist the onslaught of varying and multiple attackers over their lifetime. Arguably, the greatest threats to conifers are herbivorous insects and their associated pathogens. Insects such as bark beetles, stem- and wood-boring insects, shoot-feeding weevils, and foliage-feeding budworms and sawflies are among the most devastating pests of conifer forests. Conifer trees produce a great diversity of compounds, such as an enormous array of terpenoids and phenolics, that may impart resistance to a variety of herbivores and microorganisms. Insects have evolved to specialize in resistance to these chemicals -- choosing, feeding upon, and colonizing hosts they perceive to be best suited to reproduction. This review focuses on the plant-insect interactions mediated by conifer-produced terpenoids. To understand the role of terpenoids in conifer-insect interactions, we must understand how conifers produce the wide diversity of terpenoids, as well as understand how these specific compounds affect insect behaviour and physiology. This review examines what chemicals are produced, the genes and proteins involved in their biosynthesis, how they work, and how they are regulated. It also examines how insects and their associated pathogens interact with, elicit, and are affected by conifer-produced terpenoids.
Takahashi, Toshio
2013-06-01
Peptides are known to play important developmental and physiological roles in signaling. The rich diversity of peptides, with functions as diverse as intercellular communication, neurotransmission and signaling that spatially and temporally controls axis formation and cell differentiation, hints at the wealth of information passed between interacting cells. Little is known about peptides that control developmental processes such as cell differentiation and pattern formation in metazoans. The cnidarian Hydra is one of the most basic metazoans and is a key model system for study of the peptides involved in these processes. We developed a novel peptidomic approach for the isolation and identification of functional peptide signaling molecules from Hydra (the Hydra Peptide Project). Over the course of this project, a wide variety of novel neuropeptides were identified. Most of these peptides act directly on muscle cells and their functions include induction of contraction and relaxation. Some peptides are involved in cell differentiation and morphogenesis. Moreover, epitheliopeptides that are produced by epithelial cells were originally identified in Hydra. Some of these epitheliopeptides exhibit morphogen-like activities, whereas others are involved in regulating neuron differentiation, possibly through neuron-epithelial cell interactions. We also describe below our high-throughput reverse-phase nano-flow LCMALDI- TOF-MS/MS approach, which has proved a powerful tool for the discovery of novel peptide signaling molecules in Hydra.
Kivlin, Stephanie N; Hawkes, Christine V
2016-01-01
The high diversity of tree species has traditionally been considered an important controller of belowground processes in tropical rainforests. However, soil water availability and resources are also primary regulators of soil bacteria in many ecosystems. Separating the effects of these biotic and abiotic factors in the tropics is challenging because of their high spatial and temporal heterogeneity. To determine the drivers of tropical soil bacteria, we examined tree species effects using experimental tree monocultures and secondary forests at La Selva Biological Station in Costa Rica. A randomized block design captured spatial variation and we sampled at four dates across two years to assess temporal variation. We measured bacteria richness, phylogenetic diversity, community composition, biomass, and functional potential. All bacteria parameters varied significantly across dates. In addition, bacteria richness and phylogenetic diversity were affected by the interaction of vegetation type and date, whereas bacteria community composition was affected by the interaction of vegetation type and block. Shifts in bacteria community richness and composition were unrelated to shifts in enzyme function, suggesting physiological overlap among taxa. Based on the observed temporal and spatial heterogeneity, our understanding of tropical soil bacteria will benefit from additional work to determine the optimal temporal and spatial scales for sampling. Understanding spatial and temporal variation will facilitate prediction of how tropical soil microbes will respond to future environmental change. PMID:27391450
Kivlin, Stephanie N; Hawkes, Christine V
2016-01-01
The high diversity of tree species has traditionally been considered an important controller of belowground processes in tropical rainforests. However, soil water availability and resources are also primary regulators of soil bacteria in many ecosystems. Separating the effects of these biotic and abiotic factors in the tropics is challenging because of their high spatial and temporal heterogeneity. To determine the drivers of tropical soil bacteria, we examined tree species effects using experimental tree monocultures and secondary forests at La Selva Biological Station in Costa Rica. A randomized block design captured spatial variation and we sampled at four dates across two years to assess temporal variation. We measured bacteria richness, phylogenetic diversity, community composition, biomass, and functional potential. All bacteria parameters varied significantly across dates. In addition, bacteria richness and phylogenetic diversity were affected by the interaction of vegetation type and date, whereas bacteria community composition was affected by the interaction of vegetation type and block. Shifts in bacteria community richness and composition were unrelated to shifts in enzyme function, suggesting physiological overlap among taxa. Based on the observed temporal and spatial heterogeneity, our understanding of tropical soil bacteria will benefit from additional work to determine the optimal temporal and spatial scales for sampling. Understanding spatial and temporal variation will facilitate prediction of how tropical soil microbes will respond to future environmental change.
Small regulatory RNA-induced growth rate heterogeneity of Bacillus subtilis.
Mars, Ruben A T; Nicolas, Pierre; Ciccolini, Mariano; Reilman, Ewoud; Reder, Alexander; Schaffer, Marc; Mäder, Ulrike; Völker, Uwe; van Dijl, Jan Maarten; Denham, Emma L
2015-03-01
Isogenic bacterial populations can consist of cells displaying heterogeneous physiological traits. Small regulatory RNAs (sRNAs) could affect this heterogeneity since they act by fine-tuning mRNA or protein levels to coordinate the appropriate cellular behavior. Here we show that the sRNA RnaC/S1022 from the Gram-positive bacterium Bacillus subtilis can suppress exponential growth by modulation of the transcriptional regulator AbrB. Specifically, the post-transcriptional abrB-RnaC/S1022 interaction allows B. subtilis to increase the cell-to-cell variation in AbrB protein levels, despite strong negative autoregulation of the abrB promoter. This behavior is consistent with existing mathematical models of sRNA action, thus suggesting that induction of protein expression noise could be a new general aspect of sRNA regulation. Importantly, we show that the sRNA-induced diversity in AbrB levels generates heterogeneity in growth rates during the exponential growth phase. Based on these findings, we hypothesize that the resulting subpopulations of fast- and slow-growing B. subtilis cells reflect a bet-hedging strategy for enhanced survival of unfavorable conditions.
Boyce, Kylie J; Andrianopoulos, Alex
2015-11-01
The ability of pathogenic fungi to switch between a multicellular hyphal and unicellular yeast growth form is a tightly regulated process known as dimorphic switching. Dimorphic switching requires the fungus to sense and respond to the host environment and is essential for pathogenicity. This review will focus on the role of dimorphism in fungi commonly called thermally dimorphic fungi, which switch to a yeast growth form during infection. This group of phylogenetically diverse ascomycetes includes Talaromyces marneffei (recently renamed from Penicillium marneffei), Blastomyces dermatitidis (teleomorph Ajellomyces dermatitidis), Coccidioides species (C. immitis and C. posadasii), Histoplasma capsulatum (teleomorph Ajellomyces capsulatum), Paracoccidioides species (P. brasiliensis and P. lutzii) and Sporothrix schenckii (teleomorph Ophiostoma schenckii). This review will explore both the signalling pathways regulating the morphological transition and the transcriptional responses necessary for intracellular growth. The physiological requirements of yeast cells during infection will also be discussed, highlighting recent advances in the understanding of the role of iron and calcium acquisition during infection. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Yin, Pengbin; Lv, Houchen; Li, Yi; Deng, Yuan; Zhang, Licheng; Tang, Peifu
2017-01-01
The skeletal system functions and maintains itself based on communication between cells of diverse origins, especially between osteoblasts (OBs) and osteoclasts (OCs), accounting for bone formation and resorption, respectively. Previously, protein-level information exchange has been the research focus, and this has been discussed in detail. The regulative effects of microRNAs (miRNAs) on OB and OC ignite the question as to whether genetic information could be transferred between bone cells. Exosomes, extracellular membrane vesicles 30-100 nm in diameter, have recently been demonstrated to transfer functional proteins, mRNAs, and miRNAs, and serve as mediators of intercellular communication. By reviewing the distinguishing features of exosomes, a hypothesis was formulated and evaluated in this article that exosome-mediated genetic information transfer may represent a novel strategy for OB-OC communication. The exosomes may coordinately regulate these two cells under certain physiological conditions by transferring genetic information. Further research in exosome-shuttered miRNAs in OB-OC communication may add a missing piece to the bone cells communication "puzzle."
Dysregulation of Mammalian Target of Rapamycin Signaling in Mouse Models of Autism.
Huber, Kimberly M; Klann, Eric; Costa-Mattioli, Mauro; Zukin, R Suzanne
2015-10-14
The mammalian target of rapamycin (mTOR) is a central regulator of a diverse array of cellular processes, including cell growth, proliferation, autophagy, translation, and actin polymerization. Components of the mTOR cascade are present at synapses and influence synaptic plasticity and spine morphogenesis. A prevailing view is that the study of mTOR and its role in autism spectrum disorders (ASDs) will elucidate the molecular mechanisms by which mTOR regulates neuronal function under physiological and pathological conditions. Although many ASDs arise as a result of mutations in genes with multiple molecular functions, they appear to converge on common biological pathways that give rise to autism-relevant behaviors. Dysregulation of mTOR signaling has been identified as a phenotypic feature common to fragile X syndrome, tuberous sclerosis complex 1 and 2, neurofibromatosis 1, phosphatase and tensin homolog, and potentially Rett syndrome. Below are a summary of topics covered in a symposium that presents dysregulation of mTOR as a unifying theme in a subset of ASDs. Copyright © 2015 the authors 0270-6474/15/3513836-07$15.00/0.
Estrogen receptor-alpha promotes alternative macrophage activation during cutaneous repair.
Campbell, Laura; Emmerson, Elaine; Williams, Helen; Saville, Charis R; Krust, Andrée; Chambon, Pierre; Mace, Kimberly A; Hardman, Matthew J
2014-09-01
Efficient local monocyte/macrophage recruitment is critical for tissue repair. Recruited macrophages are polarized toward classical (proinflammatory) or alternative (prohealing) activation in response to cytokines, with tight temporal regulation crucial for efficient wound repair. Estrogen acts as a potent anti-inflammatory regulator of cutaneous healing. However, an understanding of estrogen/estrogen receptor (ER) contribution to macrophage polarization and subsequent local effects on wound healing is lacking. Here we identify, to our knowledge previously unreported, a role whereby estrogen receptor α (ERα) signaling preferentially polarizes macrophages from a range of sources to an alternative phenotype. Cell-specific ER ablation studies confirm an in vivo role for inflammatory cell ERα, but not ERβ, in poor healing associated with an altered cytokine profile and fewer alternatively activated macrophages. Furthermore, we reveal intrinsic changes in ERα-deficient macrophages, which are unable to respond to alternative activation signals in vitro. Collectively, our data reveal that inflammatory cell-expressed ERα promotes alternative macrophage polarization, which is beneficial for timely healing. Given the diverse physiological roles of ERs, these findings will likely be of relevance to many pathologies involving excessive inflammation.
Emerging and Diverse Functions of the EphA2 Noncanonical Pathway in Cancer Progression.
Zhou, Yue; Sakurai, Hiroaki
2017-01-01
Erythropoietin-producing hepatocellular receptor A2 (EphA2) receptor tyrosine kinase controls multiple physiological processes to maintain homeostasis in normal cells. In many types of solid tumors, it has been reported that EphA2 is overexpressed and plays a critical role in oncogenic signaling. However, in recent years, the opposing functions of EphA2 have been explained by the canonical and noncanonical signaling pathways. Ligand- and tyrosine kinase-dependent EphA2 activation (the canonical pathway) inhibits cancer cell proliferation and motility. In contrast, ligand- and tyrosine kinase-independent EphA2 signaling (the noncanonical pathway) promotes tumor survival and metastasis and controls acquired drug resistance and maintenance of cancer stem cell-like properties. Evidence has accumulated showing that the EphA2 noncanonical pathway is mainly regulated by inflammatory cytokines and growth factors via phosphorylation at Ser-897 in the intracellular C-tail region via some serine/threonine kinases, including p90 ribosomal S6 kinase. In this review, we focus on the regulation of Ser-897 phosphorylation and its functional importance in tumor malignancy and discuss future therapeutic targeting.
Toth, I K; Newton, J A; Hyman, L J; Lees, A K; Daykin, M; Ortori, C; Williams, P; Fray, R G
2004-08-01
Many gram-negative bacteria employ N-acylhomoserine lactones (AHL) to regulate diverse physiological processes in concert with cell population density (quorum sensing [QS]). In the plant pathogen Erwinia carotovora, the AHL synthesized via the carI/expI genes are responsible for regulating the production of secreted plant cell wall-degrading exoenzymes and the antibiotic carbapen-3-em carboxylic acid. We have previously shown that targeting the product of an AHL synthase gene (yenI) from Yersinia enterocolitica to the chloroplasts of transgenic tobacco plants caused the synthesis in planta of the cognate AHL signaling molecules N-(3-oxohexanoyl)-L-homoserine lactone (3-oxo-C6-HSL) and N-hexanoylhomoserine lactone (C6-HSL), which in turn, were able to complement a carI-QS mutant. In the present study, we demonstrate that transgenic potato plants containing the yenI gene are also able to express AHL and that the presence and level of these AHL in the plant increases susceptibility to infection by E. carotovora. Susceptibility is further affected by both the bacterial level and the plant tissue under investigation.
Trentmann, Oliver; Haferkamp, Ilka
2013-01-01
Vacuoles of plants fulfill various biologically important functions, like turgor generation and maintenance, detoxification, solute sequestration, or protein storage. Different types of plant vacuoles (lytic versus protein storage) are characterized by different functional properties apparently caused by a different composition/abundance and regulation of transport proteins in the surrounding membrane, the tonoplast. Proteome analyses allow the identification of vacuolar proteins and provide an informative basis for assigning observed transport processes to specific carriers or channels. This review summarizes techniques required for vacuolar proteome analyses, like e.g., isolation of the large central vacuole or tonoplast membrane purification. Moreover, an overview about diverse published vacuolar proteome studies is provided. It becomes evident that qualitative proteomes from different plant species represent just the tip of the iceberg. During the past few years, mass spectrometry achieved immense improvement concerning its accuracy, sensitivity, and application. As a consequence, modern tonoplast proteome approaches are suited for detecting alterations in membrane protein abundance in response to changing environmental/physiological conditions and help to clarify the regulation of tonoplast transport processes. PMID:23459586
Egfl6 is involved in zebrafish notochord development.
Wang, Xueqian; Wang, Xin; Yuan, Wei; Chai, Renjie; Liu, Dong
2015-08-01
The epidermal growth factor (EGF) repeat motif defines a superfamily of diverse protein involved in regulating a variety of cellular and physiological processes, such as cell cycle, cell adhesion, proliferation, migration, and neural development. Egfl6, an EGF protein, also named MAGE was first cloned in human tissue. Up to date, the study of zebrafish Egfl6 expression pattern and functional analysis of Egfl6 involved in embryonic development of vertebrate in vivo is thus far lacking. Here we reported that Egfl6 was involved in zebrafish notochord development. It was shown that Egfl6 mRNA was expressed in zebrafish, developing somites, fin epidermis, pharyngeal arches, and hindbrain region. Particularly the secreted Egfl6 protein was significantly accumulated in notochord. Loss of Egfl6 function in zebrafish embryos resulted in curved body with distorted notochord in the posterior trunk. It was observed that expression of all Notch ligand and receptors in notochord of 28 hpf Egfl6 morphants was not affected, except notch2, which was up-regulated. We found that inhibition of Notch signaling by DAPT efficiently rescued notochord developmental defect of Egfl6 deficiency embryos.
Cellular localization of the activated EGFR determines its effect on cell growth in MDA-MB-468 cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hyatt, Dustin C.; Ceresa, Brian P.
2008-11-01
The epidermal growth factor (EGF) receptor (EGFR) is a ubiquitously expressed receptor tyrosine kinase that regulates diverse cell functions that are dependent upon cell type, the presence of downstream effectors, and receptor density. In addition to activating biochemical pathways, ligand stimulation causes the EGFR to enter the cell via clathrin-coated pits. Endocytic trafficking influences receptor signaling by controlling the duration of EGFR phosphorylation and coordinating the receptor's association with downstream effectors. To better understand the individual contributions of cell surface and cytosolic EGFRs on cell physiology, we used EGF that was conjugated to 900 nm polystyrene beads (EGF-beads). EGF-beads canmore » stimulate the EGFR and retain the activated receptor at the plasma membrane. In MDA-MB-468 cells, a breast cancer cell line that over-expresses the EGFR, only internalized, activated EGFRs stimulate caspase-3 and induce cell death. Conversely, signaling cascades triggered from activated EGFR retained at the cell surface inhibit caspase-3 and promote cell proliferation. Thus, through endocytosis, the activated EGFR can differentially regulate cell growth in MDA-MB-468 cells.« less
Seki, Ekihiro; Brenner, David A; Karin, Michael
2012-08-01
c-Jun-N-terminal kinase (JNK) is a mitogen-activated protein kinase family member that is activated by diverse stimuli, including cytokines (such as tumor necrosis factor and interleukin-1), reactive oxygen species (ROS), pathogens, toxins, drugs, endoplasmic reticulum stress, free fatty acids, and metabolic changes. Upon activation, JNK induces multiple biologic events through the transcription factor activator protein-1 and transcription-independent control of effector molecules. JNK isozymes regulate cell death and survival, differentiation, proliferation, ROS accumulation, metabolism, insulin signaling, and carcinogenesis in the liver. The biologic functions of JNK are isoform, cell type, and context dependent. Recent studies using genetically engineered mice showed that loss or hyperactivation of the JNK pathway contributes to the development of inflammation, fibrosis, cancer growth, and metabolic diseases that include obesity, hepatic steatosis, and insulin resistance. We review the functions and pathways of JNK in liver physiology and pathology and discuss findings from preclinical studies with JNK inhibitors. Copyright © 2012 AGA Institute. Published by Elsevier Inc. All rights reserved.
c-myc as a mediator of accelerated apoptosis and involution in mammary glands lacking Socs3
Sutherland, Kate D; Vaillant, François; Alexander, Warren S; Wintermantel, Tim M; Forrest, Natasha C; Holroyd, Sheridan L; McManus, Edward J; Schutz, Gunther; Watson, Christine J; Chodosh, Lewis A; Lindeman, Geoffrey J; Visvader, Jane E
2006-01-01
Suppressor of cytokine signalling (SOCS) proteins are critical attenuators of cytokine-mediated signalling in diverse tissues. To determine the importance of Socs3 in mammary development, we generated mice in which Socs3 was deleted in mammary epithelial cells. No overt phenotype was evident during pregnancy and lactation, indicating that Socs3 is not a key physiological regulator of prolactin signalling. However, Socs3-deficient mammary glands exhibited a profound increase in epithelial apoptosis and tissue remodelling, resulting in precocious involution. This phenotype was accompanied by augmented Stat3 activation and a marked increase in the level of c-myc. Moreover, induction of c-myc before weaning using an inducible transgenic model recapitulated the Socs3 phenotype, and elevated expression of likely c-myc target genes, E2F-1, Bax and p53, was observed. Our data establish Socs3 as a critical attenuator of pro-apoptotic pathways that act in the developing mammary gland and provide evidence that c-myc regulates apoptosis during involution. PMID:17139252
TRPV4 channels: physiological and pathological role in cardiovascular system.
Randhawa, Puneet Kaur; Jaggi, Amteshwar Singh
2015-11-01
TRPV4 channels are non-selective cation channels permeable to Ca(2+), Na(+), and Mg(2+) ions. Recently, TRPV4 channels have received considerable attention as these channels are widely expressed in the cardiovascular system including endothelial cells, cardiac fibroblasts, vascular smooth muscles, and peri-vascular nerves. Therefore, these channels possibly play a pivotal role in the maintenance of cardiovascular homeostasis. TRPV4 channels critically regulate flow-induced arteriogenesis, TGF-β1-induced differentiation of cardiac fibroblasts into myofibroblasts, and heart failure-induced pulmonary edema. These channels also mediate hypoxia-induced increase in proliferation and migration of pulmonary artery smooth muscle cells and progression of pulmonary hypertension. These channels also maintain flow-induced vasodilation and preserve vascular function by directly activating Ca(2+)-dependent KCa channels. Furthermore, these may also induce vasodilation and maintain blood pressure indirectly by evoking the release of NO, CGRP, and substance P. The present review discusses the evidences and the potential mechanisms implicated in diverse responses including arteriogenesis, cardiac remodeling, congestive heart failure-induced pulmonary edema, pulmonary hypertension, flow-induced dilation, regulation of blood pressure, and hypoxic preconditioning.
Kelly, E A; Fudge, J L
2018-07-01
Corticotropin-releasing factor (CRF) is a neuropeptide that mediates the stress response. Long known to contribute to regulation of the adrenal stress response initiated in the hypothalamic-pituitary axis (HPA), a complex pattern of extrahypothalamic CRF expression is also described in rodents and primates. Cross-talk between the CRF and midbrain dopamine (DA) systems links the stress response to DA regulation. Classically CRF + cells in the extended amygdala and paraventricular nucleus (PVN) are considered the main source of this input, principally targeting the ventral tegmental area (VTA). However, the anatomic complexity of both the DA and CRF system has been increasingly elaborated in the last decade. The DA neurons are now recognized as having diverse molecular, connectional and physiologic properties, predicted by their anatomic location. At the same time, the broad distribution of CRF cells in the brain has been increasingly delineated using different species and techniques. Here, we review updated information on both CRF localization and newer conceptualizations of the DA system to reconsider the CRF-DA interface. Copyright © 2018 Elsevier Ltd. All rights reserved.
Redox signaling regulated by an electrophilic cyclic nucleotide and reactive cysteine persulfides.
Fujii, Shigemoto; Sawa, Tomohiro; Nishida, Motohiro; Ihara, Hideshi; Ida, Tomoaki; Motohashi, Hozumi; Akaike, Takaaki
2016-04-01
Reactive oxygen (oxidant) and free radical species are known to cause nonspecific damage of various biological molecules. The oxidant toxicology is developing an emerging concept of the physiological functions of reactive oxygen species in cell signaling regulation. Redox signaling is precisely modulated by endogenous electrophilic substances that are generated from reactive oxygen species during cellular oxidative stress responses. Among diverse electrophilic molecular species that are endogenously generated, 8-nitroguanosine 3',5'-cyclic monophosphate (8-nitro-cGMP) is a unique second messenger whose formation, signaling, and metabolism in cells was recently clarified. Most important, our current studies revealed that reactive cysteine persulfides that are formed abundantly in cells are critically involved in the metabolism of 8-nitro-cGMP. Modern redox biology involves frontiers of cell research and stem cell research; medical and clinical investigations of infections, cancer, metabolic syndrome, aging, and neurodegenerative diseases; and other fields. 8-Nitro-cGMP-mediated signaling and metabolism in cells may therefore be potential targets for drug development, which may lead to discovery of new therapeutic agents for many diseases. Copyright © 2015 Elsevier Inc. All rights reserved.
Marozava, Sviatlana; Vargas-López, Raquel; Tian, Ye; Merl-Pham, Juliane; Braster, Martin; Meckenstock, Rainer U; Smidt, Hauke; Röling, Wilfred F M; Westerhoff, Hans V
2018-06-19
Desulfitobacterium hafniense Y51 has been widely used in investigations of perchloroethylene (PCE) biodegradation, but limited information exists on its other physiological capabilities. We investigated how D. hafniense Y51 confronts the debilitating limitations of not having enough electron donor (lactate), or electron acceptor (fumarate) during cultivation in chemostats. The residual concentrations of the substrates supplied in excess were much lower than expected. Transcriptomics, proteomics, and fluxomics were integrated to investigate how this phenomenon was regulated. Through diverse regulation at both transcriptional and translational levels, strain Y51 turned to fermenting the excess lactate and disproportionating the excess fumarate under fumarate- and lactate-limiting conditions, respectively. Genes and proteins related to the utilization of a variety of alternative electron donors and acceptors absent from the medium were induced, apparently involving the Wood-Ljungdahl pathway. Through this metabolic flexibility, D. hafniense Y51 may be able to switch between different metabolic capabilities under limiting conditions. This article is protected by copyright. All rights reserved. © 2018 Society for Applied Microbiology and John Wiley & Sons Ltd.
Regulation of specialised metabolites in Actinobacteria - expanding the paradigms.
Hoskisson, Paul A; Fernández-Martínez, Lorena T
2018-06-01
The increase in availability of actinobacterial whole genome sequences has revealed huge numbers of specialised metabolite biosynthetic gene clusters, encoding a range of bioactive molecules such as antibiotics, antifungals, immunosuppressives and anticancer agents. Yet the majority of these clusters are not expressed under standard laboratory conditions in rich media. Emerging data from studies of specialised metabolite biosynthesis suggest that the diversity of regulatory mechanisms is greater than previously thought and these act at multiple levels, through a range of signals such as nutrient limitation, intercellular signalling and competition with other organisms. Understanding the regulation and environmental cues that lead to the production of these compounds allows us to identify the role that these compounds play in their natural habitat as well as provide tools to exploit this untapped source of specialised metabolites for therapeutic uses. Here, we provide an overview of novel regulatory mechanisms that act in physiological, global and cluster-specific regulatory manners on biosynthetic pathways in Actinobacteria and consider these alongside their ecological and evolutionary implications. © 2018 The Authors. Environmental Microbiology published by Society for Applied Microbiology and JohnWiley & Sons Ltd.
Tabibian, James H.; Masyuk, Anatoliy I.; Masyuk, Tetyana V.; O’Hara, Steven P.; LaRusso, Nicholas F.
2013-01-01
Cholangiocytes are epithelial cells that line the intra- and extrahepatic ducts of the biliary tree. The main physiologic function of cholangiocytes is modification of hepatocyte-derived bile, an intricate process regulated by hormones, peptides, nucleotides, neurotransmitters, and other molecules through intracellular signaling pathways and cascades. The mechanisms and regulation of bile modification are reviewed herein. PMID:23720296
ERIC Educational Resources Information Center
Wilson, Anna C.; Lengua, Liliana J.; Tininenko, Jennifer; Taylor, Adam; Trancik, Anika
2009-01-01
This longitudinal study utilized a community sample of children (N = 91, 45% female, 8-11 years at time 1) to investigate physiological responses (heart rate reactivity [HRR] and electrodermal responding [EDR]) during delay of gratification in relation to emotionality, self-regulation, and adjustment problems. Cluster analyses identified three…
Deep Molecular Diversity of Mammalian Synapses: Why It Matters and How to Measure It
O’Rourke, Nancy A.; Weiler, Nick C.; Micheva, Kristina D.; Smith, Stephen J
2013-01-01
Summary Pioneering studies during the middle of the twentieth century revealed substantial diversity amongst mammalian chemical synapses and led to a widely accepted synapse type classification based on neurotransmitter molecule identity. Subsequently, powerful new physiological, genetic and structural methods have enabled the discovery of much deeper functional and molecular diversity within each traditional neurotransmitter type. Today, this deep diversity continues to pose both daunting challenges and exciting new opportunities for neuroscience. Our growing understanding of deep synapse diversity may transform how we think about and study neural circuit development, structure and function. PMID:22573027
Higgins-Opitz, Susan B; Tufts, Mark
2012-06-01
The student body at the Nelson R. Mandela School of Medicine (NRMSM) is very diverse, representing many cultures, religions, and languages. Research has shown that weakness in English can impact student performance. Recent studies have also highlighted sex-based differences in students' learning and listening styles. These factors pose both challenges and opportunities for teachers of physiology. Student presentations were incorporated for a number of years into the traditional didactic second-year medical physiology curriculum at the NRMSM. Feedback obtained about the perceived benefits of these presentations for the learning of gastrointestinal and endocrine physiology included demographic data pertaining to students' sex, home language, and self-reported performance in tests. Analysis of the 50-item questionnaire responses, obtained over a 2-yr period, provided some interesting insights. Student responses to the items differed significantly in 27 of the 50 items in the questionnaire, based on sex alone (22%), sex and home language (7%), home language alone (37%), performance alone (26%), and performance and home language (7%). Our analyses of student perceptions support the findings of other studies and show that factors such as sex, home language, and student performance can play an important role in the way students are motivated to learn. In designing active learning strategies, academics need to take into account the potential influences that might affect student learning in diverse, multicultural, and multilingual classes.
Freshwater to seawater transitions in migratory fishes
Zydlewski, Joseph D.; Michael P. Wilkie,
2012-01-01
The transition from freshwater to seawater is integral to the life history of many fishes. Diverse migratory fishes express anadromous, catadromous, and amphidromous life histories, while others make incomplete transits between freshwater and seawater. The physiological mechanisms of osmoregulation are widely conserved among phylogenetically diverse species. Diadromous fishes moving between freshwater and seawater develop osmoregulatory mechanisms for different environmental salinities. Freshwater to seawater transition involves hormonally mediated changes in gill ionocytes and the transport proteins associated with hypoosmoregulation, increased seawater ingestion and water absorption in the intestine, and reduced urinary water losses. Fishes attain salinity tolerance through early development, gradual acclimation, or environmentally or developmentally cued adaptations. This chapter describes adaptations in diverse taxa and the effects of salinity on growth. Identifying common strategies in diadromous fishes moving between freshwater and seawater will reveal the ecological and physiological basis for maintaining homeostasis in different salinities, and inform efforts to conserve and manage migratory euryhaline fishes.
Veri, Amanda O; Miao, Zhengqiang; Shapiro, Rebecca S; Tebbji, Faiza; O'Meara, Teresa R; Kim, Sang Hu; Colazo, Juan; Tan, Kaeling; Vyas, Valmik K; Whiteway, Malcolm; Robbins, Nicole; Wong, Koon Ho; Cowen, Leah E
2018-03-01
The capacity to respond to temperature fluctuations is critical for microorganisms to survive within mammalian hosts, and temperature modulates virulence traits of diverse pathogens. One key temperature-dependent virulence trait of the fungal pathogen Candida albicans is its ability to transition from yeast to filamentous growth, which is induced by environmental cues at host physiological temperature. A key regulator of temperature-dependent morphogenesis is the molecular chaperone Hsp90, which has complex functional relationships with the transcription factor Hsf1. Although Hsf1 controls global transcriptional remodeling in response to heat shock, its impact on morphogenesis remains unknown. Here, we establish an intriguing paradigm whereby overexpression or depletion of C. albicans HSF1 induces morphogenesis in the absence of external cues. HSF1 depletion compromises Hsp90 function, thereby driving filamentation. HSF1 overexpression does not impact Hsp90 function, but rather induces a dose-dependent expansion of Hsf1 direct targets that drives overexpression of positive regulators of filamentation, including Brg1 and Ume6, thereby bypassing the requirement for elevated temperature during morphogenesis. This work provides new insight into Hsf1-mediated environmentally contingent transcriptional control, implicates Hsf1 in regulation of a key virulence trait, and highlights fascinating biology whereby either overexpression or depletion of a single cellular regulator induces a profound developmental transition.
Miao, Zhengqiang; Tan, Kaeling; Vyas, Valmik K.; Whiteway, Malcolm; Robbins, Nicole; Wong, Koon Ho; Cowen, Leah E.
2018-01-01
The capacity to respond to temperature fluctuations is critical for microorganisms to survive within mammalian hosts, and temperature modulates virulence traits of diverse pathogens. One key temperature-dependent virulence trait of the fungal pathogen Candida albicans is its ability to transition from yeast to filamentous growth, which is induced by environmental cues at host physiological temperature. A key regulator of temperature-dependent morphogenesis is the molecular chaperone Hsp90, which has complex functional relationships with the transcription factor Hsf1. Although Hsf1 controls global transcriptional remodeling in response to heat shock, its impact on morphogenesis remains unknown. Here, we establish an intriguing paradigm whereby overexpression or depletion of C. albicans HSF1 induces morphogenesis in the absence of external cues. HSF1 depletion compromises Hsp90 function, thereby driving filamentation. HSF1 overexpression does not impact Hsp90 function, but rather induces a dose-dependent expansion of Hsf1 direct targets that drives overexpression of positive regulators of filamentation, including Brg1 and Ume6, thereby bypassing the requirement for elevated temperature during morphogenesis. This work provides new insight into Hsf1-mediated environmentally contingent transcriptional control, implicates Hsf1 in regulation of a key virulence trait, and highlights fascinating biology whereby either overexpression or depletion of a single cellular regulator induces a profound developmental transition. PMID:29590106
Endoplasmic Reticulum Ca2+ Handling in Excitable Cells in Health and Disease
Mattson, Mark P.
2011-01-01
The endoplasmic reticulum (ER) is a morphologically and functionally diverse organelle capable of integrating multiple extracellular and internal signals and generating adaptive cellular responses. It plays fundamental roles in protein synthesis and folding and in cellular responses to metabolic and proteotoxic stress. In addition, the ER stores and releases Ca2+ in sophisticated scenarios that regulate a range of processes in excitable cells throughout the body, including muscle contraction and relaxation, endocrine regulation of metabolism, learning and memory, and cell death. One or more Ca2+ ATPases and two types of ER membrane Ca2+ channels (inositol trisphosphate and ryanodine receptors) are the major proteins involved in ER Ca2+ uptake and release, respectively. There are also direct and indirect interactions of ER Ca2+ stores with plasma membrane and mitochondrial Ca2+-regulating systems. Pharmacological agents that selectively modify ER Ca2+ release or uptake have enabled studies that revealed many different physiological roles for ER Ca2+ signaling. Several inherited diseases are caused by mutations in ER Ca2+-regulating proteins, and perturbed ER Ca2+ homeostasis is implicated in a range of acquired disorders. Preclinical investigations suggest a therapeutic potential for use of agents that target ER Ca2+ handling systems of excitable cells in disorders ranging from cardiac arrhythmias and skeletal muscle myopathies to Alzheimer disease. PMID:21737534
Sütterlin, Stefan; Braet, Caroline; Mueller, Sven C.
2016-01-01
Emotion regulation and associated autonomic activation develop throughout childhood and adolescence under the influence of the family environment. Specifically, physiological indicators of autonomic nervous system activity such as interoceptive sensitivity and vagally mediated heart rate variability (HRV) can inform on emotion regulation. Although the effect of parental emotion socialization on emotion regulation appears to be influenced by autonomic processes, research on physiological regulation and the influence of parental factors remains scarce. This study investigated the relationship between self-reported habitual emotion regulation strategies and HRV at rest as well as interoceptive sensitivity in forty-six youngsters (27 female; age: M = 13.00, SD = 2.13). Secondly, the association between these autonomic correlates and parental psychopathology was also studied. Whereas better interoceptive sensitivity was related to reduced maladaptive emotion regulation, specifically rumination, high HRV was related to more use of external emotion regulation strategies (i.e., support seeking). In addition, increased HRV and decreased interoceptive sensitivity were associated with maternal internalizing and there was evidence for a possible mediation effect of HRV in the relationship between maternal internalizing and child external emotion regulation. This study elucidates the link between cognitive emotion regulation strategies and underlying physiological regulation in adolescents but also indicates a putative influence of maternal internalizing symptoms on emotion regulation in their offspring. PMID:27741261
Pauwels, Laurens; Morreel, Kris; De Witte, Emilie; Lammertyn, Freya; Van Montagu, Marc; Boerjan, Wout; Inzé, Dirk; Goossens, Alain
2008-01-01
Jasmonates (JAs) are plant-specific signaling molecules that steer a diverse set of physiological and developmental processes. Pathogen attack and wounding inflicted by herbivores induce the biosynthesis of these hormones, triggering defense responses both locally and systemically. We report on alterations in the transcriptome of a fast-dividing cell culture of the model plant Arabidopsis thaliana after exogenous application of methyl JA (MeJA). Early MeJA response genes encoded the JA biosynthesis pathway proteins and key regulators of MeJA responses, including most JA ZIM domain proteins and MYC2, together with transcriptional regulators with potential, but yet unknown, functions in MeJA signaling. In a second transcriptional wave, MeJA reprogrammed cellular metabolism and cell cycle progression. Up-regulation of the monolignol biosynthesis gene set resulted in an increased production of monolignols and oligolignols, the building blocks of lignin. Simultaneously, MeJA repressed activation of M-phase genes, arresting the cell cycle in G2. MeJA-responsive transcription factors were screened for their involvement in early signaling events, in particular the regulation of JA biosynthesis. Parallel screens based on yeast one-hybrid and transient transactivation assays identified both positive (MYC2 and the AP2/ERF factor ORA47) and negative (the C2H2 Zn finger proteins STZ/ZAT10 and AZF2) regulators, revealing a complex control of the JA autoregulatory loop and possibly other MeJA-mediated downstream processes. PMID:18216250
Mandal, Mihir Kumar; Chandra-Shekara, A.C.; Jeong, Rae-Dong; Yu, Keshun; Zhu, Shifeng; Chanda, Bidisha; Navarre, Duroy; Kachroo, Aardra; Kachroo, Pradeep
2012-01-01
The conserved cellular metabolites nitric oxide (NO) and oleic acid (18:1) are well-known regulators of disease physiologies in diverse organism. We show that NO production in plants is regulated via 18:1. Reduction in 18:1 levels, via a genetic mutation in the 18:1-synthesizing gene SUPPRESSOR OF SA INSENSITIVITY OF npr1-5 (SSI2) or exogenous application of glycerol, induced NO accumulation. Furthermore, both NO application and reduction in 18:1 induced the expression of similar sets of nuclear genes. The altered defense signaling in the ssi2 mutant was partially restored by a mutation in NITRIC OXIDE ASSOCIATED1 (NOA1) and completely restored by double mutations in NOA1 and either of the nitrate reductases. Biochemical studies showed that 18:1 physically bound NOA1, in turn leading to its degradation in a protease-dependent manner. In concurrence, overexpression of NOA1 did not promote NO-derived defense signaling in wild-type plants unless 18:1 levels were lowered. Subcellular localization showed that NOA1 and the 18:1 synthesizing SSI2 proteins were present in close proximity within the nucleoids of chloroplasts. Indeed, pathogen-induced or low-18:1-induced accumulation of NO was primarily detected in the chloroplasts and their nucleoids. Together, these data suggest that 18:1 levels regulate NO synthesis, and, thereby, NO-mediated signaling, by regulating NOA1 levels. PMID:22492810
Pradhan, Devaleena S.; Solomon-Lane, Tessa K.; Grober, Matthew S.
2015-01-01
Steroid hormones are critical regulators of reproductive life history, and the steroid sensitive traits (morphology, behavior, physiology) associated with particular life history stages can have substantial fitness consequences for an organism. Hormones, behavior and fitness are reciprocally associated and can be used in an integrative fashion to understand how the environment impacts organismal function. To address the fitness component, we highlight the importance of using reliable proxies of reproductive success when studying proximate regulation of reproductive phenotypes. To understand the mechanisms by which the endocrine system regulates phenotype, we discuss the use of particular endocrine proxies and the need for appropriate functional interpretation of each. Lastly, in any experimental paradigm, the responses of animals vary based on the subtle differences in environmental and social context and this must also be considered. We explore these different levels of analyses by focusing on the fascinating life history transitions exhibited by the bi-directionally hermaphroditic fish, Lythrypnus dalli. Sex changing fish are excellent models for providing a deeper understanding of the fitness consequences associated with behavioral and endocrine variation. We close by proposing that local regulation of steroids is one potential mechanism that allows for the expression of novel phenotypes that can be characteristic of specific life history stages. A comparative species approach will facilitate progress in understanding the diversity of mechanisms underlying the contextual regulation of phenotypes and their associated fitness correlates. PMID:25691855
Pradhan, Devaleena S; Solomon-Lane, Tessa K; Grober, Matthew S
2015-01-01
Steroid hormones are critical regulators of reproductive life history, and the steroid sensitive traits (morphology, behavior, physiology) associated with particular life history stages can have substantial fitness consequences for an organism. Hormones, behavior and fitness are reciprocally associated and can be used in an integrative fashion to understand how the environment impacts organismal function. To address the fitness component, we highlight the importance of using reliable proxies of reproductive success when studying proximate regulation of reproductive phenotypes. To understand the mechanisms by which the endocrine system regulates phenotype, we discuss the use of particular endocrine proxies and the need for appropriate functional interpretation of each. Lastly, in any experimental paradigm, the responses of animals vary based on the subtle differences in environmental and social context and this must also be considered. We explore these different levels of analyses by focusing on the fascinating life history transitions exhibited by the bi-directionally hermaphroditic fish, Lythrypnus dalli. Sex changing fish are excellent models for providing a deeper understanding of the fitness consequences associated with behavioral and endocrine variation. We close by proposing that local regulation of steroids is one potential mechanism that allows for the expression of novel phenotypes that can be characteristic of specific life history stages. A comparative species approach will facilitate progress in understanding the diversity of mechanisms underlying the contextual regulation of phenotypes and their associated fitness correlates.
HUMAN--A Comprehensive Physiological Model.
ERIC Educational Resources Information Center
Coleman, Thomas G.; Randall, James E.
1983-01-01
Describes computer program (HUMAN) used to simulate physiological experiments on patient pathology. Program (available from authors, including versions for microcomputers) consists of dynamic interactions of over 150 physiological variables and integrating approximations of cardiovascular, renal, lung, temperature regulation, and some hormone…
Manipulating glucocorticoids in wild animals: basic and applied perspectives
Sopinka, Natalie M.; Patterson, Lucy D.; Redfern, Julia C.; Pleizier, Naomi K.; Belanger, Cassia B.; Midwood, Jon D.; Crossin, Glenn T.; Cooke, Steven J.
2015-01-01
One of the most comprehensively studied responses to stressors in vertebrates is the endogenous production and regulation of glucocorticoids (GCs). Extensive laboratory research using experimental elevation of GCs in model species is instrumental in learning about stressor-induced physiological and behavioural mechanisms; however, such studies fail to inform our understanding of ecological and evolutionary processes in the wild. We reviewed emerging research that has used GC manipulations in wild vertebrates to assess GC-mediated effects on survival, physiology, behaviour, reproduction and offspring quality. Within and across taxa, exogenous manipulation of GCs increased, decreased or had no effect on traits examined in the reviewed studies. The notable diversity in responses to GC manipulation could be associated with variation in experimental methods, inherent differences among species, morphs, sexes and age classes, and the ecological conditions in which responses were measured. In their current form, results from experimental studies may be applied to animal conservation on a case-by-case basis in contexts such as threshold-based management. We discuss ways to integrate mechanistic explanations for changes in animal abundance in altered environments with functional applications that inform conservation practitioners of which species and traits may be most responsive to environmental change or human disturbance. Experimental GC manipulation holds promise for determining mechanisms underlying fitness impairment and population declines. Future work in this area should examine multiple life-history traits, with consideration of individual variation and, most importantly, validation of GC manipulations within naturally occurring and physiologically relevant ranges. PMID:27293716
Laser bioengineering of glass-titanium implants surface
NASA Astrophysics Data System (ADS)
Lusquiños, F.; Arias-González, F.; Penide, J.; del Val, J.; Comesaña, R.; Quintero, F.; Riveiro, A.; Boutinguiza, M.; Pascual, M. J.; Durán, A.; Pou, J.
2013-11-01
Osseointegration is the mean challenge when surgical treatments fight against load-bearing bone diseases. Absolute bone replacement by a synthetic implant has to be completed not only from the mechanics point of view, but also from a biological approach. Suitable strength, resilience and stress distribution of titanium alloy implants are spoiled by the lack of optimal biological characteristics. The inert quality of extra low interstitial titanium alloy, which make it the most attractive metallic alloy for biomedical applications, oppose to an ideal surface with bone cell affinity, and capable to stimulate bone attachment bone growth. Diverse laser treatments have been proven as effective tools to modify surface properties, such as wettability in contact to physiological fluids, or osteoblast guided and slightly enhanced attachment. The laser surface cladding can go beyond by providing titanium alloy surfaces with osteoconduction and osteoinduction properties. In this research work, the laser radiation is used to produce bioactive glass coatings on Ti6Al4V alloy substrates. Specific silicate bioactive glass compositions has been investigated to achieve suitable surface tension and viscosity temperature behavior during processing, and to provide with the required release of bone growth gene up regulation agents in the course of resorption mediated by physiological fluids. The produced coatings and interfaces, the surface osteoconduction properties, and the chemical species release in simulated physiological fluid were characterized by scanning electron microscopy (SEM), hot stage microscopy (HSM), X-ray diffraction (XRD), X ray fluorescence (XRF), and Fourier transform infrared spectroscopy (FTIR).
Impact of Labile Zinc on Heart Function: From Physiology to Pathophysiology.
Turan, Belma; Tuncay, Erkan
2017-11-12
Zinc plays an important role in biological systems as bound and histochemically reactive labile Zn 2+ . Although Zn 2+ concentration is in the nM range in cardiomyocytes at rest and increases dramatically under stimulation, very little is known about precise mechanisms controlling the intracellular distribution of Zn 2+ and its variations during cardiac function. Recent studies are focused on molecular and cellular aspects of labile Zn 2+ and its homeostasis in mammalian cells and growing evidence clarified the molecular mechanisms underlying Zn 2+ -diverse functions in the heart, leading to the discovery of novel physiological functions of labile Zn 2+ in parallel to the discovery of subcellular localization of Zn 2+ -transporters in cardiomyocytes. Additionally, important experimental data suggest a central role of intracellular labile Zn 2+ in excitation-contraction coupling in cardiomyocytes by shaping Ca 2+ dynamics. Cellular labile Zn 2+ is tightly regulated against its adverse effects through either Zn 2+ -transporters, Zn 2+ -binding molecules or Zn 2+ -sensors, and, therefore plays a critical role in cellular signaling pathways. The present review summarizes the current understanding of the physiological role of cellular labile Zn 2+ distribution in cardiomyocytes and how a remodeling of cellular Zn 2+ -homeostasis can be important in proper cell function with Zn 2+ -transporters under hyperglycemia. We also emphasize the recent investigations on Zn 2+ -transporter functions from the standpoint of human heart health to diseases together with their clinical interest as target proteins in the heart under pathological condition, such as diabetes.
Surveying N2O-producing pathways in bacteria.
Stein, Lisa Y
2011-01-01
Nitrous oxide (N(2)O) is produced by bacteria as an intermediate of both dissimilatory and detoxification pathways under a range of oxygen levels, although the majority of N(2)O is released in suboxic to anoxic environments. N(2)O production under physiologically relevant conditions appears to require the reduction of nitric oxide (NO) produced from the oxidation of hydroxylamine (nitrification), reduction of nitrite (denitrification), or by host cells of pathogenic bacteria. In a single bacterial isolate, N(2)O-producing pathways can be complex, overlapping, involve multiple enzymes with the same function, and require multiple layers of regulatory machinery. This overview discusses how to identify known N(2)O-producing inventory and regulatory sequences within bacterial genome sequences and basic physiological approaches for investigating the function of that inventory. A multitude of review articles have been published on individual enzymes, pathways, regulation, and environmental significance of N(2)O-production encompassing a large diversity of bacterial isolates. The combination of next-generation deep sequencing platforms, emerging proteomics technologies, and basic microbial physiology can be used to expand what is known about N(2)O-producing pathways in individual bacterial species to discover novel inventory and unifying features of pathways. A combination of approaches is required to understand and generalize the function and control of N(2)O production across a range of temporal and spatial scales within natural and host environments. Copyright © 2011 Elsevier Inc. All rights reserved.
Microbial Response to Microgravity and Other Low Shear Environments
NASA Technical Reports Server (NTRS)
Nickerson, C.; Ott, C. Mark; Wilson, James W.; Ramamurthy, Rajee; Pierson, Duane L.
2004-01-01
Microbial existence and survival requires the ability to sense and respond to environmental changes, including changes in physical forces. This is because microbes inhabit an amazingly diverse range of ecological niches and therefore must constantly adapt to a wide variety of changing environmental conditions, including alterations in temperature, pH, nutrient availability, oxygen levels, and osmotic pressure gradients. Microbes sense their environment through a variety of sensors and receptors which serve to integrate the different signals into the appropriate cellular response(s) that is optimal for survival. While numerous environmental stimuli have been examined for their effect on microorganisms, effects due to changes in mechanical and/or physical forces are also becoming increasingly apparent. Recently, several important studies have demonstrated a key role for microgravity and the low fluid shear dynamics associated with microgravity in the regulation of microbial gene expression, physiology and pathogenesis. The mechanosensory response of microorganisms to these environmental signals, which are relevant to those encountered during microbial life cycles on Earth, may provide insight into their adaptations to physiologically relevant conditions and may ultimately lead to eludicidation of the mechanisms important for mechanosensory transduction in living cells. This review summarizes the recent and potential future research trends aimed at understanding the effect of changes in mechanical forces that occur in microgravity and other low shear environments on different microbial parameters. The results of these studies provide an important step towards understanding how microbes integrate information from multiple mechanical stimuli to an appropriate physiological response.
Regulation of alternative splicing by the circadian clock and food related cues
2012-01-01
Background The circadian clock orchestrates daily rhythms in metabolism, physiology and behaviour that allow organisms to anticipate regular changes in their environment, increasing their adaptation. Such circadian phenotypes are underpinned by daily rhythms in gene expression. Little is known, however, about the contribution of post-transcriptional processes, particularly alternative splicing. Results Using Affymetrix mouse exon-arrays, we identified exons with circadian alternative splicing in the liver. Validated circadian exons were regulated in a tissue-dependent manner and were present in genes with circadian transcript abundance. Furthermore, an analysis of circadian mutant Vipr2-/- mice revealed the existence of distinct physiological pathways controlling circadian alternative splicing and RNA binding protein expression, with contrasting dependence on Vipr2-mediated physiological signals. This view was corroborated by the analysis of the effect of fasting on circadian alternative splicing. Feeding is an important circadian stimulus, and we found that fasting both modulates hepatic circadian alternative splicing in an exon-dependent manner and changes the temporal relationship with transcript-level expression. Conclusions The circadian clock regulates alternative splicing in a manner that is both tissue-dependent and concurrent with circadian transcript abundance. This adds a novel temporal dimension to the regulation of mammalian alternative splicing. Moreover, our results demonstrate that circadian alternative splicing is regulated by the interaction between distinct physiological cues, and illustrates the capability of single genes to integrate circadian signals at different levels of regulation. PMID:22721557
Silva-Flores, Ramón; Pérez-Verdín, Gustavo; Wehenkel, Christian
2014-01-01
Biological diversity can be defined as variability among living organisms from all sources, including terrestrial organisms, marine and other aquatic ecosystems, and the ecological complexes which they are part of. This includes diversity within species, between species, and of ecosystems. Numerous diversity indices combine richness and evenness in a single expression, and several climate-based explanations have been proposed to explain broad-scale diversity patterns. However, climate-based water-energy dynamics appears to be an essential factor that determines patterns of diversity. The Mexican Sierra Madre Occidental occupies an area of about 29 million hectares and is located between the Neotropical and Holarctic ecozones. It shelters a high diversity of flora, including 24 different species of Pinus (ca. 22% on the whole), 54 species of Quercus (ca. 9–14%), 7 species of Arbutus (ca. 50%) and many other trees species. The objectives of this study were to model how tree species diversity is related to climatic and geographic factors and stand density and to test the Metabolic Theory, Productivity-Diversity Hypothesis, Physiological Tolerance Hypothesis, Mid-Domain Effect, and the Water-Energy Dynamic Theory on the Sierra Madre Occidental, Durango. The results supported the Productivity-Diversity Hypothesis, Physiological Tolerance Hypothesis and Water-Energy Dynamic Theory, but not the Mid-Domain Effect or Metabolic Theory. The annual aridity index was the variable most closely related to the diversity indices analyzed. Contemporary climate was found to have moderate to strong effects on the minimum, median and maximum tree species diversity. Because water-energy dynamics provided a satisfactory explanation for the patterns of minimum, median and maximum diversity, an understanding of this factor is critical to future biodiversity research. Quantile regression of the data showed that the three diversity parameters of tree species are generally higher in cold, humid temperate climates than in dry, hot climates. PMID:25127455
Silva-Flores, Ramón; Pérez-Verdín, Gustavo; Wehenkel, Christian
2014-01-01
Biological diversity can be defined as variability among living organisms from all sources, including terrestrial organisms, marine and other aquatic ecosystems, and the ecological complexes which they are part of. This includes diversity within species, between species, and of ecosystems. Numerous diversity indices combine richness and evenness in a single expression, and several climate-based explanations have been proposed to explain broad-scale diversity patterns. However, climate-based water-energy dynamics appears to be an essential factor that determines patterns of diversity. The Mexican Sierra Madre Occidental occupies an area of about 29 million hectares and is located between the Neotropical and Holarctic ecozones. It shelters a high diversity of flora, including 24 different species of Pinus (ca. 22% on the whole), 54 species of Quercus (ca. 9-14%), 7 species of Arbutus (ca. 50%) and many other trees species. The objectives of this study were to model how tree species diversity is related to climatic and geographic factors and stand density and to test the Metabolic Theory, Productivity-Diversity Hypothesis, Physiological Tolerance Hypothesis, Mid-Domain Effect, and the Water-Energy Dynamic Theory on the Sierra Madre Occidental, Durango. The results supported the Productivity-Diversity Hypothesis, Physiological Tolerance Hypothesis and Water-Energy Dynamic Theory, but not the Mid-Domain Effect or Metabolic Theory. The annual aridity index was the variable most closely related to the diversity indices analyzed. Contemporary climate was found to have moderate to strong effects on the minimum, median and maximum tree species diversity. Because water-energy dynamics provided a satisfactory explanation for the patterns of minimum, median and maximum diversity, an understanding of this factor is critical to future biodiversity research. Quantile regression of the data showed that the three diversity parameters of tree species are generally higher in cold, humid temperate climates than in dry, hot climates.
AMP-activated protein kinase is physiologically regulated by inositol polyphosphate multikinase
Bang, Sookhee; Kim, Seyun; Dailey, Megan J.; Chen, Yong; Moran, Timothy H.; Snyder, Solomon H.; Kim, Sangwon F.
2012-01-01
The AMP-activated kinase (AMPK) senses the energy status of cells and regulates fuel availability, whereas hypothalamic AMPK regulates food intake. We report that inositol polyphosphate multikinase (IPMK) regulates glucose signaling to AMPK in a pathway whereby glucose activates phosphorylation of IPMK at tyrosine 174 enabling the enzyme to bind to AMPK and regulate its activation. Thus, refeeding fasted mice rapidly and markedly stimulates transcriptional enhancement of IPMK expression while down-regulating AMPK. Also, AMPK is up-regulated in mice with genetic depletion of hypothalamic IPMK. IPMK physiologically binds AMPK, with binding enhanced by glucose treatment. Regulation by glucose of phospho-AMPK in hypothalamic cell lines is prevented by blocking AMPK-IPMK binding. These findings imply that IPMK inhibitors will be beneficial in treating obesity and diabetes. PMID:22203993
Tang, Hongliang; Shen, Jianbo; Zhang, Fusuo; Rengel, Zed
2013-04-01
White lupin (Lupinus albus) exhibits strong root morphological and physiological responses to phosphorus (P) deficiency and auxin treatments, but the interactive effects of P and auxin in regulating root morphological and physiological traits are not fully understood. This study aimed to assess white lupin root traits as influenced by P (0 or 250 μmol L(-1)) and auxin (10(-8) mol L(-1) NAA) in nutrient solution. Both P deficiency and auxin treatments significantly altered root morphological traits, as evidenced by reduced taproot length, increased number and density of first-order lateral roots, and enhanced cluster-root formation. Changes in root physiological traits were also observed, i.e., increased proton, citrate, and acid phosphatase exudation. Exogenous auxin enhanced root responses and sensitivity to P deficiency. A significant interplay exists between P and auxin in the regulation of root morphological and physiological traits. Principal component analysis showed that P availability explained 64.8% and auxin addition 21.3% of the total variation in root trait parameters, indicating that P availability is much more important than auxin in modifying root responses of white lupin. This suggests that white lupin can coordinate root morphological and physiological responses to enhance acquisition of P resources, with an optimal trade-off between root morphological and physiological traits regulated by external stimuli such as P availability and auxin.
Regulatory physiology discipline science plan
NASA Technical Reports Server (NTRS)
1991-01-01
The focus of the Regulatory Physiology discipline of the Space Physiology and Countermeasures Program is twofold. First, to determine and study how microgravity and associated factors of space flight affect the regulatory mechanisms by which humans adapt and achieve homeostasis and thereby regulate their ability to respond to internal and external signals; and, second, to study selected physiological systems that have been demonstrated to be influenced by gravity. The Regulatory Physiology discipline, as defined here, is composed of seven subdisciplines: (1) Circadian Rhythms, (2) Endocrinology, (3) Fluid and Electrolyte Regulation, (4) Hematology, (5) Immunology, (6) Metabolism and Nutrition, and (7) Temperature Regulation. The purpose of this Discipline Science Plan is to provide a conceptual strategy for NASA's Life Sciences Division research and development activities in the area of regulatory physiology. It covers the research areas critical to NASA's programmatic requirements for the Extended-Duration Orbiter, Space Station Freedom, and exploration mission science activities. These science activities include ground-based and flight; basic, applied, and operational; and animal and human research and development. This document summarizes the current status of the program, outlines available knowledge, establishes goals and objectives, identifies science priorities, and defines critical questions in regulatory physiology. It contains a general plan that will be used by both NASA Headquarters Program Offices and the field centers to review and plan basic, applied, and operational intramural and extramural research and development activities in this area.
Melatonin, mitochondria and hypertension.
Baltatu, Ovidiu C; Amaral, Fernanda G; Campos, Luciana A; Cipolla-Neto, Jose
2017-11-01
Melatonin, due to its multiple means and mechanisms of action, plays a fundamental role in the regulation of the organismal physiology by fine tunning several functions. The cardiovascular system is an important site of action as melatonin regulates blood pressure both by central and peripheral interventions, in addition to its relation with the renin-angiotensin system. Besides, the systemic management of several processes, melatonin acts on mitochondria regulation to maintain a healthy cardiovascular system. Hypertension affects target organs in different ways and cellular energy metabolism is frequently involved due to mitochondrial alterations that include a rise in reactive oxygen species production and an ATP synthesis decrease. The discussion that follows shows the role played by melatonin in the regulation of mitochondrial physiology in several levels of the cardiovascular system, including brain, heart, kidney, blood vessels and, particularly, regulating the renin-angiotensin system. This discussion shows the putative importance of using melatonin as a therapeutic tool involving its antioxidant potential and its action on mitochondrial physiology in the cardiovascular system.
Strigolactone-nitric oxide interplay in plants: the story has just begun.
Kolbert, Zsuzsanna
2018-02-26
Both strigolactones (SLs) and nitric oxide (NO) are regulatory signals with diverse roles during plant development and stress responses. This review aims to discuss the so far available data regarding SLs-NO interplay in plant systems. The majority of the few articles dealing with SL-NO interplay focuses on the root system and it seems that NO can be an upstream negative regulator of SL biosynthesis or an upstream positive regulator of SL signaling depending on the nutrient supply. From the so far published results it is clear that NO modifies the activity of target proteins involved in SL biosynthesis or signaling which may be a physiologically relevant interaction. Therefore, in silico analysis of NO-dependent posttranslational modifications in SL-related proteins was performed using computational prediction tools and putative NO-target proteins were specified. The picture is presumably more complicated, since also SL is able to modify NO levels. As a confirmation, author detected NO levels in different organs of max1-1 and max2-1 Arabidopsis and compared to the wild-type these mutants showed enhanced NO levels in their root tips indicating the negative effect of endogenous SLs on NO metabolism. Exogenous SL analogue-triggered NO production seems to contradict the results of the genetic study, which is an inconsistency should be taken into consideration in the future. In the coming years, the link between SL and NO signaling in further physiological processes should be examined and the possibilities of NO-dependent posttranslational modifications of SL biosynthetic and signaling proteins should be looked more closely. This article is protected by copyright. All rights reserved.
The role of transient receptor potential channels in joint diseases.
Krupkova, O; Zvick, J; Wuertz-Kozak, K
2017-10-10
Transient receptor potential channels (TRP channels) are cation selective transmembrane receptors with diverse structures, activation mechanisms and physiological functions. TRP channels act as cellular sensors for a plethora of stimuli, including temperature, membrane voltage, oxidative stress, mechanical stimuli, pH and endogenous, as well as, exogenous ligands, thereby illustrating their versatility. As such, TRP channels regulate various functions in both excitable and non-excitable cells, mainly by mediating Ca2+ homeostasis. Dysregulation of TRP channels is implicated in many pathologies, including cardiovascular diseases, muscular dystrophies and hyperalgesia. However, the importance of TRP channel expression, physiological function and regulation in chondrocytes and intervertebral disc (IVD) cells is largely unexplored. Osteoarthritis (OA) and degenerative disc disease (DDD) are chronic age-related disorders that significantly affect the quality of life by causing pain, activity limitation and disability. Furthermore, currently available therapies cannot effectively slow-down or stop progression of these diseases. Both OA and DDD are characterised by reduced tissue cellularity, enhanced inflammatory responses and molecular, structural and mechanical alterations of the extracellular matrix, hence affecting load distribution and reducing joint flexibility. However, knowledge on how chondrocytes and IVD cells sense their microenvironment and respond to its changes is still limited. In this review, we introduced six families of mammalian TRP channels, their mechanisms of activation, as well as, activation-driven cellular consequences. We summarised the current knowledge on TRP channel expression and activity in chondrocytes and IVD cells, as well as, the significance of TRP channels as therapeutic targets for the treatment of OA and DDD.
Livestock in biomedical research: history, current status and future prospective.
Polejaeva, Irina A; Rutigliano, Heloisa M; Wells, Kevin D
2016-01-01
Livestock models have contributed significantly to biomedical and surgical advances. Their contribution is particularly prominent in the areas of physiology and assisted reproductive technologies, including understanding developmental processes and disorders, from ancient to modern times. Over the past 25 years, biomedical research that traditionally embraced a diverse species approach shifted to a small number of model species (e.g. mice and rats). The initial reasons for focusing the main efforts on the mouse were the availability of murine embryonic stem cells (ESCs) and genome sequence data. This powerful combination allowed for precise manipulation of the mouse genome (knockouts, knockins, transcriptional switches etc.) leading to ground-breaking discoveries on gene functions and regulation, and their role in health and disease. Despite the enormous contribution to biomedical research, mouse models have some major limitations. Their substantial differences compared with humans in body and organ size, lifespan and inbreeding result in pronounced metabolic, physiological and behavioural differences. Comparative studies of strategically chosen domestic species can complement mouse research and yield more rigorous findings. Because genome sequence and gene manipulation tools are now available for farm animals (cattle, pigs, sheep and goats), a larger number of livestock genetically engineered (GE) models will be accessible for biomedical research. This paper discusses the use of cattle, goats, sheep and pigs in biomedical research, provides an overview of transgenic technology in farm animals and highlights some of the beneficial characteristics of large animal models of human disease compared with the mouse. In addition, status and origin of current regulation of GE biomedical models is also reviewed.
Modes of physiologic H2S signaling in the brain and peripheral tissues.
Paul, Bindu D; Snyder, Solomon H
2015-02-10
Hydrogen sulfide (H2S), once associated with rotten eggs and sewers, is now recognized as a gasotransmitter that is synthesized in vivo in a regulated fashion. This ancient gaseous molecule has been retained throughout evolution to perform various roles in different life forms. H2S modulates important signaling functions in diverse cellular processes ranging from regulation of blood pressure to redox homeostasis. One of the modes by which H2S signals is by post-translational modification of reactive cysteine residues in a process designated as sulfhydration, resulting in conversion of the -SH groups of target cysteine residues to -SSH. Using the modified biotin-switch assay and a fluorescent maleimide-based analysis, sulfhydration of several proteins has been detected in various cell types. Aberrant sulfhydration patterns occur in neurodegenerative conditions such as Parkinson's disease. The exact concentration, source of H2S, and conditions under which various stores of H2S are utilized have not been fully elucidated. Currently, available inhibitors of the biosynthetic enzymes of H2S lack sufficient specificity to shed light on detailed mechanisms of H2S action. Probes with a higher sensitivity that can reliably detect cellular and tissue H2S levels are yet to be developed. Availability of advanced probes and biosynthesis inhibitors would help in the measurement of real-time changes of endogenous H2S levels in an in vivo context. The study of the dynamics of sulfhydration and nitrosylation of critical cysteine residues of regulatory proteins involved in physiology and pathophysiology is an area of interest for the future.
Ramprasath, Tharmarajan; Kalpana, Krishnan
2015-01-01
Physiological cardiac hypertrophy is an adaptive mechanism, induced during chronic exercise. As it is reversible and not associated with cardiomyocyte death, it is considered as a natural tactic to prevent cardiac dysfunction and failure. Though, different studies revealed the importance of microRNAs (miRNAs) in pathological hypertrophy, their role during physiological hypertrophy is largely unexplored. Hence, this study is aimed at revealing the global expression profile of miRNAs during physiological cardiac hypertrophy. Chronic swimming protocol continuously for eight weeks resulted in induction of physiological hypertrophy in rats and histopathology revealed the absence of tissue damage, apoptosis or fibrosis. Subsequently, the total RNA was isolated and small RNA sequencing was executed. Analysis of small RNA reads revealed the differential expression of a large set of miRNAs during physiological hypertrophy. The expression profile of the significantly differentially expressed miRNAs was validated by qPCR. In silico prediction of target genes by miRanda, miRdB and TargetScan and subsequent qPCR analysis unraveled that miRNAs including miR-99b, miR-100, miR-19b, miR-10, miR-208a, miR-133, miR-191a, miR-22, miR-30e and miR-181a are targeting the genes that primarily regulate cell proliferation and cell death. Gene ontology and pathway mapping showed that the differentially expressed miRNAs and their target genes were mapped to apoptosis and cell death pathways principally via PI3K/Akt/mTOR and MAPK signaling. In summary, our data indicates that regulation of these miRNAs with apoptosis regulating potential can be one of the major key factors in determining pathological or physiological hypertrophy by controlling fibrosis, apoptosis and cell death mechanisms. PMID:25793527
Learning Style-Based Teaching Harvests a Superior Comprehension of Respiratory Physiology
ERIC Educational Resources Information Center
Anbarasi, M.; Rajkumar, G.; Krishnakumar, S.; Rajendran, P.; Venkatesan, R.; Dinesh, T.; Mohan, J.; Venkidusamy, S.
2015-01-01
Students entering medical college generally show vast diversity in their school education. It becomes the responsibility of teachers to motivate students and meet the needs of all diversities. One such measure is teaching students in their own preferred learning style. The present study was aimed to incorporate a learning style-based…
USDA-ARS?s Scientific Manuscript database
Insect guts harbor diverse microbial assemblages that can be influenced by multiple factors, including gut physiology and interactions by the host with its environment. The Asian longhorned beetle (ALB; Anoplophora glabripennis) is an invasive tree–killing insect, which harbors a diverse consortium ...
Projected loss of a salamander diversity hotspot as a consequence of projected global climate change
Joseph R. Milanovich; William E. Peterman; Nathan P. Nibbelink; John C. Maerz
2010-01-01
Background: Significant shifts in climate are considered a threat to plants and animals with significant physiological limitations and limited dispersal abilities. The southern Appalachian Mountains are a global hotspot for plethodontid salamander diversity. Plethodontids are lungless ectotherms, so their ecology is strongly governed by temperature and precipitation....
Urban ecosystem services: tree diversity and stability of tropospheric ozone removal.
Manes, Fausto; Incerti, Guido; Salvatori, Elisabetta; Vitale, Marcello; Ricotta, Carlo; Costanza, Robert
2012-01-01
Urban forests provide important ecosystem services, such as urban air quality improvement by removing pollutants. While robust evidence exists that plant physiology, abundance, and distribution within cities are basic parameters affecting the magnitude and efficiency of air pollution removal, little is known about effects of plant diversity on the stability of this ecosystem service. Here, by means of a spatial analysis integrating system dynamic modeling and geostatistics, we assessed the effects of tree diversity on the removal of tropospheric ozone (O3) in Rome, Italy, in two years (2003 and 2004) that were very different for climatic conditions and ozone levels. Different tree functional groups showed complementary uptake patterns, related to tree physiology and phenology, maintaining a stable community function across different climatic conditions. Our results, although depending on the city-specific conditions of the studied area, suggest a higher function stability at increasing diversity levels in urban ecosystems. In Rome, such ecosystem services, based on published unitary costs of externalities and of mortality associated with O3, can be prudently valued to roughly US$2 and $3 million/year, respectively.
A high-throughput microRNA expression profiling system.
Guo, Yanwen; Mastriano, Stephen; Lu, Jun
2014-01-01
As small noncoding RNAs, microRNAs (miRNAs) regulate diverse biological functions, including physiological and pathological processes. The expression and deregulation of miRNA levels contain rich information with diagnostic and prognostic relevance and can reflect pharmacological responses. The increasing interest in miRNA-related research demands global miRNA expression profiling on large numbers of samples. We describe here a robust protocol that supports high-throughput sample labeling and detection on hundreds of samples simultaneously. This method employs 96-well-based miRNA capturing from total RNA samples and on-site biochemical reactions, coupled with bead-based detection in 96-well format for hundreds of miRNAs per sample. With low-cost, high-throughput, high detection specificity, and flexibility to profile both small and large numbers of samples, this protocol can be adapted in a wide range of laboratory settings.
Brain serotonergic circuitries
Charnay, Yves; Leger, Lucienne
2010-01-01
Brain serotonergic circuitries interact with other neurotransmitter systems on a multitude of different molecular levels. In humans, as in other mammalian species, serotonin (5-HT) plays a modulatory role in almost every physiological function. Furthermore, serotonergic dysfunction is thought to be implicated in several psychiatric and neurodegenerative disorders. We describe the neuroanatomy and neurochemistry of brain serotonergic circuitries. The contribution of emergent in vivo imaging methods to the regional localization of binding site receptors and certain aspects of their functional connectivity in correlation to behavior is also discussed. 5-HT cell bodies, mainly localized in the raphe nuclei, send axons to almost every brain region. It is argued that the specificity of the local chemocommunication between 5-HT and other neuronal elements mainly depends on mechanisms regulating the extracellular concentration of 5-HT, the diversity of high-affinity membrane receptors, and their specific transduction modalities. PMID:21319493
Platelet proteomics: from discovery to diagnosis.
Looße, Christina; Swieringa, Frauke; Heemskerk, Johan W M; Sickmann, Albert; Lorenz, Christin
2018-05-22
Platelets are the smallest cells within the circulating blood with key roles in physiological haemostasis and pathological thrombosis regulated by the onset of activating/inhibiting processes via receptor responses and signalling cascades. Areas covered: Proteomics as well as genomic approaches have been fundamental in identifying and quantifying potential targets for future diagnostic strategies in the prevention of bleeding and thrombosis, and uncovering the complexity of platelet functions in health and disease. In this article, we provide a critical overview on current functional tests used in diagnostics and the future perspectives for platelet proteomics in clinical applications. Expert commentary: Proteomics represents a valuable tool for the identification of patients with diverse platelet associated defects. In-depth validation of identified biomarkers, e.g. receptors, signalling proteins, post-translational modifications, in large cohorts is decisive for translation into routine clinical diagnostics.
Emerging role of the Jun N-terminal kinase interactome in human health.
Guo, Xiao-Xi; An, Su; Yang, Yang; Liu, Ying; Hao, Qian; Tang, Tao; Xu, Tian-Rui
2018-02-08
The c-Jun N-terminal kinases (JNKs) are located downstream of Ras-mitogen activated protein kinase signaling cascades. More than 20 years of study has shown that JNKs control cell fate and many cellular functions. JNKs and their interacting proteins form a complicated network with diverse biological functions and physiological effects. Members of the JNK interactome include Jun, amyloid precursor protein, and insulin receptor substrate. Recent studies have shown that the JNK interactome is involved in tumorigenesis, neuron development, and insulin resistance. In this review, we summarize the features of the JNK interactome and classify its members into three groups: upstream regulators, downstream effectors, and scaffold partners. We also highlight the unique cellular signaling mechanisms of JNKs and provide more insights into the roles of the JNK interactome in human diseases. © 2018 International Federation for Cell Biology.
An emerging link between LIM domain proteins and nuclear receptors.
Sala, Stefano; Ampe, Christophe
2018-06-01
Nuclear receptors are ligand-activated transcription factors that partake in several biological processes including development, reproduction and metabolism. Over the last decade, evidence has accumulated that group 2, 3 and 4 LIM domain proteins, primarily known for their roles in actin cytoskeleton organization, also partake in gene transcription regulation. They shuttle between the cytoplasm and the nucleus, amongst other as a consequence of triggering cells with ligands of nuclear receptors. LIM domain proteins act as important coregulators of nuclear receptor-mediated gene transcription, in which they can either function as coactivators or corepressors. In establishing interactions with nuclear receptors, the LIM domains are important, yet pleiotropy of LIM domain proteins and nuclear receptors frequently occurs. LIM domain protein-nuclear receptor complexes function in diverse physiological processes. Their association is, however, often linked to diseases including cancer.
Diversity in the origins of proteostasis networks- a driver for protein function in evolution
Powers, Evan T.; Balch, William E.
2013-01-01
Although a protein’s primary sequence largely determines its function, proteins can adopt different folding states in response to changes in the environment, some of which may be deleterious to the organism. All organisms, including Bacteria, Archaea and Eukarya, have evolved a protein homeostasis network, or proteostasis network, that consists of chaperones and folding factors, degradation components, signalling pathways and specialized compartmentalized modules that manage protein folding in response to environmental stimuli and variation. Surveying the origins of proteostasis networks reveals that they have co-evolved with the proteome to regulate the physiological state of the cell, reflecting the unique stresses that different cells or organisms experience, and that they have a key role in driving evolution by closely managing the link between the phenotype and the genotype. PMID:23463216
Yarandi, Shadi S.; Hebbar, Gautam; Sauer, Cary G.; Cole, Conrad R.; Ziegler, Thomas R.
2011-01-01
Objective Leptin was discovered in 1994 as a hormone produced by adipose tissue with a modulatory effect on feeding behavior and weight control. Recently, the stomach has been identified as an important source of leptin and growing evidence has shown diverse functions for leptin in the gastrointestinal tract. Methods Using leptin as a keyword in PubMed, more than 17 000 articles were identified, of which more than 500 articles were related to the role of leptin in the gastrointestinal tract. Available abstracts were reviewed and more than 200 original articles were reviewed in detail. Results The available literature demonstrated that leptin can modulate several important functions of the gastrointestinal tract. Leptin interacts with the vagus nerve and cholecystokinin to delay gastric emptying and has a complex effect on motility of the small bowel. Leptin modulates absorption of macronutrients in the gastrointestinal tract differentially in physiologic and pathologic states. In physiologic states, exogenous leptin has been shown to decrease carbohydrate absorption and to increase the absorption of small peptides by the PepT1 di-/tripeptide transporter. In certain pathologic states, leptin has been shown to increase absorption of carbohydrates, proteins, and fat. Leptin has been shown to be upregulated in the colonic mucosa in patients with inflammatory bowel disease. Leptin stimulates gut mucosal cell proliferation and inhibits apoptosis. These functions have led to speculation about the role of leptin in tumorigenesis in the gastrointestinal tract, which is complicated by the multiple immunoregulatory effects of leptin. Conclusion Leptin is an important modulator of major aspects of gastrointestinal tract functions, independent of its more well-described roles in appetite regulation and obesity. PMID:20947298
O'Leary, Brendan; Park, Joonho; Plaxton, William C
2011-05-15
PEPC [PEP (phosphoenolpyruvate) carboxylase] is a tightly controlled enzyme located at the core of plant C-metabolism that catalyses the irreversible β-carboxylation of PEP to form oxaloacetate and Pi. The critical role of PEPC in assimilating atmospheric CO(2) during C(4) and Crassulacean acid metabolism photosynthesis has been studied extensively. PEPC also fulfils a broad spectrum of non-photosynthetic functions, particularly the anaplerotic replenishment of tricarboxylic acid cycle intermediates consumed during biosynthesis and nitrogen assimilation. An impressive array of strategies has evolved to co-ordinate in vivo PEPC activity with cellular demands for C(4)-C(6) carboxylic acids. To achieve its diverse roles and complex regulation, PEPC belongs to a small multigene family encoding several closely related PTPCs (plant-type PEPCs), along with a distantly related BTPC (bacterial-type PEPC). PTPC genes encode ~110-kDa polypeptides containing conserved serine-phosphorylation and lysine-mono-ubiquitination sites, and typically exist as homotetrameric Class-1 PEPCs. In contrast, BTPC genes encode larger ~117-kDa polypeptides owing to a unique intrinsically disordered domain that mediates BTPC's tight interaction with co-expressed PTPC subunits. This association results in the formation of unusual ~900-kDa Class-2 PEPC hetero-octameric complexes that are desensitized to allosteric effectors. BTPC is a catalytic and regulatory subunit of Class-2 PEPC that is subject to multi-site regulatory phosphorylation in vivo. The interaction between divergent PEPC polypeptides within Class-2 PEPCs adds another layer of complexity to the evolution, physiological functions and metabolic control of this essential CO(2)-fixing plant enzyme. The present review summarizes exciting developments concerning the functions, post-translational controls and subcellular location of plant PTPC and BTPC isoenzymes.
The Up- and Down-Regulation of Amusement:Experiential, Behavioral, and Autonomic Consequences
Giuliani, Nicole R.; McRae, Kateri; Gross, James J.
2014-01-01
A growing body of research has examined the regulation of negative emotions. However, little is known about the physiological processes underlying the regulation of positive emotions, such as when amusement is enhanced during periods of stress, or attenuated in the pursuit of social goals. The aim of this study was to examine the psychophysiological consequences of the cognitive up- and down-regulation of amusement. To address this goal, participants viewed brief, amusing film clips while measurements of experience, behavior, and peripheral physiology were collected. Using an event-related design, participants viewed each film under the instructions either to a) watch, b) use cognitive reappraisal to increase amusement, or c) use cognitive reappraisal to decrease amusement. Findings indicated that emotion experience, emotion-expressive behavior, and autonomic physiology (including heart rate, respiration, and sympathetic nervous system activation) were enhanced and diminished in accordance with regulation instructions. This finding is a critical extension of the growing literature on the voluntary regulation of emotion, and has the potential to help us better understand how people use humor in the service of coping and social goals. PMID:18837622
Stress physiology in marine mammals: how well do they fit the terrestrial model?
Atkinson, Shannon; Crocker, Daniel; Houser, Dorian; Mashburn, Kendall
2015-07-01
Stressors are commonly accepted as the causal factors, either internal or external, that evoke physiological responses to mediate the impact of the stressor. The majority of research on the physiological stress response, and costs incurred to an animal, has focused on terrestrial species. This review presents current knowledge on the physiology of the stress response in a lesser studied group of mammals, the marine mammals. Marine mammals are an artificial or pseudo grouping from a taxonomical perspective, as this group represents several distinct and diverse orders of mammals. However, they all are fully or semi-aquatic animals and have experienced selective pressures that have shaped their physiology in a manner that differs from terrestrial relatives. What these differences are and how they relate to the stress response is an efflorescent topic of study. The identification of the many facets of the stress response is critical to marine mammal management and conservation efforts. Anthropogenic stressors in marine ecosystems, including ocean noise, pollution, and fisheries interactions, are increasing and the dramatic responses of some marine mammals to these stressors have elevated concerns over the impact of human-related activities on a diverse group of animals that are difficult to monitor. This review covers the physiology of the stress response in marine mammals and places it in context of what is known from research on terrestrial mammals, particularly with respect to mediator activity that diverges from generalized terrestrial models. Challenges in conducting research on stress physiology in marine mammals are discussed and ways to overcome these challenges in the future are suggested.
Physiological Regulation and Fearfulness as Predictors of Young Children's Empathy-Related Reactions
ERIC Educational Resources Information Center
Liew, Jeffrey; Eisenberg, Nancy; Spinrad, Tracy L.; Eggum, Natalie D.; Haugen, R. G.; Kupfer, Anne; Reiser, Mark R.; Smith, Cynthia L.; Lemery-Chalfant, Kathryn; Baham, Melinda E.
2011-01-01
Indices of physiological regulation (i.e., resting respiratory sinus arrhythmia [RSA] and RSA suppression) and observed fearfulness were tested as predictors of empathy-related reactions to an unfamiliar person's simulated distress within and across 18 (T1, N = 247) and 30 (T2, N = 216) months of age. Controlling for T1 helping, high RSA…
Children's Emotion Regulation: Self-Report and Physiological Response to Peer Provocation
ERIC Educational Resources Information Center
Hessler, Danielle M.; Katz, Lynn Fainsilber
2007-01-01
The authors examined the notion that children's emotion regulation (ER) is a uniform skill by (a) investigating the concordance between self-report of ER and physiological measures and by (b) examining ER in a specific context (e.g., peer provocation) and context-free manner (e.g., during a semistructured interview of ER abilities). Seventy-two…