Science.gov

Sample records for regulate gibberellin signalling

  1. DELLA-mediated gibberellin signalling regulates Nod factor signalling and rhizobial infection

    PubMed Central

    Fonouni-Farde, Camille; Tan, Sovanna; Baudin, Maël; Brault, Mathias; Wen, Jiangqi; Mysore, Kirankumar S.; Niebel, Andreas; Frugier, Florian; Diet, Anouck

    2016-01-01

    Legumes develop symbiotic interactions with rhizobial bacteria to form nitrogen-fixing nodules. Bacterial Nod factors (NFs) and plant regulatory pathways modulating NF signalling control rhizobial infections and nodulation efficiency. Here we show that gibberellin (GA) signalling mediated by DELLA proteins inhibits rhizobial infections and controls the NF induction of the infection marker ENOD11 in Medicago truncatula. Ectopic expression of a constitutively active DELLA protein in the epidermis is sufficient to promote ENOD11 expression in the absence of symbiotic signals. We show using heterologous systems that DELLA proteins can interact with the nodulation signalling pathway 2 (NSP2) and nuclear factor-YA1 (NF-YA1) transcription factors that are essential for the activation of NF responses. Furthermore, MtDELLA1 can bind the ERN1 (ERF required for nodulation 1) promoter and positively transactivate its expression. Overall, we propose that GA-dependent action of DELLA proteins may directly regulate the NSP1/NSP2 and NF-YA1 activation of ERN1 transcription to regulate rhizobial infections. PMID:27586842

  2. DELLA-mediated gibberellin signalling regulates Nod factor signalling and rhizobial infection.

    PubMed

    Fonouni-Farde, Camille; Tan, Sovanna; Baudin, Maël; Brault, Mathias; Wen, Jiangqi; Mysore, Kirankumar S; Niebel, Andreas; Frugier, Florian; Diet, Anouck

    2016-01-01

    Legumes develop symbiotic interactions with rhizobial bacteria to form nitrogen-fixing nodules. Bacterial Nod factors (NFs) and plant regulatory pathways modulating NF signalling control rhizobial infections and nodulation efficiency. Here we show that gibberellin (GA) signalling mediated by DELLA proteins inhibits rhizobial infections and controls the NF induction of the infection marker ENOD11 in Medicago truncatula. Ectopic expression of a constitutively active DELLA protein in the epidermis is sufficient to promote ENOD11 expression in the absence of symbiotic signals. We show using heterologous systems that DELLA proteins can interact with the nodulation signalling pathway 2 (NSP2) and nuclear factor-YA1 (NF-YA1) transcription factors that are essential for the activation of NF responses. Furthermore, MtDELLA1 can bind the ERN1 (ERF required for nodulation 1) promoter and positively transactivate its expression. Overall, we propose that GA-dependent action of DELLA proteins may directly regulate the NSP1/NSP2 and NF-YA1 activation of ERN1 transcription to regulate rhizobial infections. PMID:27586842

  3. A Gibberellin-Mediated DELLA-NAC Signaling Cascade Regulates Cellulose Synthesis in Rice[OPEN

    PubMed Central

    Huang, Debao; Wang, Shaogan; Zhang, Baocai; Shang-Guan, Keke; Shi, Yanyun; Zhang, Dongmei; Liu, Xiangling; Wu, Kun; Xu, Zuopeng; Fu, Xiangdong; Zhou, Yihua

    2015-01-01

    Cellulose, which can be converted into numerous industrial products, has important impacts on the global economy. It has long been known that cellulose synthesis in plants is tightly regulated by various phytohormones. However, the underlying mechanism of cellulose synthesis regulation remains elusive. Here, we show that in rice (Oryza sativa), gibberellin (GA) signals promote cellulose synthesis by relieving the interaction between SLENDER RICE1 (SLR1), a DELLA repressor of GA signaling, and NACs, the top-layer transcription factors for secondary wall formation. Mutations in GA-related genes and physiological treatments altered the transcription of CELLULOSE SYNTHASE genes (CESAs) and the cellulose level. Multiple experiments demonstrated that transcription factors NAC29/31 and MYB61 are CESA regulators in rice; NAC29/31 directly regulates MYB61, which in turn activates CESA expression. This hierarchical regulation pathway is blocked by SLR1-NAC29/31 interactions. Based on the results of anatomical analysis and GA content examination in developing rice internodes, this signaling cascade was found to be modulated by varied endogenous GA levels and to be required for internode development. Genetic and gene expression analyses were further performed in Arabidopsis thaliana GA-related mutants. Altogether, our findings reveal a conserved mechanism by which GA regulates secondary wall cellulose synthesis in land plants and provide a strategy for manipulating cellulose production and plant growth. PMID:26002868

  4. The Arabidopsis RGA gene encodes a transcriptional regulator repressing the gibberellin signal transduction pathway.

    PubMed

    Silverstone, A L; Ciampaglio, C N; Sun, T

    1998-02-01

    The recessive rga mutation is able to partially suppress phenotypic defects of the Arabidopsis gibberellin (GA) biosynthetic mutant ga1-3. Defects in stem elongation, flowering time, and leaf abaxial trichome initiation are suppressed by rga. This indicates that RGA is a negative regulator of the GA signal transduction pathway. We have identified 10 additional alleles of rga from a fast-neutron mutagenized ga1-3 population and used them to isolate the RGA gene by genomic subtraction. Our data suggest that RGA may be functioning as a transcriptional regulator. RGA was found to be a member of the VHIID regulatory family, which includes the radial root organizing gene SCARECROW and another GA signal transduction repressor, GAI. RGA and GAI proteins share a high degree of homology, but their N termini are more divergent. The presence of several structural features, including homopolymeric serine and threonine residues, a putative nuclear localization signal, leucine heptad repeats, and an LXXLL motif, indicates that the RGA protein may be a transcriptional regulator that represses the GA response. In support of the putative nuclear localization signal, we demonstrated that a transiently expressed green fluorescent protein-RGA fusion protein is localized to the nucleus in onion epidermal cells. Because the rga mutation abolished the high level of expression of the GA biosynthetic gene GA4 in the ga1-3 mutant background, we conclude that RGA may also play a role in controlling GA biosynthesis.

  5. Gibberellin hormone signal perception: down-regulating DELLA repressors of plant growth and development

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The gibberellin (GA) hormone signal is perceived by a receptor with homology to hormone sensitive lipases, GID1 (GA-INSENSITIVE DWARF1). This leads to GA-stimulated responses including stem elongation, seed germination, and the transition to flowering. GA-binding enables GID1 to interact with and ...

  6. Arabidopsis scaffold protein RACK1A modulates rare sugar D-allose regulated gibberellin signaling

    PubMed Central

    Fennell, Herman; Olawin, Abdulquadri; Mizanur, Rahman M.; Izumori, Ken; Chen, Jin-Gui; Ullah, Hemayet

    2012-01-01

    As energy sources and structural components, sugars are the central regulators of plant growth and development. In addition to the abundant natural sugars in plants, more than 50 different kinds of rare sugars exist in nature, several of which show distinct roles in plant growth and development. Recently, one of the rare sugars, D-allose, an epimer of D-glucose at C3, is found to suppress plant hormone gibberellin (GA) signaling in rice. Scaffold protein RACK1A in the model plant Arabidopsis is implicated in the GA pathway as rack1a knockout mutants show insensitivity to GA in GA-induced seed germination. Using genetic knockout lines and a reporter gene, the functional role of RACK1A in the D-allose pathway was investigated. It was found that the rack1a knockout seeds showed hypersensitivity to D-allose-induced inhibition of seed germination, implicating a role for RACK1A in the D-allose mediated suppression of seed germination. On the other hand, a functional RACK1A in the background of the double knockout mutations in the other two RACK1 isoforms, rack1b/rack1c, showed significant resistance to the D-allose induced inhibition of seed germination. The collective results implicate the RACK1A in the D-allose mediated seed germination inhibition pathway. Elucidation of the rare sugar signaling mechanism will help to advance understanding of this less studied but important cellular signaling pathway. PMID:22951405

  7. Transcriptional regulation of gibberellin metabolism genes by auxin signaling in Arabidopsis.

    PubMed

    Frigerio, Martín; Alabadí, David; Pérez-Gómez, José; García-Cárcel, Laura; Phillips, Andrew L; Hedden, Peter; Blázquez, Miguel A

    2006-10-01

    Auxin and gibberellins (GAs) overlap in the regulation of multiple aspects of plant development, such as root growth and organ expansion. This coincidence raises questions about whether these two hormones interact to regulate common targets and what type of interaction occurs in each case. Auxins induce GA biosynthesis in a range of plant species. We have undertaken a detailed analysis of the auxin regulation of expression of Arabidopsis (Arabidopsis thaliana) genes encoding GA 20-oxidases and GA 3-oxidases involved in GA biosynthesis, and GA 2-oxidases involved in GA inactivation. Our results show that auxin differentially up-regulates the expression of various genes involved in GA metabolism, in particular several AtGA20ox and AtGA2ox genes. Up-regulation occurred very quickly after auxin application; the response was mimicked by incubations with the protein synthesis inhibitor cycloheximide and was blocked by treatments with the proteasome inhibitor MG132. The effects of auxin treatment reflect endogenous regulation because equivalent changes in gene expression were observed in the auxin overproducer mutant yucca. The results suggest direct regulation of the expression of GA metabolism genes by Aux/IAA and ARF proteins. The physiological relevance of this regulation is supported by the observation that the phenotype of certain gain-of-function Aux/IAA alleles could be alleviated by GA application, which suggests that changes in GA metabolism mediate part of auxin action during development.

  8. Tissue-Specific Regulation of Gibberellin Signaling Fine-Tunes Arabidopsis Iron-Deficiency Responses.

    PubMed

    Wild, Michael; Davière, Jean-Michel; Regnault, Thomas; Sakvarelidze-Achard, Lali; Carrera, Esther; Lopez Diaz, Isabel; Cayrel, Anne; Dubeaux, Guillaume; Vert, Grégory; Achard, Patrick

    2016-04-18

    Iron is an essential element for most living organisms. Plants acquire iron from the rhizosphere and have evolved different biochemical and developmental responses to adapt to a low-iron environment. In Arabidopsis, FIT encodes a basic helix-loop-helix transcription factor that activates the expression of iron-uptake genes in root epidermis upon iron deficiency. Here, we report that the gibberellin (GA)-signaling DELLA repressors contribute substantially in the adaptive responses to iron-deficient conditions. When iron availability decreases, DELLAs accumulate in the root meristem, thereby restraining root growth, while being progressively excluded from epidermal cells in the root differentiation zone. Such DELLA exclusion from the site of iron acquisition relieves FIT from DELLA-dependent inhibition and therefore promotes iron uptake. Consistent with this mechanism, expression of a non-GA-degradable DELLA mutant protein in root epidermis interferes with iron acquisition. Hence, spatial distribution of DELLAs in roots is essential to fine-tune the adaptive responses to iron availability.

  9. Convergence of auxin and gibberellin signaling on the regulation of the GATA transcription factors GNC and GNL in Arabidopsis thaliana.

    PubMed

    Richter, René; Behringer, Carina; Zourelidou, Melina; Schwechheimer, Claus

    2013-08-01

    Plant growth is regulated by a complex network of signaling events. Points of convergence for the signaling cross-talk between the phytohormones auxin and gibberellin (GA), which partly control overlapping processes during plant development, are largely unknown. At the cellular level, auxin responses are controlled by members of the AUXIN RESPONSE FACTOR (ARF) family of transcription factors as well as AUXIN/INDOLE-3-ACETIC ACID INDUCIBLE (AUX/IAA) proteins that repress the activity of at least a subset of ARFs. Here, we show that the two paralogous GATA transcription factors GATA, NITRATE-INDUCIBLE, CARBON-METABOLISM INVOLVED (GNC) and GNC-LIKE (GNL)/CYTOKININ-RESPONSIVE GATA FACTOR1 (CGA1) are direct and critical transcription targets downstream from ARF2 in the control of greening, flowering time, and senescence. Mutants deficient in the synthesis or signaling of the phytohormone GA are also impaired in greening, flowering, and senescence, and interestingly, GNC and GNL were previously identified as important transcription targets of the GA signaling pathway. In line with a critical regulatory role for GNC and GNL downstream from both auxin and GA signaling, we show here that the constitutive activation of GA signaling is sufficient to suppress arf2 mutant phenotypes through repression of GNC and GNL. In addition, we show that GA promotes ARF2 protein abundance through a translation-dependent mechanism that could serve to override the autoinhibitory negative feedback regulation of ARF2 on its own transcription and thereby further promote GA signaling. PMID:23878229

  10. Evolutionary conservation of plant gibberellin signalling pathway components

    PubMed Central

    Vandenbussche, Filip; Fierro, Ana C; Wiedemann, Gertrud; Reski, Ralf; Van Der Straeten, Dominique

    2007-01-01

    Background: Gibberellins (GA) are plant hormones that can regulate germination, elongation growth, and sex determination. They ubiquitously occur in seed plants. The discovery of gibberellin receptors, together with advances in understanding the function of key components of GA signalling in Arabidopsis and rice, reveal a fairly short GA signal transduction route. The pathway essentially consists of GID1 gibberellin receptors that interact with F-box proteins, which in turn regulate degradation of downstream DELLA proteins, suppressors of GA-controlled responses. Results: Arabidopsis sequences of the gibberellin signalling compounds were used to screen databases from a variety of plants, including protists, for homologues, providing indications for the degree of conservation of the pathway. The pathway as such appears completely absent in protists, the moss Physcomitrella patens shares only a limited homology with the Arabidopsis proteins, thus lacking essential characteristics of the classical GA signalling pathway, while the lycophyte Selaginella moellendorffii contains a possible ortholog for each component. The occurrence of classical GA responses can as yet not be linked with the presence of homologues of the signalling pathway. Alignments and display in neighbour joining trees of the GA signalling components confirm the close relationship of gymnosperms, monocotyledonous and dicotyledonous plants, as suggested from previous studies. Conclusion: Homologues of the GA-signalling pathway were mainly found in vascular plants. The GA signalling system may have its evolutionary molecular onset in Physcomitrella patens, where GAs at higher concentrations affect gravitropism and elongation growth. PMID:18047669

  11. Asymmetric gibberellin signaling regulates vacuolar trafficking of PIN auxin transporters during root gravitropism.

    PubMed

    Löfke, Christian; Zwiewka, Marta; Heilmann, Ingo; Van Montagu, Marc C E; Teichmann, Thomas; Friml, Jirí

    2013-02-26

    Gravitropic bending of plant organs is mediated by an asymmetric signaling of the plant hormone auxin between the upper and lower side of the respective organ. Here, we show that also another plant hormone, gibberellic acid (GA), shows asymmetric action during gravitropic responses. Immunodetection using an antibody against GA and monitoring GA signaling output by downstream degradation of DELLA proteins revealed an asymmetric GA distribution and response with the maximum at the lower side of gravistimulated roots. Genetic or pharmacological manipulation of GA levels or response affects gravity-mediated auxin redistribution and root bending response. The higher GA levels at the lower side of the root correlate with increased amounts of PIN-FORMED2 (PIN2) auxin transporter at the plasma membrane. The observed increase in PIN2 stability is caused by a specific GA effect on trafficking of PIN proteins to lytic vacuoles that presumably occurs downstream of brefeldin A-sensitive endosomes. Our results suggest that asymmetric auxin distribution instructive for gravity-induced differential growth is consolidated by the asymmetric action of GA that stabilizes the PIN-dependent auxin stream along the lower side of gravistimulated roots. PMID:23391733

  12. Mechanisms of signaling crosstalk between brassinosteroids and gibberellins.

    PubMed

    Li, Qian-Feng; He, Jun-Xian

    2013-07-01

    Brassinosteroids (BRs) and Gibberellins (GAs) are two principal groups of growth-promoting phytohormones. Accumulating evidence supports that there are crosstalks between BR and GA signaling pathways. However, a molecular mechanism for direct signaling crosstalk between BRs and GAs was not revealed until recently. Works from three different groups demonstrated that an interaction between BZR1/BES1 and DELLAs, two groups of key transcriptional regulators from the BR and GA signaling pathways, respectively, mediates the direct signaling crosstalk between BRs and GAs in controlling cell elongation in Arabidopsis. It was shown that DELLA proteins not only affect the protein stability but also inhibit the transcriptional activity of BZR1. Thus, GAs promote cell elongation, at least in part, through releasing DELLA-mediated inhibition of BZR1. This review aims to introduce these recent advances in our understanding of how BRs and GAs coordinate to regulate plant growth and development at the molecular level.

  13. Gibberellin Signaling in Plants – The Extended Version

    PubMed Central

    Schwechheimer, Claus

    2011-01-01

    The plant hormone gibberellin (GA) controls major aspects of plant growth such as germination, elongation growth, flower development, and flowering time. In recent years, a number of studies have revealed less apparent roles for GA in a surprisingly broad set of developmental as well as cell biological processes. The identification of GA receptor proteins on the one end of the signaling cascade, DELLA proteins as central repressors of the pathway and transcription regulators such as the phytochrome interacting factors and the GATA-type transcription factors GNC and CGA1/GNL on the current other end of the signaling cascade have extended our knowledge about how GA and DELLAs regulate a diverse set of plant responses. PMID:22645560

  14. Auxin and ethylene regulate elongation responses to neighbor proximity signals independent of gibberellin and della proteins in Arabidopsis.

    PubMed

    Pierik, Ronald; Djakovic-Petrovic, Tanja; Keuskamp, Diederik H; de Wit, Mieke; Voesenek, Laurentius A C J

    2009-04-01

    Plants modify growth in response to the proximity of neighbors. Among these growth adjustments are shade avoidance responses, such as enhanced elongation of stems and petioles, that help plants to reach the light and outgrow their competitors. Neighbor detection occurs through photoreceptor-mediated detection of light spectral changes (i.e. reduced red:far-red ratio [R:FR] and reduced blue light intensity). We recently showed that physiological regulation of these responses occurs through light-mediated degradation of nuclear, growth-inhibiting DELLA proteins, but this appeared to be only part of the full mechanism. Here, we present how two hormones, auxin and ethylene, coregulate DELLAs but regulate shade avoidance responses through DELLA-independent mechanisms in Arabidopsis (Arabidopsis thaliana). Auxin appears to be required for both seedling and mature plant shoot elongation responses to low blue light and low R:FR, respectively. Auxin action is increased upon exposure to low R:FR and low blue light, and auxin inhibition abolishes the elongation responses to these light cues. Ethylene action is increased during the mature plant response to low R:FR, and this growth response is abolished by ethylene insensitivity. However, ethylene is also a direct volatile neighbor detection signal that induces strong elongation in seedlings, possibly in an auxin-dependent manner. We propose that this novel ethylene and auxin control of shade avoidance interacts with DELLA abundance but also controls independent targets to regulate adaptive growth responses to surrounding vegetation.

  15. Regulation of the gibberellin pathway by auxin and DELLA proteins.

    PubMed

    O'Neill, Damian P; Davidson, Sandra E; Clarke, Victoria C; Yamauchi, Yukika; Yamaguchi, Shinjiro; Kamiya, Yuji; Reid, James B; Ross, John J

    2010-10-01

    The synthesis and deactivation of bioactive gibberellins (GA) are regulated by auxin and by GA signalling. The effect of GA on its own pathway is mediated by DELLA proteins. Like auxin, the DELLAs promote GA synthesis and inhibit its deactivation. Here, we investigate the relationships between auxin and DELLA regulation of the GA pathway in stems, using a pea double mutant that is deficient in DELLA proteins. In general terms our results demonstrate that auxin and DELLAs independently regulate the GA pathway, contrary to some previous suggestions. The extent to which DELLA regulation was able to counteract the effects of auxin regulation varied from gene to gene. For Mendel's LE gene (PsGA3ox1) no counteraction was observed. However, for another synthesis gene, a GA 20-oxidase, the effect of auxin was weak and in WT plants appeared to be completely over-ridden by DELLA regulation. For a key GA deactivation (2-oxidase) gene, PsGA2ox1, the up-regulation induced by auxin deficiency was reduced to some extent by DELLA regulation. A second pea 2-oxidase gene, PsGA2ox2, was up-regulated by auxin, in a DELLA-independent manner. In Arabidopsis also, one 2-oxidase gene was down-regulated by auxin while another was up-regulated. Monitoring the metabolism pattern of GA(20) showed that in Arabidopsis, as in pea, auxin can promote the accumulation of bioactive GA. PMID:20706734

  16. Brassinosteroids Are Master Regulators of Gibberellin Biosynthesis in Arabidopsis.

    PubMed

    Unterholzner, Simon J; Rozhon, Wilfried; Papacek, Michael; Ciomas, Jennifer; Lange, Theo; Kugler, Karl G; Mayer, Klaus F; Sieberer, Tobias; Poppenberger, Brigitte

    2015-08-01

    Plant growth and development are highly regulated processes that are coordinated by hormones including the brassinosteroids (BRs), a group of steroids with structural similarity to steroid hormones of mammals. Although it is well understood how BRs are produced and how their signals are transduced, BR targets, which directly confer the hormone's growth-promoting effects, have remained largely elusive. Here, we show that BRs regulate the biosynthesis of gibberellins (GAs), another class of growth-promoting hormones, in Arabidopsis thaliana. We reveal that Arabidopsis mutants deficient in BR signaling are severely impaired in the production of bioactive GA, which is correlated with defective GA biosynthetic gene expression. Expression of the key GA biosynthesis gene GA20ox1 in the BR signaling mutant bri1-301 rescues many of its developmental defects. We provide evidence that supports a model in which the BR-regulated transcription factor BES1 binds to a regulatory element in promoters of GA biosynthesis genes in a BR-induced manner to control their expression. In summary, our study underscores a role of BRs as master regulators of GA biosynthesis and shows that this function is of major relevance for the growth and development of vascular plants.

  17. Brassinosteroids Are Master Regulators of Gibberellin Biosynthesis in Arabidopsis

    PubMed Central

    Unterholzner, Simon J.; Rozhon, Wilfried; Papacek, Michael; Ciomas, Jennifer; Lange, Theo; Kugler, Karl G.; Mayer, Klaus F.; Sieberer, Tobias; Poppenberger, Brigitte

    2015-01-01

    Plant growth and development are highly regulated processes that are coordinated by hormones including the brassinosteroids (BRs), a group of steroids with structural similarity to steroid hormones of mammals. Although it is well understood how BRs are produced and how their signals are transduced, BR targets, which directly confer the hormone’s growth-promoting effects, have remained largely elusive. Here, we show that BRs regulate the biosynthesis of gibberellins (GAs), another class of growth-promoting hormones, in Arabidopsis thaliana. We reveal that Arabidopsis mutants deficient in BR signaling are severely impaired in the production of bioactive GA, which is correlated with defective GA biosynthetic gene expression. Expression of the key GA biosynthesis gene GA20ox1 in the BR signaling mutant bri1-301 rescues many of its developmental defects. We provide evidence that supports a model in which the BR-regulated transcription factor BES1 binds to a regulatory element in promoters of GA biosynthesis genes in a BR-induced manner to control their expression. In summary, our study underscores a role of BRs as master regulators of GA biosynthesis and shows that this function is of major relevance for the growth and development of vascular plants. PMID:26243314

  18. Plant ubiquitin-proteasome pathway and its role in gibberellin signaling

    PubMed Central

    Wang, Feng; Deng, Xing Wang

    2011-01-01

    The ubiquitin-proteasome system (UPS) in plants, like in other eukaryotes, targets numerous intracellular regulators and thus modulates almost every aspect of growth and development. The well-known and best-characterized outcome of ubiquitination is mediating target protein degradation via the 26S proteasome, which represents the major selective protein degradation pathway conserved among eukaryotes. In this review, we will discuss the molecular composition, regulation and function of plant UPS, with a major focus on how DELLA protein degradation acts as a key in gibberellin signal transduction and its implication in the regulation of plant growth. PMID:21788985

  19. Arabidopsis RGL1 encodes a negative regulator of gibberellin responses.

    PubMed

    Wen, Chi-Kuang; Chang, Caren

    2002-01-01

    In Arabidopsis, the DELLA subfamily of GRAS regulatory genes consists of GAI, RGA, RGA-LIKE1 (RGL1), RGL2, and RGL3. GAI and RGA are known to be negative regulators of gibberellin (GA) responses. We found that RGL1 is a similar repressor of GA responses, as revealed by RGL1 gain-of-function and loss-of-function phenotypes. Repression of GA responses in Arabidopsis was conferred by a dominant 35S-rgl1 transgene carrying a DELLA domain deletion analogous to the GA-insensitive gai-1 mutation. As in GA-deficient Arabidopsis, the transgenic plants were dark green dwarfs with underdeveloped trichomes and flowers. Expression levels of GA4, a feedback-regulated GA biosynthetic gene, were increased correspondingly. Conversely, a loss-of-function rgl1 line had reduced GA4 expression and exhibited GA-independent activation of seed germination, leaf expansion, flowering, stem elongation, and floral development, as detected by resistance to the GA biosynthesis inhibitor paclobutrazol. RGL1 plays a greater role in seed germination than do GAI and RGA. The expression profile of RGL1 differed from those of the four other DELLA homologs. RGL1 message levels were predominant in flowers, with transcripts detected in developing ovules and anthers. As with RGA, green fluorescent protein (GFP)-tagged RGL1 protein was localized to the nucleus, but unlike GFP-RGA, there was no degradation after GA treatment. These findings indicate that RGL1 is a partially redundant, but distinct, negative regulator of GA responses and suggest that all DELLA subfamily members might possess separate as well as overlapping roles in GA signaling. PMID:11826301

  20. SEUSS Integrates Gibberellin Signaling with Transcriptional Inputs from the SHR-SCR-SCL3 Module to Regulate Middle Cortex Formation in the Arabidopsis Root1[OPEN

    PubMed Central

    Gong, Xue; Hong, Jing Han; Chu, Huangwei; Lim, Jun

    2016-01-01

    A decade of studies on middle cortex (MC) formation in the root endodermis of Arabidopsis (Arabidopsis thaliana) have revealed a complex regulatory network that is orchestrated by several GRAS family transcription factors, including SHORT-ROOT (SHR), SCARECROW (SCR), and SCARECROW-LIKE3 (SCL3). However, how their functions are regulated remains obscure. Here we show that mutations in the SEUSS (SEU) gene led to a higher frequency of MC formation. seu mutants had strongly reduced expression of SHR, SCR, and SCL3, suggesting that SEU positively regulates these genes. Our results further indicate that SEU physically associates with upstream regulatory sequences of SHR, SCR, and SCL3; and that SEU has distinct genetic interactions with these genes in the control of MC formation, with SCL3 being epistatic to SEU. Similar to SCL3, SEU was repressed by the phytohormone GA and induced by the GA biosynthesis inhibitor paclobutrazol, suggesting that SEU acts downstream of GA signaling to regulate MC formation. Consistently, we found that SEU mediates the regulation of SCL3 by GA signaling. Together, our study identifies SEU as a new critical player that integrates GA signaling with transcriptional inputs from the SHR-SCR-SCL3 module to regulate MC formation in the Arabidopsis root. PMID:26818732

  1. SEUSS Integrates Gibberellin Signaling with Transcriptional Inputs from the SHR-SCR-SCL3 Module to Regulate Middle Cortex Formation in the Arabidopsis Root.

    PubMed

    Gong, Xue; Flores-Vergara, Miguel A; Hong, Jing Han; Chu, Huangwei; Lim, Jun; Franks, Robert G; Liu, Zhongchi; Xu, Jian

    2016-03-01

    A decade of studies on middle cortex (MC) formation in the root endodermis of Arabidopsis (Arabidopsis thaliana) have revealed a complex regulatory network that is orchestrated by several GRAS family transcription factors, including SHORT-ROOT (SHR), SCARECROW (SCR), and SCARECROW-LIKE3 (SCL3). However, how their functions are regulated remains obscure. Here we show that mutations in the SEUSS (SEU) gene led to a higher frequency of MC formation. seu mutants had strongly reduced expression of SHR, SCR, and SCL3, suggesting that SEU positively regulates these genes. Our results further indicate that SEU physically associates with upstream regulatory sequences of SHR, SCR, and SCL3; and that SEU has distinct genetic interactions with these genes in the control of MC formation, with SCL3 being epistatic to SEU. Similar to SCL3, SEU was repressed by the phytohormone GA and induced by the GA biosynthesis inhibitor paclobutrazol, suggesting that SEU acts downstream of GA signaling to regulate MC formation. Consistently, we found that SEU mediates the regulation of SCL3 by GA signaling. Together, our study identifies SEU as a new critical player that integrates GA signaling with transcriptional inputs from the SHR-SCR-SCL3 module to regulate MC formation in the Arabidopsis root.

  2. Rhizobial gibberellin negatively regulates host nodule number

    PubMed Central

    Tatsukami, Yohei; Ueda, Mitsuyoshi

    2016-01-01

    In legume–rhizobia symbiosis, the nodule number is controlled to ensure optimal growth of the host. In Lotus japonicus, the nodule number has been considered to be tightly regulated by host-derived phytohormones and glycopeptides. However, we have discovered a symbiont-derived phytohormonal regulation of nodule number in Mesorhizobium loti. In this study, we found that M. loti synthesized gibberellic acid (GA) under symbiosis. Hosts inoculated with a GA-synthesis-deficient M. loti mutant formed more nodules than those inoculated with the wild-type form at four weeks post inoculation, indicating that GA from already-incorporated rhizobia prevents new nodule formation. Interestingly, the genes for GA synthesis are only found in rhizobial species that inhabit determinate nodules. Our findings suggest that the already-incorporated rhizobia perform GA-associated negative regulation of nodule number to prevent delayed infection by other rhizobia. PMID:27307029

  3. DELLA-mediated PIF degradation contributes to coordination of light and gibberellin signalling in Arabidopsis.

    PubMed

    Li, Kunlun; Yu, Renbo; Fan, Liu-Min; Wei, Ning; Chen, Haodong; Deng, Xing Wang

    2016-01-01

    Light and gibberellins (GAs) antagonistically regulate hypocotyl elongation in plants. It has been demonstrated that DELLAs, which are negative regulators of GA signalling, inhibit phytochrome-interacting factors 3 and 4 (PIF3 and PIF4) by sequestering their DNA-recognition domains. However, it is unclear whether there are other mechanisms of regulatory crosstalk between DELLAs and PIFs. Here, we demonstrate that DELLAs negatively regulate the abundance of four PIF proteins through the ubiquitin-proteasome system. Reduction of PIF3 protein abundance by DELLAs correlates closely with reduced hypocotyl elongation. Both sequestration and degradation of PIF3 by DELLAs contribute to a reduction in PIF3 binding to its target genes. Thus, we show that promotion of PIF degradation by DELLAs is required to coordinate light and GA signals, and the dual regulation of transcription factors by DELLAs by both sequestration and degradation may be a general mechanism. PMID:27282989

  4. DELLA-mediated PIF degradation contributes to coordination of light and gibberellin signalling in Arabidopsis

    PubMed Central

    Li, Kunlun; Yu, Renbo; Fan, Liu-Min; Wei, Ning; Chen, Haodong; Deng, Xing Wang

    2016-01-01

    Light and gibberellins (GAs) antagonistically regulate hypocotyl elongation in plants. It has been demonstrated that DELLAs, which are negative regulators of GA signalling, inhibit phytochrome-interacting factors 3 and 4 (PIF3 and PIF4) by sequestering their DNA-recognition domains. However, it is unclear whether there are other mechanisms of regulatory crosstalk between DELLAs and PIFs. Here, we demonstrate that DELLAs negatively regulate the abundance of four PIF proteins through the ubiquitin–proteasome system. Reduction of PIF3 protein abundance by DELLAs correlates closely with reduced hypocotyl elongation. Both sequestration and degradation of PIF3 by DELLAs contribute to a reduction in PIF3 binding to its target genes. Thus, we show that promotion of PIF degradation by DELLAs is required to coordinate light and GA signals, and the dual regulation of transcription factors by DELLAs by both sequestration and degradation may be a general mechanism. PMID:27282989

  5. Mutations at the SPINDLY locus of Arabidopsis alter gibberellin signal transduction.

    PubMed

    Jacobsen, S E; Olszewski, N E

    1993-08-01

    Three independent recessive mutations at the SPINDLY (SPY) locus of Arabidopsis confer resistance to the gibberellin (GA) biosynthesis inhibitor paclobutrazol. Relative to wild type, spy mutants exhibit longer hypocotyls, leaves that are a lighter green color, increased stem elongation, early flowering, parthenocarpy, and partial male sterility. All of these phenotypes are also observed when wild-type Arabidopsis plants are repeatedly treated with gibberellin A3 (GA3). The spy-1 allele is partially epistatic to the ga1-2 mutation, which causes GA deficiency. In addition, the spy-1 mutation can simultaneously suppress the effects of the ga1-2 mutation and paclobutrazol treatment, which inhibit different steps in the GA biosynthesis pathway. This observation suggests that spy-1 activates a basal level of GA signal transduction that is independent of GA. Furthermore, results from GA3 dose-response experiments suggest that GA3 and spy-1 interact in an additive manner. These results are consistent with models in which the SPY gene product regulates a portion of the GA signal transduction pathway. PMID:8400871

  6. Thermoinductive Regulation of Gibberellin Metabolism in Thlaspi arvense L. 1

    PubMed Central

    Hazebroek, Jan P.; Metzger, James D.

    1990-01-01

    Field pennycress (Thlaspi arvense L.) is a winter annual crucifer with a cold requirement for stem elongation and flowering. In the present study, the metabolism of exogenous [2H]-ent-kaurenoic acid (KA) and [14C]-gibberellin A12-aldehyde (GA12-aldehyde) was compared in thermo- and noninduced plants. Thermoinduction greatly altered both quantitative and qualitative aspects of [2H]-KA metabolism in the shoot tips. The rate of disappearance of the parent compound was much greater in thermoinduced shoot tips. Moreover, there was 47 times more endogenous KA in noninduced than in thermoinduced shoot tips as determined by combined gas chromatography-mass spectrometry (GC-MS). The major metabolite of [2H]-KA in thermoinduced shoot tips was a monohydroxylated derivative of KA, while in noninduced shoot tips, the glucose ester of the hydroxy KA metabolite was the main product. Gibberellin A9 (GA9) was the only GA in which the incorporation of deuterium was detected by GC-MS, and this was observed only in thermoinduced shoot tips. The amount of incorporation was small as indicated by the large dilution by endogenous GA9. In contrast, thermo- and noninduced leaves metabolized exogenous [2H]-KA into GA20 equally well, although the amount of conversion was also limited. These results are consistent with the suggestion (JD Metzger [1990] Plant Physiol 94: 000-000) that the conversion of KA in to GAs is under thermoinductive control only in the shoot tip, the site of perception for thermoinductive temperatures in field pennycress. There were essentially no differences in the qualitative or quantitative distribution of metabolites formed following the application of [14C]-GA12-aldehyde to the shoot tips of thermo- or noninduced plants. Thus, the apparent thermoinductive regulation of the KA metabolism into GAs is probably limited to the two metabolic steps involved in converting KA to GA12-aldehyde. PMID:16667682

  7. Gibberellin biosynthesis and signal transduction is essential for internode elongation in deepwater rice

    PubMed Central

    Ayano, Madoka; Kani, Takahiro; Kojima, Mikiko; Sakakibara, Hitoshi; Kitaoka, Takuya; Kuroha, Takeshi; Angeles-Shim, Rosalyn B; Kitano, Hidemi; Nagai, Keisuke; Ashikari, Motoyuki

    2014-01-01

    Under flooded conditions, the leaves and internodes of deepwater rice can elongate above the water surface to capture oxygen and prevent drowning. Our previous studies showed that three major quantitative trait loci (QTL) regulate deepwater-dependent internode elongation in deepwater rice. In this study, we investigated the age-dependent internode elongation in deepwater rice. We also investigated the relationship between deepwater-dependent internode elongation and the phytohormone gibberellin (GA) by physiological and genetic approach using a QTL pyramiding line (NIL-1 + 3 + 12). Deepwater rice did not show internode elongation before the sixth leaf stage under deepwater condition. Additionally, deepwater-dependent internode elongation occurred on the sixth and seventh internodes during the sixth leaf stage. These results indicate that deepwater rice could not start internode elongation until the sixth leaf stage. Ultra-performance liquid chromatography tandem mass-spectrometry (UPLC-MS/MS) method for the phytohormone contents showed a deepwater-dependent GA1 and GA4 accumulation in deepwater rice. Additionally, a GA inhibitor abolished deepwater-dependent internode elongation in deepwater rice. On the contrary, GA feeding mimicked internode elongation under ordinary growth conditions. However, mutations in GA biosynthesis and signal transduction genes blocked deepwater-dependent internode elongation. These data suggested that GA biosynthesis and signal transduction are essential for deepwater-dependent internode elongation in deepwater rice. Deepwater rice obtained the ability for rapid internode elongation to avoid drowning and adapt to flooded condition. How does it regulate internode elongation? Using both physiological and genetic approach, this paper shows that the plant hormone, gibberellin (GA) regulates internode elongation. PMID:24891164

  8. Global analysis of della direct targets in early gibberellin signaling in Arabidopsis.

    PubMed

    Zentella, Rodolfo; Zhang, Zhong-Lin; Park, Mehea; Thomas, Stephen G; Endo, Akira; Murase, Kohji; Fleet, Christine M; Jikumaru, Yusuke; Nambara, Eiji; Kamiya, Yuji; Sun, Tai-Ping

    2007-10-01

    Bioactive gibberellins (GAs) are phytohormones that regulate growth and development throughout the life cycle of plants. DELLA proteins are conserved growth repressors that modulate all aspects of GA responses. These GA-signaling repressors are nuclear localized and likely function as transcriptional regulators. Recent studies demonstrated that GA, upon binding to its receptor, derepresses its signaling pathway by binding directly to DELLA proteins and targeting them for rapid degradation via the ubiquitin-proteasome pathway. Therefore, elucidating the signaling events immediately downstream of DELLA is key to our understanding of how GA controls plant development. Two sets of microarray studies followed by quantitative RT-PCR analysis allowed us to identify 14 early GA-responsive genes that are also early DELLA-responsive in Arabidopsis thaliana seedlings. Chromatin immunoprecipitation provided evidence for in vivo association of DELLA with promoters of eight of these putative DELLA target genes. Expression of all 14 genes was downregulated by GA and upregulated by DELLA. Our study reveals that DELLA proteins play two important roles in GA signaling: (1) they help establish GA homeostasis by direct feedback regulation on the expression of GA biosynthetic and GA receptor genes, and (2) they promote the expression of downstream negative components that are putative transcription factors/regulators or ubiquitin E2/E3 enzymes. In addition, one of the putative DELLA targets, XERICO, promotes accumulation of abscisic acid (ABA) that antagonizes GA effects. Therefore, DELLA may restrict GA-promoted processes by modulating both GA and ABA pathways.

  9. Molecular mechanism for the interaction between gibberellin and brassinosteroid signaling pathways in Arabidopsis.

    PubMed

    Gallego-Bartolomé, Javier; Minguet, Eugenio G; Grau-Enguix, Federico; Abbas, Mohamad; Locascio, Antonella; Thomas, Stephen G; Alabadí, David; Blázquez, Miguel A

    2012-08-14

    Plant development is modulated by the convergence of multiple environmental and endogenous signals, and the mechanisms that allow the integration of different signaling pathways is currently being unveiled. A paradigmatic case is the concurrence of brassinosteroid (BR) and gibberellin (GA) signaling in the control of cell expansion during photomorphogenesis, which is supported by physiological observations in several plants but for which no molecular mechanism has been proposed. In this work, we show that the integration of these two signaling pathways occurs through the physical interaction between the DELLA protein GAI, which is a major negative regulator of the GA pathway, and BRASSINAZOLE RESISTANT1 (BZR1), a transcription factor that broadly regulates gene expression in response to BRs. We provide biochemical evidence, both in vitro and in vivo, indicating that GAI inactivates the transcriptional regulatory activity of BZR1 upon their interaction by inhibiting the ability of BZR1 to bind to target promoters. The physiological relevance of this interaction was confirmed by the observation that the dominant gai-1 allele interferes with BR-regulated gene expression, whereas the bzr1-1D allele displays enhanced resistance to DELLA accumulation during hypocotyl elongation. Because DELLA proteins mediate the response to multiple environmental signals, our results provide an initial molecular framework for the integration with BRs of additional pathways that control plant development.

  10. Auxin acts independently of DELLA proteins in regulating gibberellin levels.

    PubMed

    Reid, James B; Davidson, Sandra E; Ross, John J

    2011-03-01

    Shoot elongation is a vital process for plant development and productivity, in both ecological and economic contexts. Auxin and bioactive gibberellins (GAs), such as GA1, play critical roles in the control of elongation, along with environmental and endogenous factors, including other hormones such as the brassinosteroids. The effect of auxins, such as indole-3-acetic acid (IAA), is at least in part mediated by its effect on GA metabolism, since auxin up-regulates biosynthesis genes such as GA 3-oxidase and GA 20-oxidase and down regulates GA catabolism genes such as GA 2-oxidases, leading to elevated levels of bioactive GA 1. In our recent paper, we have provided evidence that this action of IAA is largely independent of DELLA proteins, the negative regulators of GA action, since the auxin effects are still present in the DELLA-deficient la cry-s genotype of pea. This was a crucial issue to resolve, since like auxin, the DELLAs also promote GA 1 synthesis and inhibit its deactivation. DELLAs are deactivated by GA, and thereby mediate a feedback system by which bioactive GA regulates its own level. However, our recent results, in themselves, do not show the generality of the auxin-GA relationship across species and phylogenetic groups or across different tissue types and responses. Further, they do not touch on the ecological benefits of the auxin-GA interaction. These issues are discussed below as well as the need for the development of suitable experimental systems to allow this process to be examined. PMID:21358281

  11. Thermoinductive regulation of gibberellin metabolism in Thlaspi arvense L

    SciTech Connect

    Hazebroek, J.P.; Metzger, J.D. )

    1990-09-01

    Field pennycress (Thlaspi arvense L.) is a winter annual crucifer with a cold requirement for stem elongation and flowering. In the present study, the metabolism of exogenous ({sup 2}H)-ent-kaurenoic acid (KA) and ({sup 14}C)-gibberellin A{sub 12}-aldehyde (GA{sub 12}-aldehyde) was compared in thermo- and noninduced plants. Thermoinduction greatly altered both quantitative and qualitative aspects of ({sup 2}H)-KA metabolism in the shoot tips. The rate of disappearance of the parent compound was much greater in thermoinduced shoot tips. These results are consistent with the suggestion that the conversion of KA in to GAs is under thermoinductive control only in the shoot tip, the site of perception for thermoinductive temperatures in field pennycress. There were essentially no differences in the qualitative or quantitative distribution of metabolites formed following the application of ({sup 14}C)GA{sub 12}-aldehyde to the shoot tips of thermo- or noninduced plants. Thus, the apparent thermoinductive regulation of the KA metabolism into GAs is probably limited to the two metabolic steps involved in converting KA to GA{sub 12}-aldehyde.

  12. Lifting DELLA repression of Arabidopsis seed germination by nonproteolytic gibberellin signaling

    Technology Transfer Automated Retrieval System (TEKTRAN)

    DELLA repression of Arabidopsis seed germination can be lifted through the ubiquitin-proteasome pathway and proteolysis-independent GA signaling. GA-binding to the GID1 (GIBBERELLIN-INSENSITIVE DWARF1) GA receptors stimulates GID1-GA-DELLA complex formation which in turn triggers DELLA protein ubiq...

  13. Reactive oxygen species are involved in gibberellin/abscisic acid signaling in barley aleurone cells.

    PubMed

    Ishibashi, Yushi; Tawaratsumida, Tomoya; Kondo, Koji; Kasa, Shinsuke; Sakamoto, Masatsugu; Aoki, Nozomi; Zheng, Shao-Hui; Yuasa, Takashi; Iwaya-Inoue, Mari

    2012-04-01

    Reactive oxygen species (ROS) act as signal molecules for a variety of processes in plants. However, many questions about the roles of ROS in plants remain to be clarified. Here, we report the role of ROS in gibberellin (GA) and abscisic acid (ABA) signaling in barley (Hordeum vulgare) aleurone cells. The production of hydrogen peroxide (H2O2), a type of ROS, was induced by GA in aleurone cells but suppressed by ABA. Furthermore, exogenous H2O2 appeared to promote the induction of α-amylases by GA. In contrast, antioxidants suppressed the induction of α-amylases. Therefore, H2O2 seems to function in GA and ABA signaling, and in regulation of α-amylase production, in aleurone cells. To identify the target of H2O2 in GA and ABA signaling, we analyzed the interrelationships between H2O2 and DELLA proteins Slender1 (SLN1), GA-regulated Myb transcription factor (GAmyb), and ABA-responsive protein kinase (PKABA) and their roles in GA and ABA signaling in aleurone cells. In the presence of GA, exogenous H2O2 had little effect on the degradation of SLN1, the primary transcriptional repressor mediating GA signaling, but it promoted the production of the mRNA encoding GAMyb, which acts downstream of SLN1 and involves induction of α-amylase mRNA. Additionally, H2O2 suppressed the production of PKABA mRNA, which is induced by ABA:PKABA represses the production of GAMyb mRNA. From these observations, we concluded that H2O2 released the repression of GAMyb mRNA by PKABA and consequently promoted the production of α-amylase mRNA, thus suggesting that the H2O2 generated by GA in aleurone cells is a signal molecule that antagonizes ABA signaling.

  14. Reactive oxygen species are involved in gibberellin/abscisic acid signaling in barley aleurone cells.

    PubMed

    Ishibashi, Yushi; Tawaratsumida, Tomoya; Kondo, Koji; Kasa, Shinsuke; Sakamoto, Masatsugu; Aoki, Nozomi; Zheng, Shao-Hui; Yuasa, Takashi; Iwaya-Inoue, Mari

    2012-04-01

    Reactive oxygen species (ROS) act as signal molecules for a variety of processes in plants. However, many questions about the roles of ROS in plants remain to be clarified. Here, we report the role of ROS in gibberellin (GA) and abscisic acid (ABA) signaling in barley (Hordeum vulgare) aleurone cells. The production of hydrogen peroxide (H2O2), a type of ROS, was induced by GA in aleurone cells but suppressed by ABA. Furthermore, exogenous H2O2 appeared to promote the induction of α-amylases by GA. In contrast, antioxidants suppressed the induction of α-amylases. Therefore, H2O2 seems to function in GA and ABA signaling, and in regulation of α-amylase production, in aleurone cells. To identify the target of H2O2 in GA and ABA signaling, we analyzed the interrelationships between H2O2 and DELLA proteins Slender1 (SLN1), GA-regulated Myb transcription factor (GAmyb), and ABA-responsive protein kinase (PKABA) and their roles in GA and ABA signaling in aleurone cells. In the presence of GA, exogenous H2O2 had little effect on the degradation of SLN1, the primary transcriptional repressor mediating GA signaling, but it promoted the production of the mRNA encoding GAMyb, which acts downstream of SLN1 and involves induction of α-amylase mRNA. Additionally, H2O2 suppressed the production of PKABA mRNA, which is induced by ABA:PKABA represses the production of GAMyb mRNA. From these observations, we concluded that H2O2 released the repression of GAMyb mRNA by PKABA and consequently promoted the production of α-amylase mRNA, thus suggesting that the H2O2 generated by GA in aleurone cells is a signal molecule that antagonizes ABA signaling. PMID:22291200

  15. Synergistic derepression of gibberellin signaling by removing RGA and GAI function in Arabidopsis thaliana.

    PubMed

    Dill, A; Sun, T

    2001-10-01

    RGA and GAI are negative regulators of the gibberellin (GA) signal transduction pathway in Arabidopsis thaliana. These genes may have partially redundant functions because they are highly homologous, and plants containing single null mutations at these loci are phenotypically similar to wild type. Previously, rga loss-of-function mutations were shown to partially suppress defects of the GA-deficient ga1-3 mutant. Phenotypes rescued include abaxial trichome initiation, rosette radius, flowering time, stem elongation, and apical dominance. Here we present work showing that the rga-24 and gai-t6 null mutations have a synergistic effect on plant growth. Although gai-t6 alone has little effect, when combined with rga-24, they completely rescued the above defects of ga1-3 to wild-type or GA-overdose phenotype. However, seed germination and flower development defects were not restored. Additionally, rga-24 and rga-24/gai-t6 but not gai-t6 alone caused increased feedback inhibition of expression of a GA biosynthetic gene in both the ga1-3 and wild-type backgrounds. These results demonstrate that RGA and GAI have partially redundant functions in maintaining the repressive state of the GA-signaling pathway, but RGA plays a more dominant role than GAI. Removing both RGA and GAI function allows for complete derepression of many aspects of GA signaling.

  16. Functional Analysis of SPINDLY in Gibberellin Signaling in Arabidopsis1[C][W][OA

    PubMed Central

    Silverstone, Aron L.; Tseng, Tong-Seung; Swain, Stephen M.; Dill, Alyssa; Jeong, Sun Yong; Olszewski, Neil E.; Sun, Tai-ping

    2007-01-01

    The Arabidopsis (Arabidopsis thaliana) SPINDLY (SPY) protein negatively regulates the gibberellin (GA) signaling pathway. SPY is an O-linked N-acetylglucosamine (GlcNAc) transferase (OGT) with a protein-protein interaction domain consisting of 10 tetratricopeptide repeats (TPR). OGTs add a GlcNAc monosaccharide to serine/threonine residues of nuclear and cytosolic proteins. Determination of the molecular defects in 14 new spy alleles reveals that these mutations cluster in three TPRs and the C-terminal catalytic region. Phenotypic characterization of 12 spy alleles indicates that TPRs 6, 8, and 9 and the catalytic domain are crucial for GA-regulated stem elongation, floral induction, and fertility. TPRs 8 and 9 and the catalytic region are also important for modulating trichome morphology and inflorescence phyllotaxy. Consistent with a role for SPY in embryo development, several alleles affect seedling cotyledon number. These results suggest that three of the TPRs and the OGT activity in SPY are required for its function in GA signal transduction. We also examined the effect of spy mutations on another negative regulator of GA signaling, REPRESSOR OF ga1-3 (RGA). The DELLA motif in RGA is essential for GA-induced proteolysis of RGA, and deletion of this motif (as in rga-Δ17) causes a GA-insensitive dwarf phenotype. Here, we demonstrate that spy partially suppresses the rga-Δ17 phenotype but does not reduce rga-Δ17 or RGA protein levels or alter RGA nuclear localization. We propose that SPY may function as a negative regulator of GA response by increasing the activity of RGA, and presumably other DELLA proteins, by GlcNAc modification. PMID:17142481

  17. The ERF11 Transcription Factor Promotes Internode Elongation by Activating Gibberellin Biosynthesis and Signaling.

    PubMed

    Zhou, Xin; Zhang, Zhong-Lin; Park, Jeongmoo; Tyler, Ludmila; Yusuke, Jikumaru; Qiu, Kai; Nam, Edward A; Lumba, Shelley; Desveaux, Darrell; McCourt, Peter; Kamiya, Yuji; Sun, Tai-Ping

    2016-08-01

    The phytohormone gibberellin (GA) plays a key role in promoting stem elongation in plants. Previous studies show that GA activates its signaling pathway by inducing rapid degradation of DELLA proteins, GA signaling repressors. Using an activation-tagging screen in a reduced-GA mutant ga1-6 background, we identified AtERF11 to be a novel positive regulator of both GA biosynthesis and GA signaling for internode elongation. Overexpression of AtERF11 partially rescued the dwarf phenotype of ga1-6 AtERF11 is a member of the ERF (ETHYLENE RESPONSE FACTOR) subfamily VIII-B-1a of ERF/AP2 transcription factors in Arabidopsis (Arabidopsis thaliana). Overexpression of AtERF11 resulted in elevated bioactive GA levels by up-regulating expression of GA3ox1 and GA20ox genes. Hypocotyl elongation assays further showed that overexpression of AtERF11 conferred elevated GA response, whereas loss-of-function erf11 and erf11 erf4 mutants displayed reduced GA response. In addition, yeast two-hybrid, coimmunoprecipitation, and transient expression assays showed that AtERF11 enhances GA signaling by antagonizing the function of DELLA proteins via direct protein-protein interaction. Interestingly, AtERF11 overexpression also caused a reduction in the levels of another phytohormone ethylene in the growing stem, consistent with recent finding showing that AtERF11 represses transcription of ethylene biosynthesis ACS genes. The effect of AtERF11 on promoting GA biosynthesis gene expression is likely via its repressive function on ethylene biosynthesis. These results suggest that AtERF11 plays a dual role in promoting internode elongation by inhibiting ethylene biosynthesis and activating GA biosynthesis and signaling pathways. PMID:27255484

  18. The ERF11 Transcription Factor Promotes Internode Elongation by Activating Gibberellin Biosynthesis and Signaling1[OPEN

    PubMed Central

    Zhou, Xin; Zhang, Zhong-Lin; Tyler, Ludmila; Yusuke, Jikumaru; Qiu, Kai; Lumba, Shelley; Desveaux, Darrell; McCourt, Peter; Sun, Tai-ping

    2016-01-01

    The phytohormone gibberellin (GA) plays a key role in promoting stem elongation in plants. Previous studies show that GA activates its signaling pathway by inducing rapid degradation of DELLA proteins, GA signaling repressors. Using an activation-tagging screen in a reduced-GA mutant ga1-6 background, we identified AtERF11 to be a novel positive regulator of both GA biosynthesis and GA signaling for internode elongation. Overexpression of AtERF11 partially rescued the dwarf phenotype of ga1-6. AtERF11 is a member of the ERF (ETHYLENE RESPONSE FACTOR) subfamily VIII-B-1a of ERF/AP2 transcription factors in Arabidopsis (Arabidopsis thaliana). Overexpression of AtERF11 resulted in elevated bioactive GA levels by up-regulating expression of GA3ox1 and GA20ox genes. Hypocotyl elongation assays further showed that overexpression of AtERF11 conferred elevated GA response, whereas loss-of-function erf11 and erf11 erf4 mutants displayed reduced GA response. In addition, yeast two-hybrid, coimmunoprecipitation, and transient expression assays showed that AtERF11 enhances GA signaling by antagonizing the function of DELLA proteins via direct protein-protein interaction. Interestingly, AtERF11 overexpression also caused a reduction in the levels of another phytohormone ethylene in the growing stem, consistent with recent finding showing that AtERF11 represses transcription of ethylene biosynthesis ACS genes. The effect of AtERF11 on promoting GA biosynthesis gene expression is likely via its repressive function on ethylene biosynthesis. These results suggest that AtERF11 plays a dual role in promoting internode elongation by inhibiting ethylene biosynthesis and activating GA biosynthesis and signaling pathways. PMID:27255484

  19. The Arabidopsis F-box protein SLEEPY1 targets gibberellin signaling repressors for gibberellin-induced degradation.

    PubMed

    Dill, Alyssa; Thomas, Stephen G; Hu, Jianhong; Steber, Camille M; Sun, Tai-Ping

    2004-06-01

    The nuclear DELLA proteins are highly conserved repressors of hormone gibberellin (GA) signaling in plants. In Arabidopsis thaliana, GA derepresses its signaling pathway by inducing proteolysis of the DELLA protein REPRESSOR OF ga1-3 (RGA). SLEEPY1 (SLY1) encodes an F-box-containing protein, and the loss-of-function sly1 mutant has a GA-insensitive dwarf phenotype and accumulates a high level of RGA. These findings suggested that SLY1 recruits RGA to the SCFSLY1 E3 ligase complex for ubiquitination and subsequent degradation by the 26S proteasome. In this report, we provide new insight into the molecular mechanism of how SLY1 interacts with the DELLA proteins for controlling GA response. By yeast two-hybrid and in vitro pull-down assays, we demonstrated that SLY1 interacts directly with RGA and GA INSENSITIVE (GAI, a closely related DELLA protein) via their C-terminal GRAS domain. The rga and gai null mutations additively suppressed the recessive sly1 mutant phenotype, further supporting the model that SCFSLY1 targets both RGA and GAI for degradation. The N-terminal DELLA domain of RGA previously was shown to be essential for GA-induced degradation. However, we found that this DELLA domain is not required for protein-protein interaction with SLY1 in yeast (Saccharomyces cerevisiae), suggesting that its role is in a GA-triggered conformational change of the DELLA proteins. We also identified a novel gain-of-function sly1-d mutation that increased GA signaling by reducing the levels of the DELLA protein in plants. This effect of sly1-d appears to be caused by an enhanced interaction between sly1-d and the DELLA proteins. PMID:15155881

  20. The new RGA locus encodes a negative regulator of gibberellin response in Arabidopsis thaliana.

    PubMed

    Silverstone, A L; Mak, P Y; Martínez, E C; Sun, T P

    1997-07-01

    We have identified a new locus involved in gibberellin (GA) signal transduction by screening for suppressors of the Arabidopsis thaliana GA biosynthetic mutant gal-3. The locus is named RGA for repressor of gal-3. Based on the recessive phenotype of the digenic rga/gal-3 mutant, the wild-type gene product of RGA is probably a negative regulator of GA responses. Our screen for suppressors of gal-3 identified 17 mutant alleles of RGA as well as 10 new mutant alleles at the previously identified SPY locus. The digenic (double homozygous) rga/gal-3 mutants are able to partially repress several defects of gal-3 including stem growth, leaf abaxial trichome initiation, flowering time, and apical dominance. The phenotype of the trigenic mutant (triple homozygous) rga/spy/gal-3 shows that rga and spy have additive effects regulating flowering time, abaxial leaf trichome initiation and apical dominance. This trigenic mutant is similar to wild type with respect to each of these developmental events. Because rga/spy/gal-3 is almost insensitive to GA for hypocotyl growth and its bolting stem is taller than the wild-type plant, the combined effects of the rga and spy mutations appear to allow GA-independent stem growth. Our studies indicate that RGA lies on a separate branch of the GA signal transduction pathway from SPY, which leads us to propose a modified model of the GA response pathway.

  1. Proper gibberellin localization in vascular tissue is required to regulate adventitious root development in tobacco.

    PubMed

    Niu, Shihui; Li, Zhexin; Yuan, Huwei; Fang, Pan; Chen, Xiaoyang; Li, Wei

    2013-08-01

    Bioactive gibberellins (GAs) are involved in many developmental aspects of the life cycle of plants, acting either directly or through interaction with other hormones. Accumulating evidence suggests that GAs have an important effect on root growth; however, there is currently little information on the specific regulatory mechanism of GAs during adventitious root development. A study was conducted on tobacco (Nicotiana tabacum) plants for altered rates of biosynthesis, catabolism, and GA signalling constitutively or in specific tissues using a transgenic approach. In the present study, PtGA20ox, PtGA2ox1, and PtGAI were overexpressed under the control of the 35S promoter, vascular cambium-specific promoter (LMX5), or root meristem-specific promoter (TobRB7), respectively. Evidence is provided that the precise localization of bioactive GA in the stem but not in the roots is required to regulate adventitious root development in tobacco. High levels of GA negatively regulate the early initiation step of root formation through interactions with auxin, while a proper and mobile GA signal is required for the emergence and subsequent long-term elongation of established primordia. The results demonstrated that GAs have an inhibitory effect on adventitious root formation but a stimulatory effect on root elongation. PMID:23918971

  2. Interplay of sugar, light and gibberellins in expression of Rosa hybrida vacuolar invertase 1 regulation.

    PubMed

    Rabot, Amélie; Portemer, Virginie; Péron, Thomas; Mortreau, Eric; Leduc, Nathalie; Hamama, Latifa; Coutos-Thévenot, Pierre; Atanassova, Rossitza; Sakr, Soulaiman; Le Gourrierec, José

    2014-10-01

    Our previous findings showed that the expression of the Rosa hybrida vacuolar invertase 1 gene (RhVI1) was tightly correlated with the ability of buds to grow out and was under sugar, gibberellin and light control. Here, we aimed to provide an insight into the mechanistic basis of this regulation. In situ hybridization showed that RhVI1 expression was localized in epidermal cells of young leaves of bursting buds. We then isolated a 895 bp fragment of the promoter of RhVI1. In silico analysis identified putative cis-elements involved in the response to sugars, light and gibberellins on its proximal part (595 bp). To carry out functional analysis of the RhVI1 promoter in a homologous system, we developed a direct method for stable transformation of rose cells. 5' deletions of the proximal promoter fused to the uidA reporter gene were inserted into the rose cell genome to study the cell's response to exogenous and endogenous stimuli. Deletion analysis revealed that the 468 bp promoter fragment is sufficient to trigger reporter gene activity in response to light, sugars and gibberellins. This region confers sucrose- and fructose-, but not glucose-, responsive activation in the dark. Inversely, the -595 to -468 bp region that carries the sugar-repressive element (SRE) is required to down-regulate the RhVI1 promoter in response to sucrose and fructose in the dark. We also demonstrate that sugar/light and gibberellin/light act synergistically to up-regulate β-glucuronidase (GUS) activity sharply under the control of the 595 bp pRhVI1 region. These results reveal that the 127 bp promoter fragment located between -595 and -468 bp is critical for light and sugar and light and gibberellins to act synergistically.

  3. Functional characterization and developmental expression profiling of gibberellin signalling components in Vitis vinifera

    PubMed Central

    Acheampong, Atiako Kwame; Hu, Jianhong; Rotman, Ariel; Zheng, Chuanlin; Halaly, Tamar; Takebayashi, Yumiko; Jikumaru, Yusuke; Kamiya, Yuji; Lichter, Amnon; Sun, Tai-Ping; Or, Etti

    2015-01-01

    Gibberellins (GAs) regulate numerous developmental processes in grapevine (Vitis vinifera) such as rachis elongation, fruit set, and fruitlet abscission. The ability of GA to promote berry enlargement has led to its indispensable use in the sternospermocarpic (‘seedless’) table grape industry worldwide. However, apart from VvGAI1 (VvDELLA1), which regulates internode elongation and fruitfulness, but not berry size of seeded cultivars, little was known about GA signalling in grapevine. We have identified and characterized two additional DELLAs (VvDELLA2 and VvDELLA3), two GA receptors (VvGID1a and VvGID1b), and two GA-specific F-box proteins (VvSLY1a and VvSLY1b), in cv. Thompson seedless. With the exception of VvDELLA3-VvGID1b, all VvDELLAs interacted with the VvGID1s in a GA-dependent manner in yeast two-hybrid assays. Additionally, expression of these grape genes in corresponding Arabidopsis mutants confirmed their functions in planta. Spatiotemporal analysis of VvDELLAs showed that both VvDELLA1 and VvDELLA2 are abundant in most tissues, except in developing fruit where VvDELLA2 is uniquely expressed at high levels, suggesting a key role in fruit development. Our results further suggest that differential organ responses to exogenous GA depend on the levels of VvDELLA proteins and endogenous bioactive GAs. Understanding this interaction will allow better manipulation of GA signalling in grapevine. PMID:25588745

  4. Coordinated regulation of apical hook development by gibberellins and ethylene in etiolated Arabidopsis seedlings

    PubMed Central

    An, Fengying; Zhang, Xing; Zhu, Ziqiang; Ji, Yusi; He, Wenrong; Jiang, Zhiqiang; Li, Mingzhe; Guo, Hongwei

    2012-01-01

    Dark-grown Arabidopsis seedlings develop an apical hook when germinating in soil, which protects the cotyledons and apical meristematic tissues when protruding through the soil. Several hormones are reported to distinctly modulate this process. Previous studies have shown that ethylene and gibberellins (GAs) coordinately regulate the hook development, although the underlying molecular mechanism is largely unknown. Here we showed that GA3 enhanced while paclobutrazol repressed ethylene- and EIN3-overexpression (EIN3ox)-induced hook curvature, and della mutant exhibited exaggerated hook curvature, which required an intact ethylene signaling pathway. Genetic study revealed that GA-enhanced hook development was dependent on HOOKLESS 1 (HLS1), a central regulator mediating the input of the multiple signaling pathways during apical hook development. We further found that GA3 induced (and DELLA proteins repressed) HLS1 expression in an ETHYLENE INSENSITIVE 3/EIN3-LIKE 1 (EIN3/EIL1)-dependent manner, whereby EIN3/EIL1 activated HLS1 transcription by directly binding to its promoter. Additionally, DELLA proteins were found to interact with the DNA-binding domains of EIN3/EIL1 and repress EIN3/EIL1-regulated HLS1 expression. Treatment with naphthylphthalamic acid, a polar auxin transport inhibitor, repressed the constitutively exaggerated hook curvature of EIN3ox line and della mutant, supporting that auxin functions downstream of the ethylene and GA pathways in hook development. Taken together, our results identify EIN3/EIL1 as a new class of DELLA-associated transcription factors and demonstrate that GA promotes apical hook formation in cooperation with ethylene partly by inducing the expression of HLS1 via derepression of EIN3/EIL1 functions. PMID:22349459

  5. Regulation of gibberellin 20-oxidase gene expression and gibberellin content in citrus by temperature and citrus exocortis viroid.

    PubMed

    Vidal, Ana M; Ben-Cheikh, Waddi; Talón, Manuel; García-Martínez, José L

    2003-07-01

    A cDNA clone coding for a gibberellin (GA) 20-oxidase ( CcGA20ox1), an enzyme of GA biosynthesis, which when expressed in vitro catalyzed the conversion of GA(12) to GA(9) and of GA(53) to GA(20), was isolated from the citrus hybrid Carrizo citrange (C itrus sinensis x Poncirus trifoliata). Transcripts of CcGA20ox1 were abundant in the apex and leaves and much less abundant in internodes, nodes and roots. Seedlings of Carrizo citrange cultured under a 32 degrees C/27 degrees C (day/night) regime elongated more than seedlings growing under 17 degrees C/12 degrees C conditions. The effect of higher temperature was associated with more CcGA20ox1 transcripts and with higher content of GA(1), the main active GA in citrus, in the shoot. The infection of Etrog citron ( Citrus medica) plants with citrus exocortis viroid (CEVd), which produces a stunted phenotype, reduced the levels of transcripts in the apical shoot hybridizing to the gene CcGA20ox1 of Carrizo citrange and the content of GA(1). Thus GA(1) content correlated with CcGA20ox1 transcript levels. In contrast, results for gibberellic acid (GA(3)) and paclobutrazol applications to Carrizo citrange showed that CcGA20ox1 expression was subject to feed-back regulation. These observations indicate that the feed-back regulation of GA20ox operates mostly when the levels of active GAs have been dramatically altered. The results also show that the growth reduction induced by environmental (temperature) and biotic (CEVd) factors may be partially due to the modulation of the expression of GA20ox genes.

  6. Cross Talk between Gibberellin and Cytokinin: The Arabidopsis GA Response Inhibitor SPINDLY Plays a Positive Role in Cytokinin Signaling

    PubMed Central

    Greenboim-Wainberg, Yaarit; Maymon, Inbar; Borochov, Roy; Alvarez, John; Olszewski, Neil; Ori, Naomi; Eshed, Yuval; Weiss, David

    2005-01-01

    SPINDLY (SPY) is a negative regulator of gibberellin (GA) responses; however, spy mutants exhibit various phenotypic alterations not found in GA-treated plants. Assaying for additional roles for SPY revealed that spy mutants are resistant to exogenously applied cytokinin. GA also repressed the effects of cytokinin, suggesting that there is cross talk between the two hormone-response pathways, which may involve SPY function. Two spy alleles showing severe (spy-4) and mild (spy-3) GA-associated phenotypes exhibited similar resistance to cytokinin, suggesting that SPY enhances cytokinin responses and inhibits GA signaling through distinct mechanisms. GA and spy repressed numerous cytokinin responses, from seedling development to senescence, indicating that cross talk occurs early in the cytokinin-signaling pathway. Because GA3 and spy-4 inhibited induction of the cytokinin primary-response gene, type-A Arabidopsis response regulator 5, SPY may interact with and modify elements from the phosphorelay cascade of the cytokinin signal transduction pathway. Cytokinin, on the other hand, had no effect on GA biosynthesis or responses. Our results demonstrate that SPY acts as both a repressor of GA responses and a positive regulator of cytokinin signaling. Hence, SPY may play a central role in the regulation of GA/cytokinin cross talk during plant development. PMID:15608330

  7. An interaction between BZR1 and DELLAs mediates direct signaling crosstalk between brassinosteroids and gibberellins in Arabidopsis.

    PubMed

    Li, Qian-Feng; Wang, Chunming; Jiang, Lei; Li, Shuo; Sun, Samuel S M; He, Jun-Xian

    2012-10-02

    Plant growth and development are coordinated by several groups of small-molecule hormones, including brassinosteroids (BRs) and gibberellins (GAs). Physiological and molecular studies have suggested the existence of crosstalk between BR and GA signaling. We report that BZR1, a key transcription factor activated by BR signaling, interacts in vitro and in vivo with REPRESSOR OF ga1-3 (RGA), a member of the DELLA family of transcriptional regulators that inhibits the GA signaling pathway in Arabidopsis thaliana. Genetic analyses of plants with mutations in the genes encoding RGA and BZR1 revealed that RGA suppressed root and hypocotyl elongation of the gain-of-function mutant bzr1-1D. Ectopic expression of proteins of the DELLA family reduced the abundance and transcriptional activity of BZR1. Reporter gene analyses further indicated that BZR1 and RGA antagonize each other's transcriptional activity. Our data indicated that BZR1 and RGA served as positive and negative regulators, respectively, of both the BR and the GA signaling pathways and establish DELLAs as mediators of signaling crosstalk between BRs and GAs in controlling cell elongation and regulation of plant growth.

  8. Overexpression of Cotton GhMPK11 Decreases Disease Resistance through the Gibberellin Signaling Pathway in Transgenic Nicotiana benthamiana.

    PubMed

    Wang, Fang; Wang, Chen; Yan, Yan; Jia, Haihong; Guo, Xingqi

    2016-01-01

    Many changes in development, growth, hormone activity and environmental stimuli responses are mediated by mitogen-activated protein kinase (MAPK) cascades. However, in plants, studies on MAPKs have mainly focused on MPK3, MPK4 and MPK6. Here, a novel group B MAPK gene, GhMPK11, was isolated from cotton (Gossypium hirsutum L.) and characterized. Both promoter and expression pattern analyses revealed that GhMPK11 is involved in defense responses and signaling pathways. GhMPK11 overexpression in Nicotiana benthamiana plants could increase gibberellin 3 (GA3) content through the regulation of GA-related genes. Interestingly, either GhMPK11 overexpression or exogenous GA3 treatment in N. benthamiana plants could enhance the susceptibility of these plants to the infectious pathogens Ralstonia solanacearum and Rhizoctonia solani. Moreover, reactive oxygen species (ROS) accumulation was increased after pathogen infiltration due to the increased expression of ROS-related gene respiratory burst oxidative homologs (RbohB) and the decreased expression or activity of ROS detoxification enzymes regulated by GA3, such as superoxide dismutases (SODs), peroxidases (PODs), catalase (CAT) and glutathione S-transferase (GST). Taken together, these results suggest that GhMPK11 overexpression could enhance the susceptibility of tobacco to pathogen infection through the GA3 signaling pathway via down-regulation of ROS detoxification enzymes. PMID:27242882

  9. Overexpression of Cotton GhMPK11 Decreases Disease Resistance through the Gibberellin Signaling Pathway in Transgenic Nicotiana benthamiana

    PubMed Central

    Wang, Fang; Wang, Chen; Yan, Yan; Jia, Haihong; Guo, Xingqi

    2016-01-01

    Many changes in development, growth, hormone activity and environmental stimuli responses are mediated by mitogen-activated protein kinase (MAPK) cascades. However, in plants, studies on MAPKs have mainly focused on MPK3, MPK4 and MPK6. Here, a novel group B MAPK gene, GhMPK11, was isolated from cotton (Gossypium hirsutum L.) and characterized. Both promoter and expression pattern analyses revealed that GhMPK11 is involved in defense responses and signaling pathways. GhMPK11 overexpression in Nicotiana benthamiana plants could increase gibberellin 3 (GA3) content through the regulation of GA-related genes. Interestingly, either GhMPK11 overexpression or exogenous GA3 treatment in N. benthamiana plants could enhance the susceptibility of these plants to the infectious pathogens Ralstonia solanacearum and Rhizoctonia solani. Moreover, reactive oxygen species (ROS) accumulation was increased after pathogen infiltration due to the increased expression of ROS-related gene respiratory burst oxidative homologs (RbohB) and the decreased expression or activity of ROS detoxification enzymes regulated by GA3, such as superoxide dismutases (SODs), peroxidases (PODs), catalase (CAT) and glutathione S-transferase (GST). Taken together, these results suggest that GhMPK11 overexpression could enhance the susceptibility of tobacco to pathogen infection through the GA3 signaling pathway via down-regulation of ROS detoxification enzymes. PMID:27242882

  10. Cellular differentiation regulated by gibberellin in the Arabidopsis thaliana pickle mutant

    SciTech Connect

    Ogas, J.; Somerville, C.; Cheng, Jin-Chen; Sung, R.

    1997-07-04

    The plant growth regulator gibberellin (GA) has a profound effect on shoot development and promotes developmental transitions such as flowering. Little is known about any analogous effect GA might have on root development. In a screen for mutants, Arabi-dopsis plants carrying a mutation designated pickle (pkl) were isolated in which the primary root meristem retained characteristics of embryonic tissue. Expression of this aberrant differentiation state was suppressed by GA. Root tissue from plants carrying the pkl mutation spontaneously regenerated new embryos and plants. 19 refs., 3 figs., 1 tab.

  11. Functional analysis of TaABF1 during abscisic acid and gibberellin signalling in aleurone cells of cereal grains.

    PubMed

    Harris, Lauren J; Martinez, Sarah A; Keyser, Benjamin R; Dyer, William E; Johnson, Russell R

    2013-06-01

    The wheat transcription factor TaABF1 physically interacts with the protein kinase PKABA1 and mediates both abscisic acid (ABA)-induced and ABA-suppressed gene expression. In bombarded aleurone cells of imbibing grains, the effect of TaABF1 in down-regulating the gibberellin (GA)-induced Amy32b promoter was stronger in the presence of exogenous ABA. As these grains contained low levels of endogenous ABA, the effect of TaABF1 may also be mediated by ABA-induced activation even in the absence of exogenous ABA. Levels of TaABF1 protein decreased slightly during imbibition of afterripened grains. However, TaABF1 levels (especially in aleurone layers) were not substantially affected by exogenous ABA or GA, indicating that changes in TaABF1 protein level are not an important part of regulating its role in hormone signalling. We found that TaABF1 was phosphorylated in vivo in aleurone cells, suggesting a role for post-translational modification in regulating TaABF1 activity. Induction of Amy32b by overexpression of the transcription factor GAMyb could not be prevented by TaABF1, indicating that TaABF1 acts upstream of GAMyb transcription in the signalling pathway. Supporting this view, knockdown of TaABF1 by RNA interference resulted in increased expression from the GAMyb promoter. These results are consistent with a model in which TaABF1 is constitutively present in aleurone cells, while its ability to down-regulate GAMyb is regulated in response to ABA.

  12. Transcriptome Analysis of Gerbera hybrida Ray Florets: Putative Genes Associated with Gibberellin Metabolism and Signal Transduction

    PubMed Central

    Kuang, Qi; Li, Lingfei; Peng, Jianzong; Sun, Shulan; Wang, Xiaojing

    2013-01-01

    In this study, the transcriptome of the Gerbera hybrida ray floret was constructed using a high-throughput Illumina sequencing platform. All 47,104 UniGenes with an average length of 845 nt and an N50 equaling 1321 nt were generated from 72,688,546 total primary reads after filtering and assembly. A total of 36,693 transcripts were annotated by comparison with non-redundant National Center for Biotechnology Information (NCBI) protein (Nr), non-redundant NCBI nucleotide (Nt), Gene Ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases after removing exogenous contaminated sequences. The majority of the genes that are associated with gibberellin metabolism and signal transduction were identified. The targets for signal transduction of other plant hormones were also enumerated. Our study provides a systematic overview of the hormone signal transduction genes that are involved in ray floral development in Asteraceae and should facilitate further understanding of the crucial roles of phytohormones in plant growth. PMID:23472101

  13. Gibberellin Perception by the Gibberellin Receptor and its Effector Recognition

    NASA Astrophysics Data System (ADS)

    Hakoshima, Toshio; Murase, Kohji; Hirano, Yoshinori; Sun, Tai-Ping

    Gibberellins control a diverse range of growth and developmental processes in higher plants and have been widely utilized in the agricultural industry. By binding to a nuclear receptor GIBBERELLIN INSENSITIVE DWARF1 (GID1), gibberellins regulate gene expression by promoting degradation of the transcriptional regulator DELLA proteins. The precise manner in which GID1 discriminates and becomes activated by bioactive gibberellins for specific binding to DELLA proteins remains unclear. We present the crystal structure of a ternary complex of Arabidopsis thaliana GID1A, a bioactive gibberellin and the N-terminal DELLA domain of GAI. In this complex, GID1a occludes gibberellin in a deep binding pocket covered by its N-terminal helical switch region, which in turn interacts with the DELLA domain containing DELLA, VHYNP and LExLE motifs. Our results establish a structural model of a plant hormone receptor which is distinct from the hormone-perception mechanism and effector recognition of the known auxin receptors.

  14. Light signaling and the phytohormonal regulation of shoot growth.

    PubMed

    Kurepin, Leonid V; Pharis, Richard P

    2014-12-01

    Shoot growth of dicot plants is rigorously controlled by the interactions of environmental cues with several groups of phytohormones. The signaling effects of light on shoot growth are of special interest, as both light irradiance and light quality change rapidly throughout the day, causing profound changes in stem elongation and leaf area growth. Among the several dicot species examined, we have focused on sunflower (Helianthus annuus L.) because its shoots are robust and their growth is highly plastic. Sunflower shoots thus constitute an ideal tissue for assessing responses to both light irradiance and light quality signals. Herein, we discuss the possible roles of gibberellins, auxin, ethylene, cytokinins and brassinosteroids in mediating the stem elongation and leaf area growth that is induced by shade light. To do this we uncoupled the plant's responses to changes in the red to far-red [R/FR] light ratio from its responses to changes in irradiance of photosynthetically active radiation [PAR]. Reducing each of R/FR light ratio and PAR irradiance results in increased sunflower stem elongation. However, the plant's response for leaf area growth differs considerably, with a low R/FR ratio generally promoting leaf area growth, whereas low irradiance PAR inhibits it. The increased stem elongation that occurs in response to lowering R/FR ratio and PAR irradiance is accomplished at the expense of leaf area growth. In effect, the low PAR irradiance signal overrides the low R/FR ratio signal in shade light's control of leaf growth and development. Three hormone groups, gibberellins, auxin and ethylene are directly involved in regulating these light-mediated shoot growth changes. Gibberellins and auxin function as growth promoters, with auxin likely acting as an up-regulator of gibberellin biosynthesis. Ethylene functions as a growth-inhibitor and probably interacts with gibberellins in regulating both stem and leaf growth of the sunflower shoot. PMID:25443853

  15. gigantea suppresses immutans variegation by interactions with cytokinin and gibberellin signaling pathways.

    PubMed

    Putarjunan, Aarthi; Rodermel, Steve

    2014-12-01

    The immutans (im) variegation mutant of Arabidopsis (Arabidopsis thaliana) is an ideal model to gain insight into factors that control chloroplast biogenesis. im defines the gene for PTOX, a plastoquinol terminal oxidase that participates in the control of thylakoid redox. Here, we report that the im defect can be suppressed during the late stages of plant development by gigantea (gi2), which defines the gene for GI, a central component of the circadian clock that plays a poorly understood role in diverse plant developmental processes. imgi2 mutants are late flowering and display other well-known phenotypes associated with gi2, such as starch accumulation and resistance to oxidative stress. We show that the restoration of chloroplast biogenesis in imgi2 is caused by a development-specific derepression of cytokinin signaling that involves cross talk with signaling pathways mediated by gibberellin (GA) and SPINDLY (SPY), a GA response inhibitor. Suppression of the plastid defect in imgi2 is likely caused by a relaxation of excitation pressures in developing plastids by factors contributed by gi2, including enhanced rates of photosynthesis and increased resistance to oxidative stress. Interestingly, the suppression phenotype of imgi can be mimicked by crossing im with the starch accumulation mutant, starch excess1 (sex1), perhaps because sex1 utilizes pathways similar to gi. We conclude that our studies provide a direct genetic linkage between GI and chloroplast biogenesis, and we construct a model of interactions between signaling pathways mediated by gi, GA, SPY, cytokinins, and sex1 that are required for chloroplast biogenesis. PMID:25349324

  16. gigantea Suppresses immutans Variegation by Interactions with Cytokinin and Gibberellin Signaling Pathways1[W][OPEN

    PubMed Central

    Putarjunan, Aarthi; Rodermel, Steve

    2014-01-01

    The immutans (im) variegation mutant of Arabidopsis (Arabidopsis thaliana) is an ideal model to gain insight into factors that control chloroplast biogenesis. im defines the gene for PTOX, a plastoquinol terminal oxidase that participates in the control of thylakoid redox. Here, we report that the im defect can be suppressed during the late stages of plant development by gigantea (gi2), which defines the gene for GI, a central component of the circadian clock that plays a poorly understood role in diverse plant developmental processes. imgi2 mutants are late flowering and display other well-known phenotypes associated with gi2, such as starch accumulation and resistance to oxidative stress. We show that the restoration of chloroplast biogenesis in imgi2 is caused by a development-specific derepression of cytokinin signaling that involves cross talk with signaling pathways mediated by gibberellin (GA) and SPINDLY (SPY), a GA response inhibitor. Suppression of the plastid defect in imgi2 is likely caused by a relaxation of excitation pressures in developing plastids by factors contributed by gi2, including enhanced rates of photosynthesis and increased resistance to oxidative stress. Interestingly, the suppression phenotype of imgi can be mimicked by crossing im with the starch accumulation mutant, starch excess1 (sex1), perhaps because sex1 utilizes pathways similar to gi. We conclude that our studies provide a direct genetic linkage between GI and chloroplast biogenesis, and we construct a model of interactions between signaling pathways mediated by gi, GA, SPY, cytokinins, and sex1 that are required for chloroplast biogenesis. PMID:25349324

  17. Gibberellic Acid-Stimulated Arabidopsis6 Serves as an Integrator of Gibberellin, Abscisic Acid, and Glucose Signaling during Seed Germination in Arabidopsis1[OPEN

    PubMed Central

    Zhong, Chunmei; Xu, Hao; Ye, Siting; Wang, Shiyi; Li, Lingfei; Zhang, Shengchun; Wang, Xiaojing

    2015-01-01

    The DELLA protein REPRESSOR OF ga1-3-LIKE2 (RGL2) plays an important role in seed germination under different conditions through a number of transcription factors. However, the functions of the structural genes associated with RGL2-regulated germination are less defined. Here, we report the role of an Arabidopsis (Arabidopsis thaliana) cell wall-localized protein, Gibberellic Acid-Stimulated Arabidopsis6 (AtGASA6), in functionally linking RGL2 and a cell wall loosening expansin protein (Arabidopsis expansin A1 [AtEXPA1]), resulting in the control of embryonic axis elongation and seed germination. AtGASA6-overexpressing seeds showed precocious germination, whereas transfer DNA and RNA interference mutant seeds displayed delayed seed germination under abscisic acid, paclobutrazol, and glucose (Glc) stress conditions. The differences in germination rates resulted from corresponding variation in cell elongation in the hypocotyl-radicle transition region of the embryonic axis. AtGASA6 was down-regulated by RGL2, GLUCOSE INSENSITIVE2, and ABSCISIC ACID-INSENSITIVE5 genes, and loss of AtGASA6 expression in the gasa6 mutant reversed the insensitivity shown by the rgl2 mutant to paclobutrazol and the gin2 mutant to Glc-induced stress, suggesting that it is involved in regulating both the gibberellin and Glc signaling pathways. Furthermore, it was found that the promotion of seed germination and length of embryonic axis by AtGASA6 resulted from a promotion of cell elongation at the embryonic axis mediated by AtEXPA1. Taken together, the data indicate that AtGASA6 links RGL2 and AtEXPA1 functions and plays a role as an integrator of gibberellin, abscisic acid, and Glc signaling, resulting in the regulation of seed germination through a promotion of cell elongation. PMID:26400990

  18. Phenotypic plasticity of sun and shade ecotypes of Stellaria longipes in response to light quality signaling, gibberellins and auxin.

    PubMed

    Kurepin, Leonid V; Pharis, Richard P; Neil Emery, R J; Reid, David M; Chinnappa, C C

    2015-09-01

    Stellaria longipes plant communities (ecotypes) occur in several environmentally distinct habitats along the eastern slopes of southern Alberta's Rocky Mountains. One ecotype occurs in a prairie habitat at ∼1000 m elevation where Stellaria plants grow in an environment in which the light is filtered by taller neighbouring vegetation, i.e. sunlight with a low red to far-red (R/FR) ratio. This ecotype exhibits a high degree of phenotypic plasticity by increasing stem elongation in response to the low R/FR ratio light signal. Another Stellaria ecotype occurs nearby at ∼2400 m elevation in a much cooler alpine habitat, one where plants rarely experience low R/FR ratio shade light. Stem elongation of plants is largely regulated by gibberellins (GAs) and auxin, indole-3-acetic acid (IAA). Shoots of the prairie ecotype plants show increased IAA levels under low R/FR ratio light and they also increase their stem growth in response to applied IAA. The alpine ecotype plants show neither response. Plants from both ecotypes produce high levels of growth-active GA1 under low R/FR ratio light, though they differ appreciably in their catabolism of GA1. The alpine ecotype plants exhibit very high levels of GA8, the inactive product of GA1 metabolism, under both normal and low R/FR ratio light. Alpine origin plants may de-activate GA1 by conversion to GA8 via a constitutively high level of expression of the GA2ox gene, thereby maintaining their dwarf phenotype and exhibiting a reduced phenotypic plasticity in terms of shoot elongation. In contrast, prairie plants exhibit a high degree of phenotypic plasticity, using low R/FR ratio light-mediated changes in GA and IAA concentrations to increase shoot elongation, thereby accessing direct sunlight to optimize photosynthesis. There thus appear to be complex adaptation strategies for the two ecotypes, ones which involve modifications in the homeostasis of endogenous hormones.

  19. Regulation of Gibberellin 20-Oxidase and Gibberellin 3β-Hydroxylase Transcript Accumulation during De-Etiolation of Pea Seedlings1

    PubMed Central

    Ait-Ali, Tahar; Frances, Shannon; Weller, James L.; Reid, James B.; Kendrick, Richard E.; Kamiya, Yuji

    1999-01-01

    Gibberellin (GA) 20-oxidase (GA 20-ox) and GA 3β-hydroxylase (GA 3β-hy) are enzymes that catalyze the late steps in the formation of active GAs, and are potential control points in the regulation of GA biosynthesis by light. We have investigated the photoregulation of the GA 20-ox and GA 3β-hy transcript levels in pea (Pisum sativum L.). The GA 20-ox transcript level was higher in light-grown seedlings than in etiolated seedlings, whereas GA 3β-hy mRNA accumulation was higher in etiolated seedlings. However, transfer of etiolated seedlings to light led to a 5-fold increase in the expression of both transcripts 4 h after transfer. GA 20-ox mRNA accumulation is regulated by both phytochromes A and B. Transfer to light also resulted in a 6-fold decrease in GA1 levels within 2 h. These results suggest that the light-induced drop in GA1 level is not achieved through regulation of GA 20-ox and GA 3β-hy mRNA accumulation. The application of exogenous GA1 to apical buds of etiolated seedlings prior to light treatments inhibited the light-induced accumulation of both GA 20-ox and GA 3β-hy mRNA, suggesting that negative feedback regulation is an important mechanism in the regulation of GA 20-ox and GA 3β-hy mRNA accumulation during de-etiolation of pea seedlings. PMID:10557226

  20. Association genetics and transcriptome analysis reveal a gibberellin-responsive pathway involved in regulating photosynthesis.

    PubMed

    Xie, Jianbo; Tian, Jiaxing; Du, Qingzhang; Chen, Jinhui; Li, Ying; Yang, Xiaohui; Li, Bailian; Zhang, Deqiang

    2016-05-01

    Gibberellins (GAs) regulate a wide range of important processes in plant growth and development, including photosynthesis. However, the mechanism by which GAs regulate photosynthesis remains to be understood. Here, we used multi-gene association to investigate the effect of genes in the GA-responsive pathway, as constructed by RNA sequencing, on photosynthesis, growth, and wood property traits, in a population of 435 Populus tomentosa By analyzing changes in the transcriptome following GA treatment, we identified many key photosynthetic genes, in agreement with the observed increase in measurements of photosynthesis. Regulatory motif enrichment analysis revealed that 37 differentially expressed genes related to photosynthesis shared two essential GA-related cis-regulatory elements, the GA response element and the pyrimidine box. Thus, we constructed a GA-responsive pathway consisting of 47 genes involved in regulating photosynthesis, including GID1, RGA, GID2, MYBGa, and 37 photosynthetic differentially expressed genes. Single nucleotide polymorphism (SNP)-based association analysis showed that 142 SNPs, representing 40 candidate genes in this pathway, were significantly associated with photosynthesis, growth, and wood property traits. Epistasis analysis uncovered interactions between 310 SNP-SNP pairs from 37 genes in this pathway, revealing possible genetic interactions. Moreover, a structural gene-gene matrix based on a time-course of transcript abundances provided a better understanding of the multi-gene pathway affecting photosynthesis. The results imply a functional role for these genes in mediating photosynthesis, growth, and wood properties, demonstrating the potential of combining transcriptome-based regulatory pathway construction and genetic association approaches to detect the complex genetic networks underlying quantitative traits.

  1. Association genetics and transcriptome analysis reveal a gibberellin-responsive pathway involved in regulating photosynthesis.

    PubMed

    Xie, Jianbo; Tian, Jiaxing; Du, Qingzhang; Chen, Jinhui; Li, Ying; Yang, Xiaohui; Li, Bailian; Zhang, Deqiang

    2016-05-01

    Gibberellins (GAs) regulate a wide range of important processes in plant growth and development, including photosynthesis. However, the mechanism by which GAs regulate photosynthesis remains to be understood. Here, we used multi-gene association to investigate the effect of genes in the GA-responsive pathway, as constructed by RNA sequencing, on photosynthesis, growth, and wood property traits, in a population of 435 Populus tomentosa By analyzing changes in the transcriptome following GA treatment, we identified many key photosynthetic genes, in agreement with the observed increase in measurements of photosynthesis. Regulatory motif enrichment analysis revealed that 37 differentially expressed genes related to photosynthesis shared two essential GA-related cis-regulatory elements, the GA response element and the pyrimidine box. Thus, we constructed a GA-responsive pathway consisting of 47 genes involved in regulating photosynthesis, including GID1, RGA, GID2, MYBGa, and 37 photosynthetic differentially expressed genes. Single nucleotide polymorphism (SNP)-based association analysis showed that 142 SNPs, representing 40 candidate genes in this pathway, were significantly associated with photosynthesis, growth, and wood property traits. Epistasis analysis uncovered interactions between 310 SNP-SNP pairs from 37 genes in this pathway, revealing possible genetic interactions. Moreover, a structural gene-gene matrix based on a time-course of transcript abundances provided a better understanding of the multi-gene pathway affecting photosynthesis. The results imply a functional role for these genes in mediating photosynthesis, growth, and wood properties, demonstrating the potential of combining transcriptome-based regulatory pathway construction and genetic association approaches to detect the complex genetic networks underlying quantitative traits. PMID:27091876

  2. Endogenous diterpenes derived from ent-kaurene, a common gibberellin precursor, regulate protonema differentiation of the moss Physcomitrella patens.

    PubMed

    Hayashi, Ken-ichiro; Horie, Keisuke; Hiwatashi, Yuji; Kawaide, Hiroshi; Yamaguchi, Shinjiro; Hanada, Atsushi; Nakashima, Tamotsu; Nakajima, Masatoshi; Mander, Lewis N; Yamane, Hisakazu; Hasebe, Mitsuyasu; Nozaki, Hiroshi

    2010-07-01

    Gibberellins (GAs) are a group of diterpene-type plant hormones biosynthesized from ent-kaurene via ent-kaurenoic acid. GAs are ubiquitously present in seed plants. The GA signal is perceived and transduced by the GID1 GA receptor/DELLA repressor pathway. The lycopod Selaginella moellendorffii biosynthesizes GA and has functional GID1-DELLA signaling components. In contrast, no GAs or functionally orthologous GID1-DELLA components have been found in the moss Physcomitrella patens. However, P. patens produces ent-kaurene, a common precursor for GAs, and possesses a functional ent-kaurene synthase, PpCPS/KS. To assess the biological role of ent-kaurene in P. patens, we generated a PpCPS/KS disruption mutant that does not accumulate ent-kaurene. Phenotypic analysis demonstrates that the mutant has a defect in the protonemal differentiation of the chloronemata to caulonemata. Gas chromatography-mass spectrometry analysis shows that P. patens produces ent-kaurenoic acid, an ent-kaurene metabolite in the GA biosynthesis pathway. The phenotypic defect of the disruptant was recovered by the application of ent-kaurene or ent-kaurenoic acid, suggesting that ent-kaurenoic acid, or a downstream metabolite, is involved in protonemal differentiation. Treatment with uniconazole, an inhibitor of ent-kaurene oxidase in GA biosynthesis, mimics the protonemal phenotypes of the PpCPS/KS mutant, which were also restored by ent-kaurenoic acid treatment. Interestingly, the GA(9) methyl ester, a fern antheridiogen, rescued the protonemal defect of the disruption mutant, while GA(3) and GA(4), both of which are active GAs in angiosperms, did not. Our results suggest that the moss P. patens utilizes a diterpene metabolite from ent-kaurene as an endogenous developmental regulator and provide insights into the evolution of GA functions in land plants.

  3. Gibberellin regulates Arabidopsis seed germination via RGL2, a GAI/RGA-like gene whose expression is up-regulated following imbibition.

    PubMed

    Lee, Sorcheng; Cheng, Hui; King, Kathryn E; Wang, Weefuen; He, Yawen; Hussain, Alamgir; Lo, Jane; Harberd, Nicholas P; Peng, Jinrong

    2002-03-01

    The germination of Arabidopsis seeds is promoted by gibberellin (GA). Arabidopsis GAI, and RGA are genes encoding key GA signal-transduction components (GAI and RGA) that mediate GA regulation of stem elongation. The Arabidopsis genome contains two further genes, RGL1 and RGL2, that encode proteins (RGL1 and RGL2) that are closely related to GAI and RGA. Here, we show that RGL2 regulates seed germination in response to GA, and that RGL1, GAI, and RGA do not. In addition, we show that RGL2 transcript levels rise rapidly following seed imbibition, and then decline rapidly as germination proceeds. In situ GUS staining revealed that RGL2 expression in imbibed seeds is restricted to elongating regions of pre-emergent and recently emerged radicles. These observations indicate that RGL2 is a negative regulator of GA responses that acts specifically to control seed germination rather than stem elongation. Furthermore, as RGL2 expression is imbibition inducible, RGL2 may function as an integrator of environmental and endogenous cues to control seed germination.

  4. Brassinosteroids, gibberellins and light-mediated signalling are the three-way controls of plant sprouting.

    PubMed

    Jaillais, Yvon; Vert, Grégory

    2012-08-01

    The steroid hormones found in plants, the brassinosteroids, were originally genetically identified about 15 years ago as critical regulators of seedling photomorphogenesis. Two studies now shed light on the molecular mechanisms behind this observation. Brassinosteroids control seedling morphogenesis through direct interaction with master transcriptional regulators downstream of growth-promoting hormones and light signalling.

  5. Ethylene-mediated regulation of gibberellin content and growth in helianthus annuus L

    SciTech Connect

    Pearce, D.W.; Reid, D.M.; Pharis, R.P. )

    1991-04-01

    Elongation of hypocotyls of sunflower can be promoted by gibberellins (GAs) and inhibited by ethylene. The role of these hormones in regulating elongation was investigated by measuring changes in both endogenous GAs and in the metabolism of exogenous ({sup 3}H)- and ({sup 2}H{sub 2})GA{sub 20} in the hypocotyls of sunflower (Helianthus annuus L. cv Delgren 131) seedlings exposed to ethylene. The major biologically active GAs identified by gas chromatography-mass spectrometry were GA{sub 1}, GA{sub 19}, GA{sub 20}, and GA{sub 44}. In hypocotyls of seedlings exposed to ethylene, the concentration of GA{sub 1}, known to be directly active in regulating shoot elongation in a number of species, was reduced. Ethylene treatment reduced the metabolism of ({sup 3}H)GA{sub 20} and less ({sup 2}H{sub 2})GA{sub 1} was found in the hypocotyls of those seedlings exposed to the higher ethylene concentrations. However, it is not known if the effect of ethylene on GA{sub 20} metabolism was direct or indirect. In seedlings treated with exogenous GA{sub 1} or GA{sub 3}, the hypocotyls elongated faster than those of controls, but the GA treatment only partially overcame the inhibitory effect of ethylene on elongation. The authors conclude that GA content is a factor which may limit elongation in hypocotyls of sunflower, and that while exposure to ethylene results in reduced concentration of GA{sub 1} this is not sufficient per se to account for the inhibition of elongation caused by ethylene.

  6. Localization of phytochrome in etioplasts and its regulation in vitro of gibberellin levels.

    PubMed

    Evans, A; Smith, H

    1976-01-01

    Etioplasts isolated from barley leaves and purified on a Sephadex G-50 (coarse) column were characterized by electron microscopy and nucleic acid analysis. The majority of etioplasts retained an intact outer envelope, and contamination by other fragments was extremely low. The level of gibberellin-like substances extractable from intact etioplast suspensions was enhanced within 5 min of the termination of a saturating red irradiation, and the response was far-red reversible. Ultra-sonication caused a 3-fold increase in extractable activity both in dark control suspension and suspensions treated with red light. It is concluded that phytochrome, as a function of its interconversions, probably causes the transport of gibberellin from inside the etioplast into the surrounding medium. This leads to increased production of active gibberellins, possibly by release of feedback control of late steps of the biosynthetic pathway. Dual wavelength difference spectrophotometry has demonstrated the presence of a proportion of total cellular phytochrome within the etioplast.

  7. Developmental and hormonal regulation of gibberellin biosynthesis and catabolism in pea fruit.

    PubMed

    Ozga, Jocelyn A; Reinecke, Dennis M; Ayele, Belay T; Ngo, Phuong; Nadeau, Courtney; Wickramarathna, Aruna D

    2009-05-01

    In pea (Pisum sativum), normal fruit growth requires the presence of the seeds. The coordination of growth between the seed and ovary tissues involves phytohormones; however, the specific mechanisms remain speculative. This study further explores the roles of the gibberellin (GA) biosynthesis and catabolism genes during pollination and fruit development and in seed and auxin regulation of pericarp growth. Pollination and fertilization events not only increase pericarp PsGA3ox1 message levels (codes for GA 3-oxidase that converts GA(20) to bioactive GA(1)) but also reduce pericarp PsGA2ox1 mRNA levels (codes for GA 2-oxidase that mainly catabolizes GA(20) to GA(29)), suggesting a concerted regulation to increase levels of bioactive GA(1) following these events. 4-Chloroindole-3-acetic acid (4-Cl-IAA) was found to mimic the seeds in the stimulation of PsGA3ox1 and the repression of PsGA2ox1 mRNA levels as well as the stimulation of PsGA2ox2 mRNA levels (codes for GA 2-oxidase that mainly catabolizes GA(1) to GA(8)) in pericarp at 2 to 3 d after anthesis, while the other endogenous pea auxin, IAA, did not. This GA gene expression profile suggests that both seeds and 4-Cl-IAA can stimulate the production, as well as modulate the half-life, of bioactive GA(1), leading to initial fruit set and subsequent growth and development of the ovary. Consistent with these gene expression profiles, deseeded pericarps converted [(14)C]GA(12) to [(14)C]GA(1) only if treated with 4-Cl-IAA. These data further support the hypothesis that 4-Cl-IAA produced in the seeds is transported to the pericarp, where it differentially regulates the expression of pericarp GA biosynthesis and catabolism genes to modulate the level of bioactive GA(1) required for initial fruit set and growth. PMID:19297588

  8. Phenotypic plasticity of sun and shade ecotypes of Stellaria longipes in response to light quality signaling, gibberellins and auxin.

    PubMed

    Kurepin, Leonid V; Pharis, Richard P; Neil Emery, R J; Reid, David M; Chinnappa, C C

    2015-09-01

    Stellaria longipes plant communities (ecotypes) occur in several environmentally distinct habitats along the eastern slopes of southern Alberta's Rocky Mountains. One ecotype occurs in a prairie habitat at ∼1000 m elevation where Stellaria plants grow in an environment in which the light is filtered by taller neighbouring vegetation, i.e. sunlight with a low red to far-red (R/FR) ratio. This ecotype exhibits a high degree of phenotypic plasticity by increasing stem elongation in response to the low R/FR ratio light signal. Another Stellaria ecotype occurs nearby at ∼2400 m elevation in a much cooler alpine habitat, one where plants rarely experience low R/FR ratio shade light. Stem elongation of plants is largely regulated by gibberellins (GAs) and auxin, indole-3-acetic acid (IAA). Shoots of the prairie ecotype plants show increased IAA levels under low R/FR ratio light and they also increase their stem growth in response to applied IAA. The alpine ecotype plants show neither response. Plants from both ecotypes produce high levels of growth-active GA1 under low R/FR ratio light, though they differ appreciably in their catabolism of GA1. The alpine ecotype plants exhibit very high levels of GA8, the inactive product of GA1 metabolism, under both normal and low R/FR ratio light. Alpine origin plants may de-activate GA1 by conversion to GA8 via a constitutively high level of expression of the GA2ox gene, thereby maintaining their dwarf phenotype and exhibiting a reduced phenotypic plasticity in terms of shoot elongation. In contrast, prairie plants exhibit a high degree of phenotypic plasticity, using low R/FR ratio light-mediated changes in GA and IAA concentrations to increase shoot elongation, thereby accessing direct sunlight to optimize photosynthesis. There thus appear to be complex adaptation strategies for the two ecotypes, ones which involve modifications in the homeostasis of endogenous hormones. PMID:26113156

  9. Gibberellin Promotes Shoot Branching in the Perennial Woody Plant Jatropha curcas.

    PubMed

    Ni, Jun; Gao, Congcong; Chen, Mao-Sheng; Pan, Bang-Zhen; Ye, Kaiqin; Xu, Zeng-Fu

    2015-08-01

    Strigolactone (SL), auxin and cytokinin (CK) interact to regulate shoot branching. CK has long been considered to be the only key phytohormone to promote lateral bud outgrowth. Here we report that gibberellin also acts as a positive regulator in the control of shoot branching in the woody plant Jatropha curcas. We show that gibberellin and CK synergistically promote lateral bud outgrowth, and that both hormones influence the expression of putative branching regulators, J. curcas BRANCHED1 and BRANCHED2, which are key transcription factors maintaining bud dormancy. Moreover, treatment with paclobutrazol, an inhibitor of de novo gibberellin biosynthesis, significantly reduced the promotion of bud outgrowth by CK, suggesting that gibberellin is required for CK-mediated axillary bud outgrowth. In addition, SL, a plant hormone involved in the repression of shoot branching, acted antagonistically to both gibberellin and CK in the control of lateral bud outgrowth. Consistent with this, the expression of JcMAX2, a J. curcas homolog of Arabidopsis MORE AXILLARY GROWTH 2 encoding an F-box protein in the SL signaling pathway, was repressed by gibberellin and CK treatment. We also provide physiological evidence that gibberellin also induces shoot branching in many other trees, such as papaya, indicating that a more complicated regulatory network occurs in the control of shoot branching in some perennial woody plants. PMID:26076970

  10. The involvement of hexokinase in the coordinated regulation of glucose and gibberellin on cell wall invertase and sucrose synthesis in grape berry.

    PubMed

    Zhang, Yujing; Zhen, Lili; Tan, Xi; Li, Limei; Wang, Xiuqin

    2014-12-01

    In plants, hexokinase (HXK, EC 2.7.1.1), an enzyme normally involved in hexose phosphorylation, plays an important role in sugar sensing and signaling. The hexokinase activity of grape HXKs was confirmed by functional complementation of the hexokinase-deficient yeast strain YSH7.4-3C (hxk1, hxk2, glk1). HXK1 and HXK2 were able to complement this mutant. The subcellular localization of HXK1 and HXK2, observed with green fluorescent protein fusion constructs, indicated that HXK1 localized to the cytosol while HXK2 was a nuclear-targeted hexokinase. Gibberellin (GA3) control various processes across plant life and has been involved in sugar accumulation. The coordinated regulation of exogenous GA3 with Glc on CWINV, SuSy1, or SuSy2 expressions indicated that GA3 can relieve the repression of Glc on CWINV or SuSy1 expression, and the repression of GA3 on SuSy2 expression overrides the Glc-inductive effect, resulting in the down-regulation of SuSy2 expression. It was concluded that GA3 negatively interfere with Glc signal transduction depending on hexokinase phosphorylation. GA3 might regulate CWINV, SuSy1 or SuSy2 expression to in order to maintain an intracellular sugar levels and normal cell metabolism. Our results provide new insights into the crosstalk mechanism of GA3 and Glc signaling depending on hexokinase in grape berry sugar accumulation. PMID:25163631

  11. A Pivotal Role of DELLAs in Regulating Multiple Hormone Signals.

    PubMed

    Davière, Jean-Michel; Achard, Patrick

    2016-01-01

    Plant phenotypic plasticity is controlled by diverse hormone pathways, which integrate and convey information from multiple developmental and environmental signals. Moreover, in plants many processes such as growth, development, and defense are regulated in similar ways by multiple hormones. Among them, gibberellins (GAs) are phytohormones with pleiotropic actions, regulating various growth processes throughout the plant life cycle. Previous work has revealed extensive interplay between GAs and other hormones, but the molecular mechanism became apparent only recently. Molecular and physiological studies have demonstrated that DELLA proteins, considered as master negative regulators of GA signaling, integrate multiple hormone signaling pathways through physical interactions with transcription factors or regulatory proteins from different families. In this review, we summarize the latest progress in GA signaling and its direct crosstalk with the main phytohormone signaling, emphasizing the multifaceted role of DELLA proteins with key components of major hormone signaling pathways.

  12. Three WRKY transcription factors additively repress abscisic acid and gibberellin signaling in aleurone cells.

    PubMed

    Zhang, Liyuan; Gu, Lingkun; Ringler, Patricia; Smith, Stanley; Rushton, Paul J; Shen, Qingxi J

    2015-07-01

    Members of the WRKY transcription factor superfamily are essential for the regulation of many plant pathways. Functional redundancy due to duplications of WRKY transcription factors, however, complicates genetic analysis by allowing single-mutant plants to maintain wild-type phenotypes. Our analyses indicate that three group I WRKY genes, OsWRKY24, -53, and -70, act in a partially redundant manner. All three showed characteristics of typical WRKY transcription factors: each localized to nuclei and yeast one-hybrid assays indicated that they all bind to W-boxes, including those present in their own promoters. Quantitative real time-PCR (qRT-PCR) analyses indicated that the expression levels of the three WRKY genes varied in the different tissues tested. Particle bombardment-mediated transient expression analyses indicated that all three genes repress the GA and ABA signaling in a dosage-dependent manner. Combination of all three WRKY genes showed additive antagonism of ABA and GA signaling. These results suggest that these WRKY proteins function as negative transcriptional regulators of GA and ABA signaling. However, different combinations of these WRKY genes can lead to varied strengths in suppression of their targets.

  13. Gibberellins regulate the transcription of the continuous flowering regulator, RoKSN, a rose TFL1 homologue

    PubMed Central

    Foucher, Fabrice

    2012-01-01

    The role of gibberellins (GAs) during floral induction has been widely studied in the annual plant Arabidopsis thaliana. Less is known about this control in perennials. It is thought that GA is a major regulator of flowering in rose. In spring, low GA content may be necessary for floral initiation. GA inhibited flowering in once-flowering roses, whereas GA did not block blooming in continuous-flowering roses. Recently, RoKSN, a homologue of TFL1, was shown to control continuous flowering. The loss of RoKSN function led to continuous flowering behaviour. The objective of this study was to understand the molecular control of flowering by GA and the involvement of RoKSN in this inhibition. In once-flowering rose, the exogenous application of GA3 in spring inhibited floral initiation. Application of GA3 during a short period of 1 month, corresponding to the floral transition, was sufficient to inhibit flowering. At the molecular level, RoKSN transcripts were accumulated after GA3 treatment. In spring, this accumulation is correlated with floral inhibition. Other floral genes such as RoFT, RoSOC1, and RoAP1 were repressed in a RoKSN-dependent pathway, whereas RoLFY and RoFD repression was RoKSN independent. The RoKSN promoter contained GA-responsive cis-elements, whose deletion suppressed the response to GA in a heterologous system. In summer, once-flowering roses did not flower even after exogenous application of a GA synthesis inhibitor that failed to repress RoKSN. A model is presented for the GA inhibition of flowering in spring mediated by the induction of RoKSN. In summer, factors other than GA may control RoKSN. PMID:23175671

  14. A fungal endophyte helps plants to tolerate root herbivory through changes in gibberellin and jasmonate signaling.

    PubMed

    Cosme, Marco; Lu, Jing; Erb, Matthias; Stout, Michael Joseph; Franken, Philipp; Wurst, Susanne

    2016-08-01

    Plant-microbe mutualisms can improve plant defense, but the impact of root endophytes on below-ground herbivore interactions remains unknown. We investigated the effects of the root endophyte Piriformospora indica on interactions between rice (Oryza sativa) plants and its root herbivore rice water weevil (RWW; Lissorhoptrus oryzophilus), and how plant jasmonic acid (JA) and GA regulate this tripartite interaction. Glasshouse experiments with wild-type rice and coi1-18 and Eui1-OX mutants combined with nutrient, jasmonate and gene expression analyses were used to test: whether RWW adult herbivory above ground influences subsequent damage caused by larval herbivory below ground; whether P. indica protects plants against RWW; and whether GA and JA signaling mediate these interactions. The endophyte induced plant tolerance to root herbivory. RWW adults and larvae acted synergistically via JA signaling to reduce root growth, while endophyte-elicited GA biosynthesis suppressed the herbivore-induced JA in roots and recovered plant growth. Our study shows for the first time the impact of a root endophyte on plant defense against below-ground herbivores, adds to growing evidence that induced tolerance may be an important root defense, and implicates GA as a signal component of inducible plant tolerance against biotic stress. PMID:27061745

  15. Gibberellin regulates infection and colonization of host roots by arbuscular mycorrhizal fungi

    PubMed Central

    Takeda, Naoya; Handa, Yoshihiro; Tsuzuki, Syusaku; Kojima, Mikiko; Sakakibara, Hitoshi; Kawaguchi, Masayoshi

    2015-01-01

    Arbuscular mycorrhiza (AM) is established by the entry of AM fungi into the host plant roots and the formation of symbiotic structures called arbuscules. The host plant supplies photosynthetic products to the AM fungi, which in return provide phosphate and other minerals to the host through the arbuscules. Both partners gain great advantages from this symbiotic interaction, and both regulate AM development. Our recent work revealed that gibberellic acids (GAs) are required for AM development in the legume Lotus japonicus. GA signaling interact with symbiosis signaling pathways, directing AM fungal colonization in host roots. Expression analysis showed that genes for GA biosynthesis and metabolism were induced in host roots around AM fungal hyphae, suggesting that the GA signaling changes with both location and time during AM development. The fluctuating GA concentrations sometimes positively and sometimes negatively affect the expression of AM-induced genes that regulate AM fungal infection and colonization. PMID:26024424

  16. Gibberellin Regulates PIN-FORMED Abundance and Is Required for Auxin Transport–Dependent Growth and Development in Arabidopsis thaliana[C][W

    PubMed Central

    Willige, Björn C.; Isono, Erika; Richter, René; Zourelidou, Melina; Schwechheimer, Claus

    2011-01-01

    Plants integrate different regulatory signals to control their growth and development. Although a number of physiological observations suggest that there is crosstalk between the phytohormone gibberellin (GA) and auxin, as well as with auxin transport, the molecular basis for this hormonal crosstalk remains largely unexplained. Here, we show that auxin transport is reduced in the inflorescences of Arabidopsis thaliana mutants deficient in GA biosynthesis and signaling. We further show that this reduced auxin transport correlates with a reduction in the abundance of PIN-FORMED (PIN) auxin efflux facilitators in GA-deficient plants and that PIN protein levels recover to wild-type levels following GA treatment. We also demonstrate that the regulation of PIN protein levels cannot be explained by a transcriptional regulation of the PIN genes but that GA deficiency promotes, at least in the case of PIN2, the targeting of PIN proteins for vacuolar degradation. In genetic studies, we reveal that the reduced auxin transport of GA mutants correlates with an impairment in two PIN-dependent growth processes, namely, cotyledon differentiation and root gravitropic responses. Our study thus presents evidence for a role of GA in these growth responses and for a GA-dependent modulation of PIN turnover that may be causative for these differential growth responses. PMID:21642547

  17. PIL5, a phytochrome-interacting bHLH protein, regulates gibberellin responsiveness by binding directly to the GAI and RGA promoters in Arabidopsis seeds.

    PubMed

    Oh, Eunkyoo; Yamaguchi, Shinjiro; Hu, Jianhong; Yusuke, Jikumaru; Jung, Byunghyuck; Paik, Inyup; Lee, Hee-Seung; Sun, Tai-ping; Kamiya, Yuji; Choi, Giltsu

    2007-04-01

    Previous work showed that PHYTOCHROME-INTERACTING FACTOR3-LIKE5 (PIL5), a light-labile basic helix-loop-helix protein, inhibits seed germination by repressing GIBBERELLIN 3beta-HYDROXYLASE1 (GA3ox1) and GA3ox2 and activating a gibberellic acid (GA) catabolic gene (GA2ox2). However, we show persistent light-dependent and PIL5-inhibited germination behavior in the absence of both de novo GA biosynthesis and deactivation by GA2ox2, suggesting that PIL5 regulates not only GA metabolism but also GA responsiveness. PIL5 increases the expression of two GA repressor (DELLA) genes, GA-INSENSITIVE (GAI) and REPRESSOR OF GA1-3 (RGA/RGA1), in darkness. The hypersensitivity of gai-t6 rga-28 to red light and the suppression of germination defects of a rga-28 PIL5 overexpression line show the significant role of this transcriptional regulation in seed germination. PIL5 also increases abscisic acid (ABA) levels by activating ABA biosynthetic genes and repressing an ABA catabolic gene. PIL5 binds directly to GAI and RGA promoters but not to GA and ABA metabolic gene promoters. Together, our results show that light signals perceived by phytochromes cause a reduction in the PIL5 protein level, which in turn regulates the transcription of two DELLA genes directly and that of GA and ABA metabolic genes indirectly.

  18. Gibberellins interfere with symbiosis signaling and gene expression and alter colonization by arbuscular mycorrhizal fungi in Lotus japonicus.

    PubMed

    Takeda, Naoya; Handa, Yoshihiro; Tsuzuki, Syusaku; Kojima, Mikiko; Sakakibara, Hitoshi; Kawaguchi, Masayoshi

    2015-02-01

    Arbuscular mycorrhiza is a mutualistic plant-fungus interaction that confers great advantages for plant growth. Arbuscular mycorrhizal (AM) fungi enter the host root and form symbiotic structures that facilitate nutrient supplies between the symbionts. The gibberellins (GAs) are phytohormones known to inhibit AM fungal infection. However, our transcriptome analysis and phytohormone quantification revealed GA accumulation in the roots of Lotus japonicus infected with AM fungi, suggesting that de novo GA synthesis plays a role in arbuscular mycorrhiza development. We found pleiotropic effects of GAs on the AM fungal infection. In particular, the morphology of AM fungal colonization was drastically altered by the status of GA signaling in the host root. Exogenous GA treatment inhibited AM hyphal entry into the host root and suppressed the expression of Reduced Arbuscular Mycorrhization1 (RAM1) and RAM2 homologs that function in hyphal entry and arbuscule formation. On the other hand, inhibition of GA biosynthesis or suppression of GA signaling also affected arbuscular mycorrhiza development in the host root. Low-GA conditions suppressed arbuscular mycorrhiza-induced subtilisin-like serine protease1 (SbtM1) expression that is required for AM fungal colonization and reduced hyphal branching in the host root. The reduced hyphal branching and SbtM1 expression caused by the inhibition of GA biosynthesis were recovered by GA treatment, supporting the theory that insufficient GA signaling causes the inhibitory effects on arbuscular mycorrhiza development. Most studies have focused on the negative role of GA signaling, whereas our study demonstrates that GA signaling also positively interacts with symbiotic responses and promotes AM colonization of the host root.

  19. Gibberellins Interfere with Symbiosis Signaling and Gene Expression and Alter Colonization by Arbuscular Mycorrhizal Fungi in Lotus japonicus1

    PubMed Central

    Takeda, Naoya; Handa, Yoshihiro; Tsuzuki, Syusaku; Kojima, Mikiko; Sakakibara, Hitoshi; Kawaguchi, Masayoshi

    2015-01-01

    Arbuscular mycorrhiza is a mutualistic plant-fungus interaction that confers great advantages for plant growth. Arbuscular mycorrhizal (AM) fungi enter the host root and form symbiotic structures that facilitate nutrient supplies between the symbionts. The gibberellins (GAs) are phytohormones known to inhibit AM fungal infection. However, our transcriptome analysis and phytohormone quantification revealed GA accumulation in the roots of Lotus japonicus infected with AM fungi, suggesting that de novo GA synthesis plays a role in arbuscular mycorrhiza development. We found pleiotropic effects of GAs on the AM fungal infection. In particular, the morphology of AM fungal colonization was drastically altered by the status of GA signaling in the host root. Exogenous GA treatment inhibited AM hyphal entry into the host root and suppressed the expression of Reduced Arbuscular Mycorrhization1 (RAM1) and RAM2 homologs that function in hyphal entry and arbuscule formation. On the other hand, inhibition of GA biosynthesis or suppression of GA signaling also affected arbuscular mycorrhiza development in the host root. Low-GA conditions suppressed arbuscular mycorrhiza-induced subtilisin-like serine protease1 (SbtM1) expression that is required for AM fungal colonization and reduced hyphal branching in the host root. The reduced hyphal branching and SbtM1 expression caused by the inhibition of GA biosynthesis were recovered by GA treatment, supporting the theory that insufficient GA signaling causes the inhibitory effects on arbuscular mycorrhiza development. Most studies have focused on the negative role of GA signaling, whereas our study demonstrates that GA signaling also positively interacts with symbiotic responses and promotes AM colonization of the host root. PMID:25527715

  20. BRAHMA ATPase of the SWI/SNF chromatin remodeling complex acts as a positive regulator of gibberellin-mediated responses in arabidopsis.

    PubMed

    Archacki, Rafal; Buszewicz, Daniel; Sarnowski, Tomasz J; Sarnowska, Elzbieta; Rolicka, Anna T; Tohge, Takayuki; Fernie, Alisdair R; Jikumaru, Yusuke; Kotlinski, Maciej; Iwanicka-Nowicka, Roksana; Kalisiak, Katarzyna; Patryn, Jacek; Halibart-Puzio, Joanna; Kamiya, Yuji; Davis, Seth J; Koblowska, Marta K; Jerzmanowski, Andrzej

    2013-01-01

    SWI/SNF chromatin remodeling complexes perform a pivotal function in the regulation of eukaryotic gene expression. Arabidopsis (Arabidopsis thaliana) mutants in major SWI/SNF subunits display embryo-lethal or dwarf phenotypes, indicating their critical role in molecular pathways controlling development and growth. As gibberellins (GA) are major positive regulators of plant growth, we wanted to establish whether there is a link between SWI/SNF and GA signaling in Arabidopsis. This study revealed that in brm-1 plants, depleted in SWI/SNF BRAHMA (BRM) ATPase, a number of GA-related phenotypic traits are GA-sensitive and that the loss of BRM results in markedly decreased level of endogenous bioactive GA. Transcriptional profiling of brm-1 and the GA biosynthesis mutant ga1-3, as well as the ga1-3/brm-1 double mutant demonstrated that BRM affects the expression of a large set of GA-responsive genes including genes responsible for GA biosynthesis and signaling. Furthermore, we found that BRM acts as an activator and directly associates with promoters of GA3ox1, a GA biosynthetic gene, and SCL3, implicated in positive regulation of the GA pathway. Many GA-responsive gene expression alterations in the brm-1 mutant are likely due to depleted levels of active GAs. However, the analysis of genetic interactions between BRM and the DELLA GA pathway repressors, revealed that BRM also acts on GA-responsive genes independently of its effect on GA level. Given the central position occupied by SWI/SNF complexes within regulatory networks controlling fundamental biological processes, the identification of diverse functional intersections of BRM with GA-dependent processes in this study suggests a role for SWI/SNF in facilitating crosstalk between GA-mediated regulation and other cellular pathways.

  1. CbCBF from Capsella bursa-pastoris enhances cold tolerance and restrains growth in Nicotiana tabacum by antagonizing with gibberellin and affecting cell cycle signaling.

    PubMed

    Zhou, Mingqi; Xu, Ming; Wu, Lihua; Shen, Chen; Ma, Hong; Lin, Juan

    2014-06-01

    Plant cells respond to cold stress via a regulatory mechanism leading to enhanced cold acclimation accompanied by growth retardation. The C-repeat binding factor (CBF) signaling pathway is essential for cold response of flowering plants. Our previously study documented a novel CBF-like gene from the cold-tolerant Capsella bursa-pastoris named CbCBF, which was responsive to chilling temperatures. Here, we show that CbCBF expression is obviously responsive to chilling, freezing, abscisic acid, gibberellic acid (GA), indoleacetic acid or methyl jasmonate treatments and that the CbCBF:GFP fusion protein was localized to the nucleus. In addition, CbCBF overexpression conferred to the cold-sensitive tobacco plants enhanced tolerance to chilling and freezing, as well as dwarfism and delayed flowering. The leaf cells of CbCBF overexpression tobacco lines attained smaller sizes and underwent delayed cell division with reduced expression of cyclin D genes. The dwarfism of CbCBF transformants can be partially restored by GA application. Consistently, CbCBF overexpression reduced the bioactive gibberellin contents and disturbed the expression of gibberellin metabolic genes in tobacco. Meanwhile, cold induced CbCBF expression and cold tolerance in C. bursa-pastoris are reduced by GA. We conclude that CbCBF confers cold resistance and growth inhibition to tobacco cells by interacting with gibberellin and cell cycle pathways, likely through activation of downstream target genes.

  2. REPRESSION OF SHOOT GROWTH, a bZIP Transcriptional Activator, Regulates Cell Elongation by Controlling the Level of Gibberellins

    PubMed Central

    Fukazawa, Jutarou; Sakai, Tatsuya; Ishida, Sarahmi; Yamaguchi, Isomaro; Kamiya, Yuji; Takahashi, Yohsuke

    2000-01-01

    Cell expansion, a developmental process regulated by both endogenous programs and environmental stimuli, is critically important for plant growth. Here, we report the isolation and characterization of RSG (for repression of shoot growth), a transcriptional activator with a basic leucine zipper (bZIP) domain. To examine the role of RSG in plant development, we generated transgenic tobacco plants expressing a dominant-negative form of RSG, which repressed the activity of full-length RSG. In transgenic plants, this expression severely inhibited stem internode growth, specifically cell elongation. These plants also had less endogenous amounts of the major active gibberellin (GA) in tobacco, GA1. Applying GAs restored the dwarf phenotypes of transgenic tobacco plants that expressed the dominant-negative form of RSG. To investigate the function of RSG in the regulation of the endogenous amounts of GAs, we identified a target for RSG. RSG bound and activated the promoter of Arabidopsis GA3, one of the genes encoding enzymes involved in GA biosynthesis. Moreover, the dominant-negative form of RSG decreased expression of the GA3 homolog in transgenic tobacco plants. Our results show that RSG, a bZIP transcriptional activator, regulates the morphology of plants by controlling the endogenous amounts of GAs. PMID:10852936

  3. Arabidopsis miR171-targeted scarecrow-like proteins bind to GT cis-elements and mediate gibberellin-regulated chlorophyll biosynthesis under light conditions.

    PubMed

    Ma, Zhaoxue; Hu, Xupeng; Cai, Wenjuan; Huang, Weihua; Zhou, Xin; Luo, Qian; Yang, Hongquan; Wang, Jiawei; Huang, Jirong

    2014-08-01

    An extraordinarily precise regulation of chlorophyll biosynthesis is essential for plant growth and development. However, our knowledge on the complex regulatory mechanisms of chlorophyll biosynthesis is very limited. Previous studies have demonstrated that miR171-targeted scarecrow-like proteins (SCL6/22/27) negatively regulate chlorophyll biosynthesis via an unknown mechanism. Here we showed that SCLs inhibit the expression of the key gene encoding protochlorophyllide oxidoreductase (POR) in light-grown plants, but have no significant effect on protochlorophyllide biosynthesis in etiolated seedlings. Histochemical analysis of β-glucuronidase (GUS) activity in transgenic plants expressing pSCL27::rSCL27-GUS revealed that SCL27-GUS accumulates at high levels and suppresses chlorophyll biosynthesis at the leaf basal proliferation region during leaf development. Transient gene expression assays showed that the promoter activity of PORC is indeed regulated by SCL27. Consistently, chromatin immunoprecipitation and quantitative PCR assays showed that SCL27 binds to the promoter region of PORC in vivo. An electrophoretic mobility shift assay revealed that SCL27 is directly interacted with G(A/G)(A/T)AA(A/T)GT cis-elements of the PORC promoter. Furthermore, genetic analysis showed that gibberellin (GA)-regulated chlorophyll biosynthesis is mediated, at least in part, by SCLs. We demonstrated that SCL27 interacts with DELLA proteins in vitro and in vivo by yeast-two-hybrid and coimmunoprecipitation analysis and found that their interaction reduces the binding activity of SCL27 to the PORC promoter. Additionally, we showed that SCL27 activates MIR171 gene expression, forming a feedback regulatory loop. Taken together, our data suggest that the miR171-SCL module is critical for mediating GA-DELLA signaling in the coordinate regulation of chlorophyll biosynthesis and leaf growth in light.

  4. The role of auxin and gibberellin in tomato fruit set.

    PubMed

    de Jong, Maaike; Mariani, Celestina; Vriezen, Wim H

    2009-01-01

    The initiation of tomato fruit growth, fruit set, is very sensitive to environmental conditions. Therefore, an understanding of the mechanisms that regulate this process can facilitate the production of this agriculturally valuable fruit crop. Over the years, it has been well established that tomato fruit set depends on successful pollination and fertilization, which trigger the fruit developmental programme through the activation of the auxin and gibberellin signalling pathways. However, the exact role of each of these two hormones is still poorly understood, probably because only few of the signalling components involved have been identified so far. Recent research on fruit set induced by hormone applications has led to new insights into hormone biosynthesis and signalling. The aim of this review is to consolidate the current knowledge on the role of auxin and gibberellin in tomato fruit set. PMID:19321650

  5. Gibberellins repress photomorphogenesis in darkness.

    PubMed

    Alabadí, David; Gil, Joan; Blázquez, Miguel A; García-Martínez, José L

    2004-03-01

    Plants undergo two different developmental programs depending on whether they are growing in darkness (skotomorphogenesis) or in the presence of light (photomorphogenesis). It has been proposed that the latter is the default pathway followed by many plants after germination and before the seedling emerges from soil. The transition between the two pathways is tightly regulated. The conserved COP1-based complex is central in the light-dependent repression of photomorphogenesis in darkness. Besides this control, hormones such as brassinosteroids (BRs), cytokinins, auxins, or ethylene also have been shown to regulate, to different extents, this developmental switch. In the present work, we show that the hormone gibberellin (GA) widely participates in this regulation. Studies from Arabidopsis show that both chemical and genetic reductions of endogenous GA levels partially derepress photomorphogenesis in darkness. This is based both on morphological phenotypes, such as hypocotyl elongation and hook and cotyledon opening, and on molecular phenotypes, such as misregulation of the light-controlled genes CAB2 and RbcS. Genetic studies indicate that the GA signaling elements GAI and RGA participate in these responses. Our results also suggest that GA regulation of this response partially depends on BRs. This regulation seems to be conserved across species because lowering endogenous GA levels in pea (Pisum sativum) induces full de-etiolation in darkness, which is not reverted by BR application. Our results, therefore, attribute an important role for GAs in the establishment of etiolated growth and in repression of photomorphogenesis. PMID:14963246

  6. Tomato fruit set driven by pollination or by the parthenocarpic fruit allele are mediated by transcriptionally regulated gibberellin biosynthesis.

    PubMed

    Olimpieri, Irene; Siligato, Francesca; Caccia, Riccardo; Mariotti, Lorenzo; Ceccarelli, Nello; Soressi, Gian Piero; Mazzucato, Andrea

    2007-09-01

    We investigated the role of gibberellins (GAs) in the phenotype of parthenocarpic fruit (pat), a recessive mutation conferring parthenocarpy in tomato (Solanum lycopersicum L.). Novel phenotypes that parallel those reported in plants repeatedly treated with gibberellic acid or having a GA-constitutive response indicate that the pat mutant probably expresses high levels of GA. The retained sensitivity to the GA-biosynthesis inhibitor paclobutrazol reveals that this condition is dependent on GA biosynthesis. Expression analysis of genes encoding key enzymes involved in GA biosynthesis shows that in normal tomato ovaries, the GA20ox1 transcript is in low copy number before anthesis and only pollination and fertilization increase its transcription levels and, thus, GA biosynthesis. In the unpollinated ovaries of the pat mutant, this mechanism is de-regulated and GA20ox1 is constitutively expressed, indicating that a high GA concentration could play a part in the parthenocarpic phenotype. The levels of endogenous GAs measured in the floral organs of the pat mutant support such a hypothesis. Collectively, the data indicate that transcriptional regulation of GA20ox1 mediates pollination-induced fruit set in tomato and that parthenocarpy in pat results from the mis-regulation of this mechanism. As genes involved in the control of GA synthesis (LeT6, LeT12 and LeCUC2) and response (SPY) are also altered in the pat ovary, it is suggested that the pat mutation affects a regulatory gene located upstream of the control of fruit set exerted by GAs. PMID:17503074

  7. Gibberellins regulate the stem elongation rate without affecting the mature plant height of a quick development mutant of winter wheat (Triticum aestivum L.).

    PubMed

    Zhang, Ning; Xie, Yong-Dun; Guo, Hui-Jun; Zhao, Lin-Shu; Xiong, Hong-Chun; Gu, Jia-Yu; Li, Jun-Hui; Kong, Fu-Quan; Sui, Li; Zhao, Zi-Wei; Zhao, Shi-Rong; Liu, Lu-Xiang

    2016-10-01

    Gibberellin (GA) is essential for determining plant height. Alteration of GA content or GA signaling results in a dwarf or slender phenotype. Here, we characterized a novel wheat mutant, quick development (qd), in which GA regulates stem elongation but does not affect mature plant height. qd and wild-type plants did not exhibit phenotypic differences at the seedling stage. From jointing to heading stage, qd plants were taller than wild-type plants due to elongated cells. However, wild-type and qd plants were the same height at heading. Unlike wild-type plants, qd plants were sensitive to exogenous GA due to mutation of Rht-B1. With continuous GA stimulation, qd seedlings and adult plants were taller than wild-type. Thus, the GA content of qd plants might differ from that of wild-type during the growth process. Analysis of GA biosynthetic gene expression verified this hypothesis and showed that TaKAO, which is involved in catalyzing the early steps of GA biosynthesis, was differentially expressed in qd plants compared with wild-type. The bioactive GA associated gene TaGA20ox was downregulated in qd plants during the late growth stages. Measurements of endogenous GA content were consistent with the gene-expression analysis results. Consistent with the GA content variation, the first three basal internodes were longer and the last two internodes were shorter in qd than in wild-type plants. The qd mutant might be useful in dissecting the mechanism by which GA regulates stem-growing process, and it may be serve as a GA responsive semi-dwarf germplasm in breeding programs. PMID:27317908

  8. Gibberellins regulate the stem elongation rate without affecting the mature plant height of a quick development mutant of winter wheat (Triticum aestivum L.).

    PubMed

    Zhang, Ning; Xie, Yong-Dun; Guo, Hui-Jun; Zhao, Lin-Shu; Xiong, Hong-Chun; Gu, Jia-Yu; Li, Jun-Hui; Kong, Fu-Quan; Sui, Li; Zhao, Zi-Wei; Zhao, Shi-Rong; Liu, Lu-Xiang

    2016-10-01

    Gibberellin (GA) is essential for determining plant height. Alteration of GA content or GA signaling results in a dwarf or slender phenotype. Here, we characterized a novel wheat mutant, quick development (qd), in which GA regulates stem elongation but does not affect mature plant height. qd and wild-type plants did not exhibit phenotypic differences at the seedling stage. From jointing to heading stage, qd plants were taller than wild-type plants due to elongated cells. However, wild-type and qd plants were the same height at heading. Unlike wild-type plants, qd plants were sensitive to exogenous GA due to mutation of Rht-B1. With continuous GA stimulation, qd seedlings and adult plants were taller than wild-type. Thus, the GA content of qd plants might differ from that of wild-type during the growth process. Analysis of GA biosynthetic gene expression verified this hypothesis and showed that TaKAO, which is involved in catalyzing the early steps of GA biosynthesis, was differentially expressed in qd plants compared with wild-type. The bioactive GA associated gene TaGA20ox was downregulated in qd plants during the late growth stages. Measurements of endogenous GA content were consistent with the gene-expression analysis results. Consistent with the GA content variation, the first three basal internodes were longer and the last two internodes were shorter in qd than in wild-type plants. The qd mutant might be useful in dissecting the mechanism by which GA regulates stem-growing process, and it may be serve as a GA responsive semi-dwarf germplasm in breeding programs.

  9. Plant hormones in arbuscular mycorrhizal symbioses: an emerging role for gibberellins

    PubMed Central

    Foo, Eloise; Ross, John J.; Jones, William T.; Reid, James B.

    2013-01-01

    Background and Aims Arbuscular mycorrhizal symbioses are important for nutrient acquisition in >80 % of terrestrial plants. Recently there have been major breakthroughs in understanding the signals that regulate colonization by the fungus, but the roles of the known plant hormones are still emerging. Here our understanding of the roles of abscisic acid, ethylene, auxin, strigolactones, salicylic acid and jasmonic acid is discussed, and the roles of gibberellins and brassinosteroids examined. Methods Pea mutants deficient in gibberellins, DELLA proteins and brassinosteroids are used to determine whether fungal colonization is altered by the level of these hormones or signalling compounds. Expression of genes activated during mycorrhizal colonization is also monitored. Key Results Arbuscular mycorrhizal colonization of pea roots is substantially increased in gibberellin-deficient na-1 mutants compared with wild-type plants. This is reversed by application of GA3. Mutant la cry-s, which lacks gibberellin signalling DELLA proteins, shows reduced colonization. These changes were parallelled by changes in the expression of genes associated with mycorrhizal colonization. The brassinosteroid-deficient lkb mutant showed no change in colonization. Conclusions Biologically active gibberellins suppress arbuscule formation in pea roots, and DELLA proteins are essential for this response, indicating that this role occurs within the root cells. PMID:23508650

  10. Roles of Gibberellins and Abscisic Acid in Regulating Germination of Suaeda salsa Dimorphic Seeds Under Salt Stress.

    PubMed

    Li, Weiqiang; Yamaguchi, Shinjiro; Khan, M Ajmal; An, Ping; Liu, Xiaojing; Tran, Lam-Son P

    2015-01-01

    Seed heteromorphism observed in many halophytes is an adaptive phenomenon toward high salinity. However, the relationship between heteromorphic seed germination and germination-related hormones under salt stress remains elusive. To gain an insight into this relationship, the roles of gibberellins (GAs) and abscisic acid (ABA) in regulating germination of Suaeda salsa dimorphic brown and black seeds under salinity were elucidated by studying the kinetics of the two hormones during germination of the two seed types with or without salinity treatment. Morphological analysis suggested that brown and black are in different development stage. The content of ABA was higher in dry brown than in black seeds, which gradually decreased after imbibition in water and salt solutions. Salt stress induced ABA accumulation in both germinating seed types, with higher induction effect on black than brown seeds. Black seeds showed lower germination percentage than brown seeds under both water and salt stress, which might be attributed to their higher ABA sensitivity rather than the difference in ABA content between black and brown seeds. Bioactive GA4 and its biosynthetic precursors showed higher levels in brown than in black seeds, whereas deactivated GAs showed higher content in black than brown seeds in dry or in germinating water or salt solutions. High salinity inhibited seed germination through decreasing the levels of GA4 in both seeds, and the inhibited effect of salt stress on GA4 level of black seeds was more profound than that of brown seeds. Taken together higher GA4 content, and lower ABA sensitivity contributed to the higher germination percentage of brown seeds than black seeds in water and salinity; increased ABA content and sensitivity, and decreased GA4 content by salinity were more profound in black than brown seeds, which contributed to lower germination of black seeds than brown seeds in salinity. The differential regulation of ABA and GA homeostases by salt

  11. Roles of Gibberellins and Abscisic Acid in Regulating Germination of Suaeda salsa Dimorphic Seeds Under Salt Stress

    PubMed Central

    Li, Weiqiang; Yamaguchi, Shinjiro; Khan, M. Ajmal; An, Ping; Liu, Xiaojing; Tran, Lam-Son P.

    2016-01-01

    Seed heteromorphism observed in many halophytes is an adaptive phenomenon toward high salinity. However, the relationship between heteromorphic seed germination and germination-related hormones under salt stress remains elusive. To gain an insight into this relationship, the roles of gibberellins (GAs) and abscisic acid (ABA) in regulating germination of Suaeda salsa dimorphic brown and black seeds under salinity were elucidated by studying the kinetics of the two hormones during germination of the two seed types with or without salinity treatment. Morphological analysis suggested that brown and black are in different development stage. The content of ABA was higher in dry brown than in black seeds, which gradually decreased after imbibition in water and salt solutions. Salt stress induced ABA accumulation in both germinating seed types, with higher induction effect on black than brown seeds. Black seeds showed lower germination percentage than brown seeds under both water and salt stress, which might be attributed to their higher ABA sensitivity rather than the difference in ABA content between black and brown seeds. Bioactive GA4 and its biosynthetic precursors showed higher levels in brown than in black seeds, whereas deactivated GAs showed higher content in black than brown seeds in dry or in germinating water or salt solutions. High salinity inhibited seed germination through decreasing the levels of GA4 in both seeds, and the inhibited effect of salt stress on GA4 level of black seeds was more profound than that of brown seeds. Taken together higher GA4 content, and lower ABA sensitivity contributed to the higher germination percentage of brown seeds than black seeds in water and salinity; increased ABA content and sensitivity, and decreased GA4 content by salinity were more profound in black than brown seeds, which contributed to lower germination of black seeds than brown seeds in salinity. The differential regulation of ABA and GA homeostases by salt

  12. Abscisic Acid and Gibberellin Differentially Regulate Expression of Genes of the SNF1-Related Kinase Complex in Tomato Seeds1

    PubMed Central

    Bradford, Kent J.; Downie, A. Bruce; Gee, Oliver H.; Alvarado, Veria; Yang, Hong; Dahal, Peetambar

    2003-01-01

    The SNF1/AMP-activated protein kinase subfamily plays central roles in metabolic and transcriptional responses to nutritional or environmental stresses. In yeast (Saccharomyces cerevisiae) and mammals, activating and anchoring subunits associate with and regulate the activity, substrate specificity, and cellular localization of the kinase subunit in response to changing nutrient sources or energy demands, and homologous SNF1-related kinase (SnRK1) proteins are present in plants. We isolated cDNAs corresponding to the kinase (LeSNF1), regulatory (LeSNF4), and localization (LeSIP1 and LeGAL83) subunits of the SnRK1 complex from tomato (Lycopersicon esculentum Mill.). LeSNF1 and LeSNF4 complemented yeast snf1 and snf4 mutants and physically interacted with each other and with LeSIP1 in a glucose-dependent manner in yeast two-hybrid assays. LeSNF4 mRNA became abundant at maximum dry weight accumulation during seed development and remained high when radicle protrusion was blocked by abscisic acid (ABA), water stress, far-red light, or dormancy, but was low or undetected in seeds that had completed germination or in gibberellin (GA)-deficient seeds stimulated to germinate by GA. In leaves, LeSNF4 was induced in response to ABA or dehydration. In contrast, LeSNF1 and LeGAL83 genes were essentially constitutively expressed in both seeds and leaves regardless of the developmental, hormonal, or environmental conditions. Regulation of LeSNF4 expression by ABA and GA provides a potential link between hormonal and sugar-sensing pathways controlling seed development, dormancy, and germination. PMID:12857836

  13. Plant hormone jasmonate prioritizes defense over growth by interfering with gibberellin signaling cascade.

    PubMed

    Yang, Dong-Lei; Yao, Jian; Mei, Chuan-Sheng; Tong, Xiao-Hong; Zeng, Long-Jun; Li, Qun; Xiao, Lang-Tao; Sun, Tai-ping; Li, Jigang; Deng, Xing-Wang; Lee, Chin Mei; Thomashow, Michael F; Yang, Yinong; He, Zuhua; He, Sheng Yang

    2012-05-01

    Plants must effectively defend against biotic and abiotic stresses to survive in nature. However, this defense is costly and is often accompanied by significant growth inhibition. How plants coordinate the fluctuating growth-defense dynamics is not well understood and remains a fundamental question. Jasmonate (JA) and gibberellic acid (GA) are important plant hormones that mediate defense and growth, respectively. Binding of bioactive JA or GA ligands to cognate receptors leads to proteasome-dependent degradation of specific transcriptional repressors (the JAZ or DELLA family of proteins), which, at the resting state, represses cognate transcription factors involved in defense (e.g., MYCs) or growth [e.g. phytochrome interacting factors (PIFs)]. In this study, we found that the coi1 JA receptor mutants of rice (a domesticated monocot crop) and Arabidopsis (a model dicot plant) both exhibit hallmark phenotypes of GA-hypersensitive mutants. JA delays GA-mediated DELLA protein degradation, and the della mutant is less sensitive to JA for growth inhibition. Overexpression of a selected group of JAZ repressors in Arabidopsis plants partially phenocopies GA-associated phenotypes of the coi1 mutant, and JAZ9 inhibits RGA (a DELLA protein) interaction with transcription factor PIF3. Importantly, the pif quadruple (pifq) mutant no longer responds to JA-induced growth inhibition, and overexpression of PIF3 could partially overcome JA-induced growth inhibition. Thus, a molecular cascade involving the COI1-JAZ-DELLA-PIF signaling module, by which angiosperm plants prioritize JA-mediated defense over growth, has been elucidated.

  14. Class I chitinase and beta-1,3-glucanase are differentially regulated by wounding, methyl jasmonate, ethylene, and gibberellin in tomato seeds and leaves.

    PubMed

    Wu, Chun-Ta; Bradford, Kent J

    2003-09-01

    Class I chitinase (Chi9) and beta-1,3-glucanase (GluB) genes are expressed in the micropylar endosperm cap of tomato (Lycopersicon esculentum) seeds just before radicle emergence through this tissue to complete germination. In gibberellin (GA)-deficient mutant (gib-1) seeds, expression of Chi9 and GluB mRNA and protein is dependent upon GA. However, as expression occurs relatively late in the germination process, we investigated whether the genes are induced indirectly in response to tissue wounding associated with endosperm cap weakening and radicle protrusion. Wounding and methyl jasmonate (MeJA) induced Chi9 expression, whereas ethylene, abscisic acid, sodium salicylate, fusicoccin, or beta-aminobutyric acid were without effect. Chi9 expression occurred only in the micropylar tissues when seeds were exposed to MeJA or were wounded at the chalazal end of the seed. Expression of Chi9, but not GluB, mRNA was reduced in germinating seeds of the jasmonate-deficient defenseless1 tomato mutant and could be restored by MeJA treatment. Chi9 expression during germination may be associated with "wounding" from cell wall hydrolysis and weakening in the endosperm cap leading to radicle protrusion, and jasmonate is involved in the signaling pathway for this response. Among these treatments and chemicals (other than GA), only MeJA and wounding induced a low level of GluB expression in gib-1 seeds. However, MeJA, wounding, and particularly ethylene induced both genes in leaves, whereas GA induced only Chi9 in leaves. Although normally expressed simultaneously during tomato seed germination, Chi9 and GluB genes are regulated distinctly and tissue specifically by hormones and wounding.

  15. Pollination-, development-, and auxin-specific regulation of gibberellin 3beta-hydroxylase gene expression in pea fruit and seeds.

    PubMed

    Ozga, Jocelyn A; Yu, Jody; Reinecke, Dennis M

    2003-03-01

    To understand further how pollination, seeds, auxin (4-chloroindole-3-acetic acid [4-Cl-IAA]), and gibberellins (GAs) regulate GA biosynthesis in pea (Pisum sativum) fruit, we studied expression of the gene PsGA3ox1 that codes for the enzyme that converts GA(20) to biologically active GA(1) using real-time reverse transcription-polymerase chain reaction analysis. PsGA3ox1 mRNA levels were minimally detectable in prepollinated pericarps and ovules (-2 d after anthesis [DAA]), increased dramatically after pollination (0 DAA), then decreased by 1 DAA. Seed PsGA3ox1 mRNA levels increased at 4 DAA and again 8 to 12 DAA, when seed development was rapid. Pericarp PsGA3ox1 mRNA levels peaked coincidentally with rapid pod diameter expansion (6-10 DAA) to accommodate the growing seeds. The effects of seeds and hormones on the expression of pericarp PsGA3ox1 were investigated over a 24-h treatment period. Pericarp PsGA3ox1 mRNA levels gradually increased from 2 to 3 DAA when seeds were present; however, when the seeds were removed, the pericarp transcript levels dramatically declined. When 2-DAA deseeded pericarps were treated with 4-Cl-IAA, PsGA3ox1 mRNA levels peaked 4 h after hormone treatment (270-fold increase), then decreased. PsGA3ox1 mRNA levels in deseeded pericarps treated with indole-3-acetic acid or GA(3) were the same or lower than deseeded controls. These data show that PsGA3ox1 is expressed and developmentally regulated in pea pericarps and seeds. These data also show that pericarp PsGA3ox1 expression is hormonally regulated and suggest that the conversion of GA(20) to GA(1) occurs in the pericarp and is regulated by the presence of seeds and 4-Cl-IAA for fruit growth.

  16. Gibberellin Application at Pre-Bloom in Grapevines Down-Regulates the Expressions of VvIAA9 and VvARF7, Negative Regulators of Fruit Set Initiation, during Parthenocarpic Fruit Development

    PubMed Central

    Jung, Chan Jin; Hur, Youn Young; Yu, Hee-Ju; Noh, Jung-Ho; Park, Kyo-Sun; Lee, Hee Jae

    2014-01-01

    Fruit set is initiated only after fertilization and is tightly regulated primarily by gibberellins (GAs) and auxins. The application of either of these hormones induces parthenocarpy, fruit set without fertilization, but the molecular mechanism underlying this induction is poorly understood. In the present study, we have shown that the parthenocarpic fruits induced by GA application at pre-bloom result from the interaction of GA with auxin signaling. The transcriptional levels of the putative negative regulators of fruit set initiation, including Vitis auxin/indole-3-acetic acid transcription factor 9 (VvIAA9), Vitis auxin response factor 7 (VvARF7), and VvARF8 were monitored during inflorescence development in seeded diploid ‘Tamnara’ grapevines with or without GA application. Without GA application, VvIAA9, VvARF7, and VvARF8 were expressed at a relatively high level before full bloom, but decreased thereafter following pollination. After GA application at 14 days before full bloom (DBF); however, the expression levels of VvIAA9 and VvARF7 declined at 5 DBF prior to pollination. The effects of GA application on auxin levels or auxin signaling were also analyzed by monitoring the expression patterns of auxin biosynthesis genes and auxin-responsive genes with or without GA application. Transcription levels of the auxin biosynthesis genes Vitis anthranilate synthase β subunit (VvASB1-like), Vitis YUCCA2 (VvYUC2), and VvYUC6 were not significantly changed by GA application. However, the expressions of Vitis Gretchen Hagen3.2 (VvGH3.2) and VvGH3.3, auxin-responsive genes, were up-regulated from 2 DBF to full bloom with GA application. Furthermore, the Vitis GA signaling gene, VvDELLA was up-regulated by GA application during 12 DBF to 7 DBF, prior to down-regulation of VvIAA9 and VvARF7. These results suggest that VvIAA9 and VvARF7 are negative regulators of fruit set initiation in grapevines, and GA signaling is integrated with auxin signaling via VvDELLA during

  17. Gibberellin application at pre-bloom in grapevines down-regulates the expressions of VvIAA9 and VvARF7, negative regulators of fruit set initiation, during parthenocarpic fruit development.

    PubMed

    Jung, Chan Jin; Hur, Youn Young; Yu, Hee-Ju; Noh, Jung-Ho; Park, Kyo-Sun; Lee, Hee Jae

    2014-01-01

    Fruit set is initiated only after fertilization and is tightly regulated primarily by gibberellins (GAs) and auxins. The application of either of these hormones induces parthenocarpy, fruit set without fertilization, but the molecular mechanism underlying this induction is poorly understood. In the present study, we have shown that the parthenocarpic fruits induced by GA application at pre-bloom result from the interaction of GA with auxin signaling. The transcriptional levels of the putative negative regulators of fruit set initiation, including Vitis auxin/indole-3-acetic acid transcription factor 9 (VvIAA9), Vitis auxin response factor 7 (VvARF7), and VvARF8 were monitored during inflorescence development in seeded diploid 'Tamnara' grapevines with or without GA application. Without GA application, VvIAA9, VvARF7, and VvARF8 were expressed at a relatively high level before full bloom, but decreased thereafter following pollination. After GA application at 14 days before full bloom (DBF); however, the expression levels of VvIAA9 and VvARF7 declined at 5 DBF prior to pollination. The effects of GA application on auxin levels or auxin signaling were also analyzed by monitoring the expression patterns of auxin biosynthesis genes and auxin-responsive genes with or without GA application. Transcription levels of the auxin biosynthesis genes Vitis anthranilate synthase β subunit (VvASB1-like), Vitis YUCCA2 (VvYUC2), and VvYUC6 were not significantly changed by GA application. However, the expressions of Vitis Gretchen Hagen3.2 (VvGH3.2) and VvGH3.3, auxin-responsive genes, were up-regulated from 2 DBF to full bloom with GA application. Furthermore, the Vitis GA signaling gene, VvDELLA was up-regulated by GA application during 12 DBF to 7 DBF, prior to down-regulation of VvIAA9 and VvARF7. These results suggest that VvIAA9 and VvARF7 are negative regulators of fruit set initiation in grapevines, and GA signaling is integrated with auxin signaling via VvDELLA during

  18. Gibberellins - a multifaceted hormone in plant growth regulatory network.

    PubMed

    Gantait, Saikat; Sinniah, Uma Rani; Ali, Md Nasim; Sahu, Narayan Chandra

    2015-01-01

    Plants tend to acclimatize to unfavourable environs by integrating growth and development to environmentally activated signals. Phytohormones strongly regulate convergent developmental and stress adaptive procedures and synchronize cellular reaction to the exogenous and endogenous conditions within the adaptive signaling networks. Gibberellins (GA), a group of tetracyclic diterpenoids, being vital regulators of plant growth, are accountable for regulating several aspects of growth and development of higher plants. If the element of reproduction is considered as an absolute requisite then for a majority of the higher plants GA signaling is simply indispensable. Latest reports have revealed unique conflicting roles of GA and other phytohormones in amalgamating growth and development in plants through environmental signaling. Numerous physiological researches have detailed substantial crosstalk between GA and other hormones like abscisic acid, auxin, cytokinin, and jasmonic acid. In this review, a number of explanations and clarifications for this discrepancy are explored based on the crosstalk among GA and other phytohormones.

  19. Seed-borne endophytic Bacillus amyloliquefaciens RWL-1 produces gibberellins and regulates endogenous phytohormones of Oryza sativa.

    PubMed

    Shahzad, Raheem; Waqas, Muhammad; Khan, Abdul Latif; Asaf, Sajjad; Khan, Muhammad Aaqil; Kang, Sang-Mo; Yun, Byung-Wook; Lee, In-Jung

    2016-09-01

    Some microorganisms are adapted to an endophytic mode, living symbiotically with plants through vertical transmission in seeds. The role of plant growth-promoting endophytes has been well studied, but those of seed-associated endophytic bacteria are less understood. The current study aimed to isolate and identify bacterial endophytes associated with rice (Oryza sativa L. 'Jin so mi') seeds, their potential to produce gibberellins (GAs), and role in improving host-plant physiology. The isolated bacterial endophyte RWL-1 was identified as Bacillus amyloliquefaciens by using 16S rRNA sequencing and phylogenetic analysis. The pure culture of B. amyloliquefaciens RWL-1, supplied with deuterated internal standards, was subjected to gas chromatography and mass spectrometric selected ion monitoring (GC-MS/SIM) for quantification of GAs. Results showed the presence of GAs in various quantities (ng/mL) viz., GA20 (17.88 ± 4.04), GA36 (5.75 ± 2.36), GA24 (5.64 ± 2.46), GA4 (1.02 ± 0.16), GA53 (0.772 ± 0.20), GA9 (0.12 ± 0.09), GA19 (0.093 ± 0.13), GA5 (0.08 ± 0.04), GA12 (0.014 ± 0.34), and GA8 (0.013 ± 0.01). Since endogenous seed GAs are essential for prolonged seed growth and subsequent plant development, we used exogenous GA3 as a positive control and water as a negative control for comparative analysis of the application of B. amyloliquefaciens RWL-1 to rice plants. The growth parameters of rice plants treated with endophytic bacterial cell application was significantly increased compared to the plants treated with exogenous GA3 and water. This was also revealed by the significant up-regulation of endogenous GA1 (17.54 ± 2.40 ng), GA4 (310 ± 5.41 ng), GA7 (192.60 ± 3.32 ng), and GA9 (19.04 ± 2.49 ng) as compared to results of the positive and negative control treatments. Rice plants inoculated with B. amyloliquefaciens RWL-1 exhibited significantly higher endogenous salicylic acid (1615.06 ± 10.81 μg), whereas

  20. Knockdown of a JmjC domain-containing gene JMJ524 confers altered gibberellin responses by transcriptional regulation of GRAS protein lacking the DELLA domain genes in tomato

    PubMed Central

    Li, Jinhua; Yu, Chuying; Wu, Hua; Luo, Zhidan; Ouyang, Bo; Cui, Long; Zhang, Junhong; Ye, Zhibiao

    2015-01-01

    Plants integrate responses to independent hormonal and environmental signals to survive adversity. In particular, the phytohormone gibberellin (GA) regulates a variety of developmental processes and stress responses. In this study, the Jumonji-C (JmjC) domain-containing gene JMJ524 was characterized in tomato. JMJ524 responded to circadian rhythms and was upregulated by GA treatment. Knockdown of JMJ524 by RNAi caused a GA-insensitive dwarf phenotype with shrunken leaves and shortened internodes. However, in these transgenic plants, higher levels of endogenous GAs were detected. A genome-wide gene expression analysis by RNA-seq indicated that the expression levels of two DELLA-like genes, SlGLD1 (‘GRAS protein Lacking the DELLA domain’) and SlGLD2, were increased in JMJ524-RNAi transgenic plants. Nevertheless, only the overexpression of SlGLD1 in tomato resulted in a GA-insensitive dwarf phenotype, suggesting that SlGLD1 acts as a repressor of GA signalling. This study proposes that JMJ524 is required for stem elongation by altering GA responses, at least partially by regulating SlGLD1. PMID:25680796

  1. Chloroplast retrograde signal regulates flowering.

    PubMed

    Feng, Peiqiang; Guo, Hailong; Chi, Wei; Chai, Xin; Sun, Xuwu; Xu, Xiumei; Ma, Jinfang; Rochaix, Jean-David; Leister, Dario; Wang, Haiyang; Lu, Congming; Zhang, Lixin

    2016-09-20

    Light is a major environmental factor regulating flowering time, thus ensuring reproductive success of higher plants. In contrast to our detailed understanding of light quality and photoperiod mechanisms involved, the molecular basis underlying high light-promoted flowering remains elusive. Here we show that, in Arabidopsis, a chloroplast-derived signal is critical for high light-regulated flowering mediated by the FLOWERING LOCUS C (FLC). We also demonstrate that PTM, a PHD transcription factor involved in chloroplast retrograde signaling, perceives such a signal and mediates transcriptional repression of FLC through recruitment of FVE, a component of the histone deacetylase complex. Thus, our data suggest that chloroplasts function as essential sensors of high light to regulate flowering and adaptive responses by triggering nuclear transcriptional changes at the chromatin level. PMID:27601637

  2. Gibberellin-auxin interaction in pea stem elongation.

    PubMed

    Ockerse, R; Galston, A W

    1967-01-01

    Joint application of gibberellic acid and indole-3-acetic acid to excised stem sections, terminal cuttings, and decapitated plants of a green dwarf pea results in a markedly synergistic growth response to these hormones. Synergism in green tall pea stem sections is comparatively small, although growth is kinetically indistinguishable from similarly treated dwarf sections.Gibberellin-induced growth does not appear to be mediated through its effect on auxin synthesis, since gibberellin pretreatment of dwarf cuttings fails to elicit an enhanced tryptophan-induced growth response of sections, whereas auxin-induced growth is strongly enhanced. Also, tryptophan-gibberellin synergism is not significant in sections and cuttings of green dwarf peas, while auxin-gibberellin synergism is.Administration of gibberellic acid prior to indole-3-acetic acid results in greatly increased growth. In reversed order, the application fails to produce any synergistic interaction. This indicates that gibberellin action must precede auxin action in growth regulation. PMID:16656484

  3. Synergism between demethylation inhibitor fungicides or gibberellin inhibitor plant growth regulators and bifenthrin in a pyrethroid-resistant population of Listronotus maculicollis (Coleoptera: Curculionidae).

    PubMed

    Ramoutar, D; Cowles, R S; Requintina, E; Alm, S R

    2010-10-01

    In 2007-2008, the "annual bluegrass weevil," Listronotus maculicollis Kirby (Coleoptera: Curculionidae), a serious pest of Poa annua L. (Poales: Poaceae) on U.S. golf courses, was shown to be resistant to two pyrethroids, bifenthrin and lambda-cyhalothrin. In 2008, we showed that bifenthrin resistance was principally mediated by oxidase detoxification (cytochrome P450 [P450]). P450s can be inhibited by demethylation inhibitor fungicides and gibberellin inhibitor plant growth regulators, both of which are commonly used on golf courses. We tested these compounds for synergistic activity with bifenthin against a pyrethroid-resistant population of L. maculicollis. The LD50 value for bifenthrin was significantly reduced from 87 ng per insect (without synergists) to 9.6-40 ng per insect after exposure to the fungicides fenarimol, fenpropimorph, prochloraz, propiconazole, and pyrifenox and the plant growth regulators flurprimidol, paclobutrazol, and trinexapac-ethyl. Simulated field exposure with formulated products registered for use on turf revealed enhanced mortality when adult weevils were exposed to bifenthrin (25% mortality, presented alone) combined with field dosages of propiconizole, fenarimol, flurprimidol, or trinexapac-ethyl (range, 49-70% mortality).

  4. Gibberellins of Sugarcane

    PubMed Central

    Most, Brian H.; Vlitos, A. J.

    1966-01-01

    In our hands a phosphate buffered celite column has given an adequate separation of GA1 and GA3. These 2 gibberellins are normally very difficult to separate. Young sugarcane growing under moisture stress contains at least 2 gibberellin-like substances. One is suspected to be GA5. The other is unknown but has high activity in the barley endosperm assay and is neither GA1 nor GA3. Four-month-old cane contains 2 major growth promoters. From their chromatographic, fluorimetric and biological properties these are thought to be GA1 and GA3. Rapidly growing 6-month-old cane has a surprisingly low level of gibberellin-like substances. PMID:16656369

  5. Genome‐scale analysis of the cotton KCS gene family revealed a binary mode of action for gibberellin A regulated fiber growth

    PubMed Central

    Xiao, Guang‐Hui; Wang, Kun; Huang, Gai

    2015-01-01

    Abstract Production of β‐ketoacyl‐CoA, which is catalyzed by 3‐ketoacyl‐CoA synthase (KCS), is the first step in very long chain fatty acid (VLCFA) biosynthesis. Here we identified 58 KCS genes from Gossypium hirsutum, 31 from G. arboreum and 33 from G. raimondii by searching the assembled cotton genomes. The gene family was divided into the plant‐specific FAE1‐type and the more general ELO‐type. KCS transcripts were widely expressed and 32 of them showed distinct subgenome‐specific expressions in one or more cotton tissues/organs studied. Six GhKCS genes rescued the lethality of elo2Δelo3Δ yeast double mutant, indicating that this gene family possesses diversified functions. Most KCS genes with GA‐responsive elements (GAREs) in the promoters were significantly upregulated by gibberellin A3 (GA). Exogenous GA3 not only promoted fiber length, but also increased the thickness of cell walls significantly. GAREs present also in the promoters of several cellulose synthase (CesA) genes required for cell wall biosynthesis and they were all induced significantly by GA3. Because GA treatment resulted in longer cotton fibers with thicker cell walls and higher dry weight per unit cell length, we suggest that it may regulate fiber elongation upstream of the VLCFA‐ethylene pathway and also in the downstream steps towards cell wall synthesis. PMID:26399709

  6. Histone Acetylation is Involved in Gibberellin-Regulated sodCp Gene Expression in Maize Aleurone Layers.

    PubMed

    Hou, Haoli; Wang, Pu; Zhang, Hao; Wen, Huan; Gao, Fei; Ma, Ningjie; Wang, Qing; Li, Lijia

    2015-11-01

    The cereal aleurone layer plays an important role in seed germination, and reactive oxygen species (ROS) in aleurone layers act as crucial signal molecules in this progression. Recent studies have revealed that epigenetic modification is involved in plant development and seed germination. However, little is known about a possible relationship between histone modification and the ROS signaling pathway in cereal aleurone layers during seed germination. Here, we found that the expression of both histone acetyltransferases (HATs) and histone deacetylases (HDACs) was increased gradually during seed germination, accompanied by an increase in global acetylation levels of histones H3 and H4 in maize aleurone layers. The acetylation was found to be promoted by GA(3) and suppressed by ABA. However, when the HDAC inhibitor trichostatin A (TSA) was used, the increased H3K9ac and H4K5ac level correlated with an inhibition of the germination. These results indicated that the overall histone acetylation in the aleurone layers is not required for germination. Similarly these two hormones, GA(3) and ABA, exerted opposed effects on the expression of the ROS-related gene sodCp. Furthermore, chromatin immunoprecipitation experiments showed that the promoter region of the sodCp gene was hyperacetylated during germination, and this acetylation was promoted by GA(3) and inhibited by both ABA and TSA. These results suggested that GA(3)-mediated expression of the sodCp gene in aleurone layers is associated with histone hyperacetylation on the promoter and coding region of this gene, consequently leading to an accumulation of H(2)O(2) which regulated production of α-amylase during seed germination.

  7. slender rice, a constitutive gibberellin response mutant, is caused by a null mutation of the SLR1 gene, an ortholog of the height-regulating gene GAI/RGA/RHT/D8.

    PubMed

    Ikeda, A; Ueguchi-Tanaka, M; Sonoda, Y; Kitano, H; Koshioka, M; Futsuhara, Y; Matsuoka, M; Yamaguchi, J

    2001-05-01

    The rice slender mutant (slr1-1) is caused by a single recessive mutation and results in a constitutive gibberellin (GA) response phenotype. The mutant elongates as if saturated with GAs. In this mutant, (1) elongation was unaffected by an inhibitor of GA biosynthesis, (2) GA-inducible alpha-amylase was produced by the aleurone layers without gibberellic acid application, and (3) endogenous GA content was lower than in the wild-type plant. These results indicate that the product of the SLR1 gene is an intermediate of the GA signal transduction pathway. SLR1 maps to OsGAI in rice and has significant homology with height-regulating genes, such as RHT-1Da in wheat, D8 in maize, and GAI and RGA in Arabidopsis. The GAI gene family is likely to encode transcriptional factors belonging to the GRAS gene superfamily. DNA sequence analysis revealed that the slr1-1 mutation is a single basepair deletion of the nuclear localization signal domain, resulting in a frameshift mutation that abolishes protein production. Furthermore, introduction of a 6-kb genomic DNA fragment containing the wild-type SLR1 gene into the slr1-1 mutant restored GA sensitivity to normal. These results indicate that the slr1-1 mutant is caused by a loss-of-function mutation of the SLR1 gene, which is an ortholog of GAI, RGA, RHT, and D8. We also succeeded in producing GA-insensitive dwarf rice by transforming wild-type rice with a modified SLR1 gene construct that has a 17-amino acid deletion affecting the DELLA region. Thus, we demonstrate opposite GA response phenotypes depending on the type of mutations in SLR1.

  8. Programmed cell death in barley aleurone cells is not directly stimulated by reactive oxygen species produced in response to gibberellin.

    PubMed

    Aoki, Nozomi; Ishibashi, Yushi; Kai, Kyohei; Tomokiyo, Reisa; Yuasa, Takashi; Iwaya-Inoue, Mari

    2014-05-01

    The cereal aleurone layer is a secretory tissue that produces enzymes to hydrolyze the starchy endosperm during germination. We recently demonstrated that reactive oxygen species (ROS), produced in response to gibberellins (GA), promoted GAMyb expression, which induces α-amylase expression in barley aleurone cells. On the other hand, ROS levels increase during programmed cell death (PCD) in barley aleurone cells, and GAMyb is involved in PCD of these cells. In this study, we investigated whether the ROS produced in response to GA regulate PCD directly by using mutants of Slender1 (SLN1), a DELLA protein that negatively regulates GA signaling. The wild-type, the sln1c mutant (which exhibits gibberellin-type signaling even in the absence of GA), and the Sln1d mutant (which is gibberellin-insensitive with respect to α-amylase production) all produced ROS in response to GA, suggesting that ROS production in aleurone cells in response to GA is independent of GA signaling through this DELLA protein. Exogenous GA promoted PCD in the wild-type. PCD in sln1c was induced even without exogenous GA (and so without induction of ROS), whereas PCD in Sln1d was not induced in the presence of exogenous GA, even though the ROS content increased significantly in response to GA. These results suggest that PCD in barley aleurone cells is not directly stimulated by ROS produced in response to GA but is regulated by GA signaling through DELLA protein.

  9. 'Green revolution' genes encode mutant gibberellin response modulators.

    PubMed

    Peng, J; Richards, D E; Hartley, N M; Murphy, G P; Devos, K M; Flintham, J E; Beales, J; Fish, L J; Worland, A J; Pelica, F; Sudhakar, D; Christou, P; Snape, J W; Gale, M D; Harberd, N P

    1999-07-15

    World wheat grain yields increased substantially in the 1960s and 1970s because farmers rapidly adopted the new varieties and cultivation methods of the so-called 'green revolution'. The new varieties are shorter, increase grain yield at the expense of straw biomass, and are more resistant to damage by wind and rain. These wheats are short because they respond abnormally to the plant growth hormone gibberellin. This reduced response to gibberellin is conferred by mutant dwarfing alleles at one of two Reduced height-1 (Rht-B1 and Rht-D1) loci. Here we show that Rht-B1/Rht-D1 and maize dwarf-8 (d8) are orthologues of the Arabidopsis Gibberellin Insensitive (GAI) gene. These genes encode proteins that resemble nuclear transcription factors and contain an SH2-like domain, indicating that phosphotyrosine may participate in gibberellin signalling. Six different orthologous dwarfing mutant alleles encode proteins that are altered in a conserved amino-terminal gibberellin signalling domain. Transgenic rice plants containing a mutant GAI allele give reduced responses to gibberellin and are dwarfed, indicating that mutant GAI orthologues could be used to increase yield in a wide range of crop species.

  10. Integral control of plant gravitropism through the interplay of hormone signaling and gene regulation.

    PubMed

    Rodrigo, Guillermo; Jaramillo, Alfonso; Blázquez, Miguel A

    2011-08-17

    The interplay between hormone signaling and gene regulatory networks is instrumental in promoting the development of living organisms. In particular, plants have evolved mechanisms to sense gravity and orient themselves accordingly. Here, we present a mathematical model that reproduces plant gravitropic responses based on known molecular genetic interactions for auxin signaling coupled with a physical description of plant reorientation. The model allows one to analyze the spatiotemporal dynamics of the system, triggered by an auxin gradient that induces differential growth of the plant with respect to the gravity vector. Our model predicts two important features with strong biological implications: 1), robustness of the regulatory circuit as a consequence of integral control; and 2), a higher degree of plasticity generated by the molecular interplay between two classes of hormones. Our model also predicts the ability of gibberellins to modulate the tropic response and supports the integration of the hormonal role at the level of gene regulation.

  11. Gibberellin acts positively then negatively to control onset of flower formation in Arabidopsis.

    PubMed

    Yamaguchi, Nobutoshi; Winter, Cara M; Wu, Miin-Feng; Kanno, Yuri; Yamaguchi, Ayako; Seo, Mitsunori; Wagner, Doris

    2014-05-01

    The switch to reproductive development is biphasic in many plants, a feature important for optimal pollination and yield. We show that dual opposite roles of the phytohormone gibberellin underpin this phenomenon in Arabidopsis. Although gibberellin promotes termination of vegetative development, it inhibits flower formation. To overcome this effect, the transcription factor LEAFY induces expression of a gibberellin catabolism gene; consequently, increased LEAFY activity causes reduced gibberellin levels. This allows accumulation of gibberellin-sensitive DELLA proteins. The DELLA proteins are recruited by SQUAMOSA PROMOTER BINDING PROTEIN-LIKE transcription factors to regulatory regions of the floral commitment gene APETALA1 and promote APETALA1 up-regulation and floral fate synergistically with LEAFY. The two opposing functions of gibberellin may facilitate evolutionary and environmental modulation of plant inflorescence architecture. PMID:24812402

  12. Map-Based Cloning of Seed Dormancy1-2 Identified a Gibberellin Synthesis Gene Regulating the Development of Endosperm-Imposed Dormancy in Rice.

    PubMed

    Ye, Heng; Feng, Jiuhuan; Zhang, Lihua; Zhang, Jinfeng; Mispan, Muhamad S; Cao, Zhuanqin; Beighley, Donn H; Yang, Jianchang; Gu, Xing-You

    2015-11-01

    Natural variation in seed dormancy is controlled by multiple genes mapped as quantitative trait loci in major crop or model plants. This research aimed to clone and characterize the Seed Dormancy1-2 (qSD1-2) locus associated with endosperm-imposed dormancy and plant height in rice (Oryza sativa). qSD1-2 was delimited to a 20-kb region, which contains OsGA20ox2 and had an additive effect on germination. Naturally occurring or induced loss-of-function mutations of the gibberellin (GA) synthesis gene enhanced seed dormancy and also reduced plant height. Expression of this gene in seeds (including endospermic cells) during early development increased GA accumulation to promote tissue morphogenesis and maturation programs. The mutant allele prevalent in semidwarf cultivars reduced the seed GA content by up to 2-fold at the early stage, which decelerated tissue morphogenesis including endosperm cell differentiation, delayed abscisic acid accumulation by a shift in the temporal distribution pattern, and postponed dehydration, physiological maturity, and germinability development. As the endosperm of developing seeds dominates the moisture equilibrium and desiccation status of the embryo in cereal crops, qSD1-2 is proposed to control primary dormancy by a GA-regulated dehydration mechanism. Allelic distribution of OsGA20ox2, the rice Green Revolution gene, was associated with the indica and japonica subspeciation. However, this research provided no evidence that the primitive indica- and common japonica-specific alleles at the presumably domestication-related locus functionally differentiate in plant height and seed dormancy. Thus, the evolutionary mechanism of this agriculturally important gene remains open for discussion. PMID:26373662

  13. Gibberellin biosynthesis in Gibberlla fujikuroi

    SciTech Connect

    Johnson, S.W.; Coolbaugh, R.C. )

    1989-04-01

    Gibberellins (GAs) are a group of plant growth hormones which were first isolated from the fungus Gibberella fujikuori. We have examined the biosynthesis of GAs in this fungus in liquid cultures using HPLC followed by GC-MS. Furthermore we have used cell-free enzyme extracts with {sup 14}C-labeled intermediates to examine the regulation of specific parts of the biosynthetic pathway. GA{sub 3} is the predominant GA in well aerated cultures. GA{sub 4} and GA{sub 7}, intermediates in GA{sub 3} biosynthesis, accumulate in cultures with low levels of dissolved oxygen, but are not detectable in more aerated cultures. Light stimulates GA production in G. fujikuroi cultures grown from young stock. Cell-free enzyme studies indicate that light has no effect on incorporation of mevalonic acid into kaurene, but does significantly stimulate the oxidation of kaurenoic acid.

  14. Increased Nicotiana tabacum fitness through positive regulation of carotenoid, gibberellin and chlorophyll pathways promoted by Daucus carota lycopene β-cyclase (Dclcyb1) expression.

    PubMed

    Moreno, J C; Cerda, A; Simpson, K; Lopez-Diaz, I; Carrera, E; Handford, M; Stange, C

    2016-04-01

    Carotenoids, chlorophylls and gibberellins are derived from the common precursor geranylgeranyl diphosphate (GGPP). One of the enzymes in carotenoid biosynthesis is lycopene β-cyclase (LCYB) that catalyzes the conversion of lycopene into β-carotene. In carrot, Dclcyb1 is essential for carotenoid synthesis in the whole plant. Here we show that when expressed in tobacco, increments in total carotenoids, β-carotene and chlorophyll levels occur. Furthermore, photosynthetic efficiency is enhanced in transgenic lines. Interestingly, and contrary to previous observations where overexpression of a carotenogenic gene resulted in the inhibition of the synthesis of gibberellins, we found raised levels of active GA4 and the concommitant increases in plant height, leaf size and whole plant biomass, as well as an early flowering phenotype. Moreover, a significant increase in the expression of the key carotenogenic genes, Ntpsy1, Ntpsy2 and Ntlcyb, as well as those involved in the synthesis of chlorophyll (Ntchl), gibberellin (Ntga20ox, Ntcps and Ntks) and isoprenoid precursors (Ntdxs2 and Ntggpps) was observed. These results indicate that the expression of Dclcyb1 induces a positive feedback affecting the expression of isoprenoid gene precursors and genes involved in carotenoid, gibberellin and chlorophyll pathways leading to an enhancement in fitness measured as biomass, photosynthetic efficiency and carotenoid/chlorophyll composition. PMID:26893492

  15. Increased Nicotiana tabacum fitness through positive regulation of carotenoid, gibberellin and chlorophyll pathways promoted by Daucus carota lycopene β-cyclase (Dclcyb1) expression.

    PubMed

    Moreno, J C; Cerda, A; Simpson, K; Lopez-Diaz, I; Carrera, E; Handford, M; Stange, C

    2016-04-01

    Carotenoids, chlorophylls and gibberellins are derived from the common precursor geranylgeranyl diphosphate (GGPP). One of the enzymes in carotenoid biosynthesis is lycopene β-cyclase (LCYB) that catalyzes the conversion of lycopene into β-carotene. In carrot, Dclcyb1 is essential for carotenoid synthesis in the whole plant. Here we show that when expressed in tobacco, increments in total carotenoids, β-carotene and chlorophyll levels occur. Furthermore, photosynthetic efficiency is enhanced in transgenic lines. Interestingly, and contrary to previous observations where overexpression of a carotenogenic gene resulted in the inhibition of the synthesis of gibberellins, we found raised levels of active GA4 and the concommitant increases in plant height, leaf size and whole plant biomass, as well as an early flowering phenotype. Moreover, a significant increase in the expression of the key carotenogenic genes, Ntpsy1, Ntpsy2 and Ntlcyb, as well as those involved in the synthesis of chlorophyll (Ntchl), gibberellin (Ntga20ox, Ntcps and Ntks) and isoprenoid precursors (Ntdxs2 and Ntggpps) was observed. These results indicate that the expression of Dclcyb1 induces a positive feedback affecting the expression of isoprenoid gene precursors and genes involved in carotenoid, gibberellin and chlorophyll pathways leading to an enhancement in fitness measured as biomass, photosynthetic efficiency and carotenoid/chlorophyll composition.

  16. Increased Nicotiana tabacum fitness through positive regulation of carotenoid, gibberellin and chlorophyll pathways promoted by Daucus carota lycopene β-cyclase (Dclcyb1) expression

    PubMed Central

    Moreno, J.C.; Cerda, A.; Simpson, K.; Lopez-Diaz, I.; Carrera, E; Handford, M.; Stange, C.

    2016-01-01

    Carotenoids, chlorophylls and gibberellins are derived from the common precursor geranylgeranyl diphosphate (GGPP). One of the enzymes in carotenoid biosynthesis is lycopene β-cyclase (LCYB) that catalyzes the conversion of lycopene into β-carotene. In carrot, Dclcyb1 is essential for carotenoid synthesis in the whole plant. Here we show that when expressed in tobacco, increments in total carotenoids, β-carotene and chlorophyll levels occur. Furthermore, photosynthetic efficiency is enhanced in transgenic lines. Interestingly, and contrary to previous observations where overexpression of a carotenogenic gene resulted in the inhibition of the synthesis of gibberellins, we found raised levels of active GA4 and the concommitant increases in plant height, leaf size and whole plant biomass, as well as an early flowering phenotype. Moreover, a significant increase in the expression of the key carotenogenic genes, Ntpsy1, Ntpsy2 and Ntlcyb, as well as those involved in the synthesis of chlorophyll (Ntchl), gibberellin (Ntga20ox, Ntcps and Ntks) and isoprenoid precursors (Ntdxs2 and Ntggpps) was observed. These results indicate that the expression of Dclcyb1 induces a positive feedback affecting the expression of isoprenoid gene precursors and genes involved in carotenoid, gibberellin and chlorophyll pathways leading to an enhancement in fitness measured as biomass, photosynthetic efficiency and carotenoid/chlorophyll composition. PMID:26893492

  17. SALT-RESPONSIVE ERF1 is a negative regulator of grain filling and gibberellin-mediated seedling establishment in rice.

    PubMed

    Schmidt, Romy; Schippers, Jos H M; Mieulet, Delphine; Watanabe, Mutsumi; Hoefgen, Rainer; Guiderdoni, Emmanuel; Mueller-Roeber, Bernd

    2014-02-01

    Grain quality is an important agricultural trait that is mainly determined by grain size and composition. Here, we characterize the role of the rice transcription factor (TF) SALT-RESPONSIVE ERF1 (SERF1) during grain development. Through genome-wide expression profiling and chromatin immunoprecipitation, we found that SERF1 directly regulates RICE PROLAMIN-BOX BINDING FACTOR (RPBF), a TF that functions as a positive regulator of grain filling. Loss of SERF1 enhances RPBF expression resulting in larger grains with increased starch content, while SERF1 overexpression represses RPBF resulting in smaller grains. Consistently, during grain filling, starch biosynthesis genes such as GRANULE-BOUND STARCH SYNTHASEI (GBSSI), STARCH SYNTHASEI (SSI), SSIIIa, and ADP-GLUCOSE PYROPHOSPHORYLASE LARGE SUBUNIT2 (AGPL2) are up-regulated in SERF1 knockout grains. Moreover, SERF1 is a direct upstream regulator of GBSSI. In addition, SERF1 negatively regulates germination by controlling RPBF expression, which mediates the gibberellic acid (GA)-induced expression of RICE AMYLASE1A (RAmy1A). Loss of SERF1 results in more rapid seedling establishment, while SERF1 overexpression has the opposite effect. Our study reveals that SERF1 represents a negative regulator of grain filling and seedling establishment by timing the expression of RPBF. PMID:24046061

  18. Carotenoid genes transcriptional regulation for astaxanthin accumulation in fresh water unicellular alga Haematococcus pluvialis by gibberellin A3 (GA3).

    PubMed

    Gao, Zhengquan; Meng, Chunxiao; Gao, Hongzheng; Li, Yan; Zhang, Xiaowen; Xu, Dong; Zhou, Shitan; Liu, Banghui; Su, Yuanfeng; Ye, Naihao

    2013-12-01

    The fresh water unicellular alga Haematococcus pluvialis is a promising natural source of astaxanthin. The present study investigated the transcriptional expression of carotenoid genes for astaxanthin accumulation in H. pluvialis using real-time fluorescence quantitative PCR (qRT-PCR). With treatments of 20 and 40 mg/L of gibberllin A3 (GA3), five genes ipi-1, ipi-2, psy, pds and bkt2 were up-regulated with different expression profiles. GA20 (20 mg/L of GA3) treatment had a greater effect on transcriptional expression of bkt2 than on ipi-1 ipi-2, psy and pds (> 4-fold up-regulation). However, GA40 (40 mg/L of GA3) induced more transcriptional expression of ipi-2, psy and bkt2 than both ipi-1 and pds. The expression of lyc, crtR-B and crtO for astaxanthin biosynthesis was not affected by GA3 in H. piuvialis. In the presence of GA3, astaxanthin biosynthesis genes of ipi-1, pds and bkt2 were up-regulated at transcriptional level, psy at post-transcriptional level, whereas ipi-2 was up-regulated at both levels. The study could potentially lead to a scale application of exogenous GA3 in astaxanthin production with H. pluvialis just like GAs perform in increasing crops production and it would provide new insight about the multifunctional roles of carotenogenesis in response to GA3. PMID:24772980

  19. Endocannabinoid Signaling Regulates Sleep Stability

    PubMed Central

    Pava, Matthew J.; Makriyannis, Alexandros; Lovinger, David M.

    2016-01-01

    The hypnogenic properties of cannabis have been recognized for centuries, but endogenous cannabinoid (endocannabinoid) regulation of vigilance states is poorly characterized. We report findings from a series of experiments in mice measuring sleep with polysomnography after various systemic pharmacological manipulations of the endocannabinoid system. Rapid, unbiased scoring of vigilance states was achieved using an automated algorithm that we devised and validated. Increasing endocannabinoid tone with a selective inhibitor of monoacyglycerol lipase (JZL184) or fatty acid amide hydrolase (AM3506) produced a transient increase in non-rapid eye movement (NREM) sleep due to an augmentation of the length of NREM bouts (NREM stability). Similarly, direct activation of type 1 cannabinoid (CB1) receptors with CP47,497 increased NREM stability, but both CP47,497 and JZL184 had a secondary effect that reduced NREM sleep time and stability. This secondary response to these drugs was similar to the early effect of CB1 blockade with the antagonist/inverse agonist AM281, which fragmented NREM sleep. The magnitude of the effects produced by JZL184 and AM281 were dependent on the time of day this drug was administered. While activation of CB1 resulted in only a slight reduction in gamma power, CB1 blockade had dramatic effects on broadband power in the EEG, particularly at low frequencies. However, CB1 blockade did not significantly reduce the rebound in NREM sleep following total sleep deprivation. These results support the hypothesis that endocannabinoid signaling through CB1 is necessary for NREM stability but it is not necessary for sleep homeostasis. PMID:27031992

  20. Endocannabinoid Signaling Regulates Sleep Stability.

    PubMed

    Pava, Matthew J; Makriyannis, Alexandros; Lovinger, David M

    2016-01-01

    The hypnogenic properties of cannabis have been recognized for centuries, but endogenous cannabinoid (endocannabinoid) regulation of vigilance states is poorly characterized. We report findings from a series of experiments in mice measuring sleep with polysomnography after various systemic pharmacological manipulations of the endocannabinoid system. Rapid, unbiased scoring of vigilance states was achieved using an automated algorithm that we devised and validated. Increasing endocannabinoid tone with a selective inhibitor of monoacyglycerol lipase (JZL184) or fatty acid amide hydrolase (AM3506) produced a transient increase in non-rapid eye movement (NREM) sleep due to an augmentation of the length of NREM bouts (NREM stability). Similarly, direct activation of type 1 cannabinoid (CB1) receptors with CP47,497 increased NREM stability, but both CP47,497 and JZL184 had a secondary effect that reduced NREM sleep time and stability. This secondary response to these drugs was similar to the early effect of CB1 blockade with the antagonist/inverse agonist AM281, which fragmented NREM sleep. The magnitude of the effects produced by JZL184 and AM281 were dependent on the time of day this drug was administered. While activation of CB1 resulted in only a slight reduction in gamma power, CB1 blockade had dramatic effects on broadband power in the EEG, particularly at low frequencies. However, CB1 blockade did not significantly reduce the rebound in NREM sleep following total sleep deprivation. These results support the hypothesis that endocannabinoid signaling through CB1 is necessary for NREM stability but it is not necessary for sleep homeostasis. PMID:27031992

  1. Endocannabinoid Signaling Regulates Sleep Stability.

    PubMed

    Pava, Matthew J; Makriyannis, Alexandros; Lovinger, David M

    2016-01-01

    The hypnogenic properties of cannabis have been recognized for centuries, but endogenous cannabinoid (endocannabinoid) regulation of vigilance states is poorly characterized. We report findings from a series of experiments in mice measuring sleep with polysomnography after various systemic pharmacological manipulations of the endocannabinoid system. Rapid, unbiased scoring of vigilance states was achieved using an automated algorithm that we devised and validated. Increasing endocannabinoid tone with a selective inhibitor of monoacyglycerol lipase (JZL184) or fatty acid amide hydrolase (AM3506) produced a transient increase in non-rapid eye movement (NREM) sleep due to an augmentation of the length of NREM bouts (NREM stability). Similarly, direct activation of type 1 cannabinoid (CB1) receptors with CP47,497 increased NREM stability, but both CP47,497 and JZL184 had a secondary effect that reduced NREM sleep time and stability. This secondary response to these drugs was similar to the early effect of CB1 blockade with the antagonist/inverse agonist AM281, which fragmented NREM sleep. The magnitude of the effects produced by JZL184 and AM281 were dependent on the time of day this drug was administered. While activation of CB1 resulted in only a slight reduction in gamma power, CB1 blockade had dramatic effects on broadband power in the EEG, particularly at low frequencies. However, CB1 blockade did not significantly reduce the rebound in NREM sleep following total sleep deprivation. These results support the hypothesis that endocannabinoid signaling through CB1 is necessary for NREM stability but it is not necessary for sleep homeostasis.

  2. Opposing effects of external gibberellin and Daminozide on Stevia growth and metabolites.

    PubMed

    Karimi, Mojtaba; Hashemi, Javad; Ahmadi, Ali; Abbasi, Alireza; Pompeiano, Antonio; Tavarini, Silvia; Guglielminetti, Lorenzo; Angelini, Luciana G

    2015-01-01

    Steviol glycosides (SVglys) and gibberellins are originated from the shared biosynthesis pathway in Stevia (Stevia rebaudiana Bertoni). In this research, two experiments were conducted to study the opposing effects of external gibberellin (GA3) and Daminozide (a gibberellin inhibitor) on Stevia growth and metabolites. Results showed that GA3 significantly increased the stem length and stem dry weight in Stevia. Total soluble sugar content increased while the SVglys biosynthesis was decreased by external GA3 applying in Stevia leaves. In another experiment, the stem length was reduced by Daminozide spraying on Stevia shoots. The Daminozide did not affect the total SVglys content, while in 30 ppm concentration, significantly increased the soluble sugar production in Stevia leaves. Although the gibberellins biosynthesis pathway has previously invigorated in Stevia leaf, the Stevia response to external gibberellins implying on high precision regulation of gibberellins biosynthesis in Stevia and announces that Stevia is able to kept endogenous gibberellins in a low quantity away from SVglys production. Moreover, the assumption that the internal gibberellins were destroyed by Daminozide, lack of Daminozide effects on SVglys production suggests that gibberellins biosynthesis could not act as a competitive factor for SVglys production in Stevia leaves.

  3. Regulation of Hippo signalling by p38 signalling.

    PubMed

    Huang, Dashun; Li, Xiaojiao; Sun, Li; Huang, Ping; Ying, Hao; Wang, Hui; Wu, Jiarui; Song, Haiyun

    2016-08-01

    The Hippo signalling pathway has a crucial role in growth control during development, and its dysregulation contributes to tumorigenesis. Recent studies uncover multiple upstream regulatory inputs into Hippo signalling, which affects phosphorylation of the transcriptional coactivator Yki/YAP/TAZ by Wts/Lats. Here we identify the p38 mitogen-activated protein kinase (MAPK) pathway as a new upstream branch of the Hippo pathway. In Drosophila, overexpression of MAPKK gene licorne (lic), or MAPKKK gene Mekk1, promotes Yki activity and induces Hippo target gene expression. Loss-of-function studies show that lic regulates Hippo signalling in ovary follicle cells and in the wing disc. Epistasis analysis indicates that Mekk1 and lic affect Hippo signalling via p38b and wts We further demonstrate that the Mekk1-Lic-p38b cascade inhibits Hippo signalling by promoting F-actin accumulation and Jub phosphorylation. In addition, p38 signalling modulates actin filaments and Hippo signalling in parallel to small GTPases Ras, Rac1, and Rho1. Lastly, we show that p38 signalling regulates Hippo signalling in mammalian cell lines. The Lic homologue MKK3 promotes nuclear localization of YAP via the actin cytoskeleton. Upregulation or downregulation of the p38 pathway regulates YAP-mediated transcription. Our work thus reveals a conserved crosstalk between the p38 MAPK pathway and the Hippo pathway in growth regulation. PMID:27402810

  4. Regulation of Drosophila lifespan by JNK signaling

    PubMed Central

    Biteau, Benoit; Karpac, Jason; Hwangbo, DaeSung; Jasper, Heinrich

    2010-01-01

    Cellular responses to extrinsic and intrinsic insults have to be carefully regulated to properly coordinate cytoprotection, repair processes, cell proliferation and apoptosis. Stress signaling pathways, most prominently the Jun-N-terminal Kinase (JNK) pathway, are critical regulators of such cellular responses and have accordingly been implicated in the regulation of lifespan in various organisms. JNK signaling promotes cytoprotective gene expression, but also interacts with the Insulin signaling pathway to influence growth, metabolism, stress tolerance and regeneration. Here, we review recent studies in Drosophila that elucidate the tissue-specific and systemic consequences of JNK activation that ultimately impact lifespan of the organism. PMID:21111799

  5. Gibberellins promote flowering of arabidopsis by activating the LEAFY promoter

    PubMed Central

    Blazquez, MA; Green, R; Nilsson, O; Sussman, MR; Weigel, D

    1998-01-01

    The gibberellin class of plant hormones has been implicated in the control of flowering in several species. In Arabidopsis, severe reduction of endogenous gibberellins delays flowering in long days and prevents flowering in short days. We have investigated how the differential effects of gibberellins on flowering correlate with expression of LEAFY, a floral meristem identity gene. We have found that the failure of gibberellin-deficient ga1-3 mutants to flower in short days was paralleled by the absence of LEAFY promoter induction. A causal connection between these two events was confirmed by the ability of a constitutively expressed LEAFY transgene to restore flowering to ga1-3 mutants in short days. In contrast to short days, impairment of gibberellin biosynthesis caused merely a reduction of LEAFY expression when plants were grown in long days or with sucrose in the dark. As a first step toward identifying other small molecules that might regulate flowering, we have developed a rapid in vitro assay for LEAFY promoter activity. PMID:9596637

  6. How Do Gangliosides Regulate RTKs Signaling?

    PubMed Central

    Julien, Sylvain; Bobowski, Marie; Steenackers, Agata; Le Bourhis, Xuefen; Delannoy, Philippe

    2013-01-01

    Gangliosides, the glycosphingolipids carrying one or several sialic acid residues, are located on the outer leaflet of the plasma membrane in glycolipid-enriched microdomains, where they interact with molecules of signal transduction pathways including receptors tyrosine kinases (RTKs). The role of gangliosides in the regulation of signal transduction has been reported in many cases and in a large number of cell types. In this review, we summarize the current knowledge on the biosynthesis of gangliosides and the mechanism by which they regulate RTKs signaling. PMID:24709879

  7. Expression of gibberellin 3 beta-hydroxylase gene in a gravi-response mutant, weeping Japanese flowering cherry

    NASA Technical Reports Server (NTRS)

    Sugano, Mami; Nakagawa, Yuriko; Nyunoya, Hiroshi; Nakamura, Teruko

    2004-01-01

    Expressions of the gibberellin biosynthesis gene were investigated in a normal upright type and a gravi-response mutant, a weeping type of Japanese flowering cherry (Prunus spachiana), that is unable to support its own weight and elongates downward. A segment of the gibberellin 3 beta-hydroxylase cDNA of Prunus spachiana (Ps3ox), which is responsible for active gibberellin synthesis, was amplified by using real-time RT-PCR. The content of Ps3ox mRNA in the weeping type was much greater than that in the upright type, while the endogenous gibberellin level was much higher in the elongating zone of the weeping type. These results suggest that the amount and distribution of synthesized gibberellin regulate secondary xylem formation, and the unbalanced distribution of gibberellin affects the gravi-response of the Prunus tree.

  8. Master Regulators in Plant Glucose Signaling Networks

    PubMed Central

    Sheen, Jen

    2014-01-01

    The daily life of photosynthetic plants revolves around sugar production, transport, storage and utilization, and the complex sugar metabolic and signaling networks integrate internal regulators and environmental cues to govern and sustain plant growth and survival. Although diverse sugar signals have emerged as pivotal regulators from embryogenesis to senescence, glucose is the most ancient and conserved regulatory signal that controls gene and protein expression, cell-cycle progression, central and secondary metabolism, as well as growth and developmental programs. Glucose signals are perceived and transduced by two principal mechanisms: direct sensing through glucose sensors and indirect sensing via a variety of energy and metabolite sensors. This review focuses on the comparative and functional analyses of three glucose-modulated master regulators in Arabidopsis thaliana, the hexokinase1 (HXK1) glucose sensor, the energy sensor kinases KIN10/KIN11 inactivated by glucose, and the glucose-activated target of rapamycin (TOR) kinase. These regulators are evolutionarily conserved, but have evolved universal and unique regulatory wiring and functions in plants and animals. They form protein complexes with multiple partners as regulators or effectors to serve distinct functions in different subcellular locales and organs, and play integrative and complementary roles from cellular signaling and metabolism to development in the plant glucose signaling networks. PMID:25530701

  9. Signaling mechanisms regulating Wallerian degeneration

    PubMed Central

    Freeman, Marc R.

    2014-01-01

    Summary Wallerian degeneration (WD) occurs after an axon is cut or crushed and entails the disintegration and clearance of the severed axon distal to the injury site. WD was initially thought to result from the passive wasting away of the distal axonal fragment, presumably because it lacked a nutrient supply from the cell body. The discovery of the slow Wallerian degeneration (Wlds) mutant mouse, in which distal severed axons survive intact for weeks rather than only 1–2 days, radically changed our thoughts on the autonomy of axon survival. Wlds taught us that under some conditions the axonal compartment can survive for weeks after axotomy without a cell body. The phenotypic and molecular characterization of Wlds and current models for Wlds molecular function are reviewed herein—the mechanism(s) by which WldS spares severed axons remains unresolved. However, recent studies inspired by Wlds have led to the identification of the first “axon death” signaling molecules whose endogenous activities promote axon destruction during WD. PMID:24907513

  10. Modification of tobacco plant development by sense and antisense expression of the tomato viroid-induced AGC VIIIa protein kinase PKV suggests involvement in gibberellin signaling

    PubMed Central

    2009-01-01

    Background The serine-threonine protein kinase gene, designated pkv (protein kinase- viroid induced) was previously found to be transcriptionally activated in tomato plants infected with the plant pathogen Potato spindle tuber viroid (PSTVd). These plants exhibited symptoms of stunting, and abnormal development of leaf, root, and vascular tissues. The encoded protein, PKV, is a novel member of the AGC VIIIa group of signal-transducing protein kinases; however, the role of PKV in plant development is unknown. In this communication, we report the phenotypic results of over expression and silencing of pkv in transgenic tobacco. Results Over expression of pkv in Nicotiana tabacum cv. Xanthi (tobacco) resulted in stunting, reduced root formation, and delay in flowering, phenotypes similar to symptoms of PSTVd infection of tomato. In addition, homozygous T2 tobacco plants over expressing PKV were male sterile. Antisense expression of pkv, on the other hand, resulted in plants that were taller than non-transformed plants, produced an increased number of flowers, and were fertile. Exogenous application of GA3 stimulated stem elongation in the stunted, sense-expressing plants. PKV sense and antisense expression altered transcript levels of GA biosynthetic genes and genes involved in developmental and signaling pathways, but not genes involved in salicylic acid- or jasmonic acid-dependent pathways. Our data provide evidence suggesting that PKV plays an important role in a GA signaling pathway that controls plant height and fertility. Conclusion We have found that the over expression of the tomato protein kinase PKV resulted in stunting, modified vascular tissue development, reduced root formation, and male sterility in tobacco, and we propose that PKV regulates plant development by functioning in critical signaling pathways involved in gibberellic acid metabolism. PMID:19689802

  11. Fruit growth in Arabidopsis occurs via DELLA-dependent and DELLA-independent gibberellin responses.

    PubMed

    Fuentes, Sara; Ljung, Karin; Sorefan, Karim; Alvey, Elizabeth; Harberd, Nicholas P; Østergaard, Lars

    2012-10-01

    Fruit growth and development depend on highly coordinated hormonal activities. The phytohormone gibberellin (GA) promotes growth by inducing degradation of the growth-repressing DELLA proteins; however, the extent to which DELLA proteins contribute to GA-mediated gynoecium and fruit development remains to be clarified. Here, we provide an in-depth characterization of the role of DELLA proteins in Arabidopsis thaliana fruit growth. We show that DELLA proteins are key regulators of reproductive organ size and important for ensuring optimal fertilization. We demonstrate that the seedless fruit growth (parthenocarpy) observed in della mutants can be directly attributed to the constitutive activation of GA signaling. It has been known for >75 years that another hormone, auxin, can induce formation of seedless fruits. Using mutants with complete lack of DELLA activity, we show here that auxin-induced parthenocarpy occurs entirely through GA signaling in Arabidopsis. Finally, we uncover the existence of a DELLA-independent GA response that promotes fruit growth. This response requires GIBBERELLIN-INSENSITIVE DWARF1-mediated GA perception and a functional 26S proteasome and involves the basic helix-loop-helix protein SPATULA as a key component. Taken together, our results describe additional complexities in GA signaling during fruit development, which may be particularly important to optimize the conditions for successful reproduction. PMID:23064323

  12. Mitochondrial retrograde signaling regulates neuronal function

    PubMed Central

    Cagin, Umut; Duncan, Olivia F.; Gatt, Ariana P.; Dionne, Marc S.; Sweeney, Sean T.; Bateman, Joseph M.

    2015-01-01

    Mitochondria are key regulators of cellular homeostasis, and mitochondrial dysfunction is strongly linked to neurodegenerative diseases, including Alzheimer’s and Parkinson’s. Mitochondria communicate their bioenergetic status to the cell via mitochondrial retrograde signaling. To investigate the role of mitochondrial retrograde signaling in neurons, we induced mitochondrial dysfunction in the Drosophila nervous system. Neuronal mitochondrial dysfunction causes reduced viability, defects in neuronal function, decreased redox potential, and reduced numbers of presynaptic mitochondria and active zones. We find that neuronal mitochondrial dysfunction stimulates a retrograde signaling response that controls the expression of several hundred nuclear genes. We show that the Drosophila hypoxia inducible factor alpha (HIFα) ortholog Similar (Sima) regulates the expression of several of these retrograde genes, suggesting that Sima mediates mitochondrial retrograde signaling. Remarkably, knockdown of Sima restores neuronal function without affecting the primary mitochondrial defect, demonstrating that mitochondrial retrograde signaling is partly responsible for neuronal dysfunction. Sima knockdown also restores function in a Drosophila model of the mitochondrial disease Leigh syndrome and in a Drosophila model of familial Parkinson’s disease. Thus, mitochondrial retrograde signaling regulates neuronal activity and can be manipulated to enhance neuronal function, despite mitochondrial impairment. PMID:26489648

  13. Neurotrophin signalling pathways regulating neuronal apoptosis.

    PubMed

    Miller, F D; Kaplan, D R

    2001-07-01

    Recent evidence indicates that naturally occurring neuronal death in mammals is regulated by the interplay between receptor-mediated prosurvival and proapoptotic signals. The neurotrophins, a family of growth factors best known for their positive effects on neuronal biology, have now been shown to mediate both positive and negative survival signals, by signalling through the Trk and p75 neurotrophin receptors, respectively. The mechanisms whereby these two neurotrophin receptors interact to determine neuronal survival have been difficult to decipher, largely because both can signal independently or coincidentally, depending upon the cell or developmental context. Nonetheless, the past several years have seen significant advances in our understanding of this receptor signalling system. In this review, we focus on the proapoptotic actions of the p75 neurotrophin receptor (p75NTR), and on the interplay between Trk and p75NTR that determines neuronal survival.

  14. Neurotrophin signalling pathways regulating neuronal apoptosis.

    PubMed

    Miller, F D; Kaplan, D R

    2001-07-01

    Recent evidence indicates that naturally occurring neuronal death in mammals is regulated by the interplay between receptor-mediated prosurvival and proapoptotic signals. The neurotrophins, a family of growth factors best known for their positive effects on neuronal biology, have now been shown to mediate both positive and negative survival signals, by signalling through the Trk and p75 neurotrophin receptors, respectively. The mechanisms whereby these two neurotrophin receptors interact to determine neuronal survival have been difficult to decipher, largely because both can signal independently or coincidentally, depending upon the cell or developmental context. Nonetheless, the past several years have seen significant advances in our understanding of this receptor signalling system. In this review, we focus on the proapoptotic actions of the p75 neurotrophin receptor (p75NTR), and on the interplay between Trk and p75NTR that determines neuronal survival. PMID:11529497

  15. METABOLISM Wnt Signaling Regulates Hepatic Metabolism

    PubMed Central

    Liu, Hongjun; Fergusson, Maria M.; Wu, J. Julie; Rovira, Ilsa I.; Liu, Jie; Gavrilova, Oksana; Lu, Teng; Bao, Jianjun; Han, Donghe; Sack, Michael N.; Finkel, Toren

    2011-01-01

    The contribution of the Wnt pathway has been extensively characterized in embryogenesis, differentiation, and stem cell biology but not in mammalian metabolism. Here, using in vivo gain- and loss-of-function models, we demonstrate an important role for Wnt signaling in hepatic metabolism. In particular, β-Catenin, the downstream mediator of canonical Wnt signaling, altered serum glucose concentrations and regulated hepatic glucose production. β-catenin also modulated hepatic insulin signaling. Furthermore, β-catenin interacted with the transcription factor FoxO1 in livers from mice under starved conditions. The interaction of FoxO1 with β-catenin regulated the transcriptional activation of the genes encoding glucose-6-phosphatase (G6Pase) and phosphoenolpyruvate carboxykinase (PEPCK), the two rate-limiting enzymes in hepatic gluconeogenesis. Moreover, starvation induced the hepatic expression of mRNAs encoding different Wnt isoforms. In addition, nutrient deprivation appeared to favor the association of β-catenin with FoxO family members, rather than with members of the T cell factor of transcriptional activators. Notably, in a model of diet-induced obesity, hepatic deletion of β-catenin improved overall metabolic homeostasis. These observations implicate Wnt signaling in the modulation of hepatic metabolism and raise the possibility that Wnt signaling may play a similar role in the metabolic regulation of other tissues. PMID:21285411

  16. Arrestins: ubiquitous regulators of cellular signaling pathways.

    PubMed

    Gurevich, Eugenia V; Gurevich, Vsevolod V

    2006-01-01

    In vertebrates, the arrestins are a family of four proteins that regulate the signaling and trafficking of hundreds of different G-protein-coupled receptors (GPCRs). Arrestin homologs are also found in insects, protochordates and nematodes. Fungi and protists have related proteins but do not have true arrestins. Structural information is available only for free (unbound) vertebrate arrestins, and shows that the conserved overall fold is elongated and composed of two domains, with the core of each domain consisting of a seven-stranded beta-sandwich. Two main intramolecular interactions keep the two domains in the correct relative orientation, but both of these interactions are destabilized in the process of receptor binding, suggesting that the conformation of bound arrestin is quite different. As well as binding to hundreds of GPCR subtypes, arrestins interact with other classes of membrane receptors and more than 20 surprisingly diverse types of soluble signaling protein. Arrestins thus serve as ubiquitous signaling regulators in the cytoplasm and nucleus.

  17. Dynamic Redox Regulation of IL-4 Signaling.

    PubMed

    Dwivedi, Gaurav; Gran, Margaret A; Bagchi, Pritha; Kemp, Melissa L

    2015-11-01

    Quantifying the magnitude and dynamics of protein oxidation during cell signaling is technically challenging. Computational modeling provides tractable, quantitative methods to test hypotheses of redox mechanisms that may be simultaneously operative during signal transduction. The interleukin-4 (IL-4) pathway, which has previously been reported to induce reactive oxygen species and oxidation of PTP1B, may be controlled by several other putative mechanisms of redox regulation; widespread proteomic thiol oxidation observed via 2D redox differential gel electrophoresis upon IL-4 treatment suggests more than one redox-sensitive protein implicated in this pathway. Through computational modeling and a model selection strategy that relied on characteristic STAT6 phosphorylation dynamics of IL-4 signaling, we identified reversible protein tyrosine phosphatase (PTP) oxidation as the primary redox regulatory mechanism in the pathway. A systems-level model of IL-4 signaling was developed that integrates synchronous pan-PTP oxidation with ROS-independent mechanisms. The model quantitatively predicts the dynamics of IL-4 signaling over a broad range of new redox conditions, offers novel hypotheses about regulation of JAK/STAT signaling, and provides a framework for interrogating putative mechanisms involving receptor-initiated oxidation.

  18. Auxin signaling modules regulate maize inflorescence architecture

    PubMed Central

    Galli, Mary; Liu, Qiujie; Moss, Britney L.; Malcomber, Simon; Li, Wei; Gaines, Craig; Federici, Silvia; Roshkovan, Jessica; Meeley, Robert; Nemhauser, Jennifer L.; Gallavotti, Andrea

    2015-01-01

    In plants, small groups of pluripotent stem cells called axillary meristems are required for the formation of the branches and flowers that eventually establish shoot architecture and drive reproductive success. To ensure the proper formation of new axillary meristems, the specification of boundary regions is required for coordinating their development. We have identified two maize genes, BARREN INFLORESCENCE1 and BARREN INFLORESCENCE4 (BIF1 and BIF4), that regulate the early steps required for inflorescence formation. BIF1 and BIF4 encode AUXIN/INDOLE-3-ACETIC ACID (Aux/IAA) proteins, which are key components of the auxin hormone signaling pathway that is essential for organogenesis. Here we show that BIF1 and BIF4 are integral to auxin signaling modules that dynamically regulate the expression of BARREN STALK1 (BA1), a basic helix-loop-helix (bHLH) transcriptional regulator necessary for axillary meristem formation that shows a striking boundary expression pattern. These findings suggest that auxin signaling directly controls boundary domains during axillary meristem formation and define a fundamental mechanism that regulates inflorescence architecture in one of the most widely grown crop species. PMID:26464512

  19. Auxin signaling modules regulate maize inflorescence architecture.

    PubMed

    Galli, Mary; Liu, Qiujie; Moss, Britney L; Malcomber, Simon; Li, Wei; Gaines, Craig; Federici, Silvia; Roshkovan, Jessica; Meeley, Robert; Nemhauser, Jennifer L; Gallavotti, Andrea

    2015-10-27

    In plants, small groups of pluripotent stem cells called axillary meristems are required for the formation of the branches and flowers that eventually establish shoot architecture and drive reproductive success. To ensure the proper formation of new axillary meristems, the specification of boundary regions is required for coordinating their development. We have identified two maize genes, BARREN INFLORESCENCE1 and BARREN INFLORESCENCE4 (BIF1 and BIF4), that regulate the early steps required for inflorescence formation. BIF1 and BIF4 encode AUXIN/INDOLE-3-ACETIC ACID (Aux/IAA) proteins, which are key components of the auxin hormone signaling pathway that is essential for organogenesis. Here we show that BIF1 and BIF4 are integral to auxin signaling modules that dynamically regulate the expression of BARREN STALK1 (BA1), a basic helix-loop-helix (bHLH) transcriptional regulator necessary for axillary meristem formation that shows a striking boundary expression pattern. These findings suggest that auxin signaling directly controls boundary domains during axillary meristem formation and define a fundamental mechanism that regulates inflorescence architecture in one of the most widely grown crop species.

  20. Gibberellin biosynthesis and response during Arabidopsis seed germination.

    PubMed

    Ogawa, Mikihiro; Hanada, Atsushi; Yamauchi, Yukika; Kuwahara, Ayuko; Kamiya, Yuji; Yamaguchi, Shinjiro

    2003-07-01

    The hormone-mediated control of plant growth and development involves both synthesis and response. Previous studies have shown that gibberellin (GA) plays an essential role in Arabidopsis seed germination. To learn how GA stimulates seed germination, we performed comprehensive analyses of GA biosynthesis and response using gas chromatography-mass spectrometry and oligonucleotide-based DNA microarray analysis. In addition, spatial correlations between GA biosynthesis and response were assessed by in situ hybridization. We identified a number of transcripts, the abundance of which is modulated upon exposure to exogenous GA. A subset of these GA-regulated genes was expressed in accordance with an increase in endogenous active GA levels, which occurs just before radicle emergence. The GA-responsive genes identified include those responsible for synthesis, transport, and signaling of other hormones, suggesting the presence of uncharacterized crosstalk between GA and other hormones. In situ hybridization analysis demonstrated that the expression of GA-responsive genes is not restricted to the predicted site of GA biosynthesis, suggesting that GA itself, or GA signals, is transmitted across different cell types during Arabidopsis seed germination.

  1. Comprehensive gene expression analysis of rice aleurone cells: probing the existence of an alternative gibberellin receptor.

    PubMed

    Yano, Kenji; Aya, Koichiro; Hirano, Ko; Ordonio, Reynante Lacsamana; Ueguchi-Tanaka, Miyako; Matsuoka, Makoto

    2015-02-01

    Current gibberellin (GA) research indicates that GA must be perceived in plant nuclei by its cognate receptor, GIBBERELLIN INSENSITIVE DWARF1 (GID1). Recognition of GA by GID1 relieves the repression mediated by the DELLA protein, a model known as the GID1-DELLA GA perception system. There have been reports of potential GA-binding proteins in the plasma membrane that perceive GA and induce α-amylase expression in cereal aleurone cells, which is mechanistically different from the GID1-DELLA system. Therefore, we examined the expression of the rice (Oryza sativa) α-amylase genes in rice mutants impaired in the GA receptor (gid1) and the DELLA repressor (slender rice1; slr1) and confirmed their lack of response to GA in gid1 mutants and constitutive expression in slr1 mutants. We also examined the expression of GA-regulated genes by genome-wide microarray and quantitative reverse transcription-polymerase chain reaction analyses and confirmed that all GA-regulated genes are modulated by the GID1-DELLA system. Furthermore, we studied the regulatory network involved in GA signaling by using a set of mutants defective in genes involved in GA perception and gene expression, namely gid1, slr1, gid2 (a GA-related F-box protein mutant), and gamyb (a GA-related trans-acting factor mutant). Almost all GA up-regulated genes were regulated by the four named GA-signaling components. On the other hand, GA down-regulated genes showed different expression patterns with respect to GID2 and GAMYB (e.g. a considerable number of genes are not controlled by GAMYB or GID2 and GAMYB). Based on these observations, we present a comprehensive discussion of the intricate network of GA-regulated genes in rice aleurone cells.

  2. Members of the gibberellin receptor gene family GID1 (GIBBERELLIN INSENSITIVE DWARF1) play distinct roles during Lepidium sativum and Arabidopsis thaliana seed germination

    PubMed Central

    Voegele, Antje; Linkies, Ada; Müller, Kerstin; Leubner-Metzger, Gerhard

    2011-01-01

    Germination of endospermic seeds is partly regulated by the micropylar endosperm, which acts as constraint to radicle protrusion. Gibberellin (GA) signalling pathways control coat-dormancy release, endosperm weakening, and organ expansion during seed germination. Three GIBBERELLIN INSENSITIVE DWARF1 (GID1) GA receptors are known in Arabidopsis thaliana: GID1a, GID1b, and GID1c. Molecular phylogenetic analysis of angiosperm GID1s reveals that they cluster into two eudicot (GID1ac, GID1b) groups and one monocot group. Eudicots have at least one gene from each of the two groups, indicating that the different GID1 receptors fulfil distinct roles during plant development. A comparative Brassicaceae approach was used, in which gid1 mutant and whole-seed transcript analyses in Arabidopsis were combined with seed-tissue-specific analyses of its close relative Lepidium sativum (garden cress), for which three GID1 orthologues were cloned. GA signalling via the GID1ac receptors is required for Arabidopsis seed germination, GID1b cannot compensate for the impaired germination of the gid1agid1c mutant. Transcript expression patterns differed temporarily, spatially, and hormonally, with GID1b being distinct from GID1ac in both species. Endosperm weakening is mediated, at least in part, through GA-induced genes encoding cell-wall-modifying proteins. A suppression subtraction hybridization (SSH) cDNA library enriched for sequences that are highly expressed during early germination in the micropylar endosperm contained expansins and xyloglucan endo-transglycosylases/hydrolases (XTHs). Their transcript expression patterns in both species strongly suggest that they are regulated by distinct GID1-mediated GA signalling pathways. The GID1ac and GID1b pathways seem to fulfil distinct regulatory roles during Brassicaceae seed germination and seem to control their downstream targets distinctly. PMID:21778177

  3. Testosterone signaling and the regulation of spermatogenesis.

    PubMed

    Walker, William H

    2011-04-01

    Spermatogenesis and male fertility are dependent upon the presence of testosterone in the testis. In the absence of testosterone or the androgen receptor, spermatogenesis does not proceed beyond the meiosis stage. The major cellular target and translator of testosterone signals to developing germ cells is the Sertoli cell. In the Sertoli cell, testosterone signals can be translated directly to changes in gene expression (the classical pathway) or testosterone can activate kinases that may regulate processes required to maintain spermatogenesis (the non-classical pathway). Contributions of the classical and non-classical testosterone signaling pathways to the maintenance of spermatogenesis are discussed. Studies that may further elaborate the mechanisms by with the pathways support spermatogenesis are proposed. PMID:22319659

  4. Localized signals that regulate transendothelial migration.

    PubMed

    Muller, William A

    2016-02-01

    Transendothelial migration (TEM) of leukocytes is the step in leukocyte emigration in which the leukocyte actually leaves the blood vessel to carry out its role in the inflammatory response. It is therefore, arguably the most critical step in emigration. This review focuses on two of the many aspects of this process that have seen important recent developments. The adhesion molecules, PECAM (CD31) and CD99 that regulate two major steps in TEM, do so by regulating specific signals. PECAM initiates the signaling pathway responsible for the calcium flux that is required for TEM. Calcium enters through the cation channel TRPC6 and recruits the first wave of trafficking of membrane from the lateral border recycling compartment (LBRC). CD99 signals through soluble adenylate cyclase to activate protein kinase A to recruit a second wave of LBRC trafficking. Another process that is critical for TEM is transient removal of VE-cadherin from the site of TEM. However, the local signaling pathways that are responsible for this appear to be different from those that open the junctions to increase vascular permeability. PMID:26584476

  5. Gibberellin Receptor GID1: Gibberellin Recognition and Molecular Evolution

    NASA Astrophysics Data System (ADS)

    Kato, Hiroaki; Sato, Tomomi; Ueguchi-Tanaka, Miyako

    Gibberellins (GAs) are phytohormones essential for many developmental processes in plants. We analyzed the crystal structure of a nuclear GA receptor, GIBBERELLIN INSENSITIVE DWARF 1 (GID1) from Oryza sativa. As it was proposed from the sequence similarity, the overall structure of GID1 shows an α/β-hydrolase fold similar to that of the hormone-sensitive lipases (HSLs) except for an amino-terminal lid. The GA-binding site corresponds to the substrate-binding site of HSLs. Almost residues assigned for GA binding showed very little or no activity when they were replaced with Ala. The substitution of the residues corresponding to those of the lycophyte GID1s caused an increase in the binding affinity for GA34, a 2β-hydroxylated GA4. These findings indicate that GID1 originated from HSL and was tinkered to have the specificity for bioactive GAs in the course of plant evolution.

  6. Diffusible gibberellins and phototropism in Helianthus annuus.

    PubMed

    Phillips, I D

    1972-12-01

    Endogenous gibberellins were obtained in agar from the lower cut surface of upright sunflower shoot-tips. Exposure to unilateral light of the tips standing on agar, with the lower cut ends bisected by a vertical glass barrier at right angles to incident light, resulted in approximately 8 times the quantity of gibberellins moving into the agar below the shaded side than into the agar below the illuminated side. These results are similar to those reported earlier for gibberellins and geotropism in sunflower shoots, and suggest than the development of both light-and gravity-induced growth curvatures involve an asymmetry in gibberellin distribution across elongating internodes.

  7. Gibberellins control fruit patterning in Arabidopsis thaliana

    PubMed Central

    Arnaud, Nicolas; Girin, Thomas; Sorefan, Karim; Fuentes, Sara; Wood, Thomas A.; Lawrenson, Tom; Sablowski, Robert; Østergaard, Lars

    2010-01-01

    The Arabidopsis basic helix–loop–helix (bHLH) proteins INDEHISCENT (IND) and ALCATRAZ (ALC) specify tissues required for fruit opening that have major roles in seed dispersal and plant domestication. Here, we show that synthesis of the phytohormone gibberellin is a direct and necessary target of IND, and that ALC interacts directly with DELLA repressors, which antagonize ALC function but are destabilized by gibberellin. Thus, the gibberellin/DELLA pathway has a key role in patterning the Arabidopsis fruit, and the interaction between DELLA and bHLH proteins, previously shown to connect gibberellin and light responses, is a versatile regulatory module also used in tissue patterning. PMID:20889713

  8. Gibberellins control fruit patterning in Arabidopsis thaliana.

    PubMed

    Arnaud, Nicolas; Girin, Thomas; Sorefan, Karim; Fuentes, Sara; Wood, Thomas A; Lawrenson, Tom; Sablowski, Robert; Østergaard, Lars

    2010-10-01

    The Arabidopsis basic helix-loop-helix (bHLH) proteins INDEHISCENT (IND) and ALCATRAZ (ALC) specify tissues required for fruit opening that have major roles in seed dispersal and plant domestication. Here, we show that synthesis of the phytohormone gibberellin is a direct and necessary target of IND, and that ALC interacts directly with DELLA repressors, which antagonize ALC function but are destabilized by gibberellin. Thus, the gibberellin/DELLA pathway has a key role in patterning the Arabidopsis fruit, and the interaction between DELLA and bHLH proteins, previously shown to connect gibberellin and light responses, is a versatile regulatory module also used in tissue patterning. PMID:20889713

  9. Regulation of Redox Signaling by Selenoproteins

    PubMed Central

    Alkan, Zeynep

    2010-01-01

    The unique chemistry of oxygen has been both a resource and threat for life on Earth for at least the last 2.4 billion years. Reduction of oxygen to water allows extraction of more metabolic energy from organic fuels than is possible through anaerobic glycolysis. On the other hand, partially reduced oxygen can react indiscriminately with biomolecules to cause genetic damage, disease, and even death. Organisms in all three superkingdoms of life have developed elaborate mechanisms to protect against such oxidative damage and to exploit reactive oxygen species as sensors and signals in myriad processes. The sulfur amino acids, cysteine and methionine, are the main targets of reactive oxygen species in proteins. Oxidative modifications to cysteine and methionine can have profound effects on a protein’s activity, structure, stability, and subcellular localization. Non-reversible oxidative modifications (oxidative damage) may contribute to molecular, cellular, and organismal aging and serve as signals for repair, removal, or programmed cell death. Reversible oxidation events can function as transient signals of physiological status, extracellular environment, nutrient availability, metabolic state, cell cycle phase, immune function, or sensory stimuli. Because of its chemical similarity to sulfur and stronger nucleophilicity and acidity, selenium is an extremely efficient catalyst of reactions between sulfur and oxygen. Most of the biological activity of selenium is due to selenoproteins containing selenocysteine, the 21st genetically encoded protein amino acid. The most abundant selenoproteins in mammals are the glutathione peroxidases (five to six genes) that reduce hydrogen peroxide and lipid hydroperoxides at the expense of glutathione and serve to limit the strength and duration of reactive oxygen signals. Thioredoxin reductases (three genes) use nicotinamide adenine dinucleotide phosphate to reduce oxidized thioredoxin and its homologs, which regulate a plethora

  10. Regulation of redox signaling by selenoproteins.

    PubMed

    Hawkes, Wayne Chris; Alkan, Zeynep

    2010-06-01

    The unique chemistry of oxygen has been both a resource and threat for life on Earth for at least the last 2.4 billion years. Reduction of oxygen to water allows extraction of more metabolic energy from organic fuels than is possible through anaerobic glycolysis. On the other hand, partially reduced oxygen can react indiscriminately with biomolecules to cause genetic damage, disease, and even death. Organisms in all three superkingdoms of life have developed elaborate mechanisms to protect against such oxidative damage and to exploit reactive oxygen species as sensors and signals in myriad processes. The sulfur amino acids, cysteine and methionine, are the main targets of reactive oxygen species in proteins. Oxidative modifications to cysteine and methionine can have profound effects on a protein's activity, structure, stability, and subcellular localization. Non-reversible oxidative modifications (oxidative damage) may contribute to molecular, cellular, and organismal aging and serve as signals for repair, removal, or programmed cell death. Reversible oxidation events can function as transient signals of physiological status, extracellular environment, nutrient availability, metabolic state, cell cycle phase, immune function, or sensory stimuli. Because of its chemical similarity to sulfur and stronger nucleophilicity and acidity, selenium is an extremely efficient catalyst of reactions between sulfur and oxygen. Most of the biological activity of selenium is due to selenoproteins containing selenocysteine, the 21st genetically encoded protein amino acid. The most abundant selenoproteins in mammals are the glutathione peroxidases (five to six genes) that reduce hydrogen peroxide and lipid hydroperoxides at the expense of glutathione and serve to limit the strength and duration of reactive oxygen signals. Thioredoxin reductases (three genes) use nicotinamide adenine dinucleotide phosphate to reduce oxidized thioredoxin and its homologs, which regulate a plethora of

  11. Evolutionarily conserved regulation of TOR signalling.

    PubMed

    Takahara, Terunao; Maeda, Tatsuya

    2013-07-01

    The target of rapamycin (TOR) is an evolutionarily conserved protein kinase that regulates cell growth in response to various environmental as well as intracellular cues through the formation of 2 distinct TOR complexes (TORC), TORC1 and TORC2. Dysregulation of TORC1 and TORC2 activity is closely associated with various diseases, including diabetes, cancer and neurodegenerative disorders. Over the past few years, new regulatory mechanisms of TORC1 and TORC2 activity have been elucidated. Furthermore, recent advances in the study of TOR inhibitors have revealed previously unrecognized cellular functions of TORC1. In this review, we briefly summarize the current understanding of the evolutionarily conserved TOR signalling from upstream regulators to downstream events.

  12. Arabidopsis NAC transcription factor JUB1 regulates GA/BR metabolism and signalling.

    PubMed

    Shahnejat-Bushehri, Sara; Tarkowska, Danuse; Sakuraba, Yasuhito; Balazadeh, Salma

    2016-01-01

    Gibberellins (GAs) and brassinosteroids (BRs) are important phytohormones that control plant development and responses to environmental cues by involving DELLA proteins and BRASSINAZOLE-RESISTANT1 (BZR1) respectively as key transcription factors. Here, we reveal a new role for JUNGBRUNNEN1 (JUB1) as a transcriptional regulator of GA/BR signalling in Arabidopsis thaliana. JUB1 directly represses the hormone biosynthesis genes GA3ox1 and DWARF4 (DWF4), leading to reduced levels of GAs and BRs and typical GA/BR deficiency phenotypes exhibiting short hypocotyls, dwarfism, late flowering and male sterility. JUB1 also directly represses PHYTOCHROME INTERACTING FACTOR4 (PIF4), a transcription factor connecting hormonal and environmental stimuli. On the other hand, JUB1 activates the DELLA genes GA INSENSITIVE (GAI) and RGA-LIKE 1 (RGL1). In addition, BZR1 and PIF4 act as direct transcriptional repressors upstream of JUB1, establishing a negative feedback loop. Thus, JUB1 forms the core of a robust regulatory module that triggers DELLA accumulation, thereby restricting cell elongation while concomitantly enhancing stress tolerance. PMID:27249348

  13. Fibroblast Growth Factor Signaling in Metabolic Regulation.

    PubMed

    Nies, Vera J M; Sancar, Gencer; Liu, Weilin; van Zutphen, Tim; Struik, Dicky; Yu, Ruth T; Atkins, Annette R; Evans, Ronald M; Jonker, Johan W; Downes, Michael Robert

    2015-01-01

    The prevalence of obesity is a growing health problem. Obesity is strongly associated with several comorbidities, such as non-alcoholic fatty liver disease, certain cancers, insulin resistance, and type 2 diabetes, which all reduce life expectancy and life quality. Several drugs have been put forward in order to treat these diseases, but many of them have detrimental side effects. The unexpected role of the family of fibroblast growth factors in the regulation of energy metabolism provides new approaches to the treatment of metabolic diseases and offers a valuable tool to gain more insight into metabolic regulation. The known beneficial effects of FGF19 and FGF21 on metabolism, together with recently discovered similar effects of FGF1 suggest that FGFs and their derivatives carry great potential as novel therapeutics to treat metabolic conditions. To facilitate the development of new therapies with improved targeting and minimal side effects, a better understanding of the molecular mechanism of action of FGFs is needed. In this review, we will discuss what is currently known about the physiological roles of FGF signaling in tissues important for metabolic homeostasis. In addition, we will discuss current concepts regarding their pharmacological properties and effector tissues in the context of metabolic disease. Also, the recent progress in the development of FGF variants will be reviewed. Our goal is to provide a comprehensive overview of the current concepts and consensuses regarding FGF signaling in metabolic health and disease and to provide starting points for the development of FGF-based therapies against metabolic conditions.

  14. Myrigalone A inhibits Lepidium sativum seed germination by interference with gibberellin metabolism and apoplastic superoxide production required for embryo extension growth and endosperm rupture.

    PubMed

    Oracz, Krystyna; Voegele, Antje; Tarkowská, Danuse; Jacquemoud, Dominique; Turecková, Veronika; Urbanová, Terezie; Strnad, Miroslav; Sliwinska, Elwira; Leubner-Metzger, Gerhard

    2012-01-01

    Myrica gale L. (sweet gale) fruit leachate contains myrigalone A (MyA), a rare C-methylated dihydrochalcone and putative allelochemical, which is known to be a phytotoxin impeding seedling growth. We found that MyA inhibited Lepidium sativum L. seed germination in a dose-dependent manner. MyA did not affect testa rupture, but inhibited endosperm rupture and the transition to subsequent seedling growth. MyA inhibited micropylar endosperm cap (CAP) weakening and the increase in the growth potential of the radical/hypocotyl region (RAD) of the embryo, both being key processes required for endosperm rupture. We compared the contents of abscisic acid (ABA) and gibberellins in the tissues and found that the major bioactive forms of gibberellin in L. sativum seed tissues were GA(4) and GA(6), while GA(8) and GA(13) were abundant inactive metabolites. MyA did not appreciably affect the ABA contents, but severely interfered with gibberellin metabolism and signaling by inhibiting important steps catalyzed by GA3 oxidase, as well as by interfering with the GID1-type gibberellin signaling pathway. The hormonally and developmentally regulated formation of apoplastic superoxide radicals is important for embryo growth. Specific zones within the RAD were associated with accumulation of apoplastic superoxide radicals and endoreduplication indicative of embryo cell extension. MyA negatively affected both of these processes and acted as a scavenger of apoplastic reactive oxygen species. We propose that MyA is an allelochemical with a novel mode of action on seed germination.

  15. Evidence of a cross-talk regulation of a GA 20-oxidase (FsGA20ox1) by gibberellins and ethylene during the breaking of dormancy in Fagus sylvatica seeds.

    PubMed

    Calvo, Angel Pablo; Nicolás, Carlos; Nicolás, Gregorio; Rodríguez, Dolores

    2004-04-01

    Gibberellin 20-oxidase (GA 20-oxidase) is an enzyme that catalyses the last three steps in the synthesis of active GAs and is a potential control point in the regulation of GA biosynthesis. Reverse transcriptase-polymerase chain reaction with degenerated oligonucleotides conserved among GA 20-oxidases was used to isolate a cDNA clone for this enzyme in Fagus sylvatica L. seeds. This clone contains all the features and exhibits homology to GA 20 oxidases from several plant species. Expression of this clone, named FsGA20ox1, as a fusion protein expressed in Escherichia coli confirmed that it was able to metabolize [(14)C]GA(12) to [(14)C]GA(9) and [(14)C]GA(53) to [(14)C]GA(20). Analysis of FsGA20ox1 transcript levels showed similar low expression during stratification at 4 degrees C and in the presence of gibberellic acid or ethephon (compound that releases ethylene in solution), treatments proved to be efficient in breaking the dormancy of beech seeds. However, there was a drastic increase of FsGA20ox1 transcript levels in the presence of paclobutrazol (PCB), a well-known GAs biosynthesis inhibitor, or of 2-aminoxyacetic acid (AOA), an inhibitor of ethylene biosynthesis. Furthermore, the effect of AOA was reversed by the addition of GA(3) and that of PCB by ethephon. This indicates that the gene product is subjected to down-regulation by GA and ethylene, and further suggests a cross-talk gene regulation by these two hormones during the transition from seed dormancy to germination.

  16. Bioelectric Signaling Regulates Size in Zebrafish Fins

    PubMed Central

    Perathoner, Simon; Daane, Jacob M.; Henrion, Ulrike; Seebohm, Guiscard; Higdon, Charles W.; Johnson, Stephen L.; Nüsslein-Volhard, Christiane; Harris, Matthew P.

    2014-01-01

    The scaling relationship between the size of an appendage or organ and that of the body as a whole is tightly regulated during animal development. If a structure grows at a different rate than the rest of the body, this process is termed allometric growth. The zebrafish another longfin (alf) mutant shows allometric growth resulting in proportionally enlarged fins and barbels. We took advantage of this mutant to study the regulation of size in vertebrates. Here, we show that alf mutants carry gain-of-function mutations in kcnk5b, a gene encoding a two-pore domain potassium (K+) channel. Electrophysiological analysis in Xenopus oocytes reveals that these mutations cause an increase in K+ conductance of the channel and lead to hyperpolarization of the cell. Further, somatic transgenesis experiments indicate that kcnk5b acts locally within the mesenchyme of fins and barbels to specify appendage size. Finally, we show that the channel requires the ability to conduct K+ ions to increase the size of these structures. Our results provide evidence for a role of bioelectric signaling through K+ channels in the regulation of allometric scaling and coordination of growth in the zebrafish. PMID:24453984

  17. Fruit Growth in Arabidopsis Occurs via DELLA-Dependent and DELLA-Independent Gibberellin Responses[W][OA

    PubMed Central

    Fuentes, Sara; Ljung, Karin; Sorefan, Karim; Alvey, Elizabeth; Harberd, Nicholas P.; Østergaard, Lars

    2012-01-01

    Fruit growth and development depend on highly coordinated hormonal activities. The phytohormone gibberellin (GA) promotes growth by inducing degradation of the growth-repressing DELLA proteins; however, the extent to which DELLA proteins contribute to GA-mediated gynoecium and fruit development remains to be clarified. Here, we provide an in-depth characterization of the role of DELLA proteins in Arabidopsis thaliana fruit growth. We show that DELLA proteins are key regulators of reproductive organ size and important for ensuring optimal fertilization. We demonstrate that the seedless fruit growth (parthenocarpy) observed in della mutants can be directly attributed to the constitutive activation of GA signaling. It has been known for >75 years that another hormone, auxin, can induce formation of seedless fruits. Using mutants with complete lack of DELLA activity, we show here that auxin-induced parthenocarpy occurs entirely through GA signaling in Arabidopsis. Finally, we uncover the existence of a DELLA-independent GA response that promotes fruit growth. This response requires GIBBERELLIN-INSENSITIVE DWARF1–mediated GA perception and a functional 26S proteasome and involves the basic helix-loop-helix protein SPATULA as a key component. Taken together, our results describe additional complexities in GA signaling during fruit development, which may be particularly important to optimize the conditions for successful reproduction. PMID:23064323

  18. Fibroblast Growth Factor Signaling in Metabolic Regulation

    PubMed Central

    Nies, Vera J. M.; Sancar, Gencer; Liu, Weilin; van Zutphen, Tim; Struik, Dicky; Yu, Ruth T.; Atkins, Annette R.; Evans, Ronald M.; Jonker, Johan W.; Downes, Michael Robert

    2016-01-01

    The prevalence of obesity is a growing health problem. Obesity is strongly associated with several comorbidities, such as non-alcoholic fatty liver disease, certain cancers, insulin resistance, and type 2 diabetes, which all reduce life expectancy and life quality. Several drugs have been put forward in order to treat these diseases, but many of them have detrimental side effects. The unexpected role of the family of fibroblast growth factors in the regulation of energy metabolism provides new approaches to the treatment of metabolic diseases and offers a valuable tool to gain more insight into metabolic regulation. The known beneficial effects of FGF19 and FGF21 on metabolism, together with recently discovered similar effects of FGF1 suggest that FGFs and their derivatives carry great potential as novel therapeutics to treat metabolic conditions. To facilitate the development of new therapies with improved targeting and minimal side effects, a better understanding of the molecular mechanism of action of FGFs is needed. In this review, we will discuss what is currently known about the physiological roles of FGF signaling in tissues important for metabolic homeostasis. In addition, we will discuss current concepts regarding their pharmacological properties and effector tissues in the context of metabolic disease. Also, the recent progress in the development of FGF variants will be reviewed. Our goal is to provide a comprehensive overview of the current concepts and consensuses regarding FGF signaling in metabolic health and disease and to provide starting points for the development of FGF-based therapies against metabolic conditions. PMID:26834701

  19. Gibberellins are not required for normal stem growth in Arabidopsis thaliana in the absence of GAI and RGA.

    PubMed

    King, K E; Moritz, T; Harberd, N P

    2001-10-01

    The growth of Arabidopsis thaliana is quantitatively regulated by the phytohormone gibberellin (GA) via two closely related nuclear GA-signaling components, GAI and RGA. Here we test the hypothesis that GAI and RGA function as "GA-derepressible repressors" of plant growth. One prediction of this hypothesis is that plants lacking GAI and RGA do not require GA for normal stem growth. Analysis of GA-deficient mutants lacking GAI and RGA confirms this prediction and suggests that in the absence of GAI and RGA, "growth" rather than "no growth" is the default state of plant stems. The function of the GA-signaling system is thus to act as a control system regulating the amount of this growth. We also demonstrate that the GA dose dependency of hypocotyl elongation is altered in mutants lacking GAI and RGA and propose that increments in GAI/RGA repressor function can explain the quantitative nature of GA responses.

  20. Connecting growth and defense: the emerging roles of brassinosteroids and gibberellins in plant innate immunity.

    PubMed

    De Bruyne, Lieselotte; Höfte, Monica; De Vleesschauwer, David

    2014-06-01

    Brassinosteroids (BRs) and gibberellins (GAs) are two groups of phytohormones that regulate many common developmental processes throughout the plant life cycle. Fueled by large-scale 'omics' technologies and the burgeoning field of plant computational biology, the past few years have witnessed paradigm-shifting advances in our understanding of how BRs and GA are perceived and their signals transduced. Accumulating evidence also implicates BR and GA in the coordination and integration of plant immune responses. Similarly to other growth regulators, BR and GA play ambiguous roles in molding pathological outcomes, the effects of which may depend not only on the pathogen's lifestyle and infection strategy, but also on specialized features of each interaction. Analysis of the underpinning molecular mechanisms points to a crucial role of GA-inhibiting DELLA proteins and the BR-regulated transcription factor BZR1. Acting at the interface of developmental and defense signaling, these proteins likely serve as central hubs for pathway crosstalk and signal integration, allowing appropriate modulation of plant growth and defense in response to various stimuli. In this review, we outline the latest discoveries dealing with BR and GA modulation of plant innate immunity and highlight interactions between BR and GA signaling, plant defense, and microbial virulence.

  1. A novel role for Arabidopsis CBL1 in affecting plant responses to glucose and gibberellin during germination and seedling development.

    PubMed

    Li, Zhi-Yong; Xu, Zhao-Shi; Chen, Yang; He, Guang-Yuan; Yang, Guang-Xiao; Chen, Ming; Li, Lian-Cheng; Ma, You-Zhi

    2013-01-01

    Glucose and phytohormones such as abscisic acid (ABA), ethylene, and gibberellin (GA) coordinately regulate germination and seedling development. However, there is still inadequate evidence to link their molecular roles in affecting plant responses. Calcium acts as a second messenger in a diverse range of signal transduction pathways. As calcium sensors unique to plants, calcineurin B-like (CBL) proteins are well known to modulate abiotic stress responses. In this study, it was found that CBL1 was induced by glucose in Arabidopsis. Loss-of-function mutant cbl1 exhibited hypersensitivity to glucose and paclobutrazol, a GA biosynthetic inhibitor. Several sugar-responsive and GA biosynthetic gene expressions were altered in the cbl1 mutant. CBL1 protein physically interacted with AKINβ1, the regulatory β subunit of the SnRK1 complex which has a central role in sugar signaling. Our results indicate a novel role for CBL1 in modulating responses to glucose and GA signals.

  2. Hormone profiles in microalgae: gibberellins and brassinosteroids.

    PubMed

    Stirk, W A; Bálint, P; Tarkowská, D; Novák, O; Strnad, M; Ördög, V; van Staden, J

    2013-09-01

    Endogenous gibberellins and brassinosteroids were quantified in 24 axenic microalgae strains from the Chlorophyceae, Trebouxiophyceae, Ulvophyceae and Charophyceae microalgae strains after 4 days in culture. This is the first report of endogenous gibberellins being successfully detected in microalgae. Between 18 and 20 gibberellins were quantified in all strains with concentrations ranging from 342.7 pg mg(-1) DW in Raphidocelis subcapitata MACC 317-4746.1 pg mg(-)(1) DW in Scotiellopsis terrestris MACC 44. Slower growing strains (S. terrestris MACC 44, Gyoerffyana humicola MACC 334, Nautococcus mamillatus MACC 716 and Chlorococcum ellipsoideum MACC 712) exhibited the highest gibberellin contents while lowest levels of gibberellins were found in faster growing strains (R. subcapitata MACC 317 and Coelastrum excentrica MACC 504). In all strains, the active gibberellin detected in the highest concentration was GA6, the predominant intermediates were GA15 and GA53 and the main biosynthetic end products were GA13 and GA51. Gibberellin profiles were similar in all strains except for the presence/absence of GA12 and GA12ald. To date this is the second report of endogenous brassinosteroids in microalgae. Brassinosteroids were detected in all 24 strains with concentrations ranging from 117.3 pg mg(-)(1) DW in R. subcapitata MACC 317-977.8 pg mg(-)(1) DW in Klebsormidium flaccidum MACC 692. Two brassinosteroids, brassinolide and castasterone were determined in all the strains. Generally, brassinolide occurred in higher concentrations than castasterone.

  3. The jasmonate-responsive GTR1 transporter is required for gibberellin-mediated stamen development in Arabidopsis

    PubMed Central

    Saito, Hikaru; Oikawa, Takaya; Hamamoto, Shin; Ishimaru, Yasuhiro; Kanamori-Sato, Miyu; Sasaki-Sekimoto, Yuko; Utsumi, Tomoya; Chen, Jing; Kanno, Yuri; Masuda, Shinji; Kamiya, Yuji; Seo, Mitsunori; Uozumi, Nobuyuki; Ueda, Minoru; Ohta, Hiroyuki

    2015-01-01

    Plant hormones are transported across cell membranes during various physiological events. Recent identification of abscisic acid and strigolactone transporters suggests that transport of various plant hormones across membranes does not occur by simple diffusion but requires transporter proteins that are strictly regulated during development. Here, we report that a major glucosinolate transporter, GTR1/NPF2.10, is multifunctional and may be involved in hormone transport in Arabidopsis thaliana. When heterologously expressed in oocytes, GTR1 transports jasmonoyl-isoleucine and gibberellin in addition to glucosinolates. gtr1 mutants are severely impaired in filament elongation and anther dehiscence resulting in reduced fertility, but these phenotypes can be rescued by gibberellin treatment. These results suggest that GTR1 may be a multifunctional transporter for the structurally distinct compounds glucosinolates, jasmonoyl-isoleucine and gibberellin, and may positively regulate stamen development by mediating gibberellin supply. PMID:25648767

  4. The role of two F-box proteins, SLEEPY1 and SNEEZY, in arabidopsis GA signaling

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The F-box gene SLY1 is a positive regulator of gibberellin (GA) signaling and loss of SLY1 results in GA-insensitive phenotypes including dwarfism, reduced fertility, delayed flowering, and increased seed dormancy. These sly1 phenotypes can be partially rescued by overexpression of the SLY1 homolog...

  5. SIGNALS AND REGULATORS THAT GOVERN STREPTOMYCES DEVELOPMENT

    PubMed Central

    McCormick, Joseph R.; Flärdh, Klas

    2012-01-01

    Streptomyces coelicolor is the genetically best characterized species of a populous genus belonging to the Gram-positive Actinobacteria. Streptomycetes are filamentous soil organisms, well known for the production of a plethora of biologically active secondary metabolic compounds. The Streptomyces developmental life cycle is uniquely complex, and involves coordinated multicellular development with both physiological and morphological differentiation of several cell types, culminating in production of secondary metabolites and dispersal of mature spores. This review presents a current appreciation of the signaling mechanisms used to orchestrate the decision to undergo morphological differentiation, and the regulators and regulatory networks that direct the intriguing development of multigenomic hyphae, first to form specialized aerial hyphae, and then to convert them into chains of dormant spores. This current view of S. coelicolor development is destined for rapid evolution as data from “-omics” studies shed light on gene regulatory networks, new genetic screens identify hitherto unknown players, and the resolution of our insights into the underlying cell biological processes steadily improve. PMID:22092088

  6. Comprehensive Gene Expression Analysis of Rice Aleurone Cells: Probing the Existence of an Alternative Gibberellin Receptor1

    PubMed Central

    Yano, Kenji; Aya, Koichiro; Hirano, Ko; Ordonio, Reynante Lacsamana; Ueguchi-Tanaka, Miyako; Matsuoka, Makoto

    2015-01-01

    Current gibberellin (GA) research indicates that GA must be perceived in plant nuclei by its cognate receptor, GIBBERELLIN INSENSITIVE DWARF1 (GID1). Recognition of GA by GID1 relieves the repression mediated by the DELLA protein, a model known as the GID1-DELLA GA perception system. There have been reports of potential GA-binding proteins in the plasma membrane that perceive GA and induce α-amylase expression in cereal aleurone cells, which is mechanistically different from the GID1-DELLA system. Therefore, we examined the expression of the rice (Oryza sativa) α-amylase genes in rice mutants impaired in the GA receptor (gid1) and the DELLA repressor (slender rice1; slr1) and confirmed their lack of response to GA in gid1 mutants and constitutive expression in slr1 mutants. We also examined the expression of GA-regulated genes by genome-wide microarray and quantitative reverse transcription-polymerase chain reaction analyses and confirmed that all GA-regulated genes are modulated by the GID1-DELLA system. Furthermore, we studied the regulatory network involved in GA signaling by using a set of mutants defective in genes involved in GA perception and gene expression, namely gid1, slr1, gid2 (a GA-related F-box protein mutant), and gamyb (a GA-related trans-acting factor mutant). Almost all GA up-regulated genes were regulated by the four named GA-signaling components. On the other hand, GA down-regulated genes showed different expression patterns with respect to GID2 and GAMYB (e.g. a considerable number of genes are not controlled by GAMYB or GID2 and GAMYB). Based on these observations, we present a comprehensive discussion of the intricate network of GA-regulated genes in rice aleurone cells. PMID:25511432

  7. Molecular Characterization of Three GIBBERELLIN-INSENSITIVE DWARF2 Homologous Genes in Common Wheat.

    PubMed

    Lou, XueYuan; Li, Xin; Li, AiXia; Pu, MingYu; Shoaib, Muhammad; Liu, DongCheng; Sun, JiaZhu; Zhang, AiMin; Yang, WenLong

    2016-01-01

    F-box protein is a core component of the ubiquitin E3 ligase SCF complex and is involved in the gibberellin (GA) signaling pathway. To elucidate the molecular mechanism of GA signaling in wheat, three homologous GIBBERELLIN-INSENSITIVE DWARF2 genes, TaGID2s, were isolated from the Chinese Spring wheat variety. A subcellular localization assay in onion epidermal cells and Arabidopsis mesophyll protoplasts showed that TaGID2s are localized in the nuclei. The expression profiles using quantitative real-time polymerase chain reaction showed that TaGID2s were downregulated by GA3. The interaction between TaGID2s and TSK1 (homologous to ASK1) in yeast indicated that TaGID2s might function as a component of an E3 ubiquitin-ligase SCF complex. Yeast two-hybrid assays showed that a GA-independent interaction occurred between three TaGID2s and RHT-A1a, RHT-B1a, and RHT-D1a. Furthermore, TaGID2s interact with most RHT-1s, such as RHT-B1h, RHT-B1i, RHT-D1e, RHT-D1f, etc., but cannot interact with RHT-B1b or RHT-B1e, which have a stop codon in the DELLA motif, resulting in a lack of a GRAS domain. In addition, RHT-B1k has a frame-shift mutation in the VHIID motif leading to loss of the LHRII motif in the GRAS domain and RHT-D1h has a missense mutation in the LHRII motif. These results indicate that TaGID2s, novel positive regulators of the GA response, recognize RHT-1s in the LHRII motif resulting in poly-ubiquitination and degradation of the DELLA protein. PMID:27327160

  8. Molecular Characterization of Three GIBBERELLIN-INSENSITIVE DWARF2 Homologous Genes in Common Wheat

    PubMed Central

    Lou, XueYuan; Li, Xin; Li, AiXia; Pu, MingYu; Shoaib, Muhammad; Liu, DongCheng; Sun, JiaZhu; Zhang, AiMin; Yang, WenLong

    2016-01-01

    F-box protein is a core component of the ubiquitin E3 ligase SCF complex and is involved in the gibberellin (GA) signaling pathway. To elucidate the molecular mechanism of GA signaling in wheat, three homologous GIBBERELLIN-INSENSITIVE DWARF2 genes, TaGID2s, were isolated from the Chinese Spring wheat variety. A subcellular localization assay in onion epidermal cells and Arabidopsis mesophyll protoplasts showed that TaGID2s are localized in the nuclei. The expression profiles using quantitative real-time polymerase chain reaction showed that TaGID2s were downregulated by GA3. The interaction between TaGID2s and TSK1 (homologous to ASK1) in yeast indicated that TaGID2s might function as a component of an E3 ubiquitin-ligase SCF complex. Yeast two-hybrid assays showed that a GA-independent interaction occurred between three TaGID2s and RHT-A1a, RHT-B1a, and RHT-D1a. Furthermore, TaGID2s interact with most RHT-1s, such as RHT-B1h, RHT-B1i, RHT-D1e, RHT-D1f, etc., but cannot interact with RHT-B1b or RHT-B1e, which have a stop codon in the DELLA motif, resulting in a lack of a GRAS domain. In addition, RHT-B1k has a frame-shift mutation in the VHIID motif leading to loss of the LHRII motif in the GRAS domain and RHT-D1h has a missense mutation in the LHRII motif. These results indicate that TaGID2s, novel positive regulators of the GA response, recognize RHT-1s in the LHRII motif resulting in poly-ubiquitination and degradation of the DELLA protein. PMID:27327160

  9. E3 SUMO ligase AtSIZ1 positively regulates SLY1-mediated GA signalling and plant development.

    PubMed

    Kim, Sung-Il; Park, Bong Soo; Kim, Do Youn; Yeu, Song Yion; Song, Sang Ik; Song, Jong Tae; Seo, Hak Soo

    2015-07-15

    Gibberellins affect various plant development processes including germination, cell division and elongation, and flowering. A large number of studies have been carried out to address the molecular mechanisms that mediate gibberellin signalling effects on plant growth. However, such studies have been limited to DELLA protein degradation; the regulatory mechanisms controlling how the stability and function of SLEEPY1 (SLY1), a protein that interacts with target DELLA proteins as components of the Skp, Cullin, F-box (SCF)(SLY1) complex, are modulated at the post-translational level have not been addressed. In the present study, we show that the E3 SUMO (small ubiquitin-related modifier) ligase AtSIZ1 regulates gibberellic acid signalling in Arabidopsis species by sumoylating SLY1. SLY1 was less abundant in siz1-2 mutants than in wild-type plants, but the DELLA protein repressor of ga1-3 (RGA) was more abundant in siz1-2 mutants than in wild-type plants. SLY1 also accumulated to a high level in the SUMO protease mutant esd4. Transgenic sly1-13 mutants over-expressing SLY1 were phenotypically similar to wild-type plants; however, sly1-13 plants over-expressing a mutated mSLY1 protein (K122R, a mutation at the sumoylation site) retained the mutant dwarfing phenotype. Over-expression of SLY1 in sly1-13 mutants resulted in a return of RGA levels to wild-type levels, but RGA accumulated to high levels in mutants over-expressing mSLY1. RGA was clearly detected in Arabidopsis co-expressing AtSIZ1 and mSLY1, but not in plants co-expressing AtSIZ1 and SLY1. In addition, sumoylated SLY1 interacted with RGA and SLY1 sumoylation was significantly increased by GA. Taken together, our results indicate that, in Arabidopsis, AtSIZ1 positively controls GA signalling through SLY1 sumoylation.

  10. Gibberellin-Regulation and Genetic Variations in Leaf Elongation for Tall Fescue in Association with Differential Gene Expression Controlling Cell Expansion

    PubMed Central

    Xu, Qian; Krishnan, Sanalkumar; Merewitz, Emily; Xu, Jichen; Huang, Bingru

    2016-01-01

    Leaf elongation rate (LER) is an important factor controlling plant growth and productivity. The objective of this study was to determine whether genetic variation in LER for a fast-growing (‘K-31’), and a dwarf cultivar (‘Bonsai’) of tall fescue (Festuca arundinacea) and gibberellic acid (GA) regulation of LER were associated with differential expression of cell-expansion genes. Plants were treated with GA3, trinexapac-ethyl (TE) (GA inhibitor), or water (untreated control) in a hydroponic system. LER of ‘K-31’ was 63% greater than that of ‘Bonsai’, which corresponded with 32% higher endogenous GA4 content in leaf and greater cell elongation and production rates under the untreated control condition. Exogenous application of GA3 significantly enhanced LER while TE treatment inhibited leaf elongation due to GA3-stimulation or TE-inhibition of cell elongation and production rate in leaves for both cultivars. Real-time quantitative polymerase chain reaction analysis revealed that three α-expansins, one β-expansin, and three xyloglucan endotransglycosylase (XET) genes were associated with GA-stimulation of leaf elongation, of which, the differential expression of EXPA4 and EXPA7 was related to the genotypic variation in LER of two cultivars. Those differentially-expressed expansin and XET genes could play major roles in genetic variation and GA-regulated leaf elongation in tall fescue. PMID:27457585

  11. Gibberellin-Regulation and Genetic Variations in Leaf Elongation for Tall Fescue in Association with Differential Gene Expression Controlling Cell Expansion.

    PubMed

    Xu, Qian; Krishnan, Sanalkumar; Merewitz, Emily; Xu, Jichen; Huang, Bingru

    2016-01-01

    Leaf elongation rate (LER) is an important factor controlling plant growth and productivity. The objective of this study was to determine whether genetic variation in LER for a fast-growing ('K-31'), and a dwarf cultivar ('Bonsai') of tall fescue (Festuca arundinacea) and gibberellic acid (GA) regulation of LER were associated with differential expression of cell-expansion genes. Plants were treated with GA3, trinexapac-ethyl (TE) (GA inhibitor), or water (untreated control) in a hydroponic system. LER of 'K-31' was 63% greater than that of 'Bonsai', which corresponded with 32% higher endogenous GA4 content in leaf and greater cell elongation and production rates under the untreated control condition. Exogenous application of GA3 significantly enhanced LER while TE treatment inhibited leaf elongation due to GA3-stimulation or TE-inhibition of cell elongation and production rate in leaves for both cultivars. Real-time quantitative polymerase chain reaction analysis revealed that three α-expansins, one β-expansin, and three xyloglucan endotransglycosylase (XET) genes were associated with GA-stimulation of leaf elongation, of which, the differential expression of EXPA4 and EXPA7 was related to the genotypic variation in LER of two cultivars. Those differentially-expressed expansin and XET genes could play major roles in genetic variation and GA-regulated leaf elongation in tall fescue. PMID:27457585

  12. [Zinc signaling-mediated regulation of dentin and periodontal tissues].

    PubMed

    Fukada, Toshiyuki; Idaira, Yayoi; Shimoda, Shinji; Asada, Yoshinobu

    2015-12-01

    An essential trace element zinc is required for variety of cellular functions and physiological responses, therefore, downregulation of zinc homeostasis cause serious problems in health, such as growth retardation and abnormal bone formation. Recent technical advances contributed to reveal that zinc ion regulated by zinc transporters acts as a signaling mediator, called zinc signaling that involves in mammalian physiology and pathogenesis. This review will address the current understanding of the roles of zinc signaling in regulation of dentin formation and periodontal tissues homeostasis.

  13. Uncovering DELLA-Independent Gibberellin Responses by Characterizing New Tomato procera Mutants

    PubMed Central

    Livne, Sivan; Lor, Vai S.; Nir, Ido; Eliaz, Natanella; Aharoni, Asaph; Olszewski, Neil E.; Eshed, Yuval; Weiss, David

    2015-01-01

    Gibberellin (GA) regulates plant development primarily by triggering the degradation/deactivation of the DELLA proteins. However, it remains unclear whether all GA responses are regulated by DELLAs. Tomato (Solanum lycopersicum) has a single DELLA gene named PROCERA (PRO), and its recessive pro allele exhibits constitutive GA activity but retains responsiveness to external GA. In the loss-of-function mutant proΔGRAS, all examined GA developmental responses were considerably enhanced relative to pro and a defect in seed desiccation tolerance was uncovered. As pro, but not proΔGRAS, elongation was promoted by GA treatment, pro may retain residual DELLA activity. In agreement with homeostatic feedback regulation of the GA biosynthetic pathway, we found that GA20oxidase1 expression was suppressed in proΔGRAS and was not affected by exogenous GA3. In contrast, expression of GA2oxidase4 was not affected by the elevated GA signaling in proΔGRAS but was strongly induced by exogenous GA3. Since a similar response was found in Arabidopsis thaliana plants with impaired activity of all five DELLA genes, we suggest that homeostatic GA responses are regulated by both DELLA-dependent and -independent pathways. Transcriptome analysis of GA-treated proΔGRAS leaves suggests that 5% of all GA-regulated genes in tomato are DELLA independent. PMID:26036254

  14. Hormone profiles in microalgae: gibberellins and brassinosteroids.

    PubMed

    Stirk, W A; Bálint, P; Tarkowská, D; Novák, O; Strnad, M; Ördög, V; van Staden, J

    2013-09-01

    Endogenous gibberellins and brassinosteroids were quantified in 24 axenic microalgae strains from the Chlorophyceae, Trebouxiophyceae, Ulvophyceae and Charophyceae microalgae strains after 4 days in culture. This is the first report of endogenous gibberellins being successfully detected in microalgae. Between 18 and 20 gibberellins were quantified in all strains with concentrations ranging from 342.7 pg mg(-1) DW in Raphidocelis subcapitata MACC 317-4746.1 pg mg(-)(1) DW in Scotiellopsis terrestris MACC 44. Slower growing strains (S. terrestris MACC 44, Gyoerffyana humicola MACC 334, Nautococcus mamillatus MACC 716 and Chlorococcum ellipsoideum MACC 712) exhibited the highest gibberellin contents while lowest levels of gibberellins were found in faster growing strains (R. subcapitata MACC 317 and Coelastrum excentrica MACC 504). In all strains, the active gibberellin detected in the highest concentration was GA6, the predominant intermediates were GA15 and GA53 and the main biosynthetic end products were GA13 and GA51. Gibberellin profiles were similar in all strains except for the presence/absence of GA12 and GA12ald. To date this is the second report of endogenous brassinosteroids in microalgae. Brassinosteroids were detected in all 24 strains with concentrations ranging from 117.3 pg mg(-)(1) DW in R. subcapitata MACC 317-977.8 pg mg(-)(1) DW in Klebsormidium flaccidum MACC 692. Two brassinosteroids, brassinolide and castasterone were determined in all the strains. Generally, brassinolide occurred in higher concentrations than castasterone. PMID:23811778

  15. Proinflammatory signaling regulates hematopoietic stem cell emergence

    PubMed Central

    Espín-Palazón, Raquel; Stachura, David L.; Campbell, Clyde A.; García-Moreno, Diana; Cid, Natasha Del; Kim, Albert D.; Candel, Sergio; Meseguer, José; Mulero, Victoriano; Traver, David

    2014-01-01

    Summary Hematopoietic stem cells (HSCs) underlie the production of blood and immune cells for the lifetime of an organism. In vertebrate embryos, HSCs arise from the unique transdifferentiation of hemogenic endothelium comprising the floor of the dorsal aorta during a brief developmental window. To date, this process has not been replicated in vitro from pluripotent precursors, partly because the full complement of required signaling inputs remains to be determined. Here, we show that TNFR2 via TNFα activates the Notch and NF-κB signaling pathways to establish HSC fate, indicating a requirement for inflammatory signaling in HSC generation. We determine that primitive neutrophils are the major source of TNFα, assigning a role for transient innate immune cells in establishing the HSC program. These results demonstrate that proinflammatory signaling, in the absence of infection, is utilized by the developing embryo to generate the lineal precursors of the adult hematopoietic system. PMID:25416946

  16. Regulation of cholesterol biosynthesis and cancer signaling

    PubMed Central

    Gorin, Andrey; Gabitova, Linara; Astsaturov, Igor

    2012-01-01

    Cellular growth is highly dependent on sustained production of lipids. Sterol composition of cellular membranes determines multiple biochemical and biophysical properties of membrane-based processes including vesicle traffic, receptor signaling and assembly of protein complexes. Lipid biogenesis has become an attractive biochemical target in cancer given the high level of dependency on sterols and lipids in a cancer cell. This review summarized the current knowledge of mechanisms of interaction between the metabolism of sterols and receptor signaling. PMID:22824431

  17. Plant growth enhancement and associated physiological responses are coregulated by ethylene and gibberellin in response to harpin protein Hpa1.

    PubMed

    Li, Xiaojie; Han, Bing; Xu, Manyu; Han, Liping; Zhao, Yanying; Liu, Zhilan; Dong, Hansong; Zhang, Chunling

    2014-04-01

    The harpin protein Hpa1 produced by the bacterial blight pathogen of rice induces several growth-promoting responses in plants, activating the ethylene signaling pathway, increasing photosynthesis rates and EXPANSIN (EXP) gene expression levels, and thereby enhancing the vegetative growth. This study was attempted to analyze any mechanistic connections among the above and the role of gibberellin in these responses. Hpa1-induced growth enhancement was evaluated in Arabidopsis, tomato, and rice. And growth-promoting responses were determined mainly as an increase of chlorophyll a/b ratio, which indicates a potential elevation of photosynthesis rates, and enhancements of photosynthesis and EXP expression in the three plant species. In Arabidopsis, Hpa1-induced growth-promoting responses were partially compromised by a defect in ethylene perception or gibberellin biosynthesis. In tomato and rice, compromises of Hpa1-induced growth-promoting responses were caused by a pharmacological treatment with an ethylene perception inhibitor or a gibberellin biosynthesis inhibitor. In the three plant species, moreover, Hpa1-induced growth-promoting responses were significantly impaired, but not totally eliminated, by abolishing ethylene perception or gibberellin synthesis. However, simultaneous nullifications in both ethylene perception and gibberellin biosynthesis almost canceled the full effects of Hpa1 on plant growth, photosynthesis, and EXP2 expression. Theses results suggest that ethylene and gibberellin coregulate Hpa1-induced plant growth enhancement and associated physiological and molecular responses.

  18. Kinase active Misshapen regulates Notch signaling in Drosophila melanogaster.

    PubMed

    Mishra, Abhinava K; Sachan, Nalani; Mutsuddi, Mousumi; Mukherjee, Ashim

    2015-11-15

    Notch signaling pathway represents a principal cellular communication system that plays a pivotal role during development of metazoans. Drosophila misshapen (msn) encodes a protein kinase, which is related to the budding yeast Ste20p (sterile 20 protein) kinase. In a genetic screen, using candidate gene approach to identify novel kinases involved in Notch signaling, we identified msn as a novel regulator of Notch signaling. Data presented here suggest that overexpression of kinase active form of Msn exhibits phenotypes similar to Notch loss-of-function condition and msn genetically interacts with components of Notch signaling pathway. Kinase active form of Msn associates with Notch receptor and regulate its signaling activity. We further show that kinase active Misshapen leads to accumulation of membrane-tethered form of Notch. Moreover, activated Msn also depletes Armadillo and DE-Cadherin from adherens junctions. Thus, this study provides a yet unknown mode of regulation of Notch signaling by Misshapen. PMID:26431585

  19. Neurotrophin signaling endosomes: biogenesis, regulation, and functions.

    PubMed

    Yamashita, Naoya; Kuruvilla, Rejji

    2016-08-01

    In the nervous system, communication between neurons and their post-synaptic target cells is critical for the formation, refinement and maintenance of functional neuronal connections. Diffusible signals secreted by target tissues, exemplified by the family of neurotrophins, impinge on nerve terminals to influence diverse developmental events including neuronal survival and axonal growth. Key mechanisms of action of target-derived neurotrophins include the cell biological processes of endocytosis and retrograde trafficking of their Trk receptors from growth cones to cell bodies. In this review, we summarize the molecular mechanisms underlying this endosome-mediated signaling, focusing on the instructive role of neurotrophin signaling itself in directing its own trafficking. Recent studies have linked impaired neurotrophin trafficking to neurodevelopmental disorders, highlighting the relevance of neurotrophin endosomes in human health. PMID:27327126

  20. Role of regulator of G protein signaling proteins in bone

    PubMed Central

    Keinan, David; Yang, Shuying; Cohen, Robert E.; Yuan, Xue; Liu, Tongjun; Li, Yi-Ping

    2014-01-01

    Regulators of G protein signaling (RGS) proteins are a family with more than 30 proteins that all contain an RGS domain. In the past decade, increasing evidence has indicated that RGS proteins play crucial roles in the regulation of G protein coupling receptors (GPCR), G proteins, and calcium signaling during cell proliferation, migration, and differentiation in a variety of tissues. In bone, those proteins modulate bone development and remodeling by influencing various signaling pathways such as GPCR-G protein signaling, Wnt, calcium oscillations and PTH. This review summarizes the recent advances in the understanding of the regulation of RGS genes expression, as well as the functions and mechanisms of RGS proteins, especially in regulating GPCR-G protein signaling, Wnt signaling, calcium oscillations signaling and PTH signaling during bone development and remodeling. This review also highlights the regulation of different RGS proteins in osteoblasts, chondrocytes and osteoclasts. The knowledge from the recent advances of RGS study summarized in the review would provide the insights into new therapies for bone diseases. PMID:24389209

  1. Spectrin regulates Hippo signaling by modulating cortical actomyosin activity

    PubMed Central

    Deng, Hua; Wang, Wei; Yu, Jianzhong; Zheng, Yonggang; Qing, Yun; Pan, Duojia

    2015-01-01

    The Hippo pathway controls tissue growth through a core kinase cascade that impinges on the transcription of growth-regulatory genes. Understanding how this pathway is regulated in development remains a major challenge. Recent studies suggested that Hippo signaling can be modulated by cytoskeletal tension through a Rok-myosin II pathway. How cytoskeletal tension is regulated or its relationship to the other known upstream regulators of the Hippo pathway remains poorly defined. In this study, we identify spectrin, a contractile protein at the cytoskeleton-membrane interface, as an upstream regulator of the Hippo signaling pathway. We show that, in contrast to canonical upstream regulators such as Crumbs, Kibra, Expanded, and Merlin, spectrin regulates Hippo signaling in a distinct way by modulating cortical actomyosin activity through non-muscle myosin II. These results uncover an essential mediator of Hippo signaling by cytoskeleton tension, providing a new entry point to dissecting how mechanical signals regulate Hippo signaling in living tissues. DOI: http://dx.doi.org/10.7554/eLife.06567.001 PMID:25826608

  2. Signal regulators of systemic acquired resistance

    PubMed Central

    Gao, Qing-Ming; Zhu, Shifeng; Kachroo, Pradeep; Kachroo, Aardra

    2015-01-01

    Salicylic acid (SA) is an important phytohormone that plays a vital role in a number of physiological responses, including plant defense. The last two decades have witnessed a number of breakthroughs related to biosynthesis, transport, perception and signaling mediated by SA. These findings demonstrate that SA plays a crictical role in both local and systemic defense responses. Systemic acquired resistance (SAR) is one such SA-dependent response. SAR is a long distance signaling mechanism that provides broad spectrum and long-lasting resistance to secondary infections throughout the plant. This unique feature makes SAR a highly desirable trait in crop production. This review summarizes the recent advances in the role of SA in SAR and discusses its relationship to other SAR inducers. PMID:25918514

  3. Roles for Regulator of G Protein Signaling Proteins in Synaptic Signaling and Plasticity.

    PubMed

    Gerber, Kyle J; Squires, Katherine E; Hepler, John R

    2016-02-01

    The regulator of G protein signaling (RGS) family of proteins serves critical roles in G protein-coupled receptor (GPCR) and heterotrimeric G protein signal transduction. RGS proteins are best understood as negative regulators of GPCR/G protein signaling. They achieve this by acting as GTPase activating proteins (GAPs) for Gα subunits and accelerating the turnoff of G protein signaling. Many RGS proteins also bind additional signaling partners that either regulate their functions or enable them to regulate other important signaling events. At neuronal synapses, GPCRs, G proteins, and RGS proteins work in coordination to regulate key aspects of neurotransmitter release, synaptic transmission, and synaptic plasticity, which are necessary for central nervous system physiology and behavior. Accumulating evidence has revealed key roles for specific RGS proteins in multiple signaling pathways at neuronal synapses, regulating both pre- and postsynaptic signaling events and synaptic plasticity. Here, we review and highlight the current knowledge of specific RGS proteins (RGS2, RGS4, RGS7, RGS9-2, and RGS14) that have been clearly demonstrated to serve critical roles in modulating synaptic signaling and plasticity throughout the brain, and we consider their potential as future therapeutic targets.

  4. Knowing when to grow: signals regulating bud dormancy.

    PubMed

    Horvath, David P; Anderson, James V; Chao, Wun S; Foley, Michael E

    2003-11-01

    Dormancy regulation in vegetative buds is a complex process necessary for plant survival, development and architecture. Our understanding of and ability to manipulate these processes are crucial for increasing the yield and availability of much of the world's food. In many cases, release of dormancy results in increased cell division and changes in developmental programs. Much can be learned about dormancy regulation by identifying interactions of signals in these crucial processes. Internal signals such as hormones and sugar, and external signals such as light act through specific, overlapping signal transduction pathways to regulate endo-, eco- and paradormancy. Epigenetic-like regulation of endodormancy suggests a possible role for chromatin remodeling similar to that known for the vernalization responses during flowering.

  5. Repressing a repressor: gibberellin-induced rapid reduction of the RGA protein in Arabidopsis.

    PubMed

    Silverstone, A L; Jung, H S; Dill, A; Kawaide, H; Kamiya, Y; Sun, T P

    2001-07-01

    RGA (for repressor of ga1-3) and SPINDLY (SPY) are likely repressors of gibberellin (GA) signaling in Arabidopsis because the recessive rga and spy mutations partially suppressed the phenotype of the GA-deficient mutant ga1-3. We found that neither rga nor spy altered the GA levels in the wild-type or the ga1-3 background. However, expression of the GA biosynthetic gene GA4 was reduced 26% by the rga mutation, suggesting that partial derepression of the GA response pathway by rga resulted in the feedback inhibition of GA4 expression. The green fluorescent protein (GFP)-RGA fusion protein was localized to nuclei in transgenic Arabidopsis. This result supports the predicted function of RGA as a transcriptional regulator based on sequence analysis. Confocal microscopy and immunoblot analyses demonstrated that the levels of both the GFP-RGA fusion protein and endogenous RGA were reduced rapidly by GA treatment. Therefore, the GA signal appears to derepress the GA signaling pathway by degrading the repressor protein RGA. The effect of rga on GA4 gene expression and the effect of GA on RGA protein level allow us to identify part of the mechanism by which GA homeostasis is achieved.

  6. Regulation of Wnt/β-Catenin Signaling by Protein Kinases

    PubMed Central

    Verheyen, Esther M.; Gottardi, Cara J.

    2011-01-01

    The Wnt/β-catenin signaling pathway plays essential roles during development and adult tissue homeostasis. Inappropriate activation of the pathway can result in a variety of malignancies. Protein kinases have emerged as key regulators at multiple steps of the Wnt pathway. In this review, we present a synthesis covering the latest information on how Wnt signaling is regulated by diverse protein kinases. PMID:19623618

  7. IAPs: Modular regulators of cell signalling.

    PubMed

    Budhidarmo, Rhesa; Day, Catherine L

    2015-03-01

    Members of the inhibitor of apoptosis (IAP) family are characterised by the presence of at least one baculoviral IAP repeat (BIR) domain. However, during the course of evolution, other globular modules have been adopted to perform distinct functions. Consequently, the IAP family is now recognised as consisting of members that perform critical functions in different aspects of cellular regulation. In this review, the structural diversity present within the IAP protein family is presented. Known structures of individual domains are discussed and their properties are described in light of recent data. In particular the plasticity of BIR domains and their ability to accommodate different binding partners is highlighted, as well as the importance of communication between the domains in regulating the covalent attachment of ubiquitin.

  8. Phosphatase and Tensin Homologue: Novel Regulation by Developmental Signaling

    PubMed Central

    Jerde, Travis J.

    2015-01-01

    Phosphatase and tensin homologue (PTEN) is a critical cell endogenous inhibitor of phosphoinositide signaling in mammalian cells. PTEN dephosphorylates phosphoinositide trisphosphate (PIP3), and by so doing PTEN has the function of negative regulation of Akt, thereby inhibiting this key intracellular signal transduction pathway. In numerous cell types, PTEN loss-of-function mutations result in unopposed Akt signaling, producing numerous effects on cells. Numerous reports exist regarding mutations in PTEN leading to unregulated Akt and human disease, most notably cancer. However, less is commonly known about nonmutational regulation of PTEN. This review focuses on an emerging literature on the regulation of PTEN at the transcriptional, posttranscriptional, translational, and posttranslational levels. Specifically, a focus is placed on the role developmental signaling pathways play in PTEN regulation; this includes insulin-like growth factor, NOTCH, transforming growth factor, bone morphogenetic protein, wnt, and hedgehog signaling. The regulation of PTEN by developmental mediators affects critical biological processes including neuronal and organ development, stem cell maintenance, cell cycle regulation, inflammation, response to hypoxia, repair and recovery, and cell death and survival. Perturbations of PTEN regulation consequently lead to human diseases such as cancer, chronic inflammatory syndromes, developmental abnormalities, diabetes, and neurodegeneration. PMID:26339505

  9. Regulation of insect behavior via the insulin-signaling pathway

    PubMed Central

    Erion, Renske; Sehgal, Amita

    2013-01-01

    The insulin/insulin-like growth factor signaling (IIS) pathway is well-established as a critical regulator of growth and metabolic homeostasis across the animal kingdom. Insulin-like peptides (ILPs), the functional analogs of mammalian insulin, were initially discovered in the silkmoth Bombyx mori and subsequently identified in many other insect species. Initial research focused on the role of insulin signaling in metabolism, cell proliferation, development, reproduction and aging. More recently however, increasing attention has been given to the role of insulin in the regulation of neuronal function and behavior. Here we review the role of insulin signaling in two specific insect behaviors: feeding and locomotion. PMID:24348428

  10. Gibberellin mediates daylength-controlled differentiation of vegetative meristems in strawberry (Fragaria × ananassa Duch)

    PubMed Central

    Hytönen, Timo; Elomaa, Paula; Moritz, Thomas; Junttila, Olavi

    2009-01-01

    Background Differentiation of long and short shoots is an important developmental trait in several species of the Rosaceae family. However, the physiological mechanisms controlling this differentiation are largely unknown. We have studied the role of gibberellin (GA) in regulation of shoot differentiation in strawberry (Fragaria × ananassa Duch.) cv. Korona. In strawberry, differentiation of axillary buds to runners (long shoot) or to crown branches (short shoot) is promoted by long-day and short-day conditions, respectively. Formation of crown branches is a prerequisite for satisfactory flowering because inflorescences are formed from the apical meristems of the crown. Results We found that both prohexadione-calcium and short photoperiod inhibited runner initiation and consequently led to induction of crown branching. In both cases, this correlated with a similar decline in GA1 level. Exogenous GA3 completely reversed the effect of prohexadione-calcium in a long photoperiod, but was only marginally effective in short-day grown plants. However, transfer of GA3-treated plants from short days to long days restored the normal runner formation. This did not occur in plants that were not treated with GA3. We also studied GA signalling homeostasis and found that the expression levels of several GA biosynthetic, signalling and target genes were similarly affected by prohexadione-calcium and short photoperiod in runner tips and axillary buds, respectively. Conclusion GA is needed for runner initiation in strawberry, and the inhibition of GA biosynthesis leads to the formation of crown branches. Our findings of similar changes in GA levels and in GA signalling homeostasis after prohexadione-calcium and short-day treatments, and photoperiod-dependent responsiveness of the axillary buds to GA indicate that GA plays a role also in the photoperiod-regulated differentiation of axillary buds. We propose that tightly regulated GA activity may control induction of cell division in

  11. Regulation of Hedgehog Signalling Inside and Outside the Cell

    PubMed Central

    Ramsbottom, Simon A.; Pownall, Mary E.

    2016-01-01

    The hedgehog (Hh) signalling pathway is conserved throughout metazoans and plays an important regulatory role in both embryonic development and adult homeostasis. Many levels of regulation exist that control the release, reception, and interpretation of the hedgehog signal. The fatty nature of the Shh ligand means that it tends to associate tightly with the cell membrane, and yet it is known to act as a morphogen that diffuses to elicit pattern formation. Heparan sulfate proteoglycans (HSPGs) play a major role in the regulation of Hh distribution outside the cell. Inside the cell, the primary cilium provides an important hub for processing the Hh signal in vertebrates. This review will summarise the current understanding of how the Hh pathway is regulated from ligand production, release, and diffusion, through to signal reception and intracellular transduction. PMID:27547735

  12. Aberrant regulation of Wnt signaling in hepatocellular carcinoma

    PubMed Central

    Liu, Li-Juan; Xie, Shui-Xiang; Chen, Ya-Tang; Xue, Jing-Ling; Zhang, Chuan-Jie; Zhu, Fan

    2016-01-01

    Hepatocellular carcinoma (HCC) is one of the most lethal malignancies in the world. Several signaling pathways, including the wingless/int-1 (Wnt) signaling pathway, have been shown to be commonly activated in HCC. The Wnt signaling pathway can be triggered via both catenin β1 (CTNNB1)-dependent (also known as “canonical”) and CTNNB1-independent (often referred to as “non-canonical”) pathways. Specifically, the canonical Wnt pathway is one of those most frequently reported in HCC. Aberrant regulation from three complexes (the cell-surface receptor complex, the cytoplasmic destruction complex and the nuclear CTNNB1/T-cell-specific transcription factor/lymphoid enhancer binding factor transcriptional complex) are all involved in HCC. Although the non-canonical Wnt pathway is rarely reported, two main non-canonical pathways, Wnt/planar cell polarity pathway and Wnt/Ca2+ pathway, participate in the regulation of hepatocarcinogenesis. Interestingly, the canonical Wnt pathway is antagonized by non-canonical Wnt signaling in HCC. Moreover, other signaling cascades have also been demonstrated to regulate the Wnt pathway through crosstalk in HCC pathogenesis. This review provides a perspective on the emerging evidence that the aberrant regulation of Wnt signaling is a critical mechanism for the development of HCC. Furthermore, crosstalk between different signaling pathways might be conducive to the development of novel molecular targets of HCC. PMID:27672271

  13. Regulation of Bone Morphogenetic Protein Signaling by ADP-ribosylation*

    PubMed Central

    Watanabe, Yukihide; Papoutsoglou, Panagiotis; Maturi, Varun; Tsubakihara, Yutaro; Hottiger, Michael O.; Heldin, Carl-Henrik; Moustakas, Aristidis

    2016-01-01

    We previously established a mechanism of negative regulation of transforming growth factor β signaling mediated by the nuclear ADP-ribosylating enzyme poly-(ADP-ribose) polymerase 1 (PARP1) and the deribosylating enzyme poly-(ADP-ribose) glycohydrolase (PARG), which dynamically regulate ADP-ribosylation of Smad3 and Smad4, two central signaling proteins of the pathway. Here we demonstrate that the bone morphogenetic protein (BMP) pathway can also be regulated by the opposing actions of PARP1 and PARG. PARG positively contributes to BMP signaling and forms physical complexes with Smad5 and Smad4. The positive role PARG plays during BMP signaling can be neutralized by PARP1, as demonstrated by experiments where PARG and PARP1 are simultaneously silenced. In contrast to PARG, ectopic expression of PARP1 suppresses BMP signaling, whereas silencing of endogenous PARP1 enhances signaling and BMP-induced differentiation. The two major Smad proteins of the BMP pathway, Smad1 and Smad5, interact with PARP1 and can be ADP-ribosylated in vitro, whereas PARG causes deribosylation. The overall outcome of this mode of regulation of BMP signal transduction provides a fine-tuning mechanism based on the two major enzymes that control cellular ADP-ribosylation. PMID:27129221

  14. Aberrant regulation of Wnt signaling in hepatocellular carcinoma.

    PubMed

    Liu, Li-Juan; Xie, Shui-Xiang; Chen, Ya-Tang; Xue, Jing-Ling; Zhang, Chuan-Jie; Zhu, Fan

    2016-09-01

    Hepatocellular carcinoma (HCC) is one of the most lethal malignancies in the world. Several signaling pathways, including the wingless/int-1 (Wnt) signaling pathway, have been shown to be commonly activated in HCC. The Wnt signaling pathway can be triggered via both catenin β1 (CTNNB1)-dependent (also known as "canonical") and CTNNB1-independent (often referred to as "non-canonical") pathways. Specifically, the canonical Wnt pathway is one of those most frequently reported in HCC. Aberrant regulation from three complexes (the cell-surface receptor complex, the cytoplasmic destruction complex and the nuclear CTNNB1/T-cell-specific transcription factor/lymphoid enhancer binding factor transcriptional complex) are all involved in HCC. Although the non-canonical Wnt pathway is rarely reported, two main non-canonical pathways, Wnt/planar cell polarity pathway and Wnt/Ca(2+) pathway, participate in the regulation of hepatocarcinogenesis. Interestingly, the canonical Wnt pathway is antagonized by non-canonical Wnt signaling in HCC. Moreover, other signaling cascades have also been demonstrated to regulate the Wnt pathway through crosstalk in HCC pathogenesis. This review provides a perspective on the emerging evidence that the aberrant regulation of Wnt signaling is a critical mechanism for the development of HCC. Furthermore, crosstalk between different signaling pathways might be conducive to the development of novel molecular targets of HCC. PMID:27672271

  15. Aberrant regulation of Wnt signaling in hepatocellular carcinoma

    PubMed Central

    Liu, Li-Juan; Xie, Shui-Xiang; Chen, Ya-Tang; Xue, Jing-Ling; Zhang, Chuan-Jie; Zhu, Fan

    2016-01-01

    Hepatocellular carcinoma (HCC) is one of the most lethal malignancies in the world. Several signaling pathways, including the wingless/int-1 (Wnt) signaling pathway, have been shown to be commonly activated in HCC. The Wnt signaling pathway can be triggered via both catenin β1 (CTNNB1)-dependent (also known as “canonical”) and CTNNB1-independent (often referred to as “non-canonical”) pathways. Specifically, the canonical Wnt pathway is one of those most frequently reported in HCC. Aberrant regulation from three complexes (the cell-surface receptor complex, the cytoplasmic destruction complex and the nuclear CTNNB1/T-cell-specific transcription factor/lymphoid enhancer binding factor transcriptional complex) are all involved in HCC. Although the non-canonical Wnt pathway is rarely reported, two main non-canonical pathways, Wnt/planar cell polarity pathway and Wnt/Ca2+ pathway, participate in the regulation of hepatocarcinogenesis. Interestingly, the canonical Wnt pathway is antagonized by non-canonical Wnt signaling in HCC. Moreover, other signaling cascades have also been demonstrated to regulate the Wnt pathway through crosstalk in HCC pathogenesis. This review provides a perspective on the emerging evidence that the aberrant regulation of Wnt signaling is a critical mechanism for the development of HCC. Furthermore, crosstalk between different signaling pathways might be conducive to the development of novel molecular targets of HCC.

  16. Feedback Regulation of Kinase Signaling Pathways by AREs and GREs

    PubMed Central

    Vlasova-St. Louis, Irina; Bohjanen, Paul R.

    2016-01-01

    In response to environmental signals, kinases phosphorylate numerous proteins, including RNA-binding proteins such as the AU-rich element (ARE) binding proteins, and the GU-rich element (GRE) binding proteins. Posttranslational modifications of these proteins lead to a significant changes in the abundance of target mRNAs, and affect gene expression during cellular activation, proliferation, and stress responses. In this review, we summarize the effect of phosphorylation on the function of ARE-binding proteins ZFP36 and ELAVL1 and the GRE-binding protein CELF1. The networks of target mRNAs that these proteins bind and regulate include transcripts encoding kinases and kinase signaling pathways (KSP) components. Thus, kinase signaling pathways are involved in feedback regulation, whereby kinases regulate RNA-binding proteins that subsequently regulate mRNA stability of ARE- or GRE-containing transcripts that encode components of KSP. PMID:26821046

  17. Oscillatory Dynamics of the Extracellular Signal-regulated Kinase Pathway

    SciTech Connect

    Shankaran, Harish; Wiley, H. S.

    2010-12-01

    The extracellular signal-regulated kinase (ERK) pathway is a central signaling pathway in development and disease and is regulated by multiple negative and positive feedback loops. Recent studies have shown negative feedback from ERK to upstream regulators can give rise to biochemical oscillations with a periodicity of between 15-30 minutes. Feedback due to the stimulated transcription of negative regulators of the ERK pathway can also give rise to transcriptional oscillations with a periodicity of 1-2h. The biological significance of these oscillations is not clear, but recent evidence suggests that transcriptional oscillations participate in developmental processes, such as somite formation. Biochemical oscillations are more enigmatic, but could provide a mechanism for encoding different types of inputs into a common signaling pathway.

  18. Signal Transduction Pathways that Regulate CAB Gene Expression

    SciTech Connect

    Chory, Joanne

    2004-12-31

    The process of chloroplast differentiation, involves the coordinate regulation of many nuclear and chloroplast genes. The cues for the initiation of this developmental program are both extrinsic (e.g., light) and intrinsic (cell-type and plastid signals). During this project period, we utilized a molecular genetic approach to select for Arabidopsis mutants that did not respond properly to environmental light conditions, as well as mutants that were unable to perceive plastid damage. These latter mutants, called gun mutants, define two retrograde signaling pathways that regulate nuclear gene expression in response to chloroplasts. A major finding was to identify a signal from chloroplasts that regulates nuclear gene transcription. This signal is the build-up of Mg-Protoporphyrin IX, a key intermediate of the chlorophyll biosynthetic pathway. The signaling pathways downstream of this signal are currently being studied. Completion of this project has provided an increased understanding of the input signals and retrograde signaling pathways that control nuclear gene expression in response to the functional state of chloroplasts. These studies should ultimately influence our abilities to manipulate plant growth and development, and will aid in the understanding of the developmental control of photosynthesis.

  19. Signal Transduction Pathways that Regulate CAB Gene Expression

    SciTech Connect

    Chory, Joanne

    2006-01-16

    The process of chloroplast differentiation, involves the coordinate regulation of many nuclear and chloroplast genes. The cues for the initiation of this developmental program are both extrinsic (e.g., light) and intrinsic (cell-type and plastid signals). During this project period, we utilized a molecular genetic approach to select for Arabidopsis mutants that did not respond properly to environmental light conditions, as well as mutants that were unable to perceive plastid damage. These latter mutants, called gun mutants, define two retrograde signaling pathways that regulate nuclear gene expression in response to chloroplasts. A major finding was to identify a signal from chloroplasts that regulates nuclear gene transcription. This signal is the build-up of Mg-Protoporphyrin IX, a key intermediate of the chlorophyll biosynthetic pathway. The signaling pathways downstream of this signal are currently being studied. Completion of this project has provided an increased understanding of the input signals and retrograde signaling pathways that control nuclear gene expression in response to the functional state of chloroplasts. These studies should ultimately influence our abilities to manipulate plant growth and development, and will aid in the understanding of the developmental control of photosynthesis.

  20. The roles of signaling pathways in regulating kidney development.

    PubMed

    Xiao, Qiu; Rongfei, Wei; Lingqiang, Zhang; Fuchu, He

    2015-01-01

    The development of mammalian kidney is a complex process. The reciprocal inductive interactions between epithelial cells and metanephric mesenchymal cells determine cell fates including proliferation, growth, apoptosis, and eventually contribute to the formation of an intact kidney. Multiple signaling pathways, including the GDNF/Ret, Wnt and BMP signaling pathways, have been shown to regulate the development of kidney. A myriad of signaling pathways and their cross-talks form a precise spatiotemporal regulatory network, which ensures the kidney to be properly organized. In this review, we summarize the physiological process of kidney development as well as the involved signaling pathways and their interplay.

  1. Auxin-induced nitric oxide, cGMP and gibberellins were involved in the gravitropism

    NASA Astrophysics Data System (ADS)

    Cai, Weiming; Hu, Liwei; Hu, Xiangyang; Cui, Dayong; Cai, Weiming

    Gravitropism is the asymmetric growth or curvature of plant organs in response to gravistimulation. There is a complex signal transduction cascade which involved in the differential growth of plants in response to changes in the gravity vector. The role of auxin in gravitropism has been demonstrated by many experiments, but little is known regarding the molecular details of such effects. In our studies before, mediation of the gravitropic bending of soybean roots and rice leaf sheath bases by nitric oxide, cGMP and gibberellins, are induced by auxin. The asymmetrical distribution of nitric oxide, cGMP and gibberellins resulted from the asymmetrical synthesis of them in bending sites. In soybean roots, inhibitions of NO and cGMP synthesis reduced differential NO and cGMP accumulation respectively, which both of these effects can lead to the reduction of gravitropic bending. Gibberellin-induced OsXET, OsEXPA4 and OsRWC3 were also found involved in the gravitropic bending. These data indicated that auxin-induced nitric oxide, cGMP and gibberellins were involved in the gravitropism. More experiments need to prove the more detailed mechanism of them.

  2. Signaling and transcriptional regulation in osteoblast commitment and differentiation

    PubMed Central

    Huang, Wei; Yang, Shuying; Shao, Jianzhong; Li, Yi-Ping

    2013-01-01

    The major event that triggers osteogenesis is the transition of mesenchymal stem cells into bone forming, differentiating osteoblast cells. Osteoblast differentiation is the primary component of bone formation, exemplified by the synthesis, deposition and mineralization of extracellular matrix. Although not well understood, osteoblast differentiation from mesenchymal stem cells is a well-orchestrated process. Recent advances in molecular and genetic studies using gene targeting in mouse enable a better understanding of the multiple factors and signaling networks that control the differentiation process at a molecular level. Osteoblast commitment and differentiation are controlled by complex activities involving signal transduction and transcriptional regulation of gene expression. We review Wnt signaling pathway and Runx2 regulation network, which are critical for osteoblast differentiation. Many other factors and signaling pathways have been implicated in regulation of osteoblast differentiation in a network manner, such as the factors Osterix, ATF4, and SATB2 and the TGF-beta, Hedgehog, FGF, ephrin, and sympathetic signaling pathways. This review summarizes the recent advances in the studies of signaling transduction pathways and transcriptional regulation of osteoblast cell lineage commitment and differentiation. The knowledge of osteoblast commitment and differentiation should be applied towards the development of new diagnostic and therapeutic alternatives for human bone diseases. PMID:17485283

  3. Transcriptome Profiling Reveals the Regulatory Mechanism Underlying Pollination Dependent and Parthenocarpic Fruit Set Mainly Mediated by Auxin and Gibberellin

    PubMed Central

    Tang, Ning; Deng, Wei; Hu, Guojian; Hu, Nan; Li, Zhengguo

    2015-01-01

    Background Fruit set is a key process for crop production in tomato which occurs after successful pollination and fertilization naturally. However, parthenocarpic fruit development can be uncoupled from fertilization triggered by exogenous auxin or gibberellins (GAs). Global transcriptome knowledge during fruit initiation would help to characterize the molecular mechanisms by which these two hormones regulate pollination-dependent and -independent fruit set. Principal Findings In this work, digital gene expression tag profiling (DGE) technology was applied to compare the transcriptomes from pollinated and 2, 4-D/GA3-treated ovaries. Activation of carbohydrate metabolism, cell division and expansion as well as the down-regulation of MADS-box is a comprehensive regulatory pathway during pollination-dependent and parthenocarpic fruit set. The signaling cascades of auxin and GA are significantly modulated. The feedback regulations of Aux/IAAs and DELLA genes which functioned to fine-tune auxin and GA response respectively play fundamental roles in triggering fruit initiation. In addition, auxin regulates GA synthesis via up-regulation of GA20ox1 and down-regulation of KNOX. Accordingly, the effect of auxin on fruit set is mediated by GA via ARF2 and IAA9 down-regulation, suggesting that both pollination-dependent and parthenocarpic fruit set depend on the crosstalk between auxin and GA. Significance This study characterizes the transcriptomic features of ovary development and more importantly unravels the integral roles of auxin and GA on pollination-dependent and parthenocarpic fruit set. PMID:25909657

  4. Reciprocal influence of ethylene and gibberellins on response-gene expression in Arabidopsis thaliana.

    PubMed

    De Grauwe, Liesbeth; Vriezen, Wim H; Bertrand, Sophie; Phillips, Andy; Vidal, Ana M; Hedden, Peter; Van Der Straeten, Dominique

    2007-07-01

    The complexity of hormonal responses and their functional overlap support the presence of an intensive cross-talk between hormone signalling pathways. A detailed analysis of responses induced by ethylene and gibberellin (GA) in a GA-insensitive mutant (gai), an ethylene-resistant mutant (etr1-3), the gai etr1-3 double-mutant, and in wild-type Arabidopsis thaliana plants, revealed multiple interactions between ethylene and GA signal transduction pathways. Ethylene insensitive mutants and wild-type plants treated with 1-methylcyclopropene (1-MCP), an ethylene perception inhibitor, displayed a stronger responsiveness of genes differentially regulated by GA. In addition, microarray-analysis showed that the GA-response in an ethylene-insensitive background is different from that in the wild-type, confirming the importance of ethylene in a plant's response towards GA. In this paper, we present a number of genes with an altered response-pattern as a direct consequence of cross-talk between ethylene and GA.

  5. Gibberellins and DELLAs: central nodes in growth regulatory networks.

    PubMed

    Claeys, Hannes; De Bodt, Stefanie; Inzé, Dirk

    2014-04-01

    Gibberellins (GAs) are growth-promoting phytohormones that were crucial in breeding improved semi-dwarf varieties during the green revolution. However, the molecular basis for GA-induced growth stimulation is poorly understood. In this review, we use light-regulated hypocotyl elongation as a case study, combined with a meta-analysis of available transcriptome data, to discuss the role of GAs as central nodes in networks connecting environmental inputs to growth. These networks are highly tissue-specific, with dynamic and rapid regulation that mostly occurs at the protein level, directly affecting the activity and transcription of effectors. New systems biology approaches addressing the role of GAs in growth should take these properties into account, combining tissue-specific interactomics, transcriptomics and modeling, to provide essential knowledge to fuel a second green revolution.

  6. New Insights into How Trafficking Regulates T Cell Receptor Signaling

    PubMed Central

    Lou, Jieqiong; Rossy, Jérémie; Deng, Qiji; Pageon, Sophie V.; Gaus, Katharina

    2016-01-01

    There is emerging evidence that exocytosis plays an important role in regulating T cell receptor (TCR) signaling. The trafficking molecules involved in lytic granule (LG) secretion in cytotoxic T lymphocytes (CTL) have been well-studied due to the immune disorder known as familial hemophagocytic lymphohistiocytosis (FHLH). However, the knowledge of trafficking machineries regulating the exocytosis of receptors and signaling molecules remains quite limited. In this review, we summarize the reported trafficking molecules involved in the transport of the TCR and downstream signaling molecules to the cell surface. By combining this information with the known knowledge of LG exocytosis and general exocytic trafficking machinery, we attempt to draw a more complete picture of how the TCR signaling network and exocytic trafficking matrix are interconnected to facilitate T cell activation. This also highlights how membrane compartmentalization facilitates the spatiotemporal organization of cellular responses that are essential for immune functions. PMID:27508206

  7. Hedgehog signaling regulates liver sinusoidal endothelial cell capillarisation

    PubMed Central

    Xie, Guanhua; Choi, Steve S.; Syn, Wing-Kin; Michelotti, Gregory A.; Swiderska-Syn, Marzena; Karaca, Gamze; Chan, Isaac S.; Chen, Yuping; Diehl, Anna Mae

    2013-01-01

    Objective Vascular remodeling during liver damage involves loss of healthy liver sinusoidal endothelial cell (LSEC) phenotype via capillarisation. Hedgehog (Hh) signaling regulates vascular development and increases during liver injury. Therefore, we examined its role in capillarisation. Design Primary LSEC were cultured for 5 days to induce capillarisation. Pharmacologic, antibody-mediated, and genetic approaches were used to manipulate Hh signaling. Effects on mRNA and protein expression of Hh-regulated genes and capillarisation markers were evaluated by qRT-PCR and immunoblot. Changes in LSEC function were assessed by migration and tube forming assay, and gain/loss of fenestrae was examined by electron microscopy. Mice with acute or chronic liver injury were treated with Hh inhibitors; effects on capillarisation were assessed by immunohistochemistry. Results Freshly isolated LSEC expressed Hh ligands, Hh receptors, and Hh ligand antagonist Hhip. Capillarisation was accompanied by repression of Hhip and increased expression of Hh-regulated genes. Treatment with Hh agonist further induced expression of Hh ligands and Hh-regulated genes, and up-regulated capillarisation-associated genes; whereas Hh signaling antagonist or Hh ligand neutralizing antibody each repressed expression of Hh target genes and capillarisation markers. LSEC isolated from SmoloxP/loxP transgenic mice that had been infected with adenovirus expressing Cre-recombinase to delete Smoothened showed over 75% knockdown of Smoothened. During culture, Smoothened-deficient LSEC had inhibited Hh signaling, less induction of capillarisation-associated genes, and retention of fenestrae. In mice with injured livers, inhibiting Hh signaling prevented capillarisation. Conclusions LSEC produce and respond to Hh ligands, and use Hh signaling to regulate complex phenotypic changes that occur during capillarisation. PMID:22362915

  8. Endothelial cell expression of haemoglobin α regulates nitric oxide signalling.

    PubMed

    Straub, Adam C; Lohman, Alexander W; Billaud, Marie; Johnstone, Scott R; Dwyer, Scott T; Lee, Monica Y; Bortz, Pamela Schoppee; Best, Angela K; Columbus, Linda; Gaston, Benjamin; Isakson, Brant E

    2012-11-15

    Models of unregulated nitric oxide (NO) diffusion do not consistently account for the biochemistry of NO synthase (NOS)-dependent signalling in many cell systems. For example, endothelial NOS controls blood pressure, blood flow and oxygen delivery through its effect on vascular smooth muscle tone, but the regulation of these processes is not adequately explained by simple NO diffusion from endothelium to smooth muscle. Here we report a new model for the regulation of NO signalling by demonstrating that haemoglobin (Hb) α (encoded by the HBA1 and HBA2 genes in humans) is expressed in human and mouse arterial endothelial cells and enriched at the myoendothelial junction, where it regulates the effects of NO on vascular reactivity. Notably, this function is unique to Hb α and is abrogated by its genetic depletion. Mechanistically, endothelial Hb α haem iron in the Fe(3+) state permits NO signalling, and this signalling is shut off when Hb α is reduced to the Fe(2+) state by endothelial cytochrome b5 reductase 3 (CYB5R3, also known as diaphorase 1). Genetic and pharmacological inhibition of CYB5R3 increases NO bioactivity in small arteries. These data reveal a new mechanism by which the regulation of the intracellular Hb α oxidation state controls NOS signalling in non-erythroid cells. This model may be relevant to haem-containing globins in a broad range of NOS-containing somatic cells. PMID:23123858

  9. PTP-Pez: a novel regulator of TGFbeta signaling.

    PubMed

    Wyatt, Leila; Khew-Goodall, Yeesim

    2008-08-01

    The TGFbetas are a family of pleiotropic cytokines that mediate diverse effects including the regulation of cell cycle progression, apoptosis, tissue remodelling and epithelial-mesenchymal transition (EMT). These diverse effects allow the TGFbetas to play multiple and even opposing roles in different contexts during embryonal development, tissue homeostasis and cancer progression. We recently reported that the protein tyrosine phosphatase Pez is a novel inducer of TGFbeta signaling, regulating EMT and organogenesis in developing zebrafish embryos, and leading to TGFbeta-mediated EMT when overexpressed in vitro in epithelial MDCK cells. A number of mutations in Pez have been shown to be associated with breast and colorectal cancers, although the effect of these mutations on Pez function and their contribution to cancer progression remains unclear. Our finding that Pez regulates TGFbeta signaling is therefore of interest not only in the context of identifying a novel upstream regulator of TGFbeta signaling, but also in implicating the dysregulation of TGFbeta signaling as a possible link between Pez mutation and cancer progression. Here we discuss the implications of our research, in the context of dysregulation of TGFbeta signaling in cancer and other human pathologies. PMID:18677119

  10. Regulation, Signaling, and Physiological Functions of G-Proteins.

    PubMed

    Syrovatkina, Viktoriya; Alegre, Kamela O; Dey, Raja; Huang, Xin-Yun

    2016-09-25

    Heterotrimeric guanine-nucleotide-binding regulatory proteins (G-proteins) mainly relay the information from G-protein-coupled receptors (GPCRs) on the plasma membrane to the inside of cells to regulate various biochemical functions. Depending on the targeted cell types, tissues, and organs, these signals modulate diverse physiological functions. The basic schemes of heterotrimeric G-proteins have been outlined. In this review, we briefly summarize what is known about the regulation, signaling, and physiological functions of G-proteins. We then focus on a few less explored areas such as the regulation of G-proteins by non-GPCRs and the physiological functions of G-proteins that cannot be easily explained by the known G-protein signaling pathways. There are new signaling pathways and physiological functions for G-proteins to be discovered and further interrogated. With the advancements in structural and computational biological techniques, we are closer to having a better understanding of how G-proteins are regulated and of the specificity of G-protein interactions with their regulators. PMID:27515397

  11. Regulation, Signaling, and Physiological Functions of G-Proteins.

    PubMed

    Syrovatkina, Viktoriya; Alegre, Kamela O; Dey, Raja; Huang, Xin-Yun

    2016-09-25

    Heterotrimeric guanine-nucleotide-binding regulatory proteins (G-proteins) mainly relay the information from G-protein-coupled receptors (GPCRs) on the plasma membrane to the inside of cells to regulate various biochemical functions. Depending on the targeted cell types, tissues, and organs, these signals modulate diverse physiological functions. The basic schemes of heterotrimeric G-proteins have been outlined. In this review, we briefly summarize what is known about the regulation, signaling, and physiological functions of G-proteins. We then focus on a few less explored areas such as the regulation of G-proteins by non-GPCRs and the physiological functions of G-proteins that cannot be easily explained by the known G-protein signaling pathways. There are new signaling pathways and physiological functions for G-proteins to be discovered and further interrogated. With the advancements in structural and computational biological techniques, we are closer to having a better understanding of how G-proteins are regulated and of the specificity of G-protein interactions with their regulators.

  12. PECAM-1 ligation negatively regulates TLR4 signaling in macrophages.

    PubMed

    Rui, Yuxiang; Liu, Xingguang; Li, Nan; Jiang, Yingming; Chen, Guoyou; Cao, Xuetao; Wang, Jianli

    2007-12-01

    Uncontrolled TLR4 signaling may induce excessive production of proinflammatory cytokines and lead to harmful inflammation; therefore, negative regulation of TLR4 signaling attracts much attention now. PECAM-1, a member of Ig-ITIM family, can mediate inhibitory signals in T cells and B cells. However, the role and the mechanisms of PECAM-1 in the regulation of TLR4-mediated LPS response in macrophages remain unclear. In this study, we demonstrate that PECAM-1 ligation with CD38-Fc fusion protein negatively regulates LPS-induced proinflammatory cytokine TNF-alpha, IL-6, and IFN-beta production by inhibiting JNK, NF-kappaB, and IFN regulatory factor 3 activation in macrophages. In addition, PECAM-1 ligation-recruited Src homology region 2 domain-containing phosphatase 1 (SHP-1) and Src homology region 2 domain-containing phosphatase 2 (SHP-2) may be involved in the inhibitory effect of PECAM-1 on TLR4 signaling. Consistently, silencing of PECAM-1 enhances the macrophage response to LPS stimulation. Taken together with the data that PECAM-1 is constitutively expressed in macrophages and its expression is up-regulated by LPS stimulation, PECAM-1 might function as a feedback negative regulator of LPS inflammatory response in macrophages. This study may provide a potential target for intervention of inflammatory diseases. PMID:18025177

  13. Large-signal transient response of a switching regulator

    NASA Astrophysics Data System (ADS)

    Harada, K.; Nabeshima, T.

    Analytical and experimental considerations on the large-signal transient-responses of the buck-type switching regulator are described. The behaviour under the large-signal operation is different from the case of small signal because of the saturation characteristics of the PWM feedback controller. The effect of this nonlinearity is analyzed by dividing its operation into three modes. As a result, the maximum peak values of the inrush current and output voltage are obtained analytically both for the start-up and for the step change of the load current.

  14. THEMIS: a critical TCR signal regulator for ligand discrimination.

    PubMed

    Gascoigne, Nicholas R J; Acuto, Oreste

    2015-04-01

    Genetic approaches identified THEMIS as a critical element driving positive selection of CD4(+)CD8(+) thymocytes towards maturation. THEMIS is expressed only in the T-cell lineage, and is recruited to the proximity of signaling T-cell antigen receptors (TCR) by association with the membrane scaffold LAT. However, its molecular role remained an enigma until recently. Conventionally positively-selected T-cells are lacking in THEMIS-deficient mice, leading to the initial hypothesis that THEMIS positively regulates TCR signaling. Recent data show that THEMIS deficiency increases rather than decreases TCR signaling, leading to augmented apoptosis. The finding that THEMIS is constitutively bound to the tyrosine phosphatases SHP1 or SHP2, provides a mechanism for THEMIS action. When recruited onto LAT, THEMIS-SHP promotes immediate dephosphorylation of TCR-proximal signaling components. This negative feedback is central in setting sharp signaling thresholds and helps explain the exquisite ligand discrimination by the TCR, particularly during thymocyte selection.

  15. Potential Mechanisms Underlying Intercortical Signal Regulation via Cholinergic Neuromodulators

    PubMed Central

    Whittington, Miles A.; Kopell, Nancy J.

    2015-01-01

    The dynamical behavior of the cortex is extremely complex, with different areas and even different layers of a cortical column displaying different temporal patterns. A major open question is how the signals from different layers and different brain regions are coordinated in a flexible manner to support function. Here, we considered interactions between primary auditory cortex and adjacent association cortex. Using a biophysically based model, we show how top-down signals in the beta and gamma regimes can interact with a bottom-up gamma rhythm to provide regulation of signals between the cortical areas and among layers. The flow of signals depends on cholinergic modulation: with only glutamatergic drive, we show that top-down gamma rhythms may block sensory signals. In the presence of cholinergic drive, top-down beta rhythms can lift this blockade and allow signals to flow reciprocally between primary sensory and parietal cortex. SIGNIFICANCE STATEMENT Flexible coordination of multiple cortical areas is critical for complex cognitive functions, but how this is accomplished is not understood. Using computational models, we studied the interactions between primary auditory cortex (A1) and association cortex (Par2). Our model is capable of replicating interaction patterns observed in vitro and the simulations predict that the coordination between top-down gamma and beta rhythms is central to the gating process regulating bottom-up sensory signaling projected from A1 to Par2 and that cholinergic modulation allows this coordination to occur. PMID:26558772

  16. Insulin/IGF signaling and its regulation in Drosophila.

    PubMed

    Nässel, Dick R; Liu, Yiting; Luo, Jiangnan

    2015-09-15

    Taking advantage of Drosophila as a genetically tractable experimental animal much progress has been made in our understanding of how the insulin/IGF signaling (IIS) pathway regulates development, growth, metabolism, stress responses and lifespan. The role of IIS in regulation of neuronal activity and behavior has also become apparent from experiments in Drosophila. This review briefly summarizes these functional roles of IIS, and also how the insulin producing cells (IPCs) are regulated in the fly. Furthermore, we discuss functional aspects of the spatio-temporal production of eight different insulin-like peptides (DILP1-8) that are thought to act on one known receptor (dInR) in Drosophila.

  17. Organelle size: a cilium length signal regulates IFT cargo loading.

    PubMed

    Pan, Junmin; Snell, William J

    2014-01-20

    Cilia grow by assembling structural precursors delivered to their tips by intraflagellar transport. New work on ciliary length control indicates that, during ciliary growth, cilia send a length signal to the cytoplasm that regulates cargo loading onto the constitutively trafficking intraflagellar transport machinery.

  18. Regulation of Mitoflash Biogenesis and Signaling by Mitochondrial Dynamics

    PubMed Central

    Li, Wenwen; Sun, Tao; Liu, Beibei; Wu, Di; Qi, Wenfeng; Wang, Xianhua; Ma, Qi; Cheng, Heping

    2016-01-01

    Mitochondria are highly dynamic organelles undergoing constant network reorganization and exhibiting stochastic signaling events in the form of mitochondrial flashes (mitoflashes). Here we investigate whether and how mitochondrial network dynamics regulate mitoflash biogenesis and signaling. We found that mitoflash frequency was largely invariant when network fragmentized or redistributed in the absence of mitofusin (Mfn) 1, Mfn2, or Kif5b. However, Opa1 deficiency decreased spontaneous mitoflash frequency due to superimposing changes in respiratory function, whereas mitoflash response to non-metabolic stimulation was unchanged despite network fragmentation. In Drp1- or Mff-deficient cells whose mitochondria hyperfused into a single whole-cell reticulum, the frequency of mitoflashes of regular amplitude and duration was again unaltered, although brief and low-amplitude “miniflashes” emerged because of improved detection ability. As the network reorganized, however, the signal mass of mitoflash signaling was dynamically regulated in accordance with the degree of network connectivity. These findings demonstrate a novel functional role of mitochondrial network dynamics and uncover a magnitude- rather than frequency-modulatory mechanism in the regulation of mitoflash signaling. In addition, our data support a stochastic trigger model for the ignition of mitoflashes. PMID:27623243

  19. SYK Regulates mTOR Signaling in AML

    PubMed Central

    Carnevale, Julia; Ross, Linda; Puissant, Alexandre; Banerji, Versha; Stone, Richard M.; DeAngelo, Daniel J.; Ross, Kenneth N.; Stegmaier, Kimberly

    2014-01-01

    Spleen Tyrosine Kinase (SYK) was recently identified as a new target in acute myeloid leukemia (AML); however, its mechanistic role in this disease is poorly understood. Based on the known interaction between SYK and mTOR signaling in lymphoma, we hypothesized that SYK may regulate mTOR signaling in AML. Both small-molecule inhibition of SYK and SYK-directed shRNA suppressed mTOR and its downstream signaling effectors, as well as its upstream activator, AKT. Moreover, the inhibition of multiple nodes of the PI3K signaling pathway enhanced the effects of SYK suppression on AML cell viability and differentiation. Evaluation of the collateral MAPK pathway revealed a heterogeneous response to SYK inhibition in AML with down-regulation of MEK and ERK phosphorylation in some AML cell lines but a paradoxical increase in MEK/ERK phosphorylation in RAS-mutated AML. These studies reveal SYK as a regulator of mTOR and MAPK signaling in AML and demonstrate that inhibition of PI3K pathway activity enhances the effects of SYK inhibition on AML cell viability and differentiation. PMID:23535559

  20. Regulation of Mitoflash Biogenesis and Signaling by Mitochondrial Dynamics.

    PubMed

    Li, Wenwen; Sun, Tao; Liu, Beibei; Wu, Di; Qi, Wenfeng; Wang, Xianhua; Ma, Qi; Cheng, Heping

    2016-01-01

    Mitochondria are highly dynamic organelles undergoing constant network reorganization and exhibiting stochastic signaling events in the form of mitochondrial flashes (mitoflashes). Here we investigate whether and how mitochondrial network dynamics regulate mitoflash biogenesis and signaling. We found that mitoflash frequency was largely invariant when network fragmentized or redistributed in the absence of mitofusin (Mfn) 1, Mfn2, or Kif5b. However, Opa1 deficiency decreased spontaneous mitoflash frequency due to superimposing changes in respiratory function, whereas mitoflash response to non-metabolic stimulation was unchanged despite network fragmentation. In Drp1- or Mff-deficient cells whose mitochondria hyperfused into a single whole-cell reticulum, the frequency of mitoflashes of regular amplitude and duration was again unaltered, although brief and low-amplitude "miniflashes" emerged because of improved detection ability. As the network reorganized, however, the signal mass of mitoflash signaling was dynamically regulated in accordance with the degree of network connectivity. These findings demonstrate a novel functional role of mitochondrial network dynamics and uncover a magnitude- rather than frequency-modulatory mechanism in the regulation of mitoflash signaling. In addition, our data support a stochastic trigger model for the ignition of mitoflashes. PMID:27623243

  1. Gibberellin 3-oxidase gene expression patterns influence gibberellin biosynthesis, growth, and development in pea.

    PubMed

    Reinecke, Dennis M; Wickramarathna, Aruna D; Ozga, Jocelyn A; Kurepin, Leonid V; Jin, Alena L; Good, Allen G; Pharis, Richard P

    2013-10-01

    Gibberellins (GAs) are key modulators of plant growth and development. PsGA3ox1 (LE) encodes a GA 3β-hydroxylase that catalyzes the conversion of GA20 to biologically active GA1. To further clarify the role of GA3ox expression during pea (Pisum sativum) plant growth and development, we generated transgenic pea lines (in a lele background) with cauliflower mosaic virus-35S-driven expression of PsGA3ox1 (LE). PsGA3ox1 transgene expression led to higher GA1 concentrations in a tissue-specific and development-specific manner, altering GA biosynthesis and catabolism gene expression and plant phenotype. PsGA3ox1 transgenic plants had longer internodes, tendrils, and fruits, larger stipules, and displayed delayed flowering, increased apical meristem life, and altered vascular development relative to the null controls. Transgenic PsGA3ox1 overexpression lines were then compared with lines where endogenous PsGA3ox1 (LE) was introduced, by a series of backcrosses, into the same genetic background (BC LEle). Most notably, the BC LEle plants had substantially longer internodes containing much greater GA1 levels than the transgenic PsGA3ox1 plants. Induction of expression of the GA deactivation gene PsGA2ox1 appears to make an important contribution to limiting the increase of internode GA1 to modest levels for the transgenic lines. In contrast, PsGA3ox1 (LE) expression driven by its endogenous promoter was coordinated within the internode tissue to avoid feed-forward regulation of PsGA2ox1, resulting in much greater GA1 accumulation. These studies further our fundamental understanding of the regulation of GA biosynthesis and catabolism at the tissue and organ level and demonstrate that the timing/localization of GA3ox expression within an organ affects both GA homeostasis and GA1 levels, and thereby growth.

  2. Transcriptional changes of gibberellin oxidase genes in grapevines with or without gibberellin application during inflorescence development.

    PubMed

    Jung, Chan Jin; Hur, Youn Young; Jung, Sung-Min; Noh, Jung-Ho; Do, Gyung-Ran; Park, Seo-June; Nam, Jong-Chul; Park, Kyo-Sun; Hwang, Hae-Sung; Choi, Doil; Lee, Hee Jae

    2014-03-01

    The concept that gibberellin (GA) application on seeded grapevines induces seedlessness has been known for decades in viticulture. GA was applied to inflorescence clusters of seeded diploid grapevine cultivar 'Tamnara' (Vitis spp.) at 14 days before full bloom (DBF). Morphological and molecular effects of GA application were examined on the induction of parthenocarpic fruit development. With GA application, ovaries were enlarged and pollen tube growth was completely inhibited. Vitis GA oxidase enzymes, key determinants for GA level, were characterized through phylogenetic analysis with Arabidopsis GA oxidase enzymes. Five VvGA 20-oxidase (VvGA20ox), three VvGA 3-oxidase (VvGA3ox), and nine VvGA 2-oxidase (VvGA2ox) family proteins, and one VvGA methyltransferase (VvGAMT) and one Vitis cytochrome P450 714A1 proteins were identified, and their expression patterns were analyzed during inflorescence development from 14 DBF to 5 days after full bloom (DAF). VvGA2ox1, VvGA20ox3, and VvGA3ox2 were the most abundantly expressed genes in each gene family at 7, 5, and 2 DBF, respectively. Following GA application at 14 DBF inducing seedlessness, GA catabolic genes such as VvGAMT2, VvGA2ox3, and VvGA2ox4 were up-regulated at 12 DBF, full bloom, and 5 DAF, respectively. Conversely, most GA biosynthetic genes, VvGA20oxs and VvGA3oxs, were down-regulated at near full bloom, and the timing of their peak expression was changed. These results suggest that GA application at pre-bloom changes the GA biosynthesis into GA catabolic pathway at near full bloom by altering the transcription level and timing of GA oxidase genes during grapevine inflorescence development.

  3. Lipid rafts as major platforms for signaling regulation in cancer.

    PubMed

    Mollinedo, Faustino; Gajate, Consuelo

    2015-01-01

    Cell signaling does not apparently occur randomly over the cell surface, but it seems to be integrated very often into cholesterol-rich membrane domains, termed lipid rafts. Membrane lipid rafts are highly ordered membrane domains that are enriched in cholesterol, sphingolipids and gangliosides, and behave as major modulators of membrane geometry, lateral movement of molecules, traffic and signal transduction. Because the lipid and protein composition of membrane rafts differs from that of the surrounding membrane, they provide an additional level of compartmentalization, serving as sorting platforms and hubs for signal transduction proteins. A wide number of signal transduction processes related to cell adhesion, migration, as well as to cell survival and proliferation, which play major roles in cancer development and progression, are dependent on lipid rafts. Despite lipid rafts harbor mainly critical survival signaling pathways, including insulin-like growth factor I (IGF-I)/phosphatidylinositol 3-kinase (PI3K)/Akt signaling, recent evidence suggests that these membrane domains can also house death receptor-mediated apoptotic signaling. Recruitment of this death receptor signaling pathway in membrane rafts can be pharmacologically modulated, thus opening up the possibility to regulate cell demise with a therapeutic use. The synthetic ether phospholipid edelfosine shows a high affinity for cholesterol and accumulates in lipid rafts in a number of malignant hematological cells, leading to an efficient in vitro and in vivo antitumor activity by inducing translocation of death receptors and downstream signaling molecules to these membrane domains. Additional antitumor drugs have also been shown to act, at least in part, by recruiting death receptors in lipid rafts. The partition of death receptors together with downstream apoptotic signaling molecules in membrane rafts has led us to postulate the concept of a special liquid-ordered membrane platform coined as

  4. Signaling networks regulating leukocyte podosome dynamics and function

    PubMed Central

    Dovas, Athanassios; Cox, Dianne

    2011-01-01

    Podosomes are ventral adhesion structures prominent in cells of the myeloid lineage. A common aspect of these cells is that they are highly motile and are required to traverse multiple tissue barriers in order to perform their functions. Recently podosomes have gathered attention from researchers as important cellular structures that can influence cell adhesion, motility and matrix remodeling. Adhesive and soluble ligands act via transmembrane receptors and propagate signals to the leukocyte cytoskeleton via small G proteins of the Rho family, tyrosine kinases and scaffold proteins and are able to induce podosome formation and rearrangements. Manipulation of the signals that regulate podosome formation and dynamics can therefore be a strategy to interfere with leukocyte functions in a multitude of pathological settings, such as infections, atherosclerosis and arthritis. Here, we review the major signaling molecules that act in the formation and regulation of podosomes. PMID:21342664

  5. Copper as a key regulator of cell signalling pathways.

    PubMed

    Grubman, Alexandra; White, Anthony R

    2014-05-22

    Copper is an essential element in many biological processes. The critical functions associated with copper have resulted from evolutionary harnessing of its potent redox activity. This same property also places copper in a unique role as a key modulator of cell signal transduction pathways. These pathways are the complex sequence of molecular interactions that drive all cellular mechanisms and are often associated with the interplay of key enzymes including kinases and phosphatases but also including intracellular changes in pools of smaller molecules. A growing body of evidence is beginning to delineate the how, when and where of copper-mediated control over cell signal transduction. This has been driven by research demonstrating critical changes to copper homeostasis in many disorders including cancer and neurodegeneration and therapeutic potential through control of disease-associated cell signalling changes by modulation of copper-protein interactions. This timely review brings together for the first time the diverse actions of copper as a key regulator of cell signalling pathways and discusses the potential strategies for controlling disease-associated signalling processes using copper modulators. It is hoped that this review will provide a valuable insight into copper as a key signal regulator and stimulate further research to promote our understanding of copper in disease and therapy.

  6. Gibberellin driven growth in elf3 mutants requires PIF4 and PIF5

    PubMed Central

    Filo, Julie; Wu, Austin; Eliason, Erica; Richardson, Timothy; Thines, Bryan C; Harmon, Frank G

    2015-01-01

    The regulatory connections between the circadian clock and hormone signaling are essential to understand, as these two regulatory processes work together to time growth processes relative to predictable environmental events. Gibberellins (GAs) are phytohormones that control many growth processes throughout all stages of the plant life cycle, including germination and flowering. An increasing number of examples demonstrate that the circadian clock directly influences GA biosynthesis and signaling. EARLY FLOWERING 3 (ELF3) participates in a tripartite transcriptional complex known as the Evening Complex (EC). In this capacity, ELF3 is fundamental to core circadian clock activity, as well as time-of-day specific regulation of genes directly responsible for growth control, namely the PHYTOCHROME INTERACTING FACTOR 4 (PIF4) and PIF5 genes. Here we show that the GA biosynthesis inhibitor paclobutrazol substantially reduces the long hypocotyl and petiole phenotypes of Arabidopsis elf3 mutants. In addition, loss of ELF3 activity causes upregulation of the key GA biosynthesis genes GA20ox1 and GA20ox2. Moreover, GA20ox1 and GA20ox2 expression depends strongly on the redundant activities of PIF4 and PIF5. These findings indicate that the defining growth phenotypes of elf3 mutants arise from altered GA biosynthesis due to misregulation of PIF4 and PIF5. These observations agree with recent work linking increased GA production with the elongated growth phenotypes of the barley elf3 mutant. Thus, the role of the EC in regulation of GA biosynthesis and signaling in eudicots is shared with monocots and, therefore, is a highly conserved mechanism for growth control. PMID:25738547

  7. YAP regulates neuronal differentiation through Sonic hedgehog signaling pathway

    SciTech Connect

    Lin, Yi-Ting; Ding, Jing-Ya; Li, Ming-Yang; Yeh, Tien-Shun; Wang, Tsu-Wei; Yu, Jenn-Yah

    2012-09-10

    Tight regulation of cell numbers by controlling cell proliferation and apoptosis is important during development. Recently, the Hippo pathway has been shown to regulate tissue growth and organ size in Drosophila. In mammalian cells, it also affects cell proliferation and differentiation in various tissues, including the nervous system. Interplay of several signaling cascades, such as Notch, Wnt, and Sonic Hedgehog (Shh) pathways, control cell proliferation during neuronal differentiation. However, it remains unclear whether the Hippo pathway coordinates with other signaling cascades in regulating neuronal differentiation. Here, we used P19 cells, a mouse embryonic carcinoma cell line, as a model to study roles of YAP, a core component of the Hippo pathway, in neuronal differentiation. P19 cells can be induced to differentiate into neurons by expressing a neural bHLH transcription factor gene Ascl1. Our results showed that YAP promoted cell proliferation and inhibited neuronal differentiation. Expression of Yap activated Shh but not Wnt or Notch signaling activity during neuronal differentiation. Furthermore, expression of Yap increased the expression of Patched homolog 1 (Ptch1), a downstream target of the Shh signaling. Knockdown of Gli2, a transcription factor of the Shh pathway, promoted neuronal differentiation even when Yap was over-expressed. We further demonstrated that over-expression of Yap inhibited neuronal differentiation in primary mouse cortical progenitors and Gli2 knockdown rescued the differentiation defect in Yap over-expressing cells. In conclusion, our study reveals that Shh signaling acts downstream of YAP in regulating neuronal differentiation. -- Highlights: Black-Right-Pointing-Pointer YAP promotes cell proliferation and inhibits neuronal differentiation in P19 cells. Black-Right-Pointing-Pointer YAP promotes Sonic hedgehog signaling activity during neuronal differentiation. Black-Right-Pointing-Pointer Knockdown of Gli2 rescues the Yap

  8. Role of reactive oxygen species produced by NADPH oxidase in gibberellin biosynthesis during barley seed germination.

    PubMed

    Kai, Kyohei; Kasa, Shinsuke; Sakamoto, Masatsugu; Aoki, Nozomi; Watabe, Gaku; Yuasa, Takashi; Iwaya-Inoue, Mari; Ishibashi, Yushi

    2016-05-01

    NADPH oxidase catalyzes the production of the superoxide anion (O2(-)), a reactive oxygen species (ROS), and regulates the germination of barley (Hordeum vulgare L.). Diphenyleneiodonium (DPI) chloride, an NADPH oxidase inhibitor, delayed barley germination, and exogenous H2O2 (an ROS) partially rescued it. Six enzymes, ent-copalyl diphosphate synthase (CPS), ent-kaurene synthase (KS), ent-kaurene oxidase (KO), ent-kaurenoic acid oxidase (KAO), GA20-oxidase (GA20ox) and GA3-oxidase (GA3ox), catalyze the transformation of trans-geranylgeranyl diphosphate to active gibberellin, which promotes germination. Exogenous H2O2 promoted the expressions of HvKAO1 and HvGA3ox1 in barley embryos. These results suggest that ROS produced by NADPH oxidase are involved in gibberellin biosynthesis through the regulation of HvKAO1 and HvGA3ox1.

  9. Role of reactive oxygen species produced by NADPH oxidase in gibberellin biosynthesis during barley seed germination.

    PubMed

    Kai, Kyohei; Kasa, Shinsuke; Sakamoto, Masatsugu; Aoki, Nozomi; Watabe, Gaku; Yuasa, Takashi; Iwaya-Inoue, Mari; Ishibashi, Yushi

    2016-05-01

    NADPH oxidase catalyzes the production of the superoxide anion (O2(-)), a reactive oxygen species (ROS), and regulates the germination of barley (Hordeum vulgare L.). Diphenyleneiodonium (DPI) chloride, an NADPH oxidase inhibitor, delayed barley germination, and exogenous H2O2 (an ROS) partially rescued it. Six enzymes, ent-copalyl diphosphate synthase (CPS), ent-kaurene synthase (KS), ent-kaurene oxidase (KO), ent-kaurenoic acid oxidase (KAO), GA20-oxidase (GA20ox) and GA3-oxidase (GA3ox), catalyze the transformation of trans-geranylgeranyl diphosphate to active gibberellin, which promotes germination. Exogenous H2O2 promoted the expressions of HvKAO1 and HvGA3ox1 in barley embryos. These results suggest that ROS produced by NADPH oxidase are involved in gibberellin biosynthesis through the regulation of HvKAO1 and HvGA3ox1. PMID:27110861

  10. Olfactory plasticity is regulated by pheromonal signaling in Caenorhabditis elegans

    PubMed Central

    Yamada, Koji; Hirotsu, Takaaki; Matsuki, Masahiro; Butcher, Rebecca A; Tomioka, Masahiro; Ishihara, Takeshi; Clardy, Jon; Kunitomo, Hirofumi; Iino, Yuichi

    2011-01-01

    Population density-dependent dispersal is a well-characterized strategy of animal behavior in which dispersal rate increases when population density is higher. C. elegans shows positive chemotaxis to a set of odorants, but the chemotaxis switches from attraction to dispersal after prolonged exposure to the odorants. We show here that this plasticity of olfactory behavior is dependent on population density and this regulation is mediated by pheromonal signaling. We show that a peptide SNET-1 negatively regulates olfactory plasticity and its expression is down-regulated by the pheromone. NEP-2, a homologue of the extracellular peptidase neprilysin, antagonizes SNET-1 and this function is essential for olfactory plasticity. These results suggest that population density information is transmitted through the external pheromone and endogenous peptide signaling to modulate chemotactic behavior. PMID:20929849

  11. TGF-β Signaling in Stem Cell Regulation.

    PubMed

    Li, Wenlin; Wei, Wanguo; Ding, Sheng

    2016-01-01

    The transforming growth factor-β (TGF-β) family of cytokines, including TGF-β, bone morphogenic proteins (BMPs), and activin/nodal, is a group of crucial morphogens in embryonic development, and plays key roles in modulating stem/progenitor cell fate. TGF-β signaling is essential in maintaining the pluripotency of human pluripotent stem cells (hPSCs), including both human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs), and its modulation can direct lineage-specific differentiation. Recent studies also demonstrate TGF-β signaling negatively regulates reprogramming and inhibition of TGF-β signaling can enhance reprogramming through facilitating mesenchymal-to-epithelial transition (MET). This chapter introduces methods of modulating somatic cell reprogramming to iPSCs and neural induction from hPSCs through modulating TGF-β signaling by chemical approaches.

  12. Mechanosensitive β-catenin signaling regulates lymphatic vascular development.

    PubMed

    Cha, Boksik; Srinivasan, R Sathish

    2016-08-01

    The Wnt/β-catenin signaling is an evolutionarily conserved pathway that plays a pivotal role in embryonic development and adult homeostasis. However, we have limited information about the involvement of Wnt/β-catenin signaling in the lymphatic vascular system that regulates fluid homeostasis by absorbing interstitial fluid and returning it to blood circulation. In this recent publication we report that canonical Wnt/β-catenin signaling is highly active and critical for the formation of lymphovenus valves (LVVs) and lymphatic valves (LVs). β-catenin directly associates with the regulatory elements of the lymphedema-associated transcription factor, FOXC2 and activates its expression in an oscillatory shear stress (OSS)-dependent manner. The phenotype of β-catenin null embryos was rescued by FOXC2 overexpression. These results suggest that Wnt/β-catenin signaling is a mechanotransducer that links fluid force with lymphatic vascular development. [BMB Reports 2016; 49(8): 403-404]. PMID:27418286

  13. Karrikins delay soybean seed germination by mediating abscisic acid and gibberellin biogenesis under shaded conditions

    PubMed Central

    Meng, Yongjie; Chen, Feng; Shuai, Haiwei; Luo, Xiaofeng; Ding, Jun; Tang, Shengwen; Xu, Shuanshuan; Liu, Jianwei; Liu, Weiguo; Du, Junbo; Liu, Jiang; Yang, Feng; Sun, Xin; Yong, Taiwen; Wang, Xiaochun; Feng, Yuqi; Shu, Kai; Yang, Wenyu

    2016-01-01

    Karrikins (KAR) are a class of signal compounds, discovered in wildfire smoke, which affect seed germination. Currently, numerous studies have focused on the model plant Arabidopsis in the KAR research field, rather than on crops. Thus the regulatory mechanisms underlying KAR regulation of crop seed germination are largely unknown. Here, we report that KAR delayed soybean seed germination through enhancing abscisic acid (ABA) biosynthesis, while impairing gibberellin (GA) biogenesis. Interestingly, KAR only retarded soybean seed germination under shaded conditions, rather than under dark and white light conditions, which differs from in Arabidopsis. Phytohormone quantification showed that KAR enhanced ABA biogenesis while impairing GA biosynthesis during the seed imbibition process, and subsequently, the ratio of active GA4 to ABA was significantly reduced. Further qRT-PCR analysis showed that the transcription pattern of genes involved in ABA and GA metabolic pathways are consistent with the hormonal measurements. Finally, fluridone, an ABA biogenesis inhibitor, remarkably rescued the delayed-germination phenotype of KAR-treatment; and paclobutrazol, a GA biosynthesis inhibitor, inhibited soybean seed germination. Taken together, these evidences suggest that KAR inhibit soybean seed germination by mediating the ratio between GA and ABA biogenesis. PMID:26902640

  14. Karrikins delay soybean seed germination by mediating abscisic acid and gibberellin biogenesis under shaded conditions.

    PubMed

    Meng, Yongjie; Chen, Feng; Shuai, Haiwei; Luo, Xiaofeng; Ding, Jun; Tang, Shengwen; Xu, Shuanshuan; Liu, Jianwei; Liu, Weiguo; Du, Junbo; Liu, Jiang; Yang, Feng; Sun, Xin; Yong, Taiwen; Wang, Xiaochun; Feng, Yuqi; Shu, Kai; Yang, Wenyu

    2016-01-01

    Karrikins (KAR) are a class of signal compounds, discovered in wildfire smoke, which affect seed germination. Currently, numerous studies have focused on the model plant Arabidopsis in the KAR research field, rather than on crops. Thus the regulatory mechanisms underlying KAR regulation of crop seed germination are largely unknown. Here, we report that KAR delayed soybean seed germination through enhancing abscisic acid (ABA) biosynthesis, while impairing gibberellin (GA) biogenesis. Interestingly, KAR only retarded soybean seed germination under shaded conditions, rather than under dark and white light conditions, which differs from in Arabidopsis. Phytohormone quantification showed that KAR enhanced ABA biogenesis while impairing GA biosynthesis during the seed imbibition process, and subsequently, the ratio of active GA4 to ABA was significantly reduced. Further qRT-PCR analysis showed that the transcription pattern of genes involved in ABA and GA metabolic pathways are consistent with the hormonal measurements. Finally, fluridone, an ABA biogenesis inhibitor, remarkably rescued the delayed-germination phenotype of KAR-treatment; and paclobutrazol, a GA biosynthesis inhibitor, inhibited soybean seed germination. Taken together, these evidences suggest that KAR inhibit soybean seed germination by mediating the ratio between GA and ABA biogenesis.

  15. Dendrosomatic Sonic Hedgehog Signaling in Hippocampal Neurons Regulates Axon Elongation

    PubMed Central

    Petralia, Ronald S.; Ott, Carolyn; Wang, Ya-Xian; Lippincott-Schwartz, Jennifer; Mattson, Mark P.

    2015-01-01

    The presence of Sonic Hedgehog (Shh) and its signaling components in the neurons of the hippocampus raises a question about what role the Shh signaling pathway may play in these neurons. We show here that activation of the Shh signaling pathway stimulates axon elongation in rat hippocampal neurons. This Shh-induced effect depends on the pathway transducer Smoothened (Smo) and the transcription factor Gli1. The axon itself does not respond directly to Shh; instead, the Shh signal transduction originates from the somatodendritic region of the neurons and occurs in neurons with and without detectable primary cilia. Upon Shh stimulation, Smo localization to dendrites increases significantly. Shh pathway activation results in increased levels of profilin1 (Pfn1), an actin-binding protein. Mutations in Pfn1's actin-binding sites or reduction of Pfn1 eliminate the Shh-induced axon elongation. These findings indicate that Shh can regulate axon growth, which may be critical for development of hippocampal neurons. SIGNIFICANCE STATEMENT Although numerous signaling mechanisms have been identified that act directly on axons to regulate their outgrowth, it is not known whether signals transduced in dendrites may also affect axon outgrowth. We describe here a transcellular signaling pathway in embryonic hippocampal neurons in which activation of Sonic Hedgehog (Shh) receptors in dendrites stimulates axon growth. The pathway involves the dendritic-membrane-associated Shh signal transducer Smoothened (Smo) and the transcription factor Gli, which induces the expression of the gene encoding the actin-binding protein profilin 1. Our findings suggest scenarios in which stimulation of Shh in dendrites results in accelerated outgrowth of the axon, which therefore reaches its presumptive postsynaptic target cell more quickly. By this mechanism, Shh may play critical roles in the development of hippocampal neuronal circuits. PMID:26658865

  16. The DELLA motif is essential for gibberellin-induced degradation of RGA.

    PubMed

    Dill, A; Jung, H S; Sun, T P

    2001-11-20

    RGA and GAI are homologous genes that encode putative transcriptional regulators that repress gibberellin (GA) signaling in Arabidopsis. Previously we showed that the green fluorescent protein (GFP)-RGA fusion protein is localized to the nucleus in transgenic Arabidopsis, and expression of this fusion protein rescues the rga null mutation. The GA signal seems to derepress the GA response pathway by degrading the repressor protein RGA. The GA-insensitive, semidominant, semidwarf gai-1 mutant encodes a mutant protein with a 17-amino acid deletion within the DELLA domain of GAI. It was hypothesized that this mutation turns the gai protein into a constitutive repressor of GA signaling. Because the sequences missing in gai-1 are identical between GAI and RGA, we tested whether an identical mutation (rga-Delta 17) in the RGA gene would confer a phenotype similar to gai-1. We demonstrated that expression of rga-Delta 17 or GFP-(rga-Delta 17) under the control of the RGA promoter caused a GA-unresponsive severe dwarf phenotype in transgenic Arabidopsis. Analysis of the mRNA levels of a GA biosynthetic gene, GA4, showed that the feedback control of GA biosynthesis in these transgenic plants was less responsive to GA than that in wild type. Immunoblot and confocal microscopy analyses indicated that rga-Delta17 and GFP-(rga-Delta 17) proteins were resistant to degradation after GA application. Our results illustrate that the DELLA domain in RGA plays a regulatory role in GA-induced degradation of RGA. Deletion of this region stabilizes the rga-Delta 17 mutant protein, and regardless of the endogenous GA status rga-Delta 17 becomes a constitutively active repressor of GA signaling.

  17. Wounding induces changes in cytokinin and auxin content in potato tuber, but does not induce formation of gibberellins

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cytokinin, auxin and gibberellin content in resting and wound-responding potato tuber are not clearly defined. Consequently, the coordination and possible networking of these classical hormones in the regulation of wound-healing processes are poorly understood. Using a well-defined tuber wound-hea...

  18. The transcription factor Zeb2 regulates signaling in mast cells.

    PubMed

    Barbu, Emilia Alina; Zhang, Juan; Berenstein, Elsa H; Groves, Jacqueline R; Parks, Lauren M; Siraganian, Reuben P

    2012-06-15

    Mast cell activation results in the release of stored and newly synthesized inflammatory mediators. We found that Zeb2 (also named Sip1, Zfhx1b), a zinc finger transcription factor, regulates both early and late mast cell responses. Transfection with small interfering RNA (siRNA) reduced Zeb2 expression and resulted in decreased FcεRI-mediated degranulation, with a parallel reduction in receptor-induced activation of NFAT and NF-κB transcription factors, but an enhanced response to the LPS-mediated activation of NF-κB. There was variable and less of a decrease in the Ag-mediated release of the cytokines TNF-α, IL-13, and CCL-4. This suggests that low Zeb2 expression differentially regulates signaling pathways in mast cells. Multiple phosphorylation events were impaired that affected molecules both at early and late events in the signaling pathway. The Zeb2 siRNA-treated mast cells had altered cell cycle progression, as well as decreased expression of several molecules including cell surface FcεRI and its β subunit, Gab2, phospholipase-Cγ1, and phospholipase-Cγ2, all of which are required for receptor-induced signal transduction. The results indicate that the transcription factor Zeb2 controls the expression of molecules thereby regulating signaling in mast cells.

  19. Notch signaling regulates gastric antral LGR5 stem cell function

    PubMed Central

    Demitrack, Elise S; Gifford, Gail B; Keeley, Theresa M; Carulli, Alexis J; VanDussen, Kelli L; Thomas, Dafydd; Giordano, Thomas J; Liu, Zhenyi; Kopan, Raphael; Samuelson, Linda C

    2015-01-01

    The major signaling pathways regulating gastric stem cells are unknown. Here we report that Notch signaling is essential for homeostasis of LGR5+ antral stem cells. Pathway inhibition reduced proliferation of gastric stem and progenitor cells, while activation increased proliferation. Notch dysregulation also altered differentiation, with inhibition inducing mucous and endocrine cell differentiation while activation reduced differentiation. Analysis of gastric organoids demonstrated that Notch signaling was intrinsic to the epithelium and regulated growth. Furthermore, in vivo Notch manipulation affected the efficiency of organoid initiation from glands and single Lgr5-GFP stem cells, suggesting regulation of stem cell function. Strikingly, constitutive Notch activation in LGR5+ stem cells induced tissue expansion via antral gland fission. Lineage tracing using a multi-colored reporter demonstrated that Notch-activated stem cells rapidly generate monoclonal glands, suggesting a competitive advantage over unmanipulated stem cells. Notch activation was associated with increased mTOR signaling, and mTORC1 inhibition normalized NICD-induced increases in proliferation and gland fission. Chronic Notch activation induced undifferentiated, hyper-proliferative polyps, suggesting that aberrant activation of Notch in gastric stem cells may contribute to gastric tumorigenesis. PMID:26271103

  20. Regulation of Cardiac Hypertrophic Signaling by Prolyl Isomerase Pin1

    PubMed Central

    Toko, Haruhiro; Konstandin, Mathias H.; Doroudgar, Shirin; Ormachea, Lucia; Joyo, Eri; Joyo, Anya Y.; Din, Shabana; Gude, Natalie A.; Collins, Brett; Völkers, Mirko; Thuerauf, Donna J.; Glembotski, Christopher C.; Chen, Chun-Hau; Lu, Kun Ping; Müller, Oliver J.; Uchida, Takafumi; Sussman, Mark A.

    2013-01-01

    Rationale Cardiac hypertrophy results from the complex interplay of differentially regulated cascades based upon the phosphorylation status of involved signaling molecules. While numerous critical regulatory kinases and phosphatases have been identified in the myocardium, the intracellular mechanism for temporal regulation of signaling duration and intensity remains obscure. In the non-myocyte context, control of folding, activity, and stability of proteins is mediated by the prolyl isomerase Pin1, but the role of Pin1 in the heart is unknown. Objective To establish the role of Pin1 in the heart. Methods and Results Here we show that either genetic deletion or cardiac over-expression of Pin1 blunts hypertrophic responses induced by transaortic constriction and consequent cardiac failure in vivo. Mechanistically, we find that Pin1 directly binds to Akt, MEK and Raf-1 in cultured cardiomyocytes following hypertrophic stimulation. Furthermore, loss of Pin1 leads to diminished hypertrophic signaling of Akt and MEK, while over-expression of Pin1 increases Raf-1 phosphorylation on the auto-inhibitory site Ser259 leading to reduced MEK activation. Conclusions Collectively, these data support a role for Pin1 as a central modulator of the intensity and duration of two major hypertrophic signaling pathways, thereby providing a novel target for regulation and control of cardiac hypertrophy. PMID:23487407

  1. TGF-β Signaling Regulates Cementum Formation through Osterix Expression

    PubMed Central

    Choi, Hwajung; Ahn, Yu-Hyun; Kim, Tak-Heun; Bae, Cheol-Hyeon; Lee, Jeong-Chae; You, Hyung-Keun; Cho, Eui-Sic

    2016-01-01

    TGF-β/BMPs have widely recognized roles in mammalian development, including in bone and tooth formation. To define the functional relevance of the autonomous requirement for TGF-β signaling in mouse tooth development, we analyzed osteocalcin-Cre mediated Tgfbr2 (OCCreTgfbr2fl/fl) conditional knockout mice, which lacks functional TGF-β receptor II (TβRII) in differentiating cementoblasts and cementocytes. Strikingly, OCCreTgfbr2fl/fl mutant mice exhibited a sharp reduction in cellular cementum mass with reduced matrix secretion and mineral apposition rates. To explore the molecular mechanisms underlying the roles of TGF-β signaling through TβRII in cementogenesis, we established a mouse cementoblast model with decreased TβRII expression using OCCM-30 cells. Interestingly, the expression of osterix (Osx), one of the major regulators of cellular cementum formation, was largely decreased in OCCM-30 cells lacking TβRII. Consequently, in those cells, functional ALP activity and the expression of genes associated with cementogenesis were reduced and the cells were partially rescued by Osx transduction. We also found that TGF-β signaling directly regulates Osx expression through a Smad-dependent pathway. These findings strongly suggest that TGF-β signaling plays a major role as one of the upstream regulators of Osx in cementoblast differentiation and cementum formation. PMID:27180803

  2. SEPT4 is regulated by the Notch signaling pathway.

    PubMed

    Liu, Wenbin

    2012-04-01

    Notch receptor-mediated signaling is an evolutionarily conserved pathway that regulates diverse developmental processes and its dysregulation has been implicated in a variety of developmental disorders and cancers. Notch functions in these processes by activating expression of its target genes. Septin 4 (SEPT4) is a polymerizing GTP-binding protein that serves as scaffold for diverse molecules and is involved in cell proliferation and apoptosis. After activation of the Notch signal, the expression of SEPT4 is up-regulated and cell proliferation is inhibited. When the Notch signal is inhibited by the CSL (CBF1/Su(H)/Lag-1)-binding-domain-negative Mastermind-like protein 1, the expression of SEPT4 is down-regulated, proliferation and colony formation of cells are promoted, but cell adhesion ability is decreased. Nevertheless, the SEPT4 expression is not affected after knock-down of CSL. Meanwhile, if SEPT4 activity is inhibited through RNA interference, the protein level and activity of NOTCH1 remains unchanged, but cell proliferation is dysregulated. This indicates that SEPT4 is a Notch target gene. This relationship between Notch signaling pathway and SEPT4 offers a potential basis for further study of developmental control and carcinogenesis. PMID:21938432

  3. Stress regulates endocannabinoid-CB1 receptor signaling.

    PubMed

    Hillard, Cecilia J

    2014-10-01

    The CB1 cannabinoid receptor is a G protein coupled receptor that is widely expressed throughout the brain. The endogenous ligands for the CB1 receptor (endocannabinoids) are N-arachidonylethanolamine and 2-arachidonoylglycerol; together the endocannabinoids and CB1R subserve activity dependent, retrograde inhibition of neurotransmitter release in the brain. Deficiency of CB1 receptor signaling is associated with anhedonia, anxiety, and persistence of negative memories. CB1 receptor-endocannabinoid signaling is activated by stress and functions to buffer or dampen the behavioral and endocrine effects of acute stress. Its role in regulation of neuronal responses is more complex. Chronic variable stress exposure reduces endocannabinoid-CB1 receptor signaling and it is hypothesized that the resultant deficiency in endocannabinoid signaling contributes to the negative consequences of chronic stress. On the other hand, repeated exposure to the same stress can sensitize CB1 receptor signaling, resulting in dampening of the stress response. Data are reviewed that support the hypothesis that CB1 receptor signaling is stress responsive and that maintaining robust endocannabinoid/CB1 receptor signaling provides resilience against the development of stress-related pathologies.

  4. Phosphoinositides Regulate Ciliary Protein Trafficking to Modulate Hedgehog Signaling

    PubMed Central

    Roberson, Elle C.; Garcia, Galo; Abedin, Monika; Schurmans, Stéphane; Inoue, Takanari; Reiter, Jeremy F.

    2015-01-01

    SUMMARY Primary cilia interpret vertebrate Hedgehog (Hh) signals. Why cilia are essential for signaling is unclear. One possibility is that some forms of signaling require a distinct membrane lipid composition, found at cilia. We found that the ciliary membrane contains a particular phosphoinositide, PI(4)P, whereas a different phosphoinositide, PI(4,5)P2, is restricted to the membrane of the ciliary base. This distribution is created by Inpp5e, a ciliary phosphoinositide 5-phosphatase. Without Inpp5e, ciliary PI(4,5)P2 levels are elevated and Hh signaling is disrupted. Inpp5e limits the ciliary levels of inhibitors of Hh signaling, including Gpr161 and the PI(4,5)P2-binding protein Tulp3. Increasing ciliary PI(4,5)P2 levels or conferring the ability to bind PI(4)P on Tulp3 increases the ciliary localization of Tulp3. Lowering Tulp3 in cells lacking Inpp5e reduces ciliary Gpr161 levels and restores Hh signaling. Therefore, Inpp5e regulates ciliary membrane phosphoinositide composition, and Tulp3 reads out ciliary phosphoinositides to control ciliary protein localization, enabling Hh signaling. PMID:26305592

  5. Cytokinin signaling regulates pavement cell morphogenesis in Arabidopsis.

    PubMed

    Li, Hongjiang; Xu, Tongda; Lin, Deshu; Wen, Mingzhang; Xie, Mingtang; Duclercq, Jérôme; Bielach, Agnieszka; Kim, Jungmook; Reddy, G Venugopala; Zuo, Jianru; Benková, Eva; Friml, Jiří; Guo, Hongwei; Yang, Zhenbiao

    2013-02-01

    The puzzle piece-shaped Arabidopsis leaf pavement cells (PCs) with interdigitated lobes and indents is a good model system to investigate the mechanisms that coordinate cell polarity and shape formation within a tissue. Auxin has been shown to coordinate the interdigitation by activating ROP GTPase-dependent signaling pathways. To identify additional components or mechanisms, we screened for mutants with abnormal PC morphogenesis and found that cytokinin signaling regulates the PC interdigitation pattern. Reduction in cytokinin accumulation and defects in cytokinin signaling (such as in ARR7-over-expressing lines, the ahk3cre1 cytokinin receptor mutant, and the ahp12345 cytokinin signaling mutant) enhanced PC interdigitation, whereas over-production of cytokinin and over-activation of cytokinin signaling in an ARR20 over-expression line delayed or abolished PC interdigitation throughout the cotyledon. Genetic and biochemical analyses suggest that cytokinin signaling acts upstream of ROPs to suppress the formation of interdigitated pattern. Our results provide novel mechanistic understanding of the pathways controlling PC shape and uncover a new role for cytokinin signaling in cell morphogenesis.

  6. Beclin 1 regulates growth factor receptor signaling in breast cancer.

    PubMed

    Rohatgi, R A; Janusis, J; Leonard, D; Bellvé, K D; Fogarty, K E; Baehrecke, E H; Corvera, S; Shaw, L M

    2015-10-16

    Beclin 1 is a haploinsufficient tumor suppressor that is decreased in many human tumors. The function of beclin 1 in cancer has been attributed primarily to its role in the degradative process of macroautophagy. However, beclin 1 is a core component of the vacuolar protein sorting 34 (Vps34)/class III phosphatidylinositoI-3 kinase (PI3KC3) and Vps15/p150 complex that regulates multiple membrane-trafficking events. In the current study, we describe an alternative mechanism of action for beclin 1 in breast cancer involving its control of growth factor receptor signaling. We identify a specific stage of early endosome maturation that is regulated by beclin 1, the transition of APPL1-containing phosphatidyIinositol 3-phosphate-negative (PI3P(-)) endosomes to PI3P(+) endosomes. Beclin 1 regulates PI3P production in response to growth factor stimulation to control the residency time of growth factor receptors in the PI3P(-)/APPL(+)-signaling-competent compartment. As a result, suppression of BECN1 sustains growth factor-stimulated AKT and ERK activation resulting in increased breast carcinoma cell invasion. In human breast tumors, beclin 1 expression is inversely correlated with AKT and ERK phosphorylation. Our data identify a novel role for beclin 1 in regulating growth factor signaling and reveal a mechanism by which loss of beclin 1 expression would enhance breast cancer progression.

  7. EIN2-directed translational regulation of ethylene signaling in Arabidopsis.

    PubMed

    Li, Wenyang; Ma, Mengdi; Feng, Ying; Li, Hongjiang; Wang, Yichuan; Ma, Yutong; Li, Mingzhe; An, Fengying; Guo, Hongwei

    2015-10-22

    Ethylene is a gaseous phytohormone that plays vital roles in plant growth and development. Previous studies uncovered EIN2 as an essential signal transducer linking ethylene perception on ER to transcriptional regulation in the nucleus through a "cleave and shuttle" model. In this study, we report another mechanism of EIN2-mediated ethylene signaling, whereby EIN2 imposes the translational repression of EBF1 and EBF2 mRNA. We find that the EBF1/2 3' UTRs mediate EIN2-directed translational repression and identify multiple poly-uridylates (PolyU) motifs as functional cis elements of 3' UTRs. Furthermore, we demonstrate that ethylene induces EIN2 to associate with 3' UTRs and target EBF1/2 mRNA to cytoplasmic processing-body (P-body) through interacting with multiple P-body factors, including EIN5 and PABs. Our study illustrates translational regulation as a key step in ethylene signaling and presents mRNA 3' UTR functioning as a "signal transducer" to sense and relay cellular signaling in plants. VIDEO ABSTRACT.

  8. Interactions between ethylene, gibberellins, and brassinosteroids in the development of rhizobial and mycorrhizal symbioses of pea

    PubMed Central

    Foo, Eloise; McAdam, Erin L.; Weller, James L.; Reid, James B.

    2016-01-01

    The regulation of arbuscular mycorrhizal development and nodulation involves complex interactions between the plant and its microbial symbionts. In this study, we use the recently identified ethylene-insensitive ein2 mutant in pea (Pisum sativum L.) to explore the role of ethylene in the development of these symbioses. We show that ethylene acts as a strong negative regulator of nodulation, confirming reports in other legumes. Minor changes in gibberellin1 and indole-3-acetic acid levels in ein2 roots appear insufficient to explain the differences in nodulation. Double mutants produced by crosses between ein2 and the severely gibberellin-deficient na and brassinosteroid-deficient lk mutants showed increased nodule numbers and reduced nodule spacing compared with the na and lk single mutants, but nodule numbers and spacing were typical of ein2 plants, suggesting that the reduced number of nodules in na and lk plants is largely due to the elevated ethylene levels previously reported in these mutants. We show that ethylene can also negatively regulate mycorrhizae development when ethylene levels are elevated above basal levels, consistent with a role for ethylene in reducing symbiotic development under stressful conditions. In contrast to the hormone interactions in nodulation, ein2 does not override the effect of lk or na on the development of arbuscular mycorrhizae, suggesting that brassinosteroids and gibberellins influence this process largely independently of ethylene. PMID:26889005

  9. Interactions between ethylene, gibberellins, and brassinosteroids in the development of rhizobial and mycorrhizal symbioses of pea.

    PubMed

    Foo, Eloise; McAdam, Erin L; Weller, James L; Reid, James B

    2016-04-01

    The regulation of arbuscular mycorrhizal development and nodulation involves complex interactions between the plant and its microbial symbionts. In this study, we use the recently identified ethylene-insensitive ein2 mutant in pea (Pisum sativum L.) to explore the role of ethylene in the development of these symbioses. We show that ethylene acts as a strong negative regulator of nodulation, confirming reports in other legumes. Minor changes in gibberellin1 and indole-3-acetic acid levels in ein2 roots appear insufficient to explain the differences in nodulation. Double mutants produced by crosses between ein2 and the severely gibberellin-deficient na and brassinosteroid-deficient lk mutants showed increased nodule numbers and reduced nodule spacing compared with the na and lk single mutants, but nodule numbers and spacing were typical of ein2 plants, suggesting that the reduced number of nodules innaandlkplants is largely due to the elevated ethylene levels previously reported in these mutants. We show that ethylene can also negatively regulate mycorrhizae development when ethylene levels are elevated above basal levels, consistent with a role for ethylene in reducing symbiotic development under stressful conditions. In contrast to the hormone interactions in nodulation, ein2 does not override the effect of lk or na on the development of arbuscular mycorrhizae, suggesting that brassinosteroids and gibberellins influence this process largely independently of ethylene.

  10. Bmp signaling mediates endoderm pouch morphogenesis by regulating Fgf signaling in zebrafish.

    PubMed

    Lovely, C Ben; Swartz, Mary E; McCarthy, Neil; Norrie, Jacqueline L; Eberhart, Johann K

    2016-06-01

    The endodermal pouches are a series of reiterated structures that segment the pharyngeal arches and help pattern the vertebrate face. Multiple pathways regulate the complex process of endodermal development, including the Bone morphogenetic protein (Bmp) pathway. However, the role of Bmp signaling in pouch morphogenesis is poorly understood. Using genetic and chemical inhibitor approaches, we show that pouch morphogenesis requires Bmp signaling from 10-18 h post-fertilization, immediately following gastrulation. Blocking Bmp signaling during this window results in morphological defects to the pouches and craniofacial skeleton. Using genetic chimeras we show that Bmp signals directly to the endoderm for proper morphogenesis. Time-lapse imaging and analysis of reporter transgenics show that Bmp signaling is necessary for pouch outpocketing via the Fibroblast growth factor (Fgf) pathway. Double loss-of-function analyses demonstrate that Bmp and Fgf signaling interact synergistically in craniofacial development. Collectively, our analyses shed light on the tissue and signaling interactions that regulate development of the vertebrate face. PMID:27122171

  11. Regulation of PP2A by Sphingolipid Metabolism and Signaling

    PubMed Central

    Oaks, Joshua; Ogretmen, Besim

    2014-01-01

    Protein phosphatase 2A (PP2A) is a serine/threonine phosphatase that is a primary regulator of cellular proliferation through targeting of proliferative kinases, cell cycle regulators, and apoptosis inhibitors. It is through the regulation of these regulatory elements that gives PP2A tumor suppressor functions. In addition to mutations on the regulatory subunits, the phosphatase/tumor suppressing activity of PP2A is also inhibited in several cancer types due to overexpression or modification of the endogenous PP2A inhibitors such as SET/I2PP2A. This review focuses on the current literature regarding the interactions between the lipid signaling molecules, selectively sphingolipids, and the PP2A inhibitor SET for the regulation of PP2A, and the therapeutic potential of sphingolipids as PP2A activators for tumor suppression via targeting SET oncoprotein. PMID:25642418

  12. Regulators of G-protein-signaling proteins: negative modulators of G-protein-coupled receptor signaling.

    PubMed

    Woodard, Geoffrey E; Jardín, Isaac; Berna-Erro, A; Salido, Gines M; Rosado, Juan A

    2015-01-01

    Regulators of G-protein-signaling (RGS) proteins are a category of intracellular proteins that have an inhibitory effect on the intracellular signaling produced by G-protein-coupled receptors (GPCRs). RGS along with RGS-like proteins switch on through direct contact G-alpha subunits providing a variety of intracellular functions through intracellular signaling. RGS proteins have a common RGS domain that binds to G alpha. RGS proteins accelerate GTPase and thus enhance guanosine triphosphate hydrolysis through the alpha subunit of heterotrimeric G proteins. As a result, they inactivate the G protein and quickly turn off GPCR signaling thus terminating the resulting downstream signals. Activity and subcellular localization of RGS proteins can be changed through covalent molecular changes to the enzyme, differential gene splicing, and processing of the protein. Other roles of RGS proteins have shown them to not be solely committed to being inhibitors but behave more as modulators and integrators of signaling. RGS proteins modulate the duration and kinetics of slow calcium oscillations and rapid phototransduction and ion signaling events. In other cases, RGS proteins integrate G proteins with signaling pathways linked to such diverse cellular responses as cell growth and differentiation, cell motility, and intracellular trafficking. Human and animal studies have revealed that RGS proteins play a vital role in physiology and can be ideal targets for diseases such as those related to addiction where receptor signaling seems continuously switched on.

  13. Regulation of PCP by the Fat signaling pathway

    PubMed Central

    Matis, Maja; Axelrod, Jeffrey D.

    2013-01-01

    Planar cell polarity (PCP) in epithelia, orthogonal to the apical–basal axis, is essential for numerous developmental events and physiological functions. Drosophila model systems have been at the forefront of studies revealing insights into mechanisms regulating PCP and have revealed distinct signaling modules. One of these, involving the atypical cadherins Fat and Dachsous and the ectokinase Four-jointed, appears to link the direction of cell polarization to the tissue axes. We discuss models for the function of this signaling module as well as several unanswered questions that may guide future investigations. PMID:24142873

  14. Insulin signalling and the regulation of glucose and lipid metabolism

    NASA Astrophysics Data System (ADS)

    Saltiel, Alan R.; Kahn, C. Ronald

    2001-12-01

    The epidemic of type 2 diabetes and impaired glucose tolerance is one of the main causes of morbidity and mortality worldwide. In both disorders, tissues such as muscle, fat and liver become less responsive or resistant to insulin. This state is also linked to other common health problems, such as obesity, polycystic ovarian disease, hyperlipidaemia, hypertension and atherosclerosis. The pathophysiology of insulin resistance involves a complex network of signalling pathways, activated by the insulin receptor, which regulates intermediary metabolism and its organization in cells. But recent studies have shown that numerous other hormones and signalling events attenuate insulin action, and are important in type 2 diabetes.

  15. Merlin, a regulator of Hippo signaling, regulates Wnt/β-catenin signaling

    PubMed Central

    Kim, Soyoung; Jho, Eek-hoon

    2016-01-01

    Merlin, encoded by the NF2 gene, is a tumor suppressor that exerts its function via inhibiting mitogenic receptors at the plasma membrane. Although multiple mutations in Merlin have been identified in Neurofibromatosis type II (NF2) disease, its molecular mechanism is not fully understood. Here, we show that Merlin interacts with LRP6 and inhibits LRP6 phosphorylation, a critical step for the initiation of Wnt signaling. We found that treatment of Wnt3a caused phosphorylation of Merlin by PAK1, leading to detachment of Merlin from LRP6 and allowing the initiation of Wnt/β-catenin signaling. A higher level of β-catenin was found in tissues from NF2 patients. Enhanced proliferation and migration caused by knockdown of Merlin in glioblastoma cells were inhibited by suppression of β-catenin. Conclusively, these results suggest that sustained Wnt/β-catenin signaling activity induced by abrogation of Merlin-mediated inhibition of LRP6 phosphorylation might be a cause of NF2 disease. [BMB Reports 2016; 49(7): 357-358] PMID:27345717

  16. Transcriptional regulatory programs underlying barley germination and regulatory functions of Gibberellin and abscisic acid

    PubMed Central

    2011-01-01

    Background Seed germination is a complex multi-stage developmental process, and mainly accomplished through concerted activities of many gene products and biological pathways that are often subjected to strict developmental regulation. Gibberellins (GA) and abscisic acid (ABA) are two key phytohormones regulating seed germination and seedling growth. However, transcriptional regulatory networks underlying seed germination and its associated biological pathways are largely unknown. Results The studies examined transcriptomes of barley representing six distinct and well characterized germination stages and revealed that the transcriptional regulatory program underlying barley germination was composed of early, late, and post-germination phases. Each phase was accompanied with transcriptional up-regulation of distinct biological pathways. Cell wall synthesis and regulatory components including transcription factors, signaling and post-translational modification components were specifically and transiently up-regulated in early germination phase while histone families and many metabolic pathways were up-regulated in late germination phase. Photosynthesis and seed reserve mobilization pathways were up-regulated in post-germination phase. However, stress related pathways and seed storage proteins were suppressed through the entire course of germination. A set of genes were transiently up-regulated within three hours of imbibition, and might play roles in initiating biological pathways involved in seed germination. However, highly abundant transcripts in dry barley and Arabidopsis seeds were significantly conserved. Comparison with transcriptomes of barley aleurone in response to GA and ABA identified three sets of germination responsive genes that were regulated coordinately by GA, antagonistically by ABA, and coordinately by GA but antagonistically by ABA. Major CHO metabolism, cell wall degradation and protein degradation pathways were up-regulated by both GA and seed

  17. Redox signaling regulated by electrophiles and reactive sulfur species.

    PubMed

    Nishida, Motohiro; Kumagai, Yoshito; Ihara, Hideshi; Fujii, Shigemoto; Motohashi, Hozumi; Akaike, Takaaki

    2016-03-01

    Redox signaling is a key modulator of oxidative stress induced by nonspecific insults of biological molecules generated by reactive oxygen species. Current redox biology is revisiting the traditional concept of oxidative stress, such that toxic effects of reactive oxygen species are protected by diverse antioxidant systems upregulated by oxidative stress responses that are physiologically mediated by redox-dependent cell signaling pathways. Redox signaling is thus precisely regulated by endogenous electrophilic substances that are generated from reactive oxygen species and nitric oxide and its derivative reactive species during stress responses. Among electrophiles formed endogenously, 8-nitroguanosine 3',5'-cyclic monophosphate (8-nitro-cGMP) has unique cell signaling functions, and pathways for its biosynthesis, signaling mechanism, and metabolism in cells have been clarified. Reactive sulfur species such as cysteine hydropersulfides that are abundant in cells are likely involved in 8-nitro-cGMP metabolism. These new aspects of redox biology may stimulate innovative and multidisciplinary research in cell and stem cell biology; infectious diseases, cancer, metabolic syndrome, ageing, and neurodegenerative diseases; and other oxidative stress-related disorders. This review focuses on the most recent progress in the biosynthesis, cell signaling, and metabolism of 8-nitro-cGMP, which is a likely target for drug development and lead to discovery of novel therapeutics for many diseases. PMID:27013774

  18. Redox signaling regulated by electrophiles and reactive sulfur species

    PubMed Central

    Nishida, Motohiro; Kumagai, Yoshito; Ihara, Hideshi; Fujii, Shigemoto; Motohashi, Hozumi; Akaike, Takaaki

    2016-01-01

    Redox signaling is a key modulator of oxidative stress induced by nonspecific insults of biological molecules generated by reactive oxygen species. Current redox biology is revisiting the traditional concept of oxidative stress, such that toxic effects of reactive oxygen species are protected by diverse antioxidant systems upregulated by oxidative stress responses that are physiologically mediated by redox-dependent cell signaling pathways. Redox signaling is thus precisely regulated by endogenous electrophilic substances that are generated from reactive oxygen species and nitric oxide and its derivative reactive species during stress responses. Among electrophiles formed endogenously, 8-nitroguanosine 3',5'-cyclic monophosphate (8-nitro-cGMP) has unique cell signaling functions, and pathways for its biosynthesis, signaling mechanism, and metabolism in cells have been clarified. Reactive sulfur species such as cysteine hydropersulfides that are abundant in cells are likely involved in 8-nitro-cGMP metabolism. These new aspects of redox biology may stimulate innovative and multidisciplinary research in cell and stem cell biology; infectious diseases, cancer, metabolic syndrome, ageing, and neurodegenerative diseases; and other oxidative stress-related disorders. This review focuses on the most recent progress in the biosynthesis, cell signaling, and metabolism of 8-nitro-cGMP, which is a likely target for drug development and lead to discovery of novel therapeutics for many diseases. PMID:27013774

  19. Larynx carcinoma regulates tumor-associated macrophages through PLGF signaling

    PubMed Central

    Zhou, Xu; Qi, Ying

    2015-01-01

    Cancer neovascularization plays an essential role in the metastasis of larynx carcinoma (LC). However, the underlying molecular mechanisms are not completely understood. Recently, we reported that placental growth factor (PLGF) regulates expression of matrix metalloproteinase 3 (MMP3) through ERK/MAPK signaling pathway in LC. Here, we show that MMP9 upregulated in LC, and appeared to be mainly produced by M2 macrophages (tumor-associated macrophages (TAM)). In a transwell co-culture system, PLGF secreted by LC cells triggered macrophage polarization to a TAM subtype that releases MMP9. Moreover, MMP9 was found to be activated in the PLGF-polarized TAM via transforming growth factor β (TGFβ) receptor signaling activation. Furthermore, PLGF in LC cells induced macrophage polarization in vivo, and significantly promoted the growth of LC. Thus, together with our previous work, our study highlights a pivotal role of cross-talk between TAM and LC in regulating the metastasis of LC. PMID:25961789

  20. MAPK/JNK signalling: a potential autophagy regulation pathway

    PubMed Central

    Zhou, Yuan-Yuan; Li, Ying; Jiang, Wei-Qin; Zhou, Lin-Fu

    2015-01-01

    Autophagy refers to a lysosomal degradative pathway or a process of self-cannibalization. This pathway maintains nutrients levels for vital cellular functions during periods of starvation and it provides cells with survival advantages under various stress situations. However, the mechanisms responsible for the induction and regulation of autophagy are poorly understood. The c-Jun NH2-terminal kinase (JNK) signal transduction pathway functions to induce defence mechanisms that protect organisms against acute oxidative and xenobiotic insults. This pathway has also been repeatedly linked to the molecular events involved in autophagy regulation. The present review will focus on recent advances in understanding of the relationship between mitogen-activated protein kinase (MAPK)/JNK signalling and autophagic cell death. PMID:26182361

  1. Cellular redox regulation, signaling, and stress response in plants.

    PubMed

    Shigeoka, Shigeru; Maruta, Takanori

    2014-01-01

    Cellular and organellar redox states, which are characterized by the balance between oxidant and antioxidant pool sizes, play signaling roles in the regulation of gene expression and protein function in a wide variety of plant physiological processes including stress acclimation. Reactive oxygen species (ROS) and ascorbic acid (AsA) are the most abundant oxidants and antioxidants, respectively, in plant cells; therefore, the metabolism of these redox compounds must be strictly and spatiotemporally controlled. In this review, we provided an overview of our previous studies as well as recent advances in (1) the molecular mechanisms and regulation of AsA biosynthesis, (2) the molecular and genetic properties of ascorbate peroxidases, and (3) stress acclimation via ROS-derived oxidative/redox signaling pathways, and discussed future perspectives in this field.

  2. Metabolic control of signalling pathways and metabolic auto-regulation.

    PubMed

    Lorendeau, Doriane; Christen, Stefan; Rinaldi, Gianmarco; Fendt, Sarah-Maria

    2015-08-01

    Metabolic alterations have emerged as an important hallmark in the development of various diseases. Thus, understanding the complex interplay of metabolism with other cellular processes such as cell signalling is critical to rationally control and modulate cellular physiology. Here, we review in the context of mammalian target of rapamycin, AMP-activated protein kinase and p53, the orchestrated interplay between metabolism and cellular signalling as well as transcriptional regulation. Moreover, we discuss recent discoveries in auto-regulation of metabolism (i.e. how metabolic parameters such as metabolite levels activate or inhibit enzymes and thus metabolic pathways). Finally, we review functional consequences of post-translational modification on metabolic enzyme abundance and/or activities.

  3. Circadian regulation of hormone signaling and plant physiology.

    PubMed

    Atamian, Hagop S; Harmer, Stacey L

    2016-08-01

    The survival and reproduction of plants depend on their ability to cope with a wide range of daily and seasonal environmental fluctuations during their life cycle. Phytohormones are plant growth regulators that are involved in almost every aspect of growth and development as well as plant adaptation to myriad abiotic and biotic conditions. The circadian clock, an endogenous and cell-autonomous biological timekeeper that produces rhythmic outputs with close to 24-h rhythms, provides an adaptive advantage by synchronizing plant physiological and metabolic processes to the external environment. The circadian clock regulates phytohormone biosynthesis and signaling pathways to generate daily rhythms in hormone activity that fine-tune a range of plant processes, enhancing adaptation to local conditions. This review explores our current understanding of the interplay between the circadian clock and hormone signaling pathways.

  4. ASK1 signalling regulates brown and beige adipocyte function

    PubMed Central

    Hattori, Kazuki; Naguro, Isao; Okabe, Kohki; Funatsu, Takashi; Furutani, Shotaro; Takeda, Kohsuke; Ichijo, Hidenori

    2016-01-01

    Recent studies suggest that adult humans have active brown or beige adipocytes, the activation of which might be a therapeutic strategy for the treatment of diverse metabolic diseases. Here we show that the protein kinase ASK1 regulates brown and beige adipocytes function. In brown or white adipocytes, the PKA-ASK1-p38 axis is activated in response to cAMP signalling and contributes to the cell-autonomous induction of genes, including Ucp1. Global and fat-specific ASK1 deficiency leads to impaired metabolic responses, including thermogenesis and oxygen consumption, at the cell and whole-body levels, respectively. Our data thus indicate that the ASK1 signalling axis is a regulator of brown and beige adipocyte gene expression and function. PMID:27045525

  5. JAK/Stat signaling regulates heart precursor diversification in Drosophila

    PubMed Central

    Johnson, Aaron N.; Mokalled, Mayssa H.; Haden, Tom N.; Olson, Eric N.

    2011-01-01

    Intercellular signal transduction pathways regulate the NK-2 family of transcription factors in a conserved gene regulatory network that directs cardiogenesis in both flies and mammals. The Drosophila NK-2 protein Tinman (Tin) was recently shown to regulate Stat92E, the Janus kinase (JAK) and Signal transducer and activator of transcription (Stat) pathway effector, in the developing mesoderm. To understand whether the JAK/Stat pathway also regulates cardiogenesis, we performed a systematic characterization of JAK/Stat signaling during mesoderm development. Drosophila embryos with mutations in the JAK/Stat ligand upd or in Stat92E have non-functional hearts with luminal defects and inappropriate cell aggregations. Using strong Stat92E loss-of-function alleles, we show that the JAK/Stat pathway regulates tin expression prior to heart precursor cell diversification. tin expression can be subdivided into four phases and, in Stat92E mutant embryos, the broad phase 2 expression pattern in the dorsal mesoderm does not restrict to the constrained phase 3 pattern. These embryos also have an expanded pericardial cell domain. We show the E(spl)-C gene HLHm5 is expressed in a pattern complementary to tin during phase 3 and that this expression is JAK/Stat dependent. In addition, E(spl)-C mutant embryos phenocopy the cardiac defects of Stat92E embryos. Mechanistically, JAK/Stat signals activate E(spl)-C genes to restrict Tin expression and the subsequent expression of the T-box transcription factor H15 to direct heart precursor diversification. This study is the first to characterize a role for the JAK/Stat pathway during cardiogenesis and identifies an autoregulatory circuit in which tin limits its own expression domain. PMID:21965617

  6. Regulation of Interferon Gamma Signaling by Suppressors of Cytokine Signaling and Regulatory T Cells

    PubMed Central

    Larkin, Joseph; Ahmed, Chulbul M.; Wilson, Tenisha D.; Johnson, Howard M.

    2013-01-01

    Regulatory T cells (Tregs) play an indispensable role in the prevention of autoimmune disease, as interferon gamma (IFNγ) mediated, lethal auto-immunity occurs (in both mice and humans) in their absence. In addition, Tregs have been implicated in preventing the onset of autoimmune and auto-inflammatory conditions associated with aberrant IFNγ signaling such as type 1 diabetes, lupus, and lipopolysaccharide (LPS) mediated endotoxemia. Notably, suppressor of cytokine signaling-1 deficient (SOCS1−/−) mice also succumb to a lethal auto-inflammatory disease, dominated by excessive IFNγ signaling and bearing similar disease course kinetics to Treg deficient mice. Moreover SOCS1 deficiency has been implicated in lupus progression, and increased susceptibility to LPS mediated endotoxemia. Although it has been established that Tregs and SOCS1 play a critical role in the regulation of IFNγ signaling, and the prevention of lethal auto-inflammatory disease, the role of Treg/SOCS1 cross-talk in the regulation of IFNγ signaling has been essentially unexplored. This is especially pertinent as recent publications have implicated a role of SOCS1 in the stability of peripheral Tregs. This review will examine the emerging research findings implicating a critical role of the intersection of the SOCS1 and Treg regulatory pathways in the control of IFN gamma signaling and immune system function. PMID:24391643

  7. Regulation of IGF -1 signaling by microRNAs

    PubMed Central

    Jung, Hwa Jin; Suh, Yousin

    2014-01-01

    The insulin-like growth factor 1 (IGF-1) signaling pathway regulates critical biological processes including development, homeostasis, and aging. Dysregulation of this pathway has been implicated in a myriad of diseases such as cancers, neurodegenerative diseases, and metabolic disorders, making the IGF-1 signaling pathway a prime target to develop therapeutic and intervention strategies. Recently, small non-coding RNA molecules in ∼22 nucleotide length, microRNAs (miRNAs), have emerged as a new regulator of biological processes in virtually all organ systems and increasing studies are linking altered miRNA function to disease mechanisms. A miRNA binds to 3’UTRs of multiple target genes and coordinately downregulates their expression, thereby exerting a profound influence on gene regulatory networks. Here we review the components of the IGF-1 signaling pathway that are known targets of miRNA regulation, and highlight recent studies that suggest therapeutic potential of these miRNAs against various diseases. PMID:25628647

  8. Cannabinoid receptor signaling regulates liver development and metabolism.

    PubMed

    Liu, Leah Y; Alexa, Kristen; Cortes, Mauricio; Schatzman-Bone, Stephanie; Kim, Andrew J; Mukhopadhyay, Bani; Cinar, Resat; Kunos, George; North, Trista E; Goessling, Wolfram

    2016-02-15

    Endocannabinoid (EC) signaling mediates psychotropic effects and regulates appetite. By contrast, potential roles in organ development and embryonic energy consumption remain unknown. Here, we demonstrate that genetic or chemical inhibition of cannabinoid receptor (Cnr) activity disrupts liver development and metabolic function in zebrafish (Danio rerio), impacting hepatic differentiation, but not endodermal specification: loss of cannabinoid receptor 1 (cnr1) and cnr2 activity leads to smaller livers with fewer hepatocytes, reduced liver-specific gene expression and proliferation. Functional assays reveal abnormal biliary anatomy and lipid handling. Adult cnr2 mutants are susceptible to hepatic steatosis. Metabolomic analysis reveals reduced methionine content in Cnr mutants. Methionine supplementation rescues developmental and metabolic defects in Cnr mutant livers, suggesting a causal relationship between EC signaling, methionine deficiency and impaired liver development. The effect of Cnr on methionine metabolism is regulated by sterol regulatory element-binding transcription factors (Srebfs), as their overexpression rescues Cnr mutant liver phenotypes in a methionine-dependent manner. Our work describes a novel developmental role for EC signaling, whereby Cnr-mediated regulation of Srebfs and methionine metabolism impacts liver development and function.

  9. Axin Regulates Dendritic Spine Morphogenesis through Cdc42-Dependent Signaling

    PubMed Central

    Chen, Yu; Liang, Zhuoyi; Fei, Erkang; Chen, Yuewen; Zhou, Xiaopu; Fang, Weiqun; Fu, Wing-Yu; Fu, Amy K. Y.; Ip, Nancy Y.

    2015-01-01

    During development, scaffold proteins serve as important platforms for orchestrating signaling complexes to transduce extracellular stimuli into intracellular responses that regulate dendritic spine morphology and function. Axin (“axis inhibitor”) is a key scaffold protein in canonical Wnt signaling that interacts with specific synaptic proteins. However, the cellular functions of these protein–protein interactions in dendritic spine morphology and synaptic regulation are unclear. Here, we report that Axin protein is enriched in synaptic fractions, colocalizes with the postsynaptic marker PSD-95 in cultured hippocampal neurons, and interacts with a signaling protein Ca2+/calmodulin-dependent protein kinase II (CaMKII) in synaptosomal fractions. Axin depletion by shRNA in cultured neurons or intact hippocampal CA1 regions significantly reduced dendritic spine density. Intriguingly, the defective dendritic spine morphogenesis in Axin-knockdown neurons could be restored by overexpression of the small Rho-GTPase Cdc42, whose activity is regulated by CaMKII. Moreover, pharmacological stabilization of Axin resulted in increased dendritic spine number and spontaneous neurotransmission, while Axin stabilization in hippocampal neurons reduced the elimination of dendritic spines. Taken together, our findings suggest that Axin promotes dendritic spine stabilization through Cdc42-dependent cytoskeletal reorganization. PMID:26204446

  10. Signal transduction regulating meristem development in Arabidopsis. Final report

    SciTech Connect

    Cark, Steven E.

    2003-09-10

    Research support by DE-FG02-96ER20227 focused on the CLV loci and their regulation of organ formation at the Arabidopsis shoot meristem. Shoot meristem function is central to plant development as all of the above-ground organs and tissues of the plant are derived post-embryonically from the shoot meristem. At the shoot meristem, stem cells are maintained, and progeny cells undergo a switch toward differentiation and organ formation. The CLV loci, represented by three genes CLV1, CLV2 and CLV3 are key regulators of meristem development. Each of the CLV loci encode a putative receptor-mediated signaling component. When this work began, virtually nothing was known about receptor-mediated signaling in plants. Thus, our goal was to both characterize these genes and the proteins they encode as regulators of meristem development, and to investigate how receptor-mediated signaling might function in plants. Our work lead to several major publications that were significant contributions to understanding this system.

  11. Cytoskeletal Reorganization Drives Mesenchymal Condensation and Regulates Downstream Molecular Signaling.

    PubMed

    Ray, Poulomi; Chapman, Susan C

    2015-01-01

    Skeletal condensation occurs when specified mesenchyme cells self-organize over several days to form a distinctive cartilage template. Here, we determine how and when specified mesenchyme cells integrate mechanical and molecular information from their environment, forming cartilage condensations in the pharyngeal arches of chick embryos. By disrupting cytoskeletal reorganization, we demonstrate that dynamic cell shape changes drive condensation and modulate the response of the condensing cells to Fibroblast Growth Factor (FGF), Bone Morphogenetic Protein (BMP) and Transforming Growth Factor beta (TGF-β) signaling pathways. Rho Kinase (ROCK)-driven actomyosin contractions and Myosin II-generated differential cell cortex tension regulate these cell shape changes. Disruption of the condensation process inhibits the differentiation of the mesenchyme cells into chondrocytes, demonstrating that condensation regulates the fate of the mesenchyme cells. We also find that dorsal and ventral condensations undergo distinct cell shape changes. BMP signaling is instructive for dorsal condensation-specific cell shape changes. Moreover, condensations exhibit ventral characteristics in the absence of BMP signaling, suggesting that in the pharyngeal arches ventral morphology is the ground pattern. Overall, this study characterizes the interplay between cytoskeletal dynamics and molecular signaling in a self-organizing system during tissue morphogenesis.

  12. Astrocytes regulate adult hippocampal neurogenesis through ephrin-B signaling

    PubMed Central

    Ashton, Randolph S.; Conway, Anthony; Pangarkar, Chinmay; Bergen, Jamie; Lim, Kwang-Il; Shah, Priya; Bissell, Mina; Schaffer, David V.

    2012-01-01

    Neurogenesis in the adult hippocampus involves activation of quiescent neural stem cells (NSCs) to yield transiently amplifying NSCs and progenitors, and ultimately neurons that affect learning and memory. This process is tightly controlled by microenvironmental cues, though few endogenous factors are known to regulate neuronal differentiation. While astrocytes have been implicated, their role in juxtacrine (i.e. cell-cell contact-dependent) signaling within NSC niches has not been investigated. We show that ephrin-B2 presented from rodent hippocampal astrocytes regulates neurogenesis in vivo. Furthermore, clonal analysis in NSC fate-mapping studies reveals a novel role for ephrin-B2 in instructing neuronal differentiation. Additionally, ephrin-B2 signaling, transduced by EphB4 receptors on NSCs, activates β-catenin in vitro and in vivo independent of Wnt signaling and upregulates proneural transcription factors. Ephrin-B2+ astrocytes thus promote neuronal differentiation of adult NSCs through juxtacrine signaling, findings that advance our understanding of adult neurogenesis and may have future regenerative medicine implications. PMID:22983209

  13. Cytoskeletal Reorganization Drives Mesenchymal Condensation and Regulates Downstream Molecular Signaling.

    PubMed

    Ray, Poulomi; Chapman, Susan C

    2015-01-01

    Skeletal condensation occurs when specified mesenchyme cells self-organize over several days to form a distinctive cartilage template. Here, we determine how and when specified mesenchyme cells integrate mechanical and molecular information from their environment, forming cartilage condensations in the pharyngeal arches of chick embryos. By disrupting cytoskeletal reorganization, we demonstrate that dynamic cell shape changes drive condensation and modulate the response of the condensing cells to Fibroblast Growth Factor (FGF), Bone Morphogenetic Protein (BMP) and Transforming Growth Factor beta (TGF-β) signaling pathways. Rho Kinase (ROCK)-driven actomyosin contractions and Myosin II-generated differential cell cortex tension regulate these cell shape changes. Disruption of the condensation process inhibits the differentiation of the mesenchyme cells into chondrocytes, demonstrating that condensation regulates the fate of the mesenchyme cells. We also find that dorsal and ventral condensations undergo distinct cell shape changes. BMP signaling is instructive for dorsal condensation-specific cell shape changes. Moreover, condensations exhibit ventral characteristics in the absence of BMP signaling, suggesting that in the pharyngeal arches ventral morphology is the ground pattern. Overall, this study characterizes the interplay between cytoskeletal dynamics and molecular signaling in a self-organizing system during tissue morphogenesis. PMID:26237312

  14. Endothelial HIF signaling regulates pulmonary fibrosis-associated pulmonary hypertension.

    PubMed

    Bryant, Andrew J; Carrick, Ryan P; McConaha, Melinda E; Jones, Brittany R; Shay, Sheila D; Moore, Christy S; Blackwell, Thomas R; Gladson, Santhi; Penner, Niki L; Burman, Ankita; Tanjore, Harikrishna; Hemnes, Anna R; Karwandyar, Ayub K; Polosukhin, Vasiliy V; Talati, Megha A; Dong, Hui-Jia; Gleaves, Linda A; Carrier, Erica J; Gaskill, Christa; Scott, Edward W; Majka, Susan M; Fessel, Joshua P; Haase, Volker H; West, James D; Blackwell, Timothy S; Lawson, William E

    2016-02-01

    Pulmonary hypertension (PH) complicating chronic parenchymal lung disease, such as idiopathic pulmonary fibrosis, results in significant morbidity and mortality. Since the hypoxia-inducible factor (HIF) signaling pathway is important for development of pulmonary hypertension in chronic hypoxia, we investigated whether HIF signaling in vascular endothelium regulates development of PH related to pulmonary fibrosis. We generated a transgenic model in which HIF is deleted within vascular endothelial cells and then exposed these mice to chronic intraperitoneal bleomycin to induce PH associated with lung fibrosis. Although no differences in the degree of fibrotic remodeling were observed, we found that endothelial HIF-deficient mice were protected against development of PH, including right ventricle and pulmonary vessel remodeling. Similarly, endothelial HIF-deficient mice were protected from PH after a 4-wk exposure to normobaric hypoxia. In vitro studies of pulmonary vascular endothelial cells isolated from the HIF-targeted mice and controls revealed that endothelial HIF signaling increases endothelial cell expression of connective tissue growth factor, enhances vascular permeability, and promotes pulmonary artery smooth muscle cell proliferation and wound healing ability, all of which have the potential to impact the development of PH in vivo. Taken together, these studies demonstrate that vascular endothelial cell HIF signaling is necessary for development of hypoxia and pulmonary fibrosis associated PH. As such, HIF and HIF-regulated targets represent a therapeutic target in these conditions.

  15. Platelet adhesion signalling and the regulation of thrombus formation.

    PubMed

    Gibbins, Jonathan M

    2004-07-15

    Platelets perform a central role in haemostasis and thrombosis. They adhere to subendothelial collagens exposed at sites of blood vessel injury via the glycoprotein (GP) Ib-V-IX receptor complex, GPVI and integrin alpha(2)beta(1). These receptors perform distinct functions in the regulation of cell signalling involving non-receptor tyrosine kinases (e.g. Src, Fyn, Lyn, Syk and Btk), adaptor proteins, phospholipase C and lipid kinases such as phosphoinositide 3-kinase. They are also coupled to an increase in cytosolic calcium levels and protein kinase C activation, leading to the secretion of paracrine/autocrine platelet factors and an increase in integrin receptor affinities. Through the binding of plasma fibrinogen and von Willebrand Factor to integrin alpha(IIb)beta(3), a platelet thrombus is formed. Although increasing evidence indicates that each of the adhesion receptors GPIb-V-IX and GPVI and integrins alpha(2)beta(1) and alpha(IIb)beta(3) contribute to the signalling that regulates this process, the individual roles of each are only beginning to be dissected. By contrast, adhesion receptor signalling through platelet endothelial cell adhesion molecule 1 (PECAM-1) is implicated in the inhibition of platelet function and thrombus formation in the healthy circulation. Recent studies indicate that understanding of platelet adhesion signalling mechanisms might enable the development of new strategies to treat and prevent thrombosis. PMID:15252124

  16. Insulin signaling regulates neurite growth during metamorphic neuronal remodeling.

    PubMed

    Gu, Tingting; Zhao, Tao; Hewes, Randall S

    2014-01-15

    Although the growth capacity of mature neurons is often limited, some neurons can shift through largely unknown mechanisms from stable maintenance growth to dynamic, organizational growth (e.g. to repair injury, or during development transitions). During insect metamorphosis, many terminally differentiated larval neurons undergo extensive remodeling, involving elimination of larval neurites and outgrowth and elaboration of adult-specific projections. Here, we show in the fruit fly, Drosophila melanogaster (Meigen), that a metamorphosis-specific increase in insulin signaling promotes neuronal growth and axon branching after prolonged stability during the larval stages. FOXO, a negative effector in the insulin signaling pathway, blocked metamorphic growth of peptidergic neurons that secrete the neuropeptides CCAP and bursicon. RNA interference and CCAP/bursicon cell-targeted expression of dominant-negative constructs for other components of the insulin signaling pathway (InR, Pi3K92E, Akt1, S6K) also partially suppressed the growth of the CCAP/bursicon neuron somata and neurite arbor. In contrast, expression of wild-type or constitutively active forms of InR, Pi3K92E, Akt1, Rheb, and TOR, as well as RNA interference for negative regulators of insulin signaling (PTEN, FOXO), stimulated overgrowth. Interestingly, InR displayed little effect on larval CCAP/bursicon neuron growth, in contrast to its strong effects during metamorphosis. Manipulations of insulin signaling in many other peptidergic neurons revealed generalized growth stimulation during metamorphosis, but not during larval development. These findings reveal a fundamental shift in growth control mechanisms when mature, differentiated neurons enter a new phase of organizational growth. Moreover, they highlight strong evolutionarily conservation of insulin signaling in neuronal growth regulation.

  17. Crosstalk between mitochondrial stress signals regulates yeast chronological lifespan.

    PubMed

    Schroeder, Elizabeth A; Shadel, Gerald S

    2014-01-01

    Mitochondrial DNA (mtDNA) exists in multiple copies per cell and is essential for oxidative phosphorylation. Depleted or mutated mtDNA promotes numerous human diseases and may contribute to aging. Reduced TORC1 signaling in the budding yeast, Saccharomyces cerevisiae, extends chronological lifespan (CLS) in part by generating a mitochondrial ROS (mtROS) signal that epigenetically alters nuclear gene expression. To address the potential requirement for mtDNA maintenance in this response, we analyzed strains lacking the mitochondrial base-excision repair enzyme Ntg1p. Extension of CLS by mtROS signaling and reduced TORC1 activity, but not caloric restriction, was abrogated in ntg1Δ strains that exhibited mtDNA depletion without defects in respiration. The DNA damage response (DDR) kinase Rad53p, which transduces pro-longevity mtROS signals, is also activated in ntg1Δ strains. Restoring mtDNA copy number alleviated Rad53p activation and re-established CLS extension following mtROS signaling, indicating that Rad53p senses mtDNA depletion directly. Finally, DDR kinases regulate nucleus-mitochondria localization dynamics of Ntg1p. From these results, we conclude that the DDR pathway senses and may regulate Ntg1p-dependent mtDNA stability. Furthermore, Rad53p senses multiple mitochondrial stresses in a hierarchical manner to elicit specific physiological outcomes, exemplified by mtDNA depletion overriding the ability of Rad53p to transduce an adaptive mtROS longevity signal.

  18. Crosstalk between mitochondrial stress signals regulates yeast chronological lifespan

    PubMed Central

    Schroeder, Elizabeth A.; Shadel, Gerald S.

    2014-01-01

    Mitochondrial DNA (mtDNA) exists in multiple copies per cell and is essential for oxidative phosphorylation. Depleted or mutated mtDNA promotes numerous human diseases and may contribute to aging. Reduced TORC1 signaling in the budding yeast, Saccharomyces cerevisiae, extends chronological lifespan (CLS) in part by generating a mitochondrial ROS (mtROS) signal that epigenetically alters nuclear gene expression. To address the potential requirement for mtDNA maintenance in this response, we analyzed strains lacking the mitochondrial base-excision repair enzyme Ntg1p. Extension of CLS by mtROS signaling and reduced TORC1 activity, but not caloric restriction, was abrogated in ntg1Δ strains that exhibited mtDNA depletion without defects in respiration. The DNA damage response (DDR) kinase Rad53p, which transduces pro-longevity mtROS signals, is also activated in ntg1Δ strains. Restoring mtDNA copy number alleviated Rad53p activation and re-established CLS extension mtROS-mediated longevity signaling, indicating that Rad53p senses mtDNA depletion directly. Finally, DDR kinases regulate nucleus-mitochondria localization dynamics of Ntg1p. From these results, we conclude that the DDR pathway senses mtDNA instability and regulates Ntg1p in response. Furthermore, Rad53p senses multiple mitochondrial stresses in a hierarchical manner to elicit specific physiological outcomes, exemplified by mtDNA depletion overriding the ability of Rad53p to transduce an adaptive mtROS longevity signal. PMID:24373996

  19. Molecular interactions of a soluble gibberellin receptor, GID1, with a rice DELLA protein, SLR1, and gibberellin.

    PubMed

    Ueguchi-Tanaka, Miyako; Nakajima, Masatoshi; Katoh, Etsuko; Ohmiya, Hiroko; Asano, Kenji; Saji, Shoko; Hongyu, Xiang; Ashikari, Motoyuki; Kitano, Hidemi; Yamaguchi, Isomaro; Matsuoka, Makoto

    2007-07-01

    GIBBERELLIN INSENSITIVE DWARF1 (GID1) encodes a soluble gibberellin (GA) receptor that shares sequence similarity with a hormone-sensitive lipase (HSL). Previously, a yeast two-hybrid (Y2H) assay revealed that the GID1-GA complex directly interacts with SLENDER RICE1 (SLR1), a DELLA repressor protein in GA signaling. Here, we demonstrated, by pull-down and bimolecular fluorescence complementation (BiFC) experiments, that the GA-dependent GID1-SLR1 interaction also occurs in planta. GA(4) was found to have the highest affinity to GID1 in Y2H assays and is the most effective form of GA in planta. Domain analyses of SLR1 using Y2H, gel filtration, and BiFC methods revealed that the DELLA and TVHYNP domains of SLR1 are required for the GID1-SLR1 interaction. To identify the important regions of GID1 for GA and SLR1 interactions, we used many different mutant versions of GID1, such as the spontaneous mutant GID1s, N- and C-terminal truncated GID1s, and mutagenized GID1 proteins with conserved amino acids replaced with Ala. The amino acid residues important for SLR1 interaction completely overlapped the residues required for GA binding that were scattered throughout the GID1 molecule. When we plotted these residues on the GID1 structure predicted by analogy with HSL tertiary structure, many residues were located at regions corresponding to the substrate binding pocket and lid. Furthermore, the GA-GID1 interaction was stabilized by SLR1. Based on these observations, we proposed a molecular model for interaction between GA, GID1, and SLR1.

  20. Signal integration by Ca2+ regulates intestinal stem cell activity

    PubMed Central

    Deng, Hansong; Gerencser, Akos A.; Jasper, Heinrich

    2015-01-01

    Summary Somatic stem cells (SCs) maintain tissue homeostasis by dynamically adjusting proliferation and differentiation in response to stress and metabolic cues. Here, we identify Ca2+ signaling as a central regulator of intestinal SC (ISC) activity in Drosophila. We find that dietary L-glutamate stimulates ISC division and gut growth. The metabotropic glutamate receptor (mGluR) is required in ISCs for this response and for an associated modulation of cytosolic Ca2+ oscillations that results in sustained high cytosolic Ca2+ concentrations. High cytosolic Ca2+ induces ISC proliferation by regulating Calcineurin and CREB - regulated transcriptional co-activator (CRTC). In response to a wide range of dietary and stress stimuli, ISCs reversibly transition between Ca2+ oscillation states that represent poised or activated modes of proliferation, respectively. We propose that the dynamic regulation of intracellular Ca2+ levels allows effective integration of diverse mitogenic signals in ISCs to tailor their proliferative activity to the needs of the tissue. PMID:26633624

  1. Hedgehog Signaling Regulates the Survival of Gastric Cancer Cells by Regulating the Expression of Bcl-2

    PubMed Central

    Han, Myoung-Eun; Lee, Young-Suk; Baek, Sun-Yong; Kim, Bong-Seon; Kim, Jae-Bong; Oh, Sae-Ock

    2009-01-01

    Gastric cancer is the second most common cause of cancer deaths worldwide. The underlying molecular mechanisms of its carcinogenesis are relatively poorly characterized. Hedgehog (Hh) signaling, which is critical for development of various organs including the gastrointestinal tract, has been associated with gastric cancer. The present study was undertaken to reveal the underlying mechanism by which Hh signaling controls gastric cancer cell proliferation. Treatment of gastric cancer cells with cyclopamine, a specific inhibitor of Hh signaling pathway, reduced proliferation and induced apoptosis of gastric cancer cells. Cyclopamine treatment induced cytochrome c release from mitochondria and cleavage of caspase 9. Moreover, Bcl-2 expression was significantly reduced by cyclopamine treatment. These results suggest that Hh signaling regulates the survival of gastric cancer cells by regulating the expression of Bcl-2. PMID:19742123

  2. Hedgehog Signaling Regulates Telomerase Reverse Transcriptase in Human Cancer Cells

    PubMed Central

    Mazumdar, Tapati; Sandhu, Ranjodh; Qadan, Maha; DeVecchio, Jennifer; Magloire, Victoria; Agyeman, Akwasi; Li, Bibo; Houghton, Janet A.

    2013-01-01

    The Hedgehog (HH) signaling pathway is critical for normal embryonic development, tissue patterning and cell differentiation. Aberrant HH signaling is involved in multiple human cancers. HH signaling involves a multi-protein cascade activating the GLI proteins that transcriptionally regulate HH target genes. We have previously reported that HH signaling is essential for human colon cancer cell survival and inhibition of this signal induces DNA damage and extensive cell death. Here we report that the HH/GLI axis regulates human telomerase reverse transcriptase (hTERT), which determines the replication potential of cancer cells. Suppression of GLI1/GLI2 functions by a C-terminus truncated GLI3 repressor mutant (GLI3R), or by GANT61, a pharmacological inhibitor of GLI1/GLI2, reduced hTERT protein expression in human colon cancer, prostate cancer and Glioblastoma multiforme (GBM) cell lines. Expression of an N-terminus deleted constitutively active mutant of GLI2 (GLI2ΔN) increased hTERT mRNA and protein expression and hTERT promoter driven luciferase activity in human colon cancer cells while GANT61 inhibited hTERT mRNA expression and hTERT promoter driven luciferase activity. Chromatin immunoprecipitation with GLI1 or GLI2 antibodies precipitated fragments of the hTERT promoter in human colon cancer cells, which was reduced upon exposure to GANT61. In contrast, expression of GLI1 or GLI2ΔN in non-malignant 293T cells failed to alter the levels of hTERT mRNA and protein, or hTERT promoter driven luciferase activity. Further, expression of GLI2ΔN increased the telomerase enzyme activity, which was reduced by GANT61 administration in human colon cancer, prostate cancer, and GBM cells. These results identify hTERT as a direct target of the HH signaling pathway, and reveal a previously unknown role of the HH/GLI axis in regulating the replication potential of cancer cells. These findings are of significance in understanding the important regulatory mechanisms that

  3. Paradoxical signaling regulates structural plasticity in dendritic spines.

    PubMed

    Rangamani, Padmini; Levy, Michael G; Khan, Shahid; Oster, George

    2016-09-01

    Transient spine enlargement (3- to 5-min timescale) is an important event associated with the structural plasticity of dendritic spines. Many of the molecular mechanisms associated with transient spine enlargement have been identified experimentally. Here, we use a systems biology approach to construct a mathematical model of biochemical signaling and actin-mediated transient spine expansion in response to calcium influx caused by NMDA receptor activation. We have identified that a key feature of this signaling network is the paradoxical signaling loop. Paradoxical components act bifunctionally in signaling networks, and their role is to control both the activation and the inhibition of a desired response function (protein activity or spine volume). Using ordinary differential equation (ODE)-based modeling, we show that the dynamics of different regulators of transient spine expansion, including calmodulin-dependent protein kinase II (CaMKII), RhoA, and Cdc42, and the spine volume can be described using paradoxical signaling loops. Our model is able to capture the experimentally observed dynamics of transient spine volume. Furthermore, we show that actin remodeling events provide a robustness to spine volume dynamics. We also generate experimentally testable predictions about the role of different components and parameters of the network on spine dynamics. PMID:27551076

  4. Localized JNK signaling regulates organ size during development

    PubMed Central

    Willsey, Helen Rankin; Zheng, Xiaoyan; Carlos Pastor-Pareja, José; Willsey, A Jeremy; Beachy, Philip A; Xu, Tian

    2016-01-01

    A fundamental question of biology is what determines organ size. Despite demonstrations that factors within organs determine their sizes, intrinsic size control mechanisms remain elusive. Here we show that Drosophila wing size is regulated by JNK signaling during development. JNK is active in a stripe along the center of developing wings, and modulating JNK signaling within this stripe changes organ size. This JNK stripe influences proliferation in a non-canonical, Jun-independent manner by inhibiting the Hippo pathway. Localized JNK activity is established by Hedgehog signaling, where Ci elevates dTRAF1 expression. As the dTRAF1 homolog, TRAF4, is amplified in numerous cancers, these findings provide a new mechanism for how the Hedgehog pathway could contribute to tumorigenesis, and, more importantly, provides a new strategy for cancer therapies. Finally, modulation of JNK signaling centers in developing antennae and legs changes their sizes, suggesting a more generalizable role for JNK signaling in developmental organ size control. DOI: http://dx.doi.org/10.7554/eLife.11491.001 PMID:26974344

  5. An Nfic-hedgehog signaling cascade regulates tooth root development.

    PubMed

    Liu, Yang; Feng, Jifan; Li, Jingyuan; Zhao, Hu; Ho, Thach-Vu; Chai, Yang

    2015-10-01

    Coordination between the Hertwig's epithelial root sheath (HERS) and apical papilla (AP) is crucial for proper tooth root development. The hedgehog (Hh) signaling pathway and Nfic are both involved in tooth root development; however, their relationship has yet to be elucidated. Here, we establish a timecourse of mouse molar root development by histological staining of sections, and we demonstrate that Hh signaling is active before and during root development in the AP and HERS using Gli1 reporter mice. The proper pattern of Hh signaling activity in the AP is crucial for the proliferation of dental mesenchymal cells, because either inhibition with Hh inhibitors or constitutive activation of Hh signaling activity in transgenic mice leads to decreased proliferation in the AP and shorter roots. Moreover, Hh activity is elevated in Nfic(-/-) mice, a root defect model, whereas RNA sequencing and in situ hybridization show that the Hh attenuator Hhip is downregulated. ChIP and RNAscope analyses suggest that Nfic binds to the promoter region of Hhip. Treatment of Nfic(-/-) mice with Hh inhibitor partially restores cell proliferation, AP growth and root development. Taken together, our results demonstrate that an Nfic-Hhip-Hh signaling pathway is crucial for apical papilla growth and proper root formation. This discovery provides insight into the molecular mechanisms regulating tooth root development.

  6. An Nfic-hedgehog signaling cascade regulates tooth root development

    PubMed Central

    Liu, Yang; Feng, Jifan; Li, Jingyuan; Zhao, Hu; Ho, Thach-Vu; Chai, Yang

    2015-01-01

    Coordination between the Hertwig's epithelial root sheath (HERS) and apical papilla (AP) is crucial for proper tooth root development. The hedgehog (Hh) signaling pathway and Nfic are both involved in tooth root development; however, their relationship has yet to be elucidated. Here, we establish a timecourse of mouse molar root development by histological staining of sections, and we demonstrate that Hh signaling is active before and during root development in the AP and HERS using Gli1 reporter mice. The proper pattern of Hh signaling activity in the AP is crucial for the proliferation of dental mesenchymal cells, because either inhibition with Hh inhibitors or constitutive activation of Hh signaling activity in transgenic mice leads to decreased proliferation in the AP and shorter roots. Moreover, Hh activity is elevated in Nfic−/− mice, a root defect model, whereas RNA sequencing and in situ hybridization show that the Hh attenuator Hhip is downregulated. ChIP and RNAscope analyses suggest that Nfic binds to the promoter region of Hhip. Treatment of Nfic−/− mice with Hh inhibitor partially restores cell proliferation, AP growth and root development. Taken together, our results demonstrate that an Nfic-Hhip-Hh signaling pathway is crucial for apical papilla growth and proper root formation. This discovery provides insight into the molecular mechanisms regulating tooth root development. PMID:26293299

  7. Mapping of a Cellulose-Deficient Mutant Named dwarf1-1 in Sorghum bicolor to the Green Revolution Gene gibberellin20-oxidase Reveals a Positive Regulatory Association between Gibberellin and Cellulose Biosynthesis.

    PubMed

    Petti, Carloalberto; Hirano, Ko; Stork, Jozsef; DeBolt, Seth

    2015-09-01

    Here, we show a mechanism for expansion regulation through mutations in the green revolution gene gibberellin20 (GA20)-oxidase and show that GAs control biosynthesis of the plants main structural polymer cellulose. Within a 12,000 mutagenized Sorghum bicolor plant population, we identified a single cellulose-deficient and male gametophyte-dysfunctional mutant named dwarf1-1 (dwf1-1). Through the Sorghum propinquum male/dwf1-1 female F2 population, we mapped dwf1-1 to a frameshift in GA20-oxidase. Assessment of GAs in dwf1-1 revealed ablation of GA. GA ablation was antagonistic to the expression of three specific cellulose synthase genes resulting in cellulose deficiency and growth dwarfism, which were complemented by exogenous bioactive gibberellic acid application. Using quantitative polymerase chain reaction, we found that GA was positively regulating the expression of a subset of specific cellulose synthase genes. To cross reference data from our mapped Sorghum sp. allele with another monocotyledonous plant, a series of rice (Oryza sativa) mutants involved in GA biosynthesis and signaling were isolated, and these too displayed cellulose deficit. Taken together, data support a model whereby suppressed expansion in green revolution GA genes involves regulation of cellulose biosynthesis. PMID:26198258

  8. Mapping of a Cellulose-Deficient Mutant Named dwarf1-1 in Sorghum bicolor to the Green Revolution Gene gibberellin20-oxidase Reveals a Positive Regulatory Association between Gibberellin and Cellulose Biosynthesis1[OPEN

    PubMed Central

    Petti, Carloalberto; Hirano, Ko; Stork, Jozsef; DeBolt, Seth

    2015-01-01

    Here, we show a mechanism for expansion regulation through mutations in the green revolution gene gibberellin20 (GA20)-oxidase and show that GAs control biosynthesis of the plants main structural polymer cellulose. Within a 12,000 mutagenized Sorghum bicolor plant population, we identified a single cellulose-deficient and male gametophyte-dysfunctional mutant named dwarf1-1 (dwf1-1). Through the Sorghum propinquum male/dwf1-1 female F2 population, we mapped dwf1-1 to a frameshift in GA20-oxidase. Assessment of GAs in dwf1-1 revealed ablation of GA. GA ablation was antagonistic to the expression of three specific cellulose synthase genes resulting in cellulose deficiency and growth dwarfism, which were complemented by exogenous bioactive gibberellic acid application. Using quantitative polymerase chain reaction, we found that GA was positively regulating the expression of a subset of specific cellulose synthase genes. To cross reference data from our mapped Sorghum sp. allele with another monocotyledonous plant, a series of rice (Oryza sativa) mutants involved in GA biosynthesis and signaling were isolated, and these too displayed cellulose deficit. Taken together, data support a model whereby suppressed expansion in green revolution GA genes involves regulation of cellulose biosynthesis. PMID:26198258

  9. Gibberellin indirectly promotes chloroplast biogenesis as a means to maintain the chloroplast population of expanded cells.

    PubMed

    Jiang, Xingshan; Li, Heying; Wang, Ting; Peng, Changlian; Wang, Haiyang; Wu, Hong; Wang, Xiaojing

    2012-12-01

    Chloroplast biogenesis needs to be well coordinated with cell division and cell expansion during plant growth and development to achieve optimal photosynthesis rates. Previous studies showed that gibberellins (GAs) regulate many important plant developmental processes, including cell division and cell expansion. However, the relationship between chloroplast biogenesis with cell division and cell expansion, and how GA coordinately regulates these processes, remains poorly understood. In this study, we showed that chloroplast division was significantly reduced in the GA-deficient mutants of Arabidopsis (ga1-3) and Oryza sativa (d18-AD), accompanied by the reduced expression of several chloroplast division-related genes. However, the chloroplasts of both mutants exhibited increased grana stacking compared with their respective wild-type plants, suggesting that there might be a compensation mechanism linking chloroplast division and grana stacking. A time-course analysis showed that cell expansion-related genes tended to be upregulated earlier and more significantly than the genes related to chloroplast division and cell division in GA-treated ga1-3 leaves, suggesting the possibility that GA may promote chloroplast division indirectly through impacting leaf mesophyll cell expansion. Furthermore, our cellular and molecular analysis of the GA-response signaling mutants suggest that RGA and GAI are the major repressors regulating GA-induced chloroplast division, but other DELLA proteins (RGL1, RGL2 and RGL3) also play a role in repressing chloroplast division in Arabidopsis. Taken together, our data show that GA plays a critical role in controlling and coordinating cell division, cell expansion and chloroplast biogenesis through influencing the DELLA protein family in both dicot and monocot plant species.

  10. Complex inhibitory microcircuitry regulates retinal signaling near visual threshold.

    PubMed

    Grimes, William N; Zhang, Jun; Tian, Hua; Graydon, Cole W; Hoon, Mrinalini; Rieke, Fred; Diamond, Jeffrey S

    2015-07-01

    Neuronal microcircuits, small, localized signaling motifs involving two or more neurons, underlie signal processing and computation in the brain. Compartmentalized signaling within a neuron may enable it to participate in multiple, independent microcircuits. Each A17 amacrine cell in the mammalian retina contains within its dendrites hundreds of synaptic feedback microcircuits that operate independently to modulate feedforward signaling in the inner retina. Each of these microcircuits comprises a small (<1 μm) synaptic varicosity that typically receives one excitatory synapse from a presynaptic rod bipolar cell (RBC) and returns two reciprocal inhibitory synapses back onto the same RBC terminal. Feedback inhibition from the A17 sculpts the feedforward signal from the RBC to the AII, a critical component of the circuitry mediating night vision. Here, we show that the two inhibitory synapses from the A17 to the RBC express kinetically distinct populations of GABA receptors: rapidly activating GABA(A)Rs are enriched at one synapse while more slowly activating GABA(C)Rs are enriched at the other. Anatomical and electrophysiological data suggest that macromolecular complexes of voltage-gated (Cav) channels and Ca(2+)-activated K(+) channels help to regulate GABA release from A17 varicosities and limit GABA(C)R activation under certain conditions. Finally, we find that selective elimination of A17-mediated feedback inhibition reduces the signal to noise ratio of responses to dim flashes recorded in the feedforward pathway (i.e., the AII amacrine cell). We conclude that A17-mediated feedback inhibition improves the signal to noise ratio of RBC-AII transmission near visual threshold, thereby improving visual sensitivity at night. PMID:25972578

  11. Epigenetic regulator Lid maintains germline stem cells through regulating JAK-STAT signaling pathway activity

    PubMed Central

    Tarayrah, Lama; Li, Yuping; Gan, Qiang; Chen, Xin

    2015-01-01

    ABSTRACT Signaling pathways and epigenetic mechanisms have both been shown to play essential roles in regulating stem cell activity. While the role of either mechanism in this regulation is well established in multiple stem cell lineages, how the two mechanisms interact to regulate stem cell activity is not as well understood. Here we report that in the Drosophila testis, an H3K4me3-specific histone demethylase encoded by little imaginal discs (lid) maintains germline stem cell (GSC) mitotic index and prevents GSC premature differentiation. Lid is required in germ cells for proper expression of the Stat92E transcription factor, the downstream effector of the Janus kinase signal transducer and activator of transcription (JAK-STAT) signaling pathway. Our findings support a germ cell autonomous role for the JAK-STAT pathway in maintaining GSCs and place Lid as an upstream regulator of this pathway. Our study provides new insights into the biological functions of a histone demethylase in vivo and sheds light on the interaction between epigenetic mechanisms and signaling pathways in regulating stem cell activities. PMID:26490676

  12. Notch signaling indirectly promotes chondrocyte hypertrophy via regulation of BMP signaling and cell cycle arrest

    PubMed Central

    Shang, Xifu; Wang, Jinwu; Luo, Zhengliang; Wang, Yongjun; Morandi, Massimo M.; Marymont, John V.; Hilton, Matthew J.; Dong, Yufeng

    2016-01-01

    Cell cycle regulation is critical for chondrocyte differentiation and hypertrophy. Recently we identified the Notch signaling pathway as an important regulator of chondrocyte proliferation and differentiation during mouse cartilage development. To investigate the underlying mechanisms, we assessed the role for Notch signaling regulation of the cell cycle during chondrocyte differentiation. Real-time RT-PCR data showed that over-expression of the Notch Intracellular Domain (NICD) significantly induced the expression of p57, a cell cycle inhibitor, in chondrocytes. Flow cytometric analyses further confirmed that over-expression of NICD in chondrocytes enhances the G0/G1 cell cycle transition and cell cycle arrest. In contrast, treatment of chondrocytes with the Notch inhibitor, DAPT, decreased both endogenous and BMP2-induced SMAD 1/5/8 phosphorylation and knockdown of SMAD 1/5/8 impaired NICD-induced chondrocyte differentiation and p57 expression. Co-immunoprecipitation using p-SMAD 1/5/8 and NICD antibodies further showed a strong interaction of these proteins during chondrocyte maturation. Finally, RT-PCR and Western blot results revealed a significant reduction in the expression of the SMAD-related phosphatase, PPM1A, following NICD over-expression. Taken together, our results demonstrate that Notch signaling induces cell cycle arrest and thereby initiates chondrocyte hypertrophy via BMP/SMAD-mediated up-regulation of p57. PMID:27146698

  13. Signaling by bone morphogenetic proteins directs formation of an ectodermal signaling center that regulates craniofacial development.

    PubMed

    Foppiano, Silvia; Hu, Diane; Marcucio, Ralph S

    2007-12-01

    We previously described a signaling center, the Frontonasal Ectodermal Zone (FEZ) that regulates growth and patterning of the frontonasal process (FNP). The FEZ is comprised of FNP ectoderm flanking a boundary between Sonic hedgehog (Shh) and Fibroblast growth factor 8 (Fgf8) expression domains. Our objective was to examine BMP signaling during formation of the FEZ. We blocked BMP signaling throughout the FNP prior to FEZ formation by infecting chick embryos at stage 10 (HH10) with a replication-competent avian retrovirus encoding the BMP antagonist Noggin. We assessed gene expression patterns in the FNP 72 h after infection (approximately HH22) and observed that Shh expression was reduced or absent. In the mesenchyme, we observed that Bmp2 transcripts were absent while the Bmp4 expression domain was expanded proximally. In addition to the molecular changes, infected embryos also exhibited facial malformations at 72 and 96 h after infection suggesting that the FEZ did not form. Our data indicate that reduced cell proliferation, but not apoptosis, in the mesenchyme contributed to the phenotype that we observed. Additionally, adding exogenous SHH into the mesenchyme of RCAS-Noggin-infected embryos did not restore Bmp2 and Bmp4 to a normal pattern of expression. These data indicate that BMP signaling mediates interactions between tissues in the FNP that regulate FEZ formation; and that the correct pattern of Bmp2 and Bmp4, but not Bmp7, expression in the FNP mesenchyme requires signaling by the BMP pathway.

  14. Negative Regulation of Cytoplasmic RNA-Mediated Antiviral Signaling

    PubMed Central

    Komuro, Akihiko; Bamming, Darja

    2008-01-01

    The recent, rapid progress in our understanding of cytoplasmic RNA-mediated antiviral innate immune signaling was initiated by the discovery of retinoic acid-inducible gene I (RIG-I) as a sensor of viral RNA [1]. It is now widely recognized that RIG-I and related RNA helicases, melanoma differentiated-associated gene-5 (MDA5) and laboratory of genetics and physiology-2 (LGP2), can initiate and/or regulate RNA and virus -mediated type I IFN production and antiviral responses. As with other cytokine systems, production of type I IFN is a transient process, and can be hazardous to the host if unregulated, resulting in chronic cellular toxicity or inflammatory and autoimmune diseases [2-9]. In addition, the RIG-I-like receptor (RLR) system is a fundamental target for virus-encoded immune suppression, with many indirect and direct examples of interference described. In this article, we review the current understanding of endogenous negative regulation in RLR signaling and explore direct inhibition of RLR signaling by viruses as a host immune evasion strategy. PMID:18703349

  15. Noncoding RNAs Regulating p53 and c-Myc Signaling.

    PubMed

    Mei, Yide; Wu, Mian

    2016-01-01

    p53 is one of the most important tumor suppressors and is known to play critical roles in the process of tumor development. Similarly, as an important proto-oncogenes, c-Myc is activated in over half of human cancers. Both p53 and c-Myc participate in almost every crucial decision of almost every cell. Therefore, it is utmost important to gain a better understanding of how they affect multiple cellular processes. The physiological and pathologic patterns of p53 and c-Myc regulations are modulated by a large number of cis-elements and transfactors (RNAs and proteins). These elements and factors are composed of a complicated network of intracellular and extracellular pathways. How the noncoding RNAs are involved in their regulations has not been comprehensively reviewed. In this chapter, we will list and describe recently published important noncoding RNAs including microRNAs and long noncoding RNAs, which act as effectors and regulators for both p53 and c-Myc regulation. The purpose of this chapter is to provide a recent progress of noncoding RNA in the regulation of p53 and c-Myc on network of cellular signaling and its potential implications in both basic science and clinical application. PMID:27376742

  16. Plant hormone signaling lightens up: integrators of light and hormones.

    PubMed

    Lau, On Sun; Deng, Xing Wang

    2010-10-01

    Light is an important environmental signal that regulates diverse growth and developmental processes in plants. In these light-regulated processes, multiple hormonal pathways are often modulated by light to mediate the developmental changes. Conversely, hormone levels in plants also serve as endogenous cues in influencing light responsiveness. Although interactions between light and hormone signaling pathways have long been observed, recent studies have advanced our understanding by identifying signaling integrators that connect the pathways. These integrators, namely PHYTOCHROME-INTERACTING FACTOR 3 (PIF3), PIF4, PIF3-LIKE 5 (PIL5)/PIF1 and LONG HYPOCOTYL 5 (HY5), are key light signaling components and they link light signals to the signaling of phytohormones, such as gibberellin (GA), abscisic acid (ABA), auxin and cytokinin, in regulating seedling photomorphogenesis and seed germination. This review focuses on these integrators in illustrating how light and hormone interact.

  17. Signal inhibition by a dynamically regulated pool of monophosphorylated MAPK

    PubMed Central

    Nagiec, Michal J.; McCarter, Patrick C.; Kelley, Joshua B.; Dixit, Gauri; Elston, Timothy C.; Dohlman, Henrik G.

    2015-01-01

    Protein kinases regulate a broad array of cellular processes and do so through the phosphorylation of one or more sites within a given substrate. Many protein kinases are themselves regulated through multisite phosphorylation, and the addition or removal of phosphates can occur in a sequential (processive) or a stepwise (distributive) manner. Here we measured the relative abundance of the monophosphorylated and dual-phosphorylated forms of Fus3, a member of the mitogen-activated protein kinase (MAPK) family in yeast. We found that upon activation with pheromone, a substantial proportion of Fus3 accumulates in the monophosphorylated state. Introduction of an additional copy of Fus3 lacking either phosphorylation site leads to dampened signaling. Conversely, cells lacking the dual-specificity phosphatase (msg5Δ) or that are deficient in docking to the MAPK-scaffold (Ste5ND) accumulate a greater proportion of dual-phosphorylated Fus3. The double mutant exhibits a synergistic, or “synthetic,” supersensitivity to pheromone. Finally, we present a predictive computational model that combines MAPK scaffold and phosphatase activities and is sufficient to account for the observed MAPK profiles. These results indicate that the monophosphorylated and dual-phosphorylated forms of the MAPK act in opposition to one another. Moreover, they reveal a new mechanism by which the MAPK scaffold acts dynamically to regulate signaling. PMID:26179917

  18. Retrograde neurotrophin signaling through Tollo regulates synaptic growth in Drosophila

    PubMed Central

    Miller, Daniel L.; Ganetzky, Barry

    2014-01-01

    Toll-like receptors (TLRs) are best characterized for their roles in mediating dorsoventral patterning and the innate immune response. However, recent studies indicate that TLRs are also involved in regulating neuronal growth and development. Here, we demonstrate that the TLR Tollo positively regulates growth of the Drosophila melanogaster larval neuromuscular junction (NMJ). Tollo mutants exhibited NMJ undergrowth, whereas increased expression of Tollo led to NMJ overgrowth. Tollo expression in the motoneuron was both necessary and sufficient for regulating NMJ growth. Dominant genetic interactions together with altered levels of phosphorylated c-Jun N-terminal kinase (JNK) and puc-lacZ expression revealed that Tollo signals through the JNK pathway at the NMJ. Genetic interactions also revealed that the neurotrophin Spätzle3 (Spz3) is a likely Tollo ligand. Spz3 expression in muscle and proteolytic activation via the Easter protease was necessary and sufficient to promote NMJ growth. These results demonstrate the existence of a novel neurotrophin signaling pathway that is required for synaptic development in Drosophila. PMID:24662564

  19. Tubedown regulation of retinal endothelial permeability signaling pathways

    PubMed Central

    Ho, Nhu; Gendron, Robert L.; Grozinger, Kindra; Whelan, Maria A.; Hicks, Emily Anne; Tennakoon, Bimal; Gardiner, Danielle; Good, William V.; Paradis, Hélène

    2015-01-01

    ABSTRACT Tubedown (Tbdn; Naa15), a subunit of the N-terminal acetyltransferase NatA, complexes with the c-Src substrate Cortactin and supports adult retinal homeostasis through regulation of vascular permeability. Here we investigate the role of Tbdn expression on signaling components of retinal endothelial permeability to understand how Tbdn regulates the vasculature and supports retinal homeostasis. Tbdn knockdown-induced hyperpermeability to Albumin in retinal endothelial cells was associated with an increase in the levels of activation of the Src family kinases (SFK) c-Src, Fyn and Lyn and phospho-Cortactin (Tyr421). The knockdown of Cortactin expression reduced Tbdn knockdown-induced permeability to Albumin and the levels of activated SFK. Inhibition of SFK in retinal endothelial cells decreased Tbdn knockdown-induced permeability to Albumin and phospho-Cortactin (Tyr421) levels. Retinal lesions of endothelial-specific Tbdn knockdown mice, with tissue thickening, fibrovascular growth, and hyperpermeable vessels displayed an increase in the levels of activated c-Src. Moreover, the retinal lesions of patients with proliferative diabetic retinopathy (PDR) associated with a loss of Tbdn expression and hyperpermeability to Albumin displayed increased levels of activated SFK in retinal blood vessels. Taken together, these results implicate Tbdn as an important regulator of retinal endothelial permeability and homeostasis by modulating a signaling pathway involving c-Src and Cortactin. PMID:26142315

  20. Mechanism of gibberellin-dependent stem elongation in peas

    NASA Technical Reports Server (NTRS)

    Cosgrove, D. J.; Sovonick-Dunford, S. A.

    1989-01-01

    Stem elongation in peas (Pisum sativum L.) is under partial control by gibberellins, yet the mechanism of such control is uncertain. In this study, we examined the cellular and physical properties that govern stem elongation, to determine how gibberellins influence pea stem growth. Stem elongation of etiolated seedlings was retarded with uniconozol, a gibberellin synthesis inhibitor, and the growth retardation was reversed by exogenous gibberellin. Using the pressure probe and vapor pressure osmometry, we found little effect of uniconozol and gibberellin on cell turgor pressure or osmotic pressure. In contrast, these treatments had major effects on in vivo stress relaxation, measured by turgor relaxation and pressure-block techniques. Uniconozol-treated plants exhibited reduced wall relaxation (both initial rate and total amount). The results show that growth retardation is effected via a reduction in the wall yield coefficient and an increase in the yield threshold. These effects were largely reversed by exogenous gibberellin. When we measured the mechanical characteristics of the wall by stress/strain (Instron) analysis, we found only minor effects of uniconozol and gibberellin on the plastic compliance. This observation indicates that these agents did not alter wall expansion through effects on the mechanical (viscoelastic) properties of the wall. Our results suggest that wall expansion in peas is better viewed as a chemorheological, rather than a viscoelastic, process.

  1. Mechanism of gibberellin-dependent stem elongation in peas.

    PubMed

    Cosgrove, D J; Sovonick-Dunford, S A

    1989-01-01

    Stem elongation in peas (Pisum sativum L.) is under partial control by gibberellins, yet the mechanism of such control is uncertain. In this study, we examined the cellular and physical properties that govern stem elongation, to determine how gibberellins influence pea stem growth. Stem elongation of etiolated seedlings was retarded with uniconozol, a gibberellin synthesis inhibitor, and the growth retardation was reversed by exogenous gibberellin. Using the pressure probe and vapor pressure osmometry, we found little effect of uniconozol and gibberellin on cell turgor pressure or osmotic pressure. In contrast, these treatments had major effects on in vivo stress relaxation, measured by turgor relaxation and pressure-block techniques. Uniconozol-treated plants exhibited reduced wall relaxation (both initial rate and total amount). The results show that growth retardation is effected via a reduction in the wall yield coefficient and an increase in the yield threshold. These effects were largely reversed by exogenous gibberellin. When we measured the mechanical characteristics of the wall by stress/strain (Instron) analysis, we found only minor effects of uniconozol and gibberellin on the plastic compliance. This observation indicates that these agents did not alter wall expansion through effects on the mechanical (viscoelastic) properties of the wall. Our results suggest that wall expansion in peas is better viewed as a chemorheological, rather than a viscoelastic, process. PMID:11537446

  2. Regulation of T-cell receptor signalling by membrane microdomains

    PubMed Central

    Razzaq, Tahir M; Ozegbe, Patricia; Jury, Elizabeth C; Sembi, Phupinder; Blackwell, Nathan M; Kabouridis, Panagiotis S

    2004-01-01

    There is now considerable evidence suggesting that the plasma membrane of mammalian cells is compartmentalized by functional lipid raft microdomains. These structures are assemblies of specialized lipids and proteins and have been implicated in diverse biological functions. Analysis of their protein content using proteomics and other methods revealed enrichment of signalling proteins, suggesting a role for these domains in intracellular signalling. In T lymphocytes, structure/function experiments and complementary pharmacological studies have shown that raft microdomains control the localization and function of proteins which are components of signalling pathways regulated by the T-cell antigen receptor (TCR). Based on these studies, a model for TCR phosphorylation in lipid rafts is presented. However, despite substantial progress in the field, critical questions remain. For example, it is unclear if membrane rafts represent a homogeneous population and if their structure is modified upon TCR stimulation. In the future, proteomics and the parallel development of complementary analytical methods will undoubtedly contribute in further delineating the role of lipid rafts in signal transduction mechanisms. PMID:15554919

  3. CGI-58, a key regulator of lipid homeostasis and signaling in plants, also regulates polyamine metabolism

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Comparative Gene Identification-58 (CGI-58) is an alpha/beta hydrolase-type protein that regulates lipid homeostasis and signaling in eukaryotes by interacting with and stimulating the activity of several different types of proteins, including a lipase in mammalian cells and a peroxisomal ABC transp...

  4. Emerging EPO and EPO receptor regulators and signal transducers

    PubMed Central

    Kuhrt, David

    2015-01-01

    As essential mediators of red cell production, erythropoietin (EPO) and its cell surface receptor (EPO receptor [EPOR]) have been intensely studied. Early investigations defined basic mechanisms for hypoxia-inducible factor induction of EPO expression, and within erythroid progenitors EPOR engagement of canonical Janus kinase 2/signal transducer and activator of transcription 5 (JAK2/STAT5), rat sarcoma/mitogen-activated protein kinase/extracellular signal-regulated kinase (RAS/MEK/ERK), and phosphatidylinositol 3-kinase (PI3K) pathways. Contemporary genetic, bioinformatic, and proteomic approaches continue to uncover new clinically relevant modulators of EPO and EPOR expression, and EPO’s biological effects. This Spotlight review highlights such factors and their emerging roles during erythropoiesis and anemia. PMID:25887776

  5. Pneumococcal hydrogen peroxide-induced stress signaling regulates inflammatory genes.

    PubMed

    Loose, Maria; Hudel, Martina; Zimmer, Klaus-Peter; Garcia, Ernesto; Hammerschmidt, Sven; Lucas, Rudolf; Chakraborty, Trinad; Pillich, Helena

    2015-01-15

    Microbial infections can induce aberrant responses in cellular stress pathways, leading to translational attenuation, metabolic restriction, and activation of oxidative stress, with detrimental effects on cell survival. Here we show that infection of human airway epithelial cells with Streptococcus pneumoniae leads to induction of endoplasmic reticulum (ER) and oxidative stress, activation of mitogen-associated protein kinase (MAPK) signaling pathways, and regulation of their respective target genes. We identify pneumococcal H2O2 as the causative agent for these responses, as both catalase-treated and pyruvate oxidase-deficient bacteria lacked these activities. Pneumococcal H2O2 induced nuclear NF-κB translocation and transcription of proinflammatory cytokines. Inhibition of translational arrest and ER stress by salubrinal or of MAPK signaling pathways attenuate cytokine transcription. These results provide strong evidence for the notion that inhibition of translation is an important host pathway in monitoring harmful pathogen-associated activities, thereby enabling differentiation between pathogenic and nonpathogenic bacteria. PMID:25183769

  6. Emerging EPO and EPO receptor regulators and signal transducers.

    PubMed

    Kuhrt, David; Wojchowski, Don M

    2015-06-01

    As essential mediators of red cell production, erythropoietin (EPO) and its cell surface receptor (EPO receptor [EPOR]) have been intensely studied. Early investigations defined basic mechanisms for hypoxia-inducible factor induction of EPO expression, and within erythroid progenitors EPOR engagement of canonical Janus kinase 2/signal transducer and activator of transcription 5 (JAK2/STAT5), rat sarcoma/mitogen-activated protein kinase/extracellular signal-regulated kinase (RAS/MEK/ERK), and phosphatidylinositol 3-kinase (PI3K) pathways. Contemporary genetic, bioinformatic, and proteomic approaches continue to uncover new clinically relevant modulators of EPO and EPOR expression, and EPO's biological effects. This Spotlight review highlights such factors and their emerging roles during erythropoiesis and anemia. PMID:25887776

  7. Host mTORC1 Signaling Regulates Andes Virus Replication

    PubMed Central

    McNulty, Shannon; Flint, Mike; Nichol, Stuart T.

    2013-01-01

    Hantavirus pulmonary syndrome (HPS) is a severe respiratory disease characterized by pulmonary edema, with fatality rates of 35 to 45%. Disease occurs following infection with pathogenic New World hantaviruses, such as Andes virus (ANDV), which targets lung microvascular endothelial cells. During replication, the virus scavenges 5′-m7G caps from cellular mRNA to ensure efficient translation of viral proteins by the host cell cap-dependent translation machinery. In cells, the mammalian target of rapamycin (mTOR) regulates the activity of host cap-dependent translation by integrating amino acid, energy, and oxygen availability signals. Since there is no approved pharmacological treatment for HPS, we investigated whether inhibitors of the mTOR pathway could reduce hantavirus infection. Here, we demonstrate that treatment with the FDA-approved rapamycin analogue temsirolimus (CCI-779) blocks ANDV protein expression and virion release but not entry into primary human microvascular endothelial cells. This effect was specific to viral proteins, as temsirolimus treatment did not block host protein synthesis. We confirmed that temsirolimus targeted host mTOR complex 1 (mTORC1) and not a viral protein, as knockdown of mTORC1 and mTORC1 activators but not mTOR complex 2 components reduced ANDV replication. Additionally, primary fibroblasts from a patient with tuberous sclerosis exhibited increased mTORC1 activity and increased ANDV protein expression, which were blocked following temsirolimus treatment. Finally, we show that ANDV glycoprotein Gn colocalized with mTOR and lysosomes in infected cells. Together, these data demonstrate that mTORC1 signaling regulates ANDV replication and suggest that the hantavirus Gn protein may modulate mTOR and lysosomal signaling during infection, thus bypassing the cellular regulation of translation. PMID:23135723

  8. Identification of a neurovascular signaling pathway regulating seizures in mice

    PubMed Central

    Fredriksson, Linda; Stevenson, Tamara K; Su, Enming J; Ragsdale, Margaret; Moore, Shannon; Craciun, Stefan; Schielke, Gerald P; Murphy, Geoffrey G; Lawrence, Daniel A

    2015-01-01

    Objective A growing body of evidence suggests that increased blood–brain barrier (BBB) permeability can contribute to the development of seizures. The protease tissue plasminogen activator (tPA) has been shown to promote BBB permeability and susceptibility to seizures. In this study, we examined the pathway regulated by tPA in seizures. Methods An experimental model of kainate-induced seizures was used in genetically modified mice, including mice deficient in tPA (tPA−/−), its inhibitor neuroserpin (Nsp−/−), or both (Nsp:tPA−/−), and in mice conditionally deficient in the platelet-derived growth factor receptor alpha (PDGFRα). Results Compared to wild-type (WT) mice, Nsp−/− mice have significantly reduced latency to seizure onset and generalization; whereas tPA−/− mice have the opposite phenotype, as do Nsp:tPA−/− mice. Furthermore, interventions that maintain BBB integrity delay seizure propagation, whereas osmotic disruption of the BBB in seizure-resistant tPA−/− mice dramatically reduces the time to seizure onset and accelerates seizure progression. The phenotypic differences in seizure progression between WT, tPA−/−, and Nsp−/− mice are also observed in electroencephalogram recordings in vivo, but absent in ex vivo electrophysiological recordings where regulation of the BBB is no longer necessary to maintain the extracellular environment. Finally, we demonstrate that these effects on seizure progression are mediated through signaling by PDGFRα on perivascular astrocytes. Interpretation Together, these data identify a specific molecular pathway involving tPA-mediated PDGFRα signaling in perivascular astrocytes that regulates seizure progression through control of the BBB. Inhibition of PDGFRα signaling and maintenance of BBB integrity might therefore offer a novel clinical approach for managing seizures. PMID:26273685

  9. Regulation of connexin signaling by the epigenetic machinery

    PubMed Central

    Vinken, Mathieu

    2015-01-01

    Connexins and their channels are involved in the control of all aspects of the cellular life cycle, ranging from cell growth to cell death, by mediating extracellular, intercellular and intracellular communication. These multifaceted aspects of connexin-related cellular signaling obviously require strict regulation. While connexin channel activity is mainly directed by posttranslational modifications, connexin expression as such is managed by classical cis/trans mechanisms. Over the past few years, it has become clear that connexin production is equally dictated by epigenetic actions. This paper provides an overview of the role of major determinants of the epigenome, including DNA methylation, histone acetylation and microRNA species, in connexin expression. PMID:26566120

  10. Regulation of connexin signaling by the epigenetic machinery.

    PubMed

    Vinken, Mathieu

    2016-02-01

    Connexins and their channels are involved in the control of all aspects of the cellular life cycle, ranging from cell growth to cell death, by mediating extracellular, intercellular and intracellular communication. These multifaceted aspects of connexin-related cellular signaling obviously require strict regulation. While connexin channel activity is mainly directed by posttranslational modifications, connexin expression as such is managed by classical cis/trans mechanisms. Over the past few years, it has become clear that connexin production is equally dictated by epigenetic actions. This paper provides an overview of the role of major determinants of the epigenome, including DNA methylation, histone acetylation and microRNA species, in connexin expression. PMID:26566120

  11. Small-signal, continuous, exact model of PWM voltage regulators

    NASA Astrophysics Data System (ADS)

    Burkhardt, W.; Maranesi, P.; Varoli, V.

    1985-02-01

    The small-signal time-continuous open-loop response of buck, boost, and buck-boost pulse-width-modulation (PWM) voltage regulators using MOSFET switches in their power stages is modeled, applying a time-domain sampling theorem (Woodward, 1953) to obtain the Fourier open-loop transfer function corresponding to the comb function describing the response at the chopping instants only. The results are presented graphically along with simplified circuit diagrams of the PWM devices, and the accuracy and computational efficiency of the analytical approach are indicated.

  12. Fisetin regulates obesity by targeting mTORC1 signaling.

    PubMed

    Jung, Chang Hwa; Kim, Heemun; Ahn, Jiyun; Jeon, Tae-Il; Lee, Dae-Hee; Ha, Tae-Youl

    2013-08-01

    Fisetin, a flavonol present in vegetables and fruits, possesses antioxidative and anti-inflammatory properties. In this study, we have demonstrated that fisetin prevents diet-induced obesity through regulation of the signaling of mammalian target of rapamycin complex 1 (mTORC1), a central mediator of cellular growth, cellular proliferation and lipid biosynthesis. To evaluate whether fisetin regulates mTORC1 signaling, we investigated the phosphorylation and kinase activity of the 70-kDa ribosomal protein S6 kinase 1 (S6K1) and mTORC1 in 3T3-L1 preadipocytes. Fisetin treatment of preadipocytes reduced the phosphorylation of S6K1 and mTORC1 in a time- and concentration-dependent manner. To further our understanding of how fisetin negatively regulates mTORC1 signaling, we analyzed the phosphorylation of S6K1, mTOR and Akt in fisetin-treated TSC2-knockdown cells. The results suggested that fisetin treatment inhibits mTORC1 activity in an Akt-dependent manner. Recent studies have shown that adipocyte differentiation is dependent on mTORC1 activity. Fisetin treatment inhibited adipocyte differentiation, consistent with the negative effect of fisetin on mTOR. The inhibitory effect of fisetin on adipogenesis is dependent of mTOR activity, suggesting that fisetin inhibits adipogenesis and the accumulation of intracellular triglycerides during adipocyte differentiation by targeting mTORC1 signaling. Fisetin supplementation in mice fed a high-fat diet (HFD) significantly attenuated HFD-induced increases in body weight and white adipose tissue. We also observed that fisetin efficiently suppressed the phosphorylation of Akt, S6K1 and mTORC1 in adipose tissue. Collectively, these results suggest that inhibition of mTORC1 signaling by fisetin prevents adipocyte differentiation of 3T3-L1 preadipocytes and obesity in HFD-fed mice. Therefore, fisetin may be a useful phytochemical agent for attenuating diet-induced obesity.

  13. Detection of endogenous gibberellins and their relationship to hypocotyl elongation in soybean seedlings

    SciTech Connect

    Bensen, R.J.; Beall, F.D.; Mullet, J.E.; Morgan, P.W. )

    1990-09-01

    Four gibberellins, GA{sub 53}, GA{sub 19}, GA{sub 20}, and GA{sub 1}, were detected by bioassay, chromatography in two HPLC systems, and combined gas chromatography-mass spectroscopy-selected ion monitoring (GC-MS-SIM) in etiolated soybean (Glycine max (L.) Merr.) hypocotyls. GC-MS-SIM employed ({sup 2}H{sub 2})-labeled standards for each endogenous gibberellin detected, and quantities estimated from bioassays and GC-MS-SIM were similar. This result plus the tentative detection of GA{sub 44} and GA{sub 8} (standards not available) indicates that the early-C-13-hydroxylation pathway for gibberellin biosynthesis predominates in soybean hypocotyls. Other gibberellins were not detected. Growth rates decreased after transfer to low water potential ({psi}{sub w}) vermiculite and were completely arrested 24 hours after transfer. The GA{sub 1} content in the elongating region of hypocotyls had declined to 38% of the 0 time value at 24 hours after transfer to low {psi}{sub w} vermiculite, a level which was only 13% of the GA{sub 1} content in control seedlings at the same time (24 hours posttransfer). Seedlings were growth responsive to exogenous GA{sub 3}, and this GA{sub 3}-promoted growth was inhibited by exogenous ABA. The data are consistent with the hypothesis that changes in GA{sub 1} and ABA levels play a role in adjusting hypocotyl elongation rates. However, the changes observed are not of sufficient magnitude nor do they occur rapidly enough to suggest they are the primary regulators of elongation rate responses to rapidly changing plant water status.

  14. Regulation of costimulatory signal in maternal-fetal immune tolerance.

    PubMed

    Jin, Li-Ping; Fan, Deng-Xuan; Li, Da-Jin

    2011-08-01

    A pregnancy is associated with modifications in the immune status of the mother, but the mechanisms are not well understood. Several observations have indicated that CD28/CTLA-4 and B7-1/B7-2 are involved in the maternal-fetal immune regulation. This review aims to recapitulate our current knowledge concerning the role of CD28/CTLA-4 and B7-1/B7-2 in maternal-fetal immune regulation. Several studies suggest that up-regulation of B7-2 and/or CD28 and/or down-regulation of CTLA-4 are correlated with the occurrence of pregnancy loss. Therefore, an accurate expression of costimulatory molecules at the maternal-fetal interface may ensure that the decidual cells do not elicit a 'danger' signal to the maternal immune system, perhaps instead contributing to the establishment of immune tolerance in vivo. It is showed that costimulation blockade with anti-B7 mAbs results in altered allogeneic T-cell response and overcomes increased maternal rejection to the fetus, which improves fetus growth in the abortion-prone system. These findings suggest that the anti-B7-treated T cells not only function as potent suppresser cells but also exert immunoregulatory effect on the maternal T cells. This procedure might be potentially useful to immunotherapy for human recurrent spontaneous abortion. PMID:21276120

  15. Phytochrome B and REVEILLE1/2-mediated signalling controls seed dormancy and germination in Arabidopsis.

    PubMed

    Jiang, Zhimin; Xu, Gang; Jing, Yanjun; Tang, Weijiang; Lin, Rongcheng

    2016-01-01

    Seeds maintain a dormant state to withstand adverse conditions and germinate when conditions become favourable to give rise to a new generation of flowering plants. Seed dormancy and germination are tightly controlled by internal and external signals. Although phytochrome photoreceptors are proposed to regulate primary seed dormancy, the underlying molecular mechanism remains elusive. Here we show that the REVEILLE1 (RVE1) and RVE2 transcription factors promote primary seed dormancy and repress red/far-red-light-reversible germination downstream of phytochrome B (phyB) in Arabidopsis thaliana. RVE1 and RVE2 expression is downregulated after imbibition and by phyB. RVE1 directly binds to the promoter of GIBBERELLIN 3-OXIDASE 2, inhibits its transcription and thus suppresses the biosynthesis of bioactive gibberellins. In addition, DELAY OF GERMINATION 1 also acts downstream of phyB. This study identifies a signalling pathway that integrates environmental light input with internal factors to control both seed dormancy and germination.

  16. Population genomic analysis of gibberellin-responsive long non-coding RNAs in Populus.

    PubMed

    Tian, Jiaxing; Song, Yuepeng; Du, Qingzhang; Yang, Xiaohui; Ci, Dong; Chen, Jinhui; Xie, Jianbo; Li, Bailian; Zhang, Deqiang

    2016-04-01

    Long non-coding RNAs (lncRNAs) participate in a wide range of biological processes, but lncRNAs in plants remain largely unknown; in particular, we lack a systematic identification of plant lncRNAs involved in hormone responses. Moreover, allelic variation in lncRNAs remains poorly characterized at a large scale. Here, we conducted high-throughput RNA-sequencing of leaves from control and gibberellin (GA)-treated Populus tomentosa and identified 7655 reliably expressed lncRNAs. Among the 7655 lncRNAs, the levels of 410 lncRNAs changed in response to GA. Seven GA-responsive lncRNAs were predicted to be putative targets of 18 miRNAs, and one GA-responsive lncRNA (TCONS_00264314) was predicted to be a target mimic of ptc-miR6459b. Computational analysis predicted 939 potential cis-regulated target genes and 965 potential trans-regulated target genes for GA-responsive lncRNAs. Functional annotation of these potential target genes showed that they participate in many different biological processes, including auxin signal transduction and synthesis of cellulose and pectin, indicating that GA-responsive lncRNAs may influence growth and wood properties. Finally, single nucleotide polymorphism (SNP)-based association analysis showed that 112 SNPs from 52 GA-responsive lncRNAs and 1014 SNPs from 296 potential target genes were significantly associated with growth and wood properties. Epistasis analysis also provided evidence for interactions between lncRNAs and their potential target genes. Our study provides a comprehensive view of P. tomentosa lncRNAs and offers insights into the potential functions and regulatory interactions of GA-responsive lncRNAs, thus forming the foundation for future functional analysis of GA-responsive lncRNAs in P. tomentosa.

  17. Population genomic analysis of gibberellin-responsive long non-coding RNAs in Populus.

    PubMed

    Tian, Jiaxing; Song, Yuepeng; Du, Qingzhang; Yang, Xiaohui; Ci, Dong; Chen, Jinhui; Xie, Jianbo; Li, Bailian; Zhang, Deqiang

    2016-04-01

    Long non-coding RNAs (lncRNAs) participate in a wide range of biological processes, but lncRNAs in plants remain largely unknown; in particular, we lack a systematic identification of plant lncRNAs involved in hormone responses. Moreover, allelic variation in lncRNAs remains poorly characterized at a large scale. Here, we conducted high-throughput RNA-sequencing of leaves from control and gibberellin (GA)-treated Populus tomentosa and identified 7655 reliably expressed lncRNAs. Among the 7655 lncRNAs, the levels of 410 lncRNAs changed in response to GA. Seven GA-responsive lncRNAs were predicted to be putative targets of 18 miRNAs, and one GA-responsive lncRNA (TCONS_00264314) was predicted to be a target mimic of ptc-miR6459b. Computational analysis predicted 939 potential cis-regulated target genes and 965 potential trans-regulated target genes for GA-responsive lncRNAs. Functional annotation of these potential target genes showed that they participate in many different biological processes, including auxin signal transduction and synthesis of cellulose and pectin, indicating that GA-responsive lncRNAs may influence growth and wood properties. Finally, single nucleotide polymorphism (SNP)-based association analysis showed that 112 SNPs from 52 GA-responsive lncRNAs and 1014 SNPs from 296 potential target genes were significantly associated with growth and wood properties. Epistasis analysis also provided evidence for interactions between lncRNAs and their potential target genes. Our study provides a comprehensive view of P. tomentosa lncRNAs and offers insights into the potential functions and regulatory interactions of GA-responsive lncRNAs, thus forming the foundation for future functional analysis of GA-responsive lncRNAs in P. tomentosa. PMID:26912799

  18. Does gibberellin biosynthesis play a critical role in the growth of Lolium perenne? Evidence from a transcriptional analysis of gibberellin and carbohydrate metabolic genes after defoliation

    PubMed Central

    Liu, Qianhe; Jones, Chris S.; Parsons, Anthony J.; Xue, Hong; Rasmussen, Susanne

    2015-01-01

    Global meat and milk production depends to a large extent on grazed pastures, with Lolium perenne being the major forage grass in temperate regions. Defoliation and subsequent regrowth of leaf blades is a major and essential event with respect to L. perenne growth and productivity. Following defoliation, carbohydrates (mainly fructans and sucrose) have to be mobilized from heterotrophic tissues to provide energy and carbon for regrowth of photosynthetic tissues. This mobilization of reserve carbohydrates requires a substantial change in the expression of genes coding for enzymes involved in carbohydrate metabolism. Here we tested the hypothesis that gibberellins (GA) are at the core of the processes regulating the expression of these genes. Thus, we examined the transcript profiles of genes involved in carbohydrate and GA metabolic pathways across a time course regrowth experiment. Our results show that following defoliation, the immediate reduction of carbohydrate concentrations in growing tissues is associated with a concomitant increase in the expression of genes encoding carbohydrate mobilizing invertases, and was also associated with a strong decrease in the expression of fructan synthesizing fructosyltransferase genes. We also show that the decrease in fructan levels is preceded by increased expression of the GA activating gene GA3-oxidase and decreased expression of the GA inactivating gene GA2-oxidase in sheaths. GA3-oxidase expression was negatively, while GA2-oxidase positively linked to sucrose concentrations. This study provides indicative evidence that gibberellins might play a role in L. perenne regrowth following defoliation and we hypothesize that there is a link between gibberellin regulation and sugar metabolism in L. perenne. PMID:26579182

  19. Calcineurin/NFAT signaling in osteoblasts regulates bone mass.

    PubMed

    Winslow, Monte M; Pan, Minggui; Starbuck, Michael; Gallo, Elena M; Deng, Lei; Karsenty, Gerard; Crabtree, Gerald R

    2006-06-01

    Development and repair of the vertebrate skeleton requires the precise coordination of bone-forming osteoblasts and bone-resorbing osteoclasts. In diseases such as osteoporosis, bone resorption dominates over bone formation, suggesting a failure to harmonize osteoclast and osteoblast function. Here, we show that mice expressing a constitutively nuclear NFATc1 variant (NFATc1(nuc)) in osteoblasts develop high bone mass. NFATc1(nuc) mice have massive osteoblast overgrowth, enhanced osteoblast proliferation, and coordinated changes in the expression of Wnt signaling components. In contrast, viable NFATc1-deficient mice have defects in skull bone formation in addition to impaired osteoclast development. NFATc1(nuc) mice have increased osteoclastogenesis despite normal levels of RANKL and OPG, indicating that an additional NFAT-regulated mechanism influences osteoclastogenesis in vivo. Calcineurin/NFATc signaling in osteoblasts controls the expression of chemoattractants that attract monocytic osteoclast precursors, thereby coupling bone formation and bone resorption. Our results indicate that NFATc1 regulates bone mass by functioning in both osteoblasts and osteoclasts. PMID:16740479

  20. praja2 regulates KSR1 stability and mitogenic signaling

    PubMed Central

    Rinaldi, L; Delle Donne, R; Sepe, M; Porpora, M; Garbi, C; Chiuso, F; Gallo, A; Parisi, S; Russo, L; Bachmann, V; Huber, R G; Stefan, E; Russo, T; Feliciello, A

    2016-01-01

    The kinase suppressor of Ras 1 (KSR1) has a fundamental role in mitogenic signaling by scaffolding components of the Ras/MAP kinase pathway. In response to Ras activation, KSR1 assembles a tripartite kinase complex that optimally transfers signals generated at the cell membrane to activate ERK. We describe a novel mechanism of ERK attenuation based on ubiquitin-dependent proteolysis of KSR1. Stimulation of membrane receptors by hormones or growth factors induced KSR1 polyubiquitination, which paralleled a decline of ERK1/2 signaling. We identified praja2 as the E3 ligase that ubiquitylates KSR1. We showed that praja2-dependent regulation of KSR1 is involved in the growth of cancer cells and in the maintenance of undifferentiated pluripotent state in mouse embryonic stem cells. The dynamic interplay between the ubiquitin system and the kinase scaffold of the Ras pathway shapes the activation profile of the mitogenic cascade. By controlling KSR1 levels, praja2 directly affects compartmentalized ERK activities, impacting on physiological events required for cell proliferation and maintenance of embryonic stem cell pluripotency. PMID:27195677

  1. Regulation of EphB1 expression by dopamine signaling.

    PubMed

    Halladay, A K; Yue, Y; Michna, L; Widmer, D A; Wagner, G C; Zhou, R

    2000-12-28

    The Eph family tyrosine kinase receptors and their ligands have been implicated in axon guidance and neuronal migration during development of the nervous system. In the current study, we aim to characterize the nature of changes in EphB1 receptor expression following increases or decreases in dopamine activity. Neonatal mice (P3) were injected with 6-hydroxydopamine and allowed 13 days to recover. These animals show a profound depletion of dopamine in all areas assayed, with a corresponding dose-dependent decrease in EphB1 expression. Day 3 pups were also injected either chronically (P3-P16) or acutely (P3 only) with cocaine to determine how enhancing dopamine signaling would affect EphB1 signal density. It was found that both treatments significantly increased expression of EphB1 in the cortex, striatum and substantia nigra. Finally, animals were treated prenatally (E15-E17) with cocaine and sacrificed on P7. These animals also showed an increase in EphB1 signal density, but only in the dopaminergic terminal areas in the cortex and striatum. These studies indicate that dopamine activity regulates developmental expression of the tyrosine kinase receptor EphB1. PMID:11146119

  2. Nitrite as regulator of hypoxic signaling in mammalian physiology

    PubMed Central

    van Faassen, Ernst E.; Bahrami, Soheyl; Feelisch, Martin; Hogg, Neil; Kelm, Malte; Kim-Shapiro, Daniel B.; Kozlov, Andrey V.; Li, Haitao; Lundberg, Jon O.; Mason, Ron; Nohl, Hans; Rassaf, Tienush; Samouilov, Alexandre; Slama-Schwok, Anny; Shiva, Sruti; Vanin, Anatoly F.; Weitzberg, Eddie; Zweier, Jay; Gladwin, Mark T.

    2009-01-01

    In this review we consider the physiological effects of endogenous and pharmacological levels of nitrite under conditions of hypoxia. In humans, the nitrite anion has long been considered as metastable intermediate in the oxidation of nitric oxide radicals to the stable metabolite nitrate. This oxidation cascade was thought to be irreversible under physiological conditions. However, a growing body of experimental observations attests that the presence of endogenous nitrite regulates a number of signaling events along the physiological and pathophysiological oxygen gradient. Hypoxic signaling events include vasodilation, modulation of mitochondrial respiration, and cytoprotection following ischemic insult. These phenomena are attributed to the reduction of nitrite anions to nitric oxide if local oxygen levels in tissues decrease. Recent research identified a growing list of enzymatic and non-enzymatic pathways for this endogenous reduction of nitrite. Additional direct signaling events not involving free nitric oxide are proposed. We here discuss the mechanisms and properties of these various pathways and the role played by the local concentration of free oxygen in the affected tissue. PMID:19219851

  3. Adenosine signaling and the regulation of chronic lung disease

    PubMed Central

    Zhou, Yang; Schneider, Daniel J.; Blackburn, Michael R.

    2009-01-01

    Chronic lung diseases such as asthma, chronic obstructive pulmonary disease and interstitial lung disease are characterized by inflammation and tissue remodeling processes that compromise pulmonary function. Adenosine is produced in the inflamed and damaged lung where it plays numerous roles in the regulation of inflammation and tissue remodeling. Extracellular adenosine serves as an autocrine and paracrine signaling molecule by engaging cell surface adenosine receptors. Preclinical and cellular studies suggest that adenosine plays an anti-inflammatory role in processes associated with acute lung disease, where activation of the A2AR and A2BR have promising implications for the treatment of these disorders. In contrast, there is growing evidence that adenosine signaling through the A1R, A2BR and A3R may serve pro-inflammatory and tissue remodeling functions in chronic lung diseases. This review discusses the current progress of research efforts and clinical trials aimed at understanding the complexities of this signaling pathway as they pertain to the development of treatment strategies for chronic lung diseases. PMID:19426761

  4. Phospholipase D Controls Dictyostelium Development By Regulating G Protein Signaling

    PubMed Central

    Ray, Sibnath; Chen, Yi; Ayoung, Joanna; Hanna, Rachel; Brazill, Derrick

    2010-01-01

    Dictyostelium discoideum cells normally exist as individual amoebae, but will enter a period of multicellular development upon starvation. The initial stages of development involve the aggregation of individual cells, using cAMP as a chemoattractant. Chemotaxis is initiated when cAMP binds to its receptor, cAR1, and activates the associated G protein, Gα2βγ. However, chemotaxis will not occur unless there is a high density of starving cells present, as measured by high levels of the secreted quorum sensing molecule, CMF. We previously demonstrated that cells lacking PldB bypass the need for CMF and can aggregate at low cell density, whereas cells overexpressing pldB do not aggregate even at high cell density. Here, we found that PldB controlled both cAMP chemotaxis and cell sorting. PldB was also required by CMF to regulate G protein signaling. Specifically, CMF used PldB, to regulate the dissociation of Gα2 from Gβγ. Using fluorescence resonance energy transfer (FRET), we found that along with cAMP, CMF increased the dissociation of the G protein. In fact, CMF augmented the dissociation induced by cAMP. This augmentation was lost in cells lacking PldB. PldB appears to mediate the CMF signal through the production of phosphatidic acid, as exogenously added phosphatidic acid phenocopies overexpression of pldB. These results suggest that phospholipase D activity is required for CMF to alter the kinetics of cAMP-induced G protein signaling. PMID:20950684

  5. [RGS proteins (regulators of G protein signaling) and their roles in regulation of immune response].

    PubMed

    Lewandowicz, Anna M; Kowalski, Marek L; Pawliczak, Rafał

    2004-01-01

    RGS proteins (Regulators of G-protein Signaling) comprise a protein family responsible for regulating G proteins. By enhancing the GTPase activity of the a subunit, they speed up the reconstruction of the heterotrimeric structure of G protein, thus inhibiting its signal transduction. Sst2 protein in yeast Saccharomyces cervisiae, FlbA in fungus Aspergillus nidulans, and Egl-10 in the nematode Caenorhabditis elegans are the first native G regulators with GTPase activity (GAPs:--GTPase-activating proteins). The existence of over 30 RGS human proteins has been confirmed thus far, and they have been grouped and classified into six subfamilies. In immunocompetent cells, RGS proteins are entangled in a complicate net of different interrelating signal pathways. They are connected with B- and T-cell chemokine susceptibility, efficient T cell proliferation, and the regulation of B cell maturation. They also take an essential part in inflammation. High hopes are held for drugs, which handle would be RGS proteins and which would further provide the possibility of modifying the pharmacokinetics of drugs acting through G protein- coupled receptors. The aim of this review is to discuss the new RGS protein family and explain the potential involvement of RGS proteins in the modulation of the immune response PMID:15459549

  6. A divergent canonical WNT-signaling pathway regulates microtubule dynamics

    PubMed Central

    Ciani, Lorenza; Krylova, Olga; Smalley, Matthew J.; Dale, Trevor C.; Salinas, Patricia C.

    2004-01-01

    Dishevelled (DVL) is associated with axonal microtubules and regulates microtubule stability through the inhibition of the serine/threonine kinase, glycogen synthase kinase 3β (GSK-3β). In the canonical WNT pathway, the negative regulator Axin forms a complex with β-catenin and GSK-3β, resulting in β-catenin degradation. Inhibition of GSK-3β by DVL increases β-catenin stability and TCF transcriptional activation. Here, we show that Axin associates with microtubules and unexpectedly stabilizes microtubules through DVL. In turn, DVL stabilizes microtubules by inhibiting GSK-3β through a transcription- and β-catenin–independent pathway. More importantly, axonal microtubules are stabilized after DVL localizes to axons. Increased microtubule stability is correlated with a decrease in GSK-3β–mediated phosphorylation of MAP-1B. We propose a model in which Axin, through DVL, stabilizes microtubules by inhibiting a pool of GSK-3β, resulting in local changes in the phosphorylation of cellular targets. Our data indicate a bifurcation in the so-called canonical WNT-signaling pathway to regulate microtubule stability. PMID:14734535

  7. The Hippo-Salvador signaling pathway regulates renal tubulointerstitial fibrosis.

    PubMed

    Seo, Eunjeong; Kim, Wan-Young; Hur, Jeongmi; Kim, Hanbyul; Nam, Sun Ah; Choi, Arum; Kim, Yu-Mi; Park, Sang Hee; Chung, Chaeuk; Kim, Jin; Min, Soohong; Myung, Seung-Jae; Lim, Dae-Sik; Kim, Yong Kyun

    2016-08-23

    Renal tubulointerstitial fibrosis (TIF) is the final pathway of various renal injuries that result in chronic kidney disease. The mammalian Hippo-Salvador signaling pathway has been implicated in the regulation of cell proliferation, cell death, tissue regeneration, and tumorigenesis. Here, we report that the Hippo-Salvador pathway plays a role in disease development in patients with TIF and in a mouse model of TIF. Mice with tubular epithelial cell (TEC)-specific deletions of Sav1 (Salvador homolog 1) exhibited aggravated renal TIF, enhanced epithelial-mesenchymal transition-like phenotypic changes, apoptosis, and proliferation after unilateral ureteral obstruction (UUO). Moreover, Sav1 depletion in TECs increased transforming growth factor (TGF)-β and activated β-catenin expression after UUO, which likely accounts for the abovementioned enhanced TEC fibrotic phenotype. In addition, TAZ (transcriptional coactivator with PDZ-binding motif), a major downstream effector of the Hippo pathway, was significantly activated in Sav1-knockout mice in vivo. An in vitro study showed that TAZ directly regulates TGF-β and TGF-β receptor II expression. Collectively, our data indicate that the Hippo-Salvador pathway plays a role in the pathogenesis of TIF and that regulating this pathway may be a therapeutic strategy for reducing TIF.

  8. The Hippo-Salvador signaling pathway regulates renal tubulointerstitial fibrosis

    PubMed Central

    Seo, Eunjeong; Kim, Wan-Young; Hur, Jeongmi; Kim, Hanbyul; Nam, Sun Ah; Choi, Arum; Kim, Yu-Mi; Park, Sang Hee; Chung, Chaeuk; Kim, Jin; Min, Soohong; Myung, Seung-Jae; Lim, Dae-Sik; Kim, Yong Kyun

    2016-01-01

    Renal tubulointerstitial fibrosis (TIF) is the final pathway of various renal injuries that result in chronic kidney disease. The mammalian Hippo-Salvador signaling pathway has been implicated in the regulation of cell proliferation, cell death, tissue regeneration, and tumorigenesis. Here, we report that the Hippo-Salvador pathway plays a role in disease development in patients with TIF and in a mouse model of TIF. Mice with tubular epithelial cell (TEC)-specific deletions of Sav1 (Salvador homolog 1) exhibited aggravated renal TIF, enhanced epithelial-mesenchymal transition-like phenotypic changes, apoptosis, and proliferation after unilateral ureteral obstruction (UUO). Moreover, Sav1 depletion in TECs increased transforming growth factor (TGF)-β and activated β-catenin expression after UUO, which likely accounts for the abovementioned enhanced TEC fibrotic phenotype. In addition, TAZ (transcriptional coactivator with PDZ-binding motif), a major downstream effector of the Hippo pathway, was significantly activated in Sav1-knockout mice in vivo. An in vitro study showed that TAZ directly regulates TGF-β and TGF-β receptor II expression. Collectively, our data indicate that the Hippo-Salvador pathway plays a role in the pathogenesis of TIF and that regulating this pathway may be a therapeutic strategy for reducing TIF. PMID:27550469

  9. Regulation of ERBB3/HER3 signaling in cancer

    PubMed Central

    Mujoo, Kalpana; Choi, Byung-Kwon; Huang, Zhao; Zhang, Ningyan; An, Zhiqiang

    2014-01-01

    ERBB3/HER3 is emerging as a molecular target for various cancers. HER3 is overexpressed and activated in a number of cancer types under the conditions of acquired resistance to other HER family therapeutic interventions such as tyrosine kinase inhibitors and antibody therapies. Regulation of the HER3 expression and signaling involves numerous HER3 interacting proteins. These proteins include PI3K, Shc, and E3 ubiquitin ligases NEDD4 and Nrdp1. Furthermore, recent identification of a number of HER3 oncogenic mutations in colon and gastric cancers elucidate the role of HER3 in cancer development. Despite the strong evidence regarding the role of HER3 in cancer, the current understanding of the regulation of HER3 expression and activation requires additional research. Moreover, the lack of biomarkers for HER3-driven cancer poses a big challenge for the clinical development of HER3 targeting antibodies. Therefore, a better understanding of HER3 regulation should improve the strategies to therapeutically target HER3 for cancer therapy. PMID:25400118

  10. Effect of photoperiod on gibberellin biosynthetic enzymes in spinach

    SciTech Connect

    Gilmour, S.J.; Bleecker, A.B.; Zeevaart, J.A.D.

    1986-04-01

    The photoperiodic control of stem elongation in spinach, a long day (LD) rosette plant, is mediated by gibberellins (GAs). The early 13-hydroxylated GA biosynthetic pathway from GA/sub 12/ to GA/sub 20/ operates in spinach: GA/sub 12/ ..-->.. GA/sub 53/ ..-->.. GA/sub 44/ ..-->.. GA/sub 19/ ..-->.. GA/sub 20/. Two enzymes of this pathway, those converting GA/sub 53/ to GA/sub 44/ (GA/sub 53/ oxidase) and GA/sub 19/ to GA/sub 20/ (GA/sub 19/ oxidase), are regulated by light. The enzyme converting GA/sub 44/ to GA/sub 19/ (GA/sub 44/ oxidase) is not light-regulated. In the light GA/sub 53/ and GA/sub 18/ oxidase activities are increased, therefore causing the GA biosynthetic pathway to be turned on. This leads to the production of an active GA in LD, which causes an increase in stem elongation. Two the enzymes, GA/sub 44/ and GA/sub 53/ oxidases, can be separated from one another by anion exchange HPLC. Estimates of the molecular weights of these two enzymes based on gel filtration HPLC will be reported.

  11. Regulation of T cell receptor complex-mediated signaling by ubiquitin and ubiquitin-like modifications

    PubMed Central

    Friend, Samantha F; Deason-Towne, Francina; Peterson, Lisa K; Berger, Allison J; Dragone, Leonard L

    2014-01-01

    Post-translational protein modifications are a dynamic method of regulating protein function in response to environmental signals. As with any cellular process, T cell receptor (TCR) complex-mediated signaling is highly regulated, since the strength and duration of TCR-generated signals governs T cell development and activation. While regulation of TCR complex-mediated signaling by phosphorylation has been well studied, regulation by ubiquitin and ubiquitin-like modifiers is still an emerging area of investigation. This review will examine how ubiquitin, E3 ubiquitin ligases, and other ubiquitin-like modifications such as SUMO and NEDD8 regulate TCR complex-mediated signaling. PMID:25628960

  12. Regulation of T cell receptor complex-mediated signaling by ubiquitin and ubiquitin-like modifications.

    PubMed

    Friend, Samantha F; Deason-Towne, Francina; Peterson, Lisa K; Berger, Allison J; Dragone, Leonard L

    2014-01-01

    Post-translational protein modifications are a dynamic method of regulating protein function in response to environmental signals. As with any cellular process, T cell receptor (TCR) complex-mediated signaling is highly regulated, since the strength and duration of TCR-generated signals governs T cell development and activation. While regulation of TCR complex-mediated signaling by phosphorylation has been well studied, regulation by ubiquitin and ubiquitin-like modifiers is still an emerging area of investigation. This review will examine how ubiquitin, E3 ubiquitin ligases, and other ubiquitin-like modifications such as SUMO and NEDD8 regulate TCR complex-mediated signaling.

  13. Regulation of T cell receptor complex-mediated signaling by ubiquitin and ubiquitin-like modifications.

    PubMed

    Friend, Samantha F; Deason-Towne, Francina; Peterson, Lisa K; Berger, Allison J; Dragone, Leonard L

    2014-01-01

    Post-translational protein modifications are a dynamic method of regulating protein function in response to environmental signals. As with any cellular process, T cell receptor (TCR) complex-mediated signaling is highly regulated, since the strength and duration of TCR-generated signals governs T cell development and activation. While regulation of TCR complex-mediated signaling by phosphorylation has been well studied, regulation by ubiquitin and ubiquitin-like modifiers is still an emerging area of investigation. This review will examine how ubiquitin, E3 ubiquitin ligases, and other ubiquitin-like modifications such as SUMO and NEDD8 regulate TCR complex-mediated signaling. PMID:25628960

  14. Hydrogen peroxide sensing, signaling and regulation of transcription factors

    PubMed Central

    Marinho, H. Susana; Real, Carla; Cyrne, Luísa; Soares, Helena; Antunes, Fernando

    2014-01-01

    The regulatory mechanisms by which hydrogen peroxide (H2O2) modulates the activity of transcription factors in bacteria (OxyR and PerR), lower eukaryotes (Yap1, Maf1, Hsf1 and Msn2/4) and mammalian cells (AP-1, NRF2, CREB, HSF1, HIF-1, TP53, NF-κB, NOTCH, SP1 and SCREB-1) are reviewed. The complexity of regulatory networks increases throughout the phylogenetic tree, reaching a high level of complexity in mammalians. Multiple H2O2 sensors and pathways are triggered converging in the regulation of transcription factors at several levels: (1) synthesis of the transcription factor by upregulating transcription or increasing both mRNA stability and translation; (ii) stability of the transcription factor by decreasing its association with the ubiquitin E3 ligase complex or by inhibiting this complex; (iii) cytoplasm–nuclear traffic by exposing/masking nuclear localization signals, or by releasing the transcription factor from partners or from membrane anchors; and (iv) DNA binding and nuclear transactivation by modulating transcription factor affinity towards DNA, co-activators or repressors, and by targeting specific regions of chromatin to activate individual genes. We also discuss how H2O2 biological specificity results from diverse thiol protein sensors, with different reactivity of their sulfhydryl groups towards H2O2, being activated by different concentrations and times of exposure to H2O2. The specific regulation of local H2O2 concentrations is also crucial and results from H2O2 localized production and removal controlled by signals. Finally, we formulate equations to extract from typical experiments quantitative data concerning H2O2 reactivity with sensor molecules. Rate constants of 140 M−1 s−1 and ≥1.3 × 103 M−1 s−1 were estimated, respectively, for the reaction of H2O2 with KEAP1 and with an unknown target that mediates NRF2 protein synthesis. In conclusion, the multitude of H2O2 targets and mechanisms provides an opportunity for highly

  15. Gene Co-Expression Analysis Inferring the Crosstalk of Ethylene and Gibberellin in Modulating the Transcriptional Acclimation of Cassava Root Growth in Different Seasons.

    PubMed

    Saithong, Treenut; Saerue, Samorn; Kalapanulak, Saowalak; Sojikul, Punchapat; Narangajavana, Jarunya; Bhumiratana, Sakarindr

    2015-01-01

    Cassava is a crop of hope for the 21st century. Great advantages of cassava over other crops are not only the capacity of carbohydrates, but it is also an easily grown crop with fast development. As a plant which is highly tolerant to a poor environment, cassava has been believed to own an effective acclimation process, an intelligent mechanism behind its survival and sustainability in a wide range of climates. Herein, we aimed to investigate the transcriptional regulation underlying the adaptive development of a cassava root to different seasonal cultivation climates. Gene co-expression analysis suggests that AP2-EREBP transcription factor (ERF1) orthologue (D142) played a pivotal role in regulating the cellular response to exposing to wet and dry seasons. The ERF shows crosstalk with gibberellin, via ent-Kaurene synthase (D106), in the transcriptional regulatory network that was proposed to modulate the downstream regulatory system through a distinct signaling mechanism. While sulfur assimilation is likely to be a signaling regulation for dry crop growth response, calmodulin-binding protein is responsible for regulation in the wet crop. With our initiative study, we hope that our findings will pave the way towards sustainability of cassava production under various kinds of stress considering the future global climate change. PMID:26366737

  16. Gene Co-Expression Analysis Inferring the Crosstalk of Ethylene and Gibberellin in Modulating the Transcriptional Acclimation of Cassava Root Growth in Different Seasons

    PubMed Central

    Saithong, Treenut; Saerue, Samorn; Kalapanulak, Saowalak; Sojikul, Punchapat; Narangajavana, Jarunya; Bhumiratana, Sakarindr

    2015-01-01

    Cassava is a crop of hope for the 21st century. Great advantages of cassava over other crops are not only the capacity of carbohydrates, but it is also an easily grown crop with fast development. As a plant which is highly tolerant to a poor environment, cassava has been believed to own an effective acclimation process, an intelligent mechanism behind its survival and sustainability in a wide range of climates. Herein, we aimed to investigate the transcriptional regulation underlying the adaptive development of a cassava root to different seasonal cultivation climates. Gene co-expression analysis suggests that AP2-EREBP transcription factor (ERF1) orthologue (D142) played a pivotal role in regulating the cellular response to exposing to wet and dry seasons. The ERF shows crosstalk with gibberellin, via ent-Kaurene synthase (D106), in the transcriptional regulatory network that was proposed to modulate the downstream regulatory system through a distinct signaling mechanism. While sulfur assimilation is likely to be a signaling regulation for dry crop growth response, calmodulin-binding protein is responsible for regulation in the wet crop. With our initiative study, we hope that our findings will pave the way towards sustainability of cassava production under various kinds of stress considering the future global climate change. PMID:26366737

  17. Extracellular Signal-Regulated Kinase-2 within the Ventral Tegmental Area Regulates Responses to Stress

    PubMed Central

    Iñiguez, Sergio D.; Vialou, Vincent; Warren, Brandon L.; Cao, Jun-Li; Alcantara, Lyonna F.; Davis, Lindsey C.; Manojlovic, Zarko; Neve, Rachael L.; Russo, Scott J.; Han, Ming-Hu; Nestler, Eric J.; Bolaños-Guzmán, Carlos A.

    2010-01-01

    Neurotrophic factors and their signaling pathways have been implicated in the neurobiological adaptations in response to stress and the regulation of mood-related behaviors. A candidate signaling molecule implicated in mediating these cellular responses is the extracellular signal-regulated kinase (ERK1/2), although its functional role in mood regulation remains to be fully elucidated. Here we show that acute (1 d) or chronic (4 weeks) exposure to unpredictable stress increases phosphorylation of ERK1/2 and of two downstream targets (ribosomal S6 kinase and mitogen- and stress-activated protein kinase 1) within the ventral tegmental area (VTA), an important substrate for motivated behavior and mood regulation. Using herpes simplex virus-mediated gene transfer to assess the functional significance of this ERK induction, we show that overexpressing ERK2 within the VTA increases susceptibility to stress as measured in the forced swim test, responses to unconditioned nociceptive stimuli, and elevated plus maze in Sprague Dawley male rats, and in the tail suspension test and chronic social defeat stress procedure in C57BL/6 male mice. In contrast, blocking ERK2 activity in the VTA produces stress-resistant behavioral responses in these same assays and also blocks a chronic stress-induced reduction in sucrose preference. The effects induced by ERK2 blockade were accompanied by decreases in the firing frequency of VTA dopamine neurons, an important electrophysiological hallmark of resilient-like behavior. Together, these results strongly implicate a role for ERK2 signaling in the VTA as a key modulator of responsiveness to stress and mood-related behaviors. PMID:20519540

  18. Gibberellin metabolism in Vitis vinifera L. during bloom and fruit-set: functional characterization and evolution of grapevine gibberellin oxidases

    PubMed Central

    Giacomelli, Lisa

    2013-01-01

    Gibberellins (GAs) are involved in the regulation of flowering and fruit-set in grapes (Vitis vinifera L.), but the molecular mechanisms behind this process are mostly unknown. In this work, the family of grapevine GA oxidases involved in the biosynthesis and deactivation of GAs was characterized. Six putative GA 20-oxidase (GA20ox), three GA 3-oxidase (GA3ox), and eight GA 2-oxidase (GA2ox) proteins, the latter further divided into five C19-GA 2ox and three C20-GA2ox proteins, were identified. Phylogenetic analyses suggest a common origin of the GA3ox and C19-GA2ox groups and challenge previous evolutionary models. In vitro analysis revealed that all GA3ox and GA20ox enzymes prefer substrates of the non-13-hydroxylation pathway. In addition, ectopic expression of GA2ox genes in Arabidopsis thaliana confirmed the activity of their encoded proteins in vivo. The results show that bioactive GA1 accumulates in opening grapevine flowers, whereas at later developmental stages only GA4 is detected in the setting fruit. By studying the expression pattern of the grapevine GA oxidase genes in different organs, and at different stages of flowering and fruit-set, it is proposed that the pool of bioactive GAs is controlled by a fine regulation of the abundance and localization of GA oxidase transcripts. PMID:24006417

  19. The ubiquitin-proteasome system regulates plant hormone signaling

    PubMed Central

    Santner, Aaron; Estelle, Mark

    2011-01-01

    SUMMARY Plants utilize the ubiquitin-proteasome system (UPS) to modulate nearly every aspect of growth and development. Ubiquitin is covalently attached to target proteins through the action of three enzymes known as E1, E2, and E3. The ultimate outcome of this post-translational modification depends on the nature of the ubiquitin linkage and the extent of polyubiquitination. In most cases, ubiquitination results in degradation of the target protein in the 26S proteasome. During the last 10 years it has become clear that the UPS plays a prominent regulatory role in hormone biology. E3 ubiquitin ligases in particular actively participate in hormone perception, de-repression of hormone signaling pathways, degradation of hormone specific transcription factors, and regulation of hormone biosynthesis. It is certain that additional functions will be discovered as more of the nearly 1200 potential E3s in plants are elucidated. PMID:20409276

  20. Regulation of Ca2+ Signaling in Pulmonary Hypertension

    PubMed Central

    Won, Jun Yeon

    2013-01-01

    Understanding the cellular and molecular mechanisms involved in the development and progression of pulmonary hypertension (PH) remains imperative if we are to successfully improve the quality of life and life span of patients with the disease. A whole plethora of mechanisms are associated with the development and progression of PH. Such complexity makes it difficult to isolate one particular pathway to target clinically. Changes in intracellular free calcium concentration, the most common intracellular second messenger, can have significant impact in defining the pathogenic mechanisms leading to its development and persistence. Signaling pathways leading to the elevation of [Ca2+]cyt contribute to pulmonary vasoconstriction, excessive proliferation of smooth muscle cells and ultimately pulmonary vascular remodeling. This current review serves to summarize the some of the most recent advances in the regulation of calcium during pulmonary hypertension. PMID:23439762

  1. Small G proteins and their regulators in cellular signalling.

    PubMed

    Csépányi-Kömi, Roland; Lévay, Magdolna; Ligeti, Erzsébet

    2012-04-28

    Small molecular weight GTPases (small G proteins) are essential in the transduction of signals from different plasma membrane receptors. Due to their endogenous GTP-hydrolyzing activity, these proteins function as time-dependent biological switches controlling diverse cellular functions including cell shape and migration, cell proliferation, gene transcription, vesicular transport and membrane-trafficking. This review focuses on endocrine diseases linked to small G proteins. We provide examples for the regulation of the activity of small G proteins by various mechanisms such as posttranslational modifications, guanine nucleotide exchange factors (GEFs), GTPase activating proteins (GAPs) or guanine nucleotide dissociation inhibitors (GDIs). Finally we summarize endocrine diseases where small G proteins or their regulatory proteins have been revealed as the cause.

  2. Regulation of organismal proteostasis by trans-cellular chaperone signaling

    PubMed Central

    van Oosten-Hawle, Patricija; Porter, Robert S.; Morimoto, Richard I.

    2013-01-01

    Summary A major challenge for metazoans is to ensure that different tissues each expressing distinctive proteomes are, nevertheless, well protected at an organismal level from proteotoxic stress. We have examined this and show that expression of endogenous metastable protein sensors in muscle cells induces a systemic stress response throughout multiple tissues of C. elegans. Suppression of misfolding in muscle cells can be achieved not only by enhanced expression of HSP90 in muscle cells, but as effective by elevated expression of HSP90 in intestine or neuronal cells. This cell-non-autonomous control of HSP90 expression relies upon transcriptional feedback between somatic tissues that is regulated by the FoxA transcription factor PHA-4. This trans-cellular chaperone signaling response maintains organismal proteostasis when challenged by a local tissue imbalance in folding and provides the basis for a novel form of organismal stress sensing surveillance. PMID:23746847

  3. Molecular immunology--gene regulation and signal transduction.

    PubMed

    Hopkins, John

    2002-09-10

    Research on 'molecular immunology-gene regulation and signal transduction' in veterinary species is relatively new. The reason for its novelty is that until recently there have been very few tools with which we can work. Over the last 10 years the veterinary immunology community has succeeded in generating panels of defined monoclonal antibodies (mAb) and cloned genes that has enabled such work to be started. More recently, quantitative, high-resolution analytical tools for veterinary species have begun to be developed; some of these are specific for veterinary species and others have been adapted from human or rodent systems. Of the species-specific tools that have recently been developed perhaps the most widely used are the immunoassays for cytokines, RNAase protection assays (RPAs) and in the near future oligonucleotide and EST-based microarrays. This presentation will describe some of these assays and discuss their relative advantages and disadvantages.

  4. Repair Injured Heart by Regulating Cardiac Regenerative Signals

    PubMed Central

    Wang, Lei; Paul, Christian

    2016-01-01

    Cardiac regeneration is a homeostatic cardiogenic process by which the sections of malfunctioning adult cardiovascular tissues are repaired and renewed employing a combination of both cardiomyogenesis and angiogenesis. Unfortunately, while high-quality regeneration can be performed in amphibians and zebrafish hearts, mammalian hearts do not respond in kind. Indeed, a long-term loss of proliferative capacity in mammalian adult cardiomyocytes in combination with dysregulated induction of tissue fibrosis impairs mammalian endogenous heart regenerative capacity, leading to deleterious cardiac remodeling at the end stage of heart failure. Interestingly, several studies have demonstrated that cardiomyocyte proliferation capacity is retained in mammals very soon after birth, and cardiac regeneration potential is correspondingly preserved in some preadolescent vertebrates after myocardial infarction. There is therefore great interest in uncovering the molecular mechanisms that may allow heart regeneration during adult stages. This review will summarize recent findings on cardiac regenerative regulatory mechanisms, especially with respect to extracellular signals and intracellular pathways that may provide novel therapeutics for heart diseases. Particularly, both in vitro and in vivo experimental evidences will be presented to highlight the functional role of these signaling cascades in regulating cardiomyocyte proliferation, cardiomyocyte growth, and maturation, with special emphasis on their responses to heart tissue injury. PMID:27799944

  5. A cyclic GMP-dependent signalling pathway regulates bacterial phytopathogenesis.

    PubMed

    An, Shi-Qi; Chin, Ko-Hsin; Febrer, Melanie; McCarthy, Yvonne; Yang, Jauo-Guey; Liu, Chung-Liang; Swarbreck, David; Rogers, Jane; Maxwell Dow, J; Chou, Shan-Ho; Ryan, Robert P

    2013-09-11

    Cyclic guanosine 3',5'-monophosphate (cyclic GMP) is a second messenger whose role in bacterial signalling is poorly understood. A genetic screen in the plant pathogen Xanthomonas campestris (Xcc) identified that XC_0250, which encodes a protein with a class III nucleotidyl cyclase domain, is required for cyclic GMP synthesis. Purified XC_0250 was active in cyclic GMP synthesis in vitro. The linked gene XC_0249 encodes a protein with a cyclic mononucleotide-binding (cNMP) domain and a GGDEF diguanylate cyclase domain. The activity of XC_0249 in cyclic di-GMP synthesis was enhanced by addition of cyclic GMP. The isolated cNMP domain of XC_0249 bound cyclic GMP and a structure-function analysis, directed by determination of the crystal structure of the holo-complex, demonstrated the site of cyclic GMP binding that modulates cyclic di-GMP synthesis. Mutation of either XC_0250 or XC_0249 led to a reduced virulence to plants and reduced biofilm formation in vitro. These findings describe a regulatory pathway in which cyclic GMP regulates virulence and biofilm formation through interaction with a novel effector that directly links cyclic GMP and cyclic di-GMP signalling.

  6. Integrin signalling regulates YAP and TAZ to control skin homeostasis

    PubMed Central

    Elbediwy, Ahmed; Vincent-Mistiaen, Zoé I.; Spencer-Dene, Bradley; Stone, Richard K.; Boeing, Stefan; Wculek, Stefanie K.; Cordero, Julia; Tan, Ee H.; Ridgway, Rachel; Brunton, Val G.; Sahai, Erik; Gerhardt, Holger; Behrens, Axel; Malanchi, Ilaria; Sansom, Owen J.; Thompson, Barry J.

    2016-01-01

    ABSTRACT The skin is a squamous epithelium that is continuously renewed by a population of basal layer stem/progenitor cells and can heal wounds. Here, we show that the transcription regulators YAP and TAZ localise to the nucleus in the basal layer of skin and are elevated upon wound healing. Skin-specific deletion of both YAP and TAZ in adult mice slows proliferation of basal layer cells, leads to hair loss and impairs regeneration after wounding. Contact with the basal extracellular matrix and consequent integrin-Src signalling is a key determinant of the nuclear localisation of YAP/TAZ in basal layer cells and in skin tumours. Contact with the basement membrane is lost in differentiating daughter cells, where YAP and TAZ become mostly cytoplasmic. In other types of squamous epithelia and squamous cell carcinomas, a similar control mechanism is present. By contrast, columnar epithelia differentiate an apical domain that recruits CRB3, Merlin (also known as NF2), KIBRA (also known as WWC1) and SAV1 to induce Hippo signalling and retain YAP/TAZ in the cytoplasm despite contact with the basal layer extracellular matrix. When columnar epithelial tumours lose their apical domain and become invasive, YAP/TAZ becomes nuclear and tumour growth becomes sensitive to the Src inhibitor Dasatinib. PMID:26989177

  7. Ethylene Signaling Influences Light-Regulated Development in Pea.

    PubMed

    Weller, James L; Foo, Eloise M; Hecht, Valérie; Ridge, Stephen; Vander Schoor, Jacqueline K; Reid, James B

    2015-09-01

    Plant responses to light involve a complex network of interactions among multiple plant hormones. In a screen for mutants showing altered photomorphogenesis under red light, we identified a mutant with dramatically enhanced leaf expansion and delayed petal senescence. We show that this mutant exhibits reduced sensitivity to ethylene and carries a nonsense mutation in the single pea (Pisum sativum) ortholog of the ethylene signaling gene ETHYLENE INSENSITIVE2 (EIN2). Consistent with this observation, the ein2 mutation rescues the previously described effects of ethylene overproduction in mature phytochrome-deficient plants. In seedlings, ein2 confers a marked increase in leaf expansion under monochromatic red, far-red, or blue light, and interaction with phytochromeA, phytochromeB, and long1 mutants confirms that ein2 enhances both phytochrome- and cryptochrome-dependent responses in a LONG1-dependent manner. In contrast, minimal effects of ein2 on seedling development in darkness or high-irradiance white light show that ethylene is not limiting for development under these conditions. These results indicate that ethylene signaling constrains leaf expansion during deetiolation in pea and provide further evidence that down-regulation of ethylene production may be an important component mechanism in the broader control of photomorphogenic development by phytochrome and cryptochrome.

  8. Hedgehog signaling regulates gene expression in planarian glia

    PubMed Central

    Wang, Irving E; Lapan, Sylvain W; Scimone, M Lucila; Clandinin, Thomas R; Reddien, Peter W

    2016-01-01

    Hedgehog signaling is critical for vertebrate central nervous system (CNS) development, but its role in CNS biology in other organisms is poorly characterized. In the planarian Schmidtea mediterranea, hedgehog (hh) is expressed in medial cephalic ganglia neurons, suggesting a possible role in CNS maintenance or regeneration. We performed RNA sequencing of planarian brain tissue following RNAi of hh and patched (ptc), which encodes the Hh receptor. Two misregulated genes, intermediate filament-1 (if-1) and calamari (cali), were expressed in a previously unidentified non-neural CNS cell type. These cells expressed orthologs of astrocyte-associated genes involved in neurotransmitter uptake and metabolism, and extended processes enveloping regions of high synapse concentration. We propose that these cells are planarian glia. Planarian glia were distributed broadly, but only expressed if-1 and cali in the neuropil near hh+ neurons. Planarian glia and their regulation by Hedgehog signaling present a novel tractable system for dissection of glia biology. DOI: http://dx.doi.org/10.7554/eLife.16996.001 PMID:27612382

  9. Regulation of Nuclear Localization of Signaling Proteins by Cytokinin

    SciTech Connect

    Kieber, J.J.

    2010-05-01

    Cytokinins are a class of mitogenic plant hormones that play an important role in most aspects of plant development, including shoot and root growth, vascular and photomorphogenic development and leaf senescence. A model for cytokinin perception and signaling has emerged that is similar to bacterial two-component phosphorelays. In this model, binding of cytokinin to the extracellular domain of the Arabidopsis histidine kinase (AHKs) receptors induces autophosphorylation within the intracellular histidine-kinase domain. The phosphoryl group is subsequently transferred to cytosolic Arabidopsis histidine phosphotransfer proteins (AHPs), which have been suggested to translocate to the nucleus in response to cytokinin treatment, where they then transfer the phosphoryl group to nuclear-localized response regulators (Type-A and Type-B ARRs). We examined the effects of cytokinin on AHP subcellular localization in Arabidopsis and, contrary to expectations, the AHPs maintained a constant nuclear/cytosolic distribution following cytokinin treatment. Furthermore, mutation of the conserved phosphoacceptor histidine residue of the AHP, as well as disruption of multiple cytokinin signaling elements, did not affect the subcellular localization of the AHP proteins. Finally, we present data indicating that AHPs maintain a nuclear/cytosolic distribution by balancing active transport into and out of the nucleus. Our findings suggest that the current models indicating relocalization of AHP protein into the nucleus in response to cytokinin are incorrect. Rather, AHPs actively maintain a consistent nuclear/cytosolic distribution regardless of the status of the cytokinin response pathway.

  10. Basic amino-acid side chains regulate transmembrane integrin signalling.

    PubMed

    Kim, Chungho; Schmidt, Thomas; Cho, Eun-Gyung; Ye, Feng; Ulmer, Tobias S; Ginsberg, Mark H

    2011-12-18

    Side chains of Lys/Arg near transmembrane domain (TMD) membrane-water interfaces can 'snorkel', placing their positive charge near negatively charged phospholipid head groups; however, snorkelling's functional effects are obscure. Integrin β TMDs have such conserved basic amino acids. Here we use NMR spectroscopy to show that integrin β(3)(Lys 716) helps determine β(3) TMD topography. The α(ΙΙb)β(3) TMD structure indicates that precise β(3) TMD crossing angles enable the assembly of outer and inner membrane 'clasps' that hold the αβ TMD together to limit transmembrane signalling. Mutation of β(3)(Lys 716) caused dissociation of α(ΙΙb)β(3) TMDs and integrin activation. To confirm that altered topography of β(3)(Lys 716) mutants activated α(ΙΙb)β(3), we used directed evolution of β(3)(K716A) to identify substitutions restoring default state. Introduction of Pro(711) at the midpoint of β(3) TMD (A711P) increased α(ΙΙb)β(3) TMD association and inactivated integrin α(ΙΙb)β(3)(A711P,K716A). β(3)(Pro 711) introduced a TMD kink of 30 ± 1° precisely at the border of the outer and inner membrane clasps, thereby decoupling the tilt between these segments. Thus, widely occurring snorkelling residues in TMDs can help maintain TMD topography and membrane-embedding, thereby regulating transmembrane signalling.

  11. Stamen-derived bioactive gibberellin is essential for male flower development of Cucurbita maxima L.

    PubMed

    Pimenta Lange, Maria João; Knop, Nicole; Lange, Theo

    2012-04-01

    Gibberellin (GA) signalling during pumpkin male flower development is highly regulated, including biosynthetic, perception, and transduction pathways. GA 20-oxidases, 3-oxidases, and 2-oxidases catalyse the final part of GA synthesis. Additionally, 7-oxidase initiates this part of the pathway in some cucurbits including Cucurbita maxima L. (pumpkin). Expression patterns for these GA-oxidase-encoding genes were examined by competitive reverse transcription-PCR (RT-PCR) and endogenous GA levels were determined during pumpkin male flower development. In young flowers, GA20ox3 transcript levels are high in stamens, followed by high levels of the GA precursor GA(9). Later, just before flower opening, transcript levels for GA3ox3 and GA3ox4 increase in the hypanthium and stamens, respectively. In the stamen, following GA3ox4 expression, bioactive GA(4) levels rise dramatically. Accordingly, catabolic GA2ox2 and GA2ox3 transcript levels are low in developing flowers, and increase in mature flowers. Putative GA receptor GID1b and DELLA repressor GAIPb transcript levels do not change in developing flowers, but increase sharply in mature flowers. Emasculation arrests floral development completely and leads to abscission of premature flowers. Application of GA(4) (but not of its precursors GA(12)-aldehyde or GA(9)) restores normal growth of emasculated flowers. These results indicate that de novo GA(4) synthesis in the stamen is under control of GA20ox3 and GA3ox4 genes just before the rapid flower growth phase. Stamen-derived bioactive GA is essential and sufficient for male flower development, including the petal and the pedicel growth.

  12. Structure, functional regulation and signaling properties of Rap2B

    PubMed Central

    QU, DEBAO; HUANG, HUI; DI, JIEHUI; GAO, KEYU; LU, ZHENG; ZHENG, JUNNIAN

    2016-01-01

    The Ras family small guanosine 5′-triphosphate (GTP)-binding protein Rap2B is is a member of the Ras oncogene family and a novel target of p53 that regulates the p53-mediated pro-survival function of cells. The Rap2B protein shares ~90% homology with Rap2A, and its sequence is 70% identical to other members of the Rap family such as RaplA and RaplB. As a result, Rap2B has been theorized to have similar signaling effectors to the GTPase-binding protein Rap, which mediates various biological functions, including the regulation of sterile 20/mitogen-activated proteins. Since its identification in the early 1990s, Rap2B has elicited a considerable interest. Numerous studies indicate that Rap2B exerts specific biological functions, including binding and stimulating phospholipase C-ε and interferon-γ. In addition, downregulation of Rap2B affects the growth of melanoma cells. The present review summarizes the possible effectors and biological functions of Rap2B. Increasing evidence clearly supports the association between Rap2B function and tumor development. Therefore, it is conceivable that anticancer drugs targeting Rap2B may be generated as novel therapies against cancer. PMID:27073477

  13. TLR signals posttranscriptionally regulate the cytokine trafficking mediator sortilin

    PubMed Central

    Yabe-Wada, Toshiki; Matsuba, Shintaro; Takeda, Kazuya; Sato, Tetsuya; Suyama, Mikita; Ohkawa, Yasuyuki; Takai, Toshiyuki; Shi, Haifeng; Philpott, Caroline C.; Nakamura, Akira

    2016-01-01

    Regulating the transcription, translation and secretion of cytokines is crucial for controlling the appropriate balance of inflammation. Here we report that the sorting receptor sortilin plays a key role in cytokine production. We observed interactions of sortilin with multiple cytokines including IFN-α, and sortilin depletion in plasmacytoid dendritic cells (pDCs) led to a reduction of IFN-α secretion, suggesting a pivotal role of sortilin in the exocytic trafficking of IFN-α in pDCs. Moreover, sortilin mRNA was degraded posttranscriptionally upon stimulation with various TLR ligands. Poly-rC-binding protein 1 (PCBP1) recognized the C-rich element (CRE) in the 3′ UTR of sortilin mRNA, and depletion of PCBP1 enhanced the degradation of sortilin transcripts, suggesting that PCBP1 can act as a trans-acting factor to stabilize sortilin transcripts. The nucleotide-binding ability of PCBP1 was impaired by zinc ions and alterations of intracellular zinc affect sortilin expression. PCBP1 may therefore control the stability of sortilin transcripts by sensing intracellular zinc levels. Collectively, our findings provide insights into the posttranslational regulation of cytokine production through the posttranscriptional control of sortilin expression by TLR signals. PMID:27220277

  14. Sensor–response regulator interactions in a cross-regulated signal transduction network

    PubMed Central

    Huynh, TuAnh Ngoc; Chen, Li-Ling

    2015-01-01

    Two-component signal transduction involves phosphoryl transfer between a histidine kinase sensor and a response regulator effector. The nitrate-responsive two-component signal transduction systems in Escherichia coli represent a paradigm for a cross-regulation network, in which the paralogous sensor–response regulator pairs, NarX–NarL and NarQ–NarP, exhibit both cognate (e.g. NarX–NarL) and non-cognate (e.g. NarQ–NarL) interactions to control output. Here, we describe results from bacterial adenylate cyclase two-hybrid (BACTH) analysis to examine sensor dimerization as well as interaction between sensor–response regulator cognate and non-cognate pairs. Although results from BACTH analysis indicated that the NarX and NarQ sensors interact with each other, results from intragenic complementation tests demonstrate that they do not form functional heterodimers. Additionally, intragenic complementation shows that both NarX and NarQ undergo intermolecular autophosphorylation, deviating from the previously reported correlation between DHp (dimerization and histidyl phosphotransfer) domain loop handedness and autophosphorylation mode. Results from BACTH analysis revealed robust interactions for the NarX–NarL, NarQ–NarL and NarQ–NarP pairs but a much weaker interaction for the NarX–NarP pair. This demonstrates that asymmetrical cross-regulation results from differential binding affinities between different sensor–regulator pairs. Finally, results indicate that the NarL effector (DNA-binding) domain inhibits NarX–NarL interaction. Missense substitutions at receiver domain residue Ser-80 enhanced NarX–NarL interaction, apparently by destabilizing the NarL receiver–effector domain interface. PMID:25873583

  15. TIM-1 signaling in B cells regulates antibody production

    SciTech Connect

    Ma, Juan; Usui, Yoshihiko; Takeda, Kazuyoshi; Harada, Norihiro; Yagita, Hideo; Okumura, Ko; Akiba, Hisaya

    2011-03-11

    Highlights: {yields} TIM-1 is highly expressed on anti-IgM + anti-CD40-stimulated B cells. {yields} Anti-TIM-1 mAb enhanced proliferation and Ig production on activated B cell in vitro. {yields} TIM-1 signaling regulates Ab production by response to TI-2 and TD antigens in vivo. -- Abstract: Members of the T cell Ig and mucin (TIM) family have recently been implicated in the control of T cell-mediated immune responses. In this study, we found TIM-1 expression on anti-IgM- or anti-CD40-stimulated splenic B cells, which was further up-regulated by the combination of anti-IgM and anti-CD40 Abs. On the other hand, TIM-1 ligand was constitutively expressed on B cells and inducible on anti-CD3{sup +} anti-CD28-stimulated CD4{sup +} T cells. In vitro stimulation of activated B cells by anti-TIM-1 mAb enhanced proliferation and expression of a plasma cell marker syndecan-1 (CD138). We further examined the effect of TIM-1 signaling on antibody production in vitro and in vivo. Higher levels of IgG2b and IgG3 secretion were detected in the culture supernatants of the anti-TIM-1-stimulated B cells as compared with the control IgG-stimulated B cells. When immunized with T-independent antigen TNP-Ficoll, TNP-specific IgG1, IgG2b, and IgG3 Abs were slightly increased in the anti-TIM-1-treated mice. When immunized with T-dependent antigen OVA, serum levels of OVA-specific IgG2b, IgG3, and IgE Abs were significantly increased in the anti-TIM-1-treated mice as compared with the control IgG-treated mice. These results suggest that TIM-1 signaling in B cells augments antibody production by enhancing B cell proliferation and differentiation.

  16. Purification of gibberellin sub 53 -oxidase from spinach

    SciTech Connect

    Wilson, T.M.; Zeevaart, J.A.D. )

    1989-04-01

    Spinach is a long-day rosette plants, in which stem growth is mediated by gibberellins. It has been shown that two enzymatic steps, GA{sub 53}-oxidase and GA{sub 19}-oxidase, are controlled by light. To develop an understanding into this light regulation, purification of GA{sub 53}-oxidase has been undertaken. The original assay relied on the HPLC separation of the product and substrate, but was considered too slow for the development of a purification scheme. A TLC system was developed which in conjunction with improvements to the assay conditions was sensitive and gave rapid results. The partial purification of the GA{sub 53}-oxidase is achieved by a high speed centrifugation, 40-55% ammonium sulfate precipitation, an hydroxyapatite column, Sephadex G-100 column and an anion exchange FPLC column, Mono Q HR10/10, yielding 1000-fold purification and 15% recovery. Monoclonal antibodies to the protein will be raised and used to further characterize the enzyme.

  17. Regulator of G-protein signaling 18 integrates activating and inhibitory signaling in platelets.

    PubMed

    Gegenbauer, Kristina; Elia, Giuliano; Blanco-Fernandez, Alfonso; Smolenski, Albert

    2012-04-19

    Regulator of G-protein signaling 18 (RGS18) is a GTPase-activating protein for the G-α-q and G-α-i subunits of heterotrimeric G-proteins that turns off signaling by G-protein coupled receptors. RGS18 is highly expressed in platelets. In the present study, we show that the 14-3-3γ protein binds to phosphorylated serines 49 and 218 of RGS18. Platelet activation by thrombin, thromboxane A2, or ADP stimulates the association of 14-3-3 and RGS18, probably by increasing the phosphorylation of serine 49. In contrast, treatment of platelets with prostacyclin and nitric oxide, which trigger inhibitory cyclic nucleotide signaling involving cyclic AMP-dependent protein kinase A (PKA) and cyclic GMP-dependent protein kinase I (PKGI), induces the phosphorylation of serine 216 of RGS18 and the detachment of 14-3-3. Serine 216 phosphorylation is able to block 14-3-3 binding to RGS18 even in the presence of thrombin, thromboxane A2, or ADP. 14-3-3-deficient RGS18 is more active compared with 14-3-3-bound RGS18, leading to a more pronounced inhibition of thrombin-induced release of calcium ions from intracellular stores. Therefore, PKA- and PKGI-mediated detachment of 14-3-3 activates RGS18 to block Gq-dependent calcium signaling. These findings indicate cross-talk between platelet activation and inhibition pathways at the level of RGS18 and Gq. PMID:22234696

  18. Extracellular signal regulated kinase 5 mediates signals triggered by the novel tumor promoter palytoxin

    SciTech Connect

    Charlson, Aaron T.; Zeliadt, Nicholette A.; Wattenberg, Elizabeth V.

    2009-12-01

    Palytoxin is classified as a non-12-O-tetradecanoylphorbol-13-acetate (TPA)-type skin tumor because it does not bind to or activate protein kinase C. Palytoxin is thus a novel tool for investigating alternative signaling pathways that may affect carcinogenesis. We previously showed that palytoxin activates three major members of the mitogen activated protein kinase (MAPK) family, extracellular signal regulated kinase 1 and 2 (ERK1/2), c-Jun N-terminal kinase (JNK), and p38. Here we report that palytoxin also activates another MAPK family member, called ERK5, in HeLa cells and in keratinocytes derived from initiated mouse skin (308 cells). By contrast, TPA does not activate ERK5 in these cell lines. The major cell surface receptor for palytoxin is the Na+,K+-ATPase. Accordingly, ouabain blocked the ability of palytoxin to activate ERK5. Ouabain alone did not activate ERK5. ERK5 thus represents a divergence in the signaling pathways activated by these two agents that bind to the Na+,K+-ATPase. Cycloheximide, okadaic acid, and sodium orthovanadate did not mimic the effect of palytoxin on ERK5. These results indicate that the stimulation of ERK5 by palytoxin is not simply due to inhibition of protein synthesis or inhibition of serine/threonine or tyrosine phosphatases. Therefore, the mechanism by which palytoxin activates ERK5 differs from that by which it activates ERK1/2, JNK, and p38. Finally, studies that used pharmacological inhibitors and shRNA to block ERK5 action indicate that ERK5 contributes to palytoxin-stimulated c-Fos gene expression. These results suggest that ERK5 can act as an alternative mediator for transmitting diverse tumor promoter-stimulated signals.

  19. Comparison of Gibberellins in Normal and Slender Barley Seedlings

    PubMed Central

    Croker, Stephen J.; Hedden, Peter; Lenton, John R.; Stoddart, John L.

    1990-01-01

    Gibberellins A1, A3, A8, A19, A20, and A29 were identified by full scan gas chromatography-mass spectrometry in leaf sheath segments of 7-day-old barley (Hordeum vulgare L. cv Golden Promise) seedlings grown at 20°C under long days. In a segregating population of barley, cv Herta (Cb 3014), containing the recessive slender allele, (sln 1) the concentration of GA1 and GA3 was reduced by 10-fold and 6-fold, respectively, in rapidly growing homozygous slender, compared with normal, leaf sheath segments. However, the concentration of the C20 precursor, GA19, was nearly 2-fold greater in slender than in normal seedlings. There was little difference in the ABA content of sheath segments between the two genotypes. The gibberellin biosynthesis inhibitor, paclobutrazol, reduced the final sheath length of normal segregants (50% inhibition at 15 micromolar) but had no effect on the growth of slender seedlings at concentrations below 100 micromolar. There was a 15-fold and 4-fold reduction in GA1 and GA3, respectively, in sheath segments of 8-day-old normal seedlings following application of 10 micromolar paclobutrazol. The same treatment also reduced the already low concentrations of these gibberellins in slender segregants. The results show that the pool sizes of gibberellins A1 and A3 are small in slender barley and that leaf sheath extension in this genotype appears to be gibberellin-independent. The relationship between gibberellin status and tissue growth-rate in slender barley is contrasted with other gibberellin nonresponsive, but dwarf, mutants of wheat (Triticum aestivum) and maize (Zea mays). PMID:16667686

  20. Silencing of the gibberellin receptor homolog, CsGID1a, affects locule formation in cucumber (Cucumis sativus) fruit.

    PubMed

    Liu, Bin; Liu, Xingwang; Yang, Sen; Chen, Chunhua; Xue, Shudan; Cai, Yanling; Wang, Dandan; Yin, Shuai; Gai, Xinshuang; Ren, Huazhong

    2016-04-01

    Gibberellins are phytohormones with many roles, including the regulation of fruit development. However, little is known about the relationship between GA perception and fleshy fruit ontogeny, and particularly locule formation. We characterized the expression of cucumber (Cucumis sativus) GA receptor gene (CsGID1a) using quantitative real-time PCR, in situ hybridization and a promoter::β-glucuronidase (GUS) assay. CsGID1a-RNAi cucumber fruits were observed by dissecting microscope, scanning electron microscopy and transmission electron microscopy. Finally, genome-wide gene expression in young fruits from a control and the RNAi line was compared using a digital gene expression (DGE) analysis approach. The expression pattern of CsGID1a was found to be closely correlated with fruit locule formation, and silencing CsGID1a in cucumber resulted in fruits with abnormal carpels and locules. Overexpression of CsGID1a in the Arabidopsis thaliana double mutant (gid1a gid1c) resulted in 'cucumber locule-like' fruits. The DGE analysis suggested that expression of genes related to auxin synthesis and transport, as well as the cell cycle, was altered in CsGID1a-RNAi fruits, a result that was supported by comparing the auxin content and cellular structures of the control and transgenic fruits. This study demonstrates a previously uncharacterized GA signaling pathway that is essential for cucumber fruit locule formation.

  1. The Arabidopsis aleurone layer responds to nitric oxide, gibberellin, and abscisic acid and is sufficient and necessary for seed dormancy.

    PubMed

    Bethke, Paul C; Libourel, Igor G L; Aoyama, Natsuyo; Chung, Yong-Yoon; Still, David W; Jones, Russell L

    2007-03-01

    Seed dormancy is a common phase of the plant life cycle, and several parts of the seed can contribute to dormancy. Whole seeds, seeds lacking the testa, embryos, and isolated aleurone layers of Arabidopsis (Arabidopsis thaliana) were used in experiments designed to identify components of the Arabidopsis seed that contribute to seed dormancy and to learn more about how dormancy and germination are regulated in this species. The aleurone layer was found to be the primary determinant of seed dormancy. Embryos from dormant seeds, however, had a lesser growth potential than those from nondormant seeds. Arabidopsis aleurone cells were examined by light and electron microscopy, and cell ultrastructure was similar to that of cereal aleurone cells. Arabidopsis aleurone cells responded to nitric oxide (NO), gibberellin (GA), and abscisic acid, with NO being upstream of GA in a signaling pathway that leads to vacuolation of protein storage vacuoles and abscisic acid inhibiting vacuolation. Molecular changes that occurred in embryos and aleurone layers prior to germination were measured, and these data show that both the aleurone layer and the embryo expressed the NO-associated gene AtNOS1, but only the embryo expressed genes for the GA biosynthetic enzyme GA3 oxidase.

  2. From tyrosine to melanin: Signaling pathways and factors regulating melanogenesis.

    PubMed

    Rzepka, Zuzanna; Buszman, Ewa; Beberok, Artur; Wrześniok, Dorota

    2016-01-01

    Melanins are natural pigments of skin, hair and eyes and can be classified into two main types: brown to black eumelanin and yellow to reddish-brown pheomelanin. Biosynthesis of melanins takes place in melanosomes, which are specialized cytoplasmic organelles of melanocytes - dendritic cells located in the basal layer of the epidermis, uveal tract of the eye, hair follicles, as well as in the inner ear, central nervous system and heart. Melanogenesis is a multistep process and begins with the conversion of amino acid L-tyrosine to DOPAquinone. The addition of cysteine or glutathione to DOPAquinone leads to the intermediates formation, followed by subsequent transformations and polymerization to the final product, pheomelanin. In the absence of thiol compounds DOPAquinone undergoes an intramolecular cyclization and oxidation to form DOPAchrome, which is then converted to 5,6-dihydroksyindole (DHI) or 5,6-dihydroxyindole-2-carboxylic acid (DHICA). Eumelanin is formed by polymerization of DHI and DHICA and their quinones. Regulation of melanogenesis is achieved by physical and biochemical factors. The article presents the intracellular signaling pathways: cAMP/PKA/CREB/MITF cascade, MAP kinases cascade, PLC/DAG/PKCβ cascade and NO/cGMP/PKG cascade, which are involved in the regulation of expression and activity of the melanogenesis-related proteins by ultraviolet radiation and endogenous agents (cytokines, hormones). Activity of the key melanogenic enzyme, tyrosinase, is also affected by pH and temperature. Many pharmacologically active substances are able to inhibit or stimulate melanin biosynthesis, as evidenced by in vitro studies on cultured pigment cells. PMID:27356601

  3. The Arabidopsis C2H2 Zinc Finger INDETERMINATE DOMAIN1/ENHYDROUS Promotes the Transition to Germination by Regulating Light and Hormonal Signaling during Seed Maturation[W

    PubMed Central

    Feurtado, J. Allan; Huang, Daiqing; Wicki-Stordeur, Leigh; Hemstock, Laura E.; Potentier, Mireille S.; Tsang, Edward W.T.; Cutler, Adrian J.

    2011-01-01

    Seed development ends with a maturation phase that imparts desiccation tolerance, nutrient reserves, and dormancy degree. Here, we report the functional analysis of an Arabidopsis thaliana C2H2 zinc finger protein INDETERMINATE DOMAIN1 (IDD1)/ENHYDROUS (ENY). Ectopic expression of IDD1/ENY (2x35S:ENY) disrupted seed development, delaying endosperm depletion and testa senescence, resulting in an abbreviated maturation program. Consequently, mature 2x35S:ENY seeds had increased endosperm-specific fatty acids, starch retention, and defective mucilage extrusion. Using RAB18 promoter ENY lines (RAB18:ENY) to confine expression to maturation, when native ENY expression increased and peaked, resulted in mature seed with lower abscisic acid (ABA) content and decreased germination sensitivity to applied ABA. Furthermore, results of far-red and red light treatments of 2x35S:ENY and RAB18:ENY germinating seeds, and of artificial microRNA knockdown lines, suggest that ENY acts to promote germination. After using RAB18:ENY seedlings to induce ENY during ABA application, key genes in gibberellin (GA) metabolism and signaling were differentially regulated in a manner suggesting negative feedback regulation. Furthermore, GA treatment resulted in a skotomorphogenic-like phenotype in light-grown 2x35S:ENY and RAB18:ENY seedlings. The physical interaction of ENY with DELLAs and an ENY-triggered accumulation of DELLA transcripts during maturation support the conclusion that ENY mediates GA effects to balance ABA-promoted maturation during late seed development. PMID:21571950

  4. Regulation of mesangial cell function by vasodilatory signaling molecules.

    PubMed

    Buschhausen, L; Seibold, S; Gross, O; Matthaeus, T; Weber, M; Schulze-Lohoff, E

    2001-08-15

    Proliferation of mesangial cells and expansion of mesangial matrix is a hallmark of glomerular disease leading to end-stage renal failure and requiring renal replacement therapy. Independently from the type of injury, e.g. in glomerulonephritis or diabetic nephropathy, the response to injury is remarkably uniform. Chronic glomerular disease is frequently associated with increases in systemic blood pressure and altered intraglomerular hemodynamics. Furthermore, reduction of systemic blood pressure and inhibition of the vasoconstrictor peptide angiotensin II have been shown to delay end-stage renal failure in various types of human kidney disease. Since vasoconstrictors of mesangial cells and efferent glomerular arterioli, such as angiotensin II, are thought to be detrimental for the progression of chronic glomerular disease, we propose that vasodilatory factors which antagonize the effects of angiotensin II, might have beneficial effects during the course of progressive kidney disease. To support this concept we will summarize currently available data on the role of vasodilatory signaling molecules such as natriuretic peptides (ANP, BNP and CNP), nitric oxide (NO), the prostaglandines PGE2 and prostacycline, and the purine mediator adenosine in the regulation of mesangial function.

  5. Regulation of cell signaling and apoptosis by tumor suppressor WWOX

    PubMed Central

    Lo, Jui-Yen; Chou, Ying-Tsen; Lai, Feng-Jie

    2015-01-01

    Human fragile WWOX gene encodes a tumor suppressor WW domain-containing oxidoreductase (named WWOX, FOR, or WOX1). Functional suppression of WWOX prevents apoptotic cell death induced by a variety of stress stimuli, such as tumor necrosis factor, UV radiation, and chemotherapeutic drug treatment. Loss of WWOX gene expression due to gene deletions, loss of heterozygosity, chromosomal translocations, or epigenetic silencing is frequently observed in human malignant cancer cells. Acquisition of chemoresistance in squamous cell carcinoma, osteosarcoma, and breast cancer cells is associated with WWOX deficiency. WWOX protein physically interacts with many signaling molecules and exerts its regulatory effects on gene transcription and protein stability and subcellular localization to control cell survival, proliferation, differentiation, autophagy, and metabolism. In this review, we provide an overview of the recent advances in understanding the molecular mechanisms by which WWOX regulates cellular functions and stress responses. A potential scenario is that activation of WWOX by anticancer drugs is needed to overcome chemoresistance and trigger cancer cell death, suggesting that WWOX can be regarded as a prognostic marker and a candidate molecule for targeted cancer therapies. PMID:25595191

  6. Interleukin 2 activates extracellular signal-regulated protein kinase 2

    PubMed Central

    1993-01-01

    Interleukin 2 (IL-2) stimulated activation of the 42-kD extracellular signal-regulated kinase 2 (Erk2) in murine IL-3-dependent cells, expressing either high or intermediate affinity IL-2 receptors. Activation was both rapid, occurring within 5 min of IL-2 addition, and prolonged, remaining elevated for 30 min. Activation of Erk2 appeared to be necessary for IL-2 stimulation of proliferation, as deletion of a region of the cytoplasmic domain of the IL-2 receptor beta chain, essential for IL-2 stimulation of proliferation, abolished Erk2 activation by IL-2. Furthermore, cells that had been deprived of cytokine for 24 h were then refractory to IL-2 stimulation of both Erk2 activity and proliferation. However, elevation of Erk2 activity was not sufficient to stimulate proliferation, as protein kinase C activation stimulated Erk2 activity but not DNA synthesis. Also, cells exposed to IL-2 in the presence of rapamycin showed full Erk2 activation but not DNA synthesis. These data suggest that IL-2 must stimulate both Erk2 activity and a further pathway(s) to trigger cell proliferation. PMID:8376945

  7. BMP signaling and microtubule organization regulate synaptic strength

    PubMed Central

    Ball, Robin W.; Peled, Einat; Guerrero, Giovanna; Isacoff, Ehud Y.

    2015-01-01

    The strength of synaptic transmission between a neuron and multiple postsynaptic partners can vary considerably. We have studied synaptic heterogeneity using the glutamatergic Drosophila neuromuscular junction (NMJ), which contains multiple synaptic connections of varying strength between a motor axon and muscle fiber. In larval NMJs, there is a gradient of synaptic transmission from weak proximal to strong distal boutons. We imaged synaptic transmission with the postsynaptically targeted fluorescent calcium sensor SynapCam, to investigate the molecular pathways that determine synaptic strength and set up this gradient. We discovered that mutations in the Bone Morphogenetic Protein (BMP) signaling pathway disrupt production of strong distal boutons. We find that strong connections contain unbundled microtubules in the boutons, suggesting a role for microtubule organization in transmission strength. The spastin mutation, which disorganizes microtubules, disrupted the transmission gradient, supporting this interpretation. We propose that the BMP pathway, shown previously to function in the homeostatic regulation of synaptic growth, also boosts synaptic transmission in a spatially selective manner that depends on the microtubule system. PMID:25681521

  8. Regulation of PKC mediated signaling by calcium during visceral leishmaniasis.

    PubMed

    Roy, Nivedita; Chakraborty, Supriya; Paul Chowdhury, Bidisha; Banerjee, Sayantan; Halder, Kuntal; Majumder, Saikat; Majumdar, Subrata; Sen, Parimal C

    2014-01-01

    Calcium is an ubiquitous cellular signaling molecule that controls a variety of cellular processes and is strictly maintained in the cellular compartments by the coordination of various Ca2+ pumps and channels. Two such fundamental calcium pumps are plasma membrane calcium ATPase (PMCA) and Sarco/endoplasmic reticulum calcium ATPase (SERCA) which play a pivotal role in maintaining intracellular calcium homeostasis. This intracellular Ca2+ homeostasis is often disturbed by the protozoan parasite Leishmania donovani, the causative organism of visceral leishmaniasis. In the present study we have dileneated the involvement of PMCA4 and SERCA3 during leishmaniasis. We have observed that during leishmaniasis, intracellular Ca2+ concentration was up-regulated and was further controlled by both PMCA4 and SERCA3. Inhibition of these two Ca2+-ATPases resulted in decreased parasite burden within the host macrophages due to enhanced intracellular Ca2+. Contrastingly, on the other hand, activation of PMCA4 was found to enhance the parasite burden. Our findings also highlighted the importance of Ca2+ in the modulation of cytokine balance during leishmaniasis. These results thus cumulatively suggests that these two Ca2+-ATPases play prominent roles during visceral leishmaniasis. PMID:25329062

  9. Mitotic Checkpoint Regulators Control Insulin Signaling and Metabolic Homeostasis.

    PubMed

    Choi, Eunhee; Zhang, Xiangli; Xing, Chao; Yu, Hongtao

    2016-07-28

    Insulin signaling regulates many facets of animal physiology. Its dysregulation causes diabetes and other metabolic disorders. The spindle checkpoint proteins MAD2 and BUBR1 prevent precocious chromosome segregation and suppress aneuploidy. The MAD2 inhibitory protein p31(comet) promotes checkpoint inactivation and timely chromosome segregation. Here, we show that whole-body p31(comet) knockout mice die soon after birth and have reduced hepatic glycogen. Liver-specific ablation of p31(comet) causes insulin resistance, hyperinsulinemia, glucose intolerance, and hyperglycemia and diminishes the plasma membrane localization of the insulin receptor (IR) in hepatocytes. MAD2 directly binds to IR and facilitates BUBR1-dependent recruitment of the clathrin adaptor AP2 to IR. p31(comet) blocks the MAD2-BUBR1 interaction and prevents spontaneous clathrin-mediated IR endocytosis. BUBR1 deficiency enhances insulin sensitivity in mice. BUBR1 depletion in hepatocytes or the expression of MAD2-binding-deficient IR suppresses the metabolic phenotypes of p31(comet) ablation. Our findings establish a major IR regulatory mechanism and link guardians of chromosome stability to nutrient metabolism. PMID:27374329

  10. Cyclic AMP signalling pathways in the regulation of uterine relaxation

    PubMed Central

    Yuan, Wei; López Bernal, Andrés

    2007-01-01

    Studying the mechanism(s) of uterine relaxation is important and will be helpful in the prevention of obstetric difficulties such as preterm labour, which remains a major cause of perinatal mortality and morbidity. Multiple signalling pathways regulate the balance between maintaining relative uterine quiescence during gestation, and the transition to the contractile state at the onset of parturition. Elevation of intracellular cyclic AMP promotes myometrial relaxation, and thus quiescence, via effects on multiple intracellular targets including calcium channels, potassium channels and myosin light chain kinase. A complete understanding of cAMP regulatory pathways (synthesis and hydrolysis) would assist in the development of better tocolytics to delay or inhibit preterm labour. Here we review the enzymes involved in cAMP homoeostasis (adenylyl cyclases and phosphodiesterases) and possible myometrial substrates for the cAMP dependent protein kinase. We must emphasise the need to identify novel pharmacological targets in human pregnant myometrium to achieve safe and selective uterine relaxation when this is indicated in preterm labour or other obstetric complications. PMID:17570154

  11. Influence of gibberellin and daminozide on the expression of terpene synthases and on monoterpenes in common sage (Salvia officinalis).

    PubMed

    Schmiderer, Corinna; Grausgruber-Gröger, Sabine; Grassi, Paolo; Steinborn, Ralf; Novak, Johannes

    2010-07-01

    Common sage (Salvia officinalis L., Lamiaceae) is one of the most important medicinal and aromatic plants, with antioxidant, antimicrobial, spasmolytic, astringent, antihidrotic and specific sensorial properties. The essential oil of the plant, composed mainly of the monoterpenes 1,8-cineole, alpha-thujone, beta-thujone and camphor, is responsible for some of these effects. Gibberellins regulate diverse physiological processes in plants, such as seed germination, shoot elongation and cell division. In this study, we analyzed the effect of exogenously applied plant growth regulators, namely gibberellic acid (GA(3)) and daminozide, on leaf morphology and essential oil formation of two leaf stages during the period of leaf expansion. Essential oil content increased with increasing levels of gibberellins and decreased when gibberellin biosynthesis was blocked with daminozide. With increasing levels of gibberellins, 1,8-cineole and camphor contents increased. Daminozide blocked the accumulation of alpha- and beta-thujone. GA(3) at the highest level applied also led to a significant decrease of alpha- and beta-thujone. Monoterpene synthases are a class of enzymes responsible for the first step in monoterpene biosynthesis, competing for the same substrate geranylpyrophosphate. The levels of gene expression of the three most important monoterpene synthases in sage were investigated, 1,8-cineole synthase leading directly to 1,8-cineole, (+)-sabinene synthase responsible for the first step in the formation of alpha- and beta-thujone, and (+)-bornyl diphosphate synthase, the first step in camphor biosynthesis. The foliar application of GA(3) increased, while daminozide significantly decreased gene expression of the monoterpene synthases. The amounts of two of the end products, 1,8-cineole and camphor, were directly correlated with the levels of gene expression of the respective monoterpene synthases, indicating transcriptional control, while the formation of alpha- and beta

  12. Peroxiredoxin 1 suppresses apoptosis via regulation of the apoptosis signal-regulating kinase 1 signaling pathway in human oral leukoplakia

    PubMed Central

    ZHANG, MIN; NIU, WENWEN; ZHANG, JIANFEI; GE, LIHUA; YANG, JING; SUN, ZHENG; TANG, XIAOFEI

    2015-01-01

    Peroxiredoxin 1 (Prx1) has a significant role in several malignant types of tumor. However, the role of Prx1 in oral leukoplakia (OLK) has remained to be elucidated. OLK is a common precancerous lesion of the oral mucosa that has a very high malignant transformation rate. The aim of the present study was to investigate the roles of Prx1, and its association with apoptosis signal-regulating kinase 1 (ASK1) and p38 in OLK. A total of 20 OLK samples and 10 normal oral mucosa samples were obtained from patients at the Beijing Stomatological Hospital (Beijing, China). The messenger RNA (mRNA) and protein expression levels of Prx1, ASK1 and p38 were determined by polymerase chain reaction and western blot analysis, respectively. Flow cytometry was used to detect cell apoptosis. The interaction between Prx1 and ASK1 was examined in H2O2-treated DOK cells by glutathione-S-transferase pull-down assays and by co-immunoprecipitation in vitro. Compared with those of the normal oral mucosa, the mRNA levels of Prx1, ASK1 and p38 were elevated in OLK tissues (P<0.05). The protein expression levels of Prx1, phosphorylated-ASK1 (p-ASK1) and p-p38 were also significantly enhanced in OLK tissues compared with those of the normal mucosa (P<0.05). In Prx1-knockdown DOK cells, ASK1 and p38 were activated, leading to enhanced levels of apoptosis in response to H2O2. No clear interaction between Prx1 and ASK1 was detected in H2O2-treated DOK cells. Prx1 was suggested to be involved in OLK pathogenesis by providing resistance against extracellular damages from oxidative stress via inhibition of the ASK1-induced apoptotic signaling pathway. Targeting Prx1 may provide a novel therapeutic strategy for the treatment of patients with OLK. PMID:26622762

  13. Caveolin-1 regulates shear stress-dependent activation of extracellular signal-regulated kinase

    NASA Technical Reports Server (NTRS)

    Park, H.; Go, Y. M.; Darji, R.; Choi, J. W.; Lisanti, M. P.; Maland, M. C.; Jo, H.

    2000-01-01

    Fluid shear stress activates a member of the mitogen-activated protein (MAP) kinase family, extracellular signal-regulated kinase (ERK), by mechanisms dependent on cholesterol in the plasma membrane in bovine aortic endothelial cells (BAEC). Caveolae are microdomains of the plasma membrane that are enriched with cholesterol, caveolin, and signaling molecules. We hypothesized that caveolin-1 regulates shear activation of ERK. Because caveolin-1 is not exposed to the outside, cells were minimally permeabilized by Triton X-100 (0.01%) to deliver a neutralizing, polyclonal caveolin-1 antibody (pCav-1) inside the cells. pCav-1 then bound to caveolin-1 and inhibited shear activation of ERK but not c-Jun NH(2)-terminal kinase. Epitope mapping studies showed that pCav-1 binds to caveolin-1 at two regions (residues 1-21 and 61-101). When the recombinant proteins containing the epitopes fused to glutathione-S-transferase (GST-Cav(1-21) or GST-Cav(61-101)) were preincubated with pCav-1, only GST-Cav(61-101) reversed the inhibitory effect of the antibody on shear activation of ERK. Other antibodies, including m2234, which binds to caveolin-1 residues 1-21, had no effect on shear activation of ERK. Caveolin-1 residues 61-101 contain the scaffolding and oligomerization domains, suggesting that binding of pCav-1 to these regions likely disrupts the clustering of caveolin-1 or its interaction with signaling molecules involved in the shear-sensitive ERK pathway. We suggest that caveolae-like domains play a critical role in the mechanosensing and/or mechanosignal transduction of the ERK pathway.

  14. Endophytic fungi: resource for gibberellins and crop abiotic stress resistance.

    PubMed

    Khan, Abdul Latif; Hussain, Javid; Al-Harrasi, Ahmed; Al-Rawahi, Ahmed; Lee, In-Jung

    2015-03-01

    The beneficial effects of endophytes on plant growth are important for agricultural ecosystems because they reduce the need for fertilizers and decrease soil and water pollution while compensating for environmental perturbations. Endophytic fungi are a novel source of bioactive secondary metabolites; moreover, recently they have been found to produce physiologically active gibberellins as well. The symbiosis of gibberellins producing endophytic fungi with crops can be a promising strategy to overcome the adverse effects of abiotic stresses. The association of such endophytes has not only increased plant biomass but also ameliorated plant-growth during extreme environmental conditions. Endophytic fungi represent a trove of unexplored biodiversity and a frequently overlooked component of crop ecology. The present review describes the role of gibberellins producing endophytic fungi, suggests putative mechanisms involved in plant endophyte stress interactions and discusses future prospects in this field.

  15. Gibberellins and gravitropism in maize shoots: endogenous gibberellin-like substances and movement and metabolism of (/sup 3/)gibberellin A

    SciTech Connect

    Rood, S.B.; Kaufman, P.B.; Abe, H.; Pharis, R.P.

    1987-03-01

    (/sup 3/H)Gibberellin A/sub 20/(GA/sub 20/) of high specific radioactivity was applied equilaterally in a ring of microdrops to the internodal pulvinus of shoots of 3-week-old vertical normal maize (Zea mays L.), and to a pleiogravitropic (prostrate) maize mutant, lazy (la). All plants converted the (/sup 3/H)GA/sub 1//sup -/ and (/sup 3/H)GA/sub 29/-like metabolites as well as to several metabolites with the partitioning and chromatographic behavior of glucosyl conjugates of (/sup 3/H)GA/sub 1/(/sup 3/H)GA/sub 29/, and (/sup 3/H)GA/sub 8/. The tentative identification of these putative (/sup 3/H)GA glucosyl conjugates was further supported by the release of the free (/sup 3/H)GA moiety after cleavage with cellulase. Within 12 hours of the (/sup 3/H)GA/sub 20/ feed, there was a significantly higher proportion of total radioactivity in lower than in upper halves of internode and leaf sheaf pulvini in gravistimulated normal maize. Further, there was a significantly higher proportion of putative free GA metabolites of (/sup 3/H)GA/sub 20/, especially (/sup 3/H) GA/sub 1/, in the lower halves of normal maize relative to upper halves. The differential localization of the metabolites between upper and lower halves was not apparent in the pleiogravitropic mutant, la. Endogenous GA-like substances were also examined in gravistimulated maize shoots. Forty-eight hours after gravistimulation of 3-week-old maize seedlings, endogenous free GA-like substances in upper and lower leaf sheath and internode pulvini halves were extracted, chromatographed, and bioassayed using the Tanginbozu dwarf rice microdroassay. Lower halves contained higher total levels of GA-like activity.

  16. The chemistry of social regulation: multicomponent signals in ant societies.

    PubMed

    Hölldobler, B

    1995-01-01

    Chemical signals mediating communication in ant societies are usually complex mixtures of substances with considerable variation in molecular composition and in relative proportions of components. Such multicomponent signals can be produced in single exocrine glands, but they can also be composed with secretions from several glands. This variation is often functional, identifying groups or specific actions on a variety of organizational levels. Chemical signals can be further combined with cues from other sensory modalities, such as vibrational or tactile stimuli. These kinds of accessory signals usually serve in modulatory communication, lowering the response threshold in the recipient for the actual releasing stimulus. Comparative studies suggest that modulatory signals evolved through ritualization from actions originally not related to the same behavioral context, and modulatory signals may further evolve to become independent releasing signals.

  17. PIFs: pivotal components in a cellular signaling hub

    PubMed Central

    Leivar, Pablo; Quail, Peter H.

    2010-01-01

    A small subset of basic helix–loop–helix transcription factors called PIFs [phytochrome (phy)-interacting factors] act to repress seed germination, promote seedling skotomorphogenesis and promote shade-avoidance through regulated expression of over a thousand genes. Light-activated phy molecules directly reverse these activities by inducing rapid degradation of the PIF proteins. Here, we review recent advances in dissecting this signaling pathway and examine emerging evidence that indicates that other pathways also converge to regulate PIF activity, including the gibberellin pathway, the circadian clock and high temperature. The PIFs thus have broader roles than previously appreciated, functioning as a cellular signaling hub that integrates multiple signals to orchestrate regulation of the transcriptional network that drives multiple facets of downstream morphogenesis. The relative contributions of the individual PIFs to this spectrum of regulatory functions ranges from quantitatively redundant to qualitatively distinct. PMID:20833098

  18. A CCaMK-CYCLOPS-DELLA Complex Activates Transcription of RAM1 to Regulate Arbuscule Branching.

    PubMed

    Pimprikar, Priya; Carbonnel, Samy; Paries, Michael; Katzer, Katja; Klingl, Verena; Bohmer, Monica J; Karl, Leonhard; Floss, Daniela S; Harrison, Maria J; Parniske, Martin; Gutjahr, Caroline

    2016-04-25

    Intracellular arbuscular mycorrhiza symbiosis between plants and glomeromycotan fungi leads to formation of highly branched fungal arbuscules that release mineral nutrients to the plant host. Their development is regulated in plants by a mechanistically unresolved interplay between symbiosis, nutrient, and hormone (gibberellin) signaling. Using a positional cloning strategy and a retrotransposon insertion line, we identify two novel alleles of Lotus japonicus REDUCED ARBUSCULAR MYCORRHIZA1 (RAM1) encoding a GRAS protein. We confirm that RAM1 is a central regulator of arbuscule development: arbuscule branching is arrested in L. japonicus ram1 mutants, and ectopic expression of RAM1 activates genes critical for arbuscule development in the absence of fungal symbionts. Epistasis analysis places RAM1 downstream of CCaMK, CYCLOPS, and DELLA because ectopic expression of RAM1 restores arbuscule formation in cyclops mutants and in the presence of suppressive gibberellin. The corresponding proteins form a complex that activates RAM1 expression via binding of CYCLOPS to a cis element in the RAM1 promoter. We thus reveal a transcriptional cascade in arbuscule development that employs the promoter of RAM1 as integrator of symbiotic (transmitted via CCaMK and CYCLOPS) and hormonal (gibberellin) signals.

  19. Regulation of protease-activated receptor 1 signaling by the adaptor protein complex 2 and R4 subfamily of regulator of G protein signaling proteins.

    PubMed

    Chen, Buxin; Siderovski, David P; Neubig, Richard R; Lawson, Mark A; Trejo, Joann

    2014-01-17

    The G protein-coupled protease-activated receptor 1 (PAR1) is irreversibly proteolytically activated by thrombin. Hence, the precise regulation of PAR1 signaling is important for proper cellular responses. In addition to desensitization, internalization and lysosomal sorting of activated PAR1 are critical for the termination of signaling. Unlike most G protein-coupled receptors, PAR1 internalization is mediated by the clathrin adaptor protein complex 2 (AP-2) and epsin-1, rather than β-arrestins. However, the function of AP-2 and epsin-1 in the regulation of PAR1 signaling is not known. Here, we report that AP-2, and not epsin-1, regulates activated PAR1-stimulated phosphoinositide hydrolysis via two different mechanisms that involve, in part, a subset of R4 subfamily of "regulator of G protein signaling" (RGS) proteins. A significantly greater increase in activated PAR1 signaling was observed in cells depleted of AP-2 using siRNA or in cells expressing a PAR1 (420)AKKAA(424) mutant with defective AP-2 binding. This effect was attributed to AP-2 modulation of PAR1 surface expression and efficiency of G protein coupling. We further found that ectopic expression of R4 subfamily members RGS2, RGS3, RGS4, and RGS5 reduced activated PAR1 wild-type signaling, whereas signaling by the PAR1 AKKAA mutant was minimally affected. Intriguingly, siRNA-mediated depletion analysis revealed a function for RGS5 in the regulation of signaling by the PAR1 wild type but not the AKKAA mutant. Moreover, activation of the PAR1 wild type, and not the AKKAA mutant, induced Gαq association with RGS3 via an AP-2-dependent mechanism. Thus, AP-2 regulates activated PAR1 signaling by altering receptor surface expression and through recruitment of RGS proteins. PMID:24297163

  20. [Seed dormancy alleviation and oxidative signaling].

    PubMed

    Bailly, Christophe; El Maarouf Bouteau, Hayat; Corbineau, Françoise

    2008-01-01

    Recent advances in plant physiology signaling pathways have led to consider reactive oxygen species (ROS) as being key actors in the regulation of germination and dormancy. ROS accumulation during seed dry storage or during their imbibition would trigger cellular events controlling the realization of germination. We show that ROS accumulation triggers specific carbonylation of proteins thus modifying the occurrence of enzyme-mediated reactions during germination or facilitating reserve protein degradation through the proteasome. This suggests that dormancy is in part controlled by protein oxidation. ROS can also act as a positive signal in seed dormancy release through their effect on other mechanisms such as the control of the cellular redox status and the activation of transcription factors. Their interaction with abscisic acid and gibberellins is also evoked and a new mechanism of dormancy regulation in which ROS crosstalk with hormonal pathways is proposed.

  1. Plant elicitor peptides are conserved signals regulating direct and indirect anti-herbivore defense

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Insect-induced defenses occur in nearly all plants and are regulated by conserved signaling pathways. As the first described plant peptide signal, systemin regulates anti-herbivore defenses in the Solanaceae, but in other plant families peptides with analogous activity have remained elusive. In the ...

  2. Plant elicitor peptides are conserved signals regulating direct and indirect anti-herbivore defense

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Insect-induced defenses occur in nearly all plants and are regulated by conserved signaling pathways. As the first described plant peptide signal, systemin regulates anti-herbivore defenses in the Solanaceae, but in other plant families peptides with analogous activity have remained elusive. In th...

  3. Regulation of Protease-activated Receptor 1 Signaling by the Adaptor Protein Complex 2 and R4 Subfamily of Regulator of G Protein Signaling Proteins*

    PubMed Central

    Chen, Buxin; Siderovski, David P.; Neubig, Richard R.; Lawson, Mark A.; Trejo, JoAnn

    2014-01-01

    The G protein-coupled protease-activated receptor 1 (PAR1) is irreversibly proteolytically activated by thrombin. Hence, the precise regulation of PAR1 signaling is important for proper cellular responses. In addition to desensitization, internalization and lysosomal sorting of activated PAR1 are critical for the termination of signaling. Unlike most G protein-coupled receptors, PAR1 internalization is mediated by the clathrin adaptor protein complex 2 (AP-2) and epsin-1, rather than β-arrestins. However, the function of AP-2 and epsin-1 in the regulation of PAR1 signaling is not known. Here, we report that AP-2, and not epsin-1, regulates activated PAR1-stimulated phosphoinositide hydrolysis via two different mechanisms that involve, in part, a subset of R4 subfamily of “regulator of G protein signaling” (RGS) proteins. A significantly greater increase in activated PAR1 signaling was observed in cells depleted of AP-2 using siRNA or in cells expressing a PAR1 420AKKAA424 mutant with defective AP-2 binding. This effect was attributed to AP-2 modulation of PAR1 surface expression and efficiency of G protein coupling. We further found that ectopic expression of R4 subfamily members RGS2, RGS3, RGS4, and RGS5 reduced activated PAR1 wild-type signaling, whereas signaling by the PAR1 AKKAA mutant was minimally affected. Intriguingly, siRNA-mediated depletion analysis revealed a function for RGS5 in the regulation of signaling by the PAR1 wild type but not the AKKAA mutant. Moreover, activation of the PAR1 wild type, and not the AKKAA mutant, induced Gαq association with RGS3 via an AP-2-dependent mechanism. Thus, AP-2 regulates activated PAR1 signaling by altering receptor surface expression and through recruitment of RGS proteins. PMID:24297163

  4. Competition for in vitro (/sup 3/H)gibberellin A/sub 4/ binding in cucumber by gibberellins and their derivatives. [Cucumis sativus L. cv National Pickling

    SciTech Connect

    Yalpani, N.; Srivastava, L.M.

    1985-12-01

    The gibberellin (GA) binding properties of a cytosol fraction from hypocotyls of cucumber (Cucumis sativus L. cv National Pickling) were examined using a DEAE filter paper assay, (/sup 3/H)GA/sub 4/, and over 20 GAs, GA derivatives and other growth regulators. The results demonstrate structural specificity of the binding protein for ..gamma..-lactonic C-19 GAs with a 3 ..beta..-hydroxyl and a C-6 carboxyl group. Additional hydroxylations of the A, C, or D ring of the ent-gibberellane skeleton and methylation of the C-6 carboxyl impede or abolish binding affinity. Bioassay data are generally supported by the in vitro results but significantly GA/sub 9/ and GA/sub 36/, both considered to be precursors of GA/sub 4/ in cucumber, show no affinity for the binding protein. The results are discussed in relation to the active site of the putative GA/sub 4/ receptor in cucumber.

  5. GA signalling and cross-talk with other signalling pathways.

    PubMed

    Lor, Vai S; Olszewski, Neil E

    2015-01-01

    Gibberellins (GAs) are phytohormones that regulate growth and development. DELLA proteins repress GA responses. GA binding to its receptor triggers a series of events that culminate in the destruction of DELLA proteins by the 26S proteasome, which removes the repression of GA signalling. DELLA proteins are transcription co-activators that induce the expression of genes which encode products that inhibit GA responses. In addition to repressing GA responses, DELLA proteins influence the activity of other signalling pathways and serve as a central hub from which other pathways influence GA signalling. In this role, DELLA proteins bind to and inhibit proteins, including transcription factors that act in the signalling pathways of other hormones and light. The binding of these proteins to DELLA proteins also inhibits DELLA activity. GA signalling is subject to homoeostatic regulation through GA-induced repression of GA biosynthesis gene expression, and increased production of the GA receptor and enzymes that catabolize bioactive GAs. This review also discusses the nature of mutant DELLA alleles that are used to produce high-yielding 'Green Revolution' cereal varieties, and highlights important gaps in our knowledge of GA signalling. PMID:26374886

  6. Gibberellin-to-abscisic acid balances govern development and differentiation of the nucellar projection of barley grains.

    PubMed

    Weier, Diana; Thiel, Johannes; Kohl, Stefan; Tarkowská, Danuše; Strnad, Miroslav; Schaarschmidt, Sara; Weschke, Winfriede; Weber, Hans; Hause, Bettina

    2014-10-01

    In cereal grains, the maternal nucellar projection (NP) constitutes the link to the filial organs, forming a transfer path for assimilates and signals towards the endosperm. At transition to the storage phase, the NP of barley (Hordeum vulgare) undergoes dynamic and regulated differentiation forming a characteristic pattern of proliferating, elongating, and disintegrating cells. Immunolocalization revealed that abscisic acid (ABA) is abundant in early non-elongated but not in differentiated NP cells. In the maternally affected shrunken-endosperm mutant seg8, NP cells did not elongate and ABA remained abundant. The amounts of the bioactive forms of gibberellins (GAs) as well as their biosynthetic precursors were strongly and transiently increased in wild-type caryopses during the transition and early storage phases. In seg8, this increase was delayed and less pronounced together with deregulated gene expression of specific ABA and GA biosynthetic genes. We concluded that differentiation of the barley NP is driven by a distinct and specific shift from lower to higher GA:ABA ratios and that the spatial-temporal change of GA:ABA balances is required to form the differentiation gradient, which is a prerequisite for ordered transfer processes through the NP. Deregulated ABA:GA balances in seg8 impair the differentiation of the NP and potentially compromise transfer of signals and assimilates, resulting in aberrant endosperm growth. These results highlight the impact of hormonal balances on the proper release of assimilates from maternal to filial organs and provide new insights into maternal effects on endosperm differentiation and growth of barley grains.

  7. Gibberellin-to-abscisic acid balances govern development and differentiation of the nucellar projection of barley grains

    PubMed Central

    Weier, Diana; Thiel, Johannes; Kohl, Stefan; Tarkowská, Danuše; Strnad, Miroslav; Schaarschmidt, Sara; Weschke, Winfriede; Weber, Hans; Hause, Bettina

    2014-01-01

    In cereal grains, the maternal nucellar projection (NP) constitutes the link to the filial organs, forming a transfer path for assimilates and signals towards the endosperm. At transition to the storage phase, the NP of barley (Hordeum vulgare) undergoes dynamic and regulated differentiation forming a characteristic pattern of proliferating, elongating, and disintegrating cells. Immunolocalization revealed that abscisic acid (ABA) is abundant in early non-elongated but not in differentiated NP cells. In the maternally affected shrunken-endosperm mutant seg8, NP cells did not elongate and ABA remained abundant. The amounts of the bioactive forms of gibberellins (GAs) as well as their biosynthetic precursors were strongly and transiently increased in wild-type caryopses during the transition and early storage phases. In seg8, this increase was delayed and less pronounced together with deregulated gene expression of specific ABA and GA biosynthetic genes. We concluded that differentiation of the barley NP is driven by a distinct and specific shift from lower to higher GA:ABA ratios and that the spatial–temporal change of GA:ABA balances is required to form the differentiation gradient, which is a prerequisite for ordered transfer processes through the NP. Deregulated ABA:GA balances in seg8 impair the differentiation of the NP and potentially compromise transfer of signals and assimilates, resulting in aberrant endosperm growth. These results highlight the impact of hormonal balances on the proper release of assimilates from maternal to filial organs and provide new insights into maternal effects on endosperm differentiation and growth of barley grains. PMID:25024168

  8. Signals and Cells Involved in Regulating Liver Regeneration

    PubMed Central

    Kang, Liang-I.; Mars, Wendy M.; Michalopoulos, George K.

    2012-01-01

    Liver regeneration is a complex phenomenon aimed at maintaining a constant liver mass in the event of injury resulting in loss of hepatic parenchyma. Partial hepatectomy is followed by a series of events involving multiple signaling pathways controlled by mitogenic growth factors (HGF, EGF) and their receptors (MET and EGFR). In addition multiple cytokines and other signaling molecules contribute to the orchestration of a signal which drives hepatocytes into DNA synthesis. The other cell types of the liver receive and transmit to hepatocytes complex signals so that, in the end of the regenerative process, complete hepatic tissue is assembled and regeneration is terminated at the proper time and at the right liver size. If hepatocytes fail to participate in this process, the biliary compartment is mobilized to generate populations of progenitor cells which transdifferentiate into hepatocytes and restore liver size. PMID:24710554

  9. Cloning and overproduction of gibberellin 3-oxidase in hybrid aspen trees. Effects on gibberellin homeostasis and development.

    PubMed

    Israelsson, Maria; Mellerowicz, Ewa; Chono, Makiko; Gullberg, Jonas; Moritz, Thomas

    2004-05-01

    To broaden our understanding of gibberellin (GA) biosynthesis and the mechanism whereby GA homeostasis is maintained in plants, we have investigated the degree to which the enzyme GA 3-oxidase (GA3ox) limits the formation of bioactive GAs in elongating shoots of hybrid aspen (Populus tremula x Populus tremuloides). We describe the cloning of a hybrid aspen GA3ox and its functional characterization, which confirmed that it has 3beta-hydroxylation activity and more efficiently converts GA9 to GA4 than GA20 to GA1. To complement previous studies, in which transgenic GA 20-oxidase (GA20ox) overexpressers were found to produce 20-fold higher bioactive GA levels and subsequently grew faster than wild-type plants, we overexpressed an Arabidopsis GA3ox in hybrid aspen. The generated GA3ox overexpresser lines had increased 3beta-hydroxylation activity but exhibited no major changes in morphology. The nearly unaltered growth pattern was associated with relatively small changes in GA1 and GA4 levels, although tissue-dependent differences were observed. The absence of increases in bioactive GA levels did not appear to be due to feedback or feed-forward regulation of dioxygenase transcripts, according to semiquantitative reverse transcription polymerase chain reaction analysis of PttGA20ox1, PttGA3ox1, and two putative PttGA2ox genes. We conclude that 20-oxidation is the limiting step, rather than 3beta-hydroxylation, in the formation of GA1 and GA4 in elongating shoots of hybrid aspen, and that ectopic GA3ox expression alone cannot increase the flux toward bioactive GAs. Finally, several lines of evidence now suggest that GA4 has a more pivotal role in the tree hybrid aspen than previously believed.

  10. Cloning and Overproduction of Gibberellin 3-Oxidase in Hybrid Aspen Trees. Effects on Gibberellin Homeostasis and Development1

    PubMed Central

    Israelsson, Maria; Mellerowicz, Ewa; Chono, Makiko; Gullberg, Jonas; Moritz, Thomas

    2004-01-01

    To broaden our understanding of gibberellin (GA) biosynthesis and the mechanism whereby GA homeostasis is maintained in plants, we have investigated the degree to which the enzyme GA 3-oxidase (GA3ox) limits the formation of bioactive GAs in elongating shoots of hybrid aspen (Populus tremula × Populus tremuloides). We describe the cloning of a hybrid aspen GA3ox and its functional characterization, which confirmed that it has 3β-hydroxylation activity and more efficiently converts GA9 to GA4 than GA20 to GA1. To complement previous studies, in which transgenic GA 20-oxidase (GA20ox) overexpressers were found to produce 20-fold higher bioactive GA levels and subsequently grew faster than wild-type plants, we overexpressed an Arabidopsis GA3ox in hybrid aspen. The generated GA3ox overexpresser lines had increased 3β-hydroxylation activity but exhibited no major changes in morphology. The nearly unaltered growth pattern was associated with relatively small changes in GA1 and GA4 levels, although tissue-dependent differences were observed. The absence of increases in bioactive GA levels did not appear to be due to feedback or feed-forward regulation of dioxygenase transcripts, according to semiquantitative reverse transcription polymerase chain reaction analysis of PttGA20ox1, PttGA3ox1, and two putative PttGA2ox genes. We conclude that 20-oxidation is the limiting step, rather than 3β-hydroxylation, in the formation of GA1 and GA4 in elongating shoots of hybrid aspen, and that ectopic GA3ox expression alone cannot increase the flux toward bioactive GAs. Finally, several lines of evidence now suggest that GA4 has a more pivotal role in the tree hybrid aspen than previously believed. PMID:15122019

  11. Regulation of the feedback antagonist naked cuticle by Wingless signaling

    PubMed Central

    Chang, Jinhee L.; Chang, Mikyung V.; Barolo, Scott; Cadigan, Ken M.

    2008-01-01

    Signaling pathways usually activate transcriptional targets in a cell type-specific manner. Notable exceptions are pathway-specific feedback antagonists, which serve to restrict the range or duration of the signal. These factors are often activated by their respective pathways in a broad array of cell types. For example, the Wnt ligand Wingless (Wg) activates the naked cuticle (nkd) gene in all tissues examined throughout Drosophila development. How does the nkd gene respond in such an unrestricted manner to Wg signaling? Analysis in cell culture revealed regions of the nkd locus that contain Wg response elements (WREs) that are directly activated by the pathway via the transcription factor TCF. In flies, Wg signaling activates these WREs in multiple tissues, in distinct but overlapping patterns. These WREs are necessary and largely sufficient for nkd expression in late stage larval tissues, but only contribute to part of the embryonic expression pattern of nkd. These results demonstrate that nkd responsiveness to Wg signaling is achieved by several WREs which are broadly (but not universally) activated by the pathway. The existence of several WREs in the nkd locus may have been necessary to allow the Wg signaling-Nkd feedback circuit to remain intact as Wg expression diversified during animal evolution. PMID:18585374

  12. The role of the extracellular signal-regulated kinase signaling pathway in mood modulation.

    PubMed

    Einat, Haim; Yuan, Peixiong; Gould, Todd D; Li, Jianling; Du, JianHua; Zhang, Lei; Manji, Husseini K; Chen, Guang

    2003-08-13

    The neurobiological underpinnings of mood modulation, molecular pathophysiology of manic-depressive illness, and therapeutic mechanism of mood stabilizers are largely unknown. The extracellular signal-regulated kinase (ERK) pathway is activated by neurotrophins and other neuroactive chemicals to produce their effects on neuronal differentiation, survival, regeneration, and structural and functional plasticity. We found that lithium and valproate, commonly used mood stabilizers for the treatment of manic-depressive illness, stimulated the ERK pathway in the rat hippocampus and frontal cortex. Both drugs increased the levels of activated phospho-ERK44/42, activated phospho-ribosomal protein S6 kinase-1 (RSK1) (a substrate of ERK), phospho-CREB (cAMP response element-binding protein) and phospho-B cell lymphoma protein-2 antagonist of cell death (substrates of RSK), and BDNF. Inhibiting the ERK pathway with the blood-brain barrier-penetrating mitogen-activated protein kinase (MAP kinase)/ERK kinase (MEK) kinase inhibitor SL327, but not with the nonblood-brain barrier-penetrating MEK inhibitor U0126, decreased immobility time and increased swimming time of rats in the forced-swim test. SL327, but not U0126, also increased locomotion time and distance traveled in a large open field. The behavioral changes in the open field were prevented with chronic lithium pretreatment. SL327-induced behavioral changes are qualitatively similar to the changes induced by amphetamine, a compound that induces relapse in remitted manic patients and mood elevation in normal subjects. These data suggest that the ERK pathway may mediate the antimanic effects of mood stabilizers.

  13. Activation of Gibberellin Biosynthesis and Response Pathways by Low Temperature during Imbibition of Arabidopsis thaliana SeedsW⃞

    PubMed Central

    Yamauchi, Yukika; Ogawa, Mikihiro; Kuwahara, Ayuko; Hanada, Atsushi; Kamiya, Yuji; Yamaguchi, Shinjiro

    2004-01-01

    Exposure of imbibed seeds to low temperature (typically 4°C) is widely used to break seed dormancy and to improve the frequency of germination. However, the mechanism by which temperature accelerates germination is largely unknown. Using DNA microarray and gas chromatography–mass spectrometry analyses, we found that a subset of gibberellin (GA) biosynthesis genes were upregulated in response to low temperature, resulting in an increase in the level of bioactive GAs and transcript abundance of GA-inducible genes in imbibed Arabidopsis thaliana seeds. Using a loss-of-function mutant, the cold-inducible GA biosynthesis gene, AtGA3ox1, was shown to play an essential role in mediating the effect of low temperature. Besides temperature, AtGA3ox1 also is positively regulated by active phytochrome and negatively regulated by GA activity. We show that both red light and GA deficiency act in addition to low temperature to elevate the level of AtGA3ox1 transcript, indicating that multiple signals are integrated by the AtGA3ox1 gene to control seed germination. When induced by low temperature, AtGA3ox1 mRNA was detectable by in situ RNA hybridization in an additional set of cell types relative to that in red light–induced seeds. Our results illustrate that the GA biosynthesis and response pathways are activated during seed imbibition at low temperature and suggest that the cellular distribution of bioactive GAs may be altered under different light and temperature conditions. PMID:14729916

  14. The Adapter Molecule Sin Regulates T-Cell-Receptor-Mediated Signal Transduction by Modulating Signaling Substrate Availability

    PubMed Central

    Xing, Luzhou; Donlin, Laura T.; Miller, Rebecca H.; Alexandropoulos, Konstantina

    2004-01-01

    Engagement of the T-cell receptor (TCR) results in the activation of a multitude of signaling events that regulate the function of T lymphocytes. These signaling events are in turn modulated by adapter molecules, which control the final functional output through the formation of multiprotein complexes. In this report, we identified the adapter molecule Sin as a new regulator of T-cell activation. We found that the expression of Sin in transgenic T lymphocytes and Jurkat T cells inhibited interleukin-2 expression and T-cell proliferation. This inhibitory effect was specific and was due to defective phospholipase C-γ (PLC-γ) phosphorylation and activation. In contrast to other adapters that become phosphorylated upon TCR stimulation, Sin was constitutively phosphorylated in resting cells by the Src kinase Fyn and bound to signaling intermediates, including PLC-γ. In stimulated cells, Sin was transiently dephosphorylated, which coincided with transient dissociation of Fyn and PLC-γ. Downregulation of Sin expression using Sin-specific short interfering RNA oligonucleotides inhibited transcriptional activation in response to TCR stimulation. Our results suggest that endogenous Sin influences T-lymphocyte signaling by sequestering signaling substrates and regulating their availability and/or activity in resting cells, while Sin is required for targeting these intermediates to the TCR for fast signal transmission during stimulation. PMID:15121874

  15. Role of gibberellin in the growth response of submerged deep water rice

    SciTech Connect

    Raskin, I.; Kende, H.

    1984-12-01

    The authors have shown previously that ethylene, which accumulates in the air spaces of submerged stem sections of rice (Oryza sativa L. cv Habiganj Aman II), is involved in regulating the growth response caused by submergence. The role of gibberellins in the submergence response was studied using tetcyclacis (TCY), a new plant growth retardant, which inhibits gibberellin biosynthesis. Stem sections excised from plants that had been watered with a solution of 1 micromolar TCY for 7 to 10 days did not elongate when submerged in the same solution or when exposed to 1 microliter per liter ethylene in air. Gibberellic acid (GA/sub 3/) at 0.3 micromolar overcame the effect of TCY and restored the rapid internodal elongation in submerged and ethylene-treated sections to the levels observed in control sections that had not been treated with TCY. The effect of 0.01 to 0.2 micromolar GA/sub 3/ on internodal elongation was enhanced two- to eight-fold when 1 microliter per liter ethylene was added to their passing through the chamber in which the sections were incubated. GA/sub 3/ and ethylene caused a similar increase in cell division and cell elongation in rice internodes. Thus, ethylene may cause internodal elongation in rice by increasing the activity of endogenous GAs. In internodes from which the leaf sheath had been peeled off, growth in response to submergence, ethylene and GA/sub 3/ was severely inhibited by light. 8 references, 3 figures, 2 tables.

  16. Cloning and characterization of a gibberellin-induced RNase expressed in barley aleurone cells

    SciTech Connect

    Rogers, S.W.; Rogers, J.C. . Inst. of Biological Chemistry)

    1999-04-01

    The authors cloned a cDNA for a gibberellin-induced ribonuclease (RNase) expressed in barley (Hordeum vulgare) aleurone and the gene for a second barley RNase expressed in leaf tissue. The protein encoded by the cDNA is unique among RNases described to date in that it contains a novel 23-amino acid insert between the C2 and C3 conserved sequences. Expression of the recombinant protein in tobacco (Ncotiana tabacum) suspension-cultured protoplasts gave an active RNase of the expected size, confirming the enzymatic activity of the protein. Analyses of hormone regulation of re-expression of mRNA for the aleurone RNase revealed that, like the pattern for [alpha]-amylase, mRNA levels increased in the presence of gibberellic acid, and its antagonist abscisic acid prevented this effect. Quantitative studies at early times demonstrated that cycloheximide treatment of aleurone layers increased mRNA levels 4-fold, whereas a combination of gibberellin plus cycloheximide treatment was required to increase [alpha]-amylase mRNA levels to the same extent. These results are consistent with loss of repression as an initial effect of gibberellic acid on transcription of those genes, although the regulatory pathways for the two genes may differ.

  17. Bacterial endophyte Sphingomonas sp. LK11 produces gibberellins and IAA and promotes tomato plant growth.

    PubMed

    Khan, Abdul Latif; Waqas, Muhammad; Kang, Sang-Mo; Al-Harrasi, Ahmed; Hussain, Javid; Al-Rawahi, Ahmed; Al-Khiziri, Salima; Ullah, Ihsan; Ali, Liaqat; Jung, Hee-Young; Lee, In-Jung

    2014-08-01

    Plant growth promoting endophytic bacteria have been identified as potential growth regulators of crops. Endophytic bacterium, Sphingomonas sp. LK11, was isolated from the leaves of Tephrosia apollinea. The pure culture of Sphingomonas sp. LK11 was subjected to advance chromatographic and spectroscopic techniques to extract and isolate gibberellins (GAs). Deuterated standards of [17, 17-(2)H2]-GA4, [17, 17-(2)H2]-GA9 and [17, 17-(2)H2]-GA20 were used to quantify the bacterial GAs. The analysis of the culture broth of Sphingomonas sp. LK11 revealed the existence of physiologically active gibberellins (GA4: 2.97 ± 0.11 ng/ml) and inactive GA9 (0.98 ± 0.15 ng/ml) and GA20 (2.41 ± 0.23). The endophyte also produced indole acetic acid (11.23 ± 0.93 μM/ml). Tomato plants inoculated with endophytic Sphingomonas sp. LK11 showed significantly increased growth attributes (shoot length, chlorophyll contents, shoot, and root dry weights) compared to the control. This indicated that such phyto-hormones-producing strains could help in increasing crop growth. PMID:24994010

  18. Proteomic and functional genomic landscape of receptor tyrosine kinase and ras to extracellular signal-regulated kinase signaling.

    PubMed

    Friedman, Adam A; Tucker, George; Singh, Rohit; Yan, Dong; Vinayagam, Arunachalam; Hu, Yanhui; Binari, Richard; Hong, Pengyu; Sun, Xiaoyun; Porto, Maura; Pacifico, Svetlana; Murali, Thilakam; Finley, Russell L; Asara, John M; Berger, Bonnie; Perrimon, Norbert

    2011-10-25

    Characterizing the extent and logic of signaling networks is essential to understanding specificity in such physiological and pathophysiological contexts as cell fate decisions and mechanisms of oncogenesis and resistance to chemotherapy. Cell-based RNA interference (RNAi) screens enable the inference of large numbers of genes that regulate signaling pathways, but these screens cannot provide network structure directly. We describe an integrated network around the canonical receptor tyrosine kinase (RTK)-Ras-extracellular signal-regulated kinase (ERK) signaling pathway, generated by combining parallel genome-wide RNAi screens with protein-protein interaction (PPI) mapping by tandem affinity purification-mass spectrometry. We found that only a small fraction of the total number of PPI or RNAi screen hits was isolated under all conditions tested and that most of these represented the known canonical pathway components, suggesting that much of the core canonical ERK pathway is known. Because most of the newly identified regulators are likely cell type- and RTK-specific, our analysis provides a resource for understanding how output through this clinically relevant pathway is regulated in different contexts. We report in vivo roles for several of the previously unknown regulators, including CG10289 and PpV, the Drosophila orthologs of two components of the serine/threonine-protein phosphatase 6 complex; the Drosophila ortholog of TepIV, a glycophosphatidylinositol-linked protein mutated in human cancers; CG6453, a noncatalytic subunit of glucosidase II; and Rtf1, a histone methyltransferase.

  19. SP8 regulates signaling centers during craniofacial development.

    PubMed

    Kasberg, Abigail D; Brunskill, Eric W; Steven Potter, S

    2013-09-15

    Much of the bone, cartilage and smooth muscle of the vertebrate face is derived from neural crest (NC) cells. During craniofacial development, the anterior neural ridge (ANR) and olfactory pit (OP) signaling centers are responsible for driving the outgrowth, survival, and differentiation of NC populated facial prominences, primarily via FGF. While much is known about the functional importance of signaling centers, relatively little is understood of how these signaling centers are made and maintained. In this report we describe a dramatic craniofacial malformation in mice mutant for the zinc finger transcription factor gene Sp8. At E14.5 they show facial prominences that are reduced in size and underdeveloped, giving an almost faceless phenotype. At later times they show severe midline defects, excencephaly, hyperterlorism, cleft palate, and a striking loss of many NC and paraxial mesoderm derived cranial bones. Sp8 expression was primarily restricted to the ANR and OP regions during craniofacial development. Analysis of an extensive series of conditional Sp8 mutants confirmed the critical role of Sp8 in signaling centers, and not directly in the NC and paraxial mesoderm cells. The NC cells of the Sp8 mutants showed increased levels of apoptosis and decreased cell proliferation, thereby explaining the reduced sizes of the facial prominences. Perturbed gene expression in the Sp8 mutants was examined by laser capture microdissection coupled with microarrays, as well as in situ hybridization and immunostaining. The most dramatic differences included striking reductions in Fgf8 and Fgf17 expression in the ANR and OP signaling centers. We were also able to achieve genetic and pharmaceutical partial rescue of the Sp8 mutant phenotype by reducing Sonic Hedgehog (SHH) signaling. These results show that Sp8 primarily functions to promote Fgf expression in the ANR and OP signaling centers that drive the survival, proliferation, and differentiation of the NC and paraxial

  20. SP8 regulates signaling centers during craniofacial development

    PubMed Central

    Kasberg, Abigail D.; Brunskill, Eric W.; Potter, S. Steven

    2014-01-01

    Much of the bone, cartilage and smooth muscle of the vertebrate face is derived from neural crest (NC) cells. During craniofacial development, the anterior neural ridge (ANR) and olfactory pit (OP) signaling centers are responsible for driving the outgrowth, survival, and differentiation of NC populated facial prominences, primarily via FGF. While much is known about the functional importance of signaling centers, relatively little is understood of how these signaling centers are made and maintained. In this report we describe a dramatic craniofacial malformation in mice mutant for the zinc finger transcription factor gene Sp8. At E14.5 they show facial prominences that are reduced in size and underdeveloped, giving an almost faceless phenotype. At later times they show severe midline defects, excencephaly, hyperterlorism, cleft palate, and a striking loss of many NC and paraxial mesoderm derived cranial bones. Sp8 expression was primarily restricted to the ANR and OP regions during craniofacial development. Analysis of an extensive series of conditional Sp8 mutants confirmed the critical role of Sp8 in signaling centers, and not directly in the NC and paraxial mesoderm cells. The NC cells of the Sp8 mutants showed increased levels of apoptosis and decreased cell proliferation, thereby explaining the reduced sizes of the facial prominences. Perturbed gene expression in the Sp8 mutants was examined by laser capture microdissection coupled with microarrays, as well as in situ hybridization and immunostaining. The most dramatic differences included striking reductions in Fgf8 and Fgf17 expression in the ANR and OP signaling centers. We were also able to achieve genetic and pharmaceutical partial rescue of the Sp8 mutant phenotype by reducing Sonic Hedgehog (SHH) signaling. These results show that Sp8 primarily functions to promote Fgf expression in the ANR and OP signaling centers that drive the survival, proliferation, and differentiation of the NC and paraxial

  1. Protons as second messenger regulators of G protein signaling

    PubMed Central

    Isom, Daniel G.; Sridharan, Vishwajith; Baker, Rachael; Clement, Sarah T.; Smalley, David M.; Dohlman, Henrik G.

    2013-01-01

    Summary In response to environmental stress cells often generate pH signals that serve to protect vital cellular components and reprogram gene expression for survival. A major barrier to our understanding of this process has been the identification of signaling proteins that detect changes in intracellular pH. To identify candidate pH sensors we developed a computer algorithm that searches proteins for networks of proton-binding sidechains. This analysis indicates that Gα subunits, the principal transducers of G protein-coupled receptor signals, are pH sensors. Our structure-based calculations and biophysical investigations reveal that Gα subunits contain networks of pH-sensing sidechains buried between their Ras and helical domains. We show further that proton binding induces changes in conformation that promote Gα phosphorylation and suppress receptor-initiated signaling. Together, our computational, biophysical and cellular analyses reveal a new and unexpected function for G proteins as mediators of stress-response signaling. PMID:23954348

  2. ROS Homeostasis Regulates Somatic Embryogenesis via the Regulation of Auxin Signaling in Cotton*

    PubMed Central

    Zhou, Ting; Yang, Xiyan; Guo, Kai; Deng, Jinwu; Xu, Jiao; Gao, Wenhui; Lindsey, Keith; Zhang, Xianlong

    2016-01-01

    Somatic embryogenesis (S.E.) is a versatile model for understanding the mechanisms of plant embryogenesis and a useful tool for plant propagation. To decipher the intricate molecular program and potentially to control the parameters affecting the frequency of S.E., a proteomics approach based on two-dimensional gel electrophoresis (2-DE) combined with MALDI-TOF/TOF was used. A total of 149 unique differentially expressed proteins (DEPs) were identified at different stages of cotton S.E. compared with the initial control (0 h explants). The expression profile and functional annotation of these DEPs revealed that S.E. activated stress-related proteins, including several reactive oxygen species (ROS)-scavenging enzymes. Proteins implicated in metabolic, developmental, and reproductive processes were also identified. Further experiments were performed to confirm the role of ROS-scavenging enzymes, suggesting the involvement of ROS homeostasis during S.E. in cotton. Suppressing the expression of specifically identified GhAPX proteins resulted in the inhibition of dedifferentiation. Accelerated redifferentiation was observed in the suppression lines of GhAPXs or GhGSTL3 in parallel with the alteration of endogenous ascorbate metabolism and accumulation of endogenous H2O2 content. Moreover, disrupting endogenous redox homeostasis through the application of high concentrations of DPI, H2O2, BSO, or GSH inhibited the dedifferentiation of cotton explants. Mild oxidation induced through BSO treatment facilitated the transition from embryogenic calluses (ECs) to somatic embryos. Meanwhile, auxin homeostasis was altered through the perturbation of ROS homeostasis by chemical treatments or suppression of ROS-scavenging proteins, along with the activating/suppressing the transcription of genes related to auxin transportation and signaling. These results show that stress responses are activated during S.E. and may regulate the ROS homeostasis by interacting with auxin signaling

  3. ROS Homeostasis Regulates Somatic Embryogenesis via the Regulation of Auxin Signaling in Cotton.

    PubMed

    Zhou, Ting; Yang, Xiyan; Guo, Kai; Deng, Jinwu; Xu, Jiao; Gao, Wenhui; Lindsey, Keith; Zhang, Xianlong

    2016-06-01

    Somatic embryogenesis (S.E.) is a versatile model for understanding the mechanisms of plant embryogenesis and a useful tool for plant propagation. To decipher the intricate molecular program and potentially to control the parameters affecting the frequency of S.E., a proteomics approach based on two-dimensional gel electrophoresis (2-DE) combined with MALDI-TOF/TOF was used. A total of 149 unique differentially expressed proteins (DEPs) were identified at different stages of cotton S.E. compared with the initial control (0 h explants). The expression profile and functional annotation of these DEPs revealed that S.E. activated stress-related proteins, including several reactive oxygen species (ROS)-scavenging enzymes. Proteins implicated in metabolic, developmental, and reproductive processes were also identified. Further experiments were performed to confirm the role of ROS-scavenging enzymes, suggesting the involvement of ROS homeostasis during S.E. in cotton. Suppressing the expression of specifically identified GhAPX proteins resulted in the inhibition of dedifferentiation. Accelerated redifferentiation was observed in the suppression lines of GhAPXs or GhGSTL3 in parallel with the alteration of endogenous ascorbate metabolism and accumulation of endogenous H2O2 content. Moreover, disrupting endogenous redox homeostasis through the application of high concentrations of DPI, H2O2, BSO, or GSH inhibited the dedifferentiation of cotton explants. Mild oxidation induced through BSO treatment facilitated the transition from embryogenic calluses (ECs) to somatic embryos. Meanwhile, auxin homeostasis was altered through the perturbation of ROS homeostasis by chemical treatments or suppression of ROS-scavenging proteins, along with the activating/suppressing the transcription of genes related to auxin transportation and signaling. These results show that stress responses are activated during S.E. and may regulate the ROS homeostasis by interacting with auxin signaling

  4. Post-Transcriptional Regulation of Interferons and Their Signaling Pathways

    PubMed Central

    2014-01-01

    Interferons (IFNs) are low molecular weight cell-derived proteins that include the type I, II, and III IFN families. IFNs are critical for an optimal immune response during microbial infections while dysregulated expression can lead to autoimmune diseases. Given its role in disease, it is important to understand cellular mechanisms of IFN regulation. 3′ untranslated regions (3′ UTRs) have emerged as potent regulators of mRNA and protein dosage and are controlled through multiple regulatory elements including adenylate uridylate (AU)-rich elements (AREs) and microRNA (miRNA) recognition elements. These AREs are targeted by RNA-binding proteins (ARE-BPs) for degradation and/or stabilization through an ARE-mediated decay process. miRNA are endogenous, single-stranded RNA molecules ∼22 nucleotides in length that regulate mRNA translation through the miRNA-induced silencing complex. IFN transcripts, like other labile mRNAs, harbor AREs in their 3′ UTRs that dictate the turnover of mRNA. This review is a survey of the literature related to IFN regulation by miRNA, ARE-BPs, and how these complexes interact dynamically on the 3′ UTR. Additionally, downstream effects of these post-transcriptional regulators on the immune response will be discussed. Review topics include past studies, current understanding, and future challenges in the study of post-transcriptional regulation affecting IFN responses. PMID:24702117

  5. Light-regulated translocation of signaling proteins in Drosophila photoreceptors

    PubMed Central

    Frechter, Shahar; Minke, Baruch

    2007-01-01

    Illumination of Drosophila photoreceptor cells induces multi-facet responses, which include generation of the photoreceptor potential, screening pigment migration and translocation of signaling proteins which is the focus of recent extensive research. Translocation of three signaling molecules is covered in this review: (1) Light-dependent translocation of arrestin from the cytosol to the signaling membrane, the rhabdomere, determines the lifetime of activated rhodopsin. Arrestin translocates in PIP3 and NINAC myosin III dependent manner, and specific mutations which disrupt the interaction between arrestin and PIP3 or NINAC also impair the light-dependant translocation of arrestin and the termination of the response to light. (2) Activation of Drosophila visual G protein, DGq, causes a massive and reversible, translocation of the α subunit from the signaling membrane to the cytosol, accompanied by activity-dependent architectural changes. Analysis of the translocation and the recovery kinetics of DGqα in wild-type flies and specific visual mutants indicated that DGqα is necessary but not sufficient for the architectural changes. (3) The TRP-like (TRPL) but not TRP channels translocate in a light-dependent manner between the rhabdomere and the cell body. As a physiological consequence of this light-dependent modulation of the TRP/TRPL ratio, the photoreceptors of dark-adapted flies operate at a wider dynamic range, which allows the photoreceptors enriched with TRPL to function better in darkness and dim background illumination. Altogether, signal-dependent movement of signaling proteins plays a major role in the maintenance and function of photoreceptor cells. PMID:16458490

  6. The Multiple Signaling Systems Regulating Virulence in Pseudomonas aeruginosa

    PubMed Central

    Nadal Jimenez, Pol; Koch, Gudrun; Thompson, Jessica A.; Xavier, Karina B.; Cool, Robbert H.

    2012-01-01

    Summary: Cell-to-cell communication is a major process that allows bacteria to sense and coordinately react to the fluctuating conditions of the surrounding environment. In several pathogens, this process triggers the production of virulence factors and/or a switch in bacterial lifestyle that is a major determining factor in the outcome and severity of the infection. Understanding how bacteria control these signaling systems is crucial to the development of novel antimicrobial agents capable of reducing virulence while allowing the immune system of the host to clear bacterial infection, an approach likely to reduce the selective pressures for development of resistance. We provide here an up-to-date overview of the molecular basis and physiological implications of cell-to-cell signaling systems in Gram-negative bacteria, focusing on the well-studied bacterium Pseudomonas aeruginosa. All of the known cell-to-cell signaling systems in this bacterium are described, from the most-studied systems, i.e., N-acyl homoserine lactones (AHLs), the 4-quinolones, the global activator of antibiotic and cyanide synthesis (GAC), the cyclic di-GMP (c-di-GMP) and cyclic AMP (cAMP) systems, and the alarmones guanosine tetraphosphate (ppGpp) and guanosine pentaphosphate (pppGpp), to less-well-studied signaling molecules, including diketopiperazines, fatty acids (diffusible signal factor [DSF]-like factors), pyoverdine, and pyocyanin. This overview clearly illustrates that bacterial communication is far more complex than initially thought and delivers a clear distinction between signals that are quorum sensing dependent and those relying on alternative factors for their production. PMID:22390972

  7. Cellular defense processes regulated by pathogen-elicited receptor signaling

    NASA Astrophysics Data System (ADS)

    Wu, Rongcong; Goldsipe, Arthur; Schauer, David B.; Lauffenburger, Douglas A.

    2011-06-01

    Vertebrates are constantly threatened by the invasion of microorganisms and have evolved systems of immunity to eliminate infectious pathogens in the body. Initial sensing of microbial agents is mediated by the recognition of pathogens by means of molecular structures expressed uniquely by microbes of a given type. So-called 'Toll-like receptors' are expressed on host epithelial barrier cells play an essential role in the host defense against microbial pathogens by inducing cell responses (e.g., proliferation, death, cytokine secretion) via activation of intracellular signaling networks. As these networks, comprising multiple interconnecting dynamic pathways, represent highly complex multi-variate "information processing" systems, the signaling activities particularly critical for governing the host cell responses are poorly understood and not easily ascertained by a priori theoretical notions. We have developed over the past half-decade a "data-driven" computational modeling approach, on a 'cue-signal-response' combined experiment/computation paradigm, to elucidate key multi-variate signaling relationships governing the cell responses. In an example presented here, we study how a canonical set of six kinase pathways combine to effect microbial agent-induced apoptotic death of a macrophage cell line. One modeling technique, partial least-squares regression, yielded the following key insights: {a} signal combinations most strongly correlated to apoptotic death are orthogonal to those most strongly correlated with release of inflammatory cytokines; {b} the ratio of two key pathway activities is the most powerful predictor of microbe-induced macrophage apoptotic death; {c} the most influential time-window of this signaling activity ratio is surprisingly fast: less than one hour after microbe stimulation.

  8. Protein kinase C in the immune system: from signalling to chromatin regulation.

    PubMed

    Lim, Pek Siew; Sutton, Christopher Ray; Rao, Sudha

    2015-12-01

    Protein kinase C (PKC) form a key family of enzymes involved in signalling pathways that specifically phosphorylates substrates at serine/threonine residues. Phosphorylation by PKC is important in regulating a variety of cellular events such as cell proliferation and the regulation of gene expression. In the immune system, PKCs are involved in regulating signal transduction pathways important for both innate and adaptive immunity, ultimately resulting in the expression of key immune genes. PKCs act as mediators during immune cell signalling through the immunological synapse. PKCs are traditionally known to be cytoplasmic signal transducers and are well embedded in the signalling pathways of cells to mediate the cells' response to a stimulus from the plasma membrane to the nucleus. PKCs are also found to transduce signals within the nucleus, a process that is distinct from the cytoplasmic signalling pathway. There is now growing evidence suggesting that PKC can directly regulate gene expression programmes through a non-traditional role as nuclear kinases. In this review, we will focus on the role of PKCs as key cytoplasmic signal transducers in immune cell signalling, as well as its role in nuclear signal transduction. We will also highlight recent evidence for its newly discovered regulatory role in the nucleus as a chromatin-associated kinase.

  9. Extracellular signals and receptor-like kinases regulating ROP GTPases in plants

    PubMed Central

    Miyawaki, Kaori N.; Yang, Zhenbiao

    2014-01-01

    Rho-like GTPase from plants (ROPs) function as signaling switches that control a wide variety of cellular functions and behaviors including cell morphogenesis, cell division and cell differentiation. The Arabidopsis thaliana genome encodes 11 ROPs that form a distinct single subfamily contrarily to animal or fungal counterparts where multiple subfamilies of Rho GTPases exist. Since Rho proteins bind to their downstream effector proteins only in their GTP-bound “active” state, the activation of ROPs by upstream factor(s) is a critical step in the regulation of ROP signaling. Therefore, it is critical to examine the input signals that lead to the activation of ROPs. Recent findings showed that the plant hormone auxin is an important signal for the activation of ROPs during pavement cell morphogenesis as well as for other developmental processes. In contrast to auxin, another plant hormone, abscisic acid, negatively regulates ROP signaling. Calcium is another emerging signal in the regulation of ROP signaling. Several lines of evidence indicate that plasma membrane localized-receptor like kinases play a critical role in the transmission of the extracellular signals to intracellular ROP signaling pathways. This review focuses on how these signals impinge upon various direct regulators of ROPs to modulate various plant processes. PMID:25295042

  10. Transgenic hybrid aspen trees with increased gibberellin (GA) concentrations suggest that GA acts in parallel with FLOWERING LOCUS T2 to control shoot elongation.

    PubMed

    Eriksson, Maria E; Hoffman, Daniel; Kaduk, Mateusz; Mauriat, Mélanie; Moritz, Thomas

    2015-02-01

    Bioactive gibberellins (GAs) have been implicated in short day (SD)-induced growth cessation in Populus, because exogenous applications of bioactive GAs to hybrid aspens (Populus tremula × tremuloides) under SD conditions delay growth cessation. However, this effect diminishes with time, suggesting that plants may cease growth following exposure to SDs due to a reduction in sensitivity to GAs. In order to validate and further explore the role of GAs in growth cessation, we perturbed GA biosynthesis or signalling in hybrid aspen plants by overexpressing AtGA20ox1, AtGA2ox2 and PttGID1.3 (encoding GA biosynthesis enzymes and a GA receptor). We found trees with elevated concentrations of bioactive GA, due to overexpression of AtGA20ox1, continued to grow in SD conditions and were insensitive to the level of FLOWERING LOCUS T2 (FT2) expression. As transgenic plants overexpressing the PttGID1.3 GA receptor responded in a wild-type (WT) manner to SD conditions, this insensitivity did not result from limited receptor availability. As high concentrations of bioactive GA during SD conditions were sufficient to sustain shoot elongation growth in hybrid aspen trees, independent of FT2 expression levels, we conclude elongation growth in trees is regulated by both GA- and long day-responsive pathways, similar to the regulation of flowering in Arabidopsis thaliana.

  11. An A20/AN1-type zinc finger protein modulates gibberellins and abscisic acid contents and increases sensitivity to abiotic stress in rice (Oryza sativa).

    PubMed

    Zhang, Ye; Lan, Hongxia; Shao, Qiaolin; Wang, Ruqin; Chen, Hui; Tang, Haijuan; Zhang, Hongsheng; Huang, Ji

    2016-01-01

    The plant hormones gibberellins (GA) and abscisic acid (ABA) play important roles in plant development and stress responses. Here we report a novel A20/AN1-type zinc finger protein ZFP185 involved in GA and ABA signaling in the regulation of growth and stress response. ZFP185 was constitutively expressed in various rice tissues. Overexpression of ZFP185 in rice results in a semi-dwarfism phenotype, reduced cell size, and the decrease of endogenous GA3 content. By contrast, higher GA3 content was observed in RNAi plants. The application of exogenous GA3 can fully rescue the semi-dwarfism phenotype of ZFP185 overexpressing plants, suggesting the negative role of ZFP185 in GA biosynthesis. Besides GA, overexpression of ZFP185 decreased ABA content and expression of several ABA biosynthesis-related genes. Moreover, it was found that ZFP185, unlike previously known A20/AN1-type zinc finger genes, increases sensitivity to drought, cold, and salt stresses, implying the negative role of ZFP185 in stress tolerance. ZFP185 was localized in the cytoplasm and lacked transcriptional activation potential. Our study suggests that ZFP185 regulates plant growth and stress responses by affecting GA and ABA biosynthesis in rice.

  12. The Tec Kinase-Regulated Phosphoproteome Reveals a Mechanism for the Regulation of Inhibitory Signals in Murine Macrophages.

    PubMed

    Tampella, Giacomo; Kerns, Hannah M; Niu, Deqiang; Singh, Swati; Khim, Socheath; Bosch, Katherine A; Garrett, Meghan E; Moguche, Albanus; Evans, Erica; Browning, Beth; Jahan, Tahmina A; Nacht, Mariana; Wolf-Yadlin, Alejandro; Plebani, Alessandro; Hamerman, Jessica A; Rawlings, David J; James, Richard G

    2015-07-01

    Previous work has shown conflicting roles for Tec family kinases in regulation of TLR-dependent signaling in myeloid cells. In the present study, we performed a detailed investigation of the role of the Tec kinases Btk and Tec kinases in regulating TLR signaling in several types of primary murine macrophages. We demonstrate that primary resident peritoneal macrophages deficient for Btk and Tec secrete less proinflammatory cytokines in response to TLR stimulation than do wild-type cells. In contrast, we found that bone marrow-derived and thioglycollate-elicited peritoneal macrophages deficient for Btk and Tec secrete more proinflammatory cytokines than do wild-type cells. We then compared the phosphoproteome regulated by Tec kinases and LPS in primary peritoneal and bone marrow-derived macrophages. From this analysis we determined that Tec kinases regulate different signaling programs in these cell types. In additional studies using bone marrow-derived macrophages, we found that Tec and Btk promote phosphorylation events necessary for immunoreceptor-mediated inhibition of TLR signaling. Taken together, our results are consistent with a model where Tec kinases (Btk, Tec, Bmx) are required for TLR-dependent signaling in many types of myeloid cells. However, our data also support a cell type-specific TLR inhibitory role for Btk and Tec that is mediated by immunoreceptor activation and signaling via PI3K. PMID:26026062

  13. The Tec kinase-regulated phosphoproteome reveals a mechanism for the regulation of inhibitory signals in murine macrophages

    PubMed Central

    Tampella, Giacomo; Kerns, Hannah M.; Niu, Deqiang; Singh, Swati; Khim, Socheath; Bosch, Katherine A.; Garrett, Meghan E.; Moguche, Albanus; Evans, Erica; Browning, Beth; Jahan, Tahmina A.; Nacht, Mariana; Wolf-Yadlin, Alejandro; Plebani, Alessandro; Hamerman, Jessica A.; Rawlings, David J.; James, Richard G.

    2015-01-01

    Previous work has shown conflicting roles for Tec family kinases in regulation of Toll-like receptor (TLR)-dependent signalling in myeloid cells. In the present study, we performed a detailed investigation of the role of Btk and Tec kinases in regulating TLR signalling in several types of primary murine macrophages. We demonstrate that primary resident peritoneal macrophages deficient for Btk and Tec secrete less pro-inflammatory cytokines in response to TLR stimulation than wild type cells. In contrast, we found that bone marrow-derived and thioglycollate-elicited peritoneal macrophages deficient for Btk and Tec secrete more pro-inflammatory cytokines than wild type cells. We then compared the phosphoproteome regulated by Tec kinases and lipopolysaccharide in primary peritoneal and bone marrow derived macrophages. From this analysis we determined that Tec kinases regulate different signalling programs in these cell types. In additional studies using bone marrow-derived macrophages, we find that Tec and Btk promote phosphorylation events necessary for immunoreceptor-mediated inhibition of TLR signalling. Taken together, our results are consistent with a model where Tec kinases (Btk, Tec, Bmx) are required for TLR-dependent signalling in many types of myeloid cells. However, our data also support a cell type-specific TLR-inhibitory role for Btk and Tec that is mediated by immunoreceptor activation and signalling via PI3K. PMID:26026062

  14. Nitric Oxide Regulation of H-NOX Signaling Pathways in Bacteria.

    PubMed

    Nisbett, Lisa-Marie; Boon, Elizabeth M

    2016-09-01

    Nitric oxide (NO) is a freely diffusible, radical gas that has now been established as an integral signaling molecule in eukaryotes and bacteria. It has been demonstrated that NO signaling is initiated upon ligation to the heme iron of an H-NOX domain in mammals and in some bacteria. Bacterial H-NOX proteins have been found to interact with enzymes that participate in signaling pathways and regulate bacterial processes such as quorum sensing, biofilm formation, and symbiosis. Here, we review the biochemical characterization of these signaling pathways and, where available, describe how ligation of NO to H-NOX specifically regulates the activity of these pathways and their associated bacterial phenotypes.

  15. Mutations in Transcriptional Regulators Allow Selective Engineering of Signal Integration Logic

    PubMed Central

    2014-01-01

    ABSTRACT Bacterial cells monitor their environment by sensing a set of signals. Typically, these environmental signals affect promoter activities by altering the activity of transcription regulatory proteins. Promoters are often regulated by more than one regulatory protein, and in these cases the relevant signals are integrated by certain logic. In this work, we study how single amino acid substitutions in a regulatory protein (GalR) affect transcriptional regulation and signal integration logic at a set of engineered promoters. Our results suggest that point mutations in regulatory genes allow independent evolution of regulatory logic at different promoters. PMID:24961691

  16. Cellular Architecture Regulates Collective Calcium Signaling and Cell Contractility

    PubMed Central

    Hoying, James B.; Deymier, Pierre A.; Zhang, Donna D.; Wong, Pak Kin

    2016-01-01

    A key feature of multicellular systems is the ability of cells to function collectively in response to external stimuli. However, the mechanisms of intercellular cell signaling and their functional implications in diverse vascular structures are poorly understood. Using a combination of computational modeling and plasma lithography micropatterning, we investigate the roles of structural arrangement of endothelial cells in collective calcium signaling and cell contractility. Under histamine stimulation, endothelial cells in self-assembled and microengineered networks, but not individual cells and monolayers, exhibit calcium oscillations. Micropatterning, pharmacological inhibition, and computational modeling reveal that the calcium oscillation depends on the number of neighboring cells coupled via gap junctional intercellular communication, providing a mechanistic basis of the architecture-dependent calcium signaling. Furthermore, the calcium oscillation attenuates the histamine-induced cytoskeletal reorganization and cell contraction, resulting in differential cell responses in an architecture-dependent manner. Taken together, our results suggest that endothelial cells can sense and respond to chemical stimuli according to the vascular architecture via collective calcium signaling. PMID:27196735

  17. Role of Glycolytic Intermediates in Global Regulation and Signal Transduction. Final Report

    SciTech Connect

    Liao, J.C.

    2000-05-08

    The goal of this project is to determine the role of glycolytic intermediates in regulation of cell physiology. It is known that many glycolytic intermediates are involved in regulation of enzyme activities at the kinetic level. However, little is known regarding the role of these metabolites in global regulation and signal transduction. This project aims to investigate the role of glycolytic intermediates in the regulation of gene expression.

  18. Short-term and continuing stresses differentially interplay with multiple hormones to regulate plant survival and growth.

    PubMed

    Yang, Cangjing; Liu, Jingjing; Dong, Xinran; Cai, Zhenying; Tian, Weidong; Wang, Xuelu

    2014-05-01

    The stress phytohormone, abscisic acid (ABA), plays important roles in facilitating plants to survive and grow well under a wide range of stress conditions. Previous gene expression studies mainly focused on plant responses to short-term ABA treatment, but the effect of sustained ABA treatment and their difference are poorly studied. Here, we treated plants with ABA for 1 h or 9 d, and our genome-wide analysis indicated the differentially regulated genes under the two conditions were tremendously different. We analyzed other hormones' signaling changes by using their whole sets of known responsive genes as reporters and integrating feedback regulation of their biosynthesis. We found that, under short-term ABA treatment, signaling outputs of growth-promoting hormones, brassinosteroids and gibberellins, and a biotic stress-responsive hormone, jasmonic acid, were significantly inhibited, while auxin and ethylene signaling outputs were promoted. However, sustained ABA treatment repressed cytokinin and gibberellin signaling, but stimulated auxin signaling. Using several sets of hormone-related mutants, we found candidates in corresponding hormonal signaling pathways, including receptors or transcription regulators, are essential in responding to ABA. Our findings indicate interactions of ABA-dependent stress signals with hormones at different levels are involved in plants to survive under transient stress and to adapt to continuing stressful environments.

  19. PIF4 Integrates Multiple Environmental and Hormonal Signals for Plant Growth Regulation in Arabidopsis

    PubMed Central

    Choi, Hyunmo; Oh, Eunkyoo

    2016-01-01

    As sessile organisms, plants must be able to adapt to the environment. Plants respond to the environment by adjusting their growth and development, which is mediated by sophisticated signaling networks that integrate multiple environmental and endogenous signals. Recently, increasing evidence has shown that a bHLH transcription factor PIF4 plays a major role in the multiple signal integration for plant growth regulation. PIF4 is a positive regulator in cell elongation and its activity is regulated by various environmental signals, including light and temperature, and hormonal signals, including auxin, gibberellic acid and brassinosteroid, both transcriptionally and post-translationally. Moreover, recent studies have shown that the circadian clock and metabolic status regulate endogenous PIF4 level. The PIF4 transcription factor cooperatively regulates the target genes involved in cell elongation with hormone-regulated transcription factors. Therefore, PIF4 is a key integrator of multiple signaling pathways, which optimizes growth in the environment. This review will discuss our current understanding of the PIF4-mediated signaling networks that control plant growth. PMID:27432188

  20. PIF4 Integrates Multiple Environmental and Hormonal Signals for Plant Growth Regulation in Arabidopsis.

    PubMed

    Choi, Hyunmo; Oh, Eunkyoo

    2016-08-31

    As sessile organisms, plants must be able to adapt to the environment. Plants respond to the environment by adjusting their growth and development, which is mediated by sophisticated signaling networks that integrate multiple environmental and endogenous signals. Recently, increasing evidence has shown that a bHLH transcription factor PIF4 plays a major role in the multiple signal integration for plant growth regulation. PIF4 is a positive regulator in cell elongation and its activity is regulated by various environmental signals, including light and temperature, and hormonal signals, including auxin, gibberellic acid and brassinosteroid, both transcriptionally and post-translationally. Moreover, recent studies have shown that the circadian clock and metabolic status regulate endogenous PIF4 level. The PIF4 transcription factor cooperatively regulates the target genes involved in cell elongation with hormone-regulated transcription factors. Therefore, PIF4 is a key integrator of multiple signaling pathways, which optimizes growth in the environment. This review will discuss our current understanding of the PIF4-mediated signaling networks that control plant growth. PMID:27432188

  1. Breadfruit (Artocarpus altilis) gibberellin 2-oxidase genes in stem elongation and abiotic stress response.

    PubMed

    Zhou, Yuchan; Underhill, Steven J R

    2016-01-01

    Breadfruit (Artocarpus altilis) is a traditional staple tree crop in the Oceania. Susceptibility to windstorm damage is a primary constraint on breadfruit cultivation. Significant tree loss due to intense tropical windstorm in the past decades has driven a widespread interest in developing breadfruit with dwarf stature. Gibberellin (GA) is one of the most important determinants of plant height. GA 2-oxidase is a key enzyme regulating the flux of GA through deactivating biologically active GAs in plants. As a first step toward understanding the molecular mechanism of growth regulation in the species, we isolated a cohort of four full-length GA2-oxidase cDNAs, AaGA2ox1- AaGA2ox4 from breadfruit. Sequence analysis indicated the deduced proteins encoded by these AaGA2oxs clustered together under the C19 GA2ox group. Transcripts of AaGA2ox1, AaGA2ox2 and AaGA2ox3 were detected in all plant organs, but exhibited highest level in source leaves and stems. In contrast, transcript of AaGA2ox4 was predominantly expressed in roots and flowers, and displayed very low expression in leaves and stems. AaGA2ox1, AaGA2ox2 and AaGA2ox3, but not AaGA2ox4 were subjected to GA feedback regulation where application of exogenous GA3 or gibberellin biosynthesis inhibitor, paclobutrazol was shown to manipulate the first internode elongation of breadfruit. Treatments of drought or high salinity increased the expression of AaGA2ox1, AaGA2ox2 and AaGA2ox4. But AaGA2ox3 was down-regulated under salt stress. The function of AaGA2oxs is discussed with particular reference to their role in stem elongation and involvement in abiotic stress response in breadfruit.

  2. Breadfruit (Artocarpus altilis) gibberellin 2-oxidase genes in stem elongation and abiotic stress response.

    PubMed

    Zhou, Yuchan; Underhill, Steven J R

    2016-01-01

    Breadfruit (Artocarpus altilis) is a traditional staple tree crop in the Oceania. Susceptibility to windstorm damage is a primary constraint on breadfruit cultivation. Significant tree loss due to intense tropical windstorm in the past decades has driven a widespread interest in developing breadfruit with dwarf stature. Gibberellin (GA) is one of the most important determinants of plant height. GA 2-oxidase is a key enzyme regulating the flux of GA through deactivating biologically active GAs in plants. As a first step toward understanding the molecular mechanism of growth regulation in the species, we isolated a cohort of four full-length GA2-oxidase cDNAs, AaGA2ox1- AaGA2ox4 from breadfruit. Sequence analysis indicated the deduced proteins encoded by these AaGA2oxs clustered together under the C19 GA2ox group. Transcripts of AaGA2ox1, AaGA2ox2 and AaGA2ox3 were detected in all plant organs, but exhibited highest level in source leaves and stems. In contrast, transcript of AaGA2ox4 was predominantly expressed in roots and flowers, and displayed very low expression in leaves and stems. AaGA2ox1, AaGA2ox2 and AaGA2ox3, but not AaGA2ox4 were subjected to GA feedback regulation where application of exogenous GA3 or gibberellin biosynthesis inhibitor, paclobutrazol was shown to manipulate the first internode elongation of breadfruit. Treatments of drought or high salinity increased the expression of AaGA2ox1, AaGA2ox2 and AaGA2ox4. But AaGA2ox3 was down-regulated under salt stress. The function of AaGA2oxs is discussed with particular reference to their role in stem elongation and involvement in abiotic stress response in breadfruit. PMID:26646240

  3. Activation of the Extracellular Signal-Regulated Kinase Signaling Is Critical for Human Umbilical Cord Mesenchymal Stem Cell Osteogenic Differentiation

    PubMed Central

    Li, Chen-Shuang; Zheng, Zhong; Su, Xiao-Xia; Wang, Fei; Ling, Michelle; Zou, Min; Zhou, Hong

    2016-01-01

    Human umbilical cord mesenchymal stem cells (hUCMSCs) are recognized as candidate progenitor cells for bone regeneration. However, the mechanism of hUCMSC osteogenesis remains unclear. In this study, we revealed that mitogen-activated protein kinases (MAPKs) signaling is involved in hUCMSC osteogenic differentiation in vitro. Particularly, the activation of c-Jun N-terminal kinases (JNK) and p38 signaling pathways maintained a consistent level in hUCMSCs through the entire 21-day osteogenic differentiation period. At the same time, the activation of extracellular signal-regulated kinases (ERK) signaling significantly increased from day 5, peaked at day 9, and declined thereafter. Moreover, gene profiling of osteogenic markers, alkaline phosphatase (ALP) activity measurement, and alizarin red staining demonstrated that the application of U0126, a specific inhibitor for ERK activation, completely prohibited hUCMSC osteogenic differentiation. However, when U0126 was removed from the culture at day 9, ERK activation and osteogenic differentiation of hUCMSCs were partially recovered. Together, these findings demonstrate that the activation of ERK signaling is essential for hUCMSC osteogenic differentiation, which points out the significance of ERK signaling pathway to regulate the osteogenic differentiation of hUCMSCs as an alternative cell source for bone tissue engineering. PMID:26989682

  4. The common molecular players in plant hormone crosstalk and signaling.

    PubMed

    Ohri, Puja; Bhardwaj, Renu; Bali, Shagun; Kaur, Ravinderjit; Jasrotia, Shivam; Khajuria, Anjali; Parihar, Ripu D

    2015-01-01

    Plant growth and development is under the control of mutual interactions among plant hormones. The five classical categories of plant hormones include auxins, cytokinins, gibberellins, abscisic acid and ethylene. Additionally, newer classes of plant hormones have been recognized like brassinosteroids, jasmonic acid, salicylic acid and polyamines. These hormones play significant roles in regulating the plant growth and development. Various receptors and key signaling components of these hormones have been studied and identified. At genetic level, crosstalk among the various plant hormones is found to be antagonistic or synergistic. In addition, components of signaling pathway of one plant hormone interact with the signaling components of other hormone. Thus, an attempt has been made to review the literature regarding the role of plant hormones in plant physiology and the common molecular players in their signaling and crosstalk.

  5. ROP GTPase Signaling in The Hormonal Regulation of Plant Growth

    SciTech Connect

    Yang, Zhenbiao

    2013-05-24

    I secured funding from the DOE to investigate the effect of auxin signaling on ROP9. This was based on our preliminary data showing that ROP9 is activated by auxin. However, we were unable to show that rop9 knockout mutants have altered sensitivity to auxin. Instead, we found that auxin activates both ROP2 and ROP6, and relevant mutants exhibit reduced sensitivity to auxin. Therefore we used the fund to strengthen our research on ROP2 and ROP6. My laboratory made major advancements in the recent years in the understanding of the effect of auxin signaling on ROP2 and ROP6. This is clearly exemplified by the numerous publications acknowledging fund DE-FG0204ER15555 as the source of funding.

  6. Dendritic Spines as Tunable Regulators of Synaptic Signals

    PubMed Central

    Tønnesen, Jan; Nägerl, U. Valentin

    2016-01-01

    Neurons are perpetually receiving vast amounts of information in the form of synaptic input from surrounding cells. The majority of input occurs at thousands of dendritic spines, which mediate excitatory synaptic transmission in the brain, and is integrated by the dendritic and somatic compartments of the postsynaptic neuron. The functional role of dendritic spines in shaping biochemical and electrical signals transmitted via synapses has long been intensely studied. Yet, many basic questions remain unanswered, in particular regarding the impact of their nanoscale morphology on electrical signals. Here, we review our current understanding of the structure and function relationship of dendritic spines, focusing on the controversy of electrical compartmentalization and the potential role of spine structural changes in synaptic plasticity. PMID:27340393

  7. Spatially coordinated kinase signaling regulates local axon degeneration.

    PubMed

    Chen, Mark; Maloney, Janice A; Kallop, Dara Y; Atwal, Jasvinder K; Tam, Stephen J; Baer, Kristin; Kissel, Holger; Kaminker, Joshua S; Lewcock, Joseph W; Weimer, Robby M; Watts, Ryan J

    2012-09-26

    In addition to being a hallmark of neurodegenerative disease, axon degeneration is used during development of the nervous system to prune unwanted connections. In development, axon degeneration is tightly regulated both temporally and spatially. Here, we provide evidence that degeneration cues are transduced through various kinase pathways functioning in spatially distinct compartments to regulate axon degeneration. Intriguingly, glycogen synthase kinase-3 (GSK3) acts centrally, likely modulating gene expression in the cell body to regulate distally restricted axon degeneration. Through a combination of genetic and pharmacological manipulations, including the generation of an analog-sensitive kinase allele mutant mouse for GSK3β, we show that the β isoform of GSK3, not the α isoform, is essential for developmental axon pruning in vitro and in vivo. Additionally, we identify the dleu2/mir15a/16-1 cluster, previously characterized as a regulator of B-cell proliferation, and the transcription factor tbx6, as likely downstream effectors of GSK3β in axon degeneration.

  8. A self-regulating biomolecular comparator for processing oscillatory signals

    PubMed Central

    Agrawal, Deepak K.; Franco, Elisa; Schulman, Rebecca

    2015-01-01

    While many cellular processes are driven by biomolecular oscillators, precise control of a downstream on/off process by a biochemical oscillator signal can be difficult: over an oscillator's period, its output signal varies continuously between its amplitude limits and spends a significant fraction of the time at intermediate values between these limits. Further, the oscillator's output is often noisy, with particularly large variations in the amplitude. In electronic systems, an oscillating signal is generally processed by a downstream device such as a comparator that converts a potentially noisy oscillatory input into a square wave output that is predominantly in one of two well-defined on and off states. The comparator's output then controls downstream processes. We describe a method for constructing a synthetic biochemical device that likewise produces a square-wave-type biomolecular output for a variety of oscillatory inputs. The method relies on a separation of time scales between the slow rate of production of an oscillatory signal molecule and the fast rates of intermolecular binding and conformational changes. We show how to control the characteristics of the output by varying the concentrations of the species and the reaction rates. We then use this control to show how our approach could be applied to process different in vitro and in vivo biomolecular oscillators, including the p53-Mdm2 transcriptional oscillator and two types of in vitro transcriptional oscillators. These results demonstrate how modular biomolecular circuits could, in principle, be combined to build complex dynamical systems. The simplicity of our approach also suggests that natural molecular circuits may process some biomolecular oscillator outputs before they are applied downstream. PMID:26378119

  9. Notch signaling regulates venous arterialization during zebrafish fin regeneration

    PubMed Central

    Kametani, Yoshiko; Chi, Neil C.; Stainier, Didier Y.R.; Takada, Shinji

    2015-01-01

    In order to protect against blood pressure, a mature artery is supported by mural cells which include vascular smooth muscle cells and pericytes. To regenerate a functional vascular system, arteries should be properly reconstructed with mural cells although the mechanisms underlying artery reconstruction remain unclear. In this study, we examined the process of artery reconstruction during regeneration of the zebrafish caudal fin as a model to study arterial formation in an adult setting. During fin regeneration, the arteries and veins form a net-like vasculature called the vascular plexus, and this plexus undergoes remodeling to form a new artery and 2 flanking veins. We found that the new vascular plexus originates mainly from venous cells in the stump but very rarely from the arterial cells. Interestingly, these vein-derived cells contributed to the reconstructed arteries. This arterialization was dependent on Notch signaling, and further analysis revealed that Notch signaling was required for the initiation of arterial gene expression. In contrast, venous remodeling did not require Notch signaling. These results provide new insights towards understanding mechanisms of vascular regeneration and illustrate the utility of the adult zebrafish fin to study this process. PMID:25810153

  10. Danger signalling during cancer cell death: origins, plasticity and regulation

    PubMed Central

    Garg, A D; Martin, S; Golab, J; Agostinis, P

    2014-01-01

    Accumulating data indicates that following anti-cancer treatments, cancer cell death can be perceived as immunogenic or tolerogenic by the immune system. The former is made possible due to the ability of certain anti-cancer modalities to induce immunogenic cell death (ICD) that is associated with the emission of damage-associated molecular patterns (DAMPs), which assist in unlocking a sequence of events leading to the development of anti-tumour immunity. In response to ICD inducers, activation of endoplasmic reticulum (ER) stress has been identified to be indispensable to confer the immunogenic character of cancer cell death, due to its ability to coordinate the danger signalling pathways responsible for the trafficking of vital DAMPs and subsequent anti-cancer immune responses. However, in recent times, certain processes apart from ER stress have emerged (e.g., autophagy and possibly viral response-like signature), which have the ability to influence danger signalling. In this review, we discuss the molecular nature, emerging plasticity in the danger signalling mechanisms and immunological impact of known DAMPs in the context of immunogenic cancer cell death. We also discuss key effector mechanisms modulating the interface between dying cancer cells and the immune cells, which we believe are crucial for the therapeutic relevance of ICD in the context of human cancers, and also discuss the influence of experimental conditions and animal models on these. PMID:23686135

  11. Dosage-dependent hedgehog signals integrated with Wnt/β-catenin signaling regulate external genitalia formation as an appendicular program

    PubMed Central

    Miyagawa, Shinichi; Moon, Anne; Haraguchi, Ryuma; Inoue, Chie; Harada, Masayo; Nakahara, Chiaki; Suzuki, Kentaro; Matsumaru, Daisuke; Kaneko, Takehito; Matsuo, Isao; Yang, Lei; Taketo, Makoto M.; Iguchi, Taisen; Evans, Sylvia M.; Yamada, Gen

    2009-01-01

    Embryonic appendicular structures, such as the limb buds and the developing external genitalia, are suitable models with which to analyze the reciprocal interactions of growth factors in the regulation of outgrowth. Although several studies have evaluated the individual functions of different growth factors in appendicular growth, the coordinated function and integration of input from multiple signaling cascades is poorly understood. We demonstrate that a novel signaling cascade governs formation of the embryonic external genitalia [genital tubercle (GT)]. We show that the dosage of Shh signal is tightly associated with subsequent levels of Wnt/β-catenin activity and the extent of external genitalia outgrowth. In Shh-null mouse embryos, both expression of Wnt ligands and Wnt/β-catenin signaling activity are downregulated. β-catenin gain-of-function mutation rescues defective GT outgrowth and Fgf8 expression in Shh-null embryos. These data indicate that Wnt/β-catenin signaling in the distal urethral epithelium acts downstream of Shh signaling during GT outgrowth. The current data also suggest that Wnt/β-catenin regulates Fgf8 expression via Lef/Tcf binding sites in a 3′ conserved enhancer. Fgf8 induces phosphorylation of Erk1/2 and cell proliferation in the GT mesenchyme in vitro, yet Fgf4/8 compound-mutant phenotypes indicate dispensable functions of Fgf4/8 and the possibility of redundancy among multiple Fgfs in GT development. Our results provide new insights into the integration of growth factor signaling in the appendicular developmental programs that regulate external genitalia development. PMID:19906864

  12. Hedgehog Signaling Regulates the Ciliary Transport of Odorant Receptors in Drosophila.

    PubMed

    Sanchez, Gonzalo M; Alkhori, Liza; Hatano, Eduardo; Schultz, Sebastian W; Kuzhandaivel, Anujaianthi; Jafari, Shadi; Granseth, Björn; Alenius, Mattias

    2016-01-26

    Hedgehog (Hh) signaling is a key regulatory pathway during development and also has a functional role in mature neurons. Here, we show that Hh signaling regulates the odor response in adult Drosophila olfactory sensory neurons (OSNs). We demonstrate that this is achieved by regulating odorant receptor (OR) transport to and within the primary cilium in OSN neurons. Regulation relies on ciliary localization of the Hh signal transducer Smoothened (Smo). We further demonstrate that the Hh- and Smo-dependent regulation of the kinesin-like protein Cos2 acts in parallel to the intraflagellar transport system (IFT) to localize ORs within the cilium compartment. These findings expand our knowledge of Hh signaling to encompass chemosensory modulation and receptor trafficking.

  13. Mechanotransduction and the regulation of mTORC1 signaling in skeletal muscle.

    PubMed

    Hornberger, Troy A

    2011-09-01

    Mechanical stimuli play a major role in the regulation of skeletal muscle mass, and the maintenance of muscle mass contributes significantly to disease prevention and issues associated with the quality of life. Although the link between mechanical signals and the regulation of muscle mass has been recognized for decades, the mechanisms involved in converting mechanical information into the molecular events that control this process remain poorly defined. Nevertheless, our knowledge of these mechanisms is advancing and recent studies have revealed that signaling through a protein kinase called the mammalian target of rapamycin (mTOR) plays a central role in this event. In this review we will, (1) discuss the evidence which implicates mTOR in the mechanical regulation of skeletal muscle mass, (2) provide an overview of the mechanisms through which signaling by mTOR can be regulated, and (3) summarize our current knowledge of the potential mechanisms involved in the mechanical activation of mTOR signaling. PMID:21621634

  14. The ubiquitin–proteasome system and signal transduction pathways regulating Epithelial Mesenchymal transition of cancer

    PubMed Central

    2012-01-01

    Epithelial to Mesenchymal transition (EMT) in cancer, a process permitting cancer cells to become mobile and metastatic, has a signaling hardwire forged from development. Multiple signaling pathways that regulate carcinogenesis enabling characteristics in neoplastic cells such as proliferation, resistance to apoptosis and angiogenesis are also the main players in EMT. These pathways, as almost all cellular processes, are in their turn regulated by ubiquitination and the Ubiquitin-Proteasome System (UPS). Ubiquitination is the covalent link of target proteins with the small protein ubiquitin and serves as a signal to target protein degradation by the proteasome or to other outcomes such as endocytosis, degradation by the lysosome or specification of cellular localization. This paper reviews signal transduction pathways regulating EMT and being regulated by ubiquitination. PMID:22827778

  15. Mechanotransduction and the regulation of mTORC1 signaling in skeletal muscle.

    PubMed

    Hornberger, Troy A

    2011-09-01

    Mechanical stimuli play a major role in the regulation of skeletal muscle mass, and the maintenance of muscle mass contributes significantly to disease prevention and issues associated with the quality of life. Although the link between mechanical signals and the regulation of muscle mass has been recognized for decades, the mechanisms involved in converting mechanical information into the molecular events that control this process remain poorly defined. Nevertheless, our knowledge of these mechanisms is advancing and recent studies have revealed that signaling through a protein kinase called the mammalian target of rapamycin (mTOR) plays a central role in this event. In this review we will, (1) discuss the evidence which implicates mTOR in the mechanical regulation of skeletal muscle mass, (2) provide an overview of the mechanisms through which signaling by mTOR can be regulated, and (3) summarize our current knowledge of the potential mechanisms involved in the mechanical activation of mTOR signaling.

  16. Oxidative signaling in seed germination and dormancy

    PubMed Central

    El-Maarouf-Bouteau, Hayat

    2008-01-01

    Reactive Oxygen Species (ROS) play a key role in various events of seed life. In orthodox seeds, ROS are produced from embryogenesis to germination, i.e., in metabolically active cells, but also in quiescent dry tissues during after ripening and storage, owing various mechanisms depending on the seed moisture content. Although ROS have been up to now widely considered as detrimental to seeds, recent advances in plant physiology signaling pathways has lead to reconsider their role. ROS accumulation can therefore be also beneficial for seed germination and seedling growth by regulating cellular growth, ensuring a protection against pathogens or controlling the cell redox status. ROS probably also act as a positive signal in seed dormancy release. They interact with abscisic acid and gibberellins transduction pathway and are likely to control numerous transcription factors and properties of specific protein through their carbonylation. PMID:19513212

  17. Activation of Smurf E3 Ligase Promoted by Smoothened Regulates Hedgehog Signaling through Targeting Patched Turnover

    PubMed Central

    Zheng, Xiudeng; Chen, Zhenping; Sun, Liwei; Wang, Hailong; Zhu, Yuanxiang; Zhang, Jing; Yang, Shuyan; Lu, Yi; Sun, Qinmiao; Tao, Yi; Liu, Feng; Zhao, Yun; Chen, Dahua

    2013-01-01

    Hedgehog signaling plays conserved roles in controlling embryonic development; its dysregulation has been implicated in many human diseases including cancers. Hedgehog signaling has an unusual reception system consisting of two transmembrane proteins, Patched receptor and Smoothened signal transducer. Although activation of Smoothened and its downstream signal transduction have been intensively studied, less is known about how Patched receptor is regulated, and particularly how this regulation contributes to appropriate Hedgehog signal transduction. Here we identified a novel role of Smurf E3 ligase in regulating Hedgehog signaling by controlling Patched ubiquitination and turnover. Moreover, we showed that Smurf-mediated Patched ubiquitination depends on Smo activity in wing discs. Mechanistically, we found that Smo interacts with Smurf and promotes it to mediate Patched ubiquitination by targeting the K1261 site in Ptc. The further mathematic modeling analysis reveals that a bidirectional control of activation of Smo involving Smurf and Patched is important for signal-receiving cells to precisely interpret external signals, thereby maintaining Hedgehog signaling reliability. Finally, our data revealed an evolutionarily conserved role of Smurf proteins in controlling Hh signaling by targeting Ptc during development. PMID:24302888

  18. Participation of signaling cascades in the regulation of erythropoiesis under conditions of cytostatic treatment.

    PubMed

    Dygai, A M; Zhdanov, V V; Miroshnichenko, L A; Udut, E V; Zyuz'kov, G N; Simanina, E V; Chaikovskii, A V; Stavrova, L A; Trofimova, E S; Burmina, Ya V

    2015-01-01

    We studied the role of signaling pathways in the regulation of erythropoiesis against the background of myelosuppression caused by administration of 5-fluorouracil. The important role of cyclic AMP in the maturation of erythroid progenitors after cytostatic treatment was demonstrated. The secretory activity of myelokaryocytes during the period of erythroid hemopoiesis recovery is mainly regulated via the p38 MAPK signaling pathway; non-erythropoietin factors are involved in the formation of erythropoietic activity of adherent cells of the microenvironment.

  19. Participation of signaling cascades in the regulation of erythropoiesis under conditions of cytostatic treatment.

    PubMed

    Dygai, A M; Zhdanov, V V; Miroshnichenko, L A; Udut, E V; Zyuz'kov, G N; Simanina, E V; Chaikovskii, A V; Stavrova, L A; Trofimova, E S; Burmina, Ya V

    2015-01-01

    We studied the role of signaling pathways in the regulation of erythropoiesis against the background of myelosuppression caused by administration of 5-fluorouracil. The important role of cyclic AMP in the maturation of erythroid progenitors after cytostatic treatment was demonstrated. The secretory activity of myelokaryocytes during the period of erythroid hemopoiesis recovery is mainly regulated via the p38 MAPK signaling pathway; non-erythropoietin factors are involved in the formation of erythropoietic activity of adherent cells of the microenvironment. PMID:25578863

  20. Receptor tyrosine kinase signaling regulates replication of the peste des petits ruminants virus.

    PubMed

    Chaudhary, K; Chaubey, K K; Singh, S V; Kumar, N

    2015-03-01

    In this study, we found out that blocking the receptor tyrosine kinase (RTK) signaling in Vero cells by tryphostin AG879 impairs the in vitro replication of the peste des petits ruminants virus (PPRV). A reduced virus replication in Trk1-knockdown (siRNA) Vero cells confirmed the essential role of RTK in the virus replication, in particular a specific regulation of viral RNA synthesis. These data represent the first evidence that the RTK signaling regulates replication of a morbillivirus. PMID:25790054

  1. Leptin signaling in astrocytes regulates hypothalamic neuronal circuits and feeding.

    PubMed

    Kim, Jae Geun; Suyama, Shigetomo; Koch, Marco; Jin, Sungho; Argente-Arizon, Pilar; Argente, Jesús; Liu, Zhong-Wu; Zimmer, Marcelo R; Jeong, Jin Kwon; Szigeti-Buck, Klara; Gao, Yuanqing; Garcia-Caceres, Cristina; Yi, Chun-Xia; Salmaso, Natalina; Vaccarino, Flora M; Chowen, Julie; Diano, Sabrina; Dietrich, Marcelo O; Tschöp, Matthias H; Horvath, Tamas L

    2014-07-01

    We found that leptin receptors were expressed in hypothalamic astrocytes and that their conditional deletion led to altered glial morphology and synaptic inputs onto hypothalamic neurons involved in feeding control. Leptin-regulated feeding was diminished, whereas feeding after fasting or ghrelin administration was elevated in mice with astrocyte-specific leptin receptor deficiency. These data reveal an active role of glial cells in hypothalamic synaptic remodeling and control of feeding by leptin.

  2. Spatiotemporal regulation of early lipolytic signaling in adipocytes.

    PubMed

    Martin, Sally; Okano, Satomi; Kistler, Carol; Fernandez-Rojo, Manuel A; Hill, Michelle M; Parton, Robert G

    2009-11-13

    Hormone-sensitive lipase (HSL) is a key enzyme regulating the acute activation of lipolysis. HSL functionality is controlled by multiple phosphorylation events, which regulate its association with the surface of lipid droplets (LDs). We determined the progression and stability of HSL phosphorylation on individual serine residues both spatially and temporally in adipocytes using phospho-specific antibodies. Within seconds of beta-adrenergic receptor activation, HSL was phosphorylated on Ser-660, the phosphorylated form appearing in the peripheral cytosol prior to rapid translocation to, and stable association with, LDs. In contrast, phosphorylation of HSL on Ser-563 was delayed, the phosphorylated protein was predominantly detected on LDs, and mutation of the Ser-659/Ser-660 site to Ala significantly reduced subsequent phosphorylation on Ser-563. Phosphorylation of HSL on Ser-565 was observed in control cells; the phosphorylated protein was translocated to LDs with similar kinetics to total HSL, and the degree of phosphorylation was inversely related to phospho-HSL(Ser-563). These results describe the remarkably rapid, sequential phosphorylation of specific serine residues in HSL at spatially distinct intracellular locales, providing new insight into the complex regulation of lipolysis. PMID:19755426

  3. Reconstruction of Signaling Networks Regulating Fungal Morphogenesis by Transcriptomics▿ †

    PubMed Central

    Meyer, Vera; Arentshorst, Mark; Flitter, Simon J.; Nitsche, Benjamin M.; Kwon, Min Jin; Reynaga-Peña, Cristina G.; Bartnicki-Garcia, Salomon; van den Hondel, Cees A. M. J. J.; Ram, Arthur F. J.

    2009-01-01

    Coordinated control of hyphal elongation and branching is essential for sustaining mycelial growth of filamentous fungi. In order to study the molecular machinery ensuring polarity control in the industrial fungus Aspergillus niger, we took advantage of the temperature-sensitive (ts) apical-branching ramosa-1 mutant. We show here that this strain serves as an excellent model system to study critical steps of polar growth control during mycelial development and report for the first time a transcriptomic fingerprint of apical branching for a filamentous fungus. This fingerprint indicates that several signal transduction pathways, including TORC2, phospholipid, calcium, and cell wall integrity signaling, concertedly act to control apical branching. We furthermore identified the genetic locus affected in the ramosa-1 mutant by complementation of the ts phenotype. Sequence analyses demonstrated that a single amino acid exchange in the RmsA protein is responsible for induced apical branching of the ramosa-1 mutant. Deletion experiments showed that the corresponding rmsA gene is essential for the growth of A. niger, and complementation analyses with Saccharomyces cerevisiae evidenced that RmsA serves as a functional equivalent of the TORC2 component Avo1p. TORC2 signaling is required for actin polarization and cell wall integrity in S. cerevisiae. Congruently, our microscopic investigations showed that polarized actin organization and chitin deposition are disturbed in the ramosa-1 mutant. The integration of the transcriptomic, genetic, and phenotypic data obtained in this study allowed us to reconstruct a model for cellular events involved in apical branching. PMID:19749177

  4. Pre-LTP requires extracellular signal-regulated kinase in the ACC

    PubMed Central

    Yamanaka, Manabu; Tian, Zhen; Darvish-Ghane, Soroush

    2016-01-01

    The extracellular signal-regulated kinase is an important protein kinase for cortical plasticity. Long-term potentiation in the anterior cingulate cortex is believed to play important roles in chronic pain, fear, and anxiety. Previous studies of extracellular signal-regulated kinase are mainly focused on postsynaptic form of long-term potentiation (post-long-term potentiation). Little is known about the relationship between extracellular signal-regulated kinase and presynaptic long-term potentiation (pre-long-term potentiation) in cortical synapses. In this study, we examined whether pre-long-term potentiation in the anterior cingulate cortex requires the activation of presynaptic extracellular signal-regulated kinase. We found that p42/p44 mitogen-activated protein kinase inhibitors, PD98059 and U0126, suppressed the induction of pre-long-term potentiation. By contrast, these inhibitors did not affect the maintenance of pre-long-term potentiation. Using pharmacological inhibitors, we found that pre-long-term potentiation recorded for 1 h did not require transcriptional or translational processes. Our results strongly indicate that the activation of presynaptic extracellular signal-regulated kinase is required for the induction of pre-long-term potentiation, and this involvement may explain the contribution of extracellular signal-regulated kinase to mood disorders. PMID:27178245

  5. Gibberellins in Penicillium strains: Challenges for endophyte-plant host interactions under salinity stress.

    PubMed

    Leitão, Ana Lúcia; Enguita, Francisco J

    2016-02-01

    The genus Penicillium is one of the most versatile "mycofactories", comprising some species able to produce gibberellins, bioactive compounds that can modulate plant growth and development. Although plants have the ability to synthesize gibberellins, their levels are lower when plants are under salinity stress. It has been recognized that detrimental abiotic conditions, such as saline stress, have negative effects on plants, being the availability of bioactive gibberellins a critical factor for their growth under this conditions. This review summarizes the interplay existing between endophytic Penicillium strains and plant host interactions, with focus on bioactive gibberellins production as a fungal response that allows plants to overcome salinity stress. PMID:26805614

  6. Gibberellins in Penicillium strains: Challenges for endophyte-plant host interactions under salinity stress.

    PubMed

    Leitão, Ana Lúcia; Enguita, Francisco J

    2016-02-01

    The genus Penicillium is one of the most versatile "mycofactories", comprising some species able to produce gibberellins, bioactive compounds that can modulate plant growth and development. Although plants have the ability to synthesize gibberellins, their levels are lower when plants are under salinity stress. It has been recognized that detrimental abiotic conditions, such as saline stress, have negative effects on plants, being the availability of bioactive gibberellins a critical factor for their growth under this conditions. This review summarizes the interplay existing between endophytic Penicillium strains and plant host interactions, with focus on bioactive gibberellins production as a fungal response that allows plants to overcome salinity stress.

  7. Intervertebral Disc Development Is Regulated by Wnt/β-catenin Signaling

    PubMed Central

    Kondo, Naoki; Yuasa, Takahito; Shimono, Kengo; Tung, Weien; Okabe, Takahiro; Yasuhara, Rika; Pacifici, Maurizio; Zhang, Yejia; Iwamoto, Masahiro; Enomoto-Iwamoto, Motomi

    2010-01-01

    Study Design Histological analysis of intervertebral disc (IVD) in three types of transgenic mice. Objectives To investigate the role of Wnt/β-catenin signaling in regulation of IVD development and organization. Summary of Background Data β-catenin dependent Wnt signaling is one of the central regulators in cartilage development during limb skeletal formation. Little is known, however, about the physiological relevance of this signaling pathway to IVD development and organization. Methods Temporal-spatial distribution of Wnt/β-catenin signaling activity was examined in IVD using Wnt/β-catenin reporter (TOPGAL) mice. The structural changes in the mouse IVD components such as the nucleus pulposus (NP), endplate (EP), annulus fibrosus (AF), and the growth plate (GP) of the vertebral body were analyzed following transient activation of Wnt/β-catenin signaling or deletion of β-catenin in the mice. Results Activity of Wnt/β-catenin signaling was high in EP, AF and GP in the embryonic stages and decreased at the postnatal stage; it was undetectable in the embryonic NP but up-regulated after birth. The transient activation of Wnt/β-catenin signaling caused severe deterioration of the GP and the AF, whereas deficiency of β-catenin accelerated bone formation in between EP and GP. Conclusion The findings in this study suggest that proper regulation of Wnt/β-catenin signaling is required for development and organization of IVD. PMID:21270710

  8. Bone morphogenetic protein (BMP) signaling regulates mitotic checkpoint protein levels in human breast cancer cells.

    PubMed

    Yan, Hualong; Zhu, Songcheng; Song, Chenlin; Liu, Naifa; Kang, Jiuhong

    2012-04-01

    Aberrant expression of mitotic checkpoint genes compromises mitotic checkpoint, leads to chromosome instability and tumorigenesis. However, the cell signals that control mitotic checkpoint gene expression have not been reported so far. In the present study we show that, in human breast cancer cells, chemical inhibition of Bone morphogenetic proteins (BMPs), but not Transforming Growth Factor-β (TGF-β), abrogates the mitotic arrest induced by nocodazole. Protein expression analysis reveals that inhibition of BMP signaling dramatically down regulates protein levels of mitotic checkpoint components BUB3, Hec1, TTK and MAD2, but inhibition of TGF-β has relatively minor effect on the expression of these proteins. Activation of BMP signaling specifically up regulates BUB3, and activation of Activin A signaling globally down regulates these proteins level. Furthermore, overexpressing MAD2, TTK, BUB3 or Hec1 significantly rescues the mitotic arrest defect caused by BMP inhibition. Our results demonstrated for the first time that TGF-β family cytokines are cellular signals regulating mitotic checkpoint and perturbations in intrinsic BMP signaling could lead to suppression of mitotic checkpoint signaling by downregulating key checkpoint proteins. The results suggest a possible mechanism by which dysregulation of TGF-β signaling causes mitotic checkpoint defects and drives tumorigenesis. The finding also provides a potential and more specific strategy for cancer prevention by targeting BMP and mitotic checkpoint connection. PMID:22234345

  9. Characterization and Regulation of Suppressor of Cytokine Signaling (SOCS) Genes in Yellow Perch (Perca flavescens)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The suppressor of cytokine signaling (SOCS) proteins are a family of intracellular proteins that are centrally involved with vertebrate growth, development, and immunity via their effects as negative feedback regulators of cytokine (and hormone) signaling. A number of SOCS genes have been recently ...

  10. Notch signaling controls chondrocyte hypertrophy via indirect regulation of Sox9

    PubMed Central

    Kohn, Anat; Rutkowski, Timothy P; Liu, Zhaoyang; Mirando, Anthony J; Zuscik, Michael J; O’Keefe, Regis J; Hilton, Matthew J

    2015-01-01

    RBPjk-dependent Notch signaling regulates both the onset of chondrocyte hypertrophy and the progression to terminal chondrocyte maturation during endochondral ossification. It has been suggested that Notch signaling can regulate Sox9 transcription, although how this occurs at the molecular level in chondrocytes and whether this transcriptional regulation mediates Notch control of chondrocyte hypertrophy and cartilage development is unknown or controversial. Here we have provided conclusive genetic evidence linking RBPjk-dependent Notch signaling to the regulation of Sox9 expression and chondrocyte hypertrophy by examining tissue-specific Rbpjk mutant (Prx1Cre;Rbpjkf/f), Rbpjk mutant/Sox9 haploinsufficient (Prx1Cre;Rbpjkf/f;Sox9f/+), and control embryos for alterations in SOX9 expression and chondrocyte hypertrophy during cartilage development. These studies demonstrate that Notch signaling regulates the onset of chondrocyte maturation in a SOX9-dependent manner, while Notch-mediated regulation of terminal chondrocyte maturation likely functions independently of SOX9. Furthermore, our in vitro molecular analyses of the Sox9 promoter and Notch-mediated regulation of Sox9 gene expression in chondrogenic cells identified the ability of Notch to induce Sox9 expression directly in the acute setting, but suppresses Sox9 transcription with prolonged Notch signaling that requires protein synthesis of secondary effectors. PMID:26558140

  11. Gibberellin-Stimulation of Rhizome Elongation and Differential GA-Responsive Proteomic Changes in Two Grass Species

    PubMed Central

    Ma, Xiqing; Huang, Bingru

    2016-01-01

    Rapid and extensive rhizome development is a desirable trait for perennial grass growth and adaptation to environmental stresses. The objective of this study was to determine proteomic changes and associated metabolic pathways of gibberellin (GA) -regulation of rhizome elongation in two perennial grass species differing in rhizome development. Plants of a short-rhizome bunch-type tall fescue (TF; Festuca arundinacea; ‘BR’) and an extensive rhizomatous Kentucky bluegrass (KB; Poa pratensis; ‘Baron’) were treated with 10 μM GA3 in hydroponic culture in growth chambers. The average rhizome length in KB was significantly longer than that in TF regardless of GA3 treatment, and increased significantly with GA3 treatment, to a greater extent than that in TF. Comparative proteomic analysis using two-dimensional electrophoresis and mass spectrometry was performed to further investigate proteins and associated metabolic pathways imparting increased rhizome elongation by GA. A total of 37 and 38 differentially expressed proteins in response to GA3 treatment were identified in TF and KB plants, respectively, which were mainly involved in photosynthesis, energy and amino acid metabolism, protein synthesis, defense and cell development processes. Accelerated rhizome elongation in KB by GA could be mainly associated with the increased abundance of proteins involved in energy metabolism (glyceraldehyde-3-phosphate dehydrogenase, fructose-bisphosphate aldolase, and ATP synthase), amino acid metabolism (S-adenosylmethionine and adenosylhomocysteinase), protein synthesis (HSP90, elongation factor Tu and eukaryotic translation initiation factor 5A), cell-wall development (cell dividion cycle protein, alpha tubulin-2A and actin), and signal transduction (calreticulin). These proteins could be used as candidate proteins for further analysis of molecular mechanisms controlling rhizome growth. PMID:27446135

  12. Gibberellin-Stimulation of Rhizome Elongation and Differential GA-Responsive Proteomic Changes in Two Grass Species.

    PubMed

    Ma, Xiqing; Huang, Bingru

    2016-01-01

    Rapid and extensive rhizome development is a desirable trait for perennial grass growth and adaptation to environmental stresses. The objective of this study was to determine proteomic changes and associated metabolic pathways of gibberellin (GA) -regulation of rhizome elongation in two perennial grass species differing in rhizome development. Plants of a short-rhizome bunch-type tall fescue (TF; Festuca arundinacea; 'BR') and an extensive rhizomatous Kentucky bluegrass (KB; Poa pratensis; 'Baron') were treated with 10 μM GA3 in hydroponic culture in growth chambers. The average rhizome length in KB was significantly longer than that in TF regardless of GA3 treatment, and increased significantly with GA3 treatment, to a greater extent than that in TF. Comparative proteomic analysis using two-dimensional electrophoresis and mass spectrometry was performed to further investigate proteins and associated metabolic pathways imparting increased rhizome elongation by GA. A total of 37 and 38 differentially expressed proteins in response to GA3 treatment were identified in TF and KB plants, respectively, which were mainly involved in photosynthesis, energy and amino acid metabolism, protein synthesis, defense and cell development processes. Accelerated rhizome elongation in KB by GA could be mainly associated with the increased abundance of proteins involved in energy metabolism (glyceraldehyde-3-phosphate dehydrogenase, fructose-bisphosphate aldolase, and ATP synthase), amino acid metabolism (S-adenosylmethionine and adenosylhomocysteinase), protein synthesis (HSP90, elongation factor Tu and eukaryotic translation initiation factor 5A), cell-wall development (cell dividion cycle protein, alpha tubulin-2A and actin), and signal transduction (calreticulin). These proteins could be used as candidate proteins for further analysis of molecular mechanisms controlling rhizome growth. PMID:27446135

  13. Zfp423 Regulates Sonic Hedgehog Signaling via Primary Cilium Function

    PubMed Central

    Hamilton, Bruce A.

    2016-01-01

    Zfp423 encodes a 30-zinc finger transcription factor that intersects several canonical signaling pathways. Zfp423 mutations result in ciliopathy-related phenotypes, including agenesis of the cerebellar vermis in mice and Joubert syndrome (JBTS19) and nephronophthisis (NPHP14) in humans. Unlike most ciliopathy genes, Zfp423 encodes a nuclear protein and its developmental expression is complex, leading to alternative proposals for cellular mechanisms. Here we show that Zfp423 is expressed by cerebellar granule cell precursors, that loss of Zfp423 in these precursors leads to cell-intrinsic reduction in proliferation, loss of response to Shh, and primary cilia abnormalities that include diminished frequency of both Smoothened and IFT88 localization. Loss of Zfp423 alters expression of several genes encoding key cilium components, including increased expression of Tulp3. Tulp3 is a direct binding target of Zfp423 and reducing the overexpression of Tulp3 in Zfp423-deficient cells suppresses Smoothened translocation defects. These results define Zfp423 deficiency as a bona fide ciliopathy, acting upstream of Shh signaling, and indicate a mechanism intrinsic to granule cell precursors for the resulting cerebellar hypoplasia. PMID:27727273

  14. Regulation of amyloid precursor protein processing by serotonin signaling.

    PubMed

    Pimenova, Anna A; Thathiah, Amantha; De Strooper, Bart; Tesseur, Ina

    2014-01-01

    Proteolytic processing of the amyloid precursor protein (APP) by the β- and γ-secretases releases the amyloid-β peptide (Aβ), which deposits in senile plaques and contributes to the etiology of Alzheimer's disease (AD). The α-secretase cleaves APP in the Aβ peptide sequence to generate soluble APPα (sAPPα). Upregulation of α-secretase activity through the 5-hydroxytryptamine 4 (5-HT4) receptor has been shown to reduce Aβ production, amyloid plaque load and to improve cognitive impairment in transgenic mouse models of AD. Consequently, activation of 5-HT4 receptors following agonist stimulation is considered to be a therapeutic strategy for AD treatment; however, the signaling cascade involved in 5-HT4 receptor-stimulated proteolysis of APP remains to be determined. Here we used chemical and siRNA inhibition to identify the proteins which mediate 5-HT4d receptor-stimulated α-secretase activity in the SH-SY5Y human neuronal cell line. We show that G protein and Src dependent activation of phospholipase C are required for α-secretase activity, while, unexpectedly, adenylyl cyclase and cAMP are not involved. Further elucidation of the signaling pathway indicates that inositol triphosphate phosphorylation and casein kinase 2 activation is also a prerequisite for α-secretase activity. Our findings provide a novel route to explore the treatment of AD through 5-HT4 receptor-induced α-secretase activation.

  15. Erythropoietin regulates Treg cells in asthma through TGFβ receptor signaling.

    PubMed

    Wan, Guoshi; Wei, Bing

    2015-01-01

    Asthma is a chronic inflammatory disorder of the airways, the development of which is suppressed by regulatory T cells (Treg). Erythropoietin (EPO) is originally defined as a hematopoietic growth factor. Recently, the anti-inflammatory effects of EPO in asthma have been acknowledged. However, the underlying mechanisms remain ill-defined. Here, we showed that EPO treatment significantly reduced the severity of an ovalbumin (OVA)-induced asthma in mice, seemingly through promoting Foxp3-mediated activation of Treg cells in OVA-treated mouse lung. The activation of Treg cells resulted from increases in transforming growth factor β1 (TGFβ1), which were mainly produced by M2 macrophages (M2M). In vitro, Co-culture with M2M increased Foxp3 levels in Treg cells and the Treg cell number, in a TGFβ receptor signaling dependent manner. Moreover, elimination of macrophages abolished the therapeutic effects of EPO in vivo. Together, our data suggest that EPO may increase M2M, which activate Treg cells through TGFβ receptor signaling to mitigate the severity of asthma.

  16. Erythropoietin regulates Treg cells in asthma through TGFβ receptor signaling

    PubMed Central

    Wan, Guoshi; Wei, Bing

    2015-01-01

    Asthma is a chronic inflammatory disorder of the airways, the development of which is suppressed by regulatory T cells (Treg). Erythropoietin (EPO) is originally defined as a hematopoietic growth factor. Recently, the anti-inflammatory effects of EPO in asthma have been acknowledged. However, the underlying mechanisms remain ill-defined. Here, we showed that EPO treatment significantly reduced the severity of an ovalbumin (OVA)-induced asthma in mice, seemingly through promoting Foxp3-mediated activation of Treg cells in OVA-treated mouse lung. The activation of Treg cells resulted from increases in transforming growth factor β1 (TGFβ1), which were mainly produced by M2 macrophages (M2M). In vitro, Co-culture with M2M increased Foxp3 levels in Treg cells and the Treg cell number, in a TGFβ receptor signaling dependent manner. Moreover, elimination of macrophages abolished the therapeutic effects of EPO in vivo. Together, our data suggest that EPO may increase M2M, which activate Treg cells through TGFβ receptor signaling to mitigate the severity of asthma. PMID:26807178

  17. Purinergic regulation of vascular endothelial growth factor signaling in angiogenesis

    PubMed Central

    Rumjahn, S M; Yokdang, N; Baldwin, K A; Thai, J; Buxton, I L O

    2009-01-01

    P2Y purine nucleotide receptors (P2YRs) promote endothelial cell tubulogenesis through breast cancer cell-secreted nucleoside diphosphate kinase (NDPK). We tested the hypothesis that activated P2Y1 receptors transactivate vascular endothelial growth factor receptor (VEGFR-2) in angiogenic signaling. P2Y1R stimulation (10 μM 2-methyl-thio-ATP (2MS-ATP)) of angiogenesis is suppressed by the VEGFR-2 tyrosine kinase inhibitor, SU1498 (1 μM). Phosphorylation of VEGFR-2 by 0.0262 or 2.62 nM VEGF was comparable with 0.01 or 10 μM 2MS-ATP stimulation of the P2Y1R. 2MS-ATP, and VEGF stimulation increased tyrosine phosphorylation at tyr1175. 2MS-ATP (0.1–10 μM) also stimulated EC tubulogenesis in a dose-dependent manner. The addition of sub-maximal VEGF (70 pM) in the presence of increasing concentrations of 2MS-ATP yielded additive effects at 2MS-ATP concentrations <3 μM, whereas producing saturated and less than additive effects at ⩾3 μM. We propose that the VEGF receptor can be activated in the absence of VEGF, and that the P2YR–VEGFR2 interaction and resulting signal transduction is a critical determinant of vascular homoeostasis and tumour-mediated angiogenesis. PMID:19367276

  18. Regulation of amyloid precursor protein processing by serotonin signaling.

    PubMed

    Pimenova, Anna A; Thathiah, Amantha; De Strooper, Bart; Tesseur, Ina

    2014-01-01

    Proteolytic processing of the amyloid precursor protein (APP) by the β- and γ-secretases releases the amyloid-β peptide (Aβ), which deposits in senile plaques and contributes to the etiology of Alzheimer's disease (AD). The α-secretase cleaves APP in the Aβ peptide sequence to generate soluble APPα (sAPPα). Upregulation of α-secretase activity through the 5-hydroxytryptamine 4 (5-HT4) receptor has been shown to reduce Aβ production, amyloid plaque load and to improve cognitive impairment in transgenic mouse models of AD. Consequently, activation of 5-HT4 receptors following agonist stimulation is considered to be a therapeutic strategy for AD treatment; however, the signaling cascade involved in 5-HT4 receptor-stimulated proteolysis of APP remains to be determined. Here we used chemical and siRNA inhibition to identify the proteins which mediate 5-HT4d receptor-stimulated α-secretase activity in the SH-SY5Y human neuronal cell line. We show that G protein and Src dependent activation of phospholipase C are required for α-secretase activity, while, unexpectedly, adenylyl cyclase and cAMP are not involved. Further elucidation of the signaling pathway indicates that inositol triphosphate phosphorylation and casein kinase 2 activation is also a prerequisite for α-secretase activity. Our findings provide a novel route to explore the treatment of AD through 5-HT4 receptor-induced α-secretase activation. PMID:24466315

  19. Transcriptomic insights into antagonistic effects of gibberellin and abscisic acid on petal growth in Gerbera hybrida

    PubMed Central

    Li, Lingfei; Zhang, Wenbin; Zhang, Lili; Li, Na; Peng, Jianzong; Wang, Yaqin; Zhong, Chunmei; Yang, Yuping; Sun, Shulan; Liang, Shan; Wang, Xiaojing

    2015-01-01

    Petal growth is central to floral morphogenesis, but the underlying genetic basis of petal growth regulation is yet to be elucidated. In this study, we found that the basal region of the ray floret petals of Gerbera hybrida was the most sensitive to treatment with the phytohormones gibberellin (GA) and abscisic acid (ABA), which regulate cell expansion during petal growth in an antagonistic manner. To screen for differentially expressed genes (DEGs) and key regulators with potentially important roles in petal growth regulation by GA or/and ABA, the RNA-seq technique was employed. Differences in global transcription in petals were observed in response to GA and ABA and target genes antagonistically regulated by the two hormones were identified. Moreover, we also identified the pathways associated with the regulation of petal growth after application of either GA or ABA. Genes relating to the antagonistic GA and ABA regulation of petal growth showed distinct patterns, with genes encoding transcription factors (TFs) being active during the early stage (2 h) of treatment, while genes from the “apoptosis” and “cell wall organization” categories were expressed at later stages (12 h). In summary, we present the first study of global expression patterns of hormone-regulated transcripts in G. hybrida petals; this dataset will be instrumental in revealing the genetic networks that govern petal morphogenesis and provides a new theoretical basis and novel gene resources for ornamental plant breeding. PMID:25852718

  20. [Recent advances in the analysis of gibberellins plant hormones].

    PubMed

    Zhang, Xiaona; Lu, Minghua; Xu, Linfang; Xiao, Rui; Cai, Zongwei

    2015-08-01

    Gibberellins (GAs) are a class of phytohormones that exert profound and diverse effects on plant growth and development, such as seed germination and leaf expansion. Up to now, 136 members of GAs have been identified and recognized. All known GAs are diterpenoid acids with similar chemical structures, only double bonds, hydroxyl numbers and locations on gibberellin alkane skeleton are different. However, the content of GAs in plants is of ultra trace levels (usually at ng/g and even pg/g levels) with little ultraviolet (UV) absorption, no fluorescence and no distinguishing chemical characteristics. Moreover, the matrix of plant samples is complicated. Thus, quantification of GAs is always extremely difficult. Nowadays, the bottle necks for the study of GAs in plants are due to the lack of efficient sample preparation and sensitive detection techniques. This article reviews the analytical methods for determination of GAs in recent years, hoping to provide some references to develop new methods and techniques. PMID:26749852

  1. [Recent advances in the analysis of gibberellins plant hormones].

    PubMed

    Zhang, Xiaona; Lu, Minghua; Xu, Linfang; Xiao, Rui; Cai, Zongwei

    2015-08-01

    Gibberellins (GAs) are a class of phytohormones that exert profound and diverse effects on plant growth and development, such as seed germination and leaf expansion. Up to now, 136 members of GAs have been identified and recognized. All known GAs are diterpenoid acids with similar chemical structures, only double bonds, hydroxyl numbers and locations on gibberellin alkane skeleton are different. However, the content of GAs in plants is of ultra trace levels (usually at ng/g and even pg/g levels) with little ultraviolet (UV) absorption, no fluorescence and no distinguishing chemical characteristics. Moreover, the matrix of plant samples is complicated. Thus, quantification of GAs is always extremely difficult. Nowadays, the bottle necks for the study of GAs in plants are due to the lack of efficient sample preparation and sensitive detection techniques. This article reviews the analytical methods for determination of GAs in recent years, hoping to provide some references to develop new methods and techniques.

  2. Negative regulation of RIG-I-mediated antiviral signaling by TRK-fused gene (TFG) protein

    SciTech Connect

    Lee, Na-Rae; Shin, Han-Bo; Kim, Hye-In; Choi, Myung-Soo; Inn, Kyung-Soo

    2013-07-19

    Highlights: •TRK-fused gene product (TFG) interacts with TRIM25 upon viral infection. •TFG negatively regulates RIG-I mediated antiviral signaling. •TFG depletion leads to enhanced viral replication. •TFG act downstream of MAVS. -- Abstract: RIG-I (retinoic acid inducible gene I)-mediated antiviral signaling serves as the first line of defense against viral infection. Upon detection of viral RNA, RIG-I undergoes TRIM25 (tripartite motif protein 25)-mediated K63-linked ubiquitination, leading to type I interferon (IFN) production. In this study, we demonstrate that TRK-fused gene (TFG) protein, previously identified as a TRIM25-interacting protein, binds TRIM25 upon virus infection and negatively regulates RIG-I-mediated type-I IFN signaling. RIG-I-mediated IFN production and nuclear factor (NF)-κB signaling pathways were upregulated by the suppression of TFG expression. Furthermore, vesicular stomatitis virus (VSV) replication was significantly inhibited by small inhibitory hairpin RNA (shRNA)-mediated knockdown of TFG, supporting the suppressive role of TFG in RIG-I-mediated antiviral signaling. Interestingly, suppression of TFG expression increased not only RIG-I-mediated signaling but also MAVS (mitochondrial antiviral signaling protein)-induced signaling, suggesting that TFG plays a pivotal role in negative regulation of RNA-sensing, RIG-I-like receptor (RLR) family signaling pathways.

  3. A Gibberellin-Deficient Brassica Mutant-rosette.

    PubMed

    Rood, S B; Pearce, D; Williams, P H; Pharis, R P

    1989-02-01

    A single-gene mutant (rosette [ros/ros]) in which shoot growth and development are inhibited was identified from a rapid cycling line of Brassica rapa (syn campestris). Relative to normal plants, the mutant germinated slowly, had delayed or incomplete floral development, and reduced leaf, petiole, and internode growth. The exogenous application of GA(3) by foliar spray or directly to the shoot tip of rosette resulted in rapid flowering, bolting (shoot elongation), and viable seed production. Shoots of rosette contained endogenous levels of total gibberellin (GA)-like substances (;Tan-ginbozu' dwarf rice assay) of about one-tenth of that of the normal rapid-cycling line of B. rapa which consisted almost entirely of a very nonpolar, GA-like substance which yielded GA(1) and GA(3) upon mild acid hydrolysis. In a normal rapid-cycling B. rapa line, the nonpolar putative GA(1) and GA(3) conjugates were present, but additionally, free GA(1) and GA(3) were abundant and identified by gas chromatography-mass spectrometry-selected ion monitoring. The quantities of free GA(1) and GA(3) in the normal line and in rosette were quantified by GC-MS-SIM using [(2)H(2)]GA(1) as an internal standard. Fourteen-day-old rosette and normal seedlings contained 5.3 and 23.2 ng GA(1) per plant, respectively. At day 21 the rosette plants contained 7.7 and 26.1 nanograms per plant of GA(1) and GA(3), while normal plants contained 31.1 and 251.5 nanograms per plant, respectively. Thus, normal plants contained from four to ten times higher levels of total GA-like substances, GA(1), or GA(3), than rosette. The ros allele results in reduced GA level, yielding the rosette phenotype whose delayed germination and flowering, and reduced shoot growth responses indicate a probable role for endogenous GA(1) and GA(3) in the regulation of these processes in Brassica.

  4. Brassinosteroid regulated kinases (BRKs) that mediate brassinosteroid signal transduction and uses thereof

    DOEpatents

    Wang, Zhi-Yong; Tang, Wenqiang

    2013-09-24

    The present invention identifies a novel family of kinases regulated by brassinosteroids, referred to as BRKs (brassinosteroid regulated kinases) or BSKs (brassinosteroid signaling kinases). The present invention provides methods for modulating the response of a plant cell to a brassinosteroid using BRKs.

  5. Peroxiredoxins in Regulation of MAPK Signalling Pathways; Sensors and Barriers to Signal Transduction

    PubMed Central

    Latimer, Heather R.; Veal, Elizabeth A.

    2016-01-01

    Peroxiredoxins are highly conserved and abundant peroxidases. Although the thioredoxin peroxidase activity of peroxiredoxin (Prx) is important to maintain low levels of endogenous hydrogen peroxide, Prx have also been shown to promote hydrogen peroxide-mediated signalling. Mitogen activated protein kinase (MAPK) signalling pathways mediate cellular responses to a variety of stimuli, including reactive oxygen species (ROS). Here we review the evidence that Prx can act as both sensors and barriers to the activation of MAPK and discuss the underlying mechanisms involved, focusing in particular on the relationship with thioredoxin. PMID:26813660

  6. The Shc locus regulates insulin signaling and adiposity in mammals

    PubMed Central

    Tomilov, Alexey A.; Ramsey, Jon J.; Hagopian, Kevork; Giorgio, Marco; Kim, Kyoungmi M.; Lam, Adam; Migliaccio, Enrica; Lloyd, Kent C.; Berniakovich, Ina; Prolla, Tomas A.; Pelicci, PierGiuseppe; Cortopassi, Gino A.

    2014-01-01

    Summary Longevity of a p66Shc knockout strain (ShcP) was previously attributed to increased stress resistance and altered mitochondria. Microarrays of ShcP tissues indicated alterations in insulin signaling. Consistent with this observation, ShcP mice were more insulin sensitive and glucose tolerant at organismal and tissue levels, as was a novel p66Shc knockout (ShcL). Increasing and decreasing Shc expression in cell lines decreased and increased insulin sensitivity, respectively – consistent with p66Shc's function as a repressor of insulin signaling. However, differences between the two p66Shc knockout strains were also observed. ShcL mice were fatter and susceptible to fatty diets, and their fat was more insulin sensitive than controls. On the other hand, ShcP mice were leaner and resisted fatty diets, and their adipose was less insulin sensitive than controls. ShcL and ShcP strains are both highly inbred on the C57Bl/6 background, so we investigated gene expression at the Shc locus, which encodes three isoforms, p66, p52, and p46. Isoform p66 is absent in both strains; thus, the remaining difference to which to attribute the ‘lean’ phenotype is expression of the other two isoforms. ShcL mice have a precise deletion of p66Shc and normal expression of p52 and p46Shc isoforms in all tissues; thus, a simple deletion of p66Shc results in a ‘fat’ phenotype. However, ShcP mice in addition to p66Shc deletion have a fourfold increase in p46Shc expression in white fat. Thus, p46Shc overexpression in fat, rather than p66Shc deletion, is the likely cause of decreased adiposity and reduced insulin sensitivity in the fat of ShcP mice, which has implications for the longevity of the strain. PMID:21040401

  7. Dopamine signaling regulates the projection patterns in the mouse chiasm.

    PubMed

    Chen, Tingting; Hu, Yunlong; Lin, Xiaotan; Huang, Xinping; Liu, Bin; Leung, Peggy; Chan, Sun-On; Guo, Deyin; Jin, Guangyi

    2015-11-01

    Ocular albinism (OA) is characterized by inadequate L-3, 4-dihydroxyphenylalanine (L-DOPA) and dopamine (DA) in the eyes. This study investigated DA-related signaling pathways in mouse chiasm projection patterns and the potential role of ocular albinism type 1 (OA1) and dopamine 1A (D1A) receptors in the optic pathway. In embryonic day (E) E13-E15 retina, most L-DOPA and OA1-positive cells were distributed among Müller glial cells on E13 and retinal ganglion cells (RGC) on E14. In the ventral diencephalon, OA1 and L-DOPA were strongly expressed on the optic chiasm (OC) and optic tract (OT), respectively, but weak on the optic stalk (OS). At E13-E15, DA and D1A staining was predominately expressed in radially arranged cells with a neuronal expression pattern. In the ventral diencephalon, DA and D1A were strongly expressed on the OC, OT and OS. Furthermore, L-DOPA significantly inhibited retinal axon outgrowth in both the dorsal nasal (DN) and ventral temporal (VT) groups. DA inhibited retinal axon outgrowth, which was abolished by the D1A antagonist SCH23390. Brain slice cultures indicated that L-DOPA inhibited axons that crossed at the OC of E13 embryos, which was not abolished by DA. L-DOPA also inhibited axons that crossed at the OC of albino mice. Albino mice exhibited reduced ipsilateral retinal projections compared with C57 pigmented mice. No significant difference was identified in the uncrossed projections of albino mice following L-DOPA and DA expression. Furthermore, transcription factor Zic family member 2 (Zic2) upregulated OA1 mRNA expression. Our findings provide critical insights into DA-related signaling in retinal development. PMID:26363092

  8. The cold response of CBF genes in barley is regulated by distinct signaling mechanisms.

    PubMed

    Marozsán-Tóth, Zsuzsa; Vashegyi, Ildikó; Galiba, Gábor; Tóth, Balázs

    2015-06-01

    Cold acclimation ability is crucial in the winter survival of cereals. In this process CBF transcription factors play key role, therefore understanding the regulation of these genes might provide useful knowledge for molecular breeding. In the present study the signal transduction pathways leading to the cold induction of different CBF genes were investigated in barley cv. Nure using pharmacological approach. Our results showed that the cold induced expression of CBF9 and CBF14 transcription factors is regulated by phospholipase C, phospholipase D pathways and calcium. On the contrary, these pathways have negative effect on the cold induction of CBF12 that is regulated by a different, as yet unidentified pathway. The diversity in the regulation of these transcription factors corresponds to their sequence based phylogenetic relationships suggesting that their evolutionary separation happened on structural, functional and regulational levels as well. On the CBF effector gene level, the signaling regulation is more complex, resultant effect of multiple pathways.

  9. Gliolectin positively regulates Notch signalling during wing-vein specification in Drosophila.

    PubMed

    Prasad, Naveen; Shashidhara, Lingadahalli S

    2015-01-01

    Notch signalling is essential for animal development. It integrates multiple pathways controlling cell fate and specification. Here we report the genetic characterization of Gliolectin, presumably a lectin, a cytoplasmic protein, significantly enriched in Golgi bodies. Its expression overlaps with regions where Notch is activated. Loss of gliolectin function results in ectopic veins, while gain of its function causes loss of wing veins. It positively regulates Enhancer of split mβ, a target of Notch signalling. These observations suggest that it is a positive regulator of Notch signalling during wing development in Drosophila. PMID:26505251

  10. Regulation and function of syk tyrosine kinase in mast cell signaling and beyond.

    PubMed

    de Castro, Rodrigo Orlandini

    2011-01-01

    The protein tyrosine kinase Syk plays a critical role in FcεRI signaling in mast cells. Binding of Syk to phosphorylated immunoreceptor tyrosine-based activation motifs (p-ITAM) of the receptor subunits results in conformational changes and tyrosine phosphorylation at multiple sites that leads to activation of Syk. The phosphorylated tyrosines throughout the molecule play an important role in the regulation of Syk-mediated signaling. Reconstitution of receptor-mediated signaling in Syk(-/-) cells by wild-type Syk or mutants which have substitution of these tyrosines with phenylalanine together with in vitro assays has been useful strategies to understand the regulation and function of Syk.

  11. Post-transcriptional regulation of ethylene perception and signaling in Arabidopsis

    SciTech Connect

    Schaller, George Eric

    2014-03-19

    The simple gas ethylene functions as an endogenous regulator of plant growth and development, and modulates such energy relevant processes as photosynthesis and biomass accumulation. Ethylene is perceived in the plant Arabidopsis by a five-member family of receptors related to bacterial histidine kinases. Our data support a general model in which the receptors exist as parts of larger protein complexes. Our goals have been to (1) characterize physical interactions among members of the signaling complex; (2) the role of histidine-kinase transphosphorylation in signaling by the complex; and (3) the role of a novel family of proteins that regulate signal output by the receptors.

  12. Autocrine signaling involved in cell volume regulation: the role of released transmitters and plasma membrane receptors.

    PubMed

    Franco, Rodrigo; Panayiotidis, Mihalis I; de la Paz, Lenin D Ochoa

    2008-07-01

    Cell volume regulation is a basic homeostatic mechanism transcendental for the normal physiology and function of cells. It is mediated principally by the activation of osmolyte transport pathways that result in net changes in solute concentration that counteract cell volume challenges in its constancy. This process has been described to be regulated by a complex assortment of intracellular signal transduction cascades. Recently, several studies have demonstrated that alterations in cell volume induce the release of a wide variety of transmitters including hormones, ATP and neurotransmitters, which have been proposed to act as extracellular signals that regulate the activation of cell volume regulatory mechanisms. In addition, changes in cell volume have also been reported to activate plasma membrane receptors (including tyrosine kinase receptors, G-protein coupled receptors and integrins) that have been demonstrated to participate in the regulatory process of cell volume. In this review, we summarize recent studies about the role of changes in cell volume in the regulation of transmitter release as well as in the activation of plasma membrane receptors and their further implications in the regulation of the signaling machinery that regulates the activation of osmolyte flux pathways. We propose that the autocrine regulation of Ca2+-dependent and tyrosine phosphorylation-dependent signaling pathways by the activation of plasma membrane receptors and swelling-induced transmitter release is necessary for the activation/regulation of osmolyte efflux pathways and cell volume recovery. Furthermore, we emphasize the importance of studying these extrinsic signals because of their significance in the understanding of the physiology of cell volume regulation and its role in cell biology in vivo, where the constraint of the extracellular space might enhance the autocrine or even paracrine signaling induced by these released transmitters. PMID:18300263

  13. Regulators and effectors of bone morphogenetic protein signalling in the cardiovascular system.

    PubMed

    Luo, Jiang-Yun; Zhang, Yang; Wang, Li; Huang, Yu

    2015-07-15

    Bone morphogenetic proteins (BMPs) play key roles in the regulation of cell proliferation, differentiation and apoptosis in various tissues and organs, including the cardiovascular system. BMPs signal through both Smad-dependent and -independent cascades to exert a wide spectrum of biological activities. Cardiovascular disorders such as abnormal angiogenesis, atherosclerosis, pulmonary hypertension and cardiac hypertrophy have been linked to aberrant BMP signalling. To correct the dysregulated BMP signalling in cardiovascular pathogenesis, it is essential to get a better understanding of how the regulators and effectors of BMP signalling control cardiovascular function and how the dysregulated BMP signalling contributes to cardiovascular dysfunction. We hence highlight several key regulators of BMP signalling such as extracellular regulators of ligands, mechanical forces, microRNAs and small molecule drugs as well as typical BMP effectors like direct downstream target genes, mitogen-activated protein kinases, reactive oxygen species and microRNAs. The insights into these molecular processes will help target both the regulators and important effectors to reverse BMP-associated cardiovascular pathogenesis. PMID:25952563

  14. Regulators and effectors of bone morphogenetic protein signalling in the cardiovascular system.

    PubMed

    Luo, Jiang-Yun; Zhang, Yang; Wang, Li; Huang, Yu

    2015-07-15

    Bone morphogenetic proteins (BMPs) play key roles in the regulation of cell proliferation, differentiation and apoptosis in various tissues and organs, including the cardiovascular system. BMPs signal through both Smad-dependent and -independent cascades to exert a wide spectrum of biological activities. Cardiovascular disorders such as abnormal angiogenesis, atherosclerosis, pulmonary hypertension and cardiac hypertrophy have been linked to aberrant BMP signalling. To correct the dysregulated BMP signalling in cardiovascular pathogenesis, it is essential to get a better understanding of how the regulators and effectors of BMP signalling control cardiovascular function and how the dysregulated BMP signalling contributes to cardiovascular dysfunction. We hence highlight several key regulators of BMP signalling such as extracellular regulators of ligands, mechanical forces, microRNAs and small molecule drugs as well as typical BMP effectors like direct downstream target genes, mitogen-activated protein kinases, reactive oxygen species and microRNAs. The insights into these molecular processes will help target both the regulators and important effectors to reverse BMP-associated cardiovascular pathogenesis.

  15. Mitogen-activated protein kinase phosphatase 1 negatively regulates MAPK signaling in mouse hypothalamus.

    PubMed

    Adachi, Koichi; Goto, Motomitsu; Onoue, Takeshi; Tsunekawa, Taku; Shibata, Miyuki; Hagimoto, Shigeru; Ito, Yoshihiro; Banno, Ryoichi; Suga, Hidetaka; Sugimura, Yoshihisa; Oiso, Yutaka; Arima, Hiroshi

    2014-05-21

    Mitogen-activated protein kinase phosphatase 1 (MKP-1) is shown to negatively regulate MAPK signaling in various peripheral tissues as well as the central nervous system such as cortex, striatum and hippocampus. In this study, we examined whether MKP-1 regulates MAPK signaling in the mouse hypothalamus. Intraperitoneal injection of TNFα significantly increased MKP-1 mRNA expression in paraventricular and arcuate nuclei in the hypothalamus. TNFα treatment induced increases in MKP-1 expression at both mRNA and protein levels, accompanied by the inactivation of MAPK signaling in mouse hypothalamic explants. Inhibition of MKP-1 by its inhibitor or siRNA increased MAPK activity in the explants. Our data indicate that MKP-1 negatively regulates MAPK signaling in the mouse hypothalamus.

  16. Angiogenic factor signaling regulates centrosome duplication in endothelial cells of developing blood vessels

    PubMed Central

    Taylor, Sarah M.; Nevis, Kathleen R