Sample records for regulate glutamate release

  1. Dual regulation of Ca2+-dependent glutamate release from astrocytes: vesicular glutamate transporters and cytosolic glutamate levels.

    PubMed

    Ni, Yingchun; Parpura, Vladimir

    2009-09-01

    Vesicular glutamate transporters (VGLUTs) are responsible for vesicular glutamate storage and exocytotic glutamate release in neurons and astrocytes. Here, we selectively and efficiently overexpressed individual VGLUT proteins (VGLUT1, 2, or 3) in solitary astrocytes and studied their effects on mechanical stimulation-induced Ca2+-dependent glutamate release. Neither VGLUT1 nor VGLUT2 overexpression changed the amount of glutamate release, whereas overexpression of VGLUT3 significantly enhanced Ca2+-dependent glutamate release from astrocytes. None of the VGLUT overexpression affected mechanically induced intracellular Ca2+ increase. Inhibition of glutamine synthetase activity by L-methionine sulfoximine in astrocytes, which leads to increased cytosolic glutamate concentration, greatly increased their mechanically induced Ca2+-dependent glutamate release, without affecting intracellular Ca2+ dynamics. Taken together, these data indicate that both VGLUT3 and the cytosolic concentration of glutamate are key limiting factors in regulating the Ca2+-dependent release of glutamate from astrocytes.

  2. Metabolic Control of Vesicular Glutamate Transport and Release

    PubMed Central

    Juge, Narinobu; Gray, John A.; Omote, Hiroshi; Miyaji, Takaaki; Inoue, Tsuyoshi; Hara, Chiaki; Uneyama, Hisayuki; Edwards, Robert H.; Nicoll, Roger A.; Moriyama, Yoshinori

    2010-01-01

    Fasting has been used to control epilepsy since antiquity, but the mechanism of coupling between metabolic state and excitatory neurotransmission remains unknown. Previous work has shown that the vesicular glutamate transporters (VGLUTs) required for exocytotic release of glutamate undergo an unusual form of regulation by Cl−. Using functional reconstitution of the purified VGLUTs into proteoliposomes, we now show that Cl− acts as an allosteric activator, and the ketone bodies that increase with fasting inhibit glutamate release by competing with Cl− at the site of allosteric regulation. Consistent with these observations, acetoacetate reduced quantal size at hippocampal synapses, and suppresses glutamate release and seizures evoked with 4-aminopyridine in the brain. The results indicate an unsuspected link between metabolic state and excitatory neurotransmission through anion-dependent regulation of VGLUT activity. PMID:20920794

  3. Metabolic control of vesicular glutamate transport and release.

    PubMed

    Juge, Narinobu; Gray, John A; Omote, Hiroshi; Miyaji, Takaaki; Inoue, Tsuyoshi; Hara, Chiaki; Uneyama, Hisayuki; Edwards, Robert H; Nicoll, Roger A; Moriyama, Yoshinori

    2010-10-06

    Fasting has been used to control epilepsy since antiquity, but the mechanism of coupling between metabolic state and excitatory neurotransmission remains unknown. Previous work has shown that the vesicular glutamate transporters (VGLUTs) required for exocytotic release of glutamate undergo an unusual form of regulation by Cl(-). Using functional reconstitution of the purified VGLUTs into proteoliposomes, we now show that Cl(-) acts as an allosteric activator, and the ketone bodies that increase with fasting inhibit glutamate release by competing with Cl(-) at the site of allosteric regulation. Consistent with these observations, acetoacetate reduced quantal size at hippocampal synapses and suppresses glutamate release and seizures evoked with 4-aminopyridine in the brain. The results indicate an unsuspected link between metabolic state and excitatory neurotransmission through anion-dependent regulation of VGLUT activity. Copyright © 2010 Elsevier Inc. All rights reserved.

  4. P301L tau expression affects glutamate release and clearance in the hippocampal trisynaptic pathway.

    PubMed

    Hunsberger, Holly C; Rudy, Carolyn C; Batten, Seth R; Gerhardt, Greg A; Reed, Miranda N

    2015-01-01

    Individuals at risk of developing Alzheimer's disease (AD) often exhibit hippocampal hyperexcitability. A growing body of evidence suggests that perturbations in the glutamatergic tripartite synapse may underlie this hyperexcitability. Here, we used a tau mouse model of AD (rTg(TauP301L)4510) to examine the effects of tau pathology on hippocampal glutamate regulation. We found a 40% increase in hippocampal vesicular glutamate transporter, which packages glutamate into vesicles, and has previously been shown to influence glutamate release, and a 40% decrease in hippocampal glutamate transporter 1, the major glutamate transporter responsible for removing glutamate from the extracellular space. To determine whether these alterations affected glutamate regulation in vivo, we measured tonic glutamate levels, potassium-evoked glutamate release, and glutamate uptake/clearance in the dentate gyrus, cornu ammonis 3(CA3), and cornu ammonis 1(CA1) regions of the hippocampus. P301L tau expression resulted in a 4- and 7-fold increase in potassium-evoked glutamate release in the dentate gyrus and CA3, respectively, and significantly decreased glutamate clearance in all three regions. Both release and clearance correlated with memory performance in the hippocampal-dependent Barnes maze task. Alterations in mice expressing P301L were observed at a time when tau pathology was subtle and before readily detectable neuron loss. These data suggest novel mechanisms by which tau may mediate hyperexcitability. Pre-synaptic vesicular glutamate transporters (vGLUTs) package glutamate into vesicles before exocytosis into the synaptic cleft. Once in the extracellular space, glutamate acts on glutamate receptors. Glutamate is removed from the extracellular space by excitatory amino acid transporters, including GLT-1, predominantly localized to glia. P301L tau expression increases vGLUT expression and glutamate release, while also decreasing GLT-1 expression and glutamate clearance. © 2014 International Society for Neurochemistry.

  5. [Vesicular and nonvesicular glutamate release in the nucleus accumbens during a forced switch in behavioral strategy].

    PubMed

    Saul'skaia, N B; Mikhaĭlova, M O

    2004-01-01

    By means of in vivo microdialysis combined with HPLC analysis, we have shown that glutamate extracellular level in the rat n. accumbens increases during a forced switch in behavioral strategy. When infused in the n. accumbens, a Na+ channel blocker tetrodotoxin (TTX, 1 microM) completely prevents this increase whereas a potent cystine/glutamate exchanger blocker (S)-4-carboxyphenylglycine ((S)-4-CPG, 5 microM) has no effect. In contrast, TT (1 microM), infused in the n. accumbens, fails to significantly alter basal level of extracellular glutamate in this region whereas (S)-4-CPG (5 microM) produced a significant decrease. Our data suggest that basal and factional glutamate releases in the n. accumbens are differently regulated. The source of basal glutamate release is a non-vesicular release via cystine/glutamate exchanger. Functional glutamate release observed during a forced switch in behavioral strategy derives from vesicular synaptic pool.

  6. Modulation of taurine release by glutamate receptors and nitric oxide.

    PubMed

    Oja, S S; Saransaari, P

    2000-11-01

    Taurine is held to function as a modulator and osmoregulator in the central nervous system, being of particular importance in the immature brain. In view of the possible involvement of excitatory pathways in the regulation of taurine function in the brain, the interference of glutamate receptors with taurine release from different tissue preparations in vitro and from the brain in vivo is of special interest. The release of taurine from the brain is enhanced by glutamate receptor agonists. This enhancement is inhibited by the respective receptor antagonists both in vitro and in vivo. The ionotropic N-methyl-D-aspartate (NMDA) and 2-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) receptor agonists appear to be the most effective in enhancing taurine release, their effects being receptor-mediated. Kainate is less effective, particularly in adults. Of the glutamate receptors, the NMDA class seems to be the most susceptible to modulation by nitric oxide. Nitric oxide also modulates taurine release, enhancing the basal release in both immature and mature hippocampus, whereas the K(+)-stimulated release is generally inhibited. Metabotropic glutamate receptors also participate in the regulation of taurine release, group I metabotropic glutamate receptors potentiating the release in the developing hippocampus, while group III receptors may be involved in the adult. Under various cell-damaging conditions, including ischemia, hypoxia and hypoglycemia, taurine release is enhanced, together with an enhanced release of excitatory amino acids. The increase in extracellular taurine upon excessive stimulation of glutamate receptors and under cell-damaging conditions may serve as an important protective mechanism against excitotoxicity, being particularly effective in the immature brain.

  7. Direct stimulation of pituitary prolactin release by glutamate.

    PubMed

    Login, I S

    1990-01-01

    The ability of glutamate and other excitatory amino acids to stimulate prolactin secretion when administered to adult animals is hypothesized to depend on a central site of action in the brain, but there are no data to support this position. An alternative hypothesis was tested that glutamate would stimulate prolactin release when applied directly to primary cultures of dispersed adult female rat anterior pituitary cells studied in a perifusion protocol. Glutamate increased the rate of prolactin release within two minutes in a self-limited manner. Glutamate-stimulated prolactin release was augmented about 4-fold by elimination of magnesium from the perfusate and was associated with stimulation of pituitary calcium flux. Ketamine and MK-801 both reduced the basal rate of prolactin release and abolished the effects of glutamate. Pituitary cells of 10-day-old rats responded similarly to glutamate. Exposure to glutamate did not influence subsequent responses to physiological hypothalamic secretagogues, thus the likelihood of toxicity was minimized. These results suggest that the N-methyl-D-aspartate (NMDA) subclass of the glutamate receptor complex is involved. Prolactin secretion may be regulated physiologically through a functional glutamate receptor on pituitary cells.

  8. Berberine Inhibits the Release of Glutamate in Nerve Terminals from Rat Cerebral Cortex

    PubMed Central

    Lu, Cheng-Wei; Huang, Shu-Kuei; Wang, Su-Jane

    2013-01-01

    Berberine, an isoquinoline plant alkaloid, protects neurons against neurotoxicity. An excessive release of glutamate is considered to be one of the molecular mechanisms of neuronal damage in several neurological diseases. In this study, we investigated whether berberine could affect endogenous glutamate release in nerve terminals of rat cerebral cortex (synaptosomes) and explored the possible mechanism. Berberine inhibited the release of glutamate evoked by the K+ channel blocker 4-aminopyridine (4-AP), and this phenomenon was prevented by the chelating extracellular Ca2+ ions and the vesicular transporter inhibitor bafilomycin A1, but was insensitive to the glutamate transporter inhibitor DL-threo-beta-benzyl-oxyaspartate. Inhibition of glutamate release by berberine was not due to it decreasing synaptosomal excitability, because berberine did not alter 4-AP-mediated depolarization. The inhibitory effect of berberine on glutamate release was associated with a reduction in the depolarization-induced increase in cytosolic free Ca2+ concentration. Involvement of the Cav2.1 (P/Q-type) channels in the berberine action was confirmed by blockade of the berberine-mediated inhibition of glutamate release by the Cav2.1 (P/Q-type) channel blocker ω-agatoxin IVA. In addition, the inhibitory effect of berberine on evoked glutamate release was prevented by the mitogen-activated/extracellular signal-regulated kinase kinase (MEK) inhibitors. Berberine decreased the 4-AP-induced phosphorylation of extracellular signal-regulated kinase 1 and 2 (ERK1/2) and synapsin I, the main presynaptic target of ERK; this decrease was also blocked by the MEK inhibition. Moreover, the inhibitory effect of berberine on evoked glutamate release was prevented in nerve terminals from mice lacking synapsin I. Together, these results indicated that berberine inhibits glutamate release from rats cortical synaptosomes, through the suppression of presynaptic Cav2.1 channels and ERK/synapsin I signaling cascade. This finding may provide further understanding of the mode of berberine action in the brain and highlights the therapeutic potential of this compound in the treatment of a wide range of neurological disorders. PMID:23840629

  9. Involvement of the cGMP pathway in the osthole-facilitated glutamate release in rat hippocampal nerve endings.

    PubMed

    Lin, Tzu Yu; Lu, Cheng Wei; Huang, Wei-Jan; Wang, Su-Jane

    2012-03-01

    Osthole, an active constituent isolated from Cnidium monnieri (L.) Cusson, has previously been shown to have the capacity to increase depolarization-evoked glutamate release in rat hippocampal nerve terminals. As cGMP-dependent signaling cascade has been found to modulate glutamate release at the presynaptic level, the aim of this study was to further examine the role of cGMP signaling pathway in the regulation of osthole on glutamate release in hippocampal synaptosomes. Results showed that osthole dose-dependently increased intrasynaptosomal cGMP levels. The elevation of cGMP levels by osthole was prevented by the phosphodiesterase 5 inhibitor sildenafil but was insensitive to the guanylyl cyclase inhibitor ODQ. In addition, osthole-induced facilitation of 4-aminopyridine (4-AP)-evoked glutamate release was completely prevented by the cGMP-dependent protein kinase (PKG) inhibitors, KT5823, and Rp-8-Br-PET-cGMPS. Direct activation of PKG with 8-Br-cGMP or 8-pCPT-cGMP also occluded the osthole-mediated facilitation of 4-AP-evoked glutamate release. Furthermore, sildenafil exhibited a dose-dependent facilitation of 4-AP-evoked release of glutamate and occluded the effect of osthole on the 4-AP-evoked glutamate release. Collectively, our findings suggest that osthole-mediated facilitation of glutamate release involves the activation of cGMP/PKG-dependent pathway. Copyright © 2011 Wiley Periodicals, Inc.

  10. Regulation of the Hippocampal Network by VGLUT3-Positive CCK- GABAergic Basket Cells

    PubMed Central

    Fasano, Caroline; Rocchetti, Jill; Pietrajtis, Katarzyna; Zander, Johannes-Friedrich; Manseau, Frédéric; Sakae, Diana Y.; Marcus-Sells, Maya; Ramet, Lauriane; Morel, Lydie J.; Carrel, Damien; Dumas, Sylvie; Bolte, Susanne; Bernard, Véronique; Vigneault, Erika; Goutagny, Romain; Ahnert-Hilger, Gudrun; Giros, Bruno; Daumas, Stéphanie; Williams, Sylvain; El Mestikawy, Salah

    2017-01-01

    Hippocampal interneurons release the inhibitory transmitter GABA to regulate excitation, rhythm generation and synaptic plasticity. A subpopulation of GABAergic basket cells co-expresses the GABA/glycine vesicular transporters (VIAAT) and the atypical type III vesicular glutamate transporter (VGLUT3); therefore, these cells have the ability to signal with both GABA and glutamate. GABAergic transmission by basket cells has been extensively characterized but nothing is known about the functional implications of VGLUT3-dependent glutamate released by these cells. Here, using VGLUT3-null mice we observed that the loss of VGLUT3 results in a metaplastic shift in synaptic plasticity at Shaeffer’s collaterals – CA1 synapses and an altered theta oscillation. These changes were paralleled by the loss of a VGLUT3-dependent inhibition of GABAergic current in CA1 pyramidal layer. Therefore presynaptic type III metabotropic could be activated by glutamate released from VGLUT3-positive interneurons. This putative presynaptic heterologous feedback mechanism inhibits local GABAergic tone and regulates the hippocampal neuronal network. PMID:28559797

  11. The effect of glutamate on ghrelin release in mice.

    PubMed

    Chacrabati, Rakhi; Gong, Zhi; Ikenoya, Chika; Kondo, Daisuke; Zigman, Jeffrey M; Sakai, Takafumi; Sakata, Ichiro

    2017-03-01

    Ghrelin is abundantly produced in the stomach. Here, we found that glutamate decreased ghrelin expression and release in ghrelin-producing cells, and decreased levels of food intake and plasma acyl-ghrelin in mice. Treatment with siRNA of G protein-coupled receptor, family C, group 5, member B (GPRC5B) in ghrelin-producing cell lines completely blocked the effect of glutamate-induced ghrelin suppression. In addition, glutamate inhibited ghrelin release via the extracellular signal-regulated kinase (ERK) activity pathway, and stimulated CREB2 mRNA expression in ghrelin-producing cell lines. These results suggest that glutamate inhibits ghrelin release via ERK-CREB2 pathway. These results suggest that the GPRC5B-ERK-CREB2 pathway is involved in the inhibition of ghrelin expression and secretion in ghrelin cells. © 2017 International Federation for Cell Biology.

  12. A Role for Glutamate Transporters in the Regulation of Insulin Secretion

    PubMed Central

    Gammelsaeter, Runhild; Coppola, Thierry; Marcaggi, Païkan; Storm-Mathisen, Jon; Chaudhry, Farrukh A.; Attwell, David; Regazzi, Romano; Gundersen, Vidar

    2011-01-01

    In the brain, glutamate is an extracellular transmitter that mediates cell-to-cell communication. Prior to synaptic release it is pumped into vesicles by vesicular glutamate transporters (VGLUTs). To inactivate glutamate receptor responses after release, glutamate is taken up into glial cells or neurons by excitatory amino acid transporters (EAATs). In the pancreatic islets of Langerhans, glutamate is proposed to act as an intracellular messenger, regulating insulin secretion from β-cells, but the mechanisms involved are unknown. By immunogold cytochemistry we show that insulin containing secretory granules express VGLUT3. Despite the fact that they have a VGLUT, the levels of glutamate in these granules are low, indicating the presence of a protein that can transport glutamate out of the granules. Surprisingly, in β-cells the glutamate transporter EAAT2 is located, not in the plasma membrane as it is in brain cells, but exclusively in insulin-containing secretory granules, together with VGLUT3. In EAAT2 knock out mice, the content of glutamate in secretory granules is higher than in wild type mice. These data imply a glutamate cycle in which glutamate is carried into the granules by VGLUT3 and carried out by EAAT2. Perturbing this cycle by knocking down EAAT2 expression with a small interfering RNA, or by over-expressing EAAT2 or a VGLUT in insulin granules, significantly reduced the rate of granule exocytosis. Simulations of granule energetics suggest that VGLUT3 and EAAT2 may regulate the pH and membrane potential of the granules and thereby regulate insulin secretion. These data suggest that insulin secretion from β-cells is modulated by the flux of glutamate through the secretory granules. PMID:21853059

  13. Neuronal activity determines distinct gliotransmitter release from a single astrocyte

    PubMed Central

    Covelo, Ana

    2018-01-01

    Accumulating evidence indicates that astrocytes are actively involved in brain function by regulating synaptic activity and plasticity. Different gliotransmitters, such as glutamate, ATP, GABA or D-serine, released form astrocytes have been shown to induce different forms of synaptic regulation. However, whether a single astrocyte may release different gliotransmitters is unknown. Here we show that mouse hippocampal astrocytes activated by endogenous (neuron-released endocannabinoids or GABA) or exogenous (single astrocyte Ca2+ uncaging) stimuli modulate putative single CA3-CA1 hippocampal synapses. The astrocyte-mediated synaptic modulation was biphasic and consisted of an initial glutamate-mediated potentiation followed by a purinergic-mediated depression of neurotransmitter release. The temporal dynamic properties of this biphasic synaptic regulation depended on the firing frequency and duration of the neuronal activity that stimulated astrocytes. Present results indicate that single astrocytes can decode neuronal activity and, in response, release distinct gliotransmitters to differentially regulate neurotransmission at putative single synapses. PMID:29380725

  14. Second-By-Second Analysis of Alpha 7 Nicotine Receptor Regulation of Glutamate Release in the Prefrontal Cortex of Awake Rats

    PubMed Central

    Konradsson-Geuken, Åsa; Gash, Clelland R.; Alexander, Kathleen; Pomerleau, Francois; Huettl, Peter; Gerhardt, Greg A.; Bruno, John P.

    2009-01-01

    Summary These experiments utilized an enzyme-based microelectrode selective for the second-by-second detection of extracellular glutamate to reveal the α7-based nicotinic modulation of glutamate release in the prefrontal cortex (PFC) of freely moving rats. Rats received intra-cortical infusions of the non-selective nicotinic agonist nicotine (1.0 μg/0.4 μL) or the selective α7 agonist choline (2.0 mM/0.4 μL). The selectivity of drug-induced glutamate release was assessed in subgroups of animals pre-treated with the α7 antagonist, α-bungarotoxin (α-BGT, 10 μM) or kynurenine (10 μM) the precursor of the astrocyte-derived, negative allosteric α7 modulator kynurenic acid. Local administration of nicotine increased glutamate signals (maximum amplitude = 4.3 ± 0.6 μM) that were cleared to baseline levels in 493 ± 80 sec. Pre-treatment with α-BGT or kynurenine attenuated nicotine-induced glutamate by 61% and 60%, respectively. Local administration of choline also increased glutamate signals (maximum amplitude = 6.3 ± 0.9 μM). In contrast to nicotine-evoked glutamate release, choline-evoked signals were cleared more quickly (28 ± 6 sec) and pre-treatment with α-BGT or kynurenine completely blocked the stimulated glutamate release. Using a method that reveals the temporal dynamics of in vivo glutamate release and clearance, these data indicate a nicotinic modulation of cortical glutamate release that is both α7 – and non-α7-mediated. Furthermore, these data may also provide a mechanism underlying the recent focus on α7 full and partial agonists as therapeutic agents in the treatment of cortically-mediated cognitive deficits in schizophrenia. PMID:19637277

  15. Photolysis of Caged Ca2+ But Not Receptor-Mediated Ca2+ Signaling Triggers Astrocytic Glutamate Release

    PubMed Central

    Smith, Nathan A.; Xu, Qiwu; Goldman, Siri; Peng, Weiguo; Huang, Jason H.; Takano, Takahiro; Nedergaard, Maiken

    2013-01-01

    Astrocytes in hippocampal slices can dynamically regulate synaptic transmission in a process mediated by increases in intracellular Ca2+. However, it is debated whether astrocytic Ca2+ signals result in release of glutamate. We here compared astrocytic Ca2+ signaling triggered by agonist exposure versus photolysis side by side. Using transgenic mice in which astrocytes selectively express the MrgA1 receptor, we found that receptor-mediated astrocytic Ca2+ signaling consistently triggered neuronal hyperpolarization and decreased the frequency of miniature excitatory postsynaptic currents (EPSCs). In contrast, photolysis of caged Ca2+ (o-nitrophenyl–EGTA) in astrocytes led to neuronal depolarization and increased the frequency of mEPSCs through a metabotropic glutamate receptor-mediated pathway. Analysis of transgenic mice in which astrocytic vesicular release is suppressed (dominant-negative SNARE mice) and pharmacological manipulations suggested that glutamate is primarily released by opening of anion channels rather than exocytosis. Combined, these studies show that photolysis but not by agonists induced astrocytic Ca2+ signaling triggers glutamate release. PMID:24174673

  16. Increased expression of the Drosophila vesicular glutamate transporter leads to excess glutamate release and a compensatory decrease in quantal content.

    PubMed

    Daniels, Richard W; Collins, Catherine A; Gelfand, Maria V; Dant, Jaime; Brooks, Elizabeth S; Krantz, David E; DiAntonio, Aaron

    2004-11-17

    Quantal size is a fundamental parameter controlling the strength of synaptic transmission. The transmitter content of synaptic vesicles is one mechanism that can affect the physiological response to the release of a single vesicle. At glutamatergic synapses, vesicular glutamate transporters (VGLUTs) are responsible for filling synaptic vesicles with glutamate. To investigate how VGLUT expression can regulate synaptic strength in vivo, we have identified the Drosophila vesicular glutamate transporter, which we name DVGLUT. DVGLUT mRNA is expressed in glutamatergic motoneurons and a large number of interneurons in the Drosophila CNS. DVGLUT protein resides on synaptic vesicles and localizes to the presynaptic terminals of all known glutamatergic neuromuscular junctions as well as to synapses throughout the CNS neuropil. Increasing the expression of DVGLUT in motoneurons leads to an increase in quantal size that is accompanied by an increase in synaptic vesicle volume. At synapses confronted with increased glutamate release from each vesicle, there is a compensatory decrease in the number of synaptic vesicles released that maintains normal levels of synaptic excitation. These results demonstrate that (1) expression of DVGLUT determines the size and glutamate content of synaptic vesicles and (2) homeostatic mechanisms exist to attenuate the excitatory effects of excess glutamate release.

  17. The activation of metabotropic glutamate 5 receptors in the rat ventral tegmental area increases dopamine extracellular levels.

    PubMed

    Ferrada, Carla; Sotomayor-Zárate, Ramón; Abarca, Jorge; Gysling, Katia

    2017-01-01

    The mesocorticolimbic circuit projects to the prefrontal cortex, hippocampus, amygdala, and nucleus accumbens, among others, and it originates in the dopaminergic neurons of the ventral tegmental area (VTA). The VTA receives glutamatergic inputs from the prefrontal cortex and several subcortical regions. The glutamate released activates dopaminergic neurons and its action depends on the activation of ionotropic and metabotropic glutamate receptors. VTA dopaminergic neurons release dopamine (DA) from axon terminals in the innervated regions and somatodendritically in the VTA itself. DA release in the VTA is directly correlated with the activity of dopaminergic neurons. We hypothesized that metabotropic glutamate 5 receptors (mGlu5) directly regulate the activity of VTA dopaminergic neurons. To test this hypothesis, the extracellular levels of VTA DA and glutamate were studied by in-vivo microdialysis after an intra-VTA perfusion of (R,S)-2-chloro-5-hydroxyphenylglycine (CHPG), selective mGlu5 agonist. We observed that CHPG induced a significant increase in VTA DA and glutamate extracellular levels. To determine whether the effect of CHPG on DA levels is because of the increase in glutamate release, we perfused kynurenic acid, an ionotropic glutamate receptor antagonist, through the probe. Our results showed that kynurenic acid did not block the ability of CHPG to cause DA release. Thus, our results suggest that CHPG acts directly on mGlu5 in dopaminergic neurons to induce the release of DA.

  18. Nonvesicular Release of Glutamate by Glial xCT Transporters Suppresses Glutamate Receptor Clustering In Vivo

    PubMed Central

    Augustin, Hrvoje; Grosjean, Yael; Chen, Kaiyun; Sheng, Qi; Featherstone, David E.

    2008-01-01

    We hypothesized that cystine/glutamate transporters (xCTs) might be critical regulators of ambient extracellular glutamate levels in the nervous system and that misregulation of this glutamate pool might have important neurophysiological and/or behavioral consequences. To test this idea, we identified and functionally characterized a novel Drosophila xCT gene, which we subsequently named “genderblind” (gb). Genderblind is expressed in a previously overlooked subset of peripheral and central glia. Genetic elimination of gb causes a 50% reduction in extracellular glutamate concentration, demonstrating that xCT transporters are important regulators of extracellular glutamate. Consistent with previous studies showing that extracellular glutamate regulates postsynaptic glutamate receptor clustering, gb mutants show a large (200–300%) increase in the number of postsynaptic glutamate receptors. This increase in postsynaptic receptor abundance is not accompanied by other obvious synaptic changes and is completely rescued when synapses are cultured in wild-type levels of glutamate. Additional in situ pharmacology suggests that glutamate-mediated suppression of glutamate receptor clustering depends on receptor desensitization. Together, our results suggest that (1) xCT transporters are critical for regulation of ambient extracellular glutamate in vivo; (2) ambient extracellular glutamate maintains some receptors constitutively desensitized in vivo; and (3) constitutive desensitization of ionotropic glutamate receptors suppresses their ability to cluster at synapses. PMID:17202478

  19. Structure-Function Relationship of Transporters in the Glutamate-Glutamine Cycle of the Central Nervous System.

    PubMed

    Hayashi, Mariko Kato

    2018-04-12

    Many kinds of transporters contribute to glutamatergic excitatory synaptic transmission. Glutamate is loaded into synaptic vesicles by vesicular glutamate transporters to be released from presynaptic terminals. After synaptic vesicle release, glutamate is taken up by neurons or astrocytes to terminate the signal and to prepare for the next signal. Glutamate transporters on the plasma membrane are responsible for transporting glutamate from extracellular fluid to cytoplasm. Glutamate taken up by astrocyte is converted to glutamine by glutamine synthetase and transported back to neurons through glutamine transporters on the plasma membranes of the astrocytes and then on neurons. Glutamine is converted back to glutamate by glutaminase in the neuronal cytoplasm and then loaded into synaptic vesicles again. Here, the structures of glutamate transporters and glutamine transporters, their conformational changes, and how they use electrochemical gradients of various ions for substrate transport are summarized. Pharmacological regulations of these transporters are also discussed.

  20. Gq-DREADD Selectively Initiates Glial Glutamate Release and Inhibits Cue-induced Cocaine Seeking

    PubMed Central

    Scofield Michael, D.; Boger Heather, A.; Smith Rachel, J.; Li, Hao; Haydon Philip, G.; Kalivas Peter, W.

    2015-01-01

    Background Glial cells of the central nervous system directly influence neuronal activity by releasing neuroactive small molecules, including glutamate. Long-lasting cocaine-induced reductions in extracellular glutamate in the nucleus accumbens core (NAcore) affect synaptic plasticity responsible for relapse vulnerability. Methods We transduced NAcore astrocytes with an AAV viral vector expressing hM3Dq (Gq) DREADD under control of the glial fibrillary acidic protein (GFAP) promoter in 62 male Sprague Dawley rats, 4 dnSNARE mice and 4 wild type littermates. Using glutamate biosensors we measured NAcore glutamate levels following intracranial or systemic administration of clozapine-N-oxide (CNO), and tested the ability of systemic CNO to inhibit reinstated cocaine or sucrose seeking following self-administration (SA) and extinction training. Results Administration of CNO in GFAP-Gq-DREADD transfected animals increased NAcore extracellular glutamate levels in vivo. The glial origin of released glutamate was validated by an absence of CNO-mediated release in mice expressing a dominant-negative SNARE variant in glia. Also, CNO-mediated release was relatively insensitive to N-type calcium channel blockade. Systemic administration of CNO inhibited cue-induced reinstatement of cocaine seeking in rats extinguished from cocaine, but not sucrose SA. The capacity to inhibit reinstated cocaine-seeking was prevented by systemic administration of the group II metabotropic glutamate receptor (mGluR2/3) antagonist LY341495. Conclusions DREADD-mediated glutamate gliotransmission inhibited cue-induced reinstatement of cocaine seeking by stimulating release-regulating mGluR2/3 autoreceptors to inhibit cue-induced synaptic glutamate spillover. PMID:25861696

  1. Functional and morphological characterization of glutamate transporters in the rat locus coeruleus

    PubMed Central

    Medrano, M C; Gerrikagoitia, I; Martínez-Millán, L; Mendiguren, A; Pineda, J

    2013-01-01

    Background and Purpose Excitatory amino acid transporters (EAATs) in the CNS contribute to the clearance of glutamate released during neurotransmission. The aim of this study was to explore the role of EAATs in the regulation of locus coeruleus (LC) neurons by glutamate. Experimental Approach We measured the effect of different EAAT subtype inhibitors/enhancers on glutamate- and KCl-induced activation of LC neurons in rat slices. EAAT2–3 expression in the LC was also characterized by immunohistochemistry. Key Results The EAAT2–5 inhibitor DL-threo-β-benzyloxaspartic acid (100 μM), but not the EAAT2, 4, 5 inhibitor L-trans-pyrrolidine-2,4-dicarboxylic acid (100 μM) or the EAAT2 inhibitor dihydrokainic acid (DHK; 100 μM), enhanced the glutamate- and KCl-induced activation of the firing rate of LC neurons. These effects were blocked by ionotropic, but not metabotrobic, glutamate receptor antagonists. DHK (100 μM) was the only EAAT inhibitor that increased the spontaneous firing rate of LC cells, an effect that was due to inhibition of EAAT2 and subsequent AMPA receptor activation. Chronic treatment with ceftriaxone (200 mg·kg−1 i.p., once daily, 7 days), an EAAT2 expression enhancer, increased the actions of glutamate and DHK, suggesting a functional impact of EAAT2 up-regulation on the glutamatergic system. Immuhistochemical data revealed the presence of EAAT2 and EAAT3 surrounding noradrenergic neurons and EAAT2 on glial cells in the LC. Conclusions and Implications These results remark the importance of EAAT2 and EAAT3 in the regulation of rat LC by glutamate. Neuronal EAAT3 would be responsible for terminating the action of synaptically released glutamate, whereas glial EAAT2 would regulate tonic glutamate concentrations in this nucleus. PMID:23638698

  2. Coenzyme Q10 inhibits the release of glutamate in rat cerebrocortical nerve terminals by suppression of voltage-dependent calcium influx and mitogen-activated protein kinase signaling pathway.

    PubMed

    Chang, Yi; Huang, Shu-Kuei; Wang, Su-Jane

    2012-12-05

    This study investigates the effects and possible mechanism of coenzyme Q10 (CoQ10) on endogenous glutamate release in the cerebral cortex nerve terminals of rats. CoQ10 inhibited the release of glutamate evoked by the K+ channel blocker 4-aminopyridine (4-AP). CoQ10 reduced the depolarization-induced increase in cytosolic [Ca2+]c but did not alter the 4-AP-mediated depolarization. The effect of CoQ10 on evoked glutamate release was abolished by blocking the Cav2.2 (N-type) and Cav2.1 (P/Q-type) Ca2+ channels and mitogen-activated protein kinase kinase (MEK). In addition, CoQ10 decreased the 4-AP-induced phosphorylation of extracellular signal-regulated kinase 1 and 2 (ERK1/2) and synaptic vesicle-associated protein synapsin I, a major presynaptic substrate for ERK. Moreover, the inhibition of glutamate release by CoQ10 was strongly attenuated in mice without synapsin I. These results suggest that CoQ10 inhibits glutamate release from cortical synaptosomes in rats through the suppression of the presynaptic voltage-dependent Ca2+ entry and ERK/synapsin I signaling pathway.

  3. Glutamate-Dependent Translational Control of Glutamine Synthetase in Bergmann Glia Cells.

    PubMed

    Tiburcio-Félix, Reynaldo; Escalante-López, Miguel; López-Bayghen, Bruno; Martínez, Daniel; Hernández-Kelly, Luisa C; Zinker, Samuel; Hernández-Melchor, Dinorah; López-Bayghen, Esther; Olivares-Bañuelos, Tatiana N; Ortega, Arturo

    2018-06-01

    Glutamate is the major excitatory transmitter of the vertebrate brain. It exerts its actions through the activation of specific plasma membrane receptors expressed both in neurons and in glial cells. Recent evidence has shown that glutamate uptake systems, particularly enriched in glia cells, trigger biochemical cascades in a similar fashion as receptors. A tight regulation of glutamate extracellular levels prevents neuronal overstimulation and cell death, and it is critically involved in glutamate turnover. Glial glutamate transporters are responsible of the majority of the brain glutamate uptake activity. Once internalized, this excitatory amino acid is rapidly metabolized to glutamine via the astrocyte-enriched enzyme glutamine synthetase. A coupling between glutamate uptake and glutamine synthesis and release has been commonly known as the glutamate/glutamine shuttle. Taking advantage of the established model of cultured Bergmann glia cells, in this contribution, we explored the gene expression regulation of glutamine synthetase. A time- and dose-dependent regulation of glutamine synthetase protein and activity levels was found. Moreover, glutamate exposure resulted in the transient shift of glutamine synthetase mRNA from the monosomal to the polysomal fraction. These results demonstrate a novel mode of glutamate-dependent glutamine synthetase regulation and strengthen the notion of an exquisite glia neuronal interaction in glutamatergic synapses.

  4. Hypothermia protects against oxygen-glucose deprivation-induced neuronal injury by down-regulating the reverse transport of glutamate by astrocytes as mediated by neurons.

    PubMed

    Wang, D; Zhao, Y; Zhang, Y; Zhang, T; Shang, X; Wang, J; Liu, Y; Kong, Q; Sun, B; Mu, L; Liu, X; Wang, G; Li, H

    2013-05-01

    Glutamate is the major mediator of excitotoxic neuronal death following cerebral ischemia. Under severe ischemic conditions, glutamate transporters can functionally reverse to release glutamate, thereby inducing further neuronal injury. Hypothermia has been shown to protect neurons from brain ischemia. However, the mechanism(s) involved remain unclear. Therefore, the aim of this study was to investigate the mechanism(s) mediating glutamate release during brain ischemia-reperfusion injury under hypothermic conditions. Neuron/astrocyte co-cultures were exposed to oxygen-glucose deprivation (OGD) at various temperatures for 2h, and cell viability was assayed 12h after reoxygenation. PI and MAP-2 staining demonstrated that hypothermia significantly decreased neuronal injury. Furthermore, [(3)H]-glutamate uptake assays showed that hypothermia protected rat primary cortical cultures against OGD reoxygenation-induced injury. Protein levels of the astrocytic glutamate transporter, GLT-1, which is primarily responsible for the clearance of extracellular glutamate, were also found to be reduced in a temperature-dependent manner. In contrast, expression of GLT-1 in astrocyte-enriched cultures was found to significantly increase following the addition of neuron-conditioned medium maintained at 37 °C, and to a lesser extent with neuron-conditioned medium at 33 °C. In conclusion, the neuroprotective effects of hypothermia against brain ischemia-reperfusion injury involve down-regulation of astrocytic GLT-1, which mediates the reverse transport of glutamate. Moreover, this process may be regulated by molecules secreted by stressed neurons. Copyright © 2013 IBRO. Published by Elsevier Ltd. All rights reserved.

  5. The effects of JM-20 on the glutamatergic system in synaptic vesicles, synaptosomes and neural cells cultured from rat brain.

    PubMed

    Nuñez-Figueredo, Yanier; Pardo Andreu, Gilberto L; Oliveira Loureiro, Samanta; Ganzella, Marcelo; Ramírez-Sánchez, Jeney; Ochoa-Rodríguez, Estael; Verdecia-Reyes, Yamila; Delgado-Hernández, René; Souza, Diogo O

    2015-02-01

    JM-20 (3-ethoxycarbonyl-2-methyl-4-(2-nitrophenyl)-4,11-dihydro-1H-pyrido[2,3-b][1,5]benzodiazepine) is a novel benzodiazepine dihydropyridine hybrid molecule, which has been shown to be a neuroprotective agent in brain disorders involving glutamate receptors. However, the effect of JM-20 on the functionality of the glutamatergic system has not been investigated. In this study, by using different in vitro preparations, we investigated the effects of JM-20 on (i) rat brain synaptic vesicles (L-[(3)H]-glutamate uptake, proton gradient built-up and bafilomycin-sensitive H(+)-ATPase activity), (ii) rat brain synaptosomes (glutamate release) and (iii) primary cultures of rat cortical neurons, astrocytes and astrocyte-neuron co-cultures (L-[(3)H]-glutamate uptake and glutamate release). We observed here that JM-20 impairs H(+)-ATPase activity and consequently reduces vesicular glutamate uptake. This molecule also inhibits glutamate release from brain synaptosomes and markedly increases glutamate uptake in astrocytes alone, and co-cultured neurons and astrocytes. The impairment of vesicular glutamate uptake by inhibition of the H(+)-ATPase caused by JM-20 could decrease the amount of the transmitter stored in synaptic vesicles, increase the cytosolic levels of glutamate, and will thus down-regulate neurotransmitter release. Together, these results contribute to explain the anti-excitotoxic effect of JM-20 and its strong neuroprotective effect observed in different in vitro and in vivo models of brain ischemia. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Hispidulin inhibits the release of glutamate in rat cerebrocortical nerve terminals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Tzu-Yu; Department of Mechanical Engineering, Yuan Ze University, Taoyuan, 320, Taiwan; Lu, Cheng-Wei

    2012-09-01

    Hispidulin, a naturally occurring flavone, has been reported to have an antiepileptic profile. An excessive release of glutamate is considered to be related to neuropathology of epilepsy. We investigated whether hispidulin affected endogenous glutamate release in rat cerebral cortex nerve terminals (synaptosomes) and explored the possible mechanism. Hispidulin inhibited the release of glutamate evoked by the K{sup +} channel blocker 4-aminopyridine (4-AP). The effects of hispidulin on the evoked glutamate release were prevented by the chelation of extracellular Ca{sup 2+} ions and the vesicular transporter inhibitor bafilomycin A1. However, the glutamate transporter inhibitor DL-threo-beta-benzyl-oxyaspartate did not have any effect onmore » hispidulin action. Hispidulin reduced the depolarization-induced increase in cytosolic free Ca{sup 2+} concentration ([Ca{sup 2+}]{sub C}), but did not alter 4-AP-mediated depolarization. Furthermore, the effect of hispidulin on evoked glutamate release was abolished by blocking the Ca{sub v}2.2 (N-type) and Ca{sub v}2.1 (P/Q-type) channels, but not by blocking ryanodine receptors or mitochondrial Na{sup +}/Ca{sup 2+} exchange. Mitogen-activated protein kinase kinase (MEK) inhibition also prevented the inhibitory effect of hispidulin on evoked glutamate release. Western blot analyses showed that hispidulin decreased the 4-AP-induced phosphorylation of extracellular signal-regulated kinase 1 and 2 (ERK1/2) and synaptic vesicle-associated protein synapsin I, a major presynaptic substrate for ERK; this decrease was also blocked by the MEK inhibitor. Moreover, the inhibition of glutamate release by hispidulin was strongly attenuated in mice without synapsin I. These results show that hispidulin inhibits glutamate release from cortical synaptosomes in rats through the suppression of presynaptic voltage-dependent Ca{sup 2+} entry and ERK/synapsin I signaling pathway. -- Highlights: ► Hispidulin inhibited glutamate release from rat cerebrocortical synaptosomes. ► This action did not involve the participation of GABA{sub A} receptors. ► A decrease in the Ca{sup 2+} influx through Ca{sub v}2.2 and Ca{sub v}2.1 channels was involved. ► A role for the MAPK/ERK/synapsin I pathway in the action of hispidulin was suggested. ► This study provided further understanding of the mode of hispidulin action in the brain.« less

  7. Dynamic changes in extracellular release of GABA and glutamate in the lateral septum during social play behavior in juvenile rats: Implications for sex-specific regulation of social play behavior

    PubMed Central

    Bredewold, Remco; Schiavo, Jennifer K.; van der Hart, Marieke; Verreij, Michelle; Veenema, Alexa H.

    2015-01-01

    Social play is a motivated and rewarding behavior that is displayed by nearly all mammals and peaks in the juvenile period. Moreover, social play is essential for the development of social skills and is impaired in social disorders like autism. We recently showed that the lateral septum (LS) is involved in the regulation of social play behavior in juvenile male and female rats. The LS is largely modulated by GABA and glutamate neurotransmission, but their role in social play behavior is unknown. Here, we determined whether social play behavior is associated with changes in the extracellular release of GABA and glutamate in the LS and to what extent such changes modulate social play behavior in male and female juvenile rats. Using intracerebral microdialysis in freely behaving rats, we found no sex difference in extracellular GABA concentrations, but extracellular glutamate concentrations are higher in males than in females under baseline condition and during social play. This resulted in a higher glutamate/GABA concentration ratio in males versus females and thus, an excitatory predominance in the LS of males. Furthermore, social play behavior in both sexes is associated with significant increases in extracellular release of GABA and glutamate in the LS. Pharmacological blockade of GABA-A receptors in the LS with bicuculline (100 ng/0.5 µl, 250 ng/0.5 µl) dose-dependently decreased the duration of social play behavior in both sexes. In contrast, pharmacological blockade of ionotropic glutamate receptors (NMDA and AMPA/kainate receptors) in the LS with AP-5 + CNQX (2 mM+0.4 mM/0.5 µl, 30 mM+3 mM/0.5 µl) dose-dependently decreased the duration of social play behavior in females, but did not alter social play behavior in males. Together, these data suggest a role for GABA neurotransmission in the LS in the regulation of juvenile social play behavior in both sexes, while glutamate neurotransmission in the LS is involved in the sex-specific regulation of juvenile social play behavior. PMID:26318330

  8. Cortical Regulation of Striatal Medium Spiny Neuron Dendritic Remodeling in Parkinsonism: Modulation of Glutamate Release Reverses Dopamine Depletion–Induced Dendritic Spine Loss

    PubMed Central

    Garcia, Bonnie G.; Neely, M. Diana

    2010-01-01

    Striatal medium spiny neurons (MSNs) receive glutamatergic afferents from the cerebral cortex and dopaminergic inputs from the substantia nigra (SN). Striatal dopamine loss decreases the number of MSN dendritic spines. This loss of spines has been suggested to reflect the removal of tonic dopamine inhibitory control over corticostriatal glutamatergic drive, with increased glutamate release culminating in MSN spine loss. We tested this hypothesis in two ways. We first determined in vivo if decortication reverses or prevents dopamine depletion–induced spine loss by placing motor cortex lesions 4 weeks after, or at the time of, 6-hydroxydopamine lesions of the SN. Animals were sacrificed 4 weeks after cortical lesions. Motor cortex lesions significantly reversed the loss of MSN spines elicited by dopamine denervation; a similar effect was observed in the prevention experiment. We then determined if modulating glutamate release in organotypic cocultures prevented spine loss. Treatment of the cultures with the mGluR2/3 agonist LY379268 to suppress corticostriatal glutamate release completely blocked spine loss in dopamine-denervated cultures. These studies provide the first evidence to show that MSN spine loss associated with parkinsonism can be reversed and point to suppression of corticostriatal glutamate release as a means of slowing progression in Parkinson's disease. PMID:20118184

  9. Short-term dopaminergic regulation of GABA release in dopamine deafferented caudate-putamen is not directly associated with glutamic acid decarboxylase gene expression.

    PubMed

    O'Connor, W T; Lindefors, N; Brené, S; Herrera-Marschitz, M; Persson, H; Ungerstedt, U

    1991-07-08

    In vivo microdialysis and in situ hybridization were combined to study dopaminergic regulation of gamma-amino butyric acid (GABA) neurons in rat caudate-putamen (CPu). Potassium-stimulated GABA release in CPu was elevated following a dopamine deafferentation. Local perfusion with exogenous dopamine (50 microM) for 3 h via the microdialysis probe attenuated the potassium-stimulated increase in extracellular GABA in CPu. Expression of glutamic acid decarboxylase (GAD) mRNA was also increased in the dopamine deafferented CPu. However, local perfusion with dopamine had no significant attenuating effect on the increased GAD mRNA expression. These findings indicate that dopaminergic regulation of GABA neurons in the dopamine deafferented CPu includes both a short-term effect at the level of GABA release independent of changes in GAD mRNA expression and a long-term modulation at the level of GAD gene expression.

  10. Ciproxifan, a histamine H{sub 3} receptor antagonist and inverse agonist, presynaptically inhibits glutamate release in rat hippocampus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Cheng-Wei; Lin, Tzu-Yu

    2017-03-15

    Ciproxifan is an H{sub 3} receptor antagonist and inverse agonist with antipsychotic effects in several preclinical models; its effect on glutamate release has been investigated in the rat hippocampus. In a synaptosomal preparation, ciproxifan reduced 4-aminopyridine (4-AP)-evoked Ca{sup 2+}-dependent glutamate release and cytosolic Ca{sup 2+} concentration elevation but did not affect the membrane potential. The inhibitory effect of ciproxifan on 4-AP-evoked glutamate release was prevented by the Gi/Go-protein inhibitor pertussis toxin and Ca{sub v}2.2 (N-type) and Ca{sub v}2.1 (P/Q-type) channel blocker ω-conotoxin MVIIC, but was not affected by the intracellular Ca{sup 2+}-release inhibitors dantrolene and CGP37157. Furthermore, the phospholipase A{submore » 2} (PLA{sub 2}) inhibitor OBAA, prostaglandin E{sub 2} (PGE{sub 2}), PGE2 subtype 2 (EP{sub 2}) receptor antagonist PF04418948, and extracellular signal-regulated kinase (ERK) inhibitor FR180204 eliminated the inhibitory effect of ciproxifan on glutamate release. Ciproxifan reduced the 4-AP-evoked phosphorylation of ERK and synapsin I, a presynaptic target of ERK. The ciproxifan-mediated inhibition of glutamate release was prevented in synaptosomes from synapsin I-deficient mice. Moreover, ciproxifan reduced the frequency of miniature excitatory postsynaptic currents without affecting their amplitude in hippocampal slices. Our data suggest that ciproxifan, acting through the blockade of Gi/Go protein-coupled H{sub 3} receptors present on hippocampal nerve terminals, reduces voltage-dependent Ca{sup 2+} entry by diminishing PLA{sub 2}/PGE{sub 2}/EP{sub 2} receptor pathway, which subsequently suppresses the ERK/synapsin I cascade to decrease the evoked glutamate release. - Highlights: • Ciproxifan presynaptically reduces glutamate release in the hippocampus in vitro. • Decrease in voltage-dependent Ca{sup 2+} influx is involved. • A role for the PLA{sub 2}/PGE{sub 2}/EP{sub 2} pathway in the action of ciproxifan is suggested. • Decreased ERK and synapsin I activity is also involved. • This study provides new insight into the mode by which ciproxifan acts in the brain.« less

  11. Dynamic changes in extracellular release of GABA and glutamate in the lateral septum during social play behavior in juvenile rats: Implications for sex-specific regulation of social play behavior.

    PubMed

    Bredewold, R; Schiavo, J K; van der Hart, M; Verreij, M; Veenema, A H

    2015-10-29

    Social play is a motivated and rewarding behavior that is displayed by nearly all mammals and peaks in the juvenile period. Moreover, social play is essential for the development of social skills and is impaired in social disorders like autism. We recently showed that the lateral septum (LS) is involved in the regulation of social play behavior in juvenile male and female rats. The LS is largely modulated by GABA and glutamate neurotransmission, but their role in social play behavior is unknown. Here, we determined whether social play behavior is associated with changes in the extracellular release of GABA and glutamate in the LS and to what extent such changes modulate social play behavior in male and female juvenile rats. Using intracerebral microdialysis in freely behaving rats, we found no sex difference in extracellular GABA concentrations, but extracellular glutamate concentrations are higher in males than in females under baseline conditions and during social play. This resulted in a higher glutamate/GABA concentration ratio in males vs. females and thus, an excitatory predominance in the LS of males. Furthermore, social play behavior in both sexes is associated with significant increases in extracellular release of GABA and glutamate in the LS. Pharmacological blockade of GABA-A receptors in the LS with bicuculline (100 ng/0.5 μl, 250 ng/0.5 μl) dose-dependently decreased the duration of social play behavior in both sexes. In contrast, pharmacological blockade of ionotropic glutamate receptors (NMDA and AMPA/kainate receptors) in the LS with AP-5+CNQX (2mM+0.4mM/0.5 μl, 30 mM+3mM/0.5 μl) dose-dependently decreased the duration of social play behavior in females, but did not alter social play behavior in males. Together, these data suggest a role for GABA neurotransmission in the LS in the regulation of juvenile social play behavior in both sexes, while glutamate neurotransmission in the LS is involved in the sex-specific regulation of juvenile social play behavior. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  12. Control of Amygdala Circuits by 5-HT Neurons via 5-HT and Glutamate Cotransmission.

    PubMed

    Sengupta, Ayesha; Bocchio, Marco; Bannerman, David M; Sharp, Trevor; Capogna, Marco

    2017-02-15

    The serotonin (5-HT) system and the amygdala are key regulators of emotional behavior. Several lines of evidence suggest that 5-HT transmission in the amygdala is implicated in the susceptibility and drug treatment of mood disorders. Therefore, elucidating the physiological mechanisms through which midbrain 5-HT neurons modulate amygdala circuits could be pivotal in understanding emotional regulation in health and disease. To shed light on these mechanisms, we performed patch-clamp recordings from basal amygdala (BA) neurons in brain slices from mice with channelrhodopsin genetically targeted to 5-HT neurons. Optical stimulation of 5-HT terminals at low frequencies (≤1 Hz) evoked a short-latency excitation of BA interneurons (INs) that was depressed at higher frequencies. Pharmacological analysis revealed that this effect was mediated by glutamate and not 5-HT because it was abolished by ionotropic glutamate receptor antagonists. Optical stimulation of 5-HT terminals at higher frequencies (10-20 Hz) evoked both slow excitation and slow inhibition of INs. These effects were mediated by 5-HT because they were blocked by antagonists of 5-HT 2A and 5-HT 1A receptors, respectively. These fast glutamate- and slow 5-HT-mediated responses often coexisted in the same neuron. Interestingly, fast-spiking and non-fast-spiking INs displayed differential modulation by glutamate and 5-HT. Furthermore, optical stimulation of 5-HT terminals did not evoke glutamate release onto BA principal neurons, but inhibited these cells directly via activation of 5-HT 1A receptors and indirectly via enhanced GABA release. Collectively, these findings suggest that 5-HT neurons exert a frequency-dependent, cell-type-specific control over BA circuitry via 5-HT and glutamate co-release to inhibit the BA output. SIGNIFICANCE STATEMENT The modulation of the amygdala by serotonin (5-HT) is important for emotional regulation and is implicated in the pathogenesis and treatment of affective disorders. Therefore, it is essential to determine the physiological mechanisms through which 5-HT neurons in the dorsal raphe nuclei modulate amygdala circuits. Here, we combined optogenetic, electrophysiological, and pharmacological approaches to study the effects of activation of 5-HT axons in the basal nucleus of the amygdala (BA). We found that 5-HT neurons co-release 5-HT and glutamate onto BA neurons in a cell-type-specific and frequency-dependent manner. Therefore, we suggest that theories on the contribution of 5-HT neurons to amygdala function should be revised to incorporate the concept of 5-HT/glutamate cotransmission. Copyright © 2017 Sengupta et al.

  13. Control of Amygdala Circuits by 5-HT Neurons via 5-HT and Glutamate Cotransmission

    PubMed Central

    Bannerman, David M.

    2017-01-01

    The serotonin (5-HT) system and the amygdala are key regulators of emotional behavior. Several lines of evidence suggest that 5-HT transmission in the amygdala is implicated in the susceptibility and drug treatment of mood disorders. Therefore, elucidating the physiological mechanisms through which midbrain 5-HT neurons modulate amygdala circuits could be pivotal in understanding emotional regulation in health and disease. To shed light on these mechanisms, we performed patch-clamp recordings from basal amygdala (BA) neurons in brain slices from mice with channelrhodopsin genetically targeted to 5-HT neurons. Optical stimulation of 5-HT terminals at low frequencies (≤1 Hz) evoked a short-latency excitation of BA interneurons (INs) that was depressed at higher frequencies. Pharmacological analysis revealed that this effect was mediated by glutamate and not 5-HT because it was abolished by ionotropic glutamate receptor antagonists. Optical stimulation of 5-HT terminals at higher frequencies (10–20 Hz) evoked both slow excitation and slow inhibition of INs. These effects were mediated by 5-HT because they were blocked by antagonists of 5-HT2A and 5-HT1A receptors, respectively. These fast glutamate- and slow 5-HT-mediated responses often coexisted in the same neuron. Interestingly, fast-spiking and non-fast-spiking INs displayed differential modulation by glutamate and 5-HT. Furthermore, optical stimulation of 5-HT terminals did not evoke glutamate release onto BA principal neurons, but inhibited these cells directly via activation of 5-HT1A receptors and indirectly via enhanced GABA release. Collectively, these findings suggest that 5-HT neurons exert a frequency-dependent, cell-type-specific control over BA circuitry via 5-HT and glutamate co-release to inhibit the BA output. SIGNIFICANCE STATEMENT The modulation of the amygdala by serotonin (5-HT) is important for emotional regulation and is implicated in the pathogenesis and treatment of affective disorders. Therefore, it is essential to determine the physiological mechanisms through which 5-HT neurons in the dorsal raphe nuclei modulate amygdala circuits. Here, we combined optogenetic, electrophysiological, and pharmacological approaches to study the effects of activation of 5-HT axons in the basal nucleus of the amygdala (BA). We found that 5-HT neurons co-release 5-HT and glutamate onto BA neurons in a cell-type-specific and frequency-dependent manner. Therefore, we suggest that theories on the contribution of 5-HT neurons to amygdala function should be revised to incorporate the concept of 5-HT/glutamate cotransmission. PMID:28087766

  14. Hypothalamic neural systems controlling the female reproductive life cycle: Gonadotropin-releasing hormone, glutamate, and GABA

    PubMed Central

    Maffucci, Jacqueline A.; Gore, Andrea C.

    2009-01-01

    The hypothalamic-pituitary-gonadal (HPG) axis undergoes a number of changes throughout the reproductive life cycle that are responsible for the development, puberty, adulthood, and senescence of reproductive systems. This natural progression is dictated by the neural network controlling the hypothalamus including the cells that synthesize and release gonadotropin-releasing hormone (GnRH) and their regulatory neurotransmitters. Glutamate and GABA are the primary excitatory and inhibitory neurotransmitters in the central nervous system, and as such contribute a great deal to modulating this axis throughout the lifetime via their actions on receptors in the hypothalamus, both directly on GnRH neurons as well as indirectly though other hypothalamic neural networks. Interactions among GnRH neurons, glutamate, and GABA, including the regulation of GnRH gene and protein expression, hormone release, and modulation by estrogen, are critical to age-appropriate changes in reproductive function. Here, we present evidence for the modulation of GnRH neurosecretory cells by the balance of glutamate and GABA in the hypothalamus, and the functional consequences of these interactions on reproductive physiology across the life cycle. PMID:19349036

  15. Up-regulation of GLT-1 severely impairs LTD at mossy fibre--CA3 synapses.

    PubMed

    Omrani, Azar; Melone, Marcello; Bellesi, Michele; Safiulina, Victoria; Aida, Tomomi; Tanaka, Kohishi; Cherubini, Enrico; Conti, Fiorenzo

    2009-10-01

    Glutamate transporters are responsible for clearing synaptically released glutamate from the extracellular space. By this action, they maintain low levels of ambient glutamate, thus preventing excitotoxic damage, and contribute to shaping synaptic currents. We show that up-regulation of the glutamate transporter GLT-1 by ceftriaxone severely impaired mGluR-dependent long-term depression (LTD), induced at rat mossy fibre (MF)-CA3 synapses by repetitive stimulation of afferent fibres. This effect involved GLT-1, since LTD was rescued by the selective GLT-1 antagonist dihydrokainate (DHK). DHK per se produced a modest decrease in fEPSP amplitude that rapidly regained control levels after DHK wash out. Moreover, the degree of fEPSP inhibition induced by the low-affinity glutamate receptor antagonist gamma-DGG was similar during basal synaptic transmission but not during LTD, indicating that in ceftriaxone-treated rats LTD induction did not alter synaptic glutamate transient concentration. Furthermore, ceftriaxone-induced GLT-1 up-regulation significantly reduced the magnitude of LTP at MF-CA3 synapses but not at Schaffer collateral-CA1 synapses. Postembedding immunogold studies in rats showed an increased density of gold particles coding for GLT-1a in astrocytic processes and in mossy fibre terminals; in the latter, gold particles were located near and within the active zones. In both CEF-treated and untreated GLT-1 KO mice used for verifying the specificity of immunostaining, the density of gold particles in MF terminals was comparable to background levels. The enhanced expression of GLT-1 at release sites may prevent activation of presynaptic receptors, thus revealing a novel mechanism by which GLT-1 regulates synaptic plasticity in the hippocampus.

  16. Dual inhibitory action of enadoline (CI977) on release of amino acids in the rat hippocampus.

    PubMed

    Millan, M H; Chapman, A G; Meldrum, B S

    1995-06-06

    The effect of the kappa-opioid receptor agonist enadoline (CI977, (5R)-(5 alpha,7 alpha,8 beta)-N-methyl-N-[7-(1-pyrrilidinyl)-1-oxaspiro [4,5]dec-8-yl-4-benzofuranacetamide monohydrochloride), on the release of amino acids was studied in the hippocampus of freely moving rats. K+, 100 mM, or veratrine, 100 microM, were applied for 10 min via the dialysis probe, either alone (control groups) or together with CI977 (after a 10 min pretreatment with CI977 in the perfusion medium). To test the specificity of the response to CI977, nor-binaltorphimine, a selective kappa-opioid receptor antagonist, was delivered together with CI977 in two groups of animals. To test the effect of systemic injection, CI977 was given subcutaneously 30 min prior to either stimulus. K(+)-induced release of glutamate and aspartate was significantly reduced by CI977, 2.5 mM; release of gamma-aminobutyric acid (GABA) was reduced by 250 microM CI977 in the probe. The effect of CI977 on release of glutamate and aspartate, but not of GABA, was reversed by nor-binaltorphimine (45 microM). Systemic treatment with CI977, 1 or 10 mg/kg, did not reduce K(+)-induced release of glutamate. Veratrine-induced release of aspartate and glutamate was significantly inhibited by 25 microM and release of GABA by 250 microM CI977 in the probe, and this effect was not modified by nor-binaltorphimine (58 microM). Systemic injection of CI977 1 mg/kg significantly reduced veratrine-induced release of glutamate. These results indicate that CI977 regulates release of amino acids by two independent mechanisms.(ABSTRACT TRUNCATED AT 250 WORDS)

  17. Functional implications of neurotransmitter co-release: glutamate and GABA share the load.

    PubMed

    Seal, Rebecca P; Edwards, Robert H

    2006-02-01

    For decades it has been thought that a neuron releases only one classical neurotransmitter from all of its processes. However, recent work has shown that most neuronal populations release more than one classical transmitter, and indeed that the transmitters can be segregated into different processes of the same neuron. Glutamate and gamma-aminobutyric acid, the major excitatory and inhibitory neurotransmitters in the mammalian central nervous system, appear to be co-released with most other transmitters, as well as with each other. The release of multiple transmitters by the same neuron enhances the spatial and temporal control of synaptic transmission. Moreover, dynamic regulation of neurotransmitter phenotypes increases the plasticity of neurotransmission, indicating potential avenues for therapeutic intervention.

  18. Glutamate-dependent ectodomain shedding of neuregulin-1 type II precursors in rat forebrain neurons.

    PubMed

    Iwakura, Yuriko; Wang, Ran; Inamura, Naoko; Araki, Kazuaki; Higashiyama, Shigeki; Takei, Nobuyuki; Nawa, Hiroyuki

    2017-01-01

    The neurotrophic factor neuregulin 1 (NRG1) regulates neuronal development, glial differentiation, and excitatory synapse maturation. NRG1 is synthesized as a membrane-anchored precursor and is then liberated by proteolytic processing or exocytosis. Mature NRG1 then binds to its receptors expressed by neighboring neurons or glial cells. However, the molecular mechanisms that govern this process in the nervous system are not defined in detail. Here we prepared neuron-enriched and glia-enriched cultures from embryonic rat neocortex to investigate the role of neurotransmitters that regulate the liberation/release of NRG1 from the membrane of neurons or glial cells. Using a two-site enzyme immunoassay to detect soluble NRG1, we show that, of various neurotransmitters, glutamate was the most potent inducer of NRG1 release in neuron-enriched cultures. NRG1 release in glia-enriched cultures was relatively limited. Furthermore, among glutamate receptor agonists, N-Methyl-D-Aspartate (NMDA) and kainate (KA), but not AMPA or tACPD, mimicked the effects of glutamate. Similar findings were acquired from analysis of the hippocampus of rats with KA-induced seizures. To evaluate the contribution of members of a disintegrin and metalloproteinase (ADAM) families to NRG1 release, we transfected primary cultures of neurons with cDNA vectors encoding NRG1 types I, II, or III precursors, each tagged with the alkaline phosphatase reporter. Analysis of alkaline phosphatase activity revealed that the NRG1 type II precursor was subjected to tumor necrosis factor-α-converting enzyme (TACE) / a Disintegrin And Metalloproteinase 17 (ADAM17) -dependent ectodomain shedding in a protein kinase C-dependent manner. These results suggest that glutamatergic neurotransmission positively regulates the ectodomain shedding of NRG1 type II precursors and liberates the active NRG1 domain in an activity-dependent manner.

  19. Metabotropic glutamate receptor 5 mediates the suppressive effect of 6-OHDA-induced model of Parkinson's disease on liver cancer.

    PubMed

    Xi, Shao-Song; Bai, Xiao-Xu; Gu, Li; Bao, Li-Hui; Yang, Hui-Min; An, Wei; Wang, Xiao-Min; Zhang, Hong

    2017-07-01

    Numerous epidemiological studies suggested that there is a variable cancer risk in patients with Parkinson's disease (PD). However, the underlying mechanisms remain unclear. In the present study, the role of metabotropic glutamate receptor 5 (mGluR5) has been investigated in 6-hydroxydopamine (6-OHDA)-induced PD combined with liver cancer both in vitro and in vivo. We found that PD cellular model from 6-OHDA-lesioned MN9D cells suppressed the growth, migration, and invasion of Hepa1-6 cells via down-regulation of mGluR5-mediated ERK and Akt pathway. The application of 2-methyl-6-(phenylethyl)-pyridine and knockdown of mGluR5 further decreased the effect on Hepa-1-6 cells when co-cultured with conditioned media. The effect was increased by (S)-3,5-dihydroxyphenylglycine and overexpression of mGluR5. Moreover, more release of glutamate from 6-OHDA-lesioned MN9D cells suppressed mGluR5-mediated effect of Hepa1-6 cells. Application of riluzole eliminated the increased glutamate release induced by 6-OHDA in MN9D cells and aggravated the suppressive effect on Hepa-1-6 cells. In addition, the growth of implanted liver cancer was inhibited in 6-OHDA induced PD-like rats, and was associated with increased glutamate release in the serum and down-regulation of mGluR5 in tumor tissue. Collectively, these results indicate that selective antagonism of glutamate and mGluR5 has a potentially beneficial effect in both liver cancer and PD, and thus may provide more understanding for the clinical investigation and further an additional therapeutic target for these two diseases. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Cholinergic Interneurons Mediate Fast VGluT3-Dependent Glutamatergic Transmission in the Striatum

    PubMed Central

    Higley, Michael J.; Balthasar, Nina; Seal, Rebecca P.; Edwards, Robert H.; Lowell, Bradford B.; Kreitzer, Anatol C.; Sabatini, Bernardo L.

    2011-01-01

    The neurotransmitter glutamate is released by excitatory projection neurons throughout the brain. However, non-glutamatergic cells, including cholinergic and monoaminergic neurons, express markers that suggest that they are also capable of vesicular glutamate release. Striatal cholinergic interneurons (CINs) express the Type-3 vesicular glutamate transporter (VGluT3), although whether they form functional glutamatergic synapses is unclear. To examine this possibility, we utilized mice expressing Cre-recombinase under control of the endogenous choline acetyltransferase locus and conditionally expressed light-activated Channelrhodopsin2 in CINs. Optical stimulation evoked action potentials in CINs and produced postsynaptic responses in medium spiny neurons that were blocked by glutamate receptor antagonists. CIN-mediated glutamatergic responses exhibited a large contribution of NMDA-type glutamate receptors, distinguishing them from corticostriatal inputs. CIN-mediated glutamatergic responses were insensitive to antagonists of acetylcholine receptors and were not seen in mice lacking VGluT3. Our results indicate that CINs are capable of mediating fast glutamatergic transmission, suggesting a new role for these cells in regulating striatal activity. PMID:21544206

  1. Bacterial Cytolysin during Meningitis Disrupts the Regulation of Glutamate in the Brain, Leading to Synaptic Damage

    PubMed Central

    Wippel, Carolin; Maurer, Jana; Förtsch, Christina; Hupp, Sabrina; Bohl, Alexandra; Ma, Jiangtao; Mitchell, Timothy J.; Bunkowski, Stephanie; Brück, Wolfgang; Nau, Roland; Iliev, Asparouh I.

    2013-01-01

    Streptococcus pneumoniae (pneumococcal) meningitis is a common bacterial infection of the brain. The cholesterol-dependent cytolysin pneumolysin represents a key factor, determining the neuropathogenic potential of the pneumococci. Here, we demonstrate selective synaptic loss within the superficial layers of the frontal neocortex of post-mortem brain samples from individuals with pneumococcal meningitis. A similar effect was observed in mice with pneumococcal meningitis only when the bacteria expressed the pore-forming cholesterol-dependent cytolysin pneumolysin. Exposure of acute mouse brain slices to only pore-competent pneumolysin at disease-relevant, non-lytic concentrations caused permanent dendritic swelling, dendritic spine elimination and synaptic loss. The NMDA glutamate receptor antagonists MK801 and D-AP5 reduced this pathology. Pneumolysin increased glutamate levels within the mouse brain slices. In mouse astrocytes, pneumolysin initiated the release of glutamate in a calcium-dependent manner. We propose that pneumolysin plays a significant synapto- and dendritotoxic role in pneumococcal meningitis by initiating glutamate release from astrocytes, leading to subsequent glutamate-dependent synaptic damage. We outline for the first time the occurrence of synaptic pathology in pneumococcal meningitis and demonstrate that a bacterial cytolysin can dysregulate the control of glutamate in the brain, inducing excitotoxic damage. PMID:23785278

  2. Imbalances in prefrontal cortex CC-Homer1 versus –Homer2 expression promote cocaine preference

    PubMed Central

    Ary, Alexis W.; Lominac, Kevin D.; Wroten, Melissa G.; Williams, Amy R.; Campbell, Rianne R.; Ben-Shahar, Osnat; Klugmann, Matthias; Szumlinski, Karen K.

    2013-01-01

    Homer post-synaptic scaffolding proteins regulate forebrain glutamate transmission and thus, are likely molecular candidates mediating hypofrontality in addiction. Protracted withdrawal from cocaine experience increases the relative expression of Homer2 versus Homer1 isoforms within medial prefrontal cortex (mPFC). Thus, this study employed virus-mediated gene transfer strategies to investigate the functional relevance of an imbalance in mPFC Homer1/2 expression as it relates to various measures of sensorimotor, cognitive, emotional and motivational processing, as well as accompanying alterations in extracellular glutamate in C57BL/6J mice. mPFC Homer2b over-expression elevated basal glutamate content and blunted cocaine-induced glutamate release within the mPFC, while Homer2b knock-down produced the opposite effects. Despite altering mPFC glutamate, Homer2b knock-down failed to influence cocaine-elicited conditioned place-preferences, nor did it produce consistent effects on any other behavioral measures. In contrast, elevating the relative expression of Homer2b versus Homer1 within mPFC, by over-expressing Homer2b or knocking down Homer1c, shifted the dose-response function for cocaine-conditioned reward to the left, without affecting cocaine locomotion or sensitization. Intriguingly, both these transgenic manipulations produced glutamate anomalies within the nucleus accumbens (NAC) of cocaine-naïve animals that are reminiscent of those observed in cocaine experienced animals, including reduced basal extracellular glutamate content, reduced Homer1/2 and glutamate receptor expression, and augmented cocaine-elicited glutamate release. Together, these data provide novel evidence in support of opposing roles for constitutively expressed Homer1 and Homer2 isoforms in regulating mPFC glutamate transmission in vivo and support the hypothesis that cocaine-elicited increases in the relative amount of mPFC Homer2 versus Homer1 signaling produces abnormalities in NAC glutamate transmission that enhance vulnerability to cocaine reward. PMID:23658151

  3. An essential role for vesicular glutamate transporter 1 (VGLUT1) in postnatal development and control of quantal size.

    PubMed

    Wojcik, S M; Rhee, J S; Herzog, E; Sigler, A; Jahn, R; Takamori, S; Brose, N; Rosenmund, C

    2004-05-04

    Quantal neurotransmitter release at excitatory synapses depends on glutamate import into synaptic vesicles by vesicular glutamate transporters (VGLUTs). Of the three known transporters, VGLUT1 and VGLUT2 are expressed prominently in the adult brain, but during the first two weeks of postnatal development, VGLUT2 expression predominates. Targeted deletion of VGLUT1 in mice causes lethality in the third postnatal week. Glutamatergic neurotransmission is drastically reduced in neurons from VGLUT1-deficient mice, with a specific reduction in quantal size. The remaining activity correlates with the expression of VGLUT2. This reduction in glutamatergic neurotransmission can be rescued and enhanced with overexpression of VGLUT1. These results show that the expression level of VGLUTs determines the amount of glutamate that is loaded into vesicles and released and thereby regulates the efficacy of neurotransmission.

  4. Exposure to altered gravity conditions results in hypoxia-related enhancement of the presynaptic transporter-mediated release of glutamate.

    NASA Astrophysics Data System (ADS)

    Borisova, Tatiana

    High-affinity Na+-dependent glutamate transporters locate in the plasma membrane and maintain the low concentration of glutamate in synaptic cleft by the uptake of glutamate into neurons. Under hypoxic conditions glutamate transporters contribute to the glutamate release due to functioning in reverse mode. The release of glutamate via reverse-operated Na+-dependent glutamate transporters was investigated in brain synaptosomes under conditions of centrifugeinduced hypergravity. Flow cytometric analisis revealed similarity in the size and cytoplasmic granularity of control and hypergravity synaptosomes. Protonophore FCCP dissipates the proton gradient across synaptic vesicle thus synaptic vesicles are not able to keep glutamate inside. 1 microM FCCP induced the release of 4. 8 ±1. 0 % and 8. 0 ±1. 0 % of total accumulated synaptosomal label in control and G-loaded animals, respectively. Ca 2+-independent high- KCl stimulated L-[14C]glutamate release from synaptosomes preliminary treated with FCCP increased considerably from 27. 0 ± 2. 2 % to 35. 0 ± 2. 3 % after centrifuge-induced hypergravity. No-transportable inhibitor of glutamate transporter DL-threo-beta-benzyloxyaspartate was found to inhibit high-KCl and FCCP-stimulated release of L-[14C]glutamate, thus the release was concluded to occur due to reversal of glutamate transporters. We have also found the inhibition of the activity of Na \\ K ATPase in the plasma membrane of synaptosomes after hypergravity that might also contribute to the enhancement of the transporter-mediated release of glutamate. These hypergravity-induced alterations in the transporter-mediated release of glutamate were suggested to correlate with the hypoxic injury of neurons. The changes we have revealed for the transporter-mediated release of glutamate may lead to mental disorders, upcoming seizures and neurotoxicity under hypergravity conditions.

  5. Olanzapine, but not clozapine, increases glutamate release in the prefrontal cortex of freely moving mice by inhibiting D-aspartate oxidase activity

    PubMed Central

    Sacchi, Silvia; Novellis, Vito De; Paolone, Giovanna; Nuzzo, Tommaso; Iannotta, Monica; Belardo, Carmela; Squillace, Marta; Bolognesi, Paolo; Rosini, Elena; Motta, Zoraide; Frassineti, Martina; Bertolino, Alessandro; Pollegioni, Loredano; Morari, Michele; Maione, Sabatino; Errico, Francesco; Usiello, Alessandro

    2017-01-01

    D-aspartate levels in the brain are regulated by the catabolic enzyme D-aspartate oxidase (DDO). D-aspartate activates NMDA receptors, and influences brain connectivity and behaviors relevant to schizophrenia in animal models. In addition, recent evidence reported a significant reduction of D-aspartate levels in the post-mortem brain of schizophrenia-affected patients, associated to higher DDO activity. In the present work, microdialysis experiments in freely moving mice revealed that exogenously administered D-aspartate efficiently cross the blood brain barrier and stimulates L-glutamate efflux in the prefrontal cortex (PFC). Consistently, D-aspartate was able to evoke L-glutamate release in a preparation of cortical synaptosomes through presynaptic stimulation of NMDA, mGlu5 and AMPA/kainate receptors. In support of a potential therapeutic relevance of D-aspartate metabolism in schizophrenia, in vitro enzymatic assays revealed that the second-generation antipsychotic olanzapine, differently to clozapine, chlorpromazine, haloperidol, bupropion, fluoxetine and amitriptyline, inhibits the human DDO activity. In line with in vitro evidence, chronic systemic administration of olanzapine induces a significant extracellular release of D-aspartate and L-glutamate in the PFC of freely moving mice, which is suppressed in Ddo knockout animals. These results suggest that the second-generation antipsychotic olanzapine, through the inhibition of DDO activity, increases L-glutamate release in the PFC of treated mice. PMID:28393897

  6. Vesicular and non-vesicular glutamate release in the nucleus accumbens in conditions of a forced change of behavioral strategy.

    PubMed

    Saul'skaya, N B; Mikhailova, M O

    2005-09-01

    Studies on Sprague-Dawley rats used intracerebral dialysis and high-performance liquid chromatography to identify sources of glutamate release into the intercellular space of the nucleus accumbens during forced correction of food-related behavior, i.e., on presentation to the feeding rat of a conditioned signal previously combined with a pain stimulus or on replacement of a food reinforcement with an inedible food substitute. The results showed that glutamate release observed in the nucleus accumbens during these tests can be prevented by tetrodotoxin (1 microM), which blocks exocytosis, but not by (S)-4-carboxyphenylglycine (5 microM), which blocks non-vesicular glutamate release. Conversely, administration of (S)-4-carboxyphenylglycine halved baseline glutamate release, while administration of tetrodotoxin had no effect on this process. These data provide evidence that different mechanisms control glutamate release into the intercellular space of this nucleus in baseline conditions and in conditions of evoked correction of feeding behavior: the source of baseline glutamate release is non-vesicular glutamate release, while glutamate release seen during forced correction of feeding behavior results from increases in synaptic release.

  7. Homeostatic regulation of excitatory synapses on striatal medium spiny neurons expressing the D2 dopamine receptor.

    PubMed

    Thibault, Dominic; Giguère, Nicolas; Loustalot, Fabien; Bourque, Marie-Josée; Ducrot, Charles; El Mestikawy, Salah; Trudeau, Louis-Éric

    2016-05-01

    Striatal medium spiny neurons (MSNs) are contacted by glutamatergic axon terminals originating from cortex, thalamus and other regions. The striatum is also innervated by dopaminergic (DAergic) terminals, some of which release glutamate as a co-transmitter. Despite evidence for functional DA release at birth in the striatum, the role of DA in the establishment of striatal circuitry is unclear. In light of recent work suggesting activity-dependent homeostatic regulation of glutamatergic terminals on MSNs expressing the D2 DA receptor (D2-MSNs), we used primary co-cultures to test the hypothesis that stimulation of DA and glutamate receptors regulates the homeostasis of glutamatergic synapses on MSNs. Co-culture of D2-MSNs with mesencephalic DA neurons or with cortical neurons produced an increase in spines and functional glutamate synapses expressing VGLUT2 or VGLUT1, respectively. The density of VGLUT2-positive terminals was reduced by the conditional knockout of this gene from DA neurons. In the presence of both mesencephalic and cortical neurons, the density of synapses reached the same total, compatible with the possibility of a homeostatic mechanism capping excitatory synaptic density. Blockade of D2 receptors increased the density of cortical and mesencephalic glutamatergic terminals, without changing MSN spine density or mEPSC frequency. Combined blockade of AMPA and NMDA glutamate receptors increased the density of cortical terminals and decreased that of mesencephalic VGLUT2-positive terminals, with no net change in total excitatory terminal density or in mEPSC frequency. These results suggest that DA and glutamate signaling regulate excitatory inputs to striatal D2-MSNs at both the pre- and postsynaptic level, under the influence of a homeostatic mechanism controlling functional output of the circuit.

  8. VGluT2 expression in painful Achilles and patellar tendinosis: evidence of local glutamate release by tenocytes.

    PubMed

    Scott, Alexander; Alfredson, Håkan; Forsgren, Sture

    2008-05-01

    The pathogenesis of chronic tendinopathy is unclear. We have previously measured high intratendinous levels of glutamate in patients with tendinosis, suggesting potential roles of glutamate in the modulation of pain, vascular function, and degenerative changes including apoptosis of tenocytes. However, the origin of free glutamate found in tendon tissue is completely unknown. Surgical biopsies of pain-free normal tendons and tendinosis tendons (Achilles and patellar) were examined immunohistochemically using antibodies against vesicular glutamate transporters (VGluT1 and VGluT2), as indirect markers of glutamate release. In situ hybridization for VGluT2 mRNA was also conducted. Specific immunoreactions for VGluT2, but not VGluT1, could be consistently detected in tenocytes. However, there were interindividual variations in the levels of immunoreactivity. The level of immunoreaction for VGluT2 was higher in tendinosis tendons compared to normal tendons (p < 0.05). In situ hybridization of VGluT2 demonstrated that mRNA was localized in a similar pattern as the protein, with marked expression by certain tenocytes, particularly those showing abnormal appearances. Reactivity for VGluT1 and -2 was absent from nerves and vessel structures in both normal and painful tendons. The current data demonstrate that tenocytes may be involved in the regulation of extracellular glutamate levels in tendons. Specifically, the observations suggest that free glutamate may be locally produced and released by tenocytes, rather than by peripheral neurons. Excessive free glutamate is expected to impact a variety of autocrine and paracrine functions important in the development of tendinosis, including tenocyte proliferation and apoptosis, extracellular matrix metabolism, nociception, and blood flow. (c) 2007 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  9. BDNF Regulates the Expression and Distribution of Vesicular Glutamate Transporters in Cultured Hippocampal Neurons

    PubMed Central

    Melo, Carlos V.; Silva, Carla G.; Duarte, Carlos B.

    2013-01-01

    BDNF is a pro-survival protein involved in neuronal development and synaptic plasticity. BDNF strengthens excitatory synapses and contributes to LTP, presynaptically, through enhancement of glutamate release, and postsynaptically, via phosphorylation of neurotransmitter receptors, modulation of receptor traffic and activation of the translation machinery. We examined whether BDNF upregulated vesicular glutamate receptor (VGLUT) 1 and 2 expression, which would partly account for the increased glutamate release in LTP. Cultured rat hippocampal neurons were incubated with 100 ng/ml BDNF, for different periods of time, and VGLUT gene and protein expression were assessed by real-time PCR and immunoblotting, respectively. At DIV7, exogenous application of BDNF rapidly increased VGLUT2 mRNA and protein levels, in a dose-dependent manner. VGLUT1 expression also increased but only transiently. However, at DIV14, BDNF stably increased VGLUT1 expression, whilst VGLUT2 levels remained low. Transcription inhibition with actinomycin-D or α-amanitine, and translation inhibition with emetine or anisomycin, fully blocked BDNF-induced VGLUT upregulation. Fluorescence microscopy imaging showed that BDNF stimulation upregulates the number, integrated density and intensity of VGLUT1 and VGLUT2 puncta in neurites of cultured hippocampal neurons (DIV7), indicating that the neurotrophin also affects the subcellular distribution of the transporter in developing neurons. Increased VGLUT1 somatic signals were also found 3 h after stimulation with BDNF, further suggesting an increased de novo transcription and translation. BDNF regulation of VGLUT expression was specifically mediated by BDNF, as no effect was found upon application of IGF-1 or bFGF, which activate other receptor tyrosine kinases. Moreover, inhibition of TrkB receptors with K252a and PLCγ signaling with U-73122 precluded BDNF-induced VGLUT upregulation. Hippocampal neurons express both isoforms during embryonic and neonatal development in contrast to adult tissue expressing only VGLUT1. These results suggest that BDNF regulates VGLUT expression during development and its effect on VGLUT1 may contribute to enhance glutamate release in LTP. PMID:23326507

  10. The Influence of Glutamate on Axonal Compound Action Potential In Vitro.

    PubMed

    Abouelela, Ahmed; Wieraszko, Andrzej

    2016-01-01

    Background  Our previous experiments demonstrated modulation of the amplitude of the axonal compound action potential (CAP) by electrical stimulation. To verify assumption that glutamate released from axons could be involved in this phenomenon, the modification of the axonal CAP induced by glutamate was investigated. Objectives  The major objective of this research is to verify the hypothesis that axonal activity would trigger the release of glutamate, which in turn would interact with specific axonal receptors modifying the amplitude of the action potential. Methods  Segments of the sciatic nerve were exposed to exogenous glutamate in vitro, and CAP was recorded before and after glutamate application. In some experiments, the release of radioactive glutamate analog from the sciatic nerve exposed to exogenous glutamate was also evaluated. Results  The glutamate-induced increase in CAP was blocked by different glutamate receptor antagonists. The effect of glutamate was not observed in Ca-free medium, and was blocked by antagonists of calcium channels. Exogenous glutamate, applied to the segments of sciatic nerve, induced the release of radioactive glutamate analog, demonstrating glutamate-induced glutamate release. Immunohistochemical examination revealed that axolemma contains components necessary for glutamatergic neurotransmission. Conclusion  The proteins of the axonal membrane can under the influence of electrical stimulation or exogenous glutamate change membrane permeability and ionic conductance, leading to a change in the amplitude of CAP. We suggest that increased axonal activity leads to the release of glutamate that results in changes in the amplitude of CAPs.

  11. Glutamate and Dynorphin Release from a Subcellular Fraction Enriched in Hippocampal Mossy Fiber Synaptosomes

    DTIC Science & Technology

    1988-01-01

    presence of extrasynaptosomal calcium . while only 3(0- of the evoked release of glutamate was calcium -dependent. D-aspartate. which exchanges glutamate...out of the cytoplasmic pool. virtually eliminated the calcium -independent component of glutamate release. This synaptosomal preparation will be useful...investigation of their presynaptic mechanisms ol action. l" Hippocampus Mossy fiber expansions Synaptosomes Glutamate Dynorphin Peptides Opioids Release Calcium

  12. VMAT2-mediated neurotransmission from midbrain leptin receptor neurons in feeding regulation

    USDA-ARS?s Scientific Manuscript database

    Leptin receptors (LepRs) expressed in the midbrain contribute to the action of leptin on feeding regulation. The midbrain neurons release a variety of neurotransmitters including dopamine (DA), glutamate and GABA. However, which neurotransmitter mediates midbrain leptin action on feeding remains unc...

  13. Isolation of hydroxyoctaprenyl-1',4'-hydroquinone, a new octaprenylhydroquinone from the marine sponge Sarcotragus spinosulus and evaluation of its pharmacological activity on acetylcholine and glutamate release in the rat central nervous system.

    PubMed

    Bisio, Angela; Fedele, Ernesto; Pittaluga, Anna; Olivero, Guendalina; Grilli, Massimo; Chen, Jiayang; Mele, Giacomo; Malafronte, Nicola; De Tommasi, Nunziatina; Leddae, Fabio; Manconi, Renata; Pronzato, Roberto; Marchi, Mario

    2014-11-01

    Three polyprenyl-1',4'-hydroquinone derivatives, heptaprenyl-1',4'-hydroquinone (1), octaprenyl-1',4'-hydroquinone (2), and hydroxyoctaprenyl-1',4'- hydroquinone (3) were isolated from the marine sponge Sarcotragus spinosulus collected at Baia di Porto Conte, Alghero (Italy). Our findings indicate that the compounds isolated from S. spinosulus can significantly modulate the release of glutamate and acetylcholine in the rat hippocampus and cortex and might, therefore, represent the prototype of a new class of drugs regulating glutamatergic and cholinergic transmission in the mammalian central nervous system.

  14. Effect of thiopental sodium on the release of glutamate and gamma-aminobutyric acid from rats prefrontal cortical synaptosomes.

    PubMed

    Liu, Hongliang; Yao, Shanglong

    2004-01-01

    To investigate the effect of thiopental sodium on the release of glutamate and gamma-aminobutyric acid (GABA) from synaptosomes in the prefrontal cortex, synaptosomes were made, the spontaneous release and the evoked release by 30 mmol/L KCl or 20 micromol/L veratridine of glutamate and GABA were performed under various concentrations of thiopental sodium (10-300 micromol/L), glutamate and GABA concentrations were determined by reversed-phase high-performance liquid chromatography. Our results showed that spontaneous release and evoked release of glutamate were significantly inhibited by 30 micromol/L, 100 micromol/L and 300 micromol/L thiopental sodium, IC50 of thiopental sodium was 25.8 +/- 2.3 micromol/L for the spontaneous release, 23.4 +/- 2.4 micromol/L for KCl-evoked release, and 24.3 +/- 1.8 micromol/L for veratridine-evoked release. But GABA spontaneous release and evoked release were unaffected. The study showed that thiopental sodium with clinically related concentrations could inhibit the release of glutamate, but had no effect on the release of GABA from rats prefrontal cortical synaptosomes.

  15. Norepinephrine ignites local hot spots of neuronal excitation: How arousal amplifies selectivity in perception and memory

    PubMed Central

    Mather, Mara; Clewett, David; Sakaki, Michiko; Harley, Carolyn W.

    2018-01-01

    Long Abstract Existing brain-based emotion-cognition theories fail to explain arousal’s ability to both enhance and impair cognitive processing. In the Glutamate Amplifies Noradrenergic Effects (GANE) model outlined in this paper, we propose that arousal-induced norepinephrine (NE) released from the locus coeruleus (LC) biases perception and memory in favor of salient, high priority representations at the expense of lower priority representations. This increase in gain under phasic arousal occurs via synaptic self-regulation of NE based on glutamate levels. When the LC is phasically active, elevated levels of glutamate at the site of prioritized representations increase local NE release, creating “NE hot spots.” At these local hot spots, glutamate and NE release are mutually enhancing and amplify activation of prioritized representations. This excitatory effect contrasts with widespread NE suppression of weaker representations via lateral and auto-inhibitory processes. On a broader scale, hot spots increase oscillatory synchronization across neural ensembles transmitting high priority information. Furthermore, key brain structures that detect or pre-determine stimulus priority interact with phasic NE release to preferentially route such information through large-scale functional brain networks. A surge of NE before, during or after encoding enhances synaptic plasticity at sites of high glutamate activity, triggering local protein synthesis processes that enhance selective memory consolidation. Together, these noradrenergic mechanisms increase perceptual and memory selectivity under arousal. Beyond explaining discrepancies in the emotion-cognition literature, GANE reconciles and extends previous influential theories of LC neuromodulation by highlighting how NE can produce such different outcomes in processing based on priority. PMID:26126507

  16. Neuroprotective effects of α-iso-cubebenol on glutamate-induced neurotoxicity.

    PubMed

    Park, Sun Young; Choi, Yung Hyun; Park, Geuntae; Choi, Young-Whan

    2015-09-01

    α-Iso-cubebenol is a natural compound isolated from Schisandra chinensis, and is reported to have beneficial bioactivity including anti-inflammatory and anti-tumor activities. Glutamate-induced oxidative neuronal damage has been implicated in a variety of neurodegenerative disorders. Here we investigated the mechanisms of α-iso-cubebenol protection of mouse hippocampus-derived neuronal cells (HT22 cells) from apoptotic cell death induced by the major excitatory neurotransmitter, glutamate. Pretreatment with α-iso-cubebenol markedly attenuated glutamate-induced loss of cell viability and release of lactate dehydrogenase), in a dose-dependent manner. α-Iso-cubebenol significantly reduced glutamate-induced intracellular reactive oxygen species and calcium accumulation. Strikingly, α-iso-cubebenol inhibited glutamate-induced mitochondrial depolarization, which releases apoptosis-inducing factor from mitochondria. α-Iso-cubebenol also suppressed glutamate-induced phosphorylation of extracellular-signal-regulated kinases. Furthermore, α-iso-cubebenol induced CREB phosphorylation and Nrf-2 nuclear accumulation and increased the promoter activity of ARE and CREB in HT22 cells. α-Iso-cubebenol also upregulated the expression of phase-II detoxifying/antioxidant enzymes such as HO-1 and NQO1. Subsequent studies revealed that the inhibitory effects of α-iso-cubebenol on glutamate-induced apoptosis were abolished by small interfering RNA-mediated knockdown of CREB and Nrf-2. These findings suggest that α-iso-cubebenol prevents excitotoxin-induced oxidative damage to neurons by inhibiting apoptotic cell death, and might be a potential preventive or therapeutic agent for neurodegenerative disorders. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Upregulation of transmitter release probability improves a conversion of synaptic analogue signals into neuronal digital spikes

    PubMed Central

    2012-01-01

    Action potentials at the neurons and graded signals at the synapses are primary codes in the brain. In terms of their functional interaction, the studies were focused on the influence of presynaptic spike patterns on synaptic activities. How the synapse dynamics quantitatively regulates the encoding of postsynaptic digital spikes remains unclear. We investigated this question at unitary glutamatergic synapses on cortical GABAergic neurons, especially the quantitative influences of release probability on synapse dynamics and neuronal encoding. Glutamate release probability and synaptic strength are proportionally upregulated by presynaptic sequential spikes. The upregulation of release probability and the efficiency of probability-driven synaptic facilitation are strengthened by elevating presynaptic spike frequency and Ca2+. The upregulation of release probability improves spike capacity and timing precision at postsynaptic neuron. These results suggest that the upregulation of presynaptic glutamate release facilitates a conversion of synaptic analogue signals into digital spikes in postsynaptic neurons, i.e., a functional compatibility between presynaptic and postsynaptic partners. PMID:22852823

  18. pH modulation of glial glutamate transporters regulates synaptic transmission in the nucleus of the solitary tract

    PubMed Central

    McCrimmon, Donald R.; Martina, Marco

    2013-01-01

    The nucleus of the solitary tract (NTS) is the major site for termination of visceral sensory afferents contributing to homeostatic regulation of, for example, arterial pressure, gastric motility, and breathing. Whereas much is known about how different neuronal populations influence these functions, information about the role of glia remains scant. In this article, we propose that glia may contribute to NTS functions by modulating excitatory neurotransmission. We found that acidification (pH 7.0) depolarizes NTS glia by inhibiting K+-selective membrane currents. NTS glia also showed functional expression of voltage-sensitive glutamate transporters, suggesting that extracellular acidification regulates synaptic transmission by compromising glial glutamate uptake. To test this hypothesis, we evoked glutamatergic slow excitatory potentials (SEPs) in NTS neurons with repetitive stimulation (20 pulses at 10 Hz) of the solitary tract. This SEP depends on accumulation of glutamate following repetitive stimulation, since it was potentiated by blocking glutamate uptake with dl-threo-β-benzyloxyaspartic acid (TBOA) or a glia-specific glutamate transport blocker, dihydrokainate (DHK). Importantly, extracellular acidification (pH 7.0) also potentiated the SEP. This effect appeared to be mediated through a depolarization-induced inhibition of glial transporter activity, because it was occluded by TBOA and DHK. In agreement, pH 7.0 did not directly alter d-aspartate-induced responses in NTS glia or properties of presynaptic glutamate release. Thus acidification-dependent regulation of glial function affects synaptic transmission within the NTS. These results suggest that glia play a modulatory role in the NTS by integrating local tissue signals (such as pH) with synaptic inputs from peripheral afferents. PMID:23615553

  19. Interactions of MK-801 with glutamate-, glutamine- and methamphetamine-evoked release of ( sup 3 H)dopamine from striatal slices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bowyer, J.F.; Scallet, A.C.; Holson, R.R.

    1991-04-01

    The interactions of MK-801 ((+)-5-methyl-10,11-dihydro-5H-dibenzo(a,d) cyclohepten-5,10-imine), glutamate and glutamine with methamphetamine (METH)-evoked release of ({sup 3}H)dopamine were assessed in vitro to determine whether MK-801 inhibition of METH neurotoxicity might be mediated presynaptically, and to evaluate the effects of glutamatergic stimulation on METH-evoked dopamine release. MK-801 inhibition of glutamate- or METH-evoked dopamine release might reduce synaptic dopamine levels during METH exposure and decrease the formation of 6-hydroxydopamine or other related neurotoxins. Without Mg{sup 2}{sup +} present, 40 microM and 1 mM glutamate evoked a N-methyl-D-aspartate receptor-mediated ({sup 3}H)dopamine and ({sup 3}H)metabolite (tritium) release of 3 to 6 and 12 to 16%more » of total tritium stores, respectively, from striatal slices. With 1.50 mM Mg{sup 2}{sup +} present, 10 mM glutamate alone or in combination with the dopamine uptake blocker nomifensine released only 2.1 or 4.2%, respectively, of total tritium stores, and release was only partially dependent on N-methyl-D-aspartate-type glutamate receptors. With or without 1.50 mM Mg{sup 2}{sup +} present, 0.5 or 5 microM METH evoked a substantial release of tritium (5-8 or 12-21% of total stores, respectively). METH-evoked dopamine release was not affected by 5 microM MK-801 but METH-evoked release was additive with glutamate-evoked release. Without Mg{sup 2}{sup +} present, 1 mM glutamine increased glutamate release and induced the release of ({sup 3}H)dopamine and metabolites. Both 0.5 and 5 microM METH also increased tritium release with 1 mM glutamine present. When striatal slices were exposed to 5 microM METH this glutamine-evoked release of glutamate was increased more than 50%.« less

  20. Endogenous opioids regulate moment-to-moment neuronal communication and excitability.

    PubMed

    Winters, Bryony L; Gregoriou, Gabrielle C; Kissiwaa, Sarah A; Wells, Oliver A; Medagoda, Danashi I; Hermes, Sam M; Burford, Neil T; Alt, Andrew; Aicher, Sue A; Bagley, Elena E

    2017-03-22

    Fear and emotional learning are modulated by endogenous opioids but the cellular basis for this is unknown. The intercalated cells (ITCs) gate amygdala output and thus regulate the fear response. Here we find endogenous opioids are released by synaptic stimulation to act via two distinct mechanisms within the main ITC cluster. Endogenously released opioids inhibit glutamate release through the δ-opioid receptor (DOR), an effect potentiated by a DOR-positive allosteric modulator. Postsynaptically, the opioids activate a potassium conductance through the μ-opioid receptor (MOR), suggesting for the first time that endogenously released opioids directly regulate neuronal excitability. Ultrastructural localization of endogenous ligands support these functional findings. This study demonstrates a new role for endogenously released opioids as neuromodulators engaged by synaptic activity to regulate moment-to-moment neuronal communication and excitability. These distinct actions through MOR and DOR may underlie the opposing effect of these receptor systems on anxiety and fear.

  1. Lycopene depresses glutamate release through inhibition of voltage-dependent Ca2+ entry and protein kinase C in rat cerebrocortical nerve terminals.

    PubMed

    Lu, Cheng-Wei; Hung, Chi-Feng; Jean, Wei-Horng; Lin, Tzu-Yu; Huang, Shu-Kuei; Wang, Su-Jane

    2018-05-01

    Lycopene is a natural dietary carotenoid that was reported to exhibit a neuroprotective profile. Considering that excitotoxicity and cell death induced by glutamate are involved in many brain disorders, the effect of lycopene on glutamate release in rat cerebrocortical nerve terminals and the possible mechanism involved in such effect was investigated. We observed here that lycopene inhibited 4-aminopyridine (4-AP)-evoked glutamate release and intrasynaptosomal Ca 2+ concentration elevation. The inhibitory effect of lycopene on 4-AP-evoked glutamate release was markedly reduced in the presence of the Ca v 2.2 (N-type) and Ca v 2.1 (P/Q-type) channel blocker ω-conotoxin MVIIC, but was insensitive to the intracellular Ca 2+ -release inhibitors dantrolene and CGP37157. Furthermore, in the presence of the protein kinase C inhibitors GF109203X and Go6976, the action of lycopene on evoked glutamate release was prevented. These results are the first to suggest that lycopene inhibits glutamate release from rat cortical synaptosomes by suppressing presynaptic Ca 2+ entry and protein kinase C activity.

  2. Pre-synaptic kainate receptor-mediated facilitation of glutamate release involves PKA and Ca(2+) -calmodulin at thalamocortical synapses.

    PubMed

    Andrade-Talavera, Yuniesky; Duque-Feria, Paloma; Sihra, Talvinder S; Rodríguez-Moreno, Antonio

    2013-09-01

    We have investigated the mechanisms underlying the facilitatory modulation mediated by kainate receptor (KAR) activation in the cortex, using isolated nerve terminals (synaptosomes) and slice preparations. In cortical nerve terminals, kainate (KA, 100 μM) produced an increase in 4-aminopyridine (4-AP)-evoked glutamate release. In thalamocortical slices, KA (1 μM) produced an increase in the amplitude of evoked excitatory post-synaptic currents (eEPSCs) at synapses established between thalamic axon terminals from the ventrobasal nucleus onto stellate neurons of L4 of the somatosensory cortex. In both, synaptosomes and slices, the effect of KA was antagonized by 6-cyano-7-nitroquinoxaline-2,3-dione, and persisted after pre-treatment with a cocktail of antagonists of other receptors whose activation could potentially have produced facilitation of release indirectly. Mechanistically, the observed effects of KA appear to be congruent in synaptosomal and slice preparations. Thus, the facilitation by KA of synaptosomal glutamate release and thalamocortical synaptic transmission were suppressed by the inhibition of protein kinase A and occluded by the stimulation of adenylyl cyclase. Dissecting this G-protein-independent regulation further in thalamocortical slices, the KAR-mediated facilitation of synaptic transmission was found to be sensitive to the block of Ca(2+) permeant KARs by philanthotoxin. Intriguingly, the synaptic facilitation was abrogated by depletion of intracellular Ca(2+) stores by thapsigargin, or inhibition of Ca(2+) -induced Ca(2+) -release by ryanodine. Thus, the KA-mediated modulation was contingent on both Ca(2+) entry through Ca(2+) -permeable KARs and liberation of intracellular Ca(2+) stores. Finally, sensitivity to W-7 indicated that the increased cytosolic [Ca(2+) ] underpinning KAR-mediated regulation of synaptic transmission at thalamocortical synapses, requires downstream activation of calmodulin. We conclude that neocortical pre-synaptic KARs mediate the facilitation of glutamate release and synaptic transmission by a Ca(2+) -calmodulin dependent activation of an adenylyl cyclase/cAMP/protein kinase A signalling cascade, independent of G-protein involvement. © 2013 International Society for Neurochemistry.

  3. Melatonin protects against oxygen and glucose deprivation by decreasing extracellular glutamate and Nox-derived ROS in rat hippocampal slices.

    PubMed

    Patiño, Paloma; Parada, Esther; Farré-Alins, Victor; Molz, Simone; Cacabelos, Ramón; Marco-Contelles, José; López, Manuela G; Tasca, Carla I; Ramos, Eva; Romero, Alejandro; Egea, Javier

    2016-12-01

    Therapeutic interventions on pathological processes involved in the ischemic cascade, such as oxidative stress, neuroinflammation, excitotoxicity and/or apoptosis, are of urgent need for stroke treatment. Melatonin regulates a large number of physiological actions and its beneficial properties have been reported. The aim of this study was to investigate whether melatonin mediates neuroprotection in rat hippocampal slices subjected to oxygen-glucose-deprivation (OGD) and glutamate excitotoxicity. Thus, we describe here that melatonin significantly reduced the amount of lactate dehydrogenase released in the OGD-treated slices, reverted neuronal injury caused by OGD-reoxygenation in CA1 and CA3 hippocampal regions, restored the reduction of GSH content of the hippocampal slices induced by OGD, and diminished the oxidative stress produced in the reoxygenation period. Furthermore, melatonin afforded maximum protection against glutamate-induced toxicity and reversed the glutamate released almost basal levels, at 10 and 30μM concentration, respectively. Consequently, we propose that melatonin might strongly and positively influence the outcome of brain ischemia/reperfusion. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Reciprocal regulation between taurine and glutamate response via Ca2+- dependent pathways in retinal third-order neurons

    PubMed Central

    2010-01-01

    Although taurine and glutamate are the most abundant amino acids conducting neural signals in the central nervous system, the communication between these two neurotransmitters is largely unknown. This study explores the interaction of taurine and glutamate in the retinal third-order neurons. Using specific antibodies, both taurine and taurine transporters were localized in photoreceptors and Off-bipolar cells, glutamatergic neurons in retinas. It is possible that Off-bipolar cells release juxtaposed glutamate and taurine to activate the third-order neurons in retina. The interaction of taurine and glutamate was studied in acutely dissociated third-order neurons in whole-cell patch-clamp recording and Ca2+ imaging. We find that taurine effectively reduces glutamate-induced Ca2+ influx via ionotropic glutamate receptors and voltage-dependent Ca2+ channels in the neurons, and the effect of taurine was selectively inhibited by strychnine and picrotoxin, but not GABA receptor antagonists, although GABA receptors are present in the neurons. A CaMKII inhibitor partially reversed the effect of taurine, suggesting that a Ca2+/calmodulin-dependent pathway is involved in taurine regulation. On the other hand, a rapid influx of Ca2+ through ionotropic glutamate receptors could inhibit the amplitude and kinetics of taurine-elicited currents in the third-order neurons, which could be controlled with intracellular application of BAPTA a fast Ca2+ chelator. This study indicates that taurine is a potential neuromodulator in glutamate transmission. The reciprocal inhibition between taurine and glutamate in the postsynaptic neurons contributes to computation of visual signals in the retinal neurons. PMID:20804625

  5. Myricetin Inhibits the Release of Glutamate in Rat Cerebrocortical Nerve Terminals

    PubMed Central

    Chang, Yi; Chang, Chia-Ying; Huang, Shu-Kuei

    2015-01-01

    Abstract The excessive release of glutamate is a critical element in the neuropathology of acute and chronic brain disorders. The purpose of the present study was to investigate the effect and possible mechanism of myricetin, a naturally occurring flavonoid with a neuroprotective profile, on endogenous glutamate release in the nerve terminals (synaptosomes) of the rat cerebral cortex. The release of glutamate was evoked by the K+ channel blocker 4-aminopyridine (4-AP) and measured by one-line enzyme-coupled fluorometric assay. We also used a membrane potential-sensitive dye to assay the synaptosomal plasma membrane potential, and a Ca2+ indicator Fura-2 to monitor cytosolic Ca2+ concentrations ([Ca2+]C). Results show that myricetin inhibited 4-AP-evoked glutamate release, and this effect was prevented by chelating extracellular Ca2+ ions and the vesicular transporter inhibitor bafilomycin A1. However, the glutamate transporter inhibitor dl-threo-beta-benzyl-oxyaspartate had no effect on myricetin action. Myricetin did not alter the synaptosomal membrane potential, but decreased 4-AP-induced increases in the cytosolic free Ca2+ concentration. Furthermore, the myricetin effect on 4-AP-evoked glutamate release was prevented by blocking the Cav2.2 (N-type) and Cav2.1 (P/Q-type) channels, but not by blocking intracellular Ca2+ release. These results suggest that myricetin inhibits glutamate release from cerebrocortical synaptosomes by attenuating voltage-dependent Ca2+ entry. This implies that the inhibition of glutamate release is an important pharmacological activity of myricetin that may play a critical role in the apparent clinical efficacy of this compound. PMID:25340625

  6. Activation of presynaptic oxytocin receptors enhances glutamate release in the ventral hippocampus of prenatally restraint stressed rats.

    PubMed

    Mairesse, Jérôme; Gatta, Eleonora; Reynaert, Marie-Line; Marrocco, Jordan; Morley-Fletcher, Sara; Soichot, Marion; Deruyter, Lucie; Camp, Gilles Van; Bouwalerh, Hammou; Fagioli, Francesca; Pittaluga, Anna; Allorge, Delphine; Nicoletti, Ferdinando; Maccari, Stefania

    2015-12-01

    Oxytocin receptors are known to modulate synaptic transmission and network activity in the hippocampus, but their precise function has been only partially elucidated. Here, we have found that activation of presynaptic oxytocin receptor with the potent agonist, carbetocin, enhanced depolarization-evoked glutamate release in the ventral hippocampus with no effect on GABA release. This evidence paved the way for examining the effect of carbetocin treatment in "prenatally restraint stressed" (PRS) rats, i.e., the offspring of dams exposed to repeated episodes of restraint stress during pregnancy. Adult PRS rats exhibit an anxious/depressive-like phenotype associated with an abnormal glucocorticoid feedback regulation of the hypothalamus-pituitary-adrenal (HPA) axis, and, remarkably, with a reduced depolarization-evoked glutamate release in the ventral hippocampus. Chronic systemic treatment with carbetocin (1mg/kg, i.p., once a day for 2-3 weeks) in PRS rats corrected the defect in glutamate release, anxiety- and depressive-like behavior, and abnormalities in social behavior, in the HPA response to stress, and in the expression of stress-related genes in the hippocampus and amygdala. Of note, carbetocin treatment had no effect on these behavioral and neuroendocrine parameters in prenatally unstressed (control) rats, with the exception of a reduced expression of the oxytocin receptor gene in the amygdala. These findings disclose a novel function of oxytocin receptors in the hippocampus, and encourage the use of oxytocin receptor agonists in the treatment of stress-related psychiatric disorders in adult life. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Glial Control of Endocannabinoid Heterosynaptic Modulation in Hypothalamic Magnocellular Neuroendocrine Cells

    PubMed Central

    Popescu, Ion R.

    2013-01-01

    Cannabinoid receptors are functionally operant at both glutamate and GABA synapses on hypothalamic magnocellular neuroendocrine cells; however, retrograde endocannabinoid actions are evoked at only glutamate synapses. We tested whether the functional targeting of evoked retrograde endocannabinoid actions to glutamate, and not GABA, synapses on magnocellular neurons is the result of the spatial restriction of extracellular endocannabinoids by astrocytes. Whole-cell GABA synaptic currents were recorded in magnocellular neurons in rat hypothalamic slices following manipulations to reduce glial buffering of extracellular signals. Depolarization- and glucocorticoid-evoked retrograde endocannabinoid suppression of synaptic GABA release was not detected under normal conditions, but occurred in both oxytocin and vasopressin neurons under conditions of attenuated glial coverage and depressed glial metabolic function, suggesting an emergent endocannabinoid modulation of GABA synapses with the loss of astrocyte function. Tonic endocannabinoid suppression of GABA release was insensitive to glial manipulation. Blocking cannabinoid transport mimicked, and increasing the extracellular viscosity reversed, the effect of suppressed glial buffering on the endocannabinoid modulation of GABA release. Evoked, but not tonic, endocannabinoid modulation of GABA synapses was mediated by 2-arachidonoylglycerol. Therefore, depolarization- and glucocorticoid-evoked 2-arachidonoylglycerol release from magnocellular neurons is spatially restricted to glutamate synapses by astrocytes, but spills over onto GABA synapses under conditions of reduced astrocyte buffering; tonic endocannabinoid modulation of GABA release, in contrast, is likely mediated by anandamide and is insensitive to astrocytic buffering. Astrocytes, therefore, provide dynamic control of stimulus-evoked 2-arachidonoylglycerol, but not tonic anandamide, regulation of GABA synaptic inputs to magnocellular neuroendocrine cells under different physiological conditions. PMID:24227742

  8. Ibogaine alters synaptosomal and glial glutamate release and uptake.

    PubMed

    Leal, M B; Emanuelli, T; Porciúncula, L D; Souza, D O; Elisabetsky, E

    2001-02-12

    Ibogaine has aroused expectations as a potentially innovative medication for drug addiction. It has been proposed that antagonism of the NMDA receptor by ibogaine may be one of the mechanisms underlying its antiaddictive properties; glutamate has also been implicated in ibogaine-induced neurotoxicity. We here report the effects of ibogaine on [3H]glutamate release and uptake in cortical and cerebellar synaptosomes, as well as in cortical astrocyte cultures, from mice and rats. Ibogaine (2-1000 microM) had no effects on glutamate uptake or release by rat synaptosomes. However, ibogaine (500-1000 microM) significantly inhibited the glutamate uptake and stimulated the release of glutamate by cortical (but not cerebellar) synaptosomes of mice. In addition, ibogaine (1000 microM) nearly abolished glutamate uptake by cortical astrocyte cultures from rats and mice. The data provide direct evidence of glutamate involvement in ibogaine-induced neurotoxicity.

  9. Neonatal Nicotine Exposure Increases Excitatory Synaptic Transmission and Attenuates Nicotine-stimulated GABA release in the Adult Rat Hippocampus

    PubMed Central

    Damborsky, Joanne C.; Griffith, William H.; Winzer-Serhan, Ursula H.

    2014-01-01

    Developmental exposure to nicotine has been linked to long-lasting changes in synaptic transmission which may contribute to behavioral abnormalities seen in offspring of women who smoke during pregnancy. Here, we examined the long-lasting effects of developmental nicotine exposure on glutamatergic and GABAergic neurotransmission, and on acute nicotine-induced glutamate and GABA release in the adult hippocampus, a structure important in cognitive and emotional behaviors. We utilized a chronic neonatal nicotine treatment model to administer nicotine (6 mg/kg/day) to rat pups from postnatal day (P) 1–7, a period that falls developmentally into the third human trimester. Using whole-cell voltage clamp recordings from CA1 pyramidal neurons in hippocampal slices, we measured excitatory and inhibitory postsynaptic currents in neonatally control- and nicotine-treated young adult males. Neonatal nicotine exposure significantly increased AMPA receptor-mediated spontaneous and evoked excitatory signaling, with no change in glutamate release probability in adults. Conversely, there was no increase in spontaneous GABAergic neurotransmission in nicotine-males. Chronic neonatal nicotine treatment had no effect on acute nicotine-stimulated glutamate release in adults, but acute nicotine-stimulated GABA release was significantly attenuated. Thus, neonatal nicotine exposure results in a persistent net increase in excitation and a concurrent loss of nicotinic acetylcholine receptor (nAChR)-mediated regulation of presynaptic GABA but not glutamate release, which would exacerbate excitation following endogenous or exogenous nAChR activation. Our data underscore an important role for nAChRs in hippocampal excitatory synapse development, and suggest selective long-term changes at specific presynaptic nAChRs which together could explain some of the behavioral abnormalities associated with maternal smoking. PMID:24950455

  10. Genetically determined differences in noradrenergic function: The spontaneously hypertensive rat model.

    PubMed

    Sterley, Toni-Lee; Howells, Fleur M; Russell, Vivienne A

    2016-06-15

    While genetic predisposition is a major factor, it is not known how development of attention-deficit/hyperactivity disorder (ADHD) is modulated by early life stress. The spontaneously hypertensive rat (SHR) displays the behavioral characteristics of ADHD (poorly sustained attention, impulsivity, hyperactivity) and is the most widely studied genetic model of ADHD. We have previously shown that SHR have disturbances in the noradrenergic system and that the early life stress of maternal separation failed to produce anxiety-like behavior in SHR, contrary to control Sprague-Dawley and Wistar-Kyoto (WKY) who showed typical anxiety-like behavior in later life. In the present study we investigated the effect of maternal separation on approach behavior (response to a novel object in a familiar environment) in preadolescent SHR and WKY. We also investigated whether maternal separation altered GABAA and NMDA receptor-mediated regulation of norepinephrine release in preadolescent SHR and WKY hippocampus. We found that female SHR, similar to male SHR, exhibited greater exploratory activity than WKY. Maternal separation significantly increased GABAA receptor-mediated inhibition of glutamate-stimulated release of norepinephrine in male and female SHR hippocampus but had no significant effect in WKY. Maternal separation had opposite effects on NMDA receptor-mediated inhibition of norepinephrine release in SHR and WKY hippocampus, as it increased inhibition of both glutamate-stimulated and depolarization-evoked release in SHR hippocampus but not in WKY. The results of the present study show that noradrenergic function is similarly altered by the early life stress of maternal separation in male and female SHR, while GABA- and glutamate-regulation of norepinephrine release remained unaffected by maternal separation in the control, WKY, rat strain. This article is part of a Special Issue entitled SI: Noradrenergic System. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Immunocytochemical localization of three vesicular glutamate transporters in the cat retina.

    PubMed

    Fyk-Kolodziej, Bozena; Dzhagaryan, Arturik; Qin, Pu; Pourcho, Roberta G

    2004-08-02

    Vesicular transporters play an essential role in the packaging of glutamate for synaptic release and so are of particular importance in the retina, where glutamate serves as the neurotransmitter for photoreceptors, bipolar cells, and ganglion cells. In the present study, we have examined the distribution of the three known isoforms of vesicular glutamate transporter (VGLUT) in the cat retina. VGLUT1 was localized to all photoreceptor and bipolar cells, whereas VGLUT2 was found in ganglion cells. This basic pattern of complementary distribution for the two transporters among known populations of glutamatergic cells is similar to previous findings in the brain and spinal cord. However, the axon terminals of S-cone photoreceptors were found to express both VGLUT1 and VGLUT2 and some ganglion cells labeled for both VGLUT2 and VGLUT3. Such colocalizations suggest the existence of dual modes of regulation of vesicular glutamate transport in these neurons. Staining for VGLUT2 was also present in a small number of varicose processes, which were seen to ramify throughout the inner plexiform layer. These fibers may represent axon collaterals of ganglion cells. The most prominent site of VGLUT3 immunoreactivity was in a population of amacrine cells; the axon terminals of B-type horizontal cells were also labeled at their contacts with rod spherules. The presence of the VGLUT3 transporter at sites not otherwise implicated in glutamate release may indicate novel modes of glutamate signaling or additional roles for the transporter molecule. Copyright 2004 Wiley-Liss, Inc.

  12. Sensorineural Deafness and Seizures in Mice Lacking Vesicular Glutamate Transporter 3

    PubMed Central

    Seal, Rebecca P.; Akil, Omar; Yi, Eunyoung; Weber, Christopher M.; Grant, Lisa; Yoo, Jong; Clause, Amanda; Kandler, Karl; Noebels, Jeffrey L; Glowatzki, Elisabeth; Lustig, Lawrence R.; Edwards, Robert H.

    2008-01-01

    Summary The expression of unconventional vesicular glutamate transporter VGLUT3 by neurons known to release a different classical transmitter has suggested novel roles for signaling by glutamate. However, this distribution, along with the localization of VGLUT3 to dendrites and its occurrence outside the nervous system, has raised questions about whether the protein actually contributes to glutamate release. We now report that mice lacking VGLUT3 are profoundly deaf due to the absence of glutamate release from hair cells at the first synapse in the auditory pathway. Inner hair cells of the cochlea start to express VGLUT3 shortly before birth, and the early degeneration of some cochlear ganglion neurons in knock-out mice indicates an important developmental role for the glutamate released by hair cells before the onset of hearing. In addition, the mice exhibit primary, generalized epilepsy that is accompanied by remarkably little or no change in ongoing motor behavior. VGLUT3 thus contributes to the exocytotic release of glutamate, and the glutamate released has an essential role in both function and development of the auditory pathway, as well as in the control of cortical excitability. PMID:18215623

  13. Hypoosmotic swelling modifies glutamate-glutamine cycle in the cerebral cortex and in astrocyte cultures

    PubMed Central

    Hyzinski-García, María C.; Vincent, Melanie Y.; Haskew-Layton, Renée E.; Dohare, Preeti; Keller, Richard W.; Mongin, Alexander A.

    2011-01-01

    In our previous work, we found that perfusion of the rat cerebral cortex with hypoosmotic medium triggers massive release of the excitatory amino acid L-glutamate but decreases extracellular levels of L-glutamine (R.E. Haskew-Layton et al., PLoS ONE, 3: e3543). The release of glutamate was linked to activation of volume-regulated anion channels (VRAC), while mechanism(s) responsible for alterations in extracellular glutamine remained unclear. When mannitol was added to the hypoosmotic medium in order to reverse reductions in osmolarity, changes in microdialysate levels of glutamine were prevented, indicating an involvement of cellular swelling. Since the main source of brain glutamine is astrocytic synthesis and export, we explored the impact of hypoosmotic medium on glutamine synthesis and transport in rat primary astrocyte cultures. In astrocytes, a 40% reduction in medium osmolarity moderately stimulated the release of L-[3H]glutamine by ~2-fold and produced no changes in L-[3H]glutamine uptake. In comparison, hypoosmotic medium stimulated the release of glutamate (traced with D[3H]aspartate) by more than 20-fold. In whole-cell enzymatic assays, we discovered that hypoosmotic medium caused a 20% inhibition of astrocytic conversion of L[3H]glutamate into L-[3H]glutamine by glutamine synthetase. Using an HPLC assay we further found a 35% reduction in intracellular levels of endogenous glutamine. Overall, our findings suggest that cellular swelling (1) inhibits astrocytic glutamine synthetase activity, and (2) reduces substrate availability for this enzyme due to the activation of VRAC. These combined effects likely lead to reductions in astrocytic glutamine export in vivo and may partially explain occurrence of hyperexcitability and seizures in human hyponatremia. PMID:21517854

  14. Agmatine reduces extracellular glutamate during pentylenetetrazole-induced seizures in rat brain: A potential mechanism for the anticonvulsive effects

    PubMed Central

    Feng, Yangzheng; LeBlanc, Michael H.; Regunathan, Soundar

    2010-01-01

    Glutamate has been implicated in the initiation and spread of seizure activity. Agmatine, an endogenous neuromodulator, is an antagonist of NMDA receptors and has anticonvulsive effects. Whether agmatine regulate glutamate release, as measured by in vivo microdialysis, is not known. In this study, we used pentylenetetrazole (PTZ)-induced seizure model to determine the effect of agmatine on extracellular glutamate in rat brain. We also determined the time course and the amount of agmatine that reached brain after peripheral injection. After i.p. injection of agmatine (50 mg/kg), increase of agmatine in rat cortex and hippocampus was observed in 15 min with levels returning to baseline in one hour. Rats, naïve and implanted with microdialysis cannula into the cortex, were administered PTZ (60 mg/kg, i.p.) with prior injection of agmatine (100 mg/kg, i.p.) or saline. Seizure grades were recorded and microdialysis samples were collected every 15 min for 75 min. Agmatine pre-treatment significantly reduced the seizure grade and increased the onset time. The levels of extracellular glutamate in frontal cortex rose two- to three-fold after PTZ injection and agmatine significantly inhibited this increase. In conclusion, the present data suggest that the anticonvulsant activity of agmatine, in part, could be related to the inhibition glutamate release. PMID:16125317

  15. [The influence of L-glutamate and carbachol on burst firing of dopaminergic neurons in ventral tegmental area].

    PubMed

    Wang, Shan-shan; Wei, Chun-ling; Liu, Zhi-qiang; Ren, Wei

    2011-02-25

    Burst firing of dopaminergic neurons in ventral tegmental area (VTA) induces a large transient increase in synaptic dopamine (DA) release and thus is considered the reward-related signal. But the mechanisms of burst generation of dopaminergic neuron still remain unclear. This experiment investigated the burst firing of VTA dopaminergic neurons in rat midbrain slices perfused with carbachol and L-glutamate individually or simultaneously to understand the neurotransmitter mechanism underlying burst generation. The results showed that bath application of carbachol (10 μmol/L) and pulse application of L-glutamate (3 mmol/L) both induced burst firing in dopaminergic neuron. Co-application of carbachol and L-glutamate induced burst firing in VTA dopaminergic cells which couldn't be induced to burst by the two chemicals separately. The result indicates that carbachol and L-glutamate co-regulate burst firing of dopaminergic neuron.

  16. Ferulic Acid Suppresses Glutamate Release Through Inhibition of Voltage-Dependent Calcium Entry in Rat Cerebrocortical Nerve Terminals

    PubMed Central

    Lin, Tzu Yu; Lu, Cheng Wei; Huang, Shu-Kuei

    2013-01-01

    Abstract This study investigated the effects and possible mechanism of ferulic acid, a naturally occurring phenolic compound, on endogenous glutamate release in the nerve terminals of the cerebral cortex in rats. Results show that ferulic acid inhibited the release of glutamate evoked by the K+ channel blocker 4-aminopyridine (4-AP). The effect of ferulic acid on the evoked glutamate release was prevented by chelating the extracellular Ca2+ ions, but was insensitive to the glutamate transporter inhibitor DL-threo-beta-benzyl-oxyaspartate. Ferulic acid suppressed the depolarization-induced increase in a cytosolic-free Ca2+ concentration, but did not alter 4-AP–mediated depolarization. Furthermore, the effect of ferulic acid on evoked glutamate release was abolished by blocking the Cav2.2 (N-type) and Cav2.1 (P/Q-type) channels, but not by blocking ryanodine receptors or mitochondrial Na+/Ca2+ exchange. These results show that ferulic acid inhibits glutamate release from cortical synaptosomes in rats through the suppression of presynaptic voltage-dependent Ca2+ entry. PMID:23342970

  17. Presynaptic kainate receptor-mediated facilitation of glutamate release involves Ca2+ -calmodulin at mossy fiber-CA3 synapses.

    PubMed

    Andrade-Talavera, Yuniesky; Duque-Feria, Paloma; Negrete-Díaz, José Vicente; Sihra, Talvinder S; Flores, Gonzalo; Rodríguez-Moreno, Antonio

    2012-09-01

    Presynaptic kainate receptors (KARs) modulate the release of glutamate at synapses established between mossy fibers (MF) and CA3 pyramidal cells in the hippocampus. The activation of KAR by low, nanomolar, kainate concentrations facilitates glutamate release. KAR-mediated facilitation of glutamate release involves the activation of an adenylate cyclase/cyclic adenosine monophosphate/protein kinase A cascade at MF-CA3 synapses. Here, we studied the mechanisms by which KAR activation produces this facilitation of glutamate release in slices and synaptosomes. We find that the facilitation of glutamate release mediated by KAR activation requires an increase in Ca(2+) levels in the cytosol and the formation of a Ca(2+) -calmodulin complex to activate adenylate cyclase. The increase in cytosolic Ca(2+) underpinning this modulation is achieved, both, by Ca(2+) entering via Ca(2+) -permeable KARs and, by the mobilization of intraterminal Ca(2+) stores. Finally, we find that, congruent with the Ca(2+) -calmodulin support of KAR-mediated facilitation of glutamate release, induction of long-term potentiation at MF-CA3 synapses has an obligate requirement for Ca(2+) -calmodulin activity. © 2012 The Authors. Journal of Neurochemistry © 2012 International Society for Neurochemistry.

  18. Glutamate transporter EAAT4 in Purkinje cells controls intersynaptic diffusion of climbing fiber transmitter mediating inhibition of GABA release from interneurons.

    PubMed

    Satake, Shin'ichiro; Song, Si-Young; Konishi, Shiro; Imoto, Keiji

    2010-12-01

    Neurotransmitters diffuse out of the synaptic cleft and act on adjacent synapses to exert concerted control of the synaptic strength within neural pathways that converge on single target neurons. The excitatory transmitter released from climbing fibers (CFs), presumably glutamate, is shown to inhibit γ-aminobutyric acid (GABA) release at basket cell (BC)-Purkinje cell (PC) synapses in the rat cerebellar cortex through its extrasynaptic diffusion and activation of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors on BC axon terminals. This study aimed at examining how the CF transmitter-diffusion-mediated presynaptic inhibition is controlled by glutamate transporters. Pharmacological blockade of the PC-selective neuronal transporter EAAT4 markedly enhanced CF-induced inhibition of GABAergic transmission. Tetanic CF-stimulation elicited long-term potentiation of glutamate transporters in PCs, and thereby attenuated the CF-induced inhibition. Combined use of electrophysiology and immunohistochemistry revealed a significant inverse relationship between the level of EAAT4 expression and the inhibitory action of CF-stimulation on the GABA release at different cerebellar lobules - the CF-induced inhibition was profound in lobule III, where the EAAT4 expression level was low, whereas it was minimal in lobule X, where EAAT4 was abundant. The findings clearly demonstrate that the neuronal glutamate transporter EAAT4 in PCs plays a critical role in the extrasynaptic diffusion of CF transmitter - it appears not only to retrogradely determine the degree of CF-mediated inhibition of GABAergic inputs to the PC by controlling the glutamate concentration for intersynaptic diffusion, but also regulate synaptic information processing in the cerebellar cortex depending on its differential regional distribution as well as use-dependent plasticity of uptake efficacy. © 2010 The Authors. European Journal of Neuroscience © 2010 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.

  19. Brainstem metabotropic glutamate receptors reduce food intake and activate dorsal pontine and medullar structures after peripheral bacterial lipopolysaccharide administration.

    PubMed

    Chaskiel, Léa; Paul, Flora; Gerstberger, Rüdiger; Hübschle, Thomas; Konsman, Jan Pieter

    2016-08-01

    During infection-induced inflammation food intake is reduced. Vagal and brainstem pathways are important both in feeding regulation and immune-to-brain communication. Glutamate is released by vagal afferent terminals in the nucleus of the solitary tract and by its neurons projecting to the parabrachial nuclei. We therefore studied the role of brainstem glutamate receptors in spontaneous food intake of healthy animals and during sickness-associated hypophagia after peripheral administration of bacterial lipopolysaccharides or interleukin-1beta. Brainstem group I and II metabotropic, but not ionotropic, glutamate receptor antagonism increased food intake both in saline- and lipopolysaccharide-treated rats. In these animals, expression of the cellular activation marker c-Fos in the lateral parabrachial nuclei and lipopolysaccharide-induced activation of the nucleus of the solitary tract rostral to the area postrema were suppressed. Group I metabotropic glutamate receptors did not colocalize with c-Fos or neurons regulating gastric function in these structures. Group I metabotropic glutamate receptors were, however, found on raphé magnus neurons that were part of the brainstem circuit innervating the stomach and on trigeminal and hypoglossal motor neurons. In conclusion, our findings show that brainstem metabotropic glutamate receptors reduce food intake and activate the lateral parabrachial nuclei as well as the rostral nucleus of the solitary tract after peripheral bacterial lipopolysaccharide administration. They also provide insight into potential group I metabotropic glutamate receptor-dependent brainstem circuits mediating these effects. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Glutamate metabolism in HIV-1 infected macrophages: Role of HIV-1 Vpr.

    PubMed

    Datta, Prasun K; Deshmane, Satish; Khalili, Kamel; Merali, Salim; Gordon, John C; Fecchio, Chiara; Barrero, Carlos A

    2016-09-01

    HIV-1 infected macrophages play a significant role in the neuropathogenesis of AIDS. HIV-1 viral protein R (Vpr) not only facilitates HIV-1 infection but also contribute to long-lived persistence in macrophages. Our previous studies using SILAC-based proteomic analysis showed that the expression of critical metabolic enzymes in the glycolytic pathway and tricarboxylic acid (TCA) cycle were altered in response to Vpr expression in macrophages. We hypothesized that Vpr-induced modulation of glycolysis and TCA cycle regulates glutamate metabolism and release in HIV-1 infected macrophages. We assessed the amount of specific metabolites induced by Vpr and HIV-1 in macrophages at the intracellular and extracellular level in a time-dependent manner utilizing multiple reaction monitoring (MRM) targeted metabolomics. In addition, stable isotope-labeled glucose and an MRM targeted metabolomics assay were used to evaluate the de novo synthesis and release of glutamate in Vpr overexpressing macrophages and HIV-1 infected macrophages, throughout the metabolic flux of glycolytic pathway and TCA cycle activation. The metabolic flux studies demonstrated an increase in glucose uptake, glutamate release and accumulation of α-ketoglutarate (α-KG) and glutamine in the extracellular milieu in Vpr expressing and HIV-1 infected macrophages. Interestingly, glutamate pools and other intracellular intermediates (glucose-6-phosphate (G6P), fructose-6-phosphate (F6P), citrate, malate, α-KG, and glutamine) showed a decreased trend except for fumarate, in contrast to the glutamine accumulation observed in the extracellular space in Vpr overexpressing macrophages. Our studies demonstrate that dysregulation of mitochondrial glutamate metabolism induced by Vpr in HIV-1 infected macrophages commonly seen, may contribute to neurodegeneration via excitotoxic mechanisms in the context of NeuroAIDS.

  1. Glutamate metabolism in HIV-1 infected macrophages: Role of HIV-1 Vpr

    PubMed Central

    Datta, Prasun K.; Deshmane, Satish; Khalili, Kamel; Merali, Salim; Gordon, John C.; Fecchio, Chiara; Barrero, Carlos A.

    2016-01-01

    ABSTRACT HIV-1 infected macrophages play a significant role in the neuropathogenesis of AIDS. HIV-1 viral protein R (Vpr) not only facilitates HIV-1 infection but also contribute to long-lived persistence in macrophages. Our previous studies using SILAC-based proteomic analysis showed that the expression of critical metabolic enzymes in the glycolytic pathway and tricarboxylic acid (TCA) cycle were altered in response to Vpr expression in macrophages. We hypothesized that Vpr-induced modulation of glycolysis and TCA cycle regulates glutamate metabolism and release in HIV-1 infected macrophages. We assessed the amount of specific metabolites induced by Vpr and HIV-1 in macrophages at the intracellular and extracellular level in a time-dependent manner utilizing multiple reaction monitoring (MRM) targeted metabolomics. In addition, stable isotope-labeled glucose and an MRM targeted metabolomics assay were used to evaluate the de novo synthesis and release of glutamate in Vpr overexpressing macrophages and HIV-1 infected macrophages, throughout the metabolic flux of glycolytic pathway and TCA cycle activation. The metabolic flux studies demonstrated an increase in glucose uptake, glutamate release and accumulation of α-ketoglutarate (α-KG) and glutamine in the extracellular milieu in Vpr expressing and HIV-1 infected macrophages. Interestingly, glutamate pools and other intracellular intermediates (glucose-6-phosphate (G6P), fructose-6-phosphate (F6P), citrate, malate, α-KG, and glutamine) showed a decreased trend except for fumarate, in contrast to the glutamine accumulation observed in the extracellular space in Vpr overexpressing macrophages. Our studies demonstrate that dysregulation of mitochondrial glutamate metabolism induced by Vpr in HIV-1 infected macrophages commonly seen, may contribute to neurodegeneration via excitotoxic mechanisms in the context of NeuroAIDS. PMID:27245560

  2. Potent homocysteine-induced ERK phosphorylation in cultured neurons depends on self-sensitization via system Xc{sup -}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gu Li; Hu Xiaoling; Xue Zhanxia

    2010-01-15

    Homocysteine is increased during pathological conditions, endangering vascular and cognitive functions, and elevated homocysteine during pregnancy may be correlated with an increased incidence of schizophrenia in the offspring. This study showed that millimolar homocysteine concentrations in saline medium cause phosphorylation of extracellular-signal regulated kinases 1 and 2 (ERK{sub 1/2}) in cerebellar granule neurons, inhibitable by metabotropic but not ionotropic glutamate receptor antagonists. These findings are analogous to observations by , that similar concentrations cause neuronal death. However, these concentrations are much higher than those occurring clinically during hyperhomocysteinemia. It is therefore important that a approx 10-fold increase in potency occurredmore » in the presence of the glutamate precursor glutamine, when ERK{sub 1/2} phosphorylation became inhibitable by NMDA or non-NMDA antagonists and dependent upon epidermal growth factor (EGF) receptor transactivation. However, glutamate release to the medium was reduced, suggesting that reversal of the cystine/glutamate antiporter, system X{sub c}{sup -} could be involved in potentiation of the response by causing a localized release of initially accumulated homocysteine. In agreement with this hypothesis further enhancement of ERK{sub 1/2} phosphorylation occurred in the additional presence of cystine. Pharmacological inhibition of system X{sub c}{sup -} prevented the effect of micromolar homocysteine concentrations, and U0126-mediated inhibition of ERK{sub 1/2} phosphorylation enhanced homocysteine-induced death. In conclusion, homocysteine interacts with system X{sub c}{sup -} like quisqualate (Venkatraman et al. 1994), by 'self-sensitization' with initial accumulation and subsequent release in exchange with cystine and/or glutamate, establishing high local homocysteine concentrations, which activate adjacent ionotropic glutamate receptors and cause neurotoxicity.« less

  3. Utilization of alpha-ketoglutarate as a precursor for transmitter glutamate in cultured cerebellar granule cells.

    PubMed

    Peng, L A; Schousboe, A; Hertz, L

    1991-01-01

    Alpha-ketoglutarate together with an amino group donor (alanine) was shown to be able to serve as a precursor for the glutamate pool which is released by potassium-induced depolarization (i.e., transmitter glutamate) in cerebellar granule cells. However, these compounds could not be utilized as precursors for intracellular glutamate or for release of transmitter aspartate. The formation of transmitter glutamate was inhibited by the transamination inhibitor aminooxyacetic acid but not by phenylsuccinate, an inhibitor of the dicarboxylate carrier in the mitochondrial membrane. Both of these inhibitors have previously been found to inhibit synthesis of transmitter glutamate from glutamine. The results support the hypothesis that alpha-ketoglutarate and alanine undergo transmination in the cytosol to form pyruvate and glutamate, and that this glutamate pool is available for transmitter release of glutamate but does not constitute the major intracellular pool of glutamate.

  4. SLC7A11 expression is associated with seizures and predicts poor survival in patients with malignant glioma

    PubMed Central

    Robert, Stephanie M.; Buckingham, Susan C.; Campbell, Susan L.; Robel, Stefanie; Holt, Kenneth T.; Ogunrinu-Babarinde, Toyin; Warren, Paula Province; White, David M.; Reid, Meredith A.; Eschbacher, Jenny M.; Berens, Michael E.; Lahti, Adrienne C.; Nabors, Louis B.; Sontheimer, Harald

    2015-01-01

    Glioma is the most common malignant primary brain tumor. Their rapid growth is aided by tumor-mediated release of glutamate, creating peritumoral excitotoxic cell death and vacating space for tumor expansion. Glioma glutamate release may also be responsible for seizures, which complicate the clinical course for many patients and are often the presenting symptom. A hypothesized glutamate release pathway is the cystine/glutamate transporter System xc− (SXC), responsible for the cellular synthesis of glutathione. However, the relationship of SXC-mediated glutamate release, seizures, and tumor growth remains unclear. Probing expression of SLC7A11/xCT, the catalytic subunit of SXC, in patient tissue and tissues propagated in mice, we found that approximately 50% of patient tumors have elevated SLC7A11 expression. Compared with tumors lacking this transporter, in vivo propagated and intracranially implanted SLC7A11-expressing tumors grew faster, produced pronounced peritumoral glutamate excitotoxicity, induced seizures, and shortened overall survival. In agreement with animal data, increased SLC7A11 expression predicted shorter patient survival according to annotated genomic data in the REMBRANDT database. In a clinical pilot study we used Magnetic Resonance Spectroscopy (MRS) to determine SXC-mediated glutamate release by measuring acute changes in glutamate after administration of the FDA-approved SXC inhibitor, sulfasalazine. In 9 glioma patients with biopsy-confirmed expression of SXC, we found that its expression positively correlates with glutamate release, which is acutely inhibited with oral sulfasalazine. These data suggest that SXC is the major pathway for glutamate release from gliomas and that SLC7A11 expression predicts accelerated growth and peritumoral seizures. PMID:26019222

  5. Direct measurement of glutamate release in the brain using a dual enzyme-based electrochemical sensor.

    PubMed

    Hu, Y; Mitchell, K M; Albahadily, F N; Michaelis, E K; Wilson, G S

    1994-10-03

    The in vivo measurement of the rapid changes in the extracellular concentrations of L-glutamic acid in the mammalian brain during normal neuronal activity or following excessive release due to episodes of anoxia or ischemia has not been possible to this date. Current techniques for the measurement of the release of endogenous glutamate into the extracellular space of the central nervous system are relatively slow and do not measure the actual concentration of free glutamate in the extracellular space. An enzyme-based electrode with rapid response times (about 1 s) and high degree of sensitivity (less than 2 microM) and selectivity for L-glutamic acid is described in this paper. This electrode has both L-glutamate and ascorbate oxidase immobilized on its surface. The latter enzyme removes almost completely any interferences produced by the high levels of extracellular ascorbate present in brain tissue. The response of the electrode to glutamate and other potentially interfering substances was fully characterized in vitro and its selectivity, sensitivity and rapidity in responding to a rise in extracellular glutamate concentrations was also demonstrated in vivo. Placement of the electrode in the dentate gyrus of the hippocampus led to the detection of both KCl-induced release of L-glutamic acid and the release induced by stimulation of the axons in the perforant pathway. The development of this selective, sensitive and rapidly responding glutamate sensor should make it now possible to measure the dynamic events associated with glutamate neurotransmission in the central nervous system.

  6. Long-term depression of neuron to glial signalling in rat cerebellar cortex.

    PubMed

    Bellamy, Tomas C; Ogden, David

    2006-01-01

    Bergmann glial cells enclose synapses throughout the molecular layer of the cerebellum and express extrasynaptic AMPA receptors and glutamate transporters. Accordingly, stimulation of parallel fibres leads to the generation of inward currents in the glia due to AMPA receptor activation and electrogenic uptake of glutamate. Elimination of AMPA receptor Ca(2+) permeability leads to the withdrawal of glial processes and synaptic dysfunction, suggesting that AMPA receptor-mediated Ca(2+) signalling is essential for glial support of the neuronal network. Here we show that glial extrasynaptic currents (ESCs) exhibit activity-dependent plasticity, specifically, long-term depression during repetitive stimulation of parallel fibres at low frequencies (0.033-1 Hz) -- conditions in which Purkinje neuron excitatory postsynaptic currents (EPSCs) remain stable. Both the rate of onset and the magnitude of ESC depression increased with stimulation frequency. Depression was reversible following brief periods of stimulation, but became increasingly persistent as the duration of repetitive stimulation increased. All glial currents -- AMPA receptors, glutamate transporter and a recently discovered slow 1,2,3,4-tetrahydro-6-nitro-2,3-dioxo-benzo[f]quinoxaline-7-sulphonamide (NBQX)-sensitive current -- were depressed. Increasing presynaptic release probability by doubling external Ca(2+) concentration did not affect the time course of depression, suggesting that neither decreased release probability nor fatigue of release sites contribute to depression. Inhibition of glutamate uptake caused a dramatic enhancement of the rate of depression, implicating glutamate in the underlying mechanism. The strength of neuron to glial signalling in the cerebellum is therefore dynamically regulated, independently of adjacent synapses, by the frequency of parallel fibre activity.

  7. Glutamate mediates platelet activation through the AMPA receptor

    PubMed Central

    Morrell, Craig N.; Sun, Henry; Ikeda, Masahiro; Beique, Jean-Claude; Swaim, Anne Marie; Mason, Emily; Martin, Tanika V.; Thompson, Laura E.; Gozen, Oguz; Ampagoomian, David; Sprengel, Rolf; Rothstein, Jeffrey; Faraday, Nauder; Huganir, Richard; Lowenstein, Charles J.

    2008-01-01

    Glutamate is an excitatory neurotransmitter that binds to the kainate receptor, the N-methyl-D-aspartate (NMDA) receptor, and the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor (AMPAR). Each receptor was first characterized and cloned in the central nervous system (CNS). Glutamate is also present in the periphery, and glutamate receptors have been identified in nonneuronal tissues, including bone, heart, kidney, pancreas, and platelets. Platelets play a central role in normal thrombosis and hemostasis, as well as contributing greatly to diseases such as stroke and myocardial infarction. Despite the presence of glutamate in platelet granules, the role of glutamate during hemostasis is unknown. We now show that activated platelets release glutamate, that platelets express AMPAR subunits, and that glutamate increases agonist-induced platelet activation. Furthermore, we demonstrate that glutamate binding to the AMPAR increases intracellular sodium concentration and depolarizes platelets, which are important steps in platelet activation. In contrast, platelets treated with the AMPAR antagonist CNQX or platelets derived from GluR1 knockout mice are resistant to AMPA effects. Importantly, mice lacking GluR1 have a prolonged time to thrombosis in vivo. Our data identify glutamate as a regulator of platelet activation, and suggest that the AMPA receptor is a novel antithrombotic target. PMID:18283118

  8. Transport mechanism of L-[14C]glutamate in cortical slices and synaptosomes of rabbits exposed to brain ischemia and reperfusion.

    PubMed

    Solyakov, L; Dobrota, D; Drany, O; Vachova, M; Machac, S; Mezesova, V; Bachurin, S; Lombardi, V

    1995-01-01

    Changes in the functioning of the glutamatergic system in rabbit brain were studied after partial brain ischemia and reperfusion. In vitro studies were conducted relating to the release of L-[14C]glutamate from cortical brain slices, L-[14C]glutamate uptake in synaptosomes, and 45Ca uptake in synaptosomes. It was found that basal release of L-[14C]glutamate from rabbit brain cortical slices after 30 min of partial ischemia and 1 d of reperfusion was essentially without change compared to the control values. After 3 d of reperfusion, there was an increase in basal release of L-[14C]glutamate from rabbit brain cortical slices. K+ stimulated release of L-[14C]glutamate in normal Krebs-Ringer medium was essentially the same in the control group and in the experimental group after 30 min of ischemia. The K+ stimulated release of L-[14C]glutamate independent of calcium was increased to 145% after 30 min of ischemia and 1 d of reperfusion. The decreased Km value at the glutamate transporter may have contributed to this difference. Kinetic parameters of the L-[14C]glutamate uptake (Km and Vmax) in synaptosomes from rabbit brain were significantly lower after 30 min of ischemia. The authors discovered that during the reperfusion period, Vmax was almost the same as in the control group. The activity of the Na+/Ca2+ exchanger in synaptosomes of rat brain was about 70% of the control values after 30 min of ischemia and 72 h of reperfusion. According to our results, increased L-[14C]glutamate release after 30 min of ischemia appears to be the result of higher intracellular calcium concentration and possibly also of a higher uptake of glutamate.

  9. Characterization of N-methyl-D-aspartate-evoked taurine release in the developing and adult mouse hippocampus.

    PubMed

    Saransaari, P; Oja, S S

    2003-01-01

    Taurine is an inhibitory amino acid acting as an osmoregulator and neuroromodulator in the brain, with neuroprotective properties. The ionotropic glutamate receptor agonist N-methyl-D-aspartate (NMDA) greatly potentiates taurine release from brain preparations in both normal and ischemic conditions, the effect being particularly marked in the developing hippocampus. We now characterized the regulation of NMDA-stimulated taurine release from hippocampal slices from adult (3-month-old) and developing (7-day-old) mouse using a superfusion system. The NMDA-stimulated taurine release was receptor-mediated in both adult and developing mouse hippocampus. In adults, only NO-generating compounds, sodium nitroprusside, S-nitroso-N-acetylpenicillamine and hydroxylamine reduced the release, as did also NO synthase inhibitors, 7-nitroindazole and nitroarginine, indicating that the release is mediated by the NO/cGMP pathway. On the other hand, the regulation of the NMDA-evoked taurine release proved to be somewhat complex in the immature hippocampus. It was not affected by the NOergic compounds, but enhanced by the protein kinase C activator 4 beta-phorbol 12-myristate 13-acetate and adenosine receptor A(1) agonists, N(6)-cyclohexyladenosine and R(-)N(6)-(2-phenylisopropyl)adenosine in a receptor-mediated manner. The activation of both ionotropic 2-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) receptors and metabotropic glutamate group I receptors also enhanced the evoked release. The NMDA-receptor-stimulated taurine release could be a part of the neuroprotective properties of taurine, being important particularly under cell-damaging conditions in the developing hippocampus and hence preventing excitotoxicity.

  10. Electrogenic glutamate uptake is a major current carrier in the membrane of axolotl retinal glial cells

    NASA Astrophysics Data System (ADS)

    Brew, Helen; Attwell, David

    1987-06-01

    Glutamate is taken up avidly by glial cells in the central nervous system1. Glutamate uptake may terminate the transmitter action of glutamate released from neurons1, and keep extracellular glutamate at concentrations below those which are neurotoxic. We report here that glutamate evokes a large inward current in retinal glial cells which have their membrane potential and intracellular ion concentrations controlled by the whole-cell patch-clamp technique2. This current seems to be due to an electrogenic glutamate uptake carrier, which transports at least two sodium ions with every glutamate anion carried into the cell. Glutamate uptake is strongly voltage-dependent, decreasing at depolarized potentials: when fully activated, it contributes almost half of the conductance in the part of the glial cell membrane facing the retinal neurons. The spatial localization, glutamate affinity and magnitude of the uptake are appropriate for terminating the synaptic action of glutamate released from photoreceptors and bipolar cells. These data challenge present explanations of how the b-wave of the electroretinogram is generated, and suggest a mechanism for non-vesicular voltage-dependent release of glutamate from neurons.

  11. Passive Avoidance Training and Recall are Associated With Increased Glutamate Levels in the Intermediate Medial Hyperstriatum Ventrale of the Day-Old Chick

    PubMed Central

    Daisley, Jonathan N.; Gruss, Michael; Rose, Steven P. R.; Braun, Katharina

    1998-01-01

    In the young chick, the intermediate medial hyperstriatum ventrale is involved in learning paradigms, including imprinting and passive avoidance learning. Biochemical changes in the intermediate medial hyperstriatum ventrale following learning include an up-regulation of amino-acid transmitter levels and receptor activity. To follow the changes of extracellular amino acid levels during passive avoidance training, we used an in vivo microdialysis technique. Probes were implanted in chicks before training the animals, either on a methyl- anthranylate-or water-coated bead. One hour later, recall was tested in both groups by presenting a similar bead. An increase of extra-cellular glutamate levels accompanied training and testing in both groups; during training, glutamate release was higher in methylanthranylate- trained than in water-trained chicks. When compared with the methylanthranylate-trained chicks during testing, the water-trained chicks showed enhanced extra-cellular glutamate levels. No other amino acid examined showed significant changes. After testing, the chicks were anesthetized and release- stimulated with an infusion of 50 mM potassium. Extra-cellular glutamate and taurine levels were significantly increased in both methylanthranylate-and water-trained chicks. The presentation of methylanthranylate as an. olfactory stimulus significantly enhanced glutamate levels, especially in methylanthranylate-trained chicks. The results suggest that such changes in extra-cellular glutamate levels in the intermediate medial hyperstriatum ventrale accompany pecking at either the water- or the methylanthranylate-bead. The taste of the aversant may be responsible for the greater increases found in methylanthranylate-trained birds. PMID:9920682

  12. Astrocytic GABA transporter activity modulates excitatory neurotransmission

    PubMed Central

    Boddum, Kim; Jensen, Thomas P.; Magloire, Vincent; Kristiansen, Uffe; Rusakov, Dmitri A.; Pavlov, Ivan; Walker, Matthew C.

    2016-01-01

    Astrocytes are ideally placed to detect and respond to network activity. They express ionotropic and metabotropic receptors, and can release gliotransmitters. Astrocytes also express transporters that regulate the extracellular concentration of neurotransmitters. Here we report a previously unrecognized role for the astrocytic GABA transporter, GAT-3. GAT-3 activity results in a rise in astrocytic Na+ concentrations and a consequent increase in astrocytic Ca2+ through Na+/Ca2+ exchange. This leads to the release of ATP/adenosine by astrocytes, which then diffusely inhibits neuronal glutamate release via activation of presynaptic adenosine receptors. Through this mechanism, increases in astrocytic GAT-3 activity due to GABA released from interneurons contribute to 'diffuse' heterosynaptic depression. This provides a mechanism for homeostatic regulation of excitatory transmission in the hippocampus. PMID:27886179

  13. Enhanced astroglial Ca2+ signaling increases excitatory synaptic strength in the epileptic brain.

    PubMed

    Álvarez-Ferradas, Carla; Morales, Juan Carlos; Wellmann, Mario; Nualart, Francisco; Roncagliolo, Manuel; Fuenzalida, Marco; Bonansco, Christian

    2015-09-01

    The fine-tuning of synaptic transmission by astrocyte signaling is crucial to CNS physiology. However, how exactly astroglial excitability and gliotransmission are affected in several neuropathologies, including epilepsy, remains unclear. Here, using a chronic model of temporal lobe epilepsy (TLE) in rats, we found that astrocytes from astrogliotic hippocampal slices displayed an augmented incidence of TTX-insensitive spontaneous slow Ca(2+) transients (STs), suggesting a hyperexcitable pattern of astroglial activity. As a consequence, elevated glutamate-mediated gliotransmission, observed as increased slow inward current (SICs) frequency, up-regulates the probability of neurotransmitter release in CA3-CA1 synapses. Selective blockade of spontaneous astroglial Ca(2+) elevations as well as the inhibition of purinergic P2Y1 or mGluR5 receptors relieves the abnormal enhancement of synaptic strength. Moreover, mGluR5 blockade eliminates any synaptic effects induced by P2Y1R inhibition alone, suggesting that the Pr modulation via mGluR occurs downstream of P2Y1R-mediated Ca(2+)-dependent glutamate release from astrocyte. Our findings show that elevated Ca(2+)-dependent glutamate gliotransmission from hyperexcitable astrocytes up-regulates excitatory neurotransmission in epileptic hippocampus, suggesting that gliotransmission should be considered as a novel functional key in a broad spectrum of neuropathological conditions. © 2015 Wiley Periodicals, Inc.

  14. Felbamate but not phenytoin or gabapentin reduces glutamate release by blocking presynaptic NMDA receptors in the entorhinal cortex

    PubMed Central

    Yang, Jian; Wetterstrand, Caroline; Jones, Roland S.G.

    2007-01-01

    Summary We have shown that a number of anticonvulsant drugs can reduce glutamate release at synapses in the rat entorhinal cortex (EC) in vitro. We have also shown that presynaptic NMDA receptors (NMDAr) tonically facilitate glutamate release at these synapses. In the present study we determined whether, phenytoin, gabapentin and felbamate may reduce glutamate release by blocking the presynaptic NMDAr. Whole cell patch clamp recordings of spontaneous excitatory postsynaptic currents (sEPSCs) were used as a monitor of presynaptic glutamate release. Postsynaptic NMDAr were blocked with internal dialysis with an NMDAr channel blocker. The antagonist, 2-AP5, reduced the frequency of sEPSCs by blocking the presynaptic facilitatory NMDAr, but did not occlude a reduction in sEPSC frequency by gabapentin or phenytoin. Felbamate also reduced sEPSC frequency, but this effect was occluded by prior application of 2-AP5. Thus, whilst all three drugs can reduce glutamate release, only the action of felbamate seems to be due to interaction with presynaptic NMDAr. PMID:17980555

  15. Regulation of /sup 3/H-dopamine release by presynaptic GABA and glutamate heteroreceptors in rat brain nucleus accumbens synaptosomes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kovalev, G.I.; Hetey, L.

    1987-06-01

    The aim of this investigation was a neurochemical study of the effect of agonists of different types of GABA receptors - muscimol (type A receptor), baclofen (type B receptor), delta-aminolevulinic acid (DALA; GABA autoreceptor), and also of GABA itself - on tritium-labelled dopamine release, stimulated by potassium cations, from synaptosomes of the nuclei accumbenes of the rat brain.

  16. Acetylcholine Encodes Long-Lasting Presynaptic Plasticity at Glutamatergic Synapses in the Dorsal Striatum after Repeated Amphetamine Exposure

    PubMed Central

    Wang, Wengang; Darvas, Martin; Storey, Granville P.; Bamford, Ian J.; Gibbs, Jeffrey T.; Palmiter, Richard D.

    2013-01-01

    Locomotion and cue-dependent behaviors are modified through corticostriatal signaling whereby short-term increases in dopamine availability can provoke persistent changes in glutamate release that contribute to neuropsychiatric disorders, including Parkinson's disease and drug dependence. We found that withdrawal of mice from repeated amphetamine treatment caused a chronic presynaptic depression (CPD) in glutamate release that was most pronounced in corticostriatal terminals with a low probability of release and lasted >50 d in treated mice. An amphetamine challenge reversed CPD via a dopamine D1-receptor-dependent paradoxical presynaptic potentiation (PPP) that increased corticostriatal activity in direct pathway medium spiny neurons. This PPP was correlated with locomotor responses after a drug challenge, suggesting that it may underlie the sensitization process. Experiments in brain slices and in vivo indicated that dopamine regulation of acetylcholine release from tonically active interneurons contributes to CPD, PPP, locomotor sensitization, and cognitive ability. Therefore, a chronic decrease in corticostriatal activity during withdrawal is regulated around a new physiological range by tonically active interneurons and returns to normal upon reexposure to amphetamine, suggesting that this paradoxical return of striatal activity to a more stable, normalized state may represent an additional source of drug motivation during abstinence. PMID:23785153

  17. Platelet Kainate Receptor Signaling Promotes Thrombosis by Stimulating Cyclooxygenase Activation

    PubMed Central

    Sun, Henry; Swaim, AnneMarie; Herrera, Jesus Enrique; Becker, Diane; Becker, Lewis; Srivastava, Kalyan; Thompson, Laura E.; Shero, Michelle R.; Perez-Tamayo, Alita; Suktitpat, Bhoom; Mathias, Rasika; Contractor, Anis; Faraday, Nauder; Morrell, Craig N.

    2009-01-01

    Rationale Glutamate is a major signaling molecule that binds to glutamate receptors including the ionotropic glutamate receptors; kainate (KA) receptor (KAR), the N-methyl-D-aspartate (NMDA) receptor (NMDAR), and the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor (AMPAR). Each is well characterized in the central nervous system (CNS), but glutamate has important signaling roles in peripheral tissues as well, including a role in regulating platelet function. Objective Our previous work has demonstrated that glutamate is released by platelets in high concentrations within a developing thrombus and increases platelet activation and thrombosis. We now show that platelets express a functional KAR that drives increased agonist induced platelet activation. Methods and Results KAR induced increase in platelet activation is in part the result of activation of platelet cyclooxygenase (COX) in a Mitogen Activated Protein Kinase (MAPK) dependent manner. Platelets derived from KA receptor subunit knockout mice (GluR6−/−) are resistant to KA effects and have a prolonged time to thrombosis in vivo. Importantly, we have also identified polymorphisms in KA receptor subunits that are associated with phenotypic changes in platelet function in a large group of Caucasians and African Americans. Conclusion Our data demonstrate that glutamate regulation of platelet activation is in part COX dependent, and suggest that the KA receptor is a novel anti-thrombotic target. PMID:19679838

  18. Synaptically evoked Ca2+ release from intracellular stores is not influenced by vesicular zinc in CA3 hippocampal pyramidal neurones.

    PubMed

    Evstratova, Alesya; Tóth, Katalin

    2011-12-01

    The co-release of neuromodulatory substances in combination with classic neurotransmitters such as glutamate and GABA from individual presynaptic nerve terminals has the capacity to dramatically influence synaptic efficacy and plasticity. At hippocampal mossy fibre synapses vesicular zinc is suggested to serve as a cotransmitter capable of regulating calcium release from internal stores in postsynaptic CA3 pyramidal cells. Here we investigated this possibility using combined intracellular ratiometric calcium imaging and patch-clamp recording techniques. In acute hippocampal slices a brief train of mossy fibre stimulation produced a large, delayed postsynaptic Ca(2+) wave that was spatially restricted to the proximal apical dendrites of CA3 pyramidal cells within stratum lucidum. This calcium increase was sensitive to intracellularly applied heparin indicating reliance upon release from internal stores and was triggered by activation of both group I metabotropic glutamate and NMDA receptors. Importantly, treatment of slices with the membrane-impermeant zinc chelator CaEDTA did not influence the synaptically evoked postsynaptic Ca(2+) waves. Moreover, mossy fibre stimulus evoked postsynaptic Ca(2+) signals were not significantly different between wild-type and zinc transporter 3 (ZnT3) knock-out animals. Considered together our data do not support a role for vesicular zinc in regulating mossy fibre evoked Ca(2+) release from CA3 pyramidal cell internal stores.

  19. Synaptically evoked Ca2+ release from intracellular stores is not influenced by vesicular zinc in CA3 hippocampal pyramidal neurones

    PubMed Central

    Evstratova, Alesya; Tóth, Katalin

    2011-01-01

    Abstract The co-release of neuromodulatory substances in combination with classic neurotransmitters such as glutamate and GABA from individual presynaptic nerve terminals has the capacity to dramatically influence synaptic efficacy and plasticity. At hippocampal mossy fibre synapses vesicular zinc is suggested to serve as a cotransmitter capable of regulating calcium release from internal stores in postsynaptic CA3 pyramidal cells. Here we investigated this possibility using combined intracellular ratiometric calcium imaging and patch-clamp recording techniques. In acute hippocampal slices a brief train of mossy fibre stimulation produced a large, delayed postsynaptic Ca2+ wave that was spatially restricted to the proximal apical dendrites of CA3 pyramidal cells within stratum lucidum. This calcium increase was sensitive to intracellularly applied heparin indicating reliance upon release from internal stores and was triggered by activation of both group I metabotropic glutamate and NMDA receptors. Importantly, treatment of slices with the membrane-impermeant zinc chelator CaEDTA did not influence the synaptically evoked postsynaptic Ca2+ waves. Moreover, mossy fibre stimulus evoked postsynaptic Ca2+ signals were not significantly different between wild-type and zinc transporter 3 (ZnT3) knock-out animals. Considered together our data do not support a role for vesicular zinc in regulating mossy fibre evoked Ca2+ release from CA3 pyramidal cell internal stores. PMID:21986206

  20. Kainate Receptors Inhibit Glutamate Release Via Mobilization of Endocannabinoids in Striatal Direct Pathway Spiny Projection Neurons.

    PubMed

    Marshall, John J; Xu, Jian; Contractor, Anis

    2018-04-18

    Kainate receptors are members of the glutamate receptor family that function by both generating ionotropic currents through an integral ion channel pore and coupling to downstream metabotropic signaling pathways. They are highly expressed in the striatum, yet their roles in regulating striatal synapses are not known. Using mice of both sexes, we demonstrate that GluK2-containing kainate receptors expressed in direct pathway spiny projection neurons (dSPNs) inhibit glutamate release at corticostriatal synapses in the dorsolateral striatum. This inhibition requires postsynaptic kainate-receptor-mediated mobilization of a retrograde endocannabinoid (eCB) signal and activation of presynaptic CB1 receptors. This pathway can be activated during repetitive 25 Hz trains of synaptic stimulation, causing short-term depression of corticostriatal synapses. This is the first study to demonstrate a role for kainate receptors in regulating eCB-mediated plasticity at the corticostriatal synapse and demonstrates an important role for these receptors in regulating basal ganglia circuits. SIGNIFICANCE STATEMENT The GRIK2 gene, encoding the GluK2 subunit of the kainate receptor, has been linked to several neuropsychiatric and neurodevelopmental disorders including obsessive compulsive disorder (OCD). Perseverative behaviors associated with OCD are known to result from pathophysiological changes in the striatum and kainate receptor knock-out mice have striatal-dependent phenotypes. However, the role of kainate receptors in striatal synapses is not known. We demonstrate that GluK2-containing kainate receptors regulate corticostriatal synapses by mobilizing endocannabinoids from direct pathway spiny projection neurons. Synaptic activation of GluK2 receptors during trains of synaptic input causes short-term synaptic depression, demonstrating a novel role for these receptors in regulating striatal circuits. Copyright © 2018 the authors 0270-6474/18/383901-10$15.00/0.

  1. Glutamate release from activated microglia requires the oxidative burst and lipid peroxidation.

    PubMed

    Barger, Steven W; Goodwin, Mary E; Porter, Mandy M; Beggs, Marjorie L

    2007-06-01

    When activated by proinflammatory stimuli, microglia release substantial levels of glutamate, and mounting evidence suggests this contributes to neuronal damage during neuroinflammation. Prior studies indicated a role for the Xc exchange system, an amino acid transporter that antiports glutamate for cystine. Because cystine is used for synthesis of glutathione (GSH) synthesis, we hypothesized that glutamate release is an indirect consequence of GSH depletion by the respiratory burst, which produces superoxide from NADPH oxidase. Microglial glutamate release triggered by lipopolysaccharide was blocked by diphenylene iodonium chloride and apocynin, inhibitors of NADPH oxidase. This glutamate release was also blocked by vitamin E and elicited by lipid peroxidation products 4-hydroxynonenal and acrolein, suggesting that lipid peroxidation makes crucial demands on GSH. Although NADPH oxidase inhibitors also suppressed nitrite accumulation, vitamin E did not; moreover, glutamate release was largely unaffected by nitric oxide donors, inhibitors of nitric oxide synthase, or changes in gene expression. These findings indicate that a considerable degree of the neurodegenerative consequences of neuroinflammation may result from conversion of oxidative stress to excitotoxic stress. This phenomenon entails a biochemical chain of events initiated by a programmed oxidative stress and resultant mass-action amino acid transport. Indeed, some of the neuroprotective effects of antioxidants may be due to interference with these events rather than direct protection against neuronal oxidation.

  2. Involvement of connexin43 in the infrasonic noise-induced glutamate release by cultured astrocytes.

    PubMed

    Jiang, Shan; Wang, Yong-Qiang; Xu, Cheng-Feng; Li, Ya-Na; Guo, Rong; Li, Ling

    2014-05-01

    Infrasonic noise/infrasound is a type of environmental noise that threatens public health as a nonspecific biological stressor. Glutamate-related excitotoxicity is thought to be responsible for infrasound-induced impairment of learning and memory. In addition to neurons, astrocytes are also capable of releasing glutamate. In the present study, to identify the effect of infrasound on astroglial glutamate release, cultured astrocytes were exposed to infrasound at 16 Hz, 130 dB for different times. We found that infrasound exposure caused a significant increase in glutamate levels in the extracellular fluid. Moreover, blocking the connexin43 (Cx43) hemichannel or gap junction, decreasing the probability of Cx43 being open or inhibiting of Cx43 expression blocked this increase. The results suggest that glutamate release by Cx43 hemichannels/gap junctions is involved in the response of cultured astrocytes to infrasound.

  3. Spike-independent release of ATP from Xenopus spinal neurons evoked by activation of glutamate receptors

    PubMed Central

    Brown, Paul; Dale, Nicholas

    2002-01-01

    As the release of ATP from neurons has only been directly studied in a few cases, we have used patch sniffing to examine ATP release from Xenopus spinal neurons. ATP release was detected following intracellular current injection to evoke spikes. However, spiking was not essential as both glutamate and NMDA could evoke release of ATP in the presence of TTX. Neither acetylcholine nor high K+ was effective at inducing ATP release in the presence of TTX. Although Cd2+ blocked glutamate-evoked release of ATP suggesting a dependence on Ca2+ entry, neither ω-conotoxin-GVIA nor nifedipine prevented ATP release. N-type and L-type channels are thus not essential for glutamate-evoked ATP release. That glutamate receptors can elicit release in the absence of spiking suggests a close physical relationship between these receptors, the Ca2+ channels and release sites. As the dependence of ATP release on the influx of Ca2+ through Ca2+ channel subtypes differs from that of synaptic transmitter release, ATP may be released from sites that are distinct from those of the principal transmitter. In addition to its role as a fast transmitter, ATP may thus be released as a consequence of the activation of excitatory glutamatergic synapses and act to signal information about activity patterns in the nervous system. PMID:11986374

  4. Activation of PPARδ attenuates neurotoxicity by inhibiting lipopolysaccharide-triggered glutamate release in BV-2 microglial cells.

    PubMed

    Lee, Won Jin; Ham, Sun Ah; Yoo, Hyunjin; Hwang, Jung Seok; Yoo, Taesik; Paek, Kyung Shin; Lim, Dae-Seog; Han, Sung Gu; Lee, Chi-Ho; Hong, Kwonho; Seo, Han Geuk

    2018-02-01

    Neuroinflammation-associated release of glutamate from activated microglia has been implicated in the progression of neurodegenerative diseases. However, the regulatory mechanisms underlying this glutamate release are poorly understood. Here, we show that peroxisome proliferator-activated receptor delta (PPARδ) modulates neurotoxicity by inhibiting glutamate release in lipopolysaccharide (LPS)-activated BV-2 microglial cells. Activation of PPARδ by GW501516, a specific PPARδ agonist, inhibited glutamate release in BV-2 cells. This effect of GW501516 was significantly blocked by shRNA-mediated knockdown of PPARδ and by treatment with GSK0660, a specific PPARδ antagonist, indicating that PPARδ is associated with blockade of glutamate release. Additionally, GW501516-activated PPARδ suppressed generation of reactive oxygen species and expression of gp91phox, a functional subunit of NADPH oxidase 2, in BV-2 cells stimulated with LPS. The inhibitory effect of GW501516 on gp91phox expression and glutamate release was further potentiated in the presence of AG490, a specific inhibitor of janus kinase 2 (JAK2), leading to the inhibition of signal transducer and activator of transcription 1 (STAT1). By contrast, GW501516 upregulated the expression of suppressor of cytokine signaling 1 (SOCS1), an endogenous inhibitor of JAK2. Furthermore, neurotoxicity induced by conditioned media from LPS-stimulated BV-2 cells was significantly reduced when conditioned media from BV-2 cells treated with both LPS and GW501516 were used. These results indicate that PPARδ attenuates LPS-triggered neuroinflammation by enhancing SOCS1-mediated inhibition of JAK2/STAT1 signaling, thereby inhibiting neurotoxicity associated with glutamate release. © 2018 Wiley Periodicals, Inc.

  5. Selective activation of group III metabotropic glutamate receptor subtypes produces different patterns of γ-aminobutyric acid immunoreactivity and glutamate release in the retina.

    PubMed

    Guimarães-Souza, E M; Calaza, K C

    2012-12-01

    Glutamate, the major excitatory neurotransmitter in the retina, functions by activation of both ionotropic (iGluR) and metabotropic (mGluR) glutamate receptors. Group III mGluRs, except for mGluR6, are mostly found in the inner plexiform layer (IPL), and their retinal functions are not well known. Therefore, we decided to investigate the effect of mGluRIII on glutamate release and GABAergic amacrine cells in the chick retina. The nonselective mGluRIII agonist L-SOP promoted a decrease in the number of γ-aminobutyric acid (GABA)-positive cells and in the GABA immunoreactivity in all sublayers of the IPL. This effect was prevented by the antagonist MAP-4, by GAT-1 inhibitor, and by antagonists of iGluR. Under the conditions used, L-SOP did not alter endogenous glutamate release. VU0155041, an mGluR4-positive allosteric modulator, reduced GABA immunoreactivity in amacrine cells and in sublayers 2 and 4 of the IPL but evoked an increase in the glutamate released. VU0155041's effect was inhibited by the absence of calcium. AMN082, a selective mGluR7-positive allosteric modulator, also decreased GABA immunoreactivity in amacrine cells and sublayers 1, 2, and 3 and increased glutamate release, and this effect was also inhibited by calcium absence. DCPG, an mGluR8-selective agonist, did not significantly alter GABA immunoreactivity in amacrine cells or glutamate release. However, it did significantly increase GABA immunoreactivity in sublayers 4 and 5. The results suggest that mGluRIIIs are involved in the modulation of glutamate and GABA release in the retina, possibly participating in distinct visual pathways: mGluR4 might be involved with cholinergic circuitry, whereas mGluR7 and mGluR8 might participate, respectively, in the OFF and the ON pathways. Copyright © 2012 Wiley Periodicals, Inc.

  6. Tolerance to LSD and DOB induced shaking behaviour: differential adaptations of frontocortical 5-HT(2A) and glutamate receptor binding sites.

    PubMed

    Buchborn, Tobias; Schröder, Helmut; Dieterich, Daniela C; Grecksch, Gisela; Höllt, Volker

    2015-03-15

    Serotonergic hallucinogens, such as lysergic acid diethylamide (LSD) and dimethoxy-bromoamphetamine (DOB), provoke stereotype-like shaking behaviour in rodents, which is hypothesised to engage frontocortical glutamate receptor activation secondary to serotonin2A (5-HT2A) related glutamate release. Challenging this hypothesis, we here investigate whether tolerance to LSD and DOB correlates with frontocortical adaptations of 5-HT2A and/or overall-glutamate binding sites. LSD and DOB (0.025 and 0.25 mg/kg, i.p.) induce a ketanserin-sensitive (0.5 mg/kg, i.p., 30-min pretreatment) increase in shaking behaviour (including head twitches and wet dog shakes), which with repeated application (7× in 4 ds) is undermined by tolerance. Tolerance to DOB, as indexed by DOB-sensitive [(3)H]spiroperidol and DOB induced [(35)S]GTP-gamma-S binding, is accompanied by a frontocortical decrease in 5-HT2A binding sites and 5-HT2 signalling, respectively; glutamate-sensitive [(3)H]glutamate binding sites, in contrast, remain unchanged. As to LSD, 5-HT2 signalling and 5-HT2A binding, respectively, are not or only marginally affected, yet [(3)H]glutamate binding is significantly decreased. Correlation analysis interrelates tolerance to DOB to the reduced 5-HT2A (r=.80) as well as the unchanged [(3)H]glutamate binding sites (r=.84); tolerance to LSD, as opposed, shares variance with the reduction in [(3)H]glutamate binding sites only (r=.86). Given that DOB and LSD both induce tolerance, one correlating with 5-HT2A, the other with glutamate receptor adaptations, it might be inferred that tolerance can arise at either level. That is, if a hallucinogen (like LSD in our study) fails to induce 5-HT2A (down-)regulation, glutamate receptors (activated postsynaptic to 5-HT2A related glutamate release) might instead adapt and thus prevent further overstimulation of the cortex. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Glutamate receptors modulate sodium-dependent and calcium-independent vitamin C bidirectional transport in cultured avian retinal cells.

    PubMed

    Portugal, Camila Cabral; Miya, Vivian Sayuri; Calaza, Karin da Costa; Santos, Rochelle Alberto Martins; Paes-de-Carvalho, Roberto

    2009-01-01

    Vitamin C is transported in the brain by sodium vitamin C co-transporter 2 (SVCT-2) for ascorbate and glucose transporters for dehydroascorbate. Here we have studied the expression of SVCT-2 and the uptake and release of [(14)C] ascorbate in chick retinal cells. SVCT-2 immunoreactivity was detected in rat and chick retina, specially in amacrine cells and in cells in the ganglion cell layer. Accordingly, SVCT-2 was expressed in cultured retinal neurons, but not in glial cells. [(14)C] ascorbate uptake was saturable and inhibited by sulfinpyrazone or sodium-free medium, but not by treatments that inhibit dehydroascorbate transport. Glutamate-stimulated vitamin C release was not inhibited by the glutamate transport inhibitor l-beta-threo-benzylaspartate, indicating that vitamin C release was not mediated by glutamate uptake. Also, ascorbate had no effect on [(3)H] D-aspartate release, ruling out a glutamate/ascorbate exchange mechanism. 2-Carboxy-3-carboxymethyl-4-isopropenylpyrrolidine (Kainate) or NMDA stimulated the release, effects blocked by their respective antagonists 6,7-initroquinoxaline-2,3-dione (DNQX) or (5R,2S)-(1)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine hydrogen maleate (MK-801). However, DNQX, but not MK-801 or 2-amino-5-phosphonopentanoic acid (APV), blocked the stimulation by glutamate. Interestingly, DNQX prevented the stimulation by NMDA, suggesting that the effect of NMDA was mediated by glutamate release and stimulation of non-NMDA receptors. The effect of glutamate was neither dependent on external calcium nor inhibited by 1,2-bis (2-aminophenoxy) ethane-N',N',N',N',-tetraacetic acid tetrakis (acetoxy-methyl ester) (BAPTA-AM), an internal calcium chelator, but was inhibited by sulfinpyrazone or by the absence of sodium. In conclusion, retinal cells take up and release vitamin C, probably through SVCT-2, and the release can be stimulated by NMDA or non-NMDA glutamate receptors.

  8. Impaired expression and function of group II metabotropic glutamate receptors in pilocarpine-treated chronically epileptic rats

    PubMed Central

    Garrido-Sanabria, Emilio R.; Otalora, Luis F. Pacheco; Arshadmansab, Massoud F.; Herrera, Berenice; Francisco, Sebastian; Ermolinsky, Boris

    2008-01-01

    Group II metabotropic (mGlu II) receptor subtypes mGlu2 and mGlu3 are important modulators of synaptic plasticity and glutamate release in the brain. Accordingly, several pharmacological ligands have been designed to target these receptors for the treatment of neurological disorders characterized by anomalous glutamate regulation including epilepsy. In this study, we examine whether the expression level and function of mGlu2 and mGlu3 are altered in experimental epilepsy by using immunohistochemistry, Western blot analysis, RT-PCR and extracellular recordings. A down-regulation of mGlu2/3 protein expression at the mossy fiber pathway was associated with a significant reduction in mGlu2/3 protein expression in the hippocampus and cortex of chronically epileptic rats. Moreover, a reduction in mGlu2 and mGlu3 transcripts levels was noticed as early as 24h after pilocarpine-induced status epilepticus (SE) and persisted during subsequent “latent” and chronic periods. In addition, a significant impairment of mGlu II-mediated depression of field excitatory postsynaptic potentials at mossy fiber-CA3 synapses was detected in chronically epileptic rats. Application of mGlu II agonists (2S,2'R,3'R)-2-(2',3'-dicarboxycyclopropyl)glycine (DCG-IV) induced a significant reduction of the fEPSP amplitude in control rats, but not in chronic epileptic rats. These data indicate a long-lasting impairment of mGlu2/3 expression that may contribute to abnormal presynaptic plasticity, exaggerate glutamate release and hyperexcitability in temporal lobe epilepsy. PMID:18804094

  9. Gating characteristics control glutamate receptor distribution and trafficking in vivo.

    PubMed

    Petzoldt, Astrid G; Lee, Yü-Hien; Khorramshahi, Omid; Reynolds, Eric; Plested, Andrew J R; Herzel, Hanspeter; Sigrist, Stephan J

    2014-09-08

    Glutamate-releasing synapses dominate excitatory release in the brain. Mechanisms governing their assembly are of major importance for circuit development and long-term plasticity underlying learning and memory. AMPA/Kainate-type glutamate receptors (GluRs) are tetrameric ligand-gated ion channels that open their ion-conducting pores in response to binding of the neurotransmitter. Changes in subunit composition of postsynaptic GluRs are highly relevant for plasticity and development of glutamatergic synapses [1-4]. To date, posttranslational modifications, mostly operating via the intracellular C-terminal domains (CTDs) of GluRs, are presumed to be the major regulator of trafficking [5]. In recent years, structural and electrophysiological analyses have improved our understanding of GluR gating mechanism [6-11]. However, whether conformational changes subsequent to glutamate binding may per se be able to influence GluR trafficking has remained an unaddressed question. Using a Drosophila system allowing for extended visualization of GluR trafficking in vivo, we here provide evidence that mutations changing the gating behavior alter GluR distribution and trafficking. GluR mutants associated with reduced charge transfer segregated from coexpressed wild-type GluRs on the level of individual postsynaptic densities. Segregation was lost upon blocking of evoked glutamate release. Photobleaching experiments suggested increased mobility of mutants with reduced charge transfer, which accumulated prematurely during early steps of synapse assembly, but failed to further increase their level in accordance with assembly of the presynaptic scaffold. In summary, gating characteristics seem to be a new variable for the understanding of GluR trafficking relevant to both development and plasticity. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Ultrafast glutamate sensors resolve high-frequency release at Schaffer collateral synapses.

    PubMed

    Helassa, Nordine; Dürst, Céline D; Coates, Catherine; Kerruth, Silke; Arif, Urwa; Schulze, Christian; Wiegert, J Simon; Geeves, Michael; Oertner, Thomas G; Török, Katalin

    2018-05-22

    Glutamatergic synapses display a rich repertoire of plasticity mechanisms on many different time scales, involving dynamic changes in the efficacy of transmitter release as well as changes in the number and function of postsynaptic glutamate receptors. The genetically encoded glutamate sensor iGluSnFR enables visualization of glutamate release from presynaptic terminals at frequencies up to ∼10 Hz. However, to resolve glutamate dynamics during high-frequency bursts, faster indicators are required. Here, we report the development of fast (iGlu f ) and ultrafast (iGlu u ) variants with comparable brightness but increased K d for glutamate (137 μM and 600 μM, respectively). Compared with iGluSnFR, iGlu u has a sixfold faster dissociation rate in vitro and fivefold faster kinetics in synapses. Fitting a three-state model to kinetic data, we identify the large conformational change after glutamate binding as the rate-limiting step. In rat hippocampal slice culture stimulated at 100 Hz, we find that iGlu u is sufficiently fast to resolve individual glutamate release events, revealing that glutamate is rapidly cleared from the synaptic cleft. Depression of iGlu u responses during 100-Hz trains correlates with depression of postsynaptic EPSPs, indicating that depression during high-frequency stimulation is purely presynaptic in origin. At individual boutons, the recovery from depression could be predicted from the amount of glutamate released on the second pulse (paired pulse facilitation/depression), demonstrating differential frequency-dependent filtering of spike trains at Schaffer collateral boutons. Copyright © 2018 the Author(s). Published by PNAS.

  11. Tetrodotoxin-dependent glutamate release in the rat nucleus accumbens during concurrent presentation of appetitive and conditioned aversive stimuli.

    PubMed

    Saulskaya, Natalia B; Soloviova, Nina A

    2004-12-30

    In vivo microdialysis combined with a high-performance liquid chromatography was used to monitor extracellular glutamate (GLU) levels in the nucleus accumbens (N.Acc) of Sprague-Dawley rats during their behavioral responses to the concurrent presentation of appetitive and conditioned aversive stimuli. The presentation of a highly palatable diet followed by a tone previously paired with footshock to rats trained to take a pellet of the diet under these experimental conditions resulted in a marked and short lasting increase in extracellular glutamate, whereas the tone alone had no effect. A similar increase of the glutamate release was observed during the presentation of a piece of rubber instead of the diet. In both cases, the increase in extracellular glutamate was completely prevented by intra-accumbal infusions through the dialysis probe of 1 microM tetrodotoxin (a voltage-dependent Na(+) channel blocker), whereas (S)-4-carboxyphenylglycine (a cystine/glutamate exchange blocker, 5 microM) had no effect. The data obtained suggest that behavioral responses to unpredicted change in motivational value of expected reward appear to be associated with an increase of the extracellular glutamate level in the nucleus accumbens, and impulse-dependent synaptic release, rather than non-vesicular glutamate release via cystine/glutamate exchange, is responsible for this phenomenon.

  12. Glutamate may be an efferent transmitter that elicits inhibition in mouse taste buds.

    PubMed

    Huang, Yijen A; Grant, Jeff; Roper, Stephen

    2012-01-01

    Recent studies suggest that l-glutamate may be an efferent transmitter released from axons innervating taste buds. In this report, we determined the types of ionotropic synaptic glutamate receptors present on taste cells and that underlie this postulated efferent transmission. We also studied what effect glutamate exerts on taste bud function. We isolated mouse taste buds and taste cells, conducted functional imaging using Fura 2, and used cellular biosensors to monitor taste-evoked transmitter release. The findings show that a large fraction of Presynaptic (Type III) taste bud cells (∼50%) respond to 100 µM glutamate, NMDA, or kainic acid (KA) with an increase in intracellular Ca(2+). In contrast, Receptor (Type II) taste cells rarely (4%) responded to 100 µM glutamate. At this concentration and with these compounds, these agonists activate glutamatergic synaptic receptors, not glutamate taste (umami) receptors. Moreover, applying glutamate, NMDA, or KA caused taste buds to secrete 5-HT, a Presynaptic taste cell transmitter, but not ATP, a Receptor cell transmitter. Indeed, glutamate-evoked 5-HT release inhibited taste-evoked ATP secretion. The findings are consistent with a role for glutamate in taste buds as an inhibitory efferent transmitter that acts via ionotropic synaptic glutamate receptors.

  13. Subcellular fractionation on Percoll gradient of mossy fiber synaptosomes: evoked release of glutamate, GABA, aspartate and glutamate decarboxylase activity in control and degranulated rat hippocampus.

    PubMed

    Taupin, P; Ben-Ari, Y; Roisin, M P

    1994-05-02

    Using discontinuous density gradient centrifugation in isotonic Percoll sucrose, we have characterized two subcellular fractions (PII and PIII) enriched in mossy fiber synaptosomes and two others (SII and SIII) enriched in small synaptosomes. These synaptosomal fractions were compared with those obtained from adult hippocampus irradiated at neonatal stage to destroy granule cells and their mossy fibers. Synaptosomes were viable as judged by their ability to release aspartate, glutamate and GABA upon K+ depolarization. After irradiation, compared to the control values, the release of glutamate and GABA was decreased by 57 and 74% in the PIII fraction, but not in the other fractions and the content of glutamate, aspartate and GABA was also decreased in PIII fraction by 62, 44 and 52% respectively. These results suggest that mossy fiber (MF) synaptosomes contain and release glutamate and GABA. Measurement of the GABA synthesizing enzyme, glutamate decarboxylase, exhibited no significant difference after irradiation, suggesting that GABA is not synthesized by this enzyme in mossy fibers.

  14. Glutamate-mediated excitotoxicity in neonatal hippocampal neurons is mediated by mGluR-induced release of Ca++ from intracellular stores and is prevented by estradiol

    PubMed Central

    Hilton, Genell D.; Nunez, Joseph L.; Bambrick, Linda; Thompson, Scott M.; McCarthy, Margaret M.

    2008-01-01

    Hypoxic/ischemic (HI) brain injury in newborn full-term and premature infants is a common and pervasive source of life time disabilities in cognitive and locomotor function. In the adult, HI induces glutamate release and excitotoxic cell death dependent on NMDA receptor activation. In animal models of the premature human infant, glutamate is also released following HI, but neurons are largely insensitive to NMDA or AMPA/kainic acid (KA) receptor-mediated damage. Using primary cultured hippocampal neurons we have determined that glutamate increases intracellular calcium much more than kainic acid. Moreover, glutamate induces cell death by activating Type I metabotropic glutamate receptors (mGluRs). Pretreatment of neurons with the gonadal steroid estradiol reduces the level of the Type I metabotropic glutamate receptors and completely prevents cell death, suggesting a novel therapeutic approach to excitotoxic brain damage in the neonate. PMID:17156362

  15. EFFECTS OF MEDIAL SEPTAL LESION ON HIPPOCAMPAL EXTRACELLULAR GLUTAMATE AND GABA LEVELS DURING SPATIAL ALTERNATION TESTING.

    PubMed

    Mataradze, S; Naneishvili, T; Sephashvili, M; Mikeladze, D; Dashniani, M

    2016-10-01

    The present study investigated spatial working memory assessed in spontaneous alternation (SA) task and hippocampal glutamate and GABA release prior to, during, and after SA test in sham-operated and electrolytic medial septal (MS) lesioned rats. Also, have been investigated the effects of MS lesion on KCl-stimulated release of glutamate and GABA in the hippocampus. Behavioral study showed that electrolytic lesion of MS significantly impaired SA performance. Although both groups of animals had an insignificant rise in their respective hippocampal glutamate efflux during the SA, the rise of MS lesioned animals was blunted when compared with control animals. Hippocampal GABA levels did not change during behavioral testing in both groups. Most of control animals showed increase in KCl-stimulated glutamate release. By contrast, only one MS lesioned rat showed increase in glutamate release in response to KCl stimulation. Most of control and MS lesioned rats were non-responders in GABA release in response to KCl stimulation. Decreased glutamate release (upon stimulation) in the MS lesioned rats may contribute to spatial working memory impairment in these animals. We propose that SA testing coupled with in vivo microdialysis sampling represents a suitable approach to revealing the neurochemical correlates of hippocampal-dependent memory function, and thus could be a useful tool for better understanding of the neurochemical basis of cognitive decline associated with various disorders and neurodegenerative diseases.

  16. Stimulation of dopamine D4 receptors in the paraventricular nucleus of the hypothalamus of male rats induces hyperphagia: involvement of glutamate.

    PubMed

    Tejas-Juárez, Juan Gabriel; Cruz-Martínez, Ana María; López-Alonso, Verónica Elsa; García-Iglesias, Brenda; Mancilla-Díaz, Juan Manuel; Florán-Garduño, Benjamín; Escartín-Pérez, Rodrigo Erick

    2014-06-22

    Obesity is a serious worldwide health problem, affecting 20-40% of the population in several countries. According to animal models, obesity is related to changes in the expression of proteins that control energy homeostasis and in neurotransmission associated to regulation of food intake. For example, it has been reported that diet-induced obesity produces overexpression of dopamine D4 receptor (D4R) mRNA in the ventromedial hypothalamic nucleus (VMH) of mice. Neurons in the VMH send dense glutamatergic projections to other hypothalamic regions as the paraventricular nucleus (PVN), where multiple signals are integrated to finely regulate energy homeostasis and food intake. Although it is well established that dopaminergic transmission in the hypothalamus plays a key role in modulating feeding, the specific mechanisms involved in the activation of D4R in the PVN and its modulatory action on glutamate release and feeding behavior have remained unexplored. To fill this gap, we characterize the behavioral and neurochemical role of D4R in the PVN. In behavioral experiments, we examined the effects of activation of dopamine D4 receptors in the PVN on food intake and on the behavioral satiety sequence in rats exposed to a food-restricted feeding program. In vitro experiments were conducted to study the effects of activation of dopamine D4 receptors on [(3)H]glutamate release and on plasma corticosterone in explants of the PVN. We found that activation of D4R in the PVN induced inhibition of glutamate release and stimulated food intake by inhibiting satiety. Furthermore, activation of D4R in the PVN decreased plasma levels of corticosterone, and this effect was reverted by NMDA. According to our findings, D4R in the PVN may be a target for the pharmacotherapy for obesity as well as eating disorder patients who show restrictive patterns and overweight. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Rapid microelectrode measurements and the origin and regulation of extracellular glutamate in rat prefrontal cortex.

    PubMed

    Hascup, Erin R; Hascup, Kevin N; Stephens, Michelle; Pomerleau, Francois; Huettl, Peter; Gratton, Alain; Gerhardt, Greg A

    2010-12-01

    Glutamate in the prefrontal cortex (PFC) plays a significant role in several mental illnesses, including schizophrenia, addiction and anxiety. Previous studies on PFC glutamate-mediated function have used techniques that raise questions on the neuronal versus astrocytic origin of glutamate. The present studies used enzyme-based microelectrode arrays to monitor second-by-second resting glutamate levels in the PFC of awake rats. Locally applied drugs were employed in an attempt to discriminate between the neuronal or glial components of the resting glutamate signal. Local application of tetrodotoxin (sodium channel blocker), produced a significant (∼ 40%) decline in resting glutamate levels. In addition significant reductions in extracellular glutamate were seen with locally applied ω-conotoxin (MVIIC; ∼ 50%; calcium channel blocker), and the mGluR(2/3) agonist, LY379268 (∼ 20%), and a significant increase with the mGluR(2/3) antagonist LY341495 (∼ 40%), effects all consistent with a large neuronal contribution to the resting glutamate levels. Local administration of D,L-threo-β-benzyloxyaspartate (glutamate transporter inhibitor) produced an ∼ 120% increase in extracellular glutamate levels, supporting that excitatory amino acid transporters, which are largely located on glia, modulate clearance of extracellular glutamate. Interestingly, local application of (S)-4-carboxyphenylglycine (cystine/glutamate antiporter inhibitor), produced small, non-significant bi-phasic changes in extracellular glutamate versus vehicle control. Finally, pre-administration of tetrodotoxin completely blocked the glutamate response to tail pinch stress. Taken together, these results support that PFC resting glutamate levels in rats as measured by the microelectrode array technology are at least 40-50% derived from neurons. Furthermore, these data support that the impulse flow-dependent glutamate release from a physiologically -evoked event is entirely neuronally derived. © 2010 The Authors. Journal of Neurochemistry © 2010 International Society for Neurochemistry.

  18. Centrifuge-induced hypergravity: [ 3H]GABA and L-[ 14C]glutamate uptake, exocytosis and efflux mediated by high-affinity, sodium-dependent transporters

    NASA Astrophysics Data System (ADS)

    Borisova, T. A.; Himmelreich, N. H.

    The effects of centrifuge-induced hypergravity on the presynaptic events have been investigated in order to provide further insight into regulation of glutamate and GABA neurotransmission and correlation between excitatory and inhibitory responses under artificial gravity conditions. Exposure of animals to hypergravity (centrifugation of rats at 10 G for 1 h) has been found to cause changes in the synaptic processes of brain, in particular neurotransmitter release and uptake in rat brain synaptosomes. Hypergravity loading resulted in more than two-fold enhancement of GABA transporter activity ( Vmax increased from 1.4 ± 0.3 nmol/min/mg of protein in the control group to 3.3 ± 0.59 nmol/min/mg of protein for the animals exposed to hypergravity ( P ⩽ 0.05)). The maximal velocity of L-[ 14C]glutamate uptake decreased from 12.5 ± 3.2 to 5.6 ± 0.9 nmol/min/mg of protein under artificial gravity conditions. Depolarization-evoked exocytotic release of the neurotransmitters has also changed in response to hypergravity. It increased for GABA (7.2 ± 0.54% and 11.74 ± 1.2% of total accumulated label for control and hypergravity, respectively ( P ⩽ 0.05)), but reduced for glutamate (14.4 ± 0.7% and 6.2 ± 1.9%, for control and hypergravity, respectively). Thus, comparative analysis of the neurotransmitter uptake and release has demonstrated that short-term centrifuge-induced 10 G hypergravity loading intensified inhibitory and attenuated excitatory processes in nerve terminals. The activation or reduction of neurotransmitter uptake appeared to be coupled with similarly directed alterations of the neurotransmitter release.

  19. Chronic stress enhances calcium mobilization and glutamate exocytosis in cerebrocortical synaptosomes from mice.

    PubMed

    Satoh, Eiki; Tada, Yuichi; Matsuhisa, Fumikazu

    2011-11-01

    Our previous study showed that acute restraint stress enhances depolarization-induced increases in intrasynaptosomal free calcium (Ca(2+)) concentration ([Ca(2+)](i)) and Ca(2+)-dependent glutamate release in mouse cerebrocortical nerve terminals (synaptosomes). In the present study, we investigated the effects of chronic stress on [Ca(2+)](i) and glutamate release in cerebrocortical synaptosomes from mice. Male ddY strain mice were randomly assigned to one of two experimental groups: control group and chronic stressed group. Mice in the chronic stressed group were subjected to immobilization stress for 2 hours daily for a period of 21 days. [Ca(2+)](i) and glutamate release in cerebrocortical synaptosomes isolated from the mice were determined by fura-2 fluorescence assay and enzyme-linked fluorometric assay, respectively. Chronic stress caused a significant increase in resting [Ca(2+)](i) and significantly enhanced the ability of the depolarizing agents K(+) and 4-aminopyridine (4-AP) to increase [Ca(2+)](i). It also brought about a significant increase in spontaneous (unstimulated) glutamate release and significantly enhanced K(+)- and 4-AP-evoked Ca(2+)-dependent glutamate release. Synaptosomes were more sensitive to the depolarizing agents at lower concentrations following chronic stress than after acute stress. The pretreatment of synaptosomes with a combination of omega-agatoxin IVA (a P-type Ca(2+) channel blocker) and omega-conotoxin GVIA (an N-type Ca(2+) channel blocker) completely suppressed the enhancements of [Ca(2+)](i) and Ca(2+)-dependent glutamate release in chronic stressed mice. These results indicate that chronic stress enhances depolarization-evoked glutamate release by increasing [Ca(2+)](i) via stimulation of Ca(2+) entry through P- and N-type Ca(2+) channels, and that chronic stress increases the sensitivity to depolarizing agents.

  20. Increased glutamate-stimulated norepinephrine release from prefrontal cortex slices of spontaneously hypertensive rats.

    PubMed

    Russell, V A; Wiggins, T M

    2000-12-01

    Spontaneously hypertensive rats (SHR) have behavioral characteristics (hyperactivity, impulsiveness, poorly sustained attention) similar to the behavioral disturbances of children with attention-deficit hyperactivity disorder (ADHD). We have previously shown that dopaminergic and noradrenergic systems are disturbed in the prefrontal cortex of SHR compared to their normotensive Wistar-Kyoto (WKY) control rats. It was of interest to determine whether the underlying neural circuits that use glutamate as a neurotransmitter function normally in the prefrontal cortex of SHR. An in vitro superfusion technique was used to demonstrate that glutamate caused a concentration-dependent stimulation of [3H]norepinephrine release from rat prefrontal cortex slices. Glutamate (100 microM and 1 mM) caused significantly greater release of norepinephrine from prefrontal cortex slices of SHR than from control slices. The effect of glutamate was not mediated by NMDA receptors, since NMDA (10 and 100 microM) did not exert any effect on norepinephrine release and MK-801 (10 microM) did not antagonize the effect of 100 microM glutamate. These results demonstrate that glutamate stimulates norepinephrine release from rat prefrontal cortex slices and that this increase is enhanced in SHR. The results are consistent with the suggestion that the noradrenergic system is overactive in prefrontal cortex of SHR, the animal model for ADHD.

  1. Dysregulation of Corticostriatal Ascorbate Release and Glutamate Uptake in Transgenic Models of Huntington's Disease

    PubMed Central

    2013-01-01

    Abstract Significance: Dysregulation of cortical and striatal neuronal processing plays a critical role in Huntington's disease (HD), a dominantly inherited condition that includes a progressive deterioration of cognitive and motor control. Growing evidence indicates that ascorbate (AA), an antioxidant vitamin, is released into striatal extracellular fluid when glutamate is cleared after its release from cortical afferents. Both AA release and glutamate uptake are impaired in the striatum of transgenic mouse models of HD owing to a downregulation of glutamate transporter 1 (GLT1), the protein primarily found on astrocytes and responsible for removing most extracellular glutamate. Improved understanding of an AA–glutamate interaction could lead to new therapeutic strategies for HD. Recent Advances: Increased expression of GLT1 following treatment with ceftriaxone, a beta-lactam antibiotic, increases striatal glutamate uptake and AA release and also improves the HD behavioral phenotype. In fact, treatment with AA alone restores striatal extracellular AA to wild-type levels in HD mice and not only improves behavior but also improves the firing pattern of neurons in HD striatum. Critical Issues: Although evidence is growing for an AA-glutamate interaction, several key issues require clarification: the site of action of AA on striatal neurons; the precise role of GLT1 in striatal AA release; and the mechanism by which HD interferes with this role. Future Directions: Further assessment of how the HD mutation alters corticostriatal signaling is an important next step. A critical focus is the role of astrocytes, which express GLT1 and may be the primary source of extracellular AA. Antioxid. Redox Signal. 19, 2115–2128. PMID:23642110

  2. The Role of Glutamate Release on Voltage-Dependent Anion Channels (VDAC)-Mediated Apoptosis in an Eleven Vessel Occlusion Model in Rats

    PubMed Central

    Park, Eunkuk; Lee, Gi-Ja; Choi, Samjin; Choi, Seok-Keun; Chae, Su-Jin; Kang, Sung-Wook; Pak, Youngmi Kim; Park, Hun-Kuk

    2010-01-01

    Voltage-dependent anion channel (VDAC) is the main protein in mitochondria-mediated apoptosis, and the modulation of VDAC may be induced by the excessive release of extracellular glutamate. This study examined the role of glutamate release on VDAC-mediated apoptosis in an eleven vessel occlusion model in rats. Male Sprague-Dawley rats (250–350 g) were used for the 11 vessel occlusion ischemic model, which were induced for a 10-min transient occlusion. During the ischemic and initial reperfusion episode, the real-time monitoring of the extracellular glutamate concentration was measured using an amperometric microdialysis biosensor and the cerebral blood flow (CBF) was monitored by laser-Doppler flowmetry. To confirm neuronal apoptosis, the brains were removed 72 h after ischemia to detect the neuron-specific nuclear protein and pro-apoptotic proteins (cleaved caspase-3, VDAC, p53 and BAX). The changes in the mitochondrial morphology were measured by atomic force microscopy. A decrease in the % of CBF was observed, and an increase in glutamate release was detected after the onset of ischemia, which continued to increase during the ischemic period. A significantly higher level of glutamate release was observed in the ischemia group. The increased glutamate levels in the ischemia group resulted in the activation of VDAC and pro-apoptotic proteins in the hippocampus with morphological alterations to the mitochondria. This study suggests that an increase in glutamate release promotes VDAC-mediated apoptosis in an 11 vessel occlusion ischemic model. PMID:21203570

  3. Glutamatergic transmission in the central nucleus of the amygdala is selectively altered in Marchigian Sardinian alcohol-preferring rats: alcohol and CRF effects

    PubMed Central

    Herman, Melissa A.; Varodayan, Florence P.; Oleata, Christopher S.; Luu, George; Kirson, Dean; Heilig, Markus; Ciccocioppo, Roberto; Roberto, Marisa

    2015-01-01

    The CRF system of the central nucleus of the amygdala (CeA) is important for the processing of anxiety, stress, and effects of acute and chronic ethanol. We previously reported that ethanol decreases evoked glutamate transmission in the CeA of Sprague Dawley rats and that ethanol dependence alters glutamate release in the CeA. Here, we examined the effects of ethanol, CRF and a CRF1 receptor antagonist on spontaneous and evoked glutamatergic transmission in CeA neurons from Wistar and Marchigian Sardinian Preferring (msP) rats, a rodent line genetically selected for excessive alcohol drinking and characterized by heightened activity of the CRF1 system. Basal spontaneous and evoked glutamate transmission in CeA neurons from msP rats was increased compared to Wistar rats. Ethanol had divergent effects, either increasing or decreasing spontaneous glutamate release in the CeA of Wistar rats. This bidirectional effect was retained in msP rats, but the magnitude of the ethanol-induced increase in glutamate release was significantly smaller. The inhibitory effect of ethanol on evoked glutamatergic transmission was similar in both strains. CRF also either increased or decreased spontaneous glutamate release in CeA neurons of Wistar rats, however, in msP rats CRF only increased glutamate release. The inhibitory effect of CRF on evoked glutamatergic transmission was also lost in neurons from msP rats. A CRF1 antagonist produced only minor effects on spontaneous glutamate transmission, which were consistent across strains, and no effects on evoked glutamate transmission. These results demonstrate that the genetically altered CRF system of msP rats results in alterations in spontaneous and stimulated glutamate signaling in the CeA that may contribute to both the anxiety and drinking behavioral phenotypes. PMID:26519902

  4. Metabotropic glutamate receptor-mediated use-dependent down-regulation of synaptic excitability involves the fragile X mental retardation protein.

    PubMed

    Repicky, Sarah; Broadie, Kendal

    2009-02-01

    Loss of the mRNA-binding protein FMRP results in the most common inherited form of both mental retardation and autism spectrum disorders: fragile X syndrome (FXS). The leading FXS hypothesis proposes that metabotropic glutamate receptor (mGluR) signaling at the synapse controls FMRP function in the regulation of local protein translation to modulate synaptic transmission strength. In this study, we use the Drosophila FXS disease model to test the relationship between Drosophila FMRP (dFMRP) and the sole Drosophila mGluR (dmGluRA) in regulation of synaptic function, using two-electrode voltage-clamp recording at the glutamatergic neuromuscular junction (NMJ). Null dmGluRA mutants show minimal changes in basal synapse properties but pronounced defects during sustained high-frequency stimulation (HFS). The double null dfmr1;dmGluRA mutant shows repression of enhanced augmentation and delayed onset of premature long-term facilitation (LTF) and strongly reduces grossly elevated post-tetanic potentiation (PTP) phenotypes present in dmGluRA-null animals. Null dfmr1 mutants show features of synaptic hyperexcitability, including multiple transmission events in response to a single stimulus and cyclic modulation of transmission amplitude during prolonged HFS. The double null dfmr1;dmGluRA mutant shows amelioration of these defects but does not fully restore wildtype properties in dfmr1-null animals. These data suggest that dmGluRA functions in a negative feedback loop in which excess glutamate released during high-frequency transmission binds the glutamate receptor to dampen synaptic excitability, and dFMRP functions to suppress the translation of proteins regulating this synaptic excitability. Removal of the translational regulator partially compensates for loss of the receptor and, similarly, loss of the receptor weakly compensates for loss of the translational regulator.

  5. Characteristics of taurine release in slices from adult and developing mouse brain stem.

    PubMed

    Saransaari, P; Oja, S S

    2006-07-01

    Taurine has been thought to function as a regulator of neuronal activity, neuromodulator and osmoregulator. Moreover, it is essential for the development and survival of neural cells and protects them under cell-damaging conditions. Taurine is also involved in many vital functions regulated by the brain stem, including cardiovascular control and arterial blood pressure. The release of taurine has been studied both in vivo and in vitro in higher brain areas, whereas the mechanisms of release have not been systematically characterized in the brain stem. The properties of release of preloaded [(3)H]taurine were now characterized in slices prepared from the mouse brain stem from developing (7-day-old) and young adult (3-month-old) mice, using a superfusion system. In general, taurine release was found to be similar to that in other brain areas, consisting of both Ca(2+)-dependent and Ca(2+)-independent components. Moreover, the release was mediated by Na(+)-, Cl(-)-dependent transporters operating outwards, as both Na(+)-free and Cl(-) -free conditions greatly enhanced it. Cl(-) channel antagonists and a Cl(-) transport inhibitor reduced the release at both ages, indicating that a part of the release occurs through ion channels. Protein kinases appeared not to be involved in taurine release in the brain stem, since substances affecting the activity of protein kinase C or tyrosine kinase had no significant effects. The release was modulated by cAMP second messenger systems and phospholipases at both ages. Furthermore, the metabotropic glutamate receptor agonists likewise suppressed the K(+)-stimulated release at both ages. In the immature brain stem, the ionotropic glutamate receptor agonists N-methyl-D-aspartate (NMDA) and 2-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) potentiated taurine release in a receptor-mediated manner. This could constitute an important mechanism against excitotoxicity, protecting the brain stem under cell-damaging conditions.

  6. Agmatine Prevents Adaptation of the Hippocampal Glutamate System in Chronic Morphine-Treated Rats.

    PubMed

    Wang, Xiao-Fei; Zhao, Tai-Yun; Su, Rui-Bin; Wu, Ning; Li, Jin

    2016-12-01

    Chronic exposure to opioids induces adaptation of glutamate neurotransmission, which plays a crucial role in addiction. Our previous studies revealed that agmatine attenuates opioid addiction and prevents the adaptation of glutamate neurotransmission in the nucleus accumbens of chronic morphine-treated rats. The hippocampus is important for drug addiction; however, whether adaptation of glutamate neurotransmission is modulated by agmatine in the hippocampus remains unknown. Here, we found that continuous pretreatment of rats with ascending doses of morphine for 5 days resulted in an increase in the hippocampal extracellular glutamate level induced by naloxone (2 mg/kg, i.p.) precipitation. Agmatine (20 mg/kg, s.c.) administered concurrently with morphine for 5 days attenuated the elevation of extracellular glutamate levels induced by naloxone precipitation. Furthermore, in the hippocampal synaptosome model, agmatine decreased the release and increased the uptake of glutamate in synaptosomes from chronic morphine-treated rats, which might contribute to the reduced elevation of glutamate levels induced by agmatine. We also found that expression of the hippocampal NR2B subunit, rather than the NR1 subunit, of N-methyl-D-aspartate receptors (NMDARs) was down-regulated after chronic morphine treatment, and agmatine inhibited this reduction. Taken together, agmatine prevented the adaptation of the hippocampal glutamate system caused by chronic exposure to morphine, including modulating extracellular glutamate concentration and NMDAR expression, which might be one of the mechanisms underlying the attenuation of opioid addiction by agmatine.

  7. Monte carlo simulation of vesicular release, spatiotemporal distribution of glutamate in synaptic cleft and generation of postsynaptic currents.

    PubMed

    Glavinovíc, M I

    1999-02-01

    The release of vesicular glutamate, spatiotemporal changes in glutamate concentration in the synaptic cleft and the subsequent generation of fast excitatory postsynaptic currents at a hippocampal synapse were modeled using the Monte Carlo method. It is assumed that glutamate is released from a spherical vesicle through a cylindrical fusion pore into the synaptic cleft and that S-alpha-amino-3-hydroxy -5-methyl-4-isoxazolepropionic acid (AMPA) receptors are uniformly distributed postsynaptically. The time course of change in vesicular concentration can be described by a single exponential, but a slow tail is also observed though only following the release of most of the glutamate. The time constant of decay increases with vesicular size and a lower diffusion constant, and is independent of the initial concentration, becoming markedly shorter for wider fusion pores. The cleft concentration at the fusion pore mouth is not negligible compared to vesicular concentration, especially for wider fusion pores. Lateral equilibration of glutamate is rapid, and within approximately 50 micros all AMPA receptors on average see the same concentration of glutamate. Nevertheless the single-channel current and the number of channels estimated from mean-variance plots are unreliable and different when estimated from rise- and decay-current segments. Greater saturation of AMPA receptor channels provides higher but not more accurate estimates. Two factors contribute to the variability of postsynaptic currents and render the mean-variance nonstationary analysis unreliable, even when all receptors see on average the same glutamate concentration. Firstly, the variability of the instantaneous cleft concentration of glutamate, unlike the mean concentration, first rapidly decreases before slowly increasing; the variability is greater for fewer molecules in the cleft and is spatially nonuniform. Secondly, the efficacy with which glutamate produces a response changes with time. Understanding the factors that determine the time course of vesicular content release as well as the spatiotemporal changes of glutamate concentration in the cleft is crucial for understanding the mechanism that generates postsynaptic currents.

  8. Blockade of glutamate release by botulinum neurotoxin type A in humans: A dermal microdialysis study

    PubMed Central

    da Silva, Larissa Bittencourt; Karshenas, Ali; Bach, Flemming W; Rasmussen, Sten; Arendt-Nielsen, Lars; Gazerani, Parisa

    2014-01-01

    BACKGROUND: The analgesic action of botulinum neurotoxin type A (BoNTA) has been linked to the blockade of peripheral release of neuropeptides and neurotransmitters in animal models; however, there is no direct evidence of this in humans. OBJECTIVES: To investigate the effect of BoNTA on glutamate release in humans, using an experimental model of pain and sensitization provoked by capsaicin plus mild heat. METHODS: Twelve healthy volunteers (six men, six women) were pretreated with BoNTA (10 U) on the volar forearm and with a saline control on the contralateral side. Dermal microdialysis was applied one week later to collect interstitial samples before and after the application of a capsaicin patch (8%) plus mild heat (40°C/60 min) to provoke glutamate release, pain and vasodilation. Samples were collected every hour for 3 h using linear microdialysis probes (10 mm, 100 kD). Dialysate was analyzed for glutamate concentration. Pain intensity and skin vasomotor reactions (temperature and blood flow changes) were also recorded. RESULTS: BoNTA significantly reduced glutamate release compared with saline (P<0.05). The provoked pain intensity was lower in the BoNTA-pretreated arm (P<0.01). The reduction in pain scores was not correlated with glutamate level. Cutaneous blood flow (P<0.05), but not cutaneous temperature (P≥0.05), was significantly reduced by BoNTA. There was a correlation between glutamate level and skin blood flow (r=0.58/P<0.05) but not skin temperature (P≥0.05). No differences according to sex were observed in any response. CONCLUSIONS: The present study provided the first direct evidence supporting the inhibitory effect of BoNTA on glutamate release in human skin, which is potentially responsible for some of the analgesic action of BoNTA. PMID:24851237

  9. Microglia PACAP and glutamate: Friends or foes in seizure-induced autonomic dysfunction and SUDEP?

    PubMed

    Bhandare, Amol M; Kapoor, Komal; Farnham, Melissa M J; Pilowsky, Paul M

    2016-06-01

    Seizure-induced cardiorespiratory autonomic dysfunction is a major cause of sudden unexpected death in epilepsy (SUDEP), and the underlying mechanism is unclear. Seizures lead to increased synthesis, and release of glutamate, pituitary adenylate cyclase activating polypeptide (PACAP), and other neurotransmitters, and cause extensive activation of microglia at multiple regions in the brain including central autonomic cardiorespiratory brainstem nuclei. Glutamate contributes to neurodegeneration, and inflammation in epilepsy. PACAP has neuroprotective, and anti-inflammatory properties, whereas microglia are key players in inflammatory responses in CNS. Seizure-induced increase in PACAP is neuroprotective. PACAP produces neuroprotective effects acting on microglial PAC1 and VPAC1 receptors. Microglia also express glutamate transporters, and their expression can be increased by PACAP in response to harmful or stressful situations such as seizures. Here we discuss the mechanism of autonomic cardiorespiratory dysfunction in seizure, and the role of PACAP, glutamate and microglia in regulating cardiorespiratory brainstem neurons in their physiological state that could provide future therapeutic options for SUDEP. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Depletion of substance P and glutamate by capsaicin blocks respiratory rhythm in neonatal rat in vitro

    PubMed Central

    Morgado-Valle, Consuelo; Feldman, Jack L

    2004-01-01

    The specific role of the neuromodulator substance P (SP) and its target, the neurokinin 1 receptor (NK1R), in the generation and regulation of respiratory activity is not known. The preBötzinger complex (preBötC), an essential site for respiratory rhythm generation, contains glutamatergic NK1R-expressing neurones that are strongly modulated by exogenously applied SP or acute pharmacological blockade of NK1Rs. We investigated the effects of capsaicin, which depletes neuropeptides (including SP) and glutamate from presynaptic terminals, on respiratory motor output in medullary slice preparations of neonatal rat that generate respiratory-related activity. Bath application of capsaicin slowed respiratory motor output in a dose- and time-dependent manner. Respiratory rhythm could be restored by bath application of SP or glutamate transporter blockers. Capsaicin also evoked dose-dependent glutamate release and depleted SP in fibres within the preBötC. Our results suggest that depletion of SP (or other peptides) and/or glutamate by capsaicin causes a cessation of respiratory rhythm in neonatal rat slices. PMID:14724197

  11. Depletion of substance P and glutamate by capsaicin blocks respiratory rhythm in neonatal rat in vitro.

    PubMed

    Morgado-Valle, Consuelo; Feldman, Jack L

    2004-03-16

    The specific role of the neuromodulator substance P (SP) and its target, the neurokinin 1 receptor (NK1R), in the generation and regulation of respiratory activity is not known. The preBötzinger complex (preBötC), an essential site for respiratory rhythm generation, contains glutamatergic NK1R-expressing neurones that are strongly modulated by exogenously applied SP or acute pharmacological blockade of NK1Rs. We investigated the effects of capsaicin, which depletes neuropeptides (including SP) and glutamate from presynaptic terminals, on respiratory motor output in medullary slice preparations of neonatal rat that generate respiratory-related activity. Bath application of capsaicin slowed respiratory motor output in a dose- and time-dependent manner. Respiratory rhythm could be restored by bath application of SP or glutamate transporter blockers. Capsaicin also evoked dose-dependent glutamate release and depleted SP in fibres within the preBötC. Our results suggest that depletion of SP (or other peptides) and/or glutamate by capsaicin causes a cessation of respiratory rhythm in neonatal rat slices.

  12. Co-localization of corticotropin-releasing factor and vesicular glutamate transporters within axon terminals of the rat dorsal raphe nucleus.

    PubMed

    Waselus, Maria; Van Bockstaele, Elisabeth J

    2007-10-12

    Electrophysiological, microdialysis and behavioral studies support a modulatory role for corticotropin-releasing factor (CRF) in regulating the dorsal raphe nucleus (DRN)-serotonin (5-HT) system. CRF and 5-HT are implicated in the pathophysiology of depression, thus neuroanatomical substrates of CRF-DRN-5-HT interactions are of interest. Identification of co-transmitters within DRN CRF axon terminals is important for elucidating the complex effects underlying CRF afferent regulation of DRN neurons. This study investigated whether CRF-labeled axon terminals within the DRN contain immunoreactivity for vesicular glutamate transporters (isoforms vGlut1 and vGlut2) indicative of the excitatory neurotransmitter glutamate. Dual immunohistochemistry for CRF and either vGlut1 or vGlut2 was conducted within the same tissue section and immunofluorescence results indicated patterns of immunoreactivity consistent with previous reports. Abundant vGlut1- and vGlut2-immunoreactivity was found in puncta exhibiting a largely uniform distribution, whereas CRF-immunoreactivity was localized to topographically distributed varicose processes within the DRN. Profiles containing both CRF- and either vGlut1- or vGlut2-immunoreactivity were apparent in the DRN. Electron microscopy confirmed that immunoreactivity for CRF and vGlut1 was localized primarily to separate axon terminals in the DRN, with a subset co-localizing CRF and vGlut1. Examination of CRF and vGlut2 immunoreactivities in the DRN indicated that CRF and vGlut2 were found within the same axon terminal more frequently than CRF and vGlut1. Overall, these anatomical findings suggest that CRF may function, in part, with the excitatory neurotransmitter glutamate in the modulation of neuronal activity in the DRN.

  13. Astroglial Glutamate Signaling and Uptake in the Hippocampus

    PubMed Central

    Rose, Christine R.; Felix, Lisa; Zeug, Andre; Dietrich, Dirk; Reiner, Andreas; Henneberger, Christian

    2018-01-01

    Astrocytes have long been regarded as essentially unexcitable cells that do not contribute to active signaling and information processing in the brain. Contrary to this classical view, it is now firmly established that astrocytes can specifically respond to glutamate released from neurons. Astrocyte glutamate signaling is initiated upon binding of glutamate to ionotropic and/or metabotropic receptors, which can result in calcium signaling, a major form of glial excitability. Release of so-called gliotransmitters like glutamate, ATP and D-serine from astrocytes in response to activation of glutamate receptors has been demonstrated to modulate various aspects of neuronal function in the hippocampus. In addition to receptors, glutamate binds to high-affinity, sodium-dependent transporters, which results in rapid buffering of synaptically-released glutamate, followed by its removal from the synaptic cleft through uptake into astrocytes. The degree to which astrocytes modulate and control extracellular glutamate levels through glutamate transporters depends on their expression levels and on the ionic driving forces that decrease with ongoing activity. Another major determinant of astrocytic control of glutamate levels could be the precise morphological arrangement of fine perisynaptic processes close to synapses, defining the diffusional distance for glutamate, and the spatial proximity of transporters in relation to the synaptic cleft. In this review, we will present an overview of the mechanisms and physiological role of glutamate-induced ion signaling in astrocytes in the hippocampus as mediated by receptors and transporters. Moreover, we will discuss the relevance of astroglial glutamate uptake for extracellular glutamate homeostasis, focusing on how activity-induced dynamic changes of perisynaptic processes could shape synaptic transmission at glutamatergic synapses. PMID:29386994

  14. Growth differentiation factor-15 promotes glutamate release in medial prefrontal cortex of mice through upregulation of T-type calcium channels.

    PubMed

    Liu, Dong-Dong; Lu, Jun-Mei; Zhao, Qian-Ru; Hu, Changlong; Mei, Yan-Ai

    2016-06-29

    Growth differentiation factor-15 (GDF-15) has been implicated in ischemic brain injury and synapse development, but its involvement in modulating neuronal excitability and synaptic transmission remain poorly understood. In this study, we investigated the effects of GDF-15 on non-evoked miniature excitatory post-synaptic currents (mEPSCs) and neurotransmitter release in the medial prefrontal cortex (mPFC) in mice. Incubation of mPFC slices with GDF-15 for 60 min significantly increased the frequency of mEPSCs without effect on their amplitude. GDF-15 also significantly elevated presynaptic glutamate release, as shown by HPLC. These effects were blocked by dual TGF-β type I receptor (TβRI) and TGF-β type II receptor (TβRII) antagonists, but not by a TβRI antagonist alone. Meanwhile, GDF-15 enhanced pERK level, and inhibition of MAPK/ERK activity attenuated the GDF-15-induced increases in mEPSC and glutamate release. Blocking T-type calcium channels reduced the GDF-15 induced up-regulation of synaptic transmission. Membrane-protein extraction and use of an intracellular protein-transport inhibitor showed that GDF-15 promoted CaV3.1 and CaV3.3 α-subunit expression by trafficking to the membrane. These results confirm previous findings in cerebellar granule neurons, in which GDF-15 induces its neurobiological effects via TβRII and activation of the ERK pathway, providing novel insights into the mechanism of GDF-15 function in cortical neurons.

  15. Control of glutamate release by calcium channels and κ-opioid receptors in rodent and primate striatum

    PubMed Central

    Hill, M P; Brotchie, J M

    1999-01-01

    The modulation of depolarization (4-aminopyridine, 2 mM)-evoked endogenous glutamate release by κ-opioid receptor activation and blockade of voltage-dependent Ca2+-channels has been investigated in synaptosomes prepared from rat and marmoset striatum.4-Aminopyridine (4-AP)-stimulated, Ca2+-dependent glutamate release was inhibited by enadoline, a selective κ-opioid receptor agonist, in a concentration-dependent and nor-binaltorphimine (nor-BNI, selective κ-opioid receptor antagonist)-sensitive manner in rat (IC50=4.4±0.4 μM) and marmoset (IC50=2.9±0.7 μM) striatal synaptosomes. However, in the marmoset, there was a significant (≈23%) nor-BNI-insensitive component.In rat striatal synaptosomes, the Ca2+-channel antagonists ω-agatoxin-IVA (P/Q-type blocker), ω-conotoxin-MVIIC (N/P/Q-type blocker) and ω-conotoxin-GVIA (N-type blocker) reduced 4-AP-stimulated, Ca2+-dependent glutamate release in a concentration-dependent manner with IC50 values of 6.5±0.9 nM, 75.5±5.9 nM and 106.5±8.7 nM, respectively. In marmoset striatal synaptosomes, 4-AP-stimulated, Ca2+-dependent glutamate release was significantly inhibited by ω-agatoxin-IVA (30 nM, 57.6±2.3%, inhibition), ω-conotoxin-MVIIC (300 nM, 57.8±3.1%) and ω-conotoxin-GVIA (1 μM, 56.7±2%).Studies utilizing combinations of Ca2+-channel antagonists suggests that in the rat striatum, two relatively distinct pools of glutamate, released by activation of either P or Q-type Ca2+-channels, exist. In contrast, in the primate there is much overlap between the glutamate released by P and Q-type Ca2+-channel activation.Studies using combinations of enadoline and the Ca2+-channel antagonists suggest that enadoline-induced inhibition of glutamate release occurs primarily via reduction of Ca2+-influx through P-type Ca2+-channels in the rat but via N-type Ca2+-channels in the marmoset.In conclusion, the results presented suggest that there are species differences in the control of glutamate release by κ-opioid receptors and Ca2+-channels. PMID:10369483

  16. A Novel Optical Intracellular Imaging Approach for Potassium Dynamics in Astrocytes

    PubMed Central

    Rimmele, Theresa S.; Chatton, Jean-Yves

    2014-01-01

    Astrocytes fulfill a central role in regulating K+ and glutamate, both released by neurons into the extracellular space during activity. Glial glutamate uptake is a secondary active process that involves the influx of three Na+ ions and one proton and the efflux of one K+ ion. Thus, intracellular K+ concentration ([K+]i) is potentially influenced both by extracellular K+ concentration ([K+]o) fluctuations and glutamate transport in astrocytes. We evaluated the impact of these K+ ion movements on [K+]i in primary mouse astrocytes by microspectrofluorimetry. We established a new noninvasive and reliable approach to monitor and quantify [K+]i using the recently developed K+ sensitive fluorescent indicator Asante Potassium Green-1 (APG-1). An in situ calibration procedure enabled us to estimate the resting [K+]i at 133±1 mM. We first investigated the dependency of [K+]i levels on [K+]o. We found that [K+]i followed [K+]o changes nearly proportionally in the range 3–10 mM, which is consistent with previously reported microelectrode measurements of intracellular K+ concentration changes in astrocytes. We then found that glutamate superfusion caused a reversible drop of [K+]i that depended on the glutamate concentration with an apparent EC50 of 11.1±1.4 µM, corresponding to the affinity of astrocyte glutamate transporters. The amplitude of the [K+]i drop was found to be 2.3±0.1 mM for 200 µM glutamate applications. Overall, this study shows that the fluorescent K+ indicator APG-1 is a powerful new tool for addressing important questions regarding fine [K+]i regulation with excellent spatial resolution. PMID:25275375

  17. Ectopic vesicular glutamate release at the optic nerve head and axon loss in mouse experimental glaucoma.

    PubMed

    Fu, Christine T; Sretavan, David W

    2012-11-07

    Although clinical and experimental observations indicate that the optic nerve head (ONH) is a major site of axon degeneration in glaucoma, the mechanisms by which local retinal ganglion cell (RGC) axons are injured and damage spreads among axons remain poorly defined. Using a laser-induced ocular hypertension (LIOH) mouse model of glaucoma, we found that within 48 h of intraocular pressure elevation, RGC axon segments within the ONH exhibited ectopic accumulation and colocalization of multiple components of the glutamatergic presynaptic machinery including the vesicular glutamate transporter VGLUT2, several synaptic vesicle marker proteins, glutamate, the soluble N-ethylmaleimide-sensitive factor attachment protein receptor complex and active zone cytomatrix components, as well as ultrastructurally identified, synaptophysin-containing vesicles. Ectopic vesicle exocytosis and glutamate release were detected in acute preparations of the LIOH ONH. Immunolocalization and analysis using the ionotropic receptor channel-permeant cation agmatine indicated that ONH axon segments and glia expressed glutamate receptors, and these receptors were more active after LIOH compared with controls. Pharmacological antagonism of glutamate receptors and neuronal activity resulted in increased RGC axon sparing in vivo. Furthermore, in vivo RGC-specific genetic disruption of the vesicular glutamate transporter VGLUT2 or the obligatory NMDA receptor subunit NR1 promoted axon survival in experimental glaucoma. As the inhibition of ectopic glutamate vesicular release or glutamate receptivity can independently modify the severity of RGC axon loss, synaptic release mechanisms may provide useful therapeutic entry points into glaucomatous axon degeneration.

  18. HTDP-2, a new synthetic compound, inhibits glutamate release through reduction of voltage-dependent Ca²⁺ influx in rat cerebral cortex nerve terminals.

    PubMed

    Lin, Tzu-Yu; Lu, Cheng-Wei; Huang, Shu-Kuei; Chou, Shang-Shing Peter; Kuo, Yuh-Chi; Chou, Shiu-Huey; Tzeng, Woan-Fang; Leu, Chieh-Yih; Huang, Rwei-Fen S; Liew, Yih-Fong; Wang, Su-Jane

    2011-01-01

    The present study was aimed at investigating the effect of trans-6-(4-chlorobutyl)-5-hydroxy-4-(phenylthio)-1-tosyl-5,6-dihydropyridine-2(1H)-one (HTDP-2), a novel synthetic compound, on the release of endogenous glutamate in rat cerebrocortical nerve terminals (synaptosomes) and exploring the possible mechanism. The release of glutamate was evoked by the K⁺ channel blocker 4-aminopyridine (4-AP) and measured by an on-line enzyme-coupled fluorimetric assay. We also used a membrane potential-sensitive dye to assay nerve terminal excitability and depolarization, and a Ca²⁺ indicator, Fura-2-acetoxymethyl ester, to monitor cytosolic Ca²⁺ concentrations ([Ca²⁺](c)). HTDP-2 inhibited the release of glutamate evoked by 4-AP in a concentration-dependent manner. Inhibition of glutamate release by HTDP-2 was prevented by the chelating intraterminal Ca²⁺ ions, and by the vesicular transporter inhibitor bafilomycin A1, but was insensitive to the glutamate transporter inhibitor DL-threo-β-benzyloxyaspartate. HTDP-2 did not alter the resting synaptosomal membrane potential or 4-AP-mediated depolarization whereas it decreased the 4-AP-induced increase in [Ca²⁺](c). Furthermore, the inhibitory effect of HTDP-2 on the evoked glutamate release was abolished by the N-, and P/Q-type Ca²⁺ channel blocker ω-conotoxin MVIIC, but not by the ryanodine receptor blocker dantrolene, or the mitochondrial Na⁺/Ca²⁺ exchanger blocker CGP37157. Based on these results, we suggest that, in rat cerebrocortical nerve terminals, HTDP-2 decreases voltage-dependent Ca²⁺ channel activity and, in so doing, inhibits the evoked glutamate release. Copyright © 2011 S. Karger AG, Basel.

  19. GLAST/EAAT1-induced glutamine release via SNAT3 in Bergmann glial cells: evidence of a functional and physical coupling.

    PubMed

    Martínez-Lozada, Zila; Guillem, Alain M; Flores-Méndez, Marco; Hernández-Kelly, Luisa C; Vela, Carmelita; Meza, Enrique; Zepeda, Rossana C; Caba, Mario; Rodríguez, Angelina; Ortega, Arturo

    2013-05-01

    Glutamate, the major excitatory transmitter in the vertebrate brain, is removed from the synaptic cleft by a family of sodium-dependent glutamate transporters profusely expressed in glial cells. Once internalized, it is metabolized by glutamine synthetase to glutamine and released to the synaptic space through sodium-dependent neutral amino acid carriers of the N System (SNAT3/slc38a3/SN1, SNAT5/slc38a5/SN2). Glutamine is then taken up by neurons completing the so-called glutamate/glutamine shuttle. Despite of the fact that this coupling was described decades ago, it is only recently that the biochemical framework of this shuttle has begun to be elucidated. Using the established model of cultured cerebellar Bergmann glia cells, we sought to characterize the functional and physical coupling of glutamate uptake and glutamine release. A time-dependent Na⁺-dependent glutamate/aspartate transporter/EAAT1-induced System N-mediated glutamine release could be demonstrated. Furthermore, D-aspartate, a specific glutamate transporter ligand, was capable of enhancing the co-immunoprecipitation of Na⁺-dependent glutamate/aspartate transporter and Na⁺-dependent neutral amino acid transporter 3, whereas glutamine tended to reduce this association. Our results suggest that glial cells surrounding glutamatergic synapses may act as sensors of neuron-derived glutamate through their contribution to the neurotransmitter turnover. © 2013 International Society for Neurochemistry.

  20. Involvement of metabotropic glutamate receptors in taurine release in the adult and developing mouse hippocampus.

    PubMed

    Saransaari, P; Oja, S S

    1999-01-01

    The inhibitory amino acid taurine has been held to function as an osmoregulator and modulator of neural activity, being particularly important in the immature brain. Ionotropic glutamate receptor agonists are known markedly to potentiate taurine release. The effects of different metabotropic glutamate receptor (mGluR) agonists and antagonists on the basal and K(+)-stimulated release of [3H]taurine from hippocampal slices from 3-month-old (adult) and 7-day-old mice were now investigated using a superfusion system. Of group I metabotropic glutamate receptor agonists, quisqualate potentiated basal taurine release in both age groups, more markedly in the immature hippocampus. This action was not antagonized by the specific antagonists of group I but by 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) and 6-nitro-7-sulphamoylbenzo[f]quinoxaline-2,3-dione (NBQX), which would suggest an involvement of ionotropic glutamate receptors. (S)-3,5-dihydroxyphenylglycine (DHPG) potentiated the basal release by a receptor-mediated mechanism in the immature hippocampus. The group II agonist (2S, 2'R, 3'R)-2-(2',3'-dicarboxycyclopropyl)glycine (DCG IV) markedly potentiated basal taurine release at both ages. These effects were antagonized by dizocilpine, indicating again the participation of ionotropic receptors. Group III agonists slightly potentiated basal taurine release, as did several antagonists of the three metabotropic receptor groups. Potassium-stimulated (50 mM K+) taurine release was generally significantly reduced by mGluR agents, mainly by group I and II compounds. This may be harmful to neurons in hyperexcitatory states. On the other hand, the potentiation by mGluRs of basal taurine release, particularly in the immature hippocampus, together with the earlier demonstrated pronounced enhancement by activation of ionotropic glutamate receptors, may protect neurons against excitotoxicity.

  1. Effects of ionic compositions of the medium on monosodium glutamate binding to taste epithelial cells.

    PubMed

    Hayashi, Y; Tsunenari, T; Mori, T

    1999-03-01

    Monosodium glutamate and nucleotides are umami taste substances in animals and have a synergistic effect on each other. We studied the ligand-binding properties of the glutamate receptors in taste epithelial cells isolated from bovine tongue. Specific glutamate binding was observed in an enriched suspension of taste receptor cells in Hanks' balanced salt solution, while no specific glutamate binding was apparent in the absence of divalent ions or when the cells had been depolarized by a high content of potassium in Hanks' balanced salt solution. There was no significant difference between the release of glutamate under depolarized or divalent ion-free conditions and under normal conditions. However, glutamate was easily released from the depolarized cells in the absence of divalent ions. These data suggest that the binding of glutamate to receptors depends on divalent ions, which also have an effect on maintaining binding between glutamate and receptors.

  2. Glutamic Acid Residues in HIV-1 p6 Regulate Virus Budding and Membrane Association of Gag

    PubMed Central

    Friedrich, Melanie; Setz, Christian; Hahn, Friedrich; Matthaei, Alina; Fraedrich, Kirsten; Rauch, Pia; Henklein, Petra; Traxdorf, Maximilian; Fossen, Torgils; Schubert, Ulrich

    2016-01-01

    The HIV-1 Gag p6 protein regulates the final abscission step of nascent virions from the cell membrane by the action of its two late (l-) domains, which recruit Tsg101 and ALIX, components of the ESCRT system. Even though p6 consists of only 52 amino acids, it is encoded by one of the most polymorphic regions of the HIV-1 gag gene and undergoes various posttranslational modifications including sumoylation, ubiquitination, and phosphorylation. In addition, it mediates the incorporation of the HIV-1 accessory protein Vpr into budding virions. Despite its small size, p6 exhibits an unusually high charge density. In this study, we show that mutation of the conserved glutamic acids within p6 increases the membrane association of Pr55 Gag followed by enhanced polyubiquitination and MHC-I antigen presentation of Gag-derived epitopes, possibly due to prolonged exposure to membrane bound E3 ligases. The replication capacity of the total glutamic acid mutant E0A was almost completely impaired, which was accompanied by defective virus release that could not be rescued by ALIX overexpression. Altogether, our data indicate that the glutamic acids within p6 contribute to the late steps of viral replication and may contribute to the interaction of Gag with the plasma membrane. PMID:27120610

  3. Glutamic Acid Residues in HIV-1 p6 Regulate Virus Budding and Membrane Association of Gag.

    PubMed

    Friedrich, Melanie; Setz, Christian; Hahn, Friedrich; Matthaei, Alina; Fraedrich, Kirsten; Rauch, Pia; Henklein, Petra; Traxdorf, Maximilian; Fossen, Torgils; Schubert, Ulrich

    2016-04-25

    The HIV-1 Gag p6 protein regulates the final abscission step of nascent virions from the cell membrane by the action of its two late (L-) domains, which recruit Tsg101 and ALIX, components of the ESCRT system. Even though p6 consists of only 52 amino acids, it is encoded by one of the most polymorphic regions of the HIV-1 gag gene and undergoes various posttranslational modifications including sumoylation, ubiquitination, and phosphorylation. In addition, it mediates the incorporation of the HIV-1 accessory protein Vpr into budding virions. Despite its small size, p6 exhibits an unusually high charge density. In this study, we show that mutation of the conserved glutamic acids within p6 increases the membrane association of Pr55 Gag followed by enhanced polyubiquitination and MHC-I antigen presentation of Gag-derived epitopes, possibly due to prolonged exposure to membrane bound E3 ligases. The replication capacity of the total glutamic acid mutant E0A was almost completely impaired, which was accompanied by defective virus release that could not be rescued by ALIX overexpression. Altogether, our data indicate that the glutamic acids within p6 contribute to the late steps of viral replication and may contribute to the interaction of Gag with the plasma membrane.

  4. Lateral diffusion of inositol 1,4,5-trisphosphate receptor type 1 in Purkinje cells is regulated by calcium and actin filaments.

    PubMed

    Fukatsu, Kazumi; Bannai, Hiroko; Inoue, Takafumi; Mikoshiba, Katsuhiko

    2010-09-01

    Inositol 1,4,5-trisphosphate receptor type 1 (IP(3) R1) is an intracellular Ca(2+) release channel that plays crucial roles in the functions of Purkinje cells. The dynamics of IP(3) R1 on the endoplasmic reticulum membrane and the distribution of IP(3) R1 in neurons are thought to be important for the spatial regulation of Ca(2+) release. In this study, we analyzed the lateral diffusion of IP(3) R1 in Purkinje cells in cerebellar slice cultures using fluorescence recovery after photobleaching. In the dendrites of Purkinje cells, IP(3) R1 showed lateral diffusion with an effective diffusion constant of approximately 0.30 μm(2) /s, and the diffusion of IP(3) R1 was negatively regulated by actin filaments. We found that actin filaments were also involved in the regulation of IP(3) R1 diffusion in the spine of Purkinje cells. Glutamate or quisqualic acid stimulation, which activates glutamate receptors and leads to a Ca(2+) transient in Purkinje cells, decreased the diffusion of IP(3) R1 and increased the density of actin in spines. These findings indicate that the neuronal activity-dependent augmentation of actin contributes to the stabilization of IP(3) R1 in spines. © 2010 The Authors. Journal Compilation © 2010 International Society for Neurochemistry.

  5. Involvement of extrasynaptic glutamate in physiological and pathophysiological changes of neuronal excitability.

    PubMed

    Pál, Balázs

    2018-05-15

    Glutamate is the most abundant neurotransmitter of the central nervous system, as the majority of neurons use glutamate as neurotransmitter. It is also well known that this neurotransmitter is not restricted to synaptic clefts, but found in the extrasynaptic regions as ambient glutamate. Extrasynaptic glutamate originates from spillover of synaptic release, as well as from astrocytes and microglia. Its concentration is magnitudes lower than in the synaptic cleft, but receptors responding to it have higher affinity for it. Extrasynaptic glutamate receptors can be found in neuronal somatodendritic location, on astroglia, oligodendrocytes or microglia. Activation of them leads to changes of neuronal excitability with different amplitude and kinetics. Extrasynaptic glutamate is taken up by neurons and astrocytes mostly via EAAT transporters, and astrocytes, in turn metabolize it to glutamine. Extrasynaptic glutamate is involved in several physiological phenomena of the central nervous system. It regulates neuronal excitability and synaptic strength by involving astroglia; contributing to learning and memory formation, neurosecretory and neuromodulatory mechanisms, as well as sleep homeostasis.The extrasynaptic glutamatergic system is affected in several brain pathologies related to excitotoxicity, neurodegeneration or neuroinflammation. Being present in dementias, neurodegenerative and neuropsychiatric diseases or tumor invasion in a seemingly uniform way, the system possibly provides a common component of their pathogenesis. Although parts of the system are extensively discussed by several recent reviews, in this review I attempt to summarize physiological actions of the extrasynaptic glutamate on neuronal excitability and provide a brief insight to its pathology for basic understanding of the topic.

  6. VMAT2-Mediated Neurotransmission from Midbrain Leptin Receptor Neurons in Feeding Regulation

    PubMed Central

    Lu, Yungang; Xu, Pingwen; Isingrini, Elsa; Xu, Yong

    2017-01-01

    Abstract Leptin receptors (LepRs) expressed in the midbrain contribute to the action of leptin on feeding regulation. The midbrain neurons release a variety of neurotransmitters including dopamine (DA), glutamate and GABA. However, which neurotransmitter mediates midbrain leptin action on feeding remains unclear. Here, we showed that midbrain LepR neurons overlap with a subset of dopaminergic, GABAergic and glutamatergic neurons. Specific removal of vesicular monoamine transporter 2 (VMAT2) in midbrain LepR neurons (KO mice) disrupted DA accumulation in vesicles, but failed to cause a significant change in the evoked release of either glutamate or GABA to downstream neurons. While KO mice showed no differences on chow, they presented a reduced high-fat diet (HFD) intake and resisted to HFD-induced obesity. Specific activation of midbrain LepR neurons promoted VMAT2-dependent feeding on chow and HFD. When tested with an intermittent access to HFD where first 2.5-h HFD eating (binge-like) and 24-h HFD feeding were measured, KO mice exhibited more binge-like, but less 24-h HFD feeding. Interestingly, leptin inhibited 24-h HFD feeding in controls but not in KO mice. Thus, VMAT2-mediated neurotransmission from midbrain LepR neurons contributes to both binge-like eating and HFD feeding regulation. PMID:28560316

  7. Propofol inhibits invasion and proliferation of C6 glioma cells by regulating the Ca2+ permeable AMPA receptor-system xc- pathway.

    PubMed

    Wang, Xin-Yue; Li, Yan-Li; Wang, Hai-Yun; Zhu, Min; Guo, Di; Wang, Guo-Lin; Gao, Ying-Tang; Yang, Zhuo; Li, Tang; Yang, Chen-Yi; Chen, Yi-Meng

    2017-10-01

    Anesthetics are documented to affect tumors; therefore, we studied the antiglioma effect of propofol on proliferation and invasiveness of glioma cells and explored the underlying mechanism. C6 glioma cells were cultured and treated with propofol, and cell viability, invasiveness, and migration were measured. Glutamate release was measured using an enzyme-catalyzed kinetic reaction. xCT protein and α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) receptor GluR2 subunit protein expression was assessed with Western blot analysis and immunofluorescent staining. We observed that propofol significantly inhibited C6 glioma cell viability, invasiveness, and migration and decreased glutamate release. An agonist of the cystine/glutamate antiporter system (system x c - ), N-acetylcysteine (NAC), reversed propofol's effects, and propofol could inhibit C6 glioma cell proliferation by adding excess exogenous glutamate (100μM). Finally, propofol increased the surface expression of GluR2, but decreased surface expression of xCT. The effects of propofol on surface expression of GluR2 and xCT could be rescued by (R, S)-AMPA, an agonist of Ca 2+ permeable AMPA receptor (CPAR). Thus, propofol can inhibit cell viability, invasiveness, and migration of C6 glioma cells, and the CPAR-system x c - pathway contributes to these events. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Quantal amplitude at the cone ribbon synapse can be adjusted by changes in cytosolic glutamate

    PubMed Central

    Bartoletti, Theodore M.

    2011-01-01

    Purpose Vision is encoded at photoreceptor synapses by the number of released vesicles and size of the post-synaptic response. We hypothesized that elevating cytosolic glutamate could enhance quantal size by increasing glutamate in vesicles. Methods We introduced glutamate (10–40 mM) into cone terminals through a patch pipette and recorded excitatory post-synaptic currents (EPSCs) from horizontal or OFF bipolar cells in the Ambystoma tigrinum retinal slice preparation. Results Elevating cytosolic glutamate in cone terminals enhanced EPSCs as well as quantal miniature EPSCs (mEPSCs). Enhancement was prevented by inhibiting vesicular glutamate transport with 1S,3R-1-aminocyclopentane-1,3-dicarboxylate in the patch pipette. A low affinity glutamate receptor antagonist, γD-glutamylglycine (1 mM), less effectively inhibited EPSCs evoked from cones loaded with glutamate than control cones indicating that release from cones with supplemental glutamate produced higher glutamate levels in the synaptic cleft. Raising presynaptic glutamate did not alter exocytotic capacitance responses and exocytosis was observed after inhibiting glutamate loading with the vesicular ATPase inhibitor, concanamycin A, suggesting that release capability is not restricted by low vesicular glutamate levels. Variance-mean analysis of currents evoked by flash photolysis of caged glutamate indicated that horizontal cell AMPA receptors have a single channel conductance of 10.1 pS suggesting that ~8.7 GluRs contribute to each mEPSC. Conclusions Quantal amplitude at the cone ribbon synapse is capable of adjustment by changes in cytosolic glutamate levels. The small number of channels contributing to each mEPSC suggests that stochastic variability in channel opening could be an important source of quantal variability. PMID:21541265

  9. Researching glutamate – induced cytotoxicity in different cell lines: a comparative/collective analysis/study

    PubMed Central

    Kritis, Aristeidis A.; Stamoula, Eleni G.; Paniskaki, Krystallenia A.; Vavilis, Theofanis D.

    2015-01-01

    Although glutamate is one of the most important excitatory neurotransmitters of the central nervous system, its excessive extracellular concentration leads to uncontrolled continuous depolarization of neurons, a toxic process called, excitotoxicity. In excitotoxicity glutamate triggers the rise of intracellular Ca2+ levels, followed by up regulation of nNOS, dysfunction of mitochondria, ROS production, ER stress, and release of lysosomal enzymes. Excessive calcium concentration is the key mediator of glutamate toxicity through over activation of ionotropic and metabotropic receptors. In addition, glutamate accumulation can also inhibit cystine (CySS) uptake by reversing the action of the CySS/glutamate antiporter. Reversal of the antiporter action reinforces the aforementioned events by depleting neurons of cysteine and eventually glutathione’s reducing potential. Various cell lines have been employed in the pursuit to understand the mechanism(s) by which excitotoxicity affects the cells leading them ultimately to their demise. In some cell lines glutamate toxicity is exerted mainly through over activation of NMDA, AMPA, or kainate receptors whereas in other cell lines lacking such receptors, the toxicity is due to glutamate induced oxidative stress. However, in the greatest majority of the cell lines ionotropic glutamate receptors are present, co-existing to CySS/glutamate antiporters and metabotropic glutamate receptors, supporting the assumption that excitotoxicity effect in these cells is accumulative. Different cell lines differ in their responses when exposed to glutamate. In this review article the responses of PC12, SH-SY5Y, HT-22, NT-2, OLCs, C6, primary rat cortical neurons, RGC-5, and SCN2.2 cell systems are systematically collected and analyzed. PMID:25852482

  10. Vesicular glutamate transporter 2 (VGLUT2) is co-stored with PACAP in projections from the rat melanopsin-containing retinal ganglion cells.

    PubMed

    Engelund, Anna; Fahrenkrug, Jan; Harrison, Adrian; Hannibal, Jens

    2010-05-01

    The retinal ganglion cell layer of the eye comprises a subtype of cells characterized by their intrinsic photosensitivity and expression of melanopsin (ipRGCs). These cells regulate a variety of non-image-forming (NIF) functions such as light entrainment of circadian rhythms, acute suppression of locomotor activity (masking), and pupillary light reflex. Two neurotransmitters have been identified in ipRGCs, glutamate and pituitary adenylate cyclase-activating polypeptide (PACAP). To date, little is known about their release and interplay. Here, we describe the presence and co-localization of vesicular glutamate transporter 2 (VGLUT2; a marker of glutamate signaling) and PACAP in ipRGCs and their projections in the brain. Nine adult male Wistar rats were assigned to one of three groups; anterograde tracing (n = 3), eye enucleation (n = 3), and untreated (n = 3). Under anaesthesia, rats were transcardially perfusion-fixated, after which the brains and eyes were removed for double immunohistochemical staining using a polyclonal anti-VGLUT2 antibody and a mouse monoclonal anti-PACAP antibody. Results revealed that VGLUT2- and PACAP-immunoreactivity (-ir) were present in ipRGCs and co-localized in their projections in the suprachiasmatic nucleus, the intergeniculate leaflet, and the olivary pretectal nucleus. We conclude that there is evidence to support the use of glutamate and PACAP as neurotransmitters in NIF photoperception by rat ipRGCs, and that these neurotransmitters are co-stored and probably released from the same nerve terminals. Furthermore, we conclude that VGLUT2 is the preferred subtype of vesicular transporter used by these cells.

  11. Transport direction determines the kinetics of substrate transport by the glutamate transporter EAAC1

    PubMed Central

    Zhang, Zhou; Tao, Zhen; Gameiro, Armanda; Barcelona, Stephanie; Braams, Simona; Rauen, Thomas; Grewer, Christof

    2007-01-01

    Glutamate transport by the excitatory amino acid carrier EAAC1 is known to be reversible. Thus, glutamate can either be taken up into cells, or it can be released from cells through reverse transport, depending on the electrochemical gradient of the co- and countertransported ions. However, it is unknown how fast and by which reverse transport mechanism glutamate can be released from cells. Here, we determined the steady- and pre-steady-state kinetics of reverse glutamate transport with submillisecond time resolution. First, our results suggest that glutamate and Na+ dissociate from their cytoplasmic binding sites sequentially, with glutamate dissociating first, followed by the three cotransported Na+ ions. Second, the kinetics of glutamate transport depend strongly on transport direction, with reverse transport being faster but less voltage-dependent than forward transport. Third, electrogenicity is distributed over several reverse transport steps, including intracellular Na+ binding, reverse translocation, and reverse relocation of the K+-bound EAAC1. We propose a kinetic model, which is based on a “first-in-first-out” mechanism, suggesting that glutamate association, with its extracellular binding site as well as dissociation from its intracellular binding site, precedes association and dissociation of at least one Na+ ion. Our model can be used to predict rates of glutamate release from neurons under physiological and pathophysiological conditions. PMID:17991780

  12. Glucose, Lactate, β-Hydroxybutyrate, Acetate, GABA, and Succinate as Substrates for Synthesis of Glutamate and GABA in the Glutamine-Glutamate/GABA Cycle.

    PubMed

    Hertz, Leif; Rothman, Douglas L

    2016-01-01

    The glutamine-glutamate/GABA cycle is an astrocytic-neuronal pathway transferring precursors for transmitter glutamate and GABA from astrocytes to neurons. In addition, the cycle carries released transmitter back to astrocytes, where a minor fraction (~25 %) is degraded (requiring a similar amount of resynthesis) and the remainder returned to the neurons for reuse. The flux in the cycle is intense, amounting to the same value as neuronal glucose utilization rate or 75-80 % of total cortical glucose consumption. This glucose:glutamate ratio is reduced when high amounts of β-hydroxybutyrate are present, but β-hydroxybutyrate can at most replace 60 % of glucose during awake brain function. The cycle is initiated by α-ketoglutarate production in astrocytes and its conversion via glutamate to glutamine which is released. A crucial reaction in the cycle is metabolism of glutamine after its accumulation in neurons. In glutamatergic neurons all generated glutamate enters the mitochondria and its exit to the cytosol occurs in a process resembling the malate-aspartate shuttle and therefore requiring concomitant pyruvate metabolism. In GABAergic neurons one half enters the mitochondria, whereas the other one half is released directly from the cytosol. A revised concept is proposed for the synthesis and metabolism of vesicular and nonvesicular GABA. It includes the well-established neuronal GABA reuptake, its metabolism, and use for resynthesis of vesicular GABA. In contrast, mitochondrial glutamate is by transamination to α-ketoglutarate and subsequent retransamination to releasable glutamate essential for the transaminations occurring during metabolism of accumulated GABA and subsequent resynthesis of vesicular GABA.

  13. Central N-acetyl aspartylglutamate deficit: a possible pathogenesis of schizophrenia.

    PubMed

    Tsai, Shih-Jen

    2005-09-01

    The "glutamate hypothesis" of schizophrenia has emerged from the finding that phencyclidine (PCP) induces psychotic-like behaviors in rodents, possibly by blocking the N-methyl-D-aspartate (NMDA) subtype of glutamate receptor, thereby causing increased glutamate release. N-acetyl aspartylglutamate (NAAG), an endogenous peptide abundant in mammalian nervous systems, is localized in certain brain cells, including cortical and hippocampal pyramidal neurons. NAAG is synthesized from N-acetylaspartate (NAA) and glutamate, and NAA availability may limit the rate of NAAG synthesis. Although NAAG is known to have some neurotransmitter-like functions, NAA does not. NAAG is a highly selective agonist of the type 3 metabotropic glutamate receptor (mGluR3, a presynaptic autoreceptor) and can inhibit glutamate release. In addition, at low levels, NAAG is an NMDA receptor antagonist, and blocking of NMDA receptors may increase glutamate release. Taken together, low central NAAG levels may antagonize the effect of glutamate at NMDA receptors and decrease its agonistic effect on presynaptic mGluR3; both activities could increase glutamate release, similar to the increase demonstrated in the PCP model of schizophrenia. In this report, it is suggested that the central NAAG deficit, possibly through decreased synthesis or increased degradation of NAAG, may play a role in the pathogenesis of schizophrenia. Evidence is presented and discussed from magnetic resonance, postmortem, animal model, schizophrenia treatment, and genetic studies. The central NAAG deficit model of schizophrenia could explain the disease process, from the perspectives of both neurodevelopment and neurodegeneration, and may point to potential treatments for schizophrenia.

  14. Increased vesicular glutamate transporter expression causes excitotoxic neurodegeneration.

    PubMed

    Daniels, Richard W; Miller, Bradley R; DiAntonio, Aaron

    2011-02-01

    Increases in vesicular glutamate transporter (VGLUT) levels are observed after a variety of insults including hypoxic injury, stress, methamphetamine treatment, and in genetic seizure models. Such overexpression can cause an increase in the amount of glutamate released from each vesicle, but it is unknown whether this is sufficient to induce excitotoxic neurodegeneration. Here we show that overexpression of the Drosophila vesicular glutamate transporter (DVGLUT) leads to excess glutamate release, with some vesicles releasing several times the normal amount of glutamate. Increased DVGLUT expression also leads to an age-dependent loss of motor function and shortened lifespan, accompanied by a progressive neurodegeneration in the postsynaptic targets of the DVGLUT-overexpressing neurons. The early onset lethality, behavioral deficits, and neuronal pathology require overexpression of a functional DVGLUT transgene. Thus overexpression of DVGLUT is sufficient to generate excitotoxic neuropathological phenotypes and therefore reducing VGLUT levels after nervous system injury or stress may mitigate further damage. Copyright © 2010 Elsevier Inc. All rights reserved.

  15. K+ depolarization evokes ATP, adenosine and glutamate release from glia in rat hippocampus: a microelectrode biosensor study

    PubMed Central

    Heinrich, A; Andó, RD; Túri, G; Rózsa, B; Sperlágh, B

    2012-01-01

    BACKGROUND AND PURPOSE This study was undertaken to characterize the ATP, adenosine and glutamate outflow evoked by depolarization with high K+ concentrations, in slices of rat hippocampus. EXPERIMENTAL APPROACH We utilized the microelectrode biosensor technique and extracellular electrophysiological recording for the real-time monitoring of the efflux of ATP, adenosine and glutamate. KEY RESULTS ATP, adenosine and glutamate sensors exhibited transient and reversible current during depolarization with 25 mM K+, with distinct kinetics. The ecto-ATPase inhibitor ARL67156 enhanced the extracellular level of ATP and inhibited the prolonged adenosine efflux, suggesting that generation of adenosine may derive from the extracellular breakdown of ATP. Stimulation-evoked ATP, adenosine and glutamate efflux was inhibited by tetrodotoxin, while exposure to Ca2+-free medium abolished ATP and adenosine efflux from hippocampal slices. Extracellular elevation of ATP and adenosine were decreased in the presence of NMDA receptor antagonists, D-AP-5 and ifenprodil, whereas non-NMDA receptor blockade by CNQX inhibited glutamate but not ATP and adenosine efflux. The gliotoxin fluoroacetate and P2X7 receptor antagonists inhibited the K+-evoked ATP, adenosine and glutamate efflux, while carbenoxolone in low concentration and probenecid decreased only the adenosine efflux. CONCLUSIONS AND IMPLICATIONS Our results demonstrated activity-dependent gliotransmitter release in the hippocampus in response to ongoing neuronal activity. ATP and glutamate were released by P2X7 receptor activation into extracellular space. Although the increased extracellular levels of adenosine did derive from released ATP, adenosine might also be released directly via pannexin hemichannels. LINKED ARTICLE This article is commented on by Sershen, pp. 1000–1002 of this issue. To view this commentary visit http://dx.doi.org/10.1111/j.1476-5381.2012.02072.x PMID:22394324

  16. Enhanced pre-synaptic glutamate release in deep-dorsal horn contributes to calcium channel alpha-2-delta-1 protein-mediated spinal sensitization and behavioral hypersensitivity

    PubMed Central

    Nguyen, David; Deng, Ping; Matthews, Elizabeth A; Kim, Doo-Sik; Feng, Guoping; Dickenson, Anthony H; Xu, Zao C; Luo, Z David

    2009-01-01

    Nerve injury-induced expression of the spinal calcium channel alpha-2-delta-1 subunit (Cavα2δ1) has been shown to mediate behavioral hypersensitivity through a yet identified mechanism. We examined if this neuroplasticity modulates behavioral hypersensitivity by regulating spinal glutamatergic neurotransmission in injury-free transgenic mice overexpressing the Cavα2δ1 proteins in neuronal tissues. The transgenic mice exhibited hypersensitivity to mechanical stimulation (allodynia) similar to the spinal nerve ligation injury model. Intrathecally delivered antagonists for N-methyl-D-aspartate (NMDA) and α-amino-3-hydroxyl-5-methylisoxazole-4-propionic acid (AMPA)/kainate receptors, but not for the metabotropic glutamate receptors, caused a dose-dependent allodynia reversal in the transgenic mice without changing the behavioral sensitivity in wild-type mice. This suggests that elevated spinal Cavα2δ1 mediates allodynia through a pathway involving activation of selective glutamate receptors. To determine if this is mediated by enhanced spinal neuronal excitability or pre-synaptic glutamate release in deep-dorsal horn, we examined wide-dynamic-range (WDR) neuron excitability with extracellular recording and glutamate-mediated excitatory postsynaptic currents with whole-cell patch recording in deep-dorsal horn of the Cavα2δ1 transgenic mice. Our data indicated that overexpression of Cavα2δ1 in neuronal tissues led to increased frequency, but not amplitude, of miniature excitatory post synaptic currents mediated mainly by AMPA/kainate receptors at physiological membrane potentials, and also by NMDA receptors upon depolarization, without changing the excitability of WDR neurons to high intensity stimulation. Together, these findings support a mechanism of Cavα2δ1-mediated spinal sensitization in which elevated Cavα2δ1 causes increased pre-synaptic glutamate release that leads to reduced excitation thresholds of post-synaptic dorsal horn neurons to innocuous stimuli. This spinal sensitization mechanism may mediate at least partially the neuropathic pain states derived from increased pre-synaptic Cavα2δ1 expression. PMID:19216737

  17. 50 Hz hippocampal stimulation in refractory epilepsy: Higher level of basal glutamate predicts greater release of glutamate.

    PubMed

    Cavus, Idil; Widi, Gabriel A; Duckrow, Robert B; Zaveri, Hitten; Kennard, Jeremy T; Krystal, John; Spencer, Dennis D

    2016-02-01

    The effect of electrical stimulation on brain glutamate release in humans is unknown. Glutamate is elevated at baseline in the epileptogenic hippocampus of patients with refractory epilepsy, and increases during spontaneous seizures. We examined the effect of 50 Hz stimulation on glutamate release and its relationship to interictal levels in the hippocampus of patients with epilepsy. In addition, we measured basal and stimulated glutamate levels in a subset of these patients where stimulation elicited a seizure. Subjects (n = 10) were patients with medically refractory epilepsy who were undergoing intracranial electroencephalography (EEG) evaluation in an epilepsy monitoring unit. Electrical stimulation (50 Hz) was delivered through implanted hippocampal electrodes (n = 11), and microdialysate samples were collected every 2 min. Basal glutamate, changes in glutamate efflux with stimulation, and the relationships between peak stimulation-associated glutamate concentrations, basal zero-flow levels, and stimulated seizures were examined. Stimulation of epileptic hippocampi in patients with refractory epilepsy caused increases in glutamate efflux (p = 0.005, n = 10), and 4 of ten patients experienced brief stimulated seizures. Stimulation-induced increases in glutamate were not observed during the evoked seizures, but rather were related to the elevation in interictal basal glutamate (R(2) = 0.81, p = 0.001). The evoked-seizure group had lower basal glutamate levels than the no-seizure group (p = 0.04), with no stimulation-induced change in glutamate efflux (p = 0.47, n = 4). Conversely, increased glutamate was observed following stimulation in the no-seizure group (p = 0.005, n = 7). Subjects with an atrophic hippocampus had higher basal glutamate levels (p = 0.03, n = 7) and higher stimulation-induced glutamate efflux. Electrical stimulation of the epileptic hippocampus either increased extracellular glutamate efflux or induced seizures. The magnitude of stimulated glutamate increase was related to elevation in basal interictal glutamate, suggesting a common mechanism, possibly impaired glutamate metabolism. Divergent mechanisms may exist for seizure induction and increased glutamate in patients with epilepsy. These data highlight the potential risk of 50 Hz stimulation in patients with epilepsy. Wiley Periodicals, Inc. © 2016 International League Against Epilepsy.

  18. Gamma-vinyl GABA increases nonvesicular release of GABA and glutamate in the nucleus accumbens in rats via action on anion channels and GABA transporters

    PubMed Central

    Peng, Xiao-Qing; Gardner, Eliot L.

    2013-01-01

    Rationale γ-Amino butyric acid (GABA) is a well-characterized inhibitory neurotransmitter in the central nervous system, which may also stimulate nonvesicular release of other neurotransmitters under certain conditions. We have recently reported that γ-vinyl GABA (GVG), an irreversible GABA transaminase inhibitor, elevates extracellular GABA but fails to alter dopamine release in the nucleus accumbens (NAc). Objectives Here, we investigated the mechanism(s) by which GVG elevates extracellular GABA levels and whether GVG also alters glutamate release in the NAc. Materials and methods In vivo microdialysis was used to simultaneously measure extracellular NAc GABA and glutamate before and after GVG administration in freely moving rats. Results Systemic administration of GVG or intra-NAc local perfusion of GVG significantly increased extracellular NAc GABA and glutamate. GVG-enhanced GABA was completely blocked by intra-NAc local perfusion of 5-nitro-2, 3-(phenylpropylamino)-benzoic acid (NPPB), a selective anion channel blocker and partially blocked by SKF89976A, a type 1 GABA transporter inhibitor. GVG-enhanced glutamate was completely blocked by NPPB or SKF89976A. Tetrodotoxin, a voltage-dependent Na+-channel blocker, failed to alter GVG-enhanced GABA and glutamate. Conclusions These data suggest that GVG-enhanced extracellular GABA and glutamate are mediated predominantly by the opening of anion channels and partially by the reversal of GABA transporters. Enhanced extracellular glutamate may functionally attenuate the pharmacological action of GABA and prevent enhanced GABA-induced excess inhibition. PMID:20033132

  19. Glutaminase-containing microvesicles from HIV-1-infected macrophages and immune-activated microglia induce neurotoxicity.

    PubMed

    Wu, Beiqing; Huang, Yunlong; Braun, Alexander L; Tong, Zenghan; Zhao, Runze; Li, Yuju; Liu, Fang; Zheng, Jialin C

    2015-11-06

    HIV-1-infected and/or immune-activated microglia and macrophages are pivotal in the pathogenesis of HIV-1-associated neurocognitive disorders (HAND). Glutaminase, a metabolic enzyme that facilitates glutamate generation, is upregulated and may play a pathogenic role in HAND. Our previous studies have demonstrated that glutaminase is released to the extracellular fluid during HIV-1 infection and neuroinflammation. However, key molecular mechanisms that regulate glutaminase release remain unknown. Recent advances in understanding intercellular trafficking have identified microvesicles (MVs) as a novel means of shedding cellular contents. We posit that during HIV-1 infection and immune activation, microvesicles may mediate glutaminase release, generating excessive and neurotoxic levels of glutamate. MVs isolated through differential centrifugation from cell-free supernatants of monocyte-derived macrophages (MDM) and BV2 microglia cell lines were first confirmed in electron microscopy and immunoblotting. As expected, we found elevated number of MVs, glutaminase immunoreactivities, as well as glutaminase enzyme activity in the supernatants of HIV-1 infected MDM and lipopolysaccharide (LPS)-activated microglia when compared with controls. The elevated glutaminase was blocked by GW4869, a neutral sphingomyelinase inhibitor known to inhibit MVs release, suggesting a critical role of MVs in mediating glutaminase release. More importantly, MVs from HIV-1-infected MDM and LPS-activated microglia induced significant neuronal injury in rat cortical neuron cultures. The MV neurotoxicity was blocked by a glutaminase inhibitor or GW4869, suggesting that the neurotoxic potential of HIV-1-infected MDM and LPS-activated microglia is dependent on the glutaminase-containing MVs. These findings support MVs as a potential pathway/mechanism of excessive glutamate generation and neurotoxicity in HAND and therefore MVs may serve as a novel therapeutic target.

  20. Glutamate spillover modulates GABAergic synaptic transmission in the rat midbrain periaqueductal grey via metabotropic glutamate receptors and endocannabinoid signaling.

    PubMed

    Drew, Geoffrey M; Mitchell, Vanessa A; Vaughan, Christopher W

    2008-01-23

    Glutamate spillover regulates GABAergic synaptic transmission at several CNS synapses via presynaptic ionotropic and metabotropic glutamate receptors (mGluRs). We have previously demonstrated that activation of group I-III mGluRs inhibits GABAergic transmission in the midbrain periaqueductal gray (PAG), a region involved in organizing behavioral responses to threat, stress, and pain. Here, we examined the role of glutamate spillover in the modulation of GABAergic transmission in the PAG. Using whole-cell recordings from rat PAG slices, we found that evoked IPSCs were reduced by the nonspecific glutamate transport blockers DL-threo-beta-benzyloxyaspartic acid (TBOA) and L-trans-pyrrolidine-2,4-dicarboxylic acid, but not by the glial GLT1-specific blocker dihydrokainate. In contrast, TBOA had no effect on evoked IPSCs when glutamate uptake into the postsynaptic neuron was selectively impaired. TBOA increased the paired-pulse ratio of evoked IPSCs and reduced the rate but not the amplitude of spontaneous miniature IPSCs. The effect of TBOA on evoked IPSCs was abolished by the broad-spectrum mGluR antagonist (2S)-2-amino-2-[(1S,2S)-2-carboxycycloprop-1-yl]-3-(xanth-9-yl) propanoic acid (100 microM), reduced by the mGluR5-specific antagonist 2-methyl-6-(phenylethynyl)pyridine hydrochloride (MPEP) and mimicked by the mGluR1/5 agonist (RS)-3,5-dihydroxyphenylglycine (DHPG). Furthermore, the effects of both TBOA and DHPG were reduced by the cannabinoid CB1 receptor antagonist 1-(2,4-dichlorophenyl)-5-(4-iodophenyl)-4-methyl-N-1-piperidinyl-1H-pyrazole-3-carboxamide (AM251). Finally, although MPEP and AM251 had no effect on single evoked IPSCs, they increased evoked IPSCs during repetitive stimulation. These results indicate that neuronal glutamate transporters limit mGluR5 activation and endocannabinoid signaling, but may be overwhelmed during conditions of elevated glutamate release. Thus, neuronal glutamate transporters play a key role in regulating endocannabinoid-mediated cross talk between glutamatergic and GABAergic synapses within the PAG.

  1. Low dietary protein is associated with an increase in food intake and a decrease in the in vitro release of radiolabeled glutamate and GABA from the lateral hypothalamus.

    PubMed

    White, B D; Du, F; Higginbotham, D A

    2003-12-01

    Moderately low-protein diets lead to a rapid increase in food intake and body fat. The increase in feeding is associated with a decrease in the concentration of serum urea nitrogen, suggesting that the low-protein-induced increase in food intake may be related to the decreased metabolism of nitrogen from amino acids. We hypothesized that low dietary protein would be associated with a decrease in the synaptic release of two nitrogen-containing neurotransmitters, GABA and glutamate, whose nitrogen can be derived from amino acids. In this study, we examined the effects of a low-protein diet (10% casein) in Sprague-Dawley rats on the in vitro release of 3H-GABA and 14C-glutamate from the lateral and medial hypothalamus. The low-protein diet increased food intake by about 25% after one day. After four days, the in vitro release of radiolabeled GABA and glutamate was assessed. The calcium-dependent, potassium-stimulated release of radiolabeled GABA and glutamate from the lateral hypothalamus was decreased in rats fed the low-protein diet. The magnitude of neurotransmitter release from the lateral hypothalamus inversely correlated with food intake. No dietary differences in the release of neurotransmitters from the medial hypothalamus were observed. These results support the contention that alterations in nitrogen metabolism are associated with low-protein-induced feeding.

  2. Cytoprotection by Endogenous Zinc in the Vertebrate Retina

    PubMed Central

    Anastassov, Ivan; Ripps, Harris; Chappell, Richard L.

    2014-01-01

    Our recent studies have shown that endogenous zinc, co-released with glutamate from the synaptic terminals of vertebrate retinal photoreceptors, provides a feedback mechanism that reduces calcium entry and the concomitant vesicular release of glutamate. We hypothesized that zinc feedback may serve to protect the retina from glutamate excitotoxicity, and conducted in vivo experiments on the retina of the skate (Raja erinacea) to determine the effects of removing endogenous zinc by chelation. These studies showed that removal of zinc by injecting the zinc chelator histidine results in inner retinal damage similar to that induced by the glutamate receptor agonist kainic acid. In contrast, when an equimolar quantity of zinc followed the injection of histidine, the retinal cells were unaffected. Our results are a good indication that zinc, co-released with glutamate by photoreceptors, provides an auto-feedback system that plays an important cytoprotective role in the retina. PMID:24286124

  3. Glial hemichannels and their involvement in aging and neurodegenerative diseases.

    PubMed

    Orellana, Juan A; von Bernhardi, Rommy; Giaume, Christian; Sáez, Juan C

    2012-01-26

    During the last two decades, it became increasingly evident that glial cells accomplish a more important role in brain function than previously thought. Glial cells express pannexins and connexins, which are member subunits of two protein families that form membrane channels termed hemichannels. These channels communicate intra- and extracellular compartments and allow the release of autocrine/paracrine signaling molecules [e.g., adenosine triphosphate (ATP), glutamate, nicotinamide adenine dinucleotide, and prostaglandin E2] to the extracellular milieu, as well as the uptake of small molecules (e.g., glucose). An increasing body of evidence has situated glial hemichannels as potential regulators of the beginning and maintenance of homeostatic imbalances observed in diverse brain diseases. Here, we review and discuss the current evidence about the possible role of glial hemichannels on neurodegenerative diseases. A subthreshold pathological threatening condition leads to microglial activation, which keeps active defense and restores the normal function of the central nervous system. However, if the stimulus is deleterious, microglial cells and the endothelium become overactivated, both releasing bioactive molecules (e.g., glutamate, cytokines, prostaglandins, and ATP), which increase the activity of glial hemichannels, reducing the astroglial neuroprotective functions, and further reducing neuronal viability. Because ATP and glutamate are released via glial hemichannels in neurodegenerative conditions, it is expected that they contribute to neurotoxicity. More importantly, toxic molecules released via glial hemichannels could increase the Ca2+ entry in neurons also via neuronal hemichannels, leading to neuronal death. Therefore, blockade of hemichannels expressed by glial cells and/or neurons during neuroinflammation might prevent neurodegeneration.

  4. The system N transporter SN2 doubles as a transmitter precursor furnisher and a potential regulator of NMDA receptors.

    PubMed

    Hamdani, El Hassan; Gudbrandsen, Marius; Bjørkmo, Mona; Chaudhry, Farrukh Abbas

    2012-11-01

    Activation of NMDA receptor requires two co-agonists, glutamate and glycine. Despite its intrinsic role in brain functions molecular mechanisms involved in glutamate replenishment and identification of the origin of glycine have eluded characterization. We have performed direct measurements of glycine flux by SN2 (Slc38a5; also known as SNAT5), executed extensive electrophysiological characterization as well as implemented ratiometric analyses to show that SN2 transport resembles SN1 in mechanism but differ in functional implications. We report that rat SN2 mediates electroneutral and bidirectional transport of glutamine and glycine at perisynaptic astroglial membranes. Sophisticated coupled and uncoupled movements of H(+) differentially associate with glutamine and glycine transport by SN2 and regulate pH(i) and the release mode of the transporter. Consequently, SN2 doubles as a transmitter precursor furnisher and a potential regulator of NMDA receptors. Copyright © 2012 Wiley Periodicals, Inc.

  5. Multimodal use of calcitonin gene-related peptide and substance P in itch and acute pain uncovered by the elimination of vesicular glutamate transporter 2 from transient receptor potential cation channel subfamily V member 1 neurons.

    PubMed

    Rogoz, Katarzyna; Andersen, Helena H; Lagerström, Malin C; Kullander, Klas

    2014-10-15

    Primary afferents are known to use glutamate as their principal fast neurotransmitter. However, it has become increasingly clear that peptides have an influential role in both mediating and modulating sensory transmission. Here we describe the transmission accounting for different acute pain states and itch transmitted via the transient receptor potential cation channel subfamily V member 1 (TRPV1) population by either ablating Trpv1-Cre-expressing neurons or inducing vesicular glutamate transporter 2 (VGLUT2) deficiency in Trpv1-Cre-expressing neurons. Furthermore, by pharmacological inhibition of substance P or calcitonin gene-related peptide (CGRP) signaling in Vglut2-deficient mice, we evaluated the contribution of substance P or CGRP to these sensory modulations, with or without the presence of VGLUT2-mediated glutamatergic transmission in Trpv1-Cre neurons. This examination, together with c-Fos analyses, showed that glutamate via VGLUT2 in the Trpv1-Cre population together with substance P mediate acute cold pain, whereas glutamate together with CGRP mediate noxious heat. Moreover, we demonstrate that glutamate together with both substance P and CGRP mediate tissue-injury associated pain. We further show that itch, regulated by the VGLUT2-mediated transmission via the Trpv1-Cre population, depends on CGRP and gastrin-releasing peptide receptor (GRPR) transmission because pharmacological blockade of the CGRP or GRPR pathway, or genetic ablation of Grpr, led to a drastically attenuated itch. Our study reveals how different neurotransmitters combined can cooperate with each other to transmit or regulate various acute sensations, including itch. Copyright © 2014 the authors 0270-6474/14/3414055-14$15.00/0.

  6. Modeling the effect of glutamate diffusion and uptake on NMDA and non-NMDA receptor saturation.

    PubMed Central

    Holmes, W R

    1995-01-01

    One- and two-dimensional models of glutamate diffusion, uptake, and binding in the synaptic cleft were developed to determine if the release of single vesicles of glutamate would saturate NMDA and non-NMDA receptors. Ranges of parameter values were used in the simulations to determine the conditions when saturation could occur. Single vesicles of glutamate did not saturate NMDA receptors unless diffusion was very slow and the number of glutamate molecules in a vesicle was large. However, the release of eight vesicles at 400 Hz caused NMDA receptor saturation for all parameter values tested. Glutamate uptake was found to reduce NMDA receptor saturation, but the effect was smaller than that of changes in the diffusion coefficient or in the number of glutamate molecules in a vesicle. Non-NMDA receptors were not saturated unless diffusion was very slow and the number of glutamate molecules in a vesicle was large. The release of eight vesicles at 400 Hz caused significant non-NMDA receptor desensitization. The results suggest that NMDA and non-NMDA receptors are not saturated by single vesicles of glutamate under usual conditions, and that tetanic input, of the type typically used to induce long-term potentiation, will increase calcium influx by increasing receptor binding as well as by reducing voltage-dependent block of NMDA receptors. Images FIGURE 1 PMID:8580317

  7. Glutamate input in the dorsal raphe nucleus as a determinant of escalated aggression in male mice.

    PubMed

    Takahashi, Aki; Lee, Ray X; Iwasato, Takuji; Itohara, Shigeyoshi; Arima, Hiroshi; Bettler, Bernhard; Miczek, Klaus A; Koide, Tsuyoshi

    2015-04-22

    Although the dorsal raphe nucleus (DRN) has long been linked to neural control of aggression, little is known about the regulatory influences of the DRN when an animal engages in either adaptive species-typical aggressive behavior or escalated aggression. Therefore it is important to explore which neurotransmitter inputs into the DRN determine the escalation of aggression in male mice. Previously, we observed that microinjection of the GABAB receptor agonist baclofen into the DRN escalates aggressive behavior in male mice. Here, we used a serotonin (5-HT) neuron-specific GABAB receptor knock-out mouse to demonstrate that baclofen acts on nonserotonergic neurons to escalate aggression. Intra-DRN baclofen administration increased glutamate release, but did not alter GABA release, within the DRN. Microinjection of l-glutamate into the DRN escalated dose-dependently attack bites toward an intruder. In vivo microdialysis showed that glutamate release increased in the DRN during an aggressive encounter, and the level of glutamate was further increased when the animal was engaged in escalated aggressive behavior after social instigation. Finally, 5-HT release was increased within the DRN and also in the medial prefrontal cortex when animals were provoked by social instigation, and during escalated aggression after social instigation, but this increase in 5-HT release was not observed when animals were engaged in species-typical aggression. In summary, glutamate input into the DRN is enhanced during escalated aggression, which causes a phasic increase of 5-HT release from the DRN 5-HT neurons. Copyright © 2015 the authors 0270-6474/15/356452-12$15.00/0.

  8. Excitatory synaptic inputs to mouse on-off direction-selective retinal ganglion cells lack direction tuning.

    PubMed

    Park, Silvia J H; Kim, In-Jung; Looger, Loren L; Demb, Jonathan B; Borghuis, Bart G

    2014-03-12

    Direction selectivity represents a fundamental visual computation. In mammalian retina, On-Off direction-selective ganglion cells (DSGCs) respond strongly to motion in a preferred direction and weakly to motion in the opposite, null direction. Electrical recordings suggested three direction-selective (DS) synaptic mechanisms: DS GABA release during null-direction motion from starburst amacrine cells (SACs) and DS acetylcholine and glutamate release during preferred direction motion from SACs and bipolar cells. However, evidence for DS acetylcholine and glutamate release has been inconsistent and at least one bipolar cell type that contacts another DSGC (On-type) lacks DS release. Here, whole-cell recordings in mouse retina showed that cholinergic input to On-Off DSGCs lacked DS, whereas the remaining (glutamatergic) input showed apparent DS. Fluorescence measurements with the glutamate biosensor intensity-based glutamate-sensing fluorescent reporter (iGluSnFR) conditionally expressed in On-Off DSGCs showed that glutamate release in both On- and Off-layer dendrites lacked DS, whereas simultaneously recorded excitatory currents showed apparent DS. With GABA-A receptors blocked, both iGluSnFR signals and excitatory currents lacked DS. Our measurements rule out DS release from bipolar cells onto On-Off DSGCs and support a theoretical model suggesting that apparent DS excitation in voltage-clamp recordings results from inadequate voltage control of DSGC dendrites during null-direction inhibition. SAC GABA release is the apparent sole source of DS input onto On-Off DSGCs.

  9. Enhanced Cognition and Hypoglutamatergic Signaling in a Growth Hormone Receptor Knockout Mouse Model of Successful Aging.

    PubMed

    Hascup, Kevin N; Lynn, Mary K; Fitzgerald, Patrick J; Randall, Shari; Kopchick, John J; Boger, Heather A; Bartke, Andrzej; Hascup, Erin R

    2017-03-01

    Growth hormone receptor knockout (GHR-KO) mice are long lived with improved health span, making this an excellent model system for understanding biochemical mechanisms important to cognitive reserve. The purpose of the present study was to elucidate differences in cognition and glutamatergic dynamics between aged (20- to 24-month-old) GHR-KO and littermate controls. Glutamate plays a critical role in hippocampal learning and memory and is implicated in several neurodegenerative disorders, including Alzheimer's disease. Spatial learning and memory were assessed using the Morris water maze (MWM), whereas independent dentate gyrus (DG), CA3, and CA1 basal glutamate, release, and uptake measurements were conducted in isoflurane anesthetized mice utilizing an enzyme-based microelectrode array (MEA) coupled with constant potential amperometry. These MEAs have high temporal and low spatial resolution while causing minimal damage to the surrounding parenchyma. Littermate controls performed worse on the memory portion of the MWM behavioral task and had elevated DG, CA3, and CA1 basal glutamate and stimulus-evoked release compared with age-matched GHR-KO mice. CA3 basal glutamate negatively correlated with MWM performance. These results support glutamatergic regulation in learning and memory and may have implications for therapeutic targets to delay the onset of, or reduce cognitive decline, in Alzheimer's disease. © The Author 2016. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  10. Neuroprotective effects of Arctium lappa L. roots against glutamate-induced oxidative stress by inhibiting phosphorylation of p38, JNK and ERK 1/2 MAPKs in PC12 cells.

    PubMed

    Tian, Xing; Sui, Shuang; Huang, Jin; Bai, Jun-Peng; Ren, Tian-Shu; Zhao, Qing-Chun

    2014-07-01

    Many studies have shown that glutamate-induced oxidative stress can lead to neuronal cell death involved in the development of neurodegenerative diseases. In this work, protective effects of ethyl acetate extract (EAE) of Arctium lappa L. roots against glutamate-induced oxidative stress in PC12 cells were evaluated. Also, the effects of EAE on antioxidant system, mitochondrial pathway, and signal transduction pathway were explored. Pretreatment with EAE significantly increased cell viability, activities of GSH-Px and SOD, mitochondrial membrane potential and reduced LDH leakage, ROS formation, and nuclear condensation in a dose-dependent manner. Furthermore, western blot results revealed that EAE increased the Bcl-2/Bax ratio, and inhibited the up-regulation of caspase-3, release of cytochrome c, phosphorylation of p38, c-Jun N-terminal kinase (JNK), and extracellular signal-regulated kinase 1/2 (ERK 1/2). Therefore, our results indicate that EAE may be a promising neuroprotective agent for the prevention and treatment of neurodegenerative diseases implicated with oxidative stress. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. The essential oil of bergamot enhances the levels of amino acid neurotransmitters in the hippocampus of rat: implication of monoterpene hydrocarbons.

    PubMed

    Morrone, Luigi A; Rombolà, Laura; Pelle, Cinzia; Corasaniti, Maria T; Zappettini, Simona; Paudice, Paolo; Bonanno, Giambattista; Bagetta, Giacinto

    2007-04-01

    The effects of bergamot essential oil (BEO) on the release of amino acid neurotransmitters in rat hippocampus have been studied by in vivo microdialysis and by in vitro superfusion of isolated nerve terminals. Intraperitoneal administration of BEO (100microl/kg) significantly elevated the extracellular concentration of aspartate, glycine and taurine in a Ca(2+)-dependent manner. A dose-relation study generated a bell-shaped curve. When perfused into the hippocampus via the dialysis probe (20microl/20min), BEO produced a significant increase of extracellular aspartate, glycine, taurine as well as of GABA and glutamate. The augmentation of all amino acids was Ca(2+)-independent. Focally injected 1:1 diluted BEO preferentially caused extracellular increase of glutamate. Interestingly, this release appeared to be strictly Ca(2+)-dependent. BEO concentration-dependently enhanced the release of [(3)H]D-aspartate from superfused hippocampal synaptosomes. Similar results were obtained by monitoring the BEO-evoked release of endogenous glutamate. At relatively high concentrations, the BEO-induced [(3)H]d-aspartate release was almost entirely prevented by the glutamate transporter blocker dl-threo-beta-benzyloxyaspartic acid (DL-TBOA) and was Ca(2+)-independent. At relatively low concentrations the release of [(3)H]D-aspartate was only in part ( approximately 50%) DL-TBOA-sensitive and Ca(2+)-independent; the remaining portion of release was dependent on extracellular Ca(2+). Interestingly, the monoterpene hydrocarbon-free fraction of the essential oil appeared to be inactive while the bergapten-free fraction superimposed the releasing effect of BEO supporting the deduction that psoralens may not be implicated. To conclude, BEO contains into its volatile fraction still unidentified monoterpene hydrocarbons able to stimulate glutamate release by transporter reversal and/or by exocytosis, depending on the dose administered.

  12. Unc-51 controls active zone density and protein composition by downregulating ERK signaling.

    PubMed

    Wairkar, Yogesh P; Toda, Hirofumi; Mochizuki, Hiroaki; Furukubo-Tokunaga, Katsuo; Tomoda, Toshifumi; Diantonio, Aaron

    2009-01-14

    Efficient synaptic transmission requires the apposition of neurotransmitter release sites opposite clusters of postsynaptic neurotransmitter receptors. Transmitter is released at active zones, which are composed of a large complex of proteins necessary for synaptic development and function. Many active zone proteins have been identified, but little is known of the mechanisms that ensure that each active zone receives the proper complement of proteins. Here we use a genetic analysis in Drosophila to demonstrate that the serine threonine kinase Unc-51 acts in the presynaptic motoneuron to regulate the localization of the active zone protein Bruchpilot opposite to glutamate receptors at each synapse. In the absence of Unc-51, many glutamate receptor clusters are unapposed to Bruchpilot, and ultrastructural analysis demonstrates that fewer active zones contain dense body T-bars. In addition to the presence of these aberrant synapses, there is also a decrease in the density of all synapses. This decrease in synaptic density and abnormal active zone composition is associated with impaired evoked transmitter release. Mechanistically, Unc-51 inhibits the activity of the MAP kinase ERK to promote synaptic development. In the unc-51 mutant, increased ERK activity leads to the decrease in synaptic density and the absence of Bruchpilot from many synapses. Hence, activated ERK negatively regulates synapse formation, resulting in either the absence of active zones or the formation of active zones without their proper complement of proteins. The Unc-51-dependent inhibition of ERK activity provides a potential mechanism for synapse-specific control of active zone protein composition and release probability.

  13. The Regulation of Endogenous Glutamate and GABA Release from In Vitro Preparations of Rat Striatum

    DTIC Science & Technology

    1997-09-19

    polyethylenimine (PEl) in 50 mM sodium borate pH 7.4 overnight. then washed with PBS pH 7.4 twice before 2 m1 of NS-media were added to each well...Celsius in 95% oxygen and 5% CO2 . 2. Fetal striatum dissection and neuron culture preparation Female Sprague-Dawley rats. 18-day pregnant. under 2.5

  14. ONO-2506 inhibits spike-wave discharges in a genetic animal model without affecting traditional convulsive tests via gliotransmission regulation.

    PubMed

    Yamamura, Satoshi; Hoshikawa, Masamitsu; Dai, Kato; Saito, Hiromitsu; Suzuki, Noboru; Niwa, Osamu; Okada, Motohiro

    2013-03-01

    Anticonvulsants have been developed according to the traditional neurotransmission imbalance hypothesis. However, the anticonvulsive pharmacotherapy currently available remains unsatisfactory. To develop new antiepileptic drugs with novel antiepileptic mechanisms, we have tested the antiepileptic actions of ONO-2506, a glial modulating agent, and its effects on tripartite synaptic transmission. Dose-dependent effects of ONO-2506 on maximal-electroshock seizure (MES), pentylenetetrazol-induced seizure (PTZ) and epileptic discharge were determined in a genetic model of absence epilepsy in mice (Cacna1a(tm2Nobs/tm2Nobs) strain). Antiepileptic mechanisms of ONO-2506 were analysed by examining the interaction between ONO-2506 and transmission-modulating toxins (tetanus toxin, fluorocitrate, tetrodotoxin) on release of l-glutamate, d-serine, GABA and kynurenic acid in the medial-prefrontal cortex (mPFC) of freely moving rats using microdialysis and primary cultured rat astrocytes. ONO-2506 inhibited spontaneous epileptic discharges in Cacna1a(tm2Nobs/tm2Nobs) mice without affecting MES or PTZ. Given systemically, ONO-2506 increased basal release of GABA and kynurenic acid in the mPFC through activation of both neuronal and glial exocytosis, but inhibited depolarization-induced releases of all transmitters. ONO-2506 increased basal glial release of kynurenic acid without affecting those of l-glutamate, d-serine or GABA. However, ONO-2506 inhibited AMPA-induced releases of l-glutamate, d-serine, GABA and kynurenic acid. ONO-2506 did not affect traditional convulsive tests but markedly inhibited epileptic phenomena in the genetic epilepsy mouse model. ONO-2506 enhanced release of inhibitory neuro- and gliotransmitters during the resting stage and inhibited tripartite transmission during the hyperactive stage. The results suggest that ONO-2506 is a novel potential glial-targeting antiepileptic drug. This article is commented on by Onat, pp. 1086-1087 of this issue. To view this commentary visit http://dx.doi.org/10.1111/bph.12050. © 2012 The Authors. British Journal of Pharmacology © 2012 The British Pharmacological Society.

  15. Release of Taurine and Glutamate contributes to cell volume regulation in human retinal Müller cells: Differences in modulation by calcium.

    PubMed

    Netti, Vanina; Pizzoni, Alejandro; Peréz-Domínguez, Martha; Ford, Paula; Pasantes-Morales, Herminia; Ramos-Mandujano, Gerardo; Capurro, Claudia

    2018-05-23

    Neuronal activity in the retina generates osmotic gradients that lead to Müller cell swelling, followed by a regulatory volume decrease (RVD) response, partially due to the isoosmotic efflux of KCl and water. However, our previous studies in a human Müller cell line (MIO-M1) demonstrated that an important fraction of RVD may also involve the efflux of organic solutes. We also showed that RVD depends on the swelling-induced Ca 2+ release from intracellular stores. Here we investigate the contribution of Taurine (Tau) and Glutamate (Glu), the most relevant amino acids in Müller cells, to RVD through the volume-regulated anion channel (VRAC), as well as their Ca 2+ -dependency in MIO-M1 cells. Swelling-induced [ 3 -H]-Tau/[ 3 H]-Glu release was assessed by radiotracer assays and cell volume by fluorescence videomicroscopy. Results showed that cells exhibited an osmosensitive efflux of [ 3 H]-Tau and [ 3 H]-Glu (Tau > Glu) blunted by the VRAC inhibitors DCPIB and CBX, reducing RVD. Only [ 3 H]-Tau efflux was dependent on Ca 2+ release from intracellular stores. RVD was unaffected in a Ca 2+ -free medium, probably due to Ca 2+ -independent Tau and Glu release, but was reduced by chelating intracellular Ca 2+ . The inhibition of phosphatidylinositol-3-kinase reduced [ 3 H]-Glu efflux but also the Ca 2+ -insensitive [ 3 H]-Tau fraction and decreased RVD, evidencing the relevance of this Ca 2+ -independent pathway. We propose that VRAC-mediated Tau and Glu release has a relevant role in RVD in Müller cells. The observed disparities in Ca 2+ influence on amino acid release support the presence of VRAC isoforms that may differ in substrate selectivity and regulatory mechanisms, with important implications for retinal physiology.

  16. Under stressful conditions activation of the ionotropic P2X7 receptor differentially regulates GABA and glutamate release from nerve terminals of the rat cerebral cortex.

    PubMed

    Barros-Barbosa, Aurora R; Oliveira, Ângela; Lobo, M Graça; Cordeiro, J Miguel; Correia-de-Sá, Paulo

    2018-01-01

    γ-Aminobutyric acid (GABA) and glutamate (Glu) are the main inhibitory and excitatory neurotransmitters in the central nervous system (CNS), respectively. Fine tuning regulation of extracellular levels of these amino acids is essential for normal brain activity. Recently, we showed that neocortical nerve terminals from patients with epilepsy express higher amounts of the non-desensitizing ionotropic P2X7 receptor. Once activated by ATP released from neuronal cells, the P2X7 receptor unbalances GABAergic vs. glutamatergic neurotransmission by differentially interfering with GABA and Glu uptake. Here, we investigated if activation of the P2X7 receptor also affects [ 3 H]GABA and [ 14 C]Glu release measured synchronously from isolated nerve terminals (synaptosomes) of the rat cerebral cortex. Data show that activation of the P2X7 receptor consistently increases [ 14 C]Glu over [ 3 H]GABA release from cortical nerve terminals, but the GABA/Glu ratio depends on extracellular Ca 2+ concentrations. While the P2X7-induced [ 3 H]GABA release is operated by a Ca 2+ -dependent pathway when external Ca 2+ is available, this mechanism shifts towards the reversal of the GAT1 transporter in low Ca 2+ conditions. A different scenario is verified regarding [ 14 C]Glu outflow triggered by the P2X7 receptor, since the amino acid seems to be consistently released through the recruitment of connexin-containing hemichannels upon P2X7 activation, both in the absence and in the presence of external Ca 2+ . Data from this study add valuable information suggesting that ATP, via P2X7 activation, not only interferes with the high-affinity uptake of GABA and Glu but actually favors the release of these amino acids through distinct molecular mechanisms amenable to differential therapeutic control. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Response of hippocampal mossy fiber zinc to excessive glutamate release.

    PubMed

    Takeda, Atsushi; Minami, Akira; Sakurada, Naomi; Nakajima, Satoko; Oku, Naoto

    2007-01-01

    The response of hippocampal mossy fiber zinc to excessive glutamate release was examined to understand the role of the zinc in excessive excitation in the hippocampus. Extracellular zinc and glutamate concentrations during excessive stimulation with high K(+) were compared between the hippocampal CA3 and CA1 by the in vivo microdialysis. Zinc concentration in the CA3 was more increased than that in the CA1, while glutamate concentration in the CA3 was less increased than that in the CA1. It is likely that more increase in extracellular zinc is linked with less increase in extracellular glutamate in the CA3. To see zinc action in mossy fiber synapses during excessive excitation, furthermore, 1mM glutamate was regionally delivered to the stratum lucidum in the presence of zinc or CaEDTA, a membrane-impermeable zinc chelator, and intracellular calcium signal was measured in the CA3 pyramidal cell layer. The persistent increase in calcium signal during stimulation with glutamate was significantly attenuated in the presence of 100 microM zinc, while significantly enhanced in the presence of 1mM CaEDTA. These results suggest that zinc released from mossy fibers attenuates the increase in intracellular calcium signal in mossy fiber synapses and postsynaptic CA3 neurons after excessive inputs to dentate granular cells.

  18. Activation of Pedunculopontine Glutamate Neurons Is Reinforcing

    PubMed Central

    Yoo, Ji Hoon; Zell, Vivien; Wu, Johnathan; Punta, Cindy; Ramajayam, Nivedita; Shen, Xinyi; Faget, Lauren; Lilascharoen, Varoth; Lim, Byung Kook

    2017-01-01

    Dopamine transmission from midbrain ventral tegmental area (VTA) neurons underlies behavioral processes related to motivation and drug addiction. The pedunculopontine tegmental nucleus (PPTg) is a brainstem nucleus containing glutamate-, acetylcholine-, and GABA-releasing neurons with connections to basal ganglia and limbic brain regions. Here we investigated the role of PPTg glutamate neurons in reinforcement, with an emphasis on their projections to VTA dopamine neurons. We used cell-type-specific anterograde tracing and optogenetic methods to selectively label and manipulate glutamate projections from PPTg neurons in mice. We used anatomical, electrophysiological, and behavioral assays to determine their patterns of connectivity and ascribe functional roles in reinforcement. We found that photoactivation of PPTg glutamate cell bodies could serve as a direct positive reinforcer on intracranial self-photostimulation assays. Further, PPTg glutamate neurons directly innervate VTA; photostimulation of this pathway preferentially excites VTA dopamine neurons and is sufficient to induce behavioral reinforcement. These results demonstrate that ascending PPTg glutamate projections can drive motivated behavior, and PPTg to VTA synapses may represent an important target relevant to drug addiction and other mental health disorders. SIGNIFICANCE STATEMENT Uncovering brain circuits underlying reward-seeking is an important step toward understanding the circuit bases of drug addiction and other psychiatric disorders. The dopaminergic system emanating from the ventral tegmental area (VTA) plays a key role in regulating reward-seeking behaviors. We used optogenetics to demonstrate that the pedunculopontine tegmental nucleus sends glutamatergic projections to VTA dopamine neurons, and that stimulation of this circuit promotes behavioral reinforcement. The findings support a critical role for pedunculopontine tegmental nucleus glutamate neurotransmission in modulating VTA dopamine neuron activity and behavioral reinforcement. PMID:28053028

  19. Introduction to the Glutamate-Glutamine Cycle.

    PubMed

    Sonnewald, Ursula; Schousboe, Arne

    2016-01-01

    The term 'glutamate-glutamine cycle' was coined several decades ago based on the observation that using certain 14 C-labeled precursors for studies of brain metabolism the specific radioactivity of glutamine generated from glutamate was higher than that of glutamate, its immediate precursor. This is metabolically impossible unless it is assumed that at least two distinct pools of these amino acids exist. This combined with the finding that the enzyme synthesizing glutamine from glutamate was expressed in astrocytes but not in neurons formed the basis of the notion that a cycle must exist in which glutamate released from neurons is transported into astrocytes, converted to glutamine which is subsequently returned to neurons and converted to glutamate by an enzyme the activity of which is much higher in neurons than in astrocytes. Originally this cycle was supposed to function in a stoichiometric fashion but more recent research has seriously questioned this.This volume of Advances in Neurobiology is intended to provide a detailed discussion of recent developments in research aimed at delineating the functional roles of the cycle taking into account that in order for this system to work there must be a tight coupling between metabolism of glutamate in astrocytes, transfer of glutamine to neurons and de novo synthesis of glutamine in astrocytes. To understand this, knowledge about the activity and regulation of the enzymes and transporters involved in these processes is required and as can be seen from the table of contents these issues will be dealt with in detail in the individual chapters of the book.

  20. Effects of Chronic Alcohol Exposure on the Modulation of Ischemia-Induced Glutamate Release via Cannabinoid Receptors in the Dorsal Hippocampus.

    PubMed

    Zheng, Lei; Wu, Xiaoda; Dong, Xiao; Ding, Xinli; Song, Cunfeng

    2015-10-01

    Chronic alcohol consumption is a critical contributing factor to ischemic stroke, as it enhances ischemia-induced glutamate release, leading to more severe excitotoxicity and brain damage. But the neural mechanisms underlying this phenomenon are poorly understood. We evaluated the effects of chronic alcohol exposure on the modulation of ischemia-induced glutamate release via CB1 and CB2 cannabinoid receptors during middle cerebral artery occlusion, using in vivo microdialysis coupled with high-performance liquid chromatography, in alcohol-naïve rats or rats after 1 or 30 days of withdrawal from chronic ethanol intake (6% v/v for 14 days). Intra-dorsal hippocampus (DH) infusions of ACEA or JWH133, selective CB1 or CB2 receptor agonists, respectively, decreased glutamate release in the DH in alcohol-naïve rats in a dose-dependent manner. Such an effect was reversed by co-infusions of SR141716A or AM630, selective CB1 or CB2 receptor antagonists, respectively. After 30 days, but not 1 day of withdrawal, ischemia induced an enhancement in glutamate release in the DH, as compared with non-alcohol-treated control group. Intra-DH infusions of JWH133, but not ACEA, inhibited ischemia-induced glutamate release in the DH after 30 days of withdrawal. Finally, 1 day of withdrawal did not alter the protein level of CB1 or CB2 receptors in the DH, as compared to non-alcohol-treated control rats. Whereas 30 days of withdrawal robustly decreased the protein level of CB1 receptors, but failed to alter the protein level of CB2 receptors, in the DH, as compared to non-alcohol-treated control rats. Together, these findings suggest that loss of expression/function of CB1 receptors, but not CB2 receptors in the DH, is correlated with the enhancement of ischemia-induced glutamate release after prolonged alcohol withdrawal. Copyright © 2015 by the Research Society on Alcoholism.

  1. Effect of basal forebrain stimulation on extracellular acetylcholine release and blood flow in the olfactory bulb.

    PubMed

    Uchida, Sae; Kagitani, Fusako

    2017-05-12

    The olfactory bulb receives cholinergic basal forebrain input, as does the neocortex; however, the in vivo physiological functions regarding the release of extracellular acetylcholine and regulation of regional blood flow in the olfactory bulb are unclear. We used in vivo microdialysis to measure the extracellular acetylcholine levels in the olfactory bulb of urethane-anesthetized rats. Focal chemical stimulation by microinjection of L-glutamate into the horizontal limb of the diagonal band of Broca (HDB) in the basal forebrain, which is the main source of cholinergic input to the olfactory bulb, increased extracellular acetylcholine release in the ipsilateral olfactory bulb. When the regional cerebral blood flow was measured using laser speckle contrast imaging, the focal chemical stimulation of the HDB did not significantly alter the blood flow in the olfactory bulb, while increases were observed in the neocortex. Our results suggest a functional difference between the olfactory bulb and neocortex regarding cerebral blood flow regulation through the release of acetylcholine by cholinergic basal forebrain input.

  2. An optimized fluorescent probe for visualizing glutamate neurotransmission.

    PubMed

    Marvin, Jonathan S; Borghuis, Bart G; Tian, Lin; Cichon, Joseph; Harnett, Mark T; Akerboom, Jasper; Gordus, Andrew; Renninger, Sabine L; Chen, Tsai-Wen; Bargmann, Cornelia I; Orger, Michael B; Schreiter, Eric R; Demb, Jonathan B; Gan, Wen-Biao; Hires, S Andrew; Looger, Loren L

    2013-02-01

    We describe an intensity-based glutamate-sensing fluorescent reporter (iGluSnFR) with signal-to-noise ratio and kinetics appropriate for in vivo imaging. We engineered iGluSnFR in vitro to maximize its fluorescence change, and we validated its utility for visualizing glutamate release by neurons and astrocytes in increasingly intact neurological systems. In hippocampal culture, iGluSnFR detected single field stimulus-evoked glutamate release events. In pyramidal neurons in acute brain slices, glutamate uncaging at single spines showed that iGluSnFR responds robustly and specifically to glutamate in situ, and responses correlate with voltage changes. In mouse retina, iGluSnFR-expressing neurons showed intact light-evoked excitatory currents, and the sensor revealed tonic glutamate signaling in response to light stimuli. In worms, glutamate signals preceded and predicted postsynaptic calcium transients. In zebrafish, iGluSnFR revealed spatial organization of direction-selective synaptic activity in the optic tectum. Finally, in mouse forelimb motor cortex, iGluSnFR expression in layer V pyramidal neurons revealed task-dependent single-spine activity during running.

  3. Metabotropic and ionotropic glutamate receptors mediate the modulation of acetylcholine release at the frog neuromuscular junction.

    PubMed

    Tsentsevitsky, Andrei; Nurullin, Leniz; Nikolsky, Evgeny; Malomouzh, Artem

    2017-07-01

    There is some evidence that glutamate (Glu) acts as a signaling molecule at vertebrate neuromuscular junctions where acetylcholine (ACh) serves as a neurotransmitter. In this study, performed on the cutaneous pectoris muscle of the frog Rana ridibunda, Glu receptor mechanisms that modulate ACh release processes were analyzed. Electrophysiological experiments showed that Glu reduces both spontaneous and evoked quantal secretion of ACh and synchronizes its release in response to electrical stimulation. Quisqualate, an agonist of ionotropic α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic receptors and metabotropic Group I mGlu receptors, also exerted Glu-like inhibitory effects on the secretion of ACh but had no effect on the kinetics of quantal release. Quisqualate's inhibitory effect did not occur when a blocker of Group I mGlu receptors (LY 367385) or an inhibitor of phospholipase C (U73122) was present. An increase in the degree of synchrony of ACh quantal release, such as that produced by Glu, was obtained after application of N-methyl-D-aspartic acid (NMDA). The presence of Group I mGlu and NMDA receptors in the neuromuscular synapse was confirmed by immunocytochemistry. Thus, the data suggest that both metabotropic Group I mGlu receptors and ionotropic NMDA receptors are present at the neuromuscular synapse of amphibians, and that the activation of these receptors initiates different mechanisms for the regulation of ACh release from motor nerve terminals. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  4. Quantal mEPSCs and residual glutamate: how horizontal cell responses are shaped at the photoreceptor ribbon synapse

    PubMed Central

    Cadetti, Lucia; Bartoletti, Theodore M.; Thoreson, Wallace B.

    2012-01-01

    At the photoreceptor ribbon synapse, glutamate released from vesicles at different positions along the ribbon reaches the same postsynaptic receptors. Thus, vesicles may not exert entirely independent effects. We examined whether responses of salamander retinal horizontal cells evoked by light or direct depolarization during paired recordings could be predicted by summation of individual miniature excitatory postsynaptic currents (mEPSCs). For EPSCs evoked by depolarization of rods or cones, linear convolution of mEPSCs with photoreceptor release functions predicted EPSC waveforms and changes caused by inhibiting glutamate receptor desensitization. A low-affinity glutamate antagonist, kynurenic acid (KynA), preferentially reduced later components of rod-driven EPSCs, suggesting lower levels of glutamate are present during the later sustained component of the EPSC. A glutamate-scavenging enzyme, glutamic-pyruvic transaminase, did not inhibit mEPSCs or the initial component of rod-driven EPSCs, but reduced later components of the EPSC. Inhibiting glutamate uptake with a low concentration of dl-threo-β-benzoyloxyaspartate (TBOA) also did not alter mEPSCs or the initial component of rod-driven EPSCs, but enhanced later components of the EPSC. Low concentrations of TBOA and KynA did not affect the kinetics of fast cone-driven EPSCs. Under both rod- and cone-dominated conditions, light-evoked currents (LECs) were enhanced considerably by TBOA. LECs were more strongly inhibited than EPSCs by KynA, suggesting the presence of lower glutamate levels. Collectively, these results indicate that the initial EPSC component can be largely predicted from a linear sum of individual mEPSCs, but with sustained release, residual amounts of glutamate from multiple vesicles pool together, influencing LECs and later components of EPSCs. PMID:18547244

  5. Glutamate Impairs Mitochondria Aerobic Respiration Capacity and Enhances Glycolysis in Cultured Rat Astrocytes.

    PubMed

    Yan, Xu; Shi, Zhong Fang; Xu, Li Xin; Li, Jia Xin; Wu, Min; Wang, Xiao Xuan; Jia, Mei; Dong, Li Ping; Yang, Shao Hua; Yuan, Fang

    2017-01-01

    To study the effect of glutamate on metabolism, shifts in glycolysis and lactate release in rat astrocytes. After 10 days, secondary cultured astrocytes were treated with 1 mmol/L glutamate for 1 h, and the oxygen consumption rates (OCR) and extra cellular acidification rate (ECAR) was analyzed using a Seahorse XF 24 Extracellular Flux Analyzer. Cell viability was then evaluated by MTT assay. Moreover, changes in extracellular lactate concentration induced by glutamate were tested with a lactate detection kit. Compared with the control group, treatment with 1 mmol/L glutamate decreased the astrocytes' maximal respiration and spare respiratory capacity but increased their glycolytic capacity and glycolytic reserve. Further analysis found that 1-h treatment with different concentrations of glutamate (0.1-1 mmol/L) increased lactate release from astrocytes, however the cell viability was not affected by the glutamate treatment. The current study provided direct evidence that exogenous glutamate treatment impaired the mitochondrial respiration capacity of astrocytes and enhanced aerobic glycolysis, which could be involved in glutamate injury or protection mechanisms in response to neurological disorders. Copyright © 2017 The Editorial Board of Biomedical and Environmental Sciences. Published by China CDC. All rights reserved.

  6. NMDA-Type Glutamate Receptor Activation Promotes Vascular Remodeling and Pulmonary Arterial Hypertension.

    PubMed

    Dumas, Sébastien J; Bru-Mercier, Gilles; Courboulin, Audrey; Quatredeniers, Marceau; Rücker-Martin, Catherine; Antigny, Fabrice; Nakhleh, Morad K; Ranchoux, Benoit; Gouadon, Elodie; Vinhas, Maria-Candida; Vocelle, Matthieu; Raymond, Nicolas; Dorfmüller, Peter; Fadel, Elie; Perros, Frédéric; Humbert, Marc; Cohen-Kaminsky, Sylvia

    2018-05-29

    Excessive proliferation and apoptosis resistance in pulmonary vascular cells underlie vascular remodeling in pulmonary arterial hypertension (PAH). Specific treatments for PAH exist, mostly targeting endothelial dysfunction, but high pulmonary arterial pressure still causes heart failure and death. Pulmonary vascular remodeling may be driven by metabolic reprogramming of vascular cells to increase glutaminolysis and glutamate production. The N -methyl-d-aspartate receptor (NMDAR), a major neuronal glutamate receptor, is also expressed on vascular cells, but its role in PAH is unknown. We assessed the status of the glutamate-NMDAR axis in the pulmonary arteries of patients with PAH and controls through mass spectrometry imaging, Western blotting, and immunohistochemistry. We measured the glutamate release from cultured pulmonary vascular cells using enzymatic assays and analyzed NMDAR regulation/phosphorylation through Western blot experiments. The effect of NMDAR blockade on human pulmonary arterial smooth muscle cell proliferation was determined using a BrdU incorporation assay. We assessed the role of NMDARs in vascular remodeling associated to pulmonary hypertension, in both smooth muscle-specific NMDAR knockout mice exposed to chronic hypoxia and the monocrotaline rat model of pulmonary hypertension using NMDAR blockers. We report glutamate accumulation, upregulation of the NMDAR, and NMDAR engagement reflected by increases in GluN1-subunit phosphorylation in the pulmonary arteries of human patients with PAH. K v channel inhibition and type A-selective endothelin receptor activation amplified calcium-dependent glutamate release from human pulmonary arterial smooth muscle cell, and type A-selective endothelin receptor and platelet-derived growth factor receptor activation led to NMDAR engagement, highlighting crosstalk between the glutamate-NMDAR axis and major PAH-associated pathways. The platelet-derived growth factor-BB-induced proliferation of human pulmonary arterial smooth muscle cells involved NMDAR activation and phosphorylated GluN1 subunit localization to cell-cell contacts, consistent with glutamatergic communication between proliferating human pulmonary arterial smooth muscle cells via NMDARs. Smooth-muscle NMDAR deficiency in mice attenuated the vascular remodeling triggered by chronic hypoxia, highlighting the role of vascular NMDARs in pulmonary hypertension. Pharmacological NMDAR blockade in the monocrotaline rat model of pulmonary hypertension had beneficial effects on cardiac and vascular remodeling, decreasing endothelial dysfunction, cell proliferation, and apoptosis resistance while disrupting the glutamate-NMDAR pathway in pulmonary arteries. These results reveal a dysregulation of the glutamate-NMDAR axis in the pulmonary arteries of patients with PAH and identify vascular NMDARs as targets for antiremodeling treatments in PAH. © 2018 American Heart Association, Inc.

  7. Conditions and constraints for astrocyte calcium signaling in the hippocampal mossy fiber pathway

    PubMed Central

    Haustein, Martin D.; Kracun, Sebastian; Lu, Xiao-Hong; Shih, Tiffany; Jackson-Weaver, Olan; Tong, Xiaoping; Xu, Ji; Yang, X. William; O'Dell, Thomas J.; Marvin, Jonathan S.; Ellisman, Mark H.; Bushong, Eric A.; Looger, Loren L.; Khakh, Baljit S.

    2014-01-01

    Summary The spatiotemporal activities of astrocyte Ca2+ signaling in mature neuronal circuits remain unclear. We used genetically encoded Ca2+ and glutamate indicators as well as pharmacogenetic and electrical control of neurotransmitter release to explore astrocyte activity in the hippocampal mossy fiber pathway. Our data revealed numerous localised spontaneous Ca2+ signals in astrocyte branches and territories, but these were not driven by neuronal activity or glutamate. Moreover, evoked astrocyte Ca2+ signaling changed linearly with the number of mossy fiber action potentials. Under these settings astrocyte responses were global, suppressed by neurotransmitter clearance and mediated by glutamate and GABA. Thus, astrocyte engagement in the fully developed mossy fiber pathway was slow and territorial, contrary to that frequently proposed for astrocytes within microcircuits. We show that astrocyte Ca2+ signaling functionally segregates large volumes of neuropil and that these transients are not suited for responding to, or regulating, single synapses in the mossy fiber pathway. PMID:24742463

  8. Chronic treatment with agomelatine or venlafaxine reduces depolarization-evoked glutamate release from hippocampal synaptosomes

    PubMed Central

    2013-01-01

    Background Growing compelling evidence from clinical and preclinical studies has demonstrated the primary role of alterations of glutamatergic transmission in cortical and limbic areas in the pathophysiology of mood disorders. Chronic antidepressants have been shown to dampen endogenous glutamate release from rat hippocampal synaptic terminals and to prevent the marked increase of glutamate overflow induced by acute behavioral stress in frontal/prefrontal cortex. Agomelatine, a new antidepressant endowed with MT1/MT2 agonist and 5-HT2C serotonergic antagonist properties, has shown efficacy at both preclinical and clinical levels. Results Chronic treatment with agomelatine, or with the reference drug venlafaxine, induced a marked decrease of depolarization-evoked endogenous glutamate release from purified hippocampal synaptic terminals in superfusion. No changes were observed in GABA release. This effect was accompanied by reduced accumulation of SNARE protein complexes, the key molecular effector of vesicle docking, priming and fusion at presynaptic membranes. Conclusions Our data suggest that the novel antidepressant agomelatine share with other classes of antidepressants the ability to modulate glutamatergic transmission in hippocampus. Its action seems to be mediated by molecular mechanisms located on the presynaptic membrane and related with the size of the vesicle pool ready for release. PMID:23895555

  9. Evidence for involvement of nitric oxide and GABAB receptors in MK-801- stimulated release of glutamate in rat prefrontal cortex

    PubMed Central

    Roenker, Nicole L.; Gudelsky, Gary A.; Ahlbrand, Rebecca; Horn, Paul S.; Richtand, Neil M.

    2012-01-01

    Systemic administration of NMDA receptor antagonists elevates extracellular glutamate within prefrontal cortex. The cognitive and behavioral effects of NMDA receptor blockade have direct relevance to symptoms of schizophrenia, and recent studies demonstrate an important role for nitric oxide and GABAB receptors in mediating the effects of NMDA receptor blockade on these behaviors. We sought to extend those observations by directly measuring the effects of nitric oxide and GABAB receptor mechanisms on MK-801-induced glutamate release in the prefrontal cortex. Systemic MK-801 injection (0.3 mg/kg) to male Sprague-Dawley rats significantly increased extracellular glutamate levels in prefrontal cortex, as determined by microdialysis. This effect was blocked by pretreatment with the nitric oxide synthase inhibitor L-NAME (60 mg/kg). Reverse dialysis of the nitric oxide donor SNAP (0.5 – 5 mM) directly into prefrontal cortex mimicked the effect of systemic MK-801, dose-dependently elevating cortical extracellular glutamate. The effect of MK-801 was also blocked by systemic treatment with the GABAB receptor agonist baclofen (5 mg/kg). In combination, these data suggest increased nitric oxide formation is necessary for NMDA antagonist-induced elevations of extracellular glutamate in the prefrontal cortex. Additionally, the data suggest GABAB receptor activation can modulate the NMDA antagonist-induced increase in cortical glutamate release. PMID:22579658

  10. Quantifying the effect of light activated outer and inner retinal inhibitory pathways on glutamate release from mixed bipolar cells.

    PubMed

    Lipin, Mikhail Y; Vigh, Jozsef

    2018-05-01

    Inhibition mediated by horizontal and amacrine cells in the outer and inner retina, respectively, are fundamental components of visual processing. Here, our purpose was to determine how these different inhibitory processes affect glutamate release from ON bipolar cells when the retina is stimulated with full-field light of various intensities. Light-evoked membrane potential changes (ΔV m ) were recorded directly from axon terminals of intact bipolar cells receiving mixed rod and cone inputs (Mbs) in slices of dark-adapted goldfish retina. Inner and outer retinal inhibition to Mbs was blocked with bath applied picrotoxin (PTX) and NBQX, respectively. Then, control and pharmacologically modified light responses were injected into axotomized Mb terminals as command potentials to induce voltage-gated Ca 2+ influx (Q Ca ) and consequent glutamate release. Stimulus-evoked glutamate release was quantified by the increase in membrane capacitance (ΔC m ). Increasing depolarization of Mb terminals upon removal of inner and outer retinal inhibition enhanced the ΔV m /Q Ca ratio equally at a given light intensity and inhibition did not alter the overall relation between Q Ca and ΔC m . However, relative to control, light responses recorded in the presence of PTX and PTX + NBQX increased ΔC m unevenly across different stimulus intensities: at dim stimulus intensities predominantly the inner retinal GABAergic inhibition controlled release from Mbs, whereas the inner and outer retinal inhibition affected release equally in response to bright stimuli. Furthermore, our results suggest that non-linear relationship between Q Ca and glutamate release can influence the efficacy of inner and outer retinal inhibitory pathways to mediate Mb output at different light intensities. © 2018 Wiley Periodicals, Inc.

  11. Trafficking of presynaptic AMPA receptors mediating neurotransmitter release: neuronal selectivity and relationships with sensitivity to cyclothiazide.

    PubMed

    Pittaluga, Anna; Feligioni, Marco; Longordo, Fabio; Luccini, Elisa; Raiteri, Maurizio

    2006-03-01

    Postsynaptic glutamate AMPA receptors (AMPARs) can recycle between plasma membrane and intracellular pools. In contrast, trafficking of presynaptic AMPARs has not been investigated. AMPAR surface expression involves interactions between the GluR2 carboxy tail and various proteins including glutamate receptor-interacting protein (GRIP), AMPA receptor-binding protein (ABP), protein interacting with C kinase 1 (PICK1), N-ethyl-maleimide-sensitive fusion protein (NSF). Here, peptides known to selectively block the above interactions were entrapped into synaptosomes to study the effects on the AMPA-evoked release of [3H]noradrenaline ([3H]NA) and [3H]acetylcholine ([3H]ACh) from rat hippocampal and cortical synaptosomes, respectively. Internalization of pep2-SVKI to prevent GluR2-GRIP/ABP/PICK1 interactions potentiated the AMPA-evoked release of [3H]NA but left unmodified that of [3H]ACh. Similar potentiation was caused by pep2-AVKI, the blocker of GluR2-PICK1 interaction. Conversely, a decrease in the AMPA-evoked release of [3H]NA, but not of [3H]ACh, was caused by pep2m, a selective blocker of the GluR2-NSF interaction. In the presence of pep2-SVKI the presynaptic AMPARs on noradrenergic terminals lost sensitivity to cyclothiazide. AMPARs releasing [3H]ACh, but not those releasing [3H]NA, were sensitive to spermine, suggesting that they are GluR2-lacking AMPARs. To conclude: (i) release-regulating presynaptic AMPARs constitutively cycle in isolated nerve terminals; (ii) the process exhibits neuronal selectivity; (iii) AMPAR trafficking and desensitization may be interrelated.

  12. Imbalance between Glutamate and GABA in Fmr1 Knockout Astrocytes Influences Neuronal Development

    PubMed Central

    Wang, Lu; Wang, Yan; Zhou, Shimeng; Yang, Liukun; Shi, Qixin; Li, Yujiao; Zhang, Kun; Yang, Le; Zhao, Minggao; Yang, Qi

    2016-01-01

    Fragile X syndrome (FXS) is a form of inherited mental retardation that results from the absence of the fragile X mental retardation protein (FMRP), the product of the Fmr1 gene. Numerous studies have shown that FMRP expression in astrocytes is important in the development of FXS. Although astrocytes affect neuronal dendrite development in Fmr1 knockout (KO) mice, the factors released by astrocytes are still unclear. We cultured wild type (WT) cortical neurons in astrocyte-conditioned medium (ACM) from WT or Fmr1 KO mice. Immunocytochemistry and Western blotting were performed to detect the dendritic growth of both WT and KO neurons. We determined glutamate and γ-aminobutyric acid (GABA) levels using high-performance liquid chromatography (HPLC). The total neuronal dendritic length was reduced when cultured in the Fmr1 KO ACM. This neurotoxicity was triggered by an imbalanced release of glutamate and GABA from Fmr1 KO astrocytes. We found increased glutaminase and GABA transaminase (GABA-T) expression and decreased monoamine oxidase B expression in Fmr1 KO astrocytes. The elevated levels of glutamate contributed to oxidative stress in the cultured neurons. Vigabatrin (VGB), a GABA-T inhibitor, reversed the changes caused by glutamate and GABA release in Fmr1 KO astrocytes and the abnormal behaviors in Fmr1 KO mice. Our results indicate that the imbalance in the astrocytic glutamate and GABA release may be involved in the neuropathology and the underlying symptoms of FXS, and provides a therapeutic target for treatment. PMID:27517961

  13. Action potential-independent and pharmacologically unique vesicular serotonin release from dendrites

    PubMed Central

    Colgan, Lesley A.; Cavolo, Samantha L.; Commons, Kathryn G.; Levitan, Edwin S.

    2012-01-01

    Serotonin released within the dorsal raphe nucleus (DR) induces feedback inhibition of serotonin neuron activity and consequently regulates mood-controlling serotonin release throughout the forebrain. Serotonin packaged in vesicles is released in response to action potentials by the serotonin neuron soma and terminals, but the potential for release by dendrites is unknown. Here three-photon (3P) microscopy imaging of endogenous serotonin in living rat brain slice, immunofluorescence and immuno-gold electron microscopy detection of VMAT2 (vesicular monoamine transporter 2) establish the presence of vesicular serotonin within DR dendrites. Furthermore, activation of glutamate receptors is shown to induce vesicular serotonin release from dendrites. However, unlike release from the soma and terminals, dendritic serotonin release is independent of action potentials, relies on L-type Ca2+ channels, is induced preferentially by NMDA, and displays distinct sensitivity to the selective serotonin reuptake inhibitor (SSRI) antidepressant fluoxetine. The unique control of dendritic serotonin release has important implications for DR physiology and the antidepressant action of SSRIs, dihydropyridines and NMDA receptor antagonists. PMID:23136413

  14. Cleavage of the vesicular glutamate transporters under excitotoxic conditions.

    PubMed

    Lobo, Andrea C; Gomes, João R; Catarino, Tatiana; Mele, Miranda; Fernandez, Pedro; Inácio, Ana R; Bahr, Ben A; Santos, Armanda E; Wieloch, Tadeusz; Carvalho, Ana Luísa; Duarte, Carlos B

    2011-12-01

    Glutamate is loaded into synaptic vesicles by vesicular glutamate transporters (VGLUTs), and alterations in the transporters expression directly regulate neurotransmitter release. We investigated changes in VGLUT1 and VGLUT2 protein levels after ischemic and excitotoxic insults. The results show that VGLUT2 is cleaved by calpains after excitotoxic stimulation of hippocampal neurons with glutamate, whereas VGLUT1 is downregulated to a lower extent. VGLUT2 was also cleaved by calpains after oxygen/glucose deprivation (OGD), and downregulated after middle cerebral artery occlusion (MCAO) and intrahippocampal injection of kainate. In contrast, VGLUT1 was not affected after OGD. Incubation of isolated synaptic vesicles with recombinant calpain also induced VGLUT2 cleavage, with a little effect observed for VGLUT1. N-terminal sequencing analysis showed that calpain cleaves VGLUT2 in the C-terminus, at Asn(534) and Lys(542). The truncated GFP-VGLUT2 forms were found to a great extent in non-synaptic regions along neurites, when compared to GFP-VGLUT2. These findings show that excitotoxic and ischemic insults downregulate VGLUT2, which is likely to affect glutamatergic transmission and cell death, especially in the neonatal period when the transporter is expressed at higher levels. Copyright © 2011 Elsevier Inc. All rights reserved.

  15. Neuroprotective effects of α-iso-cubebene against glutamate-induced damage in the HT22 hippocampal neuronal cell line.

    PubMed

    Park, Sun Young; Jung, Won Jung; Kang, Jum Soon; Kim, Cheol-Min; Park, Geuntae; Choi, Young-Whan

    2015-02-01

    Since oxidative stress is critically involved in excitotoxic damage, we sought to determine whether the activation of the transcription factors, cAMP-responsive element binding protein (CREB) and nuclear factor (erythroid-derived 2)-like 2 (Nrf2, also known as NFE2L2), by α-iso-cubebene is involved in its protective effects against glutamate-induced neuronal cell death. Pre-treatment with α-iso-cubebene significantly attenuated glutamate-induced cytotoxicity in mouse hippocampus-derived neuronal cells. α-iso-cubebene also reduced the glutamate-induced generation of reactive oxygen species and calcium influx, thus preventing apoptotic cell death. α-iso-cubebene inhibited glutamate-induced mitochondrial membrane depolarization and, consequently, inhibited the release of the apoptosis-inducing factor from the mitochondria. Immunoblot anlaysis revealed that the phosphorylation of extracellular signal-regulated kinase (ERK) by glutamate was reduced in the presence of α-iso-cubebene. α-iso-cubebene activated protein kinase A (PKA), CREB and Nrf2, which mediate the expression of the antioxidant enzymes, heme oxygenase-1 (HO-1) and NAD(P)H dehydrogenase [quinone] 1 (NQO1), involved in neuroprotection. In addition, α-iso-cubebene induced the expression of antioxidant responsive element and CRE transcriptional activity, thus conferring neuroprotection against glutamate-induced oxidative injury. α-iso-cubebene also induced the expression of Nrf2-dependent genes encoding HO-1 and NQO1. Furthermore, the knockdown of CREB and Nrf2 by small interfering RNA attenuated the neuroprotective effects of α-iso-cubebene. Taken together, our results indicate that α-iso-cubebene protects HT22 cells from glutamate-induced oxidative damage through the activation of Nrf2/HO-1/NQO-1, as well as through the PKA and CREB signaling pathways.

  16. P2Y1 receptor antagonists mitigate oxygen and glucose deprivation‑induced astrocyte injury.

    PubMed

    Guo, Hui; Liu, Zhong-Qiang; Zhou, Hui; Wang, Zhi-Ling; Tao, Yu-Hong; Tong, Yu

    2018-01-01

    The aim of the present study was to elucidate the effects of blocking the calcium signaling pathway of astrocytes (ASs) on oxygen and glucose deprivation (OGD)‑induced AS injury. The association between the changes in the concentrations of AS‑derived transmitter ATP and glutamic acid, and the changes in calcium signaling under the challenge of OGD were investigated. The cortical ASs of Sprague Dawley rats were cultured to establish the OGD models of ASs. The extracellular concentrations of ATP and glutamic acid in the normal group and the OGD group were detected, and the intracellular concentration of calcium ions (Ca2+) was detected. The effects of 2'‑deoxy‑N6‑methyl adenosine 3', 5'‑diphosphate diammonium salt (MRS2179), a P2Y1 receptor antagonist, on the release of calcium and glutamic acid of ASs under the condition of OGD were observed. The OGD challenge induced the release of glutamic acid and ATP by ASs in a time‑dependent manner, whereas elevation in the concentration of glutamic acid lagged behind that of the ATP and Ca2+. The concentration of Ca2+ inside ASs peaked 16 h after OGD, following which the concentration of Ca2+ was decreased. The effects of elevated release of glutamic acid by ASs when challenged by OGD may be blocked by MRS2179, a P2Y1 receptor antagonist. Furthermore, MRS2179 may significantly mitigate OGD‑induced AS injury and increase cell survival. The ASs of rats cultured in vitro expressed P2Y1 receptors, which may inhibit excessive elevation in the concentration of intracellular Ca2+. Avoidance of intracellular calcium overload and the excessive release of glutamic acid may be an important reason why MRS2179 mitigates OGD‑induced AS injury.

  17. Gene expression patterns in the hippocampus during the development and aging of Glud1 (Glutamate Dehydrogenase 1) transgenic and wild type mice.

    PubMed

    Wang, Xinkun; Patel, Nilam D; Hui, Dongwei; Pal, Ranu; Hafez, Mohamed M; Sayed-Ahmed, Mohamed M; Al-Yahya, Abdulaziz A; Michaelis, Elias K

    2014-03-04

    Extraneuronal levels of the neurotransmitter glutamate in brain rise during aging. This is thought to lead to synaptic dysfunction and neuronal injury or death. To study the effects of glutamate hyperactivity in brain, we created transgenic (Tg) mice in which the gene for glutamate dehydrogenase (Glud1) is over-expressed in neurons and in which such overexpression leads to excess synaptic release of glutamate. In this study, we analyzed whole genome expression in the hippocampus, a region important for learning and memory, of 10 day to 20 month old Glud1 and wild type (wt) mice. During development, maturation and aging, both Tg and wt exhibited decreases in the expression of genes related to neurogenesis, neuronal migration, growth, and process elongation, and increases in genes related to neuro-inflammation, voltage-gated channel activity, and regulation of synaptic transmission. Categories of genes that were differentially expressed in Tg vs. wt during development were: synaptic function, cytoskeleton, protein ubiquitination, and mitochondria; and, those differentially expressed during aging were: synaptic function, vesicle transport, calcium signaling, protein kinase activity, cytoskeleton, neuron projection, mitochondria, and protein ubiquitination. Overall, the effects of Glud1 overexpression on the hippocampus transcriptome were greater in the mature and aged than the young. Glutamate hyperactivity caused gene expression changes in the hippocampus at all ages. Some of these changes may result in premature brain aging. The identification of these genomic expression differences is important in understanding the effects of glutamate dysregulation on neuronal function during aging or in neurodegenerative diseases.

  18. Intrinsic Plasticity Induced by Group II Metabotropic Glutamate Receptors via Enhancement of High Threshold KV Currents in Sound Localizing Neurons

    PubMed Central

    Hamlet, William R.; Lu, Yong

    2016-01-01

    Intrinsic plasticity has emerged as an important mechanism regulating neuronal excitability and output under physiological and pathological conditions. Here, we report a novel form of intrinsic plasticity. Using perforated patch clamp recordings, we examined the modulatory effects of group II metabotropic glutamate receptors (mGluR II) on voltage-gated potassium (KV) currents and the firing properties of neurons in the chicken nucleus laminaris (NL), the first central auditory station where interaural time cues are analyzed for sound localization. We found that activation of mGluR II by synthetic agonists resulted in a selective increase of the high threshold KV currents. More importantly, synaptically released glutamate (with reuptake blocked) also enhanced the high threshold KV currents. The enhancement was frequency-coding region dependent, being more pronounced in low frequency neurons compared to middle and high frequency neurons. The intracellular mechanism involved the Gβγ signaling pathway associated with phospholipase C and protein kinase C. The modulation strengthened membrane outward rectification, sharpened action potentials, and improved the ability of NL neurons to follow high frequency inputs. These data suggest that mGluR II provides a feedforward modulatory mechanism that may regulate temporal processing under the condition of heightened synaptic inputs. PMID:26964678

  19. Presynaptic Modulation of the Hippocampal Mossy Fiber Synapse.

    DTIC Science & Technology

    1992-09-14

    naltrexone . Quadazocine also reversed U-62,066E inhibition of the potassium-evoked release of L-glutamate, but not dynorphin B-like immunoreactivity. These...facilitation of Glu release by muscarine was dose -dependent and was antagonized by the prior application of atropine. The effects of a variety of...and naltrexone . Quadazocine also reversed U-62,066E inhibition of the potassium-evoked release of L-glutamate, but not dynorphin B-like immunoreac

  20. Symptomatic and neuroprotective effects following activation of nigral group III metabotropic glutamate receptors in rodent models of Parkinson's disease

    PubMed Central

    Austin, PJ; Betts, MJ; Broadstock, M; O'Neill, MJ; Mitchell, SN; Duty, S

    2010-01-01

    Background and purpose: Increased glutamatergic innervation of the substantia nigra pars reticulata (SNpr) and pars compacta (SNpc) may contribute to the motor deficits and neurodegeneration, respectively, in Parkinson's disease (PD). This study aimed to establish whether activation of pre-synaptic group III metabotropic glutamate (mGlu) receptors reduced glutamate release in the SN, and provided symptomatic or neuroprotective relief in animal models of PD. Experimental approach: Broad-spectrum group III mGlu receptor agonists, O-phospho-l-serine (l-SOP) and l-2-amino-4-phosphonobutyrate (l-AP4), were assessed for their ability to inhibit KCl-evoked [3H]-d-aspartate release in rat nigral prisms or inhibit KCl-evoked endogenous glutamate release in the SNpr in vivo using microdialysis. Reversal of akinesia in reserpine-treated rats was assessed following intranigral injection of l-SOP and l-AP4. Finally, the neuroprotective effect of 7 days' supra-nigral treatment with l-AP4 was examined in 6-hydroxydopamine (6-OHDA)-lesioned rats. Key results: l-SOP and l-AP4 inhibited [3H]-d-aspartate release by 33 and 44% respectively. These effects were blocked by the selective group III mGlu antagonist (RS)-α-cyclopropyl-4-phosphonophenylglycine (CPPG). l-SOP also reduced glutamate release in the SNpr in vivo by 48%. Injection of l-SOP and l-AP4 into the SNpr reversed reserpine-induced akinesia. Following administration above the SNpc, l-AP4 provided neurochemical, histological and functional protection against 6-OHDA lesion of the nigrostriatal tract. Pretreatment with CPPG inhibited these effects. Conclusions and implications: These findings highlight group III mGlu receptors in the SN as potential targets for providing both symptomatic and neuroprotective relief in PD, and indicate that inhibition of glutamate release in the SN may underlie these effects. PMID:20649576

  1. Amphetamine regulation of acetylcholine and gamma-aminobutyric acid in nucleus accumbens.

    PubMed

    Lindefors, N; Hurd, Y L; O'Connor, W T; Brené, S; Persson, H; Ungerstedt, U

    1992-01-01

    In situ hybridization histochemistry and in vivo microdialysis were combined to study the effect of amphetamine on the expression of choline acetyltransferase and glutamate decarboxylase67 mRNA and in vivo release of acetylcholine and GABA in rat medial nucleus accumbens. Differential effects on acetylcholine and GABA neurons by a single challenge injection of amphetamine (1.5 mg/kg, s.c.) were apparent in saline-pretreated and amphetamine-pretreated (same dose, twice daily for the previous seven days) rats. Extracellular acetylcholine levels were increased up to 50% over a prolonged period following both single and repeated amphetamine. In contrast, extracellular concentrations of GABA were gradually decreased to half the control values, but only in rats receiving repeated amphetamine. Although the increase of acetylcholine release was not associated with any change in choline acetyltransferase mRNA levels, the number of neurons expressing high levels of glutamate decarboxylase67 mRNA was decreased (28%) following repeated injections. Thus we suggest that amphetamine decreases extracellular GABA levels by a slow mechanism, associated with the decreased expression of glutamate decarboxylase67 mRNA in a subpopulation of densely labeled neurons in the medial nucleus accumbens. The delayed response by GABA to amphetamine may reflect supersensitivity in the activity of postsynaptic gamma-aminobutyric acid-containing neurons in nucleus accumbens as a consequence of the repeated amphetamine treatment.

  2. Valine but not leucine or isoleucine supports neurotransmitter glutamate synthesis during synaptic activity in cultured cerebellar neurons.

    PubMed

    Bak, Lasse K; Johansen, Maja L; Schousboe, Arne; Waagepetersen, Helle S

    2012-09-01

    Synthesis of neuronal glutamate from α-ketoglutarate for neurotransmission necessitates an amino group nitrogen donor; however, it is not clear which amino acid(s) serves this role. Thus, the ability of the three branched-chain amino acids (BCAAs), leucine, isoleucine, and valine, to act as amino group nitrogen donors for synthesis of vesicular neurotransmitter glutamate was investigated in cultured mouse cerebellar (primarily glutamatergic) neurons. The cultures were superfused in the presence of (15) N-labeled BCAAs, and synaptic activity was induced by pulses of N-methyl-D-aspartate (300 μM), which results in release of vesicular glutamate. At the end of the superfusion experiment, the vesicular pool of glutamate was released by treatment with α-latrotoxin (3 nM, 5 min). This experimental paradigm allows a separate analysis of the cytoplasmic and vesicular pools of glutamate. Amount and extent of (15) N labeling of intracellular amino acids plus vesicular glutamate were analyzed employing HPLC and LC-MS analysis. Only when [(15) N]valine served as precursor did the labeling of both cytoplasmic and vesicular glutamate increase after synaptic activity. In addition, only [(15) N]valine was able to maintain the amount of vesicular glutamate during synaptic activity. This indicates that, among the BCAAs, only valine supports the increased need for synthesis of vesicular glutamate. Copyright © 2012 Wiley Periodicals, Inc.

  3. The Role of Ion Selectivity of the Fusion Pore on Transmission and the Exocytosis of Neurotransmitters and Hormones

    NASA Astrophysics Data System (ADS)

    Delacruz, Joannalyn Bongar

    Healthy nervous system function depends on proper transmission. Synaptic transmission occurs by the release of transmitters from vesicles that fuse to the plasma membrane of a pre-synaptic cell. Regulated release of neurotransmitters, neuropeptides, and hormones occurs by exocytosis, initiated by the formation of the fusion pore. The initial fusion pore has molecular dimensions with a diameter of 1-2 nm and a rapid lifetime on the millisecond time scale. It connects the vesicular lumen and extracellular space, serving as an important step for regulating the release of charged transmitters. Comprehending the molecular structure and biophysical properties of the fusion pore is essential for a mechanistic understanding of vesicle-plasma membrane fusion and transmitter release. Release of charged transmitter molecules such as glutamate, acetylcholine, dopamine, or noradrenaline through a narrow fusion pore requires compensation of change in charge. Transmitter release through the fusion pore is therefore an electrodiffusion process. If the fusion pore is selective for specific ions, then its selectivity will affect the rate of transmitter release via the voltage gradient that develops across the fusion pore. The elucidation of these mechanisms can lead to a better understanding of nervous system cell biology, neural and endocrine signaling, learning, memory, motor control, sensory function and integration, and in particular synaptic transmission. This investigation can advance our understanding of neurological disorders in which noradrenergic and dopaminergic exocytosis is disturbed, leading to neurological consequences of developmental disorders, epilepsy, Parkinson's disease, and other neurodegenerative diseases. Ultimately, understanding the role of selectivity in the fusion pore and its effects on exocytosis can contribute to the development of more effective therapies. This study investigates the selectivity of the fusion pore by observing the effects of ion influx and efflux through the fusion pore. The experiments reveal negatively charged transmitter release can occur through a fusion pore at larger conductance values, past a threshold range. Narrow fusion pores with lower conductance values favor cation selectivity, which would accelerate the release of positively charged transmitters such as acetylcholine in the neuromuscular junction. However, release of negatively charged neurotransmitters such as glutamate can occur if an expanded fusion pore mediates release of this fast major excitatory transmitter. The intention of this research is to expand our understanding of the nervous system, which can contribute to healthy shifts in our clinical and educational interventions that are commonly delivered.

  4. Olfactory Nerve–Evoked, Metabotropic Glutamate Receptor–Mediated Synaptic Responses in Rat Olfactory Bulb Mitral Cells

    PubMed Central

    Ennis, Matthew; Zhu, Mingyan; Heinbockel, Thomas; Hayar, Abdallah

    2008-01-01

    The group I metabotropic glutamate receptor (mGluR) subtype, mGluR1, is highly expressed on the apical dendrites of olfactory bulb mitral cells and thus may be activated by glutamate released from olfactory nerve (ON) terminals. Previous studies have shown that mGluR1 agonists directly excite mitral cells. In the present study, we investigated the involvement of mGluR1 in ON-evoked responses in mitral cells in rat olfactory bulb slices using patch-clamp electrophysiology. In voltage-clamp recordings, the average EPSC evoked by single ON shocks or brief trains of ON stimulation (six pulses at 50 Hz) in normal physiological conditions were not significantly affected by the nonselective mGluR antagonist LY341495 (50–100 μM) or the mGluR1-specific antagonist LY367385 (100 μM); ON-evoked responses were attenuated, however, in a subset (36%) of cells. In the presence of blockers of ionotropic glutamate and GABA receptors, application of the glutamate uptake inhibitors THA (300 μM) and TBOA (100 μM) revealed large-amplitude, long-duration responses to ON stimulation, whereas responses elicited by antidromic activation of mitral/tufted cells were unaffected. Magnitudes of the ON-evoked responses elicited in the presence of THA–TBOA were dependent on stimulation intensity and frequency, and were maximal during high-frequency (50-Hz) bursts of ON spikes, which occur during odor stimulation. ON-evoked responses elicited in the presence of THA–TBOA were significantly reduced or completely blocked by LY341495 or LY367385 (100 μM). These results demonstrate that glutamate transporters tightly regulate access of synaptically evoked glutamate from ON terminals to postsynaptic mGluR1s on mitral cell apical dendrites. Taken together with other findings, the present results suggest that mGluR1s may not play a major role in phasic responses to ON input, but instead may play an important role in shaping slow oscillatory activity in mitral cells and/or activity-dependent regulation of plasticity at ON–mitral cell synapses. PMID:16394070

  5. Neurotransmitters and pathophysiology of stroke: evidence for the release of glutamate and other transmitters/mediators in animals and humans.

    PubMed

    Dávalos, A; Shuaib, A; Wahlgren, N G

    2000-11-01

    There is convincing evidence from animal models of stroke that ischemia leads to an increase in the extracellular concentrations of excitatory amino acids (EAAs), especially glutamate. This accumulation of glutamate, which can reach up to 80 times normal at the centre of an ischemic lesion, is believed to be an important factor for the premature death of neurons that would otherwise survive the ischemic conditions and recover when flow is restored. In the technique of microdialysis, a small probe is inserted into the brain tissue. Fluid passing through the probe is separated from the brain parenchyma by a semipermeable membrane, through which substances released into the brain can diffuse. Analysis of the dialysate allows the nature and time course of release of substances, such as glutamate, to be determined. This technique has been used in patients undergoing resection of cerebral tumors, surgery for epilepsy, head trauma, subarachnoid hemorrhage, and cerebral infarction. Clamping or ligating the blood supply to the lobe about to be excised leads to a rapid accumulation in the dialysate of, among other substances, glutamate. Similar findings have been obtained during lobar resection for the treatment of severe epilepsy. Accumulations of glutamate to approximately 100 times the basal concentration have been found. There are also a few reports of microdialysis being performed in patients undergoing lobectomy after severe strokes or extracranial-intracranial bypass surgery. Again, high concentrations of glutamate have been reported. Another approach is to examine the blood and cerebrospinal fluid (CSF) for traces of EAAs. High concentrations of glutamate have been found in the blood and CSF within 24 hours of the onset of stroke. In animal models, plasma concentrations of glutamate begin to rise some 4 to 6 hours after middle cerebral artery (MCA) occlusions, reaching a peak at about 8 to 24 hours. Similarly, when glutamate is injected into the CSF of rats, there is a lag of approximately 4 hours before the concentration of glutamate in the blood rises. Therefore, it may be possible to detect the ongoing release of glutamate into the brain as a result of cerebral ischemia, which may aid in the selection of the most appropriate treatment. The results of microdialysis and plasma EAA analyses suggest that excitotoxic damage can occur over many hours. This implies that effective neuroprotectant strategies could provide clinical benefits over similarly prolonged periods.

  6. Vesicular glutamate release from central axons contributes to myelin damage.

    PubMed

    Doyle, Sean; Hansen, Daniel Bloch; Vella, Jasmine; Bond, Peter; Harper, Glenn; Zammit, Christian; Valentino, Mario; Fern, Robert

    2018-03-12

    The axon myelin sheath is prone to injury associated with N-methyl-D-aspartate (NMDA)-type glutamate receptor activation but the source of glutamate in this context is unknown. Myelin damage results in permanent action potential loss and severe functional deficit in the white matter of the CNS, for example in ischemic stroke. Here, we show that in rats and mice, ischemic conditions trigger activation of myelinic NMDA receptors incorporating GluN2C/D subunits following release of axonal vesicular glutamate into the peri-axonal space under the myelin sheath. Glial sources of glutamate such as reverse transport did not contribute significantly to this phenomenon. We demonstrate selective myelin uptake and retention of a GluN2C/D NMDA receptor negative allosteric modulator that shields myelin from ischemic injury. The findings potentially support a rational approach toward a low-impact prophylactic therapy to protect patients at risk of stroke and other forms of excitotoxic injury.

  7. Dysfunction in GABA signalling mediates autism-like stereotypies and Rett syndrome phenotypes.

    PubMed

    Chao, Hsiao-Tuan; Chen, Hongmei; Samaco, Rodney C; Xue, Mingshan; Chahrour, Maria; Yoo, Jong; Neul, Jeffrey L; Gong, Shiaoching; Lu, Hui-Chen; Heintz, Nathaniel; Ekker, Marc; Rubenstein, John L R; Noebels, Jeffrey L; Rosenmund, Christian; Zoghbi, Huda Y

    2010-11-11

    Mutations in the X-linked MECP2 gene, which encodes the transcriptional regulator methyl-CpG-binding protein 2 (MeCP2), cause Rett syndrome and several neurodevelopmental disorders including cognitive disorders, autism, juvenile-onset schizophrenia and encephalopathy with early lethality. Rett syndrome is characterized by apparently normal early development followed by regression, motor abnormalities, seizures and features of autism, especially stereotyped behaviours. The mechanisms mediating these features are poorly understood. Here we show that mice lacking Mecp2 from GABA (γ-aminobutyric acid)-releasing neurons recapitulate numerous Rett syndrome and autistic features, including repetitive behaviours. Loss of MeCP2 from a subset of forebrain GABAergic neurons also recapitulates many features of Rett syndrome. MeCP2-deficient GABAergic neurons show reduced inhibitory quantal size, consistent with a presynaptic reduction in glutamic acid decarboxylase 1 (Gad1) and glutamic acid decarboxylase 2 (Gad2) levels, and GABA immunoreactivity. These data demonstrate that MeCP2 is critical for normal function of GABA-releasing neurons and that subtle dysfunction of GABAergic neurons contributes to numerous neuropsychiatric phenotypes.

  8. Simultaneous monitoring of presynaptic transmitter release and postsynaptic receptor trafficking reveals an enhancement of presynaptic activity in metabotropic glutamate receptor-mediated long-term depression.

    PubMed

    Xu, Wei; Tse, Yiu Chung; Dobie, Frederick A; Baudry, Michel; Craig, Ann Marie; Wong, Tak Pan; Wang, Yu Tian

    2013-03-27

    Although the contribution of postsynaptic mechanisms to long-term synaptic plasticity has been studied extensively, understanding the contribution of presynaptic modifications to this process lags behind, primarily because of a lack of techniques with which to directly and quantifiably measure neurotransmitter release from synaptic terminals. Here, we developed a method to measure presynaptic activity through the biotinylation of vesicular transporters in vesicles fused with presynaptic membranes during neurotransmitter release. This method allowed us for the first time to selectively quantify the spontaneous or evoked release of glutamate or GABA at their respective synapses. Using this method to investigate presynaptic changes during the expression of group I metabotropic glutamate receptor (mGluR1/5)-mediated long-term depression (LTD) in cultured rat hippocampal neurons, we discovered that this form of LTD was associated with increased presynaptic release of glutamate, despite reduced miniature EPSCs measured with whole-cell recording. Moreover, we found that specific blockade of AMPA receptor (AMPAR) endocytosis with a membrane-permeable GluR2-derived peptide not only prevented the expression of LTD but also eliminated LTD-associated increase in presynaptic release. Thus, our work not only demonstrates that mGluR1/5-mediated LTD is associated with increased endocytosis of postsynaptic AMPARs but also reveals an unexpected homeostatic/compensatory increase in presynaptic release. In addition, this study indicates that biotinylation of vesicular transporters in live cultured neurons is a valuable tool for studying presynaptic function.

  9. N-Methyl-d-aspartate Modulation of Nucleus Accumbens Dopamine Release by Metabotropic Glutamate Receptors: Fast Cyclic Voltammetry Studies in Rat Brain Slices in Vitro.

    PubMed

    Yavas, Ersin; Young, Andrew M J

    2017-02-15

    The N-methyl-d-aspartate (NMDA) receptor antagonist, phencyclidine, induces behavioral changes in rodents mimicking symptoms of schizophrenia, possibly mediated through dysregulation of glutamatergic control of mesolimbic dopamine release. We tested the hypothesis that NMDA receptor activation modulates accumbens dopamine release, and that phencyclidine pretreatment altered this modulation. NMDA caused a receptor-specific, dose-dependent decrease in electrically stimulated dopamine release in nucleus accumbens brain slices. This decrease was unaffected by picrotoxin, making it unlikely to be mediated through GABAergic neurones, but was decreased by the metabotropic glutamate receptor antagonist, (RS)-α-methyl-4-sulfonophenylglycine, indicating that NMDA activates mechanisms controlled by these receptors to decrease stimulated dopamine release. The effect of NMDA was unchanged by in vivo pretreatment with phencyclidine (twice daily for 5 days), with a washout period of at least 7 days before experimentation, which supports the hypothesis that there is no enduring direct effect of PCP at NMDA receptors after this pretreatment procedure. We propose that NMDA depression of accumbal dopamine release is mediated by metabotropic glutamate receptors located pre- or perisynaptically, and suggest that NMDA evoked increased extrasynaptic spillover of glutamate is sufficient to activate these receptors that, in turn, inhibit dopamine release. Furthermore, we suggest that enduring functional changes brought about by subchronic phencyclidine pretreatment, modeling deficits in schizophrenia, are downstream effects consequent on chronic blockade of NMDA receptors, rather than direct effects on NMDA receptors themselves.

  10. Fast methods for analysis of neurotransmitters from single cell and monitoring their releases in central nervous system by capillary electrophoresis, fluorescence microscopy and luminescence imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Ziqiang

    1999-12-10

    Fast methods for separation and detection of important neurotransmitters and the releases in central nervous system (CNS) were developed. Enzyme based immunoassay combined with capillary electrophoresis was used to analyze the contents of amino acid neurotransmitters from single neuron cells. The release of amino acid neurotransmitters from neuron cultures was monitored by laser induced fluorescence imaging method. The release and signal transduction of adenosine triphosphate (ATP) in CNS was studied with sensitive luminescence imaging method. A new dual-enzyme on-column reaction method combined with capillary electrophoresis has been developed for determining the glutamate content in single cells. Detection was based onmore » monitoring the laser-induced fluorescence of the reaction product NADH, and the measured fluorescence intensity was related to the concentration of glutamate in each cell. The detection limit of glutamate is down to 10 -8 M level, which is 1 order of magnitude lower than the previously reported detection limit based on similar detection methods. The mass detection limit of a few attomoles is far superior to that of any other reports. Selectivity for glutamate is excellent over most of amino acids. The glutamate content in single human erythrocyte and baby rat brain neurons were determined with this method and results agreed well with literature values.« less

  11. Excitatory amino acid transmitters in epilepsy.

    PubMed

    Meldrum, B S

    1991-01-01

    For the majority of human epilepsy syndromes, the molecular and cellular basis for the epileptic activity remains largely conjectural. The principal hypotheses currently concern: defects in membrane ionic conductances or transport mechanisms; defects in gamma-aminobutyric acid (GABA)-mediated inhibitory processes; and enhanced or abnormal excitatory synaptic action. Substantial evidence exists in humans and animals for acquired abnormalities in excitatory amino acid neurotransmission that may participate in the abnormal patterns of neuronal discharge, and this could provide the morphological basis for a recurrent excitatory pathway sustaining seizure discharges in temporal lobe epilepsy. In practice, two approaches appear significant in the suppression of seizures. One is to act postsynaptically on receptors to decrease the excitation induced by glutamate, and the other is to decrease synaptic release of glutamate and aspartate. Agents acting upon adenosine or GABAB receptors decrease glutamate release in vitro but do not have significant anticonvulsant activity, probably because of their predominant actions at other sites. Lamotrigine blocks stimulated release of glutamate and shows anticonvulsant activity in a wide range of animal models.

  12. Glutamate-dependent transcriptional regulation in bergmann glia cells: involvement of p38 MAP kinase.

    PubMed

    Zepeda, Rossana C; Barrera, Iliana; Castelán, Francisco; Soto-Cid, Abraham; Hernández-Kelly, Luisa C; López-Bayghen, Esther; Ortega, Arturo

    2008-07-01

    Glutamate (Glu) is the major excitatory neurotransmitter in the Central Nervous System (CNS). Ionotropic and metabotropic glutamate receptors (GluRs) are present in neurons and glial cells and are involved in gene expression regulation. Mitogen-activated proteins kinases (MAPK) are critical for all the membrane to nuclei signaling pathways described so far. In cerebellar Bergmann glial cells, glutamate-dependent transcriptional regulation is partially dependent on p42/44 MAPK activity. Another member of this kinase family, p38 MAPK is activated by non-mitogenic stimuli through its Thr180/Tyr182 phosphorylation and phosphorylates cytoplasmic and nuclear protein targets involved in translational and transcriptional events. Taking into consideration that the role of p38MAPK in glial cells is not well understood, we demonstrate here that glutamate increases p38 MAPK phosphorylation in a time and dose dependent manner in cultured chick cerebellar Bergmann glial cells (BGC). Moreover, p38 MAPK is involved in the glutamate-induced transcriptional activation in these cells. Ionotropic as well as metabotropic glutamate receptors participate in p38 MAPK activation. The present findings demonstrate the involvement of p38 MAPK in glutamate-dependent gene expression regulation in glial cells.

  13. Remote modulation of neural activities via near-infrared triggered release of biomolecules.

    PubMed

    Li, Wei; Luo, Rongcong; Lin, Xudong; Jadhav, Amol D; Zhang, Zicong; Yan, Li; Chan, Chung-Yuan; Chen, Xianfeng; He, Jufang; Chen, Chia-Hung; Shi, Peng

    2015-10-01

    The capability to remotely control the release of biomolecules provides an unique opportunity to monitor and regulate neural signaling, which spans extraordinary spatial and temporal scales. While various strategies, including local perfusion, molecular "uncaging", or photosensitive polymeric materials, have been applied to achieve controlled releasing of neuro-active substances, it is still challenging to adopt these technologies in many experimental contexts that require a straightforward but versatile loading-releasing mechanism. Here, we develop a synthetic strategy for remotely controllable releasing of neuro-modulating molecules. This platform is based on microscale composite hydrogels that incorporate polypyrrole (PPy) nanoparticles as photo-thermal transducers and is triggered by near-infrared-light (NIR) irradiation. Specifically, we first demonstrate the utility of our technology by recapitulating the "turning assay" and "collapse assay", which involve localized treatment of chemotactic factors (e.g. Netrin or Semaphorin 3A) to subcellular neural elements and have been extensively used in studying axonal pathfinding. On a network scale, the photo-sensitive microgels are also validated for light-controlled releasing of neurotransmitters (e.g. glutamate). A single NIR-triggered release is sufficient to change the dynamics of a cultured hippocampal neuron network. Taking the advantage of NIR's capability to penetrate deep into live tissue, this technology is further shown to work similarly well in vivo, which is evidenced by synchronized spiking activity in response to NIR-triggered delivery of glutamate in rat auditory cortex, demonstrating remote control of brain activity without any genetic modifications. Notably, our nano-composite microgels are capable of delivering various molecules, ranging from small chemicals to large proteins, without involving any crosslinking chemistry. Such great versatility and ease-of-use will likely make our optically-controlled delivery technology a general and important tool in cell biology research. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Presynaptic Na+-dependent transport and exocytose of GABA and glutamate in brain in hypergravity.

    NASA Astrophysics Data System (ADS)

    Borisova, T.; Pozdnyakova, N.; Krisanova, N.; Himmelreich, N.

    γ-Aminobutyric acid (GABA) and L-glutamate are the most widespread neurotransmitter amino acids in the mammalian central nervous system. GABA is now widely recognized as the major inhibitory neurotransmitter. L-glutamate mediates the most of excitatory synaptic neurotransmission in the brain. They involved in the main aspects of normal brain function. The nerve terminals (synaptosomes) offer several advantages as a model system for the study of general mechanisms of neurosecretion. Our data allowed to conclude that exposure of animals to hypergravity (centrifugation of rats at 10G for 1 hour) had a profound effect on synaptic processes in brain. Comparative analysis of uptake and release of GABA and glutamate have demonstrated that hypergravity loading evokes oppositely directed alterations in inhibitory and excitatory signal transmission. We studied the maximal velocities of [^3H]GABA reuptake and revealed more than twofold enhancement of GABA transporter activity (Vmax rises from 1.4 |pm 0.3 nmol/min/mg of protein in the control group to 3.3 ± 0.59 nmol/min/mg of protein for animals exposed to hypergravity (P ≤ 0.05)). Recently we have also demonstrated the significant lowering of glutamate transporter activity (Vmax of glutamate reuptake decreased from 12.5 ± 3.2 nmol/min/mg of protein in the control group to 5.6 ± 0.9 nmol/min/mg of protein in the group of animals, exposed to the hypergravity stress (P ≤ 0.05)). Significant changes occurred in release of neurotransmitters induced by stimulating exocytosis with the agents, which depolarized nerve terminal plasma membrane. Depolarization-evoked Ca2+-stimulated release was more abundant for GABA (7.2 ± 0.54% and 11,74 ±1,2 % of total accumulated label for control and hypergravity, respectively (P≤0.05)) and was essentially less for glutamate (14.4 ± 0.7% and 6.2 ± 1.9%) after exposure of animals to centrifuge induced artificial gravity. Changes observed in depolarization-evoked exocytotic release seem to be in a concert with alterations of plasma membrane transporters activity studied. Perhaps, lowering of glutamate transporter activity and increase of the velocity of GABA uptake correlated with diminution and augmentation of exocytotic release of these neurotransmitters, respectively. It is possible to suggest that observed changes in the activity of the processes responsible for the uptake and release of excitatory and inhibitory neurotransmitters are likely to be physiologically important and reflect making protective mechanisms more active for neutralization of harm influence of hypergravity stress.

  15. Inhibition of the ubiquitin-proteasome activity prevents glutamate transporter degradation and morphine tolerance.

    PubMed

    Yang, Liling; Wang, Shuxing; Lim, Grewo; Sung, Backil; Zeng, Qing; Mao, Jianren

    2008-12-01

    Glutamate transporters play a crucial role in physiological glutamate homeostasis and neurotoxicity. Recently, we have shown that downregulation of glutamate transporters after chronic morphine exposure contributed to the development of morphine tolerance. In the present study, we examined whether regulation of the glutamate transporter expression with the proposed proteasome inhibitor MG-132 would contribute to the development of tolerance to repeated intrathecal (twice daily x 7 days) morphine administration in rats. The results showed that MG-132 (5 nmol) given intrathecally blocked morphine-induced glutamate transporter downregulation and the decrease in glutamate uptake activity within the spinal cord dorsal horn. Co-administration of morphine (15 nmol) with MG-132 (vehicle=1<2.5<5=10 nmol) also dose-dependently prevented the development of morphine tolerance in rats. These findings suggest that prevention of spinal glutamate transporter downregulation may regulate the glutamatergic function that has been implicated in the development of morphine tolerance. The possible relationship between MG-132-mediated regulation of glutamate transporters, ubiquitin-proteasome system, and the cellular mechanisms of morphine tolerance is discussed in light of these findings.

  16. Towards a glutamate hypothesis of depression

    PubMed Central

    Sanacora, Gerard; Treccani, Giulia; Popoli, Maurizio

    2011-01-01

    Half a century after the first formulation of the monoamine hypothesis, compelling evidence implies that long-term changes in an array of brain areas and circuits mediating complex cognitive-emotional behaviors represent the biological underpinnings of mood/anxiety disorders. A large number of clinical studies suggest that pathophysiology is associated with dysfunction of the predominant glutamatergic system, malfunction in the mechanisms regulating clearance and metabolism of glutamate, and cytoarchitectural/morphological maladaptive changes in a number of brain areas mediating cognitive-emotional behaviors. Concurrently, a wealth of data from animal models have shown that different types of environmental stress enhance glutamate release/transmission in limbic/cortical areas and exert powerful structural effects, inducing dendritic remodeling, reduction of synapses and possibly volumetric reductions resembling those observed in depressed patients. Because a vast majority of neurons and synapses in these areas and circuits use glutamate as neurotransmitter, it would be limiting to maintain that glutamate is in some way ‘involved’ in mood/anxiety disorders; rather it should be recognized that the glutamatergic system is a primary mediator of psychiatric pathology and, potentially, also a final common pathway for the therapeutic action of antidepressant agents. A paradigm shift from a monoamine hypothesis of depression to a neuroplasticity hypothesis focused on glutamate may represent a substantial advancement in the working hypothesis that drives research for new drugs and therapies. Importantly, despite the availability of multiple classes of drugs with monoamine-based mechanisms of action, there remains a large percentage of patients who fail to achieve a sustained remission of depressive symptoms. The unmet need for improved pharmacotherapies for treatment-resistant depression means there is a large space for the development of new compounds with novel mechanisms of action such as glutamate transmission and related pathways. PMID:21827775

  17. GABA and Glutamate Pathways Are Spatially and Developmentally Affected in the Brain of Mecp2-Deficient Mice

    PubMed Central

    Matagne, Valérie; Ghata, Adeline; Villard, Laurent; Roux, Jean-Christophe

    2014-01-01

    Proper brain functioning requires a fine-tuning between excitatory and inhibitory neurotransmission, a balance maintained through the regulation and release of glutamate and GABA. Rett syndrome (RTT) is a rare genetic disorder caused by mutations in the methyl-CpG binding protein 2 (MECP2) gene affecting the postnatal brain development. Dysfunctions in the GABAergic and glutamatergic systems have been implicated in the neuropathology of RTT and a disruption of the balance between excitation and inhibition, together with a perturbation of the electrophysiological properties of GABA and glutamate neurons, were reported in the brain of the Mecp2-deficient mouse. However, to date, the extent and the nature of the GABA/glutamate deficit affecting the Mecp2-deficient mouse brain are unclear. In order to better characterize these deficits, we simultaneously analyzed the GABA and glutamate levels in Mecp2-deficient mice at 2 different ages (P35 and P55) and in several brain areas. We used a multilevel approach including the quantification of GABA and glutamate levels, as well as the quantification of the mRNA and protein expression levels of key genes involved in the GABAergic and glutamatergic pathways. Our results show that Mecp2-deficient mice displayed regional- and age-dependent variations in the GABA pathway and, to a lesser extent, in the glutamate pathway. The implication of the GABA pathway in the RTT neuropathology was further confirmed using an in vivo treatment with a GABA reuptake inhibitor that significantly improved the lifespan of Mecp2-deficient mice. Our results confirm that RTT mouse present a deficit in the GABAergic pathway and suggest that GABAergic modulators could be interesting therapeutic agents for this severe neurological disorder. PMID:24667344

  18. Co-Requirement of PICK1 Binding and PKC Phosphorylation for Stable Surface Expression of the Metabotropic Glutamate Receptor mGluR7

    PubMed Central

    Suh, Young Ho; Pelkey, Kenneth A.; Lavezzari, Gabriela; Roche, Paul A.; Huganir, Richard L.; McBain, Chris J.; Roche, Katherine W.

    2008-01-01

    SUMMARY The presynaptic metabotropic glutamate receptor (mGluR) mGluR7 modulates excitatory neurotransmission by regulating neurotransmitter release, and plays a critical role in certain forms of synaptic plasticity. Although the dynamic regulation of mGluR7 surface expression governs a novel form of metaplasticity in the hippocampus, little is known about the molecular mechanisms regulating mGluR7 trafficking. We now show that mGluR7 surface expression is stabilized by both PKC phosphorylation and by receptor binding to the PDZ domain-containing protein PICK1. Phosphorylation of mGluR7 on serine 862 (S862) inhibits CaM binding thereby increasing mGluR7 surface expression and receptor binding to PICK1. Furthermore, in mice lacking PICK1, PKC-dependent increases in mGluR7 phosphorylation and surface expression are diminished, and mGluR7-dependent plasticity at mossy fiber-interneuron hippocampal synapses is impaired. These data support a model in which PICK1 binding and PKC phosphorylation act together to stabilize mGluR7 on the cell surface in vivo. PMID:18549785

  19. Basolateral amygdala rapid glutamate release encodes an outcome-specific representation vital for reward-predictive cues to selectively invigorate reward-seeking actions

    PubMed Central

    Malvaez, Melissa; Greenfield, Venuz Y.; Wang, Alice S.; Yorita, Allison M.; Feng, Lili; Linker, Kay E.; Monbouquette, Harold G.; Wassum, Kate M.

    2015-01-01

    Environmental stimuli have the ability to generate specific representations of the rewards they predict and in so doing alter the selection and performance of reward-seeking actions. The basolateral amygdala participates in this process, but precisely how is unknown. To rectify this, we monitored, in near-real time, basolateral amygdala glutamate concentration changes during a test of the ability of reward-predictive cues to influence reward-seeking actions (Pavlovian-instrumental transfer). Glutamate concentration was found to be transiently elevated around instrumental reward seeking. During the Pavlovian-instrumental transfer test these glutamate transients were time-locked to and correlated with only those actions invigorated by outcome-specific motivational information provided by the reward-predictive stimulus (i.e., actions earning the same specific outcome as predicted by the presented CS). In addition, basolateral amygdala AMPA, but not NMDA glutamate receptor inactivation abolished the selective excitatory influence of reward-predictive cues over reward seeking. These data the hypothesis that transient glutamate release in the BLA can encode the outcome-specific motivational information provided by reward-predictive stimuli. PMID:26212790

  20. Conditions and constraints for astrocyte calcium signaling in the hippocampal mossy fiber pathway.

    PubMed

    Haustein, Martin D; Kracun, Sebastian; Lu, Xiao-Hong; Shih, Tiffany; Jackson-Weaver, Olan; Tong, Xiaoping; Xu, Ji; Yang, X William; O'Dell, Thomas J; Marvin, Jonathan S; Ellisman, Mark H; Bushong, Eric A; Looger, Loren L; Khakh, Baljit S

    2014-04-16

    The spatiotemporal activities of astrocyte Ca²⁺ signaling in mature neuronal circuits remain unclear. We used genetically encoded Ca²⁺ and glutamate indicators as well as pharmacogenetic and electrical control of neurotransmitter release to explore astrocyte activity in the hippocampal mossy fiber pathway. Our data revealed numerous localized, spontaneous Ca²⁺ signals in astrocyte branches and territories, but these were not driven by neuronal activity or glutamate. Moreover, evoked astrocyte Ca²⁺ signaling changed linearly with the number of mossy fiber action potentials. Under these settings, astrocyte responses were global, suppressed by neurotransmitter clearance, and mediated by glutamate and GABA. Thus, astrocyte engagement in the fully developed mossy fiber pathway was slow and territorial, contrary to that frequently proposed for astrocytes within microcircuits. We show that astrocyte Ca²⁺ signaling functionally segregates large volumes of neuropil and that these transients are not suited for responding to, or regulating, single synapses in the mossy fiber pathway. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. Control of neuronal excitability by Group I metabotropic glutamate receptors.

    PubMed

    Correa, Ana Maria Bernal; Guimarães, Jennifer Diniz Soares; Dos Santos E Alhadas, Everton; Kushmerick, Christopher

    2017-10-01

    Metabotropic glutamate (mGlu) receptors couple through G proteins to regulate a large number of cell functions. Eight mGlu receptor isoforms have been cloned and classified into three Groups based on sequence, signal transduction mechanisms and pharmacology. This review will focus on Group I mGlu receptors, comprising the isoforms mGlu 1 and mGlu 5 . Activation of these receptors initiates both G protein-dependent and -independent signal transduction pathways. The G-protein-dependent pathway involves mainly Gα q , which can activate PLCβ, leading initially to the formation of IP 3 and diacylglycerol. IP 3 can release Ca 2+ from cellular stores resulting in activation of Ca 2+ -dependent ion channels. Intracellular Ca 2+ , together with diacylglycerol, activates PKC, which has many protein targets, including ion channels. Thus, activation of the G-protein-dependent pathway affects cellular excitability though several different effectors. In parallel, G protein-independent pathways lead to activation of non-selective cationic currents and metabotropic synaptic currents and potentials. Here, we provide a survey of the membrane transport proteins responsible for these electrical effects of Group I metabotropic glutamate receptors.

  2. Calcium regulates vesicle replenishment at the cone ribbon synapse

    PubMed Central

    Babai, Norbert; Bartoletti, Theodore M.; Thoreson, Wallace B.

    2010-01-01

    Cones release glutamate-filled vesicles continuously in darkness and changing illumination modulates this release. Because sustained release in darkness is governed by vesicle replenishment rates, we analyzed how cone membrane potential regulates replenishment. Synaptic release from cones was measured by recording post-synaptic currents in Ambystoma tigrinum horizontal or OFF bipolar cells evoked by depolarization of simultaneously voltage-clamped cones. We measured replenishment after attaining a steady-state between vesicle release and replenishment using trains of test pulses. Increasing Ca2+ currents (ICa) by changing the test step from −30 to −10 mV increased replenishment. Lengthening −30 mV test pulses to match the Ca2+ influx during 25 ms test pulses to −10 mV produced similar replenishment rates. Reducing Ca2+ driving force by using test steps to +30 mV slowed replenishment. Using UV flashes to reverse inhibition of ICa by nifedipine accelerated replenishment. Increasing [Ca2+]i by flash photolysis of caged Ca2+ also accelerated replenishment. Replenishment, but not the initial burst of release, was enhanced by using an intracellular Ca2+ buffer of 0.5 mM EGTA rather than 5 mM EGTA, and diminished by 1 mM BAPTA. This suggests that although release and replenishment and release exhibited similar Ca2+-dependencies, release sites are <200 nm from Ca2+ channels but replenishment sites are >200 nm away. Membrane potential thus regulates replenishment by controlling Ca2+ influx, principally by effects on replenishment mechanisms but also by altering releasable pool size. This in turn provides a mechanism for converting changes in light intensity into changes in sustained release at the cone ribbon synapse. PMID:21106825

  3. Platelet-activating factor and group I metabotropic glutamate receptors interact for full development and maintenance of long-term potentiation in the rat medial vestibular nuclei.

    PubMed

    Grassi, S; Francescangeli, E; Goracci, G; Pettorossi, V E

    1999-01-01

    In rat brainstem slices, we investigated the interaction between platelet-activating factor and group I metabotropic glutamate receptors in mediating long-term potentiation within the medial vestibular nuclei. We analysed the N1 field potential wave evoked in the ventral portion of the medial vestibular nuclei by primary vestibular afferent stimulation. The group I metabotropic glutamate receptor antagonist, (R,S)-1-aminoindan-1,5-dicarboxylic acid, prevented long-term potentiation induced by a platelet-activating factor analogue [1-O-hexadecyl-2-O-(methylcarbamyl)-sn-glycero-3-phosphocholine], as well as the full development of potentiation, induced by high-frequency stimulation under the blocking agent for synaptosomal platelet-activating factor receptors (ginkolide B), at drug washout. However, potentiation directly induced by the group I glutamate metabotropic receptor agonist, (R,S)-3,5-dihydroxyphenylglycine, was reduced by ginkolide B. These findings suggest that platelet-activating factor, whether exogenous or released following potentiation induction, exerts its effect through presynaptic group I metabotropic glutamate receptors, mediating the increase of glutamate release. In addition, we found that this mechanism, which led to full potentiation through presynaptic group I metabotropic glutamate receptor activation, was inactivated soon after application of potentiation-inducing stimulus. In fact, the long-lasting block of the platelet-activating factor and metabotropic glutamate receptors prevented the full potentiation development and the induced potentiation progressively declined to null. Moreover, ginkolide B, given when high-frequency-dependent potentiation was established, only reduced it within 5 min after potentiation induction. We conclude that to fully develop vestibular long-term potentiation requires presynaptic events. Platelet-activating factor, released after the activation of postsynaptic mechanisms which induce potentiation, is necessary for coupling postsynaptic and presynaptic phenomena, through the activation of group I metabotropic glutamate receptors, and its action lasts only for a short period. If this coupling does not occur, a full and long-lasting potentiation cannot develop.

  4. GRP1 PH Domain, Like AKT1 PH Domain, Possesses a Sentry Glutamate Residue Essential for Specific Targeting to Plasma Membrane PI(3,4,5)P3

    PubMed Central

    Pilling, Carissa; Landgraf, Kyle E.; Falke, Joseph J.

    2011-01-01

    During the appearance of the signaling lipid PI(3,4,5)P3, an important subset of pleckstrin homology (PH) domains target signaling proteins to the plasma membrane. To ensure proper pathway regulation, such PI(3,4,5)P3-specific PH domains must exclude the more prevalant, constitutive plasma membrane lipid PI(4,5)P2 and bind the rare PI(3,4,5)P3 target lipid with sufficiently high affinity. Our previous study of the E17K mutant of protein kinase B (AKT1) PH domain, together with evidence from Carpten et al (1), revealed that the native AKT1 E17 residue serves as a sentry glutamate that excludes PI(4,5)P2, thereby playing an essential role in specific PI(3,4,5)P3 targeting (2). The sentry glutamate hypothesis proposes that an analogous sentry glutamate residue is a widespread feature of PI(3,4,5)P3-specific PH domains, and that charge reversal mutation at the sentry glutamate position will yield both increased PI(4,5)P2 affinity and constitutive plasma membrane targeting. To test this hypothesis the present study investigates the E345 residue, a putative sentry glutamate, of General Receptor for Phosphoinositides 1 (GRP1) PH domain. The results show that incorporation of the E345K charge reversal mutation into GRP1 PH domain enhances PI(4,5)P2 affinity 8-fold and yields constitutive plasma membrane targeting in cells, reminiscent of the effects of the E17K mutation in AKT1 PH domain. Hydrolysis of plasma membrane PI(4,5)P2 releases E345K GRP1 PH domain into the cytoplasm and the efficiency of this release increases when target Arf6 binding is disrupted. Overall, the findings provide strong support for the sentry glutamate hypothesis and suggest that the GRP1 E345K mutation will be linked to changes in cell physiology and human pathologies, as demonstrated for AKT1 E17K (1, 3). Analysis of available PH domain structures suggests that a lone glutamate residue (or, in some cases an aspartate) is a common, perhaps ubiquitous, feature of PI(3,4,5)P3-specific binding pockets that functions to lower PI(4,5)P2 affinity. PMID:21932773

  5. Metabotropic Glutamate Receptors in the Trafficking of Ionotropic Glutamate and GABAA Receptors at Central Synapses

    PubMed Central

    Xiao, Min-Yi; Gustafsson, Bengt; Niu, Yin-Ping

    2006-01-01

    The trafficking of ionotropic glutamate (AMPA, NMDA and kainate) and GABAA receptors in and out of, or laterally along, the postsynaptic membrane has recently emerged as an important mechanism in the regulation of synaptic function, both under physiological and pathological conditions, such as information processing, learning and memory formation, neuronal development, and neurodegenerative diseases. Non-ionotropic glutamate receptors, primarily group I metabotropic glutamate receptors (mGluRs), co-exist with the postsynaptic ionotropic glutamate and GABAA receptors. The ability of mGluRs to regulate postsynaptic phosphorylation and Ca2+ concentration, as well as their interactions with postsynaptic scaffolding/signaling proteins, makes them well suited to influence the trafficking of ionotropic glutamate and GABAA receptors. Recent studies have provided insights into how mGluRs may impose such an influence at central synapses, and thus how they may affect synaptic signaling and the maintenance of long-term synaptic plasticity. In this review we will discuss some of the recent progress in this area: i) long-term synaptic plasticity and the involvement of mGluRs; ii) ionotropic glutamate receptor trafficking and long-term synaptic plasticity; iii) the involvement of postsynaptic group I mGluRs in regulating ionotropic glutamate receptor trafficking; iv) involvement of postsynaptic group I mGluRs in regulating GABAA receptor trafficking; v) and the trafficking of postsynaptic group I mGluRs themselves. PMID:18615134

  6. Metabotropic glutamate receptors in the trafficking of ionotropic glutamate and GABA(A) receptors at central synapses.

    PubMed

    Xiao, Min-Yi; Gustafsson, Bengt; Niu, Yin-Ping

    2006-01-01

    The trafficking of ionotropic glutamate (AMPA, NMDA and kainate) and GABA(A) receptors in and out of, or laterally along, the postsynaptic membrane has recently emerged as an important mechanism in the regulation of synaptic function, both under physiological and pathological conditions, such as information processing, learning and memory formation, neuronal development, and neurodegenerative diseases. Non-ionotropic glutamate receptors, primarily group I metabotropic glutamate receptors (mGluRs), co-exist with the postsynaptic ionotropic glutamate and GABA(A) receptors. The ability of mGluRs to regulate postsynaptic phosphorylation and Ca(2+) concentration, as well as their interactions with postsynaptic scaffolding/signaling proteins, makes them well suited to influence the trafficking of ionotropic glutamate and GABA(A) receptors. Recent studies have provided insights into how mGluRs may impose such an influence at central synapses, and thus how they may affect synaptic signaling and the maintenance of long-term synaptic plasticity. In this review we will discuss some of the recent progress in this area: i) long-term synaptic plasticity and the involvement of mGluRs; ii) ionotropic glutamate receptor trafficking and long-term synaptic plasticity; iii) the involvement of postsynaptic group I mGluRs in regulating ionotropic glutamate receptor trafficking; iv) involvement of postsynaptic group I mGluRs in regulating GABA(A) receptor trafficking; v) and the trafficking of postsynaptic group I mGluRs themselves.

  7. Contribution of Cystine-Glutamate Antiporters to the Psychotomimetic Effects of Phencyclidine

    PubMed Central

    Baker, David. A.; Madayag, Aric; Kristiansen, Lars V.; Meador-Woodruff, James H.; Haroutunian, Vahram; Raju, Ilangovan

    2014-01-01

    Altered glutamate signaling contributes to a myriad of neural disorders, including schizophrenia. While synaptic levels are intensely studied, nonvesicular release mechanisms, including cystine-glutamate exchange, maintain high steady-state glutamate levels in the extrasynaptic space. The existence of extrasynaptic receptors, including metabotropic group II glutamate receptors (mGluR), pose nonvesicular release mechanisms as unrecognized targets capable of contributing to pathological glutamate signaling. We tested the hypothesis that activation of cystine-glutamate antiporters using the cysteine prodrug N-acetylcysteine would blunt psychotomimetic effects in the rodent phencyclidine (PCP) model of schizophrenia. First, we demonstrate that PCP elevates extracellular glutamate in the prefrontal cortex; an effect that is blocked by N-acetylcysteine pretreatment. To determine the relevance of the above finding, we assessed social interaction and found that N-acetylcysteine reverses social withdrawal produced by repeated PCP. In a separate paradigm, acute PCP resulted in working memory deficits assessed using a discrete trial T-maze task, and this effect was also reversed by N-acetylcysteine pretreatment. The capacity of N-acetylcysteine to restore working memory was blocked by infusion of the cystine-glutamate antiporter inhibitor (S)-4-carboxyphenylglycine into the prefrontal cortex or systemic administration of the group II mGluR antagonist LY341495 indicating that the effects of N-acetylcysteine requires cystine-glutamate exchange and group II mGluR activation. Lastly, protein levels from post mortem tissue obtained from schizophrenic patients revealed significant changes in the level of xCT, the active subunit for cystine-glutamate exchange, in the dorsolateral prefrontal cortex. These data advance cystine-glutamate antiporters as novel targets capable of reversing the psychotomimetic effects of PCP. PMID:17728701

  8. Corticostriatal dysfunction underlies diminished striatal ascorbate release in the R6/2 mouse model of Huntington’s disease

    PubMed Central

    Dorner, Jenelle L.; Miller, Benjamin R.; Klein, Emma L.; Murphy-Nakhnikian, Alexander; Andrews, Rachel L.; Barton, Scott J.; Rebec, George V.

    2009-01-01

    A behavior-related deficit in the release of ascorbate (AA), an antioxidant vitamin, occurs in the striatum of R6/2 mice expressing the human mutation for Huntington’s disease (HD), a dominantly inherited condition characterized by striatal dysfunction. To determine the role of corticostriatal fibers in AA release, we combined slow-scan voltammetry with electrical stimulation of cortical afferents to measure evoked fluctuations in extracellular AA in wild-type (WT) and R6/2 striatum. Although cortical stimulation evoked a rapid increase in AA release in both groups, the R6/2 response had a significantly shorter duration and smaller magnitude than WT. To determine if corticostriatal dysfunction also underlies the behavior-related AA deficit in R6/2s, we measured striatal AA release in separate groups of mice treated with d-amphetamine (5 mg/kg), a psychomotor stimulant known to release AA from corticostriatal terminals independently of dopamine. Relative to WT, both AA release and behavioral activation were diminished in R6/2 mice. Collectively, our results show that the corticostriatal pathway is directly involved in AA release and that this system is dysfunctional in HD. Moreover, because AA release requires glutamate uptake, a failure of striatal AA release in HD is consistent with an overactive glutamate system and diminished glutamate transport, both of which are thought to be central to HD pathogenesis. PMID:19616518

  9. CCL5-Glutamate Cross-Talk in Astrocyte-Neuron Communication in Multiple Sclerosis.

    PubMed

    Pittaluga, Anna

    2017-01-01

    The immune system (IS) and the central nervous system (CNS) are functionally coupled, and a large number of endogenous molecules (i.e., the chemokines for the IS and the classic neurotransmitters for the CNS) are shared in common between the two systems. These interactions are key elements for the elucidation of the pathogenesis of central inflammatory diseases. In recent years, evidence has been provided supporting the role of chemokines as modulators of central neurotransmission. It is the case of the chemokines CCL2 and CXCL12 that control pre- and/or post-synaptically the chemical transmission. This article aims to review the functional cross-talk linking another endogenous pro-inflammatory factor released by glial cells, i.e., the chemokine Regulated upon Activation Normal T-cell Expressed and Secreted (CCL5) and the principal neurotransmitter in CNS (i.e., glutamate) in physiological and pathological conditions. In particular, the review discusses preclinical data concerning the role of CCL5 as a modulator of central glutamatergic transmission in healthy and demyelinating disorders. The CCL5-mediated control of glutamate release at chemical synapses could be relevant either to the onset of psychiatric symptoms that often accompany the development of multiple sclerosis (MS), but also it might indirectly give a rationale for the progression of inflammation and demyelination. The impact of disease-modifying therapies for the cure of MS on the endogenous availability of CCL5 in CNS will be also summarized. We apologize in advance for omission in our coverage of the existing literature.

  10. Sustained neuronal activity generated by glial plasticity

    PubMed Central

    Pirttimaki, Tiina M.; Hall, Stephen D.; Parri, H. Rheinallt

    2011-01-01

    Astrocytes release gliotransmitters, notably glutamate, that can affect neuronal and synaptic activity. In particular, astrocytic glutamate release results in the generation of N-methyl D-aspartate receptor (NMDA-R) mediated slow inward currents (SICs) in neurons. However, factors underlying the emergence of SICs, and their physiological roles are largely unknown. Here we show that, in acute slices of rat somatosensory thalamus, stimulation of Lemniscal or cortical afferents results in a sustained increase of SICs in thalamocortical (TC) neurons that outlasts the duration of the stimulus by an hour. This long term enhancement (LTE) of astrocytic glutamate release is induced by group I metabotropic glutamate receptors (mGluRs), and is dependent on astrocytic intracellular calcium ([Ca2+]i). Neuronal SICs are mediated by extrasynaptic NR2B subunit-containing NMDA-Rs and are capable of eliciting bursts. These are distinct from T-type Ca2+ channel dependent bursts of action potentials, and are synchronized in neighboring TC neurons. These findings describe a previously unrecognized form of excitatory, non-synaptic plasticity in the central nervous system (CNS) that feeds forward to generate local neuronal firing long after stimulus termination. PMID:21613477

  11. Novel metabotropic glutamate receptor 4 and glutamate receptor 8 therapeutics for the treatment of anxiety.

    PubMed

    Raber, Jacob; Duvoisin, Robert M

    2015-04-01

    The fast actions of the excitatory neurotransmitter glutamate are mediated by glutamate-gated ion channels (ionotropic Glu receptors). Metabotropic glutamate receptors (mGlus) are coupled to second messenger pathways via G proteins and modulate glutamatergic and GABAergic neurotransmission. Of the eight different types of mGlus (mGlu1-mGlu8), mGlu4, mGlu6, mGlu7 and mGlu8 are members of group III. Except for mGlu6, group III receptors are generally located presynaptically and regulate neurotransmitter release. Because of their role in modulating excitatory neurotransmission, mGlus are attractive targets for therapies aimed at treating anxiety disorders. In this review, the authors discuss the role of mGlu4 and mGlu8 in anxiety disorders. They also discuss how mGlu4 and mGlu8 have distinct expression patterns in the brain, which might have related functions. Finally, the authors discuss how compounds that target more than one mGlu receptor might be therapeutically more effective. mGlu4 might compensate for mGlu8 deficiency, and deficiency of both receptors might result in a more pronounced phenotype than deficiency of either receptor alone. The distinct and overlapping anatomical distribution and functions of mGlu4 and mGlu8 suggest that both receptors, either individually or combined, are attractive therapeutic targets in anxiety disorders, post-traumatic stress disorder, Parkinson's disease, and multiple sclerosis.

  12. Modulation of Long-Term Potentiation and Epileptiform Activity in the Rat Dentate Gyrus by the Group II Metabotropic Glutamate Receptor Subtype mGluR3

    DTIC Science & Technology

    2000-05-25

    subsequent transmitter release. The rat hippocampal slice is a preparation richly endowed with ionotropic and metabotropic glutamate receptors ...M. Zhao and R. J. Wenthold (1996b). Ionotropic and metabotropic glutamate receptors show unique postsynaptic, presynaptic, and glial localizations in...epileptiform activity in the rat cortex. Neuroreport 3(10): 916-8. Shen, W. and M. M. Slaughter (1998). Metabotropic and ionotropic glutamate receptors

  13. Bax-inhibiting peptide protects glutamate-induced cerebellar granule cell death by blocking Bax translocation.

    PubMed

    Iriyama, Takayuki; Kamei, Yoshimasa; Kozuma, Shiro; Taketani, Yuji

    2009-02-13

    Glutamate-induced excitotoxicity has been implicated in the pathogenesis of various neurological damages and disorders. In the brain damage of immature animals such as neonatal hypoxic-ischemic brain injury, the excitotoxicity appears to be more intimately involved through apoptosis. Bax, a member of the Bcl-2 family proteins, plays a key role in the promotion of apoptosis by translocation from the cytosol to the mitochondria and the release of apoptogenic factors such as cytochrome c. Recently, Bax-inhibiting peptide (BIP), a novel membrane-permeable peptide which can bind Bax in the cytosol and inhibit its translocation to the mitochondria, was developed. To investigate the possibility of a new neuroprotection strategy targeting Bax translocation in glutamate-induced neuronal cell death, cerebellar granule neurons (CGNs) were exposed to glutamate with or without BIP. Pretreatment of CGNs with BIP elicited a dose-dependent reduction of glutamate-induced neuronal cell death as measured by MTT assay. BIP significantly suppressed both the number of TUNEL-positive cells and the increase in caspases 3 and 9 activities induced by glutamate. In addition, immunoblotting after subcellular fractionation revealed that BIP prevented the glutamate-induced Bax translocation to the mitochondria and the release of cytochrome c from the mitochondria. These results suggest that agents capable of inhibiting Bax activity such as BIP might lead to new drugs for glutamate-related diseases in the future.

  14. Availability of neurotransmitter glutamate is diminished when beta-hydroxybutyrate replaces glucose in cultured neurons.

    PubMed

    Lund, Trine M; Risa, Oystein; Sonnewald, Ursula; Schousboe, Arne; Waagepetersen, Helle S

    2009-07-01

    Ketone bodies serve as alternative energy substrates for the brain in cases of low glucose availability such as during starvation or in patients treated with a ketogenic diet. The ketone bodies are metabolized via a distinct pathway confined to the mitochondria. We have compared metabolism of [2,4-(13)C]beta-hydroxybutyrate to that of [1,6-(13)C]glucose in cultured glutamatergic neurons and investigated the effect of neuronal activity focusing on the aspartate-glutamate homeostasis, an essential component of the excitatory activity in the brain. The amount of (13)C incorporation and cellular content was lower for glutamate and higher for aspartate in the presence of [2,4-(13)C]beta-hydroxybutyrate as opposed to [1,6-(13)C]glucose. Our results suggest that the change in aspartate-glutamate homeostasis is due to a decreased availability of NADH for cytosolic malate dehydrogenase and thus reduced malate-aspartate shuttle activity in neurons using beta-hydroxybutyrate. In the presence of glucose, the glutamate content decreased significantly upon activation of neurotransmitter release, whereas in the presence of only beta-hydroxybutyrate, no decrease in the glutamate content was observed. Thus, the fraction of the glutamate pool available for transmitter release was diminished when metabolizing beta-hydroxybutyrate, which is in line with the hypothesis of formation of transmitter glutamate via an obligatory involvement of the malate-aspartate shuttle.

  15. Rat epileptic seizures evoked by BmK {alpha}IV and its possible mechanisms involved in sodium channels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chai Zhifang; Bai Zhantao; Zhang Xuying

    2007-05-01

    This study showed that rat unilateral intracerebroventricular injection of BmK {alpha}IV, a sodium channel modulator derived from scorpion Buthus martensi Karsch, induced clusters of spikes, epileptic discharges and convulsion-related behavioral changes. BmK {alpha}IV potently promoted the release of endogenous glutamate from rat cerebrocortical synaptosomes. In vitro examination of the effect of BmK {alpha}IV on intrasynaptosomal free calcium concentration [Ca{sup 2+}]{sub i} and sodium concentration [Na{sup +}]{sub i} revealed that BmK {alpha}IV-evoked glutamate release from synaptosomes was associated with an increase in Ca{sup 2+} and Na{sup +} influx. Moreover, BmK {alpha}IV-mediated glutamate release and ion influx was completely blocked by tetrodotoxin,more » a blocker of sodium channel. Together, these results suggest that the induction of BmK {alpha}IV-evoked epileptic seizures may be involved in the modulation of BmK {alpha}IV on tetrodotoxin-sensitive sodium channels located on the nerve terminal, which subsequently enhances the Ca{sup 2+} influx to cause an increase of glutamate release. These findings may provide some insight regarding the mechanism of neuronal action of BmK {alpha}IV in the central nervous system for understanding epileptogenesis involved in sodium channels.« less

  16. Continuous monitoring of L-glutamate released from cultured nerve cells by an online sensor coupled with micro-capillary sampling.

    PubMed

    Niwa, O; Horiuchi, T; Torimitsu, K

    1997-01-01

    A small volume L-glutamate online sensor was developed in order to monitor changes in the local concentration of L-glutamate released from cultured nerve cells. Syringe pump in the suction mode is used to sample extracellular fluid continuously from a glass micro-capillary and the concentration of L-glutamate can be determined by using a glassy carbon (GC) electrode modified with an Os-polyvinylpyridine mediator bottom film containing horseradish peroxidase and a bovine serum albumin top layer containing L-glutamate oxidase. The overall efficiency of L-glutamate detection with a sensor is 71% under optimum conditions due to an efficient enzymatic reaction at the modified electrode in the thin layer radial flow cell. As a result, we achieved a detection limit of 7-15 nM and a linear range of 50 nM to 10 microM. In an in vitro experiment, the extracellular fluid near a particular nerve cell can be sampled with this micro-pipet and continuously introduced into the modified GC electrode in the radial flow cell via suction provided by a syringe pump. The nerve cells are stimulated by the KCl in a glass capillary and the L-glutamate concentration change can be monitored by changing the distance between the sampling pipet and the nerve cells.

  17. Up-regulation of DRP-3 long isoform during the induction of neural progenitor cells by glutamate treatment in the ex vivo rat retina

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tokuda, Kazuhiro, E-mail: r502um@yamaguchi-u.ac.jp; Department of Biochemistry and Functional Proteomics, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi; Kuramitsu, Yasuhiro

    Glutamate has been shown to induce neural progenitor cells in the adult vertebrate retina. However, protein dynamics during progenitor cell induction by glutamate are not fully understood. To identify specific proteins involved in the process, we employed two-dimensional electrophoresis-based proteomics on glutamate untreated and treated retinal ex vivo sections. Rat retinal tissues were incubated with 1 mM glutamate for 1 h, followed by incubation in glutamate-free media for a total of 24 h. Consistent with prior reports, it was found that mitotic cells appeared in the outer nuclear layer without any histological damage. Immunohistological evaluations and immunoblotting confirmed the emergence of neuronal progenitor cellsmore » in the mature retina treated with glutamate. Proteomic analysis revealed the up-regulation of dihydropyrimidinase-related protein 3 (DRP-3), DRP-2 and stress-induced-phosphoprotein 1 (STIP1) during neural progenitor cell induction by glutamate. Moreover, mRNA expression of DRP-3, especially, its long isoform, robustly increased in the treated retina compared to that in the untreated retina. These results may indicate that glutamate induces neural progenitor cells in the mature rat retina by up-regulating the proteins which mediate cell mitosis and neurite growth. - Highlights: • Glutamate induced neuronal progenitor cells in the mature rat retina. • Proteomic analysis revealed the up-regulation of DRP-3, DRP-2 and STIP1. • mRNA expression of DRP-3, especially, its long isoform, robustly increased.« less

  18. Prefrontal glutamate correlates of methamphetamine sensitization and preference

    PubMed Central

    Lominac, Kevin D.; Quadir, Sema G.; Barrett, Hannah M.; McKenna, Courtney L.; Schwartz, Lisa M.; Ruiz, Paige N.; Wroten, Melissa G.; Campbell, Rianne R.; Miller, Bailey W.; Holloway, John J.; Travis, Katherine O.; Rajasekar, Ganesh; Maliniak, Dan; Thompson, Andrew B.; Urman, Lawrence E.; Kippin, Tod E.; Phillips, Tamara J.; Szumlinski, Karen K.

    2016-01-01

    Methamphetamine (MA) is a widely abused, highly addictive, psychostimulant that elicits pronounced deficits in neurocognitive function related to hypo-functioning of the prefrontal cortex (PFC). Our understanding of how repeated methamphetamine impacts excitatory glutamatergic transmission within the PFC is limited, as is information about the relation between PFC glutamate and addiction vulnerability/resiliency. In vivo microdialysis and immunoblotting studies characterized the effects of methamphetamine (10 injections of 2 mg/kg, IP) upon extracellular glutamate in C57BL/6J mice and upon glutamate receptor and transporter expression, within the medial PFC. Glutamatergic correlates of both genetic and idiopathic variance in MA preference/intake were determined through studies of high versus low MA-drinking selectively bred mouse lines (MAHDR versus MALDR, respectively) and inbred C57BL/6J mice exhibiting spontaneously divergent place-conditioning phenotypes. Repeated methamphetamine sensitized drug-induced glutamate release and lowered indices of NMDA receptor expression in C57BL/6J mice, but did not alter basal extracellular glutamate content or total protein expression of Homer proteins, or metabotropic or AMPA glutamate receptors. Elevated basal glutamate, blunted methamphetamine-induced glutamate release and ERK activation, as well as reduced protein expression of mGlu2/3 and Homer2a/b were all correlated biochemical traits of selection for high versus low methamphetamine drinking, and Homer2a/b levels were inversely correlated with the motivational valence of methamphetamine in C57BL/6J mice. These data provide novel evidence that repeated, low-dose, methamphetamine is sufficient to perturb pre- and post-synaptic aspects of glutamate transmission within the medial PFC and that glutamate anomalies within this region may contribute to both genetic and idiopathic variance in methamphetamine addiction vulnerability/resiliency. PMID:26742098

  19. Wireless Instantaneous Neurotransmitter Concentration System–based amperometric detection of dopamine, adenosine, and glutamate for intraoperative neurochemical monitoring

    PubMed Central

    Agnesi, Filippo; Tye, Susannah J.; Bledsoe, Jonathan M.; Griessenauer, Christoph J.; Kimble, Christopher J.; Sieck, Gary C.; Bennet, Kevin E.; Garris, Paul A.; Blaha, Charles D.; Lee, Kendall H.

    2009-01-01

    Object In a companion study, the authors describe the development of a new instrument named the Wireless Instantaneous Neurotransmitter Concentration System (WINCS), which couples digital telemetry with fast-scan cyclic voltammetry (FSCV) to measure extracellular concentrations of dopamine. In the present study, the authors describe the extended capability of the WINCS to use fixed potential amperometry (FPA) to measure extracellular concentrations of dopamine, as well as glutamate and adenosine. Compared with other electrochemical techniques such as FSCV or high-speed chronoamperometry, FPA offers superior temporal resolution and, in combination with enzyme-linked biosensors, the potential to monitor nonelectroactive analytes in real time. Methods The WINCS design incorporated a transimpedance amplifier with associated analog circuitry for FPA; a microprocessor; a Bluetooth transceiver; and a single, battery-powered, multilayer, printed circuit board. The WINCS was tested with 3 distinct recording electrodes: 1) a carbon-fiber microelectrode (CFM) to measure dopamine; 2) a glutamate oxidase enzyme-linked electrode to measure glutamate; and 3) a multiple enzyme-linked electrode (adenosine deaminase, nucleoside phosphorylase, and xanthine oxidase) to measure adenosine. Proof-of-principle analyses included noise assessments and in vitro and in vivo measurements that were compared with similar analyses by using a commercial hardwired electrochemical system (EA161 Picostat, eDAQ; Pty Ltd). In urethane-anesthetized rats, dopamine release was monitored in the striatum following deep brain stimulation (DBS) of ascending dopaminergic fibers in the medial forebrain bundle (MFB). In separate rat experiments, DBS-evoked adenosine release was monitored in the ventrolateral thalamus. To test the WINCS in an operating room setting resembling human neurosurgery, cortical glutamate release in response to motor cortex stimulation (MCS) was monitored using a large-mammal animal model, the pig. Results The WINCS, which is designed in compliance with FDA-recognized consensus standards for medical electrical device safety, successfully measured dopamine, glutamate, and adenosine, both in vitro and in vivo. The WINCS detected striatal dopamine release at the implanted CFM during DBS of the MFB. The DBS-evoked adenosine release in the rat thalamus and MCS-evoked glutamate release in the pig cortex were also successfully measured. Overall, in vitro and in vivo testing demonstrated signals comparable to a commercial hardwired electrochemical system for FPA. Conclusions By incorporating FPA, the chemical repertoire of WINCS-measurable neurotransmitters is expanded to include glutamate and other nonelectroactive species for which the evolving field of enzyme-linked biosensors exists. Because many neurotransmitters are not electrochemically active, FPA in combination with enzyme-linked microelectrodes represents a powerful intraoperative tool for rapid and selective neurochemical sampling in important anatomical targets during functional neurosurgery. PMID:19425899

  20. Wireless Instantaneous Neurotransmitter Concentration System-based amperometric detection of dopamine, adenosine, and glutamate for intraoperative neurochemical monitoring.

    PubMed

    Agnesi, Filippo; Tye, Susannah J; Bledsoe, Jonathan M; Griessenauer, Christoph J; Kimble, Christopher J; Sieck, Gary C; Bennet, Kevin E; Garris, Paul A; Blaha, Charles D; Lee, Kendall H

    2009-10-01

    In a companion study, the authors describe the development of a new instrument named the Wireless Instantaneous Neurotransmitter Concentration System (WINCS), which couples digital telemetry with fast-scan cyclic voltammetry (FSCV) to measure extracellular concentrations of dopamine. In the present study, the authors describe the extended capability of the WINCS to use fixed potential amperometry (FPA) to measure extracellular concentrations of dopamine, as well as glutamate and adenosine. Compared with other electrochemical techniques such as FSCV or high-speed chronoamperometry, FPA offers superior temporal resolution and, in combination with enzyme-linked biosensors, the potential to monitor nonelectroactive analytes in real time. The WINCS design incorporated a transimpedance amplifier with associated analog circuitry for FPA; a microprocessor; a Bluetooth transceiver; and a single, battery-powered, multilayer, printed circuit board. The WINCS was tested with 3 distinct recording electrodes: 1) a carbon-fiber microelectrode (CFM) to measure dopamine; 2) a glutamate oxidase enzyme-linked electrode to measure glutamate; and 3) a multiple enzyme-linked electrode (adenosine deaminase, nucleoside phosphorylase, and xanthine oxidase) to measure adenosine. Proof-of-principle analyses included noise assessments and in vitro and in vivo measurements that were compared with similar analyses by using a commercial hardwired electrochemical system (EA161 Picostat, eDAQ; Pty Ltd). In urethane-anesthetized rats, dopamine release was monitored in the striatum following deep brain stimulation (DBS) of ascending dopaminergic fibers in the medial forebrain bundle (MFB). In separate rat experiments, DBS-evoked adenosine release was monitored in the ventrolateral thalamus. To test the WINCS in an operating room setting resembling human neurosurgery, cortical glutamate release in response to motor cortex stimulation (MCS) was monitored using a large-mammal animal model, the pig. The WINCS, which is designed in compliance with FDA-recognized consensus standards for medical electrical device safety, successfully measured dopamine, glutamate, and adenosine, both in vitro and in vivo. The WINCS detected striatal dopamine release at the implanted CFM during DBS of the MFB. The DBS-evoked adenosine release in the rat thalamus and MCS-evoked glutamate release in the pig cortex were also successfully measured. Overall, in vitro and in vivo testing demonstrated signals comparable to a commercial hardwired electrochemical system for FPA. By incorporating FPA, the chemical repertoire of WINCS-measurable neurotransmitters is expanded to include glutamate and other nonelectroactive species for which the evolving field of enzyme-linked biosensors exists. Because many neurotransmitters are not electrochemically active, FPA in combination with enzyme-linked microelectrodes represents a powerful intraoperative tool for rapid and selective neurochemical sampling in important anatomical targets during functional neurosurgery.

  1. Role of glycogenolysis in stimulation of ATP release from cultured mouse astrocytes by transmitters and high K+ concentrations.

    PubMed

    Xu, Junnan; Song, Dan; Bai, Qiufang; Zhou, Lijun; Cai, Liping; Hertz, Leif; Peng, Liang

    2014-01-13

    This study investigates the role of glycogenolysis in stimulated release of ATP as a transmitter from astrocytes. Within the last 20 years our understanding of brain glycogenolysis has changed from it being a relatively uninteresting process to being a driving force for essential brain functions like production of transmitter glutamate and homoeostasis of potassium ions (K+) after their release from excited neurons. Simultaneously, the importance of astrocytic handling of adenosine, its phosphorylation to ATP and release of some astrocytic ATP, located in vesicles, as an important transmitter has also become to be realized. Among the procedures stimulating Ca2+-dependent release of vesicular ATP are exposure to such transmitters as glutamate and adenosine, which raise intra-astrocytic Ca2+ concentration, or increase of extracellular K+ to a depolarizing level that opens astrocytic L-channels for Ca2+ and thereby also increase intra-astrocytic Ca2+ concentration, a prerequisite for glycogenolysis. The present study has confirmed and quantitated stimulated ATP release from well differentiated astrocyte cultures by glutamate, adenosine or elevated extracellular K+ concentrations, measured by a luciferin/luciferase reaction. It has also shown that this release is virtually abolished by an inhibitor of glycogenolysis as well as by inhibitors of transmitter-mediated signaling or of L-channel opening by elevated K+ concentrations.

  2. Cytosolic acidification and intracellular zinc release in hippocampal neurons

    PubMed Central

    Kiedrowski, Lech

    2012-01-01

    In neurons exposed to glutamate, Ca2+ influx triggers intracellular Zn2+ release via an as yet unclear mechanism. Since glutamate induces a Ca2+-dependent cytosolic acidification, the present work tested the relationships among intracellular Ca2+ concentration ([Ca2+]i), intracellular pH (pHi), and [Zn2+]i. Cultured hippocampal neurons were exposed to glutamate and glycine (Glu/Gly), while [Zn2+]i, [Ca2+]i and pHi were monitored using FluoZin-3, Fura2-FF, and 2′,7′-bis-(2-carboxyethyl)-5(6)-carboxyfluorescein, respectively. Glu/Gly applications decreased pHi to 6.1 and induced intracellular Zn2+ release in a Ca2+-dependent manner, as expected. The pHi drop reduced the affinity of FluoZin-3 and Fura-2-FF for Zn2+. The rate of Glu/Gly-induced [Zn2+]i increase was not correlated with the rate of [Ca2+]i increase. Instead, the extent of [Zn2+]i elevations corresponded well to the rate of pHi drop. Namely, [Zn2+]i increased more in more highly acidified neurons. Inhibiting the mechanisms responsible for the Ca2+-dependent pHi drop (plasmalemmal Ca2+ pump and mitochondria) counteracted the Glu/Gly-induced intracellular Zn2+ release. Alkaline pH (8.5) suppressed Glu/Gly-induced intracellular Zn2+ release whereas acidic pH (6.0) enhanced it. A pHi drop to 6.0 (without any Ca2+ influx or glutamate receptor activation) led to intracellular Zn2+ release; the released Zn2+ (free Zn2+ plus Zn2+ bound to Fura-2FF and FluoZin-3) reached 1 μM. PMID:22339672

  3. Metabotropic glutamate receptor modulation of dopamine release in the nucleus accumbens shell is unaffected by phencyclidine pretreatment: In vitro assessment using fast-scan cyclic voltammetry rat brain slices.

    PubMed

    Gupta, Ishan; Young, Andrew M J

    2018-05-15

    The non-competitive glutamate antagonist, phencyclidine is used in rodents to model behavioural deficits see in schizophrenia. Importantly, these deficits endure long after the cessation of short-term chronic treatment (sub-chronic), indicating that the drug treatment causes long-term changes in the physiology and/or chemistry of the brain. There is evidence that this may occur through glutamatergic modulation of mesolimbic dopamine release, perhaps involving metabotropic glutamate receptors (mGluR). This study sought to investigate the effect of sub-chronic phencyclidine pretreatment on modulation of dopamine neurotransmission by metabotropic glutamate receptors 2 and 5 (mGluR2 and mGluR5) in the nucleus accumbens shell in vitro, with the hypothesis that phencyclidine pretreatment would disrupt the mGluR-mediated modulation of dopamine release. We showed that the orthosteric mGluR2 agonist LY379268 (0.1 µM, 1 µM and 10 µM) and mGluR5 positive allosteric modulator CDPPB (1 µM and 10 µM) both attenuated potassium-evoked dopamine release, underscoring their role in modulating dopamine neurotransmission in the nucleus accumbens. Sub-chronic PCP treatment, which caused cognitive deficits measured by performance in the novel object recognition task, modelling aspects of behavioral deficits seen in schizophrenia, induced neurobiological changes that enhanced dopamine release in the nucleus accumbens, but had no effect on mGluR2 or mGluR5 mediated changes in dopamine release. Therefore it is unlikely that schizophrenia-related behavioural changes seen after sub-chronic phencyclidine pre-treatment are mediated through mGluR modulation of dopamine release. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Altered spinal arachidonic acid turnover after peripheral nerve injury regulates regional glutamate concentration and neuropathic pain behaviors in rats.

    PubMed

    Sung, Backil; Wang, Shuxing; Zhou, Bei; Lim, Grewo; Yang, Liling; Zeng, Qing; Lim, Jeong-Ae; Wang, Jing Dong; Kang, Jing X; Mao, Jianren

    2007-09-01

    Spinal glutamate transporters (GT) have been implicated in the mechanisms of neuropathic pain; however, how spinal GT uptake activity is regulated remains unclear. Here we show that alteration of spinal arachidonic acid (AA) turnover after peripheral nerve injury regulated regional GT uptake activity and glutamate homeostasis. Chronic constriction nerve injury (CCI) in rats significantly reduced spinal GT uptake activity ((3)H-glutamate uptake) with an associated increase in extracellular AA and glutamate concentration from spinal microdialysates on postoperative day 8. AACOCF3 (a cytosolic phospholipase A2 inhibitor, 30mug) given intrathecally twice a day for postoperative day 1-7 reversed this CCI-induced spinal AA production, prevented the reduced spinal GT uptake activity and increased extracellular glutamate concentration. Conversely, alteration of spinal AA metabolism by diclofenac (a cyclooxygenase 1/2 inhibitor, 200mug) further reduced spinal GT uptake activity and increased extracellular glutamate concentration in CCI rats. GT uptake activity was also attenuated when AA (10 or 100nM) was directly added into spinal samples of naïve rats in an in vitro(3)H-glutamate uptake assay, indicating a direct inhibitory effect of AA on GT uptake activity. Consistent with these findings, AACOCF3 reduced the development of both thermal hyperalgesia and mechanical allodynia, whereas diclofenac exacerbated thermal hyperalgesia, in CCI rats. Thus, spinal AA turnover may serve as a regulator in CCI-induced changes in regional GT uptake activity, glutamate homeostasis, and neuropathic pain behaviors. These data suggest that regulating spinal AA turnover may be a useful approach to improving the clinical management of neuropathic pain.

  5. Exogenous glutamate induces short and long-term potentiation in the rat medial vestibular nuclei.

    PubMed

    Grassi, S; Frondaroli, A; Pessia, M; Pettorossi, V E

    2001-08-08

    In rat brain stem slices, high concentrations of exogenous glutamate induce long-term potentiation (LTP) of the field potentials evoked in the medial vestibular nuclei (MVN) by vestibular afferent stimulation. At low concentrations, glutamate can also induce short-term potentiation (STP), indicating that LTP and STP are separate events depending on the level of glutamatergic synapse activation. LTP and STP are prevented by blocking NMDA receptors and nitric oxide (NO) synthesis. Conversely, blocking platelet-activating factor (PAF) and group I metabotropic glutamate receptors only prevents the full development of LTP. Moreover, in the presence of blocking agents, glutamate causes transient inhibition, suggesting that when potentiation is impeded, exogenous glutamate can activate presynaptic mechanisms that reduce glutamate release.

  6. Protein kinase C -dependent regulation of synaptosomal glutamate uptake under conditions of hypergravity

    NASA Astrophysics Data System (ADS)

    Borisova, Tatiana; Krisanova, Natalia; Borisov, Arseniy; Sivko, Roman

    Glutamate is not only the main excitatory neurotransmitter in the mammalian CNS, but also a potent neurotoxin. Excessive concentration of ambient glutamate over activates glutamate receptors and causes neurotoxicity. Uptake of glutamate from the extracellular space into nerve cells was mediated by sodium-dependent glutamate transporters located in the plasma membrane. It was shown that the activity of glutamate transporters in rat brain nerve terminals was decreased after hypergravity (centrifugation of rats in special containers at 10 G for 1 hour). This decrease may result from the reduction in the number of glutamate transporters expressed in the plasma membrane of nerve terminals after hypergravity that was regulated by protein kinase C. The possibility of the involvement of protein kinase C in the regulation of the activity of glutamate transporters was assessed under conditions of hypergravity. The effect of protein kinase C inhibitor GF 109 203X on synaptosomal L-[14C]glutamate uptake was analysed. It was shown that the inhibitor decreased L-[14C]glutamate uptake by 15 % in control but did not influence it after hypergravity. In control, the initial velocity of L-[14C]glutamate uptake in the presence of the inhibitor decreased from 2.5 ± 0.2 nmol x min-1 x mg-1 of proteins to 2.17 ± 0.1 nmol x min-1 x mg-1 of proteins, whereas after hypergravity this value lowered from 2.05 ± 0.1 nmol x min-1 x mg-1 of proteins to 2.04 ± 0.1 nmol x min-1 x mg-1 of proteins. Thus, protein kinase C -dependent alteration in the cell surface expression of glutamate transporters may be one of the causes of a decrease in the activity of glutamate transporters after hypergravity.

  7. Neto2 Assembles with Kainate Receptors in DRG Neurons during Development and Modulates Neurite Outgrowth in Adult Sensory Neurons.

    PubMed

    Vernon, Claire G; Swanson, Geoffrey T

    2017-03-22

    Peripheral sensory neurons in the dorsal root ganglia (DRG) are the initial transducers of sensory stimuli, including painful stimuli, from the periphery to central sensory and pain-processing centers. Small- to medium-diameter non-peptidergic neurons in the neonatal DRG express functional kainate receptors (KARs), one of three subfamilies of ionotropic glutamate receptors, as well as the putative KAR auxiliary subunit Neuropilin- and tolloid-like 2 (Neto2). Neto2 alters recombinant KAR function markedly but has yet to be confirmed as an auxiliary subunit that assembles with and alters the function of endogenous KARs. KARs in neonatal DRG require the GluK1 subunit as a necessary constituent, but it is unclear to what extent other KAR subunits contribute to the function and proposed roles of KARs in sensory ganglia, which include promotion of neurite outgrowth and modulation of glutamate release at the DRG-dorsal horn synapse. In addition, KARs containing the GluK1 subunit are implicated in modes of persistent but not acute pain signaling. We show here that the Neto2 protein is highly expressed in neonatal DRG and modifies KAR gating in DRG neurons in a developmentally regulated fashion in mice. Although normally at very low levels in adult DRG neurons, Neto2 protein expression can be upregulated via MEK/ERK signaling and after sciatic nerve crush and Neto2 -/- neurons from adult mice have stunted neurite outgrowth. These data confirm that Neto2 is a bona fide KAR auxiliary subunit that is an important constituent of KARs early in sensory neuron development and suggest that Neto2 assembly is critical to KAR modulation of DRG neuron process outgrowth. SIGNIFICANCE STATEMENT Pain-transducing peripheral sensory neurons of the dorsal root ganglia (DRG) express kainate receptors (KARs), a subfamily of glutamate receptors that modulate neurite outgrowth and regulate glutamate release at the DRG-dorsal horn synapse. The putative KAR auxiliary subunit Neuropilin- and tolloid-like 2 (Neto2) is also expressed in DRG. We show here that it is a developmentally downregulated but dynamic component of KARs in these neurons, that it contributes to regulated neurite regrowth in adult neurons, and that it is increased in adult mice after nerve injury. Our data confirm Neto2 as a KAR auxiliary subunit and expand our knowledge of the molecular composition of KARs in nociceptive neurons, a key piece in understanding the mechanistic contribution of KAR signaling to pain-processing circuits. Copyright © 2017 the authors 0270-6474/17/373352-12$15.00/0.

  8. Neto2 Assembles with Kainate Receptors in DRG Neurons during Development and Modulates Neurite Outgrowth in Adult Sensory Neurons

    PubMed Central

    Vernon, Claire G.

    2017-01-01

    Peripheral sensory neurons in the dorsal root ganglia (DRG) are the initial transducers of sensory stimuli, including painful stimuli, from the periphery to central sensory and pain-processing centers. Small- to medium-diameter non-peptidergic neurons in the neonatal DRG express functional kainate receptors (KARs), one of three subfamilies of ionotropic glutamate receptors, as well as the putative KAR auxiliary subunit Neuropilin- and tolloid-like 2 (Neto2). Neto2 alters recombinant KAR function markedly but has yet to be confirmed as an auxiliary subunit that assembles with and alters the function of endogenous KARs. KARs in neonatal DRG require the GluK1 subunit as a necessary constituent, but it is unclear to what extent other KAR subunits contribute to the function and proposed roles of KARs in sensory ganglia, which include promotion of neurite outgrowth and modulation of glutamate release at the DRG–dorsal horn synapse. In addition, KARs containing the GluK1 subunit are implicated in modes of persistent but not acute pain signaling. We show here that the Neto2 protein is highly expressed in neonatal DRG and modifies KAR gating in DRG neurons in a developmentally regulated fashion in mice. Although normally at very low levels in adult DRG neurons, Neto2 protein expression can be upregulated via MEK/ERK signaling and after sciatic nerve crush and Neto2−/− neurons from adult mice have stunted neurite outgrowth. These data confirm that Neto2 is a bona fide KAR auxiliary subunit that is an important constituent of KARs early in sensory neuron development and suggest that Neto2 assembly is critical to KAR modulation of DRG neuron process outgrowth. SIGNIFICANCE STATEMENT Pain-transducing peripheral sensory neurons of the dorsal root ganglia (DRG) express kainate receptors (KARs), a subfamily of glutamate receptors that modulate neurite outgrowth and regulate glutamate release at the DRG–dorsal horn synapse. The putative KAR auxiliary subunit Neuropilin- and tolloid-like 2 (Neto2) is also expressed in DRG. We show here that it is a developmentally downregulated but dynamic component of KARs in these neurons, that it contributes to regulated neurite regrowth in adult neurons, and that it is increased in adult mice after nerve injury. Our data confirm Neto2 as a KAR auxiliary subunit and expand our knowledge of the molecular composition of KARs in nociceptive neurons, a key piece in understanding the mechanistic contribution of KAR signaling to pain-processing circuits. PMID:28235897

  9. Resveratrol Prevents Ammonia Toxicity in Astroglial Cells

    PubMed Central

    Guerra, Maria Cristina; Leite, Marina Concli; Souza, Diogo Onofre; Gonçalves, Carlos-Alberto; Gottfried, Carmem

    2012-01-01

    Ammonia is implicated as a neurotoxin in brain metabolic disorders associated with hyperammonemia. Acute ammonia toxicity can be mediated by an excitotoxic mechanism, oxidative stress and nitric oxide (NO) production. Astrocytes interact with neurons, providing metabolic support and protecting against oxidative stress and excitotoxicity. Astrocytes also convert excess ammonia and glutamate into glutamine via glutamine synthetase (GS). Resveratrol, a polyphenol found in grapes and red wines, exhibits antioxidant and anti-inflammatory properties and modulates glial functions, such as glutamate metabolism. We investigated the effect of resveratrol on the production of reactive oxygen species (ROS), GS activity, S100B secretion, TNF-α, IL-1β and IL-6 levels in astroglial cells exposed to ammonia. Ammonia induced oxidative stress, decreased GS activity and increased cytokines release, probably by a mechanism dependent on protein kinase A (PKA) and extracellular signal-regulated kinase (ERK) pathways. Resveratrol prevented ammonia toxicity by modulating oxidative stress, glial and inflammatory responses. The ERK and nuclear factor-κB (NF-κB) are involved in the protective effect of resveratrol on cytokines proinflammatory release. In contrast, other antioxidants (e.g., ascorbic acid and trolox) were not effective against hyperammonemia. Thus, resveratrol could be used to protect against ammonia-induced neurotoxicity. PMID:23284918

  10. Genetically Epilepsy-Prone Rats Have Increased Brain Regional Activity of an Enzyme Which Liberates Glutamate from N-acetyl-aspartyl-glutamate

    DTIC Science & Technology

    1992-01-01

    DISTRIBUTION C OOt .APPROVED FOR PUPLIC RELEASE: DISTRIBUTION UNLIMITED Ii. A STRA T (Minls.m200oids N-Acetylated-a- 1 n (’ed acidic dip cpL,2ase (N...aspartate (NAA) and the excitatory amino acid , glutamate (CLU). Although there is evidence that NAAG might be a neurotransmitter, this dipoptide could...Genetics; Itippocampus: E-ctlsatlltmt pilepsy-, Glutamate: N-Acetylated-o-1 inked acidic dipeptidasc-: Enrniatic: IIrosz:NAAG: Aspartalc N-Acetylated-a

  11. Metabotropic Glutamate 7 (mGlu7) Receptor: A Target for Medication Development for the Treatment of Cocaine Dependence

    PubMed Central

    Li, Xia; Xi, Zheng-Xiong; Markou, Athina

    2013-01-01

    Brain glutamate has been shown to play an important role in reinstatement to drug seeking, a behavior considered to be of relevance to relapse to drug taking in humans. Therefore, glutamate receptors, in particular metabotropic glutamate (mGlu) receptors, have become important targets for medication development for the treatment of drug dependence. In this review article, we focus on the mGlu7 receptor subtype, and discuss recent findings with AMN082, a selective mGlu7 receptor allosteric agonist, in animal models with relevance to drug dependence. Systemic or local administration of AMN082 into the nucleus accumbens (NAc), a critical brain region involved in reward and drug dependence processes, inhibited the reinforcing and motivational effects of cocaine, heroin and ethanol, as assessed by the intravenous drug self-administration procedure. In addition, AMN082 inhibited the reward-enhancing effects induced by cocaine, as assessed in the intracranial self-stimulation procedure, and cocaine- or cue-induced reinstatement of drug-seeking behavior. In vivo microdialysis studies indicated that systemic or intra-NAc administration of AMN082 significantly decreased extracellular γ-aminobutyric acid (GABA) and elevated extracellular glutamate, but had no effect on extracellular dopamine in the NAc, suggesting that a non-dopaminergic mechanism underlies the effects of AMN082 on the actions of cocaine. Further, data indicated that AMN082-induced changes in glutamate were the net effect of two actions: one is the direct inhibition of glutamate release by activation of mGlu7 receptors on glutamatergic neurons; another is the indirect increases of glutamate release mediated by decreases in GABA transmission. These increases in extracellular glutamate functionally antagonized cocaine-induced inhibition of NAc-ventral pallidum GABAergic neurotransmission, and therefore, the rewarding effects of cocaine. In addition, elevated extracellular glutamate activated presynaptic mGlu2/3 autoreceptors which in turn inhibited cocaine priming- or cue-induced enhancement of glutamate release and reinstatement of drug-seeking behavior. Taken together, these findings suggest that the mGlu7 receptor is an important target for medication development for the treatment of drug dependence. AMN082 or other mGlu7 receptor allosteric agonists may have potential as novel pharmacotherapies for cocaine addiction. PMID:22546614

  12. Synaptically released zinc triggers metabotropic signaling via a zinc-sensing receptor in the hippocampus.

    PubMed

    Besser, Limor; Chorin, Ehud; Sekler, Israel; Silverman, William F; Atkin, Stan; Russell, James T; Hershfinkel, Michal

    2009-03-04

    Zn(2+) is coreleased with glutamate from mossy fiber terminals and can influence synaptic function. Here, we demonstrate that synaptically released Zn(2+) activates a selective postsynaptic Zn(2+)-sensing receptor (ZnR) in the CA3 region of the hippocampus. ZnR activation induced intracellular release of Ca(2+), as well as phosphorylation of extracellular-regulated kinase and Ca(2+)/calmodulin kinase II. Blockade of synaptic transmission by tetrodotoxin or CdCl inhibited the ZnR-mediated Ca(2+) rises. The responses mediated by ZnR were largely attenuated by the extracellular Zn(2+) chelator, CaEDTA, and in slices from mice lacking vesicular Zn(2+), suggesting that synaptically released Zn(2+) triggers the metabotropic activity. Knockdown of the expression of the orphan G-protein-coupled receptor 39 (GPR39) attenuated ZnR activity in a neuronal cell line. Importantly, we observed widespread GPR39 labeling in CA3 neurons, suggesting a role for this receptor in mediating ZnR signaling in the hippocampus. Our results describe a unique role for synaptic Zn(2+) acting as the physiological ligand of a metabotropic receptor and provide a novel pathway by which synaptic Zn(2+) can regulate neuronal function.

  13. The Installation Restoration Program Toxicology Guide. Volume 3

    DTIC Science & Technology

    1987-06-01

    organ because of injury or disease. log Kow Log of the octanol-water partition coefficient. Lower The lowest concentration of the material in air which...involved in clotting. SGOT Serum glutamic oxalacetic transaminase, an enzyme released into the serum as the result of tissue injury , especially injury ...to the heart and/or liver. SGPT Serum glutamic pyruvic transaminase, an enzyme % released into the serum as a result of tissue injury , 1: especially

  14. Oligomers of Amyloid β Prevent Physiological Activation of the Cellular Prion Protein-Metabotropic Glutamate Receptor 5 Complex by Glutamate in Alzheimer Disease.

    PubMed

    Haas, Laura T; Strittmatter, Stephen M

    2016-08-12

    The dysfunction and loss of synapses in Alzheimer disease are central to dementia symptoms. We have recently demonstrated that pathological Amyloid β oligomer (Aβo) regulates the association between intracellular protein mediators and the synaptic receptor complex composed of cellular prion protein (PrP(C)) and metabotropic glutamate receptor 5 (mGluR5). Here we sought to determine whether Aβo alters the physiological signaling of the PrP(C)-mGluR5 complex upon glutamate activation. We provide evidence that acute exposure to Aβo as well as chronic expression of familial Alzheimer disease mutant transgenes in model mice prevents protein-protein interaction changes of the complex induced by the glutamate analog 3,5-dihydroxyphenylglycine. We further show that 3,5-dihydroxyphenylglycine triggers the phosphorylation and activation of protein-tyrosine kinase 2-β (PTK2B, also referred to as Pyk2) and of calcium/calmodulin-dependent protein kinase II in wild-type brain slices but not in Alzheimer disease transgenic brain slices or wild-type slices incubated with Aβo. This study further distinguishes two separate Aβo-dependent signaling cascades, one dependent on extracellular Ca(2+) and Fyn kinase activation and the other dependent on the release of Ca(2+) from intracellular stores. Thus, Aβo triggers multiple distinct PrP(C)-mGluR5-dependent events implicated in neurodegeneration and dementia. We propose that targeting the PrP(C)-mGluR5 complex will reverse aberrant Aβo-triggered states of the complex to allow physiological fluctuations of glutamate signaling. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  15. Metaplasticity of hypothalamic synapses following in vivo challenge.

    PubMed

    Kuzmiski, J Brent; Pittman, Quentin J; Bains, Jaideep S

    2009-06-25

    Neural networks that regulate an organism's internal environment must sense perturbations, respond appropriately, and then reset. These adaptations should be reflected as changes in the efficacy of the synapses that drive the final output of these homeostatic networks. Here we show that hemorrhage, an in vivo challenge to fluid homeostasis, induces LTD at glutamate synapses onto hypothalamic magnocellular neurosecretory cells (MNCs). LTD requires the activation of postsynaptic alpha2-adrenoceptors and the production of endocannabinoids that act in a retrograde fashion to inhibit glutamate release. In addition, both hemorrhage and noradrenaline downregulate presynaptic group III mGluRs. This loss of mGluR function allows high-frequency activity to potentiate these synapses from their depressed state. These findings demonstrate that noradrenaline controls a form of metaplasticity that may underlie the resetting of homeostatic networks following a successful response to an acute physiological challenge.

  16. [Changes in glutamate release in the rat nucleus accumbens during food and pain reinforcement].

    PubMed

    Saul'skaia, N B; Mikhaĭlova, M O; Pudovkina, O L; Gorbachevskaia, A I

    2000-01-01

    In vivo microdialysis combined with HPLC-EC analysis was used to monitor extracellular glutamate in the n. accumbens of Sprague-Dawley rats during footshock and food delivery. The footshock presentation resulted in a delayed increase in extracellular glutamate level, whereas the food intake caused its decrease. The intra-accumbens infusion of glutamate reuptake blocker D,L-threo-beta-hydroxiaspartate (1 mM) completely prevented the food-induced decrease in glutamate level. The intra-accumbens infusion of sodium channel blocker tetrodotoxin (1 microM) led to an increase in glutamate extracellular level in the n. accumbens in response to food intake. The results suggest that the food-induced decrease in glutamate extracellular level in the n. accumbens occurs due to an enhancement of high-affinity glutamate uptake that is probably under the neuronal control during feeding.

  17. Ca2+ Entry is Required for Mechanical Stimulation-induced ATP Release from Astrocyte

    PubMed Central

    Lee, Jaekwang; Chun, Ye-Eun; Han, Kyung-Seok; Lee, Jungmoo; Woo, Dong Ho

    2015-01-01

    Astrocytes and neurons are inseparable partners in the brain. Neurotransmitters released from neurons activate corresponding G protein-coupled receptors (GPCR) expressed in astrocytes, resulting in release of gliotransmitters such as glutamate, D-serine, and ATP. These gliotransmitters in turn influence neuronal excitability and synaptic activities. Among these gliotransmitters, ATP regulates the level of network excitability and is critically involved in sleep homeostasis and astrocytic Ca2+ oscillations. ATP is known to be released from astrocytes by Ca2+-dependent manner. However, the precise source of Ca2+, whether it is Ca2+ entry from outside of cell or from the intracellular store, is still not clear yet. Here, we performed sniffer patch to detect ATP release from astrocyte by using various stimulation. We found that ATP was not released from astrocyte when Ca2+ was released from intracellular stores by activation of Gαq-coupled GPCR including PAR1, P2YR, and B2R. More importantly, mechanical stimulation (MS)-induced ATP release from astrocyte was eliminated when external Ca2+ was omitted. Our results suggest that Ca2+ entry, but not release from intracellular Ca2+ store, is critical for MS-induced ATP release from astrocyte. PMID:25792866

  18. Regulation of glutamate in cultures of human monocytic THP-1 and astrocytoma U-373 MG cells.

    PubMed

    Klegeris, A; Walker, D G; McGeer, P L

    1997-09-01

    Glutamate, an excitatory neurotransmitter, is neurotoxic at high concentrations. Neuroglial cells, including astrocytes and microglia, play an important role in regulating its extracellular levels. Cultured human monocytic THP-1 cells increased their glutamate secretion following 18 and 68 h exposure to the inflammatory mediators zymosan, phorbol myristate acetate (PMA), lipopolysaccharide, interferon-gamma, tumor-necrosis factor-alpha and interleukin-1beta. Cultured astrocytoma U-373 MG cells increased their glutamate secretion following similar exposure to zymosan and PMA. DL-Alpha-aminopimelic acid, an inhibitor of the glutamate secretion system, reduced extracellular glutamate in both cell culture systems, while the high-affinity glutamate uptake inhibitors D-Aspartic acid, DL-threo-beta-hydroxyaspartic acid and L-trans-pyrrolidine-2,4-dicarboxylic acid increased extracellular glutamate in U-373 MG, but not THP-1 cell cultures. In co-cultures of THP-1 and U-373 MG cells, extracellular glutamate levels were increased significantly by the Alzheimer beta-amyloid peptide (1-40) and were decreased significantly by the anti-inflammatory drug dexamethasone. These data indicate that inflammatory stimuli may increase extracellular glutamate while antiinflammatory drugs decrease it.

  19. ADP-ribosylation factor6 regulates both [3H]-noradrenaline and [14C]-glutamate exocytosis through phosphatidylinositol 4,5-bisphosphate.

    PubMed

    Zheng, Qian; Bobich, Joseph A

    2004-10-01

    GTP phosphohydrolase (cell regulating) (EC 3.6.1.47, ADP-ribosylation factor6, ARF6) has been shown to play an important role in different steps of membrane trafficking. It also regulates chromaffin granule exocytosis through phosphatidylcholine phosphatidohydrolase (EC 3.1.4.14, PLD) activation. In this study, the role of ARF6 in neurotransmitter release from both dense-core granules (DCGs) and synaptic vesicles (SVs) in rat brain cortex nerve endings was investigated. We observed that synaptosomal ARF6 is largely particulate but moves to a less easily pelleted compartment upon nerve ending stimulation. We also found that direct inhibition of ARF6 by a specific antibody or interference with ARF6 downstream effects by a myristoylated N-terminal ARF6 peptide both significantly decreased both [3H]-noradrenaline and [14C]-glutamate exocytosis. Addition of phosphatidic acid (PA) and phosphatidylinositol 4,5-bisphosphate (PIP2) partially or completely restored exocytosis. These findings suggest that ARF6 plays important regulatory roles for both DCG and SV exocytosis by activating PLD and ATP:1-phosphatidyl-1D-myo-inositol 4-phosphate 5-phosphotransferase (EC 2.7.1.68, PI4P-5K) to enhance PIP2 synthesis and nerve ending membrane trafficking.

  20. The Role of KV7.3 in Regulating Osteoblast Maturation and Mineralization

    PubMed Central

    Yang, Ji Eun; Song, Min Seok; Shen, Yiming; Ryu, Pan Dong; Lee, So Yeong

    2016-01-01

    KCNQ (KV7) channels are voltage-gated potassium (KV) channels, and the function of KV7 channels in muscles, neurons, and sensory cells is well established. We confirmed that overall blockade of KV channels with tetraethylammonium augmented the mineralization of bone-marrow-derived human mesenchymal stem cells during osteogenic differentiation, and we determined that KV7.3 was expressed in MG-63 and Saos-2 cells at the mRNA and protein levels. In addition, functional KV7 currents were detected in MG-63 cells. Inhibition of KV7.3 by linopirdine or XE991 increased the matrix mineralization during osteoblast differentiation. This was confirmed by alkaline phosphatase, osteocalcin, and osterix in MG-63 cells, whereas the expression of Runx2 showed no significant change. The extracellular glutamate secreted by osteoblasts was also measured to investigate its effect on MG-63 osteoblast differentiation. Blockade of KV7.3 promoted the release of glutamate via the phosphorylation of extracellular signal-regulated kinase 1/2-mediated upregulation of synapsin, and induced the deposition of type 1 collagen. However, activation of KV7.3 by flupirtine did not produce notable changes in matrix mineralization during osteoblast differentiation. These results suggest that KV7.3 could be a novel regulator in osteoblast differentiation. PMID:26999128

  1. The Role of KV7.3 in Regulating Osteoblast Maturation and Mineralization.

    PubMed

    Yang, Ji Eun; Song, Min Seok; Shen, Yiming; Ryu, Pan Dong; Lee, So Yeong

    2016-03-18

    KCNQ (KV7) channels are voltage-gated potassium (KV) channels, and the function of KV7 channels in muscles, neurons, and sensory cells is well established. We confirmed that overall blockade of KV channels with tetraethylammonium augmented the mineralization of bone-marrow-derived human mesenchymal stem cells during osteogenic differentiation, and we determined that KV7.3 was expressed in MG-63 and Saos-2 cells at the mRNA and protein levels. In addition, functional KV7 currents were detected in MG-63 cells. Inhibition of KV7.3 by linopirdine or XE991 increased the matrix mineralization during osteoblast differentiation. This was confirmed by alkaline phosphatase, osteocalcin, and osterix in MG-63 cells, whereas the expression of Runx2 showed no significant change. The extracellular glutamate secreted by osteoblasts was also measured to investigate its effect on MG-63 osteoblast differentiation. Blockade of KV7.3 promoted the release of glutamate via the phosphorylation of extracellular signal-regulated kinase 1/2-mediated upregulation of synapsin, and induced the deposition of type 1 collagen. However, activation of KV7.3 by flupirtine did not produce notable changes in matrix mineralization during osteoblast differentiation. These results suggest that KV7.3 could be a novel regulator in osteoblast differentiation.

  2. Intercellular signal communication among odontoblasts and trigeminal ganglion neurons via glutamate.

    PubMed

    Nishiyama, A; Sato, M; Kimura, M; Katakura, A; Tazaki, M; Shibukawa, Y

    2016-11-01

    Various stimuli to the exposed surface of dentin induce changes in the hydrodynamic force inside the dentinal tubules resulting in dentinal pain. Recent evidences indicate that mechano-sensor channels, such as the transient receptor potential channels, in odontoblasts receive these hydrodynamic forces and trigger the release of ATP to the pulpal neurons, to generate dentinal pain. A recent study, however, has shown that odontoblasts also express glutamate receptors (GluRs). This implies that cells in the dental pulp tissue have the ability to release glutamate, which acts as a functional intercellular mediator to establish inter-odontoblast and odontoblast-trigeminal ganglion (TG) neuron signal communication. To investigate the intercellular signal communication, we applied mechanical stimulation to odontoblasts and measured the intracellular free Ca 2+ concentration ([Ca 2+ ] i ). During mechanical stimulation in the presence of extracellular Ca 2+ , we observed a transient [Ca 2+ ] i increase not only in single stimulated odontoblasts, but also in adjacent odontoblasts. We could not observe these responses in the absence of extracellular Ca 2+ . [Ca 2+ ] i increases in the neighboring odontoblasts during mechanical stimulation of single odontoblasts were inhibited by antagonists of metabotropic glutamate receptors (mGluRs) as well as glutamate-permeable anion channels. In the odontoblast-TG neuron coculture, we observed an increase in [Ca 2+ ] i in the stimulated odontoblasts and TG neurons, in response to direct mechanical stimulation of single odontoblasts. These [Ca 2+ ] i increases in the neighboring TG neurons were inhibited by antagonists for mGluRs. The [Ca 2+ ] i increases in the stimulated odontoblasts were also inhibited by mGluRs antagonists. We further confirmed that the odontoblasts express group I, II, and III mGluRs. However, we could not record any currents evoked from odontoblasts near the mechanically stimulated odontoblast, with or without extracellular Mg 2+ , indicating that N-methyl-d-aspartic acid receptor does not contribute to inter-odontoblast signal communication. The results suggest that a mechanically stimulated odontoblast is capable of releasing glutamate into the extracellular space via glutamate-permeable anion channels. The released glutamate activates mGluRs on the odontoblasts in an autocrine/paracrine manner, forming an inter-odontoblasts communication, which drives dentin formation via odontoblast-odontoblast signal communication. Glutamate and mGluRs also mediate neurotransmission between the odontoblasts and neurons in the dental pulp to modulate sensory signal transmission for dentinal sensitivity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Interleukin-1β-induced memory reconsolidation impairment is mediated by a reduction in glutamate release and zif268 expression and α-melanocyte-stimulating hormone prevented these effects.

    PubMed

    Machado, Ivana; Gonzalez, Patricia V; Vilcaes, Alejandro; Carniglia, Lila; Schiöth, Helgi B; Lasaga, Mercedes; Scimonelli, Teresa N

    2015-05-01

    The immune system is an important modulator of learning, memory and neural plasticity. Interleukin 1β (IL-1β), a pro-inflammatory cytokine, significantly affects several cognitive processes. Previous studies by our group have demonstrated that intrahippocampal administration of IL-1β impairs reconsolidation of contextual fear memory. This effect was reversed by the melanocortin alpha-melanocyte-stimulating hormone (α-MSH). The mechanisms underlying the effect of IL-1β on memory reconsolidation have not yet been established. Therefore, we examined the effect of IL-1β on glutamate release, ERK phosphorylation and the activation of the transcription factor zinc finger- 268 (zif268) during reconsolidation. Our results demonstrated that IL-1β induced a significant decrease of glutamate release after reactivation of the fear memory and this effect was related to calcium concentration in hippocampal synaptosomes. IL-1β also reduced ERK phosphorylation and zif268 expression in the hippocampus. Central administration of α-MSH prevented the decrease in glutamate release, ERK phosphorylation and zif268 expression induced by IL-1β. Our results establish possible mechanisms involved in the detrimental effect of IL-1β on memory reconsolidation and also indicate that α-MSH may exert a beneficial modulatory role in preventing IL-1β effects. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Differential splicing and glycosylation of Apoer2 alters synaptic plasticity and fear learning.

    PubMed

    Wasser, Catherine R; Masiulis, Irene; Durakoglugil, Murat S; Lane-Donovan, Courtney; Xian, Xunde; Beffert, Uwe; Agarwala, Anandita; Hammer, Robert E; Herz, Joachim

    2014-11-25

    Apoer2 is an essential receptor in the central nervous system that binds to the apolipoprotein ApoE. Various splice variants of Apoer2 are produced. We showed that Apoer2 lacking exon 16, which encodes the O-linked sugar (OLS) domain, altered the proteolytic processing and abundance of Apoer2 in cells and synapse number and function in mice. In cultured cells expressing this splice variant, extracellular cleavage of OLS-deficient Apoer2 was reduced, consequently preventing γ-secretase-dependent release of the intracellular domain of Apoer2. Mice expressing Apoer2 lacking the OLS domain had increased Apoer2 abundance in the brain, hippocampal spine density, and glutamate receptor abundance, but decreased synaptic efficacy. Mice expressing a form of Apoer2 lacking the OLS domain and containing an alternatively spliced cytoplasmic tail region that promotes glutamate receptor signaling showed enhanced hippocampal long-term potentiation (LTP), a phenomenon associated with learning and memory. However, these mice did not display enhanced spatial learning in the Morris water maze, and cued fear conditioning was reduced. Reducing the expression of the mutant Apoer2 allele so that the abundance of the protein was similar to that of Apoer2 in wild-type mice normalized spine density, hippocampal LTP, and cued fear learning. These findings demonstrated a role for ApoE receptors as regulators of synaptic glutamate receptor activity and established differential receptor glycosylation as a potential regulator of synaptic function and memory. Copyright © 2014, American Association for the Advancement of Science.

  5. Differential splicing and glycosylation of Apoer2 alters synaptic plasticity and fear learning

    PubMed Central

    Wasser, Catherine R.; Masiulis, Irene; Durakoglugil, Murat S.; Lane-Donovan, Courtney; Xian, Xunde; Beffert, Uwe; Agarwala, Anandita; Hammer, Robert E.; Herz, Joachim

    2015-01-01

    Apoer2 is an essential receptor in the central nervous system that binds to the apolipoprotein ApoE. Various splice variants of Apoer2 are produced. We showed that Apoer2 lacking exon 16, which encodes the O-linked sugar (OLS) domain, altered the proteolytic processing and abundance of Apoer2 in cells and synapse number and function in mice. In cultured cells expressing this splice variant, extracellular cleavage of OLS-deficient Apoer2 was reduced, consequently preventing γ-secretase-dependent release of the intracellular domain of Apoer2. Mice expressing Apoer2 lacking the OLS domain had increased Apoer2 abundance in the brain, hippocampal spine density, and glutamate receptor abundance, but decreased synaptic efficacy. Mice expressing a form of Apoer2 lacking the OLS domain and containing an alternatively spliced cytoplasmic tail region that promotes glutamate receptor signaling showed enhanced hippocampal long-term potentiation (LTP), a phenomenon associated with learning and memory. However, these mice did not display enhanced spatial learning in the Morris water maze, and cued fear conditioning was reduced. Reducing the expression of the mutant Apoer2 allele so that the abundance of the protein was similar to that of Apoer2 in wild-type mice normalized spine density, hippocampal LTP, and cued fear learning. These findings demonstrated a role for ApoE receptors as regulators of synaptic glutamate receptor activity and established differential receptor glycosylation as a potential regulator of synaptic function and memory. PMID:25429077

  6. The GRP1 PH domain, like the AKT1 PH domain, possesses a sentry glutamate residue essential for specific targeting to plasma membrane PI(3,4,5)P(3).

    PubMed

    Pilling, Carissa; Landgraf, Kyle E; Falke, Joseph J

    2011-11-15

    During the appearance of the signaling lipid PI(3,4,5)P(3), an important subset of pleckstrin homology (PH) domains target signaling proteins to the plasma membrane. To ensure proper pathway regulation, such PI(3,4,5)P(3)-specific PH domains must exclude the more prevalant, constitutive plasma membrane lipid PI(4,5)P(2) and bind the rare PI(3,4,5)P(3) target lipid with sufficiently high affinity. Our previous study of the E17K mutant of the protein kinase B (AKT1) PH domain, together with evidence from Carpten et al. [Carpten, J. D., et al. (2007) Nature 448, 439-444], revealed that the native AKT1 E17 residue serves as a sentry glutamate that excludes PI(4,5)P(2), thereby playing an essential role in specific PI(3,4,5)P(3) targeting [Landgraf, K. E., et al. (2008) Biochemistry 47, 12260-12269]. The sentry glutamate hypothesis proposes that an analogous sentry glutamate residue is a widespread feature of PI(3,4,5)P(3)-specific PH domains, and that charge reversal mutation at the sentry glutamate position will yield both increased PI(4,5)P(2) affinity and constitutive plasma membrane targeting. To test this hypothesis, we investigated the E345 residue, a putative sentry glutamate, of the general receptor for phosphoinositides 1 (GRP1) PH domain. The results show that incorporation of the E345K charge reversal mutation into the GRP1 PH domain enhances PI(4,5)P(2) affinity 8-fold and yields constitutive plasma membrane targeting in cells, reminiscent of the effects of the E17K mutation in the AKT1 PH domain. Hydrolysis of plasma membrane PI(4,5)P(2) releases the E345K GRP1 PH domain into the cytoplasm, and the efficiency of this release increases when Arf6 binding is disrupted. Overall, the findings provide strong support for the sentry glutamate hypothesis and suggest that the GRP1 E345K mutation will be linked to changes in cell physiology and human pathologies, as demonstrated for AKT1 E17K [Carpten, J. D., et al. (2007) Nature 448, 439-444; Lindhurst, M. J., et al. (2011) N. Engl. J. Med. 365, 611-619]. Analysis of available PH domain structures suggests that a lone glutamate residue (or, in some cases, an aspartate) is a common, perhaps ubiquitous, feature of PI(3,4,5)P(3)-specific binding pockets that functions to lower PI(4,5)P(2) affinity.

  7. GLT-1 Transport Stoichiometry Is Constant at Low and High Glutamate Concentrations when Chloride Is Substituted by Gluconate

    PubMed Central

    Kabakov, Anatoli Y.; Rosenberg, Paul A.

    2015-01-01

    Glutamate is the major excitatory neurotransmitter, but prolonged exposure even at micromolar concentrations causes neuronal death. Extracellular glutamate is maintained at nanomolar level by glutamate transporters, which, however, may reverse transport and release glutamate. If and when the reverse occurs depends on glutamate transport stoichiometry (GTS). Previously we found that in the presence of chloride, the coupled GLT-1 glutamate transporter current and its relationship to radiolabeled glutamate flux significantly decreased when extracellular glutamate concentration increased above 0.2 mM, which implies a change in GTS. Such high concentrations are feasible near GLT-1 expressed close to synaptic release site during excitatory neurotransmission. The aim of this study was to determine GLT-1 GTS at both low (19–75 μM) and high (300–1200 μM) glutamate concentration ranges. GTS experiments were conducted in the absence of chloride to avoid contributions by the GLT-1 uncoupled chloride conductance. Mathematical analysis of the transporter thermodynamic equilibrium allowed us to derive equations revealing the number of a particular type of ion transported per elementary charge based on the measurements of the transporter reversal potential. We found that GLT-1a expressed in COS-7 cells co-transports 1.5 Na+, 0.5 Glu-, 0.5 H+ and counter-transports 0.6 K+ per elementary charge in both glutamate concentration ranges, and at both 37°C and 26°C temperatures. The thermodynamic parameter Q 10 = 2.4 for GLT-1 turnover rate of 19 s-1 (37°C, -50 mV) remained constant in the 10 μM–10 mM glutamate concentration range. Importantly, the previously reported decrease in the current/flux ratio at high glutamate concentration was not seen in the absence of chloride in both COS-7 cells and cultured rat neurons. Therefore, only in the absence of chloride, GLT-1 GTS remains constant at all glutamate concentrations. Possible explanations for why apparent GTS might vary in the presence of chloride are discussed. PMID:26301411

  8. Podocyte Glutamatergic Signaling Contributes to the Function of the Glomerular Filtration Barrier

    PubMed Central

    Giardino, Laura; Armelloni, Silvia; Corbelli, Alessandro; Mattinzoli, Deborah; Zennaro, Cristina; Guerrot, Dominique; Tourrel, Fabien; Ikehata, Masami; Li, Min; Berra, Silvia; Carraro, Michele; Messa, Piergiorgio

    2009-01-01

    Podocytes possess the complete machinery for glutamatergic signaling, raising the possibility that neuron-like signaling contributes to glomerular function. To test this, we studied mice and cells lacking Rab3A, a small GTPase that regulates glutamate exocytosis. In addition, we blocked the glutamate ionotropic N-methyl-d-aspartate receptor (NMDAR) with specific antagonists. In mice, the absence of Rab3A and blockade of NMDAR both associated with an increased urinary albumin/creatinine ratio. In humans, NMDAR blockade, obtained by addition of ketamine to general anesthesia, also had an albuminuric effect. In vitro, Rab3A-null podocytes displayed a dysregulated release of glutamate with higher rates of spontaneous exocytosis, explained by a reduction in Rab3A effectors resulting in freedom of vesicles from the actin cytoskeleton. In addition, NMDAR antagonism led to profound cytoskeletal remodeling and redistribution of nephrin in cultured podocytes; the addition of the agonist NMDA reversed these changes. In summary, these results suggest that glutamatergic signaling driven by podocytes contributes to the integrity of the glomerular filtration barrier and that derangements in this signaling may lead to proteinuric renal diseases. PMID:19578006

  9. Transport of BMAA into Neurons and Astrocytes by System xc.

    PubMed

    Albano, Rebecca; Lobner, Doug

    2018-01-01

    The study of the mechanism of β-N-methylamino-L-alanine (BMAA) neurotoxicity originally focused on its effects at the N-methyl-D-aspartate (NMDA) receptor. In recent years, it has become clear that its mechanism of action is more complicated. First, there are certain cell types, such as motor neurons and cholinergic neurons, where the dominate mechanism of toxicity is through action at AMPA receptors. Second, even in cortical neurons where the primary mechanism of toxicity appears to be activation of NMDA receptors, there are other mechanisms involved. We found that along with NMDA receptors, activation of mGLuR5 receptors and effects on the cystine/glutamate antiporter (system x c -) were involved in the toxicity. The effects on system x c - are of particular interest. System x c - mediates the transport of cystine into the cell in exchange for releasing glutamate into the extracellular fluid. By releasing glutamate, system x c - can potentially cause excitotoxicity. However, through providing cystine to the cell, it regulates the levels of cellular glutathione (GSH), the main endogenous intracellular antioxidant, and in this way may protect cells against oxidative stress. We have previously published that BMAA inhibits cystine uptake leading to GSH depletion and had indirect evidence that BMAA is transported into the cells by system x c -. We now present direct evidence that BMAA is transported into both astrocytes and neurons through system x c -. The fact that BMAA is transported by system x c - also provides a mechanism for BMAA to enter brain cells potentially leading to misincorporation into proteins and protein misfolding.

  10. Compensatory molecular and functional mechanisms in nervous system of the Grm1(crv4) mouse lacking the mGlu1 receptor: a model for motor coordination deficits.

    PubMed

    Rossi, Pia Irene Anna; Musante, Ilaria; Summa, Maria; Pittaluga, Anna; Emionite, Laura; Ikehata, Masami; Rastaldi, Maria Pia; Ravazzolo, Roberto; Puliti, Aldamaria

    2013-09-01

    The metabotropic glutamate type 1 (mGlu1) and type 5 (mGlu5) receptors, the only members of group I mGlu receptors, are implicated in synaptic plasticity and mechanisms of feedback control of glutamate release. They exhibit nearly complementary distributions throughout the central nervous system, well evident in the cerebellum, where mGlu1 receptor is most intensely expressed while mGlu5 receptor is not. Despite their different distribution, they show a similar subcellular localization and use common transducing pathways. We recently described the Grm1(crv4) mouse with motor coordination deficits and renal anomalies caused by a spontaneous mutation inactivating the mGlu1 receptor. To define the neuropathological mechanisms in these mice, we evaluated expression and function of the mGlu5 receptor in cerebral and cerebellar cortices. Western blot and immunofluorescence analyses showed mGlu5 receptor overexpression. Quantitative reverse transcriptase-polymerase chain reaction results indicated that the up-regulation is already evident at RNA level. Functional studies confirmed an enhanced glutamate release from cortical cerebral and cerebellar synaptosomes when compared with wild-type that is abolished by the mGlu5 receptor-specific inhibitor, 2-methyl-6-(phenylethynyl) pyridine hydrochloride (MPEP). Finally, acute MPEP treatment of Grm1(crv4/crv4) mice induced an evident although incomplete improvement of motor coordination, suggesting that mGlu5 receptors enhanced activity worsens, instead of improving, the motor-coordination defects in the Grm1(crv4/crv4) mice.

  11. Glutamate transporter-dependent mTOR phosphorylation in Müller glia cells

    PubMed Central

    María López-Colomé, Ana; Martínez-Lozada, Zila; Guillem, Alain M; López, Edith; Ortega, Arturo

    2012-01-01

    Glu (glutamate), the excitatory transmitter at the main signalling pathway in the retina, is critically involved in changes in the protein repertoire through the activation of signalling cascades, which regulate protein synthesis at transcriptional and translational levels. Activity-dependent differential gene expression by Glu is related to the activation of ionotropic and metabotropic Glu receptors; however, recent findings suggest the involvement of Na+-dependent Glu transporters in this process. Within the retina, Glu uptake is aimed at the replenishment of the releasable pool, and for the prevention of excitotoxicity and is carried mainly by the GLAST/EAAT-1 (Na+-dependent glutamate/aspartate transporter/excitatory amino acids transporter-1) located in Müller radial glia. Based on the previous work showing the alteration of GLAST expression induced by Glu, the present work investigates the involvement of GLAST signalling in the regulation of protein synthesis in Müller cells. To this end, we explored the effect of D-Asp (D-aspartate) on Ser-2448 mTOR (mammalian target of rapamycin) phosphorylation in primary cultures of chick Müller glia. The results showed that D-Asp transport induces the time- and dose-dependent phosphorylation of mTOR, mimicked by the transportable GLAST inhibitor THA (threo-β-hydroxyaspartate). Signalling leading to mTOR phosphorylation includes Ca2+ influx, the activation of p60src, phosphatidylinositol 3-kinase, protein kinase B, mTOR and p70S6K. Interestingly, GLAST activity promoted AP-1 (activator protein-1) binding to DNA, supporting a function for transporter signalling in retinal long-term responses. These results add a novel receptor-independent pathway for Glu signalling in Müller glia, and further strengthen the critical involvement of these cells in the regulation of glutamatergic transmission in the retina. PMID:22817638

  12. Deletion of striatal adenosine A2A receptor spares latent inhibition and prepulse inhibition but impairs active avoidance learning

    PubMed Central

    Singer, Philipp; Wei, Catherine J.; Chen, Jiang-Fan; Boison, Detlev; Yee, Benjamin K.

    2013-01-01

    Following early clinical leads, the adenosine A2AR receptor (A2AR) has continued to attract attention as a potential novel target for treating schizophrenia; especially against the negative and cognitive symptoms of the disease because of A2AR’s unique modulatory action over glutamatergic in addition to dopaminergic signaling. Through the antagonistic interaction with the dopamine D2 receptor, and by regulating glutamate release and N-methyl-d-aspartate receptor function, striatal A2AR is ideally positioned to fine-tune the dopamine-glutamate balance whose disturbance is implicated in the pathophysiology of schizophrenia. However, the precise function of striatal A2ARsin the regulation of schizophrenia-relevant behavior is poorly understood. Here, we tested the impact of conditional striatum-specific A2AR knockout (st-A2AR-KO) on latent inhibition (LI) and prepulse inhibition (PPI) – behavior that is tightly regulated by striatal dopamine and glutamate. These are two common cross-species translational tests for the assessment of selective attention and sensorimotor gating deficits reported in schizophrenia patients; and enhanced performance in these tests is associated with antipsychotic drug action. We found that neither LI nor PPI was significantly affected in st-A2AR-KO mice; although a deficit in active avoidance learning was identified in these animals. The latter phenotype, however, was not replicated in another form of aversive conditioning – conditioned taste aversion. Hence, the present study shows that neither learned inattention (as measured by LI) nor sensory gating (as indexed by PPI) requires the integrity of striatal A2ARs– a finding that may undermine the hypothesized importance of A2AR in the genesis and/or treatment of schizophrenia. PMID:23276608

  13. Leptin signaling in GABA neurons, but not glutamate neurons, is required for reproductive function.

    PubMed

    Zuure, Wieteke A; Roberts, Amy L; Quennell, Janette H; Anderson, Greg M

    2013-11-06

    The adipocyte-derived hormone leptin acts in the brain to modulate the central driver of fertility: the gonadotropin releasing hormone (GnRH) neuronal system. This effect is indirect, as GnRH neurons do not express leptin receptors (LEPRs). Here we test whether GABAergic or glutamatergic neurons provide the intermediate pathway between the site of leptin action and the GnRH neurons. Leptin receptors were deleted from GABA and glutamate neurons using Cre-Lox transgenics, and the downstream effects on puberty onset and reproduction were examined. Both mouse lines displayed the expected increase in body weight and region-specific loss of leptin signaling in the hypothalamus. The GABA neuron-specific LEPR knock-out females and males showed significantly delayed puberty onset. Adult fertility observations revealed that these knock-out animals have decreased fecundity. In contrast, glutamate neuron-specific LEPR knock-out mice displayed normal fertility. Assessment of the estrogenic hypothalamic-pituitary-gonadal axis regulation in females showed that leptin action on GABA neurons is not necessary for estradiol-mediated suppression of tonic luteinizing hormone secretion (an indirect measure of GnRH neuron activity) but is required for regulation of a full preovulatory-like luteinizing hormone surge. In conclusion, leptin signaling in GABAergic (but not glutamatergic neurons) plays a critical role in the timing of puberty onset and is involved in fertility regulation throughout adulthood in both sexes. These results form an important step in explaining the role of central leptin signaling in the reproductive system. Limiting the leptin-to-GnRH mediators to GABAergic cells will enable future research to focus on a few specific types of neurons.

  14. Towards a glutamate hypothesis of depression: an emerging frontier of neuropsychopharmacology for mood disorders.

    PubMed

    Sanacora, Gerard; Treccani, Giulia; Popoli, Maurizio

    2012-01-01

    Half a century after the first formulation of the monoamine hypothesis, compelling evidence implies that long-term changes in an array of brain areas and circuits mediating complex cognitive-emotional behaviors represent the biological underpinnings of mood/anxiety disorders. A large number of clinical studies suggest that pathophysiology is associated with dysfunction of the predominant glutamatergic system, malfunction in the mechanisms regulating clearance and metabolism of glutamate, and cytoarchitectural/morphological maladaptive changes in a number of brain areas mediating cognitive-emotional behaviors. Concurrently, a wealth of data from animal models have shown that different types of environmental stress enhance glutamate release/transmission in limbic/cortical areas and exert powerful structural effects, inducing dendritic remodeling, reduction of synapses and possibly volumetric reductions resembling those observed in depressed patients. Because a vast majority of neurons and synapses in these areas and circuits use glutamate as neurotransmitter, it would be limiting to maintain that glutamate is in some way 'involved' in mood/anxiety disorders; rather it should be recognized that the glutamatergic system is a primary mediator of psychiatric pathology and, potentially, also a final common pathway for the therapeutic action of antidepressant agents. A paradigm shift from a monoamine hypothesis of depression to a neuroplasticity hypothesis focused on glutamate may represent a substantial advancement in the working hypothesis that drives research for new drugs and therapies. Importantly, despite the availability of multiple classes of drugs with monoamine-based mechanisms of action, there remains a large percentage of patients who fail to achieve a sustained remission of depressive symptoms. The unmet need for improved pharmacotherapies for treatment-resistant depression means there is a large space for the development of new compounds with novel mechanisms of action such as glutamate transmission and related pathways. This article is part of a Special Issue entitled 'Anxiety and Depression'. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. Reinstatement of cocaine-seeking by hypocretin (orexin) in the ventral tegmental area: Independence from the local CRF network

    PubMed Central

    Wang, Bin; You, Zhi-Bing; Wise, Roy A

    2009-01-01

    Background Hypocretin (Hcrt), an arousal- and feeding-associated peptide is expressed in lateral hypothalamic neurons that project to the ventral tegmental area (VTA). Intra-VTA Hcrt reinstates morphine-conditioned place preferences, and intracerebroventricular and intra-VTA corticotropin-releasing factor (CRF) reinstate cocaine-seeking. Each is presumed to act at least in part through actions local to the VTA. Here we examined the possibility that VTA perfusion of Hcrt reinstates cocaine-seeking and, if so, whether it does so through the VTA mechanism that is implicated in reinstatement by CRF. Methods Rats were trained to lever-press for intravenous cocaine (2 weeks) and then underwent extinction training (saline substituted for cocaine: 3 weeks). Reinstatement behavior was tested and VTA dialysates were collected and assayed for glutamate or dopamine following footshock or perfusion of Hcrt or CRF, with or without Hcrt or CRF antagonists, into the VTA. Results VTA perfusion of Hcrt-1 or footshock stress reinstated cocaine-seeking and caused release of VTA glutamate and dopamine. The effects of Hcrt-1 were blocked by a selective Hcrt-1 antagonist but not a CRF antagonist, and were not mimicked by Hcrt-2. The Hcrt-1 antagonist did not block CRF-dependent footshock-induced reinstatement or glutamate or dopamine release. The behavioral and neurochemical effects of Hcrt-1 were attenuated but not blocked by kynurenic acid, an ionotropic glutamate antagonist that blocks footshock-induced reinstatement and glutamate release. Conclusions While Hcrt and CRF are known to interact in some area of the brain, in the VTA proper they appear to have largely independent actions on the mesolimbic dopamine mechanisms of cocaine-seeking. PMID:19251246

  16. Glutamate mediates cell death and increases the Bax to Bcl-2 ratio in a differentiated neuronal cell line.

    PubMed

    Schelman, William R; Andres, Robert D; Sipe, Kimberly J; Kang, Evan; Weyhenmeyer, James A

    2004-09-28

    Excessive stimulation of the NMDA receptor by glutamate induces cell death and has been implicated in the development of several neurodegenerative diseases. While apoptosis plays a role in glutamate-mediated toxicity, the mechanisms underlying this process have yet to be completely determined. Recent evidence has shown that exposure to excitatory amino acids regulates the expression of the antiapoptotic protein, Bcl-2, and the proapoptotic protein, Bax, in neurons. Since it has been suggested that the ratio of Bax to Bcl-2 is an important determinant of neuronal survival, the reciprocal regulation of these Bcl-2 family proteins may play a role in the neurotoxicity mediated by glutamate. Here, we have used a differentiable neuronal cell line, N1E-115, to investigate the molecular properties of glutamate-induced cell death. Annexin V staining was used to determine apoptotic cell death between 0 and 5 days differentiation with DMSO/low serum. Immunoblot analysis was used to determine whether the expression of Bcl-2 or Bax was modulated during the differentiation process. Bcl-2 protein levels were increased during maturation while Bax expression remained unchanged. Maximum Bcl-2 expression was observed following 5 days of differentiation. Examination of Bcl-2 and Bax following glutamate treatment revealed that the expression of these proteins was inversely regulated. Exposure to glutamate (0.001-10 mM) for 20+/-2 h resulted in a dose-dependent decrease in cell survival (as measured by MTT analysis) that was maximal at 10 mM. These results further support the role of apoptosis in glutamate-mediated cell death. Furthermore, a significant decrease in Bcl-2 levels was observed at 1 mM and 10 mM glutamate (32.1%+/-4.8 and 33.7+/-12.8%, respectively) while a significant upregulation of Bax expression (88.2+/-17.9%) was observed at 10 mM glutamate. Interestingly, Bcl-2 and Bax levels in cells treated with glutamate from 12-24 h were not significantly different from those of control. Taken together, these findings provide additional evidence for the reciprocal regulation of Bcl-2 and Bax expression by glutamate and suggest that neuronal excitotoxicity may, in part, result from the inverse regulation of these proteins.

  17. Glutamate Signaling and Mitochondrial Dysfunction in Models of Parkinson’s Disease

    DTIC Science & Technology

    2014-03-01

    stages of PD, an elevation in synaptically released glutamate leads to persistent activation of NMDARs that synergizes with Cav1 calcium channels to...neurons is attributable to activity -dependent calcium entry through Cav1 channels, resulting in mitochondrial oxidant stress. Although this mechanism...glutamate leads to persistent activation of NMDARs that synergizes with Cav1 calcium channels to significantly increase mitochondrial oxidant stress and

  18. MDMA-induced loss of parvalbumin interneurons within the dentate gyrus is mediated by 5HT2A and NMDA receptors

    PubMed Central

    Collins, Stuart A.; Gudelsky, Gary A.; Yamamoto, Bryan K.

    2015-01-01

    MDMA is a widely abused psychostimulant which causes a rapid and robust release of the monoaminergic neurotransmitters dopamine and serotonin. Recently, it was shown that MDMA increases extracellular glutamate concentrations in the dorsal hippocampus, which is dependent on serotonin release and 5HT2A/2C receptor activation. The increased extracellular glutamate concentration coincides with a loss of parvalbumin-immunoreactive (PV-IR) interneurons of the dentate gyrus region. Given the known susceptibility of PV interneurons to excitotoxicity, we examined whether MDMA-induced increases in extracellular glutamate in the dentate gyrus are necessary for the loss of PV cells in rats. Extracellular glutamate concentrations increased in the dentate gyrus during systemic and local administration of MDMA. Administration of the NMDA receptor antagonist, MK-801, during systemic injections of MDMA, prevented the loss of PV-IR interneurons seen 10 days after MDMA exposure. Local administration of MDL100907, a selective 5HT2A receptor antagonist, prevented the increases in glutamate caused by reverse dialysis of MDMA directly into the dentate gyrus and prevented the reduction of PV-IR. These findings provide evidence that MDMA causes decreases in PV within the dentate gyrus through a 5HT2A receptor-mediated increase in glutamate and subsequent NMDA receptor activation. PMID:25936514

  19. Glutamate is an inhibitory neurotransmitter in the Drosophila olfactory system.

    PubMed

    Liu, Wendy W; Wilson, Rachel I

    2013-06-18

    Glutamatergic neurons are abundant in the Drosophila central nervous system, but their physiological effects are largely unknown. In this study, we investigated the effects of glutamate in the Drosophila antennal lobe, the first relay in the olfactory system and a model circuit for understanding olfactory processing. In the antennal lobe, one-third of local neurons are glutamatergic. Using in vivo whole-cell patch clamp recordings, we found that many glutamatergic local neurons are broadly tuned to odors. Iontophoresed glutamate hyperpolarizes all major cell types in the antennal lobe, and this effect is blocked by picrotoxin or by transgenic RNAi-mediated knockdown of the GluClα gene, which encodes a glutamate-gated chloride channel. Moreover, antennal lobe neurons are inhibited by selective activation of glutamatergic local neurons using a nonnative genetically encoded cation channel. Finally, transgenic knockdown of GluClα in principal neurons disinhibits the odor responses of these neurons. Thus, glutamate acts as an inhibitory neurotransmitter in the antennal lobe, broadly similar to the role of GABA in this circuit. However, because glutamate release is concentrated between glomeruli, whereas GABA release is concentrated within glomeruli, these neurotransmitters may act on different spatial and temporal scales. Thus, the existence of two parallel inhibitory transmitter systems may increase the range and flexibility of synaptic inhibition.

  20. Taurine release from the developing and ageing hippocampus: stimulation by agonists of ionotropic glutamate receptors.

    PubMed

    Saransaari, P; Oja, S S

    1997-12-30

    The inhibitory amino acid taurine has been held to function as a modulator and osmoregulator in the brain, being of particular importance in the immature brain. The release of preloaded [3H]taurine was now studied in hippocampal slices from developing (7-day-old), adult (3-month-old) and ageing (6-24-month-old) mice focussing on the effects of agonists of ionotropic glutamate receptors. N-methyl-D-aspartate (NMDA), kainate and 2-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) potentiated taurine release concentration-dependently at each age, more so in the immature than in the adult and ageing hippocampus. The effect of kainate was blocked by 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) in the developing and aged hippocampus and those of AMPA and NMDA by 6-nitro-7-sulphamoylbenzo[f]quinoxaline-2,3-dione (NBQX) and dizocilpine a(MK-801) at every age studied. This indicates the involvement of NMDA and AMPA receptors in taurine release throughout the life-span of mice, while the kainate-receptor-mediated release does not appear to function in adults. The increased hippocampal taurine release evoked by ionotropic glutamate receptors could act neuroprotectively, counteracting by several mechanisms the harmful effects of the simultaneous release of excitatory amino acids. The substantial release of taurine in the immature hippocampus might be particularly significant in view of the vulnerability of brain tissue to excitotoxicity at early age.

  1. Glutamate release and uptake processes are altered in a new mouse model of amyotrophic lateral sclerosis.

    PubMed

    Grigoriev, V V; Efimova, A D; Ustyugov, A A; Shevchenko, V P; Bachurin, S O; Myasoedov, N F

    2016-05-01

    In this paper, we showed that in the cortex of mice expressing an abberant form of FUS protein that model amyotrophic lateral sclerosis (ALS), the processes of KCl-induced and basal [(3)H]glutamate release and uptake are altered at the presymptomatic stage as compared to the non-transgenic littermates. The change in these three parameters in transgenic animals causes excitotoxicity, which, in turn, may lead to massive loss of motor neurons and the onset of ALS symptoms.

  2. Loss of VGLUT3 Produces Circadian-Dependent Hyperdopaminergia and Ameliorates Motor Dysfunction and l-Dopa-Mediated Dyskinesias in a Model of Parkinson's Disease

    PubMed Central

    Divito, Christopher B.; Steece-Collier, Kathy; Case, Daniel T.; Williams, Sean-Paul G.; Stancati, Jennifer A.; Zhi, Lianteng; Rubio, Maria E.; Sortwell, Caryl E.; Collier, Timothy J.; Sulzer, David; Edwards, Robert H.; Zhang, Hui

    2015-01-01

    The striatum is essential for many aspects of mammalian behavior, including motivation and movement, and is dysfunctional in motor disorders such as Parkinson's disease. The vesicular glutamate transporter 3 (VGLUT3) is expressed by striatal cholinergic interneurons (CINs) and is thus well positioned to regulate dopamine (DA) signaling and locomotor activity, a canonical measure of basal ganglia output. We now report that VGLUT3 knock-out (KO) mice show circadian-dependent hyperlocomotor activity that is restricted to the waking cycle and is due to an increase in striatal DA synthesis, packaging, and release. Using a conditional VGLUT3 KO mouse, we show that deletion of the transporter from CINs, surprisingly, does not alter evoked DA release in the dorsal striatum or baseline locomotor activity. The mice do, however, display changes in rearing behavior and sensorimotor gating. Elevation of DA release in the global KO raised the possibility that motor deficits in a Parkinson's disease model would be reduced. Remarkably, after a partial 6-hydroxydopamine (6-OHDA)-mediated DA depletion (∼70% in dorsal striatum), KO mice, in contrast to WT mice, showed normal motor behavior across the entire circadian cycle. l-3,4-dihydroxyphenylalanine-mediated dyskinesias were also significantly attenuated. These findings thus point to new mechanisms to regulate basal ganglia function and potentially treat Parkinson's disease and related disorders. SIGNIFICANCE STATEMENT Dopaminergic signaling is critical for both motor and cognitive functions in the mammalian nervous system. Impairments, such as those found in Parkinson's disease patients, can lead to severe motor deficits. Vesicular glutamate transporter 3 (VGLUT3) loads glutamate into secretory vesicles for neurotransmission and is expressed by discrete neuron populations throughout the nervous system. Here, we report that the absence of VGLUT3 in mice leads to an upregulation of the midbrain dopamine system. Remarkably, in a Parkinson's disease model, the mice show normal motor behavior. They also show fewer abnormal motor behaviors (dyskinesias) in response to l-3,4-dihydroxyphenylalanine, the principal treatment for Parkinson's disease. The work thus suggests new avenues for the development of novel treatment strategies for Parkinson's disease and potentially other basal-ganglia-related disorders. PMID:26558771

  3. Glutamate: Tastant and Neuromodulator in Taste Buds.

    PubMed

    Vandenbeuch, Aurelie; Kinnamon, Sue C

    2016-07-01

    In taste buds, glutamate plays a double role as a gustatory stimulus and neuromodulator. The detection of glutamate as a tastant involves several G protein-coupled receptors, including the heterodimer taste receptor type 1, member 1 and 3 as well as metabotropic glutamate receptors (mGluR1 and mGluR4). Both receptor types participate in the detection of glutamate as shown with knockout animals and selective antagonists. At the basal part of taste buds, ionotropic glutamate receptors [N-methyl-d-aspartate (NMDA) and non-NMDA] are expressed and participate in the modulation of the taste signal before its transmission to the brain. Evidence suggests that glutamate has an efferent function on taste cells and modulates the release of other neurotransmitters such as serotonin and ATP. This short article reviews the recent developments in the field with regard to glutamate receptors involved in both functions as well as the influence of glutamate on the taste signal. © 2016 American Society for Nutrition.

  4. Reduced dopamine and glutamate neurotransmission in the nucleus accumbens of quinpirole-sensitized rats hints at inhibitory D2 autoreceptor function.

    PubMed

    Escobar, Angélica P; Cornejo, Francisca A; Olivares-Costa, Montserrat; González, Marcela; Fuentealba, José A; Gysling, Katia; España, Rodrigo A; Andrés, María E

    2015-09-01

    Dopamine from the ventral tegmental area and glutamate from several brain nuclei converge in the nucleus accumbens (NAc) to drive motivated behaviors. Repeated activation of D2 receptors with quinpirole (QNP) induces locomotor sensitization and compulsive behaviors, but the mechanisms are unknown. In this study, in vivo microdialysis and fast scan cyclic voltammetry in adult anesthetized rats were used to investigate the effect of repeated QNP on dopamine and glutamate neurotransmission within the NAc. Following eight injections of QNP, a significant decrease in phasic and tonic dopamine release was observed in rats that displayed locomotor sensitization. Either a systemic injection or the infusion of QNP into the NAc decreased dopamine release, and the extent of this effect was similar in QNP-sensitized and control rats, indicating that inhibitory D2 autoreceptor function is maintained despite repeated activation of D2 receptors and decreased dopamine extracellular levels. Basal extracellular levels of glutamate in the NAc were also significantly lower in QNP-treated rats than in controls. Moreover, the increase in NAc glutamate release induced by direct stimulation of medial prefrontal cortex was significantly lower in QNP-sensitized rats. Together, these results indicate that repeated activation of D2 receptors disconnects NAc from medial prefrontal cortex and ventral tegmental area. Repeated administration of the dopamine D2 receptor agonist quinpirole (QNP) induces locomotor sensitization. We found that the NAc of QNP-sensitized rats has reduced glutamate levels coming from prefrontal cortex together with a decreased phasic and tonic dopamine neurotransmission but a conserved presynaptic D2 receptor function. We suggest that locomotor sensitization is because of increased affinity state of D2 post-synaptic receptors. © 2015 International Society for Neurochemistry.

  5. Structural basis for serotonergic regulation of neural circuits in the mouse olfactory bulb.

    PubMed

    Suzuki, Yoshinori; Kiyokage, Emi; Sohn, Jaerin; Hioki, Hiroyuki; Toida, Kazunori

    2015-02-01

    Olfactory processing is well known to be regulated by centrifugal afferents from other brain regions, such as noradrenergic, acetylcholinergic, and serotonergic neurons. Serotonergic neurons widely innervate and regulate the functions of various brain regions. In the present study, we focused on serotonergic regulation of the olfactory bulb (OB), one of the most structurally and functionally well-defined brain regions. Visualization of a single neuron among abundant and dense fibers is essential to characterize and understand neuronal circuits. We accomplished this visualization by successfully labeling and reconstructing serotonin (5-hydroxytryptamine: 5-HT) neurons by infection with sindbis and adeno-associated virus into dorsal raphe nuclei (DRN) of mice. 5-HT synapses were analyzed by correlative confocal laser microscopy and serial-electron microscopy (EM) study. To further characterize 5-HT neuronal and network function, we analyzed whether glutamate was released from 5-HT synaptic terminals using immuno-EM. Our results are the first visualizations of complete 5-HT neurons and fibers projecting from DRN to the OB with bifurcations. We found that a single 5-HT axon can form synaptic contacts to both type 1 and 2 periglomerular cells within a single glomerulus. Through immunolabeling, we also identified vesicular glutamate transporter 3 in 5-HT neurons terminals, indicating possible glutamatergic transmission. Our present study strongly implicates the involvement of brain regions such as the DRN in regulation of the elaborate mechanisms of olfactory processing. We further provide a structure basis of the network for coordinating or linking olfactory encoding with other neural systems, with special attention to serotonergic regulation. © 2014 Wiley Periodicals, Inc.

  6. Dopamine neurons in culture express VGLUT2 explaining their capacity to release glutamate at synapses in addition to dopamine.

    PubMed

    Dal Bo, Gregory; St-Gelais, Fannie; Danik, Marc; Williams, Sylvain; Cotton, Mathieu; Trudeau, Louis-Eric

    2004-03-01

    Dopamine neurons have been suggested to use glutamate as a cotransmitter. To identify the basis of such a phenotype, we have examined the expression of the three recently identified vesicular glutamate transporters (VGLUT1-3) in postnatal rat dopamine neurons in culture. We found that the majority of isolated dopamine neurons express VGLUT2, but not VGLUT1 or 3. In comparison, serotonin neurons express only VGLUT3. Single-cell RT-PCR experiments confirmed the presence of VGLUT2 mRNA in dopamine neurons. Arguing for phenotypic heterogeneity among axon terminals, we find that only a proportion of terminals established by dopamine neurons are VGLUT2-positive. Taken together, our results provide a basis for the ability of dopamine neurons to release glutamate as a cotransmitter. A detailed analysis of the conditions under which DA neurons gain or loose a glutamatergic phenotype may provide novel insight into pathophysiological processes that underlie diseases such as schizophrenia, Parkinson's disease and drug dependence.

  7. Morphine disinhibits glutamatergic input to VTA dopamine neurons and promotes dopamine neuron excitation.

    PubMed

    Chen, Ming; Zhao, Yanfang; Yang, Hualan; Luan, Wenjie; Song, Jiaojiao; Cui, Dongyang; Dong, Yi; Lai, Bin; Ma, Lan; Zheng, Ping

    2015-07-24

    One reported mechanism for morphine activation of dopamine (DA) neurons of the ventral tegmental area (VTA) is the disinhibition model of VTA-DA neurons. Morphine inhibits GABA inhibitory neurons, which shifts the balance between inhibitory and excitatory input to VTA-DA neurons in favor of excitation and then leads to VTA-DA neuron excitation. However, it is not known whether morphine has an additional strengthening effect on excitatory input. Our results suggest that glutamatergic input to VTA-DA neurons is inhibited by GABAergic interneurons via GABAB receptors and that morphine promotes presynaptic glutamate release by removing this inhibition. We also studied the contribution of the morphine-induced disinhibitory effect on the presynaptic glutamate release to the overall excitatory effect of morphine on VTA-DA neurons and related behavior. Our results suggest that the disinhibitory action of morphine on presynaptic glutamate release might be the main mechanism for morphine-induced increase in VTA-DA neuron firing and related behaviors.

  8. In vivo microdialysis of glutamate in ventroposterolateral nucleus of thalamus following electrolytic lesion of spinothalamic tract in rats.

    PubMed

    Ghanbari, A; Asgari, A R; Kaka, G R; Falahatpishe, H R; Naderi, A; Jorjani, M

    2014-02-01

    Central pain is one of the most important complications after spinal cord injury (SCI), and thereby, its treatment raises many challenges. After SCI, in a cascade of molecular events, a marked increase in glutamate at the injury site results in secondary changes which may impact on supraspinal regions, mainly ventroposterolateral (VPL). There is little information about the changes in glutamate metabolism in the VPL and whether it contributes to SCI-related central pain. The present study was performed to evaluate glutamate release in the VPL following electrolytic lesion of spinothalamic tract (STT). A laminectomy was performed at spinal segments of T9-T10 in male rats, and then, unilateral electrolytic lesions were made in the STT. Glutamate concentrations in ipsilateral VPL dialysate were measured by HPLC method at days 3, 7, 14, 21 and 28 post-injury. Tactile pain and motor activity were also examined. Glutamate levels were significantly increased in ipsilateral VPL of spinal-cord-injured rats 2 weeks after SCI and remained high up to day 28 post-surgery. The STT lesions had no marked effect on our measures of motor activity, but there was a significant decrease in paw withdrawal threshold in the hind paws at day 14 post-SCI. These findings suggest that an increased release of glutamate in VPL plays a role in secondary pathologic changes, leading to neuronal hyperexcitation and neuropathic pain after SCI.

  9. Enhanced AMPA receptor trafficking mediates the anorexigenic effect of endogenous glucagon like peptide-1 in the paraventricular hypothalamus

    PubMed Central

    Liu, Ji; Conde, Kristie; Zhang, Peng; Lilascharoen, Varoth; Xu, Zihui; Lim, Byung Kook; Seeley, Randy J.; Zhu, Julius J.; Scott, Michael M.; Pang, Zhiping P.

    2017-01-01

    SUMMARY Glucagon Like Peptide 1 (GLP-1)-expressing neurons in the hindbrain send robust projections to the paraventricular nucleus of the hypothalamus (PVN), which is involved in the regulation of food intake. Here, we describe that stimulation of GLP-1 afferent fibers within the PVN is sufficient to suppress food intake independent of glutamate release. We also show that GLP-1 receptor (GLP-1R) activation augments excitatory synaptic strength in PVN corticotropin-releasing hormone (CRH) neurons, with GLP-1R activation promoting a protein kinase A (PKA) dependent signaling cascade leading to phosphorylation of serine S845 on GluA1 AMPA receptors and their trafficking to the plasma membrane. Finally, we show that postnatal depletion of GLP-1R in the PVN increases food intake and causes obesity. This study provides a comprehensive multi-level (circuit, synaptic, and molecular) explanation of how food intake behavior and body weight are regulated by endogenous central GLP-1. PMID:29056294

  10. Dopamine, the medial preoptic area, and male sexual behavior.

    PubMed

    Dominguez, Juan M; Hull, Elaine M

    2005-10-15

    The medial preoptic area (MPOA), at the rostral end of the hypothalamus, is important for the regulation of male sexual behavior. Results showing that male sexual behavior is impaired following MPOA lesions and enhanced with MPOA stimulation support this conclusion. The neurotransmitter dopamine (DA) facilitates male sexual behavior in all studied species, including rodents and humans. Here, we review data indicating that the MPOA is one site where DA may act to regulate male sexual behavior. DA agonists microinjected into the MPOA facilitate sexual behavior, whereas DA antagonists impair copulation, genital reflexes, and sexual motivation. Moreover, microdialysis experiments showed increased release of DA in the MPOA as a result of precopulatory exposure to an estrous female and during copulation. DA may remove tonic inhibition in the MPOA, thereby enhancing sensorimotor integration, and also coordinate autonomic influences on genital reflexes. In addition to sensory stimulation, other factors influence the release of DA in the MPOA, including testosterone, nitric oxide, and glutamate. Here we summarize and interpret these data.

  11. High glutamate attenuates S100B and LDH outputs from rat cortical slices enhanced by either oxygen-glucose deprivation or menadione.

    PubMed

    Demircan, Celaleddin; Gül, Zülfiye; Büyükuysal, R Levent

    2014-07-01

    One hour incubation of rat cortical slices in a medium without oxygen and glucose (oxygen-glucose deprivation, OGD) increased S100B release to 6.53 ± 0.3 ng/ml/mg protein from its control value of 3.61 ± 0.2 ng/ml/mg protein. When these slices were then transferred to a medium containing oxygen and glucose (reoxygenation, REO), S100B release rose to 344 % of its control value. REO also caused 192 % increase in lactate dehydrogenase (LDH) leakage. Glutamate added at millimolar concentration into the medium decreased OGD or REO-induced S100B release and REO-induced LDH leakage. Alpha-ketoglutarate, a metabolic product of glutamate, was found to be as effective as glutamate in decreasing the S100B and LDH outputs. Similarly lactate, 2-ketobutyrate and ethyl pyruvate, a lipophilic derivative of pyruvate, also exerted a glutamate-like effect on S100B and LDH outputs. Preincubation with menadione, which produces H2O2 intracellularly, significantly increased S100B and LDH levels in normoxic medium. All drugs tested in the present study, with the exception of pyruvate, showed a complete protection against menadione preincubation. Additionally, each OGD-REO, menadione or H2O2-induced mitochondrial energy impairments determined by 2,3,5-triphenyltetrazolium chloride (TTC) staining and OGD-REO or menadione-induced increases in reactive oxygen substances (ROS) determined by 2,7-dichlorofluorescin diacetate (DCFH-DA) were also recovered by glutamate. Interestingly, H2O2-induced increase in fluorescence intensity derived from DCFH-DA in a slice-free physiological medium was attenuated significantly by glutamate and alpha-keto acids. All these drug actions support the conclusion that high glutamate, such as alpha-ketoglutarate and other keto acids, protects the slices against OGD- and REO-induced S100B and LDH outputs probably by scavenging ROS in addition to its energy substrate metabolite property.

  12. Effects of chronic inhalation of electronic cigarettes containing nicotine on glial glutamate transporters and α-7 nicotinic acetylcholine receptor in female CD-1 mice.

    PubMed

    Alasmari, Fawaz; Crotty Alexander, Laura E; Nelson, Jessica A; Schiefer, Isaac T; Breen, Ellen; Drummond, Christopher A; Sari, Youssef

    2017-07-03

    Alteration in glutamate neurotransmission has been found to mediate the development of drug dependence, including nicotine. We and others, through using western blotting, have reported that exposure to drugs of abuse reduced the expression of glutamate transporter-1 (GLT-1) as well as cystine/glutamate antiporter (xCT), which consequently increased extracellular glutamate concentrations in the mesocorticolimbic area. However, our previous studies did not reveal any changes in glutamate/aspartate transporter (GLAST) following exposure to drugs of abuse. In the present study, for the first time, we investigated the effect of chronic exposure to electronic (e)-cigarette vapor containing nicotine, for one hour daily for six months, on GLT-1, xCT, and GLAST expression in frontal cortex (FC), striatum (STR), and hippocampus (HIP) in outbred female CD1 mice. In this study, we also investigated the expression of alpha-7 nicotinic acetylcholine receptor (α-7 nAChR), a major pre-synaptic nicotinic receptor in the glutamatergic neurons, which regulates glutamate release. We found that inhalation of e-cigarette vapor for six months increased α-7 nAChR expression in both FC and STR, but not in the HIP. In addition, chronic e-cigarette exposure reduced GLT-1 expression only in STR. Moreover, e-cigarette vapor inhalation induced downregulation of xCT in both the STR and HIP. We did not find any significant changes in GLAST expression in any brain region. Finally, using liquid chromatography-tandem mass spectrometry (LC-MS/MS) techniques, we detected high concentrations of nicotine and cotinine, a major metabolite of nicotine, in the FC tissues of e-cigarette exposed mice. These data provide novel evidence about the effects of chronic nicotine inhalation on the expression of key glial glutamate transporters as well as α-7 nAChR. Our work may suggest that nicotine exposure via chronic inhalation of e-cigarette vapor may be mediated in part by alterations in the glutamatergic system. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Synaptic Glutamate Spillover Due to Impaired Glutamate Uptake Mediates Heroin Relapse

    PubMed Central

    Scofield, Michael D.; Boger, Heather; Hensley, Megan; Kalivas, Peter W.

    2014-01-01

    Reducing the enduring vulnerability to relapse is a therapeutic goal in treating drug addiction. Studies with animal models of drug addiction show a marked increase in extrasynaptic glutamate in the core subcompartment of the nucleus accumbens (NAcore) during reinstated drug seeking. However, the synaptic mechanisms linking drug-induced changes in extrasynaptic glutamate to relapse are poorly understood. Here, we discovered impaired glutamate elimination in rats extinguished from heroin self-administration that leads to spillover of synaptically released glutamate into the nonsynaptic extracellular space in NAcore and investigated whether restoration of glutamate transport prevented reinstated heroin seeking. Through multiple functional assays of glutamate uptake and analyzing NMDA receptor-mediated currents, we show that heroin self-administration produced long-lasting downregulation of glutamate uptake and surface expression of the transporter GLT-1. This downregulation was associated with spillover of synaptic glutamate to extrasynaptic NMDA receptors within the NAcore. Ceftriaxone restored glutamate uptake and prevented synaptic glutamate spillover and cue-induced heroin seeking. Ceftriaxone-induced inhibition of reinstated heroin seeking was blocked by morpholino-antisense targeting GLT-1 synthesis. These data reveal that the synaptic glutamate spillover in the NAcore results from reduced glutamate transport and is a critical pathophysiological mechanism underling reinstated drug seeking in rats extinguished from heroin self-administration. PMID:24741055

  14. Lysergic acid diethylamide and [-]-2,5-dimethoxy-4-methylamphetamine increase extracellular glutamate in rat prefrontal cortex.

    PubMed

    Muschamp, John W; Regina, Meredith J; Hull, Elaine M; Winter, Jerrold C; Rabin, Richard A

    2004-10-08

    The ability of hallucinogens to increase extracellular glutamate in the prefrontal cortex (PFC) was assessed by in vivo microdialysis. The hallucinogen lysergic acid diethylamide (LSD; 0.1 mg/kg, i.p.) caused a time-dependent increase in PFC glutamate that was blocked by the 5-HT(2A) antagonist M100907 (0.05 mg/kg, i.p.). Similarly, the 5-HT(2A/C) agonist [-]-2,5-dimethoxy-4-methylamphetamine (DOM; 0.6 mg/kg, i.p.), which is a phenethylamine hallucinogen, increased glutamate to 206% above saline-treated controls. When LSD (10 microM) was directly applied to the PFC by reverse dialysis, a rapid increase in PFC glutamate levels was observed. Glutamate levels in the PFC remained elevated after the drug infusion was discontinued. These data provide direct evidence in vivo for the hypothesis that an enhanced release of glutamate is a common mechanism in the action of hallucinogens.

  15. Influence of ionotropic receptor location on their dynamics at glutamatergic synapses.

    PubMed

    Allam, Sushmita L; Bouteiller, Jean-Marie C; Hu, Eric; Greget, Renaud; Ambert, Nicolas; Bischoff, Serge; Baudry, Michel; Berger, Theodore W

    2012-01-01

    In this paper we study the effects of the location of ionotropic receptors, especially AMPA and NMDA receptors, on their function at excitatory glutamatergic synapses. As few computational models only allow to evaluate the influence of receptor location on state transition and receptor dynamics, we present an elaborate computational model of a glutamatergic synapse that takes into account detailed parametric models of ionotropic receptors along with glutamate diffusion within the synaptic cleft. Our simulation results underscore the importance of the wide spread distribution of AMPA receptors which is required to avoid massive desensitization of these receptors following a single glutamate release event while NMDA receptor location is potentially optimal relative to the glutamate release site thus, emphasizing the contribution of location dependent effects of the two major ionotropic receptors to synaptic efficacy.

  16. Cellular Interactions in the Suprachiasmatic Nucleus.

    DTIC Science & Technology

    2000-07-10

    role in determining the phase of the circadian cycle. We examined neuromodulation of GABA and glutamate actions in cells of the SCN. Neuromodulation is...based on the concept that neuromodulators can alter the release or response of SCN cells to the fast-acting neurotransmitters GABA and glutamate that

  17. Sleep in prenatally restraint stressed rats, a model of mixed anxiety-depressive disorder.

    PubMed

    Mairesse, Jérôme; Van Camp, Gilles; Gatta, Eleonora; Marrocco, Jordan; Reynaert, Marie-Line; Consolazione, Michol; Morley-Fletcher, Sara; Nicoletti, Ferdinando; Maccari, Stefania

    2015-01-01

    Prenatal restraint stress (PRS) can induce persisting changes in individual's development. PRS increases anxiety and depression-like behaviors and induces changes in the hypothalamo-pituitary-adrenal (HPA) axis in adult PRS rats after exposure to stress. Since adaptive capabilities also depend on temporal organization and synchronization with the external environment, we studied the effects of PRS on circadian rhythms, including the sleep-wake cycle, that are parameters altered in depression. Using a restraint stress during gestation, we showed that PRS induced phase advances in hormonal/behavioral circadian rhythms in adult rats, and an increase in the amount of paradoxical sleep, positively correlated to plasma corticosterone levels. Plasma corticosterone levels were also correlated with immobility in the forced swimming test, indicating a depressive-like profile in the PRS rats. We observed comorbidity with anxiety-like profile on PRS rats that was correlated with a reduced release of glutamate in the ventral hippocampus. Pharmacological approaches aimed at modulating glutamate release may represent a novel therapeutic strategy to treat stress-related disorders. Finally, since depressed patients exhibit changes in HPA axis activity and in circadian rhythmicity as well as in the paradoxical sleep regulation, we suggest that PRS could represent an original animal model of depression.

  18. The neuroprotective properties of the superoxide dismutase mimetic tempol correlate with its ability to reduce pathological glutamate release in a rodent model of stroke

    PubMed Central

    Dohare, Preeti; Hyzinski-García, María C.; Vipani, Aarshi; Bowens, Nicole H.; Nalwalk, Julia W.; Feustel, Paul J.; Keller, Richard W.; Jourd’heuil, David; Mongin, Alexander A.

    2014-01-01

    The contribution of oxidative stress to ischemic brain damage is well established. Nevertheless, for unknown reasons, several clinically tested antioxidant therapies failed to show benefits in human stroke. Based on our previous in vitro work, we hypothesized that the neuroprotective potency of antioxidants is related to their ability to limit release of the excitotoxic amino acids, glutamate and aspartate. We explored the effects of two antioxidants, tempol and edaravone, on amino acid release in the brain cortex, in a rat model of transient occlusion of the middle cerebral artery (MCAo). Amino acid levels were quantified using a microdialysis approach, with the probe positioned in the ischemic penumbra as verified by a laser Doppler technique. Two-hour MCAo triggered a dramatic increase in the levels of glutamate, aspartate, taurine and alanine. Microdialysate delivery of 10 mM tempol reduced the amino acid release by 60–80%, while matching levels of edaravone had no effect. In line with these latter data, an intracerebroventri-cular injection of tempol but not edaravone (500 nmols each, 15 minutes prior to MCAo) reduced infarction volumes by ~50% and improved neurobehavioral outcomes. In vitro assays showed that tempol was superior in removing superoxide anion, whereas edaravone was more potent in scavenging hydrogen peroxide, hydroxyl radical, and peroxynitrite. Overall, our data suggests that the neuroprotective properties of tempol are likely related to its ability to reduce tissue levels of the superoxide anion and pathological glutamate release, and, in such a way, limit progression of brain infarction within ischemic penumbra. These new findings may be instrumental in developing new antioxidant therapies for treatment of stroke. PMID:25224033

  19. MDMA-induced loss of parvalbumin interneurons within the dentate gyrus is mediated by 5HT2A and NMDA receptors.

    PubMed

    Collins, Stuart A; Gudelsky, Gary A; Yamamoto, Bryan K

    2015-08-15

    MDMA is a widely abused psychostimulant which causes a rapid and robust release of the monoaminergic neurotransmitters dopamine and serotonin. Recently, it was shown that MDMA increases extracellular glutamate concentrations in the dorsal hippocampus, which is dependent on serotonin release and 5HT2A/2C receptor activation. The increased extracellular glutamate concentration coincides with a loss of parvalbumin-immunoreactive (PV-IR) interneurons of the dentate gyrus region. Given the known susceptibility of PV interneurons to excitotoxicity, we examined whether MDMA-induced increases in extracellular glutamate in the dentate gyrus are necessary for the loss of PV cells in rats. Extracellular glutamate concentrations increased in the dentate gyrus during systemic and local administration of MDMA. Administration of the NMDA receptor antagonist, MK-801, during systemic injections of MDMA, prevented the loss of PV-IR interneurons seen 10 days after MDMA exposure. Local administration of MDL100907, a selective 5HT2A receptor antagonist, prevented the increases in glutamate caused by reverse dialysis of MDMA directly into the dentate gyrus and prevented the reduction of PV-IR. These findings provide evidence that MDMA causes decreases in PV within the dentate gyrus through a 5HT2A receptor-mediated increase in glutamate and subsequent NMDA receptor activation. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Pre- and postsynaptic type-1 cannabinoid receptors control the alterations of glutamate transmission in experimental autoimmune encephalomyelitis.

    PubMed

    Musella, Alessandra; Sepman, Helena; Mandolesi, Georgia; Gentile, Antonietta; Fresegna, Diego; Haji, Nabila; Conrad, Andrea; Lutz, Beat; Maccarrone, Mauro; Centonze, Diego

    2014-04-01

    Type-1 cannabinoid receptors (CB1R) are important regulators of the neurodegenerative damage in multiple sclerosis (MS) and in experimental autoimmune encephalomyelitis (EAE). In GABAergic striatal neurons, CB1R stimulation exerts protective effects by limiting inflammation-induced potentiation of glutamate-mediated spontaneous excitatory postsynaptic currents (sEPSCs). Here we show that CB1R located on GABAergic or on glutamatergic neurons are differentially involved in the pre- and postsynaptic alterations of sEPSCs caused by EAE in the striatum. After induction of EAE, mice selectively lacking CB1R on GABAergic neurons (GABA-CB1R-KO) showed exacerbated alterations of sEPSC duration in GABAergic medium spiny neurons (MSN). On the other hand, EAE-induced alterations of corticostriatal sEPSC frequency were exacerbated only in mice lacking CB1R on glutamatergic neurons (Glu-CB1R-KO), indicating that this subset of receptors controls the effects of inflammation on glutamate release. While EAE severity was enhanced in whole CB1R-KO mice, GABA-CB1R-KO and Glu-CB1R-KO mice had similar motor deficits as the respective wild-type (WT) counterparts. Our results provide further evidence that CB1R are involved in EAE pathophysiology, and suggest that both pre- and postsynaptic alterations of glutamate transmission are important to drive excitotoxic neurodegeneration typical of this disorder. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Regulation of Hippocampal Glutamate Receptors: Evidence for the Involvement of a Calcium-Activated Protease

    NASA Astrophysics Data System (ADS)

    Baudry, Michel; Lynch, Gary

    1980-04-01

    Specific [3H]glutamate binding to rat hippocampal membranes and the calcium-induced increase in this binding are markedly temperature-sensitive and are inhibited by alkylating or reducing agents as well as by various protease inhibitors. N-Ethylmaleimide, chloromethyl ketone derivatives of lysine and phenylalanine, and tosylarginine methyl ester decrease the maximum number of [3H]glutamate binding sites without changing their affinity for glutamate. Preincubation of the membranes with glutamate does not protect the glutamate ``receptors'' from the suppressive effects of these agents. The proteases trypsin and α -chymotrypsin increase the maximum number of [3H]glutamate binding sites. The effects of calcium on glutamate binding are different across brain regions. Cerebellar membranes are almost insensitive whereas hippocampal and striatal membranes exhibit a strong increase in the number of binding sites after exposure to even low concentrations of calcium. These results suggest that an endogenous membrane-associated thiol protease regulates the number of [3H]glutamate binding sites in hippocampal membranes and that this is the mechanism by which calcium stimulates glutamate binding. The possibility is discussed that the postulated mechanisms participate in synaptic physiology and in particular may be related to the long-term potentiation of transmission found in hippocampus under certain conditions.

  2. Resequencing of the vesicular glutamate transporter 2 gene (VGLUT2) reveals some rare genetic variants that may increase the genetic burden in schizophrenia.

    PubMed

    Shen, Yu-Chih; Liao, Ding-Lieh; Lu, Chao-Lin; Chen, Jen-Yeu; Liou, Ying-Jay; Chen, Tzu-Ting; Chen, Chia-Hsiang

    2010-08-01

    Vesicular glutamate transporters (VGLUT1-3) package glutamate into vesicles in the presynaptic terminal and regulate the release of glutamate. In mesencephalic dopamine neuron culture, the majority of isolated dopamine neurons express VGLUT2, but not VGLUT1 or 3, have been demonstrated. As related to the dysregulated glutamatergic hypothesis of schizophrenia, the gene encoding VGLUT2 is the most plausible candidate involved in the pathogenesis of this illness. We searched for genetic variants in the promoter region and 12 exons (including UTR ends) of the VGLUT2 gene using direct sequencing in a sample of Han Chinese schizophrenic patients (n=375) and non-psychotic controls (n=366) from Taiwan, and conducted a case-control association study. We identified 8 common SNPs in the VGLUT2 gene. SNP and haplotype-based analyses showed no association with schizophrenia. Besides, we identified 9 rare variants in 13 out of 375 patients, including 3 variants located at the promoter region, 2 synonymous variants located at protein coding regions, and 4 variants located at UTR ends. No rare variants were found in the control subjects. Collectively, these rare variants were significantly overrepresented in the patient group (3.5% versus 0, p value of Fisher's exact test=2.3x10(-5)), suggesting they may contribute to the pathogenesis of schizophrenia. Although the functional significance of these rare variants remains to be characterized, our study may lend support to the multiple rare mutations hypothesis of schizophrenia, and may provide genetic clues to indicate the involvement of the glutamate transmission pathway in the pathogenesis of schizophrenia. Copyright 2010 Elsevier B.V. All rights reserved.

  3. Cocaine modulates allosteric D2-σ1 receptor-receptor interactions on dopamine and glutamate nerve terminals from rat striatum.

    PubMed

    Beggiato, Sarah; Borelli, Andrea Celeste; Borroto-Escuela, Dasiel; Corbucci, Ilaria; Tomasini, Maria Cristina; Marti, Matteo; Antonelli, Tiziana; Tanganelli, Sergio; Fuxe, Kjell; Ferraro, Luca

    2017-12-01

    The effects of nanomolar cocaine concentrations, possibly not blocking the dopamine transporter activity, on striatal D 2 -σ 1 heteroreceptor complexes and their inhibitory signaling over Gi/o, have been tested in rat striatal synaptosomes and HEK293T cells. Furthermore, the possible role of σ 1 receptors (σ 1 Rs) in the cocaine-provoked amplification of D 2 receptor (D 2 R)-induced reduction of K + -evoked [ 3 H]-DA and glutamate release from rat striatal synaptosomes, has also been investigated. The dopamine D 2 -likeR agonist quinpirole (10nM-1μM), concentration-dependently reduced K + -evoked [ 3 H]-DA and glutamate release from rat striatal synaptosomes. The σ 1 R antagonist BD1063 (100nM), amplified the effects of quinpirole (10 and 100nM) on K + -evoked [ 3 H]-DA, but not glutamate, release. Nanomolar cocaine concentrations significantly enhanced the quinpirole (100nM)-induced decrease of K + -evoked [ 3 H]-DA and glutamate release from rat striatal synaptosomes. In the presence of BD1063 (10nM), cocaine failed to amplify the quinpirole (100nM)-induced effects. In cotransfected σ 1 R and D 2L R HEK293T cells, quinpirole had a reduced potency to inhibit the CREB signal versus D 2L R singly transfected cells. In the presence of cocaine (100nM), the potency of quinpirole to inhibit the CREB signal was restored. In D 2L singly transfected cells cocaine (100nM and 10μM) exerted no modulatory effects on the inhibitory potency of quinpirole to bring down the CREB signal. These results led us to hypothesize the existence of functional D 2 -σ 1 R complexes on the rat striatal DA and glutamate nerve terminals and functional D 2 -σ 1 R-DA transporter complexes on the striatal DA terminals. Nanomolar cocaine concentrations appear to alter the allosteric receptor-receptor interactions in such complexes leading to enhancement of Gi/o mediated D 2 R signaling. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Differential glutamatergic modulation of monoamine release in the limbic lobe by selective anticonvulsant ionotropic and metabotropic glutamate receptor ligands.

    PubMed

    Smolders, I

    2005-01-01

    Several researchers are currently trying to unravel neurobiological relationships between epilepsy and depression. After all, these disorders often develop in the same vulnerable brain regions and the importance of comorbid depression and epilepsy is still underscored. Facilitation of central serotonin (5-HT), dopamine (DA) and noradrenaline (NAD) release seems to be associated with both anticonvulsant and antidepressant effects. We show that selective ionotropic and metabotropic glutamate receptor ligands with anticonvulsant properties differentially modulate NAD, DA and 5-HT in rat limbic lobe structures.

  5. Influence of Volatile Anesthesia on the Release of Glutamate and other Amino Acids in the Nucleus Accumbens in a Rat Model of Alcohol Withdrawal: A Pilot Study

    PubMed Central

    Seidemann, Thomas; Spies, Claudia; Morgenstern, Rudolf; Wernecke, Klaus-Dieter; Netzhammer, Nicolai

    2017-01-01

    Background Alcohol withdrawal syndrome is a potentially life-threatening condition, which can occur when patients with alcohol use disorders undergo general anesthesia. Excitatory amino acids, such as glutamate, act as neurotransmitters and are known to play a key role in alcohol withdrawal syndrome. To understand this process better, we investigated the influence of isoflurane, sevoflurane, and desflurane anesthesia on the profile of excitatory and inhibitory amino acids in the nucleus accumbens (NAcc) of alcohol-withdrawn rats (AWR). Methods Eighty Wistar rats were randomized into two groups of 40, pair-fed with alcoholic or non-alcoholic nutrition. Nutrition was withdrawn and microdialysis was performed to measure the activity of amino acids in the NAcc. The onset time of the withdrawal syndrome was first determined in an experiment with 20 rats. Sixty rats then received isoflurane, sevoflurane, or desflurane anesthesia for three hours during the withdrawal period, followed by one hour of elimination. Amino acid concentrations were measured using chromatography and results were compared to baseline levels measured prior to induction of anesthesia. Results Glutamate release increased in the alcohol group at five hours after the last alcohol intake (p = 0.002). After 140 min, desflurane anesthesia led to a lower release of glutamate (p < 0.001) and aspartate (p = 0.0007) in AWR compared to controls. GABA release under and after desflurane anesthesia was also significantly lower in AWR than controls (p = 0.023). Over the course of isoflurane anesthesia, arginine release decreased in AWR compared to controls (p < 0.001), and aspartate release increased after induction relative to controls (p20min = 0.015 and p40min = 0.006). However, amino acid levels did not differ between the groups as a result of sevoflurane anesthesia. Conclusions Each of three volatile anesthetics we studied showed different effects on excitatory and inhibitory amino acid concentrations. Under desflurane anesthesia, both glutamate and aspartate showed a tendency to be lower in AWR than controls over the whole timecourse. The inhibitory amino acid arginine increased in AWR compared to controls, whereas GABA levels decreased. However, there were no significant differences in amino acid concentrations under or after sevoflurane anesthesia. Under isoflurane, aspartate release increased in AWR following induction, and from 40 min to 140 min arginine release in controls was elevated. The precise mechanisms through which each of the volatile anesthetics affected amino acid concentrations are still unclear and further experimental research is required to draw reliable conclusions. PMID:28045949

  6. Influence of Volatile Anesthesia on the Release of Glutamate and other Amino Acids in the Nucleus Accumbens in a Rat Model of Alcohol Withdrawal: A Pilot Study.

    PubMed

    Seidemann, Thomas; Spies, Claudia; Morgenstern, Rudolf; Wernecke, Klaus-Dieter; Netzhammer, Nicolai

    2017-01-01

    Alcohol withdrawal syndrome is a potentially life-threatening condition, which can occur when patients with alcohol use disorders undergo general anesthesia. Excitatory amino acids, such as glutamate, act as neurotransmitters and are known to play a key role in alcohol withdrawal syndrome. To understand this process better, we investigated the influence of isoflurane, sevoflurane, and desflurane anesthesia on the profile of excitatory and inhibitory amino acids in the nucleus accumbens (NAcc) of alcohol-withdrawn rats (AWR). Eighty Wistar rats were randomized into two groups of 40, pair-fed with alcoholic or non-alcoholic nutrition. Nutrition was withdrawn and microdialysis was performed to measure the activity of amino acids in the NAcc. The onset time of the withdrawal syndrome was first determined in an experiment with 20 rats. Sixty rats then received isoflurane, sevoflurane, or desflurane anesthesia for three hours during the withdrawal period, followed by one hour of elimination. Amino acid concentrations were measured using chromatography and results were compared to baseline levels measured prior to induction of anesthesia. Glutamate release increased in the alcohol group at five hours after the last alcohol intake (p = 0.002). After 140 min, desflurane anesthesia led to a lower release of glutamate (p < 0.001) and aspartate (p = 0.0007) in AWR compared to controls. GABA release under and after desflurane anesthesia was also significantly lower in AWR than controls (p = 0.023). Over the course of isoflurane anesthesia, arginine release decreased in AWR compared to controls (p < 0.001), and aspartate release increased after induction relative to controls (p20min = 0.015 and p40min = 0.006). However, amino acid levels did not differ between the groups as a result of sevoflurane anesthesia. Each of three volatile anesthetics we studied showed different effects on excitatory and inhibitory amino acid concentrations. Under desflurane anesthesia, both glutamate and aspartate showed a tendency to be lower in AWR than controls over the whole timecourse. The inhibitory amino acid arginine increased in AWR compared to controls, whereas GABA levels decreased. However, there were no significant differences in amino acid concentrations under or after sevoflurane anesthesia. Under isoflurane, aspartate release increased in AWR following induction, and from 40 min to 140 min arginine release in controls was elevated. The precise mechanisms through which each of the volatile anesthetics affected amino acid concentrations are still unclear and further experimental research is required to draw reliable conclusions.

  7. Sevoflurane protects rat mixed cerebrocortical neuronal-glial cell cultures against transient oxygen-glucose deprivation: involvement of glutamate uptake and reactive oxygen species.

    PubMed

    Canas, Paula T; Velly, Lionel J; Labrande, Christelle N; Guillet, Benjamin A; Sautou-Miranda, Valérie; Masmejean, Frédérique M; Nieoullon, André L; Gouin, François M; Bruder, Nicolas J; Pisano, Pascale S

    2006-11-01

    The purpose of this study was to clarify the role of glutamate and reactive oxygen species in sevoflurane-mediated neuroprotection on an in vitro model of ischemia-reoxygenation. Mature mixed cerebrocortical neuronal-glial cell cultures, treated or not with increasing concentrations of sevoflurane, were exposed to 90 min combined oxygen-glucose deprivation (OGD) in an anaerobic chamber followed by reoxygenation. Cell death was quantified by lactate dehydrogenase release into the media and cell viability by reduction of 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium by mitochondrial succinate dehydrogenase. Extracellular concentrations of glutamate and glutamate uptake were assessed at the end of the ischemic injury by high-performance liquid chromatography and incorporation of L-[H]glutamate into cells, respectively. Free radical generation in cells was assessed 6 h after OGD during the reoxygenation period using 2',7'-dichlorofluorescin diacetate, which reacts with intracellular radicals to be converted to its fluorescent product, 2',7'-dichlorofluorescin, in cell cytosol. Twenty-four hours after OGD, sevoflurane, in a concentration-dependent manner, significantly reduced lactate dehydrogenase release and increased cell viability. At the end of OGD, sevoflurane was able to reduce the OGD-induced decrease in glutamate uptake. This effect was impaired in the presence of threo-3-methyl glutamate, a specific inhibitor of the glial transporter GLT1. Sevoflurane counteracted the increase in extracellular level of glutamate during OGD and the generation of reactive oxygen species during reoxygenation. Sevoflurane had a neuroprotective effect in this in vitro model of ischemia-reoxygenation. This beneficial effect may be explained, at least in part, by sevoflurane-induced antiexcitotoxic properties during OGD, probably depending on GLT1, and by sevoflurane-induced decrease of reactive oxygen species generation during reoxygenation.

  8. The effects of midazolam and D-cycloserine on the release of glutamate and GABA in the basolateral amygdala of low and high anxiety rats during extinction trial of a conditioned fear test.

    PubMed

    Lehner, Małgorzata; Wisłowska-Stanek, Aleksandra; Taracha, Ewa; Maciejak, Piotr; Szyndler, Janusz; Skórzewska, Anna; Turzyńska, Danuta; Sobolewska, Alicja; Hamed, Adam; Bidziński, Andrzej; Płaźnik, Adam

    2010-11-01

    In this study, we investigated how midazolam and d-cycloserine regulate the tonic activity and/or phasic reactivity of brain neurotransmitter systems to fear-evoking stimuli in rats with varying intensities of a fear response. We used a new animal model composed of high (HR) and low (LR) anxiety rats, selected according to their behaviour in the contextual fear test (i.e., the duration of a freezing response was used as a discriminating variable). In these rats, we examined the effects of both drugs on the release of glutamate and GABA in the basolateral amygdala (BLA) during the first extinction trial of a conditioned fear test. The results showed that administration of d-cycloserine (15 mg/kg, i.p.) significantly enhanced the inhibition of an aversive context-induced freezing response observed during the extinction session in HR and LR rats. In contrast, midazolam (0.75 mg/kg, i.p.) accelerated the attenuation of fear responses only in HR rats. The less anxious behaviour of LR animals given saline was accompanied by elevated basal levels of glutamate in the BLA, in comparison with HR rats, and a stronger elevation of GABA in response to contextual fear. In HR animals, the pretreatment of rats with d-cycloserine and midazolam significantly increased the local concentration of GABA and inhibited the expression of contextual fear. These findings suggest that animals more vulnerable to stress have innate deficits in brain systems that control the activity of the BLA mediating the central effect of stress. These results contribute to our understanding of observed individual differences in the effects of anxiolytic drugs among patients with anxiety disorders. Copyright © 2010. Published by Elsevier Inc.

  9. Developmental up-regulation of vesicular glutamate transporter-1 promotes neocortical presynaptic terminal development.

    PubMed

    Berry, Corbett T; Sceniak, Michael P; Zhou, Louie; Sabo, Shasta L

    2012-01-01

    Presynaptic terminal formation is a complex process that requires assembly of proteins responsible for synaptic transmission at sites of axo-dendritic contact. Accumulation of presynaptic proteins at developing terminals is facilitated by glutamate receptor activation. Glutamate is loaded into synaptic vesicles for release via the vesicular glutamate transporters VGLUT1 and VGLUT2. During postnatal development there is a switch from predominantly VGLUT2 expression to high VGLUT1 and low VGLUT2, raising the question of whether the developmental increase in VGLUT1 is important for presynaptic development. Here, we addressed this question using confocal microscopy and quantitative immunocytochemistry in primary cultures of rat neocortical neurons. First, in order to understand the extent to which the developmental switch from VGLUT2 to VGLUT1 occurs through an increase in VGLUT1 at individual presynaptic terminals or through addition of VGLUT1-positive presynaptic terminals, we examined the spatio-temporal dynamics of VGLUT1 and VGLUT2 expression. Between 5 and 12 days in culture, the percentage of presynaptic terminals that expressed VGLUT1 increased during synapse formation, as did expression of VGLUT1 at individual terminals. A subset of VGLUT1-positive terminals also expressed VGLUT2, which decreased at these terminals. At individual terminals, the increase in VGLUT1 correlated with greater accumulation of other synaptic vesicle proteins, such as synapsin and synaptophysin. When the developmental increase in VGLUT1 was prevented using VGLUT1-shRNA, the density of presynaptic terminals and accumulation of synapsin and synaptophysin at terminals were decreased. Since VGLUT1 knock-down was limited to a small number of neurons, the observed effects were cell-autonomous and independent of changes in overall network activity. These results demonstrate that up-regulation of VGLUT1 is important for development of presynaptic terminals in the cortex.

  10. Developmental Up-Regulation of Vesicular Glutamate Transporter-1 Promotes Neocortical Presynaptic Terminal Development

    PubMed Central

    Berry, Corbett T.; Sceniak, Michael P.; Zhou, Louie; Sabo, Shasta L.

    2012-01-01

    Presynaptic terminal formation is a complex process that requires assembly of proteins responsible for synaptic transmission at sites of axo-dendritic contact. Accumulation of presynaptic proteins at developing terminals is facilitated by glutamate receptor activation. Glutamate is loaded into synaptic vesicles for release via the vesicular glutamate transporters VGLUT1 and VGLUT2. During postnatal development there is a switch from predominantly VGLUT2 expression to high VGLUT1 and low VGLUT2, raising the question of whether the developmental increase in VGLUT1 is important for presynaptic development. Here, we addressed this question using confocal microscopy and quantitative immunocytochemistry in primary cultures of rat neocortical neurons. First, in order to understand the extent to which the developmental switch from VGLUT2 to VGLUT1 occurs through an increase in VGLUT1 at individual presynaptic terminals or through addition of VGLUT1-positive presynaptic terminals, we examined the spatio-temporal dynamics of VGLUT1 and VGLUT2 expression. Between 5 and 12 days in culture, the percentage of presynaptic terminals that expressed VGLUT1 increased during synapse formation, as did expression of VGLUT1 at individual terminals. A subset of VGLUT1-positive terminals also expressed VGLUT2, which decreased at these terminals. At individual terminals, the increase in VGLUT1 correlated with greater accumulation of other synaptic vesicle proteins, such as synapsin and synaptophysin. When the developmental increase in VGLUT1 was prevented using VGLUT1-shRNA, the density of presynaptic terminals and accumulation of synapsin and synaptophysin at terminals were decreased. Since VGLUT1 knock-down was limited to a small number of neurons, the observed effects were cell-autonomous and independent of changes in overall network activity. These results demonstrate that up-regulation of VGLUT1 is important for development of presynaptic terminals in the cortex. PMID:23226425

  11. Synaptic Phospholipid Signaling Modulates Axon Outgrowth via Glutamate-dependent Ca2+-mediated Molecular Pathways.

    PubMed

    Vogt, Johannes; Kirischuk, Sergei; Unichenko, Petr; Schlüter, Leslie; Pelosi, Assunta; Endle, Heiko; Yang, Jenq-Wei; Schmarowski, Nikolai; Cheng, Jin; Thalman, Carine; Strauss, Ulf; Prokudin, Alexey; Bharati, B Suman; Aoki, Junken; Chun, Jerold; Lutz, Beat; Luhmann, Heiko J; Nitsch, Robert

    2017-01-01

    Altered synaptic bioactive lipid signaling has been recently shown to augment neuronal excitation in the hippocampus of adult animals by activation of presynaptic LPA2-receptors leading to increased presynaptic glutamate release. Here, we show that this results in higher postsynaptic Ca2+ levels and in premature onset of spontaneous neuronal activity in the developing entorhinal cortex. Interestingly, increased synchronized neuronal activity led to reduced axon growth velocity of entorhinal neurons which project via the perforant path to the hippocampus. This was due to Ca2+-dependent molecular signaling to the axon affecting stabilization of the actin cytoskeleton. The spontaneous activity affected the entire entorhinal cortical network and thus led to reduced overall axon fiber numbers in the mature perforant path that is known to be important for specific memory functions. Our data show that precise regulation of early cortical activity by bioactive lipids is of critical importance for proper circuit formation. © The Author 2016. Published by Oxford University Press.

  12. Purification and properties of glutamate binding protein from the periplasmic space of Escherichia coli K-12.

    PubMed

    Barash, H; Halpern, Y S

    1975-03-28

    Glutamate binding protein released from the periplasmic space of Escherichia coli K-12 by lysozyme-EDTA treatment was purified to homogeneity and its physical and chemical properties were studied. It is a basic protein with a pI of 9.1. Its molecular weight, determined in an analytical ultracentrifuge, and by gel filtration on Sephadex G-100 and dodecylsulphate acrylamide is 29 700, 27 800 and 32 000, respectively. The KD value for glutamate was 6.7 - 10- minus 6 M. L-Aspartate, reduced glutathione, G-glutamate-gamma-benzylester and L-glutamate-gamma-ethylester competitively inhibited glutamate binding with K-i; values of 7.8 - 10- minus 5, 1.1 - 10- minus 5, 1.0 - 10- minus 5 and 1.0 - 10- minus 5 M, respectively. Spheroplasts retained 40% of glutamate transport as compared to intact cells. The glutamate binding activity of a glutamate-utilizing strain (CS7), was 1.6 times as high as that of the glutamate non-utilizing parent strain (CS101). Similarly, the glutamate binding activity of a temperature conditional glutamate-utilizing mutant (CS2-TC) was 1.9 times higher when grown at the permissive temperature (42 degrees C) than when grown at the restrictive temperature (30 degrees C).

  13. Sleep Duration Varies as a Function of Glutamate and GABA in Rat Pontine Reticular Formation

    PubMed Central

    Watson, Christopher J.; Lydic, Ralph; Baghdoyan, Helen A.

    2011-01-01

    The oral part of the pontine reticular formation (PnO) is a component of the ascending reticular activating system and plays a role in the regulation of sleep and wakefulness. The PnO receives glutamatergic and GABAergic projections from many brain regions that regulate behavioral state. Indirect, pharmacological evidence has suggested that glutamatergic and GABAergic signaling within the PnO alters traits that characterize wakefulness and sleep. No previous studies have simultaneously measured endogenous glutamate and GABA from rat PnO in relation to sleep and wakefulness. The present study utilized in vivo microdialysis coupled on-line to capillary electrophoresis with laser-induced fluorescence to test the hypothesis that concentrations of glutamate and GABA in the PnO vary across the sleep/wake cycle. Concentrations of glutamate and GABA were significantly higher during wakefulness than during NREM sleep and REM sleep. Regression analysis revealed that decreases in glutamate and GABA accounted for a significant portion of the variance in the duration of NREM sleep and REM sleep episodes. These data provide novel support for the hypothesis that endogenous glutamate and GABA in the PnO contribute to the regulation of sleep duration. PMID:21679185

  14. AMPA receptor activation controls type I metabotropic glutamate receptor signalling via a tyrosine kinase at parallel fibre-Purkinje cell synapses.

    PubMed

    Auger, Céline; Ogden, David

    2010-08-15

    Metabotropic glutamate receptors type 1 (mGluR1s) and ionotropic AMPA receptors (AMPARs) are colocalized at parallel fibre (PF) to Purkinje cell synapses of the cerebellum. Single stimulation of PFs activates fast AMPAR excitatory postsynaptic currents, whereas the activation of mGluR1s requires burst stimulation. mGluR1s signal through several pathways in Purkinje cells and the most prominent is the activation of a slow EPSC (sEPSC). To separate the two synaptic currents, studies of the sEPSC have commonly been performed in the presence of AMPA/KA receptor antagonists. We show here in rat cerebellar slices that inhibition of the fast EPSC by AMPAR antagonists strongly and selectively potentiates the mGluR1 sEPSC, showing a negative regulation of mGluR1 by AMPAR. This effect is observed with low concentrations of NBQX (300 nM to 1 microM), with the selective AMPAR antagonist GYKI 53655 and also with gamma-DGG, a low affinity glutamate receptor antagonist. When photorelease of glutamate from MNI-glutamate was used to study the postsynaptic responses in isolation, AMPAR inhibition produced a similar potentiation of the mGluR1 sEPSC, showing that the interaction is postsynaptic. Finally, perfusion of the postsynaptic cell with PP1, an inhibitor of src-family tyrosine kinase, increased the amplitude of the mGluR1 sEPSC and occluded the effect of AMPAR inhibition. Thus, at PF to Purkinje cell synapses, AMPAR activation inhibits the mGluR1 sEPSC via activation of a src-family tyrosine kinase. Consequently mGluR1 signalling will be more sensitive to spillover of glutamate than to local synaptic release. Furthermore, it will be enhanced at silent PF synapses which are the majority in Purkinje cells.

  15. Identification of differentiation-associated brain-specific phosphate transporter as a second vesicular glutamate transporter (VGLUT2).

    PubMed

    Takamori, S; Rhee, J S; Rosenmund, C; Jahn, R

    2001-11-15

    Glutamate is the major excitatory neurotransmitter in mammalian CNS. In the presynaptic nerve terminal, glutamate is stored in synaptic vesicles and released by exocytosis. Previously, it has been shown that a transport protein originally identified as a brain-specific Na(+)-dependent inorganic phosphate transporter I (BNPI) functions as vesicular glutamate transporter and thus has been renamed VGLUT1. Recently, a protein highly homologous to VGLUT1, "differentiation-associated BNPI" (DNPI), has been discovered. Northern blot and in situ hybridization analyses indicate that DNPI mRNA is expressed in some brain regions in which VGLUT1 mRNA is not expressed. We now show that DNPI functions as vesicular glutamate transporter with properties very similar to VGLUT1 and propose to rename the protein VGLUT2. VGLUT2 is highly enriched in synaptic vesicles. Furthermore, VGLUT2 resides on a vesicle population that is distinct from vesicles containing the vesicular GABA transporter or VGLUT1, showing that the expression of VGLUT1 and VGLUT2 do not overlap. When VGLUT2 was expressed in BON cells, membrane fractions displayed ATP-dependent, carbonyl cyanide p-trifluoromethoxyphenylhydrazone-sensitive glutamate uptake. Overexpression of VGLUT2 in cultured autaptic GABAergic neurons yielded postsynaptic currents that were insensitive to the GABA(A) receptor antagonist bicuculline but blocked by the AMPA-receptor antagonist 2,3-dihydroxy-6-nitro-7-sulfonyl-benzo[F]quinoxaline. Thus, expression of VGLUT2 suffices to cause GABAergic neurons to release glutamate in addition to GABA in a manner very similar to that reported previously for VGLUT1.

  16. Regulation of glutamate level in rat brain through activation of glutamate dehydrogenase by Corydalis ternata.

    PubMed

    Lee, Kwan Ho; Huh, Jae-Wan; Choi, Myung-Min; Yoon, Seung Yong; Yang, Seung-Ju; Hong, Hea Nam; Cho, Sung-Woo

    2005-08-31

    When treated with protopine and alkalized extracts of the tuber of Corydalis ternata for one year, significant decrease in glutamate level and increase in glutamate dehydrogenase (GDH) activity was observed in rat brains. The expression of GDH between the two groups remained unchanged as determined by Western and Northern blot analysis, suggesting a post-translational regulation of GDH activity in alkalized extracts treated rat brains. The stimulatory effects of alkalized extracts and protopine on the GDH activity was further examined in vitro with two types of human GDH isozymes, hGDH1 (house-keeping GDH) and hGDH2 (nerve-specific GDH). Alkalized extracts and protopine activated the human GDH isozymes up to 4.8-fold. hGDH2 (nerve- specific GDH) was more sensitively affected by 1 mM ADP than hGDH1 (house-keeping GDH) on the activation by alkalized extracts. Studies with cassette mutagenesis at ADP-binding site showed that hGDH2 was more sensitively regulated by ADP than hGDH1 on the activation by Corydalis ternata. Our results suggest that prolonged exposure to Corydalis ternata may be one of the ways to regulate glutamate concentration in brain through the activation of GDH.

  17. AN NMDA ANTAGONIST IN THE MPOA IMPAIRS COPULATION AND STIMULUS SENSITIZATION IN MALE RATS

    PubMed Central

    Vigdorchik, Anna V.; Parrish, Bradley P.; Lagoda, Gwen A.; McHenry, Jenna A.; Hull, Elaine M.

    2011-01-01

    Systemic injections of an NMDA antagonist have been shown to impair mating in male rats. One site where glutamate and its NMDA receptors may contribute to mating is the medial preoptic area (MPOA), which is vital for male sexual behavior. Glutamate is released in the MPOA during copulation, and especially at the time of ejaculation. We report here that the NMDA antagonist MK-801, microinjected into the MPOA, impaired copulatory behavior in sexually naïve as well as experienced males. In animals tested both as naïve and after sexual experience, drug treatment produced more profound impairment in naïve males. In addition, MK-801, microinjected into the MPOA before each of 7 noncopulatory exposures to receptive female rats, resulted in copulatory impairments on a drug-free test on day 8, relative to aCSF-treated animals; their behavior was similar to that of males that had not been pre-exposed to females. Therefore, NMDA receptors in the MPOA contribute to the control of copulation and stimulus sensitization. Glutamate, acting via NMDA receptors, regulates many neural functions, including neuronal plasticity. This is the first demonstration that a similar mechanism in the MPOA sensitizes male rats to the stimuli from a receptive female, and thereby enhances their behavior. PMID:22289046

  18. Distributions of vesicular glutamate transporters 1 and 2 in the visual system of tree shrews (Tupaia belangeri)1

    PubMed Central

    Balaram, P; Isaamullah, M; Petry, HM; Bickford, ME; Kaas, JH

    2014-01-01

    Vesicular glutamate transporter (VGLUT) proteins regulate the storage and release of glutamate from synapses of excitatory neurons. Two isoforms, VGLUT1 and VGLUT2, are found in most glutamatergic projections across the mammalian visual system, and appear to differentially identify subsets of excitatory projections between visual structures. To expand current knowledge on the distribution of VGLUT isoforms in highly visual mammals, we examined the mRNA and protein expression patterns of VGLUT1 and VGLUT2 in the lateral geniculate nucleus (LGN), superior colliculus, pulvinar complex, and primary visual cortex (V1) in tree shrews (Tupaia belangeri), which are closely related to primates but classified as a separate order (Scandentia). We found that VGLUT1 was distributed in intrinsic and corticothalamic connections, whereas VGLUT2 was predominantly distributed in subcortical and thalamocortical connections. VGLUT1 and VGLUT2 were coexpressed in the LGN and in the pulvinar complex, as well as in restricted layers of V1, suggesting a greater heterogeneity in the range of efferent glutamatergic projections from these structures. These findings provide further evidence that VGLUT1 and VGLUT2 identify distinct populations of excitatory neurons in visual brain structures across mammals. Observed variations in individual projections may highlight the evolution of these connections through the mammalian lineage. PMID:25521420

  19. Integration between Glycolysis and Glutamate-Glutamine Cycle Flux May Explain Preferential Glycolytic Increase during Brain Activation, Requiring Glutamate

    PubMed Central

    Hertz, Leif; Chen, Ye

    2017-01-01

    The 1988 observation by Fox et al. (1988) that brief intense brain activation increases glycolysis (pyruvate formation from glucose) much more than oxidative metabolism has been abundantly confirmed. Specifically glycolytic increase was unexpected because the amount of ATP it generates is much smaller than that formed by subsequent oxidative metabolism of pyruvate. The present article shows that preferential glycolysis can be explained by metabolic processes associated with activation of the glutamate-glutamine cycle. The flux in this cycle, which is essential for production of transmitter glutamate and GABA, equals 75% of brain glucose utilization and each turn is associated with utilization of ~1 glucose molecule. About one half of the association between cycle flux and glucose metabolism occurs during neuronal conversion of glutamine to glutamate in a process similar to the malate-aspartate shuttle (MAS) except that glutamate is supplied from glutamine, not formed from α-ketoglutarate (αKG) as during operation of conventional MAS. Regular MAS function is triggered by one oxidative process in the cytosol during glycolysis causing NAD+ reduction to NADH. Since NADH cannot cross the mitochondrial membrane (MEM) for oxidation NAD+ is re-generated by conversion of cytosolic oxaloacetate (OAA) to malate, which enters the mitochondria for oxidation and in a cyclic process regenerates cytosolic OAA. Therefore MAS as well as the “pseudo-MAS” necessary for neuronal glutamate formation can only operate together with cytosolic reduction of NAD+ to NADH. The major process causing NAD+ reduction is glycolysis which therefore also must occur during neuronal conversion of glutamine to glutamate and may energize vesicular glutamate uptake which preferentially uses glycolytically derived energy. Another major contributor to the association between glutamate-glutamine cycle and glucose utilization is the need for astrocytic pyruvate to generate glutamate. Although some oxidative metabolism occurs during glutamate formation it is only one half of that during normal tricarboxylic acid (TCA) cycle function. Glutamate’s receptor stimulation leads to potassium ion (K+) release and astrocytic uptake, preferentially fueled by glycolysis and followed by release and neuronal re-accumulation. The activation-induced preferential glycolysis diminishes with continued activation and is followed by an increased ratio between oxidative metabolism and glycolysis, reflecting oxidation of generated glutamate and accumulated lactate. PMID:28890689

  20. GABA release in the zona incerta of the sheep in response to the sight and ingestion of food and salt.

    PubMed

    Kendrick, K M; Hinton, M R; Baldwin, B A

    1991-05-31

    In order to establish which neurotransmitters may influence the activity of zona incerta neurones in the sheep which respond selectively to the sight or ingestion of food, we have measured the release of amino acid and monoamine neurotransmitters from this region using microdialysis sampling. Co-ordinates for the placement of microdialysis probes in regions of the zona incerta where cells respond to the sight or ingestion of food were first established by making single-unit extracellular recordings. When animals were food-deprived results showed that release of gamma-aminobutyric acid (GABA) was increased in response to the sight and ingestion of food but not of aspartate, glutamate, taurine, noradrenaline, dopamine or serotonin. This release of GABA was absent when the animals were shown non-food objects or saw or ingested salt solutions. When the same animals were physiologically sodium-depleted GABA release was evoked by the sight and ingestion of salt solutions and release following the sight and ingestion of food was significantly reduced. These results provide further evidence that GABA is an important neurotransmitter in neural circuits controlling the regulation of food intake.

  1. Capsaicin-induced glutamate release is implicated in nociceptive processing through activation of ionotropic glutamate receptors and group I metabotropic glutamate receptor in primary afferent fibers.

    PubMed

    Jin, You-Hong; Yamaki, Fumiko; Takemura, Motohide; Koike, Yuichi; Furuyama, Akira; Yonehara, Norifumi

    2009-02-01

    Glutamate (Glu) is the major excitatory neurotransmitter in the central nervous system. The role of peripheral Glu and Glu receptors (GluRs) in nociceptive transmission is, however, still unclear. In the present study, we examined Glu levels released in the subcutaneous perfusate of the rat hind instep using a microdialysis catheter and the thermal withdrawal latency using the Plantar Test following injection of drugs associated with GluRs with/without capsaicin into the hindpaw. The injection of capsaicin into the rat hind instep caused an increase of Glu level in the s.c. perfusate. Capsaicin also significantly decreased withdrawal latency to irradiation. These effects of capsaicin were inhibited by pretreatment with capsazepine, a transient receptor potential vanilloid receptor 1 (TRPV1) competitive antagonist. Capsaicin-induced Glu release was also suppressed by combination with each antagonist of ionotropic GluRs (iGluRs: NMDA/AMPA receptors) and group I metabotropic GluR (mGluR), but not group II and group III mGluRs. Furthermore, these GluRs antagonists showed remarkable inhibition against capsaicin-induced thermal hyperalgesia. These results suggest that Glu is released from the peripheral endings of small-diameter afferent fibers by noxious stimulation and then activates peripheral iGluRs and group I mGluR in development and/or maintenance of nociception. Furthermore, the activation of peripheral NMDA/AMPA receptors and group I mGluR may be important in mechanisms whereby capsaicin evokes nociceptive responses.

  2. Involvement of amygdalar extracellular zinc in rat behavior for passive avoidance.

    PubMed

    Takeda, Atsushi; Minami, Akira; Yamaide, Rie; Oku, Naoto

    2004-03-25

    On the basis of the evidence that zinc is released from glutamatergic neuron terminals in the amygdala, the effect of chelation of amygdalar extracellular zinc on glutamate release from the neuron terminals was studied by using in vivo microdialysis. When the amygdala was perfused with 100 microM CaEDTA to chelate extracellular zinc, glutamate concentration in the perfusate was decreased significantly, whereas that tended to be increased by perfusion with 100 microM ZnEDTA as a control. The effect of CaEDTA on extracellular glutamate levels was different between the amygdala and hippocampus, implying that modulation of glutamate signaling by zinc is different between them. To evaluate chelation of zinc in rat behavior, perfusion of the amygdala with CaEDTA was started 40 min before behavioral test for passive avoidance. The behavior for passive avoidance was impaired during perfusion with CaEDTA. On the other hand, the behavior during perfusion with ZnEDTA was more rapidly developed than that with vehicle only. These results suggest that amygdalar extracellular zinc is involved in the behavior for passive avoidance.

  3. Prostaglandin E(2) stimulates glutamate receptor-dependent astrocyte neuromodulation in cultured hippocampal cells.

    PubMed

    Sanzgiri, R P; Araque, A; Haydon, P G

    1999-11-05

    Recent Ca(2+) imaging studies in cell culture and in situ have shown that Ca(2+) elevations in astrocytes stimulate glutamate release and increase neuronal Ca(2+) levels, and that this astrocyte-neuron signaling can be stimulated by prostaglandin E(2) (PGE(2)). We investigated the electrophysiological consequences of the PGE(2)-mediated astrocyte-neuron signaling using whole-cell recordings on cultured rat hippocampal cells. Focal application of PGE(2) to astrocytes evoked a Ca(2+) elevation in the stimulated cell by mobilizing internal Ca(2+) stores, which further propagated as a Ca(2+) wave to neighboring astrocytes. Whole-cell recordings from neurons revealed that PGE(2) evoked a slow inward current in neurons adjacent to astrocytes. This neuronal response required the presence of an astrocyte Ca(2+) wave and was mediated through both N-methyl-D-aspartate (NMDA) and non-NMDA glutamate receptors. Taken together with previous studies, these data demonstrate that PGE(2)-evoked Ca(2+) elevations in astrocyte cause the release of glutamate which activates neuronal ionotropic receptors. Copyright 1999 John Wiley & Sons, Inc.

  4. Kainate receptors mediate signaling in both transient and sustained OFF bipolar cell pathways in mouse retina.

    PubMed

    Borghuis, Bart G; Looger, Loren L; Tomita, Susumu; Demb, Jonathan B

    2014-04-30

    A fundamental question in sensory neuroscience is how parallel processing is implemented at the level of molecular and circuit mechanisms. In the retina, it has been proposed that distinct OFF cone bipolar cell types generate fast/transient and slow/sustained pathways by the differential expression of AMPA- and kainate-type glutamate receptors, respectively. However, the functional significance of these receptors in the intact circuit during light stimulation remains unclear. Here, we measured glutamate release from mouse bipolar cells by two-photon imaging of a glutamate sensor (iGluSnFR) expressed on postsynaptic amacrine and ganglion cell dendrites. In both transient and sustained OFF layers, cone-driven glutamate release from bipolar cells was blocked by antagonists to kainate receptors but not AMPA receptors. Electrophysiological recordings from bipolar and ganglion cells confirmed the essential role of kainate receptors for signaling in both transient and sustained OFF pathways. Kainate receptors mediated responses to contrast modulation up to 20 Hz. Light-evoked responses in all mouse OFF bipolar pathways depend on kainate, not AMPA, receptors.

  5. RANTES modulates the release of glutamate in human neocortex.

    PubMed

    Musante, Veronica; Longordo, Fabio; Neri, Elisa; Pedrazzi, Marco; Kalfas, Fotios; Severi, Paolo; Raiteri, Maurizio; Pittaluga, Anna

    2008-11-19

    The effects of the recombinant chemokine human RANTES (hRANTES) on the release of glutamate from human neocortex glutamatergic nerve endings were investigated. hRANTES facilitated the spontaneous release of d [(3)H]D-aspartate ([(3)H]DASP-) by binding Pertussis toxin-sensitive G-protein-coupled receptors (GPCRs), whose activation caused Ca(2+) mobilization from inositol trisphosphate-sensitive stores and cytosolic tyrosine kinase-mediated phosphorylations. Facilitation of release switched to inhibition when the effects of hRANTES on the 12 mM K(+)-evoked [(3)H]D-ASP exocytosis were studied. Inhibition of exocytosis relied on activation of Pertussis toxin-sensitive GPCRs negatively coupled to adenylyl cyclase. Both hRANTES effects were prevented by met-RANTES, an antagonist at the chemokine receptors (CCRs) of the CCR1, CCR3, and CCR5 subtypes. Interestingly, human neocortex glutamatergic nerve endings seem to possess all three receptor subtypes. Blockade of CCR1 and CCR5 by antibodies against the extracellular domain of CCRs prevented both the hRANTES effect on [(3)H]D-ASP release, whereas blockade of CCR3 prevented inhibition, but not facilitation, of release. The effects of RANTES on the spontaneous and the evoked release of [(3)H]D-ASP were also observed in experiments with mouse cortical synaptosomes, which may therefore represent an appropriate animal model to study RANTES-induced effects on neurotransmission. It is concluded that glutamate transmission can be modulated in opposite directions by RANTES acting at distinct CCR receptor subtypes coupled to different transduction pathways, consistent with the multiple and sometimes contrasting effects of the chemokine.

  6. Muscimol increases acetylcholine release by directly stimulating adult striatal cholinergic interneurons.

    PubMed

    Login, I S; Pal, S N; Adams, D T; Gold, P E

    1998-01-01

    Because GabaA ligands increase acetylcholine (ACh) release from adult striatal slices, we hypothesized that activation of GabaA receptors on striatal cholinergic interneurons directly stimulates ACh secretion. Fractional [3H]ACh release was recorded during perifusion of acutely dissociated, [3H]choline-labeled, adult male rat striata. The GabaA agonist, muscimol, immediately stimulated release maximally approximately 300% with EC50 = approximately 1 microM. This action was enhanced by the allosteric GabaA receptor modulators, diazepam and secobarbital, and inhibited by the GabaA antagonist, bicuculline, by ligands for D2 or muscarinic cholinergic receptors or by low calcium buffer, tetrodotoxin or vesamicol. Membrane depolarization inversely regulated muscimol-stimulated secretion. Release of endogenous and newly synthesized ACh was stimulated in parallel by muscimol without changing choline release. Muscimol pretreatment inhibited release evoked by K+ depolarization or by receptor-mediated stimulation with glutamate. Thus, GabaA receptors on adult striatal cholinergic interneurons directly stimulate voltage- and calcium-dependent exocytosis of ACh stored in vesamicol-sensitive synaptic vesicles. The action depends on the state of membrane polarization and apparently depolarizes the membrane in turn. This functional assay demonstrates that excitatory GabaA actions are not limited to neonatal tissues. GabaA-stimulated ACh release may be prevented in situ by normal tonic dopaminergic and muscarinic input to cholinergic neurons.

  7. Using glutamate homeostasis as a target for treating addictive disorders

    PubMed Central

    Reissner, Kathryn J.; Kalivas, Peter W.

    2010-01-01

    Well-developed cellular mechanisms exist to preserve glutamate homeostasis and regulate extrasynaptic glutamate levels. Accumulating evidence indicates that disruptions in glutamate homeostasis are associated with addictive disorders. The disruptions in glutamate concentrations observed following prolonged exposure to drugs of abuse are associated with changes in the function and activity of several key components within the homeostatic control mechanism, including the cystine/glutamate exchanger xc− and the glial glutamate transporter EAAT2/GLT-1. Changes in the balance between synaptic and extrasynaptic glutamate levels in turn influence signaling through pre- and postsynaptic glutamate receptors, and thus affect synaptic plasticity and circuit-level activity. In this review we describe the evidence for impaired glutamate homestasis as a critical mediator of long-term drug-seeking behaviors, how chronic neuroadaptations in xc− and GLT-1 mediate a disruption in glutamate homeostasis, and how targeting these components restores glutamate levels and inhibits drug-seeking behaviors. PMID:20634691

  8. Glutamate-dependent phosphorylation of the mammalian target of rapamycin (mTOR) in Bergmann glial cells.

    PubMed

    Zepeda, Rossana C; Barrera, Iliana; Castelán, Francisco; Suárez-Pozos, Edna; Melgarejo, Yaaziel; González-Mejia, Elba; Hernández-Kelly, Luisa C; López-Bayghen, Esther; Aguilera, José; Ortega, Arturo

    2009-09-01

    Glutamate, the major excitatory neurotransmitter in the mammalian central nervous system, plays an important role in neuronal development and synaptic plasticity. It activates a variety of signaling pathways that regulate gene expression at the transcriptional and translational levels. Within glial cells, besides transcription, glutamate also regulates translation initiation and elongation. The mammalian target of rapamycin (mTOR), a key participant in the translation process, represents an important regulatory locus for translational control. Therefore, in the present communication we sought to characterize the mTOR phosphorylation pattern after glutamate treatment in chick cerebellar Bergmann glia primary cultures. A time- and dose-dependent increase in mTOR Ser 2448 phosphorylation was found. Pharmacological tools established that the glutamate effect is mediated through ionotropic and metabotropic receptors and interestingly, the glutamate transporter system is also involved. The signaling cascade triggered by glutamate includes an increase in intracellular Ca2+ levels, and the activation of the p60(Src)/PI-3K/PKB pathway. These results suggest that glia cells participate in the activity-dependent change in the brain protein repertoire.

  9. Green Tea Polyphenols Attenuated Glutamate Excitotoxicity via Antioxidative and Antiapoptotic Pathway in the Primary Cultured Cortical Neurons.

    PubMed

    Cong, Lin; Cao, Chang; Cheng, Yong; Qin, Xiao-Yan

    2016-01-01

    Green tea polyphenols are a natural product which has antioxidative and antiapoptotic effects. It has been shown that glutamate excitotoxicity induced oxidative stress is linked to neurodegenerative diseases such as Alzheimer's disease and Parkinson's disease. In this study we explored the neuroprotective effect of green teen polyphenols against glutamate excitotoxicity in the primary cultured cortical neurons. We found that green tea polyphenols protected against glutamate induced neurotoxicity in the cortical neurons as measured by MTT and TUNEL assays. Green tea polyphenols were then showed to inhibit the glutamate induced ROS release and SOD activity reduction in the neurons. Furthermore, our results demonstrated that green tea polyphenols restored the dysfunction of mitochondrial pro- or antiapoptotic proteins Bax, Bcl-2, and caspase-3 caused by glutamate. Interestingly, the neuroprotective effect of green tea polyphenols was abrogated when the neurons were incubated with siBcl-2. Taken together, these results demonstrated that green tea polyphenols protected against glutamate excitotoxicity through antioxidative and antiapoptotic pathways.

  10. Exposure to high glutamate concentration activates aerobic glycolysis but inhibits ATP-linked respiration in cultured cortical astrocytes.

    PubMed

    Shen, Yao; Tian, Yueyang; Shi, Xiaojie; Yang, Jianbo; Ouyang, Li; Gao, Jieqiong; Lu, Jianxin

    2014-08-01

    Astrocytes play a key role in removing the synaptically released glutamate from the extracellular space and maintaining the glutamate below neurotoxic level in the brain. However, high concentration of glutamate leads to toxicity in astrocytes, and the underlying mechanisms are unclear. The purpose of this study was to investigate whether energy metabolism disorder, especially impairment of mitochondrial respiration, is involved in the glutamate-induced gliotoxicity. Exposure to 10-mM glutamate for 48 h stimulated glycolysis and respiration in astrocytes. However, the increased oxygen consumption was used for proton leak and non-mitochondrial respiration, but not for oxidative phosphorylation and ATP generation. When the exposure time extended to 72 h, glycolysis was still activated for ATP generation, but the mitochondrial ATP-linked respiration of astrocytes was reduced. The glutamate-induced astrocyte damage can be mimicked by the non-metabolized substrate d-aspartate but reversed by the non-selective glutamate transporter inhibitor TBOA. In addition, the glutamate toxicity can be partially reversed by vitamin E. These findings demonstrate that changes of bioenergetic profile occur in cultured cortical astrocytes exposed to high concentration of glutamate and highlight the role of mitochondria respiration in glutamate-induced gliotoxicity in cortical astrocytes. Copyright © 2014 John Wiley & Sons, Ltd.

  11. Glutamate-mediated protection of crayfish glial cells from PDT-induced apoptosis

    NASA Astrophysics Data System (ADS)

    Rudkovskii, M. V.; Romanenko, N. P.; Berezhnaya, E. V.; Kovaleva, V. D.; Uzdensky, A. B.

    2011-03-01

    Photodynamic treatment that causes intense oxidative stress and kills cells is currently used in neurooncology. However, along with tumor it damages surrounding healthy neurons and glial cells. In order to study the possible role of glutamate-related signaling pathways in photodynamic injury of neurons and glia, we investigated photodynamic effect of alumophthalocyanine Photosens on isolated crayfish stretch receptor that consists of a single neuron surrounded by glial cells. The laser diode (670 nm, 0.4 W/cm2) was used for dye photoexcitation. Application of glutamate increased photodynamically induced necrosis of neurons and glial cells but significantly decreased glial apoptosis. The natural neuroglial mediator N-acetylaspartylglutamate, which releases glutamate after cleavage in the extracellular space by glutamate carboxypeptidase II, also inhibited photoinduced apoptosis. Inhibition of glutamate carboxypeptidase II, oppositely, enhanced apoptosis of glial cells. These data confirm the anti-apoptotic activity of glutamate. Application of NMDA or inhibition of NMDA receptors by MK801 did not influence photodynamic death of neurons and glial cells that indicated nonparticipation of NMDA receptors in these processes. Inhibition of metabotropic glutamate receptors by AP-3 decreased PDT-induced apoptosis. One can suggest that crayfish neurons naturally secrete NAAG, which being cleaved by GCOP produces glutamate. Glutamate prevents photoinduced apoptosis of glial cells possibly through metabotropic but not ionotropic glutamate receptors.

  12. N-methyl-D-aspartate increases acetylcholine release from rat striatum and cortex: its effect is augmented by choline

    NASA Technical Reports Server (NTRS)

    Ulus, I. H.; Buyukuysal, R. L.; Wurtman, R. J.

    1992-01-01

    We examined the effects of N-methyl-D-aspartate (NMDA), a glutamate agonist, and of glutamate itself, on acetylcholine (ACh) release from superfused rat striatal slices. In a Mg(++)-free medium, NMDA (32-1000 microM) as well as glutamate (1 mM) increased basal ACh release by 35 to 100% (all indicated differences, P less than .05), without altering tissue ACh or choline contents. This augmentation was blocked by Mg++ (1.2 mM) or by MK-801 (10 microM). Electrical stimulation (15 Hz, 75 mA) increased ACh release 9-fold (from 400 to 3660 pmol/mg of protein): this was enhanced (to 4850 pmol/mg of protein) by NMDA (100 microM). ACh levels in stimulated slices fell by 50 or 65% depending on the absence or presence of NMDA. The addition of choline (40 microM) increased ACh release both basally (570 pmol/mg of protein) and with electrical stimulation (6900 pmol/mg of protein). In stimulated slices choline acted synergistically with NMDA, raising ACh release to 10,520 pmol/mg of protein. The presence of choline also blocked the fall in tissue ACh. No treatment affected tissue phospholipid or protein levels. NMDA (32-320 microM) also augmented basal ACh release from cortical but not hippocampal slices. Choline efflux from striatal and cortical (but not hippocampal) slices decreased by 34 to 50% in Mg(++)-free medium. These data indicate that NMDA-like drugs may be useful, particularly in combination with choline, to enhance striatal and cortical cholinergic activity. ACh release from rat hippocampus apparently is not affected by NMDA receptors.

  13. 2-Keto-3-fluoroglutarate: a useful mechanistic probe of 2-keto-glutarate-dependent enzyme systems.

    PubMed

    Grissom, C B; Cleland, W W

    1987-12-18

    2-Keto-3-fluoroglutaric acid prepared by acid hydrolysis of its diethyl ester is stable, as the free acid in aqueous solution at pH 2, and can be stored at -20 degrees C for several years. Both enantiomers are reduced by NADH in the presence of glutamate dehydrogenase (EC 1.4.1.2) to the two diastereomers of 3-fluoro-L-glutamate, which are stable at neutral pH and at high pH unless heated. 2-Keto-3-fluoroglutarate exists in solution almost entirely as a hydrate both at low and neutral pH. Both enantiomers of ketofluoroglutarate react with the pyridoxamine forms of aspartate, alanine and 4-aminobutyrate transaminases to give fluoride release. 2 mol of cosubstrate amino acid react for each mol of ketofluoroglutarate (KFG) when starting from the pyridoxamine form of the enzyme: 2 RCHNH2COOH + KFG + H2O----F- + NH4+ + glutamate + 2 RCOCOOH. Both diastereomers of fluoroglutamate are decarboxylated by glutamate decarboxylase (EC 4.1.1.15) with fluoride release: KFG + H2O----CO2 + F- + HCOCH2CH2COOH. By contrast, only one isomer of fluoroglutamate will react with the pyridoxal form of glutamate-oxalacetate transaminase to give fluoride release: HOOCCHNH2CHFCH2COOH + H2O----4F- + NH4+ + HOOCCOCH2CH2COOH. The enzymatic decarboxylation of 3-fluoroisocitrate produces only one enantiomer of ketofluoroglutarate, which is reduced to threo (2R,3R)-3-fluoroglutamate by NADH and glutamate dehydrogenase: [2R,3S]-HOOCCH(OH)CF(COOH)CH2COOH + NADP+----[3R]-KFG + CO2 + NADPH + H+. The proton, 13C, and 19F-NMR parameters of ketofluoroglutarate and the two fluoroglutamate diastereomers are presented. These molecules are useful probes of enzymatic mechanisms thought to involve carbanion intermediates.

  14. Control of excessive neural circuit excitability and prevention of epileptic seizures by endocannabinoid signaling.

    PubMed

    Sugaya, Yuki; Kano, Masanobu

    2018-05-08

    Progress in research on endocannabinoid signaling has greatly advanced our understanding of how it controls neural circuit excitability in health and disease. In general, endocannabinoid signaling at excitatory synapses suppresses seizures by inhibiting glutamate release. In contrast, endocannabinoid signaling promotes seizures by inhibiting GABA release at inhibitory synapses. The physiological distribution of endocannabinoid signaling molecules becomes disrupted with the development of epileptic focus in patients with mesial temporal lobe epilepsy and in animal models of experimentally induced epilepsy. Augmentation of endocannabinoid signaling can promote the development of epileptic focus at initial stages. However, at later stages, increased endocannabinoid signaling delays it and suppresses spontaneous seizures. Thus, the regulation of endocannabinoid signaling at specific synapses that cause hyperexcitability during particular stages of disease development may be effective for treating epilepsy and epileptogenesis.

  15. Novel sensors for the Artificial Mouth

    NASA Astrophysics Data System (ADS)

    Djeghlaf, Lyes; Mielle, Patrick; Maratray, Jacques; Launay, Jérôme; Temple-Boyer, Pierre; Salles, Christian

    2011-09-01

    Similarly to human chewing, tasty compounds are released in saliva during the food piece mastication in the `Artificial Mouth', and so, are available continuously. Glutamate is present in numerous food, as taste enhancer, has a nice and sought "umami" taste, specific receptors and different inter individual sensitivities, and is a fair marker of the release of tasty compounds. The three sensors (for pH, salt, or glutamate concentration) have the same size, so they are easily interchangeable. Up to now, only one kind of parameter may be analysed at a time by the different sensors. Nevertheless, combined electrodes may be developed in the future.

  16. Evidence for presynaptically silent synapses in the immature hippocampus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoon, Jae Young; Choi, Sukwoo

    Silent synapses show NMDA receptor (NMDAR)-mediated synaptic responses, but not AMPAR-mediated synaptic responses. A prevailing hypothesis states that silent synapses contain NMDARs, but not AMPARs. However, alternative presynaptic hypotheses, according to which AMPARs are present at silent synapses, have been proposed; silent synapses show slow glutamate release via a fusion pore, and glutamate spillover from the neighboring synaptic terminals. Consistent with these presynaptic hypotheses, the peak glutamate concentrations at silent synapses have been estimated to be ≪170 μM, much lower than those seen at functional synapses. Glutamate transients predicted based on the two presynaptic mechanisms have been shown to activate onlymore » high-affinity NMDARs, but not low-affinity AMPARs. Interestingly, a previous study has developed a new approach to distinguish between the two presynaptic mechanisms using dextran, an inert macromolecule that reduces the diffusivity of released glutamate: postsynaptic responses through the fusion pore mechanism, but not through the spillover mechanism, are potentiated by reduced glutamate diffusivity. Therefore, we reasoned that if the fusion pore mechanism underlies silent synapses, dextran application would reveal AMPAR-mediated synaptic responses at silent synapses. In the present study, we recorded AMPAR-mediated synaptic responses at the CA3-CA1 synapses in neonatal rats in the presence of blockers for NMDARs and GABAARs. Bath application of dextran revealed synaptic responses at silent synapses. GYKI53655, a selective AMPAR-antagonist, completely inhibited the unsilenced synaptic responses, indicating that the unsilenced synaptic responses are mediated by AMPARs. The dextran-mediated reduction in glutamate diffusivity would also lead to the activation of metabotropic glutamate receptors (mGluRs), which might induce unsilencing via the activation of unknown intracellular signaling. Hence, we determined whether mGluR-blockers alter the dextran-induced unsilencing. However, dextran application continued to produce significant synaptic unsilencing in the presence of a cocktail of the blockers for all subtypes of mGluRs. Our findings provide evidence that slowed glutamate diffusion produces synaptic unsilencing by enhancing the peak glutamate occupancy of pre-existing AMPARs, supporting the fusion pore mechanism of silent synapses. - Highlights: • Slowed glutamate diffusion by dextran reveals synaptic responses at silent synapses. • Unsilenced synaptic responses are mediated by AMPA receptors. • Dextran-induced unsilencing is independent of metabotropic glutamate receptors.« less

  17. The UBR-1 ubiquitin ligase regulates glutamate metabolism to generate coordinated motor pattern in Caenorhabditis elegans

    PubMed Central

    Chitturi, Jyothsna; Hung, Wesley; Rahman, Anas M. Abdel; Wu, Min; Lim, Maria A.; Calarco, John; Dennis, James W.

    2018-01-01

    UBR1 is an E3 ubiquitin ligase best known for its ability to target protein degradation by the N-end rule. The physiological functions of UBR family proteins, however, remain not fully understood. We found that the functional loss of C. elegans UBR-1 leads to a specific motor deficit: when adult animals generate reversal movements, A-class motor neurons exhibit synchronized activation, preventing body bending. This motor deficit is rescued by removing GOT-1, a transaminase that converts aspartate to glutamate. Both UBR-1 and GOT-1 are expressed and critically required in premotor interneurons of the reversal motor circuit to regulate the motor pattern. ubr-1 and got-1 mutants exhibit elevated and decreased glutamate level, respectively. These results raise an intriguing possibility that UBR proteins regulate glutamate metabolism, which is critical for neuronal development and signaling. PMID:29649217

  18. Lack of appropriate stoichiometry: Strong evidence against an energetically important astrocyte-neuron lactate shuttle in brain.

    PubMed

    Dienel, Gerald A

    2017-11-01

    Glutamate-stimulated aerobic glycolysis in astrocytes coupled with lactate shuttling to neurons where it can be oxidized was proposed as a mechanism to couple excitatory neuronal activity with glucose utilization (CMR glc ) during brain activation. From the outset, this model was not viable because it did not fulfill critical stoichiometric requirements: (i) Calculated glycolytic rates and measured lactate release rates were discordant in cultured astrocytes. (ii) Lactate oxidation requires oxygen consumption, but the oxygen-glucose index (OGI, calculated as CMR O2 /CMR glc ) fell during activation in human brain, and the small rise in CMR O2 could not fully support oxidation of lactate produced by disproportionate increases in CMR glc . (iii) Labeled products of glucose metabolism are not retained in activated rat brain, indicating rapid release of a highly labeled, diffusible metabolite identified as lactate, thereby explaining the CMR glc -CMR O2 mismatch. Additional independent lines of evidence against lactate shuttling include the following: astrocytic oxidation of glutamate after its uptake can help "pay" for its uptake without stimulating glycolysis; blockade of glutamate receptors during activation in vivo prevents upregulation of metabolism and lactate release without impairing glutamate uptake; blockade of β-adrenergic receptors prevents the fall in OGI in activated human and rat brain while allowing glutamate uptake; and neurons upregulate glucose utilization in vivo and in vitro under many stimulatory conditions. Studies in immature cultured cells are not appropriate models for lactate shuttling in adult brain because of their incomplete development of metabolic capability and astrocyte-neuron interactions. Astrocyte-neuron lactate shuttling does not make large, metabolically significant contributions to energetics of brain activation. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  19. Differential regulation of gonadotropin-releasing hormone (GnRH) neuron activity and membrane properties by acutely-applied estradiol: dependence on dose and estrogen receptor subtype

    PubMed Central

    Chu, Zhiguo; Andrade, Josefa; Shupnik, Margaret A.; Moenter, Suzanne M.

    2009-01-01

    GnRH neurons are critical to controlling fertility. In vivo, estradiol can inhibit or stimulate GnRH release depending on concentration and physiological state. We examined rapid, non-genomic effects of estradiol. Whole-cell recordings were made of GnRH neurons in brain slices from ovariectomized mice with ionotropic GABA and glutamate receptors blocked. Estradiol was bath-applied and measurements completed within 15 min. Estradiol from high physiological (preovulatory) concentrations (100pM) to 100nM enhanced action potential firing, reduced afterhyperpolarizing potential (AHP) and increased slow afterdepolarization (sADP) amplitudes, and reduced IAHP and enhanced IADP. The reduction of IAHP was occluded by prior blockade of calcium-activated potassium channels. These effects were mimicked by an estrogen receptor (ER) β-specific agonist and were blocked by the classical receptor antagonist ICI182780. ERα or GPR30 agonists had no effect. The acute stimulatory effect of high physiological estradiol on firing rate was dependent on signaling via protein kinase A. In contrast, low physiological levels of estradiol (10pM) did not affect intrinsic properties. Without blockade of ionotropic GABA and glutamate receptors, however, 10pM estradiol reduced firing of GnRH neurons; this was mimicked by an ERα agonist. ERα agonists reduced the frequency of GABA transmission to GnRH neurons; GABA can excite to these cells. In contrast, ERβ agonists increased GABA transmission and postsynaptic response. These data suggest rapid intrinsic and network modulation of GnRH neurons by estradiol is dependent upon both dose and receptor subtype. In cooperation with genomic actions, non-genomic effects may play a role in feedback regulation of GnRH secretion. PMID:19403828

  20. Extracellular microvesicles from astrocytes contain functional glutamate transporters: regulation by protein kinase C and cell activation

    PubMed Central

    Gosselin, Romain-Daniel; Meylan, Patrick; Decosterd, Isabelle

    2013-01-01

    Glutamate transport through astrocytic excitatory amino-acid transporters (EAAT)-1 and EAAT-2 is paramount for neural homeostasis. EAAT-1 has been reported in secreted extracellular microvesicles (eMV, such as exosomes) and because the protein kinase C (PKC) family controls the sub-cellular distribution of EAATs, we have explored whether PKCs drive EAATs into eMV. Using rat primary astrocytes, confocal immunofluorescence and ultracentrifugation on sucrose gradient we here report that PKC activation by phorbol myristate acetate (PMA) reorganizes EAAT-1 distribution and reduces functional [3H]-aspartate reuptake. Western-blots show that EAAT-1 is present in eMV from astrocyte conditioned medium, together with NaK ATPase and glutamine synthetase all being further increased after PMA treatment. However, nanoparticle tracking analysis reveals that PKC activation did not change particle concentration. Functional analysis indicates that eMV have the capacity to reuptake [3H]-aspartate. In vivo, we demonstrate that spinal astrocytic reaction induced by peripheral nerve lesion (spared nerve injury, SNI) is associated with a phosphorylation of PKC δ together with a shift of EAAT distribution ipsilaterally. Ex vivo, spinal explants from SNI rats release eMV with an increased content of NaK ATPase, EAAT-1 and EAAT-2. These data indicate PKC and cell activation as important regulators of EAAT-1 incorporation in eMV, and raise the possibility that microvesicular EAAT-1 may exert extracellular functions. Beyond a putative role in neuropathic pain, this phenomenon may be important for understanding neural homeostasis and a wide range of neurological diseases associated with astrocytic reaction as well as non-neurological diseases linked to eMV release. PMID:24368897

  1. Neuroprotection by glutamate oxaloacetate transaminase in ischemic stroke: an experimental study.

    PubMed

    Campos, Francisco; Sobrino, Tomás; Ramos-Cabrer, Pedro; Argibay, Bárbara; Agulla, Jesús; Pérez-Mato, María; Rodríguez-González, Raquel; Brea, David; Castillo, José

    2011-06-01

    As ischemic stroke is associated with an excessive release of glutamate into the neuronal extracellular space, a decrease in blood glutamate levels could provide a mechanism to remove it from the brain tissue, by increasing the brain-blood gradient. In this regard, the ability of glutamate oxaloacetate transaminase (GOT) to metabolize glutamate in blood could represent a potential neuroprotective tool for ischemic stroke. This study aimed to determine the neuroprotective effects of GOT in an animal model of cerebral ischemia by means of a middle cerebral arterial occlusion (MCAO) following the Stroke Therapy Academic Industry Roundtable (STAIR) group guidelines. In this animal model, oxaloacetate-mediated GOT activation inhibited the increase of blood and cerebral glutamate after MCAO. This effect is reflected in a reduction of infarct size, smaller edema volume, and lower sensorimotor deficits with respect to controls. Magnetic resonance spectroscopy confirmed that the increase of glutamate levels in the brain parenchyma after MCAO is inhibited after oxaloacetate-mediated GOT activation. These findings show the capacity of the GOT to remove glutamate from the brain by means of blood glutamate degradation, and suggest the applicability of this enzyme as an efficient and novel neuroprotective tool against ischemic stroke.

  2. Neuroprotection by glutamate oxaloacetate transaminase in ischemic stroke: an experimental study

    PubMed Central

    Campos, Francisco; Sobrino, Tomás; Ramos-Cabrer, Pedro; Argibay, Bárbara; Agulla, Jesús; Pérez-Mato, María; Rodríguez-González, Raquel; Brea, David; Castillo, José

    2011-01-01

    As ischemic stroke is associated with an excessive release of glutamate into the neuronal extracellular space, a decrease in blood glutamate levels could provide a mechanism to remove it from the brain tissue, by increasing the brain–blood gradient. In this regard, the ability of glutamate oxaloacetate transaminase (GOT) to metabolize glutamate in blood could represent a potential neuroprotective tool for ischemic stroke. This study aimed to determine the neuroprotective effects of GOT in an animal model of cerebral ischemia by means of a middle cerebral arterial occlusion (MCAO) following the Stroke Therapy Academic Industry Roundtable (STAIR) group guidelines. In this animal model, oxaloacetate-mediated GOT activation inhibited the increase of blood and cerebral glutamate after MCAO. This effect is reflected in a reduction of infarct size, smaller edema volume, and lower sensorimotor deficits with respect to controls. Magnetic resonance spectroscopy confirmed that the increase of glutamate levels in the brain parenchyma after MCAO is inhibited after oxaloacetate-mediated GOT activation. These findings show the capacity of the GOT to remove glutamate from the brain by means of blood glutamate degradation, and suggest the applicability of this enzyme as an efficient and novel neuroprotective tool against ischemic stroke. PMID:21266983

  3. Spillover-mediated feedforward-inhibition functionally segregates interneuron activity

    PubMed Central

    Coddington, Luke T.; Rudolph, Stephanie; Lune, Patrick Vande; Overstreet-Wadiche, Linda; Wadiche, Jacques I.

    2013-01-01

    Summary Neurotransmitter spillover represents a form of neural transmission not restricted to morphologically defined synaptic connections. Communication between climbing fibers (CFs) and molecular layer interneurons (MLIs) in the cerebellum is mediated exclusively by glutamate spillover. Here, we show how CF stimulation functionally segregates MLIs based on their location relative to glutamate release. Excitation of MLIs that reside within the domain of spillover diffusion coordinates inhibition of MLIs outside the diffusion limit. CF excitation of MLIs is dependent on extrasynaptic NMDA receptors that enhance the spatial and temporal spread of CF signaling. Activity mediated by functionally segregated MLIs converges onto neighboring Purkinje cells (PCs) to generate a long-lasting biphasic change in inhibition. These data demonstrate how glutamate release from single CFs modulates excitability of neighboring PCs, thus expanding the influence of CFs on cerebellar cortical activity in a manner not predicted by anatomical connectivity. PMID:23707614

  4. Cocaine-Induced Endocannabinoid Mobilization in the Ventral Tegmental Area.

    PubMed

    Wang, Huikun; Treadway, Tyler; Covey, Daniel P; Cheer, Joseph F; Lupica, Carl R

    2015-09-29

    Cocaine is a highly addictive drug that acts upon the brain's reward circuitry via the inhibition of monoamine uptake. Endogenous cannabinoids (eCB) are lipid molecules released from midbrain dopamine (DA) neurons that modulate cocaine's effects through poorly understood mechanisms. We find that cocaine stimulates release of the eCB, 2-arachidonoylglycerol (2-AG), in the rat ventral midbrain to suppress GABAergic inhibition of DA neurons, through activation of presynaptic cannabinoid CB1 receptors. Cocaine mobilizes 2-AG via inhibition of norepinephrine uptake and promotion of a cooperative interaction between Gq/11-coupled type-1 metabotropic glutamate and α1-adrenergic receptors to stimulate internal calcium stores and activate phospholipase C. The disinhibition of DA neurons by cocaine-mobilized 2-AG is also functionally relevant because it augments DA release in the nucleus accumbens in vivo. Our results identify a mechanism through which the eCB system can regulate the rewarding and addictive properties of cocaine. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  5. Sleep duration varies as a function of glutamate and GABA in rat pontine reticular formation.

    PubMed

    Watson, Christopher J; Lydic, Ralph; Baghdoyan, Helen A

    2011-08-01

    The oral part of the pontine reticular formation (PnO) is a component of the ascending reticular activating system and plays a role in the regulation of sleep and wakefulness. The PnO receives glutamatergic and GABAergic projections from many brain regions that regulate behavioral state. Indirect, pharmacological evidence has suggested that glutamatergic and GABAergic signaling within the PnO alters traits that characterize wakefulness and sleep. No previous studies have simultaneously measured endogenous glutamate and GABA from rat PnO in relation to sleep and wakefulness. The present study utilized in vivo microdialysis coupled on-line to capillary electrophoresis with laser-induced fluorescence to test the hypothesis that concentrations of glutamate and GABA in the PnO vary across the sleep/wake cycle. Concentrations of glutamate and GABA were significantly higher during wakefulness than during non-rapid eye movement sleep and rapid eye movement sleep. Regression analysis revealed that decreases in glutamate and GABA accounted for a significant portion of the variance in the duration of non-rapid eye movement sleep and rapid eye movement sleep episodes. These data provide novel support for the hypothesis that endogenous glutamate and GABA in the PnO contribute to the regulation of sleep duration. © 2011 The Authors. Journal of Neurochemistry © 2011 International Society for Neurochemistry.

  6. Time-Dependent Compensatory Responses to Chronic Neuroinflammation in Hippocampus and Brainstem: The Potential Role of Glutamate Neurotransmission

    PubMed Central

    Brothers, Holly M.; Bardou, Isabelle; Hopp, Sarah C.; Marchalant, Yannick; Kaercher, Roxanne M.; Turner, Sarah M.; Mitchem, Mollie R.; Kigerl, Kristina; Wenk, Gary L.

    2014-01-01

    Chronic neuroinflammation is characteristic of neurodegenerative diseases and is present during very early stages, yet significant pathology and behavioral deficits do not manifest until advanced age. We investigated the consequences of experimentally-induced chronic neuroinflammation within the hippocampus and brainstem of young (4 mo) F-344 rats. Lipopolysaccharide (LPS) was infused continuously into the IVth ventricle for 2, 4 or 8 weeks. The number of MHC II immunoreactive microglia in the brain continued to increase throughout the infusion period. In contrast, performance in the Morris water maze was impaired after 4 weeks but recovered by 8 weeks. Likewise, a transient loss of tyrosine hydroxylase immunoreactivity in the substantia nigra and locus coeruleus was observed after 2 weeks, but returned to control levels by 4 weeks of continuous LPS infusion. These data suggest that direct activation of microglia is sufficient to drive, but not sustain, spatial memory impairment and a decrease in tyrosine hydroxylase production in young rats. Our previous studies suggest that chronic neuroinflammation elevates extracellular glutamate and that this elevation underlies the spatial memory impairment. In the current study, increased levels of GLT1 and SNAP25 in the hippocampus corresponded with the resolution of performance deficit. Increased expression of SNAP25 is consistent with reduced glutamate release from axonal terminals while increased GLT1 is consistent with enhanced clearance of extracellular glutamate. These data demonstrate the capacity of the brain to compensate for the presence of chronic neuroinflammation, despite continued activation of microglia, through changes in the regulation of the glutamatergic system. PMID:24600537

  7. CRIP1a inhibits endocytosis of G-protein coupled receptors activated by endocannabinoids and glutamate by a common molecular mechanism.

    PubMed

    Mascia, Fabrizio; Klotz, Lisa; Lerch, Judith; Ahmed, Mostafa H; Zhang, Yan; Enz, Ralf

    2017-05-01

    The excitability of the central nervous system depends largely on the surface density of neurotransmitter receptors. The endocannabinoid receptor 1 (CB 1 R) and the metabotropic glutamate receptor mGlu 8 R are expressed pre-synaptically where they reduce glutamate release into the synaptic cleft. Recently, the CB 1 R interacting protein cannabinoid receptor interacting protein 1a (CRIP1a) was identified and characterized to regulate CB 1 R activity in neurons. However, underlying molecular mechanisms are largely unknown. Here, we identified a common mechanism used by CRIP1a to regulate the cell surface density of two different types of G-protein coupled receptors, CB 1 R and mGlu 8a R. Five amino acids within the CB 1 R C-terminus were required and sufficient to reduce constitutive CB 1 R endocytosis by about 72% in the presence of CRIP1a. Interestingly, a similar sequence is present in mGlu 8a R and consistently, endocytosis of mGlu 8a R depended on CRIP1a, as well. Docking analysis and molecular dynamics simulations identified a conserved serine in CB 1 R (S468) and mGlu 8a R (S894) that forms a hydrogen bond with the peptide backbone of CRIP1a at position R82. In contrast to mGlu 8a R, the closely related mGlu 8b R splice-variant carries a lysine (K894) at this position, and indeed, mGlu 8b R endocytosis was not affected by CRIP1a. Chimeric constructs between CB 1 R, mGlu 8a R, and mGlu 8b R underline the role of the identified five CRIP1a sensitive amino acids. In summary, we suggest that CRIP1a negatively regulates endocytosis of two different G-protein coupled receptor types, CB 1 R and mGlu 8a R. © 2017 International Society for Neurochemistry.

  8. Effects of pentylenetetrazole and glutamate on metabolism of [U-(13)C]glucose in cultured cerebellar granule neurons.

    PubMed

    Eloqayli, Haytham; Qu, Hong; Unsgård, Geirmund; Sletvold, Olav; Hadidi, Hakam; Sonnewald, Ursula

    2002-02-01

    This study was performed to analyze the effects of glutamate and the epileptogenic agent pentylenetetrazole (PTZ) on neuronal glucose metabolism. Cerebellar granule neurons were incubated for 2 h in medium containing 3 mM [U-(13)C]glucose, with and without 0.25 mM glutamate and/or 10 mM PTZ. In the presence of PTZ, decreased glucose consumption with unchanged lactate release was observed, indicating decreased glucose oxidation. PTZ also slowed down tricarboxylic acid (TCA) cycle activity as evidenced by the decreased amounts of labeled aspartate and [1,2-(13)C]glutamate. When glutamate was present, glucose consumption was also decreased. However, the amount of glutamate, derived from [U-(13)C]glucose via the first turn of the TCA cycle, was increased. The decreased amount of [1,2-(13)C]glutamate, derived from the second turn in the TCA cycle, and increased amount of aspartate indicated the dilution of label due to the entrance of unlabeled glutamate into TCA cycle. In the presence of glutamate plus PTZ, the effect of PTZ was enhanced by glutamate. Labeled alanine was detected only in the presence of glutamate plus PTZ, which indicated that oxaloacetate was a better amino acid acceptor than pyruvate. Furthermore, there was also evidence for intracellular compartmentation of oxaloacetate metabolism. Glutamate and PTZ caused similar metabolic changes, however, via different mechanisms. Glutamate substituted for glucose as energy substrate in the TCA cycle, whereas, PTZ appeared to decrease mitochondrial activity.

  9. Glutamatergic drive facilitates synaptic inhibition of dorsal vagal motor neurons after experimentally induced diabetes in mice

    PubMed Central

    Boychuk, Carie R.

    2016-01-01

    The role of central regulatory circuits in modulating diabetes-associated glucose dysregulation has only recently been under rigorous investigation. One brain region of interest is the dorsal motor nucleus of the vagus (DMV), which contains preganglionic parasympathetic motor neurons that regulate subdiaphragmatic visceral function. Previous research has demonstrated that glutamatergic and GABAergic neurotransmission are independently remodeled after chronic hyperglycemia/hypoinsulinemia. However, glutamatergic circuitry within the dorsal brain stem impinges on GABAergic regulation of the DMV. The present study investigated the role of glutamatergic neurotransmission in synaptic GABAergic control of DMV neurons after streptozotocin (STZ)-induced hyperglycemia/hypoinsulinemia by using electrophysiological recordings in vitro. The frequency of spontaneous inhibitory postsynaptic currents (sIPSCs) was elevated in DMV neurons from STZ-treated mice. The effect was abolished in the presence of the ionotropic glutamate receptor blocker kynurenic acid or the sodium channel blocker tetrodotoxin, suggesting that after STZ-induced hyperglycemia/hypoinsulinemia, increased glutamatergic receptor activity occurs at a soma-dendritic location on local GABA neurons projecting to the DMV. Although sIPSCs in DMV neurons normally demonstrated considerable amplitude variability, this variability was significantly increased after STZ-induced hyperglycemia/hypoinsulinemia. The elevated amplitude variability was not related to changes in quantal release, but rather correlated with significantly elevated frequency of sIPSCs in these mice. Taken together, these findings suggest that GABAergic regulation of central vagal circuitry responsible for the regulation of energy homeostasis undergoes complex functional reorganization after several days of hyperglycemia/hypoinsulinemia, including both glutamate-dependent and -independent forms of plasticity. PMID:27385796

  10. DDPH ameliorated oxygen and glucose deprivation-induced injury in rat hippocampal neurons via interrupting Ca2+ overload and glutamate release.

    PubMed

    He, Zhi; Lu, Qing; Xu, Xulin; Huang, Lin; Chen, Jianguo; Guo, Lianjun

    2009-01-28

    Our previous work has demonstrated that DDPH (1-(2, 6-dimethylphenoxy)-2-(3, 4-dimethoxyphenylethylamino) propane hydrochloride), a competitive alpha(1)-adrenoceptor antagonist, could improve cognitive deficits, reduce histopathological damage and facilitate synaptic plasticity in vivo possibly via increasing NR2B (NMDA receptor 2B) expression and antioxidation of DDPH itself. The present study further evaluated effects of DDPH on OGD (Oxygen and glucose deprivation)-induced neuronal damage in rat primary hippocampal cells. The addition of DDPH to the cultured cells 12 h before OGD for 4 h significantly reduced neuronal damage as determined by MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay and LDH (lactate dehydrogenase) release experiments. The effects of DDPH on intracellular calcium concentration were explored by Fura-2 based calcium imaging techniques and results showed that DDPH at the dosages of 5 microM and 10 microM suppressed the increase of intracellular calcium ([Ca(2+)](i)) stimulated by 50 mM KCl in Ca(2+)-containing extracellular solutions. However, DDPH couldn't suppress the increase of [Ca(2+)](i) induced by both 50 microM glutamate in Ca(2+)-containing extracellular solutions and 20 microM ATP (Adenosine Triphosphate) in Ca(2+)-free solution. These results indicated that DDPH prevented [Ca(2+)](i) overload in hippocampal neurons by blocking Ca(2+) influx (voltage-dependent calcium channel) but not Ca(2+) mobilization from the intracellular Ca(2+) store in endoplasm reticulum (ER). We also demonstrated that DDPH could decrease glutamate release when hippocampal cells were subjected to OGD. These observations demonstrated that DDPH protected hippocampal neurons against OGD-induced damage by preventing the Ca(2+) influx and decreasing glutamate release.

  11. Deficits in cognitive function and hippocampal plasticity in GM2/GD2 synthase knockout mice.

    PubMed

    Sha, Sha; Zhou, Libin; Yin, Jun; Takamiya, Koga; Furukawa, Keiko; Furukawa, Koichi; Sokabe, Masahiro; Chen, Ling

    2014-04-01

    In this study, we used GM2/GD2 synthase knockout (GM2/GD2−/−) mice to examine the influence of deficiency in ganglioside “a-pathway” and “b-pathway” on cognitive performances and hippocampal synaptic plasticity. Eight-week-old GM2/GD2−/− male mice showed a longer escape-latency in Morris water maze test and a shorter latency in step-down inhibitory avoidance task than wild-type (WT) mice. Schaffer collateral-CA1 synapses in the hippocampal slices from GM2/GD2−/− mice showed an increase in the slope of EPSPs with reduced paired-pulse facilitation, indicating an enhancement of their presynaptic glutamate release. In GM2/GD2−/− mice, NMDA receptor (NMDAr)-dependent LTP could not be induced by high-frequency (100–200 Hz) tetanus or θ-burst conditioning stimulation (CS), whereas NMDAr-independent LTP was induced by medium-frequency CS (20–50 Hz). The application of mono-sialoganglioside GM1 in the slice from GM2/GD2−/− mice, to specifically recover the a-pathway, prevented the increased presynaptic glutamate release and 20 Hz-LTP induction, whereas it could not rescue the impaired NMDAr-dependent LTP. These findings suggest that b-pathway deficiency impairs cognitive function probably through suppression of NMDAr-dependent LTP, while a-pathway deficiency may facilitate NMDAr-independent LTP through enhancing presynaptic glutamate release. As both of the NMDAr-independent LTP and increased presynaptic glutamate release were sensitive to the blockade of L-type voltage-gated Ca2+ channels (L-VGCC), a-pathway deficiency may affect presynaptic L-VGCC.

  12. Somatostatin type-2 receptor activation inhibits glutamate release and prevents status epilepticus

    PubMed Central

    Kozhemyakin, Maxim; Rajasekaran, Karthik; Todorovic, Marko S.; Kowalski, Samuel L.; Balint, Corinne; Kapur, Jaideep

    2013-01-01

    Summary Newer therapies are needed for the treatment of status epilepticus (SE) refractory to benzodiazepines. Enhanced glutamatergic neurotransmission leads to SE, and AMPA receptors are modified during SE. Reducing glutamate release during SE is a potential approach to terminate SE. The neuropeptide somatostatin (SST) is proposed to diminish presynaptic glutamate release by activating SST type-2 receptors (SST2R). SST exerts an anticonvulsant action in some experimental models of seizures. Here, we investigated the mechanism of action of SST on excitatory synaptic transmission at the Schaffer collateral-CA1 synapses and the ability of SST to treat SE in rats using patch-clamp electrophysiology and video-EEG monitoring of seizures. SST reduced action potential-dependent EPSCs (sEPSCs) at Schaffer collateral-CA1 synapses at concentrations up to 1 μM; higher concentrations had no effect or increased the sEPSC frequency. SST also prevented paired-pulse facilitation of evoked EPSCs and did not alter action-potential-independent miniature EPSCs (mEPSCs). The effect of SST on EPSCs was inhibited by the SST2R antagonist cyanamid-154806 and was mimicked by the SST2R agonists, octreotide and lanreotide. Both SST and octreotide reduced the firing rate of CA1 pyramidal neurons. Intraventricular administration of SST, within a range of doses, either prevented or attenuated pilocarpine-induced SE or delayed the median time to the first grade 5 seizure by 11 min. Similarly, octreotide or lanreotide prevented or attenuated SE in more than 65% of animals. Compared to the pilocarpine model, octreotide was highly potent in preventing or attenuating continuous hippocampal stimulation-induced SE in all animals within 60 min of SE onset. Our results demonstrate that SST, through the activation of SST2Rs, diminishes presynaptic glutamate release and attenuates SE. PMID:23473742

  13. Post-Translational Modification Biology of Glutamate Receptors and Drug Addiction

    PubMed Central

    Mao, Li-Min; Guo, Ming-Lei; Jin, Dao-Zhong; Fibuch, Eugene E.; Choe, Eun Sang; Wang, John Q.

    2011-01-01

    Post-translational covalent modifications of glutamate receptors remain a hot topic. Early studies have established that this family of receptors, including almost all ionotropic and metabotropic glutamate receptor subtypes, undergoes active phosphorylation at serine, threonine, or tyrosine residues in their intracellular domains. Recent evidence identifies several glutamate receptor subtypes to be direct substrates for palmitoylation at cysteine residues. Other modifications such as ubiquitination and sumoylation at lysine residues also occur to certain glutamate receptors. These modifications are dynamic and reversible in nature and are regulatable by changing synaptic inputs. The regulated modifications significantly impact the receptor in many ways, including interrelated changes in biochemistry (synthesis, subunit assembling, and protein–protein interactions), subcellular redistribution (trafficking, endocytosis, synaptic delivery, and clustering), and physiology, usually associated with changes in synaptic plasticity. Glutamate receptors are enriched in the striatum and cooperate closely with dopamine to regulate striatal signaling. Emerging evidence shows that modification processes of striatal glutamate receptors are sensitive to addictive drugs, such as psychostimulants (cocaine and amphetamine). Altered modifications are believed to be directly linked to enduring receptor/synaptic plasticity and drug-seeking. This review summarizes several major types of modifications of glutamate receptors and analyzes the role of these modifications in striatal signaling and in the pathogenesis of psychostimulant addiction. PMID:21441996

  14. Enhanced AMPA Receptor Trafficking Mediates the Anorexigenic Effect of Endogenous Glucagon-like Peptide-1 in the Paraventricular Hypothalamus.

    PubMed

    Liu, Ji; Conde, Kristie; Zhang, Peng; Lilascharoen, Varoth; Xu, Zihui; Lim, Byung Kook; Seeley, Randy J; Zhu, J Julius; Scott, Michael M; Pang, Zhiping P

    2017-11-15

    Glucagon-like Peptide 1 (GLP-1)-expressing neurons in the hindbrain send robust projections to the paraventricular nucleus of the hypothalamus (PVN), which is involved in the regulation of food intake. Here, we describe that stimulation of GLP-1 afferent fibers within the PVN is sufficient to suppress food intake independent of glutamate release. We also show that GLP-1 receptor (GLP-1R) activation augments excitatory synaptic strength in PVN corticotropin-releasing hormone (CRH) neurons, with GLP-1R activation promoting a protein kinase A (PKA)-dependent signaling cascade leading to phosphorylation of serine S845 on GluA1 AMPA receptors and their trafficking to the plasma membrane. Finally, we show that postnatal depletion of GLP-1R in the PVN increases food intake and causes obesity. This study provides a comprehensive multi-level (circuit, synaptic, and molecular) explanation of how food intake behavior and body weight are regulated by endogenous central GLP-1. VIDEO ABSTRACT. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Matrix Metalloproteinase-9 as a Novel Player in Synaptic Plasticity and Schizophrenia

    PubMed Central

    Lepeta, Katarzyna; Kaczmarek, Leszek

    2015-01-01

    Recent findings implicate alterations in glutamate signaling, leading to aberrant synaptic plasticity, in schizophrenia. Matrix metalloproteinase-9 (MMP-9) has been shown to regulate glutamate receptors, be regulated by glutamate at excitatory synapses, and modulate physiological and morphological synaptic plasticity. By means of functional gene polymorphism, gene responsiveness to antipsychotics and blood plasma levels MMP-9 has recently been implicated in schizophrenia. This commentary critically reviews these findings based on the hypothesis that MMP-9 contributes to pathological synaptic plasticity in schizophrenia. PMID:25837304

  16. Ionotropic glutamate receptors mediate inducible defense in the water flea Daphnia pulex.

    PubMed

    Miyakawa, Hitoshi; Sato, Masanao; Colbourne, John K; Iguchi, Taisen

    2015-01-01

    Phenotypic plasticity is the ability held in many organisms to produce different phenotypes with a given genome in response to environmental stimuli, such as temperature, nutrition and various biological interactions. It seems likely that environmental signals induce a variety of mechanistic responses that influence ontogenetic processes. Inducible defenses, in which prey animals alter their morphology, behavior and/or other traits to help protect against direct or latent predation threats, are among the most striking examples of phenotypic plasticity. The freshwater microcrustacean Daphnia pulex forms tooth-like defensive structures, "neckteeth," in response to chemical cues or signals, referred to as "kairomones," in this case released from phantom midge larvae, a predator of D. pulex. To identify factors involved in the reception and/or transmission of a kairomone, we used microarray analysis to identify genes up-regulated following a short period of exposure to the midge kairomone. In addition to identifying differentially expressed genes of unknown function, we also found significant up-regulation of genes encoding ionotropic glutamate receptors, which are known to be involved in neurotransmission in many animal species. Specific antagonists of these receptors strongly inhibit the formation of neckteeth in D. pulex, although agonists did not induce neckteeth by themselves, indicating that ionotropic glutamate receptors are necessary but not sufficient for early steps of neckteeth formation in D. pulex. Moreover, using co-exposure of D. pulex to antagonists and juvenile hormone (JH), which physiologically mediates neckteeth formation, we found evidence suggesting that the inhibitory effect of antagonists is not due to direct inhibition of JH synthesis/secretion. Our findings not only provide a candidate molecule required for the inducible defense response in D. pulex, but also will contribute to the understanding of complex mechanisms underlying the recognition of environmental changes, which form the basis of phenotypic plasticity.

  17. Nociceptin/orphanin FQ decreases glutamate transmission and blocks ethanol-induced effects in the central amygdala of naive and ethanol-dependent rats.

    PubMed

    Kallupi, Marsida; Varodayan, Florence P; Oleata, Christopher S; Correia, Diego; Luu, George; Roberto, Marisa

    2014-04-01

    The central nucleus of the amygdala (CeA) mediates several addiction-related processes and nociceptin/orphanin FQ (nociceptin) regulates ethanol intake and anxiety-like behaviors. Glutamatergic synapses, in the CeA and throughout the brain, are very sensitive to ethanol and contribute to alcohol reinforcement, tolerance, and dependence. Previously, we reported that in the rat CeA, acute and chronic ethanol exposures significantly decrease glutamate transmission by both pre- and postsynaptic actions. In this study, using electrophysiological techniques in an in vitro CeA slice preparation, we investigated the effects of nociceptin on glutamatergic transmission and its interaction with acute ethanol in naive and ethanol-dependent rats. We found that nociceptin (100-1000 nM) diminished basal-evoked compound glutamatergic receptor-mediated excitatory postsynaptic potentials (EPSPs) and spontaneous and miniature EPSCs (s/mEPSCs) by mainly decreasing glutamate release in the CeA of naive rats. Notably, nociceptin blocked the inhibition induced by acute ethanol (44 mM) and ethanol blocked the nociceptin-induced inhibition of evoked EPSPs in CeA neurons of naive rats. In neurons from chronic ethanol-treated (ethanol-dependent) rats, the nociceptin-induced inhibition of evoked EPSP amplitude was not significantly different from that in naive rats. Application of [Nphe1]Nociceptin(1-13)NH2, a nociceptin receptor (NOP) antagonist, revealed tonic inhibitory activity of NOP on evoked CeA glutamatergic transmission only in ethanol-dependent rats. The antagonist also blocked nociceptin-induced decreases in glutamatergic responses, but did not affect ethanol-induced decreases in evoked EPSP amplitude. Taken together, these studies implicate a potential role for the nociceptin system in regulating glutamatergic transmission and a complex interaction with ethanol at CeA glutamatergic synapses.

  18. Muscarinic receptor stimulation of D-aspartate uptake into human SH-SY5Y neuroblastoma cells is attenuated by hypoosmolarity.

    PubMed

    Foster, Daniel J; Heacock, Anne M; Fisher, Stephen K

    2010-04-01

    In addition to its function as an excitatory neurotransmitter, glutamate plays a major role as an osmolyte within the central nervous system (CNS). Accordingly, mechanisms that regulate glutamate release and uptake are of physiological importance not only during conditions in which cell volume remains constant but also when cells are subjected to hypoosmotic stress. In the present study, the ability of muscarinic cholinergic receptors (mAChRs) to regulate the uptake of glutamate (monitored as D-aspartate) into human SH-SY5Y neuroblastoma cells under isotonic or hypotonic conditions has been examined. In isotonic media, agonist activation of mAChRs resulted in a significant increase (250-300% of control) in the uptake of D-aspartate and, concurrently, a cellular redistribution of the excitatory amino acid transporter 3 (EAAT3) to the plasma membrane. mAChR-mediated increases in d-aspartate uptake were potently blocked by the EAAT3 inhibitor l-beta-threo-benzyl-aspartate. In hypotonic media, the ability of mAChR activation to facilitate D-aspartate uptake was significantly attenuated (40-50%), and the cellular distribution of EAAT3 was disrupted. Reduction of mAChR-stimulated D-aspartate uptake under hypoosmotic conditions could be fully reversed upon re-exposure of the cells to isotonic media. Under both isotonic and hypotonic conditions, mAChR-mediated increases in D-aspartate uptake depended on cytoskeletal integrity, protein kinase C and phosphatidylinositol 3-kinase activities, and the availability of intracellular Ca2+. In contrast, dependence on extracellular Ca2+ was observed only under isotonic conditions. The results suggest that, although the uptake of D-aspartate into SH-SY5Y cells is enhanced after mAChR activation, this process is markedly attenuated by hypoosmolarity.

  19. Region-specific expression of vesicular glutamate and GABA transporters under various ischaemic conditions in mouse forebrain and retina.

    PubMed

    Michalski, D; Härtig, W; Krügel, K; Edwards, R H; Böddener, M; Böhme, L; Pannicke, T; Reichenbach, A; Grosche, A

    2013-02-12

    There is accumulating evidence that glutamate and GABA release are key mechanisms of ischaemic events in the CNS. However, data on the expression of involved transporters for these mediators are inconsistent, potentially impeding further neuroprotective approaches. Here, we applied immunofluorescence labelling to characterise the expression pattern of vesicular glutamate (VGLUT) and GABA transporters (VGAT) after acute focal cerebral ischaemia and in two models of retinal ischaemia. Mice were subjected to filament-based focal cerebral ischaemia predominantly involving the middle cerebral artery territory, also leading to retinal ischaemia due to central retinal artery occlusion (CRAO). Alternatively, retinal ischaemia was induced by a transient increase of the intraocular pressure (HIOP). One day after ischaemia onset, diminished immunolabelling of neuronal nuclei and microtubule-associated protein 2-positive structures were found in the ipsilateral neocortex, subcortex and the retina, indicating neuronal degeneration. VGLUT1 expression did not change significantly in ischaemic tissues whereas VGLUT2 was down-regulated in specific areas of the brain. VGLUT3 expression was only slightly down-regulated in the ischaemia-affected neocortex, and was found to form clusters on fibrils of unknown origin in the ischaemic lateral hypothalamus. In contrast, retinae subjected to CRAO or HIOP displayed a rapid loss of VGLUT3-immunoreactivity. The expression of VGAT appears resistant to ischaemia as there was no significant alteration in all the regions analysed. In summary, these data indicate a region- and subtype-specific change of VGLUT expression in the ischaemia-affected CNS, whose consideration might help to generate specific neuroprotective strategies. Copyright © 2012 IBRO. Published by Elsevier Ltd. All rights reserved.

  20. Grewia tiliaefolia and its active compound vitexin regulate the expression of glutamate transporters and protect Neuro2a cells from glutamate toxicity.

    PubMed

    Malar, Dicson Sheeja; Prasanth, Mani Iyer; Shafreen, Rajamohamed Beema; Balamurugan, Krishnaswamy; Devi, Kasi Pandima

    2018-04-25

    Glutamate is a major neurotransmitter involved in several brain functions and glutamate excitotoxicity is involved in Alzheimer's disease (AD). In the current study, the neuroprotective effect of the Indian medicinal plant Grewia tiliaefolia (GT) and its active component vitexin was evaluated in Neuro-2a cells against glutamate toxicity. Neuro-2a cells were exposed to glutamate to cause excitotoxicity and the neuroprotective effect of GT and vitexin were evaluated using biochemical studies (estimation of reactive oxygen species, reactive nitrogen species, protein carbonyl content, lipid peroxidation level, mitochondrial membrane potential and caspase-3 activity), molecular docking studies, gene expression and western blot analysis. Glutamate exposure to Neuro-2a cells induced oxidative stress, loss of membrane potential, suppressed the expression of antioxidant response genes (Nrf-2, HO-1, NQO-1), glutamate transporters (GLAST-1, GLT-1) and induced the expression of NMDAR, Calpain. However, pre-treatment of cells with GT/vitexin inhibited oxidative stress mediated damage by augmenting the expression of Nrf-2/HO-1 pathway, inducing the expression of glutamate transporters and downregulating Calpain, NMDAR. Molecular docking showed that vitexin effectively binds to NMDAR and GSK-3β and thereby can inhibit their activation. GT/vitexin also inhibited glutamate induced Bax expression. Methanol extract of G. tiliaefolia and its active component vitexin can act in an antioxidant dependent mechanism as well as by regulating glutamate in mitigating the toxicity exerted by glutamate in Neuro-2a cells. Our results conclude that GT/vitexin can act as potential drug leads for the therapeutic intervention of AD. Copyright © 2017. Published by Elsevier Inc.

  1. Changes in brain amino acid content induced by hyposmolar stress and energy deprivation.

    PubMed

    Haugstad, T S; Valø, E T; Langmoen, I A

    1995-12-01

    The changes in endogenous amino acids in brain extracellular and intracellular compartments evoked by hyposmotic stress and energy deprivation were compared. Tissue content and release of ten amino acids were measured simultaneously in rat hippocampal slices by means of high performance liquid chromatography. Hyposmotic stress induced a large release of taurine (25568 pmol mg-1 protein), and a smaller release of glutamate, accompanied by an inverse change in tissue content. Adding mannitol to correct osmolarity, blocked these changes. Energy deprivation caused an increase in the release of all amino acids except glutamine. The release was particularly large for glutamate and GABA (31141 and 13282 pmol mg-1, respectively). The intracellular concentrations were generally reduced, but the total amount of the released amino acids increased In contrast to the effect seen during hyposmolar stress, mannitol enhanced the changes due to energy deprivation. The results show that hyposmolar stress and energy deprivation cause different content and release profiles, suggesting that the mechanisms involved in the two situations are either different or modulated in different ways. The intracellular amino acid depletion seen during energy deprivation shows that increased outward transport is probably a primary event, and increased amino acid formation likely secondary to this release.

  2. Trigeminal Medullary Dorsal Horn Neurons Activated by Nasal Stimulation Coexpress AMPA, NMDA, and NK1 Receptors

    PubMed Central

    McCulloch, P. F.; DiNovo, K. M.; Westerhaus, D. J.; Vizinas, T. A.; Peevey, J. F.; Lach, M. A.; Czarnocki, P.

    2013-01-01

    Afferent information initiating the cardiorespiratory responses during nasal stimulation projects from the nasal passages to neurons within the trigeminal medullary dorsal horn (MDH) via the anterior ethmoidal nerve (AEN). Central AEN terminals are thought to release glutamate to activate the MDH neurons. This study was designed to determine which neurotransmitter receptors (AMPA, kainate, or NMDA glutamate receptor subtypes or the Substance P receptor NK1) are expressed by these activated MDH neurons. Fos was used as a neuronal marker of activated neurons, and immunohistochemistry combined with epifluorescent microscopy was used to determine which neurotransmitter receptor subunits were coexpressed by activated MDH neurons. Results indicate that, during nasal stimulation with ammonia vapors in urethane-anesthetized Sprague-Dawley rats, activated neurons within the superficial MDH coexpress the AMPA glutamate receptor subunits GluA1 (95.8%) and GluA2/3 (88.2%), the NMDA glutamate receptor subunits GluN1 (89.1%) and GluN2A (41.4%), and NK1 receptors (64.0%). It is therefore likely that during nasal stimulation the central terminals of the AEN release glutamate and substance P that then produces activation of these MDH neurons. The involvement of AMPA and NMDA receptors may mediate fast and slow neurotransmission, respectively, while NK1 receptor involvement may indicate activation of a nociceptive pathway. PMID:24967301

  3. The oxidative stress-inducible cystine/glutamate antiporter, system x (c) (-) : cystine supplier and beyond.

    PubMed

    Conrad, Marcus; Sato, Hideyo

    2012-01-01

    The oxidative stress-inducible cystine/glutamate exchange system, system x (c) (-) , transports one molecule of cystine, the oxidized form of cysteine, into cells and thereby releases one molecule of glutamate into the extracellular space. It consists of two protein components, the 4F2 heavy chain, necessary for membrane location of the heterodimer, and the xCT protein, responsible for transport activity. Previously, system x (c) (-) has been regarded to be a mere supplier of cysteine to cells for the synthesis of proteins and the antioxidant glutathione (GSH). In that sense, oxygen, electrophilic agents, and bacterial lipopolysaccharide trigger xCT expression to accommodate with increased oxidative stress by stimulating GSH biosynthesis. However, emerging evidence established that system x (c) (-) may act on its own as a GSH-independent redox system by sustaining a redox cycle over the plasma membrane. Hallmarks of this cycle are cystine uptake, intracellular reduction to cysteine and secretion of the surplus of cysteine into the extracellular space. Consequently, increased levels of extracellular cysteine provide a reducing microenvironment required for proper cell signaling and communication, e.g. as already shown for the mechanism of T cell activation. By contrast, the enhanced release of glutamate in exchange with cystine may trigger neurodegeneration due to glutamate-induced cytotoxic processes. This review aims to provide a comprehensive picture from the early days of system x (c) (-) research up to now.

  4. Up-regulation of GLT1 expression increases glutamate uptake and attenuates the Huntington's disease phenotype in the R6/2 mouse.

    PubMed

    Miller, B R; Dorner, J L; Shou, M; Sari, Y; Barton, S J; Sengelaub, D R; Kennedy, R T; Rebec, G V

    2008-04-22

    The striatum, which processes cortical information for behavioral output, is a key target of Huntington's disease (HD), an autosomal dominant condition characterized by cognitive decline and progressive loss of motor control. Increasing evidence implicates deficient glutamate uptake caused by a down-regulation of GLT1, the primary astroglial glutamate transporter. To test this hypothesis, we administered ceftriaxone, a beta-lactam antibiotic known to elevate GLT1 expression (200 mg/kg, i.p., for 5 days), to symptomatic R6/2 mice, a widely studied transgenic model of HD. Relative to vehicle, ceftriaxone attenuated several HD behavioral signs: paw clasping and twitching were reduced, while motor flexibility, as measured in a plus maze, and open-field climbing were increased. Assessment of GLT1 expression in striatum confirmed a ceftriaxone-induced increase relative to vehicle. To determine if the change in behavior and GLT1 expression represented a change in striatal glutamate handling, separate groups of behaving mice were evaluated with no-net-flux microdialysis. Vehicle treatment revealed a glutamate uptake deficit in R6/2 mice relative to wild-type controls that was reversed by ceftriaxone. Vehicle-treated animals, however, did not differ in GLT1 expression, suggesting that the glutamate uptake deficit in R6/2 mice reflects dysfunctional rather than missing GLT1. Our results indicate that impaired glutamate uptake is a major factor underlying HD pathophysiology and symptomology. The glutamate uptake deficit, moreover, is present in symptomatic HD mice and reversal of this deficit by up-regulating the functional expression of GLT1 with ceftriaxone attenuates the HD phenotype.

  5. Glutamate Counteracts Dopamine/PKA Signaling via Dephosphorylation of DARPP-32 Ser-97 and Alteration of Its Cytonuclear Distribution.

    PubMed

    Nishi, Akinori; Matamales, Miriam; Musante, Veronica; Valjent, Emmanuel; Kuroiwa, Mahomi; Kitahara, Yosuke; Rebholz, Heike; Greengard, Paul; Girault, Jean-Antoine; Nairn, Angus C

    2017-01-27

    The interaction of glutamate and dopamine in the striatum is heavily dependent on signaling pathways that converge on the regulatory protein DARPP-32. The efficacy of dopamine/D1 receptor/PKA signaling is regulated by DARPP-32 phosphorylated at Thr-34 (the PKA site), a process that inhibits protein phosphatase 1 (PP1) and potentiates PKA action. Activation of dopamine/D1 receptor/PKA signaling also leads to dephosphorylation of DARPP-32 at Ser-97 (the CK2 site), leading to localization of phospho-Thr-34 DARPP-32 in the nucleus where it also inhibits PP1. In this study the role of glutamate in the regulation of DARPP-32 phosphorylation at four major sites was further investigated. Experiments using striatal slices revealed that glutamate decreased the phosphorylation states of DARPP-32 at Ser-97 as well as Thr-34, Thr-75, and Ser-130 by activating NMDA or AMPA receptors in both direct and indirect pathway striatal neurons. The effect of glutamate in decreasing Ser-97 phosphorylation was mediated by activation of PP2A. In vitro phosphatase assays indicated that the PP2A/PR72 heterotrimer complex was likely responsible for glutamate/Ca 2+ -regulated dephosphorylation of DARPP-32 at Ser-97. As a consequence of Ser-97 dephosphorylation, glutamate induced the nuclear localization in cultured striatal neurons of dephospho-Thr-34/dephospho-Ser-97 DARPP-32. It also reduced PKA-dependent DARPP-32 signaling in slices and in vivo Taken together, the results suggest that by inducing dephosphorylation of DARPP-32 at Ser-97 and altering its cytonuclear distribution, glutamate may counteract dopamine/D1 receptor/PKA signaling at multiple cellular levels. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  6. Glutamate Counteracts Dopamine/PKA Signaling via Dephosphorylation of DARPP-32 Ser-97 and Alteration of Its Cytonuclear Distribution*

    PubMed Central

    Nishi, Akinori; Matamales, Miriam; Musante, Veronica; Valjent, Emmanuel; Kuroiwa, Mahomi; Kitahara, Yosuke; Rebholz, Heike; Greengard, Paul; Girault, Jean-Antoine; Nairn, Angus C.

    2017-01-01

    The interaction of glutamate and dopamine in the striatum is heavily dependent on signaling pathways that converge on the regulatory protein DARPP-32. The efficacy of dopamine/D1 receptor/PKA signaling is regulated by DARPP-32 phosphorylated at Thr-34 (the PKA site), a process that inhibits protein phosphatase 1 (PP1) and potentiates PKA action. Activation of dopamine/D1 receptor/PKA signaling also leads to dephosphorylation of DARPP-32 at Ser-97 (the CK2 site), leading to localization of phospho-Thr-34 DARPP-32 in the nucleus where it also inhibits PP1. In this study the role of glutamate in the regulation of DARPP-32 phosphorylation at four major sites was further investigated. Experiments using striatal slices revealed that glutamate decreased the phosphorylation states of DARPP-32 at Ser-97 as well as Thr-34, Thr-75, and Ser-130 by activating NMDA or AMPA receptors in both direct and indirect pathway striatal neurons. The effect of glutamate in decreasing Ser-97 phosphorylation was mediated by activation of PP2A. In vitro phosphatase assays indicated that the PP2A/PR72 heterotrimer complex was likely responsible for glutamate/Ca2+-regulated dephosphorylation of DARPP-32 at Ser-97. As a consequence of Ser-97 dephosphorylation, glutamate induced the nuclear localization in cultured striatal neurons of dephospho-Thr-34/dephospho-Ser-97 DARPP-32. It also reduced PKA-dependent DARPP-32 signaling in slices and in vivo. Taken together, the results suggest that by inducing dephosphorylation of DARPP-32 at Ser-97 and altering its cytonuclear distribution, glutamate may counteract dopamine/D1 receptor/PKA signaling at multiple cellular levels. PMID:27998980

  7. The First in Vivo Observation of 13C- 15N Coupling in Mammalian Brain

    NASA Astrophysics Data System (ADS)

    Kanamori, Keiko; Ross, Brian D.

    2001-12-01

    [5-13C,15N]Glutamine, with 1J(13C-15N) of 16 Hz, was observed in vivo in the brain of spontaneously breathing rats by 13C MRS at 4.7 T. The brain [5-13C]glutamine peak consisted of the doublet from [5-13C,15N]glutamine and the center [5-13C,14N]glutamine peak, resulting in an apparent triplet with a separation of 8 Hz. The time course of formation of brain [5-13C,15N]glutamine was monitored in vivo with a time resolution of 20-35 min. This [5-13C,15N]glutamine was formed by glial uptake of released neurotransmitter [5-13C]glutamate and its reaction with 15NH3 catalyzed by the glia-specific glutamine synthetase. The neurotransmitter glutamate C5 was selectively13C-enriched by intravenous [2,5-13C]glucose infusion to 13C-label whole-brain glutamate C5, followed by [12C]glucose infusion to chase 13C from the small and rapidly turning-over glial glutamate pool, leaving 13C mainly in the neurotransmitter [5-13C]glutamate pool, which is sequestered in vesicles until release. Hence, the observed [5-13C,15N]glutamine arises from a coupling between 13C of neuronal origin and 15N of glial origin. Measurement of the rate of brain [5-13C,15N]glutamine formation provides a novel noninvasive method of studying the kinetics of neurotransmitter uptake into glia in vivo, a process that is crucial for protecting the brain from glutamate excitotoxicity.

  8. High frequency stimulation abolishes thalamic network oscillations: an electrophysiological and computational analysis

    NASA Astrophysics Data System (ADS)

    Lee, Kendall H.; Hitti, Frederick L.; Chang, Su-Youne; Lee, Dongchul C.; Roberts, David W.; McIntyre, Cameron C.; Leiter, James C.

    2011-08-01

    Deep brain stimulation (DBS) of the thalamus has been demonstrated to be effective for the treatment of epilepsy. To investigate the mechanism of action of thalamic DBS, we examined the effects of high frequency stimulation (HFS) on spindle oscillations in thalamic brain slices from ferrets. We recorded intracellular and extracellular electrophysiological activity in the nucleus reticularis thalami (nRt) and in thalamocortical relay (TC) neurons in the lateral geniculate nucleus, stimulated the slice using a concentric bipolar electrode, and recorded the level of glutamate within the slice. HFS (100 Hz) of TC neurons generated excitatory post-synaptic potentials, increased the number of action potentials in both TC and nRt neurons, reduced the input resistance, increased the extracellular glutamate concentration, and abolished spindle wave oscillations. HFS of the nRt also suppressed spindle oscillations. In both locations, HFS was associated with significant and persistent elevation in extracellular glutamate levels and suppressed spindle oscillations for many seconds after the cessation of stimulation. We simulated HFS within a computational model of the thalamic network, and HFS also disrupted spindle wave activity, but the suppression of spindle activity was short-lived. Simulated HFS disrupted spindle activity for prolonged periods of time only after glutamate release and glutamate-mediated activation of a hyperpolarization-activated current (Ih) was incorporated into the model. Our results suggest that the mechanism of action of thalamic DBS as used in epilepsy may involve the prolonged release of glutamate, which in turn modulates specific ion channels such as Ih, decreases neuronal input resistance, and abolishes thalamic network oscillatory activity.

  9. Neuronal transporter and astrocytic ATP exocytosis underlie activity-dependent adenosine release in the hippocampus

    PubMed Central

    Wall, Mark J; Dale, Nicholas

    2013-01-01

    The neuromodulator adenosine plays an important role in many physiological and pathological processes within the mammalian CNS. However, the precise mechanisms of how the concentration of extracellular adenosine increases following neural activity remain contentious. Here we have used microelectrode biosensors to directly measure adenosine release induced by focal stimulation in stratum radiatum of area CA1 in mouse hippocampal slices. Adenosine release was both action potential and Ca2+ dependent and could be evoked with low stimulation frequencies and small numbers of stimuli. Adenosine release required the activation of ionotropic glutamate receptors and could be evoked by local application of glutamate receptor agonists. Approximately 40% of stimulated-adenosine release occurred by translocation of adenosine via equilibrative nucleoside transporters (ENTs). This component of release persisted in the presence of the gliotoxin fluoroacetate and thus results from the direct release of adenosine from neurons. A reduction of adenosine release in the presence of NTPDase blockers, in slices from CD73−/− and dn-SNARE mice, provides evidence that a component of adenosine release arises from the extracellular metabolism of ATP released from astrocytes. This component of release appeared to have slower kinetics than the direct ENT-mediated release of adenosine. These data suggest that activity-dependent adenosine release is surprisingly complex and, in the hippocampus, arises from at least two distinct mechanisms with different cellular sources. PMID:23713028

  10. A computational study of astrocytic glutamate influence on post-synaptic neuronal excitability.

    PubMed

    Flanagan, Bronac; McDaid, Liam; Wade, John; Wong-Lin, KongFatt; Harkin, Jim

    2018-04-01

    The ability of astrocytes to rapidly clear synaptic glutamate and purposefully release the excitatory transmitter is critical in the functioning of synapses and neuronal circuits. Dysfunctions of these homeostatic functions have been implicated in the pathology of brain disorders such as mesial temporal lobe epilepsy. However, the reasons for these dysfunctions are not clear from experimental data and computational models have been developed to provide further understanding of the implications of glutamate clearance from the extracellular space, as a result of EAAT2 downregulation: although they only partially account for the glutamate clearance process. In this work, we develop an explicit model of the astrocytic glutamate transporters, providing a more complete description of the glutamate chemical potential across the astrocytic membrane and its contribution to glutamate transporter driving force based on thermodynamic principles and experimental data. Analysis of our model demonstrates that increased astrocytic glutamate content due to glutamine synthetase downregulation also results in increased postsynaptic quantal size due to gliotransmission. Moreover, the proposed model demonstrates that increased astrocytic glutamate could prolong the time course of glutamate in the synaptic cleft and enhances astrocyte-induced slow inward currents, causing a disruption to the clarity of synaptic signalling and the occurrence of intervals of higher frequency postsynaptic firing. Overall, our work distilled the necessity of a low astrocytic glutamate concentration for reliable synaptic transmission of information and the possible implications of enhanced glutamate levels as in epilepsy.

  11. An essential role of acetylcholine-glutamate synergy at habenular synapses in nicotine dependence

    PubMed Central

    Frahm, Silke; Antolin-Fontes, Beatriz; Görlich, Andreas; Zander, Johannes-Friedrich; Ahnert-Hilger, Gudrun; Ibañez-Tallon, Ines

    2015-01-01

    A great deal of interest has been focused recently on the habenula and its critical role in aversion, negative-reward and drug dependence. Using a conditional mouse model of the ACh-synthesizing enzyme choline acetyltransferase (Chat), we report that local elimination of acetylcholine (ACh) in medial habenula (MHb) neurons alters glutamate corelease and presynaptic facilitation. Electron microscopy and immuno-isolation analyses revealed colocalization of ACh and glutamate vesicular transporters in synaptic vesicles (SVs) in the central IPN. Glutamate reuptake in SVs prepared from the IPN was increased by ACh, indicating vesicular synergy. Mice lacking CHAT in habenular neurons were insensitive to nicotine-conditioned reward and withdrawal. These data demonstrate that ACh controls the quantal size and release frequency of glutamate at habenular synapses, and suggest that the synergistic functions of ACh and glutamate may be generally important for modulation of cholinergic circuit function and behavior. DOI: http://dx.doi.org/10.7554/eLife.11396.001 PMID:26623516

  12. Calcium regulates glutamate dehydrogenase and poly-γ-glutamic acid synthesis in Bacillus natto.

    PubMed

    Meng, Yonghong; Dong, Guiru; Zhang, Chen; Ren, Yuanyuan; Qu, Yuling; Chen, Weifeng

    2016-04-01

    To study the effect of Ca(2+) on glutamate dehydrogenase (GDH) and its role in poly-γ-glutamic acid (γ-PGA) synthesis in Bacillus natto HSF 1410. When the concentration of Ca(2+) varied from 0 to 0.1 g/l in the growth medium of B. natto HSF 1410, γ-PGA production increased from 6.8 to 9.7 g/l, while GDH specific activity and NH4Cl consumption improved from 183 to 295 U/mg and from 0.65 to 0.77 g/l, respectively. GDH with α-ketoglutarate as substrate primarily used NADPH as coenzyme with a K m of 0.08 mM. GDH was responsible for the synthesis of endogenous glutamate. The specific activity of GDH remained essentially unchanged in the presence of CaCl2 (0.05-0.2 g/l) in vitro. However, the specific activity of GDH and its expression was significantly increased by CaCl2 in vivo. Therefore, the regulation of GDH and PGA synthesis by Ca(2+) is an intracellular process. Calcium regulation may be an effective approach for producing γ-PGA on an industrial scale.

  13. Distributions of vesicular glutamate transporters 1 and 2 in the visual system of tree shrews (Tupaia belangeri).

    PubMed

    Balaram, P; Isaamullah, M; Petry, H M; Bickford, M E; Kaas, J H

    2015-08-15

    Vesicular glutamate transporter (VGLUT) proteins regulate the storage and release of glutamate from synapses of excitatory neurons. Two isoforms, VGLUT1 and VGLUT2, are found in most glutamatergic projections across the mammalian visual system, and appear to differentially identify subsets of excitatory projections between visual structures. To expand current knowledge on the distribution of VGLUT isoforms in highly visual mammals, we examined the mRNA and protein expression patterns of VGLUT1 and VGLUT2 in the lateral geniculate nucleus (LGN), superior colliculus, pulvinar complex, and primary visual cortex (V1) in tree shrews (Tupaia belangeri), which are closely related to primates but classified as a separate order (Scandentia). We found that VGLUT1 was distributed in intrinsic and corticothalamic connections, whereas VGLUT2 was predominantly distributed in subcortical and thalamocortical connections. VGLUT1 and VGLUT2 were coexpressed in the LGN and in the pulvinar complex, as well as in restricted layers of V1, suggesting a greater heterogeneity in the range of efferent glutamatergic projections from these structures. These findings provide further evidence that VGLUT1 and VGLUT2 identify distinct populations of excitatory neurons in visual brain structures across mammals. Observed variations in individual projections may highlight the evolution of these connections through the mammalian lineage. © 2015 Wiley Periodicals, Inc.

  14. Inhibitory mechanism of l-glutamic acid on spawning of the starfish Patiria (Asterina) pectinifera.

    PubMed

    Mita, Masatoshi

    2017-03-01

    l-Glutamic acid was previously identified as an inhibitor of spawning in the starfish Patiria (Asterina) pectinifera; this study examined how l-glutamic acid works. Oocyte release from ovaries of P. pectinifera occurred after germinal vesicle breakdown (GVBD) and follicular envelope breakdown (FEBD) when gonads were incubated ex vivo with either relaxin-like gonad-stimulating peptide (RGP) or 1-methyladenine (1-MeAde). l-Glutamic acid blocked this spawning phenotype, causing the mature oocytes to remain within the ovaries. Neither RGP-induced 1-MeAde production in ovarian follicle cells nor 1-MeAde-induced GVBD and FEBD was affected by l-glutamic acid. l-Glutamic acid may act through metabotropic receptors in the ovaries to inhibit spawning, as l-(+)-2-amino-4-phosphonobutyric acid, an agonist for metabotropic glutamate receptors, also inhibited spawning induced by 1-MeAde. Application of acetylcholine (ACH) to ovaries under inhibitory conditions with l-glutamic acid, however, brought about spawning, possibly by inducing contraction of the ovarian wall to discharge mature oocytes from the ovaries concurrently with GVBD and FEBD. Thus, l-glutamic acid may inhibit ACH secretion from gonadal nerve cells in the ovary. Mol. Reprod. Dev. 84: 246-256, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  15. Glutamate modulation of GABA transport in retinal horizontal cells of the skate

    PubMed Central

    Kreitzer, Matthew A; Andersen, Kristen A; Malchow, Robert Paul

    2003-01-01

    Transport of the amino acid GABA into neurons and glia plays a key role in regulating the effects of GABA in the vertebrate retina. We have examined the modulation of GABA-elicited transport currents of retinal horizontal cells by glutamate, the likely neurotransmitter of vertebrate photoreceptors. Enzymatically isolated external horizontal cells of skate were examined using whole-cell voltage-clamp techniques. GABA (1 mm) elicited an inward current that was completely suppressed by the GABA transport inhibitors tiagabine (10 μm) and SKF89976-A (100 μm), but was unaffected by 100 μm picrotoxin. Prior application of 100 μm glutamate significantly reduced the GABA-elicited current. Glutamate depressed the GABA dose-response curve without shifting the curve laterally or altering the voltage dependence of the current. The ionotropic glutamate receptor agonists kainate and AMPA also reduced the GABA-elicited current, and the effects of glutamate and kainate were abolished by the ionotropic glutamate receptor antagonist 6-cyano-7-nitroquinoxaline. NMDA neither elicited a current nor modified the GABA-induced current, and metabotropic glutamate analogues were also without effect. Inhibition of the GABA-elicited current by glutamate and kainate was reduced when extracellular calcium was removed and when recording pipettes contained high concentrations of the calcium chelator BAPTA. Caffeine (5 mm) and thapsigargin (2 nm), agents known to alter intracellular calcium levels, also reduced the GABA-elicited current, but increases in calcium induced by depolarization alone did not. Our data suggest that glutamate regulates GABA transport in retinal horizontal cells through a calcium-dependent process, and imply a close physical relationship between calcium-permeable glutamate receptors and GABA transporters in these cells. PMID:12562999

  16. High probability neurotransmitter release sites represent an energy efficient design

    PubMed Central

    Lu, Zhongmin; Chouhan, Amit K.; Borycz, Jolanta A.; Lu, Zhiyuan; Rossano, Adam J; Brain, Keith L.; Zhou, You; Meinertzhagen, Ian A.; Macleod, Gregory T.

    2016-01-01

    Nerve terminals contain multiple sites specialized for the release of neurotransmitters. Release usually occurs with low probability, a design thought to confer many advantages. High probability release sites are not uncommon but their advantages are not well understood. Here we test the hypothesis that high probability release sites represent an energy efficient design. We examined release site probabilities and energy efficiency at the terminals of two glutamatergic motor neurons synapsing on the same muscle fiber in Drosophila larvae. Through electrophysiological and ultrastructural measurements we calculated release site probabilities to differ considerably between terminals (0.33 vs. 0.11). We estimated the energy required to release and recycle glutamate from the same measurements. The energy required to remove calcium and sodium ions subsequent to nerve excitation was estimated through microfluorimetric and morphological measurements. We calculated energy efficiency as the number of glutamate molecules released per ATP molecule hydrolyzed, and high probability release site terminals were found to be more efficient (0.13 vs. 0.06). Our analytical model indicates that energy efficiency is optimal (~0.15) at high release site probabilities (~0.76). As limitations in energy supply constrain neural function, high probability release sites might ameliorate such constraints by demanding less energy. Energy efficiency can be viewed as one aspect of nerve terminal function, in balance with others, because high efficiency terminals depress significantly during episodic bursts of activity. PMID:27593375

  17. Group II and III metabotropic glutamate receptors and the control of the nucleus reticularis thalami input to rat thalamocortical neurones in vitro.

    PubMed

    Turner, J P; Salt, T E

    2003-01-01

    Intracellular recordings were made from neurones in the thalamic reticular nucleus (TRN) and ventro-basal (VB) thalamus in slices of rat midbrain in vitro. Electrical stimulation of the medial lemniscus or TRN resulted in the generation of complex synaptic potentials containing disynaptic inhibitory post-synaptic potentials (IPSPs) in VB thalamocortical neurones. Analysis of the excitatory synaptic responses in TRN neurones indicates they can produce burst output response irrespective of the level of sub-threshold membrane potential. This suggests that network-evoked IPSPs in VB thalamocortical neurones occur following a burst of TRN action potentials. Using ionotropic glutamate receptor antagonists, the activation of these disynaptic events was blocked, and the monosynaptic IPSPs that resulted from the direct activation of the TRN could be isolated. The selective Group II agonists LY354740 (1-10 microM) and N-acetyl-aspartyl-glutamate (NAAG; 100-500 microM) both caused a reversible depression of these monosynaptic TRN IPSPs without any effect on membrane potential or input resistance. Likewise, the specific Group III agonist L-2-amino-4-phosphonobutanoate (10-500 microM), but not (RS)-4-phosphonophenylglycine (1 and 30 microM) also caused a reversible depression of these IPSPs, again without any effect on membrane potential or input resistance.Thus, the IPSPs recorded in VB thalamocortical neurones, evoked by TRN activation, can be depressed by the activation of either Group II or III metabotropic glutamate receptors. This is consistent with the location of these receptor types on the presynaptic terminals of TRN axons in the VB thalamus. This raises the possibility that, during periods of intense excitatory activity, glutamate release could influence the release of GABA from TRN axon terminals in the thalamus. In addition, as NAAG is located in the axons and terminals arising from the TRN, there is the possibility that this dipeptide is also released by these terminals to control the release of GABA during periods of high activity in the TRN.

  18. Protective effect of zinc against ischemic neuronal injury in a middle cerebral artery occlusion model.

    PubMed

    Kitamura, Youji; Iida, Yasuhiko; Abe, Jun; Ueda, Masashi; Mifune, Masaki; Kasuya, Fumiyo; Ohta, Masayuki; Igarashi, Kazuo; Saito, Yutaka; Saji, Hideo

    2006-02-01

    In this study, we investigated the effect of vesicular zinc on ischemic neuronal injury. In cultured neurons, addition of a low concentration (under 100 microM) of zinc inhibited both glutamate-induced calcium influx and neuronal death. In contrast, a higher concentration (over 150 microM) of zinc decreased neuronal viability, although calcium influx was inhibited. These results indicate that zinc exhibits biphasic effects depending on its concentration. Furthermore, in cultured neurons, co-addition of glutamate and CaEDTA, which binds extra-cellular zinc, increased glutamate-induced calcium influx and aggravated the neurotoxicity of glutamate. In a rat transient middle cerebral artery occlusion (MCAO) model, the infarction volume, which is related to the neurotoxicity of glutamate, increased rapidly on the intracerebral ventricular injection of CaEDTA 30 min prior to occlusion. These results suggest that zinc released from synaptic vesicles may provide a protective effect against ischemic neuronal injury.

  19. Inhibition of the mitochondrial pyruvate carrier protects from excitotoxic neuronal death.

    PubMed

    Divakaruni, Ajit S; Wallace, Martina; Buren, Caodu; Martyniuk, Kelly; Andreyev, Alexander Y; Li, Edward; Fields, Jerel A; Cordes, Thekla; Reynolds, Ian J; Bloodgood, Brenda L; Raymond, Lynn A; Metallo, Christian M; Murphy, Anne N

    2017-04-03

    Glutamate is the dominant excitatory neurotransmitter in the brain, but under conditions of metabolic stress it can accumulate to excitotoxic levels. Although pharmacologic modulation of excitatory amino acid receptors is well studied, minimal consideration has been given to targeting mitochondrial glutamate metabolism to control neurotransmitter levels. Here we demonstrate that chemical inhibition of the mitochondrial pyruvate carrier (MPC) protects primary cortical neurons from excitotoxic death. Reductions in mitochondrial pyruvate uptake do not compromise cellular energy metabolism, suggesting neuronal metabolic flexibility. Rather, MPC inhibition rewires mitochondrial substrate metabolism to preferentially increase reliance on glutamate to fuel energetics and anaplerosis. Mobilizing the neuronal glutamate pool for oxidation decreases the quantity of glutamate released upon depolarization and, in turn, limits the positive-feedback cascade of excitotoxic neuronal injury. The finding links mitochondrial pyruvate metabolism to glutamatergic neurotransmission and establishes the MPC as a therapeutic target to treat neurodegenerative diseases characterized by excitotoxicity. © 2017 Divakaruni et al.

  20. Inhibition of the mitochondrial pyruvate carrier protects from excitotoxic neuronal death

    PubMed Central

    Wallace, Martina; Buren, Caodu; Martyniuk, Kelly; Andreyev, Alexander Y.; Li, Edward; Fields, Jerel A.; Cordes, Thekla; Reynolds, Ian J.; Bloodgood, Brenda L.; Metallo, Christian M.

    2017-01-01

    Glutamate is the dominant excitatory neurotransmitter in the brain, but under conditions of metabolic stress it can accumulate to excitotoxic levels. Although pharmacologic modulation of excitatory amino acid receptors is well studied, minimal consideration has been given to targeting mitochondrial glutamate metabolism to control neurotransmitter levels. Here we demonstrate that chemical inhibition of the mitochondrial pyruvate carrier (MPC) protects primary cortical neurons from excitotoxic death. Reductions in mitochondrial pyruvate uptake do not compromise cellular energy metabolism, suggesting neuronal metabolic flexibility. Rather, MPC inhibition rewires mitochondrial substrate metabolism to preferentially increase reliance on glutamate to fuel energetics and anaplerosis. Mobilizing the neuronal glutamate pool for oxidation decreases the quantity of glutamate released upon depolarization and, in turn, limits the positive-feedback cascade of excitotoxic neuronal injury. The finding links mitochondrial pyruvate metabolism to glutamatergic neurotransmission and establishes the MPC as a therapeutic target to treat neurodegenerative diseases characterized by excitotoxicity. PMID:28254829

  1. [Magnesium sulphate in the treatment of ischemic-hypoxic neonatal encephalopathy].

    PubMed

    Kornacka, M K

    2001-01-01

    Hypoxic-ischaemic encephalopathy (HIE) remains one of the most important neurological complications in full and near full term newborns. During HIE glutamate and other excitatory neurotransmitters are released and progressive energy failure in brain is observed. Toxicity of glutamate plays the main role in brain injury. Glutamate activates the specific receptors that, in turn, mediate an overwhelming influx of calcium into the postsynaptic neuron. The pathological changes are located particularly in hippocampus. Magnesium sulfate has been used safely for years to treat preclampsia. The animal experimental evidence support a neuroprotective role for magnesium in HIE.

  2. Substrate transport and anion permeation proceed through distinct pathways in glutamate transporters

    PubMed Central

    Cheng, Mary Hongying; Torres-Salazar, Delany; Gonzalez-Suarez, Aneysis D; Amara, Susan G; Bahar, Ivet

    2017-01-01

    Advances in structure-function analyses and computational biology have enabled a deeper understanding of how excitatory amino acid transporters (EAATs) mediate chloride permeation and substrate transport. However, the mechanism of structural coupling between these functions remains to be established. Using a combination of molecular modeling, substituted cysteine accessibility, electrophysiology and glutamate uptake assays, we identified a chloride-channeling conformer, iChS, transiently accessible as EAAT1 reconfigures from substrate/ion-loaded into a substrate-releasing conformer. Opening of the anion permeation path in this iChS is controlled by the elevator-like movement of the substrate-binding core, along with its wall that simultaneously lines the anion permeation path (global); and repacking of a cluster of hydrophobic residues near the extracellular vestibule (local). Moreover, our results demonstrate that stabilization of iChS by chemical modifications favors anion channeling at the expense of substrate transport, suggesting a mutually exclusive regulation mediated by the movement of the flexible wall lining the two regions. DOI: http://dx.doi.org/10.7554/eLife.25850.001 PMID:28569666

  3. Molecular and Epigenetic Mechanisms for the Complex Effects of Stress on Synaptic Physiology and Cognitive Functions

    PubMed Central

    Yuen, Eunice Y.; Wei, Jing

    2017-01-01

    Abstract Evidence over the past decades has found that stress, particularly through the corticosterone stress hormones, produces complex changes in glutamatergic signaling in prefrontal cortex, which leads to the alteration of cognitive processes medicated by this brain region. Interestingly, the effects of stress on glutamatergic transmission appear to be “U-shaped,” depending upon the duration and severity of the stressor. These biphasic effects of acute vs chronic stress represent the adaptive vs maladaptive responses to stressful stimuli. Animal studies suggest that the stress-induced modulation of excitatory synaptic transmission involves changes in presynaptic glutamate release, postsynaptic glutamate receptor membrane trafficking and degradation, spine structure and cytoskeleton network, and epigenetic control of gene expression. This review will discuss current findings on the key molecules involved in the stress-induced regulation of prefrontal cortex synaptic physiology and prefrontal cortex-mediated functions. Understanding the molecular and epigenetic mechanisms that underlie the complex effects of stress will help to develop novel strategies to cope with stress-related mental disorders. PMID:29016816

  4. Molecular and Epigenetic Mechanisms for the Complex Effects of Stress on Synaptic Physiology and Cognitive Functions.

    PubMed

    Yuen, Eunice Y; Wei, Jing; Yan, Zhen

    2017-11-01

    Evidence over the past decades has found that stress, particularly through the corticosterone stress hormones, produces complex changes in glutamatergic signaling in prefrontal cortex, which leads to the alteration of cognitive processes medicated by this brain region. Interestingly, the effects of stress on glutamatergic transmission appear to be "U-shaped," depending upon the duration and severity of the stressor. These biphasic effects of acute vs chronic stress represent the adaptive vs maladaptive responses to stressful stimuli. Animal studies suggest that the stress-induced modulation of excitatory synaptic transmission involves changes in presynaptic glutamate release, postsynaptic glutamate receptor membrane trafficking and degradation, spine structure and cytoskeleton network, and epigenetic control of gene expression. This review will discuss current findings on the key molecules involved in the stress-induced regulation of prefrontal cortex synaptic physiology and prefrontal cortex-mediated functions. Understanding the molecular and epigenetic mechanisms that underlie the complex effects of stress will help to develop novel strategies to cope with stress-related mental disorders. © The Author 2017. Published by Oxford University Press on behalf of CINP.

  5. In vitro/vivo drug release and anti-diabetic cardiomyopathy properties of curcumin/PBLG-PEG-PBLG nanoparticles.

    PubMed

    Tong, Fei; Chai, Rongkui; Jiang, Haiying; Dong, Bo

    2018-01-01

    The objective of this study was to survey the therapeutic function of curcumin-encapsulated poly(gamma-benzyl l-glutamate)-poly(ethylene glycol)-poly(gammabenzyl l-glutamate) (PBLG-PEG-PBLG) (P) on diabetic cardiomyopathy (DCM) via cross regulation effect of calcium-sensing receptor (CaSR) and endogenous cystathionine-γ-lyase (CSE)/hydrogen sulfide (H 2 S). Diabetic rats were preconditioned with 20 mg/kg curcumin or curcumin/P complex continuously for 8 weeks. The blood and myocardiums were collected, the level of serum H 2 S was observed, and the [Ca 2+ ] i content was measured in myocardial cells, and hematoxylin-eosin, CaSR, CSE, and calmodulin (CaM) expression were detected. Both curcumin and curcumin/P pretreatment alleviated pathological morphological damage of myocardium, increased H 2 S and [Ca 2+ ] i levels, and upregulated the expression of CaSR, CSE, and CaM as compared to DCM group, while curcumin/P remarkably augmented this effect. PBLG-PEG-PBLG could improve water-solubility and bioactivity of curcumin and curcumin/PBLG-PEG-PBLG significantly alleviated diabetic cardiomyopathy.

  6. The Role of Ephs and Ephrins in Memory Formation

    PubMed Central

    Dines, Monica

    2016-01-01

    The ability to efficiently store memories in the brain is a fundamental process and its impairment is associated with multiple human mental disorders. Evidence indicates that long-term memory formation involves alterations of synaptic efficacy produced by modifications in neural transmission and morphology. The Eph receptors and their cognate ephrin ligands have been shown to be involved in these key neuronal processes by regulating events such as presynaptic transmitter release, postsynaptic glutamate receptor conductance and trafficking, synaptic glutamate reuptake, and dendritic spine morphogenesis. Recent findings show that Ephs and ephrins are needed for memory formation in different organisms. These proteins participate in the formation of various types of memories that are subserved by different neurons and brain regions. Ephs and ephrins are involved in brain disorders and diseases with memory impairment symptoms, including Alzheimer’s disease and anxiety. Drugs that agonize or antagonize Ephs/ephrins signaling have been developed and could serve as therapeutic agents to treat such diseases. Ephs and ephrins may therefore induce cellular alterations mandatory for memory formation and serve as a target for pharmacological intervention for treatment of memory-related brain diseases. PMID:26371183

  7. In vivo and in vitro effects of multiple sclerosis immunomodulatory therapeutics on glutamatergic excitotoxicity.

    PubMed

    Luchtman, Dirk; Gollan, René; Ellwardt, Erik; Birkenstock, Jérôme; Robohm, Kerstin; Siffrin, Volker; Zipp, Frauke

    2016-03-01

    In multiple sclerosis (MS), a candidate downstream mechanism for neuronal injury is glutamate (Glu)-induced excitotoxicity, leading to toxic increases in intraneuronal Ca(2+) . Here, we used in vivo two-photon imaging in the brain of TN-XXL transgenic Ca(2+) reporter mice to test whether promising oral MS therapeutics, namely fingolimod, dimethyl fumarate, and their respective metabolites fingolimod-phosphate and monomethyl fumarate, can protect neurons against acute glutamatergic excitotoxic damage. We also assessed whether these drugs can protect against excitotoxicity in vitro using primary cortical neurons, and whether they can directly inhibit Glu release from pathogenic T-helper 17 lymphocytes. In vivo, direct and acute (1 h) administration of 100 mM Glu to the brainstem resulted in a rapid and significant up-regulation in neuronal Ca(2+) signaling as well as morphological excitotoxic changes that were attenuated by the NMDA-receptor antagonist MK801. Direct CNS administration of MS drugs prior to Glu significantly delayed or reduced, but did not prevent the neuronal Ca(2+) increase or morphological changes. In vitro, prolonged (24 h) treatment of primary neurons with the fumarates significantly protected against neurotoxicity induced by Glu as well as NMDA, similar to MK801. Furthermore, monomethyl fumerate significantly reduced Glu release from pathogenic T-helper 17 lymphocytes. Overall, these data suggest that MS drugs may mediate neuroprotection via excitotoxicity modulating effects. Evidence suggests MS pathogenesis may involve neuronal excitotoxicity, induced by local release of glutamate. However, current MS drugs, including dimethyl fumerate (DMF) and fingolimod (FTY720) are largely anti-inflammatory and not yet fully tested for their neuroprotective potential. Here, we show that the drugs, in particular DMF metabolite monomethyl fumerate (MMF), protect neurons by excitotoxicity modulating effects. Th17, T-helper 17. © 2015 International Society for Neurochemistry.

  8. The mast cell stabilizer sodium cromoglycate reduces histamine release and status epilepticus-induced neuronal damage in the rat hippocampus.

    PubMed

    Valle-Dorado, María Guadalupe; Santana-Gómez, César Emmanuel; Orozco-Suárez, Sandra Adela; Rocha, Luisa

    2015-05-01

    Experiments were designed to evaluate changes in the histamine release, mast cell number and neuronal damage in hippocampus induced by status epilepticus. We also evaluated if sodium cromoglycate, a stabilizer of mast cells with a possible stabilizing effect on the membrane of neurons, was able to prevent the release of histamine, γ-aminobutyric acid (GABA) and glutamate during the status epilepticus. During microdialysis experiments, rats were treated with saline (SS-SE) or sodium cromoglycate (CG-SE) and 30 min later received the administration of pilocarpine to induce status epilepticus. Twenty-four hours after the status epilepticus, the brains were used to determine the neuronal damage and the number of mast cells in hippocampus. During the status epilepticus, SS-SE group showed an enhanced release of histamine (138.5%, p = 0.005), GABA (331 ± 91%, p ≤ 0.001) and glutamate (467%, p ≤ 0.001), even after diazepam administration. One day after the status epilepticus, SS-SE group demonstrated increased number of mast cells in Stratum pyramidale of CA1 (88%, p < 0.001) and neuronal damage in dentate gyrus, CA1 and CA3. In contrast to SS-SE group, rats from the CG-SE group showed increased latency to the establishment of the status epilepticus (p = 0.048), absence of wet-dog shakes, reduced histamine (but not GABA and glutamate) release, lower number of mast cells (p = 0.008) and reduced neuronal damage in hippocampus. Our data revealed that histamine, possibly from mast cells, is released in hippocampus during the status epilepticus. This effect may be involved in the subsequent neuronal damage and is diminished with sodium cromoglycate pretreatment. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Interplay between presynaptic and postsynaptic activities is required for dendritic plasticity and synaptogenesis in the supraoptic nucleus.

    PubMed

    Chevaleyre, Vivien; Moos, Francoise C; Desarménien, Michel G

    2002-01-01

    Developing oxytocin and vasopressin (OT/AVP) supraoptic nucleus (SON) neurons positively autocontrol their electrical activity via dendritic release of their respective peptide. The effects of this autocontrol are maximum during the second postnatal week (PW2), when the dendritic arbor transiently increases and glutamatergic postsynaptic potentials appear. Here, we studied the role and interaction of dendritic OT/AVP release and glutamate release in dendritic plasticity and synaptogenesis in SON. In vivo treatment with the peptides antagonists or with an NMDA antagonist suppressed the transient increase in dendritic arbor of SON neurons at the beginning of PW2. Incubation of acute slices with these compounds decreased the dendritic arbor on a short time scale (3-8 hr) in slices of postnatal day 7 (P7) to P9 rats. Conversely, application of OT/AVP or NMDA increased dendritic branches in slices of P3-P6 rats. Their effects were inhibited by blockade of electrical activity, voltage-gated Ca2+ channels, or intracellular Ca2+ mobilization. They were also interdependent because both OT/AVP and NMDA (but not AMPA) receptor activation were required for increasing the dendritic arbor. Part of this interdependence probably results from a retrograde action of the peptides facilitating glutamate release. Finally, blocking OT/AVP receptors by in vivo treatment with the peptides antagonists during development decreased spontaneous glutamatergic synaptic activity recorded in young adults. These results show that an interplay between postsynaptic dendritic peptide release and presynaptic glutamate release is involved in the transient increase in dendritic arbor of SON neurons and indicate that OT/AVP are required for normal synaptogenesis of glutamatergic inputs in SON.

  10. Mitochondrial dysfunction associated with nitric oxide pathways in glutamate neurotoxicity.

    PubMed

    Manucha, Walter

    Multiple mechanisms underlying glutamate-induced neurotoxicity have recently been discussed. Likewise, a clear deregulation of the mitochondrial respiratory mechanism has been described in patients with neurodegeneration, oxidative stress, and inflammation. This article highlights nitric oxide, an atypical neurotransmitter synthesized and released on demand by the post-synaptic neurons, and has many important implications for nerve cell survival and differentiation. Consequently, synaptogenesis, synapse elimination, and neurotransmitter release, are nitric oxide-modulated. Interesting, an emergent role of nitric oxide pathways has been discussed as regards neurotoxicity from glutamate-induced apoptosis. These findings suggest that nitric oxide pathways modulation could prevent oxidative damage to neurons through apoptosis inhibition. This review aims to highlight the emergent aspects of nitric oxide-mediated signaling in the brain, and how they can be related to neurotoxicity, as well as the development of neurodegenerative diseases development. Copyright © 2016 Sociedad Española de Arteriosclerosis. Publicado por Elsevier España, S.L.U. All rights reserved.

  11. The Maintenance of Synaptic Homeostasis at the Drosophila Neuromuscular Junction Is Reversible and Sensitive to High Temperature.

    PubMed

    Yeates, Catherine J; Zwiefelhofer, Danielle J; Frank, C Andrew

    2017-01-01

    Homeostasis is a vital mode of biological self-regulation. The hallmarks of homeostasis for any biological system are a baseline set point of physiological activity, detection of unacceptable deviations from the set point, and effective corrective measures to counteract deviations. Homeostatic synaptic plasticity (HSP) is a form of neuroplasticity in which neurons and circuits resist environmental perturbations and stabilize levels of activity. One assumption is that if a perturbation triggers homeostatic corrective changes in neuronal properties, those corrective measures should be reversed upon removal of the perturbation. We test the reversibility and limits of HSP at the well-studied Drosophila melanogaster neuromuscular junction (NMJ). At the Drosophila NMJ, impairment of glutamate receptors causes a decrease in quantal size, which is offset by a corrective, homeostatic increase in the number of vesicles released per evoked presynaptic stimulus, or quantal content. This process has been termed presynaptic homeostatic potentiation (PHP). Taking advantage of the GAL4/GAL80 TS /UAS expression system, we triggered PHP by expressing a dominant-negative glutamate receptor subunit at the NMJ. We then reversed PHP by halting expression of the dominant-negative receptor. Our data show that PHP is fully reversible over a time course of 48-72 h after the dominant-negative glutamate receptor stops being genetically expressed. As an extension of these experiments, we find that when glutamate receptors are impaired, neither PHP nor NMJ growth is reliably sustained at high culturing temperatures (30-32°C). These data suggest that a limitation of homeostatic signaling at high temperatures could stem from the synapse facing a combination of challenges simultaneously.

  12. Dynamics of GnRH Neuron Ionotropic GABA and Glutamate Synaptic Receptors Are Unchanged during Estrogen Positive and Negative Feedback in Female Mice.

    PubMed

    Liu, Xinhuai; Porteous, Robert; Herbison, Allan E

    2017-01-01

    Inputs from GABAergic and glutamatergic neurons are suspected to play an important role in regulating the activity of the gonadotropin-releasing hormone (GnRH) neurons. The GnRH neurons exhibit marked plasticity to control the ovarian cycle with circulating estradiol concentrations having profound "feedback" effects on their activity. This includes "negative feedback" responsible for suppressing GnRH neuron activity and "positive feedback" that occurs at mid-cycle to activate the GnRH neurons to generate the preovulatory luteinizing hormone surge. In the present study, we employed brain slice electrophysiology to question whether synaptic ionotropic GABA and glutamate receptor signaling at the GnRH neuron changed at times of negative and positive feedback. We used a well characterized estradiol (E)-treated ovariectomized (OVX) mouse model to replicate negative and positive feedback. Miniature and spontaneous postsynaptic currents (mPSCs and sPSCs) attributable to GABA A and glutamatergic receptor signaling were recorded from GnRH neurons obtained from intact diestrous, OVX, OVX + E (negative feedback), and OVX + E+E (positive feedback) female mice. Approximately 90% of GnRH neurons exhibited spontaneous GABA A -mPSCs in all groups but no significant differences in the frequency or kinetics of mPSCs were found at the times of negative or positive feedback. Approximately 50% of GnRH neurons exhibited spontaneous glutamate mPSCs but again no differences were detected. The same was true for spontaneous PSCs in all cases. These observations indicate that the kinetics of ionotropic GABA and glutamate receptor synaptic transmission to GnRH neurons remain stable across the different estrogen feedback states.

  13. Effects of 17beta-estradiol on glutamate synaptic transmission and neuronal excitability in the rat medial vestibular nuclei.

    PubMed

    Grassi, S; Frondaroli, A; Scarduzio, M; Dutia, M B; Dieni, C; Pettorossi, V E

    2010-02-17

    We investigated the effects of the neurosteroid 17beta-estradiol (E(2)) on the evoked and spontaneous activity of rat medial vestibular nucleus (MVN) neurons in brainstem slices. E(2) enhances the synaptic response to vestibular nerve stimulation in type B neurons and depresses the spontaneous discharge in both type A and B neurons. The amplitude of the field potential, as well as the excitatory post-synaptic potential (EPSP) and current (EPSC), in type B neurons, are enhanced by E(2). Both effects are long-term phenomena since they outlast the drug washout. The enhancement of synaptic response is mainly due to facilitation of glutamate release mediated by pre-synaptic N-methyl-D-aspartate receptors (NMDARs), since the reduction of paired pulse ratio (PPR) and the increase of miniature EPSC frequency after E(2) are abolished under D-(-)-2-amino-5-phosphonopentanoic acid (AP-5). E(2) also facilitates post-synaptic NMDARs, but it does not affect directly alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) and group I-metabotropic glutamate receptors (mGluRs-I). In contrast, the depression of the spontaneous discharge of type A and type B neurons appears to depend on E(2) modulation of intrinsic ion conductances, as the effect remains after blockade of glutamate, GABA and glycine receptors (GlyRs). The net effect of E(2) is to enhance the signal-to-noise ratio of the synaptic response in type B neurons, relative to resting activity of all MVN neurons. These findings provide evidence for a novel potential mechanism to modulate the responsiveness of vestibular neurons to afferent inputs, and so regulate vestibular function in vivo.

  14. Partitioning of glutamine synthesised by the isolated perfused human placenta between the maternal and fetal circulations☆

    PubMed Central

    Day, P.E.L.; Cleal, J.K.; Lofthouse, E.M.; Goss, V.; Koster, G.; Postle, A.; Jackson, J.M.; Hanson, M.A.; Jackson, A.A.; Lewis, R.M.

    2013-01-01

    Introduction Placental glutamine synthesis has been demonstrated in animals and is thought to increase the availability of this metabolically important amino acid to the fetus. Glutamine is of fundamental importance for cellular replication, cellular function and inter-organ nitrogen transfer. The objective of this study was to investigate the role of glutamate/glutamine metabolism by the isolated perfused human placenta in the provision of glutamine to the fetus. Methods Glutamate metabolism was investigated in the isolated dually perfused human placental cotyledon. U–13C-glutamate was used to investigate the movement of carbon and 15N-leucine to study movement of amino-nitrogen. Labelled amino acids were perfused via maternal or fetal arteries at defined flow rates. The enrichment and concentration of amino acids in the maternal and fetal veins were measured following 5 h of perfusion. Results Glutamate taken up from the maternal and fetal circulations was primarily converted into glutamine the majority of which was released into the maternal circulation. The glutamine transporter SNAT5 was localised to the maternal-facing membrane of the syncytiotrophoblast. Enrichment of 13C or 15N glutamine in placental tissue was lower than in either the maternal or fetal circulation, suggesting metabolic compartmentalisation within the syncytiotrophoblast. Discussion Placental glutamine synthesis may help ensure the placenta's ability to supply this amino acid to the fetus does not become limiting to fetal growth. Glutamine synthesis may also influence placental transport of other amino acids, metabolism, nitrogen flux and cellular regulation. Conclusions Placental glutamine synthesis may therefore be a central mechanism in ensuring that the human fetus receives adequate nutrition and is able to maintain growth. PMID:24183194

  15. The Maintenance of Synaptic Homeostasis at the Drosophila Neuromuscular Junction Is Reversible and Sensitive to High Temperature

    PubMed Central

    Zwiefelhofer, Danielle J.

    2017-01-01

    Abstract Homeostasis is a vital mode of biological self-regulation. The hallmarks of homeostasis for any biological system are a baseline set point of physiological activity, detection of unacceptable deviations from the set point, and effective corrective measures to counteract deviations. Homeostatic synaptic plasticity (HSP) is a form of neuroplasticity in which neurons and circuits resist environmental perturbations and stabilize levels of activity. One assumption is that if a perturbation triggers homeostatic corrective changes in neuronal properties, those corrective measures should be reversed upon removal of the perturbation. We test the reversibility and limits of HSP at the well-studied Drosophila melanogaster neuromuscular junction (NMJ). At the Drosophila NMJ, impairment of glutamate receptors causes a decrease in quantal size, which is offset by a corrective, homeostatic increase in the number of vesicles released per evoked presynaptic stimulus, or quantal content. This process has been termed presynaptic homeostatic potentiation (PHP). Taking advantage of the GAL4/GAL80TS/UAS expression system, we triggered PHP by expressing a dominant-negative glutamate receptor subunit at the NMJ. We then reversed PHP by halting expression of the dominant-negative receptor. Our data show that PHP is fully reversible over a time course of 48–72 h after the dominant-negative glutamate receptor stops being genetically expressed. As an extension of these experiments, we find that when glutamate receptors are impaired, neither PHP nor NMJ growth is reliably sustained at high culturing temperatures (30–32°C). These data suggest that a limitation of homeostatic signaling at high temperatures could stem from the synapse facing a combination of challenges simultaneously. PMID:29255795

  16. Suppression of neurite outgrowth of primary cultured hippocampal neurons is involved in impairment of glutamate metabolism and NMDA receptor function caused by nanoparticulate TiO2.

    PubMed

    Hong, Fashui; Sheng, Lei; Ze, Yuguan; Hong, Jie; Zhou, Yingjun; Wang, Ling; Liu, Dong; Yu, Xiaohong; Xu, Bingqing; Zhao, Xiaoyang; Ze, Xiao

    2015-06-01

    Numerous studies have indicated that nano-titanium dioxide (TiO2) can induce neurotoxicity in vitro and in vivo, however, it is unclear whether nano-TiO2 affects neurite outgrowth of hippocampal neurons. In order to investigate the mechanism of neurotoxicity, rat primary cultured hippocampal neurons on the fourth day of culture were exposed to 5, 15, and 30 μg/mL nano-TiO2 for 24 h, and nano-TiO2 internalization, dendritic growth, glutamate metabolism, expression of N-methyl-D-aspartate (NMDA) receptor subunits (NR1, NR2A and NR2B), calcium homeostasis, sodium current (INa) and potassium current (IK) were examined. Our findings demonstrated that nano-TiO2 crossed the membrane into the cytoplasm or nucleus, and significantly suppressed dendritic growth of primary cultured hippocampal neurons in a concentration-dependent manner. Furthermore, nano-TiO2 induced a marked release of glutamate to the extracellular region, decreased glutamine synthetase activity and increased phosphate-activated glutaminase activity, elevated intracellular calcium ([Ca(2+)]i), down-regulated protein expression of NR1, NR2A and NR2B, and increased the amplitudes of the INa and IK. In addition, nano-TiO2 increased nitric oxide and nitrice synthase, attenuated the activities of Ca(2+)-ATPase and Na(+)/K(+)-ATPase, and increased the ADP/ATP ratio in the primary neurons. Taken together, these findings indicate that nano-TiO2 inhibits neurite outgrowth of hippocampal neurons by interfering with glutamate metabolism and impairing NMDA receptor function. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Gestational exposure to inorganic arsenic (iAs3+) alters glutamate disposition in the mouse hippocampus and ionotropic glutamate receptor expression leading to memory impairment.

    PubMed

    Nelson-Mora, Janikua; Escobar, Martha L; Rodríguez-Durán, Luis; Massieu, Lourdes; Montiel, Teresa; Rodríguez, Verónica M; Hernández-Mercado, Karina; Gonsebatt, María E

    2018-03-01

    Early life exposure to environmental pollutants and toxic chemicals has been linked to learning and behavioral alterations in children. iAs exposure is associated with different types neurological disorders such as memory and learning impairment. iAs is methylated in the brain by the arsenic III-methyltransferase in a process that requires glutathione (GSH). The xCT-antiporter cell membrane transporter participates in the influx of cystine for GSH synthesis in exchange for glutamate in a 1:1 ratio. In CD-1 mice gestationally exposed to 20 ppm of sodium arsenite in drinking water, we have previously observed up-regulation of xCT in the male mouse hippocampus which caused glutamatergic synapse alterations affecting learning and memory processes. Here, we used the same gestational iAs exposure model to investigate whether the up-regulation of xCT and down-regulation of GLT-1 transporters were associated with higher levels of extracellular glutamate and changes in the expression of the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) glutamate receptor, responsible for excitatory fast synaptic transmission. The induction of LTP in the perforant-dentate gyrus pathway (PP-DG) of the hippocampus was also studied, as well as learning and memory formation using the water maze test. Changes in GSH levels were also tested in the hippocampus of animals exposed to iAs. Results showed increased GSH synthesis (p < 0.05), associated with significantly higher extracellular glutamate levels in iAs exposed mice. Exposure was also significantly associated with AMPA subunits down-regulation, deficient LTP induction, and lower excitability of the PP-DG pathway. In addition, animals showed deficient learning and memory in the Morris Water Maze test.

  18. Deficits in striatal dopamine release in cannabis dependence

    PubMed Central

    van de Giessen, Elsmarieke; Weinstein, Jodi J.; Cassidy, Clifford M.; Haney, Margaret; Dong, Zhengchao; Ghazzaoui, Rassil; Ojeil, Najate; Kegeles, Lawrence S.; Xu, Xiaoyan; Vadhan, Nehal P.; Volkow, Nora D.; Slifstein, Mark; Abi-Dargham, Anissa

    2016-01-01

    Most drugs of abuse lead to a general blunting of dopamine release in the chronic phase of dependence, which contributes to poor outcome. To test whether cannabis dependence is associated with a similar dopaminergic deficit, we examined striatal and extrastriatal dopamine release in severely cannabis dependent participants (CD), free of any comorbid conditions, including nicotine use. Eleven CD and twelve healthy controls (HC) completed two positron emission tomography scans with [11C]-(+)-PHNO, before and after oral administration of d-amphetamine. CD stayed inpatient for 5–7 days prior to the scans to standardize abstinence. Magnetic Resonance Imaging (MRS) measures of glutamate in the striatum and hippocampus were obtained in the same subjects. Percent change in [11C]-(+)-PHNO binding potential (ΔBPND) was compared between groups and correlations with MRS glutamate, subclinical psychopathological and neurocognitive parameters were examined. CD had significantly lower ΔBPND in the striatum (p=0.002, effect size (ES)=1.48), including the associative striatum (p=0.003, ES=1.39), sensorimotor striatum (p=0.003, ES=1.41), and the pallidus (p=0.012, ES=1.16). Lower dopamine release in the associative striatum correlated with inattention and negative symptoms in CD, and with poorer working memory and probabilistic category learning performance in both CD and HC. No relationships to MRS glutamate and amphetamine-induced subclinical positive symptoms were detected. In conclusion, this study provides evidence that severe cannabis dependence -without the confounds of any comorbidity- is associated with a deficit in striatal dopamine release. This deficit extends to other extrastriatal areas and predicts subclinical psychopathology. PMID:27001613

  19. Deficits in striatal dopamine release in cannabis dependence.

    PubMed

    van de Giessen, E; Weinstein, J J; Cassidy, C M; Haney, M; Dong, Z; Ghazzaoui, R; Ojeil, N; Kegeles, L S; Xu, X; Vadhan, N P; Volkow, N D; Slifstein, M; Abi-Dargham, A

    2017-01-01

    Most drugs of abuse lead to a general blunting of dopamine release in the chronic phase of dependence, which contributes to poor outcome. To test whether cannabis dependence is associated with a similar dopaminergic deficit, we examined striatal and extrastriatal dopamine release in severely cannabis-dependent participants (CD), free of any comorbid conditions, including nicotine use. Eleven CD and 12 healthy controls (HC) completed two positron emission tomography scans with [ 11 C]-(+)-PHNO, before and after oral administration of d-amphetamine. CD stayed inpatient for 5-7 days prior to the scans to standardize abstinence. Magnetic resonance spectroscopy (MRS) measures of glutamate in the striatum and hippocampus were obtained in the same subjects. Percent change in [ 11 C]-(+)-PHNO-binding potential (ΔBP ND ) was compared between groups and correlations with MRS glutamate, subclinical psychopathological and neurocognitive parameters were examined. CD had significantly lower ΔBP ND in the striatum (P=0.002, effect size (ES)=1.48), including the associative striatum (P=0.003, ES=1.39), sensorimotor striatum (P=0.003, ES=1.41) and the pallidus (P=0.012, ES=1.16). Lower dopamine release in the associative striatum correlated with inattention and negative symptoms in CD, and with poorer working memory and probabilistic category learning performance in both CD and HC. No relationships to MRS glutamate and amphetamine-induced subclinical positive symptoms were detected. In conclusion, this study provides evidence that severe cannabis dependence-without the confounds of any comorbidity-is associated with a deficit in striatal dopamine release. This deficit extends to other extrastriatal areas and predicts subclinical psychopathology.

  20. Brominated 7-hydroxycoumarin-4-ylmethyls: Photolabile protecting groups with biologically useful cross-sections for two photon photolysis

    PubMed Central

    Furuta, Toshiaki; Wang, Samuel S.-H.; Dantzker, Jami L.; Dore, Timothy M.; Bybee, Wendy J.; Callaway, Edward M.; Denk, Winfried; Tsien, Roger Y.

    1999-01-01

    Photochemical release (uncaging) of bioactive messengers with three-dimensional spatial resolution in light-scattering media would be greatly facilitated if the photolysis could be powered by pairs of IR photons rather than the customary single UV photons. The quadratic dependence on light intensity would confine the photolysis to the focus point of the laser, and the longer wavelengths would be much less affected by scattering. However, previous caged messengers have had very small cross sections for two-photon excitation in the IR region. We now show that brominated 7-hydroxycoumarin-4-ylmethyl esters and carbamates efficiently release carboxylates and amines on photolysis, with one- and two-photon cross sections up to one or two orders of magnitude better than previously available. These advantages are demonstrated on neurons in brain slices from rat cortex and hippocampus excited by glutamate uncaged from N-(6-bromo-7-hydroxycoumarin-4-ylmethoxycarbonyl)-l-glutamate (Bhc-glu). Conventional UV photolysis of Bhc-glu requires less than one-fifth the intensities needed by one of the best previous caged glutamates, γ-(α-carboxy-2-nitrobenzyl)-l-glutamate (CNB-glu). Two-photon photolysis with raster-scanned femtosecond IR pulses gives the first three-dimensionally resolved maps of the glutamate sensitivity of neurons in intact slices. Bhc-glu and analogs should allow more efficient and three-dimensionally localized uncaging and photocleavage, not only in cell biology and neurobiology but also in many technological applications. PMID:9990000

  1. Matrix Metalloproteinase-Mediated Blood-Brain Barrier Dysfunction in Epilepsy.

    PubMed

    Rempe, Ralf G; Hartz, Anika M S; Soldner, Emma L B; Sokola, Brent S; Alluri, Satya R; Abner, Erin L; Kryscio, Richard J; Pekcec, Anton; Schlichtiger, Juli; Bauer, Björn

    2018-05-02

    The blood-brain barrier is dysfunctional in epilepsy, thereby contributing to seizure genesis and resistance to antiseizure drugs. Previously, several groups reported that seizures increase brain glutamate levels, which leads to barrier dysfunction. One critical component of barrier dysfunction is brain capillary leakage. Based on our preliminary data, we hypothesized that glutamate released during seizures mediates an increase in matrix-metalloproteinase (MMP) expression and activity levels, thereby contributing to barrier leakage. To test this hypothesis, we exposed isolated brain capillaries from male Sprague Dawley rats to glutamate ex vivo and used an in vivo / ex vivo approach of isolated brain capillaries from female Wistar rats that experienced status epilepticus as an acute seizure model. We found that exposing isolated rat brain capillaries to glutamate increased MMP-2 and MMP-9 protein and activity levels, and decreased tight junction protein levels, which resulted in barrier leakage. We confirmed these findings in vivo in rats after status epilepticus and in brain capillaries from male mice lacking cytosolic phospholipase A 2 Together, our data support the hypothesis that glutamate released during seizures signals an increase in MMP-2 and MMP-9 protein expression and activity levels, resulting in blood-brain barrier leakage. SIGNIFICANCE STATEMENT The mechanism leading to seizure-mediated blood-brain barrier dysfunction in epilepsy is poorly understood. In the present study, we focused on defining this mechanism in the brain capillary endothelium. We demonstrate that seizures trigger a pathway that involves glutamate signaling through cytosolic phospholipase A 2 , which increases MMP levels and decreases tight junction protein expression levels, resulting in barrier leakage. These findings may provide potential therapeutic avenues within the blood-brain barrier to limit barrier dysfunction in epilepsy and decrease seizure burden. Copyright © 2018 the authors 0270-6474/18/384301-15$15.00/0.

  2. Norepinephrine ignites local hotspots of neuronal excitation: How arousal amplifies selectivity in perception and memory.

    PubMed

    Mather, Mara; Clewett, David; Sakaki, Michiko; Harley, Carolyn W

    2016-01-01

    Emotional arousal enhances perception and memory of high-priority information but impairs processing of other information. Here, we propose that, under arousal, local glutamate levels signal the current strength of a representation and interact with norepinephrine (NE) to enhance high priority representations and out-compete or suppress lower priority representations. In our "glutamate amplifies noradrenergic effects" (GANE) model, high glutamate at the site of prioritized representations increases local NE release from the locus coeruleus (LC) to generate "NE hotspots." At these NE hotspots, local glutamate and NE release are mutually enhancing and amplify activation of prioritized representations. In contrast, arousal-induced LC activity inhibits less active representations via two mechanisms: 1) Where there are hotspots, lateral inhibition is amplified; 2) Where no hotspots emerge, NE levels are only high enough to activate low-threshold inhibitory adrenoreceptors. Thus, LC activation promotes a few hotspots of excitation in the context of widespread suppression, enhancing high priority representations while suppressing the rest. Hotspots also help synchronize oscillations across neural ensembles transmitting high-priority information. Furthermore, brain structures that detect stimulus priority interact with phasic NE release to preferentially route such information through large-scale functional brain networks. A surge of NE before, during, or after encoding enhances synaptic plasticity at NE hotspots, triggering local protein synthesis processes that enhance selective memory consolidation. Together, these noradrenergic mechanisms promote selective attention and memory under arousal. GANE not only reconciles apparently contradictory findings in the emotion-cognition literature but also extends previous influential theories of LC neuromodulation by proposing specific mechanisms for how LC-NE activity increases neural gain.

  3. Prostacyclin regulates spinal nociceptive processing through cyclic adenosine monophosphate-induced translocation of glutamate receptors.

    PubMed

    Schuh, Claus Dieter; Brenneis, Christian; Zhang, Dong Dong; Angioni, Carlo; Schreiber, Yannick; Ferreiros-Bouzas, Nerea; Pierre, Sandra; Henke, Marina; Linke, Bona; Nüsing, Rolf; Scholich, Klaus; Geisslinger, Gerd

    2014-02-01

    Prostacyclin (PGI2) is known to be an important mediator of peripheral pain sensation (nociception) whereas little is known about its role in central sensitization. The levels of the stable PGI2-metabolite 6-keto-prostaglandin F1α (6-keto-PGF1α) and of prostaglandin E2 (PGE2) were measured in the dorsal horn with the use of mass spectrometry after peripheral inflammation. Expression of the prostanoid receptors was determined by immunohistology. Effects of prostacyclin receptor (IP) activation on spinal neurons were investigated with biochemical assays (cyclic adenosine monophosphate-, glutamate release-measurement, Western blot analysis) in embryonic cultures and adult spinal cord. The specific IP antagonist Cay10441 was applied intrathecally after zymosan-induced mechanical hyperalgesia in vivo. Peripheral inflammation caused a significant increase of the stable PGI2 metabolite 6-keto-PGF1α in the dorsal horn of wild-type mice (n = 5). IP was located on spinal neurons and did not colocalize with the prostaglandin E2 receptors EP2 or EP4. The selective IP-agonist cicaprost increased cyclic adenosine monophosphate synthesis in spinal cultures from wild-type but not from IP-deficient mice (n = 5-10). The combination of fluorescence-resonance-energy transfer-based cyclic adenosine monophosphate imaging and calcium imaging showed a cicaprost-induced cyclic adenosine monophosphate synthesis in spinal cord neurons (n = 5-6). Fittingly, IP activation increased glutamate release from acute spinal cord sections of adult mice (n = 13-58). Cicaprost, but not agonists for EP2 and EP4, induced protein kinase A-dependent phosphorylation of the GluR1 subunit and its translocation to the membrane. Accordingly, intrathecal administration of the IP receptor antagonist Cay10441 had an antinociceptive effect (n = 8-11). Spinal prostacyclin synthesis during early inflammation causes the recruitment of GluR1 receptors to membrane fractions, thereby augmenting the onset of central sensitization.

  4. Blood glutamate grabbing does not reduce the hematoma in an intracerebral hemorrhage model but it is a safe excitotoxic treatment modality.

    PubMed

    da Silva-Candal, Andrés; Vieites-Prado, Alba; Gutiérrez-Fernández, María; Rey, Ramón I; Argibay, Bárbara; Mirelman, David; Sobrino, Tomás; Rodríguez-Frutos, Berta; Castillo, José; Campos, Francisco

    2015-07-01

    Recent studies have shown that blood glutamate grabbing is an effective strategy to reduce the excitotoxic effect of extracellular glutamate released during ischemic brain injury. The purpose of the study was to investigate the effect of two of the most efficient blood glutamate grabbers (oxaloacetate and recombinant glutamate oxaloacetate transaminase 1: rGOT1) in a rat model of intracerebral hemorrhage (ICH). Intracerebral hemorrhage was produced by injecting collagenase into the basal ganglia. Three treatment groups were developed: a control group treated with saline, a group treated with oxaloacetate, and a final group treated with human rGOT1. Treatments were given 1 hour after hemorrhage. Hematoma volume (analyzed by magnetic resonance imaging (MRI)), neurologic deficit, and blood glutamate and GOT levels were quantified over a period of 14 days after surgery. The results observed showed that the treatments used induced a significant reduction of blood glutamate levels; however, they did not reduce the hematoma, nor did they improve the neurologic deficit. In the present experimental study, we have shown that this novel therapeutic strategy is not effective in case of ICH pathology. More importantly, these findings suggest that blood glutamate grabbers are a safe treatment modality that can be given in cases of suspected ischemic stroke without previous neuroimaging.

  5. Loss of Local Astrocyte Support Disrupts Action Potential Propagation and Glutamate Release Synchrony from Unmyelinated Hippocampal Axon Terminals In Vitro.

    PubMed

    Sobieski, Courtney; Jiang, Xiaoping; Crawford, Devon C; Mennerick, Steven

    2015-08-05

    Neuron-astrocyte interactions are critical for proper CNS development and function. Astrocytes secrete factors that are pivotal for synaptic development and function, neuronal metabolism, and neuronal survival. Our understanding of this relationship, however, remains incomplete due to technical hurdles that have prevented the removal of astrocytes from neuronal circuits without changing other important conditions. Here we overcame this obstacle by growing solitary rat hippocampal neurons on microcultures that were comprised of either an astrocyte bed (+astrocyte) or a collagen bed (-astrocyte) within the same culture dish. -Astrocyte autaptic evoked EPSCs, but not IPSCs, displayed an altered temporal profile, which included increased synaptic delay, increased time to peak, and severe glutamate release asynchrony, distinct from previously described quantal asynchrony. Although we observed minimal alteration of the somatically recorded action potential waveform, action potential propagation was altered. We observed a longer latency between somatic initiation and arrival at distal locations, which likely explains asynchronous EPSC peaks, and we observed broadening of the axonal spike, which likely underlies changes to evoked EPSC onset. No apparent changes in axon structure were observed, suggesting altered axonal excitability. In conclusion, we propose that local astrocyte support has an unappreciated role in maintaining glutamate release synchrony by disturbing axonal signal propagation. Certain glial cell types (oligodendrocytes, Schwann cells) facilitate the propagation of neuronal electrical signals, but a role for astrocytes has not been identified despite many other functions of astrocytes in supporting and modulating neuronal signaling. Under identical global conditions, we cultured neurons with or without local astrocyte support. Without local astrocytes, glutamate transmission was desynchronized by an alteration of the waveform and arrival time of axonal action potentials to synaptic terminals. GABA transmission was not disrupted. The disruption did not involve detectable morphological changes to axons of glutamate neurons. Our work identifies a developmental role for astrocytes in the temporal precision of excitatory signals. Copyright © 2015 the authors 0270-6474/15/3511105-13$15.00/0.

  6. Loss of Local Astrocyte Support Disrupts Action Potential Propagation and Glutamate Release Synchrony from Unmyelinated Hippocampal Axon Terminals In Vitro

    PubMed Central

    Sobieski, Courtney; Jiang, Xiaoping; Crawford, Devon C.

    2015-01-01

    Neuron–astrocyte interactions are critical for proper CNS development and function. Astrocytes secrete factors that are pivotal for synaptic development and function, neuronal metabolism, and neuronal survival. Our understanding of this relationship, however, remains incomplete due to technical hurdles that have prevented the removal of astrocytes from neuronal circuits without changing other important conditions. Here we overcame this obstacle by growing solitary rat hippocampal neurons on microcultures that were comprised of either an astrocyte bed (+astrocyte) or a collagen bed (−astrocyte) within the same culture dish. −Astrocyte autaptic evoked EPSCs, but not IPSCs, displayed an altered temporal profile, which included increased synaptic delay, increased time to peak, and severe glutamate release asynchrony, distinct from previously described quantal asynchrony. Although we observed minimal alteration of the somatically recorded action potential waveform, action potential propagation was altered. We observed a longer latency between somatic initiation and arrival at distal locations, which likely explains asynchronous EPSC peaks, and we observed broadening of the axonal spike, which likely underlies changes to evoked EPSC onset. No apparent changes in axon structure were observed, suggesting altered axonal excitability. In conclusion, we propose that local astrocyte support has an unappreciated role in maintaining glutamate release synchrony by disturbing axonal signal propagation. SIGNIFICANCE STATEMENT Certain glial cell types (oligodendrocytes, Schwann cells) facilitate the propagation of neuronal electrical signals, but a role for astrocytes has not been identified despite many other functions of astrocytes in supporting and modulating neuronal signaling. Under identical global conditions, we cultured neurons with or without local astrocyte support. Without local astrocytes, glutamate transmission was desynchronized by an alteration of the waveform and arrival time of axonal action potentials to synaptic terminals. GABA transmission was not disrupted. The disruption did not involve detectable morphological changes to axons of glutamate neurons. Our work identifies a developmental role for astrocytes in the temporal precision of excitatory signals. PMID:26245971

  7. Metabotropic glutamate receptor-mediated signaling dampens the HPA axis response to restraint stress

    PubMed Central

    Evanson, Nathan K.; Herman, James P.

    2015-01-01

    Glutamate is an important neurotransmitter in regulation of the neural portion of hypothalamus-pituitary-adrenal (HPA) axis activity, and signals through ionotropic and metabotropic receptors. In the current studies we investigated the role of hypothalamic paraventricular group I metabotropic glutamate receptors in regulation of the HPA axis response to restraint stress in rats. Direct injection of the group I metabotropic glutamate receptor agonist 3,5-dihydroxyphenylglycine (DHPG) into the PVN prior to restraint leads to blunting of the HPA axis response in awake animals. Consistent with this result, infusion of the group I receptor antagonist hexyl-homoibotenic acid (HIBO) potentiates the HPA axis response to restraint. The excitatory effect of blocking paraventricular group I metabotropic glutamate signaling is blocked by co-administration of dexamethasone into the PVN. However, the inhibitory effect of DHPG is not affected by co-administration of the cannabinoid CB1 receptor antagonist AM-251 into the PVN. Together, these results suggest that paraventricular group I metabotropic glutamate receptor signaling acts to dampen HPA axis reactivity. This effect appears to be similar to the rapid inhibitory effect of glucocorticoids at the PVN, but is not mediated by endocannabinoid signaling. PMID:25701594

  8. Metabotropic glutamate receptor-mediated signaling dampens the HPA axis response to restraint stress.

    PubMed

    Evanson, Nathan K; Herman, James P

    2015-10-15

    Glutamate is an important neurotransmitter in the regulation of the neural portion of hypothalamus-pituitary-adrenal (HPA) axis activity, and signals through ionotropic and metabotropic receptors. In the current studies we investigated the role of hypothalamic paraventricular group I metabotropic glutamate receptors in the regulation of the HPA axis response to restraint stress in rats. Direct injection of the group I metabotropic glutamate receptor agonist 3,5-dihydroxyphenylglycine (DHPG) into the PVN prior to restraint leads to blunting of the HPA axis response in awake animals. Consistent with this result, infusion of the group I receptor antagonist hexyl-homoibotenic acid (HIBO) potentiates the HPA axis response to restraint. The excitatory effect of blocking paraventricular group I metabotropic glutamate signaling is blocked by co-administration of dexamethasone into the PVN. However, the inhibitory effect of DHPG is not affected by co-administration of the cannabinoid CB1 receptor antagonist AM-251 into the PVN. Together, these results suggest that paraventricular group I metabotropic glutamate receptor signaling acts to dampen HPA axis reactivity. This effect appears to be similar to the rapid inhibitory effect of glucocorticoids at the PVN, but is not mediated by endocannabinoid signaling. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Effect of cannabis on glutamate signalling in the brain: A systematic review of human and animal evidence.

    PubMed

    Colizzi, Marco; McGuire, Philip; Pertwee, Roger G; Bhattacharyya, Sagnik

    2016-05-01

    Use of cannabis or delta-9-tetrahydrocannabinol (Δ9-THC), its main psychoactive ingredient, is associated with psychotic symptoms or disorder. However, the neurochemical mechanism that may underlie this psychotomimetic effect is poorly understood. Although dopaminergic dysfunction is generally recognized as the final common pathway in psychosis, evidence of the effects of Δ9-THC or cannabis use on dopaminergic measures in the brain is equivocal. In fact, it is thought that cannabis or Δ9-THC may not act on dopamine firing directly but indirectly by altering glutamate neurotransmission. Here we systematically review all studies examining acute and chronic effects of cannabis or Δ9-THC on glutamate signalling in both animals and man. Limited research carried out in humans tends to support the evidence that chronic cannabis use reduces levels of glutamate-derived metabolites in both cortical and subcortical brain areas. Research in animals tends to consistently suggest that Δ9-THC depresses glutamate synaptic transmission via CB1 receptor activation, affecting glutamate release, inhibiting receptors and transporters function, reducing enzyme activity, and disrupting glutamate synaptic plasticity after prolonged exposure. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Plasticity of Astrocytic Coverage and Glutamate Transporter Expression in Adult Mouse Cortex

    PubMed Central

    Steiner, Pascal; Hirling, Harald; Welker, Egbert; Knott, Graham W

    2006-01-01

    Astrocytes play a major role in the removal of glutamate from the extracellular compartment. This clearance limits the glutamate receptor activation and affects the synaptic response. This function of the astrocyte is dependent on its positioning around the synapse, as well as on the level of expression of its high-affinity glutamate transporters, GLT1 and GLAST. Using Western blot analysis and serial section electron microscopy, we studied how a change in sensory activity affected these parameters in the adult cortex. Using mice, we found that 24 h of whisker stimulation elicited a 2-fold increase in the expression of GLT1 and GLAST in the corresponding cortical column of the barrel cortex. This returns to basal levels 4 d after the stimulation was stopped, whereas the expression of the neuronal glutamate transporter EAAC1 remained unaltered throughout. Ultrastructural analysis from the same region showed that sensory stimulation also causes a significant increase in the astrocytic envelopment of excitatory synapses on dendritic spines. We conclude that a period of modified neuronal activity and synaptic release of glutamate leads to an increased astrocytic coverage of the bouton–spine interface and an increase in glutamate transporter expression in astrocytic processes. PMID:17048987

  11. Free fatty acids as inducers and regulators of uncoupling of oxidative phosphorylation in liver mitochondria with participation of ADP/ATP- and aspartate/glutamate-antiporter.

    PubMed

    Samartsev, V N; Marchik, E I; Shamagulova, L V

    2011-02-01

    In liver mitochondria fatty acids act as protonophoric uncouplers mainly with participation of internal membrane protein carriers - ADP/ATP and aspartate/glutamate antiporters. In this study the values of recoupling effects of carboxyatractylate and glutamate (or aspartate) were used to assess the degree of participation of ADP/ATP and aspartate/glutamate antiporters in uncoupling activity of fatty acids. These values were determined from the ability of these recoupling agents to suppress the respiration stimulated by fatty acids and to raise the membrane potential reduced by fatty acids. Increase in palmitic and lauric acid concentration was shown to increase the degree of participation of ADP/ATP antiporter and to decrease the degree of participation of aspartate/glutamate antiporter in uncoupling to the same extent. These data suggest that fatty acids are not only inducers of uncoupling of oxidative phosphorylation, but that they also act the regulators of this process. The linear dependence of carboxyatractylate and glutamate recoupling effects ratio on palmitic and lauric acids concentration was established. Comparison of the effects of fatty acids (palmitic, myristic, lauric, capric, and caprylic having 16, 14, 12, 10, and 8 carbon atoms, respectively) has shown that, as the hydrophobicity of fatty acids decreases, the effectiveness decreases to a greater degree than the respective values of their specific uncoupling activity. The action of fatty acids as regulators of uncoupling is supposed to consist of activation of transport of their anions from the internal to the external monolayer of the internal membrane with participation of ADP/ATP antiporter and, at the same time, in inhibition of this process with the participation of aspartate/glutamate antiporter.

  12. Analysis of l-glutamic acid fermentation by using a dynamic metabolic simulation model of Escherichia coli

    PubMed Central

    2013-01-01

    Background Understanding the process of amino acid fermentation as a comprehensive system is a challenging task. Previously, we developed a literature-based dynamic simulation model, which included transcriptional regulation, transcription, translation, and enzymatic reactions related to glycolysis, the pentose phosphate pathway, the tricarboxylic acid (TCA) cycle, and the anaplerotic pathway of Escherichia coli. During simulation, cell growth was defined such as to reproduce the experimental cell growth profile of fed-batch cultivation in jar fermenters. However, to confirm the biological appropriateness of our model, sensitivity analysis and experimental validation were required. Results We constructed an l-glutamic acid fermentation simulation model by removing sucAB, a gene encoding α-ketoglutarate dehydrogenase. We then performed systematic sensitivity analysis for l-glutamic acid production; the results of this process corresponded with previous experimental data regarding l-glutamic acid fermentation. Furthermore, it allowed us to predicted the possibility that accumulation of 3-phosphoglycerate in the cell would regulate the carbon flux into the TCA cycle and lead to an increase in the yield of l-glutamic acid via fermentation. We validated this hypothesis through a fermentation experiment involving a model l-glutamic acid-production strain, E. coli MG1655 ΔsucA in which the phosphoglycerate kinase gene had been amplified to cause accumulation of 3-phosphoglycerate. The observed increase in l-glutamic acid production verified the biologically meaningful predictive power of our dynamic metabolic simulation model. Conclusions In this study, dynamic simulation using a literature-based model was shown to be useful for elucidating the precise mechanisms involved in fermentation processes inside the cell. Further exhaustive sensitivity analysis will facilitate identification of novel factors involved in the metabolic regulation of amino acid fermentation. PMID:24053676

  13. Analysis of L-glutamic acid fermentation by using a dynamic metabolic simulation model of Escherichia coli.

    PubMed

    Nishio, Yousuke; Ogishima, Soichi; Ichikawa, Masao; Yamada, Yohei; Usuda, Yoshihiro; Masuda, Tadashi; Tanaka, Hiroshi

    2013-09-22

    Understanding the process of amino acid fermentation as a comprehensive system is a challenging task. Previously, we developed a literature-based dynamic simulation model, which included transcriptional regulation, transcription, translation, and enzymatic reactions related to glycolysis, the pentose phosphate pathway, the tricarboxylic acid (TCA) cycle, and the anaplerotic pathway of Escherichia coli. During simulation, cell growth was defined such as to reproduce the experimental cell growth profile of fed-batch cultivation in jar fermenters. However, to confirm the biological appropriateness of our model, sensitivity analysis and experimental validation were required. We constructed an L-glutamic acid fermentation simulation model by removing sucAB, a gene encoding α-ketoglutarate dehydrogenase. We then performed systematic sensitivity analysis for L-glutamic acid production; the results of this process corresponded with previous experimental data regarding L-glutamic acid fermentation. Furthermore, it allowed us to predicted the possibility that accumulation of 3-phosphoglycerate in the cell would regulate the carbon flux into the TCA cycle and lead to an increase in the yield of L-glutamic acid via fermentation. We validated this hypothesis through a fermentation experiment involving a model L-glutamic acid-production strain, E. coli MG1655 ΔsucA in which the phosphoglycerate kinase gene had been amplified to cause accumulation of 3-phosphoglycerate. The observed increase in L-glutamic acid production verified the biologically meaningful predictive power of our dynamic metabolic simulation model. In this study, dynamic simulation using a literature-based model was shown to be useful for elucidating the precise mechanisms involved in fermentation processes inside the cell. Further exhaustive sensitivity analysis will facilitate identification of novel factors involved in the metabolic regulation of amino acid fermentation.

  14. Neuro-transmitters in the central nervous system & their implication in learning and memory processes.

    PubMed

    Reis, Helton J; Guatimosim, Cristina; Paquet, Maryse; Santos, Magda; Ribeiro, Fabíola M; Kummer, Arthur; Schenatto, Grace; Salgado, João V; Vieira, Luciene B; Teixeira, Antônio L; Palotás, András

    2009-01-01

    This review article gives an overview of a number of central neuro-transmitters, which are essential for integrating many functions in the central nervous system (CNS), such as learning, memory, sleep cycle, body movement, hormone regulation and many others. Neurons use neuro-transmitters to communicate, and a great variety of molecules are known to fit the criteria to be classified as such. A process shared by all neuro-transmitters is their release by excocytosis, and we give an outline of the molecular events and protein complexes involved in this mechanism. Synthesis, transport, inactivation, and cellular signaling can be very diverse when different neuro-transmitters are compared, and these processes are described separately for each neuro-transmitter system. Here we focus on the most well known neuro-transmitters: acetyl-choline, catechol-amines (dopamine and nor-adrenalin), indole-amine (serotonin), glutamate, and gamma-amino-butyric acid (GABA). Glutamate is the major excitatory neuro-transmitter in the brain and its actions are counter-balanced by GABA, which is the major inhibitory substance in the CNS. A balance of neuronal transmission between these two neuro-transmitters is essential to normal brain function. Acetyl-choline, serotonin and catechol-amines have a more modulatory function in the brain, being involved in many neuronal circuits. Apart from summarizing the current knowledge about the synthesis, release and receptor signaling of these transmitters, some disease states due to alteration of their normal neuro-transmission are also described.

  15. CPG2 Recruits Endophilin B2 to the Cytoskeleton for Activity-Dependent Endocytosis of Synaptic Glutamate Receptors.

    PubMed

    Loebrich, Sven; Benoit, Marc Robert; Konopka, Jaclyn Aleksandra; Cottrell, Jeffrey Richard; Gibson, Joanne; Nedivi, Elly

    2016-02-08

    Internalization of glutamate receptors at the postsynaptic membrane via clathrin-mediated endocytosis (CME) is a key mechanism for regulating synaptic strength. A role for the F-actin cytoskeleton in CME is well established, and recently, PKA-dependent association of candidate plasticity gene 2 (CPG2) with the spine-cytoskeleton has been shown to mediate synaptic glutamate receptor internalization. Yet, how the endocytic machinery is physically coupled to the actin cytoskeleton to facilitate glutamate receptor internalization has not been demonstrated. Moreover, there has been no distinction of endocytic-machinery components that are specific to activity-dependent versus constitutive glutamate receptor internalization. Here, we show that CPG2, through a direct physical interaction, recruits endophilin B2 (EndoB2) to F-actin, thus anchoring the endocytic machinery to the spine cytoskeleton and facilitating glutamate receptor internalization. Regulation of CPG2 binding to the actin cytoskeleton by protein kinase A directly impacts recruitment of EndoB2 and clathrin. Specific disruption of EndoB2 or the CPG2-EndoB2 interaction impairs activity-dependent, but not constitutive, internalization of both NMDA- and AMPA-type glutamate receptors. These results demonstrate that, through direct interactions with F-actin and EndoB2, CPG2 physically bridges the spine cytoskeleton and the endocytic machinery, and this tripartite association is critical specifically for activity-dependent CME of synaptic glutamate receptors. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Reduced Glutamate Release in Adult BTBR Mouse Model of Autism Spectrum Disorder.

    PubMed

    Wei, Hongen; Ma, Yuehong; Ding, Caiyun; Jin, Guorong; Liu, Jianrong; Chang, Qiaoqiao; Hu, Fengyun; Yu, Li

    2016-11-01

    Autism spectrum disorder (ASD) is a developmental disorder characterized by impairments in social and communication abilities, as well as by restricted and repetitive behaviors. The BTBR T + Itpr3 tf (BTBR) mice have emerged as a well characterized and widely used mouse model of a range of ASD-like phenotype, showing deficiencies in social behaviors and unusual ultrasonic vocalizations as well as increased repetitive self-grooming. However, the inherited neurobiological changes that lead to ASD-like behaviors in these mice are incompletely known and still under active investigation. The aim of this study was to further evaluate the structure and neurotransmitter release of the glutamatergic synapse in BTBR mice. C57BL/6J (B6) mice were used as a control strain because of their high level of sociability. The important results showed that the evoked glutamate release in the cerebral cortex of BTBR mice was significantly lower than in B6 mice. And the level of vesicle docking-related protein Syntaxin-1A was reduced in BTBR mice. However, no significant changes were observed in the number of glutamatergic synapse, level of synaptic proteins, density of dendritic spine and postsynaptic density between BTBR mice and B6 mice. Overall, our results suggest that abnormal vesicular glutamate activity may underlie the ASD relevant pathology in the BTBR mice.

  17. Characteristics of basal taurine release in the rat striatum measured by microdialysis.

    PubMed

    Molchanova, S; Oja, S S; Saransaari, P

    2004-12-01

    Taurine is a sulfur-containing amino acid thought to be an osmoregulator, neurotransmitter or neuromodulator in the brain. Our objective was to establish how much taurine is released in the striatum and examine the mechanisms controlling extracellular taurine concentrations under resting conditions. The experiments were made on rats by microdialysis in vivo. Changes in taurine were compared with those in glutamate, glycine and the non-neuroactive amino acid threonine. Using the zero net flux approach we showed the extracellular concentration of taurine to be 25.2 +/- 5.1 muM. Glutamate was increased by tetrodotoxin and decreased by Ca2+ omission, glycine and threonine were not affected and both treatments increased extracellular taurine. The basal taurine release was increased by the taurine transport inhibitor guanidinoethanesulfonate and reduced by the anion channel blocker 4-acetamido-4'-isothiocyanatostilbene-2,2'-disulfonic acid.

  18. Effects of metabotropic glutamate receptor block on the synaptic transmission and plasticity in the rat medial vestibular nuclei.

    PubMed

    Grassi, S; Malfagia, C; Pettorossi, V E

    1998-11-01

    In rat brainstem slices, we investigated the possible role of metabotropic glutamate receptors in modulating the synaptic transmission within the medial vestibular nuclei, under basal and plasticity inducing conditions. We analysed the effect of the metabotropic glutamate receptor antagonist (R,S)-alpha-methyl-4-carboxyphenylglycine on the amplitude of the field potentials and latency of unitary potentials evoked in the ventral portion of the medial vestibular nuclei by primary vestibular afferent stimulation, and on the induction and maintenance of long-term potentiation, after high-frequency stimulation. Two effects were observed, consisting of a slight increase of the field potentials and reduction of unit latency during the drug infusion, and a further long-lasting development of these modifications after the drug wash-out. The long-term effect depended on N-methyl-D-aspartate receptor activation, as D,L-2-amino-5-phosphonopentanoic acid prevented its development. We suggest that (R,S)-alpha-methyl-4carboxyphenylglycine enhances the vestibular responses and induces N-methyl-D-aspartate-dependent long-term potentiation by increasing glutamate release, through the block of presynaptic metabotropic glutamate receptors which actively inhibit it. The block of these receptors was indirectly supported by the fact that the agonist (1S,3R)-1-aminocyclopentane-1,3-dicarboxylic acid reduced the vestibular responses and blocked the induction of long-term potentiation by high-frequency stimulation. The simultaneous block of metabotropic glutamate receptors facilitating synaptic plasticity, impedes the full expression of the long-term effect throughout the (R,S)-alpha-methyl-4-carboxyphenylglycine infusion. The involvement of such a facilitatory mechanism in the potentiation is supported by its reversible reduction following a second (R,S)-alpha-methyl-4-carboxyphenylglycine infusion. The drug also reduced the expression of potentiation induced by high-frequency stimulation. Conversely the electrical long-term potentiation was still induced, but it was occluded by the previous drug potentiation. We conclude that metabotropic glutamate receptors play a dual functional role in the medial vestibular nuclei, consisting in the inhibition of glutamate release under basal conditions, and the facilitation of N-methyl-D-aspartate-dependent plasticity phenomena.

  19. LGI1 tunes intrinsic excitability by regulating the density of axonal Kv1 channels.

    PubMed

    Seagar, Michael; Russier, Michael; Caillard, Olivier; Maulet, Yves; Fronzaroli-Molinieres, Laure; De San Feliciano, Marina; Boumedine-Guignon, Norah; Rodriguez, Léa; Zbili, Mickael; Usseglio, Fabrice; Formisano-Tréziny, Christine; Youssouf, Fahamoe; Sangiardi, Marion; Boillot, Morgane; Baulac, Stéphanie; Benitez, María José; Garrido, Juan-José; Debanne, Dominique; El Far, Oussama

    2017-07-18

    Autosomal dominant epilepsy with auditory features results from mutations in leucine-rich glioma-inactivated 1 (LGI1), a soluble glycoprotein secreted by neurons. Animal models of LGI1 depletion display spontaneous seizures, however, the function of LGI1 and the mechanisms by which deficiency leads to epilepsy are unknown. We investigated the effects of pure recombinant LGI1 and genetic depletion on intrinsic excitability, in the absence of synaptic input, in hippocampal CA3 neurons, a classical focus for epileptogenesis. Our data indicate that LGI1 is expressed at the axonal initial segment and regulates action potential firing by setting the density of the axonal Kv1.1 channels that underlie dendrotoxin-sensitive D-type potassium current. LGI1 deficiency incurs a >50% down-regulation of the expression of Kv1.1 and Kv1.2 via a posttranscriptional mechanism, resulting in a reduction in the capacity of axonal D-type current to limit glutamate release, thus contributing to epileptogenesis.

  20. Cerebral dopaminergic and glutamatergic transmission relate to different subjective responses of acute alcohol intake: an in vivo multimodal imaging study.

    PubMed

    Leurquin-Sterk, Gil; Ceccarini, Jenny; Crunelle, Cleo Lina; Weerasekera, Akila; de Laat, Bart; Himmelreich, Uwe; Bormans, Guy; Van Laere, Koen

    2018-05-01

    Converging preclinical evidence links extrastriatal dopamine release and glutamatergic transmission via the metabotropic glutamate receptor 5 (mGluR5) to the rewarding properties of alcohol. To date, human evidence is lacking on how and where in the brain these processes occur. Mesocorticolimbic dopamine release upon intravenous alcohol administration and mGluR5 availability were measured in 11 moderate social drinkers by single-session [ 18 F]fallypride and [ 18 F]FPEB positron emission tomography, respectively. Additionally, baseline and postalcohol glutamate and glutamine levels in the anterior cingulate cortex (ACC) were measured by using proton-magnetic resonance spectroscopy. To investigate differences in reward domains linked to both neurotransmitters, regional imaging data were related to subjective alcohol responses. Alcohol induced significant [ 18 F]fallypride displacement in the prefrontal cortex (PFC), temporal and parietal cortices and thalamus (P < 0.05, corrected for multiple comparisons). Dopamine release in the ACC and orbitofrontal and ventromedial PFCs were correlated with subjective 'liking' and 'wanting' effects (P < 0.05). In contrast, baseline mGluR5 availability was positively correlated with the 'high' effect of alcohol in dorsolateral, ventrolateral and ventromedial PFCs and in the medial temporal lobe, thalamus and caudate nucleus (P < 0.05). Although neither proton-magnetic resonance spectroscopy glutamate nor glutamine levels were affected by alcohol, baseline ACC glutamate levels were negatively associated with the alcohol 'liking' effect (P < 0.003). These data reveal new mechanistic understanding and differential neurobiological underpinnings of the effects of acute alcohol consumption on human behavior. Specifically, prefrontal dopamine release may encode alcohol 'liking' and 'wanting' effects in specific areas underlying value processing and motivation, whereas mGluR5 availability in distinct prefrontal-temporal-subcortical regions is more related to the alcohol 'high' effect. © 2017 Society for the Study of Addiction.

  1. Role of nitric oxide in long-term potentiation of the rat medial vestibular nuclei.

    PubMed

    Grassi, S; Pettorossi, V E

    2000-01-01

    In rat brainstem slices, we investigated the role of nitric oxide in long-term potentiation induced in the ventral portion of the medial vestibular nuclei by high-frequency stimulation of the primary vestibular afferents. The nitric oxide scavenger [2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide ] and the nitric oxide synthase inhibitor N(G)-nitro-L-arginine methyl ester were administered before and after induction of potentiation. Both drugs completely prevented long-term potentiation, whereas they did not impede the potentiation build-up, or affect the already established potentiation. These results demonstrate that the induction, but not the maintenance of vestibular long-term potentiation, depends on the synthesis and release into the extracellular medium of nitric oxide. In addition, we analysed the effect of the nitric oxide donor sodium nitroprusside on vestibular responses. Sodium nitroprusside induced long-term potentiation, as evidenced through the field potential enhancement and unit peak latency decrease. This potentiation was impeded by D, L-2-amino-5-phosphonopentanoic acid, and was reduced under blockade of synaptosomal platelet-activating factor receptors by ginkgolide B and group I metabotropic glutamate receptors by (R,S)-1-aminoindan-1, 5-dicarboxylic acid. When reduced, potentiation fully developed following the washout of antagonist, demonstrating an involvement of platelet-activating factor and group I metabotropic glutamate receptors in its full development. Potentiation induced by sodium nitroprusside was also associated with a decrease in the paired-pulse facilitation ratio, which persisted under ginkgolide B, indicating that nitric oxide increases glutamate release independently of platelet-activating factor-mediated presynaptic events. We suggest that nitric oxide, released after the activation of N-methyl-D-aspartate receptors, acts as a retrograde messenger leading to an enhancement of glutamate release to a sufficient level for triggering potentiation. Once the synaptic efficacy has changed, it becomes a long-lasting phenomenon only through a subsequent action of platelet-activating factor.

  2. Nitric Oxide in Astrocyte-Neuron Signaling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Nianzhen

    Astrocytes, a subtype of glial cell, have recently been shown to exhibit Ca 2+ elevations in response to neurotransmitters. A Ca 2+ elevation can propagate to adjacent astrocytes as a Ca 2+ wave, which allows an astrocyte to communicate with its neighbors. Additionally, glutamate can be released from astrocytes via a Ca 2+-dependent mechanism, thus modulating neuronal activity and synaptic transmission. In this dissertation, the author investigated the roles of another endogenous signal, nitric oxide (NO), in astrocyte-neuron signaling. First the author tested if NO is generated during astrocytic Ca 2+ signaling by imaging NO in purified murine cortical astrocytemore » cultures. Physiological concentrations of a natural messenger, ATP, caused a Ca 2+-dependent NO production. To test the roles of NO in astrocytic Ca 2+ signaling, the author applied NO to astrocyte cultures via addition of a NO donor, S-nitrosol-N-acetylpenicillamine (SNAP). NO induced an influx of external Ca 2+, possibly through store-operated Ca 2+ channels. The NO-induced Ca 2+ signaling is cGMP-independent since 8-Br-cGMP, an agonistic analog of cGMP, did not induce a detectable Ca 2+ change. The consequence of this NO-induced Ca 2+ influx was assessed by simultaneously monitoring of cytosolic and internal store Ca 2+ using fluorescent Ca 2+ indicators x-rhod-1 and mag-fluo-4. Blockage of NO signaling with the NO scavenger PTIO significantly reduced the refilling percentage of internal stores following ATP-induced Ca 2+ release, suggesting that NO modulates internal store refilling. Furthermore, locally photo-release of NO to a single astrocyte led to a Ca 2+ elevation in the stimulated astrocyte and a subsequent Ca 2+ wave to neighbors. Finally, the author tested the role of NO inglutamate-mediated astrocyte-neuron signaling by recording the astrocyte-evoked glutamate-dependent neuronal slow inward current (SIC). Although NO is not required for the SIC,PTIO reduced SIC amplitude, suggesting that NO modulates glutamate release from astrocytes or glutamate receptor sensitivity of neurons.« less

  3. Histone methylation at gene promoters is associated with developmental regulation and region-specific expression of ionotropic and metabotropic glutamate receptors in human brain.

    PubMed

    Stadler, Florian; Kolb, Gabriele; Rubusch, Lothar; Baker, Stephen P; Jones, Edward G; Akbarian, Schahram

    2005-07-01

    Glutamatergic signaling is regulated, in part, through differential expression of NMDA and AMPA/KA channel subunits and G protein-coupled metabotropic receptors. In human brain, region-specific expression patterns of glutamate receptor genes are maintained over the course of decades, suggesting a role for molecular mechanisms involved in long-term regulation of transcription, including methylation of lysine residues at histone N-terminal tails. Using a native chromatin immunoprecipitation assay, we studied histone methylation marks at proximal promoters of 16 ionotropic and metabotropic glutamate receptor genes (GRIN1,2A-D; GRIA1,3,4; GRIK2,4,5; GRM1,3,4,6,7 ) in cerebellar cortex collected across a wide age range from midgestation to 90 years old. Levels of di- and trimethylated histone H3-lysine 4, which are associated with open chromatin and transcription, showed significant differences between promoters and a robust correlation with corresponding mRNA levels in immature and mature cerebellar cortex. In contrast, levels of trimethylated H3-lysine 27 and H4-lysine 20, two histone modifications defining silenced or condensed chromatin, did not correlate with transcription but were up-regulated overall in adult cerebellum. Furthermore, differential gene expression patterns in prefrontal and cerebellar cortex were reflected by similar differences in H3-lysine 4 methylation at promoters. Together, these findings suggest that histone lysine methylation at gene promoters is involved in developmental regulation and maintenance of region-specific expression patterns of ionotropic and metabotropic glutamate receptors. The association of a specific epigenetic mark, H3-(methyl)-lysine 4, with the molecular architecture of glutamatergic signaling in human brain has potential implications for schizophrenia and other disorders with altered glutamate receptor function.

  4. A Non-Dimensional Analysis of Cardiovascular Response to Cold Stress. Part 2. Development of the Non-Dimensional Parameters

    DTIC Science & Technology

    1986-07-01

    glutamic pyruvic transaminase SGPT* *S=serum) acid phosphatase aldolase alkaline phosphatase amino peptidase amyl ase arachidonic acid (test for presence...release inhibiting hormone ( somatostatin ) GHRIH growth hormone releasing factor GHRF histamine 109 TABLE 9 (continued) insulin kinins: bradyki ni n

  5. System xC- is a mediator of microglial function and its deletion slows symptoms in amyotrophic lateral sclerosis mice.

    PubMed

    Mesci, Pinar; Zaïdi, Sakina; Lobsiger, Christian S; Millecamps, Stéphanie; Escartin, Carole; Seilhean, Danielle; Sato, Hideyo; Mallat, Michel; Boillée, Séverine

    2015-01-01

    Amyotrophic lateral sclerosis is the most common adult-onset motor neuron disease and evidence from mice expressing amyotrophic lateral sclerosis-causing SOD1 mutations suggest that neurodegeneration is a non-cell autonomous process where microglial cells influence disease progression. However, microglial-derived neurotoxic factors still remain largely unidentified in amyotrophic lateral sclerosis. With excitotoxicity being a major mechanism proposed to cause motor neuron death in amyotrophic lateral sclerosis, our hypothesis was that excessive glutamate release by activated microglia through their system [Formula: see text] (a cystine/glutamate antiporter with the specific subunit xCT/Slc7a11) could contribute to neurodegeneration. Here we show that xCT expression is enriched in microglia compared to total mouse spinal cord and absent from motor neurons. Activated microglia induced xCT expression and during disease, xCT levels were increased in both spinal cord and isolated microglia from mutant SOD1 amyotrophic lateral sclerosis mice. Expression of xCT was also detectable in spinal cord post-mortem tissues of patients with amyotrophic lateral sclerosis and correlated with increased inflammation. Genetic deletion of xCT in mice demonstrated that activated microglia released glutamate mainly through system [Formula: see text]. Interestingly, xCT deletion also led to decreased production of specific microglial pro-inflammatory/neurotoxic factors including nitric oxide, TNFa and IL6, whereas expression of anti-inflammatory/neuroprotective markers such as Ym1/Chil3 were increased, indicating that xCT regulates microglial functions. In amyotrophic lateral sclerosis mice, xCT deletion surprisingly led to earlier symptom onset but, importantly, this was followed by a significantly slowed progressive disease phase, which resulted in more surviving motor neurons. These results are consistent with a deleterious contribution of microglial-derived glutamate during symptomatic disease. Therefore, we show that system [Formula: see text] participates in microglial reactivity and modulates amyotrophic lateral sclerosis motor neuron degeneration, revealing system [Formula: see text] inactivation, as a potential approach to slow amyotrophic lateral sclerosis disease progression after onset of clinical symptoms. © The Author (2014). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  6. Expression of vesicular glutamate transporters, VGLUT1 and VGLUT2, in cholinergic spinal motoneurons.

    PubMed

    Herzog, E; Landry, M; Buhler, E; Bouali-Benazzouz, R; Legay, C; Henderson, C E; Nagy, F; Dreyfus, P; Giros, B; El Mestikawy, S

    2004-10-01

    Mammalian spinal motoneurons are cholinergic neurons that have long been suspected to use also glutamate as a neurotransmitter. We report that VGLUT1 and VGLUT2, two subtypes of vesicular glutamate transporters, are expressed in rat spinal motoneurons. Both proteins are present in somato-dendritic compartments as well as in axon terminals in primary cultures of immunopurified motoneurons and sections of spinal cord from adult rat. However, VGLUT1 and VGLUT2 are not found at neuromuscular junctions of skeletal muscles. After intracellular injection of biocytin in motoneurons, VGLUT2 is observed in anterogradely labelled terminals contacting Renshaw inhibitory interneurons. These VGLUT2- and VGLUT1-positive terminals do not express VAChT, the vesicular acetylcholine transporter. Overall, our study establishes for the first time that (i) mammalian spinal motoneurons express vesicular glutamate transporters, (ii) these motoneurons have the potential to release glutamate (in addition to acetylcholine) at terminals contacting Renshaw cells, and finally (iii) the VGLUTs are not present at neuromuscular synapses of skeletal muscles.

  7. Connexin-Mediated Functional and Metabolic Coupling Between Astrocytes and Neurons.

    PubMed

    Mayorquin, Lady C; Rodriguez, Andrea V; Sutachan, Jhon-Jairo; Albarracín, Sonia L

    2018-01-01

    The central nervous system (CNS) requires sophisticated regulation of neuronal activity. This modulation is partly accomplished by non-neuronal cells, characterized by the presence of transmembrane gap junctions (GJs) and hemichannels (HCs). This allows small molecule diffusion to guarantee neuronal synaptic activity and plasticity. Astrocytes are metabolically and functionally coupled to neurons by the uptake, binding and recycling of neurotransmitters. In addition, astrocytes release metabolites, such as glutamate, glutamine, D-serine, adenosine triphosphate (ATP) and lactate, regulating synaptic activity and plasticity by pre- and postsynaptic mechanisms. Uncoupling neuroglial communication leads to alterations in synaptic transmission that can be detrimental to neuronal circuit function and behavior. Therefore, understanding the pathways and mechanisms involved in this intercellular communication is fundamental for the search of new targets that can be used for several neurological disease treatments. This review will focus on molecular mechanisms mediating physiological and pathological coupling between astrocytes and neurons through GJs and HCs.

  8. Fluoride exposure regulates the elongation phase of protein synthesis in cultured Bergmann glia cells.

    PubMed

    Flores-Méndez, Marco; Ramírez, Diana; Alamillo, Nely; Hernández-Kelly, Luisa C; Del Razo, Luz María; Ortega, Arturo

    2014-08-17

    Fluoride is an environmental pollutant present in dental products, food, pesticides and water. The latter, is the greatest source of exposure to this contaminant. Structural and functional damages to the central nervous system are present in exposed population. An established consequence of the neuronal is the release of a substantial amount of glutamate to the extracellular space, leading to an excitotoxic insult. Glutamate exerts its actions through the activation of specific plasma membrane receptors and transporters present in neurons and in glia cells and it is the over-activation of glutamate receptors and transporters, the biochemical hallmark of neuronal and oligodendrocyte cell death. In this context, taking into consideration that fluoride leads to degeneration of cerebellar cells, we took the advantage of the well-established model of cerebellar Bergmann glia cultures to gain insight into the molecular mechanisms inherent to fluoride neurotoxicity that might be triggered in glia cells. We could establish that fluoride decreases [(35)S]-methionine incorporation into newly synthesized polypeptides, in a time-dependent manner, and that this halt in protein synthesis is the result of a decrease in the elongation phase of translation, mediated by an augmentation of eukaryotic elongation factor 2 phosphorylation. These results favor the notion of glial cells as targets of fluoride toxicity and strengthen the idea of a critical involvement of glia cells in the function and dysfunction of the brain. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  9. [Neuronal LHRH system activity in an animal model of growth retardation].

    PubMed

    Compagnucci, Cecilia Vanesa; Compagnucci, Gabriela Edith; Lezón, Christian Esteban; Chiarenza, Ana Patricia; Elverdin, Juan Carlos; Boyer, Patricia Mónica

    2010-05-01

    Mild and chronic energy restriction results in growth retardation with puberal delay, a nutritional disease known as nutritional dwarfing (ND). The aim of the present study was to assess the profile of hypothalamic luteinizing hormone-releasing hormone (LHRH) release, at baseline and under glutamate stimulation, in ND rats to elucidate gonadotrophic dysfunction. Reproductive ability during refeeding was also studied. At weaning, 60 male rats were assigned to two groups of 30 animals each: a control and an experimental group. Control rats were fed ad libitum with a balanced rodent diet. The experimental group received 80% of the diet consumed by the control group for 4 weeks. After 4 weeks of food restriction, the ND group was fed freely for 8 weeks. Ten rats from each group were sacrificed every 4 weeks for assays. At week 4, body weight and length were significantly diminished in the experimental group vs. the control group (p<0.001). No changes were observed in LHRH baseline release, pulse frequency or amplitude in the experimental group compared with the control group at any time. However, under glutamate stimulation, LHRH release was significantly higher in ND rats than in control rats at week 4 (p<0.05). Refeeding the ND group allowed the rats to reach overall growth and reproductive ability. The results of the present study suggest that the response to the facilitatory effect of glutamate on LHRH release in post-restricted ND rats is probably related to a lesser central nervous system maturation in relation to their chronological age. The adequate somatic growth and normal reproductive ability attained with refeeding suggest the reversibility of the two energetically costly processes compromised by global, mild and chronic food restriction. Copyright (c) 2009 SEEN. Published by Elsevier Espana. All rights reserved.

  10. Protons Regulate Vesicular Glutamate Transporters through an Allosteric Mechanism.

    PubMed

    Eriksen, Jacob; Chang, Roger; McGregor, Matt; Silm, Katlin; Suzuki, Toshiharu; Edwards, Robert H

    2016-05-18

    The quantal nature of synaptic transmission requires a mechanism to transport neurotransmitter into synaptic vesicles without promoting non-vesicular efflux across the plasma membrane. Indeed, the vesicular transport of most classical transmitters involves a mechanism of H(+) exchange, which restricts flux to acidic membranes such as synaptic vesicles. However, vesicular transport of the principal excitatory transmitter glutamate depends primarily on membrane potential, which would drive non-vesicular efflux, and the role of protons is unclear. Adapting electrophysiology to record currents associated with the vesicular glutamate transporters (VGLUTs), we characterize a chloride conductance that is gated by lumenal protons and chloride and supports glutamate uptake. Rather than coupling stoichiometrically to glutamate flux, lumenal protons and chloride allosterically activate vesicular glutamate transport. Gating by protons serves to inhibit what would otherwise be substantial non-vesicular glutamate efflux at the plasma membrane, thereby restricting VGLUT activity to synaptic vesicles. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Signals from the brainstem sleep/wake centers regulate behavioral timing via the circadian clock.

    PubMed

    Abbott, Sabra M; Arnold, Jennifer M; Chang, Qing; Miao, Hai; Ota, Nobutoshi; Cecala, Christine; Gold, Paul E; Sweedler, Jonathan V; Gillette, Martha U

    2013-01-01

    Sleep-wake cycling is controlled by the complex interplay between two brain systems, one which controls vigilance state, regulating the transition between sleep and wake, and the other circadian, which communicates time-of-day. Together, they align sleep appropriately with energetic need and the day-night cycle. Neural circuits connect brain stem sites that regulate vigilance state with the suprachiasmatic nucleus (SCN), the master circadian clock, but the function of these connections has been unknown. Coupling discrete stimulation of pontine nuclei controlling vigilance state with analytical chemical measurements of intra-SCN microdialysates in mouse, we found significant neurotransmitter release at the SCN and, concomitantly, resetting of behavioral circadian rhythms. Depending upon stimulus conditions and time-of-day, SCN acetylcholine and/or glutamate levels were augmented and generated shifts of behavioral rhythms. These results establish modes of neurochemical communication from brain regions controlling vigilance state to the central circadian clock, with behavioral consequences. They suggest a basis for dynamic integration across brain systems that regulate vigilance states, and a potential vulnerability to altered communication in sleep disorders.

  12. Prenatal exposure to a cannabinoid agonist produces memory deficits linked to dysfunction in hippocampal long-term potentiation and glutamate release.

    PubMed

    Mereu, Giampaolo; Fà, Mauro; Ferraro, Luca; Cagiano, Raffaele; Antonelli, Tiziana; Tattoli, Maria; Ghiglieri, Veronica; Tanganelli, Sergio; Gessa, Gian Luigi; Cuomo, Vincenzo

    2003-04-15

    To investigate the possible long-term consequences of gestational exposure to cannabinoids on cognitive functions, pregnant rats were administered with the CB1 receptor agonist WIN 55,212-2 (WIN), at a dose (0.5 mgkg) that causes neither malformations nor overt signs of toxicity. Prenatal WIN exposure induced a disruption of memory retention in 40- and 80-day-old offspring subjected to a passive avoidance task. A hyperactive behavior at the ages of 12 and 40 days was also found. The memory impairment caused by the gestational exposure to WIN was correlated with alterations of hippocampal long-term potentiation (LTP) and glutamate release. LTP induced in CA3-CA1 synapses decayed faster in brain slices of rats born from WIN-treated dams, whereas posttetanic and short-term potentiation were similar to the control group. In line with LTP shortening, in vivo microdialysis showed a significant decrease in basal and K(+)-evoked extracellular glutamate levels in the hippocampus of juvenile and adult rats born from WIN-treated dams. A similar reduction in glutamate outflow was also observed in primary cell cultures of hippocampus obtained from pups born from mothers exposed to WIN. The decrease in hippocampal glutamate outflow appears to be the cause of LTP disruption, which in turn might underlie, at least in part, the long-lasting impairment of cognitive functions caused by the gestational exposure to this cannabinoid agonist. These findings could provide an explanation of cognitive alterations observed in children born from women who use marijuana during pregnancy.

  13. Glucose is necessary to maintain neurotransmitter homeostasis during synaptic activity in cultured glutamatergic neurons.

    PubMed

    Bak, Lasse K; Schousboe, Arne; Sonnewald, Ursula; Waagepetersen, Helle S

    2006-10-01

    Glucose is the primary energy substrate for the adult mammalian brain. However, lactate produced within the brain might be able to serve this purpose in neurons. In the present study, the relative significance of glucose and lactate as substrates to maintain neurotransmitter homeostasis was investigated. Cultured cerebellar (primarily glutamatergic) neurons were superfused in medium containing [U-13C]glucose (2.5 mmol/L) and lactate (1 or 5 mmol/L) or glucose (2.5 mmol/L) and [U-13C]lactate (1 mmol/L), and exposed to pulses of N-methyl-D-aspartate (300 micromol/L), leading to synaptic activity including vesicular release. The incorporation of 13C label into intracellular lactate, alanine, succinate, glutamate, and aspartate was determined by mass spectrometry. The metabolism of [U-13C]lactate under non-depolarizing conditions was high compared with that of [U-13C]glucose; however, it decreased significantly during induced depolarization. In contrast, at both concentrations of extracellular lactate, the metabolism of [U-13C]glucose was increased during neuronal depolarization. The role of glucose and lactate as energy substrates during vesicular release as well as transporter-mediated influx and efflux of glutamate was examined using preloaded D-[3H]aspartate as a glutamate tracer and DL-threo-beta-benzyloxyaspartate to inhibit glutamate transporters. The results suggest that glucose is essential to prevent depolarization-induced reversal of the transporter (efflux), whereas vesicular release was unaffected by the choice of substrate. In conclusion, the present study shows that glucose is a necessary substrate to maintain neurotransmitter homeostasis during synaptic activity and that synaptic activity does not induce an upregulation of lactate metabolism in glutamatergic neurons.

  14. Pre-synaptic glycine GlyT1 transporter--NMDA receptor interaction: relevance to NMDA autoreceptor activation in the presence of Mg2+ ions.

    PubMed

    Musante, Veronica; Summa, Maria; Cunha, Rodrigo A; Raiteri, Maurizio; Pittaluga, Anna

    2011-05-01

    Rat hippocampal glutamatergic terminals possess NMDA autoreceptors whose activation by low micromolar NMDA elicits glutamate exocytosis in the presence of physiological Mg(2+) (1.2 mM), the release of glutamate being significantly reduced when compared to that in Mg(2+)-free condition. Both glutamate and glycine were required to evoke glutamate exocytosis in 1.2 mM Mg(2+), while dizocilpine, cis-4-[phosphomethyl]-piperidine-2-carboxylic acid and 7-Cl-kynurenic acid prevented it, indicating that occupation of both agonist sites is needed for receptor activation. D-serine mimicked glycine but also inhibited the NMDA/glycine-induced release of [(3H]D-aspartate, thus behaving as a partial agonist. The NMDA/glycine-induced release in 1.2 mM Mg(2+) strictly depended on glycine uptake through the glycine transporter type 1 (GlyT1), because the GlyT1 blocker N-[3-(4'-fluorophenyl)-3-(4'-phenylphenoxy)propyl])sarcosine hydrochloride, but not the GlyT2 blocker Org 25534, prevented it. Accordingly, [(3)H]glycine was taken up during superfusion, while lowering the external concentration of Na(+), the monovalent cation co-transported with glycine by GlyT1, abrogated the NMDA-induced effect. Western blot analysis of subsynaptic fractions confirms that GlyT1 and NMDA autoreceptors co-localize at the pre-synaptic level, where GluN3A subunits immunoreactivity was also recovered. It is proposed that GlyT1s coexist with NMDA autoreceptors on rat hippocampal glutamatergic terminals and that glycine taken up by GlyT1 may permit physiological activation of NMDA pre-synaptic autoreceptors. © 2011 The Authors. Journal of Neurochemistry © 2011 International Society for Neurochemistry.

  15. Ketamine induces a robust whole-brain connectivity pattern that can be differentially modulated by drugs of different mechanism and clinical profile.

    PubMed

    Joules, R; Doyle, O M; Schwarz, A J; O'Daly, O G; Brammer, M; Williams, S C; Mehta, M A

    2015-11-01

    Ketamine, an N-methyl-D-aspartate receptor (NMDAR) antagonist, has been studied in relation to the glutamate hypothesis of schizophrenia and increases dissociation, positive and negative symptom ratings. Ketamine effects brain function through changes in brain activity; these activity patterns can be modulated by pre-treatment of compounds known to attenuate the effects of ketamine on glutamate release. Ketamine also has marked effects on brain connectivity; we predicted that these changes would also be modulated by compounds known to attenuate glutamate release. Here, we perform task-free pharmacological magnetic resonance imaging (phMRI) to investigate the functional connectivity effects of ketamine in the brain and the potential modulation of these effects by pre-treatment of the compounds lamotrigine and risperidone, compounds hypothesised to differentially modulate glutamate release. Connectivity patterns were assessed by combining windowing, graph theory and multivariate Gaussian process classification. We demonstrate that ketamine has a robust effect on the functional connectivity of the human brain compared to saline (87.5 % accuracy). Ketamine produced a shift from a cortically centred, to a subcortically centred pattern of connections. This effect is strongly modulated by pre-treatment with risperidone (81.25 %) but not lamotrigine (43.75 %). Based on the differential effect of these compounds on ketamine response, we suggest the observed connectivity effects are primarily due to NMDAR blockade rather than downstream glutamatergic effects. The connectivity changes contrast with amplitude of response for which no differential effect between pre-treatments was detected, highlighting the necessity of these techniques in forming an informed view of the mechanistic effects of pharmacological compounds in the human brain.

  16. Ghrelin Regulates Glucose and Glutamate Transporters in Hypothalamic Astrocytes

    PubMed Central

    Fuente-Martín, Esther; García-Cáceres, Cristina; Argente-Arizón, Pilar; Díaz, Francisca; Granado, Miriam; Freire-Regatillo, Alejandra; Castro-González, David; Ceballos, María L.; Frago, Laura M.; Dickson, Suzanne L.; Argente, Jesús; Chowen, Julie A.

    2016-01-01

    Hypothalamic astrocytes can respond to metabolic signals, such as leptin and insulin, to modulate adjacent neuronal circuits and systemic metabolism. Ghrelin regulates appetite, adiposity and glucose metabolism, but little is known regarding the response of astrocytes to this orexigenic hormone. We have used both in vivo and in vitro approaches to demonstrate that acylated ghrelin (acyl-ghrelin) rapidly stimulates glutamate transporter expression and glutamate uptake by astrocytes. Moreover, acyl-ghrelin rapidly reduces glucose transporter (GLUT) 2 levels and glucose uptake by these glial cells. Glutamine synthetase and lactate dehydrogenase decrease, while glycogen phosphorylase and lactate transporters increase in response to acyl-ghrelin, suggesting a change in glutamate and glucose metabolism, as well as glycogen storage by astrocytes. These effects are partially mediated through ghrelin receptor 1A (GHSR-1A) as astrocytes do not respond equally to desacyl-ghrelin, an isoform that does not activate GHSR-1A. Moreover, primary astrocyte cultures from GHSR-1A knock-out mice do not change glutamate transporter or GLUT2 levels in response to acyl-ghrelin. Our results indicate that acyl-ghrelin may mediate part of its metabolic actions through modulation of hypothalamic astrocytes and that this effect could involve astrocyte mediated changes in local glucose and glutamate metabolism that alter the signals/nutrients reaching neighboring neurons. PMID:27026049

  17. Improved Synthesis of Caged Glutamate and Caging Each Functional Group.

    PubMed

    Guruge, Charitha; Ouedraogo, Yannick P; Comitz, Richard L; Ma, Jingxuan; Losonczy, Attila; Nesnas, Nasri

    2018-05-25

    Glutamate is an excitatory neurotransmitter that controls numerous pathways in the brain. Neuroscientists make use of photoremovable protecting groups, also known as cages, to release glutamate with precise spatial and temporal control. Various cage designs have been developed and among the most effective has been the nitroindolinyl caging of glutamate. We, hereby, report an improved synthesis of one of the current leading molecules of caged glutamate, 4-carboxymethoxy-5,7-dinitroindolinyl glutamate (CDNI-Glu), which possesses efficiencies with the highest reported quantum yield of at least 0.5. We present the shortest route, to date, for the synthesis of CDNI-Glu in 4 steps, with a total reaction time of 40 h and an overall yield of 20%. We also caged glutamate at the other two functional groups, thereby, introducing two new cage designs: α-CDNI-Glu and N-CDNI-Glu. We included a study of their photocleavage properties using UV-vis, NMR, as well as a physiology experiment of a two-photon uncaging of CDNI-Glu in acute hippocampal brain slices. The newly introduced cage designs may have the potential to minimize the interference that CDNI-Glu has with the GABA A receptor. We are broadly disseminating this to enable neuroscientists to use these photoactivatable tools.

  18. [Molecular organization of glutamate-sensitive chemoexcitable membranes of nerve cells. Function of glutamate-binding proteins of the central nervous system when incorporated into liposomes].

    PubMed

    Besedin, V I; Kuznetsov, A S; Dambinova, S A

    1985-03-01

    The functioning of the glutamate-binding protein of rat brain cortex synaptic membranes was studied by its incorporation into liposomes. The optimal conditions for the receptor protein incorporation were established and the kinetics of 22Na+ and 86Rb+ incorporation into the liposomes in the presence of L-glutamate were analyzed. Modelling of the CNS glutamate receptor functions was found to be dependent on the lipid composition and amount of the incorporated membrane protein. The selective transport of 22Na+ into the liposomes was stimulated in the presence of 10(-4) M glutamate. Addition of monoclonal antibodies against glutamate-binding proteins blocked the incorporation of Na+ into the liposomes. The experimental results are suggestive of the nativity of the liposome-incorporated membrane protein, which is capable of binding glutamate and regulating selective transport of Na+. It was assumed that the glutamate receptor macromolecule represents an integral complex made up of several low molecular weight subunits of glucoprotein nature that form a selective ionic channel.

  19. Activity-Dependent Bidirectional Regulation of GAD Expression in a Homeostatic Fashion Is Mediated by BDNF-Dependent and Independent Pathways

    PubMed Central

    Hanno-Iijima, Yoko; Tanaka, Masami; Iijima, Takatoshi

    2015-01-01

    Homeostatic synaptic plasticity, or synaptic scaling, is a mechanism that tunes neuronal transmission to compensate for prolonged, excessive changes in neuronal activity. Both excitatory and inhibitory neurons undergo homeostatic changes based on synaptic transmission strength, which could effectively contribute to a fine-tuning of circuit activity. However, gene regulation that underlies homeostatic synaptic plasticity in GABAergic (GABA, gamma aminobutyric) neurons is still poorly understood. The present study demonstrated activity-dependent dynamic scaling in which NMDA-R (N-methyl-D-aspartic acid receptor) activity regulated the expression of GABA synthetic enzymes: glutamic acid decarboxylase 65 and 67 (GAD65 and GAD67). Results revealed that activity-regulated BDNF (brain-derived neurotrophic factor) release is necessary, but not sufficient, for activity-dependent up-scaling of these GAD isoforms. Bidirectional forms of activity-dependent GAD expression require both BDNF-dependent and BDNF-independent pathways, both triggered by NMDA-R activity. Additional results indicated that these two GAD genes differ in their responsiveness to chronic changes in neuronal activity, which could be partially caused by differential dependence on BDNF. In parallel to activity-dependent bidirectional scaling in GAD expression, the present study further observed that a chronic change in neuronal activity leads to an alteration in neurotransmitter release from GABAergic neurons in a homeostatic, bidirectional fashion. Therefore, the differential expression of GAD65 and 67 during prolonged changes in neuronal activity may be implicated in some aspects of bidirectional homeostatic plasticity within mature GABAergic presynapses. PMID:26241953

  20. Activity-Dependent Bidirectional Regulation of GAD Expression in a Homeostatic Fashion Is Mediated by BDNF-Dependent and Independent Pathways.

    PubMed

    Hanno-Iijima, Yoko; Tanaka, Masami; Iijima, Takatoshi

    2015-01-01

    Homeostatic synaptic plasticity, or synaptic scaling, is a mechanism that tunes neuronal transmission to compensate for prolonged, excessive changes in neuronal activity. Both excitatory and inhibitory neurons undergo homeostatic changes based on synaptic transmission strength, which could effectively contribute to a fine-tuning of circuit activity. However, gene regulation that underlies homeostatic synaptic plasticity in GABAergic (GABA, gamma aminobutyric) neurons is still poorly understood. The present study demonstrated activity-dependent dynamic scaling in which NMDA-R (N-methyl-D-aspartic acid receptor) activity regulated the expression of GABA synthetic enzymes: glutamic acid decarboxylase 65 and 67 (GAD65 and GAD67). Results revealed that activity-regulated BDNF (brain-derived neurotrophic factor) release is necessary, but not sufficient, for activity-dependent up-scaling of these GAD isoforms. Bidirectional forms of activity-dependent GAD expression require both BDNF-dependent and BDNF-independent pathways, both triggered by NMDA-R activity. Additional results indicated that these two GAD genes differ in their responsiveness to chronic changes in neuronal activity, which could be partially caused by differential dependence on BDNF. In parallel to activity-dependent bidirectional scaling in GAD expression, the present study further observed that a chronic change in neuronal activity leads to an alteration in neurotransmitter release from GABAergic neurons in a homeostatic, bidirectional fashion. Therefore, the differential expression of GAD65 and 67 during prolonged changes in neuronal activity may be implicated in some aspects of bidirectional homeostatic plasticity within mature GABAergic presynapses.

  1. [The potential of group II metabotropic glutamate receptor antagonists as a novel antidepressant].

    PubMed

    Chaki, Shigeyuki

    2012-08-01

    Recently, abnormalities of glutamatergic transmission have been implicated in the pathophysiology of depression. Moreover, both ketamine, an NMDA receptor antagonist, and riluzole, a modulator of glutamatergic, transmission have been reported to be effective for the treatment of patients with treatment-refractory depression. Based on these findings, extensive studies to develop agents acting on glutamatergic transmission have been conducted. Glutamate receptors are divided into two main subtypes, ionotropic glutamate receptors and metabotropic glutamate (mGlu) receptors, both of which have subtypes. Of these, much attention has been paid to mGlu2/3 receptors. mGlu2/3 receptor antagonists such as MGS0039 and LY341495 have been reported to exert antidepressant effects in animal models of depression including the forced swim test, tail suspension test, learned helplessness paradigm, olfactory bulmectomy model and isolation rearing model, and to enhance serotonin release in the prefrontal cortex and dopamine release in the nucleus accumbens. Moreover, activation of AMPA receptor and mTOR signaling have been suggested to be involved in the antidepressant effects of mGlu2/3 receptor antagonists, as demonstrated in the actions of ketamine. Thus, mGlu2/3 receptor antagonists may share some neural networks with ketamine in exerting their antidepressant effects. In addition, the potential of other agents targeting glutamatergic transmission for novel antidepressants is being investigated.

  2. Ionotropic Glutamate Receptors Mediate Inducible Defense in the Water Flea Daphnia pulex

    PubMed Central

    Miyakawa, Hitoshi; Sato, Masanao; Colbourne, John K.; Iguchi, Taisen

    2015-01-01

    Phenotypic plasticity is the ability held in many organisms to produce different phenotypes with a given genome in response to environmental stimuli, such as temperature, nutrition and various biological interactions. It seems likely that environmental signals induce a variety of mechanistic responses that influence ontogenetic processes. Inducible defenses, in which prey animals alter their morphology, behavior and/or other traits to help protect against direct or latent predation threats, are among the most striking examples of phenotypic plasticity. The freshwater microcrustacean Daphnia pulex forms tooth-like defensive structures, “neckteeth,” in response to chemical cues or signals, referred to as “kairomones,” in this case released from phantom midge larvae, a predator of D. pulex. To identify factors involved in the reception and/or transmission of a kairomone, we used microarray analysis to identify genes up-regulated following a short period of exposure to the midge kairomone. In addition to identifying differentially expressed genes of unknown function, we also found significant up-regulation of genes encoding ionotropic glutamate receptors, which are known to be involved in neurotransmission in many animal species. Specific antagonists of these receptors strongly inhibit the formation of neckteeth in D. pulex, although agonists did not induce neckteeth by themselves, indicating that ionotropic glutamate receptors are necessary but not sufficient for early steps of neckteeth formation in D. pulex. Moreover, using co-exposure of D. pulex to antagonists and juvenile hormone (JH), which physiologically mediates neckteeth formation, we found evidence suggesting that the inhibitory effect of antagonists is not due to direct inhibition of JH synthesis/secretion. Our findings not only provide a candidate molecule required for the inducible defense response in D. pulex, but also will contribute to the understanding of complex mechanisms underlying the recognition of environmental changes, which form the basis of phenotypic plasticity. PMID:25799112

  3. Acetylated Chitosan Oligosaccharides Act as Antagonists against Glutamate-Induced PC12 Cell Death via Bcl-2/Bax Signal Pathway

    PubMed Central

    Hao, Cui; Gao, Lixia; Zhang, Yiran; Wang, Wei; Yu, Guangli; Guan, Huashi; Zhang, Lijuan; Li, Chunxia

    2015-01-01

    Chitosan oligosaccharides (COSs), depolymerized products of chitosan composed of β-(1→4) d-glucosamine units, have broad range of biological activities such as antitumour, antifungal, and antioxidant activities. In this study, peracetylated chitosan oligosaccharides (PACOs) and N-acetylated chitosan oligosaccharides (NACOs) were prepared from the COSs by chemcal modification. The structures of these monomers were identified using NMR and ESI-MS spectra. Their antagonist effects against glutamate-induced PC12 cell death were investigated. The results showed that pretreatment of PC12 cells with the PACOs markedly inhibited glutamate-induced cell death in a concentration-dependent manner. The PACOs were better glutamate antagonists compared to the COSs and the NACOs, suggesting the peracetylation is essential for the neuroprotective effects of chitosan oligosaccharides. In addition, the PACOs pretreatment significantly reduced lactate dehydrogenase release and reactive oxygen species production. It also attenuated the loss of mitochondrial membrane potential. Further studies indicated that the PACOs inhibited glutamate-induced cell death by preventing apoptosis through depressing the elevation of Bax/Bcl-2 ratio and caspase-3 activation. These results suggest that PACOs might be promising antagonists against glutamate-induced neural cell death. PMID:25775423

  4. Regulation of tumor cell migration by protein tyrosine phosphatase (PTP)-proline-, glutamate-, serine-, and threonine-rich sequence (PEST)

    PubMed Central

    Zheng, Yanhua; Lu, Zhimin

    2013-01-01

    Protein tyrosine phosphatase (PTP)–proline-, glutamate-, serine-, and threonine-rich sequence (PEST) is ubiquitously expressed and is a critical regulator of cell adhesion and migration. PTP-PEST activity can be regulated transcriptionally via gene deletion or mutation in several types of human cancers or via post-translational modifications, including phosphorylation, oxidation, and caspase-dependent cleavage. PTP-PEST interacts with and dephosphorylates cytoskeletal and focal adhesion-associated proteins. Dephosphorylation of PTP-PEST substrates regulates their enzymatic activities and/or their interaction with other proteins and plays an essential role in the tumor cell migration process. PMID:23237212

  5. Digestive physiology of the pig symposium: detection of dietary glutamate via gut-brain axis.

    PubMed

    Bannai, M; Torii, K

    2013-05-01

    Gustatory and visceral stimulation from food regulates digestion and nutrient use. Free L-glutamate (Glu) release from digested protein is responsible for umami taste perception in the gut. Moreover, monosodium Glu (MSG) is widely used as a flavor enhancer to add umami taste in various cuisines. Recent studies indicate that dietary Glu sensors and their signal transduction system exist in both gut mucosa and taste cells. Oral Glu sensing has been well studied. In this review, we focus on the role of Glu on digestion and absorption of food. Infusion of Glu into the stomach and intestine increase afferent nerve activity of the gastric and the celiac branches of the vagus nerve, respectively. Luminal Glu also evokes efferent nerve activation of the abdominal vagus nerve branches simultaneously. Additionally, intragastric infusion of Glu activates the insular cortex, limbic system, hypothalamus, nucleus tractus solitaries, and amygdala, as determined by functional magnetic resonance imaging, and is able to induce flavor-preference learning as a result of postingestive effects in rats. These results indicate that Glu signaling via gustatory and visceral pathways plays an important role in the processes of digestion, absorption, metabolism, and other physiological functions via activation of the brain.

  6. The Role of Ephs and Ephrins in Memory Formation.

    PubMed

    Dines, Monica; Lamprecht, Raphael

    2016-04-01

    The ability to efficiently store memories in the brain is a fundamental process and its impairment is associated with multiple human mental disorders. Evidence indicates that long-term memory formation involves alterations of synaptic efficacy produced by modifications in neural transmission and morphology. The Eph receptors and their cognate ephrin ligands have been shown to be involved in these key neuronal processes by regulating events such as presynaptic transmitter release, postsynaptic glutamate receptor conductance and trafficking, synaptic glutamate reuptake, and dendritic spine morphogenesis. Recent findings show that Ephs and ephrins are needed for memory formation in different organisms. These proteins participate in the formation of various types of memories that are subserved by different neurons and brain regions. Ephs and ephrins are involved in brain disorders and diseases with memory impairment symptoms, including Alzheimer's disease and anxiety. Drugs that agonize or antagonize Ephs/ephrins signaling have been developed and could serve as therapeutic agents to treat such diseases. Ephs and ephrins may therefore induce cellular alterations mandatory for memory formation and serve as a target for pharmacological intervention for treatment of memory-related brain diseases. © The Author 2015. Published by Oxford University Press on behalf of CINP.

  7. Neuroprotective and anti-inflammatory effects of lidocaine in kainic acid-injected rats.

    PubMed

    Chiu, Kuan Ming; Lu, Cheng Wei; Lee, Ming Yi; Wang, Ming Jiuh; Lin, Tzu Yu; Wang, Su Jane

    2016-05-04

    Lidocaine, the most commonly used local anesthetic, inhibits glutamate release from nerve terminals. Given the involvement of glutamate neurotoxicity in the pathogenesis of various neurological disorders, this study investigated the role of lidocaine in hippocampal neuronal death and inflammatory events induced by an i.p. injection of kainic acid (KA) (15 mg/kg), a glutamate analog. The results showed that KA significantly led to neuronal death in the CA3 pyramidal layers of the hippocampus and this effect was attenuated by the systemic administration of lidocaine (0.8 or 4 mg/kg, i.p.) 30 min before KA injection. Moreover, KA-induced microglia activation and gene expression of proinflammatory cytokines, namely, interleukin-1β, interleukin-6, and tumor necrosis factor-α, in the hippocampus were reduced by the lidocaine pretreatment. Altogether, the results suggest that lidocaine can effectively treat glutamate excitotoxicity-related brain disorders.

  8. A2A-D2 receptor-receptor interaction modulates gliotransmitter release from striatal astrocyte processes.

    PubMed

    Cervetto, Chiara; Venturini, Arianna; Passalacqua, Mario; Guidolin, Diego; Genedani, Susanna; Fuxe, Kjell; Borroto-Esquela, Dasiel O; Cortelli, Pietro; Woods, Amina; Maura, Guido; Marcoli, Manuela; Agnati, Luigi F

    2017-01-01

    Evidence for striatal A2A-D2 heterodimers has led to a new perspective on molecular mechanisms involved in schizophrenia and Parkinson's disease. Despite the increasing recognition of astrocytes' participation in neuropsychiatric disease vulnerability, involvement of striatal astrocytes in A2A and D2 receptor signal transmission has never been explored. Here, we investigated the presence of D2 and A2A receptors in isolated astrocyte processes prepared from adult rat striatum by confocal imaging; the effects of receptor activation were measured on the 4-aminopyridine-evoked release of glutamate from the processes. Confocal analysis showed that A2A and D2 receptors were co-expressed on the same astrocyte processes. Evidence for A2A-D2 receptor-receptor interactions was obtained by measuring the release of the gliotransmitter glutamate: D2 receptors inhibited the glutamate release, while activation of A2A receptors, per se ineffective, abolished the effect of D2 receptor activation. The synthetic D2 peptide VLRRRRKRVN corresponding to the receptor region involved in electrostatic interaction underlying A2A-D2 heteromerization abolished the ability of the A2A receptor to antagonize the D2 receptor-mediated effect. Together, the findings are consistent with heteromerization of native striatal astrocytic A2A-D2 receptors that via allosteric receptor-receptor interactions could play a role in the control of striatal glutamatergic transmission. These new findings suggest possible new pathogenic mechanisms and/or therapeutic approaches to neuropsychiatric disorders. © 2016 International Society for Neurochemistry.

  9. Euglycemia Restoration by Central Leptin in Type 1 Diabetes Requires STAT3 Signaling but Not Fast-Acting Neurotransmitter Release.

    PubMed

    Xu, Yuanzhong; Chang, Jeffrey T; Myers, Martin G; Xu, Yong; Tong, Qingchun

    2016-04-01

    Central leptin action is sufficient to restore euglycemia in insulinopenic type 1 diabetes (T1D); however, the underlying mechanism remains poorly understood. To examine the role of intracellular signal transducer and activator of transcription 3 (STAT3) pathways, we used LepRs/s mice with disrupted leptin-phosphorylated STAT3 signaling to test the effect of central leptin on euglycemia restoration. These mice developed streptozocin-induced T1D, which was surprisingly not associated with hyperglucagonemia, a typical manifestation in T1D. Further, leptin action on euglycemia restoration was abrogated in these mice, which was associated with refractory hypercorticosteronemia. To examine the role of fast-acting neurotransmitters glutamate and γ-aminobutyric acid (GABA), two major neurotransmitters in the brain, from leptin receptor (LepR) neurons, we used mice with disrupted release of glutamate, GABA, or both from LepR neurons. Surprisingly, all mice responded normally to leptin-mediated euglycemia restoration, which was associated with expected correction from hyperglucagonemia and hyperphagia. In contrast, mice with loss of glutamate and GABA appeared to develop an additive obesity effect over those with loss of single neurotransmitter release. Thus, our study reveals that STAT3 signaling, but not fast-acting neurotransmitter release, is required for leptin action on euglycemia restoration and that hyperglucagonemia is not required for T1D. © 2016 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  10. Synaptic vesicle glycoprotein 2A (SV2A) regulates kindling epileptogenesis via GABAergic neurotransmission

    PubMed Central

    Tokudome, Kentaro; Okumura, Takahiro; Shimizu, Saki; Mashimo, Tomoji; Takizawa, Akiko; Serikawa, Tadao; Terada, Ryo; Ishihara, Shizuka; Kunisawa, Naofumi; Sasa, Masashi; Ohno, Yukihiro

    2016-01-01

    Synaptic vesicle glycoprotein 2A (SV2A) is a prototype synaptic vesicle protein regulating action potential-dependent neurotransmitters release. SV2A also serves as a specific binding site for certain antiepileptics and is implicated in the treatment of epilepsy. Here, to elucidate the role of SV2A in modulating epileptogenesis, we generated a novel rat model (Sv2aL174Q rat) carrying a Sv2a-targeted missense mutation (L174Q) and analyzed its susceptibilities to kindling development. Although animals homozygous for the Sv2aL174Q mutation exhibited normal appearance and development, they are susceptible to pentylenetetrazole (PTZ) seizures. In addition, development of kindling associated with repeated PTZ treatments or focal stimulation of the amygdala was markedly facilitated by the Sv2aL174Q mutation. Neurochemical studies revealed that the Sv2aL174Q mutation specifically reduced depolarization-induced GABA, but not glutamate, release in the hippocampus without affecting basal release or the SV2A expression level in GABAergic neurons. In addition, the Sv2aL174Q mutation selectively reduced the synaptotagmin1 (Syt1) level among the exocytosis-related proteins examined. The present results demonstrate that dysfunction of SV2A due to the Sv2aL174Q mutation impairs the synaptic GABA release by reducing the Syt1 level and facilitates the kindling development, illustrating the crucial role of SV2A-GABA system in modulating kindling epileptogenesis. PMID:27265781

  11. Cannabidiol, a Cannabis sativa constituent, inhibits cocaine-induced seizures in mice: Possible role of the mTOR pathway and reduction in glutamate release.

    PubMed

    Gobira, Pedro H; Vilela, Luciano R; Gonçalves, Bruno D C; Santos, Rebeca P M; de Oliveira, Antonio C; Vieira, Luciene B; Aguiar, Daniele C; Crippa, José A; Moreira, Fabricio A

    2015-09-01

    Cannabidiol (CBD), a major non-psychotomimetic constituent of Cannabis sativa, has therapeutic potential for certain psychiatric and neurological disorders. Studies in laboratory animals and limited human trials indicate that CBD has anticonvulsant and neuroprotective properties. Its effects against cocaine neurotoxicity, however, have remained unclear. Thus, the present study tested the hypothesis that CBD protects against cocaine-induced seizures and investigated the underlying mechanisms. CBD (30 mg/kg) pre-treatment increased the latency and reduced the duration of cocaine (75 mg/kg)-induced seizures in mice. The CB1 receptor antagonist, AM251 (1 and 3mg/kg), and the CB2 receptor antagonist, AM630 (2 and 4 mg/kg), failed to reverse this protective effect, suggesting that alternative mechanisms are involved. Synaptosome studies with the hippocampus of drug-treated animals revealed that cocaine increases glutamate release, whereas CBD induces the opposite effect. Finally, the protective effect of this cannabinoid against cocaine-induced seizure was reversed by rapamycin (1 and 5mg/kg), an inhibitor of the mammalian target of rapamycin (mTOR) intracellular pathway. In conclusion, CBD protects against seizures in a model of cocaine intoxication. These effects possibly occur through activation of mTOR with subsequent reduction in glutamate release. CBD should be further investigated as a strategy for alleviating psychostimulant toxicity. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Neuromodulatory properties of fluorescent carbon dots: effect on exocytotic release, uptake and ambient level of glutamate and GABA in brain nerve terminals.

    PubMed

    Borisova, Tatiana; Nazarova, Anastasia; Dekaliuk, Mariia; Krisanova, Natalia; Pozdnyakova, Natalia; Borysov, Arsenii; Sivko, Roman; Demchenko, Alexander P

    2015-02-01

    Carbon dots (C-dots), a recently discovered class of fluorescent nano-sized particles with pure carbon core, have great bioanalytical potential. Neuroactive properties of fluorescent C-dots obtained from β-alanine by microwave heating were assessed based on the analysis of their effects on the key characteristics of GABA- and glutamatergic neurotransmission in isolated rat brain nerve terminals. It was found that C-dots (40-800 μg/ml) in dose-dependent manner: (1) decreased exocytotic release of [(3)H]GABA and L-[(14)C]glutamate; (2) reduced acidification of synaptic vesicles; (3) attenuated the initial velocity of Na(+)-dependent transporter-mediated uptake of [(3)H]GABA and L-[(14)C]glutamate; (4) increased the ambient level of the neurotransmitters, nevertheless (5) did not change significantly the potential of the plasma membrane of nerve terminals. Almost complete suppression of exocytotic release of the neurotransmitters was caused by C-dots at a concentration of 800 μg/ml. Fluorescent and neuromodulatory features combined in C-dots create base for their potential usage for labeling and visualization of key processes in nerve terminals, and also in theranostics. In addition, natural presence of carbon-containing nanoparticles in the human food chain and in the air may provoke the development of neurologic consequences. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Metabotropic glutamate receptors 1 and 5 differentially regulate bulbar dopaminergic cell function.

    PubMed

    Jian, Kuihuan; Cifelli, Pierangelo; Pignatelli, Angela; Frigato, Elena; Belluzzi, Ottorino

    2010-10-01

    Effects of activation of metabotropic glutamatergic receptors (mGluR) were investigated in mouse dopaminergic olfactory bulb neurons. After blockage of ionotropic receptors, focal application of glutamate or of group I/II mGluR agonist t-ACPD resulted in a depolarization, paralleled by an inward current in voltage-clamp conditions. The Group I agonist DHPG induced a depolarization, which could be largely blocked by mGluR1 antagonists. The DHPG action i) was prevented by buffering intracellular Ca(2+) with BAPTA and by a phospholipase C inhibitor; ii) was not affected by the block of Ca(2+) entry, and iii) was blocked by inhibitors of the Na(+)/Ca(2+) exchanger. These observations were interpreted as a mGluR1-mediated intracellular Ca(2+) release, followed by the activation of an electrogenic Na(+)/Ca(2+) exchanger. The mGluR5 agonist CHPG induced a hyperpolarization of membrane potential, resulting in a decrease of the spontaneous firing frequency. CHPG induced i) a decrease in membrane resistance; ii) an increase in the action potential repolarization rate, and iii) an increase in the amplitude of the afterhyperpolarization. This was interpreted as a mGluR5-mediated opening of a K(+) conductance. These data suggest that mGluR1 and mGluR5 play different and non-overlapping roles in the regulation of the excitability of bulbar dopaminergic neurons. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  14. Neuron-to-glia signaling mediated by excitatory amino acid receptors regulates ErbB receptor function in astroglial cells of the neuroendocrine brain.

    PubMed

    Dziedzic, Barbara; Prevot, Vincent; Lomniczi, Alejandro; Jung, Heike; Cornea, Anda; Ojeda, Sergio R

    2003-02-01

    Hypothalamic astroglial erbB tyrosine kinase receptors are required for the timely initiation of mammalian puberty. Ligand-dependent activation of these receptors sets in motion a glia-to-neuron signaling pathway that prompts the secretion of luteinizing hormone-releasing hormone (LHRH), the neuropeptide controlling sexual development, from hypothalamic neuroendocrine neurons. The neuronal systems that may regulate this growth factor-mediated back signaling to neuroendocrine neurons have not been identified. Here we demonstrate that hypothalamic astrocytes contain metabotropic receptors of the metabotropic glutamate receptor 5 subtype and the AMPA receptor subunits glutamate receptor 2 (GluR2) and GluR3. As in excitatory synapses, these receptors are in physical association with their respective interacting/clustering proteins Homer and PICK1. In addition, they are associated with erbB-1 and erbB-4 receptors. Concomitant activation of astroglial metabotropic and AMPA receptors results in the recruitment of erbB tyrosine kinase receptors and their respective ligands to the glial cell membrane, transactivation of erbB receptors via a mechanism requiring metalloproteinase activity, and increased erbB receptor gene expression. By facilitating erbB-dependent signaling and promoting erbB receptor gene expression in astrocytes, a neuron-to-glia glutamatergic pathway may represent a basic cell-cell communication mechanism used by the neuroendocrine brain to coordinate the facilitatory transsynaptic and astroglial input to LHRH neurons during sexual development.

  15. Analgesic effect of paeoniflorin in rats with neonatal maternal separation-induced visceral hyperalgesia is mediated through adenosine A(1) receptor by inhibiting the extracellular signal-regulated protein kinase (ERK) pathway.

    PubMed

    Zhang, Xiao-Jun; Chen, Hong-Li; Li, Zhi; Zhang, Hong-Qi; Xu, Hong-Xi; Sung, Joseph J Y; Bian, Zhao-Xiang

    2009-11-01

    Paeoniflorin (PF), a chief active ingredient in the root of Paeonia lactiflora Pall (family Ranunculaceae), is effective in relieving colorectal distention (CRD)-induced visceral pain in rats with visceral hyperalgesia induced by neonatal maternal separation (NMS). This study aimed at exploring the underlying mechanisms of PF's analgesic effect on CRD-evoked nociceptive signaling in the central nervous system (CNS) and investigating whether the adenosine A(1) receptor is involved in PF's anti-nociception. CRD-induced visceral pain as well as phosphorylated-extracellular signal-regulated protein kinase (p-ERK) and phospho-cAMP response element-binding protein (p-CREB) expression in the CNS structures of NMS rats were suppressed by NMDA receptor antagonist dizocilpine (MK-801) and ERK phosphorylation inhibitor U0126. PF could similarly inhibit CRD-evoked p-ERK and c-Fos expression in laminae I-II of the lumbosacral dorsal horn and anterior cingulate cortex (ACC). PF could also reverse the CRD-evoked increased glutamate concentration by CRD as shown by dynamic microdialysis monitoring in ACC, whereas, DPCPX, an antagonist of adenosine A(1) receptor, significantly blocked the analgesic effect of PF and PF's inhibition on CRD-induced p-ERK and p-CREB expression. These results suggest that PF's analgesic effect is possibly mediated by adenosine A(1) receptor by inhibiting CRD-evoked glutamate release and the NMDA receptor dependent ERK signaling.

  16. Role of the Bacillus methanolicus citrate synthase II gene, citY, in regulating the secretion of glutamate in L-lysine-secreting mutants.

    PubMed

    Brautaset, Trygve; Williams, Mark D; Dillingham, Richard D; Kaufmann, Christine; Bennaars, Assumpta; Crabbe, Edward; Flickinger, Michael C

    2003-07-01

    The thermotolerant, restrictive methylotroph Bacillus methanolicus MGA3 (ATCC 53907) can secrete 55 g of glutamate per liter (maximum yield, 0.36 g/g) at 50 degrees C with methanol as a carbon source and a source of ammonia in fed-batch bioreactors. A homoserine dehydrogenase mutant, 13A52-8A66, secreting up to 35 g of L-lysine per liter in fed-batch fermentations had minimal 2-oxoglutarate dehydrogenase activity [7.3 nmol min(-1) (mg of protein)(-1)], threefold-increased pyruvate carboxylase activity [535 nmol min(-1) (mg of protein)(-1)], and elevated citrate synthase (CS) activity [292 nmol min(-1) (mg of protein)(-1)] and simultaneously secreted glutamate (20 to 30 g per liter) and L-lysine. The flow of carbon from oxaloacetate is split between transamination to aspartate and formation of citrate. To investigate the regulation of this branch point, the B. methanolicus gene citY encoding a CSII protein with activity at 50 degrees C was cloned from 13A52-8A66 into a CS-deficient Escherichia coli K2-1-4 strain. A citY-deficient B. methanolicus mutant, NCS-L-7, was also isolated from the parent strain of 13A52-8A66 by N-methyl-N'-nitro-N-nitrosoguanidine mutagenesis, followed by selection with monofluoroacetate disks on glutamate plates. Characterization of these strains confirmed that citY in strain 13A52-8A66 was not altered and that B. methanolicus possessed several forms of CS. Analysis of citY cloned from NCS-L-7 showed that the reduced CS activity resulted from a frameshift mutation. The level of glutamate secreted by NCS-L-7 was reduced sevenfold and the ratio of L-lysine to glutamate secreted was increased 4.5-fold compared to the wild type in fed-batch cultures with glutamate feeding. This indicates that glutamate secretion in L-lysine-overproducing mutants can be altered in favor of increased L-lysine secretion by regulating in vivo CS activity.

  17. Role of the Bacillus methanolicus Citrate Synthase II Gene, citY, in Regulating the Secretion of Glutamate in l-Lysine-Secreting Mutants

    PubMed Central

    Brautaset, Trygve; Williams, Mark D.; Dillingham, Richard D.; Kaufmann, Christine; Bennaars, Assumpta; Crabbe, Edward; Flickinger, Michael C.

    2003-01-01

    The thermotolerant, restrictive methylotroph Bacillus methanolicus MGA3 (ATCC 53907) can secrete 55 g of glutamate per liter (maximum yield, 0.36 g/g) at 50°C with methanol as a carbon source and a source of ammonia in fed-batch bioreactors. A homoserine dehydrogenase mutant, 13A52-8A66, secreting up to 35 g of l-lysine per liter in fed-batch fermentations had minimal 2-oxoglutarate dehydrogenase activity [7.3 nmol min−1 (mg of protein)−1], threefold-increased pyruvate carboxylase activity [535 nmol min−1 (mg of protein)−1], and elevated citrate synthase (CS) activity [292 nmol min−1 (mg of protein)−1] and simultaneously secreted glutamate (20 to 30 g per liter) and l-lysine. The flow of carbon from oxaloacetate is split between transamination to aspartate and formation of citrate. To investigate the regulation of this branch point, the B. methanolicus gene citY encoding a CSII protein with activity at 50°C was cloned from 13A52-8A66 into a CS-deficient Escherichia coli K2-1-4 strain. A citY-deficient B. methanolicus mutant, NCS-L-7, was also isolated from the parent strain of 13A52-8A66 by N-methyl-N′-nitro-N-nitrosoguanidine mutagenesis, followed by selection with monofluoroacetate disks on glutamate plates. Characterization of these strains confirmed that citY in strain 13A52-8A66 was not altered and that B. methanolicus possessed several forms of CS. Analysis of citY cloned from NCS-L-7 showed that the reduced CS activity resulted from a frameshift mutation. The level of glutamate secreted by NCS-L-7 was reduced sevenfold and the ratio of l-lysine to glutamate secreted was increased 4.5-fold compared to the wild type in fed-batch cultures with glutamate feeding. This indicates that glutamate secretion in l-lysine-overproducing mutants can be altered in favor of increased l-lysine secretion by regulating in vivo CS activity. PMID:12839772

  18. Evaluating the Analgesic Effect of the GLS Inhibitor 6-Diazo-5-Oxo-L-Norleucine in Vivo

    PubMed Central

    Crosby, Heith A; Miller, Kenneth E

    2018-01-01

    Glutamate is an excitatory neurotransmitter, produced by its synthetic enzyme, glutaminase (GLS), and packaged by vesicular transporters (VGluT2) into synaptic vesicles. Primary sensory peripheral nerve and spinal synaptic terminals release glutamate during nociceptive (pain) signaling. In post-incisional and inflammation models in rats, GLS and VGluT2 production is elevated in dorsal root ganglion neuronal cell bodies and transported to peripheral and spinal terminals for increased glutamate synthesis and release. 6-Diazo-5-oxo-l-norleucine (DON) is a GLS inhibitor that produces long lasting pain relief when applied to the inflamed paw of arthritic rats, but its effect in a post-incisional model has not been evaluated. In this study, we examined the analgesic efficacy of DON in a surgical incision model by measuring thermal latency and mechanical allodynia. Following behavioral evaluation, we examined the skin for VGluT2, GLS and glutamate immunoreactivity (ir). Our findings revealed that VGluT2-ir is elevated in the stratum lucidum by approximately 19%, 64 hours post-surgical incision and attenuated by approximately 5.4% after the administration of DON. During that same period GLS-ir was elevated in dermal nerve fibers by 52% and was attenuated by approximately 27.9% after the application of DON. Additionally, glutamate-ir was elevated in epidermal nerve fibers by 35% after incision and attenuated by approximately 23% after the administration of DON. Behavioral testing 24 and 48 hours after a single local administration of DON showed five out of six animals having an analgesic response to mechanical allodynia, but not to thermal hyperalgesia. Following a surgical incision, the area of injury shows increased VGluT2-, GLS-, glutamate-ir, mechanical allodynia and no change in thermal latency. After the application of the GLS inhibitor, DON, nerve fiber of the skin showed decreased VGluT2, GLS, and glutamate-ir. Furthermore, post-incision DON treated animals exhibited decreased mechanical allodynia with no change in thermal latency when compared to control animals. PMID:29888760

  19. Cytosolic zinc release and clearance in hippocampal neurons exposed to glutamate – the role of pH and sodium

    PubMed Central

    Kiedrowski, Lech

    2011-01-01

    Although Zn2+ homeostasis in neurons is tightly regulated and its destabilization has been linked to a number of pathologies including Alzheimer's disease and ischemic neuronal death, the primary mechanisms affecting intracellular Zn2+ concentration ([Zn2+]i) in neurons exposed to excitotoxic stimuli remain poorly understood. The present work addressed these mechanisms in cultured hippocampal neurons exposed to glutamate and glycine (Glu/Gly). [Zn2+]i and [Ca2+]i were monitored simultaneously using FluoZin-3 and Fura2-FF and intracellular pH (pHi) was studied in parallel experiments using 2',7'-bis-(2-carboxyethyl)-5(6)-carboxyfluorescein. Glu/Gly applications under Na+-free conditions (Na+ substituted with N-methyl-D-glucamine+) caused Ca2+ influx, pHi drop, and Zn2+ release from intracellular stores. Experimental maneuvers resulting in a pHi increase during Glu/Gly applications, such as stimulation of Na+-dependent pathways of H+ efflux, forcing H+ efflux via gramicidin-formed channels, or increasing extracellular pH counteracted [Zn2+]i elevations. In the absence of Na+, the rate of [Zn2+]i decrease could be correlated with the rate of pHi increase. In the presence of Na+, the rate of [Zn2+]i decrease was about twice as fast as expected from the rate of pHi elevation. The data suggest that Glu/Gly-induced cytosolic acidification promotes [Zn2+]i elevations and that Na+ counteracts the latter by promoting pHi-dependent and pHi-independent mechanisms of cytosolic Zn2+ clearance. PMID:21255017

  20. The Sigma-2 Receptor Selective Agonist Siramesine (Lu 28-179) Decreases Cocaine-Reinforced Pavlovian Learning and Alters Glutamatergic and Dopaminergic Input to the Striatum

    PubMed Central

    Klawonn, Anna M.; Nilsson, Anna; Rådberg, Carl F.; Lindström, Sarah H.; Ericson, Mia; Granseth, Björn; Engblom, David; Fritz, Michael

    2017-01-01

    Drug addiction is a chronic, debilitating disease that affects millions of people around the world causing a substantial societal burden. Despite decades of research efforts, treatment possibilities remain limited and relapse represents the most treatment-resistant element. Neurosteroid sigma-1 receptors have been meticulously studied in psychostimulant reinforced Pavlovian learning, while the sigma-2 receptor subtype has remained unexplored. Recent development of selective sigma-2 receptor ligands have now made it possible to investigate if the sigma-2 receptor system is a potential target to treat drug addiction. We examined the effect of the sigma-2 receptor agonist Siramesine (Lu 28-179) on cocaine-associated locomotion, Pavlovian learning, and reward neurocircuitry using electrophysiology recordings and in vivo microdialysis. We found that Siramesine significantly attenuated conditioned place preference acquisition and expression, as well as it completely blocked cocaine-primed reinstatement. Siramesine, in a similar manner as the selective sigma-1 receptor antagonist BD 1063, decreased acute locomotor responses to cocaine. Immunohistochemistry suggests co-expression of progesterone receptor membrane component 1/sigma-2 receptors and vesicular glutamate transporter 1 in presynaptic boutons of the nucleus accumbens (NAc). Whole-cell voltage clamp recordings of neurons in the NAc indicated that Siramesine decreases the presynaptic release probability of glutamate. Further, we demonstrated, via in vivo microdialysis, that Siramesine significantly decreased cocaine-evoked dopamine release in the striatum of freely moving mice. Collectively, these findings demonstrate that sigma-2 receptors regulate neurocircuitry responsible for positive reinforcement and thereby play a role in cocaine-reinforced Pavlovian behaviors. PMID:29066971

  1. N-acetylcysteine modulates glutamatergic dysfunction and depressive behavior in Huntington's disease.

    PubMed

    Wright, Dean J; Gray, Laura J; Finkelstein, David I; Crouch, Peter J; Pow, David; Pang, Terence Y; Li, Shanshan; Smith, Zoe M; Francis, Paul S; Renoir, Thibault; Hannan, Anthony J

    2016-07-15

    Glutamatergic dysfunction has been implicated in the pathogenesis of depressive disorders and Huntington's disease (HD), in which depression is the most common psychiatric symptom. Synaptic glutamate homeostasis is regulated by cystine-dependent glutamate transporters, including GLT-1 and system x c - In HD, the enzyme regulating cysteine (and subsequently cystine) production, cystathionine-γ-lygase, has recently been shown to be lowered. The aim of the present study was to establish whether cysteine supplementation, using N-acetylcysteine (NAC) could ameliorate glutamate pathology through the cystine-dependent transporters, system x c - and GLT-1. We demonstrate that the R6/1 transgenic mouse model of HD has lower basal levels of cystine, and showed depressive-like behaviors in the forced-swim test. Administration of NAC reversed these behaviors. This effect was blocked by co-administration of the system x c - and GLT-1 inhibitors CPG and DHK, showing that glutamate transporter activity was required for the antidepressant effects of NAC. NAC was also able to specifically increase glutamate in HD mice, in a glutamate transporter-dependent manner. These in vivo changes reflect changes in glutamate transporter protein in HD mice and human HD post-mortem tissue. Furthermore, NAC was able to rescue changes in key glutamate receptor proteins related to excitotoxicity in HD, including NMDAR2B. Thus, we have shown that baseline reductions in cysteine underlie glutamatergic dysfunction and depressive-like behavior in HD and these changes can be rescued by treatment with NAC. These findings have implications for the development of new therapeutic approaches for depressive disorders. © The Author 2016. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  2. Modulation of group II metabotropic glutamate receptor (mGlu2) elicits common changes in rat and mice sleep-wake architecture.

    PubMed

    Ahnaou, Abdellah; Dautzenberg, Frank M; Geys, Helena; Imogai, Hassan; Gibelin, Antoine; Moechars, Dieder; Steckler, Thomas; Drinkenburg, Wilhelmus H I M

    2009-01-28

    Compiling pharmacological evidence implicates metabotropic glutamate mGlu(2) receptors in the regulation of emotional states and suggests positive modulators as a novel therapeutic approach of Anxiety/Depression and Schizophrenia. Here, we investigated subcutaneous effects of the metabotropic glutamate mGlu(2/3) agonist (LY354740) on sleep-wake architecture in rat. To confirm the specific effects on rapid eye movement (REM) sleep were mediated via metabotropic glutamate mGlu(2) receptors, we characterized the sleep-wake cycles in metabotropic glutamate mGlu(2) receptor deficient mice (mGlu(2)R(-/-)) and their arousal response to LY354740. We furthermore examined effects on sleep behavior in rats of the positive allosteric modulator, biphenyl-indanone A (BINA) alone and in combination with LY354740 at sub-effective doses. LY354740 (1, 3 and 10 mg/kg) dose-dependently suppressed REM sleep and prolonged its onset latency. Metabotropic glutamate mGlu(2)R(-/-) and their wild type (WT) littermates exhibited similar spontaneous sleep-wake phenotype, while LY354740 (10 mg/kg) significantly affected REM sleep variables in WT but not in the mutant. In rats, BINA (1, 3, 10, 20, 40 mg/kg) dose-dependently suppressed REM sleep, lengthened its onset latency and slightly enhanced passive waking. Additionally, combined treatment elicited a synergistic action on REM sleep variables. Our findings show common changes of REM sleep variables following modulation of metabotropic glutamate mGlu(2) receptor and support an active role of this receptor in the regulation of REM sleep. The synergistic action of BINA on LY354740's effects on sleep pattern implies that positive modulators would tune the endogenous glutamate tone suggesting potential benefit in the treatment of psychiatric disorders, in which REM sleep overdrive is manifested.

  3. In SilicoModel-driven Assessment of the Effects of Brain-derived Neurotrophic Factor Deficiency on Glutamate and Gamma-Aminobutyric Acid: Implications for Understanding Schizophrenia Pathophysiology.

    PubMed

    Agrawal, Rimjhim; Kalmady, Sunil Vasu; Venkatasubramanian, Ganesan

    2017-05-31

    Deficient brain-derived neurotrophic factor (BDNF) is one of the important mechanisms underlying the neuroplasticity abnormalities in schizophrenia. Aberration in BDNF signaling pathways directly or circuitously influences neurotransmitters like glutamate and gamma-aminobutyric acid (GABA). For the first time, this study attempts to construct and simulate the BDNF-neurotransmitter network in order to assess the effects of BDNF deficiency on glutamate and GABA. Using CellDesigner, we modeled BDNF interactions with calcium influx via N-methyl-D-aspartate receptor (NMDAR)- Calmodulin activation; synthesis of GABA via cell cycle regulators protein kinase B, glycogen synthase kinase and β-catenin; transportation of glutamate and GABA. Steady state stability, perturbation time-course simulation and sensitivity analysis were performed in COPASI after assigning the kinetic functions, optimizing the unknown parameters using random search and genetic algorithm. Study observations suggest that increased glutamate in hippocampus, similar to that seen in schizophrenia, could potentially be contributed by indirect pathway originated from BDNF. Deficient BDNF could suppress Glutamate decarboxylase 67-mediated GABA synthesis. Further, deficient BDNF corresponded to impaired transport via vesicular glutamate transporter, thereby further increasing the intracellular glutamate in GABAergic and glutamatergic cells. BDNF also altered calcium dependent neuroplasticity via NMDAR modulation. Sensitivity analysis showed that Calmodulin, cAMP response element-binding protein (CREB) and CREB regulated transcription coactivator-1 played significant role in this network. The study presents in silico quantitative model of biochemical network constituting the key signaling molecules implicated in schizophrenia pathogenesis. It provides mechanistic insights into putative contribution of deficient BNDF towards alterations in neurotransmitters and neuroplasticity that are consistent with current understanding of the disorder.

  4. In Silico Model-driven Assessment of the Effects of Brain-derived Neurotrophic Factor Deficiency on Glutamate and Gamma-Aminobutyric Acid: Implications for Understanding Schizophrenia Pathophysiology

    PubMed Central

    Agrawal, Rimjhim; Kalmady, Sunil Vasu; Venkatasubramanian, Ganesan

    2017-01-01

    Objective Deficient brain-derived neurotrophic factor (BDNF) is one of the important mechanisms underlying the neuroplasticity abnormalities in schizophrenia. Aberration in BDNF signaling pathways directly or circuitously influences neurotransmitters like glutamate and gamma-aminobutyric acid (GABA). For the first time, this study attempts to construct and simulate the BDNF-neurotransmitter network in order to assess the effects of BDNF deficiency on glutamate and GABA. Methods Using CellDesigner, we modeled BDNF interactions with calcium influx via N-methyl-D-aspartate receptor (NMDAR)-Calmodulin activation; synthesis of GABA via cell cycle regulators protein kinase B, glycogen synthase kinase and β-catenin; transportation of glutamate and GABA. Steady state stability, perturbation time-course simulation and sensitivity analysis were performed in COPASI after assigning the kinetic functions, optimizing the unknown parameters using random search and genetic algorithm. Results Study observations suggest that increased glutamate in hippocampus, similar to that seen in schizophrenia, could potentially be contributed by indirect pathway originated from BDNF. Deficient BDNF could suppress Glutamate decarboxylase 67-mediated GABA synthesis. Further, deficient BDNF corresponded to impaired transport via vesicular glutamate transporter, thereby further increasing the intracellular glutamate in GABAergic and glutamatergic cells. BDNF also altered calcium dependent neuroplasticity via NMDAR modulation. Sensitivity analysis showed that Calmodulin, cAMP response element-binding protein (CREB) and CREB regulated transcription coactivator-1 played significant role in this network. Conclusion The study presents in silico quantitative model of biochemical network constituting the key signaling molecules implicated in schizophrenia pathogenesis. It provides mechanistic insights into putative contribution of deficient BNDF towards alterations in neurotransmitters and neuroplasticity that are consistent with current understanding of the disorder. PMID:28449558

  5. The Neuropeptides FLP-2 and PDF-1 Act in Concert To Arouse Caenorhabditis elegans Locomotion

    PubMed Central

    Chen, Didi; Taylor, Kelsey P.; Hall, Qi; Kaplan, Joshua M.

    2016-01-01

    During larval molts, Caenorhabditis elegans exhibits a sleep-like state (termed lethargus) that is characterized by the absence of feeding and profound locomotion quiescence. The rhythmic pattern of locomotion quiescence and arousal linked to the molting cycle is mediated by reciprocal changes in sensory responsiveness, whereby arousal is associated with increased responsiveness. Sensory neurons arouse locomotion via release of a neuropeptide (PDF-1) and glutamate. Here we identify a second arousing neuropeptide (FLP-2). We show that FLP-2 acts via an orexin-like receptor (FRPR-18), and that FLP-2 and PDF-1 secretion are regulated by reciprocal positive feedback. These results suggest that the aroused behavioral state is stabilized by positive feedback between two neuropeptides. PMID:27585848

  6. Sensory Neurons Arouse C. elegans Locomotion via Both Glutamate and Neuropeptide Release

    PubMed Central

    Chatzigeorgiou, Marios; Hu, Zhitao; Schafer, William R.; Kaplan, Joshua M.

    2015-01-01

    C. elegans undergoes periods of behavioral quiescence during larval molts (termed lethargus) and as adults. Little is known about the circuit mechanisms that establish these quiescent states. Lethargus and adult locomotion quiescence is dramatically reduced in mutants lacking the neuropeptide receptor NPR-1. Here, we show that the aroused locomotion of npr-1 mutants results from the exaggerated activity in multiple classes of sensory neurons, including nociceptive (ASH), touch sensitive (ALM and PLM), and stretch sensing (DVA) neurons. These sensory neurons accelerate locomotion via both neuropeptide and glutamate release. The relative contribution of these sensory neurons to arousal differs between larval molts and adults. Our results suggest that a broad network of sensory neurons dictates transitions between aroused and quiescent behavioral states. PMID:26154367

  7. Huperzine A Alleviates Oxidative Glutamate Toxicity in Hippocampal HT22 Cells via Activating BDNF/TrkB-Dependent PI3K/Akt/mTOR Signaling Pathway.

    PubMed

    Mao, Xiao-Yuan; Zhou, Hong-Hao; Li, Xi; Liu, Zhao-Qian

    2016-08-01

    Oxidative glutamate toxicity is involved in diverse neurological disorders including epilepsy and ischemic stroke. Our present work aimed to assess protective effects of huperzine A (HupA) against oxidative glutamate toxicity in a mouse-derived hippocampal HT22 cells and explore its potential mechanisms. Cell survival and cell injury were analyzed by MTT method and LDH release assay, respectively. The production of ROS was measured by detection kits. Protein expressions of BDNF, phosphor-TrkB (p-TrkB), TrkB, phosphor-Akt (p-Akt), Akt, phosphor-mTOR (p-mTOR), mTOR, phosphor-p70s6 (p-p70s6) kinase, p70s6 kinase, Bcl-2, Bax, and β-actin were assayed via Western blot analysis. Enzyme-linked immunosorbent assay was employed to measure the contents of nerve growth factor, brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3), and neurotrophin-4 (NT-4). Our findings illustrated 10 μM HupA for 24 h significantly protected HT22 from cellular damage and suppressed the generation of ROS. Additionally, after treating with LY294002 or wortmannin [the selective inhibitors of phosphatidylinositol 3 kinase (PI3K)], HupA dramatically prevented the down-regulations of p-Akt, p-mTOR, and p-p70s6 kinase in HT22 cells under oxidative toxicity. Furthermore, it was observed that the protein levels of BDNF and p-TrkB were evidently enhanced after co-treatment with HupA and glutamate in HT22 cells. The elevations of p-Akt and p-mTOR were abrogated under toxic conditions after blockade of TrkB by TrkB IgG. Cellular apoptosis was significantly suppressed (decreased caspase-3 activity and enhanced Bcl-2 protein level) after HupA treatment. It was concluded that HupA attenuated oxidative glutamate toxicity in murine hippocampal HT22 cells via activating BDNF/TrkB-dependent PI3K/Akt/mTOR signaling pathway.

  8. Different pools of glutamate receptors mediate sensitivity to ambient glutamate in the cochlear nucleus

    PubMed Central

    Yang, Yang

    2015-01-01

    Ambient glutamate plays an important role in pathological conditions, such as stroke, but its role during normal activity is not clear. In addition, it is not clear how ambient glutamate acts on glutamate receptors with varying affinities or subcellular localizations. To address this, we studied “endbulb of Held” synapses, which are formed by auditory nerve fibers onto bushy cells (BCs) in the anteroventral cochlear nucleus. When ambient glutamate was increased by applying the glutamate reuptake inhibitor TFB-TBOA, BCs depolarized as a result of activation of N-methyl-d-aspartate receptors (NMDARs) and group I metabotropic glutamate receptors (mGluRs). Application of antagonists against NMDARs (in 0 Mg2+) or mGluRs caused hyperpolarization, indicating that these receptors were bound by a tonic source of glutamate. AMPA receptors did not show these effects, consistent with their lower glutamate affinity. We also evaluated the subcellular localization of the receptors activated by ambient glutamate. The mGluRs were not activated by synaptic stimulation and thus appear to be exclusively extrasynaptic. By contrast, NMDARs in both synaptic and extrasynaptic compartments were activated by ambient glutamate, as shown using the use-dependent antagonist MK-801. Levels of ambient glutamate appeared to be regulated in a spike-independent manner, and glia likely play a major role. These low levels of ambient glutamate likely have functional consequences, as even low concentrations of TBOA caused significant increases in BC spiking following synaptic stimulation. These results indicate that normal resting potential appears to be poised in the region of maximal sensitivity to small changes in ambient glutamate. PMID:25855696

  9. Chloride-dependency of amyloid beta protein-induced enhancement of glutamate neurotoxicity in cultured rat hippocampal neurons.

    PubMed

    Zhang, Nan-Yan; Kitagawa, Kaori; Wu, Bo; Xiong, Zheng-Mei; Otani, Hitomi; Inagaki, Chiyoko

    2006-05-15

    In our previous studies, pathophysiological concentrations of amyloid-beta (Abeta) proteins increased intracellular Cl(-) concentration ([Cl(-)]i) and enhanced glutamate neurotoxicity in primary cultured neurons, suggesting Cl(-)-dependent changes in glutamate signaling. To test this possibility, we examined the effects of isethionate-replaced low Cl(-) medium on the Abeta-induced enhancement of glutamate neurotoxicity in the primary cultured rat hippocampal neurons. In a normal Cl(-) (135 mM) medium, treatment with 10 nM Abeta25-35 for 2 days increased neuronal [Cl(-)]i to a level three times higher than that of control as assayed using a Cl(-)-sensitive fluorescent dye, while in a low Cl(-) (16 mM) medium such an Abeta25-35-induced increase in [Cl(-)]i was not observed. The Abeta treatment aggravated glutamate neurotoxicity in a normal Cl(-) medium as measured by mitochondrial reducing activity and lactate dehydrogenase (LDH) release, while in a low Cl(-) medium the Abeta treatment did not enhance glutamate toxicity. Upon such Abeta plus glutamate treatment under a normal Cl(-) condition, activated anti-apoptotic molecule Akt (Akt-pS473) level monitored by Western blot significantly decreased to 74% of control. Under a low Cl(-) condition, a resting Akt-pS473 level was higher than that under a normal Cl(-) condition and did not significantly change upon Abeta plus glutamate treatment. Tyrosine phosphorylation levels of 110 and 60 kDa proteins (pp110 and pp60) increased upon Abeta plus glutamate treatment under a normal Cl(-), but not low Cl(-), condition. These findings indicated that Abeta-induced enhancement of glutamate neurotoxicity is Cl(-)-dependent. Chloride-sensitive Akt pathway and tyrosine phosphorylation of proteins (pp110 and pp60) may be involved in this process.

  10. Vitamin C modulates glutamate transport and NMDA receptor function in the retina.

    PubMed

    Domith, Ivan; Socodato, Renato; Portugal, Camila C; Munis, Andressa F; Duarte-Silva, Aline T; Paes-de-Carvalho, Roberto

    2018-02-01

    Vitamin C (in the reduced form ascorbate or in the oxidized form dehydroascorbate) is implicated in signaling events throughout the central nervous system (CNS). In the retina, a high-affinity transport system for ascorbate has been described and glutamatergic signaling has been reported to control ascorbate release. Here, we investigated the modulatory role played by vitamin C upon glutamate uptake and N-methyl-d-aspartate (NMDA) receptor activation in cultured retinal cells or in intact retinal tissue using biochemical and imaging techniques. We show that both forms of vitamin C, ascorbate or dehydroascorbate, promote an accumulation of extracellular glutamate by a mechanism involving the inhibition of glutamate uptake. This inhibition correlates with the finding that ascorbate promotes a decrease in cell surface levels of the neuronal glutamate transporter excitatory amino acid transporter 3 in retinal neuronal cultures. Interestingly, vitamin C is prone to increase the activity of NMDA receptors but also promotes a decrease in glutamate-stimulated [ 3 H] MK801 binding and decreases cell membrane content of NMDA receptor glutamate ionotropic receptor subunit 1 (GluN1) subunits. Both compounds were also able to increase cAMP response element-binding protein phosphorylation in neuronal nuclei in a glutamate receptor and calcium/calmodulin kinase-dependent manner. Moreover, the effect of ascorbate is not blocked by sulfinpyrazone and then does not depend on its uptake by retinal cells. Overall, these data indicate a novel molecular and functional target for vitamin C impacting on glutamate signaling in retinal neurons. © 2017 International Society for Neurochemistry.

  11. Targeted Enhancement of Glutamate-to-γ-Aminobutyrate Conversion in Arabidopsis Seeds Affects Carbon-Nitrogen Balance and Storage Reserves in a Development-Dependent Manner1[W][OA

    PubMed Central

    Fait, Aaron; Nesi, Adriano Nunes; Angelovici, Ruthie; Lehmann, Martin; Pham, Phuong Anh; Song, Luhua; Haslam, Richard P.; Napier, Johnathan A.; Galili, Gad; Fernie, Alisdair R.

    2011-01-01

    In seeds, glutamate decarboxylase (GAD) operates at the metabolic nexus between carbon and nitrogen metabolism by catalyzing the unidirectional decarboxylation of glutamate to form γ-aminobutyric acid (GABA). To elucidate the regulatory role of GAD in seed development, we generated Arabidopsis (Arabidopsis thaliana) transgenic plants expressing a truncated GAD from Petunia hybrida missing the carboxyl-terminal regulatory Ca2+-calmodulin-binding domain under the transcriptional regulation of the seed maturation-specific phaseolin promoter. Dry seeds of the transgenic plants accumulated considerable amounts of GABA, and during desiccation the content of several amino acids increased, although not glutamate or proline. Dry transgenic seeds had higher protein content than wild-type seeds but lower amounts of the intermediates of glycolysis, glycerol and malate. The total fatty acid content of the transgenic seeds was 50% lower than in the wild type, while acyl-coenzyme A accumulated in the transgenic seeds. Labeling experiments revealed altered levels of respiration in the transgenic seeds, and fractionation studies indicated reduced incorporation of label in the sugar and lipid fractions extracted from transgenic seeds. Comparative transcript profiling of the dry seeds supported the metabolic data. Cellular processes up-regulated at the transcript level included the tricarboxylic acid cycle, fatty acid elongation, the shikimate pathway, tryptophan metabolism, nitrogen-carbon remobilization, and programmed cell death. Genes involved in the regulation of germination were similarly up-regulated. Taken together, these results indicate that the GAD-mediated conversion of glutamate to GABA during seed development plays an important role in balancing carbon and nitrogen metabolism and in storage reserve accumulation. PMID:21921115

  12. Targeted enhancement of glutamate-to-γ-aminobutyrate conversion in Arabidopsis seeds affects carbon-nitrogen balance and storage reserves in a development-dependent manner.

    PubMed

    Fait, Aaron; Nesi, Adriano Nunes; Angelovici, Ruthie; Lehmann, Martin; Pham, Phuong Anh; Song, Luhua; Haslam, Richard P; Napier, Johnathan A; Galili, Gad; Fernie, Alisdair R

    2011-11-01

    In seeds, glutamate decarboxylase (GAD) operates at the metabolic nexus between carbon and nitrogen metabolism by catalyzing the unidirectional decarboxylation of glutamate to form γ-aminobutyric acid (GABA). To elucidate the regulatory role of GAD in seed development, we generated Arabidopsis (Arabidopsis thaliana) transgenic plants expressing a truncated GAD from Petunia hybrida missing the carboxyl-terminal regulatory Ca(2+)-calmodulin-binding domain under the transcriptional regulation of the seed maturation-specific phaseolin promoter. Dry seeds of the transgenic plants accumulated considerable amounts of GABA, and during desiccation the content of several amino acids increased, although not glutamate or proline. Dry transgenic seeds had higher protein content than wild-type seeds but lower amounts of the intermediates of glycolysis, glycerol and malate. The total fatty acid content of the transgenic seeds was 50% lower than in the wild type, while acyl-coenzyme A accumulated in the transgenic seeds. Labeling experiments revealed altered levels of respiration in the transgenic seeds, and fractionation studies indicated reduced incorporation of label in the sugar and lipid fractions extracted from transgenic seeds. Comparative transcript profiling of the dry seeds supported the metabolic data. Cellular processes up-regulated at the transcript level included the tricarboxylic acid cycle, fatty acid elongation, the shikimate pathway, tryptophan metabolism, nitrogen-carbon remobilization, and programmed cell death. Genes involved in the regulation of germination were similarly up-regulated. Taken together, these results indicate that the GAD-mediated conversion of glutamate to GABA during seed development plays an important role in balancing carbon and nitrogen metabolism and in storage reserve accumulation.

  13. Hippocampal distribution of vesicular glutamate transporter 1 in patients with temporal lobe epilepsy.

    PubMed

    van der Hel, W Saskia; Verlinde, Suzanne A M W; Meijer, Dimphna H M; de Wit, Marina; Rensen, Marije G; van Gassen, Koen L I; van Rijen, Peter C; van Veelen, Cees W M; de Graan, Pierre N E

    2009-07-01

    Vesicular glutamate transporters (VGLUTs) are responsible for loading synaptic vesicles with glutamate, determining the phenotype of glutamatergic neurons, and have been implicated in the regulation of quantal size and presynaptic plasticity. We analyzed VGLUT subtype expression in normal human hippocampus and tested the hypothesis that alterations in VGLUT expression may contribute to long-term changes in glutamatergic transmission reported in patients with temporal lobe epilepsy (TLE). VGLUT immunohistochemistry, immunofluorescence, in situ hybridization, Western blotting, and quantitative polymerase chain reaction (qPCR) were performed on biopsies from TLE patients without (non-HS) and with hippocampal sclerosis (HS) and compared to autopsy controls and rat hippocampus. VGLUT1 expression was compared with synaptophysin, neuropeptide Y (NPY), and Timm's staining. VGLUT1 was the predominant VGLUT in human hippocampus and appeared to be localized to presynaptic glutamatergic terminals. In non-HS hippocampi, VGLUT1 protein levels were increased compared to control and HS hippocampi in all subfields. In HS hippocampi VGLUT1 expression was decreased in subfields with severe neuronal loss, but strongly up-regulated in the dentate gyrus, characterized by mossy fiber sprouting. VGLUT1 is used as marker for glutamatergic synapses in the human hippocampus. In HS hippocampi VGLUT1 up-regulation in the dentate gyrus probably marks new glutamatergic synapses formed by mossy fiber sprouting. Our data indicate that non-HS patients have an increased capacity to store glutamate in vesicles, most likely due to an increase in translational processes or upregulation of VGLUT1 in synapses from afferent neurons outside the hippocampus. This up-regulation may increase glutamatergic transmission, and thus contribute to increased extracellular glutamate levels and hyperexcitability.

  14. Functional support of glutamate as a vestibular hair cell transmitter in an amniote

    NASA Technical Reports Server (NTRS)

    Cochran, S. L.; Correia, M. J.

    1995-01-01

    Although hair cells in the cochlea and in the vestibular endorgans of anamniotes are thought to release glutamate or a similar compound as their transmitter, there is little evidence in amniotes (which, unlike anamniotes, possess both type I and II hair cells) as to the nature of the hair cell transmitters in the vestibular labyrinth. We have recorded extracellularly from single semicircular canal afferents in the turtle labyrinth maintained in vitro and have bath-applied a number of transmitter agonists and antagonists to relate the effects of these substances to the actions of the endogenous transmitter substances. Both glutamate and aspartate strongly excite the afferents while GABA and carbachol have negligible or weak effects. In contrast to its lack of effect on afferent activity in some anamniotes, N-methyl-D-aspartate (NMDA) was also found to excite these afferents. Kynurenic acid reversibly reduced the resting firing rates of the afferents and the increases in firing due to the application of glutamate and aspartate. These findings provide preliminary support for the hypothesis that glutamate (or a related compound) is also a vestibular hair cell transmitter in amniotes.

  15. Glutamatergic transmission in the nucleus of the solitary tract modulates memory through influences on amygdala noradrenergic systems.

    PubMed

    Miyashita, Teiko; Williams, Cedric L

    2002-02-01

    The authors examined whether glutamate release from the vagus nerve onto the nucleus of the solitary tract (NTS) is one mechanism by which the vagus influences memory and neural activity in limbic structures. Rats trained to drink from a spout were given a footshock (0.35 mA) on Day 5 after approaching the spout. Phosphate-buffered saline or 5.0, 50.0, or 100.0 nmol/0.5 microl glutamate was then infused into the NTS. Glutamate (5.0 or 50.0 nmol) significantly enhanced memory on the retention test. In Experiment 2, this effect was attenuated by blocking noradrenergic receptors in the amygdala with propranolol (0.3 microg/0.5 microl). Experiment 3 used in vivo microdialysis to determine whether footshock plus glutamate (50.0 nmol) alters noradrenergic output in the amygdala. These treatments caused a significant and long-lasting increase in amygdala noradrenergic concentrations. The results indicate that glutamate may be one transmitter that conveys the effects of vagal activation on brain systems that process memory.

  16. The Neuroprotective Potential of Cyanidin-3-glucoside Fraction Extracted from Mulberry Following Oxygen-glucose Deprivation.

    PubMed

    Bhuiyan, Mohammad Iqbal Hossain; Kim, Hyun-Bok; Kim, Seong Yun; Cho, Kyung-Ok

    2011-12-01

    In this study, cyanidin-3-glucoside (C3G) fraction extracted from the mulberry fruit (Morus alba L.) was investigated for its neuroprotective effects against oxygen-glucose deprivation (OGD) and glutamate-induced cell death in rat primary cortical neurons. Cell membrane damage and mitochondrial function were assessed by LDH release and MTT reduction assays, respectively. A time-course study of OGD-induced cell death of primary cortical neurons at 7 days in vitro (DIV) indicated that neuronal death was OGD duration-dependent. It was also demonstrated that OGD for 3.5 h resulted in approximately 50% cell death, as determined by the LDH release assay. Treatments with mulberry C3G fraction prevented membrane damage and preserved the mitochondrial function of the primary cortical neurons exposed to OGD for 3.5 h in a concentration-dependent manner. Glutamate-induced cell death was more pronounced in DIV-9 and DIV-11 cells than that in DIV-7 neurons, and an application of 50µM glutamate was shown to induce approximately 40% cell death in DIV-9 neurons. Interestingly, treatment with mulberry C3G fraction did not provide a protective effect against glutamate-induced cell death in primary cortical neurons. On the other hand, treatment with mulberry C3G fraction maintained the mitochondrial membrane potential (MMP) in primary cortical neurons exposed to OGD as assessed by the intensity of rhodamine-123 fluorescence. These results therefore suggest that the neuroprotective effects of mulberry C3G fraction are mediated by the maintenance of the MMP and mitochondrial function but not by attenuating glutamate-induced excitotoxicity in rat primary cortical neurons.

  17. The cystine-glutamate exchanger (xCT, Slc7a11) is expressed in significant concentrations in a subpopulation of astrocytes in the mouse brain.

    PubMed

    Ottestad-Hansen, Sigrid; Hu, Qiu Xiang; Follin-Arbelet, Virgine Veronique; Bentea, Eduard; Sato, Hideyo; Massie, Ann; Zhou, Yun; Danbolt, Niels Christian

    2018-05-01

    The cystine-glutamate exchanger (xCT) promotes glutathione synthesis by catalyzing cystine uptake and glutamate release. The released glutamate may modulate normal neural signaling and contribute to excitotoxicity in pathological situations. Uncertainty, however, remains as neither the expression levels nor the distribution of xCT have been unambiguously determined. In fact, xCT has been reported in astrocytes, neurons, oligodendrocytes and microglia, but most of the information derives from cell cultures. Here, we show by immunohistochemistry and by Western blotting that xCT is widely expressed in the central nervous system of both sexes. The labeling specificity was validated using tissue from xCT knockout mice as controls. Astrocytes were selectively labeled, but showed greatly varying labeling intensities. This astroglial heterogeneity resulted in an astrocyte domain-like labeling pattern. Strong xCT labeling was also found in the leptomeninges, along some blood vessels, in selected circumventricular organs and in a subpopulation of tanycytes residing the lateral walls of the ventral third ventricle. Neurons, oligodendrocytes and resting microglia, as well as reactive microglia induced by glutamine synthetase deficiency, were unlabeled. The concentration of xCT protein in hippocampus was compared with that of the EAAT3 glutamate transporter by immunoblotting using a chimeric xCT-EAAT3 protein to normalize xCT and EAAT3 labeling intensities. The immunoblots suggested an xCT/EAAT3 ratio close to one (0.75 ± 0.07; average ± SEM; n = 4) in adult C57BL6 mice. xCT is present in select blood/brain/CSF interface areas and in an astrocyte subpopulation, in sufficient quantities to support the notion that system xc- provides physiologically relevant transport activity. © 2018 Wiley Periodicals, Inc.

  18. Artesunate restores spatial learning of rats with hepatic encephalopathy by inhibiting ammonia-induced oxidative damage in neurons and dysfunction of glutamate signaling in astroglial cells.

    PubMed

    Wu, Yuan-Bo; Zhang, Li; Li, Wen-Ting; Yang, Yi; Zhao, Jiang-Ming

    2016-12-01

    Artesunate (ART) is an antimalarial drug with potential anti-inflammatory effect. This study aimed to explore the potential protective role of ART in hepatic encephalopathy (HE), involving its function against ammonia toxicity. HE rats were induced by the administration of thioacetamide (TAA, 300mg/kg/day). Spatial learning ability was tested in both Morris water and eight-arm radial maze. Rat cerebellar granule neurons (CGNs) were prepared for ammonia treatment in vitro, in line with SH-SY5Y and C6 cells. ART was administrated at 50 or 100mg/kg/day in vivo or added at 50 or 100μM in vitro. Oxidative damages were evaluated by the changes of cell viability, reactive oxygen species (ROS) levels and glutathione (GSH) content, while glutamate uptake and release, and the activities of glutamine synthetase (GS) and Na + K + -ATPase were measured to indicate the dysfunction of glutamate signaling. Decreased escape latency and increased numbers of working errors were observed in TAA-induced HE rats, which could be significantly restored by ART at a dosage-dependent manner. Decreased cell viability and GSH content and increased ROS accumulation were detected in ammonia-treated SH-SY5Y and CGNs, while ammonia-treated C6 cells showed reduced glutamate uptake, increased glutamate release, and decrease of GSH content, GS and Na + K + -ATPase activity. In contrast, ART, especially at 100μM, strongly reversed all changes induced by ammonia, showing a similar dosage-dependent manner in vitro. This study revealed a new neuroprotective role of ART in the pathogenesis of HE, by protecting neurons and astroglial cells from ammonia-induced damages and dysfunctions. Copyright © 2016. Published by Elsevier Masson SAS.

  19. Bioresorbable polypeptide-based comb-polymers efficiently improves the stability and pharmacokinetics of proteins in vivo.

    PubMed

    Turabee, Md Hasan; Thambi, Thavasyappan; Lym, Jae Seung; Lee, Doo Sung

    2017-03-28

    Stimuli-responsive polypeptides are a promising class of biomaterials due to their tunable physicochemical and biological properties. Herein, a series of novel pH- and thermo-responsive block copolymers based on polypeptides were synthesized by ring-opening polymerization of γ-benzyl-l-glutamate-N-carboxyanhydride in the presence of poly(ethylene glycol)-diamine macroinitiator followed by aminolysis. The resulting polypeptide-based triblock copolymer, poly[(2-(dibutylamino)ethyl-l-glutamate)-co-(γ-benzyl-l-glutamate)]-poly(ethylene glycol)-b-poly[(2-(dibutylamino)ethyl-l-glutamate)-co-(γ-benzyl-l-glutamate)] (PNLG-co-PBLG-b-PEG-b-PBLG-co-PNLG), exists as a low viscous sol at low pH and temperature (≤pH 6.4, 25 °C) but it transforms to a soft gel under physiological conditions (pH 7.4 and 37 °C). The physical properties of the polypeptide gel can be tuned by controlling the ratio between hydrophobic PBLG and pH-sensitive PNLG blocks. The polypeptide-based copolymer did not show any noticeable cytotoxicity to fibroblast cells in vitro. It was found that subcutaneous injection of the polypeptide copolymer solution into the dorsal region of Sprague-Dawley (SD) rats formed a gel instantly without major inflammation. The gels were completely biodegraded in six weeks and found to be bioresorbable. Human growth hormone (hGH)-loaded polypeptide-based biodegradable copolymer sols readily formed a viscoelastic gel that inhibited an initial burst and prolonged the hGH release for one week. Overall, due to their bioresorbable and sustained release protein characteristics, polypeptide hydrogels may serve as viable platforms for therapeutic protein delivery and the surface tunable properties of polypeptide hydrogels can be exploited for other potential therapeutic proteins.

  20. Gender specific influence of endogenous glutamate release on stress-induced fear in rats.

    PubMed

    Jain, S K; Zelena, D

    2011-01-01

    Stress, fear and anxiety are among major public health concerns. The role of glutamate in these processes is becoming more recognized with promising new drug targets. The aim of this study was to establish the gender specificity of a possible treatment of fear by glutamate antagonists in correspondence with changes in stress-hormone release. Footshock-induced fear was used as an anxiogenic situation in rats. A combination of two ionotrop receptor antagonists such as MK-801 (dizocilpine; 0.2 mg/kg) for NMDA (N-methyl-D-aspartic acid) and GYKI 52466 (benzodiazepine derivative; 10 mg/kg) for AMPA/kainate receptors were used for 5 days following the hypothesis that they potentiate each other the main action, but at the same time the side effects may be minimized. Female rats tried to avoid the electrical stimulus more actively than males, as they spent more time with exploration and jumping and less time with freezing or rest. Ionotropic glutamate receptor antagonists have anxiolytic action. MK-801 was more effective in females, as it prevented the footshock-induced freezing per se, while in males it was effective only in combination with GyKI 52466. The locomotor side effect of MK-801 was not visible after repeated administration. The freezing behavior was positively correlated with the changes in prolactin but not with adrenocorticotropin levels. We proved the involvement of endogenous glutamate neurotransmission in stress-induced fear. Therapeutical usage may involve a combination of different receptor antagonists. Special attention should be paid to the gender, as females seem to be more sensitive, therefore they require smaller doses. During the treatment the prolactin levels should be monitored.

  1. Olfactory bulb short axon cell release of GABA and dopamine produces a temporally biphasic inhibition-excitation response in external tufted cells.

    PubMed

    Liu, Shaolin; Plachez, Celine; Shao, Zuoyi; Puche, Adam; Shipley, Michael T

    2013-02-13

    Evidence for coexpression of two or more classic neurotransmitters in neurons has increased, but less is known about cotransmission. Ventral tegmental area (VTA) neurons corelease dopamine (DA), the excitatory transmitter glutamate, and the inhibitory transmitter GABA onto target cells in the striatum. Olfactory bulb (OB) short axon cells (SACs) form interglomerular connections and coexpress markers for DA and GABA. Using an optogenetic approach, we provide evidence that mouse OB SACs release both GABA and DA onto external tufted cells (ETCs) in other glomeruli. Optical activation of channelrhodopsin specifically expressed in DAergic SACs produced a GABA(A) receptor-mediated monosynaptic inhibitory response, followed by DA-D(1)-like receptor-mediated excitatory response in ETCs. The GABA(A) receptor-mediated hyperpolarization activates I(h) current in ETCs; synaptically released DA increases I(h), which enhances postinhibitory rebound spiking. Thus, the opposing actions of synaptically released GABA and DA are functionally integrated by I(h) to generate an inhibition-to-excitation "switch" in ETCs. Consistent with the established role of I(h) in ETC burst firing, we show that endogenous DA release increases ETC spontaneous bursting frequency. ETCs transmit sensory signals to mitral/tufted output neurons and drive intraglomerular inhibition to shape glomerulus output to downstream olfactory networks. GABA and DA cotransmission from SACs to ETCs may play a key role in regulating output coding across the glomerular array.

  2. VGLUT1 and VGLUT2 mRNA expression in the primate auditory pathway

    PubMed Central

    Hackett, Troy A.; Takahata, Toru; Balaram, Pooja

    2011-01-01

    The vesicular glutamate transporters (VGLUTs) regulate storage and release of glutamate in the brain. In adult animals, the VGLUT1 and VGLUT2 isoforms are widely expressed and differentially distributed, suggesting that neural circuits exhibit distinct modes of glutamate regulation. Studies in rodents suggest that VGLUT1 and VGLUT2 mRNA expression patterns are partly complementary, with VGLUT1 expressed at higher levels in cortex and VGLUT2 prominent subcortically, but with overlapping distributions in some nuclei. In primates, VGLUT gene expression has not been previously studied in any part of the brain. The purposes of the present study were to document the regional expression of VGLUT1 and VGLUT2 mRNA in the auditory pathway through A1 in cortex, and to determine whether their distributions are comparable to rodents. In situ hybridization with antisense riboprobes revealed that VGLUT2 was strongly expressed by neurons in the cerebellum and most major auditory nuclei, including the dorsal and ventral cochlear nuclei, medial and lateral superior olivary nuclei, central nucleus of the inferior colliculus, sagulum, and all divisions of the medial geniculate. VGLUT1 was densely expressed in the hippocampus and ventral cochlear nuclei, and at reduced levels in other auditory nuclei. In auditory cortex, neurons expressing VGLUT1 were widely distributed in layers II – VI of the core, belt and parabelt regions. VGLUT2 was most strongly expressed by neurons in layers IIIb and IV, weakly by neurons in layers II – IIIa, and at very low levels in layers V – VI. The findings indicate that VGLUT2 is strongly expressed by neurons at all levels of the subcortical auditory pathway, and by neurons in the middle layers of cortex, whereas VGLUT1 is strongly expressed by most if not all glutamatergic neurons in auditory cortex and at variable levels among auditory subcortical nuclei. These patterns imply that VGLUT2 is the main vesicular glutamate transporter in subcortical and thalamocortical (TC) circuits, whereas VGLUT1 is dominant in cortico-cortical (CC) and cortico-thalamic (CT) systems of projections. The results also suggest that VGLUT mRNA expression patterns in primates are similar to rodents, and establishes a baseline for detailed studies of these transporters in selected circuits of the auditory system. PMID:21111036

  3. VGLUT1 and VGLUT2 mRNA expression in the primate auditory pathway.

    PubMed

    Hackett, Troy A; Takahata, Toru; Balaram, Pooja

    2011-04-01

    The vesicular glutamate transporters (VGLUTs) regulate the storage and release of glutamate in the brain. In adult animals, the VGLUT1 and VGLUT2 isoforms are widely expressed and differentially distributed, suggesting that neural circuits exhibit distinct modes of glutamate regulation. Studies in rodents suggest that VGLUT1 and VGLUT2 mRNA expression patterns are partly complementary, with VGLUT1 expressed at higher levels in the cortex and VGLUT2 prominent subcortically, but with overlapping distributions in some nuclei. In primates, VGLUT gene expression has not been previously studied in any part of the brain. The purposes of the present study were to document the regional expression of VGLUT1 and VGLUT2 mRNA in the auditory pathway through A1 in the cortex, and to determine whether their distributions are comparable to rodents. In situ hybridization with antisense riboprobes revealed that VGLUT2 was strongly expressed by neurons in the cerebellum and most major auditory nuclei, including the dorsal and ventral cochlear nuclei, medial and lateral superior olivary nuclei, central nucleus of the inferior colliculus, sagulum, and all divisions of the medial geniculate. VGLUT1 was densely expressed in the hippocampus and ventral cochlear nuclei, and at reduced levels in other auditory nuclei. In the auditory cortex, neurons expressing VGLUT1 were widely distributed in layers II-VI of the core, belt and parabelt regions. VGLUT2 was expressed most strongly by neurons in layers IIIb and IV, weakly by neurons in layers II-IIIa, and at very low levels in layers V-VI. The findings indicate that VGLUT2 is strongly expressed by neurons at all levels of the subcortical auditory pathway, and by neurons in the middle layers of the cortex, whereas VGLUT1 is strongly expressed by most if not all glutamatergic neurons in the auditory cortex and at variable levels among auditory subcortical nuclei. These patterns imply that VGLUT2 is the main vesicular glutamate transporter in subcortical and thalamocortical (TC) circuits, whereas VGLUT1 is dominant in corticocortical (CC) and corticothalamic (CT) systems of projections. The results also suggest that VGLUT mRNA expression patterns in primates are similar to rodents, and establish a baseline for detailed studies of these transporters in selected circuits of the auditory system. Copyright © 2010 Elsevier B.V. All rights reserved.

  4. Dynamic transition of neuronal firing induced by abnormal astrocytic glutamate oscillation

    NASA Astrophysics Data System (ADS)

    Li, Jiajia; Tang, Jun; Ma, Jun; Du, Mengmeng; Wang, Rong; Wu, Ying

    2016-08-01

    The gliotransmitter glutamate released from astrocytes can modulate neuronal firing by activating neuronal N-methyl-D-aspartic acid (NMDA) receptors. This enables astrocytic glutamate(AG) to be involved in neuronal physiological and pathological functions. Based on empirical results and classical neuron-glial “tripartite synapse” model, we propose a practical model to describe extracellular AG oscillation, in which the fluctuation of AG depends on the threshold of calcium concentration, and the effect of AG degradation is considered as well. We predict the seizure-like discharges under the dysfunction of AG degradation duration. Consistent with our prediction, the suppression of AG uptake by astrocytic transporters, which operates by modulating the AG degradation process, can account for the emergence of epilepsy.

  5. Cyanidin-3-glucoside inhibits glutamate-induced Zn2+ signaling and neuronal cell death in cultured rat hippocampal neurons by inhibiting Ca2+-induced mitochondrial depolarization and formation of reactive oxygen species.

    PubMed

    Yang, Ji Seon; Perveen, Shazia; Ha, Tae Joung; Kim, Seong Yun; Yoon, Shin Hee

    2015-05-05

    Cyanidin-3-glucoside (C3G), a member of the anthocyanin family, is a potent natural antioxidant. However, effects of C3G on glutamate-induced [Zn(2+)]i increase and neuronal cell death remain unknown. We studied the effects of C3G on glutamate-induced [Zn(2+)]i increase and cell death in cultured rat hippocampal neurons from embryonic day 17 maternal Sprague-Dawley rats using digital imaging methods for Zn(2+), Ca(2+), reactive oxygen species (ROS), mitochondrial membrane potential and a MTT assay for cell survival. Treatment with glutamate (100 µM) for 7 min induces reproducible [Zn(2+)]i increase at 35 min interval in cultured rat hippocampal neurons. The intracellular Zn(2+)-chelator TPEN markedly blocked glutamate-induced [Zn(2+)]i increase, but the extracellular Zn(2+) chelator CaEDTA did not affect glutamate-induced [Zn(2+)]i increase. C3G inhibited the glutamate-induced [Zn(2+)]i response in a concentration-dependent manner (IC50 of 14.1 ± 1.1 µg/ml). C3G also significantly inhibited glutamate-induced [Ca(2+)]i increase. Two antioxidants such as Trolox and DTT significantly inhibited the glutamate-induced [Zn(2+)]i response, but they did not affect the [Ca(2+)]i responses. C3G blocked glutamate-induced formation of ROS. Trolox and DTT also inhibited the formation of ROS. C3G significantly inhibited glutamate-induced mitochondrial depolarization. However, TPEN, Trolox and DTT did not affect the mitochondrial depolarization. C3G, Trolox and DTT attenuated glutamate-induced neuronal cell death in cultured rat hippocampal neurons, respectively. Taken together, all these results suggest that cyanidin-3-glucoside inhibits glutamate-induced [Zn(2+)]i increase through a release of Zn(2+) from intracellular sources in cultured rat hippocampal neurons by inhibiting Ca(2+)-induced mitochondrial depolarization and formation of ROS, which is involved in neuroprotection against glutamate-induced cell death. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Interaction between the glutamate transporter GLT1b and the synaptic PDZ domain protein PICK1

    PubMed Central

    Bassan, Merav; Liu, Hongguang; Madsen, Kenneth L.; Armsen, Wencke; Zhou, Jiayi; DeSilva, Tara; Chen, Weizhi; Paradise, Allison; Brasch, Michael A.; Staudinger, Jeff; Gether, Ulrik; Irwin, Nina; Rosenberg, Paul A.

    2015-01-01

    Synaptic plasticity is implemented by the interaction of glutamate receptors with PDZ domain proteins. Glutamate transporters provide the only known mechanism of clearance of glutamate from excitatory synapses, and GLT1 is the major glutamate transporter. We show here that GLT1 interacts with the PDZ domain protein PICK1, which plays a critical role in regulating the expression of glutamate receptors at excitatory synapses. A yeast two-hybrid screen of a neuronal library using the carboxyl tail of GLT1b yielded clones expressing PICK1. The GLT1b C-terminal peptide bound to PICK1 with high affinity (Ki = 6.5 ± 0.4 μm) in an in vitro fluorescence polarization assay. We also tested peptides based on other variants of GLT1 and other glutamate transporters. GLT1b co-immunoprecipitated with PICK1 from rat brain lysates and COS7 cell lysates derived from cells transfected with plasmids expressing PICK1 and GLT1b. In addition, expression of GLT1b in COS7 cells changed the distribution of PICK1, bringing it to the surface. GLT1b and PICK1 co-localized with each other and with synaptic markers in hippocampal neurons in culture. Phorbol ester, an activator of protein kinase C (PKC), a known PICK1 interactor, had no effect on glutamate transport in rat forebrain neurons in culture. However, we found that exposure of neurons to a myristolated decoy peptide with sequence identical to the C-terminal sequence of GLT1b designed to block the PICK1–GLT1b interaction rendered glutamate transport into neurons responsive to phorbol ester. These results suggest that the PICK1–GLT1b interaction regulates the modulation of GLT1 function by PKC. PMID:18184314

  7. In vitro evidence for the brain glutamate efflux hypothesis: brain endothelial cells cocultured with astrocytes display a polarized brain-to-blood transport of glutamate.

    PubMed

    Helms, Hans Christian; Madelung, Rasmus; Waagepetersen, Helle Sønderby; Nielsen, Carsten Uhd; Brodin, Birger

    2012-05-01

    The concentration of the excitotoxic amino acid, L-glutamate, in brain interstitial fluid is tightly regulated by uptake transporters and metabolism in astrocytes and neurons. The aim of this study was to investigate the possible role of the blood-brain barrier endothelium in brain L-glutamate homeostasis. Transendothelial transport- and accumulation studies of (3) H-L-glutamate, (3) H-L-aspartate, and (3) H-D-aspartate in an electrically tight bovine endothelial/rat astrocyte blood-brain barrier coculture model were performed. After 6 days in culture, the endothelium displayed transendothelial resistance values of 1014 ± 70 Ω cm(2) , and (14) C-D-mannitol permeability values of 0.88 ± 0.13 × 10(-6) cm s(-1) . Unidirectional flux studies showed that L-aspartate and L-glutamate, but not D-aspartate, displayed polarized transport in the brain-to-blood direction, however, all three amino acids accumulated in the cocultures when applied from the abluminal side. The transcellular transport kinetics were characterized with a K(m) of 69 ± 15 μM and a J(max) of 44 ± 3.1 pmol min(-1) cm(-2) for L-aspartate and a K(m) of 138 ± 49 μM and J(max) of 28 ± 3.1 pmol min(-1) cm(-2) for L-glutamate. The EAAT inhibitor, DL-threo-ß-Benzyloxyaspartate, inhibited transendothelial brain-to-blood fluxes of L-glutamate and L-aspartate. Expression of EAAT-1 (Slc1a3), -2 (Slc1a2), and -3 (Slc1a1) mRNA in the endothelial cells was confirmed by conventional PCR and localization of EAAT-1 and -3 in endothelial cells was shown with immunofluorescence. Overall, the findings suggest that the blood-brain barrier itself may participate in regulating brain L-glutamate concentrations. Copyright © 2012 Wiley Periodicals, Inc.

  8. Monitoring cleaved caspase-3 activity and apoptosis of immortalized oligodendroglial cells using live-cell imaging and cleaveable fluorogenic-dye substrates following potassium-induced membrane depolarization.

    PubMed

    Smith, Graham S T; Voyer-Grant, Janine A M; Harauz, George

    2012-01-13

    The central nervous system can experience a number of stresses and neurological insults, which can have numerous adverse effects that ultimately lead to a reduction in neuronal population and function. Damaged axons can release excitatory molecules including potassium or glutamate into the extracellular matrix, which in turn, can produce further insult and injury to the supporting glial cells including astrocytes and oligodendrocytes. If the insult persists, cells will undergo programmed cell death (apoptosis), which is regulated and activated by a number of well-established signal transduction cascades. Apoptosis and tissue necrosis can occur after traumatic brain injury, cerebral ischemia, and seizures. A classical example of apoptotic regulation is the family of cysteine-dependent aspartate-directed proteases, or caspases. Activated proteases including caspases have also been implicated in cell death in response to chronic neurodegenerative diseases including Alzheimer's, Huntington's, and Multiple Sclerosis. In this protocol we describe the use of the NucView 488 caspase-3 substrate to measure the rate of caspase-3 mediated apoptosis in immortalized N19-oligodendrocyte (OLG) cell cultures, following exposure to different extracellular stresses such as high concentrations of potassium or glutamate. The conditionally-immortalized N19-OLG cell line (representing the O2A progenitor) was obtained from Dr. Anthony Campagnoni (UCLA Semel Institute for Neuroscience), and has been previously used to study molecular mechanisms of myelin gene expression and signal transduction leading to OLG differentiation. We have found this cell line to be robust with respect to transfection with exogenous myelin basic protein (MBP) constructs fused to either RFP or GFP (red or green fluorescent protein). Here, the N19-OLG cell cultures were treated with either 80 mM potassium chloride or 100 mM sodium glutamate to mimic axonal leakage into the extracellular matrix to induce apoptosis. We used a bi-functional caspase-3 substrate containing a DEVD (Asp-Glu-Val-Asp) caspase-3 recognition subunit and a DNA-binding dye. The substrate quickly enters the cytoplasm where it is cleaved by intracellular caspase-3. The dye, NucView 488 is released and enters the cell nucleus where it binds DNA and fluoresces green at 488 nm, signaling apoptosis. Use of the NucView 488 caspase-3 substrate allows for live-cell imaging in real-time. In this video, we also describe the culturing and transfection of immortalized N19-OLG cells, as well as live-cell imaging techniques.

  9. mGluR long-term depression regulates GluA2 association with COPII vesicles and exit from the endoplasmic reticulum.

    PubMed

    Pick, Joseph E; Khatri, Latika; Sathler, Matheus F; Ziff, Edward B

    2017-01-17

    mGluR long-term depression (mGluR-LTD) is a form of synaptic plasticity induced at excitatory synapses by metabotropic glutamate receptors (mGluRs). mGluR-LTD reduces synaptic strength and is relevant to learning and memory, autism, and sensitization to cocaine; however, the mechanism is not known. Here we show that activation of Group I mGluRs in medium spiny neurons induces trafficking of GluA2 from the endoplasmic reticulum (ER) to the synapse by enhancing GluA2 binding to essential COPII vesicle proteins, Sec23 and Sec13. GluA2 exit from the ER further depends on IP3 and Ryanodine receptor-controlled Ca 2+ release as well as active translation. Synaptic insertion of GluA2 is coupled to removal of high-conducting Ca 2+ -permeable AMPA receptors from synapses, resulting in synaptic depression. This work demonstrates a novel mechanism in which mGluR signals release AMPA receptors rapidly from the ER and couple ER release to GluA2 synaptic insertion and GluA1 removal. © 2016 The Authors.

  10. Implication of the Purinergic System in Alcohol Use Disorders

    PubMed Central

    Asatryan, Liana; Nam, Hyung Wook; Lee, Moonnoh R.; Thakkar, Mahesh M.; Dar, M. Saeed; Davies, Daryl L.; Choi, Doo-Sup

    2010-01-01

    In the central nervous system, adenosine and ATP play an important role in regulating neuronal activity as well as controlling other neurotransmitter systems such as GABA, glutamate, and dopamine. Ethanol increases extracellular adenosine levels that regulate the ataxic and hypnotic/sedative effects of ethanol. Interestingly, ethanol is known to increase adenosine levels by inhibiting an ethanol-sensitive adenosine transporter, ENT1 (equilibrative nucleoside transporter type 1). Ethanol is also known to inhibit ATP-specific P2X receptors, which might result in such similar effects as those caused by an increase in adenosine. Adenosine and ATP exert their functions through P1 (metabotropic) and P2 (P2X-ionotropic and P2Y-metabotropic) receptors, respectively. Purinergic signaling in cortex-striatum-VTA has been implicated in regulating cortical glutamate signaling as well as VTA dopaminergic signaling, which regulates the motivational effect of ethanol. Moreover, several nucleoside transporters and receptors have been identified in astrocytes, which regulate not only adenosine-ATP neurotransmission, but also homeostasis of major inhibitory-excitatory neurotransmission (i.e. GABA or glutamate) through neuron-glial interactions. This review will present novel findings on the implications of adenosine and ATP neurotransmission in alcohol use disorders. PMID:21223299

  11. [Effect of glutamate on membrane potential and volume of the skeletal muscle fibers in rats following NO-synthase inhibition in vivo].

    PubMed

    Khairova, P A; Malomuzh, A I; Naumenko, N V; Urazaev, A Kh

    2002-11-01

    Cross-sectional area (CSA) of muscle fibers incubated in culture medium 199 for 3 hours dramatically increases, whereas resting membrane potential (RMP) decreases compared to "freshly-isolated" muscles. Both glutamate and sodium nitroprusside prevent these changes. MK-801, a specific inhibitor of NMDA-receptors, eliminates protective effects of glutamate on both CSA and RMP. NO-synthase inhibition in vivo promotes an increase of initial CSA and decrease of mean RMP. Under these conditions, effects of glutamate and sodium nitroprusside on CSA and RMP of denervated muscles are less obvious. It has been concluded that synaptic glutamate is able to participate in regulation of RMP and cell volume in muscle fibers through the activation of postsynaptic NMDA-receptors and muscle NO-synthase.

  12. Olfactory bulb short axon cell release of GABA and dopamine produces a temporally biphasic inhibition-excitation response in external tufted cells

    PubMed Central

    Liu, Shaolin; Plachez, Celine; Shao, Zuoyi; Puche, Adam; Shipley, Michael T.

    2013-01-01

    Evidence for co-expression of two or more classic neurotransmitters in neurons has increased but less is known about co-transmission. Ventral tegmental area (VTA) neurons, co-release dopamine (DA), the excitatory transmitter glutamate and the inhibitory transmitter GABA onto target cells in the striatum. Olfactory bulb (OB) short axon cells (SACs) form interglomerular connections and co-express markers for dopamine (DA) and GABA. Using an optogenetic approach we provide evidence that mouse OB SACs release both GABA and DA onto external tufted cells (ETCs) in other glomeruli. Optical activation of channelrhodopsin specifically expressed in DAergic SACs produced a GABAA receptor-mediated monosynaptic inhibitory response followed by DA-D1-like receptor-mediated excitatory response in ETCs. The GABAA receptor-mediated hyperpolarization activates Ih current in ETCs; synaptically released DA increases Ih, which enhances post-inhibitory rebound spiking. Thus, the opposing actions of synaptically released GABA and DA are functionally integrated by Ih to generate an inhibition-to-excitation “switch” in ETCs. Consistent with the established role of Ih in ETC burst firing, we show that endogenous DA release increases ETC spontaneous bursting frequency. ETCs transmit sensory signals to mitral/tufted output neurons and drive intraglomerular inhibition to shape glomerulus output to downstream olfactory networks. GABA and DA co-transmission from SACs to ETCs may play a key role in regulating output coding across the glomerular array. PMID:23407950

  13. Optogenetic Stimulation of Arcuate Nucleus Kiss1 Neurons Reveals a Steroid-Dependent Glutamatergic Input to POMC and AgRP Neurons in Male Mice

    PubMed Central

    Nestor, Casey C; Qiu, Jian; Padilla, Stephanie L.; Zhang, Chunguang; Bosch, Martha A.; Fan, Wei; Aicher, Sue A.; Palmiter, Richard D.

    2016-01-01

    Kisspeptin (Kiss1) neurons are essential for reproduction, but their role in the control of energy balance and other homeostatic functions remains unclear. Proopiomelanocortin (POMC) and agouti-related peptide (AgRP) neurons, located in the arcuate nucleus (ARC) of the hypothalamus, integrate numerous excitatory and inhibitory inputs to ultimately regulate energy homeostasis. Given that POMC and AgRP neurons are contacted by Kiss1 neurons in the ARC (Kiss1ARC) and they express androgen receptors, Kiss1ARC neurons may mediate the orexigenic action of testosterone via POMC and/or AgRP neurons. Quantitative PCR analysis of pooled Kiss1ARC neurons revealed that mRNA levels for Kiss1 and vesicular glutamate transporter 2 were higher in castrated male mice compared with gonad-intact males. Single-cell RT-PCR analysis of yellow fluorescent protein (YFP) ARC neurons harvested from males injected with AAV1-EF1α-DIO-ChR2:YFP revealed that 100% and 88% expressed mRNAs for Kiss1 and vesicular glutamate transporter 2, respectively. Whole-cell, voltage-clamp recordings from nonfluorescent postsynaptic ARC neurons showed that low frequency photo-stimulation (0.5 Hz) of Kiss1-ChR2:YFP neurons elicited a fast glutamatergic inward current in POMC and AgRP neurons. Paired-pulse, photo-stimulation revealed paired-pulse depression, which is indicative of greater glutamate release, in the castrated male mice compared with gonad-intact male mice. Group I and group II metabotropic glutamate receptor agonists depolarized and hyperpolarized POMC and AgRP neurons, respectively, which was mimicked by high frequency photo-stimulation (20 Hz) of Kiss1ARC neurons. Therefore, POMC and AgRP neurons receive direct steroid- and frequency-dependent glutamatergic synaptic input from Kiss1ARC neurons in male mice, which may be a critical pathway for Kiss1 neurons to help coordinate energy homeostasis and reproduction. PMID:27093227

  14. Changes in taste receptor cell [Ca2+]i modulate chorda tympani responses to bitter, sweet, and umami taste stimuli

    PubMed Central

    DeSimone, John A.; Phan, Tam-Hao T.; Ren, ZuoJun; Mummalaneni, Shobha

    2012-01-01

    The relationship between taste receptor cell (TRC) intracellular Ca2+ ([Ca2+]i) and rat chorda tympani (CT) nerve responses to bitter (quinine and denatonium), sweet (sucrose, glycine, and erythritol), and umami [monosodium glutamate (MSG) and MSG + inosine 5′-monophosphate (IMP)] taste stimuli was investigated before and after lingual application of ionomycin (Ca2+ ionophore) + Ca2+, 1,2-bis(2-aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid acetoxymethyl ester (BAPTA-AM; Ca2+ chelator), U73122 (phospholipase C blocker), thapsigargin (Ca2+-ATPase blocker), and diC8-PIP2 (synthetic phosphatidylinositol 4,5-bisphosphate). The phasic CT response to quinine was indifferent to changes in [Ca2+]i. However, a decrease in [Ca2+]i inhibited the tonic part of the CT response to quinine. The CT responses to sweet and umami stimuli were indifferent to changes in TRC [Ca2+]i. However, a decrease in [Ca2+]i attenuated the synergistic effects of ethanol on the CT response to sweet stimuli and of IMP on the glutamate CT response. U73122 and thapsigargin inhibited the phasic and tonic CT responses to bitter, sweet, and umami stimuli. Although diC8-PIP2 increased the CT response to bitter and sweet stimuli, it did not alter the CT response to glutamate but did inhibit the synergistic effect of IMP on the glutamate response. The results suggest that bitter, sweet, and umami taste qualities are transduced by [Ca2+]i-dependent and [Ca2+]i-independent mechanisms. Changes in TRC [Ca2+]i in the BAPTA-sensitive cytosolic compartment regulate quality-specific taste receptors and ion channels that are involved in the neural adaptation and mixture interactions. Changes in TRC [Ca2+]i in a separate subcompartment, sensitive to inositol trisphosphate and thapsigargin but inaccessible to BAPTA and ionomycin + Ca2+, are associated with neurotransmitter release. PMID:22993258

  15. Probing the catalytic roles of n2-site glutamate residues in Escherichia coli glutamine synthetase by mutagenesis.

    PubMed Central

    Witmer, M. R.; Palmieri-Young, D.; Villafranca, J. J.

    1994-01-01

    The contribution of metal ion ligand type and charge to catalysis and regulation at the lower affinity metal ion site (n2 site) of Escherichia coli glutamine synthetase (GS) was tested by mutagenesis and kinetic analysis. The 2 glutamate residues at the n2 site, E129 and E357, were changed to E129D, E129H, E357H, E357Q, and E357D, representing conservative and nonconservative alterations. Unadenylylated and fully adenylylated enzyme forms were studied. The Mn(2+)-KD values, UV-cis and fluorescence emission properties were similar for all mutants versus WTGS, except E129H. For kinetic determinations with both Mn2+ and Mg2+, nonconservative mutants (E357H, E129H, E357Q) showed lower biosynthetic activities than conservative mutants (E129D, E357D). Relative to WTGS, all the unadenylylated Mn(2+)-activated enzymes showed reduced kcat/Km values for ATP (> 7-fold) and for glutamate (> 10-fold). Of the unadenylylated Mg(2+)-activated enzymes, only E129D showed kinetic parameters competitive with WTGS, and adenylylated E129D was a 20-fold better catalyst than WTGS. We propose the n2-site metal ion activates ADP for departure in the phosphorylation of glutamate by ATP to generate gamma-glutamyl phosphate. Alteration of the charge density at this metal ion alters the transition-state energy for phosphoryl group transfer and may affect ATP binding and/or ADP release. Thus, the steady-state kinetic data suggest that modifying the charge density increases the transition-state energies for chemical steps. Importantly, the data demonstrate that each ligand position has a specialized spatial environment and the charge of the ligand modulates the catalytic steps occurring at the metal ion. The data are discussed in the context of the known X-ray structures of GS. PMID:7849593

  16. Calcium permeable AMPA receptors and autoreceptors in external tufted cells of rat olfactory bulb

    PubMed Central

    Ma, Jie; Lowe, Graeme

    2007-01-01

    Glomeruli are functional units of the olfactory bulb responsible for early processing of odor information encoded by single olfactory receptor genes. Glomerular neural circuitry includes numerous external tufted (ET) cells whose rhythmic burst firing may mediate synchronization of bulbar activity with the inhalation cycle. Bursting is entrained by glutamatergic input from olfactory nerve terminals, so specific properties of ionotropic glutamate receptors on ET cells are likely to be important determinants of olfactory processing. Particularly intriguing is recent evidence that α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) receptors of juxta-glomerular neurons may permeate calcium. This could provide a novel pathway for regulating ET cell signaling. We tested the hypothesis that ET cells express functional calcium-permeable AMPA receptors. In rat olfactory bulb slices, excitatory postsynaptic currents (EPSCs) in ET cells were evoked by olfactory nerve shock, and by uncaging glutamate. We found attenuation of AMPA/kainate EPSCs by 1-naphthyl acetyl-spermine (NAS), an open-channel blocker specific for calcium permeable AMPA receptors. Cyclothiazide strongly potentiated EPSCs, indicating a major contribution from AMPA receptors. The current-voltage (I-V) relation of uncaging EPSCs showed weak inward rectification which was lost after > ~ 10 min of whole-cell dialysis, and was absent in NAS. In kainate-stimulated slices, Co2+ ions permeated cells of the glomerular layer. Large AMPA EPSCs were accompanied by fluorescence signals in fluo-4 loaded cells, suggesting calcium permeation. Depolarizing pulses evoked slow tail currents with pharmacology consistent with involvement of calcium permeable AMPA autoreceptors. Tail currents were abolished by Cd2+ and NBQX, and were sensitive to NAS block. Glutamate autoreceptors were confirmed by uncaging intracellular calcium to evoke a large inward current. Our results provide evidence that calcium permeable AMPA receptors reside on ET cells, and are divided into at least two functionally distinct pools – postsynaptic receptors at olfactory nerve synaptic terminals, and autoreceptors sensitive to glutamate released from dendrodendritic synapses. PMID:17156930

  17. VGLUT1 mRNA and protein expression in the visual system of prosimian galagos (Otolemur garnetti)

    PubMed Central

    Balaram, Pooja; Hackett, Troy A; Kaas, Jon H

    2011-01-01

    The presynaptic storage and release of glutamate, an excitatory neurotransmitter, is modulated by a family of transport proteins known as vesicular glutamate transporters. Vesicular glutamate transporter 1 (VGLUT1) is widely distributed in the central nervous system of most mammalian and nonmammalian species, and regulates the uptake of glutamate into synaptic vesicles as well as the transport of filled glutamatergic vesicles to the terminal membrane during excitatory transmission. In rodents, VGLUT1 mRNA is primarily found in the neocortex, cerebellum, and hippocampus, and the VGLUT1 transport protein is involved in intercortical and corticothalamic projections that remain distinct from projections involving other VGLUT isoforms. With the exception of a few thalamic sensory nuclei, VGLUT1 mRNA is absent from subcortical areas and does not colocalize with other VGLUT mRNAs. VGLUT1 is similarly restricted to a few thalamic association nuclei and does not colocalize with other VGLUT proteins. However, recent work in primates has shown that VGLUT1 mRNA is also found in several subcortical nuclei as well as cortical areas, and that VGLUT1 may overlap with other VGLUT isoforms in glutamatergic projections. In order to expand current knowledge of VGLUT1 distributions in primates and gain insight on glutamatergic transmission in the visual system of primate species, we examined VGLUT1 mRNA and protein distributions in the lateral geniculate nucleus, pulvinar complex, superior colliculus, V1, V2, and the middle temporal area (MT) of prosimian galagos. We found that, similar to other studies in primates, VGLUT1 mRNA and protein are widely distributed in both subcortical and cortical areas. However, glutamatergic projections involving VGLUT1 are largely limited to intrinsic connections within subcortical and cortical areas, as well as the expected intercortical and corticothalamic projections. Additionally, VGLUT1 expression in galagos allowed us to identify laminar subdivisions of the superior colliculus, V1, V2, and MT. PMID:22912561

  18. Developmental increase of asynchronic glutamate release from hippocampal synapses in mutant taiep rat.

    PubMed

    Fuenzalida, Marco; Aliaga, Esteban; Olivares, Virginia; Roncagliolo, Manuel; Bonansco, Christian

    2009-06-01

    During development, regulation of the strength of synaptic transmission plays a central role in the formation of mammalian brain circuitries. In taiep rat, a neurological mutant with severe reactive astrogliosis and demyelination, we have described alterations in the synaptic transmission in central neurons, characterized by asynchronous excitatory postsynaptic currents ((ASYN)EPSCs), because of delayed neurotransmitter release. This hippocampal synaptic dysfunction has been described in juvenile mutants, concomitantly with the appearance of their main glial alterations. However, it is unknown whether this abnormal synaptic activity is correlated with some alterations of synaptic maturation during the postnatal development. Using intracellular electrophysiological recordings and immunohistochemistry assays, we studied the maturation of CA3-CA1 synapses in taiep rats. In taiep, the number of (ASYN)EPSCs evoked by conventional stimulation of Schaffer collaterals increases with age (P7-P30) and can be evoked by stimulation of single fiber. The amplitude and frequency of spontaneous EPSC (sEPSC) increased during the postnatal development in both control and taiep rats. However, in taiep, the increase of sEPSC frequency was significantly higher than in the control rats. The frequency of miniature EPSC (mEPSC) increased over the studied age range, without differences between taiep and control rats. In both control and taiep groups, the synaptophysin immunostaining (SYP-IR) in the stratum radiatum of CA1 region was significantly lower in the juvenile (P30) than in the neonatal (P10) rats, suggesting that synaptic pruning is normally occurring in taiep, even when SYP-IR was higher in taiep than control in both ages studied. These results suggest that, in taiep mutants, the asynchronic transmission is due to a dysfunction in the glutamate release mechanisms that progressively increases during development, which is not attributable to the existence of aberrant synaptic contacts. Synapse 63:502-509, 2009. (c) 2009 Wiley-Liss, Inc.

  19. Different pools of glutamate receptors mediate sensitivity to ambient glutamate in the cochlear nucleus.

    PubMed

    Yang, Yang; Xu-Friedman, Matthew A

    2015-06-01

    Ambient glutamate plays an important role in pathological conditions, such as stroke, but its role during normal activity is not clear. In addition, it is not clear how ambient glutamate acts on glutamate receptors with varying affinities or subcellular localizations. To address this, we studied "endbulb of Held" synapses, which are formed by auditory nerve fibers onto bushy cells (BCs) in the anteroventral cochlear nucleus. When ambient glutamate was increased by applying the glutamate reuptake inhibitor TFB-TBOA, BCs depolarized as a result of activation of N-methyl-D-aspartate receptors (NMDARs) and group I metabotropic glutamate receptors (mGluRs). Application of antagonists against NMDARs (in 0 Mg(2+)) or mGluRs caused hyperpolarization, indicating that these receptors were bound by a tonic source of glutamate. AMPA receptors did not show these effects, consistent with their lower glutamate affinity. We also evaluated the subcellular localization of the receptors activated by ambient glutamate. The mGluRs were not activated by synaptic stimulation and thus appear to be exclusively extrasynaptic. By contrast, NMDARs in both synaptic and extrasynaptic compartments were activated by ambient glutamate, as shown using the use-dependent antagonist MK-801. Levels of ambient glutamate appeared to be regulated in a spike-independent manner, and glia likely play a major role. These low levels of ambient glutamate likely have functional consequences, as even low concentrations of TBOA caused significant increases in BC spiking following synaptic stimulation. These results indicate that normal resting potential appears to be poised in the region of maximal sensitivity to small changes in ambient glutamate. Copyright © 2015 the American Physiological Society.

  20. A microRNA negative feedback loop downregulates vesicle transport and inhibits fear memory

    PubMed Central

    Mathew, Rebecca S; Tatarakis, Antonis; Rudenko, Andrii; Johnson-Venkatesh, Erin M; Yang, Yawei J; Murphy, Elisabeth A; Todd, Travis P; Schepers, Scott T; Siuti, Nertila; Martorell, Anthony J; Falls, William A; Hammack, Sayamwong E; Walsh, Christopher A; Tsai, Li-Huei; Umemori, Hisashi; Bouton, Mark E; Moazed, Danesh

    2016-01-01

    The SNARE-mediated vesicular transport pathway plays major roles in synaptic remodeling associated with formation of long-term memories, but the mechanisms that regulate this pathway during memory acquisition are not fully understood. Here we identify miRNAs that are up-regulated in the rodent hippocampus upon contextual fear-conditioning and identify the vesicular transport and synaptogenesis pathways as the major targets of the fear-induced miRNAs. We demonstrate that miR-153, a member of this group, inhibits the expression of key components of the vesicular transport machinery, and down-regulates Glutamate receptor A1 trafficking and neurotransmitter release. MiR-153 expression is specifically induced during LTP induction in hippocampal slices and its knockdown in the hippocampus of adult mice results in enhanced fear memory. Our results suggest that miR-153, and possibly other fear-induced miRNAs, act as components of a negative feedback loop that blocks neuronal hyperactivity at least partly through the inhibition of the vesicular transport pathway. DOI: http://dx.doi.org/10.7554/eLife.22467.001 PMID:28001126

Top