Sample records for regulate insulin secretion

  1. Synaptotagmin 4 Regulates Pancreatic β Cell Maturation by Modulating the Ca2+ Sensitivity of Insulin Secretion Vesicles.

    PubMed

    Huang, Chen; Walker, Emily M; Dadi, Prasanna K; Hu, Ruiying; Xu, Yanwen; Zhang, Wenjian; Sanavia, Tiziana; Mun, Jisoo; Liu, Jennifer; Nair, Gopika G; Tan, Hwee Yim Angeline; Wang, Sui; Magnuson, Mark A; Stoeckert, Christian J; Hebrok, Matthias; Gannon, Maureen; Han, Weiping; Stein, Roland; Jacobson, David A; Gu, Guoqiang

    2018-05-07

    Islet β cells from newborn mammals exhibit high basal insulin secretion and poor glucose-stimulated insulin secretion (GSIS). Here we show that β cells of newborns secrete more insulin than adults in response to similar intracellular Ca 2+ concentrations, suggesting differences in the Ca 2+ sensitivity of insulin secretion. Synaptotagmin 4 (Syt4), a non-Ca 2+ binding paralog of the β cell Ca 2+ sensor Syt7, increased by ∼8-fold during β cell maturation. Syt4 ablation increased basal insulin secretion and compromised GSIS. Precocious Syt4 expression repressed basal insulin secretion but also impaired islet morphogenesis and GSIS. Syt4 was localized on insulin granules and Syt4 levels inversely related to the number of readily releasable vesicles. Thus, transcriptional regulation of Syt4 affects insulin secretion; Syt4 expression is regulated in part by Myt transcription factors, which repress Syt4 transcription. Finally, human SYT4 regulated GSIS in EndoC-βH1 cells, a human β cell line. These findings reveal the role that altered Ca 2+ sensing plays in regulating β cell maturation. Copyright © 2018 Elsevier Inc. All rights reserved.

  2. Regulation of Insulin Synthesis and Secretion and Pancreatic Beta-Cell Dysfunction in Diabetes

    PubMed Central

    Fu, Zhuo; Gilbert, Elizabeth R.; Liu, Dongmin

    2014-01-01

    Pancreatic β-cell dysfunction plays an important role in the pathogenesis of both type 1 and type 2 diabetes. Insulin, which is produced in β-cells, is a critical regulator of metabolism. Insulin is synthesized as preproinsulin and processed to proinsulin. Proinsulin is then converted to insulin and C-peptide and stored in secretary granules awaiting release on demand. Insulin synthesis is regulated at both the transcriptional and translational level. The cis-acting sequences within the 5′ flanking region and trans-activators including paired box gene 6 (PAX6), pancreatic and duodenal homeobox-1(PDX-1), MafA, and B-2/Neurogenic differentiation 1 (NeuroD1) regulate insulin transcription, while the stability of preproinsulin mRNA and its untranslated regions control protein translation. Insulin secretion involves a sequence of events in β-cells that lead to fusion of secretory granules with the plasma membrane. Insulin is secreted primarily in response to glucose, while other nutrients such as free fatty acids and amino acids can augment glucose-induced insulin secretion. In addition, various hormones, such as melatonin, estrogen, leptin, growth hormone, and glucagon like peptide-1 also regulate insulin secretion. Thus, the β-cell is a metabolic hub in the body, connecting nutrient metabolism and the endocrine system. Although an increase in intracellular [Ca2+] is the primary insulin secretary signal, cAMP signaling-dependent mechanisms are also critical in the regulation of insulin secretion. This article reviews current knowledge on how β-cells synthesize and secrete insulin. In addition, this review presents evidence that genetic and environmental factors can lead to hyperglycemia, dyslipidemia, inflammation, and autoimmunity, resulting in β-cell dysfunction, thereby triggering the pathogenesis of diabetes. PMID:22974359

  3. Antiaging Gene Klotho Enhances Glucose-Induced Insulin Secretion by Up-Regulating Plasma Membrane Levels of TRPV2 in MIN6 β-Cells

    PubMed Central

    Lin, Yi

    2012-01-01

    Klotho is a recently discovered antiaging gene. Klotho is expressed in mouse pancreatic islets and in insulinoma β-cells (MIN6 β-cells). The purpose of this study was to investigate whether Klotho plays a role in the regulation of insulin secretion in MIN6 β-cells by overexpression and silencing of Klotho. It is interesting that overexpression of Klotho increased glucose-induced insulin secretion in MIN6 β-cells. Overexpression of mouse Klotho protein also significantly increased plasma membrane levels of transient receptor potential V2 (TRPV2), calcium entry, and the glucose-induced increase in intracellular calcium. On the other hand, knockdown of Klotho by siRNA significantly decreased plasma membrane levels of TRPV2 and attenuated glucose-induced calcium entry and insulin secretion. Tranilast, a selective inhibitor of TRPV2, abolished the promoting effects of overexpression of Klotho on glucose-induced calcium entry and insulin secretion in MIN6 cells. Thus, TRPV2 lies in the downstream of Klotho in the regulation of glucose-induced insulin secretion. This study demonstrated, for the first time, that Klotho may enhance glucose-induced insulin secretion by up-regulating plasma membrane levels of TRPV2 and thus glucose-induced calcium responses. These findings reveal a previously unidentified role of Klotho in the regulation of glucose-induced insulin secretion in MIN6 β-cells. PMID:22597535

  4. Antiaging gene Klotho enhances glucose-induced insulin secretion by up-regulating plasma membrane levels of TRPV2 in MIN6 β-cells.

    PubMed

    Lin, Yi; Sun, Zhongjie

    2012-07-01

    Klotho is a recently discovered antiaging gene. Klotho is expressed in mouse pancreatic islets and in insulinoma β-cells (MIN6 β-cells). The purpose of this study was to investigate whether Klotho plays a role in the regulation of insulin secretion in MIN6 β-cells by overexpression and silencing of Klotho. It is interesting that overexpression of Klotho increased glucose-induced insulin secretion in MIN6 β-cells. Overexpression of mouse Klotho protein also significantly increased plasma membrane levels of transient receptor potential V2 (TRPV2), calcium entry, and the glucose-induced increase in intracellular calcium. On the other hand, knockdown of Klotho by siRNA significantly decreased plasma membrane levels of TRPV2 and attenuated glucose-induced calcium entry and insulin secretion. Tranilast, a selective inhibitor of TRPV2, abolished the promoting effects of overexpression of Klotho on glucose-induced calcium entry and insulin secretion in MIN6 cells. Thus, TRPV2 lies in the downstream of Klotho in the regulation of glucose-induced insulin secretion. This study demonstrated, for the first time, that Klotho may enhance glucose-induced insulin secretion by up-regulating plasma membrane levels of TRPV2 and thus glucose-induced calcium responses. These findings reveal a previously unidentified role of Klotho in the regulation of glucose-induced insulin secretion in MIN6 β-cells.

  5. Molecular Mechanisms of Insulin Secretion and Insulin Action.

    ERIC Educational Resources Information Center

    Flatt, Peter R.; Bailey, Clifford J.

    1991-01-01

    Information and current ideas on the factors regulating insulin secretion, the mechanisms underlying the secretion and biological actions of insulin, and the main characteristics of diabetes mellitus are presented. (Author)

  6. Sirt1 Regulates Insulin Secretion by Repressing UCP2 in Pancreatic β Cells

    PubMed Central

    Bordone, Laura; Jhala, Ulupi S; Apfeld, Javier; McDonagh, Thomas; Lemieux, Madeleine; McBurney, Michael; Szilvasi, Akos; Easlon, Erin J; Lin, Su-Ju; Guarente, Leonard

    2006-01-01

    Sir2 and insulin/IGF-1 are the major pathways that impinge upon aging in lower organisms. In Caenorhabditis elegans a possible genetic link between Sir2 and the insulin/IGF-1 pathway has been reported. Here we investigate such a link in mammals. We show that Sirt1 positively regulates insulin secretion in pancreatic β cells. Sirt1 represses the uncoupling protein (UCP) gene UCP2 by binding directly to the UCP2 promoter. In β cell lines in which Sirt1 is reduced by SiRNA, UCP2 levels are elevated and insulin secretion is blunted. The up-regulation of UCP2 is associated with a failure of cells to increase ATP levels after glucose stimulation. Knockdown of UCP2 restores the ability to secrete insulin in cells with reduced Sirt1, showing that UCP2 causes the defect in glucose-stimulated insulin secretion. Food deprivation induces UCP2 in mouse pancreas, which may occur via a reduction in NAD (a derivative of niacin) levels in the pancreas and down-regulation of Sirt1. Sirt1 knockout mice display constitutively high UCP2 expression. Our findings show that Sirt1 regulates UCP2 in β cells to affect insulin secretion. PMID:16366736

  7. Intracellular and extracellular adenosine triphosphate in regulation of insulin secretion from pancreatic β cells (β).

    PubMed

    Wang, Chunjiong; Geng, Bin; Cui, Qinghua; Guan, Youfei; Yang, Jichun

    2014-03-01

    Adenosine triphosphate (ATP) synthesis and release in mitochondria play critical roles in regulating insulin secretion in pancreatic β cells. Mitochondrial dysfunction is mainly characterized by a decrease in ATP production, which is a central event in the progression of pancreatic β cell dysfunction and diabetes. ATP has been demonstrated to regulate insulin secretion via several pathways: (i) Intracellular ATP directly closes ATP-sensitive potassium channel to open L-type calcium channel, leading to an increase in free cytosolic calcium levels and exocytosis of insulin granules; (ii) A decrease in ATP production is always associated with an increase in production of reactive oxygen species, which exerts deleterious effects on pancreatic β cell survival and insulin secretion; and (iii) ATP can be co-secreted with insulin from pancreatic β cells, and the released ATP functions as an autocrine signal to modulate insulin secretory process via P2 receptors on the cell membrane. In this review, the recent findings regarding the role and mechanism of ATP synthesis and release in regulation of insulin secretion from pancreatic β cells will be summarized and discussed. © 2013 Ruijin Hospital, Shanghai Jiaotong University School of Medicine and Wiley Publishing Asia Pty Ltd.

  8. Mitochondrial metabolism of pyruvate is essential for regulating glucose-stimulated insulin secretion.

    PubMed

    Patterson, Jessica N; Cousteils, Katelyn; Lou, Jennifer W; Manning Fox, Jocelyn E; MacDonald, Patrick E; Joseph, Jamie W

    2014-05-09

    It is well known that mitochondrial metabolism of pyruvate is critical for insulin secretion; however, we know little about how pyruvate is transported into mitochondria in β-cells. Part of the reason for this lack of knowledge is that the carrier gene was only discovered in 2012. In the current study, we assess the role of the recently identified carrier in the regulation of insulin secretion. Our studies show that β-cells express both mitochondrial pyruvate carriers (Mpc1 and Mpc2). Using both pharmacological inhibitors and siRNA-mediated knockdown of the MPCs we show that this carrier plays a key role in regulating insulin secretion in clonal 832/13 β-cells as well as rat and human islets. We also show that the MPC is an essential regulator of both the ATP-regulated potassium (KATP) channel-dependent and -independent pathways of insulin secretion. Inhibition of the MPC blocks the glucose-stimulated increase in two key signaling molecules involved in regulating insulin secretion, the ATP/ADP ratio and NADPH/NADP(+) ratio. The MPC also plays a role in in vivo glucose homeostasis as inhibition of MPC by the pharmacological inhibitor α-cyano-β-(1-phenylindol-3-yl)-acrylate (UK5099) resulted in impaired glucose tolerance. These studies clearly show that the newly identified mitochondrial pyruvate carrier sits at an important branching point in nutrient metabolism and that it is an essential regulator of insulin secretion.

  9. Neuronal calcium sensor synaptotagmin-9 is not involved in the regulation of glucose homeostasis or insulin secretion.

    PubMed

    Gustavsson, Natalia; Wang, Xiaorui; Wang, Yue; Seah, Tingting; Xu, Jun; Radda, George K; Südhof, Thomas C; Han, Weiping

    2010-11-09

    Insulin secretion is a complex and highly regulated process. It is well established that cytoplasmic calcium is a key regulator of insulin secretion, but how elevated intracellular calcium triggers insulin granule exocytosis remains unclear, and we have only begun to define the identities of proteins that are responsible for sensing calcium changes and for transmitting the calcium signal to release machineries. Synaptotagmins are primarily expressed in brain and endocrine cells and exhibit diverse calcium binding properties. Synaptotagmin-1, -2 and -9 are calcium sensors for fast neurotransmitter release in respective brain regions, while synaptotagmin-7 is a positive regulator of calcium-dependent insulin release. Unlike the three neuronal calcium sensors, whose deletion abolished fast neurotransmitter release, synaptotagmin-7 deletion resulted in only partial loss of calcium-dependent insulin secretion, thus suggesting that other calcium-sensors must participate in the regulation of insulin secretion. Of the other synaptotagmin isoforms that are present in pancreatic islets, the neuronal calcium sensor synaptotagmin-9 is expressed at the highest level after synaptotagmin-7. In this study we tested whether synaptotagmin-9 participates in the regulation of glucose-stimulated insulin release by using pancreas-specific synaptotagmin-9 knockout (p-S9X) mice. Deletion of synaptotagmin-9 in the pancreas resulted in no changes in glucose homeostasis or body weight. Glucose tolerance, and insulin secretion in vivo and from isolated islets were not affected in the p-S9X mice. Single-cell capacitance measurements showed no difference in insulin granule exocytosis between p-S9X and control mice. Thus, synaptotagmin-9, although a major calcium sensor in the brain, is not involved in the regulation of glucose-stimulated insulin release from pancreatic β-cells.

  10. Dopamine Synthesis and D3 Receptor Activation in Pancreatic β-Cells Regulates Insulin Secretion and Intracellular [Ca2+] Oscillations

    PubMed Central

    Ustione, Alessandro

    2012-01-01

    Pancreatic islets are critical for glucose homeostasis via the regulated secretion of insulin and other hormones. We propose a novel mechanism that regulates insulin secretion from β-cells within mouse pancreatic islets: a dopaminergic negative feedback acting on insulin secretion. We show that islets are a site of dopamine synthesis and accumulation outside the central nervous system. We show that both dopamine and its precursor l-dopa inhibit glucose-stimulated insulin secretion, and this inhibition correlates with a reduction in frequency of the intracellular [Ca2+] oscillations. We further show that the effects of dopamine are abolished by a specific antagonist of the dopamine receptor D3. Because the dopamine transporter and dopamine receptors are expressed in the islets, we propose that cosecretion of dopamine with insulin activates receptors on the β-cell surface. D3 receptor activation results in changes in intracellular [Ca2+] dynamics, which, in turn, lead to lowered insulin secretion. Because blocking dopaminergic negative feedback increases insulin secretion, expanding the knowledge of this pathway in β-cells might offer a potential new target for the treatment of type 2 diabetes. PMID:22918877

  11. Secretagogin affects insulin secretion in pancreatic β-cells by regulating actin dynamics and focal adhesion.

    PubMed

    Yang, Seo-Yun; Lee, Jae-Jin; Lee, Jin-Hee; Lee, Kyungeun; Oh, Seung Hoon; Lim, Yu-Mi; Lee, Myung-Shik; Lee, Kong-Joo

    2016-06-15

    Secretagogin (SCGN), a Ca(2+)-binding protein having six EF-hands, is selectively expressed in pancreatic β-cells and neuroendocrine cells. Previous studies suggested that SCGN enhances insulin secretion by functioning as a Ca(2+)-sensor protein, but the underlying mechanism has not been elucidated. The present study explored the mechanism by which SCGN enhances glucose-induced insulin secretion in NIT-1 insulinoma cells. To determine whether SCGN influences the first or second phase of insulin secretion, we examined how SCGN affects the kinetics of insulin secretion in NIT-1 cells. We found that silencing SCGN suppressed the second phase of insulin secretion induced by glucose and H2O2, but not the first phase induced by KCl stimulation. Recruitment of insulin granules in the second phase of insulin secretion was significantly impaired by knocking down SCGN in NIT-1 cells. In addition, we found that SCGN interacts with the actin cytoskeleton in the plasma membrane and regulates actin remodelling in a glucose-dependent manner. Since actin dynamics are known to regulate focal adhesion, a critical step in the second phase of insulin secretion, we examined the effect of silencing SCGN on focal adhesion molecules, including FAK (focal adhesion kinase) and paxillin, and the cell survival molecules ERK1/2 (extracellular-signal-regulated kinase 1/2) and Akt. We found that glucose- and H2O2-induced activation of FAK, paxillin, ERK1/2 and Akt was significantly blocked by silencing SCGN. We conclude that SCGN controls glucose-stimulated insulin secretion and thus may be useful in the therapy of Type 2 diabetes. © 2016 The Author(s).

  12. Gap junctions and other mechanisms of cell-cell communication regulate basal insulin secretion in the pancreatic islet.

    PubMed

    Benninger, R K P; Head, W Steven; Zhang, Min; Satin, Leslie S; Piston, David W

    2011-11-15

    Cell-cell communication in the islet of Langerhans is important for the regulation of insulin secretion. Gap-junctions coordinate oscillations in intracellular free-calcium ([Ca(2+)](i)) and insulin secretion in the islet following elevated glucose. Gap-junctions can also ensure that oscillatory [Ca(2+)](i) ceases when glucose is at a basal levels. We determine the roles of gap-junctions and other cell-cell communication pathways in the suppression of insulin secretion under basal conditions. Metabolic, electrical and insulin secretion levels were measured from islets lacking gap-junction coupling following deletion of connexion36 (Cx36(-/-)), and these results were compared to those obtained using fully isolated β-cells. K(ATP) loss-of-function islets provide a further experimental model to specifically study gap-junction mediated suppression of electrical activity. In isolated β-cells or Cx36(-/-) islets, elevations in [Ca(2+)](i) persisted in a subset of cells even at basal glucose. Isolated β-cells showed elevated insulin secretion at basal glucose; however, insulin secretion from Cx36(-/-) islets was minimally altered. [Ca(2+)](i) was further elevated under basal conditions, but insulin release still suppressed in K(ATP) loss-of-function islets. Forced elevation of cAMP led to PKA-mediated increases in insulin secretion from islets lacking gap-junctions, but not from islets expressing Cx36 gap junctions. We conclude there is a redundancy in how cell-cell communication in the islet suppresses insulin release. Gap junctions suppress cellular heterogeneity and spontaneous [Ca(2+)](i) signals, while other juxtacrine mechanisms, regulated by PKA and glucose, suppress more distal steps in exocytosis. Each mechanism is sufficiently robust to compensate for a loss of the other and still suppress basal insulin secretion.

  13. Minireview: Dopaminergic Regulation of Insulin Secretion from the Pancreatic Islet

    PubMed Central

    Ustione, Alessandro

    2013-01-01

    Exogenous dopamine inhibits insulin secretion from pancreatic β-cells, but the lack of dopaminergic neurons in pancreatic islets has led to controversy regarding the importance of this effect. Recent data, however, suggest a plausible physiologic role for dopamine in the regulation of insulin secretion. We review the literature underlying our current understanding of dopaminergic signaling that can down-regulate glucose-stimulated insulin secretion from pancreatic islets. In this negative feedback loop, dopamine is synthesized in the β-cells from circulating l-dopa, serves as an autocrine signal that is cosecreted with insulin, and causes a tonic inhibition on glucose-stimulated insulin secretion. On the whole animal scale, l-dopa is produced by cells in the gastrointestinal tract, and its concentration in the blood plasma increases following a mixed meal. By reviewing the outcome of certain types of bariatric surgery that result in rapid amelioration of glucose tolerance, we hypothesize that dopamine serves as an “antiincretin” signal that counterbalances the stimulatory effect of glucagon-like peptide 1. PMID:23744894

  14. Impaired Insulin Secretion and Enhanced Insulin Sensitivity in Cholecystokinin-Deficient Mice

    PubMed Central

    Lo, Chun-Min; Obici, Silvana; Dong, H. Henry; Haas, Michael; Lou, Dawnwen; Kim, Dae Hyun; Liu, Min; D’Alessio, David; Woods, Stephen C.; Tso, Patrick

    2011-01-01

    OBJECTIVE Cholecystokinin (CCK) is released in response to lipid intake and stimulates insulin secretion. We hypothesized that CCK deficiency would alter the regulation of insulin secretion and glucose homeostasis. RESEARCH DESIGN AND METHODS We used quantitative magnetic resonance imaging to determine body composition and studied plasma glucose and insulin secretion of CCK gene knockout (CCK-KO) mice and their wild-type controls using intraperitoneal glucose and arginine infusions. The area of anti-insulin staining in pancreatic islets was measured by immunohistochemistry. Insulin sensitivity was assessed with euglycemic-hyperinsulemic clamps. RESULTS CCK-KO mice fed a low-fat diet had a reduced acute insulin response to glucose but a normal response to arginine and normal glucose tolerance, associated with a trend toward greater insulin sensitivity. However, when fed a high-fat diet (HFD) for 10 weeks, CCK-KO mice developed glucose intolerance despite increased insulin sensitivity that was associated with low insulin secretion in response to both glucose and arginine. The deficiency of insulin secretion in CCK-KO mice was not associated with changes in β-cell or islet size. CONCLUSIONS CCK is involved in regulating insulin secretion and glucose tolerance in mice eating an HFD. The impaired insulin response to intraperitoneal stimuli that do not typically elicit CCK release suggests that this hormone has chronic effects on β-cell adaptation to diet in addition to acute incretin actions. PMID:21602512

  15. Exocyst sec5 regulates exocytosis of newcomer insulin granules underlying biphasic insulin secretion.

    PubMed

    Xie, Li; Zhu, Dan; Kang, Youhou; Liang, Tao; He, Yu; Gaisano, Herbert Y

    2013-01-01

    The exocyst complex subunit Sec5 is a downstream effector of RalA-GTPase which promotes RalA-exocyst interactions and exocyst assembly, serving to tether secretory granules to docking sites on the plasma membrane. We recently reported that RalA regulates biphasic insulin secretion in pancreatic islet β cells in part by tethering insulin secretory granules to Ca(2+) channels to assist excitosome assembly. Here, we assessed β cell exocytosis by patch clamp membrane capacitance measurement and total internal reflection fluorescence microscopy to investigate the role of Sec5 in regulating insulin secretion. Sec5 is present in human and rodent islet β cells, localized to insulin granules. Sec5 protein depletion in rat INS-1 cells inhibited depolarization-induced release of primed insulin granules from both readily-releasable pool and mobilization from the reserve pool. This reduction in insulin exocytosis was attributed mainly to reduction in recruitment and exocytosis of newcomer insulin granules that undergo minimal docking time at the plasma membrane, but which encompassed a larger portion of biphasic glucose stimulated insulin secretion. Sec5 protein knockdown had little effect on predocked granules, unless vigorously stimulated by KCl depolarization. Taken together, newcomer insulin granules in β cells are more sensitive than predocked granules to Sec5 regulation.

  16. Fenofibrate Decreases Insulin Clearance and Insulin Secretion to Maintain Insulin Sensitivity*

    PubMed Central

    Ramakrishnan, Sadeesh K.; Russo, Lucia; Ghanem, Simona S.; Patel, Payal R.; Oyarce, Ana Maria; Heinrich, Garrett; Najjar, Sonia M.

    2016-01-01

    High fat diet reduces the expression of CEACAM1 (carcinoembryonic antigen-related cell adhesion molecule 1), a transmembrane glycoprotein that promotes insulin clearance and down-regulates fatty acid synthase activity in the liver upon its phosphorylation by the insulin receptor. Because peroxisome proliferator-activated receptor α (PPARα) transcriptionally suppresses CEACAM1 expression, we herein examined whether high fat down-regulates CEACAM1 expression in a PPARα-dependent mechanism. By activating PPARα, the lipid-lowering drug fenofibrate reverses dyslipidemia and improves insulin sensitivity in type 2 diabetes in part by promoting fatty acid oxidation. Despite reducing glucose-stimulated insulin secretion, fenofibrate treatment does not result in insulin insufficiency. To examine whether this is mediated by a parallel decrease in CEACAM1-dependent hepatic insulin clearance pathways, we fed wild-type and Pparα−/− null mice a high fat diet supplemented with either fenofibrate or Wy14643, a selective PPARα agonist, and examined their effect on insulin metabolism and action. We demonstrated that the decrease in insulin secretion by fenofibrate and Wy14643 is accompanied by reduction in insulin clearance in wild-type but not Pparα−/− mice, thereby maintaining normoinsulinemia and insulin sensitivity despite continuous high fat intake. Intact insulin secretion in L-CC1 mice with protected hepatic insulin clearance and CEACAM1 levels provides in vivo evidence that insulin secretion responds to changes in insulin clearance to maintain physiologic insulin and glucose homeostasis. These results also emphasize the relevant role of hepatic insulin extraction in regulating insulin sensitivity. PMID:27662905

  17. Control of Insulin Secretion by Cholinergic Signaling in the Human Pancreatic Islet

    PubMed Central

    Molina, Judith; Rodriguez-Diaz, Rayner; Fachado, Alberto; Jacques-Silva, M. Caroline

    2014-01-01

    Acetylcholine regulates hormone secretion from the pancreatic islet and is thus crucial for glucose homeostasis. Little is known, however, about acetylcholine (cholinergic) signaling in the human islet. We recently reported that in the human islet, acetylcholine is primarily a paracrine signal released from α-cells rather than primarily a neural signal as in rodent islets. In this study, we demonstrate that the effects acetylcholine produces in the human islet are different and more complex than expected from studies conducted on cell lines and rodent islets. We found that endogenous acetylcholine not only stimulates the insulin-secreting β-cell via the muscarinic acetylcholine receptors M3 and M5, but also the somatostatin-secreting δ-cell via M1 receptors. Because somatostatin is a strong inhibitor of insulin secretion, we hypothesized that cholinergic input to the δ-cell indirectly regulates β-cell function. Indeed, when all muscarinic signaling was blocked, somatostatin secretion decreased and insulin secretion unexpectedly increased, suggesting a reduced inhibitory input to β-cells. Endogenous cholinergic signaling therefore provides direct stimulatory and indirect inhibitory input to β-cells to regulate insulin secretion from the human islet. PMID:24658304

  18. CNC-bZIP protein Nrf1-dependent regulation of glucose-stimulated insulin secretion.

    PubMed

    Zheng, Hongzhi; Fu, Jingqi; Xue, Peng; Zhao, Rui; Dong, Jian; Liu, Dianxin; Yamamoto, Masayuki; Tong, Qingchun; Teng, Weiping; Qu, Weidong; Zhang, Qiang; Andersen, Melvin E; Pi, Jingbo

    2015-04-01

    The inability of pancreatic β-cells to secrete sufficient insulin in response to glucose stimulation is a major contributing factor to the development of type 2 diabetes (T2D). We investigated both the in vitro and in vivo effects of deficiency of nuclear factor-erythroid 2-related factor 1 (Nrf1) in β-cells on β-cell function and glucose homeostasis. Silencing of Nrf1 in β-cells leads to a pre-T2D phenotype with disrupted glucose metabolism and impaired insulin secretion. Specifically, MIN6 β-cells with stable knockdown of Nrf1 (Nrf1-KD) and isolated islets from β-cell-specific Nrf1-knockout [Nrf1(b)-KO] mice displayed impaired glucose responsiveness, including elevated basal insulin release and decreased glucose-stimulated insulin secretion (GSIS). Nrf1(b)-KO mice exhibited severe fasting hyperinsulinemia, reduced GSIS, and glucose intolerance. Silencing of Nrf1 in MIN6 cells resulted in oxidative stress and altered glucose metabolism, with increases in both glucose uptake and aerobic glycolysis, which is associated with the elevated basal insulin release and reduced glucose responsiveness. The elevated glycolysis and reduced glucose responsiveness due to Nrf1 silencing likely result from altered expression of glucose metabolic enzymes, with induction of high-affinity hexokinase 1 and suppression of low-affinity glucokinase. Our study demonstrated a novel role of Nrf1 in regulating glucose metabolism and insulin secretion in β-cells and characterized Nrf1 as a key transcription factor that regulates the coupling of glycolysis and mitochondrial metabolism and GSIS. Nrf1 plays critical roles in regulating glucose metabolism, mitochondrial function, and insulin secretion, suggesting that Nrf1 may be a novel target to improve the function of insulin-secreting β-cells.

  19. E-cadherin and cell adhesion: a role in architecture and function in the pancreatic islet.

    PubMed

    Rogers, Gareth J; Hodgkin, Matthew N; Squires, Paul E

    2007-01-01

    The efficient secretion of insulin from beta-cells requires extensive intra-islet communication. The cell surface adhesion protein epithelial (E)-cadherin (ECAD) establishes and maintains epithelial tissues such as the islets of Langerhans. In this study, the role of ECAD in regulating insulin secretion from pseudoislets was investigated. The effect of an immuno-neutralising ECAD on gross morphology, cytosolic calcium signalling, direct cell-to-cell communication and insulin secretion was assessed by fura-2 microfluorimetry, Lucifer Yellow dye injection and insulin ELISA in an insulin-secreting model system. Antibody blockade of ECAD reduces glucose-evoked changes in [Ca(2+)](i) and insulin secretion. Neutralisation of ECAD causes a breakdown in the glucose-stimulated synchronicity of calcium oscillations between discrete regions within the pseudoislet, and the transfer of dye from an individual cell within a cell cluster is attenuated in the absence of ECAD ligation, demonstrating that gap junction communication is disrupted. The functional consequence of neutralising ECAD is a significant reduction in insulin secretion. Cell adhesion via ECAD has distinct roles in the regulation of intercellular communication between beta-cells within islets, with potential repercussions for insulin secretion.

  20. Neuromedin U suppresses glucose-stimulated insulin secretion in pancreatic β cells.

    PubMed

    Zhang, Weidong; Sakoda, Hideyuki; Miura, Ayako; Shimizu, Koichiro; Mori, Kenji; Miyazato, Mikiya; Takayama, Kentaro; Hayashi, Yoshio; Nakazato, Masamitsu

    2017-11-04

    Neuromedin U (NMU), a highly conserved peptide in mammals, is implicated in energy homeostasis and glycemic control, and may also be involved in the regulation of adipoinsular axis function. However, the role of NMU in regulating insulin secretion has not been clearly established. In this study, we investigated the role of NMU in the regulation of insulin secretion both in vitro and in vivo. We found that NMU and NMU receptor (NMUR) 1 were expressed in mouse islets and β cell-derived MIN6-K8 cells. In mice, NMU suppressed glucose-stimulated insulin secretion (GSIS) both in vitro and in vivo. Additionally, an NMUR1 agonist inhibited GSIS in both MIN6-K8 cells and mice islets. Moreover, NMU attenuated intracellular Ca 2+ influx in MIN6-K8 cells, potentially causing a decrease in insulin secretion. siNmu-transfected MIN6-K8 cells showed elevated GSIS. Treatment with anti-NMU IgG increased GSIS in isolated mouse pancreatic islets. These results suggested that NMU can act directly on β cells through NMUR1 in an autocrine or paracrine fashion to suppress insulin secretion. Collectively, our results highlight the crucial role of NMU in suppressing pancreatic insulin secretion, and may improve our understanding of glucose homeostasis. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  1. Important role of heparan sulfate in postnatal islet growth and insulin secretion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takahashi, Iwao; Noguchi, Naoya; Nata, Koji

    2009-05-22

    Heparan sulfate (HS) binds with several signaling molecules and regulates ligand-receptor interactions, playing an essential role in embryonic development. Here we showed that HS was intensively expressed in pancreatic islet {beta}-cells after 1 week of age in mice. The enzymatic removal of HS in isolated islets resulted in attenuated glucose-induced insulin secretion with a concomitant reduction in gene expression of several key components in the insulin secretion machinery. We further depleted islet HS by inactivating the exostosin tumor-like 3 gene specifically in {beta}-cells. These mice exhibited abnormal islet morphology with reduced {beta}-cell proliferation after 1 week of age and glucosemore » intolerance due to defective insulin secretion. These results demonstrate that islet HS is involved in the regulation of postnatal islet maturation and required to ensure normal insulin secretion.« less

  2. Leucine Stimulates Insulin Secretion via Down-regulation of Surface Expression of Adrenergic α2A Receptor through the mTOR (Mammalian Target of Rapamycin) Pathway

    PubMed Central

    Yang, Jun; Dolinger, Michael; Ritaccio, Gabrielle; Mazurkiewicz, Joseph; Conti, David; Zhu, Xinjun; Huang, Yunfei

    2012-01-01

    The amino acid leucine is a potent secretagogue, capable of inducing insulin secretion. It also plays an important role in the regulation of mTOR activity, therefore, providing impetus to investigate if a leucine-sensing mechanism in the mTOR pathway is involved in insulin secretion. We found that leucine-induced insulin secretion was inhibited by both the mTOR inhibitor rapamycin as well as the adrenergic α2 receptor agonist clonidine. We also demonstrated that leucine down-regulated the surface expression of adrenergic α2A receptor via activation of the mTOR pathway. The leucine stimulatory effect on insulin secretion was attenuated in diabetic Goto-Kakizaki rats that overexpress adrenergic α2A receptors, confirming the role of leucine in insulin secretion. Thus, our data demonstrate that leucine regulates insulin secretion by modulating adrenergic α2 receptors through the mTOR pathway. The role of the mTOR pathway in metabolic homeostasis led us to a second important finding in this study; retrospective analysis of clinical data showed that co-administration of rapamycin and clonidine was associated with an increased incidence of new-onset diabetes in renal transplantation patients over those receiving rapamycin alone. We believe that inhibition of mTOR by rapamycin along with activation of adrenergic α2 receptors by clonidine represents a double-hit to pancreatic islets that synergistically disturbs glucose homeostasis. This new insight may have important implications for the clinical management of renal transplant patients. PMID:22645144

  3. Comparison of Regulation Mechanisms of Five Mulberry Ingredients on Insulin Secretion under Oxidative Stress.

    PubMed

    Zheng, Yun-Chong; He, Hao; Wei, Xing; Ge, Sheng; Lu, Yan-Hua

    2016-11-23

    The effects of mulberry ingredients including 1-deoxynojrimycin (DNJ), resveratrol (RES), oxyresveratrol (OXY), cyanidin-3-glucoside (C3G), and cyanidin-3-rutinoside (C3R) on insulin secretion under oxidative stress were investigated. The results revealed that they had distinct effects on insulin secretion in H 2 O 2 -induced MIN 6 cells, especially DNJ, C3G, and C3R, while RES and OXY showed modest effects in low dose (12.5 μM). The mechanisms were demonstrated in signal pathway that after treatment with DNJ, C3G, and C3R, the expressions of glucokinase (GK) were up-regulated, leading to intracellular ATP accumulation and insulin secretion. They also bound to glucagon-like peptide-1 receptor (GLP-1R), improved GLP-1R, duodenal homeobox factor-1 (PDX-1) expression, and stimulated insulin secretion. Moreover, ROS production was inhibited, followed by a decreasing apoptosis rate, while RES and OXY accelerated the apoptosis at high dose (50 μM). This work expounded the potential mechanisms of mulberry ingredients on insulin secretion, indicating the potential application in the intervention against hyperglycemia.

  4. α/β-Hydrolase domain-6 and saturated long chain monoacylglycerol regulate insulin secretion promoted by both fuel and non-fuel stimuli

    PubMed Central

    Zhao, Shangang; Poursharifi, Pegah; Mugabo, Yves; Levens, Emily J.; Vivot, Kevin; Attane, Camille; Iglesias, Jose; Peyot, Marie-line; Joly, Erik; Madiraju, S.R. Murthy; Prentki, Marc

    2015-01-01

    Objective α/β-Hydrolase domain-6 (ABHD6) is a newly identified monoacylglycerol (MAG) lipase. We recently reported that it negatively regulates glucose stimulated insulin secretion (GSIS) in the β cells by hydrolyzing lipolysis-derived MAG that acts as a metabolic coupling factor and signaling molecule via exocytotic regulator Munc13-1. Whether ABHD6 and MAG play a role in response to all classes of insulin secretagogues, in particular various fuel and non-fuel stimuli, is unknown. Methods Insulin secretion in response to various classes of secretagogues, exogenous MAG and pharmacological agents was measured in islets of mice deficient in ABHD6 specifically in the β cell (BKO). Islet perifusion experiments and determinations of glucose and fatty acid metabolism, cytosolic Ca2+ and MAG species levels were carried out. Results Deletion of ABHD6 potentiated insulin secretion in response to the fuels glutamine plus leucine and α-ketoisocaproate and to the non-fuel stimuli glucagon-like peptide 1, carbamylcholine and elevated KCl. Fatty acids amplified GSIS in control and BKO mice to the same extent. Exogenous 1-MAG amplified insulin secretion in response to fuel and non-fuel stimuli. MAG hydrolysis activity was greatly reduced in BKO islets without changes in total diacylglycerol and triacylglycerol lipase activity. ABHD6 deletion induced insulin secretion independently from KATP channels and did not alter the glucose induced rise in intracellular Ca2+. Perifusion studies showed elevated insulin secretion during second phase of GSIS in BKO islets that was not due to altered cytosolic Ca2+ signaling or because of changes in glucose and fatty acid metabolism. Glucose increased islet saturated long chain 1-MAG species and ABHD6 deletion caused accumulation of these 1-MAG species at both low and elevated glucose. Conclusion ABHD6 regulates insulin secretion in response to fuel stimuli at large and some non-fuel stimuli by controlling long chain saturated 1-MAG levels that synergize with other signaling pathways for secretion. PMID:26909310

  5. Homogeneous Time-resolved Förster Resonance Energy Transfer-based Assay for Detection of Insulin Secretion.

    PubMed

    Aslanoglou, Despoina; George, Emily W; Freyberg, Zachary

    2018-05-10

    The detection of insulin secretion is critical for elucidating mechanisms of regulated secretion as well as in studies of metabolism. Though numerous insulin assays have existed for decades, the recent advent of homogeneous time-resolved Förster Resonance Energy Transfer (HTRF) technology has significantly simplified these measurements. This is a rapid, cost-effective, reproducible, and robust optical assay reliant upon antibodies conjugated to bright fluorophores with long lasting emission which facilitates time-resolved Förster Resonance Energy Transfer. Moreover, HTRF insulin detection is amenable for the development of high-throughput screening assays. Here we use HTRF to detect insulin secretion in INS-1E cells, a rat insulinoma-derived cell line. This allows us to estimate basal levels of insulin and their changes in response to glucose stimulation. In addition, we use this insulin detection system to confirm the role of dopamine as a negative regulator of glucose-stimulated insulin secretion (GSIS). In a similar manner, other dopamine D2-like receptor agonists, quinpirole, and bromocriptine, reduce GSIS in a concentration-dependent manner. Our results highlight the utility of the HTRF insulin assay format in determining the role of numerous drugs in GSIS and their pharmacological profiles.

  6. Drp1 guarding of the mitochondrial network is important for glucose-stimulated insulin secretion in pancreatic beta cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reinhardt, Florian; Schultz, Julia; Waterstradt, Rica

    Mitochondria form a tubular network in mammalian cells, and the mitochondrial life cycle is determined by fission, fusion and autophagy. Dynamin-related protein 1 (Drp1) has a pivotal role in these processes because it alone is able to constrict mitochondria. However, the regulation and function of Drp1 have been shown to vary between cell types. Mitochondrial morphology affects mitochondrial metabolism and function. In pancreatic beta cells mitochondrial metabolism is a key component of the glucose-induced cascade of insulin secretion. The goal of the present study was to investigate the action of Drp1 in pancreatic beta cells. For this purpose Drp1 wasmore » down-regulated by means of shDrp1 in insulin-secreting INS1 cells and mouse pancreatic islets. In INS1 cells reduced Drp1 expression resulted in diminished expression of proteins regulating mitochondrial fusion, namely mitofusin 1 and 2, and optic atrophy protein 1. Diminished mitochondrial dynamics can therefore be assumed. After down-regulation of Drp1 in INS1 cells and spread mouse islets the initially homogenous mitochondrial network characterised by a moderate level of interconnections shifted towards high heterogeneity with elongated, clustered and looped mitochondria. These morphological changes were found to correlate directly with functional alterations. Mitochondrial membrane potential and ATP generation were significantly reduced in INS1 cells after Drp1down-regulation. Finally, a significant loss of glucose-stimulated insulin secretion was demonstrated in INS1 cells and mouse pancreatic islets. In conclusion, Drp1 expression is important in pancreatic beta cells to maintain the regulation of insulin secretion. -- Highlights: •Down-regulation of Drp1 in INS1 cells reduces mitochondrial fusion protein expression. •Mitochondrial membrane potential in INS1 cells is diminished after Drp1 down-regulation. •Mitochondria become elongated after down-regulation of Drp1 in beta cells. •Down-regulation of Drp1 in islets evokes loss of glucose-stimulated insulin secretion.« less

  7. Nuclear hormone retinoid X receptor (RXR) negatively regulates the glucose-stimulated insulin secretion of pancreatic ß-cells.

    PubMed

    Miyazaki, Satsuki; Taniguchi, Hidenori; Moritoh, Yusuke; Tashiro, Fumi; Yamamoto, Tsunehiko; Yamato, Eiji; Ikegami, Hiroshi; Ozato, Keiko; Miyazaki, Jun-ichi

    2010-11-01

    Retinoid X receptors (RXRs) are members of the nuclear hormone receptor superfamily and are thought to be key regulators in differentiation, cellular growth, and gene expression. Although several experiments using pancreatic β-cell lines have shown that the ligands of nuclear hormone receptors modulate insulin secretion, it is not clear whether RXRs have any role in insulin secretion. To elucidate the function of RXRs in pancreatic β-cells, we generated a double-transgenic mouse in which a dominant-negative form of RXRβ was inducibly expressed in pancreatic β-cells using the Tet-On system. We also established a pancreatic β-cell line from an insulinoma caused by the β-cell-specific expression of simian virus 40 T antigen in the above transgenic mouse. In the transgenic mouse, expression of the dominant-negative RXR enhanced the insulin secretion with high glucose stimulation. In the pancreatic β-cell line, the suppression of RXRs also enhanced glucose-stimulated insulin secretion at a high glucose concentration, while 9-cis-retinoic acid, an RXR agonist, repressed it. High-density oligonucleotide microarray analysis showed that expression of the dominant-negative RXR affected the expression levels of a number of genes, some of which have been implicated in the function and/or differentiation of β-cells. These results suggest that endogenous RXR negatively regulates the glucose-stimulated insulin secretion. Given these findings, we propose that the modulation of endogenous RXR in β-cells may be a new therapeutic approach for improving impaired insulin secretion in type 2 diabetes.

  8. Role for the TRPV1 channel in insulin secretion from pancreatic beta cells.

    PubMed

    Diaz-Garcia, Carlos Manlio; Morales-Lázaro, Sara L; Sánchez-Soto, Carmen; Velasco, Myrian; Rosenbaum, Tamara; Hiriart, Marcia

    2014-06-01

    Transient receptor potential channels have been put forward as regulators of insulin secretion. A role for the TRPV1 ion channel in insulin secretion has been suggested in pancreatic beta cell lines. We explored whether TRPV1 is functionally expressed in RINm5F and primary beta cells from neonate and adult rats. We examined if capsaicin could activate cationic non-selective currents. Our results show that TRPV1 channels are not functional in insulin-secreting cells, since capsaicin did not produce current activation, not even under culture conditions known to induce the expression of other ion channels in these cells. Although TRPV1 channels seem to be irrelevant for the physiology of isolated beta cells, they may play a role in glucose homeostasis acting through the nerve fibers that regulate islet function. At the physiological level, we observed that Trpv1 (-/-) mice presented lower fasting insulin levels than their wild-type littermates, however, we did not find differences between these experimental groups nor in the glucose tolerance test or in the insulin secretion. However, we did find that the Trpv1 (-/-) mice exhibited a higher insulin sensitivity compared to their wild-type counterparts. Our results demonstrate that TRPV1 does not contribute to glucose-induced insulin secretion in beta cells as was previously thought, but it is possible that it may control insulin sensitivity.

  9. Acute stimulation of brain mu opioid receptors inhibits glucose-stimulated insulin secretion via sympathetic innervation.

    PubMed

    Tudurí, Eva; Beiroa, Daniel; Stegbauer, Johannes; Fernø, Johan; López, Miguel; Diéguez, Carlos; Nogueiras, Rubén

    2016-11-01

    Pancreatic insulin-secreting β-cells express opioid receptors, whose activation by opioid peptides modulates hormone secretion. Opioid receptors are also expressed in multiple brain regions including the hypothalamus, where they play a role in feeding behavior and energy homeostasis, but their potential role in central regulation of glucose metabolism is unknown. Here, we investigate whether central opioid receptors participate in the regulation of insulin secretion and glucose homeostasis in vivo. C57BL/6J mice were acutely treated by intracerebroventricular (i.c.v.) injection with specific agonists for the three main opioid receptors, kappa (KOR), delta (DOR) and mu (MOR) opioid receptors: activation of KOR and DOR did not alter glucose tolerance, whereas activation of brain MOR with the specific agonist DAMGO blunted glucose-stimulated insulin secretion (GSIS), reduced insulin sensitivity, increased the expression of gluconeogenic genes in the liver and, consequently, impaired glucose tolerance. Pharmacological blockade of α2A-adrenergic receptors prevented DAMGO-induced glucose intolerance and gluconeogenesis. Accordingly, DAMGO failed to inhibit GSIS and to impair glucose tolerance in α2A-adrenoceptor knockout mice, indicating that the effects of central MOR activation on β-cells are mediated via sympathetic innervation. Our results show for the first time a new role of the central opioid system, specifically the MOR, in the regulation of insulin secretion and glucose metabolism. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Regulation of Protein Secretion Through Controlled Aggregation in the Endoplasmic Reticulum

    NASA Astrophysics Data System (ADS)

    Rivera, Victor M.; Wang, Xiurong; Wardwell, Scott; Courage, Nancy L.; Volchuk, Allen; Keenan, Terence; Holt, Dennis A.; Gilman, Michael; Orci, Lelio; Cerasoli, Frank; Rothman, James E.; Clackson, Tim

    2000-02-01

    A system for direct pharmacologic control of protein secretion was developed to allow rapid and pulsatile delivery of therapeutic proteins. A protein was engineered so that it accumulated as aggregates in the endoplasmic reticulum. Secretion was then stimulated by a synthetic small-molecule drug that induces protein disaggregation. Rapid and transient secretion of growth hormone and insulin was achieved in vitro and in vivo. A regulated pulse of insulin secretion resulted in a transient correction of serum glucose concentrations in a mouse model of hyperglycemia. This approach may make gene therapy a viable method for delivery of polypeptides that require rapid and regulated delivery.

  11. Detailed Physiologic Characterization Reveals Diverse Mechanisms for Novel Genetic Loci Regulating Glucose and Insulin Metabolism in Humans

    PubMed Central

    Ingelsson, Erik; Langenberg, Claudia; Hivert, Marie-France; Prokopenko, Inga; Lyssenko, Valeriya; Dupuis, Josée; Mägi, Reedik; Sharp, Stephen; Jackson, Anne U.; Assimes, Themistocles L.; Shrader, Peter; Knowles, Joshua W.; Zethelius, Björn; Abbasi, Fahim A.; Bergman, Richard N.; Bergmann, Antje; Berne, Christian; Boehnke, Michael; Bonnycastle, Lori L.; Bornstein, Stefan R.; Buchanan, Thomas A.; Bumpstead, Suzannah J.; Böttcher, Yvonne; Chines, Peter; Collins, Francis S.; Cooper, Cyrus C.; Dennison, Elaine M.; Erdos, Michael R.; Ferrannini, Ele; Fox, Caroline S.; Graessler, Jürgen; Hao, Ke; Isomaa, Bo; Jameson, Karen A.; Kovacs, Peter; Kuusisto, Johanna; Laakso, Markku; Ladenvall, Claes; Mohlke, Karen L.; Morken, Mario A.; Narisu, Narisu; Nathan, David M.; Pascoe, Laura; Payne, Felicity; Petrie, John R.; Sayer, Avan A.; Schwarz, Peter E. H.; Scott, Laura J.; Stringham, Heather M.; Stumvoll, Michael; Swift, Amy J.; Syvänen, Ann-Christine; Tuomi, Tiinamaija; Tuomilehto, Jaakko; Tönjes, Anke; Valle, Timo T.; Williams, Gordon H.; Lind, Lars; Barroso, Inês; Quertermous, Thomas; Walker, Mark; Wareham, Nicholas J.; Meigs, James B.; McCarthy, Mark I.; Groop, Leif; Watanabe, Richard M.; Florez, Jose C.

    2010-01-01

    OBJECTIVE Recent genome-wide association studies have revealed loci associated with glucose and insulin-related traits. We aimed to characterize 19 such loci using detailed measures of insulin processing, secretion, and sensitivity to help elucidate their role in regulation of glucose control, insulin secretion and/or action. RESEARCH DESIGN AND METHODS We investigated associations of loci identified by the Meta-Analyses of Glucose and Insulin-related traits Consortium (MAGIC) with circulating proinsulin, measures of insulin secretion and sensitivity from oral glucose tolerance tests (OGTTs), euglycemic clamps, insulin suppression tests, or frequently sampled intravenous glucose tolerance tests in nondiabetic humans (n = 29,084). RESULTS The glucose-raising allele in MADD was associated with abnormal insulin processing (a dramatic effect on higher proinsulin levels, but no association with insulinogenic index) at extremely persuasive levels of statistical significance (P = 2.1 × 10−71). Defects in insulin processing and insulin secretion were seen in glucose-raising allele carriers at TCF7L2, SCL30A8, GIPR, and C2CD4B. Abnormalities in early insulin secretion were suggested in glucose-raising allele carriers at MTNR1B, GCK, FADS1, DGKB, and PROX1 (lower insulinogenic index; no association with proinsulin or insulin sensitivity). Two loci previously associated with fasting insulin (GCKR and IGF1) were associated with OGTT-derived insulin sensitivity indices in a consistent direction. CONCLUSIONS Genetic loci identified through their effect on hyperglycemia and/or hyperinsulinemia demonstrate considerable heterogeneity in associations with measures of insulin processing, secretion, and sensitivity. Our findings emphasize the importance of detailed physiological characterization of such loci for improved understanding of pathways associated with alterations in glucose homeostasis and eventually type 2 diabetes. PMID:20185807

  12. Insulin-like and IGF-like peptides in the silkmoth Bombyx mori: discovery, structure, secretion, and function

    PubMed Central

    Mizoguchi, Akira; Okamoto, Naoki

    2013-01-01

    A quarter of a century has passed since bombyxin, the first insulin-like peptide identified in insects, was discovered in the silkmoth Bombyx mori. During these years, bombyxin has been studied for its structure, genes, distribution, hemolymph titers, secretion control, as well as physiological functions, thereby stimulating a wide range of studies on insulin-like peptides in other insects. Moreover, recent studies have identified a new class of insulin family peptides, IGF-like peptides, in B. mori and Drosophila melanogaster, broadening the base of the research area of the insulin-related peptides in insects. In this review, we describe the achievements of the studies on insulin-like and IGF-like peptides mainly in B. mori with short histories of their discovery. Our emphasis is that bombyxins, secreted by the brain neurosecretory cells, regulate nutrient-dependent growth and metabolism, whereas the IGF-like peptides, secreted by the fat body and other peripheral tissues, regulate stage-dependent growth of tissues. PMID:23966952

  13. Measuring phospholipase D activity in insulin-secreting pancreatic beta-cells and insulin-responsive muscle cells and adipocytes.

    PubMed

    Cazzolli, Rosanna; Huang, Ping; Teng, Shuzhi; Hughes, William E

    2009-01-01

    Phospholipase D (PLD) is an enzyme producing phosphatidic acid and choline through hydrolysis of phosphatidylcholine. The enzyme has been identified as a member of a variety of signal transduction cascades and as a key regulator of numerous intracellular vesicle trafficking processes. A role for PLD in regulating glucose homeostasis is emerging as the enzyme has recently been identified in events regulating exocytosis of insulin from pancreatic beta-cells and also in insulin-stimulated glucose uptake through controlling GLUT4 vesicle exocytosis in muscle and adipose tissue. We present methodologies for assessing cellular PLD activity in secretagogue-stimulated insulin-secreting pancreatic beta-cells and also insulin-stimulated adipocyte and muscle cells, two of the principal insulin-responsive cell types controlling blood glucose levels.

  14. The mitochondrial isoform of phosphoenolpyruvate carboxykinase (PEPCK-M) and glucose homeostasis: has it been overlooked?

    PubMed Central

    Stark, Romana; Kibbey, Richard G.

    2013-01-01

    Background Plasma glucose levels are tightly regulated within a narrow physiologic range. Insulin-mediated glucose uptake by tissues must be balanced by the appearance of glucose from nutritional sources, glycogen stores, or gluconeogenesis. In this regard, a common pathway regulating both glucose clearance and appearance has not been described. The metabolism of glucose to produce ATP is generally considered to be the primary stimulus for insulin release from beta-cells. Similarly, gluconeogenesis from phosphoenolpyruvate (PEP) is believed to be the primarily pathway via the cytosolic isoform of phosphoenolpyruvate carboxykinase (PEPCK-C). These models cannot adequately explain the regulation of insulin secretion or gluconeogenesis. Scope of review A metabolic sensing pathway involving mitochondrial GTP (mtGTP) and PEP synthesis by the mitochondrial isoform of PEPCK (PEPCK-M) is associated with glucose-stimulated insulin secretion from pancreatic beta-cells. Here we examine whether there is evidence for a similar mtGTP-dependent pathway involved in gluconeogenesis. In both islets and the liver, mtGTP is produced at the substrate level by the enzyme succinyl CoA synthetase (SCS-GTP) with a rate proportional to the TCA cycle. In the beta-cell PEPCK-M then hydrolyzes mtGTP in the production of PEP that, unlike mtGTP, can escape the mitochondria to generate a signal for insulin release. Similarly, PEPCK-M and mtGTP might also provide a significant source of PEP in gluconeogenic tissues for the production of glucose. This review will focus on the possibility that PEPCK-M, as a sensor for TCA cycle flux, is a key mechanism to regulate both insulin secretion and gluconeogenesis suggesting conservation of this biochemical mechanism in regulating multiple aspects of glucose homeostasis. Moreover, we propose that this mechanism may be more important for regulating insulin secretion and gluconeogenesis compared to canonical nutrient sensing pathways. Major conclusions PEPCK-M, initially believed to be absent in islets, carries a substantial metabolic flux in beta-cells. This flux is intimately involved with the coupling of glucose-stimulated insulin secretion. PEPCK-M activity may have been similarly underestimated in glucose producing tissues and could potentially be an unappreciated but important source of gluconeogenesis. General Significance The generation of PEP via PEPCK-M may occur via a metabolic sensing pathway important for regulating both insulin secretion and gluconeogenesis. PMID:24177027

  15. Zinc Up-Regulates Insulin Secretion from β Cell-Like Cells Derived from Stem Cells from Human Exfoliated Deciduous Tooth (SHED).

    PubMed

    Kim, Gyuyoup; Shin, Ki-Hyuk; Pae, Eung-Kwon

    2016-12-13

    Stem cells from human exfoliated deciduous tooth (SHED) offer several advantages over other stem cell sources. Using SHED, we examined the roles of zinc and the zinc uptake transporter ZIP8 (Zrt- and irt-like protein 8) while inducing SHED into insulin secreting β cell-like stem cells (i.e., SHED-β cells). We observed that ZIP8 expression increased as SHED differentiated into SHED-β cells, and that zinc supplementation at day 10 increased the levels of most pancreatic β cell markers-particularly Insulin and glucose transporter 2 (GLUT2). We confirmed that SHED-β cells produce insulin successfully. In addition, we note that zinc supplementation significantly increases insulin secretion with a significant elevation of ZIP8 transporters in SHED-β cells. We conclude that SHED can be converted into insulin-secreting β cell-like cells as zinc concentration in the cytosol is elevated. Insulin production by SHED-β cells can be regulated via modulation of zinc concentration in the media as ZIP8 expression in the SHED-β cells increases.

  16. Identification of fatty acid binding protein 4 as an adipokine that regulates insulin secretion during obesity

    PubMed Central

    Wu, Lindsay E.; Samocha-Bonet, Dorit; Whitworth, P. Tess; Fazakerley, Daniel J.; Turner, Nigel; Biden, Trevor J.; James, David E.; Cantley, James

    2014-01-01

    A critical feature of obesity is enhanced insulin secretion from pancreatic β-cells, enabling the majority of individuals to maintain glycaemic control despite adiposity and insulin resistance. Surprisingly, the factors coordinating this adaptive β-cell response with adiposity have not been delineated. Here we show that fatty acid binding protein 4 (FABP4/aP2) is an adipokine released from adipocytes under obesogenic conditions, such as hypoxia, to augment insulin secretion. The insulinotropic action of FABP4 was identified using an in vitro system that recapitulates adipocyte to β-cell endocrine signalling, with glucose-stimulated insulin secretion (GSIS) as a functional readout, coupled with quantitative proteomics. Exogenous FABP4 potentiated GSIS in vitro and in vivo, and circulating FABP4 levels correlated with GSIS in humans. Insulin inhibited FABP4 release from adipocytes in vitro, in mice and in humans, consistent with feedback regulation. These data suggest that FABP4 and insulin form an endocrine loop coordinating the β-cell response to obesity. PMID:24944906

  17. Growth-Blocking Peptides As Nutrition-Sensitive Signals for Insulin Secretion and Body Size Regulation

    PubMed Central

    Koyama, Takashi; Mirth, Christen K.

    2016-01-01

    In Drosophila, the fat body, functionally equivalent to the mammalian liver and adipocytes, plays a central role in regulating systemic growth in response to nutrition. The fat body senses intracellular amino acids through Target of Rapamycin (TOR) signaling, and produces an unidentified humoral factor(s) to regulate insulin-like peptide (ILP) synthesis and/or secretion in the insulin-producing cells. Here, we find that two peptides, Growth-Blocking Peptide (GBP1) and CG11395 (GBP2), are produced in the fat body in response to amino acids and TOR signaling. Reducing the expression of GBP1 and GBP2 (GBPs) specifically in the fat body results in smaller body size due to reduced growth rate. In addition, we found that GBPs stimulate ILP secretion from the insulin-producing cells, either directly or indirectly, thereby increasing insulin and insulin-like growth factor signaling activity throughout the body. Our findings fill an important gap in our understanding of how the fat body transmits nutritional information to the insulin producing cells to control body size. PMID:26928023

  18. Connexin-36 gap junctions regulate in vivo first- and second-phase insulin secretion dynamics and glucose tolerance in the conscious mouse.

    PubMed

    Head, W Steven; Orseth, Meredith L; Nunemaker, Craig S; Satin, Leslie S; Piston, David W; Benninger, Richard K P

    2012-07-01

    Insulin is secreted from the islets of Langerhans in coordinated pulses. These pulses are thought to lead to plasma insulin oscillations, which are putatively more effective in lowering blood glucose than continuous levels of insulin. Gap-junction coupling of β-cells by connexin-36 coordinates intracellular free calcium oscillations and pulsatile insulin release in isolated islets, however a role in vivo has not been shown. We test whether loss of gap-junction coupling disrupts plasma insulin oscillations and whether this impacts glucose tolerance. We characterized the connexin-36 knockout (Cx36(-/-)) mouse phenotype and performed hyperglycemic clamps with rapid sampling of insulin in Cx36(-/-) and control mice. Our results show that Cx36(-/-) mice are glucose intolerant, despite normal plasma insulin levels and insulin sensitivity. However, Cx36(-/-) mice exhibit reduced insulin pulse amplitudes and a reduction in first-phase insulin secretion. These changes are similarly found in isolated Cx36(-/-) islets. We conclude that Cx36 gap junctions regulate the in vivo dynamics of insulin secretion, which in turn is important for glucose homeostasis. Coordinated pulsatility of individual islets enhances the first-phase elevation and second-phase pulses of insulin. Because these dynamics are disrupted in the early stages of type 2 diabetes, dysregulation of gap-junction coupling could be an important factor in the development of this disease.

  19. The interplay between noncoding RNAs and insulin in diabetes.

    PubMed

    Tian, Yan; Xu, Jia; Du, Xiao; Fu, Xianghui

    2018-04-10

    Noncoding RNAs (ncRNAs), including microRNAs, long noncoding RNAs and circular RNAs, regulate various biological processes and are involved in the initiation and progression of human diseases. Insulin, a predominant hormone secreted from pancreatic β cells, is an essential factor in regulation of systemic metabolism through multifunctional insulin signaling. Insulin production and action are tightly controlled. Dysregulations of insulin production and action can impair metabolic homeostasis, and eventually lead to the development of multiple metabolic diseases, especially diabetes. Accumulating data indicates that ncRNAs modulate β cell mass, insulin synthesis, secretion and signaling, and their role in diabetes is dramatically emerging. This review summarizes our current knowledge of ncRNAs as regulators of insulin, with particular emphasis on the implications of this interplay in the development of diabetes. We outline the role of ncRNAs in pancreatic β cell mass and function, which is critical for insulin production and secretion. We also highlight the involvement of ncRNAs in insulin signaling in peripheral tissues including liver, muscle and adipose, and discuss ncRNA-mediated inter-organ crosstalk under diabetic conditions. A more in-depth understanding of the interplay between ncRNAs and insulin may afford valuable insights and novel therapeutic strategies for treatment of diabetes, as well as other human diseases. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Biotin enhances ATP synthesis in pancreatic islets of the rat, resulting in reinforcement of glucose-induced insulin secretion.

    PubMed

    Sone, Hideyuki; Sasaki, Yuka; Komai, Michio; Toyomizu, Masaaki; Kagawa, Yasuo; Furukawa, Yuji

    2004-02-13

    Previous studies showed that biotin enhanced glucose-induced insulin secretion. Changes in the cytosolic ATP/ADP ratio in the pancreatic islets participate in the regulation of insulin secretion by glucose. In the present study we investigated whether biotin regulates the cytosolic ATP/ADP ratio in glucose-stimulated islets. When islets were stimulated with glucose plus biotin, the ATP/ADP ratio increased to approximately 160% of the ATP/ADP ratio in islets stimulated with glucose alone. The rate of glucose oxidation, assessed by CO(2) production, was also about 2-fold higher in islets treated with biotin. These increasing effects of biotin were proportional to the effects seen in insulin secretion. There are no previous reports of vitamins, such as biotin, directly affecting ATP synthesis. Our data indicate that biotin enhances ATP synthesis in islets following the increased rate of substrate oxidation in mitochondria and that, as a consequence of these events, glucose-induced insulin release is reinforced by biotin.

  1. Insulin and Glucagon Secretion In Vitro

    NASA Technical Reports Server (NTRS)

    Rajan, Arun S.

    1998-01-01

    Long-duration space flight is associated with many physiological abnormalities in astronauts. In particular, altered regulation of the hormones insulin and glucagon may contribute to metabolic disturbances such as increased blood sugar levels, which if persistently elevated result in toxic effects. These changes are also observed in the highly prevalent disease diabetes, which affects 16 million Americans and consumes over $100 billion in annual healthcare costs. By mimicking the microgravity environment of space in the research laboratory using a NASA-developed bioreactor, one can study the physiology of insulin and glucagon secretion and determine if there are alterations in these cellular processes. The original specific objectives of the project included: (1) growing ('cell culture') of pancreatic islet beta and alpha cells that secrete insulin and glucagon respectively, in the NASA bioreactor; (2) examination of the effects of microgravity on insulin and glucagon secretion; and (3) study of molecular mechanisms of insulin and glucagon secretion if altered by microgravity.

  2. Development of a Rapid Insulin Assay by Homogenous Time-Resolved Fluorescence

    PubMed Central

    Vallaghe, Julie; Gregor, Nathalie; Donthamsetti, Prashant; Harris, Paul E.; Pierre, Nicolas; Freyberg, Robin; Charrier-Savournin, Fabienne; Javitch, Jonathan A.; Freyberg, Zachary

    2016-01-01

    Direct measurement of insulin is critical for basic and clinical studies of insulin secretion. However, current methods are expensive and time-consuming. We developed an insulin assay based on homogenous time-resolved fluorescence that is significantly more rapid and cost-effective than current commonly used approaches. This assay was applied effectively to an insulin secreting cell line, INS-1E cells, as well as pancreatic islets, allowing us to validate the assay by elucidating mechanisms by which dopamine regulates insulin release. We found that dopamine functioned as a significant negative modulator of glucose-stimulated insulin secretion. Further, we showed that bromocriptine, a known dopamine D2/D3 receptor agonist and newly approved drug used for treatment of type II diabetes mellitus, also decreased glucose-stimulated insulin secretion in islets to levels comparable to those caused by dopamine treatment. PMID:26849707

  3. Ectonucleotidase NTPDase3 is abundant in pancreatic β-cells and regulates glucose-induced insulin secretion.

    PubMed

    Syed, Samreen K; Kauffman, Audra L; Beavers, Lisa S; Alston, James T; Farb, Thomas B; Ficorilli, James; Marcelo, Marialuisa C; Brenner, Martin B; Bokvist, Krister; Barrett, David G; Efanov, Alexander M

    2013-11-15

    Extracellular ATP released from pancreatic β-cells acts as a potent insulinotropic agent through activation of P2 purinergic receptors. Ectonucleotidases, a family of membrane-bound nucleotide-metabolizing enzymes, regulate extracellular ATP levels by degrading ATP and related nucleotides. Ectonucleotidase activity affects the relative proportion of ATP and its metabolites, which in turn will impact the level of purinergic receptor stimulation exerted by extracellular ATP. Therefore, we investigated the expression and role of ectonucleotidases in pancreatic β-cells. Of the ectonucleotidases studied, only ENTPD3 (gene encoding the NTPDase3 enzyme) mRNA was detected at fairly abundant levels in human and mouse pancreatic islets as well as in insulin-secreting MIN6 cells. ARL67156, a selective ectonucleotidase inhibitor, blocked degradation of extracellular ATP that was added to MIN6 cells. The compound also decreased degradation of endogenous ATP released from cells. Measurements of insulin secretion in MIN6 cells as well as in mouse and human pancreatic islets demonstrated that ARL67156 potentiated glucose-dependent insulin secretion. Downregulation of NTPDase3 expression in MIN6 cells with the specific siRNA replicated the effects of ARL67156 on extracellular ATP hydrolysis and insulin secretion. Our results demonstrate that NTPDase3 is the major ectonucleotidase in pancreatic β-cells in multiple species and that it modulates insulin secretion by controlling activation of purinergic receptors.

  4. A Central Role for GRB10 in Regulation of Islet Function in Man

    PubMed Central

    Prasad B, Rashmi; Salehi, S. Albert; Almgren, Peter; Osmark, Peter; Bouatia-Naji, Nabila; Wierup, Nils; Fall, Tove; Stančáková, Alena; Barker, Adam; Lagou, Vasiliki; Osmond, Clive; Xie, Weijia; Lahti, Jari; Jackson, Anne U.; Cheng, Yu-Ching; Liu, Jie; O'Connell, Jeffrey R.; Blomstedt, Paul A.; Fadista, Joao; Alkayyali, Sami; Dayeh, Tasnim; Ahlqvist, Emma; Taneera, Jalal; Lecoeur, Cecile; Kumar, Ashish; Hansson, Ola; Hansson, Karin; Voight, Benjamin F.; Kang, Hyun Min; Levy-Marchal, Claire; Vatin, Vincent; Palotie, Aarno; Syvänen, Ann-Christine; Mari, Andrea; Weedon, Michael N.; Loos, Ruth J. F.; Ong, Ken K.; Nilsson, Peter; Isomaa, Bo; Tuomi, Tiinamaija; Wareham, Nicholas J.; Stumvoll, Michael; Widen, Elisabeth; Lakka, Timo A.; Langenberg, Claudia; Tönjes, Anke; Rauramaa, Rainer; Kuusisto, Johanna; Frayling, Timothy M.; Froguel, Philippe; Walker, Mark; Eriksson, Johan G.; Ling, Charlotte; Kovacs, Peter; Ingelsson, Erik; McCarthy, Mark I.; Shuldiner, Alan R.; Silver, Kristi D.; Laakso, Markku; Groop, Leif; Lyssenko, Valeriya

    2014-01-01

    Variants in the growth factor receptor-bound protein 10 (GRB10) gene were in a GWAS meta-analysis associated with reduced glucose-stimulated insulin secretion and increased risk of type 2 diabetes (T2D) if inherited from the father, but inexplicably reduced fasting glucose when inherited from the mother. GRB10 is a negative regulator of insulin signaling and imprinted in a parent-of-origin fashion in different tissues. GRB10 knock-down in human pancreatic islets showed reduced insulin and glucagon secretion, which together with changes in insulin sensitivity may explain the paradoxical reduction of glucose despite a decrease in insulin secretion. Together, these findings suggest that tissue-specific methylation and possibly imprinting of GRB10 can influence glucose metabolism and contribute to T2D pathogenesis. The data also emphasize the need in genetic studies to consider whether risk alleles are inherited from the mother or the father. PMID:24699409

  5. Overexpression of p35 in Min6 pancreatic beta cells induces a stressed neuron-like apoptosis.

    PubMed

    Zheng, Ya-Li; Hu, Ya-Fang; Zhang, Aiping; Wang, Wei; Li, Bo; Amin, Niranjana; Grant, Philip; Pant, Harish C

    2010-12-15

    Cdk5 activity has been implicated in brain development and the regulation of many neuronal processes. Recently, the expression of p35 and Cdk5 activity has been reported in pancreatic beta cells. Decreased Cdk5 activity enhanced glucose-stimulated insulin secretion. This suggests that Cdk5 may play an important role in the regulation of insulin secretion. To further understand how Cdk5 regulates insulin secretion in glucose-stimulated pancreatic β cells, we first confirmed the presence of a low level of p35 in pancreatic Min6 cells. Next, in a time-course experiment in high glucose (25 mM) we showed that endogenous p35 increased gradually accompanied by a 3-fold increase in Cdk5 activity by 16 h. Insulin secretion, however, doubled after 2 h followed by progressive downregulation, negatively correlated with Cdk5 activity. On the other hand, overexpression of p35 in these cells resulted in more than a three-fold increase in Cdk5 activity within 2 h coupled to a 50% reduction in insulin secretion in both high and low (3 mM) glucose. Most significantly, cells overexpressing p35, treated with high glucose for 4 h, showed induction of p25, the p35-derived truncated fragment which hyperactivates Cdk5 in neurons. As a result, insulin secretion was inhibited and cells became apoptotic. Roscovitine or co-infection of dominant negative Cdk5 (dnCdk5) with p35 increased insulin secretion and inhibited apoptosis. These results suggest that the model for deregulation and hyperactivation of Cdk5 in neurodegeneration may apply to the pathology seen in type 2 diabetes (T2DM). It is consistent with the view that Alzheimer's disease and T2DM are linked metabolically and pathologically by Cdk5 in a number of ways. Copyright © 2010. Published by Elsevier B.V.

  6. Insulin-producing cells could not mimic the physiological regulation of insulin secretion performed by pancreatic beta cells

    PubMed Central

    2013-01-01

    Objective The aim of this study was to compare the difference between insulin-producing cells (IPCs) and normal human pancreatic beta cells both in physiological function and morphological features in cellular level. Methods The levels of insulin secretion were measured by enzyme-linked immunosorbent assay. The insulin gene expression was determined by real-time quantitative polymerase chain reaction. The morphological features were detected by atomic force microscopy (AFM) and laser confocal scanning microscopy. Results IPCs and normal human pancreatic beta cells were similar to each other under the observation in AFM with the porous structure features in the cytoplasm. Both number of membrane particle size and average roughness of normal human beta cells were higher than those of IPCs. Conclusions Our results firstly revealed that the cellular ultrastructure of IPCs was closer to that of normal human pancreatic beta cells, but they still could not mimic the physiological regulation of insulin secretion performed by pancreatic beta cells. PMID:23421382

  7. The Ia-2β intronic miRNA, miR-153, is a negative regulator of insulin and dopamine secretion through its effect on the Cacna1c gene in mice.

    PubMed

    Xu, Huanyu; Abuhatzira, Liron; Carmona, Gilberto N; Vadrevu, Suryakiran; Satin, Leslie S; Notkins, Abner L

    2015-10-01

    miR-153 is an intronic miRNA embedded in the genes that encode IA-2 (also known as PTPRN) and IA-2β (also known as PTPRN2). Islet antigen (IA)-2 and IA-2β are major autoantigens in type 1 diabetes and are important transmembrane proteins in dense core and synaptic vesicles. miR-153 and its host genes are co-regulated in pancreas and brain. The present experiments were initiated to decipher the regulatory network between miR-153 and its host gene Ia-2β (also known as Ptprn2). Insulin secretion was determined by ELISA. Identification of miRNA targets was assessed using luciferase assays and by quantitative real-time PCR and western blots in vitro and in vivo. Target protector was also employed to evaluate miRNA target function. Functional studies revealed that miR-153 mimic suppresses both glucose- and potassium-induced insulin secretion (GSIS and PSIS, respectively), whereas miR-153 inhibitor enhances both GSIS and PSIS. A similar effect on dopamine secretion also was observed. Using miRNA target prediction software, we found that miR-153 is predicted to target the 3'UTR region of the calcium channel gene, Cacna1c. Further studies confirmed that Cacna1c mRNA and protein are downregulated by miR-153 mimics and upregulated by miR-153 inhibitors in insulin-secreting freshly isolated mouse islets, in the insulin-secreting mouse cell line MIN6 and in the dopamine-secreting cell line PC12. miR-153 is a negative regulator of both insulin and dopamine secretion through its effect on Cacna1c expression, which suggests that IA-2β and miR-153 have opposite functional effects on the secretory pathway.

  8. Autocrine effect of Zn²⁺ on the glucose-stimulated insulin secretion.

    PubMed

    Slepchenko, Kira G; Daniels, Nigel A; Guo, Aili; Li, Yang V

    2015-09-01

    It is well known that zinc (Zn(2+)) is required for the process of insulin biosynthesis and the maturation of insulin secretory granules in pancreatic beta (β)-cells, and that changes in Zn(2+) levels in the pancreas have been found to be associated with diabetes. Glucose-stimulation causes a rapid co-secretion of Zn(2+) and insulin with similar kinetics. However, we do not know whether Zn(2+) regulates insulin availability and secretion. Here we investigated the effect of Zn(2+) on glucose-stimulated insulin secretion (GSIS) in isolated mouse pancreatic islets. Whereas Zn(2+) alone (control) had no effect on the basal secretion of insulin, it significantly inhibited GSIS. The application of CaEDTA, by removing the secreted Zn(2+) from the extracellular milieu of the islets, resulted in significantly increased GSIS, suggesting an overall inhibitory role of secreted Zn(2+) on GSIS. The inhibitory action of Zn(2+) was mostly mediated through the activities of KATP/Ca(2+) channels. Furthermore, during brief paired-pulse glucose-stimulated Zn(2+) secretion (GSZS), Zn(2+) secretion following the second pulse was significantly attenuated, probably by the secreted endogenous Zn(2+) after the first pulse. Such an inhibition on Zn(2+) secretion following the second pulse was completely reversed by Zn(2+) chelation, suggesting a negative feedback mechanism, in which the initial glucose-stimulated Zn(2+) release inhibits subsequent Zn(2+) secretion, subsequently inhibiting insulin co-secretion as well. Taken together, these data suggest a negative feedback mechanism on GSZS and GSIS by Zn(2+) secreted from β-cells, and the co-secreted Zn(2+) may act as an autocrine inhibitory modulator.

  9. Over-expression of ZnT7 increases insulin synthesis and secretion in pancreatic beta-cells by promoting insulin gene transcription

    USDA-ARS?s Scientific Manuscript database

    The mechanism by which zinc regulates insulin synthesis and secretion in pancreatic beta-cells is still unclear. Cellular zinc homeostasis is largely maintained by zinc transporters and intracellular zinc binding proteins. In this study, we demonstrated that zinc transporter 7 (ZnT7, Slc30a7) was co...

  10. Ectopic expression of syncollin in INS-1 beta-cells sorts it into granules and impairs regulated secretion.

    PubMed

    Li, Jingsong; Luo, Ruihua; Hooi, Shing Chuan; Ruga, Pilar; Zhang, Jiping; Meda, Paolo; Li, GuoDong

    2005-03-22

    Syncollin was first demonstrated to be a protein capable of affecting granule fusion in a cell-free system, but later studies revealed its luminal localization in zymogen granules. To determine its possible role in exocytosis in the intact cell, syncollin and a truncated form of the protein (lacking the N-terminal hydrophobic domain) were stably transfected in insulin-secreting INS-1 cells since these well-studied exocytotic cells appear not to express the protein per se. Studies by subcellular fractionation analysis, double immunofluorescence staining, and electron microscopy examination revealed that transfection of syncollin produced strong signals in the insulin secretory granules, whereas the product from transfecting the truncated syncollin was predominantly associated with the Golgi apparatus and to a lesser degree with the endoplasmic reticulum. The expressed products were associated with membranes and not the soluble fractions in either cytoplasm or the lumens of organelles. Importantly, insulin release stimulated by various secretagogues was severely impaired in cells expressing syncollin, but not affected by expressing truncated syncollin. Transfection of syncollin appeared not to impede insulin biosynthesis and processing, since cellular contents of proinsulin and insulin and the number of secretory granules were not altered. In addition, the early signals (membrane depolarization and Ca(2+) responses) for regulated insulin secretion were unaffected. These findings indicate that syncollin may be targeted to insulin secretory granules specifically and impair regulated secretion at a distal stage.

  11. The voltage-gated proton channel Hv1 is expressed in pancreatic islet β-cells and regulates insulin secretion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Qing; Che, Yongzhe; Li, Qiang

    The voltage-gated proton channel Hv1 is a potent acid extruder that participates in the extrusion of the intracellular acid. Here, we showed for the first time, Hv1 is highly expressed in mouse and human pancreatic islet β-cells, as well as β-cell lines. Imaging studies demonstrated that Hv1 resides in insulin-containing granules in β-cells. Knockdown of Hv1 with RNA interference significantly reduces glucose- and K{sup +}-induced insulin secretion in isolated islets and INS-1 (832/13) β-cells and has an impairment on glucose- and K{sup +}-induced intracellular Ca{sup 2+} homeostasis. Our data demonstrated that the expression of Hv1 in pancreatic islet β-cells regulatesmore » insulin secretion through regulating Ca{sup 2+} homeostasis.« less

  12. A Role for Glutamate Transporters in the Regulation of Insulin Secretion

    PubMed Central

    Gammelsaeter, Runhild; Coppola, Thierry; Marcaggi, Païkan; Storm-Mathisen, Jon; Chaudhry, Farrukh A.; Attwell, David; Regazzi, Romano; Gundersen, Vidar

    2011-01-01

    In the brain, glutamate is an extracellular transmitter that mediates cell-to-cell communication. Prior to synaptic release it is pumped into vesicles by vesicular glutamate transporters (VGLUTs). To inactivate glutamate receptor responses after release, glutamate is taken up into glial cells or neurons by excitatory amino acid transporters (EAATs). In the pancreatic islets of Langerhans, glutamate is proposed to act as an intracellular messenger, regulating insulin secretion from β-cells, but the mechanisms involved are unknown. By immunogold cytochemistry we show that insulin containing secretory granules express VGLUT3. Despite the fact that they have a VGLUT, the levels of glutamate in these granules are low, indicating the presence of a protein that can transport glutamate out of the granules. Surprisingly, in β-cells the glutamate transporter EAAT2 is located, not in the plasma membrane as it is in brain cells, but exclusively in insulin-containing secretory granules, together with VGLUT3. In EAAT2 knock out mice, the content of glutamate in secretory granules is higher than in wild type mice. These data imply a glutamate cycle in which glutamate is carried into the granules by VGLUT3 and carried out by EAAT2. Perturbing this cycle by knocking down EAAT2 expression with a small interfering RNA, or by over-expressing EAAT2 or a VGLUT in insulin granules, significantly reduced the rate of granule exocytosis. Simulations of granule energetics suggest that VGLUT3 and EAAT2 may regulate the pH and membrane potential of the granules and thereby regulate insulin secretion. These data suggest that insulin secretion from β-cells is modulated by the flux of glutamate through the secretory granules. PMID:21853059

  13. Autophagy Differentially Regulates Insulin Production and Insulin Sensitivity.

    PubMed

    Yamamoto, Soh; Kuramoto, Kenta; Wang, Nan; Situ, Xiaolei; Priyadarshini, Medha; Zhang, Weiran; Cordoba-Chacon, Jose; Layden, Brian T; He, Congcong

    2018-06-12

    Autophagy, a stress-induced lysosomal degradative pathway, has been assumed to exert similar metabolic effects in different organs. Here, we establish a model where autophagy plays different roles in insulin-producing β cells versus insulin-responsive cells, utilizing knockin (Becn1 F121A ) mice manifesting constitutively active autophagy. With a high-fat-diet challenge, the autophagy-hyperactive mice unexpectedly show impaired glucose tolerance, but improved insulin sensitivity, compared to mice with normal autophagy. Autophagy hyperactivation enhances insulin signaling, via suppressing ER stress in insulin-responsive cells, but decreases insulin secretion by selectively sequestrating and degrading insulin granule vesicles in β cells, a process we term "vesicophagy." The reduction in insulin storage, insulin secretion, and glucose tolerance is reversed by transient treatment of autophagy inhibitors. Thus, β cells and insulin-responsive tissues require different autophagy levels for optimal function. To improve insulin sensitivity without hampering secretion, acute or intermittent, rather than chronic, activation of autophagy should be considered in diabetic therapy development. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  14. Insulin-secreting non-islet cells are resistant to autoimmune destruction.

    PubMed Central

    Lipes, M A; Cooper, E M; Skelly, R; Rhodes, C J; Boschetti, E; Weir, G C; Davalli, A M

    1996-01-01

    Transgenic nonobese diabetic mice were created in which insulin expression was targeted to proopiomelanocortin-expressing pituitary cells. Proopiomelanocortin-expressing intermediate lobe pituitary cells efficiently secrete fully processed, mature insulin via a regulated secretory pathway, similar to islet beta cells. However, in contrast to the insulin-producing islet beta cells, the insulin-producing intermediate lobe pituitaries are not targeted or destroyed by cells of the immune system. Transplantation of the transgenic intermediate lobe tissues into diabetic nonobese diabetic mice resulted in the restoration of near-normoglycemia and the reversal of diabetic symptoms. The absence of autoimmunity in intermediate lobe pituitary cells engineered to secrete bona fide insulin raises the potential of these cell types for beta-cell replacement therapy for the treatment of insulin-dependent diabetes mellitus. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 PMID:8710916

  15. Activin Signaling Targeted by Insulin/dFOXO Regulates Aging and Muscle Proteostasis in Drosophila

    PubMed Central

    Bai, Hua; Kang, Ping; Hernandez, Ana Maria; Tatar, Marc

    2013-01-01

    Reduced insulin/IGF signaling increases lifespan in many animals. To understand how insulin/IGF mediates lifespan in Drosophila, we performed chromatin immunoprecipitation-sequencing analysis with the insulin/IGF regulated transcription factor dFOXO in long-lived insulin/IGF signaling genotypes. Dawdle, an Activin ligand, is bound and repressed by dFOXO when reduced insulin/IGF extends lifespan. Reduced Activin signaling improves performance and protein homeostasis in muscles of aged flies. Activin signaling through the Smad binding element inhibits the transcription of Autophagy-specific gene 8a (Atg8a) within muscle, a factor controlling the rate of autophagy. Expression of Atg8a within muscle is sufficient to increase lifespan. These data reveal how insulin signaling can regulate aging through control of Activin signaling that in turn controls autophagy, representing a potentially conserved molecular basis for longevity assurance. While reduced Activin within muscle autonomously retards functional aging of this tissue, these effects in muscle also reduce secretion of insulin-like peptides at a distance from the brain. Reduced insulin secretion from the brain may subsequently reinforce longevity assurance through decreased systemic insulin/IGF signaling. PMID:24244197

  16. Glycogen metabolism in the glucose-sensing and supply-driven β-cell.

    PubMed

    Andersson, Lotta E; Nicholas, Lisa M; Filipsson, Karin; Sun, Jiangming; Medina, Anya; Al-Majdoub, Mahmoud; Fex, Malin; Mulder, Hindrik; Spégel, Peter

    2016-12-01

    Glycogen metabolism in β-cells may affect downstream metabolic pathways controlling insulin release. We examined glycogen metabolism in human islets and in the rodent-derived INS-1 832/13 β-cells and found them to express the same isoforms of key enzymes required for glycogen metabolism. Our findings indicate that glycogenesis is insulin-independent but influenced by extracellular glucose concentrations. Levels of glycogen synthase decrease with increasing glucose concentrations, paralleling accumulation of glycogen. We did not find cAMP-elicited glycogenolysis and insulin secretion to be causally related. In conclusion, our results reveal regulated glycogen metabolism in human islets and insulin-secreting cells. Whether glycogen metabolism affects insulin secretion under physiological conditions remains to be determined. © 2016 Federation of European Biochemical Societies.

  17. Regulation of insulin secretion from islets of Langerhans rendered permeable by electric discharge

    PubMed Central

    Yaseen, M. Adel; Pedley, Kevin C.; Howell, Simon L.

    1982-01-01

    1. High-voltage electric discharge has been used to increase the permeability of B-cells of isolated islets of Langerhans to facilitate studies of the effects of normally impermeable substances on insulin secretion. 2. The application of an intense electric field increased the [14C]sucrose space of the islets from 37.8±3.1% to 86.2±5.2% of their total volume as assessed by 3H2O content. The cells remained permeable for at least 40min. 3. Ultrastructural studies showed no deleterious changes in the structure of the B-cells after discharge. 4. Insulin secretion from normal islets was unaffected by increasing the medium [Ca2+] from 10nm to 10μm. In the islets that had been rendered permeable by discharge, insulin secretion was significantly increased under these conditions, without any alteration in the release of lactate dehydrogenase, a cytoplasmic marker enzyme. 5. Studies of the dynamics of insulin release during perifusion showed that the response to increased (10μm) Ca2+ concentration was rapid and sustained over a period of at least 13min. 6. Secretion responses to Ca2+ in perifusion established that maximum release in permeabilized islets occurs at approx. 1μm-Ca2+ and half-maximum release occurs at approx. 0.6μm-Ca2+. 7. The study of the effect of agents that interfere with the microtubular microfilamentous system in B-cells using a perifusion system revealed that cytochalasin B caused a considerable increase, whereas vinblastine sulphate caused a significant inhibition, in insulin release in response to 1μm-Ca2+. 8. This technique should facilitate the study of the role of normally impermeable ions and metabolic intermediates in the regulation of insulin secretion. ImagesPLATE 1 PMID:6751326

  18. Perilipin 5 Regulates Islet Lipid Metabolism and Insulin Secretion in a cAMP-Dependent Manner: Implication of Its Role in the Postprandial Insulin Secretion

    PubMed Central

    Trevino, Michelle B.; Machida, Yui; Hallinger, Daniel R.; Garcia, Eden; Christensen, Aaron; Dutta, Sucharita; Peake, David A.; Ikeda, Yasuhiro

    2015-01-01

    Elevation of circulating fatty acids (FA) during fasting supports postprandial (PP) insulin secretion that is critical for glucose homeostasis and is impaired in diabetes. We tested our hypothesis that lipid droplet (LD) protein perilipin 5 (PLIN5) in β-cells aids PP insulin secretion by regulating intracellular lipid metabolism. We demonstrated that PLIN5 serves as an LD protein in human islets. In vivo, Plin5 and triglycerides were increased by fasting in mouse islets. MIN6 cells expressing PLIN5 (adenovirus [Ad]-PLIN5) and those expressing perilipin 2 (PLIN2) (Ad-PLIN2) had higher [3H]FA incorporation into triglycerides than Ad-GFP control, which support their roles as LD proteins. However, Ad-PLIN5 cells had higher lipolysis than Ad-PLIN2 cells, which increased further by 8-Br-cAMP, indicating that PLIN5 facilitates FA mobilization upon cAMP stimulation as seen postprandially. Ad-PLIN5 in islets enhanced the augmentation of glucose-stimulated insulin secretion by FA and 8-Br-cAMP in G-protein–coupled receptor 40 (GPR40)- and cAMP-activated protein kinase–dependent manners, respectively. When PLIN5 was increased in mouse β-cells in vivo, glucose tolerance after an acute exenatide challenge was improved. Therefore, the elevation of islet PLIN5 during fasting allows partitioning of FA into LD that is released upon refeeding to support PP insulin secretion in cAMP- and GPR40-dependent manners. PMID:25392244

  19. Regulation of calcium-permeable TRPV2 channel by insulin in pancreatic beta-cells.

    PubMed

    Hisanaga, Etsuko; Nagasawa, Masahiro; Ueki, Kohjiro; Kulkarni, Rohit N; Mori, Masatomo; Kojima, Itaru

    2009-01-01

    Calcium-permeable cation channel TRPV2 is expressed in pancreatic beta-cells. We investigated regulation and function of TRPV2 in beta-cells. Translocation of TRPV2 was assessed in MIN6 cells and cultured mouse beta-cells by transfecting TRPV2 fused to green fluorescent protein or TRPV2 containing c-Myc tag in the extracellular domain. Calcium entry was assessed by monitoring fura-2 fluorescence. In MIN6 cells, TRPV2 was observed mainly in cytoplasm in an unstimulated condition. Addition of exogenous insulin induced translocation and insertion of TRPV2 to the plasma membrane. Consistent with these observations, insulin increased calcium entry, which was inhibited by tranilast, an inhibitor of TRPV2, or by knockdown of TRPV2 using shRNA. A high concentration of glucose also induced translocation of TRPV2, which was blocked by nefedipine, diazoxide, and somatostatin, agents blocking glucose-induced insulin secretion. Knockdown of the insulin receptor attenuated insulin-induced translocation of TRPV2. Similarly, the effect of insulin on TRPV2 translocation was not observed in a beta-cell line derived from islets obtained from a beta-cell-specific insulin receptor knockout mouse. Knockdown of TRPV2 or addition of tranilast significantly inhibited insulin secretion induced by a high concentration of glucose. Likewise, cell growth induced by serum and glucose was inhibited by tranilast or by knockdown of TRPV2. Finally, insulin-induced translocation of TRPV2 was observed in cultured mouse beta-cells, and knockdown of TRPV2 reduced insulin secretion induced by glucose. TRPV2 is regulated by insulin and is involved in the autocrine action of this hormone on beta-cells.

  20. Influence of Flavonoids on Mechanism of Modulation of Insulin Secretion.

    PubMed

    Soares, Juliana Mikaelly Dias; Pereira Leal, Ana Ediléia Barbosa; Silva, Juliane Cabral; Almeida, Jackson R G S; de Oliveira, Helinando Pequeno

    2017-01-01

    The development of alternatives for insulin secretion control in vivo or in vitro represents an important aspect to be investigated. In this direction, natural products have been progressively explored with this aim. In particular, flavonoids are potential candidates to act as insulin secretagogue. To study the influence of flavonoid on overall modulation mechanisms of insulin secretion. The research was conducted in the following databases and platforms: PubMed, Scopus, ISI Web of Knowledge, SciELO, LILACS, and ScienceDirect, and the MeSH terms used for the search were flavonoids, flavones, islets of Langerhans, and insulin-secreting cells. Twelve articles were included and represent the basis of discussion on mechanisms of insulin secretion of flavonoids. Papers in ISI Web of Knowledge were in number of 1, Scopus 44, PubMed 264, ScienceDirect 511, and no papers from LILACS and SciELO databases. According to the literature, the majority of flavonoid subclasses can modulate insulin secretion through several pathways, in an indication that corresponding molecule is a potential candidate for active materials to be applied in the treatment of diabetes. The action of natural products on insulin secretion represents an important investigation topic due to their importance in the diabetes controlIn addition to their typical antioxidant properties, flavonoids contribute to the insulin secretionThe modulation of insulin secretion is induced by flavonoids according to different mechanisms. Abbreviations used: K ATP channels: ATP-sensitive K + channels, GLUT4: Glucose transporter 4, ERK1/2: Extracellular signal-regulated protein kinases 1 and 2, L-VDCCs: L-type voltage-dependent Ca +2 channels, GLUT1: Glucose transporter 1, AMPK: Adenosine monophosphate-activated protein kinase, PTP1B: Protein tyrosine phosphatase 1B, GLUT2: Glucose transporter 2, cAMP: Cyclic adenosine monophosphate, PKA: Protein kinase A, PTK: Protein tyrosine kinase, CaMK II: Ca 2+ /calmodulin-dependent protein kinase II, GSIS: Glucose-stimulated insulin secretion, Insig-1: Insulin-induced gene 1, IRS-2: Insulin receptor substrate 2, PDX-1: Pancreatic and duodenal homeobox 1, SREBP-1c: Sterol regulatory element binding protein-1c, DMC: Dihydroxy-6'-methoxy-3',5'-dimethylchalcone, GLP-1: Glucagon-like peptide-1, GLP-1R: Glucagon-like peptide 1 receptor.

  1. TRPM channels phosphorylation as a potential bridge between old signals and novel regulatory mechanisms of insulin secretion.

    PubMed

    Diaz-Garcia, Carlos Manlio; Sanchez-Soto, Carmen; Hiriart, Marcia

    2013-03-01

    Transient receptor potential channels, especially the members of the melastatin family (TRPM), participate in insulin secretion. Some of them are substrates for protein kinases, which are involved in several neurotransmitter, incretin and hormonal signaling cascades in β cells. The functional relationships between protein kinases and TRPM channels in systems of heterologous expression and native tissues rise issues about novel regulation pathways of pancreatic β-cell excitability. The aim of the present work is to review the evidences about phosphorylation of TRPM channels in β cells and to discuss the perspectives on insulin secretion.

  2. The Generation of Insulin Producing Cells from Human Mesenchymal Stem Cells by MiR-375 and Anti-MiR-9.

    PubMed

    Jafarian, Arefeh; Taghikani, Mohammad; Abroun, Saeid; Allahverdi, Amir; Lamei, Maryam; Lakpour, Niknam; Soleimani, Masoud

    2015-01-01

    MicroRNAs (miRNAs) are a group of endogenous small non-coding RNAs that regulate gene expression at the post-transcriptional level. A number of studies have led to the notion that some miRNAs have key roles in control of pancreatic islet development and insulin secretion. Based on some studies on miRNAs pattern, the researchers in this paper investigated the pancreatic differentiation of human bone marrow mesenchymal stem cells (hBM-MSCs) by up-regulation of miR-375 and down-regulation of miR-9 by lentiviruses containing miR-375 and anti-miR-9. After 21 days of induction, islet-like clusters containing insulin producing cells (IPCs) were confirmed by dithizone (DTZ) staining. The IPCs and β cell specific related genes and proteins were detected using qRT-PCR and immunofluorescence on days 7, 14 and 21 of differentiation. Glucose challenge test was performed at different concentrations of glucose so extracellular and intracellular insulin and C-peptide were assayed using ELISA kit. Although derived IPCs by miR-375 alone were capable to express insulin and other endocrine specific transcription factors, the cells lacked the machinery to respond to glucose. It was found that over-expression of miR-375 led to a reduction in levels of Mtpn protein in derived IPCs, while treatment with anti-miR-9 following miR-375 over-expression had synergistic effects on MSCs differentiation and insulin secretion in a glucose-regulated manner. The researchers reported that silencing of miR-9 increased OC-2 protein in IPCs that may contribute to the observed glucose-regulated insulin secretion. Although the roles of miR-375 and miR-9 are well known in pancreatic development and insulin secretion, the use of these miRNAs in transdifferentiation was never demonstrated. These findings highlight miRNAs functions in stem cells differentiation and suggest that they could be used as therapeutic tools for gene-based therapy in diabetes mellitus.

  3. The Brain–to–Pancreatic Islet Neuronal Map Reveals Differential Glucose Regulation From Distinct Hypothalamic Regions

    PubMed Central

    Rosario, Wilfredo; Singh, Inderroop; Wautlet, Arnaud; Patterson, Christa; Flak, Jonathan; Becker, Thomas C.; Ali, Almas; Tamarina, Natalia; Philipson, Louis H.; Enquist, Lynn W.; Myers, Martin G.

    2016-01-01

    The brain influences glucose homeostasis, partly by supplemental control over insulin and glucagon secretion. Without this central regulation, diabetes and its complications can ensue. Yet, the neuronal network linking to pancreatic islets has never been fully mapped. Here, we refine this map using pseudorabies virus (PRV) retrograde tracing, indicating that the pancreatic islets are innervated by efferent circuits that emanate from the hypothalamus. We found that the hypothalamic arcuate nucleus (ARC), ventromedial nucleus (VMN), and lateral hypothalamic area (LHA) significantly overlap PRV and the physiological glucose-sensing enzyme glucokinase. Then, experimentally lowering glucose sensing, specifically in the ARC, resulted in glucose intolerance due to deficient insulin secretion and no significant effect in the VMN, but in the LHA it resulted in a lowering of the glucose threshold that improved glucose tolerance and/or improved insulin sensitivity, with an exaggerated counter-regulatory response for glucagon secretion. No significant effect on insulin sensitivity or metabolic homeostasis was noted. Thus, these data reveal novel direct neuronal effects on pancreatic islets and also render a functional validation of the brain-to-islet neuronal map. They also demonstrate that distinct regions of the hypothalamus differentially control insulin and glucagon secretion, potentially in partnership to help maintain glucose homeostasis and guard against hypoglycemia. PMID:27207534

  4. The Brain-to-Pancreatic Islet Neuronal Map Reveals Differential Glucose Regulation From Distinct Hypothalamic Regions.

    PubMed

    Rosario, Wilfredo; Singh, Inderroop; Wautlet, Arnaud; Patterson, Christa; Flak, Jonathan; Becker, Thomas C; Ali, Almas; Tamarina, Natalia; Philipson, Louis H; Enquist, Lynn W; Myers, Martin G; Rhodes, Christopher J

    2016-09-01

    The brain influences glucose homeostasis, partly by supplemental control over insulin and glucagon secretion. Without this central regulation, diabetes and its complications can ensue. Yet, the neuronal network linking to pancreatic islets has never been fully mapped. Here, we refine this map using pseudorabies virus (PRV) retrograde tracing, indicating that the pancreatic islets are innervated by efferent circuits that emanate from the hypothalamus. We found that the hypothalamic arcuate nucleus (ARC), ventromedial nucleus (VMN), and lateral hypothalamic area (LHA) significantly overlap PRV and the physiological glucose-sensing enzyme glucokinase. Then, experimentally lowering glucose sensing, specifically in the ARC, resulted in glucose intolerance due to deficient insulin secretion and no significant effect in the VMN, but in the LHA it resulted in a lowering of the glucose threshold that improved glucose tolerance and/or improved insulin sensitivity, with an exaggerated counter-regulatory response for glucagon secretion. No significant effect on insulin sensitivity or metabolic homeostasis was noted. Thus, these data reveal novel direct neuronal effects on pancreatic islets and also render a functional validation of the brain-to-islet neuronal map. They also demonstrate that distinct regions of the hypothalamus differentially control insulin and glucagon secretion, potentially in partnership to help maintain glucose homeostasis and guard against hypoglycemia. © 2016 by the American Diabetes Association.

  5. Modulation of Ionic Channels and Insulin Secretion by Drugs and Hormones in Pancreatic Beta Cells.

    PubMed

    Velasco, Myrian; Díaz-García, Carlos Manlio; Larqué, Carlos; Hiriart, Marcia

    2016-09-01

    Pancreatic beta cells, unique cells that secrete insulin in response to an increase in glucose levels, play a significant role in glucose homeostasis. Glucose-stimulated insulin secretion (GSIS) in pancreatic beta cells has been extensively explored. In this mechanism, glucose enters the cells and subsequently the metabolic cycle. During this process, the ATP/ADP ratio increases, leading to ATP-sensitive potassium (KATP) channel closure, which initiates depolarization that is also dependent on the activity of TRP nonselective ion channels. Depolarization leads to the opening of voltage-gated Na(+) channels (Nav) and subsequently voltage-dependent Ca(2+) channels (Cav). The increase in intracellular Ca(2+) triggers the exocytosis of insulin-containing vesicles. Thus, electrical activity of pancreatic beta cells plays a central role in GSIS. Moreover, many growth factors, incretins, neurotransmitters, and hormones can modulate GSIS, and the channels that participate in GSIS are highly regulated. In this review, we focus on the principal ionic channels (KATP, Nav, and Cav channels) involved in GSIS and how classic and new proteins, hormones, and drugs regulate it. Moreover, we also discuss advances on how metabolic disorders such as metabolic syndrome and diabetes mellitus change channel activity leading to changes in insulin secretion. Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics.

  6. The Drosophila cytokine Unpaired 2 regulates physiological homeostasis by remotely controlling Insulin secretion

    PubMed Central

    Rajan, Akhila; Perrimon, Norbert

    2012-01-01

    In Drosophila the fat body (FB), a functional analog of the vertebrate adipose tissue, is the 'nutrient sensor' that conveys the nutrient status to the insulin producing cells (IPCs) in the fly brain to release insulin-like peptides (Dilps). Dilp secretion in turn regulates energy balance and promotes systemic growth. We identify Unpaired2 (Upd2), a protein with similarities to type I cytokines, as a secreted factor produced by the FB in the ‘fed’ state. When upd2 function is perturbed specifically in the FB, it results in a systemic reduction in growth and alters energy metabolism. Upd2 activates JAK/STAT signaling in a population of GABAergic neurons that project onto the IPCs. This activation relieves the inhibitory tone of the GABAergic neurons on the IPCs, resulting in the secretion of Dilps. Strikingly, we find that human Leptin, can rescue the upd2 mutant phenotypes, suggesting that Upd2 is the functional homolog of Leptin. PMID:23021220

  7. Role of melatonin on diabetes-related metabolic disorders

    PubMed Central

    Espino, Javier; Pariente, José A; Rodríguez, Ana B

    2011-01-01

    Melatonin is a circulating hormone that is mainly released from the pineal gland. It is best known as a regulator of seasonal and circadian rhythms, its levels being high during the night and low during the day. Interestingly, insulin levels are also adapted to day/night changes through melatonin-dependent synchronization. This regulation may be explained by the inhibiting action of melatonin on insulin release, which is transmitted through both the pertussis-toxin-sensitive membrane receptors MT1 and MT2 and the second messengers 3’,5’-cyclic adenosine monophosphate, 3’,5’-cyclic guanosine monophosphate and inositol 1,4,5-trisphosphate. Melatonin may influence diabetes and associated metabolic disturbances not only by regulating insulin secretion, but also by providing protection against reactive oxygen species, since pancreatic β-cells are very susceptible to oxidative stress because they possess only low-antioxidative capacity. On the other hand, in several genetic association studies, single nucleotide polymorphysms of the human MT2 receptor have been described as being causally linked to an elevated risk of developing type 2 diabetes. This suggests that these individuals may be more sensitive to the actions of melatonin, thereby leading to impaired insulin secretion. Therefore, blocking the melatonin-induced inhibition of insulin secretion may be a novel therapeutic avenue for type 2 diabetes. PMID:21860691

  8. Recent Advances in Obesity-Induced Inflammation and Insulin Resistance

    PubMed Central

    Tateya, Sanshiro; Kim, Francis; Tamori, Yoshikazu

    2013-01-01

    It has been demonstrated in rodents and humans that chronic inflammation characterized by macrophage infiltration occurs mainly in adipose tissue or liver during obesity, in which activation of immune cells is closely associated with insulin sensitivity. Macrophages can be classified as classically activated (M1) macrophages that support microbicidal activity or alternatively activated (M2) macrophages that support allergic and antiparasitic responses. In the context of insulin action, M2 macrophages sustain insulin sensitivity by secreting IL-4 and IL-10, while M1 macrophages induce insulin resistance through the secretion of proinflammatory cytokines, such as TNFα. Polarization of M1/M2 is controlled by various dynamic functions of other immune cells. It has been demonstrated that, in a lean state, TH2 cells, Treg cells, natural killer T cells, or eosinophils contribute to the M2 activation of macrophages by secreting IL-4 or IL-10. In contrast, obesity causes alteration of the constituent immune cells, in which TH1 cells, B cells, neutrophils, or mast cells induce M1 activation of macrophages by the elevated secretion of TNFα and IFNγ. Increased secretion of TNFα and free fatty acids from hypertrophied adipocytes also contributes to the M1 activation of macrophages. Since obesity-induced insulin resistance is established by macrophage infiltration and the activation of immune cells inside tissues, identification of the factors that regulate accumulation and the intracellular signaling cascades that define polarization of M1/M2 would be indispensable. Regulation of these factors would lead to the pharmacological inhibition of obesity-induced insulin resistance. In this review, we introduce molecular mechanisms relevant to the pathophysiology and review the most recent studies of clinical applications targeting chronic inflammation. PMID:23964268

  9. Ablation of ghrelin receptor in leptin-deficient ob/ob mice has paradoxical effects on glucose homeostasis when compared with ablation of ghrelin in ob/ob mice.

    PubMed

    Ma, Xiaojun; Lin, Yuezhen; Lin, Ligen; Qin, Guijun; Pereira, Fred A; Haymond, Morey W; Butte, Nancy F; Sun, Yuxiang

    2012-08-01

    The orexigenic hormone ghrelin is important in diabetes because it has an inhibitory effect on insulin secretion. Ghrelin ablation in leptin-deficient ob/ob (Ghrelin(-/-):ob/ob) mice increases insulin secretion and improves hyperglycemia. The physiologically relevant ghrelin receptor is the growth hormone secretagogue receptor (GHS-R), and GHS-R antagonists are thought to be an effective strategy for treating diabetes. However, since some of ghrelin's effects are independent of GHS-R, we have utilized genetic approaches to determine whether ghrelin's effect on insulin secretion is mediated through GHS-R and whether GHS-R antagonism indeed inhibits insulin secretion. We investigated the effects of GHS-R on glucose homeostasis in Ghsr-ablated ob/ob mice (Ghsr(-/-):ob/ob). Ghsr ablation did not rescue the hyperphagia, obesity, or insulin resistance of ob/ob mice. Surprisingly, Ghsr ablation worsened the hyperglycemia, decreased insulin, and impaired glucose tolerance. Consistently, Ghsr ablation in ob/ob mice upregulated negative β-cell regulators (such as UCP-2, SREBP-1c, ChREBP, and MIF-1) and downregulated positive β-cell regulators (such as HIF-1α, FGF-21, and PDX-1) in whole pancreas; this suggests that Ghsr ablation impairs pancreatic β-cell function in leptin deficiency. Of note, Ghsr ablation in ob/ob mice did not affect the islet size; the average islet size of Ghsr(-/-):ob/ob mice is similar to that of ob/ob mice. In summary, because Ghsr ablation in leptin deficiency impairs insulin secretion and worsens hyperglycemia, this suggests that GHS-R antagonists may actually aggravate diabetes under certain conditions. The paradoxical effects of ghrelin ablation and Ghsr ablation in ob/ob mice highlight the complexity of the ghrelin-signaling pathway.

  10. FKBP12.6-knockout mice display hyperinsulinemia and resistance to high-fat diet-induced hyperglycemia.

    PubMed

    Chen, Zheng; Li, Zhengzheng; Wei, Bin; Yin, Wenxuan; Xu, Tao; Kotlikoff, Michael I; Ji, Guangju

    2010-02-01

    FK506 binding protein 12.6 kDa (FKBP12.6), a protein that regulates ryanodine Ca(2+) release channels, may act as an important regulator of insulin secretion. In this study, the role of FKBP12.6 in the control of insulin secretion and blood glucose is clarified using FKBP12.6(-/-) mice. FKBP12.6(-/-) mice showed significant fed hyperinsulinemia but exhibited normoglycemia, fasting normoinsulinemia, and normal body weight compared with wild-type (WT) littermate control mice. Deletion of FKBP12.6 resulted in enhanced glucose-stimulated insulin secretion (GSIS) both in vivo and in vitro, a result that is due to enhanced glucose-induced islet Ca(2+) elevation. After a high-fat dietary challenge (HF diet) for 3 mo, FKBP12.6(-/-) mice displayed higher body weight, hyperinsulinemia, and lower fed blood glucose concentrations compared with WT mice. FKBP12.6(-/-) mice displayed hyperinsulinemia, and resistance to HF diet-induced hyperglycemia, suggesting that FKBP12.6 plays an important role in insulin secretion and blood glucose control, and raising the possibility that it may be a potential therapeutic target for the treatment of type 2 diabetes.

  11. Melatonin and Pancreatic Islets: Interrelationships between Melatonin, Insulin and Glucagon

    PubMed Central

    Peschke, Elmar; Bähr, Ina; Mühlbauer, Eckhard

    2013-01-01

    The pineal hormone melatonin exerts its influence in the periphery through activation of two specific trans-membrane receptors: MT1 and MT2. Both isoforms are expressed in the islet of Langerhans and are involved in the modulation of insulin secretion from β-cells and in glucagon secretion from α-cells. De-synchrony of receptor signaling may lead to the development of type 2 diabetes. This notion has recently been supported by genome-wide association studies identifying particularly the MT2 as a risk factor for this rapidly spreading metabolic disturbance. Since melatonin is secreted in a clearly diurnal fashion, it is safe to assume that it also has a diurnal impact on the blood-glucose-regulating function of the islet. This factor has hitherto been underestimated; the disruption of diurnal signaling within the islet may be one of the most important mechanisms leading to metabolic disturbances. The study of melatonin–insulin interactions in diabetic rat models has revealed an inverse relationship: an increase in melatonin levels leads to a down-regulation of insulin secretion and vice versa. Elucidation of the possible inverse interrelationship in man may open new avenues in the therapy of diabetes. PMID:23535335

  12. Emerging roles for β-arrestin-1 in the control of the pancreatic β-cell function and mass: new therapeutic strategies and consequences for drug screening.

    PubMed

    Dalle, Stéphane; Ravier, Magalie A; Bertrand, Gyslaine

    2011-03-01

    Defective insulin secretion is a feature of type 2 diabetes that results from inadequate compensatory increase in β-cell mass, decreased β-cell survival and impaired glucose-dependent insulin release. Pancreatic β-cell proliferation, survival and secretion are thought to be regulated by signalling pathways linked to G-protein coupled receptors (GPCRs), such as the glucagon-like peptide-1 (GLP-1) and the pituitary adenylate cyclase-activating polypeptide (PACAP) receptors. β-arrestin-1 serves as a multifunctional adaptor protein that mediates receptor desensitization, receptor internalization, and links GPCRs to downstream pathways such as tyrosine kinase Src, ERK1/2 or Akt/PKB. Importantly, recent studies found that β-arrestin-1 mediates GLP-1 signalling to insulin secretion, GLP-1 antiapoptotic effect by phosphorylating the proapoptotic protein Bad through ERK1/2 activation, and PACAP potentiation of glucose-induced long-lasting ERK1/2 activation controlling IRS-2 expression. Together, these novel findings reveal an important functional role for β-arrestin-1 in the regulation of insulin secretion and β-cell survival by GPCRs. Copyright © 2010 Elsevier Inc. All rights reserved.

  13. Free triiodothyronine plasma concentrations are positively associated with insulin secretion in euthyroid individuals

    PubMed Central

    Ortega, Emilio; Koska, Juraj; Pannacciulli, Nicola; Bunt, Joy C; Krakoff, Jonathan

    2008-01-01

    Background Thyroid hormones (TH) may influence glucose metabolism. Hyperthyroid subjects have higher insulin secretion rates when compared with euthyroid individuals. Objective To evaluate the association between TH concentrations and insulin secretion in euthyroid, healthy Pima Indian adults (n=55, 29±7 years, females/males 36/19) with normal glucose tolerance (NGT) admitted to a Clinical Research Unit. Methods TSH, free thyroxine (FT4), 3,5,3′-L-tri-iodothyronine (FT3), and fasting plasma insulin (FPI) concentrations were measured in fasting plasma samples, percentage of body fat (%BF) by dual energy x-ray absorptiometry (DXA), acute insulin response (AIR), and incremental area under the curve (AUC) of insulin in response to a 25 g intravenous glucose tolerance test (IVGTT) and 75 g oral glucose tolerance test (OGTT) respectively and insulin action (M) during an euglycemic clamp. Results FT3 concentrations were associated with FPI, AIR, and insulin AUC both before (r=0.33, P=0.01; r=0.29, P=0.03; and r=0.35, P=0.008 respectively) and after adjustment for age, sex, %BF, glucose (fasting concentrations or glucose AUC), and M (β=0.09, P=0.01; β=0.16, P=0.03; and β=0.24, P=0.0007 respectively). No associations were found for TSH or FT4. Conclusion FT3 was associated with several measurements of insulin secretion in euthyroid individuals with NGT. T3 concentrations may play a role in the regulation of insulin secretion. PMID:18230829

  14. The prolyl isomerase Pin1 increases β-cell proliferation and enhances insulin secretion.

    PubMed

    Nakatsu, Yusuke; Mori, Keiichi; Matsunaga, Yasuka; Yamamotoya, Takeshi; Ueda, Koji; Inoue, Yuki; Mitsuzaki-Miyoshi, Keiko; Sakoda, Hideyuki; Fujishiro, Midori; Yamaguchi, Suguru; Kushiyama, Akifumi; Ono, Hiraku; Ishihara, Hisamitsu; Asano, Tomoichiro

    2017-07-14

    The prolyl isomerase Pin1 binds to the phosphorylated Ser/Thr-Pro motif of target proteins and enhances their cis-trans conversion. This report is the first to show that Pin1 expression in pancreatic β cells is markedly elevated by high-fat diet feeding and in ob/ob mice. To elucidate the role of Pin1 in pancreatic β cells, we generated β-cell-specific Pin1 KO (βPin1 KO) mice. These mutant mice showed exacerbation of glucose intolerance but had normal insulin sensitivity. We identified two independent factors underlying impaired insulin secretion in the βPin1 KO mice. Pin1 enhanced pancreatic β-cell proliferation, as indicated by a reduced β-cell mass in βPin1 KO mice compared with control mice. Moreover, a diet high in fat and sucrose failed to increase pancreatic β-cell growth in the βPin1 KO mice, an observation to which up-regulation of the cell cycle protein cyclin D appeared to contribute. The other role of Pin1 was to activate the insulin-secretory step: Pin1 KO β cells showed impairments in glucose- and KCl-induced elevation of the intracellular Ca 2+ concentration and insulin secretion. We also identified salt-inducible kinase 2 (SIK2) as a Pin1-binding protein that affected the regulation of Ca 2+ influx and found Pin1 to enhance SIK2 kinase activity, resulting in a decrease in p35 protein, a negative regulator of Ca 2+ influx. Taken together, our observations demonstrate critical roles of Pin1 in pancreatic β cells and that Pin1 both promotes β-cell proliferation and activates insulin secretion. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  15. A Novel GLP1 Receptor Interacting Protein ATP6ap2 Regulates Insulin Secretion in Pancreatic Beta Cells*

    PubMed Central

    Dai, Feihan F.; Bhattacharjee, Alpana; Liu, Ying; Batchuluun, Battsetseg; Zhang, Ming; Wang, Xinye Serena; Huang, Xinyi; Luu, Lemieux; Zhu, Dan; Gaisano, Herbert; Wheeler, Michael B.

    2015-01-01

    GLP1 activates its receptor, GLP1R, to enhance insulin secretion. The activation and transduction of GLP1R requires complex interactions with a host of accessory proteins, most of which remain largely unknown. In this study, we used membrane-based split ubiquitin yeast two-hybrid assays to identify novel GLP1R interactors in both mouse and human islets. Among these, ATP6ap2 (ATPase H+-transporting lysosomal accessory protein 2) was identified in both mouse and human islet screens. ATP6ap2 was shown to be abundant in islets including both alpha and beta cells. When GLP1R and ATP6ap2 were co-expressed in beta cells, GLP1R was shown to directly interact with ATP6ap2, as assessed by co-immunoprecipitation. In INS-1 cells, overexpression of ATP6ap2 did not affect insulin secretion; however, siRNA knockdown decreased both glucose-stimulated and GLP1-induced insulin secretion. Decreases in GLP1-induced insulin secretion were accompanied by attenuated GLP1 stimulated cAMP accumulation. Because ATP6ap2 is a subunit required for V-ATPase assembly of insulin granules, it has been reported to be involved in granule acidification. In accordance with this, we observed impaired insulin granule acidification upon ATP6ap2 knockdown but paradoxically increased proinsulin secretion. Importantly, as a GLP1R interactor, ATP6ap2 was required for GLP1-induced Ca2+ influx, in part explaining decreased insulin secretion in ATP6ap2 knockdown cells. Taken together, our findings identify a group of proteins that interact with the GLP1R. We further show that one interactor, ATP6ap2, plays a novel dual role in beta cells, modulating both GLP1R signaling and insulin processing to affect insulin secretion. PMID:26272612

  16. [The correlation between serum uric acid level and early-phase insulin secretion in subjects with normal glucose regulation].

    PubMed

    Lu, L; Zheng, F P; Li, H

    2016-05-01

    To investigate the correlation between serum uric acid (SUA) level and early-phase insulin secretion in subjects with normal glucose regulation (NGR). Totally 367 community NGR residents confirmed by a 75g oral glucose tolerance test were enrolled. The insulin resistance index (HOMA-IR) and the early-phase insulin secretion index after a glucose load (ΔI30/ΔG30) were used to estimate the insulin sensitivity and the early-phase insulin secretion, respectively. The subjects were divided into 4 groups according to the SUA level quartiles. Differences in early-phase insulin levels, ΔI30/ΔG30, and HOMA-IR were compared among the 4 groups. Age, BMI, waist circumference, systolic blood pressure, diastolic blood pressure, fasting insulin (FINS), 30 minutes postprandial insulin(30 minINS), 2 hours postprandial insulin(2hINS), HOMA-IR and TG levels increased across the rising categories of SUA levels, while the HDL-C was decreased across the SUA groups (P<0.01). The SUA level was positively correlated with age(r=0.157, P<0.01), BMI(r=0.262, P<0.01), waist circumference(r=0.372, P<0.01), systolic blood pressure(r=0.200, P<0.01), diastolic blood pressure(r=0.254, P<0.01), 30 minutes postprandial plasma glucose(r=0.118, P=0.023), FINS(r=0.249, P<0.01), 30minINS(r=0.189, P<0.01), 2hINS(r=0.206, P<0.01), glycosylated hemoglobin(HbA1c, r=0.106, P=0.042), HOMA-IR(r=0.244, P<0.01), TG(r=0.350, P<0.01), ΔI30/ΔG30(r=0.144, P<0.01), and negatively correlated with HDL-C level(r=-0.321, P<0.01). Multiple stepwise regression analysis showed that SUA(β=0.292, P<0.01) and HOMA-IR(β=29.821, P<0.01) were positively associated with ΔI30/ΔG30. SUA level is closely related with the early-phase insulin secretion in NGR subjects.

  17. Epigallocatechin-3-gallate (EGCG) activates AMPK through the inhibition of glutamate dehydrogenase in muscle and pancreatic ß-cells: A potential beneficial effect in the pre-diabetic state?

    PubMed

    Pournourmohammadi, Shirin; Grimaldi, Mariagrazia; Stridh, Malin H; Lavallard, Vanessa; Waagepetersen, Helle S; Wollheim, Claes B; Maechler, Pierre

    2017-07-01

    Glucose homeostasis is determined by insulin secretion from the ß-cells in pancreatic islets and by glucose uptake in skeletal muscle and other insulin target tissues. While glutamate dehydrogenase (GDH) senses mitochondrial energy supply and regulates insulin secretion, its role in the muscle has not been elucidated. Here we investigated the possible interplay between GDH and the cytosolic energy sensing enzyme 5'-AMP kinase (AMPK), in both isolated islets and myotubes from mice and humans. The green tea polyphenol epigallocatechin-3-gallate (EGCG) was used to inhibit GDH. Insulin secretion was reduced by EGCG upon glucose stimulation and blocked in response to glutamine combined with the allosteric GDH activator BCH (2-aminobicyclo-[2,2,1] heptane-2-carboxylic acid). Insulin secretion was similarly decreased in islets of mice with ß-cell-targeted deletion of GDH (ßGlud1 -/- ). EGCG did not further reduce insulin secretion in the mutant islets, validating its specificity. In human islets, EGCG attenuated both basal and nutrient-stimulated insulin secretion. Glutamine/BCH-induced lowering of AMPK phosphorylation did not operate in ßGlud1 -/- islets and was similarly prevented by EGCG in control islets, while high glucose systematically inactivated AMPK. In mouse C2C12 myotubes, like in islets, the inhibition of AMPK following GDH activation with glutamine/BCH was reversed by EGCG. Stimulation of GDH in primary human myotubes caused lowering of insulin-induced 2-deoxy-glucose uptake, partially counteracted by EGCG. Thus, mitochondrial energy provision through anaplerotic input via GDH influences the activity of the cytosolic energy sensor AMPK. EGCG may be useful in obesity by resensitizing insulin-resistant muscle while blunting hypersecretion of insulin in hypermetabolic states. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. An ecdysteroid-inducible insulin-like growth factor-like peptide regulates adult development of the silkmoth Bombyx mori.

    PubMed

    Okamoto, Naoki; Yamanaka, Naoki; Satake, Honoo; Saegusa, Hironao; Kataoka, Hiroshi; Mizoguchi, Akira

    2009-03-01

    Insulin-like growth factors (IGFs) play essential roles in fetal and postnatal growth and development of mammals. They are secreted by a wide variety of tissues, with the liver being the major source of circulating IGFs, and regulate cell growth, differentiation and survival. IGFs share some biological activities with insulin but are secreted in distinct physiological and developmental contexts, having specific functions. Although recent analyses of invertebrate genomes have revealed the presence of multiple insulin family peptide genes in each genome, little is known about functional diversification of the gene products. Here we show that a novel insulin family peptide of the silkmoth Bombyx mori, which was purified and sequenced from the hemolymph, is more like IGFs than like insulin, in contrast to bombyxins, which are previously identified insulin-like peptides in B. mori. Expression analysis reveals that this IGF-like peptide is predominantly produced by the fat body, a functional equivalent of the vertebrate liver and adipocytes, and is massively released during pupa-adult development. Studies using in vitro tissue culture systems show that secretion of the peptide is stimulated by ecdysteroid and that the secreted peptide promotes the growth of adult-specific tissues. These observations suggest that this peptide is a Bombyx counterpart of vertebrate IGFs and that functionally IGF-like peptides may be more ubiquitous in the animal kingdom than previously thought. Our results also suggest that the known effects of ecdysteroid on insect adult development may be in part mediated by IGF-like peptides.

  19. Mechanisms of β-cell functional adaptation to changes in workload

    PubMed Central

    Wortham, Matthew; Sander, Maike

    2016-01-01

    Insulin secretion must be tightly coupled to nutritional state to maintain blood glucose homeostasis. To this end, pancreatic β-cells sense and respond to changes in metabolic conditions, thereby anticipating insulin demands for a given physiological context. This is achieved in part through adjustments of nutrient metabolism, which is controlled at several levels including allosteric regulation, posttranslational modifications, and altered expression of metabolic enzymes. In this review, we discuss mechanisms of β-cell metabolic and functional adaptation in the context of two physiological states that alter glucose-stimulated insulin secretion: fasting and insulin resistance. We review current knowledge of metabolic changes that occur in the β-cell during adaptation and specifically discuss transcriptional mechanisms that underlie β-cell adaptation. A more comprehensive understanding of how β-cells adapt to changes in nutrient state could identify mechanisms to be co-opted for therapeutically modulating insulin secretion in metabolic disease. PMID:27615135

  20. Abnormal endocrine pancreas function at birth in cystic fibrosis ferrets

    PubMed Central

    Olivier, Alicia K.; Yi, Yaling; Sun, Xingshen; Sui, Hongshu; Liang, Bo; Hu, Shanming; Xie, Weiliang; Fisher, John T.; Keiser, Nicholas W.; Lei, Diana; Zhou, Weihong; Yan, Ziying; Li, Guiying; Evans, Turan I.A.; Meyerholz, David K.; Wang, Kai; Stewart, Zoe A.; Norris, Andrew W.; Engelhardt, John F.

    2012-01-01

    Diabetes is a common comorbidity in cystic fibrosis (CF) that worsens prognosis. The lack of an animal model for CF-related diabetes (CFRD) has made it difficult to dissect how the onset of pancreatic pathology influences the emergence of CFRD. We evaluated the structure and function of the neonatal CF endocrine pancreas using a new CFTR-knockout ferret model. Although CF kits are born with only mild exocrine pancreas disease, progressive exocrine and endocrine pancreatic loss during the first months of life was associated with pancreatic inflammation, spontaneous hyperglycemia, and glucose intolerance. Interestingly, prior to major exocrine pancreas disease, CF kits demonstrated significant abnormalities in blood glucose and insulin regulation, including diminished first-phase and accentuated peak insulin secretion in response to glucose, elevated peak glucose levels following glucose challenge, and variably elevated insulin and C-peptide levels in the nonfasted state. Although there was no difference in lobular insulin and glucagon expression between genotypes at birth, significant alterations in the frequencies of small and large islets were observed. Newborn cultured CF islets demonstrated dysregulated glucose-dependent insulin secretion in comparison to controls, suggesting intrinsic abnormalities in CF islets. These findings demonstrate that early abnormalities exist in the regulation of insulin secretion by the CF endocrine pancreas. PMID:22996690

  1. Microtubules negatively regulate insulin secretion in pancreatic β cells

    PubMed Central

    Zhu, Xiaodong; Hu, Ruiying; Brissova, Marcela; Stein, Roland W.; Powers, Alvin C.; Gu, Guoqiang; Kaverina, Irina

    2015-01-01

    Summary For glucose-stimulated insulin secretion (GSIS) insulin granules have to be localized close to the plasma membrane. The role of microtubule-dependent transport in granule positioning and GSIS has been debated. Here, we report that microtubules, counterintuitively, restrict granule availability for secretion. In β cells, microtubules originate at the Golgi and form a dense non-radial meshwork. Non-directional transport along these microtubules limits granule dwelling at the cell periphery, restricting granule availability for secretion. High glucose destabilizes microtubules, decreasing their density; such local microtubule depolymerization is necessary for GSIS, likely because granule withdrawal from the cell periphery becomes inefficient. Consistently, microtubule depolymerization by nocodazole blocks granule withdrawal, increases their concentration at exocytic sites, and dramatically enhances GSIS in vitro and in mice. Furthermore, glucose-driven MT destabilization is balanced by new microtubule formation, which likely prevents over-secretion. Importantly, microtubule density is greater in dysfunctional β cells of diabetic mice. PMID:26418295

  2. Adrenaline: insights into its metabolic roles in hypoglycaemia and diabetes.

    PubMed

    Verberne, A J M; Korim, W S; Sabetghadam, A; Llewellyn-Smith, I J

    2016-05-01

    Adrenaline is a hormone that has profound actions on the cardiovascular system and is also a mediator of the fight-or-flight response. Adrenaline is now increasingly recognized as an important metabolic hormone that helps mobilize energy stores in the form of glucose and free fatty acids in preparation for physical activity or for recovery from hypoglycaemia. Recovery from hypoglycaemia is termed counter-regulation and involves the suppression of endogenous insulin secretion, activation of glucagon secretion from pancreatic α-cells and activation of adrenaline secretion. Secretion of adrenaline is controlled by presympathetic neurons in the rostroventrolateral medulla, which are, in turn, under the control of central and/or peripheral glucose-sensing neurons. Adrenaline is particularly important for counter-regulation in individuals with type 1 (insulin-dependent) diabetes because these patients do not produce endogenous insulin and also lose their ability to secrete glucagon soon after diagnosis. Type 1 diabetic patients are therefore critically dependent on adrenaline for restoration of normoglycaemia and attenuation or loss of this response in the hypoglycaemia unawareness condition can have serious, sometimes fatal, consequences. Understanding the neural control of hypoglycaemia-induced adrenaline secretion is likely to identify new therapeutic targets for treating this potentially life-threatening condition. © 2016 The British Pharmacological Society.

  3. β-arrestin-2 is an essential regulator of pancreatic β-cell function under physiological and pathophysiological conditions.

    PubMed

    Zhu, Lu; Almaça, Joana; Dadi, Prasanna K; Hong, Hao; Sakamoto, Wataru; Rossi, Mario; Lee, Regina J; Vierra, Nicholas C; Lu, Huiyan; Cui, Yinghong; McMillin, Sara M; Perry, Nicole A; Gurevich, Vsevolod V; Lee, Amy; Kuo, Bryan; Leapman, Richard D; Matschinsky, Franz M; Doliba, Nicolai M; Urs, Nikhil M; Caron, Marc G; Jacobson, David A; Caicedo, Alejandro; Wess, Jürgen

    2017-02-01

    β-arrestins are critical signalling molecules that regulate many fundamental physiological functions including the maintenance of euglycemia and peripheral insulin sensitivity. Here we show that inactivation of the β-arrestin-2 gene, barr2, in β-cells of adult mice greatly impairs insulin release and glucose tolerance in mice fed with a calorie-rich diet. Both glucose and KCl-induced insulin secretion and calcium responses were profoundly reduced in β-arrestin-2 (barr2) deficient β-cells. In human β-cells, barr2 knockdown abolished glucose-induced insulin secretion. We also show that the presence of barr2 is essential for proper CAMKII function in β-cells. Importantly, overexpression of barr2 in β-cells greatly ameliorates the metabolic deficits displayed by mice consuming a high-fat diet. Thus, our data identify barr2 as an important regulator of β-cell function, which may serve as a new target to improve β-cell function.

  4. β-Arrestin2 plays a key role in the modulation of the pancreatic beta cell mass in mice.

    PubMed

    Ravier, Magalie A; Leduc, Michele; Richard, Joy; Linck, Nathalie; Varrault, Annie; Pirot, Nelly; Roussel, Morgane M; Bockaert, Joël; Dalle, Stéphane; Bertrand, Gyslaine

    2014-03-01

    Beta cell failure due to progressive secretory dysfunction and limited expansion of beta cell mass is a key feature of type 2 diabetes. Beta cell function and mass are controlled by glucose and hormones/neurotransmitters that activate G protein-coupled receptors or receptor tyrosine kinases. We have investigated the role of β-arrestin (ARRB)2, a scaffold protein known to modulate such receptor signalling, in the modulation of beta cell function and mass, with a specific interest in glucagon-like peptide-1 (GLP-1), muscarinic and insulin receptors. β-arrestin2-knockout mice and their wild-type littermates were fed a normal or a high-fat diet (HFD). Glucose tolerance, insulin sensitivity and insulin secretion were assessed in vivo. Beta cell mass was evaluated in pancreatic sections. Free cytosolic [Ca(2+)] and insulin secretion were determined using perifused islets. The insulin signalling pathway was evaluated by western blotting. Arrb2-knockout mice exhibited impaired glucose tolerance and insulin secretion in vivo, but normal insulin sensitivity compared with wild type. Surprisingly, the absence of ARRB2 did not affect glucose-stimulated insulin secretion or GLP-1- and acetylcholine-mediated amplifications from perifused islets, but it decreased the islet insulin content and beta cell mass. Additionally, there was no compensatory beta cell mass expansion through proliferation in response to the HFD. Furthermore, Arrb2 deletion altered the islet insulin signalling pathway. ARRB2 is unlikely to be involved in the regulation of insulin secretion, but it is required for beta cell mass plasticity. Additionally, we provide new insights into the mechanisms involved in insulin signalling in beta cells.

  5. Hyperthyroidism impairs pancreatic beta cell adaptations to late pregnancy and maternal liporegulation in the rat.

    PubMed

    Holness, M J; Greenwood, G K; Smith, N D; Sugden, M C

    2005-11-01

    Hyperthyroidism modifies lipid dynamics (increased oxidation), impairs insulin action and can suppress insulin secretion. We therefore examined the impact of hyperthyroidism on the relationship between glucose-stimulated insulin secretion (GSIS) and insulin action, using late pregnancy as a model of physiological insulin resistance that is associated with compensatory insulin hypersecretion to maintain glucose tolerance. Our aim was to examine whether hyperthyroidism compromises the regulation of insulin secretion and the ability of insulin to modulate circulating lipid concentrations in late pregnancy. Hyperthyroidism was induced by tri-iodothyronine (T(3)) administration from day 17 to 19 of pregnancy. GSIS was assessed during an IVGTT and during hyperglycaemic clamps in vivo and in vitro, using step-up and -down islet perifusions. Hyperthyroidism in pregnancy elevated the glucose threshold for GSIS and impaired GSIS at low and high glucose concentrations in islet perifusions. In the intact animal, insulin secretion (after bolus glucose) was more rapidly curtailed following removal of the glucose stimulus to secretion. In contrast, GSIS was maintained during protracted hyperglycaemia (hyperglycaemic clamps) in the hyperthyroid pregnant state in vivo. Hyperthyroidism in vivo during late pregnancy blunts GSIS in subsequently isolated and perifused islets at low and high glucose concentrations. It also adversely affects GSIS under conditions of an acute glucose challenge in vivo. In contrast, GSIS is maintained during sustained hyperglycaemia in vivo, suggesting that in vivo factors can rescue GSIS. The ability of insulin to suppress systemic lipid levels during hyperglycaemic clamps was impaired. We therefore suggest that higher circulating lipids may preserve GSIS under conditions of sustained hyperglycaemia in the hyperthyroid pregnancy.

  6. Use of First-phase Insulin Secretion in Early Diagnosis of Thyroid Diabetes and Type 2 Diabetes Mellitus

    PubMed Central

    Meng, Li-Heng; Huang, Yao; Zhou, Jia; Liang, Xing-Huan; Xian, Jing; Li, Li; Qin, Ying-Fen

    2017-01-01

    Background: A relationship between hyperthyroidism and insulin secretion in type 2 diabetes mellitus (T2DM) has been reported. Therefore, this study explored the use of first-phase insulin secretion in the differential diagnosis of thyroid diabetes (TDM) and T2DM. Methods: In total, 101 patients with hyperthyroidism were divided into hyperthyroidism with normal glucose tolerance (TNGT), hyperthyroidism with impaired glucose regulation (TIGR), and diabetes (TDM) groups. Furthermore, 96 patients without hyperthyroidism were recruited as control groups (normal glucose tolerance [NGT], impaired glucose regulation [IGR], and T2DM). The following parameters were evaluated: homeostasis model assessment (HOMA)-IR, HOMA-β, modified β-cell function index (MBCI), peak insulin/fasting insulin (IP/I0), AUCins-OGTT, and AUCins-OGTT/AUCglu-OGTT from the oral glucose tolerance test (OGTT) insulin release test were utilized to assess the second-phase insulin secretion, while the IP/I0, AIR0′~10′, and AUCins-IVGTT from the intravenous glucose tolerance test (IVGTT) insulin release test were used to assess the first-phase insulin secretion. Results: In the OGTT, the HOMA-β values of the TNGT and TDM groups were higher than those of the NGT and T2DM groups (all P < 0.05). In the hyperthyroidism groups, the MBCI of the TDM group was lower than that of the TNGT and TIGR groups (all P < 0.05). Among the control groups, the MBCI values of the IGR and T2DM groups were lower than that of the normal glucose tolerance (NGT) group (all P < 0.05). In the IVGTT, insulin secretion peaked for all groups at 2–4 min, except for the T2DM group, which showed a low plateau and no secretion peak. The IP values of the TNGT, TIGR, and TDM groups were higher than those of the NGT, IGR, and T2DM groups (all P < 0.05). The Ip/I0, AIR0′~10′, and AUCins-IVGTT values of the TDM group were higher than those of the T2DM group but were lower than those of the TNGT, TIGR, NGR, and IGR groups (all P < 0.05). Compared with the other five groups, the Ip/I0, AIR0′~10′, and AUCins-IVGTT values of the T2DM group were significantly decreased (all P < 0.05). The Ip/I0 and AUCins-IVGTT values of the TNGT group were higher than those of the NGT group (all P < 0.05). Conclusions: β-cell function in TDM patients is superior to that in T2DM patients. First-phase insulin secretion could be used as an early diagnostic marker to differentiate TDM and T2DM. PMID:28345543

  7. The glucagon-miniglucagon interplay: a new level in the metabolic regulation.

    PubMed

    Bataille, Dominique; Fontés, Ghislaine; Costes, Safia; Longuet, Christine; Dalle, Stéphane

    2006-07-01

    Miniglucagon (glucagon 19-29) is the ultimate processing product of proglucagon, present in the glucagon-secreting granules of the alpha cells, at a close vicinity of the insulin-secreting beta cells. Co-released with glucagon and thanks to its original mode of action and its huge potency, it suppresses, inside the islet of Langerhans, the detrimental effect of glucagon on insulin secretion, while it leaves untouched the beneficial effect of glucagon on glucose competence of the beta cell. At the periphery, miniglucagon is processed at the surface of glucagon- and insulin-sensitive cells from circulating glucagon. At that level, it acts via a cellular pathway which uses initial molecular steps distinct from that of insulin which, when impaired, are involved in insulin resistence. This bypass allows miniglucagon to act as an insulin-like component, a characteristic which makes this peptide of particular interest from a pathophysiological and pharmacological point of views in understanding and treating metabolic diseases, such as the type 2 diabetes.

  8. Characterization of the Expression, Localization, and Secretion of PANDER in α–Cells

    PubMed Central

    Carnegie, Jason R.; Robert-Cooperman, Claudia E.; Wu, Jianmei; Young, Robert A.; Wolf, Bryan A.; Burkhardt, Brant R.

    2010-01-01

    The novel islet-specific protein PANcreatic DERived Factor (PANDER; FAM3B) has beenextensively characterized with respect to the β–cell, and these studies suggest a potential function for PANDER in the regulation of glucose homeostasis. Little is known regarding PANDER in pancreatic α–cells, which are critically involved in maintaining euglycemia. Here we present the first report elucidating the expression and regulation of PANDER within the α–cell. Pander mRNA and protein aredetected in α–cells, with primary localization to a glucagon-negative granular cytosolic compartment. PANDER secretion from α–cells is nutritionally and hormonally regulated by L-arginine and insulin, demonstrating similarities and differences with glucagon. Signaling via the insulin receptor (IR) through the PI3K and Akt/PKB node is required for insulin-stimulated PANDER release. The separate localization of PANDER and glucagon is consistent with their differential regulation, and the effect of insulin suggests a paracrine/endocrine effect on PANDER release. This provides further insight into the potential glucose-regulatory role of PANDER. PMID:20638985

  9. Characterization of the expression, localization, and secretion of PANDER in alpha-cells.

    PubMed

    Carnegie, Jason R; Robert-Cooperman, Claudia E; Wu, Jianmei; Young, Robert A; Wolf, Bryan A; Burkhardt, Brant R

    2010-08-30

    The novel islet-specific protein PANcreatic DERived Factor (PANDER; FAM3B) has been extensively characterized with respect to the beta-cell, and these studies suggest a potential function for PANDER in the regulation of glucose homeostasis. Little is known regarding PANDER in pancreatic -cells, which are critically involved in maintaining euglycemia. Here we present the first report elucidating the expression and regulation of PANDER within the alpha-cell. Pander mRNA and protein are detected in alpha-cells, with primary localization to a glucagon-negative granular cytosolic compartment. PANDER secretion from alpha-cells is nutritionally and hormonally regulated by l-arginine and insulin, demonstrating similarities and differences with glucagon. Signaling via the insulin receptor (IR) through the PI3K and Akt/PKB node is required for insulin-stimulated PANDER release. The separate localization of PANDER and glucagon is consistent with their differential regulation, and the effect of insulin suggests a paracrine/endocrine effect on PANDER release. This provides further insight into the potential glucose-regulatory role of PANDER. Copyright (c) 2010 Elsevier Ireland Ltd. All rights reserved.

  10. Regulation of adiponectin production by insulin: interactions with tumor necrosis factor-α and interleukin-6.

    PubMed

    Hajri, Tahar; Tao, Huan; Wattacheril, Julia; Marks-Shulman, Pamela; Abumrad, Naji N

    2011-02-01

    Obesity is often associated with insulin resistance, low-grade systemic inflammation, and reduced plasma adiponectin. Inflammation is also increased in adipose tissue, but it is not clear whether the reductions of adiponectin levels are related to dysregulation of insulin activity and/or increased proinflammatory mediators. In this study, we investigated the interactions of insulin, tumor necrosis factor-α (TNF-α) and interleukin 6 (IL-6) in the regulation of adiponectin production using in vivo and in vitro approaches. Plasma adiponectin and parameters of insulin resistance and inflammation were assessed in a cohort of lean and obese insulin-resistant subjects. In addition, the effect of insulin was examined in vivo using the hyperinsulinemic-euglycemic clamp, and in adipose tissue (AT) cultures. Compared with lean subjects, the levels of total adiponectin, and especially the high-molecular-weight (HMW) isomer, were abnormally low in obese insulin-resistant subjects. The hyperinsulinemic clamp data confirmed the insulin-resistant state in the obese patients and showed that insulin infusion significantly increased the plasma adiponectin in lean but not obese subjects (P < 0.01). Similarly, insulin increased total adiponectin release from AT explants of lean and not obese subjects. Moreover, expression and secretion of TNF-α and IL-6 increased significantly in AT of obese subjects and were negatively associated with expression and secretion of adiponectin. In 3T3-L1 and human adipocyte cultures, insulin strongly enhanced adiponectin expression (2-fold) and secretion (3-fold). TNF-α, and not IL-6, strongly opposed the stimulatory effects of insulin. Intriguingly, the inhibitory effect of TNF-α was especially directed toward the HMW isomer of adiponectin. In conclusion, these studies show that insulin upregulates adiponectin expression and release, and that TNF-α opposes the stimulatory effects of insulin. A combination of insulin resistance and increased TNF-α production could explain the decline of adiponectin levels and alterations of isomer composition in plasma of obese insulin-resistant subjects.

  11. The origins of western obesity: a role for animal protein?

    PubMed

    McCarty, M F

    2000-03-01

    A reduced propensity to oxidize fat, as indicated by a relatively high fasting respiratory quotient, is a major risk factor for weight gain. Increased insulin secretion works in various ways to impede fat oxidation and promote fat storage. The substantial 'spontaneous' weight loss often seen with very-low-fat dietary regimens may reflect not only a reduced rate of fat ingestion, but also an improved insulin sensitivity of skeletal muscle that down-regulates insulin secretion. Reduction of diurnal insulin secretion may also play a role in the fat loss often achieved with exercise training, low-glycemic-index diets, supplementation with soluble fiber or chromium, low-carbohydrate regimens, and biguanide therapy. The exceptional leanness of vegan cultures may reflect an additional factor - the absence of animal protein. Although dietary protein by itself provokes relatively little insulin release, it can markedly potentiate the insulin response to co-ingested carbohydrate; Western meals typically unite starchy foods with an animal protein-based main course. Thus, postprandial insulin secretion may be reduced by either avoiding animal protein, or segregating it in low-carbohydrate meals; the latter practice is a feature of fad diets stressing 'food combining'. Vegan diets tend to be relatively low in protein, legume protein may be slowly absorbed, and, as compared to animal protein, isolated soy protein provokes a greater release of glucagon, an enhancer of fat oxidation. The low insulin response to rice may mirror its low protein content. Minimizing diurnal insulin secretion in the context of a low fat intake may represent an effective strategy for achieving and maintaining leanness. Copyright 2000 Harcourt Publishers Ltd.

  12. Insulin/phosphoinositide 3-kinase pathway accelerates the glucose-induced first-phase insulin secretion through TrpV2 recruitment in pancreatic β-cells.

    PubMed

    Aoyagi, Kyota; Ohara-Imaizumi, Mica; Nishiwaki, Chiyono; Nakamichi, Yoko; Nagamatsu, Shinya

    2010-12-01

    Functional insulin receptor and its downstream effector PI3K (phosphoinositide 3-kinase) have been identified in pancreatic β-cells, but their involvement in the regulation of insulin secretion from β-cells remains unclear. In the present study, we investigated the physiological role of insulin and PI3K in glucose-induced biphasic insulin exocytosis in primary cultured β-cells and insulinoma Min6 cells using total internal reflection fluorescent microscopy. The pretreatment of β-cells with insulin induced the rapid increase in intracellular Ca2+ levels and accelerated the exocytotic response without affecting the second-phase insulin secretion. The inhibition of PI3K not only abolished the insulin-induced rapid development of the exocytotic response, but also potentiated the second-phase insulin secretion. The rapid development of Ca2+ and accelerated exocytotic response induced by insulin were accompanied by the translocation of the Ca2+-permeable channel TrpV2 (transient receptor potential V2) in a PI3K-dependent manner. Inhibition of TrpV2 by the selective blocker tranilast, or the expression of shRNA (short-hairpin RNA) against TrpV2 suppressed the effect of insulin in the first phase, but the second phase was not affected. Thus our results demonstrate that insulin treatment induced the acceleration of the exocytotic response during the glucose-induced first-phase response by the insertion of TrpV2 into the plasma membrane in a PI3K-dependent manner.

  13. [6]-Gingerol, from Zingiber officinale, potentiates GLP-1 mediated glucose-stimulated insulin secretion pathway in pancreatic β-cells and increases RAB8/RAB10-regulated membrane presentation of GLUT4 transporters in skeletal muscle to improve hyperglycemia in Leprdb/db type 2 diabetic mice.

    PubMed

    Samad, Mehdi Bin; Mohsin, Md Nurul Absar Bin; Razu, Bodiul Alam; Hossain, Mohammad Tashnim; Mahzabeen, Sinayat; Unnoor, Naziat; Muna, Ishrat Aklima; Akhter, Farjana; Kabir, Ashraf Ul; Hannan, J M A

    2017-08-09

    [6]-Gingerol, a major component of Zingiber officinale, was previously reported to ameliorate hyperglycemia in type 2 diabetic mice. Endocrine signaling is involved in insulin secretion and is perturbed in db/db Type-2 diabetic mice. [6]-Gingerol was reported to restore the disrupted endocrine signaling in rodents. In this current study on Lepr db/db diabetic mice, we investigated the involvement of endocrine pathway in the insulin secretagogue activity of [6]-Gingerol and the mechanism(s) through which [6]-Gingerol ameliorates hyperglycemia. Lepr db/db type 2 diabetic mice were orally administered a daily dose of [6]-Gingerol (200 mg/kg) for 28 days. We measured the plasma levels of different endocrine hormones in fasting and fed conditions. GLP-1 levels were modulated using pharmacological approaches, and cAMP/PKA pathway for insulin secretion was assessed by qRT-PCR and ELISA in isolated pancreatic islets. Total skeletal muscle and its membrane fractions were used to measure glycogen synthase 1 level and Glut4 expression and protein levels. 4-weeks treatment of [6]-Gingerol dramatically increased glucose-stimulated insulin secretion and improved glucose tolerance. Plasma GLP-1 was found to be significantly elevated in the treated mice. Pharmacological intervention of GLP-1 levels regulated the effect of [6]-Gingerol on insulin secretion. Mechanistically, [6]-Gingerol treatment upregulated and activated cAMP, PKA, and CREB in the pancreatic islets, which are critical components of GLP-1-mediated insulin secretion pathway. [6]-Gingerol upregulated both Rab27a GTPase and its effector protein Slp4-a expression in isolated islets, which regulates the exocytosis of insulin-containing dense-core granules. [6]-Gingerol treatment improved skeletal glycogen storage by increased glycogen synthase 1 activity. Additionally, GLUT4 transporters were highly abundant in the membrane of the skeletal myocytes, which could be explained by the increased expression of Rab8 and Rab10 GTPases that are responsible for GLUT4 vesicle fusion to the membrane. Collectively, our study reports that GLP-1 mediates the insulinotropic activity of [6]-Gingerol, and [6]-Gingerol treatment facilitates glucose disposal in skeletal muscles through increased activity of glycogen synthase 1 and enhanced cell surface presentation of GLUT4 transporters.

  14. L-Histidine sensing by calcium sensing receptor inhibits voltage-dependent calcium channel activity and insulin secretion in β-cells

    PubMed Central

    Parkash, Jai; Asotra, Kamlesh

    2011-01-01

    Aims Our goal was to test the hypothesis that the histidine-induced activation of calcium sensing receptor (CaR) can regulate calcium channel activity of L-type voltage dependent calcium channel (VDCC) due to increased spatial interaction between CaR and VDCC in β-cells and thus modulate glucose-induced insulin secretion. Main methods Rat insulinoma (RINr1046-38) insulin-producing β-cells were cultured in RPMI-1640 medium on 25 mm diameter glass coverslips in six-well culture plates in a 5% CO2 incubator at 37°C. The intracellular calcium concentration, [Ca2+]i, was determined by ratio fluorescence microscopy using Fura-2AM. The spatial interactions between CaR and L-type VDCC in β-cells were measured by immunofluorescence confocal microscopy using a Nikon C1 laser scanning confocal microscope. The insulin release was determined by enzyme-linked immunosorbent assay (ELISA). Key findings The additions of increasing concentrations of L-histidine along with 10 mM glucose resulted in 57% decrease in [Ca2+]i. The confocal fluorescence imaging data showed 5.59 to 8.62-fold increase in colocalization correlation coefficient between CaR and VDCC in β-cells exposed to L-histidine thereby indicating increased membrane delimited spatial interactions between these two membrane proteins. The insulin ELISA data showed 54% decrease in 1st phase of glucose-induced insulin secretion in β-cells exposed to increasing concentrations of L-histidine. Significance L-histidine-induced increased spatial interaction of CaR with VDCC can inhibit calcium channel activity of VDCC and consequently regulate glucose-induced insulin secretion by β-cells. The L-type VDCC could therefore be potential therapeutic target in diabetes. PMID:21219913

  15. Tributyltin exposure at noncytotoxic doses dysregulates pancreatic β-cell function in vitro and in vivo.

    PubMed

    Chen, Ya-Wen; Lan, Kuo-Cheng; Tsai, Jing-Ren; Weng, Te-I; Yang, Ching-Yao; Liu, Shing-Hwa

    2017-09-01

    Tributyltin (TBT) is an endocrine disruptor. TBT can be found in food and in human tissues and blood. Several animal studies revealed that organotins induced diabetes with decreased insulin secretion. The detailed effect and mechanism of TBT on pancreatic β-cell function still remain unclear. We investigated the effect and mechanism of TBT exposure at noncytotoxic doses relevant to human exposure on β-cell function in vitro and in vivo. The β-cell-derived RIN-m5F cells and pancreatic islets from mouse and human were treated with TBT (0.05-0.2 μM) for 0.5-4 h. Adult male mice were orally exposed to TBT (25 μg/kg/day) with or without antioxidant N-acetylcysteine (NAC) for 1-3 weeks. Assays for insulin secretion and glucose metabolism were carried out. Unlike previous studies, TBT at noncytotoxic concentrations significantly increased glucose-stimulated insulin secretion and intracellular Ca 2+ ([Ca 2+ ] i ) in β-cells. The reactive oxygen species (ROS) production and phosphorylation of protein kinase C (PKC-pan) and extracellular signal-regulated kinase (ERK)1/2 were also increased. These TBT-triggered effects could be reversed by antiestrogen ICI182780 and inhibitors of ROS, [Ca 2+ ] i , and PKC, but not ERK. Similarly, islets treated with TBT significantly increased glucose-stimulated insulin secretion, which could be reversed by ICI182780, NAC, and PKC inhibitor. Mice exposed to TBT for 3 weeks significantly increased blood glucose and plasma insulin and induced glucose intolerance and insulin resistance, which could be reversed by NAC. These findings suggest that low/noncytotoxic doses of TBT induce insulin dysregulation and disturb glucose homeostasis, which may be mediated through the estrogen receptor-regulated and/or oxidative stress-related signaling pathways.

  16. Targeted Disruption of Pancreatic-Derived Factor (PANDER, FAM3B) Impairs Pancreatic β-Cell Function

    PubMed Central

    Robert-Cooperman, Claudia E.; Carnegie, Jason R.; Wilson, Camella G.; Yang, Jichun; Cook, Joshua R.; Wu, Jianmei; Young, Robert A.; Wolf, Bryan A.; Burkhardt, Brant R.

    2010-01-01

    OBJECTIVE Pancreatic-derived factor (PANDER, FAM3B) is a pancreatic islet-specific cytokine-like protein that is secreted from β-cells upon glucose stimulation. The biological function of PANDER is unknown, and to address this we generated and characterized a PANDER knockout mouse. RESEARCH DESIGN AND METHODS To generate the PANDER knockout mouse, the PANDER gene was disrupted and its expression was inhibited by homologous recombination via replacement of the first two exons, secretion signal peptide and transcriptional start site, with the neomycin gene. PANDER−/− mice were then phenotyped by a number of in vitro and in vivo tests to evaluate potential effects on glucose regulation, insulin sensitivity, and β-cell morphology and function. RESULTS Glucose tolerance tests demonstrated significantly higher blood glucose levels in PANDER−/− versus wild-type male mice. To identify the mechanism of the glucose intolerance, insulin sensitivity and pancreatic β-cell function were examined. Hyperinsulinemic-euglycemic clamps and insulin tolerance testing showed similar insulin sensitivity for both the PANDER−/− and wild-type mice. The in vivo insulin response following intraperitoneal glucose injection surprisingly produced significantly higher insulin levels in the PANDER−/− mice, whereas insulin release was blunted with arginine administration. Islet perifusion and calcium imaging studies showed abnormal responses of the PANDER−/− islets to glucose stimulation. In contrast, neither islet architecture nor insulin content was impacted by the loss of PANDER. Interestingly, the elevated insulin levels identified in vivo were attributed to decreased hepatic insulin clearance in the PANDER−/− islets. Taken together, these results demonstrated decreased pancreatic β-cell function in the PANDER−/− mouse. CONCLUSIONS These results support a potential role of PANDER in the pancreatic β-cell for regulation or facilitation of insulin secretion. PMID:20566664

  17. Role of estrogen receptors alpha, beta and GPER1/GPR30 in pancreatic beta-cells.

    PubMed

    Nadal, Angel; Alonso-Magdalena, Paloma; Soriano, Sergi; Ripoll, Cristina; Fuentes, Esther; Quesada, Ivan; Ropero, Ana Belen

    2011-01-01

    Estrogen receptors (ER) are emerging as important molecules involved in the adaptation of beta-cells to insulin resistance. The onset of type 2 diabetes is marked by insulin secretory dysfunction and decreased beta-cell mass. During pregnancy, puberty and obesity there is increased metabolic demand and insulin resistance is developed. This metabolic state increases the demand on beta-cells to augment insulin biosynthesis and release. In this respect, ERalpha is directly implicated in the E2-regulation of insulin content and secretion, while ERbeta is in the E2-potentiation of glucose-induced insulin release. Both receptors develop their actions within the physiological range of E2. In addition, the G protein-coupled estrogen receptor (GPER1/GPR30) seems to be implicated in the E2-regulation of stimulus-secretion coupling in the three cell types of the islet. The increased demand of insulin production for long time may lead to beta-cell stress and apoptosis. ERalpha, ERbeta and GPER1/GPR30 are involved in preventing beta-cell apoptosis, impeding the loss of critical beta-cell mass. Therefore, estrogen receptors may play an essential role in the adaptation of the pancreas to insulin resistant periods.

  18. Pancreatic β-cell overexpression of the glucagon receptor gene results in enhanced β-cell function and mass

    PubMed Central

    Gelling, Richard W.; Vuguin, Patricia M.; Du, Xiu Quan; Cui, Lingguang; Rømer, John; Pederson, Raymond A.; Leiser, Margarita; Sørensen, Heidi; Holst, Jens J.; Fledelius, Christian; Johansen, Peter B.; Fleischer, Norman; McIntosh, Christopher H. S.; Nishimura, Erica; Charron, Maureen J.

    2009-01-01

    In addition to its primary role in regulating glucose production from the liver, glucagon has many other actions, reflected by the wide tissue distribution of the glucagon receptor (Gcgr). To investigate the role of glucagon in the regulation of insulin secretion and whole body glucose homeostasis in vivo, we generated mice overexpressing the Gcgr specifically on pancreatic β-cells (RIP-Gcgr). In vivo and in vitro insulin secretion in response to glucagon and glucose was increased 1.7- to 3.9-fold in RIP-Gcgr mice compared with controls. Consistent with the observed increase in insulin release in response to glucagon and glucose, the glucose excursion resulting from both a glucagon challenge and intraperitoneal glucose tolerance test (IPGTT) was significantly reduced in RIP-Gcgr mice compared with controls. However, RIP-Gcgr mice display similar glucose responses to an insulin challenge. β-Cell mass and pancreatic insulin content were also increased (20 and 50%, respectively) in RIP-Gcgr mice compared with controls. When fed a high-fat diet (HFD), both control and RIP-Gcgr mice developed similar degrees of obesity and insulin resistance. However, the severity of both fasting hyperglycemia and impaired glucose tolerance (IGT) were reduced in RIP-Gcgr mice compared with controls. Furthermore, the insulin response of RIP-Gcgr mice to an IPGTT was twice that of controls when fed the HFD. These data indicate that increased pancreatic β-cell expression of the Gcgr increased insulin secretion, pancreatic insulin content, β-cell mass, and, when mice were fed a HFD, partially protected against hyperglycemia and IGT. PMID:19602585

  19. Gene Silencing of Phogrin Unveils Its Essential Role in Glucose-Responsive Pancreatic β-Cell Growth

    PubMed Central

    Torii, Seiji; Saito, Naoya; Kawano, Ayumi; Hou, Ni; Ueki, Kohjiro; Kulkarni, Rohit N.; Takeuchi, Toshiyuki

    2009-01-01

    OBJECTIVE—Phogrin and IA-2, autoantigens in insulin-dependent diabetes, have been shown to be involved in insulin secretion in pancreatic β-cells; however, implications at a molecular level are confusing from experiment to experiment. We analyzed biological functions of phogrin in β-cells by an RNA interference technique. RESEARCH DESIGN AND METHODS—Adenovirus-mediated expression of short hairpin RNA specific for phogrin (shPhogrin) was conducted using cultured β-cell lines and mouse islets. Both glucose-stimulated insulin secretion and cell proliferation rate were determined in the phogrin-knockdown cells. Furthermore, protein expression was profiled in these cells. To see the binding partner of phogrin in β-cells, coimmunoprecipitation analysis was carried out. RESULTS—Adenoviral expression of shPhogrin efficiently decreased its endogenous expression in pancreatic β-cells. Silencing of phogrin in β-cells abrogated the glucose-mediated mitogenic effect, which was accompanied by a reduction in the level of insulin receptor substrate 2 (IRS2) protein, without any changes in insulin secretion. Phogrin formed a complex with insulin receptor at the plasma membrane, and their interaction was promoted by high-glucose stimulation that in turn led to stabilization of IRS2 protein. Corroboratively, phogrin knockdown had no additional effect on the proliferation of β-cell line derived from the insulin receptor–knockout mouse. CONCLUSIONS—Phogrin is involved in β-cell growth via regulating stability of IRS2 protein by the molecular interaction with insulin receptor. We propose that phogrin and IA-2 function as an essential regulator of autocrine insulin action in pancreatic β-cells. PMID:19073770

  20. mRNA destabilization improves glycemic responsiveness of transcriptionally regulated hepatic insulin gene therapy in vitro and in vivo.

    PubMed

    Thulé, Peter M; Lin, Yulin; Jia, Dingwu; Olson, Darin E; Tang, Shiue-Cheng; Sambanis, Athanassios

    2017-03-01

    Hepatic insulin gene therapy (HIGT) employing a glucose and insulin sensitive promoter to direct insulin transcription can lower blood sugars within 2 h of an intraperitoneal glucose challenge. However, post-challenge blood sugars frequently decline to below baseline. We hypothesize that this 'over-shoot' hypoglycemia results from sustained translation of long-lived transgene message, and that reducing pro-insulin message half-life will ameliorate post-challenge hypoglycemia. We compared pro-insulin message content and insulin secretion from primary rat hepatocytes expressing insulin from either a standard construct (2xfur), or a construct producing a destabilized pro-insulin message (InsTail), following exposure to stimulating or inhibitory conditions. Hepatocytes transduced with a 2xfur construct accumulated pro-insulin message, and exhibited increased insulin secretion, under conditions that both inhibit or stimulate transcription. By contrast, pro-insulin message content remained stable in InsTail expressing cells, and insulin secretion increased less than 2xfur during prolonged stimulation. During transitions from stimulatory to inhibitory conditions, or vice versa, amounts of pro-insulin message changed more rapidly in InsTail expressing cells than 2xfur expressing cells. Importantly, insulin secretion increased during the transition from stimulation to inhibition in 2xfur expressing cells, although it remained unchanged in InsTail expressing cells. Use of the InsTail destabilized insulin message tended to more rapidly reduce glucose induced glycemic excursions, and limit post-load hypoglycemia in STZ-diabetic mice in vivo. The data obtained in the present study suggest that combining transcriptional and post-transcriptional regulatory strategies may reduce undesirable glycemic excursion in models of HIGT. Copyright © 2017 John Wiley & Sons, Ltd.

  1. Ex vivo generation of glucose sensitive insulin secreting mesenchymal stem cells derived from human adipose tissue.

    PubMed

    Dave, Shruti D; Vanikar, Aruna V; Trivedi, Hargovind L

    2012-03-01

    Diabetics are incapable of producing insulin/have autoimmune mechanisms making it ineffective to control glucose secretion. We present a prospective study of glucose-sensitive insulin-secreting mesenchymal stem cells (IS-MSC) generated from human adipose tissue (h-AD) sans xenogenic material. Ten grams h-AD from donor anterior abdominal wall was collected in proliferation medium composed of α-Minimum Essential Media (α-MEM), albumin, fibroblast-growth factor and antibiotics, minced, incubated in collagenase-I at 37°C with shaker and centrifuged. Supernatant and pellets were separately cultured in proliferation medium on cell+ plates at 37°C with 5% CO(2) for 10 days. Cells were harvested by trypsinization, checked for viability, sterility, counts, flow-cytometry (CD45(-)/90(+)/73(+)), and differentiated into insulin-expressing cells using medium composed of DMEM, gene expressing up-regulators and antibiotics for 3 days. They were studied for transcriptional factors Pax-6, Isl-1, pdx-1 (immunofluorescence). C-peptide and insulin were measured by chemiluminescence. In vitro glucose sensitivity assay was carried out by measuring levels of insulin and C-peptide secretion in absence of glucose followed by 2 hours incubation after glucose addition. Mean IS-AD-MSC quantum was 3.21 ml, cell count, 1.5 ×10(3) cells/μl), CD45(-)/90(+)/73(+) cells were 44.37% /25.52%. All of them showed presence of pax-6, pdx-1, and Isl-1. Mean C-Peptide and insulin levels were 0.36 ng/ml and 234 μU/ml, respectively, pre-glucose and 0.87 ng/ml and 618.3 μU/ml post-glucose additions. The mean rise in secretion levels was 2.42 and 2.65 fold, respectively. Insulin-secreting h-AD-MSC can be generated safely and effectively showing in vitro glucose responsive alteration in insulin and C-peptide secretion levels.

  2. Increased plasma ghrelin suppresses insulin release in wethers fed with a high-protein diet.

    PubMed

    Takahashi, T; Sato, K; Kato, S; Yonezawa, T; Kobayashi, Y; Ohtani, Y; Ohwada, S; Aso, H; Yamaguchi, T; Roh, S G; Katoh, K

    2014-06-01

    Ghrelin is a multifunctional peptide that promotes an increase of food intake and stimulates GH secretion. Ghrelin secretion is regulated by nutritional status and nutrients. Although a high-protein (HP) diet increases plasma ghrelin secretion in mammals, the mechanisms and the roles of the elevated ghrelin concentrations due to a HP diet have not been fully established. To clarify the roles of elevated acylated ghrelin upon intake of a HP diet, we investigated the regulation of ghrelin concentrations in plasma and tissues in wethers fed with either the HP diet or the control (CNT) diet for 14 days, and examined the action of the elevated plasma ghrelin by using a ghrelin-receptor antagonist. The HP diet gradually increased the plasma acylated-ghrelin concentrations, but the CNT diet did not. Although the GH concentrations did not vary significantly across the groups, an injection of ghrelin-receptor antagonist enhanced insulin levels in circulation in the HP diet group. In the fundus region of the stomach, the ghrelin levels did not differ between the HP and CNT diet groups, whereas ghrelin O-acyltransferase mRNA levels were higher in the group fed with HP diet than those of the CNT diet group were. These results indicate that the HP diet elevated the plasma ghrelin levels by increasing its synthesis; this elevation strongly suppresses the appearance of insulin in the circulation of wethers, but it is not involved in GH secretion. Overall, our findings indicate a role of endogenous ghrelin action in secretion of insulin, which acts as a regulator after the consumption of a HP diet. © 2014 Society for Endocrinology.

  3. Profiling Synaptic Proteins Identifies Regulators of Insulin Secretion and Lifespan

    PubMed Central

    Kaplan, Joshua M.

    2008-01-01

    Cells are organized into distinct compartments to perform specific tasks with spatial precision. In neurons, presynaptic specializations are biochemically complex subcellular structures dedicated to neurotransmitter secretion. Activity-dependent changes in the abundance of presynaptic proteins are thought to endow synapses with different functional states; however, relatively little is known about the rules that govern changes in the composition of presynaptic terminals. We describe a genetic strategy to systematically analyze protein localization at Caenorhabditis elegans presynaptic specializations. Nine presynaptic proteins were GFP-tagged, allowing visualization of multiple presynaptic structures. Changes in the distribution and abundance of these proteins were quantified in 25 mutants that alter different aspects of neurotransmission. Global analysis of these data identified novel relationships between particular presynaptic components and provides a new method to compare gene functions by identifying shared protein localization phenotypes. Using this strategy, we identified several genes that regulate secretion of insulin-like growth factors (IGFs) and influence lifespan in a manner dependent on insulin/IGF signaling. PMID:19043554

  4. A beta cell ATGL-lipolysis/adipose tissue axis controls energy homeostasis and body weight via insulin secretion in mice.

    PubMed

    Attané, Camille; Peyot, Marie-Line; Lussier, Roxane; Poursharifi, Pegah; Zhao, Shangang; Zhang, Dongwei; Morin, Johane; Pineda, Marco; Wang, Shupei; Dumortier, Olivier; Ruderman, Neil B; Mitchell, Grant A; Simons, Brigitte; Madiraju, S R Murthy; Joly, Erik; Prentki, Marc

    2016-12-01

    To directly assess the role of beta cell lipolysis in insulin secretion and whole-body energy homeostasis, inducible beta cell-specific adipose triglyceride lipase (ATGL)-deficient (B-Atgl-KO) mice were studied under normal diet (ND) and high-fat diet (HFD) conditions. Atgl flox/flox mice were cross-bred with Mip-Cre-ERT mice to generate Mip-Cre-ERT /+ ;Atgl flox/flox mice. At 8 weeks of age, these mice were injected with tamoxifen to induce deletion of beta cell-specific Atgl (also known as Pnpla2), and the mice were fed an ND or HFD. ND-fed male B-Atgl-KO mice showed decreased insulinaemia and glucose-induced insulin secretion (GSIS) in vivo. Changes in GSIS correlated with the islet content of long-chain saturated monoacylglycerol (MAG) species that have been proposed to be metabolic coupling factors for insulin secretion. Exogenous MAGs restored GSIS in B-Atgl-KO islets. B-Atgl-KO male mice fed an HFD showed reduced insulinaemia, glycaemia in the fasted and fed states and after glucose challenge, as well as enhanced insulin sensitivity. Moreover, decreased insulinaemia in B-Atgl-KO mice was associated with increased energy expenditure, and lipid metabolism in brown (BAT) and white (WAT) adipose tissues, leading to reduced fat mass and body weight. ATGL in beta cells regulates insulin secretion via the production of signalling MAGs. Decreased insulinaemia due to lowered GSIS protects B-Atgl-KO mice from diet-induced obesity, improves insulin sensitivity, increases lipid mobilisation from WAT and causes BAT activation. The results support the concept that fuel excess can drive obesity and diabetes via hyperinsulinaemia, and that an islet beta cell ATGL-lipolysis/adipose tissue axis controls energy homeostasis and body weight via insulin secretion.

  5. Down-regulation of zinc transporter 8 (SLC30A8) in pancreatic beta-cells promotes cell survival

    USDA-ARS?s Scientific Manuscript database

    The pancreatic islet contains high levels of zinc in granular vesicles of beta-cells where insulin is matured, crystallized, and stored before secretion. Zinc is an essential co-factor for insulin crystallization forming dense core in secretory granules. In insulin-containing secretory granules, zin...

  6. Down-regulation of zinc transporter 8 (SLC30A8) in pancreatic beta-cells promotes cell survival.

    USDA-ARS?s Scientific Manuscript database

    The pancreatic islet contains high levels of zinc in granular vesicles of ß-cells where insulin is matured, crystallized, and stored before secretion. Zinc is an essential co-factor for insulin crystallization forming dense cores in secretory granules. In insulin-containing secretory granules, zinc ...

  7. Bone: from a reservoir of minerals to a regulator of energy metabolism

    PubMed Central

    Confavreux, Cyrille B

    2011-01-01

    Besides locomotion, organ protection, and calcium–phosphorus homeostasis, the three classical functions of the skeleton, bone remodeling affects energy metabolism through uncarboxylated osteocalcin, a recently discovered hormone secreted by osteoblasts. This review traces how energy metabolism affects osteoblasts through the central control of bone mass involving leptin, serotoninergic neurons, the hypothalamus, and the sympathetic nervous system. Next, the role of osteocalcin (insulin secretion, insulin sensitivity, and pancreas β-cell proliferation) in the regulation of energy metabolism is described. Then, the connections between insulin signaling on osteoblasts and the release of uncarboxylated osteocalcin during osteoclast bone resorption through osteoprotegerin are reported. Finally, the understanding of this new bone endocrinology will provide some insights into bone, kidney, and energy metabolism in patients with chronic kidney disease. PMID:21346725

  8. Setting sail for glucose homeostasis with the AKAP150-PP2B-anchor.

    PubMed

    Teo, Adrian Kee Keong; Kulkarni, Rohit N

    2012-10-17

    Glucose-stimulated insulin secretion, controlled by multiple protein phosphorylation events, is critical for the regulation of glucose homeostasis. Protein kinase A (PKA) is known to play a role in β cell physiology, but the role of its anchoring protein is not fully understood. Hinke et al (2012) illustrate the significance of A-kinase anchoring protein 150 in tethering protein phosphatase 2B to mediate nutrient-stimulated insulin secretion and thus modulate glucose homeostasis.

  9. Insulin stimulates synthesis and release of human chorionic gonadotropin by choriocarcinoma cell lines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ren, S.G.; Braunstein, G.D.

    1991-03-01

    Recent studies have shown that insulin regulates placental lactogen, progesterone, and estrogen production from human trophoblast cells. This study was performed to examine whether insulin also regulates the production of hCG by this type of cell. After 24-36 h of preincubation, JEG-3 and JAR cells (2-3 x 10(5) cells/ml.well) or human term trophoblast cells (1 x 10(6) cells/ml.well) were exposed to the test hormone in serum-free Dulbecco's Modified Eagle's Medium for 24-96 h. Secretion of hCG from JEG-3 cells was stimulated by human insulin, human proinsulin, or porcine insulin in a dose-dependent manner, with lowest effective doses of 6.7, 96,more » and 53 mg/L, respectively. Time-course studies showed that hCG secretion peaked at 72-96 h with insulin exposure; in contrast, no decernable peak was seen without insulin in serum-free media. Exposure of JEG-3 cells for 24 h to 209 mg/liter insulin stimulated hCG synthesis, with 40 +/- 3% more immunoreactive intracellular hCG (P less than 0.05). Cells grown in the presence of insulin and (35S)methionine had 47 +/- 21% more labeled intracellular hCG and 56 +/- 13% more immunoprecipitable (35S)methionine-hCG secreted into the medium than the control cultures (P less than 0.05). During this time period, human placental lactogen release and total trichloroacetice acid-precipitable (35S)methionine protein were not increased. The insulin-induced stimulation of hCG synthesis was inhibited by cycloheximide. Additionally, insulin did not significantly affect total intracellular protein during 24-96 h of incubation. Insulin also increased hCG release from JAR cells, but not from human term trophoblast cells. A mouse monoclonal antibody to the IGF-I receptor inhibited the stimulation of insulin in JEG-3 cells.« less

  10. Kcne2 deletion impairs insulin secretion and causes type 2 diabetes mellitus.

    PubMed

    Lee, Soo Min; Baik, Jasmine; Nguyen, Dara; Nguyen, Victoria; Liu, Shiwei; Hu, Zhaoyang; Abbott, Geoffrey W

    2017-06-01

    Type 2 diabetes mellitus (T2DM) represents a rapidly increasing threat to global public health. T2DM arises largely from obesity, poor diet, and lack of exercise, but it also involves genetic predisposition. Here we report that the KCNE2 potassium channel transmembrane regulatory subunit is expressed in human and mouse pancreatic β cells. Kcne2 deletion in mice impaired glucose tolerance as early as 5 wk of age in pups fed a Western diet, ultimately causing diabetes. In adult mice fed normal chow, skeletal muscle expression of insulin receptor β and insulin receptor substrate 1 were down-regulated 2-fold by Kcne2 deletion, characteristic of T2DM. Kcne2 deletion also caused extensive pancreatic transcriptome changes consistent with facets of T2DM, including endoplasmic reticulum stress, inflammation, and hyperproliferation. Kcne2 deletion impaired β-cell insulin secretion in vitro up to 8-fold and diminished β-cell peak outward K + current at positive membrane potentials, but also left-shifted its voltage dependence and slowed inactivation. Interestingly, we also observed an aging-dependent reduction in β-cell outward currents in both Kcne2 +/+ and Kcne2 - / - mice. Our results demonstrate that KCNE2 is required for normal β-cell electrical activity and insulin secretion, and that Kcne2 deletion causes T2DM. KCNE2 may regulate multiple K + channels in β cells, including the T2DM-linked KCNQ1 potassium channel α subunit.-Lee, S. M., Baik, J., Nguyen, D., Nguyen, V., Liu, S., Hu, Z., Abbott, G. W. Kcne2 deletion impairs insulin secretion and causes type 2 diabetes mellitus. © FASEB.

  11. Tocotrienols Stimulate Insulin Secretion of Rat Pancreatic Isolated Islets in a Dynamic Culture.

    PubMed

    Chia, Ling L; Jantan, Ibrahim; Chua, Kien H

    2017-01-01

    Tocotrienols (T3) are the naturally occurring vitamin E derivatives that possess antioxidant properties and therapeutic potential in diabetic complications. The bioactivities of the derivatives are determined by the number and arrangement of methyl substitution on the structure. The objective of this study was to determine the effects of T3 derivatives, σ-T3, γ-T3 and α-T3 on insulin secretion of rat pancreatic islets in a dynamic culture. Pancreatic islets isolated from male Wistar rats were treated with T3 for 1 h at 37°C in a microfluidic system with continuous operation that provided a stable cell culture environment. Glucose (2.8 mM and 16.7 mM, as basal and stimulant, respectively) and potassium chloride (KCl) (30 mM) were added to the treatment in calcium free medium. The supernatant was collected for insulin measurements. Short-term exposure (1 h) of σ-T3 to β cells in the stimulant glucose condition significantly potentiated insulin secretion in a dose-dependent manner. γ-T3 and α-T3 also displayed dosedependent effect but were less effective in the activation of insulin secretion. Essentially, KCl, a pancreatic β cell membrane depolarizing agent, added into the treatment further enhanced the insulin secretion of σ-T3, γ-T3 and α-T3 with ED50 values of 504, 511 and 588 µM, respectively. The findings suggest the potential of σ-T3 in regulating glucose-stimulated insulin secretion (GSIS) in response to the intracellular calcium especially in the presence of KCl. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  12. Gut-expressed gustducin and taste receptors regulate secretion of glucagon-like peptide-1

    PubMed Central

    Jang, Hyeung-Jin; Kokrashvili, Zaza; Theodorakis, Michael J.; Carlson, Olga D.; Kim, Byung-Joon; Zhou, Jie; Kim, Hyeon Ho; Xu, Xiangru; Chan, Sic L.; Juhaszova, Magdalena; Bernier, Michel; Mosinger, Bedrich; Margolskee, Robert F.; Egan, Josephine M.

    2007-01-01

    Glucagon-like peptide-1 (GLP-1), released from gut endocrine L cells in response to glucose, regulates appetite, insulin secretion, and gut motility. How glucose given orally, but not systemically, induces GLP-1 secretion is unknown. We show that human duodenal L cells express sweet taste receptors, the taste G protein gustducin, and several other taste transduction elements. Mouse intestinal L cells also express α-gustducin. Ingestion of glucose by α-gustducin null mice revealed deficiencies in secretion of GLP-1 and the regulation of plasma insulin and glucose. Isolated small bowel and intestinal villi from α-gustducin null mice showed markedly defective GLP-1 secretion in response to glucose. The human L cell line NCI-H716 expresses α-gustducin, taste receptors, and several other taste signaling elements. GLP-1 release from NCI-H716 cells was promoted by sugars and the noncaloric sweetener sucralose, and blocked by the sweet receptor antagonist lactisole or siRNA for α-gustducin. We conclude that L cells of the gut “taste” glucose through the same mechanisms used by taste cells of the tongue. Modulating GLP-1 secretion in gut “taste cells” may provide an important treatment for obesity, diabetes and abnormal gut motility. PMID:17724330

  13. TCF7L2 is a master regulator of insulin production and processing.

    PubMed

    Zhou, Yuedan; Park, Soo-Young; Su, Jing; Bailey, Kathleen; Ottosson-Laakso, Emilia; Shcherbina, Liliya; Oskolkov, Nikolay; Zhang, Enming; Thevenin, Thomas; Fadista, João; Bennet, Hedvig; Vikman, Petter; Wierup, Nils; Fex, Malin; Rung, Johan; Wollheim, Claes; Nobrega, Marcelo; Renström, Erik; Groop, Leif; Hansson, Ola

    2014-12-15

    Genome-wide association studies have revealed >60 loci associated with type 2 diabetes (T2D), but the underlying causal variants and functional mechanisms remain largely elusive. Although variants in TCF7L2 confer the strongest risk of T2D among common variants by presumed effects on islet function, the molecular mechanisms are not yet well understood. Using RNA-sequencing, we have identified a TCF7L2-regulated transcriptional network responsible for its effect on insulin secretion in rodent and human pancreatic islets. ISL1 is a primary target of TCF7L2 and regulates proinsulin production and processing via MAFA, PDX1, NKX6.1, PCSK1, PCSK2 and SLC30A8, thereby providing evidence for a coordinated regulation of insulin production and processing. The risk T-allele of rs7903146 was associated with increased TCF7L2 expression, and decreased insulin content and secretion. Using gene expression profiles of 66 human pancreatic islets donors', we also show that the identified TCF7L2-ISL1 transcriptional network is regulated in a genotype-dependent manner. Taken together, these results demonstrate that not only synthesis of proinsulin is regulated by TCF7L2 but also processing and possibly clearance of proinsulin and insulin. These multiple targets in key pathways may explain why TCF7L2 has emerged as the gene showing one of the strongest associations with T2D. © The Author 2014. Published by Oxford University Press.

  14. Regulation of Endogenous (Male) Rodent GLP-1 Secretion and Human Islet Insulin Secretion by Antagonism of Somatostatin Receptor 5.

    PubMed

    Farb, Thomas B; Adeva, Marta; Beauchamp, Thomas J; Cabrera, Over; Coates, David A; Meredith, Tamika DeShea; Droz, Brian A; Efanov, Alexander; Ficorilli, James V; Gackenheimer, Susan L; Martinez-Grau, Maria A; Molero, Victoriano; Ruano, Gema; Statnick, Michael A; Suter, Todd M; Syed, Samreen K; Toledo, Miguel A; Willard, Francis S; Zhou, Xin; Bokvist, Krister B; Barrett, David G

    2017-11-01

    Incretin and insulin responses to nutrient loads are suppressed in persons with diabetes, resulting in decreased glycemic control. Agents including sulfonylureas and dipeptidyl peptidase-4 inhibitors (DPP4i) partially reverse these effects and provide therapeutic benefit; however, their modes of action limit efficacy. Because somatostatin (SST) has been shown to suppress insulin and glucagonlike peptide-1 (GLP-1) secretion through the Gi-coupled SST receptor 5 (SSTR5) isoform in vitro, antagonism of SSTR5 may improve glycemic control via intervention in both pathways. Here, we show that a potent and selective SSTR5 antagonist reverses the blunting effects of SST on insulin secretion from isolated human islets, and demonstrate that SSTR5 antagonism affords increased levels of systemic GLP-1 in vivo. Knocking out Sstr5 in mice provided a similar increase in systemic GLP-1 levels, which were not increased further by treatment with the antagonist. Treatment of mice with the SSTR5 antagonist in combination with a DPP4i resulted in increases in systemic GLP-1 levels that were more than additive and resulted in greater glycemic control compared with either agent alone. In isolated human islets, the SSTR5 antagonist completely reversed the inhibitory effect of exogenous SST-14 on insulin secretion. Taken together, these data suggest that SSTR5 antagonism should increase circulating GLP-1 levels and stimulate insulin secretion (directly and via GLP-1) in humans, improving glycemic control in patients with diabetes. Copyright © 2017 Endocrine Society.

  15. BAG3 regulates formation of the SNARE complex and insulin secretion

    PubMed Central

    Iorio, V; Festa, M; Rosati, A; Hahne, M; Tiberti, C; Capunzo, M; De Laurenzi, V; Turco, M C

    2015-01-01

    Insulin release in response to glucose stimulation requires exocytosis of insulin-containing granules. Glucose stimulation of beta cells leads to focal adhesion kinase (FAK) phosphorylation, which acts on the Rho family proteins (Rho, Rac and Cdc42) that direct F-actin remodeling. This process requires docking and fusion of secretory vesicles to the release sites at the plasma membrane and is a complex mechanism that is mediated by SNAREs. This transiently disrupts the F-actin barrier and allows the redistribution of the insulin-containing granules to more peripheral regions of the β cell, hence facilitating insulin secretion. In this manuscript, we show for the first time that BAG3 plays an important role in this process. We show that BAG3 downregulation results in increased insulin secretion in response to glucose stimulation and in disruption of the F-actin network. Moreover, we show that BAG3 binds to SNAP-25 and syntaxin-1, two components of the t-SNARE complex preventing the interaction between SNAP-25 and syntaxin-1. Upon glucose stimulation BAG3 is phosphorylated by FAK and dissociates from SNAP-25 allowing the formation of the SNARE complex, destabilization of the F-actin network and insulin release. PMID:25766323

  16. Serum fatty acid-binding protein 4 (FABP4) concentration is associated with insulin resistance in peripheral tissues, A clinical study.

    PubMed

    Nakamura, Risa; Okura, Tsuyoshi; Fujioka, Yohei; Sumi, Keisuke; Matsuzawa, Kazuhiko; Izawa, Shoichiro; Ueta, Etsuko; Kato, Masahiko; Taniguchi, Shin-Ichi; Yamamoto, Kazuhiro

    2017-01-01

    Type 2 diabetes mellitus (T2DM) is caused by insulin resistance and β cell dysfunction. In recent studies reported that several markers associated with insulin sensitivity in skeletal muscle, Adiponectin and other parameters, such as fatty acid-binding protein (FABP4), have been reported to regulate insulin resistance, but it remains unclear which factor mostly affects insulin resistance in T2DM. In this cross-sectional study, we evaluated the relationships between several kinds of biomarkers and insulin resistance, and insulin secretion in T2DM and healthy controls. We recruited 30 participants (12 T2DM and 18 non-diabetic healthy controls). Participants underwent a meal tolerance test during which plasma glucose, insulin and serum C-peptide immunoreactivity were measured. We performed a hyperinsulinemic-euglycemic clamp and measured the glucose-disposal rate (GDR). The fasting serum levels of adiponectin, insulin-like growth factor-1, irisin, autotaxin, FABP4 and interleukin-6 were measured by ELISA. We found a strong negative correlation between FABP4 concentration and GDR in T2DM (r = -0.657, p = 0.020). FABP4 also was positively correlated with insulin secretion during the meal tolerance test in T2DM (IRI (120): r = 0.604, p = 0.038) and was positively related to the insulinogenic index in non-DM subjects (r = 0.536, p = 0.022). Autotaxin was also related to GDR. However, there was no relationship with insulin secretion. We found that serum FABP4 concentration were associated with insulin resistance and secretion in T2DM. This suggests that FABP4 may play an important role in glucose homeostasis.

  17. Serum fatty acid-binding protein 4 (FABP4) concentration is associated with insulin resistance in peripheral tissues, A clinical study

    PubMed Central

    Nakamura, Risa; Okura, Tsuyoshi; Fujioka, Yohei; Sumi, Keisuke; Matsuzawa, Kazuhiko; Izawa, Shoichiro; Ueta, Etsuko; Kato, Masahiko; Taniguchi, Shin-ichi; Yamamoto, Kazuhiro

    2017-01-01

    Type 2 diabetes mellitus (T2DM) is caused by insulin resistance and β cell dysfunction. In recent studies reported that several markers associated with insulin sensitivity in skeletal muscle, Adiponectin and other parameters, such as fatty acid-binding protein (FABP4), have been reported to regulate insulin resistance, but it remains unclear which factor mostly affects insulin resistance in T2DM. In this cross-sectional study, we evaluated the relationships between several kinds of biomarkers and insulin resistance, and insulin secretion in T2DM and healthy controls. We recruited 30 participants (12 T2DM and 18 non-diabetic healthy controls). Participants underwent a meal tolerance test during which plasma glucose, insulin and serum C-peptide immunoreactivity were measured. We performed a hyperinsulinemic-euglycemic clamp and measured the glucose-disposal rate (GDR). The fasting serum levels of adiponectin, insulin-like growth factor-1, irisin, autotaxin, FABP4 and interleukin-6 were measured by ELISA. We found a strong negative correlation between FABP4 concentration and GDR in T2DM (r = -0.657, p = 0.020). FABP4 also was positively correlated with insulin secretion during the meal tolerance test in T2DM (IRI (120): r = 0.604, p = 0.038) and was positively related to the insulinogenic index in non-DM subjects (r = 0.536, p = 0.022). Autotaxin was also related to GDR. However, there was no relationship with insulin secretion. We found that serum FABP4 concentration were associated with insulin resistance and secretion in T2DM. This suggests that FABP4 may play an important role in glucose homeostasis. PMID:28654680

  18. Phospholipase C-ε links Epac2 activation to the potentiation of glucose-stimulated insulin secretion from mouse islets of Langerhans

    PubMed Central

    Dzhura, Igor; Chepurny, Oleg G; Leech, Colin A; Roe, Michael W; Dzhura, Elvira; Xu, Xin; Lu, Youming; Schwede, Frank; Genieser, Hans-G; Smrcka, Alan V

    2011-01-01

    Glucose-stimulated insulin secretion (GSIS) from pancreatic β-cells is potentiated by cAMP-elevating agents, such as the incretin hormone glucagon-like peptide-1 (GLP-1) and cAMP exerts its insulin secretagogue action by activating both protein kinase A (PKA) and the cAMP-regulated guanine nucleotide exchange factor designated as Epac2. Although prior studies of mouse islets demonstrated that Epac2 acts via Rap1 GTPase to potentiate GSIS, it is not understood which downstream targets of Rap1 promote the exocytosis of insulin. Here, we measured insulin secretion stimulated by a cAMP analog that is a selective activator of Epac proteins in order to demonstrate that a Rap1-regulated phospholipase C-epsilon (PLC-ε) links Epac2 activation to the potentiation of GSIS. Our analysis demonstrates that the Epac activator 8-pCPT-2′-O-Me-cAMP-AM potentiates GSIS from the islets of wild-type (WT) mice, whereas it has a greatly reduced insulin secretagogue action in the islets of Epac2 (−/−) and PLC-ε (−/−) knockout (KO) mice. Importantly, the insulin secretagogue action of 8-pCPT-2′-O-Me-cAMP-AM in WT mouse islets cannot be explained by an unexpected action of this cAMP analog to activate PKA, as verified through the use of a FRET-based A-kinase activity reporter (AKAR3) that reports PKA activation. Since the KO of PLC-ε disrupts the ability of 8-pCPT-2′-O-Me-cAMP-AM to potentiate GSIS, while also disrupting its ability to stimulate an increase of β-cell [Ca2+]i, the available evidence indicates that it is a Rap1-regulated PLC-ε that links Epac2 activation to Ca2+-dependent exocytosis of insulin. PMID:21478675

  19. Perk Gene Dosage Regulates Glucose Homeostasis by Modulating Pancreatic β-Cell Functions

    PubMed Central

    Wang, Rong; Munoz, Elyse E.; Zhu, Siying; McGrath, Barbara C.; Cavener, Douglas R.

    2014-01-01

    Background Insulin synthesis and cell proliferation are under tight regulation in pancreatic β-cells to maintain glucose homeostasis. Dysfunction in either aspect leads to development of diabetes. PERK (EIF2AK3) loss of function mutations in humans and mice exhibit permanent neonatal diabetes that is characterized by insufficient β-cell mass and reduced proinsulin trafficking and insulin secretion. Unexpectedly, we found that Perk heterozygous mice displayed lower blood glucose levels. Methodology Longitudinal studies were conducted to assess serum glucose and insulin, intracellular insulin synthesis and storage, insulin secretion, and β-cell proliferation in Perk heterozygous mice. In addition, modulation of Perk dosage specifically in β-cells showed that the glucose homeostasis phenotype of Perk heterozygous mice is determined by reduced expression of PERK in the β-cells. Principal Findings We found that Perk heterozygous mice first exhibited enhanced insulin synthesis and secretion during neonatal and juvenile development followed by enhanced β-cell proliferation and a substantial increase in β-cell mass at the adult stage. These differences are not likely to entail the well-known function of PERK to regulate the ER stress response in cultured cells as several markers for ER stress were not differentially expressed in Perk heterozygous mice. Conclusions In addition to the essential functions of PERK in β-cells as revealed by severely diabetic phenotype in humans and mice completely deficient for PERK, reducing Perk gene expression by half showed that intermediate levels of PERK have a profound impact on β-cell functions and glucose homeostasis. These results suggest that an optimal level of PERK expression is necessary to balance several parameters of β-cell function and growth in order to achieve normoglycemia. PMID:24915520

  20. Metabolomic analysis of pancreatic β-cell insulin release in response to glucose.

    PubMed

    Huang, Mei; Joseph, Jamie W

    2012-01-01

    Defining the key metabolic pathways that are important for fuel-regulated insulin secretion is critical to providing a complete picture of how nutrients regulate insulin secretion. We have performed a detailed metabolomics study of the clonal β-cell line 832/13 using a gas chromatography-mass spectrometer (GC-MS) to investigate potential coupling factors that link metabolic pathways to insulin secretion. Mid-polar and polar metabolites, extracted from the 832/13 β-cells, were derivatized and then run on a GC/MS to identify and quantify metabolite concentrations. Three hundred fifty-five out of 527 chromatographic peaks could be identified as metabolites by our metabolomic platform. These identified metabolites allowed us to perform a systematic analysis of key pathways involved in glucose-stimulated insulin secretion (GSIS). Of these metabolites, 41 were consistently identified as biomarker for GSIS by orthogonal partial least-squares (OPLS). Most of the identified metabolites are from common metabolic pathways including glycolytic, sorbitol-aldose reductase pathway, pentose phosphate pathway, and the TCA cycle suggesting these pathways play an important role in GSIS. Lipids and related products were also shown to contribute to the clustering of high glucose sample groups. Amino acids lysine, tyrosine, alanine and serine were upregulated by glucose whereas aspartic acid was downregulated by glucose suggesting these amino acids might play a key role in GSIS. In summary, a coordinated signaling cascade elicited by glucose metabolism in pancreatic β-cells is revealed by our metabolomics platform providing a new conceptual framework for future research and/or drug discovery.

  1. Chronic Glucose Exposure Systematically Shifts the Oscillatory Threshold of Mouse Islets: Experimental Evidence for an Early Intrinsic Mechanism of Compensation for Hyperglycemia

    PubMed Central

    Glynn, Eric; Thompson, Benjamin; Vadrevu, Suryakiran; Lu, Shusheng; Kennedy, Robert T.; Ha, Joon; Sherman, Arthur

    2016-01-01

    Mouse islets exhibit glucose-dependent oscillations in electrical activity, intracellular Ca2+ and insulin secretion. We developed a mathematical model in which a left shift in glucose threshold helps compensate for insulin resistance. To test this experimentally, we exposed isolated mouse islets to varying glucose concentrations overnight and monitored their glucose sensitivity the next day by measuring intracellular Ca2+, electrical activity, and insulin secretion. Glucose sensitivity of all oscillation modes was increased when overnight glucose was greater than 2.8mM. To determine whether threshold shifts were a direct effect of glucose or involved secreted insulin, the KATP opener diazoxide (Dz) was coapplied with glucose to inhibit insulin secretion. The addition of Dz or the insulin receptor antagonist s961 increased islet glucose sensitivity, whereas the KATP blocker tolbutamide tended to reduce it. This suggests insulin and glucose have opposing actions on the islet glucose threshold. To test the hypothesis that the threshold shifts were due to changes in plasma membrane KATP channels, we measured cell KATP conductance, which was confirmed to be reduced by high glucose pretreatment and further reduced by Dz. Finally, treatment of INS-1 cells with glucose and Dz overnight reduced high affinity sulfonylurea receptor (SUR1) trafficking to the plasma membrane vs glucose alone, consistent with insulin increasing KATP conductance by altering channel number. The results support a role for metabolically regulated KATP channels in the maintenance of glucose homeostasis. PMID:26697721

  2. An FGF21-adiponectin-ceramide axis controls energy expenditure and insulin action in mice.

    PubMed

    Holland, William L; Adams, Andrew C; Brozinick, Joseph T; Bui, Hai H; Miyauchi, Yukiko; Kusminski, Christine M; Bauer, Steven M; Wade, Mark; Singhal, Esha; Cheng, Christine C; Volk, Katherine; Kuo, Ming-Shang; Gordillo, Ruth; Kharitonenkov, Alexei; Scherer, Philipp E

    2013-05-07

    FGF21, a member of the fibroblast growth factor (FGF) superfamily, has recently emerged as a regulator of metabolism and energy utilization. However, the exact mechanism(s) whereby FGF21 mediates its actions have not been elucidated. There is considerable evidence that insulin resistance may arise from aberrant accumulation of intracellular lipids in insulin-responsive tissues due to lipotoxicity. In particular, the sphingolipid ceramide has been implicated in this process. Here, we show that FGF21 rapidly and robustly stimulates adiponectin secretion in rodents while diminishing accumulation of ceramides in obese animals. Importantly, adiponectin-knockout mice are refractory to changes in energy expenditure and ceramide-lowering effects evoked by FGF21 administration. Moreover, FGF21 lowers blood glucose levels and enhances insulin sensitivity in diabetic Lep(ob/ob) mice and diet-induced obese (DIO) mice only when adiponectin is functionally present. Collectively, these data suggest that FGF21 is a potent regulator of adiponectin secretion and that FGF21 critically depends on adiponectin to exert its glycemic and insulin sensitizing effects. Copyright © 2013 Elsevier Inc. All rights reserved.

  3. Insulin Secretion Improves in Cystic Fibrosis Following Ivacaftor Correction of CFTR: A Small Pilot Study

    PubMed Central

    Bellin, Melena D.; Laguna, Theresa; Leschyshyn, Janice; Regelmann, Warren; Dunitz, Jordan; Billings, JoAnne; Moran, Antoinette

    2013-01-01

    Objective To determine whether the cystic fibrosis transmembrane conductance regulator (CFTR) is involved in human insulin secretion by assessing the metabolic impact of the new CFTR corrector, ivacaftor. Methods This open-label pilot study was conducted in CF patients with the G551D mutation given new prescriptions for ivacaftor. At baseline and 4 weeks after daily ivacaftor therapy, intravenous (IVGTT) and oral glucose (OGTT) tolerance tests were performed. Results Five patients age 6–52 were studied. After 1 month on ivacaftor, the insulin response to oral glucose improved by 66–178% in all subjects except one with long-standing diabetes. OGTT glucose levels were not lower in the two individuals with diabetes or the two with normal glucose tolerance (NGT), but the glucose tolerance category in the subject with impaired glucose tolerance (IGT) improved to NGT after treatment. In response to intravenous glucose, the only patient whose acute insulin secretion did not improve had newly diagnosed, untreated CFRD. The others improved by 51–346%. Acute insulin secretion was partially restored in two subjects with no measurable acute insulin response at baseline, including the one with IGT and the one with long-standing diabetes. Conclusions This small pilot study suggests there is a direct role of CFTR in human insulin secretion. Larger, long-term longitudinal studies are necessary to determine whether early initiation of CFTR correction, particularly in young children with CF who have not yet lost considerable beta-cell mass, will delay or prevent development of diabetes in this high risk population. PMID:23952705

  4. A common variant upstream of the PAX6 gene influences islet function in man.

    PubMed

    Ahlqvist, E; Turrini, F; Lang, S T; Taneera, J; Zhou, Y; Almgren, P; Hansson, O; Isomaa, B; Tuomi, T; Eriksson, K; Eriksson, J G; Lyssenko, V; Groop, L

    2012-01-01

    Impaired glucose tolerance and impaired insulin secretion have been reported in families with PAX6 mutations and it is suggested that they result from defective proinsulin processing due to lack of prohormone convertase 1/3, encoded by PCSK1. We investigated whether a common PAX6 variant would mimic these findings and explored in detail its effect on islet function in man. A PAX6 candidate single nucleotide polymorphism (rs685428) was associated with fasting insulin levels in the Diabetes Genetics Initiative genome-wide association study. We explored its potential association with glucose tolerance and insulin processing and secretion in three Scandinavian cohorts (N = 8,897 individuals). In addition, insulin secretion and the expression of PAX6 and transcriptional target genes were studied in human pancreatic islets. rs685428 G allele carriers had lower islet mRNA expression of PAX6 (p = 0.01) and PCSK1 (p = 0.001) than AA homozygotes. The G allele was associated with increased fasting insulin (p (replication) = 0.02, p (all) = 0.0008) and HOMA-insulin resistance (p (replication) = 0.02, p (all) = 0.001) as well as a lower fasting proinsulin/insulin ratio (p (all) = 0.008) and lower fasting glucagon (p = 0.04) and gastric inhibitory peptide (GIP) (p = 0.05) concentrations. Arginine-stimulated (p = 0.02) insulin secretion was reduced in vivo, which was further reflected by a reduction of glucose- and potassium-stimulated insulin secretion (p = 0.002 and p = 0.04, respectively) in human islets in vitro. A common variant in PAX6 is associated with reduced PAX6 and PCSK1 expression in human islets and reduced insulin response, as well as decreased glucagon and GIP concentrations and decreased insulin sensitivity. These findings emphasise the central role of PAX6 in the regulation of islet function and glucose metabolism in man.

  5. IL-6-Type Cytokine Signaling in Adipocytes Induces Intestinal GLP-1 Secretion.

    PubMed

    Wueest, Stephan; Laesser, Céline I; Böni-Schnetzler, Marianne; Item, Flurin; Lucchini, Fabrizio C; Borsigova, Marcela; Müller, Werner; Donath, Marc Y; Konrad, Daniel

    2018-01-01

    We recently showed that interleukin (IL)-6-type cytokine signaling in adipocytes induces free fatty acid release from visceral adipocytes, thereby promoting obesity-induced hepatic insulin resistance and steatosis. In addition, IL-6-type cytokines may increase the release of leptin from adipocytes and by those means induce glucagon-like peptide 1 (GLP-1) secretion. We thus hypothesized that IL-6-type cytokine signaling in adipocytes may regulate insulin secretion. To this end, mice with adipocyte-specific knockout of gp130, the signal transducer protein of IL-6, were fed a high-fat diet for 12 weeks. Compared with control littermates, knockout mice showed impaired glucose tolerance and circulating leptin, GLP-1, and insulin levels were reduced. In line, leptin release from isolated adipocytes was reduced, and intestinal proprotein convertase subtilisin/kexin type 1 ( Pcsk1 ) expression, the gene encoding PC1/3, which controls GLP-1 production, was decreased in knockout mice. Importantly, treatment with the GLP-1 receptor antagonist exendin 9-39 abolished the observed difference in glucose tolerance between control and knockout mice. Ex vivo, supernatant collected from isolated adipocytes of gp130 knockout mice blunted Pcsk1 expression and GLP-1 release from GLUTag cells. In contrast, glucose- and GLP-1-stimulated insulin secretion was not affected in islets of knockout mice. In conclusion, adipocyte-specific IL-6 signaling induces intestinal GLP-1 release to enhance insulin secretion, thereby counteracting insulin resistance in obesity. © 2017 by the American Diabetes Association.

  6. Insulin: its Role in the Central Control of Reproduction

    PubMed Central

    Sliwowska, Joanna H.; Fergani, Chrysanthi; Gawałek, Monika; Skowronska, Bogda; Fichna, Piotr; Lehman, Michael N.

    2014-01-01

    Insulin has long been recognized as a key regulator of energy homeostasis via its actions at the level of the brain, but in addition, plays a role in regulating neural control of reproduction. In this review, we consider and compare evidence from animal models demonstrating a role for insulin for physiological control of reproduction by effects on GnRH/LH secretion. We also review the role that insulin plays in prenatal programming of adult reproduction, and consider specific candidate neurons in the adult hypothalamus by which insulin may act to regulate reproductive function. Finally, we review clinical evidence of the role that insulin may play in adult human fertility and reproductive disorders. Overall, while insulin appears to have a significant impact on reproductive neuroendocrine function, there are many unanswered questions regarding its precise sites and mechanisms of action, and their impact on developing and adult reproductive neuroendocrine function. PMID:24874777

  7. Insulin: its role in the central control of reproduction.

    PubMed

    Sliwowska, Joanna H; Fergani, Chrysanthi; Gawałek, Monika; Skowronska, Bogda; Fichna, Piotr; Lehman, Michael N

    2014-06-22

    Insulin has long been recognized as a key regulator of energy homeostasis via its actions at the level of the brain, but in addition, plays a role in regulating neural control of reproduction. In this review, we consider and compare evidence from animal models demonstrating a role for insulin for physiological control of reproduction by effects on GnRH/LH secretion. We also review the role that insulin plays in prenatal programming of adult reproduction, and consider specific candidate neurons in the adult hypothalamus by which insulin may act to regulate reproductive function. Finally, we review clinical evidence of the role that insulin may play in adult human fertility and reproductive disorders. Overall, while insulin appears to have a significant impact on reproductive neuroendocrine function, there are many unanswered questions regarding its precise sites and mechanisms of action, and their impact on developing and adult reproductive neuroendocrine function. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Generation Of Functional Insulin-Producing Cells In The Gut By Foxo1 Ablation

    PubMed Central

    Talchai, Chutima; Xuan, Shouhong; Kitamura, Tadahiro; DePinho, Ronald A.; Accili, Domenico

    2012-01-01

    Restoration of regulated insulin secretion is the ultimate goal of type 1 diabetes therapy. Here we show that, surprisingly, somatic ablation of Foxo1 in Neurog3+ enteroendocrine progenitor cells gives rise to gut insulin-positive cells (Ins+) that express markers of mature β-cells, and secrete bioactive insulin as well as C-peptide in response to glucose and sulfonylureas. Lineage tracing experiments show that gut Ins+ cells arise cell-autonomously from Foxo1-deficient cells. Inducible Foxo1 ablation in adult mice also results in the generation of gut Ins+ cells. Following ablation by the β-cell toxin, streptozotocin, gut Ins+ cells regenerate and produce insulin, reversing hyperglycemia in mice. The data indicate that Neurog3+ enteroendocrine progenitors require active Foxo1 to prevent differentiation into Ins+ cells. Foxo1 ablation in gut epithelium may provide an approach to restore insulin production in type 1 diabetes. PMID:22406641

  9. Early-phase prandial insulin secretion: its role in the pathogenesis of type 2 diabetes mellitus and its modulation by repaglinide.

    PubMed

    Owens, D R; Cozma, L S; Luzio, S D

    2002-12-01

    The major contributory factor to increasing hyperglycaemia in established Type 2 diabetes mellitus (T2DM) appears to be the progressive delay and attenuation of the prandial insulin response. An important consequence of this derangement is that hepatic glucose production is no longer suppressed during times of prandial glucose intake. Together with a relative impairment in the rate of peripheral glucose disposal, this leads to supra-physiological plasma glucose excursions, which may damage the vasculature. An obvious therapeutic strategy, therefore, would be to increase insulin availability when most needed--in the early prandial phase. In experiments with exogenous insulin interventions, peak post-prandial blood glucose increments were curtailed without undue increases in total insulin exposure. However, available evidence suggests that the sulphonylurea glibenclamide does not effectively alter early-phase prandial insulin release but predominately increases late-phase and basal insulin output, thus incurring the risk of hypoglycaemia. The novel insulin secretagogue repaglinide, by contrast, augments early-phase prandial insulin secretion when taken before meals, as shown by studies in non-diabetic people and patients with newly diagnosed, previously untreated T2DM. Repaglinide exerts its greatest effect on the insulin secretion rate during the first 30 min after a meal is started, thereby going some way to restoring the early insulin secretion curve seen after a meal in non-diabetic people. No residual secretagogue activity is seen 4 hr after taking a single dose of up to 2 mg. Prandial glucose regulation with repaglinide could be associated with lower post-prandial glucose excursions and less risk of post-prandial hypoglycaemia than glibenclamide.

  10. Reciprocal regulation of insulin and plasma 5'-AMP in glucose homeostasis in mice.

    PubMed

    Xia, Lin; Wang, Zhongqiu; Zhang, Ying; Yang, Xiao; Zhan, Yibei; Cheng, Rui; Wang, Shiming; Zhang, Jianfa

    2015-03-01

    A previous investigation has demonstrated that plasma 5'-AMP (pAMP) exacerbates and causes hyperglycemia in diabetic mice. However, the crosstalk between pAMP and insulin signaling to regulate glucose homeostasis has not been investigated in depth. In this study, we showed that the blood glucose level was more dependent on the ratio of insulin to pAMP than on the absolute level of these two factors. Administration of 5'-AMP significantly attenuated the insulin-stimulated insulin receptor (IR) autophosphorylation in the liver and muscle tissues, resulting in the inhibition of downstream AKT phosphorylation. A docking analysis indicated that adenosine was a potential inhibitor of IR tyrosine kinase. Moreover, the 5'-AMP treatment elevated the ATP level in the pancreas and in the isolated islets, stimulating insulin secretion and increasing the plasma level of insulin. The insulin administration decreased the 5'-AMP-induced hyper-adenosine level by the up-regulation of adenosine kinase activities. Our results indicate that blood glucose homeostasis is reciprocally regulated by pAMP and insulin. © 2015 Society for Endocrinology.

  11. Hyperinsulinemia and Insulin Resistance in Dopamine β-Hydroxylase Deficiency

    PubMed Central

    Arnold, Amy C.; Garland, Emily M.; Celedonio, Jorge E.; Raj, Satish R.; Abumrad, Naji N.; Biaggioni, Italo; Robertson, David; Luther, James M.

    2017-01-01

    Context: Dopamine β-hydroxylase (DBH) deficiency is a rare genetic disorder characterized by failure to convert dopamine to norepinephrine. DBH-deficient patients lack sympathetic adrenergic function and are therefore predisposed to orthostatic hypotension. DBH-deficient mice exhibit hyperinsulinemia, lower plasma glucose levels, and insulin resistance due to loss of tonic sympathetic inhibition of insulin secretion. The impact of DBH deficiency on glucose homeostasis in humans is unknown. Case Description: We describe the metabolic profile of an adolescent female DBH-deficient patient. The patient underwent genetic testing, cardiovascular autonomic function testing, and evaluation of insulin secretion and sensitivity with hyperglycemic clamp under treatment-naive conditions. All procedures were repeated after 1 year of treatment with the norepinephrine prodrug droxidopa (300 mg, 3 times a day). Genetic testing showed a homozygous mutation in the DBH gene (rs74853476). Under treatment-naive conditions, she had undetectable plasma epinephrine and norepinephrine levels, resulting in sympathetic noradrenergic failure and orthostatic hypotension (−32 mm Hg supine to seated). She had high adiposity (41%) and fasting plasma insulin levels (25 μU/mL), with normal glucose (91 mg/dL). Hyperglycemic clamp revealed increased glucose-stimulated insulin secretion and insulin resistance. Droxidopa restored plasma norepinephrine and improved orthostatic tolerance, with modest effects on glucose homeostasis. Conclusions: We provide evidence for impairment in cardiovascular autonomic regulation, hyperinsulinemia, enhanced glucose-stimulated insulin secretion, and insulin resistance in a DBH-deficient patient. These metabolic derangements were not corrected by chronic droxidopa treatment. These findings provide insight into the pathophysiology and treatment of DBH deficiency and into the importance of catecholaminergic mechanisms to resting metabolism. PMID:27778639

  12. Hyperinsulinemia and Insulin Resistance in Dopamine β-Hydroxylase Deficiency.

    PubMed

    Arnold, Amy C; Garland, Emily M; Celedonio, Jorge E; Raj, Satish R; Abumrad, Naji N; Biaggioni, Italo; Robertson, David; Luther, James M; Shibao, Cyndya A

    2017-01-01

    Dopamine β-hydroxylase (DBH) deficiency is a rare genetic disorder characterized by failure to convert dopamine to norepinephrine. DBH-deficient patients lack sympathetic adrenergic function and are therefore predisposed to orthostatic hypotension. DBH-deficient mice exhibit hyperinsulinemia, lower plasma glucose levels, and insulin resistance due to loss of tonic sympathetic inhibition of insulin secretion. The impact of DBH deficiency on glucose homeostasis in humans is unknown. We describe the metabolic profile of an adolescent female DBH-deficient patient. The patient underwent genetic testing, cardiovascular autonomic function testing, and evaluation of insulin secretion and sensitivity with hyperglycemic clamp under treatment-naive conditions. All procedures were repeated after 1 year of treatment with the norepinephrine prodrug droxidopa (300 mg, 3 times a day). Genetic testing showed a homozygous mutation in the DBH gene (rs74853476). Under treatment-naive conditions, she had undetectable plasma epinephrine and norepinephrine levels, resulting in sympathetic noradrenergic failure and orthostatic hypotension (-32 mm Hg supine to seated). She had high adiposity (41%) and fasting plasma insulin levels (25 μU/mL), with normal glucose (91 mg/dL). Hyperglycemic clamp revealed increased glucose-stimulated insulin secretion and insulin resistance. Droxidopa restored plasma norepinephrine and improved orthostatic tolerance, with modest effects on glucose homeostasis. We provide evidence for impairment in cardiovascular autonomic regulation, hyperinsulinemia, enhanced glucose-stimulated insulin secretion, and insulin resistance in a DBH-deficient patient. These metabolic derangements were not corrected by chronic droxidopa treatment. These findings provide insight into the pathophysiology and treatment of DBH deficiency and into the importance of catecholaminergic mechanisms to resting metabolism. Copyright © 2017 by the Endocrine Society

  13. FABP4 is secreted from adipocytes by adenyl cyclase-PKA- and guanylyl cyclase-PKG-dependent lipolytic mechanisms.

    PubMed

    Mita, Tomohiro; Furuhashi, Masato; Hiramitsu, Shinya; Ishii, Junnichi; Hoshina, Kyoko; Ishimura, Shutaro; Fuseya, Takahiro; Watanabe, Yuki; Tanaka, Marenao; Ohno, Kohei; Akasaka, Hiroshi; Ohnishi, Hirofumi; Yoshida, Hideaki; Saitoh, Shigeyuki; Shimamoto, Kazuaki; Miura, Tetsuji

    2015-02-01

    Fatty acid-binding protein 4 (FABP4) is expressed in adipocytes, and elevated plasma FABP4 level is associated with obesity-mediated metabolic phenotype. Postprandial regulation and secretory signaling of FABP4 has been investigated. Time courses of FABP4 levels were examined during an oral glucose tolerance test (OGTT; n=53) or a high-fat test meal eating (n=35). Effects of activators and inhibitors of adenyl cyclase (AC)-protein kinase A (PKA) signaling and guanylyl cyclase (GC)-protein kinase G (PKG) signaling on FABP4 secretion from mouse 3T3-L1 adipocytes were investigated. FABP4 level significantly declined after the OGTT or a high-fat meal eating, while insulin level was increased. Treatment with low and high glucose concentration or palmitate for 2 h did not affect FABP4 secretion from 3T3-L1 adipocytes. FABP4 secretion was increased by stimulation of lipolysis using isoproterenol, a β3 -adrenoceptor agonist (CL316243), forskolin, dibutyryl-cAMP and atrial natriuretic peptide, and the induced FABP4 secretion was suppressed by insulin or an inhibitor of PKA (H-89), PKG (KT5823) or hormone sensitive lipase (CAY10499). FABP4 is secreted from adipocytes in association with lipolysis regulated by AC-PKA- and GC-PKG-mediated signal pathways. Plasma FABP4 level declines postprandially, and suppression of FABP4 secretion by insulin-induced anti-lipolytic signaling may be involved in this decline in FABP4 level. © 2014 The Obesity Society.

  14. l-Cysteine supplementation increases insulin sensitivity mediated by upregulation of GSH and adiponectin in high glucose treated 3T3-L1 adipocytes.

    PubMed

    Achari, Arunkumar E; Jain, Sushil K

    2017-09-15

    Diabetic patients have lower blood levels of l-cysteine (LC) and glutathione (GSH). This study examined the hypothesis that LC supplementation positively up regulates the effects of insulin on GSH and glucose metabolism in 3T3-L1 adipocyte model. 3T3L1 adipocytes were treated with LC (250 μM, 2 h) and/or insulin (15 or 30 nM, 2 h), and high glucose (HG, 25 mM, 20 h). Results showed that HG caused significant increase (95%) in ROS and reduction in the protein levels of DsbA-L (43%), adiponectin (64%), GCLC (20%), GCLM (21%), GSH (50%), and GLUT-4 (23%) in adipocytes. Furthermore, HG caused a reduction in total (35%) and HMW adiponectin (30%) secretion. Treatment with insulin alone significantly (p < 0.05) reduced ROS levels as well as increased DsbA-L, adiponectin, GCLC, GCLM, GSH, and GLUT-4 protein levels, glucose utilization, and improved total and HMW adiponectin secretion in HG treated adipocytes compared to HG alone. Interestingly, LC supplementation along with insulin caused greater reduction in ROS levels and significantly (p < 0.05) boosted the DsbA-L (41% vs LC, 29% vs Insulin), adiponectin (92% Vs LC, 84% Vs insulin) protein levels and total (32% Vs LC, 22% Vs insulin) and HMW adiponectin (75% Vs LC, 39% Vs insulin) secretion compared with the either insulin or LC alone in HG-treated cells. In addition, LC supplementation along with insulin increased GCLC (21% Vs LC, 14% insulin), GCLM (28% Vs LC, 16% insulin) and GSH (25% Vs LC and insulin) levels compared with the either insulin or LC alone in HG-treated cells. Furthermore, LC and insulin increases GLUT-4 protein expression (65% Vs LC, 18% Vs Insulin), glucose utilization (57% Vs LC, 27% Vs insulin) compared with the either insulin or LC alone in HG-treated cells. Similarly, LC supplementation increased insulin action significantly in cells maintained in medium contained control glucose. To explore the beneficial effect of LC is mediated by the upregulation of GCLC, we knocked down GCLC using siRNA in adipoctyes. There was a significant decrease in DsbA-L and GLUT-4 mRNA levels and GSH levels in GCLC knockdown adipocytes and LC supplementation up regulates GCLC, DsbA-L and GLUT-4 mRNA expression and GSH levels in GCLC knockdown cells. These results demonstrated that LC along with insulin increases GSH levels thereby improving adiponectin secretion and glucose utilization in adipocytes. This suggests that LC supplementation can increase insulin sensitivity and can be used as an adjuvant therapy for diabetes. Copyright © 2017. Published by Elsevier Inc.

  15. SLC30A3 Responds to Glucose- and Zinc Variations in ß-Cells and Is Critical for Insulin Production and In Vivo Glucose-Metabolism During ß-Cell Stress

    PubMed Central

    Smidt, Kamille; Jessen, Niels; Petersen, Andreas Brønden; Larsen, Agnete; Magnusson, Nils; Jeppesen, Johanne Bruun; Stoltenberg, Meredin; Culvenor, Janetta G.; Tsatsanis, Andrew; Brock, Birgitte; Schmitz, Ole; Wogensen, Lise; Bush, Ashley I.; Rungby, Jørgen

    2009-01-01

    Background Ion transporters of the Slc30A- (ZnT-) family regulate zinc fluxes into sub-cellular compartments. β-cells depend on zinc for both insulin crystallization and regulation of cell mass. Methodology/Principal Findings This study examined: the effect of glucose and zinc chelation on ZnT gene and protein levels and apoptosis in β-cells and pancreatic islets, the effects of ZnT-3 knock-down on insulin secretion in a β-cell line and ZnT-3 knock-out on glucose metabolism in mice during streptozotocin-induced β-cell stress. In INS-1E cells 2 mM glucose down-regulated ZnT-3 and up-regulated ZnT-5 expression relative to 5 mM. 16 mM glucose increased ZnT-3 and decreased ZnT-8 expression. Zinc chelation by DEDTC lowered INS-1E insulin content and insulin expression. Furthermore, zinc depletion increased ZnT-3- and decreased ZnT-8 gene expression whereas the amount of ZnT-3 protein in the cells was decreased. Zinc depletion and high glucose induced apoptosis and necrosis in INS-1E cells. The most responsive zinc transporter, ZnT-3, was investigated further; by immunohistochemistry and western blotting ZnT-3 was demonstrated in INS-1E cells. 44% knock-down of ZnT-3 by siRNA transfection in INS-1E cells decreased insulin expression and secretion. Streptozotocin-treated mice had higher glucose levels after ZnT-3 knock-out, particularly in overt diabetic animals. Conclusion/Significance Zinc transporting proteins in β-cells respond to variations in glucose and zinc levels. ZnT-3, which is pivotal in the development of cellular changes as also seen in type 2 diabetes (e.g. amyloidosis in Alzheimer's disease) but not previously described in β-cells, is present in this cell type, up-regulated by glucose in a concentration dependent manner and up-regulated by zinc depletion which by contrast decreased ZnT-3 protein levels. Knock-down of the ZnT-3 gene lowers insulin secretion in vitro and affects in vivo glucose metabolism after streptozotocin treatment. PMID:19492079

  16. Adrenaline: insights into its metabolic roles in hypoglycaemia and diabetes

    PubMed Central

    Korim, W S; Sabetghadam, A; Llewellyn‐Smith, I J

    2016-01-01

    Adrenaline is a hormone that has profound actions on the cardiovascular system and is also a mediator of the fight‐or‐flight response. Adrenaline is now increasingly recognized as an important metabolic hormone that helps mobilize energy stores in the form of glucose and free fatty acids in preparation for physical activity or for recovery from hypoglycaemia. Recovery from hypoglycaemia is termed counter‐regulation and involves the suppression of endogenous insulin secretion, activation of glucagon secretion from pancreatic α‐cells and activation of adrenaline secretion. Secretion of adrenaline is controlled by presympathetic neurons in the rostroventrolateral medulla, which are, in turn, under the control of central and/or peripheral glucose‐sensing neurons. Adrenaline is particularly important for counter‐regulation in individuals with type 1 (insulin‐dependent) diabetes because these patients do not produce endogenous insulin and also lose their ability to secrete glucagon soon after diagnosis. Type 1 diabetic patients are therefore critically dependent on adrenaline for restoration of normoglycaemia and attenuation or loss of this response in the hypoglycaemia unawareness condition can have serious, sometimes fatal, consequences. Understanding the neural control of hypoglycaemia‐induced adrenaline secretion is likely to identify new therapeutic targets for treating this potentially life‐threatening condition. PMID:26896587

  17. Methylated trivalent arsenicals are potent inhibitors of glucose stimulated insulin secretion by murine pancreatic islets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Douillet, Christelle; Currier, Jenna; Saunders, Jesse

    Epidemiologic evidence has linked chronic exposure to inorganic arsenic (iAs) with an increased prevalence of diabetes mellitus. Laboratory studies have identified several mechanisms by which iAs can impair glucose homeostasis. We have previously shown that micromolar concentrations of arsenite (iAs{sup III}) or its methylated trivalent metabolites, methylarsonite (MAs{sup III}) and dimethylarsinite (DMAs{sup III}), inhibit the insulin-activated signal transduction pathway, resulting in insulin resistance in adipocytes. Our present study examined effects of the trivalent arsenicals on insulin secretion by intact pancreatic islets isolated from C57BL/6 mice. We found that 48-hour exposures to low subtoxic concentrations of iAs{sup III}, MAs{sup III} ormore » DMAs{sup III} inhibited glucose-stimulated insulin secretion (GSIS), but not basal insulin secretion. MAs{sup III} and DMAs{sup III} were more potent than iAs{sup III} as GSIS inhibitors with estimated IC{sub 50} ≤ 0.1 μM. The exposures had little or no effects on insulin content of the islets or on insulin expression, suggesting that trivalent arsenicals interfere with mechanisms regulating packaging of the insulin transport vesicles or with translocation of these vesicles to the plasma membrane. Notably, the inhibition of GSIS by iAs{sup III}, MAs{sup III} or DMAs{sup III} could be reversed by a 24-hour incubation of the islets in arsenic-free medium. These results suggest that the insulin producing pancreatic β-cells are among the targets for iAs exposure and that the inhibition of GSIS by low concentrations of the methylated metabolites of iAs may be the key mechanism of iAs-induced diabetes. - Highlights: ► Trivalent arsenicals inhibit glucose stimulated insulin secretion by pancreatic islets. ► MAs{sup III} and DMAs{sup III} are more potent inhibitors than arsenite with IC{sub 50} ∼ 0.1 μM. ► The arsenicals have little or no effects on insulin expression in pancreatic islets. ► The inhibition of insulin secretion by arsenite, MAs{sup III} or DMAs{sup III} is reversible. ► Thus, pancreatic β-cells may be primary targets for chronic exposure to arsenic.« less

  18. Insulin resistance in dairy cows.

    PubMed

    De Koster, Jenne D; Opsomer, Geert

    2013-07-01

    Glucose is the molecule that drives milk production, and insulin plays a pivotal role in the glucose metabolism of dairy cows. The effect of insulin on the glucose metabolism is regulated by the secretion of insulin by the pancreas and the insulin sensitivity of the skeletal muscles, the adipose tissue, and the liver. Insulin resistance may develop as part of physiologic (pregnancy and lactation) and pathologic processes, which may manifest as decreased insulin sensitivity or decreased insulin responsiveness. A good knowledge of the normal physiology of insulin is needed to measure the in vivo insulin resistance of dairy cows. Copyright © 2013 Elsevier Inc. All rights reserved.

  19. Uncoupling protein-2 mediates the protective action of berberine against oxidative stress in rat insulinoma INS-1E cells and in diabetic mouse islets

    PubMed Central

    Liu, Limei; Liu, Jian; Gao, Yuansheng; Yu, Xiaoxing; Xu, Gang; Huang, Yu

    2014-01-01

    BACKGROUND AND PURPOSE Uncoupling protein-2 (UCP2) may regulate glucose-stimulated insulin secretion. The current study investigated the effects of berberine, an alkaloid found in many medicinal plants, on oxidative stress and insulin secretion through restoration of UCP2 expression in high glucose (HG)-treated INS-1E cells and rat islets or in db/db mouse islets. EXPERIMENTAL APPROACH Mouse and rat pancreatic islets were isolated. Nitrotyrosine, superoxide dismutase (SOD)-1 and UCP2 expression and AMPK phosphorylation were examined by Western blotting. Insulin secretion was measured by elisa. Mitochondrial reactive oxygen species (ROS) production was detected by confocal microscopy. KEY RESULTS Incubation of INS-1E cells and rat islets with HG (30 mmol·L−1; 8 h) elevated nitrotyrosine level, reduced SOD-1 and UCP2 expression and AMPK phosphorylation, and inhibited glucose-stimulated insulin secretion. HG also increased mitochondrial ROS in INS-1E cells. Co-treatment with berberine inhibited such effects. The AMPK inhibitor compound C, the UCP2 inhibitor genipin and adenovirus ucp2 shRNA inhibited these protective effects of berberine. Furthermore, compound C normalized berberine-stimulated UCP2 expression but genipin did not affect AMPK phosphorylation. Islets from db/db mice exhibited elevated nitrotyrosine levels, reduced expression of SOD-1 and UCP2 and AMPK phosphorylation, and decreased insulin secretion compared with those from db/m+ mice. Berberine also improved these defects in diabetic islets and genipin blocked the effects of berberine. CONCLUSIONS AND IMPLICATIONS Berberine inhibited oxidative stress and restored insulin secretion in HG-treated INS-IE cells and diabetic mouse islets by activating AMPK and UCP2. UCP2 is an important signalling molecule in mediating anti-diabetic effects of berberine. PMID:24588674

  20. Uncoupling protein-2 mediates the protective action of berberine against oxidative stress in rat insulinoma INS-1E cells and in diabetic mouse islets.

    PubMed

    Liu, Limei; Liu, Jian; Gao, Yuansheng; Yu, Xiaoxing; Xu, Gang; Huang, Yu

    2014-07-01

    Uncoupling protein-2 (UCP2) may regulate glucose-stimulated insulin secretion. The current study investigated the effects of berberine, an alkaloid found in many medicinal plants, on oxidative stress and insulin secretion through restoration of UCP2 expression in high glucose (HG)-treated INS-1E cells and rat islets or in db/db mouse islets. Mouse and rat pancreatic islets were isolated. Nitrotyrosine, superoxide dismutase (SOD)-1 and UCP2 expression and AMPK phosphorylation were examined by Western blotting. Insulin secretion was measured by ELISA. Mitochondrial reactive oxygen species (ROS) production was detected by confocal microscopy. Incubation of INS-1E cells and rat islets with HG (30 mmol·L(-1); 8 h) elevated nitrotyrosine level, reduced SOD-1 and UCP2 expression and AMPK phosphorylation, and inhibited glucose-stimulated insulin secretion. HG also increased mitochondrial ROS in INS-1E cells. Co-treatment with berberine inhibited such effects. The AMPK inhibitor compound C, the UCP2 inhibitor genipin and adenovirus ucp2 shRNA inhibited these protective effects of berberine. Furthermore, compound C normalized berberine-stimulated UCP2 expression but genipin did not affect AMPK phosphorylation. Islets from db/db mice exhibited elevated nitrotyrosine levels, reduced expression of SOD-1 and UCP2 and AMPK phosphorylation, and decreased insulin secretion compared with those from db/m(+) mice. Berberine also improved these defects in diabetic islets and genipin blocked the effects of berberine. Berberine inhibited oxidative stress and restored insulin secretion in HG-treated INS-IE cells and diabetic mouse islets by activating AMPK and UCP2. UCP2 is an important signalling molecule in mediating anti-diabetic effects of berberine. © 2014 The British Pharmacological Society.

  1. Different downstream signalling of CCK1 receptors regulates distinct functions of CCK in pancreatic beta cells.

    PubMed

    Ning, Shang-lei; Zheng, Wen-shuai; Su, Jing; Liang, Nan; Li, Hui; Zhang, Dao-lai; Liu, Chun-hua; Dong, Jun-hong; Zhang, Zheng-kui; Cui, Min; Hu, Qiao-Xia; Chen, Chao-chao; Liu, Chang-hong; Wang, Chuan; Pang, Qi; Chen, Yu-xin; Yu, Xiao; Sun, Jin-peng

    2015-11-01

    Cholecystokinin (CCK) is secreted by intestinal I cells and regulates important metabolic functions. In pancreatic islets, CCK controls beta cell functions primarily through CCK1 receptors, but the signalling pathways downstream of these receptors in pancreatic beta cells are not well defined. Apoptosis in pancreatic beta cell apoptosis was evaluated using Hoechst-33342 staining, TUNEL assays and Annexin-V-FITC/PI staining. Insulin secretion and second messenger production were monitored using ELISAs. Protein and phospho-protein levels were determined by Western blotting. A glucose tolerance test was carried out to examine the functions of CCK-8s in streptozotocin-induced diabetic mice. The sulfated carboxy-terminal octapeptide CCK26-33 amide (CCK-8s) activated CCK1 receptors and induced accumulation of both IP3 and cAMP. Whereas Gq -PLC-IP3 signalling was required for the CCK-8s-induced insulin secretion under low-glucose conditions, Gs -PKA/Epac signalling contributed more strongly to the CCK-8s-mediated insulin secretion in high-glucose conditions. CCK-8s also promoted formation of the CCK1 receptor/β-arrestin-1 complex in pancreatic beta cells. Using β-arrestin-1 knockout mice, we demonstrated that β-arrestin-1 is a key mediator of both CCK-8s-mediated insulin secretion and of its the protective effect against apoptosis in pancreatic beta cells. The anti-apoptotic effects of β-arrestin-1 occurred through cytoplasmic late-phase ERK activation, which activates the 90-kDa ribosomal S6 kinase-phospho-Bcl-2-family protein pathway. Knowledge of different CCK1 receptor-activated downstream signalling pathways in the regulation of distinct functions of pancreatic beta cells could be used to identify biased CCK1 receptor ligands for the development of new anti-diabetic drugs. © 2015 The British Pharmacological Society.

  2. Characterisation of the insulinotropic activity of an aqueous extract of Gymnema sylvestre in mouse beta-cells and human islets of Langerhans.

    PubMed

    Liu, Bo; Asare-Anane, Henry; Al-Romaiyan, Altaf; Huang, Guocai; Amiel, Stephanie A; Jones, Peter M; Persaud, Shanta J

    2009-01-01

    Leaves of the Gymnema sylvestre (GS) plant have been used to treat diabetes mellitus for millennia, but the previously documented insulin secretagogue effects of GS extracts in vitro may be non-physiological through damage to the beta-cells. We have now examined the effects of a novel GS extract (termed OSA) on insulin secretion from the MIN6 beta-cell line and isolated human islets of Langerhans. Insulin secretion from MIN6 cells was stimulated by OSA in a concentration-dependent manner, with low concentrations (0.06-0.25 mg/ml) having no deleterious effects on MIN6 cell viability, while higher concentrations (> or = 0.5 mg/ml) caused increased Trypan blue uptake. OSA increased beta-cell Ca2+ levels, an effect that was mediated by Ca2+ influx through voltage-operated calcium channels. OSA also reversibly stimulated insulin secretion from isolated human islets and its insulin secretagogue effects in MIN6 cells and human islets were partially dependent on the presence of extracellular Ca2+. These data indicate that low concentrations of the GS isolate OSA stimulate insulin secretion in vitro, at least in part as a consequence of Ca2+ influx, without compromising beta-cell viability. Identification of the component of the OSA extract that stimulates regulated insulin exocytosis, and further investigation of its mode(s) of action, may provide promising lead targets for Type 2 diabetes therapy. 2009 S. Karger AG, Basel.

  3. Rising intracellular zinc by membrane depolarization and glucose in insulin-secreting clonal HIT-T15 beta cells.

    PubMed

    Slepchenko, Kira G; Li, Yang V

    2012-01-01

    Zinc (Zn(2+)) appears to be intimately involved in insulin metabolism since insulin secretion is correlated with zinc secretion in response to glucose stimulation, but little is known about the regulation of zinc homeostasis in pancreatic beta-cells. This study set out to identify the intracellular zinc transient by imaging free cytosolic zinc in HIT-T15 beta-cells with fluorescent zinc indicators. We observed that membrane depolarization by KCl (30-60 mM) was able to induce a rapid increase in cytosolic concentration of zinc. Multiple zinc transients of similar magnitude were elicited during repeated stimulations. The amplitude of zinc responses was not affected by the removal of extracellular calcium or zinc. However, the half-time of the rising slope was significantly slower after removing extracellular zinc with zinc chelator CaEDTA, suggesting that extracellular zinc affect the initial rising phase of zinc response. Glucose (10 mM) induced substantial and progressive increases in intracellular zinc concentration in a similar way as KCl, with variation in the onset and the duration of zinc mobilization. It is known that the depolarization of beta-cell membrane is coupled with the secretion of insulin. Rising intracellular zinc concentration may act as a critical signaling factor in insulin metabolism of pancreatic beta-cells.

  4. Effects of the herbal medicine Hachimi-jio-gan (Ba-Wei-Di-Huang-Wan) on insulin secretion and glucose tolerance in type 2 diabetic Goto-Kakizaki rats.

    PubMed

    Hirotani, Y; Ikeda, K; Myotoku, M

    2010-04-01

    Hachimi-jio-gan (HJ) is a Chinese medicine that has been widely used for the treatment of nephrotic syndromes, hypertension, and diabetes mellitus. We reported that HJ lowers plasma glucose in type 1 diabetic rats. We investigated the effects of HJ on diabetic hyperglycemia and insulin secretion in type 2 diabetic Goto-Kakizaki (GK) rats. Eight-week-old diabetic GK rats were given free access to pellets containing 1% HJ extract powder for 14 weeks. HJ consumption increased the food intake and body weight of these rats in comparison to control rats. HJ may control the body weight loss observed in GK rats. HJ also reduced hyperglycemia in diabetic GK rats, and it significantly increased insulin secretion in non-fasting GK rats over the experimental period. In oral glucose tolerance tests, HJ significantly improved the insulin response at 30 min and reduced the plasma glucose level at 60 min after glucose administration (p < 0.05). Ten weeks after administration, the plasma leptin levels significantly increased in the HJ group rats. These results demonstrate that in diabetic GK rats, HJ decreased the level of postprandial glucose via enhanced insulin secretion coupled with the regulation of food intake by leptin.

  5. HNF1α defect influences post-prandial lipid regulation

    PubMed Central

    St-Jean, Matthieu; Boudreau, François; Carpentier, André C.

    2017-01-01

    Purpose Hepatocyte nuclear factor 1 alpha (HNF1α) defects cause Mature Onset Diabetes of the Young type 3 (MODY3), characterized by defects in beta-cell insulin secretion. However, HNF1α is involved in many other metabolic pathways with relevance for monogenic or polygenic type 2 diabetes. We aimed to investigate gut hormones, lipids, and insulin regulation in response to a meal test in HNF1α defect carriers (MODY3) compared to non-diabetic subjects (controls) and type 2 diabetes (T2D). Methods We administered a standardized liquid meal to each participant. Over 6 hours, we measured post-meal responses of insulin regulation (blood glucose, c-peptide, insulin), gut hormones (ghrelin, glucose-dependent insulinotropic polypeptide, glucagon-like peptide-1) and lipids (non-esterified fatty acids [NEFA] and triglycerides). Results We found that MODY3 participants had lower insulin secretion indices than controls and T2D participants, showing the expected β-cell defect. MODY3 had similar glycated hemoglobin levels (HbA1c median [IQR]: 6.5 [5.6–7.6]%) compared to T2D (median: 6.6 [6.2–6.9]%; P<0.05). MODY3 had greater insulin sensitivity (Matsuda index: 71.9 [29.6; 125.5]) than T2D (3.2 [4.0; 6.0]; P<0.05). MODY3 experienced a larger decrease in the ratio of NEFA to insulin (NEFA 30–0 / insulin 30–0: -39 [-78; -30] x104) in the early post-prandial period (0–30 minutes) compared to controls and to T2D (-2.0 [-0.6; -6.4] x104; P<0.05). MODY3 had lower fasting (0.66 [0.46; 1.2] mM) and post-meal triglycerides levels compared to T2D (fasting: 2.3 [1.7; 2.7] mM; P<0.05). We did not detect significant post-meal differences in ghrelin and incretins between MODY3 and other groups. Conclusion In response to a standard meal test, MODY3 showed greater early post-prandial NEFA diminution in response to relatively low early insulin secretion, and they maintained very low post-prandial triglycerides levels. PMID:28493909

  6. Regulation of L-type CaV1.3 channel activity and insulin secretion by the cGMP-PKG signaling pathway

    PubMed Central

    Sandoval, Alejandro; Duran, Paz; Gandini, María A.; Andrade, Arturo; Almanza, Angélica; Kaja, Simon; Felix, Ricardo

    2018-01-01

    cGMP is a second messenger widely used in the nervous system and other tissues. One of the major effectors for cGMP is the serine/threonine protein kinase, cGMP-dependent protein kinase (PKG), which catalyzes the phosphorylation of a variety of proteins including ion channels. Previously, it has been shown that the cGMP-PKG signaling pathway inhibits Ca2+ currents in rat vestibular hair cells and chromaffin cells. This current allegedly flow through voltage-gated CaV1.3L-type Ca2+ channels, and is important for controlling vestibular hair cell sensory function and catecholamine secretion, respectively. Here, we show that native L-type channels in the insulin-secreting RIN-m5F cell line, and recombinant CaV1.3 channels heterologously expressed in HEK-293 cells, are regulatory targets of the cGMP-PKG signaling cascade. Our results indicate that the CaVα1 ion-conducting subunit of the CaV1.3 channels is highly expressed in RIN-m5F cells and that the application of 8-Br-cGMP, a membrane-permeable analogue of cGMP, significantly inhibits Ca2+ macroscopic currents and impair insulin release stimulated with high K+. In addition, KT-5823, a specific inhibitor of PKG, prevents the current inhibition generated by 8-Br-cGMP in the heterologous expression system. Interestingly, mutating the putative phosphorylation sites to residues resistant to phosphorylation showed that the relevant PKG sites for CaV1.3 L-type channel regulation centers on two amino acid residues, Ser793 and Ser860, located in the intracellular loop connecting the II and III repeats of the CaVα1 pore-forming subunit of the channel. These findings unveil a novel mechanism for how the cGMP-PKG signaling pathway may regulate CaV1.3 channels and contribute to regulate insulin secretion. PMID:28807144

  7. Regulation of L-type CaV1.3 channel activity and insulin secretion by the cGMP-PKG signaling pathway.

    PubMed

    Sandoval, Alejandro; Duran, Paz; Gandini, María A; Andrade, Arturo; Almanza, Angélica; Kaja, Simon; Felix, Ricardo

    2017-09-01

    cGMP is a second messenger widely used in the nervous system and other tissues. One of the major effectors for cGMP is the serine/threonine protein kinase, cGMP-dependent protein kinase (PKG), which catalyzes the phosphorylation of a variety of proteins including ion channels. Previously, it has been shown that the cGMP-PKG signaling pathway inhibits Ca 2+ currents in rat vestibular hair cells and chromaffin cells. This current allegedly flow through voltage-gated Ca V 1.3L-type Ca 2+ channels, and is important for controlling vestibular hair cell sensory function and catecholamine secretion, respectively. Here, we show that native L-type channels in the insulin-secreting RIN-m5F cell line, and recombinant Ca V 1.3 channels heterologously expressed in HEK-293 cells, are regulatory targets of the cGMP-PKG signaling cascade. Our results indicate that the Ca V α 1 ion-conducting subunit of the Ca V 1.3 channels is highly expressed in RIN-m5F cells and that the application of 8-Br-cGMP, a membrane-permeable analogue of cGMP, significantly inhibits Ca 2+ macroscopic currents and impair insulin release stimulated with high K + . In addition, KT-5823, a specific inhibitor of PKG, prevents the current inhibition generated by 8-Br-cGMP in the heterologous expression system. Interestingly, mutating the putative phosphorylation sites to residues resistant to phosphorylation showed that the relevant PKG sites for Ca V 1.3 L-type channel regulation centers on two amino acid residues, Ser793 and Ser860, located in the intracellular loop connecting the II and III repeats of the Ca V α 1 pore-forming subunit of the channel. These findings unveil a novel mechanism for how the cGMP-PKG signaling pathway may regulate Ca V 1.3 channels and contribute to regulate insulin secretion. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. UCP2 mRNA expression is dependent on glucose metabolism in pancreatic islets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dalgaard, Louise T., E-mail: ltd@ruc.dk; Department of Science, Systems and Models, Roskilde University

    2012-01-06

    Highlights: Black-Right-Pointing-Pointer UCP2 mRNA levels are decreased in islets of Langerhans from glucokinase deficient mice. Black-Right-Pointing-Pointer UCP2 mRNA up-regulation by glucose is dependent on glucokinase. Black-Right-Pointing-Pointer Absence of UCP2 increases GSIS of glucokinase heterozygous pancreatic islets. Black-Right-Pointing-Pointer This may protect glucokinase deficient mice from hyperglycemic damages. -- Abstract: Uncoupling Protein 2 (UCP2) is expressed in the pancreatic {beta}-cell, where it partially uncouples the mitochondrial proton gradient, decreasing both ATP-production and glucose-stimulated insulin secretion (GSIS). Increased glucose levels up-regulate UCP2 mRNA and protein levels, but the mechanism for UCP2 up-regulation in response to increased glucose is unknown. The aim was tomore » examine the effects of glucokinase (GK) deficiency on UCP2 mRNA levels and to characterize the interaction between UCP2 and GK with regard to glucose-stimulated insulin secretion in pancreatic islets. UCP2 mRNA expression was reduced in GK+/- islets and GK heterozygosity prevented glucose-induced up-regulation of islet UCP2 mRNA. In contrast to UCP2 protein function UCP2 mRNA regulation was not dependent on superoxide generation, but rather on products of glucose metabolism, because MnTBAP, a superoxide dismutase mimetic, did not prevent the glucose-induced up-regulation of UCP2. Glucose-stimulated insulin secretion was increased in UCP2-/- and GK+/- islets compared with GK+/- islets and UCP2 deficiency improved glucose tolerance of GK+/- mice. Accordingly, UCP2 deficiency increased ATP-levels of GK+/- mice. Thus, the compensatory down-regulation of UCP2 is involved in preserving the insulin secretory capacity of GK mutant mice and might also be implicated in limiting disease progression in MODY2 patients.« less

  9. Obestatin regulates adipocyte function and protects against diet-induced insulin resistance and inflammation.

    PubMed

    Granata, Riccarda; Gallo, Davide; Luque, Raul M; Baragli, Alessandra; Scarlatti, Francesca; Grande, Cristina; Gesmundo, Iacopo; Córdoba-Chacón, Jose; Bergandi, Loredana; Settanni, Fabio; Togliatto, Gabriele; Volante, Marco; Garetto, Stefano; Annunziata, Marta; Chanclón, Belén; Gargantini, Eleonora; Rocchietto, Stefano; Matera, Lina; Datta, Giacomo; Morino, Mario; Brizzi, Maria Felice; Ong, Huy; Camussi, Giovanni; Castaño, Justo P; Papotti, Mauro; Ghigo, Ezio

    2012-08-01

    The metabolic actions of the ghrelin gene-derived peptide obestatin are still unclear. We investigated obestatin effects in vitro, on adipocyte function, and in vivo, on insulin resistance and inflammation in mice fed a high-fat diet (HFD). Obestatin effects on apoptosis, differentiation, lipolysis, and glucose uptake were determined in vitro in mouse 3T3-L1 and in human subcutaneous (hSC) and omental (hOM) adipocytes. In vivo, the influence of obestatin on glucose metabolism was assessed in mice fed an HFD for 8 wk. 3T3-L1, hSC, and hOM preadipocytes and adipocytes secreted obestatin and showed specific binding for the hormone. Obestatin prevented apoptosis in 3T3-L1 preadipocytes by increasing phosphoinositide 3-kinase (PI3K)/Akt and extracellular signal-regulated kinase (ERK)1/2 signaling. In both mice and human adipocytes, obestatin inhibited isoproterenol-induced lipolysis, promoted AMP-activated protein kinase phosphorylation, induced adiponectin, and reduced leptin secretion. Obestatin also enhanced glucose uptake in either the absence or presence of insulin, promoted GLUT4 translocation, and increased Akt phosphorylation and sirtuin 1 (SIRT1) protein expression. Inhibition of SIRT1 by small interfering RNA reduced obestatin-induced glucose uptake. In HFD-fed mice, obestatin reduced insulin resistance, increased insulin secretion from pancreatic islets, and reduced adipocyte apoptosis and inflammation in metabolic tissues. These results provide evidence of a novel role for obestatin in adipocyte function and glucose metabolism and suggest potential therapeutic perspectives in insulin resistance and metabolic dysfunctions.

  10. Voltage-Gated Na+ Channels are Modulated by Glucose and Involved in Regulating Cellular Insulin Content of INS-1 Cells.

    PubMed

    Chen, Chong; Wang, Songhua; Hu, Qingjuan; Zeng, Lvming; Peng, Hailong; Liu, Chao; Huang, Li-Ping; Song, Hao; Li, Yuping; Yao, Li-Hua; Meng, Wei

    2018-01-01

    Islet beta cells (β-cells) are unique cells that play a critical role in glucose homeostasis by secreting insulin in response to increased glucose levels. Voltage-gated ion channels in β-cells, such as K+ and Ca2+ channels, contribute to insulin secretion. The response of voltage-gated Na+ channels (VGSCs) in β-cells to the changes in glucose levels remains unknown. This work aims to determine the role of extracellular glucose on the regulation of VGSC. The effect of glucose on VGSC currents (INa) was investigated in insulin-secreting β-cell line (INS-1) cells of rats using whole-cell patch clamp techniques, and the effects of glucose on insulin content and cell viability were determined using Enzyme-Linked Immunosorbent Assay (ELISA) and Methylthiazolyldiphenyl-tetrazolium Bromide (MTT) assay methods respectively. Our results show that extracellular glucose application can inhibit the peak of INa in a concentration-dependent manner. Glucose concentration of 18 mM reduced the amplitude of INa, suppressed the INa of steady-state activation, shifted the steady-state inactivation curves of INa to negative potentials, and prolonged the time course of INa recovery from inactivation. Glucose also enhanced the activity-dependent attenuation of INa and reduced the fraction of activated channels. Furthermore, 18 mM glucose or low concentration of tetrodotoxin (TTX, a VGSC-specific blocker) partially inhibited the activity of VGSC and also improved insulin synthesis. These results revealed that extracellular glucose application enhances the insulin synthesis in INS-1 cells and the mechanism through the partial inhibition on INa channel is involved. Our results innovatively suggest that VGSC plays a vital role in modulating glucose homeostasis. © 2018 The Author(s). Published by S. Karger AG, Basel.

  11. MiR-338 controls BPA-triggered pancreatic islet insulin secretory dysfunction from compensation to decompensation by targeting Pdx-1.

    PubMed

    Wei, Jie; Ding, Dongxiao; Wang, Tao; Liu, Qiong; Lin, Yi

    2017-12-01

    Bisphenol A (BPA) can disrupt glucose homeostasis and impair pancreatic islet function; however, the mechanisms behind these effects are poorly understood. Male mice (4 wk old) were treated with BPA (50 or 500 μg/kg/d) for 8 wk. Whole-body glucose homeostasis, pancreatic islet morphology and function, and miR-338-mediated molecular signal transduction analyses were examined. We showed that BPA treatment led to a disruption of glucose tolerance and a compensatory increase of pancreatic islets insulin secretion and pancreatic and duodenal homeobox 1 ( Pdx1 ) expression in mice. Inhibition of Pdx1 reduced glucose-stimulated insulin secretion and ATP production in the islets of BPA-exposed mice. Based on primary pancreatic islets, we also confirmed that miR-338 regulated Pdx1 and thus contributed to BPA-induced insulin secretory dysfunction from compensation to decompensation. Short-term BPA exposure downregulated miR-338 through activation of G-protein-coupled estrogen receptor 1 (Gpr30), whereas long-term BPA exposure upregulated miR-338 through suppression of glucagon-like peptide 1 receptor (Glp1r). Taken together, our results reveal a molecular mechanism, whereby BPA regulates Gpr30/Glp1r to mediate the expression of miR-338, which acts to control Pdx1-dependent insulin secretion. The Gpr30/Glp1r-miR-338-Pdx1 axis should be represented as a novel mechanism by which BPA induces insulin secretory dysfunction in pancreatic islets.-Wei, J., Ding, D., Wang, T., Liu, Q., Lin, Y. MiR-338 controls BPA-triggered pancreatic islet insulin secretory dysfunction from compensation to decompensation by targeting Pdx-1. © FASEB.

  12. Repaglinide acutely amplifies pulsatile insulin secretion by augmentation of burst mass with no effect on burst frequency.

    PubMed

    Juhl, C B; Pørksen, N; Hollingdal, M; Sturis, J; Pincus, S; Veldhuis, J D; Dejgaard, A; Schmitz, O

    2000-05-01

    Repaglinide is a new oral hypoglycemic agent that acts as a prandial glucose regulator proposed for the treatment of type 2 diabetes by stimulating insulin secretion. The aim of this study was to explore actions of repaglinide on the rapid pulsatile insulin release by high-frequency insulin sampling and analysis of insulin-concentration time series. We examined 8 healthy lean male subjects in a single-dose double-blind placebo-controlled crossover design. After the subjects underwent an overnight fast, blood sampling was initiated and continued every minute for 120 min. After 40 min, a single dose (0.5 mg) of repaglinide or placebo was given. Serum insulin-concentration time series were assessed by deconvolution analyses and the regularity statistic by approximate entropy (ApEn). Average insulin concentration was increased after repaglinide administration (basal vs. stimulated period, P values are placebo vs. repaglinide) (25.1 +/- 3.6 vs. 33.5 +/- 4.1 pmol/l, P < 0.001). Insulin secretory burst mass (15.8 +/- 2.2 vs. 19.6 +/- 2.8 pmol x l(-1) x pulse(-1), P = 0.02) and amplitude (6.1 +/- 0.9 vs. 7.7 +/- 1.2 pmol x l(-1) x min(-1), P = 0.008) were augmented after repaglinide administration. A concomitant trend toward an increase in basal insulin secretion was observed (2.5 +/- 0.3 vs. 3.2 +/- 0.4 pmol x l(-1) x min(-1), p = 0.06), while the interpulse interval was unaltered (6.8 +/- 1.0 vs. 5.4 +/- 0.4 min/pulse, P = 0.38). ApEn increased significantly after repaglinide administration (0.623 +/- 0.045 vs. 0.670 +/- 0.034, P = 0.04), suggesting less orderly oscillatory patterns of insulin release. In conclusion, a single dose of repaglinide amplifies insulin secretory burst mass (and basal secretion) with no change in burst frequency. The possible importance of these mechanisms in the treatment of type 2 diabetes characterized by disrupted pulsatile insulin secretion remains to be clarified.

  13. Generation of functional human pancreatic β cells in vitro

    PubMed Central

    Pagliuca, Felicia W.; Millman, Jeffrey R.; Gürtler, Mads; Segel, Michael; Van Dervort, Alana; Ryu, Jennifer Hyoje; Peterson, Quinn P.; Greiner, Dale; Melton, Douglas A.

    2015-01-01

    Summary The generation of insulin-producing pancreatic β cells from stem cells in vitro would provide an unprecedented cell source for drug discovery and cell transplantation therapy in diabetes. However, insulin-producing cells previously generated from human pluripotent stem cells (hPSC) lack many functional characteristics of bona fide β cells. Here we report a scalable differentiation protocol that can generate hundreds of millions of glucose-responsive β cells from hPSC in vitro. These stem cell derived β cells (SC-β) express markers found in mature β cells, flux Ca2+ in response to glucose, package insulin into secretory granules and secrete quantities of insulin comparable to adult β cells in response to multiple sequential glucose challenges in vitro. Furthermore, these cells secrete human insulin into the serum of mice shortly after transplantation in a glucose-regulated manner, and transplantation of these cells ameliorates hyperglycemia in diabetic mice. PMID:25303535

  14. Skeletal muscle inflammation and insulin resistance in obesity.

    PubMed

    Wu, Huaizhu; Ballantyne, Christie M

    2017-01-03

    Obesity is associated with chronic inflammation, which contributes to insulin resistance and type 2 diabetes mellitus. Under normal conditions, skeletal muscle is responsible for the majority of insulin-stimulated whole-body glucose disposal; thus, dysregulation of skeletal muscle metabolism can strongly influence whole-body glucose homeostasis and insulin sensitivity. Increasing evidence suggests that inflammation occurs in skeletal muscle in obesity and is mainly manifested by increased immune cell infiltration and proinflammatory activation in intermyocellular and perimuscular adipose tissue. By secreting proinflammatory molecules, immune cells may induce myocyte inflammation, adversely regulate myocyte metabolism, and contribute to insulin resistance via paracrine effects. Increased influx of fatty acids and inflammatory molecules from other tissues, particularly visceral adipose tissue, can also induce muscle inflammation and negatively regulate myocyte metabolism, leading to insulin resistance.

  15. Skeletal muscle inflammation and insulin resistance in obesity

    PubMed Central

    Wu, Huaizhu; Ballantyne, Christie M.

    2017-01-01

    Obesity is associated with chronic inflammation, which contributes to insulin resistance and type 2 diabetes mellitus. Under normal conditions, skeletal muscle is responsible for the majority of insulin-stimulated whole-body glucose disposal; thus, dysregulation of skeletal muscle metabolism can strongly influence whole-body glucose homeostasis and insulin sensitivity. Increasing evidence suggests that inflammation occurs in skeletal muscle in obesity and is mainly manifested by increased immune cell infiltration and proinflammatory activation in intermyocellular and perimuscular adipose tissue. By secreting proinflammatory molecules, immune cells may induce myocyte inflammation, adversely regulate myocyte metabolism, and contribute to insulin resistance via paracrine effects. Increased influx of fatty acids and inflammatory molecules from other tissues, particularly visceral adipose tissue, can also induce muscle inflammation and negatively regulate myocyte metabolism, leading to insulin resistance. PMID:28045398

  16. Arterial gastroduodenal infusion of cholecystokinin-33 stimulates the exocrine pancreatic enzyme release via an enteropancreatic reflex, without affecting the endocrine insulin secretion in pigs.

    PubMed

    Rengman, Sofia; Weström, Björn; Ahrén, Bo; Pierzynowski, Stefan G

    2009-03-01

    Cholecystokinin (CCK)-dependent exocrine pancreatic regulation seems to involve different pathways in different species. The aims were to explore the enteropancreatic reflex in the CCK-mediated regulation of the exocrine pancreas and to evaluate a possible involvement of this reflex in the endocrine insulin release. In anesthetized pigs, CCK-33 in increasing doses (4-130 pmol kg 10 min) was infused locally to the gastroduodenal artery, or systemically via the jugular vein. Also, a low CCK-33 dose (13 pmol kg) was injected to the duodenum/antrum area before and after a bilateral truncal vagotomy. Cholecystokinin-33 in the physiological dose range 4 to 32 pmol kg 10 min increased protein and trypsin outputs after local infusion to the antral-duodenal area, whereas it had no effect after systemic infusion. Cholecystokinin-33 in the pharmacological dose range 64 to 130 pmol kg 10 min further increased the secretion after both local and systemic infusions. Only CCK-33 infusions in the pharmacological dose range were able to elevate the plasma insulin levels. Vagotomy had no effect on CCK-33-mediated stimulation of the enzyme release, whereas it had a significant effect on the plasma insulin level. Cholecystokinin-33 in the physiological dose range 4 to 32 pmol kg 10 min stimulates the enzyme secretion but had no effect on the insulin release via a short enteropancreatic pathway in pigs.

  17. Palmitic acid acutely inhibits acetylcholine- but not GLP-1-stimulated insulin secretion in mouse pancreatic islets

    PubMed Central

    Qin, Wei; Vinogradov, Sergei A.; Wilson, David F.; Matschinsky, Franz M.

    2010-01-01

    Fatty acids, acetylcholine, and GLP-1 enhance insulin secretion in a glucose-dependent manner. However, the interplay between glucose, fatty acids, and the neuroendocrine regulators of insulin secretion is not well understood. Therefore, we studied the acute effects of PA (alone or in combination with glucose, acetylcholine, or GLP-1) on isolated cultured mouse islets. Two different sets of experiments were designed. In one, a fixed concentration of 0.5 mM of PA bound to 0.15 mM BSA was used; in the other, a PA ramp from 0 to 0.5 mM was applied at a fixed albumin concentration of 0.15 mM so that the molar PA/BSA ratio changed within the physiological range. At a fixed concentration of 0.5 mM, PA markedly inhibited acetylcholine-stimulated insulin release, the rise of intracellular Ca2+, and enhancement of cAMP production but did not influence the effects of GLP-1 on these parameters of islet cell function. 2-ADB, an IP3 receptor inhibitor, reduced the effect of acetylcholine on insulin secretion and reversed the effect of PA on acetylcholine-stimulated insulin release. Islet perfusion for 35–40 min with 0.5 mM PA significantly reduced the calcium storage capacity of ER measured by the thapsigargin-induced Ca2+ release. Oxygen consumption due to low but not high glucose was reduced by PA. When a PA ramp from 0 to 0.5 mM was applied in the presence of 8 mM glucose, PA at concentrations as low as 50 μM significantly augmented glucose-stimulated insulin release and markedly reduced acetylcholine's effects on hormone secretion. We thus demonstrate that PA acutely reduces the total oxygen consumption response to glucose, glucose-dependent acetylcholine stimulation of insulin release, Ca2+, and cAMP metabolism, whereas GLP-1's actions on these parameters remain unaffected or potentiated. We speculate that acute emptying of the ER calcium by PA results in decreased glucose stimulation of respiration and acetylcholine potentiation of insulin secretion. PMID:20606076

  18. Visfatin Is Regulated by Rosiglitazone in Type 2 Diabetes Mellitus and Influenced by NFκB and JNK in Human Abdominal Subcutaneous Adipocytes

    PubMed Central

    da Silva, Nancy F.; Al-Daghri, Nasser; Creely, Steven J.; Kusminski, Christine M.; Tripathi, Gyanendra; Levick, Paul L.; Khanolkar, Manish; Evans, Marc; Chittari, Madhu V.; Patel, Vinod; Kumar, Sudhesh; McTernan, Philip G.

    2011-01-01

    Visfatin has been proposed as an insulin-mimicking adipocytokine, predominantly secreted from adipose tissue and correlated with obesity. However, recent studies suggest visfatin may act as a proinflammatory cytokine. Our studies sought to determine the significance of this adipocytokine and its potential role in the pathogenesis of T2DM. Firstly, we examined the effects of diabetic status on circulating visfatin levels, and several other adipocytokines, demonstrating that diabetic status increased visfatin*, TNF-α*** and IL-6*** compared with non-diabetic subjects (*p<0.05, **p<0.01, ***p<0.001, respectively). We then assessed the effects of an insulin sensitizer, rosiglitazone (RSG), in treatment naïve T2DM subjects, on circulating visfatin levels. Our findings showed that visfatin was reduced post-RSG treatment [vs. pre-treatment (*p<0.05)] accompanied by a reduction in HOMA-IR**, thus implicating a role for insulin in visfatin regulation. Further studies addressed the intracellular mechanisms by which visfatin may be regulated, and may exert pro-inflammatory effects, in human abdominal subcutaneous (Abd Sc) adipocytes. Following insulin (Ins) and RSG treatment, our in vitro findings highlighted that insulin (100 nM), alone, upregulated visfatin protein expression whereas, in combination with RSG (10 nM), it reduced visfatin*, IKKβ** and p-JNK1/2*. Furthermore, inhibition of JNK protein exacted a significant reduction in visfatin expression (**p<0.01), whilst NF-κB blockade increased visfatin (*p<0.05), thus identifying JNK as the more influential factor in visfatin regulation. Additional in vitro analysis on adipokines regulating visfatin showed that only Abd Sc adipocytes treated with recombinant human (rh)IL-6 increased visfatin protein (*p<0.05), whilst rh visfatin treatment, itself, had no influence on TNF-α, IL-6 or resistin secretion from Sc adipocytes. These data highlight visfatin's regulation by insulin and RSG, potentially acting through NF-κB and JNK mechanisms, with only rh IL-6 modestly affecting visfatin regulation. Taken together, these findings suggest that visfatin may represent a pro-inflammatory cytokine that is influenced by insulin/insulin sensitivity via the NF-κB and JNK pathways. PMID:21694775

  19. Identification of insulin as a novel retinoic acid receptor-related orphan receptor α target gene.

    PubMed

    Kuang, Jiangying; Hou, Xiaoming; Zhang, Jinlong; Chen, Yulong; Su, Zhiguang

    2014-03-18

    Insulin plays an important role in regulation of lipid and glucose metabolism. Retinoic acid receptor-related orphan receptor α (RORα) modulates physiopathological processes such as dyslipidemia and diabetes. In this study, we found overexpression of RORα in INS1 cells resulted in increased expression and secretion of insulin. Suppression of endogenous RORα caused a decrease of insulin expression. Luciferase and electrophoretic mobility shift assay (EMSA) assays demonstrated that RORα activated insulin transcription via direct binding to its promoter. RORα was also observed to regulate BETA2 expression, which is one of the insulin active transfactors. In vivo analyses showed that the insulin transcription is increased by the synthetic RORα agonist SR1078. These findings identify RORα as a transcriptional activator of insulin and suggest novel therapeutic opportunities for management of the disease. Copyright © 2014 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  20. Quantitative visualization of synchronized insulin secretion from 3D-cultured cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suzuki, Takahiro; Kanamori, Takao; Inouye, Satoshi

    Quantitative visualization of synchronized insulin secretion was performed in an isolated rat pancreatic islet and a spheroid of rat pancreatic beta cell line using a method of video-rate bioluminescence imaging. Video-rate images of insulin secretion from 3D-cultured cells were obtained by expressing the fusion protein of insulin and Gaussia luciferase (Insulin-GLase). A subclonal rat INS-1E cell line stably expressing Insulin-GLase, named iGL, was established and a cluster of iGL cells showed oscillatory insulin secretion that was completely synchronized in response to high glucose. Furthermore, we demonstrated the effect of an antidiabetic drug, glibenclamide, on synchronized insulin secretion from 2D- andmore » 3D-cultured iGL cells. The amount of secreted Insulin-GLase from iGL cells was also determined by a luminometer. Thus, our bioluminescence imaging method could generally be used for investigating protein secretion from living 3D-cultured cells. In addition, iGL cell line would be valuable for evaluating antidiabetic drugs. - Highlights: • An imaging method for protein secretion from 3D-cultured cells was established. • The fused protein of insulin to GLase, Insulin-GLase, was used as a reporter. • Synchronous insulin secretion was visualized in rat islets and spheroidal beta cells. • A rat beta cell line stably expressing Insulin-GLase, named iGL, was established. • Effect of an antidiabetic drug on insulin secretion was visualized in iGL cells.« less

  1. The Rab11 Effector Protein FIP1 Regulates Adiponectin Trafficking and Secretion

    PubMed Central

    Moreno-Navarrete, Jose Maria; Fernandez-Real, Jose Manuel; Mora, Silvia

    2013-01-01

    Adiponectin is an adipokine secreted by white adipocytes involved in regulating insulin sensitivity in peripheral tissues. Secretion of adiponectin in adipocytes relies on the endosomal system, however, the intracellular machinery involved in mediating adiponectin release is unknown. We have previously reported that intracellular adiponectin partially compartmentalizes with rab 5 and rab11, markers for the early/sorting and recycling compartments respectively. Here we have examined the role of several rab11 downstream effector proteins (rab11 FIPs) in regulating adiponectin trafficking and secretion. Overexpression of wild type rab11 FIP1, FIP3 and FIP5 decreased the amount of secreted adiponectin expressed in HEK293 cells, whereas overexpression of rab11 FIP2 or FIP4 had no effect. Furthermore shRNA-mediated depletion of FIP1 enhanced adiponectin release whereas knock down of FIP5 decreased adiponectin secretion. Knock down of FIP3 had no effect. In 3T3L1 adipocytes, endogenous FIP1 co-distributed intracellularly with endogenous adiponectin and FIP1 depletion enhanced adiponectin release without altering insulin-mediated trafficking of the glucose transporter Glut4. While adiponectin receptors internalized with transferrin receptors, there were no differences in transferrin receptor recycling between wild type and FIP1 depleted adipocytes. Consistent with its inhibitory role, FIP1 expression was decreased during adipocyte differentiation, by treatment with thiazolidinediones, and with increased BMI in humans. In contrast, FIP1 expression increased upon exposure of adipocytes to TNFα. In all, our findings identify FIP1 as a novel protein involved in the regulation of adiponectin trafficking and release. PMID:24040321

  2. Glutathionylation state of uncoupling protein-2 and the control of glucose-stimulated insulin secretion.

    PubMed

    Mailloux, Ryan J; Fu, Accalia; Robson-Doucette, Christine; Allister, Emma M; Wheeler, Michael B; Screaton, Robert; Harper, Mary-Ellen

    2012-11-16

    The role of reactive oxygen species (ROS) in glucose-stimulated insulin release remains controversial because ROS have been shown to both amplify and impede insulin release. In regard to preventing insulin release, ROS activates uncoupling protein-2 (UCP2), a mitochondrial inner membrane protein that negatively regulates glucose-stimulated insulin secretion (GSIS) by uncoupling oxidative phosphorylation. With our recent discovery that the UCP2-mediated proton leak is modulated by reversible glutathionylation, a process responsive to small changes in ROS levels, we resolved to determine whether glutathionylation is required for UCP2 regulation of GSIS. Using Min6 cells and pancreatic islets, we demonstrate that induction of glutathionylation not only deactivates UCP2-mediated proton leak but also enhances GSIS. Conversely, an increase in mitochondrial matrix ROS was found to deglutathionylate and activate UCP2 leak and impede GSIS. Glucose metabolism also decreased the total amount of cellular glutathionylated proteins and increased the cellular glutathione redox ratio (GSH/GSSG). Intriguingly, the provision of extracellular ROS (H(2)O(2), 10 μM) amplified GSIS and also activated UCP2. Collectively, our findings indicate that the glutathionylation status of UCP2 contributes to the regulation of GSIS, and different cellular sites and inducers of ROS can have opposing effects on GSIS, perhaps explaining some of the controversy surrounding the role of ROS in GSIS.

  3. Bridging the gap between protein carboxyl methylation and phospholipid methylation to understand glucose-stimulated insulin secretion from the pancreatic beta cell.

    PubMed

    Kowluru, Anjaneyulu

    2008-01-15

    Recent findings have implicated post-translational modifications at C-terminal cysteines [e.g., methylation] of specific proteins [e.g., G-proteins] in glucose-stimulated insulin secretion [GSIS]. Furthermore, methylation at the C-terminal leucine of the catalytic subunit of protein phosphatase 2A [PP2Ac] has also been shown to be relevant for GSIS. In addition to these two classes of protein methyl transferases, a novel class of glucose-activated phospholipid methyl transferases have also been identified in the beta cell. These enzymes catalyze three successive methylations of phosphatidylethanolamine to yield phosphatidylcholine. The "newly formed" phosphatidylcholine is felt to induce alterations in the membrane fluidity, which might favor vesicular fusion with the plasma membrane for the exocytosis of insulin. The objectives of this commentary are to: (i) review the existing evidence on the regulation, by glucose and other insulin secretagogues, of post-translational carboxylmethylation [CML] of specific proteins in the beta cell; (ii) discuss the experimental evidence, which implicates regulation, by glucose and other insulin secretagogues, of phosphatidylethanolamine methylation in the islet beta cell; (iii) propose a model for potential cross-talk between the protein and lipid methylation pathways in the regulation of GSIS and (iv) highlight potential avenues for future research, including the development of specific pharmacological inhibitors to further decipher regulatory roles for these methylation reactions in islet beta cell function.

  4. Glutathionylation State of Uncoupling Protein-2 and the Control of Glucose-stimulated Insulin Secretion*

    PubMed Central

    Mailloux, Ryan J.; Fu, Accalia; Robson-Doucette, Christine; Allister, Emma M.; Wheeler, Michael B.; Screaton, Robert; Harper, Mary-Ellen

    2012-01-01

    The role of reactive oxygen species (ROS) in glucose-stimulated insulin release remains controversial because ROS have been shown to both amplify and impede insulin release. In regard to preventing insulin release, ROS activates uncoupling protein-2 (UCP2), a mitochondrial inner membrane protein that negatively regulates glucose-stimulated insulin secretion (GSIS) by uncoupling oxidative phosphorylation. With our recent discovery that the UCP2-mediated proton leak is modulated by reversible glutathionylation, a process responsive to small changes in ROS levels, we resolved to determine whether glutathionylation is required for UCP2 regulation of GSIS. Using Min6 cells and pancreatic islets, we demonstrate that induction of glutathionylation not only deactivates UCP2-mediated proton leak but also enhances GSIS. Conversely, an increase in mitochondrial matrix ROS was found to deglutathionylate and activate UCP2 leak and impede GSIS. Glucose metabolism also decreased the total amount of cellular glutathionylated proteins and increased the cellular glutathione redox ratio (GSH/GSSG). Intriguingly, the provision of extracellular ROS (H2O2, 10 μm) amplified GSIS and also activated UCP2. Collectively, our findings indicate that the glutathionylation status of UCP2 contributes to the regulation of GSIS, and different cellular sites and inducers of ROS can have opposing effects on GSIS, perhaps explaining some of the controversy surrounding the role of ROS in GSIS. PMID:23035124

  5. Effects of nutritional status on plasma leptin levels and in vitro regulation of adipocyte leptin expression and secretion in rainbow trout.

    PubMed

    Salmerón, Cristina; Johansson, Marcus; Angotzi, Anna R; Rønnestad, Ivar; Jönsson, Elisabeth; Björnsson, Björn Thrandur; Gutiérrez, Joaquim; Navarro, Isabel; Capilla, Encarnación

    2015-01-01

    As leptin has a key role on appetite, knowledge about leptin regulation is important in order to understand the control of energy balance. We aimed to explore the modulatory effects of adiposity on plasma leptin levels in vivo and the role of potential regulators on leptin expression and secretion in rainbow trout adipocytes in vitro. Fish were fed a regular diet twice daily ad libitum or a high-energy diet once daily at two ration levels; satiation (SA group) or restricted (RE group) to 25% of satiation, for 8weeks. RE fish had significantly reduced growth (p<0.001) and adipose tissue weight (p<0.001), and higher plasma leptin levels (p=0.022) compared with SA fish. Moreover, plasma leptin levels negatively correlated with mesenteric fat index (p=0.009). Adipocytes isolated from the different fish were treated with insulin, ghrelin, leucine, eicosapentaenoic acid or left untreated (control). In adipocytes from fish fed regular diet, insulin and ghrelin increased leptin secretion dose-dependently (p=0.002; p=0.033, respectively). Leptin secretion in control adipocytes was significantly higher in RE than in SA fish (p=0.022) in agreement with the in vivo findings, indicating that adipose tissue may contribute to the circulating leptin levels. No treatment effects were observed in adipocytes from the high-energy diet groups, neither in leptin expression nor secretion, except that leptin secretion was significantly reduced by leucine in RE fish adipocytes (p=0.025). Overall, these data show that the regulation of leptin in rainbow trout adipocytes by hormones and nutrients seems to be on secretion, rather than at the transcriptional level. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. β-Cell–Specific Protein Kinase A Activation Enhances the Efficiency of Glucose Control by Increasing Acute-Phase Insulin Secretion

    PubMed Central

    Kaihara, Kelly A.; Dickson, Lorna M.; Jacobson, David A.; Tamarina, Natalia; Roe, Michael W.; Philipson, Louis H.; Wicksteed, Barton

    2013-01-01

    Acute insulin secretion determines the efficiency of glucose clearance. Moreover, impaired acute insulin release is characteristic of reduced glucose control in the prediabetic state. Incretin hormones, which increase β-cell cAMP, restore acute-phase insulin secretion and improve glucose control. To determine the physiological role of the cAMP-dependent protein kinase (PKA), a mouse model was developed to increase PKA activity specifically in the pancreatic β-cells. In response to sustained hyperglycemia, PKA activity potentiated both acute and sustained insulin release. In contrast, a glucose bolus enhanced acute-phase insulin secretion alone. Acute-phase insulin secretion was increased 3.5-fold, reducing circulating glucose to 58% of levels in controls. Exendin-4 increased acute-phase insulin release to a similar degree as PKA activation. However, incretins did not augment the effects of PKA on acute-phase insulin secretion, consistent with incretins acting primarily via PKA to potentiate acute-phase insulin secretion. Intracellular calcium signaling was unaffected by PKA activation, suggesting that the effects of PKA on acute-phase insulin secretion are mediated by the phosphorylation of proteins involved in β-cell exocytosis. Thus, β-cell PKA activity transduces the cAMP signal to dramatically increase acute-phase insulin secretion, thereby enhancing the efficiency of insulin to control circulating glucose. PMID:23349500

  7. Chromium picolinate inhibits resistin secretion in insulin-resistant 3T3-L1 adipocytes via activation of amp-activated protein kinase.

    PubMed

    Wang, Yi-Qun; Dong, Yi; Yao, Ming-Hui

    2009-08-01

    1. Chromium picolinate (CrPic) has been recommended as an alternative therapeutic regimen for Type 2 diabetes mellitus (T2DM). However, the molecular mechanism underlying the action of CrPic is poorly understood. 2. Using normal and insulin-resistant 3T3-L1 adipocytes, we examined the effects of CrPic on the gene transcription and secretion of adiponectin and resistin. In addition, using immunoblotting, ELISA and real-time reverse transcription-polymerase chain reaction (RT-PCR), we investigated the effects of 10 nmol/L CrPic for 24 h on AMP-activated protein kinase (AMPK) to determine whether this pathway contributed to the regulation of adiponectin and resistin expression and secretion. 3. Chromium picolinate did not modulate the expression of adiponectin and resistin; however, it did significantly inhibit the secretion of resistin, but not adiponectin, by normal and insulin-resistant 3T3-L1 adipocytes in vitro. Furthermore, although CrPic markedly elevated levels of phosphorylated AMPK and acetyl CoA carboxylase in 3T3-L1 adipocytes, it had no effect on the levels of AMPK alpha-1 and alpha-2 mRNA transcripts. Importantly, inhibition of AMPK by 2 h pretreatment of cells with 20 micromol/L compound C completely abolished the CrPic-induced suppression of resistin secretion. 4. In conclusion, the data suggest that CrPic inhibits resistin secretion via activation of AMPK in normal and insulin-resistant 3T3-L1 adipocytes.

  8. Stimulatory effect of exogenous diadenosine tetraphosphate on insulin and glucagon secretion in the perfused rat pancreas

    PubMed Central

    Silvestre, Ramona A; Rodríguez-Gallardo, Jovita; Egido, Eva M; Marco, José

    1999-01-01

    Diadenosine triphosphate (AP3A) and diadenosine tetraphosphate (AP4A) are released by various cells (e.g. platelets and chromaffin cells), and may act as extracellular messengers. In pancreatic B-cells, AP3A and AP4A are inhibitors of the ATP-regulated K+ channels, and glucose increases intracellular levels of both substances.We have studied the effect of exogenous AP3A and AP4A on insulin and glucagon secretion by the perfused rat pancreas.AP3A did not significantly modify insulin or glucagon release, whereas AP4A induced a prompt, short-lived insulin response (≈4 fold higher than basal value; P<0.05) in pancreases perfused at different glucose concentrations (3.2, 5.5 or 9 mM). AP4A-induced insulin release was abolished by somatostatin and by diazoxide. These two substances share the capacity to activate ATP-dependent K+ channels, suggesting that these channels are a potential target for AP4A in the B-cell.AP4A stimulated glucagon release at both 3.2 and 5.5 mM glucose. This effect was abolished by somatostatin.The results suggest that extracellular AP4A may play a physiological role in the control of insulin and glucagon secretion. PMID:10516664

  9. Stimulatory effect of exogenous diadenosine tetraphosphate on insulin and glucagon secretion in the perfused rat pancreas.

    PubMed

    Silvestre, R A; Rodríguez-Gallardo, J; Egido, E M; Marco, J

    1999-10-01

    1. Diadenosine triphosphate (AP3A) and diadenosine tetraphosphate (AP4A) are released by various cells (e.g. platelets and chromaffin cells), and may act as extracellular messengers. In pancreatic B-cells, AP3A and AP4A are inhibitors of the ATP-regulated K+ channels, and glucose increases intracellular levels of both substances. 2. We have studied the effect of exogenous AP3A and AP4A on insulin and glucagon secretion by the perfused rat pancreas. 3. AP3A did not significantly modify insulin or glucagon release, whereas AP4A induced a prompt, short-lived insulin response ( approximately 4 fold higher than basal value; P<0.05) in pancreases perfused at different glucose concentrations (3.2, 5.5 or 9 mM). AP4A-induced insulin release was abolished by somatostatin and by diazoxide. These two substances share the capacity to activate ATP-dependent K+ channels, suggesting that these channels are a potential target for AP4A in the B-cell. 4. AP4A stimulated glucagon release at both 3.2 and 5.5 mM glucose. This effect was abolished by somatostatin. 5. The results suggest that extracellular AP4A may play a physiological role in the control of insulin and glucagon secretion.

  10. Rising Intracellular Zinc by Membrane Depolarization and Glucose in Insulin-Secreting Clonal HIT-T15 Beta Cells

    PubMed Central

    Slepchenko, Kira G.; Li, Yang V.

    2012-01-01

    Zinc (Zn2+) appears to be intimately involved in insulin metabolism since insulin secretion is correlated with zinc secretion in response to glucose stimulation, but little is known about the regulation of zinc homeostasis in pancreatic beta-cells. This study set out to identify the intracellular zinc transient by imaging free cytosolic zinc in HIT-T15 beta-cells with fluorescent zinc indicators. We observed that membrane depolarization by KCl (30–60 mM) was able to induce a rapid increase in cytosolic concentration of zinc. Multiple zinc transients of similar magnitude were elicited during repeated stimulations. The amplitude of zinc responses was not affected by the removal of extracellular calcium or zinc. However, the half-time of the rising slope was significantly slower after removing extracellular zinc with zinc chelator CaEDTA, suggesting that extracellular zinc affect the initial rising phase of zinc response. Glucose (10 mM) induced substantial and progressive increases in intracellular zinc concentration in a similar way as KCl, with variation in the onset and the duration of zinc mobilization. It is known that the depolarization of beta-cell membrane is coupled with the secretion of insulin. Rising intracellular zinc concentration may act as a critical signaling factor in insulin metabolism of pancreatic beta-cells. PMID:22536213

  11. Regulation of adipocytokine secretion and adipocyte hypertrophy by polymethoxyflavonoids, nobiletin and tangeretin.

    PubMed

    Miyata, Yoshiki; Tanaka, Haruyuki; Shimada, Arata; Sato, Takashi; Ito, Akira; Yamanouchi, Toshikazu; Kosano, Hiroshi

    2011-03-28

    The polymethoxyflavonoids nobiletin and tangeretin possess several important biological properties such as neuroprotective, antimetastatic, anticancer, and anti-inflammatory properties. The present study was undertaken to examine whether nobiletin and tangeretin could modulate adipocytokine secretion and to evaluate the effects of these flavonoids on the hypertrophy of mature adipocytes. All experiments were performed on the murine preadipocyte cell line 3T3-L1. We studied the formation of intracellular lipid droplets in adipocytes and the apoptosis-inducing activity to evaluate the effects of polymethoxyflavonoids on adipocyte differentiation and hypertrophy, respectively. The secretion of adipocytokines was measured using ELISA. We demonstrated that the combined treatment of differentiation reagents with nobiletin or tangeretin differentiated 3T3-L1 preadipocytes into adipocytes possessing less intracellular triglyceride as compared to vehicle-treated differentiated 3T3-L1 adipocytes. Both flavonoids increased the secretion of an insulin-sensitizing factor, adiponectin, but concomitantly decreased the secretion of an insulin-resistance factor, MCP-1, in 3T3-L1 adipocytes. Furthermore, nobiletin was found to decrease the secretion of resistin, which serves as an insulin-resistance factor. In mature 3T3-L1 adipocytes, nobiletin induced apoptosis; tangeretin, in contrast, did not induce apoptosis, but suppressed further triglyceride accumulation. Our results suggest that nobiletin and tangeretin are promising therapeutic candidates for the prevention and treatment of insulin resistance by modulating the adipocytokine secretion balance. We also demonstrated the different effects of nobiletin and tangeretin on mature adipocytes. Copyright © 2011 Elsevier Inc. All rights reserved.

  12. Expression characteristics of long noncoding RNA uc.322 and its effects on pancreatic islet function.

    PubMed

    Zhao, Xiaoqin; Rong, Can; Pan, Fenghui; Xiang, Lizhi; Wang, Xinlei; Hu, Yun

    2018-06-28

    Increasing evidence indicates that long noncoding RNAs (lncRNAs) perform special biological functions by regulating gene expression through multiple pathways and molecular mechanisms. The aim of this study was to explore the expression characteristics of lncRNA uc.322 in pancreatic islet cells and its effects on the secretion function of islet cells. Bioinformatics analysis was used to detect the lncRNA uc.322 sequence, location, and structural features. Expression of lncRNA uc.322 in different tissues was detected by quantitative polymerase chain reaction analyses. Quantitative polymerase chain reaction, Western blot analysis, adenosine triphosphate determination, glucose-stimulated insulin secretion, and enzyme-linked immunosorbent assay were used to evaluate the effects of lncRNA uc.322 on insulin secretion. The results showed that the full-length of lncRNA uc.322 is 224 bp and that it is highly conserved in various species. Bioinformatics analysis revealed that lncRNA uc.322 is located on chr7:122893196-122893419 (GRCH37/hg19) within the SRY-related HMG-box 6 gene exon region. Compared with other tissues, lncRNA uc.322 is highly expressed in pancreatic tissue. Upregulation of lncRNA uc.322 expression increases the insulin transcription factors pancreatic and duodenal homeobox 1 and Forkhead box O1 expression, promotes insulin secretion in the extracellular fluid of Min6 cells, and increases the adenosine triphosphate concentration. On the other hand, knockdown of lncRNA uc.322 has opposite effects on Min6 cells. Overall, this study showed that upregulation of lncRNA uc.322 in islet β-cells can increase the expression of insulin transcription factors and promote insulin secretion, and it may be a new therapeutic target for diabetes. © 2018 Wiley Periodicals, Inc.

  13. SIRT4 Is a Lysine Deacylase that Controls Leucine Metabolism and Insulin Secretion.

    PubMed

    Anderson, Kristin A; Huynh, Frank K; Fisher-Wellman, Kelsey; Stuart, J Darren; Peterson, Brett S; Douros, Jonathan D; Wagner, Gregory R; Thompson, J Will; Madsen, Andreas S; Green, Michelle F; Sivley, R Michael; Ilkayeva, Olga R; Stevens, Robert D; Backos, Donald S; Capra, John A; Olsen, Christian A; Campbell, Jonathan E; Muoio, Deborah M; Grimsrud, Paul A; Hirschey, Matthew D

    2017-04-04

    Sirtuins are NAD + -dependent protein deacylases that regulate several aspects of metabolism and aging. In contrast to the other mammalian sirtuins, the primary enzymatic activity of mitochondrial sirtuin 4 (SIRT4) and its overall role in metabolic control have remained enigmatic. Using a combination of phylogenetics, structural biology, and enzymology, we show that SIRT4 removes three acyl moieties from lysine residues: methylglutaryl (MG)-, hydroxymethylglutaryl (HMG)-, and 3-methylglutaconyl (MGc)-lysine. The metabolites leading to these post-translational modifications are intermediates in leucine oxidation, and we show a primary role for SIRT4 in controlling this pathway in mice. Furthermore, we find that dysregulated leucine metabolism in SIRT4KO mice leads to elevated basal and stimulated insulin secretion, which progressively develops into glucose intolerance and insulin resistance. These findings identify a robust enzymatic activity for SIRT4, uncover a mechanism controlling branched-chain amino acid flux, and position SIRT4 as a crucial player maintaining insulin secretion and glucose homeostasis during aging. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Fish Oil Accelerates Diet-Induced Entrainment of the Mouse Peripheral Clock via GPR120

    PubMed Central

    Itokawa, Misa; Nagahama, Hiroki; Ohtsu, Teiji; Furutani, Naoki; Kamagata, Mayo; Yang, Zhi-Hong; Hirasawa, Akira; Tahara, Yu; Shibata, Shigenobu

    2015-01-01

    The circadian peripheral clock is entrained by restricted feeding (RF) at a fixed time of day, and insulin secretion regulates RF-induced entrainment of the peripheral clock in mice. Thus, carbohydrate-rich food may be ideal for facilitating RF-induced entrainment, although the role of dietary oils in insulin secretion and RF-induced entrainment has not been described. The soybean oil component of standard mouse chow was substituted with fish or soybean oil containing docosahexaenoic acid (DHA) and/or eicosapentaenoic acid (EPA). Tuna oil (high DHA/EPA), menhaden oil (standard), and DHA/EPA dissolved in soybean oil increased insulin secretion and facilitated RF-induced phase shifts of the liver clock as represented by the bioluminescence rhythms of PER2::LUCIFERASE knock-in mice. In this model, insulin depletion blocked the effect of tuna oil and fish oil had no effect on mice deficient for GPR120, a polyunsaturated fatty acid receptor. These results suggest food containing fish oil or DHA/EPA is ideal for adjusting the peripheral clock. PMID:26161796

  15. Insulin Is Required to Maintain Albumin Expression by Inhibiting Forkhead Box O1 Protein*

    PubMed Central

    Chen, Qing; Lu, Mingjian; Monks, Bobby R.; Birnbaum, Morris J.

    2016-01-01

    Diabetes is accompanied by dysregulation of glucose, lipid, and protein metabolism. In recent years, much effort has been spent on understanding how insulin regulates glucose and lipid metabolism, whereas the effect of insulin on protein metabolism has received less attention. In diabetes, hepatic production of serum albumin decreases, and it has been long established that insulin positively controls albumin gene expression. In this study, we used a genetic approach in mice to identify the mechanism by which insulin regulates albumin gene transcription. Albumin expression was decreased significantly in livers with insulin signaling disrupted by ablation of the insulin receptor or Akt. Concomitant deletion of Forkhead Box O1 (Foxo1) in these livers rescued the decreased albumin secretion. Furthermore, activation of Foxo1 in the liver is sufficient to suppress albumin expression. These results suggest that Foxo1 acts as a repressor of albumin expression. PMID:26668316

  16. Inflammation-Mediated Regulation of MicroRNA Expression in Transplanted Pancreatic Islets

    PubMed Central

    Bravo-Egana, Valia; Rosero, Samuel; Klein, Dagmar; Jiang, Zhijie; Vargas, Nancy; Tsinoremas, Nicholas; Doni, Marco; Podetta, Michele; Ricordi, Camillo; Molano, R. Damaris; Pileggi, Antonello; Pastori, Ricardo L.

    2012-01-01

    Nonspecific inflammation in the transplant microenvironment results in β-cell dysfunction and death influencing negatively graft outcome. MicroRNA (miRNA) expression and gene target regulation in transplanted islets are not yet well characterized. We evaluated the impact of inflammation on miRNA expression in transplanted rat islets. Islets exposed in vitro to proinflammatory cytokines and explanted syngeneic islet grafts were evaluated by miRNA arrays. A subset of 26 islet miRNAs was affected by inflammation both in vivo and in vitro. Induction of miRNAs was dependent on NF-κB, a pathway linked with cytokine-mediated islet cell death. RT-PCR confirmed expression of 8 miRNAs. The association between these miRNAs and mRNA target-predicting algorithms in genome-wide RNA studies of β-cell inflammation identified 238 potential miRNA gene targets. Several genes were ontologically associated with regulation of insulin signaling and secretion, diabetes, and islet physiology. One of the most activated miRNAs was miR-21. Overexpression of miR-21 in insulin-secreting MIN6 cells downregulated endogenous expression of the tumor suppressor Pdcd4 and of Pclo, a Ca2+ sensor protein involved in insulin secretion. Bioinformatics identified both as potential targets. The integrated analysis of miRNA and mRNA expression profiles revealed potential targets that may identify molecular targets for therapeutic interventions. PMID:22655170

  17. Insulin hypersecretion together with high luteinizing hormone concentration augments androgen secretion in oral glucose tolerance test in women with polycystic ovarian disease.

    PubMed

    Anttila, L; Koskinen, P; Jaatinen, T A; Erkkola, R; Irjala, K; Ruutiainen, K

    1993-08-01

    Female hyperandrogenism is often associated with hyperinsulinaemia and insulin resistance. We evaluated the hormone responses in an oral glucose tolerance test to investigate the interactions of gonadotrophins, insulin, C-peptide and androgens in women with polycystic ovarian disease (PCOD). In 28 patients with ultrasonographically diagnosed PCOD, hyperinsulinaemia and insulin resistance were mainly associated with obesity. Both basal and cumulative sum of insulin to C-peptide ratios were high in obese subjects, suggesting decreasing hepatic removal of insulin caused by obesity. Nevertheless, in some lean PCOD women, despite normal fasting insulin concentrations, insulin hypersecretion existed. The mean concentration of testosterone decreased significantly during the oral glucose tolerance test both in PCOD and control women, and of androstenedione in the PCOD patients only. However, an increase in androgen responses was found in a subgroup of PCOD patients, who had both elevated luteinizing hormone (LH) concentrations and hyperinsulinaemic response to oral glucose. In the remaining PCOD patients an inverse correlation between LH and insulin was found. The patients with hyperinsulinaemia together with LH hypersecretion may represent a subgroup of PCOD with deranged regulation of androgen secretion.

  18. Silibinin protects β cells from glucotoxicity through regulation of the Insig-1/SREBP-1c pathway.

    PubMed

    Chen, Ke; Zhao, Liling; He, Honghui; Wan, Xinxing; Wang, Fang; Mo, Zhaohui

    2014-10-01

    Exposure to high glucose may cause glucotoxicity, leading to pancreatic β cell dysfunction including cell apoptosis, impaired glucose‑stimulated insulin secretion (GSIS) and intracellular lipid accumulation. Sterol regulatory element binding protein-1c (SREBP-1c), a key nuclear transcription factor that regulates lipid metabolism, has been proven to play a role in insulin secretion. Insulin induced gene-1 (Insig-1) is an upstream regulatory factor of SREBP-1c. The overexpression of Insig-1 significantly inhibits SREBP-1c expression and thereby blocks the expression of downstream genes. It has been proven that silibinin, a natural flavanone, is involved in a variety of biological functions. In the present study, we examined whether silibinin protects high glucose-induced β cell dysfunction through the Insig-1/SREBP-1c pathway. Our data demonstrated that 30.0 µM of silibinin significantly improved cell viability (P<0.05) after rat insulinoma INS-1 cells were exposed to high glucose for 72 h. Silibinin partially attenuated GSIS following exposure to high glucose for either 24 or 72 h (both P<0.05). As shown by reverse transcription quantitative PCR, silibinin upregulated the mRNA expression of insulin secretion‑related genes [insulin receptor substrate 2 (IRS-2), pancreatic and duodenal homeobox 1 (PDX-1) and insulin], but downregulated uncoupling protein‑2 (UCP-2) expression. Silibinin inhibited intracellular lipid accumulation and free fatty acid (FFA) synthesis. Further experiments revealed that silibinin improved β cell function through the regulation of the Insig-1/SREBP-1c pathway. In conclusion, these results clearly suggest that the protection of β cells from glucotoxicity can be significantly enhanced through the regulation of the Insig-1/SREBP-1c pathway. Thus, silibinin may be a novel therapeutic agent for β cell dysfunction.

  19. Low Level Pro-inflammatory Cytokines Decrease Connexin36 Gap Junction Coupling in Mouse and Human Islets through Nitric Oxide-mediated Protein Kinase Cδ*

    PubMed Central

    Farnsworth, Nikki L.; Walter, Rachelle L.; Hemmati, Alireza; Westacott, Matthew J.; Benninger, Richard K. P.

    2016-01-01

    Pro-inflammatory cytokines contribute to the decline in islet function during the development of diabetes. Cytokines can disrupt insulin secretion and calcium dynamics; however, the mechanisms underlying this are poorly understood. Connexin36 gap junctions coordinate glucose-induced calcium oscillations and pulsatile insulin secretion across the islet. Loss of gap junction coupling disrupts these dynamics, similar to that observed during the development of diabetes. This study investigates the mechanisms by which pro-inflammatory cytokines mediate gap junction coupling. Specifically, as cytokine-induced NO can activate PKCδ, we aimed to understand the role of PKCδ in modulating cytokine-induced changes in gap junction coupling. Isolated mouse and human islets were treated with varying levels of a cytokine mixture containing TNF-α, IL-1β, and IFN-γ. Islet dysfunction was measured by insulin secretion, calcium dynamics, and gap junction coupling. Modulators of PKCδ and NO were applied to determine their respective roles in modulating gap junction coupling. High levels of cytokines caused cell death and decreased insulin secretion. Low levels of cytokine treatment disrupted calcium dynamics and decreased gap junction coupling, in the absence of disruptions to insulin secretion. Decreases in gap junction coupling were dependent on NO-regulated PKCδ, and altered membrane organization of connexin36. This study defines several mechanisms underlying the disruption to gap junction coupling under conditions associated with the development of diabetes. These mechanisms will allow for greater understanding of islet dysfunction and suggest ways to ameliorate this dysfunction during the development of diabetes. PMID:26668311

  20. Studies on the mechanism of salicylate-induced increase of insulin secretion in man.

    PubMed

    Giugliano, D; Cozzolino, D; Ceriello, A; Cerciello, T; Varano, R; Saccomanno, F; Torella, R

    1988-01-01

    Salicylate compounds are known to increase basal and stimulated insulin secretion in man. In our studies, infusion of lysine acetylsalicylate (72 mg/min) increased basal insulin levels and amplified insulin responses to glucose (5 g i.v.), arginine (5 g i.v.) and tolbutamide (1 g i.v.). Verapamil, an organic calcium antagonist, did not modify LAS-induced increase of basal insulin levels, but reduced the effect of LAS on glucose-induced insulin secretion. Calcitonin and somatostatin, two agents that inhibit basal and glucose-stimulated insulin secretion, inhibited the insulin response to glucose in presence of LAS infusion. The ability of salicylate compounds to augment insulin secretion might be due to multiple sites of action in the Beta-cells.

  1. FoxO1 integrates insulin signaling to VLDL production

    PubMed Central

    Kamagate, Adama; Dong, H. Henry

    2009-01-01

    Very low-density lipoproteins (VLDL) are triglyceride-rich particles. VLDL is synthesized in hepatocytes and secreted from the liver in a pathway that is tightly regulated by insulin. Hepatic VLDL production is stimulated in response to reduced insulin action, resulting in increased release of VLDL into the blood under fasting conditions. Circulating VLDL serves as a vehicle for transporting lipids to peripheral tissues for energy homeostasis. Conversely, hepatic VLDL production is suppressed in response to increased insulin release after meals. This effect is critical for preventing prolonged excursion of postprandial plasma lipid profiles in normal individuals. In subjects with obesity and type 2 diabetes, the ability of insulin to regulate VLDL production becomes impaired due to insulin resistance in the liver, resulting in excessive VLDL secretion and accumulation of triglyceride-rich particles in the blood. Such abnormality in lipid metabolism characterizes the pathogenesis of hypertriglyceridemia and accounts for increased risk of coronary artery disease in obesity and type 2 diabetes. Nevertheless, the molecular basis that links insulin resistance to VLDL overproduction remains poorly understood. Our recent studies illustrate that the forkhead transcription factor FoxO1 acts in the liver to integrate hepatic insulin action to VLDL production. Augmented FoxO1 activity in insulin resistant livers promotes hepatic VLDL overproduction and predisposes to the development of hypertriglyceridemia. These new findings raise an important question: Is FoxO1 a therapeutic target for ameliorating hypertriglyceridemia? Here we discuss this question in the context of recent advances toward our understanding of the pathophysiology of hypertriglyceridemia. PMID:18927507

  2. Nitric Oxide Exerts Basal and Insulin-Dependent Anorexigenic Actions in POMC Hypothalamic Neurons

    PubMed Central

    Wellhauser, Leigh; Chalmers, Jennifer A.

    2016-01-01

    The arcuate nucleus of the hypothalamus represents a key center for the control of appetite and feeding through the regulation of 2 key neuronal populations, notably agouti-related peptide/neuropeptide Y and proopimelanocortin (POMC)/cocaine- and amphetamine-regulated transcript neurons. Altered regulation of these neuronal networks, in particular the dysfunction of POMC neurons upon high-fat consumption, is a major pathogenic mechanism involved in the development of obesity and type 2 diabetes mellitus. Efforts are underway to preserve the integrity or enhance the functionality of POMC neurons in order to prevent or treat these metabolic diseases. Here, we report for the first time that the nitric oxide (NO−) donor, sodium nitroprusside (SNP) mediates anorexigenic actions in both hypothalamic tissue and hypothalamic-derived cell models by mediating the up-regulation of POMC levels. SNP increased POMC mRNA in a dose-dependent manner and enhanced α-melanocortin-secreting hormone production and secretion in mHypoA-POMC/GFP-2 cells. SNP also enhanced insulin-driven POMC expression likely by inhibiting the deacetylase activity of sirtuin 1. Furthermore, SNP enhanced insulin-dependent POMC expression, likely by reducing the transcriptional repression of Foxo1 on the POMC gene. Prolonged SNP exposure prevented the development of insulin resistance. Taken together, the NO− donor SNP enhances the anorexigenic potential of POMC neurons by promoting its transcriptional expression independent and in cooperation with insulin. Thus, increasing cellular NO− levels represents a hormone-independent method of promoting anorexigenic output from the existing POMC neuronal populations and may be advantageous in the fight against these prevalent disorders. PMID:26930171

  3. Fluorescence recovery after photobleaching reveals regulation and distribution of connexin36 gap junction coupling within mouse islets of Langerhans

    PubMed Central

    Farnsworth, Nikki L; Hemmati, Alireza; Pozzoli, Marina; Benninger, Richard K P

    2014-01-01

    The pancreatic islets are central to the maintenance of glucose homeostasis through insulin secretion. Glucose-stimulated insulin secretion is tightly linked to electrical activity in β cells within the islet. Gap junctions, composed of connexin36 (Cx36), form intercellular channels between β cells, synchronizing electrical activity and insulin secretion. Loss of gap junction coupling leads to altered insulin secretion dynamics and disrupted glucose homeostasis. Gap junction coupling is known to be disrupted in mouse models of pre-diabetes. Although approaches to measure gap junction coupling have been devised, they either lack cell specificity, suitable quantification of coupling or spatial resolution, or are invasive. The purpose of this study was to develop fluorescence recovery after photobleaching (FRAP) as a technique to accurately and robustly measure gap junction coupling in the islet. The cationic dye Rhodamine 123 was used with FRAP to quantify dye diffusion between islet β cells as a measure of Cx36 gap junction coupling. Measurements in islets with reduced Cx36 verified the accuracy of this technique in distinguishing between distinct levels of gap junction coupling. Analysis of individual cells revealed that the distribution of coupling across the islet is highly heterogeneous. Analysis of several modulators of gap junction coupling revealed glucose- and cAMP-dependent modulation of gap junction coupling in islets. Finally, FRAP was used to determine cell population specific coupling, where no functional gap junction coupling was observed between α cells and β cells in the islet. The results of this study show FRAP to be a robust technique which provides the cellular resolution to quantify the distribution and regulation of Cx36 gap junction coupling in specific cell populations within the islet. Future studies utilizing this technique may elucidate the role of gap junction coupling in the progression of diabetes and identify mechanisms of gap junction regulation for potential therapies. PMID:25172942

  4. Fluorescence recovery after photobleaching reveals regulation and distribution of connexin36 gap junction coupling within mouse islets of Langerhans.

    PubMed

    Farnsworth, Nikki L; Hemmati, Alireza; Pozzoli, Marina; Benninger, Richard K P

    2014-10-15

    The pancreatic islets are central to the maintenance of glucose homeostasis through insulin secretion. Glucose‐stimulated insulin secretion is tightly linked to electrical activity in β cells within the islet. Gap junctions, composed of connexin36 (Cx36), form intercellular channels between β cells, synchronizing electrical activity and insulin secretion. Loss of gap junction coupling leads to altered insulin secretion dynamics and disrupted glucose homeostasis. Gap junction coupling is known to be disrupted in mouse models of pre‐diabetes. Although approaches to measure gap junction coupling have been devised, they either lack cell specificity, suitable quantification of coupling or spatial resolution, or are invasive. The purpose of this study was to develop fluorescence recovery after photobleaching (FRAP) as a technique to accurately and robustly measure gap junction coupling in the islet. The cationic dye Rhodamine 123 was used with FRAP to quantify dye diffusion between islet β cells as a measure of Cx36 gap junction coupling. Measurements in islets with reduced Cx36 verified the accuracy of this technique in distinguishing between distinct levels of gap junction coupling. Analysis of individual cells revealed that the distribution of coupling across the islet is highly heterogeneous. Analysis of several modulators of gap junction coupling revealed glucose‐ and cAMP‐dependent modulation of gap junction coupling in islets. Finally, FRAP was used to determine cell population specific coupling, where no functional gap junction coupling was observed between α cells and β cells in the islet. The results of this study show FRAP to be a robust technique which provides the cellular resolution to quantify the distribution and regulation of Cx36 gap junction coupling in specific cell populations within the islet. Future studies utilizing this technique may elucidate the role of gap junction coupling in the progression of diabetes and identify mechanisms of gap junction regulation for potential therapies.

  5. SEL1L Regulates Adhesion, Proliferation and Secretion of Insulin by Affecting Integrin Signaling

    PubMed Central

    Diaferia, Giuseppe R.; Cirulli, Vincenzo; Biunno, Ida

    2013-01-01

    SEL1L, a component of the endoplasmic reticulum associated degradation (ERAD) pathway, has been reported to regulate the (i) differentiation of the pancreatic endocrine and exocrine tissue during the second transition of mouse embryonic development, (ii) neural stem cell self-renewal and lineage commitment and (iii) cell cycle progression through regulation of genes related to cell-matrix interaction. Here we show that in the pancreas the expression of SEL1L is developmentally regulated, such that it is readily detected in developing islet cells and in nascent acinar clusters adjacent to basement membranes, and becomes progressively restricted to the islets of Langherans in post-natal life. This peculiar expression pattern and the presence of two inverse RGD motifs in the fibronectin type II domain of SEL1L protein indicate a possible interaction with cell adhesion molecules to regulate islets architecture. Co-immunoprecipitation studies revealed SEL1L and ß1-integrin interaction and, down-modulation of SEL1L in pancreatic ß-cells, negatively influences both cell adhesion on selected matrix components and cell proliferation likely due to altered ERK signaling. Furthermore, the absence of SEL1L protein strongly inhibits glucose-stimulated insulin secretion in isolated mouse pancreatic islets unveiling an important role of SEL1L in insulin trafficking. This phenotype can be rescued by the ectopic expression of the ß1-integrin subunit confirming the close interaction of these two proteins in regulating the cross-talk between extracellular matrix and insulin signalling to create a favourable micro-environment for ß-cell development and function. PMID:24324549

  6. Novel Mechanistic Link between Focal Adhesion Remodeling and Glucose-stimulated Insulin Secretion*

    PubMed Central

    Rondas, Dieter; Tomas, Alejandra; Soto-Ribeiro, Martinho; Wehrle-Haller, Bernhard; Halban, Philippe A.

    2012-01-01

    Actin cytoskeleton remodeling is well known to be positively involved in glucose-stimulated pancreatic β cell insulin secretion. We have observed glucose-stimulated focal adhesion remodeling at the β cell surface and have shown this to be crucial for glucose-stimulated insulin secretion. However, the mechanistic link between such remodeling and the insulin secretory machinery remained unknown and was the major aim of this study. MIN6B1 cells, a previously validated model of primary β cell function, were used for all experiments. Total internal reflection fluorescence microscopy revealed the glucose-responsive co-localization of focal adhesion kinase (FAK) and paxillin with integrin β1 at the basal cell surface after short term stimulation. In addition, blockade of the interaction between β1 integrins and the extracellular matrix with an anti-β1 integrin antibody (Ha2/5) inhibited short term glucose-induced phosphorylation of FAK (Tyr-397), paxillin (Tyr-118), and ERK1/2 (Thr-202/Tyr-204). Pharmacological inhibition of FAK activity blocked glucose-induced actin cytoskeleton remodeling and glucose-induced disruption of the F-actin/SNAP-25 association at the plasma membrane as well as the distribution of insulin granules to regions in close proximity to the plasma membrane. Furthermore, FAK inhibition also completely blocked short term glucose-induced activation of the Akt/AS160 signaling pathway. In conclusion, these results indicate 1) that glucose-induced activation of FAK, paxillin, and ERK1/2 is mediated by β1 integrin intracellular signaling, 2) a mechanism whereby FAK mediates glucose-induced actin cytoskeleton remodeling, hence allowing docking and fusion of insulin granules to the plasma membrane, and 3) a possible functional role for the Akt/AS160 signaling pathway in the FAK-mediated regulation of glucose-stimulated insulin secretion. PMID:22139838

  7. Insulin secretion and action in North Indian women during pregnancy.

    PubMed

    Arora, G P; Almgren, P; Thaman, R G; Pal, A; Groop, L; Vaag, A; Prasad, R B; Brøns, C

    2017-10-01

    The relative roles(s) of impaired insulin secretion vs. insulin resistance in the development of gestational diabetes mellitus depend upon multiple risk factors and diagnostic criteria. Here, we explored their relative contribution to gestational diabetes as defined by the WHO 1999 (GDM1999) and adapted WHO 2013 (GDM2013) criteria, excluding the 1-h glucose value, in a high-risk Indian population from Punjab. Insulin secretion (HOMA2-B) and insulin action (HOMA2-IR) were assessed in 4665 Indian women with or without gestational diabetes defined by the GDM1999 or adapted GDM2013 criteria. Gestational diabetes defined using both criteria was associated with decreased insulin secretion compared with pregnant women with normal glucose tolerance. Women with gestational diabetes defined by the adapted GDM2013, but not GDM1999 criteria, were more insulin resistant than pregnant women with normal glucose tolerance, and furthermore displayed lower insulin secretion than GDM1999 women. Urban habitat, illiteracy, high age and low BMI were independently associated with reduced insulin secretion, whereas Sikh religion, increasing age and BMI, as well as a family history of diabetes were independently associated with increased insulin resistance. Gestational diabetes risk factors influence insulin secretion and action in North Indian women in a differential manner. Gestational diabetes classified using the adapted GDM2013 compared with GDM1999 criteria is associated with more severe impairments of insulin secretion and action. © 2017 Diabetes UK.

  8. SIDT2 is involved in the NAADP-mediated release of calcium from insulin secretory granules.

    PubMed

    Chang, Guoying; Yang, Rui; Cao, Yanan; Nie, Aifang; Gu, Xuefan; Zhang, Huiwen

    2016-04-01

    The Sidt2 global knockout mouse (Sidt2(-/-)) has impaired insulin secretion. The aim of this study was to assess the role of SIDT2 protein in glucose-induced insulin secretion in primary cultured mouse β-cells. The major metabolic and electrophysiological steps of glucose-induced insulin secretion of primary cultured β-cells from Sidt2(-/-) mice were investigated. The β-cells from Sidt2(-/-) mice had normal NAD(P)H responses and KATP and KV currents. However, they exhibited a lower [Ca(2+)]i peak height when stimulated with 20mM glucose compared with those from WT mice. Furthermore, it took a longer time for the [Ca(2+)]i of β-cell from Sidt2(-/-) mice to reach the peak. Pretreatment with ryanodine or 2-aminoethoxydiphenyl borate (2-APB) did not change [Ca(2+)]i the response pattern to glucose in Sidt2(-/-) cells. Extraordinarily, pretreatment with bafilomycin A1(Baf-A1) led to a comparable [Ca(2+)]i increase pattern between these two groups, suggesting that calcium traffic from the intracellular acidic compartment is defective in Sidt2(-/-) β-cells. Bath-mediated application of 50nM nicotinic acid adenine dinucleotide phosphate (NAADP) normalized the [Ca(2+)]i response of Sidt2(-/-) β-cells. Finally, glucose-induced CD38 expression increased to a comparable level between Sidt2(-/-) and WT islets, suggesting that Sidt2(-/-) islets generated NAADP normally. We conclude that Sidt2 is involved in NAADP-mediated release of calcium from insulin secretory granules and thus regulates insulin secretion. © 2016 Society for Endocrinology.

  9. Effects of exendin-4 on glucose tolerance, insulin secretion, and beta-cell proliferation depend on treatment dose, treatment duration and meal contents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arakawa, Masayuki; Ebato, Chie; Mita, Tomoya

    2009-12-18

    Beta-cell proliferation is regulated by various metabolic demands including peripheral insulin resistance, obesity, and hyperglycemia. In addition to enhancement of glucose-induced insulin secretion, agonists for glucagon-like peptide-1 receptor (GLP-1R) stimulate proliferation and inhibit apoptosis of beta-cells, thereby probably preserve beta-cell mass. To evaluate the beta-cell preserving actions of GLP-1R agonists, we assessed the acute and chronic effects of exendin-4 on beta-cell proliferation, mass and glucose tolerance in C57BL/6J mice under various conditions. Short-term administration of high-dose exendin-4 transiently stimulated beta-cell proliferation. Comparative transcriptomic analysis showed upregulation of IGF-1 receptor and its downstream effectors in islets. Treatment of mice with exendin-4more » daily for 4 weeks (long-term administration) and feeding high-fat diet resulted in significant inhibition of weight gain and improvement of glucose tolerance with reduced insulin secretion and beta-cell mass. These findings suggest that long-term GLP-1 treatment results in insulin sensitization of peripheral organs, rather than enhancement of beta-cell proliferation and function, particularly when animals are fed high-fat diet. Thus, the effects of exendin-4 on glucose tolerance, insulin secretion, and beta-cell proliferation largely depend on treatment dose, duration of treatment and meal contents. While GLP-1 enhances proliferation of beta-cells in some diabetic mice models, our results suggest that GLP-1 stimulates beta-cell growth only when expansion of beta-cell mass is required to meet metabolic demands.« less

  10. Sleep Architecture and Glucose and Insulin Homeostasis in Obese Adolescents

    PubMed Central

    Koren, Dorit; Levitt Katz, Lorraine E.; Brar, Preneet C.; Gallagher, Paul R.; Berkowitz, Robert I.; Brooks, Lee J.

    2011-01-01

    OBJECTIVE Sleep deprivation is associated with increased risk of adult type 2 diabetes mellitus (T2DM). It is uncertain whether sleep deprivation and/or altered sleep architecture affects glycemic regulation or insulin sensitivity or secretion. We hypothesized that in obese adolescents, sleep disturbances would associate with altered glucose and insulin homeostasis. RESEARCH DESIGN AND METHODS This cross-sectional observational study of 62 obese adolescents took place at the Clinical and Translational Research Center and Sleep Laboratory in a tertiary care children’s hospital. Subjects underwent oral glucose tolerance test (OGTT), anthropometric measurements, overnight polysomnography, and frequently sampled intravenous glucose tolerance test (FSIGT). Hemoglobin A1c (HbA1c) and serial insulin and glucose levels were obtained, indices of insulin sensitivity and secretion were calculated, and sleep architecture was assessed. Correlation and regression analyses were performed to assess the association of total sleep and sleep stages with measures of insulin and glucose homeostasis, adjusted for confounding variables. RESULTS We found significant U-shaped (quadratic) associations between sleep duration and both HbA1c and serial glucose levels on OGTT and positive associations between slow-wave sleep (N3) duration and insulin secretory measures, independent of degree of obesity, pubertal stage, sex, and obstructive sleep apnea measures. CONCLUSIONS Insufficient and excessive sleep was associated with short-term and long-term hyperglycemia in our obese adolescents. Decreased N3 was associated with decreased insulin secretion. These effects may be related, with reduced insulin secretory capacity leading to hyperglycemia. We speculate that optimizing sleep may stave off the development of T2DM in obese adolescents. PMID:21933909

  11. Synapses of Amphids Defective (SAD-A) Kinase Promotes Glucose-stimulated Insulin Secretion through Activation of p21-activated Kinase (PAK1) in Pancreatic β-Cells*

    PubMed Central

    Nie, Jia; Sun, Chao; Faruque, Omar; Ye, Guangming; Li, Jia; Liang, Qiangrong; Chang, Zhijie; Yang, Wannian; Han, Xiao; Shi, Yuguang

    2012-01-01

    The p21-activated kinase-1 (PAK1) is implicated in regulation of insulin exocytosis as an effector of Rho GTPases. PAK1 is activated by the onset of glucose-stimulated insulin secretion (GSIS) through phosphorylation of Thr-423, a major activation site by Cdc42 and Rac1. However, the kinase(s) that phosphorylates PAK1 at Thr-423 in islet β-cells remains elusive. The present studies identified SAD-A (synapses of amphids defective), a member of AMP-activated protein kinase-related kinases exclusively expressed in brain and pancreas, as a key regulator of GSIS through activation of PAK1. We show that SAD-A directly binds to PAK1 through its kinase domain. The interaction is mediated by the p21-binding domain (PBD) of PAK1 and requires both kinases in an active conformation. The binding leads to direct phosphorylation of PAK1 at Thr-423 by SAD-A, triggering the onset of GSIS from islet β-cells. Consequently, ablation of PAK1 kinase activity or depletion of PAK1 expression completely abolishes the potentiating effect of SAD-A on GSIS. Consistent with its role in regulating GSIS, overexpression of SAD-A in MIN6 islet β-cells significantly stimulated cytoskeletal remodeling, which is required for insulin exocytosis. Together, the present studies identified a critical role of SAD-A in the activation of PAK1 during the onset of insulin exocytosis. PMID:22669945

  12. Synapses of amphids defective (SAD-A) kinase promotes glucose-stimulated insulin secretion through activation of p21-activated kinase (PAK1) in pancreatic β-Cells.

    PubMed

    Nie, Jia; Sun, Chao; Faruque, Omar; Ye, Guangming; Li, Jia; Liang, Qiangrong; Chang, Zhijie; Yang, Wannian; Han, Xiao; Shi, Yuguang

    2012-07-27

    The p21-activated kinase-1 (PAK1) is implicated in regulation of insulin exocytosis as an effector of Rho GTPases. PAK1 is activated by the onset of glucose-stimulated insulin secretion (GSIS) through phosphorylation of Thr-423, a major activation site by Cdc42 and Rac1. However, the kinase(s) that phosphorylates PAK1 at Thr-423 in islet β-cells remains elusive. The present studies identified SAD-A (synapses of amphids defective), a member of AMP-activated protein kinase-related kinases exclusively expressed in brain and pancreas, as a key regulator of GSIS through activation of PAK1. We show that SAD-A directly binds to PAK1 through its kinase domain. The interaction is mediated by the p21-binding domain (PBD) of PAK1 and requires both kinases in an active conformation. The binding leads to direct phosphorylation of PAK1 at Thr-423 by SAD-A, triggering the onset of GSIS from islet β-cells. Consequently, ablation of PAK1 kinase activity or depletion of PAK1 expression completely abolishes the potentiating effect of SAD-A on GSIS. Consistent with its role in regulating GSIS, overexpression of SAD-A in MIN6 islet β-cells significantly stimulated cytoskeletal remodeling, which is required for insulin exocytosis. Together, the present studies identified a critical role of SAD-A in the activation of PAK1 during the onset of insulin exocytosis.

  13. Insulin and Metformin Regulate Circulating and Adipose Tissue Chemerin

    PubMed Central

    Tan, Bee K.; Chen, Jing; Farhatullah, Syed; Adya, Raghu; Kaur, Jaspreet; Heutling, Dennis; Lewandowski, Krzysztof C.; O'Hare, J. Paul; Lehnert, Hendrik; Randeva, Harpal S.

    2009-01-01

    OBJECTIVE To assess chemerin levels and regulation in sera and adipose tissue from women with polycystic ovary syndrome (PCOS) and matched control subjects. RESEARCH DESIGN AND METHODS Real-time RT-PCR and Western blotting were used to assess mRNA and protein expression of chemerin. Serum chemerin was measured by enzyme-linked immunosorbent assay. We investigated the in vivo effects of insulin on serum chemerin levels via a prolonged insulin-glucose infusion. Ex vivo effects of insulin, metformin, and steroid hormones on adipose tissue chemerin protein production and secretion into conditioned media were assessed by Western blotting and enzyme-linked immunosorbent assay, respectively. RESULTS Serum chemerin, subcutaneous, and omental adipose tissue chemerin were significantly higher in women with PCOS (n = 14; P < 0.05, P < 0.01). Hyperinsulinemic induction in human subjects significantly increased serum chemerin levels (n = 6; P < 0.05, P < 0.01). In adipose tissue explants, insulin significantly increased (n = 6; P < 0.05, P < 0.01) whereas metformin significantly decreased (n = 6; P < 0.05, P < 0.01) chemerin protein production and secretion into conditioned media, respectively. After 6 months of metformin treatment, there was a significant decrease in serum chemerin (n = 21; P < 0.01). Importantly, changes in homeostasis model assessment–insulin resistance were predictive of changes in serum chemerin (P = 0.046). CONCLUSIONS Serum and adipose tissue chemerin levels are increased in women with PCOS and are upregulated by insulin. Metformin treatment decreases serum chemerin in these women. PMID:19502420

  14. Expansion and conversion of human pancreatic ductal cells into insulin-secreting endocrine cells

    PubMed Central

    Lee, Jonghyeob; Sugiyama, Takuya; Liu, Yinghua; Wang, Jing; Gu, Xueying; Lei, Ji; Markmann, James F; Miyazaki, Satsuki; Miyazaki, Jun-ichi; Szot, Gregory L; Bottino, Rita; Kim, Seung K

    2013-01-01

    Pancreatic islet β-cell insufficiency underlies pathogenesis of diabetes mellitus; thus, functional β-cell replacement from renewable sources is the focus of intensive worldwide effort. However, in vitro production of progeny that secrete insulin in response to physiological cues from primary human cells has proven elusive. Here we describe fractionation, expansion and conversion of primary adult human pancreatic ductal cells into progeny resembling native β-cells. FACS-sorted adult human ductal cells clonally expanded as spheres in culture, while retaining ductal characteristics. Expression of the cardinal islet developmental regulators Neurog3, MafA, Pdx1 and Pax6 converted exocrine duct cells into endocrine progeny with hallmark β-cell properties, including the ability to synthesize, process and store insulin, and secrete it in response to glucose or other depolarizing stimuli. These studies provide evidence that genetic reprogramming of expandable human pancreatic cells with defined factors may serve as a general strategy for islet replacement in diabetes. DOI: http://dx.doi.org/10.7554/eLife.00940.001 PMID:24252877

  15. Expansion and conversion of human pancreatic ductal cells into insulin-secreting endocrine cells.

    PubMed

    Lee, Jonghyeob; Sugiyama, Takuya; Liu, Yinghua; Wang, Jing; Gu, Xueying; Lei, Ji; Markmann, James F; Miyazaki, Satsuki; Miyazaki, Jun-Ichi; Szot, Gregory L; Bottino, Rita; Kim, Seung K

    2013-11-19

    Pancreatic islet β-cell insufficiency underlies pathogenesis of diabetes mellitus; thus, functional β-cell replacement from renewable sources is the focus of intensive worldwide effort. However, in vitro production of progeny that secrete insulin in response to physiological cues from primary human cells has proven elusive. Here we describe fractionation, expansion and conversion of primary adult human pancreatic ductal cells into progeny resembling native β-cells. FACS-sorted adult human ductal cells clonally expanded as spheres in culture, while retaining ductal characteristics. Expression of the cardinal islet developmental regulators Neurog3, MafA, Pdx1 and Pax6 converted exocrine duct cells into endocrine progeny with hallmark β-cell properties, including the ability to synthesize, process and store insulin, and secrete it in response to glucose or other depolarizing stimuli. These studies provide evidence that genetic reprogramming of expandable human pancreatic cells with defined factors may serve as a general strategy for islet replacement in diabetes. DOI: http://dx.doi.org/10.7554/eLife.00940.001.

  16. Current trend in drug delivery considerations for subcutaneous insulin depots to treat diabetes.

    PubMed

    P V, Jayakrishnapillai; Nair, Shantikumar V; Kamalasanan, Kaladhar

    2017-05-01

    Diabetes mellitus (DM) is a metabolic disorder due to irregularities in glucose metabolism, as a result of insulin disregulation. Chronic DM (Type 1) is treated by daily insulin injections by subcutaneous route. Daily injections cause serious patient non-compliance and medication non-adherence. Insulin Depots (ID) are parenteral formulations designed to release the insulin over a specified period of time, to control the plasma blood glucose level for intended duration. Physiologically, pancreas produces and secretes insulin in basal and pulsatile mode into the blood. Delivery systems mimicking basal release profiles are known as open-loop systems and current marketed products are open-loop systems. Future trend in open-loop systems is to reduce the number of injections per week by enhancing duration of action, by modifying the depot properties. The next generation technologies are closed-loop systems that mimic the pulsatile mode of delivery by pancreas. In closed-loop systems insulin will be released in response to plasma glucose. This review focuses on future trend in open-loop systems; by understanding (a) the secretion of insulin from pancreas, (b) the insulin regulation normal and in DM, (c) insulin depots and (d) the recent progress in open-loop depot technology particularly with respect to nanosystems. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Effect of tadalafil administration on insulin secretion and insulin sensitivity in obese men.

    PubMed

    González-Ortiz, Manuel; Martínez-Abundis, Esperanza; Hernández-Corona, Diana M; Ramírez-Rodríguez, Alejandra M

    2017-10-01

    To evaluate the effect of tadalafil administration on insulin secretion and insulin sensitivity in obese men without diabetes. A randomized, double-blind, placebo-controlled clinical trial was carried out in obese male patients between 30 and 50 years of age. Eighteen subjects were randomly assigned to two groups of nine patients each. During a 28-day period, subjects received 5 mg orally of tadalafil or placebo each night. Patients were evaluated before and after the intervention. Total insulin secretion and first phase of insulin secretion were calculated by insulinogenic index and Stumvoll index, respectively, and insulin sensitivity was calculated using the Matsuda index. Tolerability and compliance were evaluated permanently throughout the study. There were no significant differences after administration of tadalafil in total insulin secretion (0.82 ± 0.45 vs. 0.61 ± 0.27, p = 0.594), first phase of insulin secretion (1332 ± 487 vs. 1602 ± 800, p = 0.779) and insulin sensitivity (4.6 ± 1.2 vs. 4.9 ± 2.5, p = 0.779). No significant differences were shown in other measurements. Tadalafil administration for 28 days did not modify insulin secretion or insulin sensitivity in obese men.

  18. Shared Genetic Control of Brain Activity During Sleep and Insulin Secretion: A Laboratory-Based Family Study.

    PubMed

    Morselli, Lisa L; Gamazon, Eric R; Tasali, Esra; Cox, Nancy J; Van Cauter, Eve; Davis, Lea K

    2018-01-01

    Over the past 20 years, a large body of experimental and epidemiologic evidence has linked sleep duration and quality to glucose homeostasis, although the mechanistic pathways remain unclear. The aim of the current study was to determine whether genetic variation influencing both sleep and glucose regulation could underlie their functional relationship. We hypothesized that the genetic regulation of electroencephalographic (EEG) activity during non-rapid eye movement sleep, a highly heritable trait with fingerprint reproducibility, is correlated with the genetic control of metabolic traits including insulin sensitivity and β-cell function. We tested our hypotheses through univariate and bivariate heritability analyses in a three-generation pedigree with in-depth phenotyping of both sleep EEG and metabolic traits in 48 family members. Our analyses accounted for age, sex, adiposity, and the use of psychoactive medications. In univariate analyses, we found significant heritability for measures of fasting insulin sensitivity and β-cell function, for time spent in slow-wave sleep, and for EEG spectral power in the delta, theta, and sigma ranges. Bivariate heritability analyses provided the first evidence for a shared genetic control of brain activity during deep sleep and fasting insulin secretion rate. © 2017 by the American Diabetes Association.

  19. Central effects of humanin on hepatic triglyceride secretion.

    PubMed

    Gong, Zhenwei; Su, Kai; Cui, Lingguang; Tas, Emir; Zhang, Ting; Dong, H Henry; Yakar, Shoshana; Muzumdar, Radhika H

    2015-08-01

    Humanin (HN) is an endogenous mitochondria-associated peptide that has been shown to protect against various Alzheimer's disease-associated insults, myocardial ischemia-reperfusion injury, and reactive oxygen species-induced cell death. We have shown previously that HN improves whole body glucose homeostasis by improving insulin sensitivity and increasing glucose-stimulated insulin secretion (GSIS) from the β-cells. Here, we report that intraperitoneal treatment with one of HN analogs, HNG, decreases body weight gain, visceral fat, and hepatic triglyceride (TG) accumulation in high-fat diet-fed mice. The decrease in hepatic TG accumulation is due to increased activity of hepatic microsomal triglyceride transfer protein (MTTP) and increased hepatic TG secretion. Both intravenous (iv) and intracerebroventricular (icv) infusion of HNG acutely increase TG secretion from the liver. Vagotomy blocks the effect on both iv and icv HNG on TG secretion, suggesting that the effects of HNG on hepatic TG flux are centrally mediated. Our data suggest that HN is a new player in central regulation of peripheral lipid metabolism. Copyright © 2015 the American Physiological Society.

  20. The Diagnosis and Management of Hyperinsulinaemic Hypoglycaemia.

    PubMed

    Roženková, Klára; Güemes, Maria; Shah, Pratik; Hussain, Khalid

    2015-06-01

    Insulin secretion from pancreatic β-cells is tightly regulated to keep fasting blood glucose concentrations within the normal range (3.5-5.5 mmol/L). Hyperinsulinaemic hypoglycaemia (HH) is a heterozygous condition in which insulin secretion becomes unregulated and its production persists despite low blood glucose levels. It is the most common cause of severe and persistent hypoglycaemia in neonates and children. The most severe and permanent forms are due to congenital hyperinsulinism (CHI). Recent advances in genetics have linked CHI to mutations in 9 genes that play a key role in regulating insulin secretion (ABCC8, KCNJ11, GLUD1, GCK, HADH, SLC16A1, UCP2, HNF4A and HNF1A). Histologically, CHI can be divided into 3 types; diffuse, focal and atypical. Given the biochemical nature of HH (non-ketotic), a delay in the diagnosis and management can result in irreversible brain damage. Therefore, it is essential to diagnose and treat HH promptly. Advances in molecular genetics, imaging methods (18F-DOPA PET-CT), medical therapy and surgical approach (laparoscopic surgery) have completely changed the management and improved the outcome of these children. This review provides an overview of the genetic and molecular mechanisms leading to development of HH in children. The article summarizes the current diagnostic methods and management strategies for the different types of CHI.

  1. Adipose differentiation-related protein regulates lipids and insulin in pancreatic islets

    PubMed Central

    Faleck, D. M.; Ali, K.; Roat, R.; Graham, M. J.; Crooke, R. M.; Battisti, R.; Garcia, E.; Ahima, R. S.

    2010-01-01

    The excess accumulation of lipids in islets is thought to contribute to the development of diabetes in obesity by impairing β-cell function. However, lipids also serve a nutrient function in islets, and fatty acids acutely increase insulin secretion. A better understanding of lipid metabolism in islets will shed light on complex effects of lipids on β-cells. Adipose differentiation-related protein (ADFP) is localized on the surface of lipid droplets in a wide range of cells and plays an important role in intracellular lipid metabolism. We found that ADFP was highly expressed in murine β-cells. Moreover, islet ADFP was increased in mice on a high-fat diet (3.5-fold of control) and after fasting (2.5-fold of control), revealing dynamic changes in ADFP in response to metabolic cues. ADFP expression was also increased by addition of fatty acids in human islets. The downregulation of ADFP in MIN6 cells by antisense oligonucleotide (ASO) suppressed the accumulation of triglycerides upon fatty acid loading (56% of control) along with a reduction in the mRNA levels of lipogenic genes such as diacylglycerol O-acyltransferase-2 and fatty acid synthase. Fatty acid uptake, oxidation, and lipolysis were also reduced by downregulation of ADFP. Moreover, the reduction of ADFP impaired the ability of palmitate to increase insulin secretion. These findings demonstrate that ADFP is important in regulation of lipid metabolism and insulin secretion in β-cells. PMID:20484013

  2. Positive association of free triiodothyronine with pancreatic β-cell function in people with prediabetes.

    PubMed

    Oda, T; Taneichi, H; Takahashi, K; Togashi, H; Hangai, M; Nakagawa, R; Ono, M; Matsui, M; Sasai, T; Nagasawa, K; Honma, H; Kajiwara, T; Takahashi, Y; Takebe, N; Ishigaki, Y; Satoh, J

    2015-02-01

    To analyse the effects of thyroid hormones on β-cell function and glucose metabolism in people with prediabetes who are euthyroid. A total of 111 people who were euthyroid underwent 75-g oral glucose tolerance tests, of whom 52 were assigned to the normal glucose tolerance and 59 to the prediabetes groups. Homeostatic model assessment of β-cell function, insulinogenic index and areas under the curve for insulin and glucose were evaluated as indices of pancreatic β-cell function. In both groups, BMI, fasting insulin, homeostasis model assessment ratio and HDL cholesterol correlated significantly with all indices of pancreatic β-cell function. Free triiodothyronine correlated positively with all insulin secretion indices in the prediabetes group. Multiple linear regression analysis showed that free triiodothyronine was an independent variable that had a positive correlation with all indices of β-cell function in the prediabetes group. By contrast, no such correlation was found in the normal glucose tolerance group. Free triiodothyronine is associated with both basal and glucose-stimulated insulin secretion in people with prediabetes who are euthyroid; therefore, the regulation of insulin secretion by thyroid hormones is a potentially novel therapeutic target for the treatment of diabetes. © 2014 The Authors. Diabetic Medicine © 2014 Diabetes UK.

  3. Regulation of leptin production in humans.

    PubMed

    Fried, S K; Ricci, M R; Russell, C D; Laferrère, B

    2000-12-01

    Serum levels of the adipocyte hormone leptin are increased in proportion to body fat stores as a result of increased production in enlarged fat cells from obese subjects. In vitro studies indicate that insulin and glucocorticoids work directly on adipose tissue to upregulate in a synergistic manner leptin mRNA levels and rates of leptin secretion in human adipose tissue over the long term. Thus, the increased leptin expression observed in obesity could result from the chronic hyperinsulinemia and increased cortisol turnover. Superimposed upon the long-term regulation, nutritional status can influence serum leptin over the short term, independent of adiposity. Fasting leads to a gradual decline in serum leptin that is probably attributable to the decline in insulin and the ability of catecholamines to decrease leptin expression, as observed in both in vivo and in vitro studies. In addition, increases in serum leptin occur approximately 4-7 h after meals. Increasing evidence indicates that insulin, in concert with permissive effects of cortisol, can increase serum leptin over this time frame and likely contributes to meal-induced increases in serum leptin. Further research is required to elucidate the cellular and molecular mechanisms underlying short- and long-term nutritional and hormonal regulation of leptin production and secretion.

  4. Roles of circulating WNT-signaling proteins and WNT-inhibitors in human adiposity, insulin resistance, insulin secretion, and inflammation.

    PubMed

    Almario, R U; Karakas, S E

    2015-02-01

    Wingless-type MMTV integration site family member (WNT) signaling and WNT-inhibitors have been implicated in regulation of adipogenesis, insulin resistance, pancreatic function, and inflammation. Our goal was to determine serum proteins involved in WNT signaling (WNT5 and WISP2) and WNT inhibition (SFRP4 and SFRP5) as they relate to obesity, serum adipokines, insulin resistance, insulin secretion, and inflammation in humans. Study population comprised 57 insulin resistant women with polycystic ovary syndrome (PCOS) and 27 reference women. In a cross-sectional study, blood samples were obtained at fasting, during oral, and frequently sampled intravenous glucose tolerance tests. Serum WNT5, WISP2, and SFRP4 concentrations did not differ between PCOS vs. reference women. Serum WNT5 correlated inversely with weight both in PCOS and reference women, and correlated directly with insulin response during oral glucose tolerance test in PCOS women. Serum WISP2 correlated directly with fatty acid binding protein 4. Serum SFRP5 did not differ between obese (n=32) vs. nonobese (n=25) PCOS women, but reference women had lower SFRP5 (p<5×10(-6) as compared to both PCOS groups). Serum SFRP5 correlated inversely with IL-1β, TNF-α, cholesterol, and apoprotein B. These findings demonstrated that WNT5 correlated inversely with adiposity and directly with insulin response, and the WNT-inhibitor SFRP5 may be anti-inflammatory. Better understanding of the role of WNT signaling in obesity, insulin resistance, insulin secretion, lipoprotein metabolism, and inflammation is important for prevention and treatment of metabolic syndrome, diabetes and cardiovascular disease. © Georg Thieme Verlag KG Stuttgart · New York.

  5. Momordica charantia Administration Improves Insulin Secretion in Type 2 Diabetes Mellitus.

    PubMed

    Cortez-Navarrete, Marisol; Martínez-Abundis, Esperanza; Pérez-Rubio, Karina G; González-Ortiz, Manuel; Villar, Miriam Méndez-Del

    2018-02-12

    An improvement in parameters of glycemic control has been observed with Momordica charantia in patients with type 2 diabetes mellitus (T2DM). It is unknown whether this improvement is through a modification of insulin secretion, insulin sensitivity, or both. We hypothesized that M. charantia administration can improve insulin secretion and/or insulin sensitivity in patients with T2DM, without pharmacological treatment. The objective of the study was to evaluate the effect of M. charantia administration on insulin secretion and sensitivity. A randomized, double-blinded, placebo-controlled, clinical trial was carried out in 24 patients who received M. charantia (2000 mg/day) or placebo for 3 months. A 2-h oral glucose tolerance test (OGTT) was done before and after the intervention to calculate areas under the curve (AUC) of glucose and insulin, total insulin secretion (insulinogenic index), first phase of insulin secretion (Stumvoll index), and insulin sensitivity (Matsuda index). In the M. charantia group, there were significant decreases in weight, body mass index (BMI), fat percentage, waist circumference (WC), glycated hemoglobin A1c (A1C), 2-h glucose in OGTT, and AUC of glucose. A significant increase in insulin AUC (56,562 ± 36,078 vs. 65,256 ± 42,720 pmol/L/min, P = .043), in total insulin secretion (0.29 ± 0.18 vs. 0.41 ± 0.29, P = .028), and during the first phase of insulin secretion (557.8 ± 645.6 vs. 1135.7 ± 725.0, P = .043) was observed after M. charantia administration. Insulin sensitivity was not modified with any intervention. In conclusion, M. charantia administration reduced A1C, 2-h glucose, glucose AUC, weight, BMI, fat percentage, and WC, with an increment of insulin AUC, first phase and total insulin secretion.

  6. A K ATP channel-dependent pathway within alpha cells regulates glucagon release from both rodent and human islets of Langerhans.

    PubMed

    MacDonald, Patrick E; De Marinis, Yang Zhang; Ramracheya, Reshma; Salehi, Albert; Ma, Xiaosong; Johnson, Paul R V; Cox, Roger; Eliasson, Lena; Rorsman, Patrik

    2007-06-01

    Glucagon, secreted from pancreatic islet alpha cells, stimulates gluconeogenesis and liver glycogen breakdown. The mechanism regulating glucagon release is debated, and variously attributed to neuronal control, paracrine control by neighbouring beta cells, or to an intrinsic glucose sensing by the alpha cells themselves. We examined hormone secretion and Ca(2+) responses of alpha and beta cells within intact rodent and human islets. Glucose-dependent suppression of glucagon release persisted when paracrine GABA or Zn(2+) signalling was blocked, but was reversed by low concentrations (1-20 muM) of the ATP-sensitive K(+) (KATP) channel opener diazoxide, which had no effect on insulin release or beta cell responses. This effect was prevented by the KATP channel blocker tolbutamide (100 muM). Higher diazoxide concentrations (>/=30 muM) decreased glucagon and insulin secretion, and alpha- and beta-cell Ca(2+) responses, in parallel. In the absence of glucose, tolbutamide at low concentrations (<1 muM) stimulated glucagon secretion, whereas high concentrations (>10 muM) were inhibitory. In the presence of a maximally inhibitory concentration of tolbutamide (0.5 mM), glucose had no additional suppressive effect. Downstream of the KATP channel, inhibition of voltage-gated Na(+) (TTX) and N-type Ca(2+) channels (omega-conotoxin), but not L-type Ca(2+) channels (nifedipine), prevented glucagon secretion. Both the N-type Ca(2+) channels and alpha-cell exocytosis were inactivated at depolarised membrane potentials. Rodent and human glucagon secretion is regulated by an alpha-cell KATP channel-dependent mechanism. We propose that elevated glucose reduces electrical activity and exocytosis via depolarisation-induced inactivation of ion channels involved in action potential firing and secretion.

  7. Effects of the pesticide amitraz and its metabolite BTS 27271 on insulin and glucagon secretion from the perfused rat pancreas: involvement of alpha2D-adrenergic receptors.

    PubMed

    Abu-Basha, E A; Yibchok-Anun, S; Hopper, D L; Hsu, W H

    1999-11-01

    The study purpose was to investigate the direct effect of amitraz, a formamidine insecticide/acaricide, and its active metabolite BTS 27271 on insulin and glucagon secretion from the perfused rat pancreas. Amitraz and BTS 27271 (0.01, 0.1, 1, and 10 micromol/L) inhibited insulin secretion in a concentration-dependent manner. Amitraz increased glucagon secretion at 10 micromol/L, whereas BTS 27271 increased glucagon secretion at 1 and 10 micromol/L. Amitraz- and BTS 27271-induced decreases in insulin secretion and increases in glucagon secretion were not abolished during the 10-minute washout period. During the arginine treatment, both amitraz and BTS 27271 groups (0.1, 1, and 10 micromol/L) had lower insulin secretion and higher glucagon secretion than the control group. Idazoxan, an alpha2A/2D-adrenergic receptor (AR) antagonist, prevented the inhibitory effect of amitraz on insulin secretion in a concentration-dependent manner, but prazosin, an alpha1- and alpha2B/2C-AR antagonist, failed to antagonize the effect of amitraz. These results demonstrate that (1) amitraz and BTS 27271 inhibit insulin and stimulate glucagon secretion from the perfused rat pancreas, (2) amitraz inhibits insulin secretion by activation of alpha2D-ARs, since rats have alpha2D- but not alpha2A-ARs, and (3) amitraz and BTS 27271 may have a high binding affinity to the alpha2D-ARs of pancreatic islets.

  8. Low Level Pro-inflammatory Cytokines Decrease Connexin36 Gap Junction Coupling in Mouse and Human Islets through Nitric Oxide-mediated Protein Kinase Cδ.

    PubMed

    Farnsworth, Nikki L; Walter, Rachelle L; Hemmati, Alireza; Westacott, Matthew J; Benninger, Richard K P

    2016-02-12

    Pro-inflammatory cytokines contribute to the decline in islet function during the development of diabetes. Cytokines can disrupt insulin secretion and calcium dynamics; however, the mechanisms underlying this are poorly understood. Connexin36 gap junctions coordinate glucose-induced calcium oscillations and pulsatile insulin secretion across the islet. Loss of gap junction coupling disrupts these dynamics, similar to that observed during the development of diabetes. This study investigates the mechanisms by which pro-inflammatory cytokines mediate gap junction coupling. Specifically, as cytokine-induced NO can activate PKCδ, we aimed to understand the role of PKCδ in modulating cytokine-induced changes in gap junction coupling. Isolated mouse and human islets were treated with varying levels of a cytokine mixture containing TNF-α, IL-1β, and IFN-γ. Islet dysfunction was measured by insulin secretion, calcium dynamics, and gap junction coupling. Modulators of PKCδ and NO were applied to determine their respective roles in modulating gap junction coupling. High levels of cytokines caused cell death and decreased insulin secretion. Low levels of cytokine treatment disrupted calcium dynamics and decreased gap junction coupling, in the absence of disruptions to insulin secretion. Decreases in gap junction coupling were dependent on NO-regulated PKCδ, and altered membrane organization of connexin36. This study defines several mechanisms underlying the disruption to gap junction coupling under conditions associated with the development of diabetes. These mechanisms will allow for greater understanding of islet dysfunction and suggest ways to ameliorate this dysfunction during the development of diabetes. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  9. Insulin secretion and insulin resistance in Korean women with gestational diabetes mellitus and impaired glucose tolerance.

    PubMed

    Yang, Sae Jeong; Kim, Tae Nyun; Baik, Sei Hyun; Kim, Tae Sun; Lee, Kwan Woo; Nam, Moonsuk; Park, Yong Soo; Woo, Jeong-Teak; Kim, Young Seol; Kim, Sung-Hoon

    2013-05-01

    The aim was to compare the insulin sensitivity and secretion index of pregnant Korean women with normal glucose tolerance (NGT), gestational impaired glucose tolerance (GIGT; only one abnormal value according to the Carpenter and Coustan criteria), and gestational diabetes mellitus (GDM). A cross-sectional study was performed with 1,163 pregnant women with positive (1-hour plasma glucose ≥ 7.2 mmol/L) in a 50-g oral glucose challenge test (OGCT). The 100-g oral glucose tolerance test (OGTT) was used to stratify the participants into three groups: NGT (n = 588), GIGT (n = 294), and GDM (n = 281). The GDM group had higher homeostasis model assessment of insulin resistance and lower insulin sensitivity index (ISOGTT), quantitative insulin sensitivity check index, homeostasis model assessment for estimation of index β-cell secretion (HOMA-B), first and second phase insulin secretion, and insulin secretion-sensitivity index (ISSI) than the NGT group (p ≤ 0.001 for all). Moreover, the GIGT group had lower ISOGTT, HOMA-B, first and second phase insulin secretion, and ISSI than the NGT group (p < 0.001 for all). Among the GIGT subjects, the 1-hour plasma glucose abnormal levels group showed significantly greater weight gain during pregnancy and higher values in the 50-g OGCT than the other two groups. Moreover, the 1-hour and 2-hour abnormal levels groups had poorer insulin secretion status than the 3-hour abnormal levels group. Korean women with GDM show impairments of both insulin secretion and insulin sensitivity. In addition, GIGT is associated with both β-cell dysfunction and insulin resistance.

  10. Gastric Inhibitory Peptide Controls Adipose Insulin Sensitivity via Activation of cAMP-response Element-binding Protein and p110β Isoform of Phosphatidylinositol 3-Kinase*

    PubMed Central

    Mohammad, Sameer; Ramos, Lavoisier S.; Buck, Jochen; Levin, Lonny R.; Rubino, Francesco; McGraw, Timothy E.

    2011-01-01

    Gastric inhibitory peptide (GIP) is an incretin hormone secreted in response to food intake. The best known function of GIP is to enhance glucose-dependent insulin secretion from pancreatic β-cells. Extra-pancreatic effects of GIP primarily occur in adipose tissues. Here, we demonstrate that GIP increases insulin-dependent translocation of the Glut4 glucose transporter to the plasma membrane and exclusion of FoxO1 transcription factor from the nucleus in adipocytes, establishing that GIP has a general effect on insulin action in adipocytes. Stimulation of adipocytes with GIP alone has no effect on these processes. Using pharmacologic and molecular genetic approaches, we show that the effect of GIP on adipocyte insulin sensitivity requires activation of both the cAMP/protein kinase A/CREB signaling module and p110β phosphoinositol-3′ kinase, establishing a novel signal transduction pathway modulating insulin action in adipocytes. This insulin-sensitizing effect is specific for GIP because isoproterenol, which elevates adipocyte cAMP and activates PKA/CREB signaling, does not affect adipocyte insulin sensitivity. The insulin-sensitizing activity points to a more central role for GIP in intestinal regulation of peripheral tissue metabolism, an emerging feature of inter-organ communication in the control of metabolism. PMID:22027830

  11. Adjunct therapy for type 1 diabetes mellitus.

    PubMed

    Lebovitz, Harold E

    2010-06-01

    Insulin replacement therapy in type 1 diabetes mellitus (T1DM) is nonphysiologic. Hyperinsulinemia is generated in the periphery to achieve normal insulin concentrations in the liver. This mismatch results in increased hypoglycemia, increased food intake with weight gain, and insufficient regulation of postprandial glucose excursions. Islet amyloid polypeptide is a hormone synthesized in pancreatic beta cells and cosecreted with insulin. Circulating islet amyloid polypeptide binds to receptors located in the hindbrain and increases satiety, delays gastric emptying and suppresses glucagon secretion. Thus, islet amyloid polypeptide complements the effects of insulin. T1DM is a state of both islet amyloid polypeptide and insulin deficiency. Pramlintide, a synthetic analog of islet amyloid polypeptide, can replace this hormone in patients with T1DM. When administered as adjunctive therapy to such patients treated with insulin, pramlintide decreases food intake and causes weight loss. Pramlintide therapy is also associated with suppression of glucagon secretion and delayed gastric emptying, both of which decrease postprandial plasma glucose excursions. Pramlintide therapy improves glycemic control and lessens weight gain. Agents that decrease intestinal carbohydrate digestion (alpha-glucosidase inhibitors) or decrease insulin resistance (metformin) might be alternative adjunctive therapies in T1DM, though its benefits are marginally supported by clinical data.

  12. Insulin regulates the novel adipokine adipolin/CTRP12: in vivo and ex vivo effects.

    PubMed

    Tan, Bee K; Lewandowski, Krzysztof C; O'Hare, Joseph Paul; Randeva, Harpal S

    2014-04-01

    There has been intense interest in the adipokines of the C1q complement/TNF-related protein (CTRP) superfamily. Adipolin (CTRP12) has been described as a novel adipokine, abundantly expressed in adipose tissue with insulin-sensitising and anti-inflammatory effects. We wanted to investigate the effects of acute and chronic hyperinsulinaemia on circulating adipolin concentrations (ELISA) via a prolonged insulin-glucose infusion in humans. We also examined the effects of insulin and the insulin sensitiser, rosiglitazone, on adipolin concentrations (western blotting) in human adipose tissue explants. We found that hyperinsulinaemic induction in healthy lean human subjects significantly increased circulating levels of adipolin (P<0.05 and P<0.01). Furthermore, in subcutaneous adipose tissue explants, insulin significantly increased adipolin protein expression and secretion (P<0.05 and P<0.01). This effect was attenuated by the phosphatidylinositol 3-kinase inhibitor, LY294002 (P<0.05). Moreover, the insulin-sensitising peroxisome proliferator-activated receptor γ (PPARγ) agonist, rosiglitazone, significantly increased adipolin protein expression and secretion in subcutaneous adipose tissue explants (P<0.05 and P<0.01). This effect was inhibited by the PPARγ antagonist, GW9662 (P<0.05). Our data provide novel insights into adipolin physiology in human subjects.

  13. The integrative role of leptin, oestrogen and the insulin family in obesity-associated breast cancer: potential effects of exercise

    PubMed Central

    Schmidt, S; Monk, J M; Robinson, L E; Mourtzakis, M

    2015-01-01

    Obesity is an established risk factor for postmenopausal breast cancer. The mechanisms through which obesity influences the development and progression of breast cancer are not fully elucidated; however, several factors such as increased oestrogen, concentrations of various members of the insulin family and inflammation that are associated with adiposity are purported to be important factors in this relationship. Emerging research has also begun to focus on the role of adipokines, (i.e. adipocyte secreted factors), in breast cancer. Leptin secretion is directly related to adiposity and is believed to promote breast cancer directly and independently, as well as through involvement with the oestrogen and insulin signalling pathways. As leptin is secreted from white adipose tissue, any intervention that reduces adiposity may be favourable. However, it is also important to consider that energy expenditure through exercise, independent of fat loss, may improve leptin regulation. The purpose of this narrative review was to explore the role of leptin in breast cancer development and progression, identify key interactions with oestrogen and the insulin family, and distinguish the potential effects of exercise on these interactions. PMID:25875578

  14. Neurotrophin Signaling Is Required for Glucose-Induced Insulin Secretion.

    PubMed

    Houtz, Jessica; Borden, Philip; Ceasrine, Alexis; Minichiello, Liliana; Kuruvilla, Rejji

    2016-11-07

    Insulin secretion by pancreatic islet β cells is critical for glucose homeostasis, and a blunted β cell secretory response is an early deficit in type 2 diabetes. Here, we uncover a regulatory mechanism by which glucose recruits vascular-derived neurotrophins to control insulin secretion. Nerve growth factor (NGF), a classical trophic factor for nerve cells, is expressed in pancreatic vasculature while its TrkA receptor is localized to islet β cells. High glucose rapidly enhances NGF secretion and increases TrkA phosphorylation in mouse and human islets. Tissue-specific deletion of NGF or TrkA, or acute disruption of TrkA signaling, impairs glucose tolerance and insulin secretion in mice. We show that internalized TrkA receptors promote insulin granule exocytosis via F-actin reorganization. Furthermore, NGF treatment augments glucose-induced insulin secretion in human islets. These findings reveal a non-neuronal role for neurotrophins and identify a new regulatory pathway in insulin secretion that can be targeted to ameliorate β cell dysfunction. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. H2O2-Activated Mitochondrial Phospholipase iPLA2γ Prevents Lipotoxic Oxidative Stress in Synergy with UCP2, Amplifies Signaling via G-Protein–Coupled Receptor GPR40, and Regulates Insulin Secretion in Pancreatic β-Cells

    PubMed Central

    Ježek, Jan; Dlasková, Andrea; Zelenka, Jaroslav; Jabůrek, Martin

    2015-01-01

    Abstract Aims: Pancreatic β-cell chronic lipotoxicity evolves from acute free fatty acid (FA)–mediated oxidative stress, unprotected by antioxidant mechanisms. Since mitochondrial uncoupling protein-2 (UCP2) plays antioxidant and insulin-regulating roles in pancreatic β-cells, we tested our hypothesis, that UCP2-mediated uncoupling attenuating mitochondrial superoxide production is initiated by FA release due to a direct H2O2-induced activation of mitochondrial phospholipase iPLA2γ. Results: Pro-oxidant tert-butylhydroperoxide increased respiration, decreased membrane potential and mitochondrial matrix superoxide release rates of control but not UCP2- or iPLA2γ-silenced INS-1E cells. iPLA2γ/UCP2-mediated uncoupling was alternatively activated by an H2O2 burst, resulting from palmitic acid (PA) β-oxidation, and it was prevented by antioxidants or catalase overexpression. Exclusively, nascent FAs that cleaved off phospholipids by iPLA2γ were capable of activating UCP2, indicating that the previously reported direct redox UCP2 activation is actually indirect. Glucose-stimulated insulin release was not affected by UCP2 or iPLA2γ silencing, unless pro-oxidant activation had taken place. PA augmented insulin secretion via G-protein–coupled receptor 40 (GPR40), stimulated by iPLA2γ-cleaved FAs (absent after GPR40 silencing). Innovation and Conclusion: The iPLA2γ/UCP2 synergy provides a feedback antioxidant mechanism preventing oxidative stress by physiological FA intake in pancreatic β-cells, regulating glucose-, FA-, and redox-stimulated insulin secretion. iPLA2γ is regulated by exogenous FA via β-oxidation causing H2O2 signaling, while FAs are cleaved off phospholipids, subsequently acting as amplifying messengers for GPR40. Hence, iPLA2γ acts in eminent physiological redox signaling, the impairment of which results in the lack of antilipotoxic defense and contributes to chronic lipotoxicity. Antioxid. Redox Signal. 23, 958–972. PMID:25925080

  16. MicroRNA-29a is up-regulated in beta-cells by glucose and decreases glucose-stimulated insulin secretion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bagge, Annika; Clausen, Trine R.; Larsen, Sylvester

    Highlights: Black-Right-Pointing-Pointer MicroRNA-29a (miR-29a) levels are increased by glucose in human and rat islets and INS-1E cells. Black-Right-Pointing-Pointer miR-29a increases proliferation of INS-1E beta-cells. Black-Right-Pointing-Pointer Forced expression of miR-29a decreases glucose-stimulated insulin secretion (GSIS). Black-Right-Pointing-Pointer Depletion of beta-cell miR-29a improves GSIS. Black-Right-Pointing-Pointer miR-29a may be a mediator of glucose toxicity in beta-cells. -- Abstract: Chronically elevated levels of glucose impair pancreatic beta-cell function while inducing beta-cell proliferation. MicroRNA-29a (miR-29a) levels are increased in several tissues in diabetic animals and mediate decreased insulin-stimulated glucose-transport of adipocytes. The aim was to investigate the impact of glucose on miR-29a levels in INS-1E beta-cellsmore » and in human islets of Langerhans and furthermore to evaluate the impact of miR-29a on beta-cell function and proliferation. Increased glucose levels up-regulated miR-29a in beta-cells and human and rat islets of Langerhans. Glucose-stimulated insulin-secretion (GSIS) of INS-1E beta-cells was decreased by forced expression of miR-29a, while depletion of endogenous miR-29a improved GSIS. Over-expression of miR-29a increased INS-1E proliferation. Thus, miR-29a up-regulation is involved in glucose-induced proliferation of beta-cells. Furthermore, as depletion of miR-29a improves beta-cell function, miR-29a is a mediator of glucose-induced beta-cell dysfunction. Glucose-induced up-regulation of miR-29a in beta-cells could be implicated in progression from impaired glucose tolerance to type 2 diabetes.« less

  17. Measurement of growth hormone-releasing hormone and somatostatin in hypothalamic-portal plasma of unanesthetized sheep. Spontaneous secretion and response to insulin-induced hypoglycemia.

    PubMed Central

    Frohman, L A; Downs, T R; Clarke, I J; Thomas, G B

    1990-01-01

    To elucidate the role of growth hormone (GH)-releasing hormone (GRH) and somatostatin (SRIH) in the regulation of the growth hormone (GH) secretory pattern, we collected portal blood from five unanesthetized ovariectomized ewes for repeated measurements of GRH and SRIH simultaneous with those of peripheral GH. Hormones were measured at 10-min intervals for 5.5 h and their interrelationships analyzed. Mean portal GRH was 20.4 +/- 6.7 (SD) pg/ml and the estimated overall secretion rate was 13 pg/min. GRH secretion was pulsatile with peaks of 25-40 pg/ml and a mean pulse interval of 71 min. Mean portal SRIH was 72 +/- 33 pg/ml and the estimated overall secretion rate was 32 pg/min. SRIH secretion was also pulsatile with peaks of 65-160 pg/ml and a mean pulse interval of 54 min. The GH pulse interval was 62 min. A significant association was present between GRH and GH secretory peaks though not between GRH and SRIH or SRIH and GH. Insulin hypoglycemia resulted in a rapid and brief stimulation of SRIH secretion followed by a decline in GH levels. No effect was observed on GRH secretion until 90 min, when a slight increase occurred. The results suggest (a) the presence of an independent neural rhythmicity of GRH and SRIH secretion with a primary role of GRH in determining pulsatile GRH secretion, and (b) that the inhibitory effects of insulin hypoglycemia on GH in this species are attributable to a combination of enhanced SRIH secretion and possibly other factors, though without significant inhibition of GRH. PMID:1973173

  18. Anti-Obesity and Anti-Hyperglycemic Effects of Cinnamaldehyde via altered Ghrelin Secretion and Functional impact on Food Intake and Gastric Emptying

    PubMed Central

    Camacho, Susana; Michlig, Stephanie; de Senarclens-Bezençon, Carole; Meylan, Jenny; Meystre, Julie; Pezzoli, Maurizio; Markram, Henry; le Coutre, Johannes

    2015-01-01

    Cinnamon extract is associated to different health benefits but the active ingredients or pathways are unknown. Cinnamaldehyde (CIN) imparts the characteristic flavor to cinnamon and is known to be the main agonist of transient receptor potential-ankyrin receptor 1 (TRPA1). Here, expression of TRPA1 in epithelial mouse stomach cells is described. After receiving a single-dose of CIN, mice significantly reduce cumulative food intake and gastric emptying rates. Co-localization of TRPA1 and ghrelin in enteroendocrine cells of the duodenum is observed both in vivo and in the MGN3-1 cell line, a ghrelin secreting cell model, where incubation with CIN up-regulates expression of TRPA1 and Insulin receptor genes. Ghrelin secreted in the culture medium was quantified following CIN stimulation and we observe that octanoyl and total ghrelin are significantly lower than in control conditions. Additionally, obese mice fed for five weeks with CIN-containing diet significantly reduce their cumulative body weight gain and improve glucose tolerance without detectable modification of insulin secretion. Finally, in adipose tissue up-regulation of genes related to fatty acid oxidation was observed. Taken together, the results confirm anti-hyperglycemic and anti-obesity effects of CIN opening a new approach to investigate how certain spice derived compounds regulate endogenous ghrelin release for therapeutic intervention. PMID:25605129

  19. Effect of naloxone on plasma insulin, insulin-like growth factor I, and its binding protein 1 in patients with polycystic ovarian disease.

    PubMed

    Laatikainen, T; Anttila, L; Suikkari, A M; Ruutiainen, K; Erkkola, R; Seppälä, M

    1990-09-01

    Insulin and insulin-like growth factors (IGFs) stimulate ovarian steroidogenesis, and hyperinsulinemia is often accompanied by hyperandrogenemia in women with polycystic ovarian disease (PCOD). Because opioid peptides are involved in the regulation of insulin secretion, we studied the effect of naloxone-induced opiate receptor blockade on the circulating levels of insulin, IGF-I, and IGF binding protein 1 (IGFBP-1) in 13 nonobese and 7 obese PCOD patients and in 6 healthy subjects. In obese PCOD patients, the mean basal insulin concentration was significantly higher and the IGFBP-1 concentration lower than in nonobese PCOD patients. Plasma IGF-I levels were elevated both in obese and nonobese PCOD patients. After an intravenous bolus of 10 mg naloxone, no significant changes were found in the circulating insulin or IGF-I levels, whereas IGFBP-1 levels decreased in nonobese PCOD patients and remained low in obese PCOD patients. No significant decrease was found in healthy subjects. These results suggest that, in addition to insulin, endogenous opioids are involved in the regulation of serum IGFBP-1 level.

  20. Loss of circadian rhythm of circulating insulin concentration induced by high-fat diet intake is associated with disrupted rhythmic expression of circadian clock genes in the liver.

    PubMed

    Honma, Kazue; Hikosaka, Maki; Mochizuki, Kazuki; Goda, Toshinao

    2016-04-01

    Peripheral clock genes show a circadian rhythm is correlated with the timing of feeding in peripheral tissues. It was reported that these clock genes are strongly regulated by insulin action and that a high-fat diet (HFD) intake in C57BL/6J mice for 21days induced insulin secretion during the dark phase and reduced the circadian rhythm of clock genes. In this study, we examined the circadian expression patterns of these clock genes in insulin-resistant animal models with excess secretion of insulin during the day. We examined whether insulin resistance induced by a HFD intake for 80days altered blood parameters (glucose and insulin concentrations) and expression of mRNA and proteins encoded by clock and functional genes in the liver using male ICR mice. Serum insulin concentrations were continuously higher during the day in mice fed a HFD than control mice. Expression of lipogenesis-related genes (Fas and Accβ) and the transcription factor Chrebp peaked at zeitgeber time (ZT)24 in the liver of control mice. A HFD intake reduced the expression of these genes at ZT24 and disrupted the circadian rhythm. Expression of Bmal1 and Clock, transcription factors that compose the core feedback loop, showed circadian variation and were synchronously associated with Fas gene expression in control mice, but not in those fed a HFD. These results indicate that the disruption of the circadian rhythm of insulin secretion by HFD intake is closely associated with the disappearance of circadian expression of lipogenic and clock genes in the liver of mice. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. The lack of effect of insulin on luteinizing hormone pulsatility in healthy male volunteers provides evidence of a sexual dimorphism in the metabolic regulation of reproductive hormones.

    PubMed

    Pesant, Marie-Hélène; Dwyer, Andrew; Marques Vidal, Pedro; Schneiter, Philippe; Giusti, Vittorio; Tappy, Luc; Pralong, François P

    2012-08-01

    The activity of the neuroendocrine reproductive axis is closely related to nutritional status. This link is particularly important in healthy women, in whom insulin is a positive signal for the reproductive system. In contrast, very little is known regarding this relation in men. This study was designed to evaluate the effect of insulin on the reproductive axis of young male volunteers and to study the effect of short-term hypercaloric feeding on this modulation. The activity of the neuroendocrine reproductive axis was characterized by the pattern of endogenous luteinizing hormone (LH) secretion on the basis of frequent blood sampling protocols. The effect of insulin was tested by comparing the LH secretion pattern between a baseline study and a hyperinsulinemic euglycemic clamp. These studies were performed first in subjects fed a controlled isocaloric diet for 6 d (calculated as 1.5 times their resting metabolic rate) then in the same subjects fed a controlled hypercaloric diet in which 30% extra calories were provided as fat and fructose (3 g · kg(-1) · d(-1)) before undergoing identical protocols. Serum gonadotropins, sex steroids, glucose, insulin, ghrelin, and leptin concentrations were assessed, and the HOMA-IR was calculated. The LH secretion pattern was not affected by insulin or by hypercaloric feeding. Insulin decreased ghrelin and increased leptin concentrations but had no additional effect of hypercaloric feeding despite significantly lower HOMA-IR indexes. Our data indicate that neither insulin nor short-term hypercaloric feeding has any effect on the activity of the male reproductive axis. They also further support the association between ghrelin and insulin and glucose metabolism. This trial was registered at clinicaltrials.gov as NCT01058681.

  2. Rosuvastatin Treatment Affects Both Basal and Glucose-Induced Insulin Secretion in INS-1 832/13 Cells

    PubMed Central

    Salunkhe, Vishal A.; Elvstam, Olof; Eliasson, Lena; Wendt, Anna

    2016-01-01

    Rosuvastatin is a member of the statin family. Like the other statins it is prescribed to lower cholesterol levels and thereby reduce the risk of cardiovascular events. Rosuvastatin lowers the cholesterol levels by inhibiting the key enzyme 3-hydroxy-3-methyl-glutaryl-CoA reductase (HMG-CoA reductase) in the cholesterol producing mevalonate pathway. It has been recognized that apart from their beneficial lipid lowering effects, statins also exhibit diabetogenic properties. The molecular mechanisms behind these remain unresolved. To investigate the effects of rosuvastatin on insulin secretion, we treated INS-1 832/13 cells with varying doses (20 nM to 20 μM) of rosuvastatin for 48 h. At concentrations of 2 μM and above basal insulin secretion was significantly increased. Using diazoxide we could determine that rosuvastatin did not increase basal insulin secretion by corrupting the KATP channels. Glucose-induced insulin secretion on the other hand seemed to be affected differently at different rosuvastatin concentrations. Rosuvastatin treatment (20 μM) for 24–48 h inhibited voltage-gated Ca2+ channels, which lead to reduced depolarization-induced exocytosis of insulin-containing granules. At lower concentrations of rosuvastatin (≤ 2 μM) the stimulus-secretion coupling pathway was intact downstream of the KATP channels as assessed by the patch clamp technique. However, a reduction in glucose-induced insulin secretion could be observed with rosuvastatin concentrations as low as 200 nM. The inhibitory effects of rosuvastatin on glucose-induced insulin secretion could be reversed with mevalonate, but not squalene, indicating that rosuvastatin affects insulin secretion through its effects on the mevalonate pathway, but not through the reduction of cholesterol biosynthesis. Taken together, these data suggest that rosuvastatin has the potential to increase basal insulin secretion and reduce glucose-induced insulin secretion. The latter is possibly an unavoidable side effect of rosuvastatin treatment as it occurs through the same mechanisms as the lipid-lowering effects of the drug. PMID:26986474

  3. Control of brain development and homeostasis by local and systemic insulin signalling.

    PubMed

    Liu, J; Spéder, P; Brand, A H

    2014-09-01

    Insulin and insulin-like growth factors (IGFs) are important regulators of growth and metabolism. In both vertebrates and invertebrates, insulin/IGFs are made available to various organs, including the brain, through two routes: the circulating systemic insulin/IGFs act on distant organs via endocrine signalling, whereas insulin/IGF ligands released by local tissues act in a paracrine or autocrine fashion. Although the mechanisms governing the secretion and action of systemic insulin/IGF have been the focus of extensive investigation, the significance of locally derived insulin/IGF has only more recently come to the fore. Local insulin/IGF signalling is particularly important for the development and homeostasis of the central nervous system, which is insulated from the systemic environment by the blood-brain barrier. Local insulin/IGF signalling from glial cells, the blood-brain barrier and the cerebrospinal fluid has emerged as a potent regulator of neurogenesis. This review will address the main sources of local insulin/IGF and how they affect neurogenesis during development. In addition, we describe how local insulin/IGF signalling couples neural stem cell proliferation with systemic energy state in Drosophila and in mammals. © 2014 John Wiley & Sons Ltd.

  4. Insulin secretion and insulin resistance in Korean women with gestational diabetes mellitus and impaired glucose tolerance

    PubMed Central

    Yang, Sae Jeong; Kim, Tae Nyun; Baik, Sei Hyun; Kim, Tae Sun; Lee, Kwan Woo; Nam, Moonsuk; Park, Yong Soo; Woo, Jeong-Teak; Kim, Young Seol

    2013-01-01

    Background/Aims The aim was to compare the insulin sensitivity and secretion index of pregnant Korean women with normal glucose tolerance (NGT), gestational impaired glucose tolerance (GIGT; only one abnormal value according to the Carpenter and Coustan criteria), and gestational diabetes mellitus (GDM). Methods A cross-sectional study was performed with 1,163 pregnant women with positive (1-hour plasma glucose ≥ 7.2 mmol/L) in a 50-g oral glucose challenge test (OGCT). The 100-g oral glucose tolerance test (OGTT) was used to stratify the participants into three groups: NGT (n = 588), GIGT (n = 294), and GDM (n = 281). Results The GDM group had higher homeostasis model assessment of insulin resistance and lower insulin sensitivity index (ISOGTT), quantitative insulin sensitivity check index, homeostasis model assessment for estimation of index β-cell secretion (HOMA-B), first and second phase insulin secretion, and insulin secretion-sensitivity index (ISSI) than the NGT group (p ≤ 0.001 for all). Moreover, the GIGT group had lower ISOGTT, HOMA-B, first and second phase insulin secretion, and ISSI than the NGT group (p < 0.001 for all). Among the GIGT subjects, the 1-hour plasma glucose abnormal levels group showed significantly greater weight gain during pregnancy and higher values in the 50-g OGCT than the other two groups. Moreover, the 1-hour and 2-hour abnormal levels groups had poorer insulin secretion status than the 3-hour abnormal levels group. Conclusions Korean women with GDM show impairments of both insulin secretion and insulin sensitivity. In addition, GIGT is associated with both β-cell dysfunction and insulin resistance. PMID:23682224

  5. Activation of PPAR{delta} up-regulates fatty acid oxidation and energy uncoupling genes of mitochondria and reduces palmitate-induced apoptosis in pancreatic {beta}-cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wan, Jun; Jiang, Li; Lue, Qingguo

    2010-01-15

    Recent evidence indicates that decreased oxidative capacity, lipotoxicity, and mitochondrial aberrations contribute to the development of insulin resistance and type 2 diabetes. The goal of this study was to investigate the effects of peroxisome proliferator-activated receptor {delta} (PPAR{delta}) activation on lipid oxidation, mitochondrial function, and insulin secretion in pancreatic {beta}-cells. After HIT-T15 cells (a {beta}-cell line) were exposed to high concentrations of palmitate and GW501516 (GW; a selective agonist of PPAR{delta}), we found that administration of GW increased the expression of PPAR{delta} mRNA. GW-induced activation of PPAR{delta} up-regulated carnitine palmitoyltransferase 1 (CPT1), long-chain acyl-CoA dehydrogenase (LCAD), pyruvate dehydrogenase kinase 4more » (PDK4), and uncoupling protein 2 (UCP2); alleviated mitochondrial swelling; attenuated apoptosis; and reduced basal insulin secretion induced by increased palmitate in HIT cells. These results suggest that activation of PPAR{delta} plays an important role in protecting pancreatic {beta}-cells against aberrations caused by lipotoxicity in metabolic syndrome and diabetes.« less

  6. Excess cholesterol inhibits glucose-stimulated fusion pore dynamics in insulin exocytosis.

    PubMed

    Xu, Yingke; Toomre, Derek K; Bogan, Jonathan S; Hao, Mingming

    2017-11-01

    Type 2 diabetes is caused by defects in both insulin sensitivity and insulin secretion. Glucose triggers insulin secretion by causing exocytosis of insulin granules from pancreatic β-cells. High circulating cholesterol levels and a diminished capacity of serum to remove cholesterol from β-cells are observed in diabetic individuals. Both of these effects can lead to cholesterol accumulation in β-cells and contribute to β-cell dysfunction. However, the molecular mechanisms by which cholesterol accumulation impairs β-cell function remain largely unknown. Here, we used total internal reflection fluorescence microscopy to address, at the single-granule level, the role of cholesterol in regulating fusion pore dynamics during insulin exocytosis. We focused particularly on the effects of cholesterol overload, which is relevant to type 2 diabetes. We show that excess cholesterol reduced the number of glucose-stimulated fusion events, and modulated the proportion of full fusion and kiss-and-run fusion events. Analysis of single exocytic events revealed distinct fusion kinetics, with more clustered and compound exocytosis observed in cholesterol-overloaded β-cells. We provide evidence for the involvement of the GTPase dynamin, which is regulated in part by cholesterol-induced phosphatidylinositol 4,5-bisphosphate enrichment in the plasma membrane, in the switch between full fusion and kiss-and-run fusion. Characterization of insulin exocytosis offers insights into the role that elevated cholesterol may play in the development of type 2 diabetes. © 2017 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  7. The physiology of a local renin-angiotensin system in the pancreas.

    PubMed

    Leung, Po Sing

    2007-04-01

    The systemic renin-angiotensin system (RAS) plays an important role in regulating blood pressure, electrolyte and fluid homeostasis. However, local RASs also exist in diverse tissues and organs, where they play a multitude of autocrine, paracrine and intracrine physiological roles. The existence of a local RAS is now recognized in pancreatic acinar, islet, duct, endothelial and stellate cells, the expression of which is modulated in response to physiological and pathophysiological stimuli such as hypoxia, pancreatitis, islet transplantation, hyperglycaemia, and diabetes mellitus. This pancreatic RAS has been proposed to have important endocrine and exocrine roles in the pancreas, regulating local blood flow, duct cell sodium bicarbonate secretion, acinar cell digestive enzyme secretion, islet beta-cell (pro)insulin biosynthesis, and thus, glucose-stimulated insulin release, delta-cell somatostatin secretion, and pancreatic cell proliferation and differentiation. It may further mediate oxidative stress-induced cell inflammation, apoptosis and fibrosis. Further exploration of this system would probably offer new insights into the pathogenesis of pancreatitis, diabetes, cystic fibrosis and pancreatic cancer formation. New therapeutic targets and strategies might thus be suggested.

  8. The physiology of a local renin–angiotensin system in the pancreas

    PubMed Central

    Leung, Po Sing

    2007-01-01

    The systemic renin–angiotensin system (RAS) plays an important role in regulating blood pressure, electrolyte and fluid homeostasis. However, local RASs also exist in diverse tissues and organs, where they play a multitude of autocrine, paracrine and intracrine physiological roles. The existence of a local RAS is now recognized in pancreatic acinar, islet, duct, endothelial and stellate cells, the expression of which is modulated in response to physiological and pathophysiological stimuli such as hypoxia, pancreatitis, islet transplantation, hyperglycaemia, and diabetes mellitus. This pancreatic RAS has been proposed to have important endocrine and exocrine roles in the pancreas, regulating local blood flow, duct cell sodium bicarbonate secretion, acinar cell digestive enzyme secretion, islet beta-cell (pro)insulin biosynthesis, and thus, glucose-stimulated insulin release, delta-cell somatostatin secretion, and pancreatic cell proliferation and differentiation. It may further mediate oxidative stress-induced cell inflammation, apoptosis and fibrosis. Further exploration of this system would probably offer new insights into the pathogenesis of pancreatitis, diabetes, cystic fibrosis and pancreatic cancer formation. New therapeutic targets and strategies might thus be suggested. PMID:17218353

  9. Basal measures of insulin sensitivity and insulin secretion and simplified glucose tolerance tests in dogs.

    PubMed

    Verkest, K R; Fleeman, L M; Rand, J S; Morton, J M

    2010-10-01

    There is need for simple, inexpensive measures of glucose tolerance, insulin sensitivity, and insulin secretion in dogs. The aim of this study was to estimate the closeness of correlation between fasting and dynamic measures of insulin sensitivity and insulin secretion, the precision of fasting measures, and the agreement between results of standard and simplified glucose tolerance tests in dogs. A retrospective descriptive study using 6 naturally occurring obese and 6 lean dogs was conducted. Data from frequently sampled intravenous glucose tolerance tests (FSIGTTs) in 6 obese and 6 lean client-owned dogs were used to calculate HOMA, QUICKI, fasting glucose and insulin concentrations. Fasting measures of insulin sensitivity and secretion were compared with MINMOD analysis of FSIGTTs using Pearson correlation coefficients, and they were evaluated for precision by the discriminant ratio. Simplified sampling protocols were compared with standard FSIGTTs using Lin's concordance correlation coefficients, limits of agreement, and Pearson correlation coefficients. All fasting measures except fasting plasma glucose concentration were moderately correlated with MINMOD-estimated insulin sensitivity (|r| = 0.62-0.80; P < 0.03), and those that combined fasting insulin and glucose were moderately closely correlated with MINMOD-estimated insulin secretion (r = 0.60-0.79; P < 0.04). HOMA calculated using the nonlinear formulae had the closest estimated correlation (r = 0.77 and 0.74) and the best discrimination for insulin sensitivity and insulin secretion (discriminant ratio 4.4 and 3.4, respectively). Simplified sampling protocols with half as many samples collected over 3 h had close agreement with the full sampling protocol. Fasting measures and simplified intravenous glucose tolerance tests reflect insulin sensitivity and insulin secretion derived from frequently sampled glucose tolerance tests with MINMOD analysis in dogs. Copyright 2010 Elsevier Inc. All rights reserved.

  10. Islet-specific monoamine oxidase A and B expression depends on MafA transcriptional activity and is compromised in type 2 diabetes.

    PubMed

    Ganic, Elvira; Johansson, Jenny K; Bennet, Hedvig; Fex, Malin; Artner, Isabella

    2015-12-25

    Lack or dysfunction of insulin producing β cells results in the development of type 1 and type 2 diabetes mellitus, respectively. Insulin secretion is controlled by metabolic stimuli (glucose, fatty acids), but also by monoamine neurotransmitters, like dopamine, serotonin, and norepinephrine. Intracellular monoamine levels are controlled by monoamine oxidases (Mao) A and B. Here we show that MaoA and MaoB are expressed in mouse islet β cells and that inhibition of Mao activity reduces insulin secretion in response to metabolic stimuli. Moreover, analysis of MaoA and MaoB protein expression in mouse and human type 2 diabetic islets shows a significant reduction of MaoB in type 2 diabetic β cells suggesting that loss of Mao contributes to β cell dysfunction. MaoB expression was also reduced in β cells of MafA-deficient mice, a mouse model for β cell dysfunction, and biochemical studies showed that MafA directly binds to and activates MaoA and MaoB transcriptional control sequences. Taken together, our results show that MaoA and MaoB expression in pancreatic islets is required for physiological insulin secretion and lost in type 2 diabetic mouse and human β cells. These findings demonstrate that regulation of monoamine levels by Mao activity in β cells is pivotal for physiological insulin secretion and that loss of MaoB expression may contribute to the β cell dysfunction in type 2 diabetes. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Impaired insulin secretion in the spontaneous diabetes rats.

    PubMed

    Kimura, K; Toyota, T; Kakizaki, M; Kudo, M; Takebe, K; Goto, Y

    1982-08-01

    Dynamics of insulin and glucagon secretion were investigated by using a new model of spontaneous diabetes rats produced by the repetition of selective breeding in our laboratories. The perfusion experiments of the pancreas showed that the early phase of insulin secretion to continuous stimulation with glucose was specifically impaired, although the response of the early phase to arginine was preserved. The glucose-induced insulin secretion in the nineth generation (F8) which had a more remarkably impaired glucose tolerance was more reduced than in the sixth generation (F5). No significant difference of glucagon secretion in response to arginine or norepinephrine was noted between the diabetes rats and control ones. The present data indicate that the defective insulin secretion is a primary derangement in a diabetic state of the spontaneous diabetes rat. This defect in the early phase of glucose-induced insulin secretion suggests the specific impairment of the recognition of glucose by the pancreatic beta-cells. The spontaneous diabetes rats are very useful as a model of disease for investigating pathophysiology of non-insulin dependent diabetes mellitus.

  12. New twist on neuronal insulin receptor signaling in health, disease, and therapeutics.

    PubMed

    Wada, Akihiko; Yokoo, Hiroki; Yanagita, Toshihiko; Kobayashi, Hideyuki

    2005-10-01

    Long after the pioneering studies documenting the existence of insulin (year 1967) and insulin receptor (year 1978) in brain, the last decade has witnessed extraordinary progress in the understanding of brain region-specific multiple roles of insulin receptor signalings in health and disease. In the hypothalamus, insulin regulates food intake, body weight, peripheral fat deposition, hepatic gluconeogenesis, reproductive endocrine axis, and compensatory secretion of counter-regulatory hormones to hypoglycemia. In the hippocampus, insulin promotes learning and memory, independent of the glucoregulatory effect of insulin. Defective insulin receptor signalings are associated with the dementia in normal aging and patients with age-related neurodegenerative diseases (e.g., Alzheimer's disease); the cognitive impairment can be reversed with systemic administration of insulin in the euglycemic condition. Intranasal administration of insulin enhances memory and mood and decreases body weight in healthy humans, without causing hypoglycemia. In the hypothalamus, insulin-induced activation of the phosphoinositide 3-kinase pathway followed by opening of ATP-sensitive K+ channel has been shown to be related to multiple effects of insulin. However, the precise molecular mechanisms of insulin's pleiotropic effects still remain obscure. More importantly, much remains unknown about the quality control mechanisms ensuring correct conformational maturation of the insulin receptor, and the cellular mechanisms regulating density of cell surface functional insulin receptors.

  13. Altered Plasma Profile of Antioxidant Proteins as an Early Correlate of Pancreatic β Cell Dysfunction*

    PubMed Central

    Kuo, Taiyi; Kim-Muller, Ja Young; McGraw, Timothy E.; Accili, Domenico

    2016-01-01

    Insulin resistance and β cell dysfunction contribute to the pathogenesis of type 2 diabetes. Unlike insulin resistance, β cell dysfunction remains difficult to predict and monitor, because of the inaccessibility of the endocrine pancreas, the integrated relationship with insulin sensitivity, and the paracrine effects of incretins. The goal of our study was to survey the plasma response to a metabolic challenge in order to identify factors predictive of β cell dysfunction. To this end, we combined (i) the power of unbiased iTRAQ (isobaric tag for relative and absolute quantification) mass spectrometry with (ii) direct sampling of the portal vein following an intravenous glucose/arginine challenge (IVGATT) in (iii) mice with a genetic β cell defect. By so doing, we excluded the effects of peripheral insulin sensitivity as well as those of incretins on β cells, and focused on the first phase of insulin secretion to capture the early pathophysiology of β cell dysfunction. We compared plasma protein profiles with ex vivo islet secretome and transcriptome analyses. We detected changes to 418 plasma proteins in vivo, and detected changes to 262 proteins ex vivo. The impairment of insulin secretion was associated with greater overall changes in the plasma response to IVGATT, possibly reflecting metabolic instability. Reduced levels of proteins regulating redox state and neuronal stress markers, as well as increased levels of coagulation factors, antedated the loss of insulin secretion in diabetic mice. These results suggest that a reduced complement of antioxidants in response to a mixed secretagogue challenge is an early correlate of future β cell failure. PMID:26917725

  14. Upregulation of an inward rectifying K+ channel can rescue slow Ca2+ oscillations in K(ATP) channel deficient pancreatic islets.

    PubMed

    Yildirim, Vehpi; Vadrevu, Suryakiran; Thompson, Benjamin; Satin, Leslie S; Bertram, Richard

    2017-07-01

    Plasma insulin oscillations are known to have physiological importance in the regulation of blood glucose. In insulin-secreting β-cells of pancreatic islets, K(ATP) channels play a key role in regulating glucose-dependent insulin secretion. In addition, they convey oscillations in cellular metabolism to the membrane by sensing adenine nucleotides, and are thus instrumental in mediating pulsatile insulin secretion. Blocking K(ATP) channels pharmacologically depolarizes the β-cell plasma membrane and terminates islet oscillations. Surprisingly, when K(ATP) channels are genetically knocked out, oscillations in islet activity persist, and relatively normal blood glucose levels are maintained. Compensation must therefore occur to overcome the loss of K(ATP) channels in K(ATP) knockout mice. In a companion study, we demonstrated a substantial increase in Kir2.1 protein occurs in β-cells lacking K(ATP) because of SUR1 deletion. In this report, we demonstrate that β-cells of SUR1 null islets have an upregulated inward rectifying K+ current that helps to compensate for the loss of K(ATP) channels. This current is likely due to the increased expression of Kir2.1 channels. We used mathematical modeling to determine whether an ionic current having the biophysical characteristics of Kir2.1 is capable of rescuing oscillations that are similar in period to those of wild-type islets. By experimentally testing a key model prediction we suggest that Kir2.1 current upregulation is a likely mechanism for rescuing the oscillations seen in islets from mice deficient in K(ATP) channels.

  15. Combined contributions of over-secreted glucagon-like peptide 1 and suppressed insulin secretion to hyperglycemia induced by gatifloxacin in rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Yunli, E-mail: chrisyu1255@yahoo.com.cn; Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009; Wang, Xinting, E-mail: wxinting1986@yahoo.com.cn

    Accumulating evidences have showed that gatifloxacin causes dysglycemia in both diabetic and non-diabetic patients. Our preliminary study demonstrated that gatifloxacin stimulated glucagon-like peptide 1 (GLP-1) secretion from intestinal cells. The aim of the study was to investigate the association between gatifloxacin-stimulated GLP-1 release and dysglycemia in both normal and streptozotocin-induced diabetic rats and explore the possible mechanisms. Oral administration of gatifloxacin (100 mg/kg/day and 200 mg/kg/day) for 3 and 12 days led to marked elevation of GLP-1 levels, accompanied by significant decrease in insulin levels and increase in plasma glucose. Similar results were found in normal rats treated with 3-daymore » gatifloxacin. Gatifloxacin-stimulated GLP-1 release was further confirmed in NCI-H716 cells, which was abolished by diazoxide, a K{sub ATP} channel opener. QT-PCR analysis showed that gatifloxacin also upregulated expression of proglucagon and prohormone convertase 3 mRNA. To clarify the contradiction on elevated GLP-1 without insulinotropic effect, effects of GLP-1 and gatifloxacin on insulin release were investigated using INS-1 cells. We found that short exposure (2 h) to GLP-1 stimulated insulin secretion and biosynthesis, whereas long exposure (24 h and 48 h) to high level of GLP-1 inhibited insulin secretion and biosynthesis. Moreover, we also confirmed gatifloxacin acutely stimulated insulin secretion while chronically inhibited insulin biosynthesis. All the results gave an inference that gatifloxacin stimulated over-secretion of GLP-1, in turn, high levels of GLP-1 and gatifloxacin synergistically impaired insulin release, worsening hyperglycemia. -- Highlights: ► Gatifloxacin induced hyperglycemia both in diabetic rats and normal rats. ► Gatifloxacin enhanced GLP-1 secretion but inhibited insulin secretion in rats. ► Long-term exposure to high GLP-1 inhibited insulin secretion and biosynthesis. ► GLP-1 over-secretion may be involved in gatifloxacin-induced hyperglycemia.« less

  16. Conjoint regulation of glucagon concentrations via plasma insulin and glucose in dairy cows.

    PubMed

    Zarrin, M; Wellnitz, O; Bruckmaier, R M

    2015-04-01

    Insulin and glucagon are glucoregulatory hormones that contribute to glucose homeostasis. Plasma insulin is elevated during normoglycemia or hyperglycemia and acts as a suppressor of glucagon secretion. We have investigated if and how insulin and glucose contribute to the regulation of glucagon secretion through long term (48 h) elevated insulin concentrations during simultaneous hypoglycemia or euglycemia in mid-lactating dairy cows. Nineteen Holstein dairy cows were randomly assigned to 3 treatment groups: an intravenous insulin infusion (HypoG, n = 5) to decrease plasma glucose concentrations (2.5 mmol/L), a hyperinsulinemic-euglycemic clamp to study effects of insulin at simultaneously normal glucose concentrations (EuG, n = 6) and a 0.9% saline infusion (NaCl, n = 8). Plasma glucose was measured at 5-min intervals, and insulin and glucose infusion rates were adjusted accordingly. Area under the curve of hourly glucose, insulin, and glucagon concentrations on day 2 of infusion was evaluated by analysis of variance with treatments as fixed effect. Insulin infusion caused an increase of plasma insulin area under the curve (AUC)/h in HypoG (41.9 ± 8.1 mU/L) and EuG (57.8 ± 7.8 mU/L) compared with NaCl (13.9 ± 1.1 mU/L; P < 0.01). Induced hyperinsulinemia caused a decline of plasma glucose AUC/h to 2.3 ± 0.1 mmol/L in HypoG (P < 0.01), whereas plasma glucose AUC/h remained unchanged in EuG (3.8 ± 0.2 mmol/L) and NaCl (4.1 ± 0.1 mmol/L). Plasma glucagon AUC/h was lower in EuG (84.0 ± 6.3 pg/mL; P < 0.05) and elevated in HypoG (129.0 ± 7.0 pg/mL; P < 0.01) as compared with NaCl (106.1 ± 5.4 pg/mL). The results show that intravenous insulin infusion induces elevated glucagon concentrations during hypoglycemia, although the same insulin infusion reduces glucagon concentrations at simultaneously normal glucose concentrations. Thus, insulin does not generally have an inhibitory effect on glucagon concentrations. If simultaneously glucose is low and insulin is high, glucagon is upregulated to increase glucose availability. Therefore, insulin and glucose are conjoint regulatory factors of glucagon concentrations in dairy cows, and the plasma glucose status is the key factor to decide if its concentrations are increased or decreased. This regulatory effect can be important for the maintenance of glucose homeostasis if insulin secretion is upregulated by other factors than high glucose such as high plasma lipid and protein concentrations at simultaneously low glucose. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. TRPM2 activation by cyclic ADP-ribose at body temperature is involved in insulin secretion

    PubMed Central

    Togashi, Kazuya; Hara, Yuji; Tominaga, Tomoko; Higashi, Tomohiro; Konishi, Yasunobu; Mori, Yasuo; Tominaga, Makoto

    2006-01-01

    There are eight thermosensitive TRP (transient receptor potential) channels in mammals, and there might be other TRP channels sensitive to temperature stimuli. Here, we demonstrate that TRPM2 can be activated by exposure to warm temperatures (>35°C) apparently via direct heat-evoked channel gating. β-NAD+- or ADP-ribose-evoked TRPM2 activity is robustly potentiated at elevated temperatures. We also show that, even though cyclic ADP-ribose (cADPR) does not activate TRPM2 at 25°C, co-application of heat and intracellular cADPR dramatically potentiates TRPM2 activity. Heat and cADPR evoke similar responses in rat insulinoma RIN-5F cells, which express TRPM2 endogenously. In pancreatic islets, TRPM2 is coexpressed with insulin, and mild heating of these cells evokes increases in both cytosolic Ca2+ and insulin release, which is KATP channel-independent and protein kinase A-mediated. Heat-evoked responses in both RIN-5F cells and pancreatic islets are significantly diminished by treatment with TRPM2-specific siRNA. These results identify TRPM2 as a potential molecular target for cADPR, and suggest that TRPM2 regulates Ca2+ entry into pancreatic β-cells at body temperature depending on the production of cADPR-related molecules, thereby regulating insulin secretion. PMID:16601673

  18. D-Xylose as a sugar complement regulates blood glucose levels by suppressing phosphoenolpyruvate carboxylase (PEPCK) in streptozotocin-nicotinamide-induced diabetic rats and by enhancing glucose uptake in vitro

    PubMed Central

    Kim, Eunju; Kim, Yoo-Sun; Kim, Kyung-Mi; Jung, Sangwon; Yoo, Sang-Ho

    2016-01-01

    BACKGROUND/OBJECTIVES Type 2 diabetes (T2D) is more frequently diagnosed and is characterized by hyperglycemia and insulin resistance. D-Xylose, a sucrase inhibitor, may be useful as a functional sugar complement to inhibit increases in blood glucose levels. The objective of this study was to investigate the anti-diabetic effects of D-xylose both in vitro and stretpozotocin (STZ)-nicotinamide (NA)-induced models in vivo. MATERIALS/METHODS Wistar rats were divided into the following groups: (i) normal control; (ii) diabetic control; (iii) diabetic rats supplemented with a diet where 5% of the total sucrose content in the diet was replaced with D-xylose; and (iv) diabetic rats supplemented with a diet where 10% of the total sucrose content in the diet was replaced with D-xylose. These groups were maintained for two weeks. The effects of D-xylose on blood glucose levels were examined using oral glucose tolerance test, insulin secretion assays, histology of liver and pancreas tissues, and analysis of phosphoenolpyruvate carboxylase (PEPCK) expression in liver tissues of a STZ-NA-induced experimental rat model. Levels of glucose uptake and insulin secretion by differentiated C2C12 muscle cells and INS-1 pancreatic β-cells were analyzed. RESULTS In vivo, D-xylose supplementation significantly reduced fasting serum glucose levels (P < 0.05), it slightly reduced the area under the glucose curve, and increased insulin levels compared to the diabetic controls. D-Xylose supplementation enhanced the regeneration of pancreas tissue and improved the arrangement of hepatocytes compared to the diabetic controls. Lower levels of PEPCK were detected in the liver tissues of D-xylose-supplemented rats (P < 0.05). In vitro, both 2-NBDG uptake by C2C12 cells and insulin secretion by INS-1 cells were increased with D-xylose supplementation in a dose-dependent manner compared to treatment with glucose alone. CONCLUSIONS In this study, D-xylose exerted anti-diabetic effects in vivo by regulating blood glucose levels via regeneration of damaged pancreas and liver tissues and regulation of PEPCK, a key rate-limiting enzyme in the process of gluconeogenesis. In vitro, D-xylose induced the uptake of glucose by muscle cells and the secretion of insulin cells by β-cells. These mechanistic insights will facilitate the development of highly effective strategy for T2D. PMID:26865911

  19. The Diagnosis and Management of Hyperinsulinaemic Hypoglycaemia

    PubMed Central

    Roženková, Klára; Güemes, Maria; Shah, Pratik; Hussain, Khalid

    2015-01-01

    Insulin secretion from pancreatic β-cells is tightly regulated to keep fasting blood glucose concentrations within the normal range (3.5-5.5 mmol/L). Hyperinsulinaemic hypoglycaemia (HH) is a heterozygous condition in which insulin secretion becomes unregulated and its production persists despite low blood glucose levels. It is the most common cause of severe and persistent hypoglycaemia in neonates and children. The most severe and permanent forms are due to congenital hyperinsulinism (CHI). Recent advances in genetics have linked CHI to mutations in 9 genes that play a key role in regulating insulin secretion (ABCC8, KCNJ11, GLUD1, GCK, HADH, SLC16A1, UCP2, HNF4A and HNF1A). Histologically, CHI can be divided into 3 types; diffuse, focal and atypical. Given the biochemical nature of HH (non-ketotic), a delay in the diagnosis and management can result in irreversible brain damage. Therefore, it is essential to diagnose and treat HH promptly. Advances in molecular genetics, imaging methods (18F-DOPA PET-CT), medical therapy and surgical approach (laparoscopic surgery) have completely changed the management and improved the outcome of these children. This review provides an overview of the genetic and molecular mechanisms leading to development of HH in children. The article summarizes the current diagnostic methods and management strategies for the different types of CHI. PMID:26316429

  20. Effects of 6-month eicosapentaenoic acid treatment on postprandial hyperglycemia, hyperlipidemia, insulin secretion ability, and concomitant endothelial dysfunction among newly-diagnosed impaired glucose metabolism patients with coronary artery disease. An open label, single blinded, prospective randomized controlled trial.

    PubMed

    Sawada, Takahiro; Tsubata, Hideo; Hashimoto, Naoko; Takabe, Michinori; Miyata, Taishi; Aoki, Kosuke; Yamashita, Soichiro; Oishi, Shogo; Osue, Tsuyoshi; Yokoi, Kiminobu; Tsukishiro, Yasue; Onishi, Tetsuari; Shimane, Akira; Taniguchi, Yasuyo; Yasaka, Yoshinori; Ohara, Takeshi; Kawai, Hiroya; Yokoyama, Mitsuhiro

    2016-08-26

    Recent experimental studies have revealed that n-3 fatty acids, such as eicosapentaenoic acid (EPA) regulate postprandial insulin secretion, and correct postprandial glucose and lipid abnormalities. However, the effects of 6-month EPA treatment on postprandial hyperglycemia and hyperlipidemia, insulin secretion, and concomitant endothelial dysfunction remain unknown in patients with impaired glucose metabolism (IGM) and coronary artery disease (CAD). We randomized 107 newly diagnosed IGM patients with CAD to receive either 1800 mg/day of EPA (EPA group, n = 53) or no EPA (n = 54). Cookie meal testing (carbohydrates: 75 g, fat: 28.5 g) and endothelial function testing using fasting-state flow-mediated dilatation (FMD) were performed before and after 6 months of treatment. The primary outcome of this study was changes in postprandial glycemic and triglyceridemic control and secondary outcomes were improvement of insulin secretion and endothelial dysfunction. After 6 months, the EPA group exhibited significant improvements in EPA/arachidonic acid, fasting triglyceride (TG), and high-density lipoprotein cholesterol (HDL-C). The EPA group also exhibited significant decreases in the incremental TG peak, area under the curve (AUC) for postprandial TG, incremental glucose peak, AUC for postprandial glucose, and improvements in glycometabolism categorization. No significant changes were observed for hemoglobin A1c and fasting plasma glucose levels. The EPA group exhibited a significant increase in AUC-immune reactive insulin/AUC-plasma glucose ratio (which indicates postprandial insulin secretory ability) and significant improvements in FMD. Multiple regression analysis revealed that decreases in the TG/HDL-C ratio and incremental TG peak were independent predictors of FMD improvement in the EPA group. EPA corrected postprandial hypertriglyceridemia, hyperglycemia and insulin secretion ability. This amelioration of several metabolic abnormalities was accompanied by recovery of concomitant endothelial dysfunction in newly diagnosed IGM patients with CAD. Clinical Trial Registration UMIN Registry number: UMIN000011265 ( https://www.upload.umin.ac.jp/cgi-open-bin/ctr/ctr.cgi?function=brows&action=brows&type=summary&recptno=R000013200&language=E ).

  1. Cholesterol in islet dysfunction and type 2 diabetes

    PubMed Central

    Brunham, Liam R.; Kruit, Janine K.; Verchere, C. Bruce; Hayden, Michael R.

    2008-01-01

    Type 2 diabetes (T2D) frequently occurs in the context of abnormalities of plasma lipoproteins. However, a role for elevated levels of plasma cholesterol in the pathogenesis of this disease is not well established. Recent evidence suggests that alterations of plasma and islet cholesterol levels may contribute to islet dysfunction and loss of insulin secretion. A number of genes involved in lipid metabolism have been implicated in T2D. Recently an important role for ABCA1, a cellular cholesterol transporter, has emerged in regulating cholesterol homeostasis and insulin secretion in pancreatic β cells. Here we review the impact of cholesterol metabolism on islet function and its potential relationship to T2D. PMID:18246189

  2. Characteristics of repaglinide effects on insulin secretion.

    PubMed

    Takahashi, Harumi; Hidaka, Shihomi; Seki, Chihiro; Yokoi, Norihide; Seino, Susumu

    2018-06-05

    The dynamics of insulin secretion stimulated by repaglinide, a glinide, and the combinatorial effects of repaglinide and incretin were investigated. At 4.4 mM glucose, repaglinide induced insulin secretion with a gradually increasing first phase, showing different dynamics from that induced by glimepiride, a sulfonylurea. In the presence of glucagon-like peptide-1 (GLP-1), insulin secretion by repaglinide was augmented significantly but to lesser extent and showed different dynamics from that by glimepiride. At 4.4 mM glucose, the intracellular Ca 2+ level was gradually increased by repaglinide alone or repaglinide plus GLP-1, which differs from the Ca 2+ dynamics by glimepiride alone or glimepiride plus GLP-1, suggesting that the difference in Ca 2+ dynamics contributes to the difference in the dynamics of insulin secretion. At a higher concentration (8.8 mM) of glucose, the dynamics of insulin secretion stimulated by repaglinide was similar to that by glimepiride. Combination of repaglinide and GLP-1 significantly augmented insulin secretion, the amount of which was comparable to that by the combination of glimepiride and GLP-1. The Ca 2+ dynamics was similar for repaglinide and glimepiride at 8.8 mM glucose. Our data indicate that repaglinide has characteristic properties in its effects on the dynamics of insulin secretion and intracellular Ca 2+ and that the combination of repaglinide and GLP-1 stimulates insulin secretion more effectively than the combination of glimepiride and GLP-1 at a high concentration of glucose, providing a basis for its use in clinical settings. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Long noncoding RNA MALAT1 regulates generation of reactive oxygen species and the insulin responses in male mice.

    PubMed

    Chen, Jingshu; Ke, Sui; Zhong, Lei; Wu, Jing; Tseng, Alexander; Morpurgo, Benjamin; Golovko, Andrei; Wang, Gang; Cai, James J; Ma, Xi; Li, Defa; Tian, Yanan

    2018-06-01

    The metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) is a long noncoding RNA and its overexpression is associated with the development of many types of malignancy. MALAT1 null mice show no overt phenotype. However, in transcriptome analysis of MALAT1 null mice we found significant upregulation of nuclear factor-erythroid 2 p45-related factor 2 (Nrf2) regulated antioxidant genes including Nqo1 and Cat with significant reduction in reactive oxygen species (ROS) and greatly reduced ROS-generated protein carbonylation in hepatocyte and islets. We performed lncRNA pulldown assay using biotinylated antisense oligonucleotides against MALAT1 and found MALAT1 interacted with Nrf2, suggesting Nrf2 is transcriptionally regulated by MALAT1. Exposure to excessive ROS has been shown to cause insulin resistance through activation of c-Jun N-terminal kinase (JNK) which leads to inhibition of insulin receptor substrate 1 (IRS-1) and insulin-induced phosphorylation of serine/threonine kinase Akt. We found MALAT1 ablation suppressed JNK activity with concomitant insulin-induced activation of IRS-1 and phosphorylation of Akt suggesting MALAT1 regulated insulin responses. MALAT1 null mice exhibited sensitized insulin-signaling response to fast-refeeding and glucose/insulin challenges and significantly increased insulin secretion in response to glucose challenge in isolated MALAT1 null islets, suggesting an increased insulin sensitivity. In summary, we demonstrate that MALAT1 plays an important role in regulating insulin sensitivity and has the potential as a therapeutic target for the treatment of diabetes as well as other diseases caused by excessive exposure to ROS. Copyright © 2018. Published by Elsevier Inc.

  4. Plasma HDL-cholesterol and triglycerides, but not LDL-cholesterol, are associated with insulin secretion in non-diabetic subjects.

    PubMed

    Natali, Andrea; Baldi, Simona; Bonnet, Fabrice; Petrie, John; Trifirò, Silvia; Tricò, Domenico; Mari, Andrea

    2017-04-01

    Experimental data support the notion that lipoproteins might directly affect beta cell function, however clinical data are sparse and inconsistent. We aimed at verifying whether, independently of major confounders, serum lipids are associated with alterations in insulin secretion or clearance non-diabetic subjects. Cross sectional and observational prospective (3.5yrs), multicentre study in which 1016 non-diabetic volunteers aged 30-60yrs. and with a wide range of BMI (20.0-39.9kg/m 2 ) were recruited in a setting of University hospital ambulatory care (RISC study). baseline fasting lipids, fasting and OGTT-induced insulin secretion and clearance (measured by glucose and C-peptide modeling), peripheral insulin sensitivity (by the euglycemic clamp). Lipids and OGTT were repeated in 980 subjects after 3.5years. LDL-cholesterol did not show independent associations with fasting or stimulated insulin secretion or clearance. After accounting for potential confounders, HDL-cholesterol displayed negative and triglycerides positive independent associations with fasting and OGTT insulin secretion; neither with insulin clearance. Low HDL-cholesterol and high triglycerides were associated with an increase in glucose-dependent and a decrease in non-glucose-dependent insulin secretion. Over 3.5years both an HDL-cholesterol decline and a triglycerides rise were associated with an increase in fasting insulin secretion independent of changes in body weight or plasma glucose. LDL-cholesterol does not seem to influence any major determinant of insulin bioavailability while low HDL-cholesterol and high triglycerides might contribute to sustain the abnormalities in insulin secretion that characterize the pre-diabetic state. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Effects of N-[(trans-4-isopropylcyclohexyl)-carbonyl]-D-phenylalanine (A-4166) on insulin and glucagon secretion in isolated perfused rat pancreas.

    PubMed

    Hirose, H; Maruyama, H; Ito, K; Seto, Y; Kido, K; Koyama, K; Dan, K; Saruta, T; Kato, R

    1994-04-01

    N-[(trans-4-isopropylcyclohexyl)-carbonyl]-D-phenylalanine (A-4166) has a structure which differs from those of other known blood glucose-lowering agents including sulfonylureas. It has been shown that oral administration of A-4166 exerts blood glucose-lowering effects in animal in vivo studies. In the present study, we investigated the effects of A-4166 on insulin and glucagon secretion at several glucose concentrations using isolated perfused rat pancreas preparations. Both 3.0 and 30 mumol/l A-4166 significantly stimulated insulin secretion as compared with basal levels at glucose concentrations of 8.0 and 11.0 mmol (p < 0.01 and p < 0.05, respectively). In contrast, glucagon secretion was not affected by administration of A-4166 up to 30 mumol/l at these glucose concentrations. At a glucose concentration of 5.6 mmol/l, neither 0.3 nor 3.0 mumol/l A-4166 produced significant changes in insulin and glucagon secretion. However, A-4166 at 30 mumol/l significantly stimulated insulin secretion and inhibited glucagon secretion as compared with basal levels (p < 0.01 and p < 0.01, respectively). We conclude that A-4166 at 3.0 and 30 mumol/l directly stimulates insulin secretion but has little effect on glucagon secretion in isolated perfused rat pancreas at glucose concentrations of 8.0 and 11.0 mmol/l. these results, taken together with previously published data, suggest that oral administration of A-4166 could be a useful strategy for stimulating endogenous insulin secretion in non-insulin-dependent diabetic patients.

  6. α-Synuclein binds the KATP channel at insulin-secretory granules and inhibits insulin secretion

    PubMed Central

    Geng, Xuehui; Lou, Haiyan; Wang, Jian; Li, Lehong; Swanson, Alexandra L.; Sun, Ming; Beers-Stolz, Donna; Watkins, Simon; Perez, Ruth G.

    2011-01-01

    α-Synuclein has been studied in numerous cell types often associated with secretory processes. In pancreatic β-cells, α-synuclein might therefore play a similar role by interacting with organelles involved in insulin secretion. We tested for α-synuclein localizing to insulin-secretory granules and characterized its role in glucose-stimulated insulin secretion. Immunohistochemistry and fluorescent sulfonylureas were used to test for α-synuclein localization to insulin granules in β-cells, immunoprecipitation with Western blot analysis for interaction between α-synuclein and KATP channels, and ELISA assays for the effect of altering α-synuclein expression up or down on insulin secretion in INS1 cells or mouse islets, respectively. Differences in cellular phenotype between α-synuclein knockout and wild-type β-cells were found by using confocal microscopy to image the fluorescent insulin biosensor Ins-C-emGFP and by using transmission electron microscopy. The results show that anti-α-synuclein antibodies labeled secretory organelles within β-cells. Anti-α-synuclein antibodies colocalized with KATP channel, anti-insulin, and anti-C-peptide antibodies. α-Synuclein coimmunoprecipitated in complexes with KATP channels. Expression of α-synuclein downregulated insulin secretion at 2.8 mM glucose with little effect following 16.7 mM glucose stimulation. α-Synuclein knockout islets upregulated insulin secretion at 2.8 and 8.4 mM but not 16.7 mM glucose, consistent with the depleted insulin granule density at the β-cell surface membranes observed in these islets. These findings demonstrate that α-synuclein interacts with KATP channels and insulin-secretory granules and functionally acts as a brake on secretion that glucose stimulation can override. α-Synuclein might play similar roles in diabetes as it does in other degenerative diseases, including Alzheimer's and Parkinson's diseases. PMID:20858756

  7. Effects of Steaming Time and Frequency for Manufactured Red Liriope platyphylla on the Insulin Secretion Ability and Insulin Receptor Signaling Pathway.

    PubMed

    Choi, Sun Il; Lee, Hye Ryun; Goo, Jun Seo; Kim, Ji Eun; Nam, So Hee; Hwang, In Sik; Lee, Young Ju; Prak, So Hae; Lee, Hee Seob; Lee, Jong Sup; Jang, In Surk; Son, Hong Ju; Hwang, Dae Youn

    2011-06-01

    In oriental medicine, Liriope platyphylla (LP) has long been regarded as a curative herb useful for the treatment of diabetes, asthma, and neurodegenerative disorders. The principal objective of this study was to assess the effects of steaming time and frequency for manufactured Red LP (RLP) on insulin secretion ability and insulin receptor signaling pathway. To achieve our goal, several types of LPs manufactured under different conditions were applied to INS cells and streptozotocin (STZ)-induced diabetic ICR mice, after which alterations in insulin concentrations were detected in the culture supernatants and sera. The optimal concentration for the investigation of insulin secretion ability was found to be 50 ug/mL of LP. At this concentration, maximum insulin secretion was observed in the INS cells treated with LP extract steamed for 3 h (3-SLP) with two repeated steps (3 h steaming and 24 h air-dried) carried out 9 times (9-SALP); no significant changes in viability were detected in any of the treated cells. Additionally, the expression and phosphorylation levels of most components in the insulin receptor signaling pathway were increased significantly in the majority of cells treated with steaming-processed LP as compared to the cells treated with LP prepared without steaming. With regard to glucose transporter (GLUT) expression, alterations of steaming time induced similar responses on the expression levels of GLUT-2 and GLUT-3. However, differences in steaming frequency were also shown to induce dose-dependent responses in the expression level of GLUT-2 only; no significant differences in GLUT-3 expression were detected under these conditions. Furthermore, these responses observed in vitro were similarly detected in STZ-induced diabetic mice. 24-SLP and 9-SALP treatment applied for 14 days induced the down-regulation of glucose concentration and upregulation of insulin concentration. Therefore, these results indicated that the steaming processed LP may contribute to the relief of diabetes symptoms and should be regarded as an excellent candidate for a diabetes treatment.

  8. Effects of Steaming Time and Frequency for Manufactured Red Liriope platyphylla on the Insulin Secretion Ability and Insulin Receptor Signaling Pathway

    PubMed Central

    Choi, Sun Il; Lee, Hye Ryun; Goo, Jun Seo; Kim, Ji Eun; Nam, So Hee; Hwang, In Sik; Lee, Young Ju; Prak, So Hae; Lee, Hee Seob; Lee, Jong Sup; Jang, In Surk; Son, Hong Ju

    2011-01-01

    In oriental medicine, Liriope platyphylla (LP) has long been regarded as a curative herb useful for the treatment of diabetes, asthma, and neurodegenerative disorders. The principal objective of this study was to assess the effects of steaming time and frequency for manufactured Red LP (RLP) on insulin secretion ability and insulin receptor signaling pathway. To achieve our goal, several types of LPs manufactured under different conditions were applied to INS cells and streptozotocin (STZ)-induced diabetic ICR mice, after which alterations in insulin concentrations were detected in the culture supernatants and sera. The optimal concentration for the investigation of insulin secretion ability was found to be 50 ug/mL of LP. At this concentration, maximum insulin secretion was observed in the INS cells treated with LP extract steamed for 3 h (3-SLP) with two repeated steps (3 h steaming and 24 h air-dried) carried out 9 times (9-SALP); no significant changes in viability were detected in any of the treated cells. Additionally, the expression and phosphorylation levels of most components in the insulin receptor signaling pathway were increased significantly in the majority of cells treated with steaming-processed LP as compared to the cells treated with LP prepared without steaming. With regard to glucose transporter (GLUT) expression, alterations of steaming time induced similar responses on the expression levels of GLUT-2 and GLUT-3. However, differences in steaming frequency were also shown to induce dose-dependent responses in the expression level of GLUT-2 only; no significant differences in GLUT-3 expression were detected under these conditions. Furthermore, these responses observed in vitro were similarly detected in STZ-induced diabetic mice. 24-SLP and 9-SALP treatment applied for 14 days induced the down-regulation of glucose concentration and upregulation of insulin concentration. Therefore, these results indicated that the steaming processed LP may contribute to the relief of diabetes symptoms and should be regarded as an excellent candidate for a diabetes treatment. PMID:21826171

  9. PI3K regulates endocytosis after insulin secretion by mediating signaling crosstalk between Arf6 and Rab27a.

    PubMed

    Yamaoka, Mami; Ando, Tomomi; Terabayashi, Takeshi; Okamoto, Mitsuhiro; Takei, Masahiro; Nishioka, Tomoki; Kaibuchi, Kozo; Matsunaga, Kohichi; Ishizaki, Ray; Izumi, Tetsuro; Niki, Ichiro; Ishizaki, Toshimasa; Kimura, Toshihide

    2016-02-01

    In secretory cells, endocytosis is coupled to exocytosis to enable proper secretion. Although endocytosis is crucial to maintain cellular homeostasis before and after secretion, knowledge about secretagogue-induced endocytosis in secretory cells is still limited. Here, we searched for proteins that interacted with the Rab27a GTPase-activating protein (GAP) EPI64 (also known as TBC1D10A) and identified the Arf6 guanine-nucleotide-exchange factor (GEF) ARNO (also known as CYTH2) in pancreatic β-cells. We found that the insulin secretagogue glucose promotes phosphatidylinositol (3,4,5)-trisphosphate (PIP3) generation through phosphoinositide 3-kinase (PI3K), thereby recruiting ARNO to the intracellular side of the plasma membrane. Peripheral ARNO promotes clathrin assembly through its GEF activity for Arf6 and regulates the early stage of endocytosis. We also found that peripheral ARNO recruits EPI64 to the same area and that the interaction requires glucose-induced endocytosis in pancreatic β-cells. Given that GTP- and GDP-bound Rab27a regulate exocytosis and the late stage of endocytosis, our results indicate that the glucose-induced activation of PI3K plays a pivotal role in exocytosis-endocytosis coupling, and that ARNO and EPI64 regulate endocytosis at distinct stages. © 2016. Published by The Company of Biologists Ltd.

  10. Patients With Long-QT Syndrome Caused by Impaired hERG-Encoded Kv11.1 Potassium Channel Have Exaggerated Endocrine Pancreatic and Incretin Function Associated With Reactive Hypoglycemia

    PubMed Central

    Hyltén-Cavallius, Louise; Iepsen, Eva W.; Wewer Albrechtsen, Nicolai J.; Svendstrup, Mathilde; Lubberding, Anniek F.; Hartmann, Bolette; Jespersen, Thomas; Linneberg, Allan; Christiansen, Michael; Vestergaard, Henrik; Pedersen, Oluf; Holst, Jens J.; Kanters, Jørgen K.

    2017-01-01

    Background: Loss-of-function mutations in hERG (encoding the Kv11.1 voltage-gated potassium channel) cause long-QT syndrome type 2 (LQT2) because of prolonged cardiac repolarization. However, Kv11.1 is also present in pancreatic α and β cells and intestinal L and K cells, secreting glucagon, insulin, and the incretins glucagon-like peptide-1 (GLP-1) and GIP (glucose-dependent insulinotropic polypeptide), respectively. These hormones are crucial for glucose regulation, and long-QT syndrome may cause disturbed glucose regulation. We measured secretion of these hormones and cardiac repolarization in response to glucose ingestion in LQT2 patients with functional mutations in hERG and matched healthy participants, testing the hypothesis that LQT2 patients have increased incretin and β-cell function and decreased α-cell function, and thus lower glucose levels. Methods: Eleven patients with LQT2 and 22 sex-, age-, and body mass index–matched control participants underwent a 6-hour 75-g oral glucose tolerance test with ECG recording and blood sampling for measurements of glucose, insulin, C-peptide, glucagon, GLP-1, and GIP. Results: In comparison with matched control participants, LQT2 patients had 56% to 78% increased serum insulin, serum C-peptide, plasma GLP-1, and plasma GIP responses (P=0.03–0.001) and decreased plasma glucose levels after glucose ingestion (P=0.02) with more symptoms of hypoglycemia (P=0.04). Sixty-three percent of LQT2 patients developed hypoglycemic plasma glucose levels (<70 mg/dL) versus 36% control participants (P=0.16), and 18% patients developed serious hypoglycemia (<50 mg/dL) versus none of the controls. LQT2 patients had defective glucagon responses to low glucose, P=0.008. β-Cell function (Insulin Secretion Sensitivity Index-2) was 2-fold higher in LQT2 patients than in controls (4398 [95% confidence interval, 2259–8562] versus 2156 [1961–3201], P=0.03). Pharmacological Kv11.1 blockade (dofetilide) in rats had similar effect, and small interfering RNA inhibition of hERG in β and L cells increased insulin and GLP-1 secretion up to 50%. Glucose ingestion caused cardiac repolarization disturbances with increased QTc intervals in both patients and controls, but with a 122% greater increase in QTcF interval in LQT2 patients (P=0.004). Conclusions: Besides a prolonged cardiac repolarization phase, LQT2 patients display increased GLP-1, GIP, and insulin secretion and defective glucagon secretion, causing decreased plasma glucose and thus increased risk of hypoglycemia. Furthermore, glucose ingestion increased QT interval and aggravated the cardiac repolarization disturbances in LQT2 patients. Clinical Trial Registration: URL: http://clinicaltrials.gov. Unique identifier: NCT02775513. PMID:28235848

  11. The integrative role of leptin, oestrogen and the insulin family in obesity-associated breast cancer: potential effects of exercise.

    PubMed

    Schmidt, S; Monk, J M; Robinson, L E; Mourtzakis, M

    2015-06-01

    Obesity is an established risk factor for postmenopausal breast cancer. The mechanisms through which obesity influences the development and progression of breast cancer are not fully elucidated; however, several factors such as increased oestrogen, concentrations of various members of the insulin family and inflammation that are associated with adiposity are purported to be important factors in this relationship. Emerging research has also begun to focus on the role of adipokines, (i.e. adipocyte secreted factors), in breast cancer. Leptin secretion is directly related to adiposity and is believed to promote breast cancer directly and independently, as well as through involvement with the oestrogen and insulin signalling pathways. As leptin is secreted from white adipose tissue, any intervention that reduces adiposity may be favourable. However, it is also important to consider that energy expenditure through exercise, independent of fat loss, may improve leptin regulation. The purpose of this narrative review was to explore the role of leptin in breast cancer development and progression, identify key interactions with oestrogen and the insulin family, and distinguish the potential effects of exercise on these interactions. © 2015 The Authors. Obesity Reviews published by John Wiley & Sons Ltd on behalf of World Obesity.

  12. A Synopsis of Factors Regulating Beta Cell Development and Beta Cell Mass

    PubMed Central

    Prasadan, Krishna; Shiota, Chiyo; Xiangwei, Xiao; Ricks, David; Fusco, Joseph; Gittes, George

    2016-01-01

    The insulin-secreting beta cells in the endocrine pancreas regulate blood glucose levels, and loss of functional beta cells leads to insulin deficiency, hyperglycemia (high blood glucose) and diabetes mellitus. Current treatment strategies for type-1 (autoimmune) diabetes are islet transplantation, which has significant risks and limitations, or normalization of blood glucose with insulin injections, which is clearly not ideal. The type-1 patients can lack insulin counter-regulatory mechanism; therefore, hypoglycemia is a potential risk. Hence, a cell-based therapy offers a better alternative for the treatment of diabetes. Past research was focused on attempting to generate replacement beta cells from stem cells, however, recently there has been an increasing interest in identifying mechanisms that will lead to the conversion of pre-existing differentiated endocrine cells into beta cells. The goal of this review is to provide an overview of several of the key factors that regulate new beta cell formation (neogenesis) and beta cell proliferation. PMID:27105622

  13. The Prohormone VGF Regulates β Cell Function via Insulin Secretory Granule Biogenesis.

    PubMed

    Stephens, Samuel B; Edwards, Robert J; Sadahiro, Masato; Lin, Wei-Jye; Jiang, Cheng; Salton, Stephen R; Newgard, Christopher B

    2017-09-05

    The prohormone VGF is expressed in neuroendocrine and endocrine tissues and regulates nutrient and energy status both centrally and peripherally. We and others have shown that VGF-derived peptides have direct action on the islet β cell as secretagogues and cytoprotective agents; however, the endogenous function of VGF in the β cell has not been described. Here, we demonstrate that VGF regulates secretory granule formation. VGF loss-of-function studies in both isolated islets and conditional knockout mice reveal a profound decrease in stimulus-coupled insulin secretion. Moreover, VGF is necessary to facilitate efficient exit of granule cargo from the trans-Golgi network and proinsulin processing. It also functions to replenish insulin granule stores following nutrient stimulation. Our data support a model in which VGF operates at a critical node of granule biogenesis in the islet β cell to coordinate insulin biosynthesis with β cell secretory capacity. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  14. [Prostaglandins, insulin secretion and diabetes mellitus].

    PubMed

    Giugliano, D; Torella, R; Scheen, A J; Lefebvre, P J; D'Onofrio, F

    1988-12-01

    The islets of Langerhans have the enzymatic equipment permitting the synthesis of the metabolites of arachidonic acid: cyclo-oxygenase and lipo-oxygenase. Numerous studies have shown that cyclo-oxygenase derivatives, mainly PGE2, reduce the insulin response to glucose whereas lipo-oxygenase derivatives, mainly 15-HPETE, stimulate insulin secretion. So, for instance, drugs that increase prostaglandins synthesis as colchicine or furosemide inhibit insulin secretion while non steroid anti-inflammator drugs, mainly salicylates, which inhibit cyclo-oxygenase, enhance the insulin response to various stimuli. In type-2 (non insulin-dependent) diabetes, an increased sensitivity to endogenous prostaglandins has been proposed as a possible cause for the insulin secretion defect which characterizes this disease. Play in favor of this hypothesis the fact that the administration of PGE inhibits the insulin response to arginine in type-2 diabetics but not in normal subject and the fact that the administration of salicylates could improve the insulin response to glucose in some of these patients.

  15. C1q/TNF-related protein 6 (CTRP6) links obesity to adipose tissue inflammation and insulin resistance.

    PubMed

    Lei, Xia; Seldin, Marcus M; Little, Hannah C; Choy, Nicholas; Klonisch, Thomas; Wong, G William

    2017-09-08

    Obesity is associated with chronic low-grade inflammation, and metabolic regulators linking obesity to inflammation have therefore received much attention. Secreted C1q/TNF-related proteins (CTRPs) are one such group of regulators that regulate glucose and fat metabolism in peripheral tissues and modulate inflammation in adipose tissue. We have previously shown that expression of CTRP6 is up-regulated in leptin-deficient mice and, conversely, down-regulated by the anti-diabetic drug rosiglitazone. Here, we provide evidence for a novel role of CTRP6 in modulating both inflammation and insulin sensitivity. We found that in obese and diabetic humans and mouse models, CTRP6 expression was markedly up-regulated in adipose tissue and that stromal vascular cells, such as macrophages, are a major CTRP6 source. Overexpressing mouse or human CTRP6 impaired glucose disposal in peripheral tissues in response to glucose and insulin challenge in wild-type mice. Conversely, Ctrp6 gene deletion improved insulin action and increased metabolic rate and energy expenditure in diet-induced obese mice. Mechanistically, CTRP6 regulates local inflammation and glucose metabolism by targeting macrophages and adipocytes, respectively. In cultured macrophages, recombinant CTRP6 dose-dependently up-regulated the expression and production of TNF-α. Conversely, CTRP6 deficiency reduced circulating inflammatory cytokines and pro-inflammatory macrophages in adipose tissue. CTRP6-overexpressing mice or CTRP6-treated adipocytes had reduced insulin-stimulated Akt phosphorylation and glucose uptake. In contrast, loss of CTRP6 enhanced insulin-stimulated Akt activation in adipose tissue. Together, these results establish CTRP6 as a novel metabolic/immune regulator linking obesity to adipose tissue inflammation and insulin resistance. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  16. Klotho and the Growth Hormone/Insulin-Like Growth Factor 1 Axis: Novel Insights into Complex Interactions.

    PubMed

    Rubinek, T; Modan-Moses, D

    2016-01-01

    The growth hormone (GH)/insulin-like growth factor (IGF)-1 axis is pivotal for many metabolic functions, including proper development and growth of bones, skeletal muscles, and adipose tissue. Defects in the axis' activity during childhood result in growth abnormalities, while increased secretion of GH from the pituitary results in acromegaly. In order to keep narrow physiologic concentration, GH and IGF-1 secretion and activity are tightly regulated by hypothalamic, pituitary, endocrine, paracrine, and autocrine factors. Klotho was first discovered as an aging-suppressor gene. Mice that do not express klotho die prematurely with multiple symptoms of aging, several of them are also characteristic of decreased GH/IGF-1 axis activity. Klotho is highly expressed in the brain, the kidney, and parathyroid and pituitary glands, but can also serve as a circulating hormone by its shedding, forming soluble klotho that can be detected in blood, cerebrospinal fluid, and urine. Several lines of evidence suggest an association between klotho levels and activity of the GH/IGF-1 axis: the GH-secreting cells in the anterior pituitary of klotho-deficient mice are hypotrophic; klotho levels are altered in subjects with pathologies of the GH/IGF-1 axis; and accumulating data indicate that klotho is a direct regulator of GH secretion. Thus, klotho seems to be a new player in the intricate regulation of the GH/IGF-1 axis. © 2016 Elsevier Inc. All rights reserved.

  17. Aspartame in conjunction with carbohydrate reduces insulin levels during endurance exercise

    PubMed Central

    2012-01-01

    Background As most sport drinks contain some form of non-nutritive sweetener (e.g. aspartame), and with the variation in blood glucose regulation and insulin secretion reportedly associated with aspartame, a further understanding of the effects on insulin and blood glucose regulation during exercise is warranted. Therefore, the aim of this preliminary study was to profile the insulin and blood glucose responses in healthy individuals after aspartame and carbohydrate ingestion during rest and exercise. Findings Each participant completed four trials under the same conditions (45 min rest + 60 min self-paced intense exercise) differing only in their fluid intake: 1) carbohydrate (2% maltodextrin and 5% sucrose (C)); 2) 0.04% aspartame with 2% maltodextrin and 5% sucrose (CA)); 3) water (W); and 4) aspartame (0.04% aspartame with 2% maltodextrin (A)). Insulin levels dropped significantly for CA versus C alone (43%) between pre-exercise and 30 min, while W and A insulin levels did not differ between these time points. Conclusions Aspartame with carbohydrate significantly lowered insulin levels during exercise versus carbohydrate alone. PMID:22853297

  18. Role of ghrelin and leptin in the regulation of carbohydrate metabolism. Part II. Leptin.

    PubMed

    Otto-Buczkowska, Ewa; Chobot, Agata

    2012-10-26

    Leptin is produced by mature adipocytes. Its amount correlates positively with the mass of the adipose tissue. Leptin plays a crucial role in maintaining body weight and glucose homeostasis. It is transported through the blood-brain barrier to the central nervous system, where it activates the autonomic nervous system, causing the feeling of satiety and inhibiting appetite. It also acts through central and peripheral pathways, including the regulation of insulin secretion by pancreatic β cells. Leptin may also directly affect the metabolism and function of peripheral tissues. It has been found to play a role in peripheral insulin resistance by attenuating insulin action, and perhaps also insulin signaling, in various insulin-responsive cell types. Recent data provide convincing evidence that leptin has a beneficial influence on glucose homeostasis. Studies suggest that leptin could be used as an adjunct of insulin therapy in insulin-deficient diabetes, thereby providing an insight into the therapeutic implications of leptin as an anti-diabetic agent. Extensive research will be needed to determine long-term safety and efficacy of such a therapy.

  19. Fine-mapping diabetes-related traits, including insulin resistance, in heterogeneous stock rats

    PubMed Central

    Holl, Katie L.; Oreper, Daniel; Xie, Yuying; Tsaih, Shirng-Wern; Valdar, William

    2012-01-01

    Type 2 diabetes (T2D) is a disease of relative insulin deficiency resulting from both insulin resistance and beta cell failure. We have previously used heterogeneous stock (HS) rats to fine-map a locus for glucose tolerance. We show here that glucose intolerance in the founder strains of the HS colony is mediated by different mechanisms: insulin resistance in WKY and an insulin secretion defect in ACI, and we demonstrate a high degree of variability for measures of insulin resistance and insulin secretion in HS rats. As such, our goal was to use HS rats to fine-map several diabetes-related traits within a region on rat chromosome 1. We measured blood glucose and plasma insulin levels after a glucose tolerance test in 782 male HS rats. Using 97 SSLP markers, we genotyped a 68 Mb region on rat chromosome 1 previously implicated in glucose and insulin regulation. We used linkage disequilibrium mapping by mixed model regression with inferred descent to identify a region from 198.85 to 205.9 that contains one or more quantitative trait loci (QTL) for fasting insulin and a measure of insulin resistance, the quantitative insulin sensitivity check index. This region also encompasses loci identified for fasting glucose and Insulin_AUC (area under the curve). A separate <3 Mb QTL was identified for body weight. Using a novel penalized regression method we then estimated effects of alternative haplotype pairings under each locus. These studies highlight the utility of HS rats for fine-mapping genetic loci involved in the underlying causes of T2D. PMID:22947656

  20. Physiological and pathophysiological functions of SIRT1.

    PubMed

    Wojcik, M; Mac-Marcjanek, K; Wozniak, L A

    2009-03-01

    The human SIRT1 is a nuclear enzyme from the class III histone deacetylases (HDACs) which is widely distributed in mammalian tissues. A variety of SIRT1 substrates hints that this protein is involved in the regulation of diverse biological processes, including cell survival, apoptosis, gluconeogenesis, adipogenesis, lipolysis, stress resistance, muscle differentiation, and insulin secretion. This review emphasizes catalytic properties of SIRT1 and its role in apoptosis, insulin pathway, and neuron survival.

  1. Neuronal Cbl Controls Biosynthesis of Insulin-Like Peptides in Drosophila melanogaster

    PubMed Central

    Yu, Yue; Sun, Ying; He, Shengqi; Yan, Cheng; Rui, Liangyou; Li, Wenjun

    2012-01-01

    The Cbl family proteins function as both E3 ubiquitin ligases and adaptor proteins to regulate various cellular signaling events, including the insulin/insulin-like growth factor 1 (IGF1) and epidermal growth factor (EGF) pathways. These pathways play essential roles in growth, development, metabolism, and survival. Here we show that in Drosophila melanogaster, Drosophila Cbl (dCbl) regulates longevity and carbohydrate metabolism through downregulating the production of Drosophila insulin-like peptides (dILPs) in the brain. We found that dCbl was highly expressed in the brain and knockdown of the expression of dCbl specifically in neurons by RNA interference increased sensitivity to oxidative stress or starvation, decreased carbohydrate levels, and shortened life span. Insulin-producing neuron-specific knockdown of dCbl resulted in similar phenotypes. dCbl deficiency in either the brain or insulin-producing cells upregulated the expression of dilp genes, resulting in elevated activation of the dILP pathway, including phosphorylation of Drosophila Akt and Drosophila extracellular signal-regulated kinase (dERK). Genetic interaction analyses revealed that blocking Drosophila epidermal growth factor receptor (dEGFR)-dERK signaling in pan-neurons or insulin-producing cells by overexpressing a dominant-negative form of dEGFR abolished the effect of dCbl deficiency on the upregulation of dilp genes. Furthermore, knockdown of c-Cbl in INS-1 cells, a rat β-cell line, also increased insulin biosynthesis and glucose-stimulated secretion in an ERK-dependent manner. Collectively, these results suggest that neuronal dCbl regulates life span, stress responses, and metabolism by suppressing dILP production and the EGFR-ERK pathway mediates the dCbl action. Cbl suppression of insulin biosynthesis is evolutionarily conserved, raising the possibility that Cbl may similarly exert its physiological actions through regulating insulin production in β cells. PMID:22778134

  2. Evaluation of beta-cell sensitivity to glucose and first-phase insulin secretion in obese dogs.

    PubMed

    Verkest, Kurt R; Fleeman, Linda M; Rand, Jacquie S; Morton, John M

    2011-03-01

    To compare beta-cell sensitivity to glucose, first-phase insulin secretion, and glucose tolerance between dogs with naturally occurring obesity of > 2 years' duration and lean dogs. 17 client-owned obese or lean dogs. Frequently sampled IV glucose tolerance tests were performed with minimal model analysis on 6 obese dogs and matched controls. Glucagon stimulation tests were performed on 5 obese dogs and matched controls. Obese dogs were half as sensitive to the effects of insulin as lean dogs. Plasma glucose concentrations after food withholding did not differ significantly between groups; plasma insulin concentrations were 3 to 4 times as great in obese as in lean dogs. Obese dogs had plasma insulin concentrations twice those of lean dogs after administration of glucose and 4 times as great after administration of glucagon. First-phase insulin secretion was greater in obese dogs. Obese dogs compensated for obesity-induced insulin resistance by secreting more insulin. First-phase insulin secretion and beta-cell glucose sensitivity were not lost despite years of obesity-induced insulin resistance and compensatory hyperinsulinemia. These findings help explain why dogs, unlike cats and humans, have not been documented to develop type 2 diabetes mellitus.

  3. Lipid droplets hypertrophy: a crucial determining factor in insulin regulation by adipocytes.

    PubMed

    Sanjabi, Bahram; Dashty, Monireh; Özcan, Behiye; Akbarkhanzadeh, Vishtaseb; Rahimi, Mehran; Vinciguerra, Manlio; van Rooij, Felix; Al-Lahham, Saad; Sheedfar, Fareeba; van Kooten, Theo G; Spek, C Arnold; Rowshani, Ajda T; van der Want, Johannes; Klaassen, Rene; Sijbrands, Eric; Peppelenbosch, Maikel P; Rezaee, Farhad

    2015-03-06

    Lipid droplets (LDs) hypertrophy in adipocytes is the main cause of energy metabolic system dysfunction, obesity and its afflictions such as T2D. However, the role of adipocytes in linking energy metabolic disorders with insulin regulation is unknown in humans. Human adipocytes constitutively synthesize and secrete insulin, which is biologically functional. Insulin concentrations and release are fat mass- and LDs-dependent respectively. Fat reduction mediated by bariatric surgery repairs obesity-associated T2D. The expression of genes, like PCSK1 (proinsulin conversion enzyme), GCG (Glucagon), GPLD1, CD38 and NNAT, involved in insulin regulation/release were differentially expressed in pancreas and adipose tissue (AT). INS (insulin) and GCG expression reduced in human AT-T2D as compared to AT-control, but remained unchanged in pancreas in either state. Insulin levels (mRNA/protein) were higher in AT derived from prediabetes BB rats with destructed pancreatic β-cells and controls than pancreas derived from the same rats respectively. Insulin expression in 10 human primary cell types including adipocytes and macrophages is an evidence for extrapancreatic insulin-producing cells. The data suggest a crosstalk between AT and pancreas to fine-tune energy metabolic system or may minimize the metabolic damage during diabetes. This study opens new avenues towards T2D therapy with a great impact on public health.

  4. Lipid droplets hypertrophy: a crucial determining factor in insulin regulation by adipocytes

    NASA Astrophysics Data System (ADS)

    Sanjabi, Bahram; Dashty, Monireh; Özcan, Behiye; Akbarkhanzadeh, Vishtaseb; Rahimi, Mehran; Vinciguerra, Manlio; van Rooij, Felix; Al-Lahham, Saad; Sheedfar, Fareeba; van Kooten, Theo G.; Spek, C. Arnold; Rowshani, Ajda T.; van der Want, Johannes; Klaassen, Rene; Sijbrands, Eric; Peppelenbosch, Maikel P.; Rezaee, Farhad

    2015-03-01

    Lipid droplets (LDs) hypertrophy in adipocytes is the main cause of energy metabolic system dysfunction, obesity and its afflictions such as T2D. However, the role of adipocytes in linking energy metabolic disorders with insulin regulation is unknown in humans. Human adipocytes constitutively synthesize and secrete insulin, which is biologically functional. Insulin concentrations and release are fat mass- and LDs-dependent respectively. Fat reduction mediated by bariatric surgery repairs obesity-associated T2D. The expression of genes, like PCSK1 (proinsulin conversion enzyme), GCG (Glucagon), GPLD1, CD38 and NNAT, involved in insulin regulation/release were differentially expressed in pancreas and adipose tissue (AT). INS (insulin) and GCG expression reduced in human AT-T2D as compared to AT-control, but remained unchanged in pancreas in either state. Insulin levels (mRNA/protein) were higher in AT derived from prediabetes BB rats with destructed pancreatic β-cells and controls than pancreas derived from the same rats respectively. Insulin expression in 10 human primary cell types including adipocytes and macrophages is an evidence for extrapancreatic insulin-producing cells. The data suggest a crosstalk between AT and pancreas to fine-tune energy metabolic system or may minimize the metabolic damage during diabetes. This study opens new avenues towards T2D therapy with a great impact on public health.

  5. Ca2+-dependent dephosphorylation of kinesin heavy chain on beta-granules in pancreatic beta-cells. Implications for regulated beta-granule transport and insulin exocytosis

    NASA Technical Reports Server (NTRS)

    Donelan, Matthew J.; Morfini, Gerardo; Julyan, Richard; Sommers, Scott; Hays, Lori; Kajio, Hiroshi; Briaud, Isabelle; Easom, Richard A.; Molkentin, Jeffery D.; Brady, Scott T.; hide

    2002-01-01

    The specific biochemical steps required for glucose-regulated insulin exocytosis from beta-cells are not well defined. Elevation of glucose leads to increases in cytosolic [Ca2+]i and biphasic release of insulin from both a readily releasable and a storage pool of beta-granules. The effect of elevated [Ca2+]i on phosphorylation of isolated beta-granule membrane proteins was evaluated, and the phosphorylation of four proteins was found to be altered by [Ca2+]i. One (a 18/20-kDa doublet) was a Ca2+-dependent increase in phosphorylation, and, surprisingly, three others (138, 42, and 36 kDa) were Ca2+-dependent dephosphorylations. The 138-kDa beta-granule phosphoprotein was found to be kinesin heavy chain (KHC). At low levels of [Ca2+]i KHC was phosphorylated by casein kinase 2, but KHC was rapidly dephosphorylated by protein phosphatase 2B beta (PP2Bbeta) as [Ca2+]i increased. Inhibitors of PP2B specifically reduced the second, microtubule-dependent, phase of insulin secretion, suggesting that dephosphorylation of KHC was required for transport of beta-granules from the storage pool to replenish the readily releasable pool of beta-granules. This is distinct from synaptic vesicle exocytosis, because neurotransmitter release from synaptosomes did not require a Ca2+-dependent KHC dephosphorylation. These results suggest a novel mechanism for regulating KHC function and beta-granule transport in beta-cells that is mediated by casein kinase 2 and PP2B. They also implicate a novel regulatory role for PP2B/calcineurin in the control of insulin secretion downstream of a rise in [Ca2+]i.

  6. Placental insufficiency decreases pancreatic vascularity and disrupts hepatocyte growth factor signaling in the pancreatic islet endothelial cell in fetal sheep.

    PubMed

    Rozance, Paul J; Anderson, Miranda; Martinez, Marina; Fahy, Anna; Macko, Antoni R; Kailey, Jenai; Seedorf, Gregory J; Abman, Steven H; Hay, William W; Limesand, Sean W

    2015-02-01

    Hepatocyte growth factor (HGF) and vascular endothelial growth factor A (VEGFA) are paracrine hormones that mediate communication between pancreatic islet endothelial cells (ECs) and β-cells. Our objective was to determine the impact of intrauterine growth restriction (IUGR) on pancreatic vascularity and paracrine signaling between the EC and β-cell. Vessel density was less in IUGR pancreata than in controls. HGF concentrations were also lower in islet EC-conditioned media (ECCM) from IUGR, and islets incubated with control islet ECCM responded by increasing insulin content, which was absent with IUGR ECCM. The effect of ECCM on islet insulin content was blocked with an inhibitory anti-HGF antibody. The HGF receptor was not different between control and IUGR islets, but VEGFA was lower and the high-affinity VEGF receptor was higher in IUGR islets and ECs, respectively. These findings show that paracrine actions from ECs increase islet insulin content, and in IUGR ECs, secretion of HGF was diminished. Given the potential feed-forward regulation of β-cell VEGFA and islet EC HGF, these two growth factors are highly integrated in normal pancreatic islet development, and this regulation is decreased in IUGR fetuses, resulting in lower pancreatic islet insulin concentrations and insulin secretion. © 2015 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  7. Regulation of insulin preRNA splicing by glucose

    PubMed Central

    Wang, Juehu; Shen, Luping; Najafi, Habiba; Kolberg, Janice; Matschinsky, Franz M.; Urdea, Mickey; German, Michael

    1997-01-01

    Glucose tightly regulates the synthesis and secretion of insulin by β cells in the pancreatic islets of Langerhans. To investigate whether glucose regulates insulin synthesis at the level of insulin RNA splicing, we developed a method to detect and quantify a small amount of RNA by using the branched DNA (bDNA) signal-amplification technique. This assay is both sensitive and highly specific: mouse insulin II mRNA can be detected from a single β cell (βTC3 cells or mouse islets), whereas 1 million non-insulin-producing α cells (αTC1.6 cells) give no signal. By using intron and exon sequences, oligonucleotide probes were designed to distinguish the various unspliced and partially spliced insulin preRNAs from mature insulin mRNA. Insulin RNA splicing rates were estimated from the rate of disappearance of insulin preRNA signal from β cells treated with actinomycin D to block transcription. We found that the two introns in mouse insulin II are not spliced with the same efficiency. Intron 2 is spliced out more efficiently than intron 1. As a result, some mRNA retaining intron 1 enters the cytoplasm, making up ≈2-10% of insulin mRNA in the cell. This partially spliced cytoplasmic mRNA is quite stable, with a half-life similar to the completely spliced form. When islets grown in high glucose are shifted to low glucose medium, the level of insulin preRNA and the rate of splicing fall significantly. We conclude that glucose stimulates insulin gene transcription and insulin preRNA splicing. Previous estimates of insulin transcription rates based on insulin preRNA levels that did not consider the rate of splicing may have underestimated the effect of glucose on insulin gene transcription. PMID:9113994

  8. A single-islet microplate assay to measure mouse and human islet insulin secretion.

    PubMed

    Truchan, Nathan A; Brar, Harpreet K; Gallagher, Shannon J; Neuman, Joshua C; Kimple, Michelle E

    2015-01-01

    One complication to comparing β-cell function among islet preparations, whether from genetically identical or diverse animals or human organ donors, is the number of islets required per assay. Islet numbers can be limiting, meaning that fewer conditions can be tested; other islet measurements must be excluded; or islets must be pooled from multiple animals/donors for each experiment. Furthermore, pooling islets negates the possibility of performing single-islet comparisons. Our aim was to validate a 96-well plate-based single islet insulin secretion assay that would be as robust as previously published methods to quantify glucose-stimulated insulin secretion from mouse and human islets. First, we tested our new assay using mouse islets, showing robust stimulation of insulin secretion 24 or 48 h after islet isolation. Next, we utilized the assay to quantify mouse islet function on an individual islet basis, measurements that would not be possible with the standard pooled islet assay methods. Next, we validated our new assay using human islets obtained from the Integrated Islet Distribution Program (IIDP). Human islets are known to have widely varying insulin secretion capacity, and using our new assay we reveal biologically relevant factors that are significantly correlated with human islet function, whether displayed as maximal insulin secretion response or fold-stimulation of insulin secretion. Overall, our results suggest this new microplate assay will be a useful tool for many laboratories, expert or not in islet techniques, to be able to precisely quantify islet insulin secretion from their models of interest.

  9. Resveratrol improves uric acid-induced pancreatic β-cells injury and dysfunction through regulation of miR-126.

    PubMed

    Xin, Ying; Zhang, Haiyan; Jia, Zhaotong; Ding, Xiaoqian; Sun, Yong; Wang, Qiang; Xu, Tao

    2018-06-01

    Resveratrol (RSV) has been reported to exert anti-inflammatory, anti-oxidant and anti-cancer effects both in vivo and in vitro, and is widely used to treat various diseases. However, the effect of RSV on type 2 diabetes (T2D) is still unclear. The present study aimed to explore the effect of RSV on UA-induced cell injury and dysfunction in pancreatic β-cells. The mouse insulinoma cell line Min6 was treated with 5 mg/dl UA and different concentrations of RSV. Then, cell viability, apoptosis, apoptosis-associated factors, iNOS expression and insulin secretion were examined by CCK-8, flow cytometry, western blot, qRT-PCR and glucose-stimulated insulin secretion (GSIS), respectively. MiR-126 inhibitor and sh-KLF2 were transfected into Min6 cells to alter the expression levels and to reveal the regulatory relationship with RSV. PI3K/AKT signal pathway was analyzed by western blot to uncover the underling mechanism. UA treatment suppressed cell viability, promoted apoptosis, enhanced iNOS expression and decreased insulin secretion in Min6 cells. RSV significantly alleviated UA-induced injury and dysfunction in Min6 cells. The expression level of miR-126 was up-regulated by RSV, and suppression of miR-126 abolished the protective effect of RSV on UA-injured Min6 cells. Additionally, RSV up-regulated KLF2 expression, the promoting effect of RSV on miR-126 expression was reversed by KLF2 silence. Besides, RSV activated PI3K/AKT signal pathway by up-regulation of miR-126 in UA-injured Min6 cells. These data indicated that RSV could protect Min6 cells against UA-induced injury and dysfunction by regulation of miR-126 and activation of PI3K/AKT signal pathway. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  10. Mealtime glucose regulation with nateglinide in healthy volunteers: comparison with repaglinide and placebo.

    PubMed

    Kalbag, J B; Walter, Y H; Nedelman, J R; McLeod, J F

    2001-01-01

    This study was designed to compare the pharmacodynamic effects of single doses of nateglinide (A-4166), repaglinide, and placebo on mealtime insulin secretion and glycemic control in healthy subjects. Fifteen healthy volunteers participated in this open-label five-period crossover study. They received single 10-min preprandial doses of 120 mg nateglinide, 0.5 or 2 mg repaglinide, or placebo or 1 min preprandially of 2 mg repaglinide. Subjects received each dose only once, 48 h apart. Pharmacodynamic and pharmacokinetic assessments were performed from 0 to 12 h postdose. Nateglinide induced insulin secretion more rapidly than 2 and 0.5 mg repaglinide and placebo (10 min preprandial), with mean rates of insulin rise of 2.3, 1.3, 1.15, and 0.8 microU x ml(-1) x min(-1), respectively, over the 0- to 30-min postmeal interval. After peaking, insulin concentrations decreased rapidly in the nateglinide-treated group and were similar to placebo within 2 h postdose. After 2 mg repaglinide, peak insulin concentrations were delayed and returned to baseline more slowly than with nateglinide treatment. Nateglinide treatment produced lower average plasma glucose concentrations in the 0- to 2-h postdose interval than either dose of repaglinide and placebo (P < 0.05 vs. 0.5 mg repaglinide and placebo). Plasma glucose concentrations returned more rapidly to predose levels with nateglinide treatment than with either dose of repaglinide. Treatment with repaglinide produced a sustained hypoglycemic effect up to 6 h postdose. In this single-dose study in nondiabetic volunteers, nateglinide provided a more rapid and shorter-lived stimulation of insulin secretion than repaglinide, resulting in lower meal-related glucose excursions. If similar results are observed in diabetes, nateglinide may produce a more physiological insulin secretory response with the potential for a reduced risk of postabsorptive hypoglycemia.

  11. Simultaneous monitoring of insulin and islet amyloid polypeptide secretion from islets of Langerhans on a microfluidic device.

    PubMed

    Lomasney, Anna R; Yi, Lian; Roper, Michael G

    2013-08-20

    A method was developed that allowed simultaneous monitoring of the acute secretory dynamics of insulin and islet amyloid polypeptide (IAPP) from islets of Langerhans using a microfluidic system with two-color detection. A flow-switching feature enabled changes in the perfusion media within 5 s, allowing rapid exchange of the glucose concentrations delivered to groups of islets. The perfusate was continuously sampled by electroosmotic flow and mixed online with Cy5-labeled insulin, fluorescein isothiocyanate (FITC)-labeled IAPP, anti-insulin, and anti-IAPP antibodies in an 8.15 cm mixing channel maintained at 37 °C. The immunoassay mixture was injected for 0.3 s onto a 1.5 cm separation channel at 11.75 s intervals and immunoassay reagents detected using 488 and 635 nm lasers with two independent photomultiplier tubes for detection of the FITC and Cy5 signal. RSD of the bound-to-free immunoassay ratios ranged from 2 to 7% with LODs of 20 nM for insulin and 1 nM for IAPP. Simultaneous secretion profiles of the two peptides were monitored from groups of 4-10 islets during multiple step changes in glucose concentration. Insulin and IAPP were secreted in an approximately 10:1 ratio and displayed similar responses to step changes from 3 to 11 or 20 mM glucose. The ability to monitor the secretory dynamics of multiple peptides from islets of Langerhans in a highly automated fashion is expected to be a useful tool for investigating hormonal regulation of glucose homeostasis.

  12. The Role of Incretins in Glucose Homeostasis and Diabetes Treatment

    PubMed Central

    Kim, Wook; Egan, Josephine M.

    2009-01-01

    Incretins are gut hormones that are secreted from enteroendocrine cells into the blood within minutes after eating. One of their many physiological roles is to regulate the amount of insulin that is secreted after eating. In this manner, as well as others to be described in this review, their final common raison d’être is to aid in disposal of the products of digestion. There are two incretins, known as glucose-dependent insulinotropic peptide (GIP) and glucagon-like peptide-1 (GLP-1), that share many common actions in the pancreas but have distinct actions outside of the pancreas. Both incretins are rapidly deactivated by an enzyme called dipeptidyl peptidase 4 (DPP4). A lack of secretion of incretins or an increase in their clearance are not pathogenic factors in diabetes. However, in type 2 diabetes (T2DM), GIP no longer modulates glucose-dependent insulin secretion, even at supraphysiological (pharmacological) plasma levels, and therefore GIP incompetence is detrimental to β-cell function, especially after eating. GLP-1, on the other hand, is still insulinotropic in T2DM, and this has led to the development of compounds that activate the GLP-1 receptor with a view to improving insulin secretion. Since 2005, two new classes of drugs based on incretin action have been approved for lowering blood glucose levels in T2DM: an incretin mimetic (exenatide, which is a potent long-acting agonist of the GLP-1 receptor) and an incretin enhancer (sitagliptin, which is a DPP4 inhibitor). Exenatide is injected subcutaneously twice daily and its use leads to lower blood glucose and higher insulin levels, especially in the fed state. There is glucose-dependency to its insulin secretory capacity, making it unlikely to cause low blood sugars (hypoglycemia). DPP4 inhibitors are orally active and they increase endogenous blood levels of active incretins, thus leading to prolonged incretin action. The elevated levels of GLP-1 are thought to be the mechanism underlying their blood glucose-lowering effects. PMID:19074620

  13. Allyl isothiocyanate increases carbohydrate oxidation through enhancing insulin secretion by TRPV1.

    PubMed

    Mori, Noriyuki; Kurata, Manami; Yamazaki, Hanae; Matsumura, Shigenobu; Hashimoto, Takashi; Kanazawa, Kazuki; Nadamoto, Tomonori; Inoue, Kazuo; Fushiki, Tohru

    2018-04-01

    The transient receptor potential (TRP) V1 is a cation channel belonging to the TRP channel family and it has been reported to be involved in energy metabolism, especially glucose metabolism. While, we have previously shown that intragastric administration of allyl isothiocyanate (AITC) enhanced glucose metabolism via TRPV1, the underlying mechanism has not been elucidated. In this study, we examined the relationship between insulin secretion and the increase in carbohydrate oxidation due to AITC. Intragastric administration of AITC elevated blood insulin levels in mice and AITC directly enhanced insulin secretion from isolated islets. These observations were not reproduced in TRPV1 knockout mice. Furthermore, AITC did not increase carbohydrate oxidation in streptozotocin-treated mice. These results suggest that intragastric administration of AITC could induce insulin secretion from islets via TRPV1 and that enhancement of insulin secretion was related to the increased carbohydrate oxidation due to AITC.

  14. Effects of the beta-carbolines, harmane and pinoline, on insulin secretion from isolated human islets of Langerhans.

    PubMed

    Cooper, E Jane; Hudson, Alan L; Parker, Christine A; Morgan, Noel G

    2003-12-15

    It is well known that certain imidazoline compounds can stimulate insulin secretion and this has been attributed to the activation of imidazoline I(3) binding sites in the pancreatic beta-cell. Recently, it has been proposed that beta-carbolines may be endogenous ligands having activity at imidazoline sites and we have, therefore, studied the effects of beta-carbolines on insulin secretion. The beta-carbolines harmane, norharmane and pinoline increased insulin secretion two- to threefold from isolated human islets of Langerhans. The effects of harmane and pinoline were dose-dependent (EC(50): 5 and 25 microM, respectively) and these agents also blocked the inhibitory effects of the potassium channel agonist, diazoxide, on glucose-induced insulin release. Stimulation of insulin secretion by harmane was glucose-dependent but, unlike the imidazoline I(3) receptor agonist efaroxan, it increased the rate of insulin release beyond that elicited by 20 mM glucose (20 mM glucose alone: 253+/-34% vs. basal; 20 mM glucose plus 100 microM harmane: 327+/-15%; P<0.01). Stimulation of insulin secretion by harmane was attenuated by the imidazoline I(3) receptor antagonist KU14R (2 (2-ethyl 2,3-dihydro-2-benzofuranyl)-2-imidazole) and was reduced when islets were treated with efaroxan for 18 h, prior to the addition of harmane. The results reveal that beta-carbolines can potentiate the rate of insulin secretion from human islets and suggest that these agents may be useful prototypes for the development of novel insulin secretagogues.

  15. Urea impairs β cell glycolysis and insulin secretion in chronic kidney disease

    PubMed Central

    Koppe, Laetitia; Nyam, Elsa; Vivot, Kevin; Manning Fox, Jocelyn E.; Dai, Xiao-Qing; Nguyen, Bich N.; Attané, Camille; Moullé, Valentine S.; MacDonald, Patrick E.; Ghislain, Julien

    2016-01-01

    Disorders of glucose homeostasis are common in chronic kidney disease (CKD) and are associated with increased mortality, but the mechanisms of impaired insulin secretion in this disease remain unclear. Here, we tested the hypothesis that defective insulin secretion in CKD is caused by a direct effect of urea on pancreatic β cells. In a murine model in which CKD is induced by 5/6 nephrectomy (CKD mice), we observed defects in glucose-stimulated insulin secretion in vivo and in isolated islets. Similarly, insulin secretion was impaired in normal mouse and human islets that were cultured with disease-relevant concentrations of urea and in islets from normal mice treated orally with urea for 3 weeks. In CKD mouse islets as well as urea-exposed normal islets, we observed an increase in oxidative stress and protein O-GlcNAcylation. Protein O-GlcNAcylation was also observed in pancreatic sections from CKD patients. Impairment of insulin secretion in both CKD mouse and urea-exposed islets was associated with reduced glucose utilization and activity of phosphofructokinase 1 (PFK-1), which could be reversed by inhibiting O-GlcNAcylation. Inhibition of O-GlcNAcylation also restored insulin secretion in both mouse models. These results suggest that insulin secretory defects associated with CKD arise from elevated circulating levels of urea that increase islet protein O-GlcNAcylation and impair glycolysis. PMID:27525435

  16. Computationally identified novel agonists for GPRC6A

    PubMed Central

    Ye, Ruisong; Hwang, Dong-Jin; Miller, Duane D.; Smith, Jeremy C.; Baudry, Jerome; Quarles, L. Darryl

    2018-01-01

    New insights into G protein coupled receptor regulation of glucose metabolism by β-cells, skeletal muscle and liver hepatocytes identify GPRC6A as a potential therapeutic target for treating type 2 diabetes mellitus (T2D). Activating GPRC6A with a small molecule drug represents a potential paradigm-shifting opportunity to make significant strides in regulating glucose homeostasis by simultaneously correcting multiple metabolic derangements that underlie T2D, including abnormalities in β-cell proliferation and insulin secretion and peripheral insulin resistance. Using a computational, structure-based high-throughput screening approach, we identified novel tri-phenyl compounds predicted to bind to the venus fly trap (VFT) and 7-transmembrane (7-TM) domains of GPRC6A. Experimental testing found that these compounds dose-dependently stimulated GPRC6A signaling in a heterologous cell expression system. Additional chemical modifications and functional analysis identified one tri-phenyl lead compound, DJ-V-159 that demonstrated the greatest potency in stimulating insulin secretion in β-cells and lowering serum glucose in wild-type mice. Collectively, these studies show that GPRC6A is a “druggable” target for developing chemical probes to treat T2DM. PMID:29684031

  17. Repaglinide--prandial glucose regulator: a new class of oral antidiabetic drugs.

    PubMed

    Owens, D R

    1998-01-01

    The highest demand on insulin secretion occurs in connection with meals. In normal people, following a meal, the insulin secretion increases rapidly, reaching peak concentration in the blood within an hour. The mealtime insulin response in patients with Type 2 diabetes is blunted and delayed, whereas basal levels often remain within the normal range (albeit at elevated fasting glucose levels). Restoration of the insulin secretion pattern at mealtimes (prandial phase)--without stimulating insulin secretion in the 'postabsorptive' phase--is the rationale for the development of 'prandial glucose regulators', drugs that are characterized by a very rapid onset and short duration of action in stimulating insulin secretion. Repaglinide, a carbamoylmethyl benzoic acid (CMBA) derivative is the first such compound, which recently has become available for clinical use. Repaglinide is very rapidly absorbed (t(max) less than 1 hour) with a t1/2 of less than one hour. Furthermore, repaglinide is inactivated in the liver and more than 90% excreted via the bile. The implications of tailoring repaglinide treatment to meals were examined in a study where repaglinide was dosed either morning and evening, or with each main meal (i.e. breakfast, lunch, dinner), with the total daily dose of repaglinide being identical. The mealtime dosing caused a significant improvement in both fasting and 24-hour glucose profiles, as well as a significant decrease in HbA1c. In other studies, repaglinide caused a decrease of 5.8 mmol x l(-1) in peak postprandial glucose levels, and a decrease of 3.1 mmol x l(-1) in fasting levels with a reduction in HbA1c of 1.8% compared with placebo. In comparative studies with either sulphonylurea or metformin, repaglinide caused similar or improved control (i.e. HbA1c, mean glucose levels) and the drug was well tolerated (e.g. reported gastrointestinal side-effects were more than halved when patients were switched from metformin to repaglinide). A hallmark of repaglinide treatment is that this medication follows the eating pattern, and not vice versa. Hence the risk of developing severe hypoglycaemia (BG < or = 2.5 mmol x l(-1)) in connection with flexible lifestyles should be reduced. This concept was examined in a study in which patients well controlled on repaglinide skipped their lunch on one occasion. When a meal (i.e. lunch) was skipped--so was the repaglinide dose, whereas in the comparative group on glibenclamide the recommended morning and evening doses were taken. Twenty-four per cent of the patients in the glibenclamide group developed severe hypoglycaemia, whereas no hypoglycaemic events occurred in the group receiving repaglinide. However, in long-term studies the overall prevalence of hypoglycaemia was similar to that found with other insulin secretagogues. In summary, current evidence shows that the concept of prandial glucose regulation offers good long-term glycaemic control combined with a low risk of severe hypoglycaemia with missed meals. The concept should meet the needs of Type 2 diabetic patients, allowing flexibility in their lifestyle.

  18. A distinct adipose tissue gene expression response to caloric restriction predicts 6-mo weight maintenance in obese subjects.

    PubMed

    Mutch, David M; Pers, Tune H; Temanni, M Ramzi; Pelloux, Veronique; Marquez-Quiñones, Adriana; Holst, Claus; Martinez, J Alfredo; Babalis, Dimitris; van Baak, Marleen A; Handjieva-Darlenska, Teodora; Walker, Celia G; Astrup, Arne; Saris, Wim H M; Langin, Dominique; Viguerie, Nathalie; Zucker, Jean-Daniel; Clément, Karine

    2011-12-01

    Weight loss has been shown to reduce risk factors associated with cardiovascular disease and diabetes; however, successful maintenance of weight loss continues to pose a challenge. The present study was designed to assess whether changes in subcutaneous adipose tissue (scAT) gene expression during a low-calorie diet (LCD) could be used to differentiate and predict subjects who experience successful short-term weight maintenance from subjects who experience weight regain. Forty white women followed a dietary protocol consisting of an 8-wk LCD phase followed by a 6-mo weight-maintenance phase. Participants were classified as weight maintainers (WMs; 0-10% weight regain) and weight regainers (WRs; 50-100% weight regain) by considering changes in body weight during the 2 phases. Anthropometric measurements, bioclinical variables, and scAT gene expression were studied in all individuals before and after the LCD. Energy intake was estimated by using 3-d dietary records. No differences in body weight and fasting insulin were observed between WMs and WRs at baseline or after the LCD period. The LCD resulted in significant decreases in body weight and in several plasma variables in both groups. WMs experienced a significant reduction in insulin secretion in response to an oral-glucose-tolerance test after the LCD; in contrast, no changes in insulin secretion were observed in WRs after the LCD. An ANOVA of scAT gene expression showed that genes regulating fatty acid metabolism, citric acid cycle, oxidative phosphorylation, and apoptosis were regulated differently by the LCD in WM and WR subjects. This study suggests that LCD-induced changes in insulin secretion and scAT gene expression may have the potential to predict successful short-term weight maintenance. This trial was registered at clinicaltrials.gov as NCT00390637.

  19. Monomeric cocoa catechins enhance β-cell function by increasing mitochondrial respiration.

    PubMed

    Rowley, Thomas J; Bitner, Benjamin F; Ray, Jason D; Lathen, Daniel R; Smithson, Andrew T; Dallon, Blake W; Plowman, Chase J; Bikman, Benjamin T; Hansen, Jason M; Dorenkott, Melanie R; Goodrich, Katheryn M; Ye, Liyun; O'Keefe, Sean F; Neilson, Andrew P; Tessem, Jeffery S

    2017-11-01

    A hallmark of type 2 diabetes (T2D) is β-cell dysfunction and the eventual loss of functional β-cell mass. Therefore, mechanisms that improve or preserve β-cell function could be used to improve the quality of life of individuals with T2D. Studies have shown that monomeric, oligomeric and polymeric cocoa flavanols have different effects on obesity, insulin resistance and glucose tolerance. We hypothesized that these cocoa flavanols may have beneficial effects on β-cell function. INS-1 832/13-derived β-cells and primary rat islets cultured with a monomeric catechin-rich cocoa flavanol fraction demonstrated enhanced glucose-stimulated insulin secretion, while cells cultured with total cocoa extract and with oligomeric or polymeric procyanidin-rich fraction demonstrated no improvement. The increased glucose-stimulated insulin secretion in the presence of the monomeric catechin-rich fraction corresponded with enhanced mitochondrial respiration, suggesting improvements in β-cell fuel utilization. Mitochondrial complex III, IV and V components are up-regulated after culture with the monomer-rich fraction, corresponding with increased cellular ATP production. The monomer-rich fraction improved cellular redox state and increased glutathione concentration, which corresponds with nuclear factor, erythroid 2 like 2 (Nrf2) nuclear localization and expression of Nrf2 target genes including nuclear respiratory factor 1 (Nrf1) and GA binding protein transcription factor alpha subunit (GABPA), essential genes for increasing mitochondrial function. We propose a model by which monomeric cocoa catechins improve the cellular redox state, resulting in Nrf2 nuclear migration and up-regulation of genes critical for mitochondrial respiration, glucose-stimulated insulin secretion and ultimately improved β-cell function. These results suggest a mechanism by which monomeric cocoa catechins exert their effects as an effective complementary strategy to benefit T2D patients. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Mechanism of ipamorelin-evoked insulin release from the pancreas of normal and diabetic rats.

    PubMed

    Adeghate, Ernest; Ponery, Abdul Samad

    2004-12-01

    To examine the effect of ipamorelin (IPA), a novel pentapeptide with a strong growth hormone releasing potency, on insulin secretion from pancreatic tissue fragments of normal and diabetic rats. Diabetes mellitus was induced by streptozotocin (60 mg kg(-1)). Four weeks after the induction of diabetes, pancreatic tissue fragments of normal and diabetic rats were removed and incubated with different concentrations (10(-12) - 10(-6) M) of IPA. Insulin release from the pancreas was measured by radioimmunoassay. Ipamorelin evoked significant (p<0.04) increases in insulin secretion from the pancreas of normal and diabetic rats. Either diltiazem or yohimbine or propranolol or a combination of atropine, propranolol and yohimbine inhibited IPA-evoked insulin secretion significantly (p<0.03) from the pancreas of normal and diabetic rats. Atropine caused a significant (p<0.007) reduction in the IPA-induced insulin secretion in diabetic but not in normal rats. IPA stimulates insulin release through the calcium channel and the adrenergic receptor pathways. This is the first study to examine the effect of ipamorelin on insulin secretion in the pancreas.

  1. Kinetic study of the processing by dipeptidyl-peptidase IV/CD26 of neuropeptides involved in pancreatic insulin secretion.

    PubMed

    Lambeir, A M; Durinx, C; Proost, P; Van Damme, J; Scharpé, S; De Meester, I

    2001-11-02

    Dipeptidyl-peptidase IV (DPPIV/CD26) metabolizes neuropeptides regulating insulin secretion. We studied the in vitro steady-state kinetics of DPPIV/CD26-mediated truncation of vasoactive intestinal peptide (VIP), pituitary adenylyl cyclase-activating peptide (PACAP27 and PACAP38), gastrin-releasing peptide (GRP) and neuropeptide Y (NPY). DPPIV/CD26 sequentially cleaves off two dipeptides of VIP, PACAP27, PACAP38 and GRP. GRP situates between the best DPPIV/CD26 substrates reported, comparable to NPY. Surprisingly, the C-terminal extension of PACAP38, distant from the scissile bond, improves both PACAP38 binding and turnover. Therefore, residues remote from the scissile bond can modulate DPPIV/CD26 substrate selectivity as well as residues flanking it.

  2. Marine Peptides as Potential Agents for the Management of Type 2 Diabetes Mellitus-A Prospect.

    PubMed

    Xia, En-Qin; Zhu, Shan-Shan; He, Min-Jing; Luo, Fei; Fu, Cheng-Zhan; Zou, Tang-Bin

    2017-03-23

    An increasing prevalence of diabetes is known as a main risk for human health in the last future worldwide. There is limited evidence on the potential management of type 2 diabetes mellitus using bioactive peptides from marine organisms, besides from milk and beans. We summarized here recent advances in our understanding of the regulation of glucose metabolism using bioactive peptides from natural proteins, including regulation of insulin-regulated glucose metabolism, such as protection and reparation of pancreatic β-cells, enhancing glucose-stimulated insulin secretion and influencing the sensitivity of insulin and the signaling pathways, and inhibition of bioactive peptides to dipeptidyl peptidase IV, α-amylase and α-glucosidase activities. The present paper tried to understand the underlying mechanism involved and the structure characteristics of bioactive peptides responsible for its antidiabetic activities to prospect the utilization of rich marine organism proteins.

  3. Marine Peptides as Potential Agents for the Management of Type 2 Diabetes Mellitus—A Prospect

    PubMed Central

    Xia, En-Qin; Zhu, Shan-Shan; He, Min-Jing; Luo, Fei; Fu, Cheng-Zhan; Zou, Tang-Bin

    2017-01-01

    An increasing prevalence of diabetes is known as a main risk for human health in the last future worldwide. There is limited evidence on the potential management of type 2 diabetes mellitus using bioactive peptides from marine organisms, besides from milk and beans. We summarized here recent advances in our understanding of the regulation of glucose metabolism using bioactive peptides from natural proteins, including regulation of insulin-regulated glucose metabolism, such as protection and reparation of pancreatic β-cells, enhancing glucose-stimulated insulin secretion and influencing the sensitivity of insulin and the signaling pathways, and inhibition of bioactive peptides to dipeptidyl peptidase IV, α-amylase and α-glucosidase activities. The present paper tried to understand the underlying mechanism involved and the structure characteristics of bioactive peptides responsible for its antidiabetic activities to prospect the utilization of rich marine organism proteins. PMID:28333091

  4. Polymorphism at the 5' end flanking region of the insulin gene is associated with reduced insulin secretion in healthy individuals.

    PubMed

    Cocozza, S; Riccardi, G; Monticelli, A; Capaldo, B; Genovese, S; Krogh, V; Celentano, E; Farinaro, E; Varrone, S; Avvedimento, V E

    1988-12-01

    Sixty-four unrelated healthy subjects were studied for the detection of a DNA polymorphism at the 5' end of the insulin gene. No significant difference between the groups was found in blood glucose values at fasting and after an oral glucose load. A significant association was found between fasting (P less than 0.05) and after load plasma C-peptide levels (P less than 0.01) and the presence of a 1.6 Kb insertion at the 5' end of the insulin gene. A gene dose-dependent effect was noted, class 3/3 individuals having the lowest after-load C-peptide concentration and class 1/3 an intermediate level (F for the linear trend: P = 0.007). This might suggest that insulin gene polymorphism affects insulin secretion in healthy individuals. In order to confirm this, a subgroup of six class 3/3 and eight class 1/1 individuals subsequently underwent a hyperglycaemic clamp. The tissue sensitivity to insulin was similar in the two groups but glucose-stimulated insulin secretion was markedly impaired in homozygotes for the class 3 allele. In this group, insulin secretion was, on average, only one-third of that in class 1/1 individuals (P less than 0.02). Similarly impaired in class 3/3 persons was the glucose + arginine-stimulated insulin secretion (P less than 0.05). We conclude that the polymorphism at the 5' end of the insulin gene is associated with variations in insulin secretion in healthy humans.

  5. Essential roles of insulin, AMPK signaling and lysyl and prolyl hydroxylases in the biosynthesis and multimerization of adiponectin.

    PubMed

    Zhang, Lin; Li, Ming-Ming; Corcoran, Marie; Zhang, Shaoping; Cooper, Garth J S

    2015-01-05

    Post-translational modifications (PTMs) of the adiponectin molecule are essential for its full bioactivity, and defects in PTMs leading to its defective production and multimerization have been linked to the mechanisms of insulin resistance, obesity, and type-2 diabetes. Here we observed that, in differentiated 3T3-L1 adipocytes, decreased insulin signaling caused by blocking of insulin receptors (InsR) with an anti-InsR blocking antibody, increased rates of adiponectin secretion, whereas concomitant elevations in insulin levels counteracted this effect. Adenosine monophosphate-activated protein kinase (AMPK) signaling regulated adiponectin production by modulating the expression of adiponectin receptors, the secretion of adiponectin, and eventually the expression of adiponectin itself. We found that lysyl hydroxylases (LHs) and prolyl hydroxylases (PHs) were expressed in white-adipose tissue of ob/ob mice, wherein LH3 levels were increased compared with controls. In differentiated 3T3-L1 adipocytes, both non-specific inhibition of LHs and PHs by dipyridyl, and specific inhibition of LHs by minoxidil and of P4H with ethyl-3,4-dihydroxybenzoate, caused significant suppression of adiponectin production, more particularly of the higher-order isoforms. Transient gene knock-down of LH3 (Plod3) caused a suppressive effect, especially on the high molecular-weight (HMW) isoforms. These data indicate that PHs and LHs are both required for physiological adiponectin production and in particular are essential for the formation/secretion of the HMW isoforms. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  6. ATP synthase β-subunit abnormality in pancreas islets of rats with polycystic ovary syndrome and type 2 diabetes mellitus.

    PubMed

    Li, Wei; Li, Sai-Jiao; Yin, Tai-Lang; Yang, Jing; Cheng, Yan

    2017-04-01

    This study investigated the abnormal expression of ATP synthase β-subunit (ATPsyn-β) in pancreas islets of rat model of polycystic ovary syndrome (PCOS) with type 2 diabetes mellitus (T2DM), and the secretion function changes after up-regulation of ATP5b. Sixty female SD rats were divided into three groups randomly and equally. The rat model of PCOS with T2DM was established by free access to the high-carbohydrate/high-fat diet, subcutaneous injections of DHEA, and a single injection of streptozotocin. The pancreas was removed for the detection of the ATPsyn-β expression by immunohistochemical staining, Western blotting and reverse transcription-PCR (RT-PCR). The pancreas islets of the rats were cultured, isolated with collagenase V and purified by gradient centrifugation, and the insulin secretion after treatment with different glucose concentrations was tested. Lentivirus ATP5b was successfully constructed with the vector of GV208 and transfected into the pancreas islets for the over-expression of ATPsyn-β. The insulin secretion and intracellular ATP content were determined after transfection of the PCOS-T2DM pancreas islets with Lenti-ATP5b. The results showed that the expression of ATPsyn-β protein and mRNA was significantly decreased in the pancreas of PCOS-T2DM rats. The ATP content in the pancreas islets was greatly increased and the insulin secretion was improved after the up-regulation of ATPsyn-β in the pancreas islets transfected with lenti-ATP5b. These results indicated that for PCOS, the ATPsyn-β might be one of the key factors for the attack of T2DM.

  7. Increased CD19+CD24+CD27+ B regulatory cells are associated with insulin resistance in patients with type I Hashimoto's thyroiditis.

    PubMed

    Yang, Min; Du, Changji; Wang, Yinping; Liu, Jun

    2017-06-01

    Hashimoto's thyroiditis (HT) is characterized by dysregulated immune responses and is commonly associated with insulin resistance. However, the mechanism of insulin resistance in HT remains to be fully elucidated. The aim of the present study was to investigate the correlation between the percentage of B regulatory lymphocytes (Bregs) and insulin resistance in patients with HT but with normal thyroid function (type I). A total of 59 patients with type I HT and 38 healthy volunteers were enrolled in the study. An oral glucose tolerance test was performed to measure insulin secretion and assess β‑cell functions. Flow cytometry was performed to examine the percentages of lymphocyte populations. The patients with HT exhibited normal fasting and postprandial glucose and fasting insulin secretion, but increased secretion of early‑phase and total insulin. The patients with HT also had insufficient β‑cell compensation for insulin resistance, indicated by a reduced disposition index, in the fasting state. An elevation in the percentage of CD19+CD24+CD27+ Bregs was also observed, which correlated positively with insulin secretion and insulin resistance in the fasting state. The patients with type I HT had postprandial insulin resistance and insufficient β‑cell compensation for fasting insulin resistance. Therefore, the increase in CD19+CD24+CD27+ Bregs was closely associated with fasting insulin secretion. These results provide novel insight into the mechanism of insulin resistance in HT.

  8. Mechanism of hyperinsulinemia after reticuloendothelial system phagocytosis.

    PubMed

    Filkins, J P; Yelich, M R

    1982-02-01

    Endocytic loading of the reticuloendothelial system (RES) results in acute hyperinsulinemia and functional hyperinsulinism. Colloidal carbon blockade of the RES in rats resulted in elevations of both portal vein and systemic serum immunoreactive insulin and increases in the hepatic portal vein insulin glucose ratios. Two mechanisms for the hyperinsulinemia were evaluated: 1) decreased removal of insulin by the postendocytic liver and 2) increased secretion of insulin by the isolated perfused pancreas. Colloidal carbon blockade did not alter removal of 125I-insulin as evaluated in the isolated perfused rat liver. Pancreases from postendocytic donor rats when perfused according to the technique of Grodsky manifested enhanced insulin secretion. Macrophage culture-conditioned media enhanced glucose-mediated insulin secretion both as assayed in vivo and in the isolated perfused rat pancreas. The data suggest that postendocytic activated macrophages secrete a monokine that alters insulin release and thus produces the hyperinsulinemia of RES blockade. The acronym MIRA for macrophage insulin-releasing activity is proposed for the monokine.

  9. Reduction of Syndecan Transcript Levels in the Insulin-Producing Cells Affects Glucose Homeostasis in Adult Drosophila melanogaster.

    PubMed

    Warren, Jonathan L; Hoxha, Eneida; Jumbo-Lucioni, Patricia; De Luca, Maria

    2017-11-01

    Signaling by direct cell-matrix interactions has been shown to impact the transcription, secretion, and storage of insulin in mammalian β cells. However, more research is still needed in this area. Syndecans are transmembrane heparan sulfate proteoglycans that function independently and in synergy with integrin-mediated signaling to mediate cell adhesion to the extracellular matrix. In this study, we used the model organism Drosophila melanogaster to determine whether knockdown of the Syndecan (Sdc) gene expression specifically in the insulin-producing cells (IPCs) might affect insulin-like peptide (ILP) production and secretion. IPCs of adult flies produce three ILPs (ILP2, ILP3, and ILP5), which have significant homology to mammalian insulin. We report that flies with reduced Sdc expression in the IPCs did not show any difference in the expression of ilp genes compared to controls. However, they had significantly reduced levels of the circulating ILP2 protein, higher circulating carbohydrates, and were less glucose tolerant than control flies. Finally, we found that IPCs-specific Sdc knockdown led to reduced levels of head Glucose transporter1 gene expression, extracellular signal-regulated kinase phosphorylation, and reactive oxygen species. Taken together, our findings suggest a cell autonomous role for Sdc in insulin release in D. melanogaster.

  10. Importance of NADPH oxidase-mediated redox signaling in the detrimental effect of CRP on pancreatic insulin secretion.

    PubMed

    Chan, Pei-Chi; Wang, Ya-Chin; Chen, Yi-Ling; Hsu, Wan-Ning; Tian, Yu-Feng; Hsieh, Po-Shiuan

    2017-11-01

    Elevations in C-reactive protein (CRP) levels are positively correlated with the progress of type 2 diabetes mellitus. However, the effect of CRP on pancreatic insulin secretion is unknown. Here, we showed that purified human CRP impaired insulin secretion in isolated mouse islets and NIT-1 insulin-secreting cells in dose- and time-dependent manners. CRP increased NADPH oxidase-mediated ROS (reactive oxygen species) production, which simultaneously promoted the production of nitrotyrosine (an indicator of RNS, reactive nitrogen species) and TNFα, to diminish cell viability, insulin secretion in islets and insulin-secreting cells. These CRP-mediated detrimental effects on cell viability and insulin secretion were significantly reversed by adding NAC (a potent antioxidant), apocynin (a selective NADPH oxidase inhibitor), L-NAME (a non-selective nitric oxide synthase (NOS) inhibitor), aminoguanidine (a selective iNOS inhibitor), PDTC (a selective NFκB inhibitor) or Enbrel (an anti-TNFα fusion protein). However, CRP-induced ROS production failed to change after adding L-NAME, aminoguanidine or PDTC. In isolated islets and NIT-1 cells, the elevated nitrotyrosine contents by CRP pretreatment were significantly suppressed by adding L-NAME but not PDTC. Conversely, CRP-induced increases in TNF-α production were significantly reversed by administration of PDTC but not L-NAME. In addition, wild-type mice treated with purified human CRP showed significant decreases in the insulin secretion index (HOMA-β cells) and the insulin stimulation index in isolated islets that were reversed by the addition of L-NAME, aminoguanidine or NAC. It is suggested that CRP-activated NADPH-oxidase redox signaling triggers iNOS-mediated RNS and NFκB-mediated proinflammatory cytokine production to cause β cell damage in state of inflammation. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Incretin and islet hormone responses to meals of increasing size in healthy subjects.

    PubMed

    Alsalim, Wathik; Omar, Bilal; Pacini, Giovanni; Bizzotto, Roberto; Mari, Andrea; Ahrén, Bo

    2015-02-01

    Postprandial glucose homeostasis is regulated through the secretion of glucagon-like peptide 1 (GLP-1) through the stimulation of insulin secretion and inhibition of glucagon secretion. However, how these processes dynamically adapt to demands created by caloric challenges achieved during daily life is not known. The objective of the study was to explore the adaptation of incretin and islet hormones after mixed meals of increasing size in healthy subjects. Twenty-four healthy lean subjects ingested a standard breakfast after an overnight fast followed, after 4 hours, by a lunch of a different size (511, 743, and 1034 kcal) but with identical nutrient composition together with 1.5 g paracetamol. Glucose, insulin, C-peptide, glucagon, intact GLP-1, and glucose-dependent insulinotropic polypeptide (GIP) and paracetamol were measured after the meals. Area under the 180-minute curve (AUC) for insulin, C-peptide, glucagon, GLP-1, and GIP and model-derived β-cell function and paracetamol appearance were calculated. Glucose profiles were similar after the two larger meals, whereas after the smaller meal, there was a postpeak reduction below baseline to a nadir of 3.8 ± 0.1 mmol/L after 75 minutes (P < .001). The AUC for GLP-1, GIP, insulin, and C-peptide were significantly higher by increasing the caloric load as was β-cell sensitivity to glucose. In contrast, the AUC glucagon was the same for all three meals, although there was an increase in glucagon after the postpeak glucose reduction in the smaller meal. The 0- to 20-minute paracetamol appearance was increased by increasing meal size. Mixed lunch meals of increasing size elicit a caloric-dependent insulin response due to increased β-cell secretion achieved by increased GIP and GLP-1 levels. The adaptation at larger meals results in identical glucose excursions, whereas after a lower caloric lunch, the insulin response is high, resulting in a postpeak suppression of glucose below baseline.

  12. Protein Kinase Mitogen-activated Protein Kinase Kinase Kinase Kinase 4 (MAP4K4) Promotes Obesity-induced Hyperinsulinemia.

    PubMed

    Roth Flach, Rachel J; Danai, Laura V; DiStefano, Marina T; Kelly, Mark; Menendez, Lorena Garcia; Jurczyk, Agata; Sharma, Rohit B; Jung, Dae Young; Kim, Jong Hun; Kim, Jason K; Bortell, Rita; Alonso, Laura C; Czech, Michael P

    2016-07-29

    Previous studies revealed a paradox whereby mitogen-activated protein kinase kinase kinase kinase 4 (Map4k4) acted as a negative regulator of insulin sensitivity in chronically obese mice, yet systemic deletion of Map4k4 did not improve glucose tolerance. Here, we report markedly reduced glucose-responsive plasma insulin and C-peptide levels in whole body Map4k4-depleted mice (M4K4 iKO) as well as an impaired first phase of insulin secretion from islets derived from M4K4 iKO mice ex vivo After long-term high fat diet (HFD), M4K4 iKO mice pancreata also displayed reduced β cell mass, fewer proliferating β cells and reduced islet-specific gene mRNA expression compared with controls, although insulin content was normal. Interestingly, the reduced plasma insulin in M4K4 iKO mice exposed to chronic (16 weeks) HFD was not observed in response to acute HFD challenge or short term treatment with the insulin receptor antagonist S961. Furthermore, the improved insulin sensitivity in obese M4K4 iKO mice was abrogated by high exogenous insulin over the course of a euglycemic clamp study, indicating that hypoinsulinemia promotes insulin sensitivity in chronically obese M4K4 iKO mice. These results demonstrate that protein kinase Map4k4 drives obesity-induced hyperinsulinemia and insulin resistance in part by promoting insulin secretion from β cells in mice. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  13. Reduced insulin secretion and glucose intolerance are involved in the fasting susceptibility of common vampire bats.

    PubMed

    Freitas, Mariella B; Queiroz, Joicy F; Dias Gomes, Carolinne I; Collares-Buzato, Carla B; Barbosa, Helena C; Boschero, Antonio C; Gonçalves, Carlos A; Pinheiro, Eliana C

    2013-03-01

    Susceptibility during fasting has been reported for the common vampire bat (Desmodus rotundus), to the point of untimely deaths after only 2-3 nights of fasting. To investigate the underlying physiology of this critical metabolic condition, we analyzed serum insulin levels, pancreatic islets morphometry and immunocytochemistry (ICC), static insulin secretion in pancreas fragments, and insulin signaling mechanism in male vampire bats. A glucose tolerance test (ipGTT) was also performed. Serum insulin was found to be lower in fed vampires compared to other mammals, and was significantly reduced after 24h fasting. Morphometrical analyses revealed small irregular pancreatic islets with reduced percentage of β-cell mass compared to other bats. Static insulin secretion analysis showed that glucose-stimulated insulin secretion was impaired, as insulin levels did not reach significance under high glucose concentrations, whereas the response to the amino acid leucin was preserved. Results from ipGTT showed a failure on glucose clearance, indicating glucose intolerance due to diminished pancreatic insulin secretion and/or decreased β-cell response to glucose. In conclusion, data presented here indicate lower insulinemia and impaired insulin secretion in D. rotundus, which is consistent with the limited ability to store body energy reserves, previously reported in these animals. Whether these metabolic and hormonal features are associated with their blood diet remains to be determined. The peculiar food sharing through blood regurgitation, reported to this species, might be an adaptive mechanism overcoming this metabolic susceptibility. Copyright © 2012 Elsevier Inc. All rights reserved.

  14. Mechanism of action of hypoglycemic effects of an intestine-specific inhibitor of microsomal triglyceride transfer protein (MTP) in obese rats.

    PubMed

    Sakata, Shohei; Katsumi, Sohei; Mera, Yasuko; Kuroki, Yukiharu; Nashida, Reiko; Kakutani, Makoto; Ohta, Takeshi

    2015-01-01

    Diminished insulin sensitivity in the peripheral tissues and failure of pancreatic beta cells to secrete insulin are known major determinants of type 2 diabetes mellitus. JTT-130, an intestine-specific microsomal transfer protein inhibitor, has been shown to suppress high fat-induced obesity and ameliorate impaired glucose tolerance while enhancing glucagon-like peptide-1 (GLP-1) secretion. We investigated the effects of JTT-130 on glucose metabolism and elucidated the mechanism of action, direct effects on insulin sensitivity and glucose-stimulated insulin secretion in a high fat diet-induced obesity rat model. Male Sprague Dawley rats fed a high-fat diet were treated with a single administration of JTT-130. Glucose tolerance, hyperglycemic clamp and hyperinsulinemic-euglycemic testing were performed to assess effects on insulin sensitivity and glucose-stimulated insulin secretion, respectively. Plasma GLP-1 and tissue triglyceride content were also determined under the same conditions. A single administration of JTT-130 suppressed plasma glucose elevations after oral glucose loading and increased the disposition index while elevating GLP-1. JTT-130 also enhanced glucose-stimulated insulin secretion in hyperglycemic clamp tests, whereas increased insulin sensitivity was observed in hyperinsulinemic-euglycemic clamp tests. Single-dose administration of JTT-130 decreased lipid content in the liver and skeletal muscle. JTT-130 demonstrated acute and direct hypoglycemic effects by enhancing insulin secretion and/or insulin sensitivity. Copyright © 2014 Japanese Pharmacological Society. Production and hosting by Elsevier B.V. All rights reserved.

  15. Stimulation of insulin secretion by long-chain free fatty acids. A direct pancreatic effect.

    PubMed

    Crespin, S R; Greenough, W B; Steinberg, D

    1973-08-01

    A continuous-flow centrifuge was used to infuse sodium salts of oleic, linoleic, lauric, or palmitic acid into the pancreatic artery of anesthetized dogs. In these regional perfusion studies there was no increase in FFA levels in the general circulation. Elevation of pancreatic FFA levels produced an immediate increase in pancreatic venous immunoreactive insulin (IRI). After 10 min of FFA infusion. IRI levels declined somewhat from the initial peak response but soon rose again to high levels which were then sustained until the infusion was terminated. All four long-chain FFA tested produced a similar biphasic IRI response. Clearcut increases in IRI were associated with absolute FFA levels (measured in pancreaticoduodenal venous plasma) as low as 0.6-0.8 mueq/ml and with increments over basal levels of as little as 0.4-0.5 mueq/ml. At higher levels of FFA, absolute IRI levels in the pancreatic venous effluent exceeded 1,000 muU/ml in some experiments and 5- to 10-fold increases over basal values were observed. These studies indicate that long-chain FFA, in physiological concentrations, can markedly stimulate insulin secretion by a direct effect on the pancreas. The results lend support to the concept of insulin as a hormone that is importantly involved in regulating the metabolism of all three principal classes of metabolic substrates and whose release is in turn regulated by all of them. The relative importance and precise nature of its physiologic role in the regulation of lipolysis, lipid deposition, and ketone body formation remains to be established.

  16. Generation of glucose-sensitive insulin-secreting beta-like cells from human embryonic stem cells by incorporating a synthetic lineage-control network.

    PubMed

    Saxena, Pratik; Bojar, Daniel; Zulewski, Henryk; Fussenegger, Martin

    2017-10-10

    We previously reported novel technology to differentiate induced pluripotent stem cells (IPSCs) into glucose-sensitive insulin-secreting beta-like cells by engineering a synthetic lineage-control network regulated by the licensed food additive vanillic acid. This genetic network was able to program intricate expression dynamics of the key transcription factors Ngn3 (neurogenin 3, OFF-ON-OFF), Pdx1 (pancreatic and duodenal homeobox 1, ON-OFF-ON) and MafA (V-maf musculoaponeurotic fibrosarcoma oncogene homologue A, OFF-ON) to guide the differentiation of IPSC-derived pancreatic progenitor cells to beta-like cells. In the present study, we show for the first time that this network can also program the expression dynamics of Ngn3, Pdx1 and MafA in human embryonic stem cell (hESC)-derived pancreatic progenitor cells and drive differentiation of these cells into glucose-sensitive insulin-secreting beta-like cells. Therefore, synthetic lineage-control networks appear to be a robust methodology for differentiating pluripotent stem cells into somatic cell types for basic research and regenerative medicine. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Effect of oral glucose administration on rebound growth hormone release in normal and obese women: the role of adiposity, insulin sensitivity and ghrelin.

    PubMed

    Pena-Bello, Lara; Pertega-Diaz, Sonia; Outeiriño-Blanco, Elena; Garcia-Buela, Jesus; Tovar, Sulay; Sangiao-Alvarellos, Susana; Dieguez, Carlos; Cordido, Fernando

    2015-01-01

    Metabolic substrates and nutritional status play a major role in growth hormone (GH) secretion. Uncovering the mechanisms involved in GH secretion following oral glucose (OG) administration in normal and obese patients is a pending issue. The aim of this study was to investigate GH after OG in relation with adiposity, insulin secretion and action, and ghrelin secretion in obese and healthy women, to further elucidate the mechanism of GH secretion after OG and the altered GH secretion in obesity. We included 64 healthy and obese women. After an overnight fast, 75 g of OG were administered; GH, glucose, insulin and ghrelin were obtained during 300 minutes. Insulin secretion and action indices and the area under the curve (AUC) were calculated for GH, glucose, insulin and ghrelin. Univariate and multivariate linear regression analyses were employed. The AUC of GH (μg/L•min) was lower in obese (249.8±41.8) than in healthy women (490.4±74.6), P=0.001. The AUC of total ghrelin (pg/mL•min) was lower in obese (240995.5±11094.2) than in healthy women (340797.5±37757.5), P=0.042. There were significant correlations between GH secretion and the different adiposity, insulin secretion and action, and ghrelin secretion indices. After multivariate analysis only ghrelin AUC remained a significant predictor for fasting and peak GH.

  18. Effect of Oral Glucose Administration on Rebound Growth Hormone Release in Normal and Obese Women: The Role of Adiposity, Insulin Sensitivity and Ghrelin

    PubMed Central

    Pena-Bello, Lara; Pertega-Diaz, Sonia; Outeiriño-Blanco, Elena; Garcia-Buela, Jesus; Tovar, Sulay; Sangiao-Alvarellos, Susana; Dieguez, Carlos; Cordido, Fernando

    2015-01-01

    Context Metabolic substrates and nutritional status play a major role in growth hormone (GH) secretion. Uncovering the mechanisms involved in GH secretion following oral glucose (OG) administration in normal and obese patients is a pending issue. Objective The aim of this study was to investigate GH after OG in relation with adiposity, insulin secretion and action, and ghrelin secretion in obese and healthy women, to further elucidate the mechanism of GH secretion after OG and the altered GH secretion in obesity. Participants and Methods We included 64 healthy and obese women. After an overnight fast, 75 g of OG were administered; GH, glucose, insulin and ghrelin were obtained during 300 minutes. Insulin secretion and action indices and the area under the curve (AUC) were calculated for GH, glucose, insulin and ghrelin. Univariate and multivariate linear regression analyses were employed. Results The AUC of GH (μg/L•min) was lower in obese (249.8±41.8) than in healthy women (490.4±74.6), P=0.001. The AUC of total ghrelin (pg/mL•min) was lower in obese (240995.5±11094.2) than in healthy women (340797.5±37757.5), P=0.042. There were significant correlations between GH secretion and the different adiposity, insulin secretion and action, and ghrelin secretion indices. After multivariate analysis only ghrelin AUC remained a significant predictor for fasting and peak GH. PMID:25782001

  19. Impact of morphine on the expression of insulin receptor and protein levels of insulin/IGFs in rat neural stem cells.

    PubMed

    Salarinasab, Sadegh; Nourazarian, AliReza; Nikanfar, Masoud; Abdyazdani, Nima; Kazemi, Masoumeh; Feizy, Navid; Rahbarghazi, Reza

    2017-11-01

    Alzheimer's disease is correlated with neuronal degeneration and loss of neuronal precursors in different parts of the brain. It has been found disturbance in the homeostasis neural stem cells (NSCs) can cause neurodegeneration. Morphine, an analgesic agent, can disrupt the dynamic and normal state of NSCs. However, more investigations are required to clearly address underlying mechanisms. The current experiment aimed to investigate the effects of morphine on the cell distribution of insulin factor and receptor and insulin-like growth factors (IGF1, IGF2) in NSCs. NSCs were isolated from rats and stemness feature confirmed by antibodies against nestin and Sox2. The cells were exposed to 100μM morphine, 50μM naloxone and combination of these two drugs for 72h. The neural cell growth, changes in levels of insulin and insulin-like growth factors secreted by NSCs as well as the insulin-receptor-gene expression were assessed by flow cytometry, ELlSA, and real-time PCR, respectively. Cell cycle assay revealed the exposure of cells to morphine for 72h increased cell apoptosis and decreased neural stem cell growth. The biosynthesis of insulin, insulin-like growth factors, and insulin receptor were reduced (p<0.05) after NSCs exposure to morphine at the concentration of 100μM for 24, 48 and 72h. Naloxone is a competitive antagonist which binds MOR where morphine (and endogenous opioids) bind, and reversed the detrimental effects of morphine. It can be concluded that morphine initiated irregularity in NSCs kinetics and activity by reducing the secretion of insulin and insulin-like growth factors and down-regulation of insulin receptor. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Effects of D-phenylalanine-derivative hypoglycemic agent A-4166 on pancreatic alpha- and beta-cells: comparative study with glibenclamide.

    PubMed

    Hirose, H; Maruyama, H; Seto, Y; Ito, K; Fujita, T; Dan, K; Kanda, N; Saruta, T; Kato, R

    1995-03-01

    We have reported that N-[(trans-4-isopropyl-cyclohexyl)-carbonyl]-D-phenylalanine (A-4166) stimulates insulin secretion in animal studies. To further elucidate the mechanisms underlying the actions of this agent, we investigated the effects of A-4166 on insulin and glucagon secretion with or without diazoxide, an ATP-sensitive potassium channel opener, using isolated perfused rat pancreas preparations, and compared the results with those of glibenclamide. Both 30 mumol/l A-4166 and 3 mumol/l glibenclamide significantly stimulated insulin secretion and reduced glucagon secretion to similar levels at a glucose concentration of 5.6 mmol/l (p < 0.01 for both vs. basal levels). After infusion of A-4166 was stopped, insulin levels promptly returned to the basal values, while insulin levels increased further even after discontinuation of glibenclamide. Furthermore, 100 mumol/l diazoxide significantly inhibited the insulin-stimulatory effects of both 30 mumol/l A-4166 and 3 mumol/l glibenclamide (p < 0.05 and p < 0.01, respectively). However, the effects of diazoxide on glucagon secretion differed between the two groups; 30 mumol/l A-4166 produced a transient increase in glucagon secretion (p < 0.05 vs. basal levels) but 3 mumol/l glibenclamide suppressed glucagon secretion further (p < 0.01 vs. without diazoxide) with concomitant administration of 100 mumol/l diazoxide. These findings suggest that A-4166 directly stimulates insulin secretion, at least in part, through mechanisms resembling those of sulfonylurea, but exerts different effect on glucagon secretion in isolated perfused rat pancreas.

  1. Insulin secretion and GLUT-2 expression in undernourished neonate rats.

    PubMed

    Lopes Da Costa, Célia; Sampaio De Freitas, Marta; Sanchez Moura, Anibal

    2004-04-01

    In previous studies, we verified increased insulin sensitivity in adult male offspring of lactating rats readjusting to lack of insulin secretion reduction brought about by protein restriction during lactation. The present study aims to evaluate the effects of maternal protein undernutrition during lactation on glucose-induced insulin secretion and GLUT-2 expression in beta-cells of neonate male and female rats. Lactating Wistar rats were given a protein-free diet during the first 10 days and a normal diet (22% of protein) until weaning. The neonates were separated at birth by sex and diet and studied at 4, 8 and 21 days of lactation. Glucose-induced insulin secretion by pancreatic islets was analyzed by radioimmunoassay and GLUT-2 expression in beta-cells by Western blot. Glucose-induced insulin secretion of the undernourished groups was higher than in the control groups except among females. When comparing the male and female groups and the control and undernourished groups, female neonates showed significantly greater insulin secretion than the male group. Also it was noted that undernutrition induced greater GLUT-2 expression. For instance, comparing the undernourished male and female neonates there was an increase in female GLUT-2 expression on day 4. On the other hand, in undernourished male neonates a GLUT-2 expression increased later in lactation. In conclusion, during a short term, maternal undernutrition induces an increase of the glucose-induced insulin secretion only in male neonates and is associated with an increase in GLUT-2 expression in the beta-cell.

  2. The Mitochondrial 2-Oxoglutarate Carrier Is Part of a Metabolic Pathway That Mediates Glucose- and Glutamine-stimulated Insulin Secretion*

    PubMed Central

    Odegaard, Matthew L.; Joseph, Jamie W.; Jensen, Mette V.; Lu, Danhong; Ilkayeva, Olga; Ronnebaum, Sarah M.; Becker, Thomas C.; Newgard, Christopher B.

    2010-01-01

    Glucose-stimulated insulin secretion from pancreatic islet β-cells is dependent in part on pyruvate cycling through the pyruvate/isocitrate pathway, which generates cytosolic α-ketoglutarate, also known as 2-oxoglutarate (2OG). Here, we have investigated if mitochondrial transport of 2OG through the 2-oxoglutarate carrier (OGC) participates in control of nutrient-stimulated insulin secretion. Suppression of OGC in clonal pancreatic β-cells (832/13 cells) and isolated rat islets by adenovirus-mediated delivery of small interfering RNA significantly decreased glucose-stimulated insulin secretion. OGC suppression also reduced insulin secretion in response to glutamine plus the glutamate dehydrogenase activator 2-amino-2-norbornane carboxylic acid. Nutrient-stimulated increases in glucose usage, glucose oxidation, glutamine oxidation, or ATP:ADP ratio were not affected by OGC knockdown, whereas suppression of OGC resulted in a significant decrease in the NADPH:NADP+ ratio during stimulation with glucose but not glutamine + 2-amino-2-norbornane carboxylic acid. Finally, OGC suppression reduced insulin secretion in response to a membrane-permeant 2OG analog, dimethyl-2OG. These data reveal that the OGC is part of a mechanism of fuel-stimulated insulin secretion that is common to glucose, amino acid, and organic acid secretagogues, involving flux through the pyruvate/isocitrate cycling pathway. Although the components of this pathway must remain intact for appropriate stimulus-secretion coupling, production of NADPH does not appear to be the universal second messenger signal generated by these reactions. PMID:20356834

  3. Effects of phenylbutazone on glucose tolerance and on secretion of insulin in healthy geldings.

    PubMed

    Zicker, S C; Brumbaugh, G W

    1989-05-01

    The effect of phenylbutazone (4.4 mg/kg of body weight, IV, q 24 h, for 5 days) on glucose tolerance and on secretion of insulin in 6 healthy geldings was determined. Phenylbutazone significantly lowered fasting concentrations of glucose in plasma but did not significantly change the concentration of insulin in serum. There was no significant effect of phenylbutazone on glucose tolerance, on secretion of insulin, or on the area under the insulin/glucose ratio vs time curve in healthy geldings, as determined by paired t test analysis.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cline, Gary W., E-mail: gary.cline@yale.edu; Department of Surgery, University of Minnesota-Twin Cities, Minneapolis, MN 55455; Pongratz, Rebecca L.

    Highlights: Black-Right-Pointing-Pointer We studied media effects on mechanisms of insulin secretion of INS-1 cells. Black-Right-Pointing-Pointer Insulin secretion was higher in DMEM than KRB despite identical ATP synthesis rates. Black-Right-Pointing-Pointer Insulin secretion rates correlated with rates of anaplerosis and TCA cycle. Black-Right-Pointing-Pointer Mitochondria metabolism and substrate cycles augment secretion signal of ATP. -- Abstract: Mechanistic models of glucose stimulated insulin secretion (GSIS) established in minimal media in vitro, may not accurately describe the complexity of coupling metabolism with insulin secretion that occurs in vivo. As a first approximation, we have evaluated metabolic pathways in a typical growth media, DMEM as amore » surrogate in vivo medium, for comparison to metabolic fluxes observed under the typical experimental conditions using the simple salt-buffer of KRB. Changes in metabolism in response to glucose and amino acids and coupling to insulin secretion were measured in INS-1 832/13 cells. Media effects on mitochondrial function and the coupling efficiency of oxidative phosphorylation were determined by fluorometrically measured oxygen consumption rates (OCRs) combined with {sup 31}P NMR measured rates of ATP synthesis. Substrate preferences and pathways into the TCA cycle, and the synthesis of mitochondrial 2nd messengers by anaplerosis were determined by {sup 13}C NMR isotopomer analysis of the fate of [U-{sup 13}C] glucose metabolism. Despite similar incremental increases in insulin secretion, the changes of OCR in response to increasing glucose from 2.5 to 15 mM were blunted in DMEM relative to KRB. Basal and stimulated rates of insulin secretion rates were consistently higher in DMEM, while ATP synthesis rates were identical in both DMEM and KRB, suggesting greater mitochondrial uncoupling in DMEM. The relative rates of anaplerosis, and hence synthesis and export of 2nd messengers from the mitochondria were found to be similar in DMEM to those in KRB. And, the correlation of total PC flux with insulin secretion rates in DMEM was found to be congruous with the correlation in KRB. Together, these results suggest that signaling mechanisms associated with both TCA cycle flux and with anaplerotic flux, but not ATP production, may be responsible for the enhanced rates of insulin secretion in more complex, and physiologically-relevant media.« less

  5. Stress-induced dissociations between intracellular calcium signaling and insulin secretion in pancreatic islets.

    PubMed

    Qureshi, Farhan M; Dejene, Eden A; Corbin, Kathryn L; Nunemaker, Craig S

    2015-05-01

    In healthy pancreatic islets, glucose-stimulated changes in intracellular calcium ([Ca(2+)]i) provide a reasonable reflection of the patterns and relative amounts of insulin secretion. We report that [Ca(2+)]i in islets under stress, however, dissociates with insulin release in different ways for different stressors. Islets were exposed for 48h to a variety of stressors: cytokines (low-grade inflammation), 28mM glucose (28G, glucotoxicity), free fatty acids (FFAs, lipotoxicity), thapsigargin (ER stress), or rotenone (mitochondrial stress). We then measured [Ca(2+)]i and insulin release in parallel studies. Islets exposed to all stressors except rotenone displayed significantly elevated [Ca(2+)]i in low glucose, however, increased insulin secretion was only observed for 28G due to increased nifedipine-sensitive calcium-channel flux. Following 3-11mM glucose stimulation, all stressors substantially reduced the peak glucose-stimulated [Ca(2+)]i response (first phase). Thapsigargin and cytokines also substantially impacted aspects of calcium influx and ER calcium handling. Stressors did not significantly impact insulin secretion in 11mM glucose for any stressor, although FFAs showed a borderline reduction, which contributed to a significant decrease in the stimulation index (11:3mM glucose) observed for FFAs and also for 28G. We also clamped [Ca(2+)]i using 30mM KCl+250μM diazoxide to test the amplifying pathway. Only rotenone-treated islets showed a robust increase in 3-11mM glucose-stimulated insulin secretion under clamped conditions, suggesting that low-level mitochondrial stress might activate the metabolic amplifying pathway. We conclude that different stressors dissociate [Ca(2+)]i from insulin secretion differently: ER stressors (thapsigargin, cytokines) primarily affect [Ca(2+)]i but not conventional insulin secretion and 'metabolic' stressors (FFAs, 28G, rotenone) impacted insulin secretion. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Modulation of insulin secretion by fatty acyl analogs.

    PubMed

    Las, Guy; Mayorek, Nina; Dickstein, Kobie; Bar-Tana, Jacob

    2006-12-01

    The secretagogue, the incretin-like, and the suppressive activities of long-chain fatty acids (LCFAs) in modulating insulin secretion in vivo and in cultured islets were simulated here by beta,beta'-tetramethyl-hexadecanedioic acid (M16) and alpha,alpha'-tetrachloro-tetradecanedioic acid (Cl-DICA). M16, but not Cl-DICA, serves as a substrate for ATP-dependent CoA thioesterification but is not further metabolized. M16, but not Cl-DICA, acted as a potent insulin secretagogue in islets cultured in basal but not high glucose. Short-term exposure to M16 or Cl-DICA resulted in activation of glucose- but not arginine-stimulated insulin secretion. Long-term exposure to M16, but not to Cl-DICA, resulted in suppression of glucose-, arginine-, and K(+)-stimulated insulin secretion; inhibition of glucose-induced proinsulin biosynthesis; and depletion of islets insulin. beta-Cell mass and islet ATP content remained unaffected. Hence, nonmetabolizable LCFA analogs may highlight discrete LCFA metabolites and pathways involved in modulating insulin secretion, which could be overlooked due to the rapid turnover of natural LCFA.

  7. C. elegans EAK-3 inhibits dauer arrest via nonautonomous regulation of nuclear DAF-16/FoxO activity

    PubMed Central

    Zhang, Yanmei; Xu, Jinling; Puscau, Cristina; Kim, Yongsoon; Wang, Xi; Alam, Hena; Hu, Patrick J.

    2008-01-01

    SUMMARY Insulin regulates development, metabolism, and lifespan via a conserved PI3K/Akt pathway that promotes cytoplasmic sequestration of FoxO transcription factors. The regulation of nuclear FoxO is poorly understood. In the nematode Caenorhabditis elegans, insulin-like signaling functions in larvae to inhibit dauer arrest and acts during adulthood to regulate lifespan. In a screen for genes that modulate C. elegans insulin-like signaling, we identified eak-3, which encodes a novel protein that is specifically expressed in the two endocrine XXX cells. The dauer arrest phenotype of eak-3 mutants is fully suppressed by mutations in daf-16/FoxO, which encodes the major target of C. elegans insulin-like signaling, and daf-12, which encodes a nuclear receptor regulated by steroid hormones known as dafachronic acids. eak-3 mutation does not affect DAF-16/FoxO subcellular localization but enhances expression of the direct DAF-16/FoxO target sod-3 in a daf-16/FoxO- and daf-12-dependent manner. eak-3 mutants have normal lifespans, suggesting that EAK-3 decouples insulin-like regulation of development and longevity. We propose that EAK-3 activity in the XXX cells promotes the synthesis and/or secretion of a hormone that acts in parallel to AKT-1 to inhibit the expression of DAF-16/FoxO target genes. Similar hormonal pathways may regulate FoxO target gene expression in mammals. PMID:18241854

  8. Pulsatile insulin secretion, impaired glucose tolerance and type 2 diabetes

    PubMed Central

    Satin, Leslie S.; Butler, Peter C.; Ha, Joon; Sherman, Arthur S.

    2015-01-01

    Type 2 diabetes (T2DM) results when increases in beta cell function and/or mass cannot compensate for rising insulin resistance. Numerous studies have documented the longitudinal changes in metabolism that occur during the development of glucose intolerance and lead to T2DM. However, the role of changes in insulin secretion, both amount and temporal pattern has been understudied. Most of the insulin secreted from pancreatic beta cells of the pancreas is released in a pulsatile pattern, which is disrupted in T2DM. Here we review the evidence that changes in beta cell pulsatility occur during the progression from glucose intolerance to T2DM in humans, and contribute significantly to the etiology of the disease. We review the evidence that insulin pulsatility improves the efficacy of secreted insulin on its targets, particularly hepatic glucose production, but also examine evidence that pulsatility alters or is altered by changes in peripheral glucose uptake. Finally, we summarize our current understanding of the biophysical mechanisms responsible for oscillatory insulin secretion. Understanding how insulin pulsatility contributes to normal glucose homeostasis and is altered in metabolic disease states may help improve the treatment of T2DM. PMID:25637831

  9. Vagotomy ameliorates islet morphofunction and body metabolic homeostasis in MSG-obese rats

    PubMed Central

    Lubaczeuski, C.; Balbo, S.L.; Ribeiro, R.A.; Vettorazzi, J.F.; Santos-Silva, J.C.; Carneiro, E.M.; Bonfleur, M.L.

    2015-01-01

    The parasympathetic nervous system is important for β-cell secretion and mass regulation. Here, we characterized involvement of the vagus nerve in pancreatic β-cell morphofunctional regulation and body nutrient homeostasis in 90-day-old monosodium glutamate (MSG)-obese rats. Male newborn Wistar rats received MSG (4 g/kg body weight) or saline [control (CTL) group] during the first 5 days of life. At 30 days of age, both groups of rats were submitted to sham-surgery (CTL and MSG groups) or subdiaphragmatic vagotomy (Cvag and Mvag groups). The 90-day-old MSG rats presented obesity, hyperinsulinemia, insulin resistance, and hypertriglyceridemia. Their pancreatic islets hypersecreted insulin in response to glucose but did not increase insulin release upon carbachol (Cch) stimulus, despite a higher intracellular Ca2+ mobilization. Furthermore, while the pancreas weight was 34% lower in MSG rats, no alteration in islet and β-cell mass was observed. However, in the MSG pancreas, increases of 51% and 55% were observed in the total islet and β-cell area/pancreas section, respectively. Also, the β-cell number per β-cell area was 19% higher in MSG rat pancreas than in CTL pancreas. Vagotomy prevented obesity, reducing 25% of body fat stores and ameliorated glucose homeostasis in Mvag rats. Mvag islets demonstrated partially reduced insulin secretion in response to 11.1 mM glucose and presented normalization of Cch-induced Ca2+ mobilization and insulin release. All morphometric parameters were similar among Mvag and CTL rat pancreases. Therefore, the higher insulin release in MSG rats was associated with greater β-cell/islet numbers and not due to hypertrophy. Vagotomy improved whole body nutrient homeostasis and endocrine pancreatic morphofunction in Mvag rats. PMID:25714886

  10. Vagotomy ameliorates islet morphofunction and body metabolic homeostasis in MSG-obese rats.

    PubMed

    Lubaczeuski, C; Balbo, S L; Ribeiro, R A; Vettorazzi, J F; Santos-Silva, J C; Carneiro, E M; Bonfleur, M L

    2015-05-01

    The parasympathetic nervous system is important for β-cell secretion and mass regulation. Here, we characterized involvement of the vagus nerve in pancreatic β-cell morphofunctional regulation and body nutrient homeostasis in 90-day-old monosodium glutamate (MSG)-obese rats. Male newborn Wistar rats received MSG (4 g/kg body weight) or saline [control (CTL) group] during the first 5 days of life. At 30 days of age, both groups of rats were submitted to sham-surgery (CTL and MSG groups) or subdiaphragmatic vagotomy (Cvag and Mvag groups). The 90-day-old MSG rats presented obesity, hyperinsulinemia, insulin resistance, and hypertriglyceridemia. Their pancreatic islets hypersecreted insulin in response to glucose but did not increase insulin release upon carbachol (Cch) stimulus, despite a higher intracellular Ca(2+) mobilization. Furthermore, while the pancreas weight was 34% lower in MSG rats, no alteration in islet and β-cell mass was observed. However, in the MSG pancreas, increases of 51% and 55% were observed in the total islet and β-cell area/pancreas section, respectively. Also, the β-cell number per β-cell area was 19% higher in MSG rat pancreas than in CTL pancreas. Vagotomy prevented obesity, reducing 25% of body fat stores and ameliorated glucose homeostasis in Mvag rats. Mvag islets demonstrated partially reduced insulin secretion in response to 11.1 mM glucose and presented normalization of Cch-induced Ca(2+) mobilization and insulin release. All morphometric parameters were similar among Mvag and CTL rat pancreases. Therefore, the higher insulin release in MSG rats was associated with greater β-cell/islet numbers and not due to hypertrophy. Vagotomy improved whole body nutrient homeostasis and endocrine pancreatic morphofunction in Mvag rats.

  11. Advanced Glycation End-Products affect transcription factors regulating insulin gene expression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Puddu, A., E-mail: alep100@hotmail.com; Storace, D.; Odetti, P.

    2010-04-23

    Advanced Glycation End-Products (AGEs) are generated by the covalent interaction of reducing sugars with proteins, lipids or nucleic acids. AGEs are implicated in diabetic complications and pancreatic {beta}-cell dysfunction. We previously demonstrated that exposure of the pancreatic islet cell line HIT-T15 to high concentrations of AGEs leads to a significant decrease of insulin secretion and content. Insulin gene transcription is positively regulated by the beta cell specific transcription factor PDX-1 (Pancreatic and Duodenal Homeobox-1). On the contrary, the forkhead transcription factor FoxO1 inhibits PDX-1 gene transcription. Activity of FoxO1 is regulated by post-translational modifications: phosphorylation deactivates FoxO1, and acetylation preventsmore » FoxO1 ubiquitination. In this work we investigated whether AGEs affect expression and subcellular localization of PDX-1 and FoxO1. HIT-T15 cells were cultured for 5 days in presence of AGEs. Cells were then lysed and processed for subcellular fractionation. We determined intracellular insulin content, then we assessed the expression and subcellular localization of PDX-1, FoxO1, phosphoFoxO1 and acetylFoxO1. As expected intracellular insulin content was lower in HIT-T15 cells cultured with AGEs. The results showed that AGEs decreased expression and nuclear localization of PDX-1, reduced phosphorylation of FoxO1, and increased expression and acetylation of FoxO1. These results suggest that AGEs decrease insulin content unbalancing transcription factors regulating insulin gene expression.« less

  12. Novel actions of IGFBP-3 on intracellular signaling pathways of insulin-secreting cells

    PubMed Central

    Chen, Xiaoyan; Ferry, Robert J.

    2011-01-01

    Understanding mechanisms underlying apoptotic destruction of insulin-secreting cells is critical to validate therapeutic targets for type 1 diabetes mellitus. We recently reported insulin-like growth factor binding protein-3 (IGFBP-3) as a novel mediator of apoptosis in insulin-secreting cells. In light of emerging IGF-independent roles for IGFBP-3, we investigated the mechanisms underlying actions of the novel, recombinant human mutant G56G80G81-IGFBP-3, which lacks intrinsic IGF binding affinity. Using the rat insulinoma RINm5F cell line, we report the first studies in insulin-secreting cells that IGFBP-3 selectively suppresses multiple, key intracellular phosphorelays. By immunoblot, we demonstrate that G56G80G81-IGFBP-3 suppresses phosphorylation of c-raf-MEK-ERK pathway and p38 kinase in time-dependent and dose-dependent manners. SAPK/JNK signaling was unaffected. These data delineate several novel intracellular sites of action for IGFBP-3 in insulin-secreting cells. PMID:16275148

  13. Insulin administration: present strategies and future directions for a noninvasive (possibly more physiological) delivery

    PubMed Central

    Matteucci, Elena; Giampietro, Ottavio; Covolan, Vera; Giustarini, Daniela; Fanti, Paolo; Rossi, Ranieri

    2015-01-01

    Insulin is a life-saving medication for people with type 1 diabetes, but traditional insulin replacement therapy is based on multiple daily subcutaneous injections or continuous subcutaneous pump-regulated infusion. Nonphysiologic delivery of subcutaneous insulin implies a rapid and sustained increase in systemic insulin levels due to the loss of concentration gradient between portal and systemic circulations. In fact, the liver degrades about half of the endogenous insulin secreted by the pancreas into the venous portal system. The reverse insulin distribution has short- and long-term effects on glucose metabolism. Thus, researchers have explored less-invasive administration routes based on innovative pharmaceutical formulations, which preserve hormone stability and ensure the therapeutic effectiveness. This review examines some of the recent proposals from clinical and material chemistry point of view, giving particular attention to patients’ (and diabetologists’) ideal requirements that organic chemistry could meet. PMID:26124635

  14. Reproducible insulin secretion from isolated rat pancreas preparations using an organ bath.

    PubMed

    Morita, Asuka; Ouchi, Motoshi; Terada, Misao; Kon, Hiroe; Kishimoto, Satoko; Satoh, Keitaro; Otani, Naoyuki; Hayashi, Keitaro; Fujita, Tomoe; Inoue, Ken-Ichi; Anzai, Naohiko

    2018-02-09

    Diabetes mellitus is a lifestyle-related disease that is characterized by inappropriate or diminished insulin secretion. Ex vivo pharmacological studies of hypoglycemic agents are often conducted using perfused pancreatic preparations. Pancreas preparations for organ bath experiments do not require cannulation and are therefore less complex than isolated perfused pancreas preparations. However, previous research has generated almost no data on insulin secretion from pancreas preparations using organ bath preparations. The purpose of this study was to investigate the applicability of isolated rat pancreas preparations using the organ bath technique in the quantitative analysis of insulin secretion from β-cells. We found that insulin secretion significantly declined during incubation in the organ bath, whereas it was maintained in the presence of 1 µM GLP-1. Conversely, amylase secretion exhibited a modest increase during incubation and was not altered in the presence of GLP-1. These results demonstrate that the pancreatic organ bath preparation is a sensitive and reproducible method for the ex vivo assessment of the pharmacological properties of hypoglycemic agents.

  15. Glucose Homeostasis, Pancreatic Endocrine Function, and Outcomes in Advanced Heart Failure.

    PubMed

    Melenovsky, Vojtech; Benes, Jan; Franekova, Janka; Kovar, Jan; Borlaug, Barry A; Segetova, Marketa; Tura, Andrea; Pelikanova, Tereza

    2017-08-07

    The mechanisms and relevance of impaired glucose homeostasis in advanced heart failure (HF) are poorly understood. The study goals were to examine glucose regulation, pancreatic endocrine function, and metabolic factors related to prognosis in patients with nondiabetic advanced HF. In total, 140 advanced HF patients without known diabetes mellitus and 21 sex-, age-, and body mass index-matched controls underwent body composition assessment, oral glucose tolerance testing, and measurement of glucose-regulating hormones to model pancreatic β-cell secretory response. Compared with controls, HF patients had similar fasting glucose and insulin levels but higher levels after oral glucose tolerance testing. Insulin secretion was not impaired, but with increasing HF severity, there was a reduction in glucose, insulin, and insulin/glucagon ratio-a signature of starvation. The insulin/C-peptide ratio was decreased in HF, indicating enhanced insulin clearance, and this was correlated with lower cardiac output, hepatic insufficiency, right ventricular dysfunction, and body wasting. After a median of 449 days, 41% of patients experienced an adverse event (death, urgent transplant, or assist device). Increased glucagon and, paradoxically, low fasting plasma glucose displayed the strongest relations to outcome ( P =0.01). Patients in the lowest quartile of fasting plasma glucose (3.8-5.1 mmol·L -1 , 68-101 mg·dL -1 ) had 3-times higher event risk than in the top quartile (6.0-7.9 mmol·L -1 , 108-142 mg·dL -1 ; relative risk: 3.05 [95% confidence interval, 1.46-6.77]; P =0.002). Low fasting plasma glucose and increased glucagon are robust metabolic predictors of adverse events in advanced HF. Pancreatic insulin secretion is preserved in advanced HF, but levels decrease with increasing HF severity due to enhanced insulin clearance that is coupled with right heart failure and cardiac cachexia. © 2017 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley.

  16. Reversal of hyperglycemia in mice by using human expandable insulin-producing cells differentiated from fetal liver progenitor cells

    NASA Astrophysics Data System (ADS)

    Zalzman, Michal; Gupta, Sanjeev; Giri, Ranjit K.; Berkovich, Irina; Sappal, Baljit S.; Karnieli, Ohad; Zern, Mark A.; Fleischer, Norman; Efrat, Shimon

    2003-06-01

    Beta-cell replacement is considered to be the most promising approach for treatment of type 1 diabetes. Its application on a large scale is hindered by a shortage of cells for transplantation. Activation of insulin expression, storage, and regulated secretion in stem/progenitor cells offers novel ways to overcome this shortage. We explored whether fetal human progenitor liver cells (FH) could be induced to differentiate into insulin-producing cells after expression of the pancreatic duodenal homeobox 1 (Pdx1) gene, which is a key regulator of pancreatic development and insulin expression in beta cells. FH cells possess a considerable replication capacity, and this was further extended by introduction of the gene for the catalytic subunit of human telomerase. Immortalized FH cells expressing Pdx1 activated multiple beta-cell genes, produced and stored considerable amounts of insulin, and released insulin in a regulated manner in response to glucose. When transplanted into hyperglycemic immunodeficient mice, the cells restored and maintained euglycemia for prolonged periods. Quantitation of human C-peptide in the mouse serum confirmed that the glycemia was normalized by the transplanted human cells. This approach offers the potential of a novel source of cells for transplantation into patients with type 1 diabetes.

  17. Variability of Directly Measured First-Pass Hepatic Insulin Extraction and its Association With Insulin Sensitivity and Plasma Insulin.

    PubMed

    Asare-Bediako, Isaac; Paszkiewicz, Rebecca L; Kim, Stella P; Woolcott, Orison O; Kolka, Cathryn M; Burch, Miguel A; Kabir, Morvarid; Bergman, Richard N

    2018-05-11

    While the β-cells secrete insulin, it is the liver with its first-pass insulin extraction (FPE) that regulates the amount of insulin allowed into circulation for action on target tissues. The metabolic clearance rate of insulin, of which FPE is the dominant component, is reported to be a major determinant of insulin sensitivity (SI). We studied the intricate relationship between FPE, SI and fasting insulin. We used a direct method of measuring FPE, the paired portal/peripheral infusion protocol (PPII) where insulin is infused step-wise, either via the portal vein or a peripheral vein in healthy young dogs (n =12). FPE is calculated as the difference in clearance rates (slope of infusion rate vs. steady insulin plot) between the paired experiments. Significant correlations were found between FPE vs. clamp assessed SI (r s = 0.74); FPE vs. fasting insulin (r s = -0.64) and SI vs. fasting insulin (r s = - 0.67). Also, we found a wide variance in FPE (22.4 -77.2%; mean ± SD of 50.4 ± 19.1%) which is reflected in the variability of plasma insulin (48.1 ± 30.9pM) and SI (9.4 ± 5.8 x10 4 dL * kg -1 * min -1 * pM -1 ). FPE could be the nexus of regulation of both plasma insulin and SI. © 2018 by the American Diabetes Association.

  18. Mechanisms of estradiol-induced insulin secretion by the G protein-coupled estrogen receptor GPR30/GPER in pancreatic beta-cells.

    PubMed

    Sharma, Geetanjali; Prossnitz, Eric R

    2011-08-01

    Sexual dimorphism and supplementation studies suggest an important role for estrogens in the amelioration of glucose intolerance and diabetes. Because little is known regarding the signaling mechanisms involved in estradiol-mediated insulin secretion, we investigated the role of the G protein-coupled receptor 30, now designated G protein-coupled estrogen receptor (GPER), in activating signal transduction cascades in β-cells, leading to secretion of insulin. GPER function in estradiol-induced signaling in the pancreatic β-cell line MIN6 was assessed using small interfering RNA and GPER-selective ligands (G-1 and G15) and in islets isolated from wild-type and GPER knockout mice. GPER is expressed in MIN6 cells, where estradiol and the GPER-selective agonist G-1 mediate calcium mobilization and activation of ERK and phosphatidylinositol 3-kinase. Both estradiol and G-1 induced insulin secretion under low- and high-glucose conditions, which was inhibited by pretreatment with GPER antagonist G15 as well as depletion of GPER by small interfering RNA. Insulin secretion in response to estradiol and G-1 was dependent on epidermal growth factor receptor and ERK activation and further modulated by phosphatidylinositol 3-kinase activity. In islets isolated from wild-type mice, the GPER antagonist G15 inhibited insulin secretion induced by estradiol and G-1, both of which failed to induce insulin secretion in islets obtained from GPER knockout mice. Our results indicate that GPER activation of the epidermal growth factor receptor and ERK in response to estradiol treatment plays a critical role in the secretion of insulin from β-cells. The results of this study suggest that the activation of downstream signaling pathways by the GPER-selective ligand G-1 could represent a novel therapeutic strategy in the treatment of diabetes.

  19. Developmental programming of aging of isolated pancreatic islet glucose-stimulated insulin secretion in female offspring of mothers fed low-protein diets in pregnancy and/or lactation.

    PubMed

    Morimoto, S; Sosa, T C; Calzada, L; Reyes-Castro, L A; Díaz-Díaz, E; Morales, A; Nathanielsz, P W; Zambrano, E

    2012-12-01

    Diabetes predisposition is determined by pancreatic islet insulin secretion and insulin resistance. We studied female rat offspring exposed to low-protein maternal diet (50% control protein diet) in pregnancy and/or lactation at postnatal days 36, 110 and 450. Rats were fed either control 20% casein diet (C) or restricted diet (R - 10% casein) during pregnancy. After delivery, mothers received either C or R diet until weaning to provide four offspring groups: CC, RR, CR and RC (first letter denoting maternal pregnancy diet and the second lactation diet). Serum glucose, insulin and homeostatic model assessment (HOMA) were measured. Pancreatic islets were isolated and in vitro insulin secretion quantified in low glucose (5 mM) and high glucose (11 mM). Serum glucose, insulin and HOMA were similar in all groups at 36 and 110 postnatal days. HOMA was only higher in RR at 450 postnatal days. Only CC demonstrated differences in glucose sensitivity of β-cells to high and low doses at the three ages studied. At 36 days, RR, CR and RC and at 450 days RR and RC groups did not show glucose-stimulated insulin secretion differences between low and high glucose. Aging-associated glucose-stimulated insulin secretion loss was affected by maternal dietary history, indicating that developmental programming must be considered a major factor in aging-related development of predisposition to later-life dysfunctional insulin metabolism. Female offspring islets' insulin secretion was higher than previously reported in males.

  20. miR-124a expression contributes to the monophasic pattern of insulin secretion in islets from pregnant rats submitted to a low-protein diet.

    PubMed

    de Siqueira, Kariny Cassia; de Lima, Faena Moura; Lima, Fernanda Souza; Taki, Marina Satie; da Cunha, Clarissa Felfili; de Lima Reis, Sílvia Regina; Camargo, Rafael Ludemann; Batista, Thiago Martins; Vanzela, Emerielle Cristine; Nardelli, Tarlliza Romanna; Carneiro, Everardo Magalhães; Bordin, Silvana; Ignácio-Souza, Letícia Martins; Latorraca, Márcia Queiroz

    2018-06-01

    To evaluate the role of miR-124a in the regulation of genes involved in insulin exocytosis and its effects on the kinetics of insulin secretion in pancreatic islets from pregnant rats submitted to a low-protein diet. Adult control non-pregnant (CNP) and control pregnant (CP) rats were fed a normal protein diet (17%), whereas low-protein non-pregnant (LPNP) and low-protein pregnant (LPP) rats were fed a low-protein diet (6%) from days 1 to 15 of pregnancy. Kinetics of the glucose-induced insulin release and measurement of [Ca 2+ ] i in pancreatic islets were assessed by standard protocols. The miR-124a expression and gene transcriptions from pancreatic islets were determined by real-time polymerase chain reaction. In islets from LPP rats, the first phase of insulin release was abrogated. The AUC [Ca 2+ ] i from the LPP group was lower compared with the other groups. miR-124a expression was reduced by a low-protein diet. SNAP-25 mRNA, protein expression, and Rab3A protein content were lower in the LPP rats than in CP rats. Syntaxin 1A and Kir6.2 mRNA levels were decreased in islets from low-protein rats compared with control rats, whereas their protein content was reduced in islets from pregnant rats. Loss of biphasic insulin secretion in islets from LPP rats appears to have resulted from reduced [Ca 2+ ] i due, at least in part, to Kir6.2 underexpression and from the changes in exocytotic elements that are influenced either directly or indirectly by miR-124a.

  1. Adipose-specific deletion of Kif5b exacerbates obesity and insulin resistance in a mouse model of diet-induced obesity.

    PubMed

    Cui, Ju; Pang, Jing; Lin, Ya-Jun; Gong, Huan; Wang, Zhen-He; Li, Yun-Xuan; Li, Jin; Wang, Zai; Jiang, Ping; Dai, Da-Peng; Li, Jian; Cai, Jian-Ping; Huang, Jian-Dong; Zhang, Tie-Mei

    2017-06-01

    Recent studies have shown that KIF5B (conventional kinesin heavy chain) mediates glucose transporter type 4 translocation and adiponectin secretion in 3T3-L1 adipocytes, suggesting an involvement of KIF5B in the homeostasis of metabolism. However, the in vivo physiologic function of KIF5B in adipose tissue remains to be determined. In this study, adipose-specific Kif5b knockout (F-K5bKO) mice were generated using the Cre-LoxP strategy. F-K5bKO mice had similar body weights to controls fed on a standard chow diet. However, F-K5bKO mice had hyperlipidemia and significant glucose intolerance and insulin resistance. Deletion of Kif5b aggravated the deleterious impact of a high-fat diet (HFD) on body weight gain, hepatosteatosis, glucose tolerance, and systematic insulin sensitivity. These changes were accompanied by impaired insulin signaling, decreased secretion of adiponectin, and increased serum levels of leptin and proinflammatory adipokines. F-K5bKO mice fed on an HFD exhibited lower energy expenditure and thermogenic dysfunction as a result of whitening of brown adipose due to decreased mitochondria biogenesis and down-regulation of key thermogenic gene expression. In conclusion, selective deletion of Kif5b in adipose tissue exacerbates HFD-induced obesity and its associated metabolic disorders, partly through a decrease in energy expenditure, dysregulation of adipokine secretion, and insulin signaling.-Cui, J., Pang, J., Lin, Y.-J., Gong, H., Wang, Z.-H., Li, Y.-X., Li, J., Wang, Z., Jiang, P., Dai, D.-P., Li, J., Cai, J.-P., Huang, J.-D., Zhang, T.-M. Adipose-specific deletion of Kif5b exacerbates obesity and insulin resistance in a mouse model of diet-induced obesity. © FASEB.

  2. [Effects of triterpenoid from Psidium guajava leaves ursolic acid on proliferation, differentiation of 3T3-L1 preadipocyte and insulin resistance].

    PubMed

    Lin, Juan-Na; Kuang, Qiao-Ting; Ye, Kai-He; Ye, Chun-Ling; Huang, Yi; Zhang, Xiao-Qi; Ye, Wen-Cai

    2013-08-01

    To investigate the influences of triterpenoid from Psidium guajava Leaves (ursolic acid) on the proliferation, differentiation of 3T3-L1 preadipocyte, and its possible mechanism treat for insulin resistance. 3T3-L1 preadipocyte was cultured in vitro. After adding ursolic acid to the culture medium for 48h, the cell viability was tested by MTT assay. Induced for 6 days, the lipid accumulation of adipocyte was measured by Oil Red O staining. The insulin resistant cell model was established with Dexamethasone. Cellular glucose uptake was determined with GOD-POD assays and FFA concentration was determined at the time of 48h. Secreted adiponectin were measured by ELISA. The protein levels of PPARgamma and PTP1B in insulin resistant adipocyte were measured by Western Blotting. Compared with medium control group, 30, 100 micromol/L ursolic acid could increase its proliferation and differentiation significantly (P < 0.05 or P < 0.01). Compared with the model group, ursolic acid at 100 micromol/L could enhance cellular glucose uptake of insulin resistant adipocyte significantly both in basic and insulin stimulation state (P < 0.01), while ursolic acid at 30 micromol/L could already enhance its glucose uptake significantly (P < 0.05), and could already decrease its FFA production significantly (P < 0.05). Ursolic acid at 30 micromol/L could increase the secretion of adiponectin on insulin resistant adipocyte significantly (P < 0.05), up-regulate the expression of PPARgamma protein (P < 0.05), but showed no effect on the PTP1B protein expression (P > 0.05). Ursolic acid can improve the proliferation and differentiation of 3T3-L1 preadipocyte, enhance cellular glucose uptake, inhibit the production of FFA, promote the secretion of adiponectin insulin resistant adipocyte, its mechanism may be related to upregulating the expression of PPARgamma protein.

  3. Kir6.2 Variant E23K Increases ATP-Sensitive K+ Channel Activity and Is Associated With Impaired Insulin Release and Enhanced Insulin Sensitivity in Adults With Normal Glucose Tolerance

    PubMed Central

    Villareal, Dennis T.; Koster, Joseph C.; Robertson, Heather; Akrouh, Alejandro; Miyake, Kazuaki; Bell, Graeme I.; Patterson, Bruce W.; Nichols, Colin G.; Polonsky, Kenneth S.

    2009-01-01

    OBJECTIVE The E23K variant in the Kir6.2 subunit of the ATP-sensitive K+ channel (KATP channel) is associated with increased risk of type 2 diabetes. The present study was undertaken to increase our understanding of the mechanisms responsible. To avoid confounding effects of hyperglycemia, insulin secretion and action were studied in subjects with the variant who had normal glucose tolerance. RESEARCH DESIGN AND METHODS Nine subjects with the E23K genotype K/K and nine matched subjects with the E/E genotype underwent 5-h oral glucose tolerance tests (OGTTs), graded glucose infusion, and hyperinsulinemic-euglycemic clamp with stable-isotope–labeled tracer infusions to assess insulin secretion, action, and clearance. A total of 461 volunteers consecutively genotyped for the E23K variant also underwent OGTTs. Functional studies of the wild-type and E23K variant potassium channels were conducted. RESULTS Insulin secretory responses to oral and intravenous glucose were reduced by ∼40% in glucose-tolerant subjects homozygous for E23K. Normal glucose tolerance with reduced insulin secretion suggests a change in insulin sensitivity. The hyperinsulinemic-euglycemic clamp revealed that hepatic insulin sensitivity is ∼40% greater in subjects with the E23K variant, and these subjects demonstrate increased insulin sensitivity after oral glucose. The reconstituted E23K channels confirm reduced sensitivity to inhibitory ATP and increase in open probability, a direct molecular explanation for reduced insulin secretion. CONCLUSIONS The E23K variant leads to overactivity of the KATP channel, resulting in reduced insulin secretion. Initially, insulin sensitivity is enhanced, thereby maintaining normal glucose tolerance. Presumably, over time, as insulin secretion falls further or insulin resistance develops, glucose levels rise resulting in type 2 diabetes. PMID:19491206

  4. Effect of Human Myotubes-Derived Media on Glucose-Stimulated Insulin Secretion.

    PubMed

    Mizgier, Maria L; Cataldo, Luis R; Gutierrez, Juan; Santos, José L; Casas, Mariana; Llanos, Paola; Contreras-Ferrat, Ariel E; Moro, Cedric; Bouzakri, Karim; Galgani, Jose E

    2017-01-01

    Fasting to postprandial transition requires a tight adjustment of insulin secretion to its demand, so tissue (e.g., skeletal muscle) glucose supply is assured while hypo-/hyperglycemia are prevented. High muscle glucose disposal after meals is pivotal for adapting to increased glycemia and might drive insulin secretion through muscle-released factors (e.g., myokines). We hypothesized that insulin influences myokine secretion and then increases glucose-stimulated insulin secretion (GSIS). In conditioned media from human myotubes incubated with/without insulin (100 nmol/L) for 24 h, myokines were qualitatively and quantitatively characterized using an antibody-based array and ELISA-based technology, respectively. C57BL6/J mice islets and Wistar rat beta cells were incubated for 24 h with control and conditioned media from noninsulin- and insulin-treated myotubes prior to GSIS determination. Conditioned media from insulin-treated versus nontreated myotubes had higher RANTES but lower IL6, IL8, and MCP1 concentration. Qualitative analyses revealed that conditioned media from noninsulin- and insulin-treated myotubes expressed 32 and 23 out of 80 myokines, respectively. Islets incubated with conditioned media from noninsulin-treated myotubes had higher GSIS versus control islets ( p < 0.05). Meanwhile, conditioned media from insulin-treated myotubes did not influence GSIS. In beta cells, GSIS was similar across conditions. In conclusion, factors being present in noninsulin-stimulated muscle cell-derived media appear to influence GSIS in mice islets.

  5. Effect of Human Myotubes-Derived Media on Glucose-Stimulated Insulin Secretion

    PubMed Central

    Cataldo, Luis R.; Gutierrez, Juan; Santos, José L.; Casas, Mariana; Contreras-Ferrat, Ariel E.; Moro, Cedric; Bouzakri, Karim

    2017-01-01

    Fasting to postprandial transition requires a tight adjustment of insulin secretion to its demand, so tissue (e.g., skeletal muscle) glucose supply is assured while hypo-/hyperglycemia are prevented. High muscle glucose disposal after meals is pivotal for adapting to increased glycemia and might drive insulin secretion through muscle-released factors (e.g., myokines). We hypothesized that insulin influences myokine secretion and then increases glucose-stimulated insulin secretion (GSIS). In conditioned media from human myotubes incubated with/without insulin (100 nmol/L) for 24 h, myokines were qualitatively and quantitatively characterized using an antibody-based array and ELISA-based technology, respectively. C57BL6/J mice islets and Wistar rat beta cells were incubated for 24 h with control and conditioned media from noninsulin- and insulin-treated myotubes prior to GSIS determination. Conditioned media from insulin-treated versus nontreated myotubes had higher RANTES but lower IL6, IL8, and MCP1 concentration. Qualitative analyses revealed that conditioned media from noninsulin- and insulin-treated myotubes expressed 32 and 23 out of 80 myokines, respectively. Islets incubated with conditioned media from noninsulin-treated myotubes had higher GSIS versus control islets (p < 0.05). Meanwhile, conditioned media from insulin-treated myotubes did not influence GSIS. In beta cells, GSIS was similar across conditions. In conclusion, factors being present in noninsulin-stimulated muscle cell-derived media appear to influence GSIS in mice islets. PMID:28286777

  6. Dual effect of cell-cell contact disruption on cytosolic calcium and insulin secretion.

    PubMed

    Jaques, Fabienne; Jousset, Hélène; Tomas, Alejandra; Prost, Anne-Lise; Wollheim, Claes B; Irminger, Jean-Claude; Demaurex, Nicolas; Halban, Philippe A

    2008-05-01

    Cell-to-cell interactions play an important role in insulin secretion. Compared with intact islets, dispersed pancreatic beta-cells show increased basal and decreased glucose-stimulated insulin secretion. In this study, we used mouse MIN6B1 cells to investigate the mechanisms that control insulin secretion when cells are in contact with each other or not. RNAi-mediated silencing of the adhesion molecule E-cadherin in confluent cells reduced glucose-stimulated secretion to the levels observed in isolated cells but had no impact on basal secretion. Dispersed cells presented high cytosolic Ca(2+) activity, depolymerized cytoskeleton and ERK1/2 activation in low glucose conditions. Both the increased basal secretion and the spontaneous Ca(2+) activity were corrected by transient removal of Ca(2+) or prolonged incubation of cells in low glucose, a procedure that restored the ability of dispersed cells to respond to glucose (11-fold stimulation). In conclusion, we show that dispersed pancreatic beta-cells can respond robustly to glucose once their elevated basal secretion has been corrected. The increased basal insulin secretion of dispersed cells is due to spontaneous Ca(2+) transients that activate downstream Ca(2+) effectors, whereas engagement of cell adhesion molecules including E-cadherin contributes to the greater secretory response to glucose seen in cells with normal intercellular contacts.

  7. Family history of diabetes and its relationship with insulin secretion and insulin sensitivity in Iraqi immigrants and native Swedes: a population-based cohort study.

    PubMed

    Bennet, Louise; Franks, Paul W; Zöller, Bengt; Groop, Leif

    2018-03-01

    Middle Eastern immigrants to western countries are at high risk of developing type 2 diabetes. However, the heritability and impact of first-degree family history (FH) of type 2 diabetes on insulin secretion and action have not been adequately described. Citizens of Malmö, Sweden, aged 30-75 years born in Iraq or Sweden were invited to participate in this population-based study. Insulin secretion (corrected insulin response and oral disposition index) and action (insulin sensitivity index) were assessed by oral glucose tolerance tests. In total, 45.7% of Iraqis (616/1348) and 27.4% of native Swedes (201/733) had FH in parent(s), sibling(s) or single parent and sibling, i.e., FH+. Approximately 8% of Iraqis and 0.7% of Swedes had ≥ 3 sibling(s) and parent(s) with diabetes, i.e., FH++. Irrespective of family size, prediabetes and diabetes increased with family burden (FH- 29.4%; FH+ 38.8%; FH++ 61.7%) without significant differences across ethnicities. With increasing level of family burden, insulin secretion rather than insulin action decreased. Individuals with a combination of ≥ 3 siblings and parents with diabetes presented with the lowest levels of insulin secretion. The Iraqi immigrant population often present with a strong familial burden of type 2 diabetes with the worst glycemic control and highest diabetes risk in individuals with ≥ 3 siblings and parents with diabetes. Our data show that in a population still free from diabetes familial burden influences insulin secretion to a higher degree than insulin action and may be a logical target for intervention.

  8. Genome-wide interaction with the insulin secretion locus MTNR1B reveals CMIP as a novel type 2 diabetes susceptibility gene in African Americans.

    PubMed

    Keaton, Jacob M; Gao, Chuan; Guan, Meijian; Hellwege, Jacklyn N; Palmer, Nicholette D; Pankow, James S; Fornage, Myriam; Wilson, James G; Correa, Adolfo; Rasmussen-Torvik, Laura J; Rotter, Jerome I; Chen, Yii-Der I; Taylor, Kent D; Rich, Stephen S; Wagenknecht, Lynne E; Freedman, Barry I; Ng, Maggie C Y; Bowden, Donald W

    2018-04-24

    Although type 2 diabetes (T2D) results from metabolic defects in insulin secretion and insulin sensitivity, most of the genetic risk loci identified to date relates to insulin secretion. We reported that T2D loci influencing insulin sensitivity may be identified through interactions with insulin secretion loci, thereby leading to T2D. Here, we hypothesize that joint testing of variant main effects and interaction effects with an insulin secretion locus increases power to identify genetic interactions leading to T2D. We tested this hypothesis with an intronic MTNR1B SNP, rs10830963, which is associated with acute insulin response to glucose, a dynamic measure of insulin secretion. rs10830963 was tested for interaction and joint (main + interaction) effects with genome-wide data in African Americans (2,452 cases and 3,772 controls) from five cohorts. Genome-wide genotype data (Affymetrix Human Genome 6.0 array) was imputed to a 1000 Genomes Project reference panel. T2D risk was modeled using logistic regression with rs10830963 dosage, age, sex, and principal component as predictors. Joint effects were captured using the Kraft two degrees of freedom test. Genome-wide significant (P < 5 × 10 -8 ) interaction with MTNR1B and joint effects were detected for CMIP intronic SNP rs17197883 (P interaction  = 1.43 × 10 -8 ; P joint  = 4.70 × 10 -8 ). CMIP variants have been nominally associated with T2D, fasting glucose, and adiponectin in individuals of East Asian ancestry, with high-density lipoprotein, and with waist-to-hip ratio adjusted for body mass index in Europeans. These data support the hypothesis that additional genetic factors contributing to T2D risk, including insulin sensitivity loci, can be identified through interactions with insulin secretion loci. © 2018 WILEY PERIODICALS, INC.

  9. Desnutrin/ATGL Activates PPARδ to Promote Mitochondrial Function for Insulin Secretion in Islet β cells

    PubMed Central

    Tang, Tianyi; Abbott, Marcia J.; Ahmadian, Maryam; Lopes, Andressa B.; Wang, Yuhui; Sul, Hei Sook

    2013-01-01

    Excessive caloric intake leading to obesity is associated with insulin resistance and dysfuntion of islet β cells. High fat feeding decreases desnutrin (also called ATGL/PNPLA2) levels in islets. Here we show that desnutrin ablation via RIP-Cre (βKO) or RIP-CreER results in hyperglycemia with impaired glucose-stimulated insulin secretion (GSIS). Due to decreased lipolysis, islets have higher TAG content but lower free FA levels. βKO islets exhibit impaired mitochondrial respiration and lower production of ATP required for GSIS, along with decreased expression of PPARδ target genes involved in mitochondrial oxidation. Furthermore, synthetic PPARδ, but not PPARα, agonist restores GSIS and expression of mitochondrial oxidative genes in βKO mice, revealing desnutrin-catalyzed lipolysis generates PPARδ ligands. Finally, adenoviral expression of desnutrin in βKO islets restores all defects of βKO islet phenotype and function including GSIS and mitochondrial defects, demonstrating the critical role of the desnutrin-PPARδ-mitochondrial oxidation axis in regulating islet β cell GSIS. PMID:24268737

  10. The Drosophila HNF4 nuclear receptor promotes glucose-stimulated insulin secretion and mitochondrial function in adults

    PubMed Central

    Barry, William E; Thummel, Carl S

    2016-01-01

    Although mutations in HNF4A were identified as the cause of Maturity Onset Diabetes of the Young 1 (MODY1) two decades ago, the mechanisms by which this nuclear receptor regulates glucose homeostasis remain unclear. Here we report that loss of Drosophila HNF4 recapitulates hallmark symptoms of MODY1, including adult-onset hyperglycemia, glucose intolerance and impaired glucose-stimulated insulin secretion (GSIS). These defects are linked to a role for dHNF4 in promoting mitochondrial function as well as the expression of Hex-C, a homolog of the MODY2 gene Glucokinase. dHNF4 is required in the fat body and insulin-producing cells to maintain glucose homeostasis by supporting a developmental switch toward oxidative phosphorylation and GSIS at the transition to adulthood. These findings establish an animal model for MODY1 and define a developmental reprogramming of metabolism to support the energetic needs of the mature animal. DOI: http://dx.doi.org/10.7554/eLife.11183.001 PMID:27185732

  11. Glucose acutely decreases pH of secretory granules in mouse pancreatic islets. Mechanisms and influence on insulin secretion.

    PubMed

    Stiernet, Patrick; Guiot, Yves; Gilon, Patrick; Henquin, Jean-Claude

    2006-08-04

    Glucose-induced insulin secretion requires a rise in beta-cell cytosolic Ca2+ ([Ca2+]c) that triggers exocytosis and a mechanistically unexplained amplification of the action of [Ca2+]c. Insulin granules are kept acidic by luminal pumping of protons with simultaneous Cl- uptake to maintain electroneutrality. Experiments using patched, dialyzed beta-cells prompted the suggestion that acute granule acidification by glucose underlies amplification of insulin secretion. However, others found glucose to increase granular pH in intact islets. In this study, we measured islet granular pH with Lysosensor DND-160, a fluorescent dye that permits ratiometric determination of pH < 6 in acidic compartments. Stimulation of mouse islets with glucose reversibly decreased granular pH by mechanisms that are dependent on metabolism and Cl- ions but independent of changes in [Ca2+]c and protein kinase A or C activity. Granular pH was increased by concanamycin (blocker of the vesicular type H+-ATPase) > methylamine (weak base) > Cl- omission. Concanamycin and methylamine did not alter glucose-induced [Ca2+]c increase in islets but strongly inhibited the two phases of insulin secretion. Omission of Cl- did not affect the first phase but decreased the second phase of both [Ca2+]c and insulin responses. Neither experimental condition affected the [Ca2+]c rise induced by 30 mM KCl, but the insulin responses were inhibited by concanamycin > methylamine and not affected by Cl- omission. The amplification of insulin secretion by glucose was not suppressed. We conclude that an acidic granular pH is important for insulin secretion but that the acute further acidification produced by glucose is not essential for the augmentation of secretion via the amplifying pathway.

  12. Increased prandial insulin secretion after administration of a single preprandial oral dose of repaglinide in patients with type 2 diabetes.

    PubMed

    Owens, D R; Luzio, S D; Ismail, I; Bayer, T

    2000-04-01

    To examine the dose-related pharmacodynamics and pharmacokinetics of a single preprandial oral dose of repaglinide in patients with type 2 diabetes. A total of 16 Caucasian men with type 2 diabetes participated in two placebo-controlled double-blind randomized cross-over studies. Patients were randomized to receive a single oral dose of repaglinide (0.5, 1.0, and 2.0 mg in study 1 and 4.0 mg in study 2) or placebo (both studies) administered 15 min before the first of two sequential identical standard meals (breakfast and lunch) that were 4 h apart. During each of the study days, which were 1 week apart, blood samples were taken at frequent intervals over a period of approximately 8 h for measurement of plasma glucose, insulin, C-peptide, and repaglinide concentrations. During the first meal period (0-240 min), administration of repaglinide reduced significantly the area under the curve (AUC) for glucose concentration and significantly increased the AUC for insulin levels, C-peptide levels, and the insulin secretion rate. These results, compared with those of administering placebo, were dose dependent and log linear. The effect of repaglinide administration on insulin secretion was most pronounced in the early prandial period. Within 30 min, it caused a relative increase in insulin secretion of up to 150%. During the second meal period (240-480 min), there was no difference between repaglinide and placebo administration in the AUC for glucose concentration, C-peptide concentration, and the estimated insulin secretion rate. A single dose of repaglinide (0.5-4.0 mg) before breakfast improves insulin secretion and reduces prandial hyperglycemia dose-dependently Administration of repaglinide had no effect on insulin secretion with the second meal, which was consumed 4 h after breakfast.

  13. Insulin and 20-hydroxyecdysone action in Bombyx mori: Glycogen content and expression pattern of insulin and ecdysone receptors in fat body.

    PubMed

    Keshan, Bela; Thounaojam, Bembem; Kh, Sanathoibi D

    2017-01-15

    Insulin and ecdysone signaling play a critical role on the growth and development of insects including Bombyx mori. Our previous study showed that Bombyx larvae reached critical weight for metamorphosis between day 3.5 and 4 of the fifth larval instar. The present study showed that the effect of insulin on the accumulation of glycogen in fat body of Bombyx larvae depends on the critical growth period. When larvae are in active growth period (before reaching critical weight), insulin caused increased accumulation of glycogen, while its treatment in larvae at terminal growth period (after critical period) resulted in an increased mobilization of glycogen. During terminal growth period, insulin and 20-hydroxyecdysone (20E) showed an antagonistic effect on the accumulation of fat body glycogen in fed, food deprived and decapitated larvae as well as in isolated abdomens. Insulin treatment decreased the glycogen content, whereas, 20E increased it. Food deprivation and decapitation caused an increase in the transcript levels of insulin receptor (InR) and this increase in InR expression might be attributed to a decrease in synthesis/secretion of insulin-like peptides, as insulin treatment in these larvae showed a down-regulation in InR expression. However, insulin showed an up-regulation in InR in isolated abdomens and it suggests that in food deprived and decapitated larvae, the exogenous insulin may interact with some head and/or thoracic factors in modulating the expression of InR. Moreover, in fed larvae, insulin-mediated increase in InR expression indicates that its regulation by insulin-like peptides also depends on the nutritional status of the larvae. The treatment of 20E in fed larvae showed an antagonistic effect on the transcript levels since a down-regulation in InR expression was observed. 20E treatment also led to a decreased expression of InR in food deprived and decapitated larvae as well as in isolated abdomens. Insulin and 20E also modulated the expression level of ecdysone receptors (EcRB1 and USP1). 20E treatment showed an up-regulation in expression of ecdysone receptors, but only in fed larvae, whereas insulin treatment showed a down-regulation in the expression of EcRB1 and USP1 in all the experimental larvae studied. Further, the data indicates that an up-regulation of ecdysone receptors is associated with an increase in fat body glycogen content, whereas an up-regulation of insulin receptor expression causes glycogen mobilization. The study, therefore, suggests that the insulin and ecdysone signaling are linked to each other and that both insulin and ecdysone are involved in regulating the carbohydrate reserves in B. mori. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Effects of thyrotrophin-releasing hormone, and methionine-enkephalin on gastric acid and pepsin secretion in the cat.

    PubMed

    Gascoigne, A D; Hirst, B H; Reed, J D; Shaw, B

    1980-07-01

    1 The effect of intravenous administration of thyrotrophin-releasing hormone (TRH) and methionine-enkephalin on gastric acid and pepsin secretions was investigated in conscious cats prepared with chronic gastric fistulae.2 TRH, 20 mug kg(-1) h(-1), did not influence unstimulated gastric acid secretion, nor gastric acid secretion stimulated by submaximal doses of pentagastrin or histamine. Pepsin secretion stimulated by pentagastrin was not influenced by TRH.3 TRH, 20 mug kg(-1) h(-1), significantly reduced the gastric acid and pepsin responses to intravenous infusion of insulin. TRH also significantly reduced the degree of hypoglycaemia seen in response to insulin. TRH, 20 mug kg(-1) h(-1), but not 5 mug kg(-1) h(-1), infused alone resulted in a significant hyperglycaemia.4 It is concluded that the reduction of insulin-stimulated gastric secretion by TRH is not dependent on the hyperglycaemic action of the peptide. The mechanism of action of TRH on insulin-stimulated secretion is discussed with respect to its site of action.5 Methionine-enkephalin or the potent analogue, D-Ala(2), Met-enkephalinamide were without effect on unstimulated gastric secretion, or secretion stimulated by pentagastrin, histamine, and insulin. The opiate receptor antagonist, naloxone, did not significantly alter the gastric acid or pepsin response to insulin.6 It is concluded that there is no evidence that opiates stimulate oxyntic glands directly, nor that the oxyntic cells may possess high affinity binding sites for opiates, nor that endogenous opiates are involved in the control of gastric secretion.

  15. Clinical usefulness of the thickness of preperitoneal and subcutaneous fat layer in the abdomen estimated by ultrasonography for diagnosing abdominal obesity in each type of impaired glucose tolerance in man.

    PubMed

    Soyama, Akiko; Nishikawa, Tetsuo; Ishizuka, Toshiharu; Ito, Hiroko; Saito, Jun; Yagi, Kazuo; Saito, Yasushi

    2005-04-01

    For this study we enrolled 1,615 males who were admitted to our hospital for a general health check-up. Plasma glucose (PG) and insulin were measured during 75 g OGTT, and abdominal obesity was assessed by ultrasonography in all subjects. We divided them into several groups: normal glucose tolerance (NGT), high-normal glucose tolerance (h-NGT) who showed >10.0 nmol/l at 1 hr PG among those with NGT, impaired fasting glucose (IFG), impaired glucose tolerance (IGT), IFG + IGT, and DM, according to the results of 75 g OGTT. The aim of the present study was to clarify the clinical characteristics of pre-diabetic disorders relating to metabolic syndrome by comparing various parameters including body mass index (BMI), blood levels of various lipids and abdominal wall fat index (AFI) calculated from the thickness of preperitoneal (Pmax) and subcutaneous (Smin) fat layer in the abdomen estimated by ultrasonography with insulin sensitivity determined by homeostatic model assessment (HOMA-IR) in each type of abnormal glucose regulation as classified by PG changes in 75 g OGTT. We also investigated the relationship between insulin secretion capability and insulin sensitivity to delineate the characteristics of each type of abnormal glucose regulation, and compared the area under the insulin curve (AUCins) and the time axis, and the ability of early insulin secretion by glucose loading (insulinogenic index: I.I.) in each type of abnormal glucose regulation. There was a significant positive correlation between HOMA-IR and Smin or Pmax, suggesting that Smin and Pmax may reflect insulin sensitivity. Abdominal obesity, which was diagnosed from the data of AFI, was present in the h-NGT and IFG + IGT groups, suggesting that those groups belong to the clinical entity of metabolic syndrome. HOMA-IR was higher in IFG than in IGT, although I.I. was reduced and AUCins was increased in IFG as well as in IGT. h-NGT demonstrated a slightly lower I.I. and higher AUCins, compared with IGT. IFG demonstrated much stronger insulin resistance than IGT, although I.I. was reduced and AUCins was increased in IFG and IGT. Thus, it is suggested that insulin sensitivity may partly account for the difference in pathogenesis between IFG and IGT; and that h-NGT, which showed abdominal obesity assessed as AFI by ultrasonography, should be recognized as a disease state of metabolic syndrome with impaired glucose regulation.

  16. Galanin inhibits caerulein-stimulated pancreatic amylase secretion via cholinergic nerves and insulin.

    PubMed

    Barreto, Savio G; Woods, Charmaine M; Carati, Colin J; Schloithe, Ann C; Jaya, Surendra R; Toouli, James; Saccone, Gino T P

    2009-08-01

    Pancreatic exocrine secretion is affected by galanin, but the mechanisms involved are unclear. We aimed to determine the effect and elucidate the mechanism of action of exogenous galanin on basal and stimulated pancreatic amylase secretion in vitro. The effect of galanin on basal-, carbachol-, and caerulein-stimulated amylase secretion from isolated murine pancreatic lobules was measured. Carbachol and caerulein concentration-response relationships were established. Lobules were coincubated with galanin (10(-12) M to 10(-7) M), carbachol (10(-6) M), or caerulein (10(-10) M). Lobules were preincubated with atropine (10(-5) M), tetrodotoxin (10(-5) M), hexamethonium (10(-5) M), or diazoxide (10(-7) M and 10(-4) M) for 30 min followed by incubation with caerulein (10(-10) M) alone or combined with galanin (10(-12) M). Amylase secretion was expressed as percent of total lobular amylase. Immunohistochemical studies used the antigen retrieval technique and antisera for galanin receptor (GALR) 1, 2, and 3. Carbachol and caerulein stimulated amylase secretion in a concentration-dependent manner with maximal responses of two- and 1.7-fold over control evoked at 10(-6) M and 10(-10) M, respectively. Galanin (10(-12) M) completely inhibited caerulein-stimulated amylase secretion but had no effect on carbachol-stimulated or basal secretion. Atropine and tetrodotoxin pretreatment abolished the caerulein-stimulated amylase secretion, whereas hexamethonium had no significant effect. Diazoxide significantly reduced caerulein-stimulated amylase secretion by approximately 80%. Galanin did not affect caerulein-stimulated amylase secretion in the presence of hexamethonium or diazoxide. Glucose-stimulated amylase secretion was also inhibited by galanin. Immunohistochemistry revealed islet cells labeled for GALR2. These data suggest that galanin may modulate caerulein-stimulated amylase secretion by acting on cholinergic nerves and/or islet cells possibly via GALR2 to regulate insulin release.

  17. Cold-sensing regulates Drosophila growth through insulin-producing cells

    PubMed Central

    Li, Qiaoran; Gong, Zhefeng

    2015-01-01

    Across phyla, body size is linked to climate. For example, rearing fruit flies at lower temperatures results in bigger body sizes than those observed at higher temperatures. The underlying molecular basis of this effect is poorly understood. Here we provide evidence that the temperature-dependent regulation of Drosophila body size depends on a group of cold-sensing neurons and insulin-producing cells (IPCs). Electrically silencing IPCs completely abolishes the body size increase induced by cold temperature. IPCs are directly innervated by cold-sensing neurons. Stimulation of these cold-sensing neurons activates IPCs, promotes synthesis and secretion of Drosophila insulin-like peptides and induces a larger body size, mimicking the effects of rearing the flies in cold temperature. Taken together, these findings reveal a neuronal circuit that mediates the effects of low temperature on fly growth. PMID:26648410

  18. Fenugreek lactone attenuates palmitate-induced apoptosis and dysfunction in pancreatic β-cells

    PubMed Central

    Gong, Jing; Dong, Hui; Jiang, Shu-Jun; Wang, Ding-Kun; Fang, Ke; Yang, De-Sen; Zou, Xin; Xu, Li-Jun; Wang, Kai-Fu; Lu, Fu-Er

    2015-01-01

    AIM: To investigate the effect of fenugreek lactone (FL) on palmitate (PA)-induced apoptosis and dysfunction in insulin secretion in pancreatic NIT-1 β-cells. METHODS: Cells were cultured in the presence or absence of FL and PA (0.25 mmol/L) for 48 h. Then, lipid droplets in NIT-1 cells were observed by oil red O staining, and the intracellular triglyceride content was measured by colorimetric assay. The insulin content in the supernatant was determined using an insulin radio-immunoassay. Oxidative stress-associated parameters, including total superoxide dismutase, glutathione peroxidase and catalase activity and malondialdehyde levels in the suspensions were also examined. The expression of upstream regulators of oxidative stress, such as protein kinase C-α (PKC-α), phospho-PKC-α and P47phox, were determined by Western blot analysis and real-time PCR. In addition, apoptosis was evaluated in NIT-1 cells by flow cytometry assays and caspase-3 viability assays. RESULTS: Our results indicated that compared to the control group, PA induced an increase in lipid accumulation and apoptosis and a decrease in insulin secretion in NIT-1 cells. Oxidative stress in NIT-1 cells was activated after 48 h of exposure to PA. However, FL reversed the above changes. These effects were accompanied by the inhibition of PKC-α, phospho-PKC-α and P47phox expression and the activation of caspase-3. CONCLUSION: FL attenuates PA-induced apoptosis and insulin secretion dysfunction in NIT-1 pancreatic β-cells. The mechanism for this action may be associated with improvements in levels of oxidative stress. PMID:26730156

  19. Type 2 Diabetes–Associated Missense Polymorphisms KCNJ11 E23K and ABCC8 A1369S Influence Progression to Diabetes and Response to Interventions in the Diabetes Prevention Program

    PubMed Central

    Florez, Jose C.; Jablonski, Kathleen A.; Kahn, Steven E.; Franks, Paul W.; Dabelea, Dana; Hamman, Richard F.; Knowler, William C.; Nathan, David M.; Altshuler, David

    2008-01-01

    The common polymorphisms KCNJ11 E23K and ABCC8 A1369S have been consistently associated with type 2 diabetes. We examined whether these variants are also associated with progression from impaired glucose tolerance (IGT) to diabetes and responses to preventive interventions in the Diabetes Prevention Program. We genotyped both variants in 3,534 participants and performed Cox regression analysis using genotype, intervention, and their interactions as predictors of diabetes incidence over ~3 years. We also assessed the effect of genotype on insulin secretion and insulin sensitivity at 1 year. As previously shown in other studies, lysine carriers at KCNJ11 E23K had reduced insulin secretion at baseline; however, they were less likely to develop diabetes than E/E homozygotes. Lysine carriers were less protected by 1-year metformin treatment than E/E homozygotes (P < 0.02). Results for ABCC8 A1369S were essentially identical to those for KCNJ11 E23K. We conclude that the lysine variant in KCNJ11 E23K leads to diminished insulin secretion in individuals with IGT. Given our contrasting results compared with case-control analyses, we hypothesize that its effect on diabetes risk may occur before the IGT-to-diabetes transition. We further hypothesize that the diabetes-preventive effect of metformin may interact with the impact of these variants on insulin regulation. Diabetes 56: 531–536, 2007 PMID:17259403

  20. Effect of Artemisia dracunculus Administration on Glycemic Control, Insulin Sensitivity, and Insulin Secretion in Patients with Impaired Glucose Tolerance.

    PubMed

    Méndez-Del Villar, Miriam; Puebla-Pérez, Ana M; Sánchez-Peña, María J; González-Ortiz, Luis J; Martínez-Abundis, Esperanza; González-Ortiz, Manuel

    2016-05-01

    To evaluate the effect of Artemisia dracunculus on glycemic control, insulin sensitivity, and insulin secretion in patients with impaired glucose tolerance (IGT). A randomized, double blind, placebo-controlled clinical trial was performed in 24 patients with diagnosis of IGT. Before and after the intervention, glucose and insulin levels were measured every 30 min for 2 h after a 75-g dextrose load, along with glycated hemoglobin A1c (A1C) and lipid profile. Twelve patients received A. dracunculus (1000 mg) before breakfast and dinner for 90 days; the remaining 12 patients received placebo. Area under the curve (AUC) of glucose and insulin, total insulin secretion, first phase of insulin secretion, and insulin sensitivity were calculated. Wilcoxon signed-rank, Mann-Whitney U, and chi-square tests were used for statistical analyses. The institutional ethics committee approved the protocol. After A. dracunculus administration, there were significant decreases in systolic blood pressure (SBP; 120.0 ± 11.3 vs. 113.0 ± 11.2 mmHg, P < .05), A1C (5.8 ± 0.3 vs. 5.6% ± 0.4%, P < .05), AUC of insulin (56,136.0 ± 27,426.0 vs. 44,472.0 ± 23,370.0 pmol/L, P < .05), and total insulin secretion (0.45 ± 0.23 vs. 0.35 ± 0.18, P < .05), with a significant increase in high-density lipoprotein cholesterol (HDL-C) (1.3 ± 0.3 vs. 1.4 ± 0.3 mmol/L, P < .05). There were no significant differences after placebo administration. A. dracunculus administration for 90 days in patients with IGT significantly decreased SBP, A1C, AUC of insulin, and total insulin secretion with a significant increase in HDL-C levels.

  1. Engineered Commensal Bacteria Reprogram Intestinal Cells Into Glucose-Responsive Insulin-Secreting Cells for the Treatment of Diabetes

    PubMed Central

    Duan, Franklin F.; Liu, Joy H.

    2015-01-01

    The inactive full-length form of GLP-1(1-37) stimulates conversion of both rat and human intestinal epithelial cells into insulin-secreting cells. We investigated whether oral administration of human commensal bacteria engineered to secrete GLP-1(1-37) could ameliorate hyperglycemia in a rat model of diabetes by reprogramming intestinal cells into glucose-responsive insulin-secreting cells. Diabetic rats were fed daily with human lactobacilli engineered to secrete GLP-1(1-37). Diabetic rats fed GLP-1–secreting bacteria showed significant increases in insulin levels and, additionally, were significantly more glucose tolerant than those fed the parent bacterial strain. These rats developed insulin-producing cells within the upper intestine in numbers sufficient to replace ∼25–33% of the insulin capacity of nondiabetic healthy rats. Intestinal tissues in rats with reprogrammed cells expressed MafA, PDX-1, and FoxA2. HNF-6 expression was observed only in crypt epithelia expressing insulin and not in epithelia located higher on the villous axis. Staining for other cell markers in rats treated with GLP-1(1-37)–secreting bacteria suggested that normal function was not inhibited by the close physical proximity of reprogrammed cells. These results provide evidence of the potential for a safe and effective nonabsorbed oral treatment for diabetes and support the concept of engineered commensal bacterial signaling to mediate enteric cell function in vivo. PMID:25626737

  2. THE EFFECT OF ADRENAL MEDULLECTOMY ON METABOLIC RESPONSES TO CHRONIC INTERMITTENT HYPOXIA

    PubMed Central

    Shin, Mi-Kyung; Han, Woobum; Bevans-Fonti, Shannon; Jun, Jonathan C.; Punjabi, Naresh M.; Polotsky, Vsevolod Y.

    2014-01-01

    Obstructive sleep apnea causes intermittent hypoxia (IH) and is associated with insulin resistance and type 2 diabetes. IH increases plasma catecholamine levels, which may increase insulin resistance and suppress insulin secretion. The objective of this study was to determine if adrenal medullectomy (MED) prevents metabolic dysfunction in IH. MED or sham surgery was performed in 60 male C57BL/6J mice, which were then exposed to IH or control conditions (intermittent air) for 6 weeks. IH increased plasma epinephrine and norepinephrine levels, increased fasting blood glucose and lowered basal and glucose-stimulated insulin secretion. MED decreased baseline epinephrine and prevented the IH induced increase in epinephrine, whereas the norepinephrine response remained intact. MED improved glucose tolerance in mice exposed to IH, attenuated the impairment in basal and glucose-stimulated insulin secretion, but did not prevent IH-induced fasting hyperglycemia or insulin resistance. We conclude that the epinephrine release from the adrenal medulla during IH suppresses insulin secretion causing hyperglycemia. PMID:25179887

  3. Saxagliptin Upregulates Nesfatin-1 Secretion and Ameliorates Insulin Resistance and Metabolic Profiles in Type 2 Diabetes Mellitus.

    PubMed

    Chen, Kuanlin; Zhuo, Tiejun; Wang, Jian; Mei, Qing

    2018-06-18

    Saxagliptin as one of dipeptidyl peptidase-4 (DPP-4) inhibitors can effectively improve glycaemic control in type 2 diabetes mellitus, and nesfatin-1 is regarded as a very important factor in regulating feeding behavior and energy homeostasis. In this trial, we observed the effect of saxagliptin on regulating nesfatin-1 secretion and ameliorating insulin resistance and metabolic profiles in type 2 diabetes mellitus. One hundred two type 2 diabetes participants (M/F = 48/54) were investigated. Fifty-one (M/F = 24/27) of them as the treatment group were treated with oral glucose-lowering agents including saxagliptin, the other 51 (M/F = 24/27) as the control group were treated with oral glucose-lowering agents excluding any DPP-4 inhibitors. The parameters of serum nesfatin-1, C-peptide, homeostasis model assessment-β (HOMA-β) function, HOMA insulin resistance (HOMA-IR), glycosylated hemoglobin A1c (HbA1c), low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), body mass index (BMI), and blood pressure (BP) at baseline, month 3, 6, and 12 were observed and compared respectively. Saxagliptin significantly upregulated nesfatin-1 secretion (P < 0.001 at 3-, 6-, and 12-months vs. baseline), increased serum C-peptide (P < 0.05, 0.001, and 0.001 at 3-, 6-, and 12-months vs. baseline), improved HOMA-IR and function of HOMA-β (P < 0.001 at 3-, 6-, and 12-months vs. baseline) and metabolic profiles (P < 0.001 with HbA1c at 3-, 6- and 12-months; P < 0.001 with LDL-C at 6- and 12-months; P < 0.001 and 0.01 with HDL-C at 6- and 12-months vs. baseline), declined BMI (P < 0.05 at 6- and 12-months vs. baseline) and BP (P < 0.001 with systolic BP (SBP), and mean BP at 6- and 12-months, P < 0.01 with diastolic BP at 6- and 12-months vs. baseline). Saxagliptin could upregulate nesfatin-1 secretion and ameliorate insulin resistance and metabolic profiles in type 2 diabetes mellitus. Saxagliptin had the potential to play fundamental by upregulating nesfatin-1 secretion besides lowering glucose by inhibiting the degradation of glucagon-like peptide-1.

  4. Partial deficiency of CTRP12 alters hepatic lipid metabolism

    PubMed Central

    Tan, Stefanie Y.; Little, Hannah C.; Lei, Xia; Li, Shuoyang; Rodriguez, Susana

    2016-01-01

    Secreted hormones play pivotal roles in tissue cross talk to maintain physiologic blood glucose and lipid levels. We previously showed that C1q/TNF-related protein 12 (CTRP12) is a novel secreted protein involved in regulating glucose metabolism whose circulating levels are reduced in obese and insulin-resistant mouse models. Its role in lipid metabolism, however, is unknown. Using a novel heterozygous mouse model, we show that the loss of a single copy of the Ctrp12 gene (also known as Fam132a and adipolin) affects whole body lipid metabolism. In Ctrp12 (+/−) male mice fed a control low-fat diet, hepatic fat oxidation was upregulated while hepatic VLDL-triglyceride secretion was reduced relative to wild-type (WT) littermates. When challenged with a high-fat diet, Ctrp12 (+/−) male mice had impaired lipid clearance in response to acute lipid gavage, reduced hepatic triglyceride secretion, and greater steatosis with higher liver triglyceride and cholesterol levels. Unlike male mice, Ctrp12 (+/−) female mice fed a control low-fat diet were indistinguishable from WT littermates. When obesity was induced by high-fat feeding, Ctrp12 (+/−) female mice developed mild insulin resistance with impaired insulin tolerance. In contrast to male mice, hepatic triglyceride secretion was increased in Ctrp12 (+/−) female mice fed a high-fat diet. Thus, in different dietary and metabolic contexts, loss of a single Ctrp12 allele affects glucose and lipid metabolism in a sex-dependent manner, highlighting the importance of genetic and environmental determinants of metabolic phenotypes. PMID:27815536

  5. Partial deficiency of CTRP12 alters hepatic lipid metabolism.

    PubMed

    Tan, Stefanie Y; Little, Hannah C; Lei, Xia; Li, Shuoyang; Rodriguez, Susana; Wong, G William

    2016-12-01

    Secreted hormones play pivotal roles in tissue cross talk to maintain physiologic blood glucose and lipid levels. We previously showed that C1q/TNF-related protein 12 (CTRP12) is a novel secreted protein involved in regulating glucose metabolism whose circulating levels are reduced in obese and insulin-resistant mouse models. Its role in lipid metabolism, however, is unknown. Using a novel heterozygous mouse model, we show that the loss of a single copy of the Ctrp12 gene (also known as Fam132a and adipolin) affects whole body lipid metabolism. In Ctrp12 (+/-) male mice fed a control low-fat diet, hepatic fat oxidation was upregulated while hepatic VLDL-triglyceride secretion was reduced relative to wild-type (WT) littermates. When challenged with a high-fat diet, Ctrp12 (+/-) male mice had impaired lipid clearance in response to acute lipid gavage, reduced hepatic triglyceride secretion, and greater steatosis with higher liver triglyceride and cholesterol levels. Unlike male mice, Ctrp12 (+/-) female mice fed a control low-fat diet were indistinguishable from WT littermates. When obesity was induced by high-fat feeding, Ctrp12 (+/-) female mice developed mild insulin resistance with impaired insulin tolerance. In contrast to male mice, hepatic triglyceride secretion was increased in Ctrp12 (+/-) female mice fed a high-fat diet. Thus, in different dietary and metabolic contexts, loss of a single Ctrp12 allele affects glucose and lipid metabolism in a sex-dependent manner, highlighting the importance of genetic and environmental determinants of metabolic phenotypes. Copyright © 2016 the American Physiological Society.

  6. An insulin signaling feedback loop regulates pancreas progenitor cell differentiation during islet development and regeneration

    PubMed Central

    Ye, Lihua; Robertson, Morgan A.; Mastracci, Teresa L.; Anderson, Ryan M.

    2016-01-01

    As one of the key nutrient sensors, insulin signaling plays an important role in integrating environmental energy cues with organism growth. In adult organisms, relative insufficiency of insulin signaling induces compensatory expansion of insulin-secreting pancreatic beta (β) cells. However, little is known about how insulin signaling feedback might influence neogenesis of β cells during embryonic development. Using genetic approaches and a unique cell transplantation system in developing zebrafish, we have uncovered a novel role for insulin signaling in the negative regulation of pancreatic progenitor cell differentiation. Blocking insulin signaling in the pancreatic progenitors hastened the expression of the essential β cell genes insulin and pdx1, and promoted β cell fate at the expense of alpha cell fate. In addition, loss of insulin signaling promoted β cell regeneration and destabilization of alpha cell character. These data indicate that insulin signaling constitutes a tunable mechanism for β cell compensatory plasticity during early development. Moreover, using a novel blastomere-to-larva transplantation strategy, we found that loss of insulin signaling in endoderm-committed blastomeres drove their differentiation into β cells. Furthermore, the extent of this differentiation was dependent on the function of the β cell mass in the host. Altogether, our results indicate that modulation of insulin signaling will be crucial for the development of β cell restoration therapies for diabetics; further clarification of the mechanisms of insulin signaling in β cell progenitors will reveal therapeutic targets for both in vivo and in vitro β cell generation. PMID:26658317

  7. Arsenic-induced alteration in the expression of genes related to type 2 diabetes mellitus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Diaz-Villasenor, Andrea; Burns, Anna L.; Facultad de Medicina, Universidad Nacional Autonoma de Mexico

    2007-12-01

    Chronic exposure to high concentrations of arsenic in drinking water is associated with an increased risk for developing type 2 diabetes. The present revision focuses on the effect of arsenic on tissues that participate directly in glucose homeostasis, integrating the most important published information about the impairment of the expression of genes related to type 2 diabetes by arsenic as one of the possible mechanisms by which it leads to the disease. Many factors are involved in the manner in which arsenic contributes to the occurrence of diabetes. The reviewed studies suggest that arsenic might increase the risk for typemore » 2 diabetes via multiple mechanisms, affecting a cluster of regulated events, which in conjunction trigger the disease. Arsenic affects insulin sensitivity in peripheral tissue by modifying the expression of genes involved in insulin resistance and shifting away cells from differentiation to the proliferation pathway. In the liver arsenic disturbs glucose production, whereas in pancreatic beta-cells arsenic decreases insulin synthesis and secretion and reduces the expression of antioxidant enzymes. The consequences of these changes in gene expression include the reduction of insulin secretion, induction of oxidative stress in the pancreas, alteration of gluconeogenesis, abnormal proliferation and differentiation pattern of muscle and adipocytes as well as peripheral insulin resistance.« less

  8. Adipose Triglyceride Lipase Is Implicated in Fuel- and Non-fuel-stimulated Insulin Secretion*

    PubMed Central

    Peyot, Marie-Line; Guay, Claudiane; Latour, Martin G.; Lamontagne, Julien; Lussier, Roxane; Pineda, Marco; Ruderman, Neil B.; Haemmerle, Guenter; Zechner, Rudolf; Joly, Érik; Madiraju, S. R. Murthy; Poitout, Vincent; Prentki, Marc

    2009-01-01

    Reduced lipolysis in hormone-sensitive lipase-deficient mice is associated with impaired glucose-stimulated insulin secretion (GSIS), suggesting that endogenous β-cell lipid stores provide signaling molecules for insulin release. Measurements of lipolysis and triglyceride (TG) lipase activity in islets from HSL−/− mice indicated the presence of other TG lipase(s) in the β-cell. Using real time-quantitative PCR, adipose triglyceride lipase (ATGL) was found to be the most abundant TG lipase in rat islets and INS832/13 cells. To assess its role in insulin secretion, ATGL expression was decreased in INS832/13 cells (ATGL-knockdown (KD)) by small hairpin RNA. ATGL-KD increased the esterification of free fatty acid (FFA) into TG. ATGL-KD cells showed decreased glucose- or Gln + Leu-induced insulin release, as well as reduced response to KCl or palmitate at high, but not low, glucose. The KATP-independent/amplification pathway of GSIS was considerably reduced in ATGL-KD cells. ATGL−/− mice were hypoinsulinemic and hypoglycemic and showed decreased plasma TG and FFAs. A hyperglycemic clamp revealed increased insulin sensitivity and decreased GSIS and arginine-induced insulin secretion in ATGL−/− mice. Accordingly, isolated islets from ATGL−/− mice showed reduced insulin secretion in response to glucose, glucose + palmitate, and KCl. Islet TG content and FFA esterification into TG were increased by 2-fold in ATGL−/− islets, but glucose usage and oxidation were unaltered. The results demonstrate the importance of ATGL and intracellular lipid signaling for fuel- and non-fuel-induced insulin secretion. PMID:19389712

  9. Insulin secretion and its association with physical activity, fitness and screen time in children.

    PubMed

    Henderson, M; Gray-Donald, K; Rabasa-Lhoret, R; Bastard, J-P; Barnett, T A; Benedetti, A; Chaput, J-P; Tremblay, A; Lambert, M

    2014-02-01

    To determine the independent associations of moderate to vigorous physical activity (MVPA), fitness, screen time, and adiposity with insulin secretion in children. Caucasian youth (n = 423/630), 8-10 years old, with at least one obese biological parent, were studied (QUALITY cohort). Insulin secretion was measured using HOMA2-%B, area under the curve (AUC) of insulin to glucose over the first 30 minutes (AUC I/G(t30min)) of the OGTT and AUC I/G(t120min) over 2 hours. Fitness was measured by VO₂peak ; percent fat mass (PFM) by DXA; 7-day MVPA by accelerometry; self-reported screen time included television, video game, or computer use. Models were adjusted for age, sex, season, puberty, PFM, and insulin sensitivity [IS] (HOMA2-IS, Matsuda-ISI). PFM was strongly associated with insulin secretion, even after adjustment for IS: for every 1% increase in PFM, insulin secretion increased from 0.3% to 0.8% across indices. MVPA was negatively associated with HOMA2-%B (P < 0.05), but not with OGTT-derived measures. Fitness was negatively associated with AUC I/G(t120min) (P < 0.05). Screen time showed a trend toward higher HOMA2-%B in girls (P = 0.060). In children with an obese parent, lower insulin secretion is associated with lower adiposity, higher MVPA, better fitness, and possibly reduced screen time. Copyright © 2013 The Obesity Society.

  10. Periodontitis aggravated pancreatic β-cell dysfunction in diabetic mice through interleukin-12 regulation on Klotho.

    PubMed

    Liu, Yihua; Zhang, Qiuli

    2016-05-01

    Recent studies have shown that periodontitis can contribute to adipose tissue inflammation and subsequent systemic insulin resistance in the obese rat model. However, the related inflammatory mechanism is not yet clear. The present study aims to investigate the effects of periodontitis on the function of pancreatic β-cells with pro-inflammatory cytokines-related immune mechanism in a mouse model. C57BL/6-db/db and inbred C57BL/6 mice were chosen here to establish a mouse model with periodontitis, which was induced by ligatures for 8 weeks. Glucose-stimulated insulin secretion was introduced to evaluate the function of pancreatic islets and β-cells. Serum levels of pro-inflammatory cytokines and Klotho were also measured, and the correlation between immunostimulation and Klotho level was deeply investigated in vitro. Pancreatic β-cell failure, with insulin resistance, was observed in db/db mice, while periodontitis could aggravate β-cell dysfunction-related features. Serum levels of interleukin (IL)-12 and Klotho showed a negatively synergistic change, whereas the expression of Klotho was also inhibited under IL-12 treatment in MIN6 β-cells or isolated islets. Furthermore, IL-12-induced immune stimulation and also decreased insulin secretion were proven to be reversed by Klotho overexpression. Periodontitis aggravated pancreatic β-cell failure in diabetic mice. Further in vitro studies showed IL-12 regulation on Klotho, while Klotho also acted as an inhibitor on IL-12, indicating the potential of Klotho for preserving pancreatic β-cell function in diabetes.

  11. Effect of Salsalate on Insulin Action, Secretion, and Clearance in Nondiabetic, Insulin-Resistant Individuals: A Randomized, Placebo-Controlled Study

    PubMed Central

    Liu, Alice; Ariel, Danit; Abbasi, Fahim; Lamendola, Cindy; Grove, Kaylene; Tomasso, Vanessa; Ochoa, Hector; Reaven, Gerald

    2014-01-01

    OBJECTIVE Salsalate treatment has been shown to improve glucose homeostasis, but the mechanism remains unclear. The aim of this study was to evaluate the effect of salsalate treatment on insulin action, secretion, and clearance rate in nondiabetic individuals with insulin resistance. RESEARCH DESIGN AND METHODS This was a randomized (2:1), single-blind, placebo-controlled study of salsalate (3.5 g daily for 4 weeks) in nondiabetic individuals with insulin resistance. All individuals had measurement of glucose tolerance (75-g oral glucose tolerance test), steady-state plasma glucose (SSPG; insulin suppression test), and insulin secretion and clearance rate (graded-glucose infusion test) before and after treatment. RESULTS Forty-one individuals were randomized to salsalate (n = 27) and placebo (n = 14). One individual from each group discontinued the study. Salsalate improved fasting (% mean change −7% [95% CI −10 to −14] vs. 1% [−3 to 5], P = 0.005) but not postprandial glucose concentration compared with placebo. Salsalate also lowered fasting triglyceride concentration (−25% [−34 to −15] vs. −6% [−26 to 14], P = 0.04). Salsalate had no effect on SSPG concentration or insulin secretion rate but significantly decreased insulin clearance rate compared with placebo (−23% [−30 to −16] vs. 3% [−10 to 15], P < 0.001). Salsalate was well tolerated, but four individuals needed a dose reduction due to symptoms. CONCLUSIONS Salsalate treatment in nondiabetic, insulin-resistant individuals improved fasting, but not postprandial, glucose and triglyceride concentration. These improvements were associated with a decrease in insulin clearance rate without change in insulin action or insulin secretion. PMID:24963111

  12. Connexin 36 mediates blood cell flow in mouse pancreatic islets

    PubMed Central

    Short, Kurt W.; Head, W. Steve

    2013-01-01

    The insulin-secreting β-cells are contained within islets of Langerhans, which are highly vascularized. Blood cell flow rates through islets are glucose-dependent, even though there are no changes in blood cell flow within in the surrounding exocrine pancreas. This suggests a specific mechanism of glucose-regulated blood flow in the islet. Pancreatic islets respond to elevated glucose with synchronous pulses of electrical activity and insulin secretion across all β-cells in the islet. Connexin 36 (Cx36) gap junctions between islet β-cells mediate this synchronization, which is lost in Cx36 knockout mice (Cx36−/−). This leads to glucose intolerance in these mice, despite normal plasma insulin levels and insulin sensitivity. Thus, we sought to investigate whether the glucose-dependent changes in intraislet blood cell flow are also dependent on coordinated pulsatile electrical activity. We visualized and quantified blood cell flow using high-speed in vivo fluorescence imaging of labeled red blood cells and plasma. With the use of a live animal glucose clamp, blood cell flow was measured during either hypoglycemia (∼50 mg/dl) or hyperglycemia (∼300 mg/dl). In contrast to the large glucose-dependent islet blood velocity changes observed in wild-type mice, only minimal differences are observed in both Cx36+/− and Cx36−/− mice. This observation supports a novel model where intraislet blood cell flow is regulated by the coordinated electrical activity in the islet β-cells. Because Cx36 expression and function is reduced in type 2 diabetes, the resulting defect in intraislet blood cell flow regulation may also play a significant role in diabetic pathology. PMID:24326425

  13. Stevioside improves pancreatic beta-cell function during glucotoxicity via regulation of acetyl-CoA carboxylase.

    PubMed

    Chen, Jianguo; Jeppesen, Per Bendix; Nordentoft, Iver; Hermansen, Kjeld

    2007-06-01

    Chronic hyperglycemia is detrimental to pancreatic beta-cells, causing impaired insulin secretion and beta-cell turnover. The characteristic secretory defects are increased basal insulin secretion (BIS) and a selective loss of glucose-stimulated insulin secretion (GSIS). Several recent studies support the view that the acetyl-CoA carboxylase (ACC) plays a pivotal role for GSIS. We have shown that stevioside (SVS) enhances insulin secretion and ACC gene expression. Whether glucotoxicity influences ACC and whether this action can be counteracted by SVS are not known. To investigate this, we exposed isolated mouse islets as well as clonal INS-1E beta-cells for 48 h to 27 or 16.7 mM glucose, respectively. We found that 48-h exposure to high glucose impairs GSIS from mouse islets and INS-1E cells, an effect that is partly counteracted by SVS. The ACC dephosphorylation inhibitor okadaic acid (OKA, 10(-8) M), and 5-aminoimidazole-4-carboxamide-1-beta-d-ribofuranoside (AICAR, 10(-4) M), an activator of 5'-AMP protein kinase that phosphorylates ACC, eliminated the beneficial effect of SVS. 5-Tetrade-cyloxy-2-furancarboxylic acid (TOFA), the specific ACC inhibitor, blocked the effect of SVS as well. During glucotoxity, ACC gene expression, ACC protein, and phosphorylated ACC protein were increased in INS-1E beta-cells. SVS pretreatment further increased ACC gene expression with strikingly elevated ACC activity and increased glucose uptake accompanied by enhanced GSIS. Our studies show that glucose is a potent stimulator of ACC and that SVS to some extent counteracts glucotoxicity via increased ACC activity. SVS possesses the potential to alleviate negative effects of glucotoxicity in beta-cells via a unique mechanism of action.

  14. Effect of Weight Loss, Exercise, or Both on Undercarboxylated Osteocalcin and Insulin Secretion in Frail, Obese Older Adults

    PubMed Central

    Napoli, Nicola; Phadnis, Uma; Armamento-Villareal, Reina

    2017-01-01

    Background Obesity exacerbates age-related decline in glucometabolic control. Undercarboxylated osteocalcin (UcOC) regulates pancreatic insulin secretion. The long-term effect of lifestyle interventions on UcOC and insulin secretion has not been investigated. Methods One hundred seven frail, obese older adults were randomized into the control (N = 27), diet (N = 26), exercise (N = 26), and diet-exercise (N = 28) groups for 1 year. Main outcomes included changes in UcOC and disposition index (DI). Results UcOC increased in the diet group (36 ± 11.6%) but not in the other groups (P < 0.05 between groups). Although similar increases in DI occurred in the diet-exercise and diet groups at 6 months, DI increased more in the diet-exercise group (92.4 ± 11.4%) than in the diet group (61.9 ± 15.3%) at 12 months (P < 0.05). UcOC and body composition changes predicted DI variation in the diet group only (R2 = 0.712), while adipocytokines and physical function changes contributed to DI variation in both the diet (∆R2 = 0.140 and 0.107) and diet-exercise (∆R2 = 0.427 and 0.243) groups (P < 0.05 for all). Conclusions Diet, but not exercise or both, increases UcOC, whereas both diet and diet-exercise increase DI. UcOC accounts for DI variation only during active weight loss, while adipocytokines and physical function contribute to diet-exercise-induced DI variation, highlighting different mechanisms for lifestyle-induced improvements in insulin secretion. This trial was registered with ClinicalTrials.gov number NCT00146107. PMID:28951766

  15. Effect of Weight Loss, Exercise, or Both on Undercarboxylated Osteocalcin and Insulin Secretion in Frail, Obese Older Adults.

    PubMed

    Colleluori, Georgia; Napoli, Nicola; Phadnis, Uma; Armamento-Villareal, Reina; Villareal, Dennis T

    2017-01-01

    Obesity exacerbates age-related decline in glucometabolic control. Undercarboxylated osteocalcin (UcOC) regulates pancreatic insulin secretion. The long-term effect of lifestyle interventions on UcOC and insulin secretion has not been investigated. One hundred seven frail, obese older adults were randomized into the control ( N = 27), diet ( N = 26), exercise ( N = 26), and diet-exercise ( N = 28) groups for 1 year. Main outcomes included changes in UcOC and disposition index (DI). UcOC increased in the diet group (36 ± 11.6%) but not in the other groups ( P < 0.05 between groups). Although similar increases in DI occurred in the diet-exercise and diet groups at 6 months, DI increased more in the diet-exercise group (92.4 ± 11.4%) than in the diet group (61.9 ± 15.3%) at 12 months ( P < 0.05). UcOC and body composition changes predicted DI variation in the diet group only ( R 2 = 0.712), while adipocytokines and physical function changes contributed to DI variation in both the diet (∆ R 2 = 0.140 and 0.107) and diet-exercise (∆ R 2 = 0.427 and 0.243) groups ( P < 0.05 for all). Diet, but not exercise or both, increases UcOC, whereas both diet and diet-exercise increase DI. UcOC accounts for DI variation only during active weight loss, while adipocytokines and physical function contribute to diet-exercise-induced DI variation, highlighting different mechanisms for lifestyle-induced improvements in insulin secretion. This trial was registered with ClinicalTrials.gov number NCT00146107.

  16. Redox Signal-mediated Enhancement of the Temperature Sensitivity of Transient Receptor Potential Melastatin 2 (TRPM2) Elevates Glucose-induced Insulin Secretion from Pancreatic Islets.

    PubMed

    Kashio, Makiko; Tominaga, Makoto

    2015-05-08

    Transient receptor potential melastatin 2 (TRPM2) is a thermosensitive Ca(2+)-permeable cation channel expressed by pancreatic β cells where channel function is constantly affected by body temperature. We focused on the physiological functions of redox signal-mediated TRPM2 activity at body temperature. H2O2, an important molecule in redox signaling, reduced the temperature threshold for TRPM2 activation in pancreatic β cells of WT mice but not in TRPM2KO cells. TRPM2-mediated [Ca(2+)]i increases were likely caused by Ca(2+) influx through the plasma membrane because the responses were abolished in the absence of extracellular Ca(2+). In addition, TRPM2 activation downstream from the redox signal plus glucose stimulation enhanced glucose-induced insulin secretion. H2O2 application at 37 °C induced [Ca(2+)]i increases not only in WT but also in TRPM2KO β cells. This was likely due to the effect of H2O2 on KATP channel activity. However, the N-acetylcysteine-sensitive fraction of insulin secretion by WT islets was increased by temperature elevation, and this temperature-dependent enhancement was diminished significantly in TRPM2KO islets. These data suggest that endogenous redox signals in pancreatic β cells elevate insulin secretion via TRPM2 sensitization and activity at body temperature. The results in this study could provide new therapeutic approaches for the regulation of diabetic conditions by focusing on the physiological function of TRPM2 and redox signals. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  17. The Relationship between 25-hydroxyvitamin D Levels, Insulin Sensitivity and Insulin Secretion in Women 3 Years after Delivery.

    PubMed

    Tänczer, Tímea; Magenheim, Rita; Fürst, Ágnes; Domján, Beatrix; Janicsek, Zsófia; Szabó, Eszter; Ferencz, Viktória; Tabák, Ádám G

    2017-12-01

    There is a direct correlation between 25-hydroxyvitamin D (25[OH]D) levels and insulin sensitivity. Furthermore, women with gestational diabetes (GDM) may have lower levels of 25(OH)D compared to controls. The present study intended to investigate 25(OH)D levels and their association with insulin sensitivity and insulin secretion in women with prior GDM and in controls 3.2 years after delivery. A total of 87 patients with prior GDM and 45 randomly selected controls (age range, 22 to 44 years) with normal glucose tolerance during pregnancy nested within a cohort of all deliveries at Saint Margit Hospital, Budapest, between January 1 2005, and December 31 2006, were examined. Their 25(OH) D levels were measured by radioimmunoassay. Insulin sensitivity and fasting insulin secretion were estimated using the homeostasis model asssessment (HOMA) calculator and early insulin secretion by the insulinogenic index based on a 75 g oral glucose tolerance test. There was no significant difference in 25(OH)D levels between cases and controls (27.2±13.1 [±SD] vs. 26.9±9.8 ng/L). There was a positive association between HOMA insulin sensitivity and 25(OH)D levels (beta = 0.017; 95% CI 0.001 to 0.034/1 ng/mL) that was robust to adjustment for age and body mass index. There was a nonsignificant association between HOMA insulin secretion and 25(OH)D (p=0.099), while no association was found with the insulinogenic index. Prior GDM status was not associated with 25(OH)D levels; however, 25(OH) D levels were associated with HOMA insulin sensitivity. It is hypothesized that the association between HOMA insulin secretion and 25(OH)D levels is related to the autoregulation of fasting glucose levels because no association between 25(OH)D and insulinogenic index was found. Copyright © 2017 Diabetes Canada. Published by Elsevier Inc. All rights reserved.

  18. Pancreatic β-cell proliferation in obesity.

    PubMed

    Linnemann, Amelia K; Baan, Mieke; Davis, Dawn Belt

    2014-05-01

    Because obesity rates have increased dramatically over the past 3 decades, type 2 diabetes has become increasingly prevalent as well. Type 2 diabetes is associated with decreased pancreatic β-cell mass and function, resulting in inadequate insulin production. Conversely, in nondiabetic obesity, an expansion in β-cell mass occurs to provide sufficient insulin and to prevent hyperglycemia. This expansion is at least in part due to β-cell proliferation. This review focuses on the mechanisms regulating obesity-induced β-cell proliferation in humans and mice. Many factors have potential roles in the regulation of obesity-driven β-cell proliferation, including nutrients, insulin, incretins, hepatocyte growth factor, and recently identified liver-derived secreted factors. Much is still unknown about the regulation of β-cell replication, especially in humans. The extracellular signals that activate proliferative pathways in obesity, the relative importance of each of these pathways, and the extent of cross-talk between these pathways are important areas of future study. © 2014 American Society for Nutrition.

  19. MiR-375, a microRNA related to diabetes.

    PubMed

    Li, Xueling

    2014-01-01

    MiR-375 is an important small non-coding RNA that is specifically expressed in islet cells of the pancreas. miR-375 is required for normal pancreatic genesis and influences not only β-cell mass but also α-cell mass. miR-375 is also important to glucose-regulated insulin secretion through the regulation of the expression of Mtpn and Pdk1 genes. When human embryonic stem cells (hESCs) differentiate into endodermal lineages, miR-375 is highly expressed in the definitive endoderm, which suggests that miR-375 may have a distinct role in early development. miR-375 plays an important role in the complex regulatory network of pancreatic development, which could be regulated by pancreatic genes, such as NeuroD1, Ngn3, Pdx1 and Hnf6; additionally, miR-375 regulates genes related to pancreas development, cell growth and proliferation and insulin secretion genes to exert its function. Because of the special role of miR-375, it may be a potential target to treat diabetes. Antagonising miR-375 may enhance the effects of exendin-4 in patients, and controlling the expression of miR-375 could assist mature hESCs-derived β-cells. © 2013 Elsevier B.V. All rights reserved.

  20. One-year metreleptin improves insulin secretion in patients with diabetes linked to genetic lipodystrophic syndromes.

    PubMed

    Vatier, C; Fetita, S; Boudou, P; Tchankou, C; Deville, L; Riveline, Jp; Young, J; Mathivon, L; Travert, F; Morin, D; Cahen, J; Lascols, O; Andreelli, F; Reznik, Y; Mongeois, E; Madelaine, I; Vantyghem, Mc; Gautier, Jf; Vigouroux, C

    2016-07-01

    Recombinant methionyl human leptin (metreleptin) therapy was shown to improve hyperglycaemia, dyslipidaemia and insulin sensitivity in patients with lipodystrophic syndromes, but its effects on insulin secretion remain controversial. We used dynamic intravenous (i.v.) clamp procedures to measure insulin secretion, adjusted to insulin sensitivity, at baseline and after 1 year of metreleptin therapy, in 16 consecutive patients with lipodystrophy, diabetes and leptin deficiency. Patients, with a mean [± standard error of the mean (s.e.m.)] age of 39.2 (±4) years, presented with familial partial lipodystrophy (n = 11, 10 women) or congenital generalized lipodystrophy (n = 5, four women). Their mean (± s.e.m.) BMI (23.9 ± 0.7 kg/m(2) ), glycated haemoglobin levels (8.5 ± 0.4%) and serum triglycerides levels (4.6 ± 0.9 mmol/l) significantly decreased within 1 month of metreleptin therapy, then remained stable. Insulin sensitivity (from hyperglycaemic or euglycaemic-hyperinsulinaemic clamps, n = 4 and n = 12, respectively), insulin secretion during graded glucose infusion (n = 12), and acute insulin response to i.v. glucose adjusted to insulin sensitivity (disposition index, n = 12), significantly increased after 1 year of metreleptin therapy. The increase in disposition index was related to a decrease in percentage of total and trunk body fat. Metreleptin therapy improves not only insulin sensitivity, but also insulin secretion in patients with diabetes attributable to genetic lipodystrophies. © 2015 John Wiley & Sons Ltd.

  1. [Endocrinology 1999-2000].

    PubMed

    Schreiber, V

    2001-02-15

    Long-lasting problem on the differentiation of adenohypophyseal cell, which prepares them for their specific tasks (somatotropic, lactotropic ect.), becomes elucidated after recognition of the differentiational effect of transcription factor Pit-1. Expression of that factor in somatotrops results in STH secretion, contrary to lactotrops producing prolactin. Subclinical hypothyreosis (increased TSH with normal T3 and T4) endangers vessel not because of hypercholesterolemia, but because of changes in the dynamics of the blood flow. The idea of cardiotropic effect of thyroidal hormones is supported by the finding that administration of trijodthyronine to children after the surgical correction of heart malformations (cardiopulmonary bypass) improves myocardial function--it elevates cardiac output and decreases requirements on the intensive care. Receptors for hormones in tissues are flexible, they can be "heterooligomers" for dopamine and somatostatin. Mutations of mineralocorticoid receptor may cause hypertension in pregnancy and progesterone receptors have several isoforms. Receptors can be also activated by short exposition to a hormone. Glucocorticoids have probably also membrane receptors. Diabetes mellitus "type I" needn't to be immunogenic and DM type II not only results from down-regulation of receptors and subsequent insulin resistance, but it can be also caused by defects in insulin secretion. Insulin has receptors in the brain and participates in the appetite regulation. The attempt to use "desensibilisation" by peroraly administered insulin in patients with immunogenic DM had no effect. Stress affects memory mechanisms, heavy emotional stress during gravidity can bring congenital malformations. The decrease of mental functions in aged women depends on the level of free estradiol (the fraction, which is not bound to plasma proteins). Activation of dopaminergic neurons can be achieved by neurotropic growth factors. Nesiritide is a recombinant brain natriuretic hormone successfully tested in heart failure. The role of leptin in the appetite regulation in man is still not clear, other signalling molecules may have also an effect, e.g., ghrelin, which primarily stimulates STH secretion and brings about weight gain. Sildenafil influences nitrergic neurons elsewhere than in penis, for example it has positive effects in patients with oesophageal achalasia.

  2. Older Subjects with β-cell Dysfunction have an Accentuated Incretin Release.

    PubMed

    Garduno-Garcia, José de Jesús; Gastaldelli, Amalia; DeFronzo, Ralph A; Lertwattanarak, Raweewan; Holst, Jens J; Musi, Nicolas

    2018-04-16

    Insulin secretion declines with age and this contributes to the increased risk of developing impaired glucose tolerance (IGT) and type 2 diabetes mellitus (T2DM) in older subjects. Insulin secretion is regulated by the incretin hormones glucagon-like peptide (GLP) 1 and glucose-dependent insulinotropic peptide (GIP). Here we tested the hypotheses that incretin release is reduced in older subjects, and that this decline is associated with β-cell dysfunction. 40 young (25±3 y) and 53 older (74±7 y) lean non-diabetic subjects underwent a 2 h oral glucose tolerance test (OGTT). Based on the OGTT, subjects were divided in 3 groups: young normal glucose tolerant (Y-NGT, n=40), older with NGT (O-NGT, n=32), and older with IGT (O-IGT, n=21). Plasma insulin, C-peptide, GLP-1, and GIP concentrations were measured every 15-30 min. We quantitated insulin sensitivity (Matsuda index) and insulin secretory rate (ISR) by deconvolution of C-peptide with the calculation of β-cell glucose sensitivity. Matsuda index, early phase ISR (0-30min) and parameters of β-cell function were reduced in O-IGT vs. Y-NGT, but not in O-NGT. GLP-1 concentrations were elevated in both older groups [GLP-1_AUC0-120 was 2.8±0.1 in Y-NGT, 3.8±0.5 in O-NGT, and 3.7±0.4 nmol/l∙120 min in O-IGT (P<0.05)] while GIP secretion was elevated in O-NGT vs. Y-NGT [GIP_AUC0-120 was 4.7±0.3 in Y-NGT, 6.0±0.4 in O-NGT, and 4.8±0.3 nmol/l∙120 min in O-IGT (P<0.05)]. Aging is associated with an exaggerated GLP-1 secretory response. However, this was not sufficient to increase insulin first phase release in O-IGT and overcome insulin resistance.

  3. Modulation of neuronal pentraxin 1 expression in rat pancreatic β-cells submitted to chronic glucotoxic stress.

    PubMed

    Schvartz, Domitille; Couté, Yohann; Brunner, Yannick; Wollheim, Claes B; Sanchez, Jean-Charles

    2012-08-01

    Insulin secretory granules are β-cell vesicles dedicated to insulin processing, storage, and release. The secretion of insulin secretory granule content in response to an acute increase of glucose concentration is a highly regulated process allowing normal glycemic homeostasis. Type 2 diabetes is a metabolic disease characterized by chronic hyperglycemia. The consequent prolonged glucose exposure is known to exert deleterious effects on the function of various organs, notably impairment of insulin secretion by pancreatic β-cells and induction of apoptosis. It has also been described as modifying gene and protein expression in β-cells. Therefore, we hypothesized that a modulation of insulin secretory granule protein expression induced by chronic hyperglycemia may partially explain β-cell dysfunction. To identify the potential early molecular mechanisms underlying β-cell dysfunction during chronic hyperglycemia, we performed SILAC and mass spectrometry experiments to monitor changes in the insulin secretory granule proteome from INS-1E rat insulinoma β-cells cultivated either with 11 or 30 mm of glucose for 24 h. Fourteen proteins were found to be differentially expressed between these two conditions, and several of these proteins were not described before to be present in β-cells. Among them, neuronal pentraxin 1 was only described in neurons so far. Here we investigated its expression and intracellular localization in INS-1E cells. Furthermore, its overexpression in glucotoxic conditions was confirmed at the mRNA and protein levels. According to its role in hypoxia-ischemia-induced apoptosis described in neurons, this suggests that neuronal pentraxin 1 might be a new β-cell mediator in the AKT/GSK3 apoptotic pathway. In conclusion, the modification of specific β-cell pathways such as apoptosis and oxidative stress may partially explain the impairment of insulin secretion and β-cell failure, observed after prolonged exposure to high glucose concentrations.

  4. Alpha-Mangostin Improves Insulin Secretion and Protects INS-1 Cells from Streptozotocin-Induced Damage.

    PubMed

    Lee, Dahae; Kim, Young-Mi; Jung, Kiwon; Chin, Young-Won; Kang, Ki Sung

    2018-05-16

    Alpha (α)-mangostin, a yellow crystalline powder with a xanthone core structure, is isolated from mangosteen ( Garcinia mangostana ), which is a tropical fruit of great nutritional value. The aim of the present study was to investigate the anti-diabetic effects of α-mangostin and to elucidate the molecular mechanisms underlying its effect on pancreatic beta (β)-cell dysfunction. To assess the effects of α-mangostin on insulin production, rat pancreatic INS-1 cells were treated with non-toxic doses of α-mangostin (1⁻10 μM) and its impact on insulin signaling was examined by Western blotting. In addition, the protective effect of α-mangostin against pancreatic β-cell apoptosis was verified by using the β-cell toxin streptozotocin (STZ). Our results showed that α-mangostin stimulated insulin secretion in INS-1 cells by activating insulin receptor (IR) and pancreatic and duodenal homeobox 1 (Pdx1) followed by phosphorylation of phospho-phosphatidylinositol-3 kinase (PI3K), Akt, and extracellular signal regulated kinase (ERK) signaling cascades, whereas it inhibited the phosphorylation of insulin receptor substrate (IRS-1) (Ser1101). Moreover, α-mangostin was found to restore the STZ-induced decrease in INS-1 cell viability in a dose-dependent manner. In addition, treatment of INS-1 cells with 50 μM STZ resulted in an increase in intracellular reactive oxygen species (ROS) levels, which was represented by the fluorescence intensity of 2',7'-dichlorodihydrofluorescein diacetate (DCFH-DA). This oxidative stress was decreased by co-treatment with 5 μM α-mangostin. Similarly, marked increases in the phosphorylation of P38, c-Jun N-terminal kinase (JNK), and cleavage of caspase-3 by STZ were decreased significantly by co-treatment with 5 μM α-mangostin. These results suggest that α-mangostin is capable of improving insulin secretion in pancreatic β-cells and protecting cells from apoptotic damage.

  5. LXRalpha activation perturbs hepatic insulin signaling and stimulates production of apolipoprotein B-containing lipoproteins.

    PubMed

    Basciano, Heather; Miller, Abigale; Baker, Chris; Naples, Mark; Adeli, Khosrow

    2009-08-01

    Liver X receptor-alpha (LXRalpha) is considered a master regulator of hepatic lipid metabolism; however, little is known about the link between LXR activation, hepatic insulin signaling, and very low-density lipoprotein (VLDL)-apolipoprotein B (apoB) assembly and secretion. Here, we examined the effect of LXRalpha activation on hepatic insulin signaling and apoB-lipoprotein production. In vivo activation of LXRalpha for 7 days using a synthetic LXR agonist, TO901317, in hamsters led to increased plasma triglyceride (TG; 3.6-fold compared with vehicle-treated controls, P = 0.006), apoB (54%, P < 0.0001), and VLDL-TG (eightfold increase compared with vehicle). As expected, LXR stimulation activated maturation of sterol response element binding protein-1c (SREBP-1c) as well as the SREBP-1c target genes steroyl CoA desaturase (SCD) and fatty acid synthase (FAS). Metabolic pulse-chase labeling experiments in primary hamster hepatocytes showed increased stability and secretion of newly synthesized apoB following LXR activation. Microsomal triglyceride transfer protein (MTP) mRNA and protein were unchanged, however, likely because of the relatively short period of treatment and long half-life of MTP mRNA. Examination of hepatic insulin-signaling molecules revealed LXR-mediated reductions in insulin receptor (IR)beta subunit mass (39%, P = 0.014) and insulin receptor substrate (IRS)-1 tyrosine phosphorylation (24%, P = 0.023), as well as increases in protein tyrosine phosphatase (PTP)1B (29%, P < 0.001) protein mass. In contrast to IRS-1, a twofold increase in IRS-2 mass (228%, P = 0.0037) and a threefold increase in IRS-2 tyrosine phosphorylation (321%, P = 0.012) were observed. In conclusion, LXR activation dysregulates hepatic insulin signaling and leads to a considerable increase in the number of circulating TG-rich VLDL-apoB particles, likely due to enhanced hepatic assembly and secretion of apoB-containing lipoproteins.

  6. Mitochondrial matrix pH controls oxidative phosphorylation and metabolism-secretion coupling in INS-1E clonal beta cells.

    PubMed

    Akhmedov, Dmitry; Braun, Matthias; Mataki, Chikage; Park, Kyu-Sang; Pozzan, Tullio; Schoonjans, Kristina; Rorsman, Patrik; Wollheim, Claes B; Wiederkehr, Andreas

    2010-11-01

    Glucose-evoked mitochondrial signals augment ATP synthesis in the pancreatic β cell. This activation of energy metabolism increases the cytosolic ATP/ADP ratio, which stimulates plasma membrane electrical activity and insulin granule exocytosis. We have recently demonstrated that matrix pH increases during nutrient stimulation of the pancreatic β cell. Here, we have tested whether mitochondrial matrix pH controls oxidative phosphorylation and metabolism-secretion coupling in the rat β-cell line INS-1E. Acidification of the mitochondrial matrix pH by nigericin blunted nutrient-dependent respiratory and ATP responses (continuously monitored in intact cells). Using electrophysiology and single cell imaging, we find that the associated defects in energy metabolism suppress glucose-stimulated plasma membrane electrical activity and cytosolic calcium transients. The same parameters were unaffected after direct stimulation of electrical activity with tolbutamide, which bypasses mitochondrial function. Furthermore, lowered matrix pH strongly inhibited sustained, but not first-phase, insulin secretion. Our results demonstrate that the matrix pH exerts a control function on oxidative phosphorylation in intact cells and that this mode of regulation is of physiological relevance for the generation of downstream signals leading to insulin granule exocytosis. We propose that matrix pH serves a novel signaling role in sustained cell activation.

  7. Advanced glycation end products impair glucose-induced insulin secretion from rat pancreatic β-cells.

    PubMed

    Hachiya, Hiroyuki; Miura, Yoshikazu; Inoue, Ken-Ichi; Park, Kyung Hwa; Takeuchi, Masayoshi; Kubota, Keiichi

    2014-02-01

    Advanced glycation end products (AGEs) are derivative compounds generated from non-enzymatic glycosylation and oxidation. In comparison with glucose-derived AGEs (Glu-AGEs), glyceraldehyde-derived AGEs (Glycer-AGEs) have stronger toxicity to living systems. In this study, we compared the effects of Glu-AGE and Glycer-AGE on insulin secretion. Rat pancreatic islets were isolated by collagenase digestion and primary-cultured in the presence of 0.1 mg/ml bovine serum albumin (BSA) or 0.1 mg/ml Glu-AGE or Glycer-AGE-albumin. After 48 h of culture, we performed an insulin secretion test and identified the defects by a battery of rescue experiments [corrected]. Also, mRNA expression of genes associated with insulin secretion was measured. Insulin secretion induced by a high glucose concentration was 164.1 ± 6.0, 124.4 ± 4.4 (P < 0.05) and 119.8 ± 7.1 (P < 0.05) μU/3 islets/h in the presence of BSA, Glu-AGE, and Glycer-AGE, respectively. Inhibition of insulin secretion by Glu-AGE or Glycer-AGE was rescued by a high extracellular potassium concentration, tolbutamide and α-ketoisocaproic acid, but not by glyceraldehyde, dihydroxacetone, methylpyruvate, glucagon-like peptide-1 and acetylcholine. Glu-AGE or Glycer-AGE reduced the expression of the malate dehydrogenase (Mdh1/2) gene, which plays a critical role in the nicotinamide adenine dinucleotide (NADH) shuttle. Despite its reported cytotoxicity, the effects of Glycer-AGE on insulin secretion are similar to those of Glu-AGE. © 2013 Japanese Society of Hepato-Biliary-Pancreatic Surgery.

  8. Characterization of Erg K+ Channels in α- and β-Cells of Mouse and Human Islets*

    PubMed Central

    Hardy, Alexandre B.; Fox, Jocelyn E. Manning; Giglou, Pejman Raeisi; Wijesekara, Nadeeja; Bhattacharjee, Alpana; Sultan, Sobia; Gyulkhandanyan, Armen V.; Gaisano, Herbert Y.; MacDonald, Patrick E.; Wheeler, Michael B.

    2009-01-01

    Voltage-gated eag-related gene (Erg) K+ channels regulate the electrical activity of many cell types. Data regarding Erg channel expression and function in electrically excitable glucagon and insulin producing cells of the pancreas is limited. In the present study Erg1 mRNA and protein were shown to be highly expressed in human and mouse islets and in α-TC6 and Min6 cells α- and β-cell lines, respectively. Whole cell patch clamp recordings demonstrated the functional expression of Erg1 in α- and β-cells, with rBeKm1, an Erg1 antagonist, blocking inward tail currents elicited by a double pulse protocol. Additionally, a small interference RNA approach targeting the kcnh2 gene (Erg1) induced a significant decrease of Erg1 inward tail current in Min6 cells. To investigate further the role of Erg channels in mouse and human islets, ratiometric Fura-2 AM Ca2+-imaging experiments were performed on isolated α- and β-cells. Blocking Erg channels with rBeKm1 induced a transient cytoplasmic Ca2+ increase in both α- and β-cells. This resulted in an increased glucose-dependent insulin secretion, but conversely impaired glucagon secretion under low glucose conditions. Together, these data present Erg1 channels as new mediators of α- and β-cell repolarization. However, antagonism of Erg1 has divergent effects in these cells; to augment glucose-dependent insulin secretion and inhibit low glucose stimulated glucagon secretion. PMID:19690348

  9. Mechanisms of Estradiol-Induced Insulin Secretion by the G Protein-Coupled Estrogen Receptor GPR30/GPER in Pancreatic β-Cells

    PubMed Central

    Sharma, Geetanjali

    2011-01-01

    Sexual dimorphism and supplementation studies suggest an important role for estrogens in the amelioration of glucose intolerance and diabetes. Because little is known regarding the signaling mechanisms involved in estradiol-mediated insulin secretion, we investigated the role of the G protein-coupled receptor 30, now designated G protein-coupled estrogen receptor (GPER), in activating signal transduction cascades in β-cells, leading to secretion of insulin. GPER function in estradiol-induced signaling in the pancreatic β-cell line MIN6 was assessed using small interfering RNA and GPER-selective ligands (G-1 and G15) and in islets isolated from wild-type and GPER knockout mice. GPER is expressed in MIN6 cells, where estradiol and the GPER-selective agonist G-1 mediate calcium mobilization and activation of ERK and phosphatidylinositol 3-kinase. Both estradiol and G-1 induced insulin secretion under low- and high-glucose conditions, which was inhibited by pretreatment with GPER antagonist G15 as well as depletion of GPER by small interfering RNA. Insulin secretion in response to estradiol and G-1 was dependent on epidermal growth factor receptor and ERK activation and further modulated by phosphatidylinositol 3-kinase activity. In islets isolated from wild-type mice, the GPER antagonist G15 inhibited insulin secretion induced by estradiol and G-1, both of which failed to induce insulin secretion in islets obtained from GPER knockout mice. Our results indicate that GPER activation of the epidermal growth factor receptor and ERK in response to estradiol treatment plays a critical role in the secretion of insulin from β-cells. The results of this study suggest that the activation of downstream signaling pathways by the GPER-selective ligand G-1 could represent a novel therapeutic strategy in the treatment of diabetes. PMID:21673097

  10. Rates of insulin secretion in INS-1 cells are enhanced by coupling to anaplerosis and Kreb's cycle flux independent of ATP synthesis.

    PubMed

    Cline, Gary W; Pongratz, Rebecca L; Zhao, Xiaojian; Papas, Klearchos K

    2011-11-11

    Mechanistic models of glucose stimulated insulin secretion (GSIS) established in minimal media in vitro, may not accurately describe the complexity of coupling metabolism with insulin secretion that occurs in vivo. As a first approximation, we have evaluated metabolic pathways in a typical growth media, DMEM as a surrogate in vivo medium, for comparison to metabolic fluxes observed under the typical experimental conditions using the simple salt-buffer of KRB. Changes in metabolism in response to glucose and amino acids and coupling to insulin secretion were measured in INS-1 832/13 cells. Media effects on mitochondrial function and the coupling efficiency of oxidative phosphorylation were determined by fluorometrically measured oxygen consumption rates (OCRs) combined with (31)P NMR measured rates of ATP synthesis. Substrate preferences and pathways into the TCA cycle, and the synthesis of mitochondrial 2nd messengers by anaplerosis were determined by (13)C NMR isotopomer analysis of the fate of [U-(13)C] glucose metabolism. Despite similar incremental increases in insulin secretion, the changes of OCR in response to increasing glucose from 2.5 to 15mM were blunted in DMEM relative to KRB. Basal and stimulated rates of insulin secretion rates were consistently higher in DMEM, while ATP synthesis rates were identical in both DMEM and KRB, suggesting greater mitochondrial uncoupling in DMEM. The relative rates of anaplerosis, and hence synthesis and export of 2nd messengers from the mitochondria were found to be similar in DMEM to those in KRB. And, the correlation of total PC flux with insulin secretion rates in DMEM was found to be congruous with the correlation in KRB. Together, these results suggest that signaling mechanisms associated with both TCA cycle flux and with anaplerotic flux, but not ATP production, may be responsible for the enhanced rates of insulin secretion in more complex, and physiologically-relevant media. Copyright © 2011 Elsevier Inc. All rights reserved.

  11. Physiological concentrations of interleukin-6 directly promote insulin secretion, signal transduction, nitric oxide release, and redox status in a clonal pancreatic β-cell line and mouse islets.

    PubMed

    da Silva Krause, Mauricio; Bittencourt, Aline; Homem de Bittencourt, Paulo Ivo; McClenaghan, Neville H; Flatt, Peter R; Murphy, Colin; Newsholme, Philip

    2012-09-01

    Interleukin-6 (IL6) has recently been reported to promote insulin secretion in a glucagon-like peptide-1-dependent manner. Herein, the direct effects of IL6 (at various concentrations from 0 to 1000 pg/ml) on pancreatic β-cell metabolism, AMP-activated protein kinase (AMPK) signaling, insulin secretion, nitrite release, and redox status in a rat clonal β-cell line and mouse islets are reported. Chronic insulin secretion (in μg/mg protein per 24  h) was increased from 128·7±7·3 (no IL6) to 178·4±7·7 (at 100  pg/ml IL6) in clonal β-cells and increased significantly in islets incubated in the presence of 5·5  mM glucose for 2  h, from 0·148 to 0·167±0·003  ng/islet. Pretreatment with IL6 also induced a twofold increase in basal and nutrient-stimulated insulin secretion in subsequent 20 min static incubations. IL6 enhanced both glutathione (GSH) and glutathione disulphide (GSSG) by nearly 20% without changing intracellular redox status (GSSG/GSH). IL6 dramatically increased iNOS expression (by ca. 100-fold) with an accompanying tenfold rise in nitrite release in clonal β-cells. Phosphorylated AMPK levels were elevated approximately twofold in clonal β-cells and mouse islet cells. Calmodulin-dependent protein kinase kinase levels (CaMKK), an upstream kinase activator of AMPK, were also increased by 50% after IL6 exposure (in β-cells and islets). Our data have demonstrated that IL6 can stimulate β-cell-dependent insulin secretion via direct cell-based mechanisms. AMPK, CaMKK (an upstream kinase activator of AMPK), and the synthesis of nitric oxide appear to alter cell metabolism to benefit insulin secretion. In summary, IL6 exerts positive effects on β-cell signaling, metabolism, antioxidant status, and insulin secretion.

  12. Utility of C-peptide for a reliable estimate of insulin secretion in children with growth hormone deficiency.

    PubMed

    Ciresi, Alessandro; Cicciò, Floriana; Radellini, Stefano; Giordano, Carla

    2016-08-01

    GH treatment (GHT) can lead to glucose metabolism impairment through decreased insulin sensitivity and impaired pancreatic β-cell function, which are the two key components of the pathogenesis of diabetes. Therefore, in addition to insulin sensitivity, during GHT it is very important to perform a reliable evaluation of insulin secretion. However, conflicting data exist regarding the insulin secretion in children during GHT. C-peptide provides a more reliable estimate of β-cell function than insulin, but few studies evaluated it during GHT. Our aim was to assess the usefulness of C-peptide in the evaluation of insulin secretion in GH deficiency (GHD) children. In 48 GHD children, at baseline and after 12 and 24months of GHT, and in 56 healthy subjects we evaluated fasting and glucagon-stimulated (AUCCpep) C-peptide levels in addition to other commonly used secretion indexes, such as fasting and oral glucose tolerance test-stimulated insulin levels (AUCINS), Homa-β, and insulinogenic index. The main outcomes were the change in C-peptide during GHT and its correlation with the auxological and hormonal parameters. At baseline GHD children showed a significant lower AUCCpep (p=0.006), while no difference was found for the other indexes. Both fasting C-peptide (beta 0.307, p=0.016) and AUCCpep (beta 0.379, p=0.002) were independently correlated with IGF-I SDS, while no correlation was found for all other indexes. After 12months an increase in Homa-β (p<0.001), fasting C-peptide (p=0.002) and AUCCpep (p<0.001) was found. At multivariate analysis, only fasting C-peptide (beta 0.783, p=0.001) and AUCCpep (beta 0.880, p<0.001) were independently correlated with IGF-I SDS. C-peptide, rather than the insulin-derived indexes, has proved to be the most useful marker of insulin secretion correlated to IGF-I levels in GHD children. Therefore, we suggest the use of glucagon test both as diagnostic test for the GH assessment and as a useful tool for the evaluation of insulin secretion during GHT in children. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Ultra-structural study of insulin granules in pancreatic β-cells of db/db mouse by scanning transmission electron microscopy tomography.

    PubMed

    Xue, Yanhong; Zhao, Wei; Du, Wen; Zhang, Xiang; Ji, Gang; Ying, Wang; Xu, Tao

    2012-07-01

    Insulin granule trafficking is a key step in the secretion of glucose-stimulated insulin from pancreatic β-cells. The main feature of type 2 diabetes (T2D) is the failure of pancreatic β-cells to secrete sufficient amounts of insulin to maintain normal blood glucose levels. In this work, we developed and applied tomography based on scanning transmission electron microscopy (STEM) to image intact insulin granules in the β-cells of mouse pancreatic islets. Using three-dimensional (3D) reconstruction, we found decreases in both the number and the grey level of insulin granules in db/db mouse pancreatic β-cells. Moreover, insulin granules were closer to the plasma membrane in diabetic β-cells than in control cells. Thus, 3D ultra-structural tomography may provide new insights into the pathology of insulin secretion in T2D.

  14. Fetal adaptations in insulin secretion result from high catecholamines during placental insufficiency.

    PubMed

    Limesand, Sean W; Rozance, Paul J

    2017-08-01

    Placental insufficiency and intrauterine growth restriction (IUGR) of the fetus affects approximately 8% of all pregnancies and is associated with short- and long-term disturbances in metabolism. In pregnant sheep, experimental models with a small, defective placenta that restricts delivery of nutrients and oxygen to the fetus result in IUGR. Low blood oxygen concentrations increase fetal plasma catecholamine concentrations, which lower fetal insulin concentrations. All of these observations in sheep models with placental insufficiency are consistent with cases of human IUGR. We propose that sustained high catecholamine concentrations observed in the IUGR fetus produce developmental adaptations in pancreatic β-cells that impair fetal insulin secretion. Experimental evidence supporting this hypothesis shows that chronic elevation in circulating catecholamines in IUGR fetuses persistently inhibits insulin concentrations and secretion. Elevated catecholamines also allow for maintenance of a normal fetal basal metabolic rate despite low fetal insulin and glucose concentrations while suppressing fetal growth. Importantly, a compensatory augmentation in insulin secretion occurs following inhibition or cessation of catecholamine signalling in IUGR fetuses. This finding has been replicated in normally grown sheep fetuses following a 7-day noradrenaline (norepinephrine) infusion. Together, these programmed effects will potentially create an imbalance between insulin secretion and insulin-stimulated glucose utilization in the neonate which probably explains the transient hyperinsulinism and hypoglycaemia in some IUGR infants. © 2017 The Authors. The Journal of Physiology © 2017 The Physiological Society.

  15. VAMP-2 and cellubrevin are expressed in pancreatic beta-cells and are essential for Ca(2+)-but not for GTP gamma S-induced insulin secretion.

    PubMed Central

    Regazzi, R; Wollheim, C B; Lang, J; Theler, J M; Rossetto, O; Montecucco, C; Sadoul, K; Weller, U; Palmer, M; Thorens, B

    1995-01-01

    VAMP proteins are important components of the machinery controlling docking and/or fusion of secretory vesicles with their target membrane. We investigated the expression of VAMP proteins in pancreatic beta-cells and their implication in the exocytosis of insulin. cDNA cloning revealed that VAMP-2 and cellubrevin, but not VAMP-1, are expressed in rat pancreatic islets and that their sequence is identical to that isolated from rat brain. Pancreatic beta-cells contain secretory granules that store and secrete insulin as well as synaptic-like microvesicles carrying gamma-aminobutyric acid. After subcellular fractionation on continuous sucrose gradients, VAMP-2 and cellubrevin were found to be associated with both types of secretory vesicle. The association of VAMP-2 with insulin-containing granules was confirmed by confocal microscopy of primary cultures of rat pancreatic beta-cells. Pretreatment of streptolysin-O permeabilized insulin-secreting cells with tetanus and botulinum B neurotoxins selectively cleaved VAMP-2 and cellubrevin and abolished Ca(2+)-induced insulin release (IC50 approximately 15 nM). By contrast, the pretreatment with tetanus and botulinum B neurotoxins did not prevent GTP gamma S-stimulated insulin secretion. Taken together, our results show that pancreatic beta-cells express VAMP-2 and cellubrevin and that one or both of these proteins selectively control Ca(2+)-mediated insulin secretion. Images PMID:7796801

  16. The H+/K+ ATPase Inhibitor SCH-28080 Inhibits Insulin Secretion and Induces Cell Death in INS-1E Rat Insulinoma Cells.

    PubMed

    Jakab, Martin; Ketterl, Nina; Fürst, Johannes; Beyreis, Marlena; Kittl, Michael; Kiesslich, Tobias; Hauser-Kronberger, Cornelia; Gaisberger, Martin; Ritter, Markus

    2017-01-01

    Glucose-stimulated insulin secretion (GSIS) of pancreatic β-cells involves glucose uptake and metabolism, closure of KATP channels and depolarization of the cell membrane potential (Vmem), activation of voltage-activated Ca2+ currents (ICav) and influx of Ca2+, which eventually triggers hormone exocytosis. Beside this classical pathway, KATP-independent mechanisms such as changes in intracellular pH (pHi) or cell volume, which also affect β-cell viability, can elicit or modify insulin release. In β-cells the regulation of pHi is mainly accomplished by Na+/H+ exchangers (NHEs). To investigate if other proton extrusion mechanisms than NHEs are involved in pH regulation, we tested for the presence of the non-gastric H+/K+ ATPase in rat insulinoma cells and assessed effects of the H+/K+ ATPase inhibitor SCH-28080 on insulin secretion, cell viability and apoptosis. In INS-1E cell cultures, H+/K+ ATPase gene and protein expression was analyzed by reverse transcription PCR and Western blotting. Intracellular pH (pHi) recovery after acute acidic load was measured by NH4Cl prepulsing using BCECF. Insulin secretion was determined by ELISA from the cell culture supernatant. Vmem, K+ and Ca2+ currents were recorded using patch clamp. Overall cell responses were determined using resazurin (viability) and cytotoxicity assays. The mean cell volume (MCV), cell granularity (side-scatter; SSC), phosphatidylserine (PS) exposure, cell membrane integrity, caspase activity and the mitochondrial membrane potential (ΔΨm) were measured by flow cytometry. We found that the α-subunit of the non-gastric H+/K+ ATPase (HKα2) is expressed on mRNA and protein level. However, compared to rat colon tissue, in INS-1E cells mRNA abundance was very low. In NH4Cl prepulsing experiments no K+-dependent pHi recovery was observed under Na+-free extracellular conditions. Nonetheless within 1 h, 20 µM SCH-28080 inhibited GSIS by ∼50%, while basal release was unaffected. The L-type ICav blocker nifedipine caused a full inhibition of GSIS at 10 and 20 µM. At 20 µM, SCH-28080 inhibited ICav comparable to 20 µM nifedipine and in addition augmented IKATP recorded at -60 mV and hyperpolarized Vmem by ∼15 mV. Cell viability 2 and 24 h post treatment with SCH-28080 was dose-dependently inhibited with IC50 values of 22.9 µM and 15.3 µM, respectively. At 20 µM the percentages of Annexin-V+, caspase+ and propidium iodide+ cells were significantly increased after 24 and 48 h. Concurrently, the MCV was significantly decreased (apoptotic volume decrease, AVD) and the SSC signal was increased. At concentrations >40-50 µM, SCH-28080 became progressively cytotoxic causing a steep increase in necrotic cells already 2 h post treatment and a breakdown of ΔΨm within 4 h under 50 and 100 µM while 10 and 20 µM had no effect on ΔΨm within 24 h. We demonstrate expression of HKα2 in rat INS-1E cells. However, the pump is apparently non-functional under the given conditions. Nonetheless the H+/K+ ATPase blocker SCH-28080 inhibits insulin secretion and induces cell death. Importantly, we show that SCH-28080 inhibits ICav - and activates KATP channels identifying them as novel "off-targets" of the inhibitor, causing hyperpolarization of Vmem and inhibition of insulin secretion. © 2017 The Author(s). Published by S. Karger AG, Basel.

  17. Induction of miR-132 and miR-212 Expression by Glucagon-Like Peptide 1 (GLP-1) in Rodent and Human Pancreatic β-Cells

    PubMed Central

    Li, Jing; Keller, Mark P.; Hohmeier, Hans E.; Wang, Yong; Feng, Yue; Zhou, Heather H.; Shen, Xiaolan; Rabaglia, Mary; Soni, Mufaddal; Attie, Alan D.; Newgard, Christopher B.; Thornberry, Nancy A.; Howard, Andrew D.; Zhou, Yun-Ping

    2015-01-01

    Better understanding how glucagon-like peptide 1 (GLP-1) promotes pancreatic β-cell function and/or mass may uncover new treatment for type 2 diabetes. In this study, we investigated the potential involvement of microRNAs (miRNAs) in the effect of GLP-1 on glucose-stimulated insulin secretion. miRNA levels in INS-1 cells and isolated rodent and human islets treated with GLP-1 in vitro and in vivo (with osmotic pumps) were measured by real-time quantitative PCR. The role of miRNAs on insulin secretion was studied by transfecting INS-1 cells with either precursors or antisense inhibitors of miRNAs. Among the 250 miRNAs surveyed, miR-132 and miR-212 were significantly up-regulated by GLP-1 by greater than 2-fold in INS-1 832/3 cells, which were subsequently reproduced in freshly isolated rat, mouse, and human islets, as well as the islets from GLP-1 infusion in vivo in mice. The inductions of miR-132 and miR-212 by GLP-1 were correlated with cAMP production and were blocked by the protein kinase A inhibitor H-89 but not affected by the exchange protein activated by cAMP activator 8-pCPT-2′-O-Me-cAMP-AM. GLP-1 failed to increase miR-132 or miR-212 expression levels in the 832/13 line of INS-1 cells, which lacks robust cAMP and insulin responses to GLP-1 treatment. Overexpression of miR-132 or miR-212 significantly enhanced glucose-stimulated insulin secretion in both 832/3 and 832/13 cells, and restored insulin responses to GLP-1 in INS-1 832/13 cells. GLP-1 increases the expression of miRNAs 132 and 212 via a cAMP/protein kinase A-dependent pathway in pancreatic β-cells. Overexpression of miR-132 or miR-212 enhances glucose and GLP-1-stimulated insulin secretion. PMID:26218441

  18. Induction of miR-132 and miR-212 Expression by Glucagon-Like Peptide 1 (GLP-1) in Rodent and Human Pancreatic β-Cells.

    PubMed

    Shang, Jin; Li, Jing; Keller, Mark P; Hohmeier, Hans E; Wang, Yong; Feng, Yue; Zhou, Heather H; Shen, Xiaolan; Rabaglia, Mary; Soni, Mufaddal; Attie, Alan D; Newgard, Christopher B; Thornberry, Nancy A; Howard, Andrew D; Zhou, Yun-Ping

    2015-09-01

    Better understanding how glucagon-like peptide 1 (GLP-1) promotes pancreatic β-cell function and/or mass may uncover new treatment for type 2 diabetes. In this study, we investigated the potential involvement of microRNAs (miRNAs) in the effect of GLP-1 on glucose-stimulated insulin secretion. miRNA levels in INS-1 cells and isolated rodent and human islets treated with GLP-1 in vitro and in vivo (with osmotic pumps) were measured by real-time quantitative PCR. The role of miRNAs on insulin secretion was studied by transfecting INS-1 cells with either precursors or antisense inhibitors of miRNAs. Among the 250 miRNAs surveyed, miR-132 and miR-212 were significantly up-regulated by GLP-1 by greater than 2-fold in INS-1 832/3 cells, which were subsequently reproduced in freshly isolated rat, mouse, and human islets, as well as the islets from GLP-1 infusion in vivo in mice. The inductions of miR-132 and miR-212 by GLP-1 were correlated with cAMP production and were blocked by the protein kinase A inhibitor H-89 but not affected by the exchange protein activated by cAMP activator 8-pCPT-2'-O-Me-cAMP-AM. GLP-1 failed to increase miR-132 or miR-212 expression levels in the 832/13 line of INS-1 cells, which lacks robust cAMP and insulin responses to GLP-1 treatment. Overexpression of miR-132 or miR-212 significantly enhanced glucose-stimulated insulin secretion in both 832/3 and 832/13 cells, and restored insulin responses to GLP-1 in INS-1 832/13 cells. GLP-1 increases the expression of miRNAs 132 and 212 via a cAMP/protein kinase A-dependent pathway in pancreatic β-cells. Overexpression of miR-132 or miR-212 enhances glucose and GLP-1-stimulated insulin secretion.

  19. Dose- and Glucose-Dependent Effects of Amino Acids on Insulin Secretion from Isolated Mouse Islets and Clonal INS-1E Beta-Cells

    PubMed Central

    Liu, Zhenping; Jeppesen, Per B.; Gregersen, Søren; Chen, Xiaoping; Hermansen, Kjeld

    2008-01-01

    BACKGROUND: The influence of glucose and fatty acids on beta-cell function is well established whereas little is known about the role of amino acids (AAs). METHODS: Islets isolated from NMRI mice were incubated overnight. After preincubation, isolated islets as well as clonal INS-1E beta-cells were incubated for 60 min in a modified Krebs Ringer buffer containing glucose and AAs. RESULTS: At 16.7 mmol/l (mM) glucose, L-arginine, L-lysine, L-alanine, L-proline, L-leucine, and L-glutamine potentiated glucose-stimulated insulin secretion dose-dependently, while DL-homocysteine inhibited insulin secretion. Maximal insulin stimulation was obtained at 20 mM L-proline, L-lysine, L-alanine, L-arginine (islets: 2.5 to 6.7 fold increase; INS-1E cells: 1.6 to 2.2 fold increase). L-glutamine and L-leucine only increased glucose-stimulated (16.7 mM) insulin secretion (INS-1E cells: 1.5 and 1.3 fold, respectively) at an AA concentration of 20 mM. Homocysteine inhibited insulin secretion both at 5.6 mM and 16.7 mM glucose. At glucose levels ranging from 1.1 to 25 mM, the equimolar concentration of 10 mM, L-proline, L-lysine, L-arginine increased insulin secretion from mouse islets and INS-1E cells at all glucose levels applied, with a maximal effect obtained at 25 mM glucose. At a concentration of 10 mM, L-arginine and L-lysine had the highest insulinotropic potency among the AAs investigated. CONCLUSION: L-arginine, L-lysine, L-alanine, L-proline, L-leucine and L-glutamine acutely stimulate insulin secretion from mouse islets and INS-1E cells in a dose- and glucose-dependent manner, whereas DL-homocysteine inhibits insulin release. PMID:19290384

  20. Beta cell compensation for insulin resistance in Zucker fatty rats: increased lipolysis and fatty acid signalling.

    PubMed

    Nolan, C J; Leahy, J L; Delghingaro-Augusto, V; Moibi, J; Soni, K; Peyot, M-L; Fortier, M; Guay, C; Lamontagne, J; Barbeau, A; Przybytkowski, E; Joly, E; Masiello, P; Wang, S; Mitchell, G A; Prentki, M

    2006-09-01

    The aim of this study was to determine the role of fatty acid signalling in islet beta cell compensation for insulin resistance in the Zucker fatty fa/fa (ZF) rat, a genetic model of severe obesity, hyperlipidaemia and insulin resistance that does not develop diabetes. NEFA augmentation of insulin secretion and fatty acid metabolism were studied in isolated islets from ZF and Zucker lean (ZL) control rats. Exogenous palmitate markedly potentiated glucose-stimulated insulin secretion (GSIS) in ZF islets, allowing robust secretion at physiological glucose levels (5-8 mmol/l). Exogenous palmitate also synergised with glucagon-like peptide-1 and the cyclic AMP-raising agent forskolin to enhance GSIS in ZF islets only. In assessing islet fatty acid metabolism, we found increased glucose-responsive palmitate esterification and lipolysis processes in ZF islets, suggestive of enhanced triglyceride-fatty acid cycling. Interruption of glucose-stimulated lipolysis by the lipase inhibitor Orlistat (tetrahydrolipstatin) blunted palmitate-augmented GSIS in ZF islets. Fatty acid oxidation was also higher at intermediate glucose levels in ZF islets and steatotic triglyceride accumulation was absent. The results highlight the potential importance of NEFA and glucoincretin enhancement of insulin secretion in beta cell compensation for insulin resistance. We propose that coordinated glucose-responsive fatty acid esterification and lipolysis processes, suggestive of triglyceride-fatty acid cycling, play a role in the coupling mechanisms of glucose-induced insulin secretion as well as in beta cell compensation and the hypersecretion of insulin in obesity.

  1. Increased risk of diabetes with statin treatment is associated with impaired insulin sensitivity and insulin secretion: a 6 year follow-up study of the METSIM cohort.

    PubMed

    Cederberg, Henna; Stančáková, Alena; Yaluri, Nagendra; Modi, Shalem; Kuusisto, Johanna; Laakso, Markku

    2015-05-01

    The aim of this work was to investigate the mechanisms underlying the risk of type 2 diabetes associated with statin treatment in the population-based Metabolic Syndrome in Men (METSIM) cohort. A total of 8,749 non-diabetic participants, aged 45-73 years, were followed up for 5.9 years. New diabetes was diagnosed in 625 men by means of an OGTT, HbA1c ≥6.5% (48 mmol/mol) or glucose-lowering medication started during the follow-up. Insulin sensitivity and secretion were evaluated with OGTT-derived indices. Participants on statin treatment (N = 2,142) had a 46% increased risk of type 2 diabetes (adjusted HR 1.46 [95% CI 1.22, 1.74]). The risk was dose dependent for simvastatin and atorvastatin. Statin treatment significantly increased 2 h glucose (2hPG) and glucose AUC of an OGTT at follow-up, with a nominally significant increase in fasting plasma glucose (FPG). Insulin sensitivity was decreased by 24% and insulin secretion by 12% in individuals on statin treatment (at FPG and 2hPG <5.0 mmol/l) compared with individuals without statin treatment (p < 0.01). Decreases in insulin sensitivity and insulin secretion were dose dependent for simvastatin and atorvastatin. Statin treatment increased the risk of type 2 diabetes by 46%, attributable to decreases in insulin sensitivity and insulin secretion.

  2. Effects of Insulin and Octreotide on Memory and Growth Hormone in Alzheimer's Disease

    PubMed Central

    Watson, G. Stennis; Baker, Laura D.; Cholerton, Brenna A.; Rhoads, Kristoffer W.; Merriam, George R.; Schellenberg, Gerard D.; Asthana, PhD;Sanjay; Cherrier, Monique; Craft, Suzanne

    2009-01-01

    Both insulin alone and the somatostatin analogue octreotide alone facilitate memory in patients with Alzheimer's disease (AD). Since octreotide inhibits endogenous insulin secretion, the cognitive effects of insulin and octreotide may not be independent. This study tested the individual and interactive effects of insulin and octreotide on memory and plasma growth hormone (GH) levels in older adults. Participants were 16 memory-impaired (AD=7, amnestic mild cognitive impairment=9; apolipoprotein E [APOE] ε4- [no ε4 alleles]=9, ε4+ [1-2 ε4 alleles]=7) and 19 cognitively-intact older adults (APOE ε4-=17, ε4+=1). On separate days, fasting participants received counterbalanced infusions of (1) insulin (1 mU·kg-1·min-1) and dextrose to maintain euglycemia, (2) octreotide (150 μg/h), (3) insulin, dextrose, and octreotide, or (4) saline. Story recall was the principal endpoint. Insulin alone facilitated delayed recall for ε4-patients, relative to ε4+ patients (P=0.0012). Furthermore, ε4- patients with higher Mattis Dementia Rating Scale (DRS) scores had greater octreotide-induced memory facilitation (P=0.0298). For healthy adults, octreotide facilitated memory (P=0.0122). Unexpectedly, hyperinsulinemia with euglycemia increased GH levels in healthy controls (P=0.0299). Thus, insulin and octreotide appear to regulate memory in older adults. APOE ε4 genotype modulates responses to insulin and octreotide. Finally, insulin may regulate GH levels during euglycemia. PMID:19625744

  3. E4orf1 induction in adipose tissue promotes insulin-independent signaling in the adipocyte.

    PubMed

    Kusminski, Christine M; Gallardo-Montejano, Violeta I; Wang, Zhao V; Hegde, Vijay; Bickel, Perry E; Dhurandhar, Nikhil V; Scherer, Philipp E

    2015-10-01

    Type 2 diabetes remains a worldwide epidemic with major pathophysiological changes as a result of chronic insulin resistance. Insulin regulates numerous biochemical pathways related to carbohydrate and lipid metabolism. We have generated a novel mouse model that allows us to constitutively activate, in an inducible fashion, the distal branch of the insulin signaling transduction pathway specifically in adipocytes. Using the adenoviral 36 E4orf1 protein, we chronically stimulate locally the Ras-ERK-MAPK signaling pathway. At the whole body level, this leads to reduced body-weight gain under a high fat diet challenge. Despite overlapping glucose tolerance curves, there is a reduced requirement for insulin action under these conditions. The mice further exhibit reduced circulating adiponectin levels that ultimately lead to impaired lipid clearance, and inflamed and fibrotic white adipose tissues. Nevertheless, they are protected from diet-induced hepatic steatosis. As we observe constitutively elevated p-Akt levels in the adipocytes, even under conditions of low insulin levels, this pinpoints enhanced Ras-ERK-MAPK signaling in transgenic adipocytes as a potential alternative route to bypass proximal insulin signaling events. We conclude that E4orf1 expression in the adipocyte leads to enhanced baseline activation of the distal insulin signaling node, yet impaired insulin receptor stimulation in the presence of insulin, with important implications for the regulation of adiponectin secretion. The resulting systemic phenotype is complex, yet highlights the powerful nature of manipulating selective branches of the insulin signaling network within the adipocyte.

  4. Insulin Sensitivity and Secretion in Obese Type 2 Diabetic Women after Various Bariatric Operations

    PubMed Central

    Vrbikova, Jana; Kunesova, Marie; Kyrou, Ioannis; Tura, Andrea; Hill, Martin; Grimmichova, Tereza; Dvorakova, Katerina; Sramkova, Petra; Dolezalova, Karin; Lischkova, Olga; Vcelak, Josef; Hainer, Vojtech; Bendlova, Bela; Kumar, Sudhesh; Fried, Martin

    2017-01-01

    Objective To compare the effects of biliopancreatic diversion (BPD) and laparoscopic gastric banding (LAGB) on insulin sensitivity and secretion with the effects of laparoscopic gastric plication (P). Methods A total of 52 obese women (age 30-66 years) suffering from type 2 diabetes mellitus (T2DM) were prospectively recruited into three study groups: 16 BPD; 16 LAGB, and 20 P. Euglycemic clamps and mixed meal tolerance tests were performed before, at 1 month and at 6 months after bariatric surgery. Beta cell function derived from the meal test parameters was evaluated using mathematical modeling. Results Glucose disposal per kilogram of fat free mass (a marker of peripheral insulin sensitivity) increased significantly in all groups, especially after 1 month. Basal insulin secretion decreased significantly after all three types of operations, with the most marked decrease after BPD compared with P and LAGB. Total insulin secretion decreased significantly only following the BPD. Beta cell glucose sensitivity did not change significantly post-surgery in any of the study groups. Conclusion We documented similar improvement in insulin sensitivity in obese T2DM women after all three study operations during the 6-month postoperative follow-up. Notably, only BPD led to decreased demand on beta cells (decreased integrated insulin secretion), but without increasing the beta cell glucose sensitivity. PMID:27951535

  5. Effects of experimentally induced mild hyperthyroidism on growth hormone and insulin secretion and sex steroid levels in healthy young men.

    PubMed

    Lovejoy, J C; Smith, S R; Bray, G A; Veldhuis, J D; Rood, J C; Tulley, R

    1997-12-01

    Although triiodothyronine (T3) exerts major regulatory actions in both animals and humans, most clinical studies of T3 administration have been relatively short-term. The present study examined the effects of more than 2 months (63 days) of low-dose T3 treatment on overnight pulsatile growth hormone (GH) secretion, short-term insulin secretion, and of sex steroid levels in seven healthy, lean men studied at an inpatient metabolic unit. At baseline, there were strong correlations between sex hormone-binding globulin (SHBG) and several measures of GH production, including total GH production (r = .99), GH interburst interval (r = -.75), and GH mass (r = .82). SHBG was also inversely correlated with basal insulin secretion (r = -.74). There was a 42% increase in serum levels of total testosterone (18.5 +/- 1.3 to 26.3 +/- 1.8 nmol/L, P = .005) and a 150% increase in SHBG (18.0 +/- 2.2 to 44.9 +/- 7.0 nmol/L, P = .008) following T3 treatment. Estradiol and free testosterone levels were unchanged by treatment, although free testosterone decreased from 142.8 +/- 18.4 to 137.3 +/- 19.5 pmol/L. T3 treatment significantly reduced the GH interburst interval (P < .05) and produced slight increases in the measures of GH secretion. There were no statistically significant effects of T3 treatment on insulin secretion, although insulin peak amplitude, mass secreted per burst, and total production all decreased. We conclude that experimentally induced T3 excess in healthy men produces significant and sustained changes in sex hormone levels and GH secretion. Furthermore, there are strong associations between SHBG and both GH and insulin secretion independent of thyroid hormone excess that require additional study.

  6. Tumor-Secreted Autocrine Motility Factor (AMF): Casual Role in a Animal Model of Cachexia

    DTIC Science & Technology

    2004-08-01

    83:526-531 Crown AL, Cottle K, Lightman SL, Falk S, Mohamed-Ali V, Armstrong L, Millar AB, Holly JM (2002). What is the role of the insulin-like growth...Falk S, Mohamed-Ali V, Armstrong L, Millar AB, Holly JM (2002). What is the role of the insulin-like growth factor system in the pathophysiology of...Regulation of lipolysis: natriuretic peptides and the development of cachexia. Int J Cardiol 85:125-132 Kotler DP (2000). Cachexia. Ann Intern Med 133:622-634

  7. The effect of curcumin on insulin release in rat-isolated pancreatic islets.

    PubMed

    Abdel Aziz, Mohamed T; El-Asmar, Mohamed F; El Nadi, Essam G; Wassef, Mohamed A; Ahmed, Hanan H; Rashed, Laila A; Obaia, Eman M; Sabry, Dina; Hassouna, Amira A; Abdel Aziz, Ahmed T

    2010-08-01

    Curcumin exerts a hypoglycemic action and induces heme-oxygenase-1 (HO-1). We evaluated the effect of curcumin on isolated islets of Langerhans and studied whether its action on insulin secretion is mediated by inducible HO-1. Islets were isolated from rats and divided into control islets, islets incubated in different curcumin concentrations, islets incubated in hemin, islets incubated in curcumin and HO inhibitor, stannous mesoporphyrin (SnMP), islets incubated in hemin and SnMP, islets incubated in SnMP only, and islets incubated in 16.7 mmol/L glucose. Heme-oxygenase activity, HO-1 expression, and insulin estimation was assessed. Insulin secretion, HO-1 gene expression and HO activity were significantly increased in islets incubated in curcumin, hemin, and glucose compared with controls. This increase in insulin secretion was significantly decreased by incubation of islets in SnMP. The action of curcumin on insulin secretion from the isolated islets may be, in part, mediated through increased HO-1 gene expression.

  8. Theophylline prevents the inhibitory effect of prostaglandin E2 on glucose-induced insulin secretion in man.

    PubMed

    Giugliano, D; Cozzolino, D; Salvatore, T; Giunta, R; Torella, R

    1988-06-01

    This study was undertaken to assess the mechanism by which prostaglandins of the E series inhibit glucose-induced insulin secretion in man. Acute insulin response (mean change 3-10 min) to iv glucose (0.33 g/kg) was decreased by 40% during the infusion of prostaglandin E2 (10 micrograms/min) and glucose disappearance rates were reduced (P less than 0.05). Insulin response to arginine (5 g iv) and tolbutamide (1 g iv) were not affected by the same rate of prostaglandin E2 infusion. The inhibitory effect of prostaglandin E2 on glucose-induced insulin secretion was prevented by theophylline (100 mg as a loading dose followed by a 5 mg/min infusion), a drug that increases the intracellular cAMP concentrations by inhibiting phosphodiesterase activity. Our data suggest the involvement of the adenylate cyclase system in the inhibitory action of prostaglandin E2 on glucose-induced insulin secretion in man.

  9. Pancreatic β-Cell Electrical Activity and Insulin Secretion: of Mice and Men

    PubMed Central

    Rorsman, Patrik; Ashcroft, Frances M

    2018-01-01

    The pancreatic β-cell plays a key role in glucose homeostasis by secreting insulin, the only hormone capable of lowering the blood glucose concentration. Impaired insulin secretion results in the chronic hyperglycaemia that characterizes type 2 diabetes (T2DM), which currently afflicts >450 million people worldwide. The healthy β-cell acts as a glucose sensor matching its output to the circulating glucose concentration. It does so via metabolically induced changes in electrical activity, which culminate in an increase in the cytoplasmic Ca2+ concentration and initiation of Ca2+-dependent exocytosis of insulin-containing secretory granules. Here, we review recent advances in our understanding of the β-cell transcriptome, electrical activity and insulin exocytosis. We highlight salient differences between mouse and human β-cells, provide models of how the different ion channels contribute to their electrical activity and insulin secretion, and conclude by discussing how these processes become perturbed in T2DM. PMID:29212789

  10. Effect of repaglinide and gliclazide on glycaemic control, early-phase insulin secretion and lipid profiles in.

    PubMed

    Zhang, Hong; Bu, Ping; Xie, Yan-Hong; Luo, Juan; Lei, Min-Xiang; Mo, Zhao-Hui; Liao, Er-Yuan

    2011-01-01

    Both repaglinide and gliclazide are insulin secretagogues widely used in the treatment of type 2 diabetes. They stimulate insulin secretion through distinct mechanisms and may benefit patients from different aspects. The present study was to evaluate the effects of repaglinide or gliclazide on glycaemic control, insulin secretion, and lipid profiles in type 2 diabetes patients. A total of 47 newly diagnosed type 2 diabetes patients were randomized 1:1 to receive a 4-week treatment with repaglinide or gliclazide. The standard mixed meal tolerance test was performed before and after the treatment. Plasma glucose (PG), insulin concentration, and lipid profiles were measured. The area under insulin concentration curve (AUC(ins)) and the early-phase insulin secretion index (ΔI(30)/ΔG(30)) were calculated. After the trial, fasting and postprandial PG and postprandial insulin improved significantly in both groups (P < 0.05). The maximum insulin concentration occurred earlier in the repaglinide group than that in the gliclazide group. AUC(ins) increased in both groups (P < 0.05), but no significant difference was found between groups. ΔI(30)/ΔG(30) increased in both groups (P < 0.05), especially in the repaglinide group (P < 0.05). Triglyceride and total cholesterol decreased significantly in the repaglinide group in some time points, while no significant change was observed in the gliclazide group. Repaglinide and gliclazide had similar effects on glycaemic control and total insulin secretion, while repaglinide had more effects on improvements in β-cell function and lipid metabolism.

  11. Evaluation of insulin secretion and action in New World camelids.

    PubMed

    Firshman, Anna M; Cebra, Christopher K; Schanbacher, Barbara J; Seaquist, Elizabeth R

    2013-01-01

    To measure and compare insulin secretion and sensitivity in healthy alpacas and llamas via glucose clamping techniques. 8 llamas and 8 alpacas. Hyperinsulinemic euglycemic clamping (HEC) and hyperglycemic clamping (HGC) were performed on each camelid in a crossover design with a minimum 48-hour washout period between clamping procedures. The HEC technique was performed to measure insulin sensitivity. Insulin was infused IV at 6 mU/min/kg for 4 hours, and an IV infusion of glucose was adjusted to maintain blood glucose concentration at 150 mg/dL. Concentrations of blood glucose and plasma insulin were determined throughout. The HGC technique was performed to assess insulin secretion in response to exogenous glucose infusion. An IV infusion of glucose was administered to maintain blood glucose concentration at 320 mg/dL for 3 hours, and concentrations of blood glucose and plasma insulin were determined throughout. Alpacas and llamas were not significantly different with respect to whole-body insulin sensitivity during HEC or in pancreatic β-cell response during HGC. Alpacas and llamas had markedly lower insulin sensitivity during HEC and markedly lower pancreatic β-cell response during HGC, in comparison with many other species. New World camelids had lower glucose-induced insulin secretion and marked insulin resistance in comparison with other species. This likely contributes to the disorders of fat and glucose metabolism that are common to camelids.

  12. Role of endogenous cortistatin in the regulation of ghrelin system expression at pancreatic level under normal and obese conditions.

    PubMed

    Chanclón, Belén; Luque, Raúl M; Córdoba-Chacón, José; Gahete, Manuel D; Pozo-Salas, Ana I; Castaño, Justo P; Gracia-Navarro, Francisco; Martínez-Fuentes, Antonio J

    2013-01-01

    Ghrelin-system components [native ghrelin, In1-ghrelin, Ghrelin-O-acyltransferase enzyme (GOAT) and receptors (GHS-Rs)] are expressed in a wide variety of tissues, including the pancreas, where they exert different biological actions including regulation of neuroendocrine secretions, food intake and pancreatic function. The expression of ghrelin system is regulated by metabolic conditions (fasting/obesity) and is associated with the progression of obesity and insulin resistance. Cortistatin (CORT), a neuropeptide able to activate GHS-R, has emerged as an additional link in gut-brain interplay. Indeed, we recently reported that male CORT deficient mice (cort-/-) are insulin-resistant and present a clear dysregulation in the stomach ghrelin-system. The present work was focused at analyzing the expression pattern of ghrelin-system components at pancreas level in cort-/- mice and their control littermates (cort +/+) under low- or high-fat diet. Our data reveal that all the ghrelin-system components are expressed at the mouse pancreatic level, where, interestingly, In1-ghrelin was expressed at higher levels than native-ghrelin. Thus, GOAT mRNA levels were significantly lower in cort-/- mice compared with controls while native ghrelin, In1-ghrelin and GHS-R transcript levels remained unaltered under normal metabolic conditions. Moreover, under obese condition, a significant increase in pancreatic expression of native-ghrelin, In1-ghrelin and GHS-R was observed in obese cort+/+ but not in cort-/- mice. Interestingly, insulin expression and release was elevated in obese cort+/+, while these changes were not observed in obese cort-/- mice. Altogether, our results indicate that the ghrelin-system expression is clearly regulated in the pancreas of cort+/+ and cort -/- under normal and/or obesity conditions suggesting that this system may play relevant roles in the endocrine pancreas. Most importantly, our data demonstrate, for the first time, that endogenous CORT is essential for the obesity-induced changes in insulin expression/secretion observed in mice, suggesting that CORT is a key regulatory component of the pancreatic function.

  13. Protein Secretion Is Required for Pregnancy-Associated Plasma Protein-A to Promote Lung Cancer Growth In Vivo

    PubMed Central

    Pan, Hong; Hanada, Sayaka; Zhao, Jun; Mao, Li; Ma, Mark Zhi-Qing

    2012-01-01

    Pregnancy-associated plasma protein-A (PAPPA) has been reported to regulate the activity of insulin-like growth factor (IGF) signal pathway through proteolytic degradation of IGF binding proteins (IGFBPs) thereby increasing the local concentration of free IGFs available to receptors. In this study we found that PAPPA is secreted from two out of seven lung cancer cell lines examined. None of immortalized normal bronchial epithelial cells (HBE) tested secrets PAPPA. There is no correlation between expression level and secretion of PAPPA in these cells. A cell line over-expressing PAPPA accompanied with secretion shows no notable changes in proliferation under cell culture conditions in vitro, but displays significantly augmentation of tumor growth in vivo in a xenograft model. In contrast, a cell line over-expressing PAPPA without secretion exhibits reduction of tumor growth both in vitro and in vivo. Down-regulation of PAPPA expression and secretion by RNAi knockdown decreases tumor growth after implanted in vivo. The tumor promoting activity of PAPPA appears to be mediated mainly through augmentation of the IGF signaling pathway as indicated by notable increases in downstream Akt kinase phosphorylation in tumor samples. Our results indicate that PAPPA secretion may play an important role in lung cancer growth and progression. PMID:23152806

  14. Cinnamon polyphenols regulate multiple metabolic pathways involved in insulin signaling and intestinal lipoprotein metabolism of small intestinal enterocytes.

    PubMed

    Qin, Bolin; Dawson, Harry D; Schoene, Norberta W; Polansky, Marilyn M; Anderson, Richard A

    2012-01-01

    Increasing evidence suggests that dietary factors may affect the expression of multiple genes and signaling pathways, which regulate intestinal lipoprotein metabolism. The small intestine is actively involved in the regulation of dietary lipid absorption, intracellular transport, and metabolism and is closely linked to systemic lipid metabolism. Cinnamon polyphenols have been shown to improve glucose, insulin, and lipid metabolism and improve inflammation in cell culture, animal, and human studies. However, little is known of the effects of an aqueous cinnamon extract (CE) on the regulation of genes and signaling pathways related to intestinal metabolism. The aim of the study was to investigate the effects of a CE on the primary enterocytes of chow-fed rats. Freshly isolated intestinal enterocytes were used to investigate apolipoprotein-B48 secretion by immunoprecipitation; gene expressions by quantitative reverse transcriptase-polymerase chain reaction and the protein and phosphorylation levels were evaluated by western blot and flow cytometric analyses. Ex vivo, the CE significantly decreased the amount of apolipoprotein-B48 secretion into the media, inhibited the mRNA expression of genes of the inflammatory cytokines, interleukin-1β, interleukin-6, and tumor necrosis factor-α, and induced the expression of the anti-inflammatory gene, Zfp36. CE also increased the mRNA expression of genes leading to increased insulin sensitivity, including Ir, Irs1, Irs2, Pi3k, and Akt1, and decreased Pten expression. CE also inhibited genes associated with increased cholesterol, triacylglycerols, and apolipoprotein-B48 levels, including Abcg5, Npc1l1, Cd36, Mttp, and Srebp1c, and facilitated Abca1 expression. CE also stimulated the phospho-p38 mitogen-activated protein kinase, c-Jun N-terminal kinase, and extracellular-signal-regulated kinase expressions determined by flow cytometry, with no changes in protein levels. These results demonstrate that the CE regulates genes associated with insulin sensitivity, inflammation, and cholesterol/lipogenesis metabolism and the activity of the mitogen-activated protein kinase signal pathway in intestinal lipoprotein metabolism. Copyright © 2012 Elsevier Inc. All rights reserved.

  15. β-Cell lipotoxicity in response to free fatty acid elevation in prepubertal youth: African American versus Caucasian contrast.

    PubMed

    Michaliszyn, Sara F; Bonadonna, Riccardo C; Sjaarda, Lindsey A; Lee, Sojung; Farchoukh, Lama; Arslanian, Silva A

    2013-08-01

    Prepubertal African American (AA) youth compared with their Caucasian (C) peers have higher insulin secretion, which correlates positively with free fatty acid (FFA) concentration. In our continued efforts to explain the racial disparity in insulinemia, and because FFAs modulate insulin secretion, we hypothesized that AA youth would have a greater response to FFA-induced β-cell insulin secretion than C youth. We compared the short-term effects of FFA elevation on fasting and glucose-stimulated C-peptide-modeled insulin secretion in prepubertal normal-weight AA versus C peers during a 2-h hyperglycemic clamp (12.5 mmol/L) on two occasions: 1) infusion of normal saline and 2) infusion of 20% intralipid (IL). During IL infusion, insulin sensitivity (IS) declined comparably in AA and C youth. Glucose sensitivity of first- and second-phase insulin secretion showed a significant condition × race interaction being higher in AA youth. Disposition index, β-cell function relative to IS, declined with IL infusion in AA and C youth, with a significantly greater decrease in Cs compared with AAs. In conclusion, AA and C prepubertal youth both demonstrated a decline in β-cell function relative to IS during IL infusion, indicative of acute lipotoxicity. The greater decline in C youth compared with AAs may suggest that C youth are more susceptible to β-cell lipotoxicity than AA youth, or alternatively, that AA youth are hypersensitive to FFA stimulation of β-cell insulin secretion, consistent with our theory.

  16. Generation of glucose-responsive, insulin-producing cells from human umbilical cord blood-derived mesenchymal stem cells.

    PubMed

    Prabakar, Kamalaveni R; Domínguez-Bendala, Juan; Molano, R Damaris; Pileggi, Antonello; Villate, Susana; Ricordi, Camillo; Inverardi, Luca

    2012-01-01

    We sought to assess the potential of human cord blood-derived mesenchymal stem cells (CB-MSCs) to derive insulin-producing, glucose-responsive cells. We show here that differentiation protocols based on stepwise culture conditions initially described for human embryonic stem cells (hESCs) lead to differentiation of cord blood-derived precursors towards a pancreatic endocrine phenotype, as assessed by marker expression and in vitro glucose-regulated insulin secretion. Transplantation of these cells in immune-deficient animals shows human C-peptide production in response to a glucose challenge. These data suggest that human cord blood may be a promising source for regenerative medicine approaches for the treatment of diabetes mellitus.

  17. Overexpression of angiotensin II type 2 receptor promotes apoptosis and impairs insulin secretion in rat insulinoma cells.

    PubMed

    Liu, Min; Jing, Danqing; Wang, Yan; Liu, Yu; Yin, Shinan

    2015-02-01

    Angiotensin II (Ang II), the major effector hormone of renin-angiotensin system, acts as a promoter of insulin resistance and diabetes mellitus type 2 pathogenesis. Activation of Ang II type 2 receptor (AT2R) has been examined as a potential therapeutic strategy. However, there are conflicting findings regarding the role of AT2R. In the current study, we evaluated the effects of overexpressing AT2R by viral vector transduction on the apoptosis and function of pancreatic β-islet cells. The rat insulinoma cell line, INS-1, was transduced with a recombinant adenoviral vector expressing AT2R (Ad-G-AT2R-EGFP). AT2R overexpression resulted in significantly reduced cell viability and subsequently impaired glucose-stimulated insulin secretion (GSIS) function in INS-1 cells. Down-regulated expressions of GSIS pathway components, insulin, glucose transporter 2, and glucokinase were associated with AT2R overexpression. Further analysis determined that overexpression of AT2R induced G1-phase cell cycle arrest and Ang II-independent apoptotic cell death as indicated by increased Annexin V staining. To understand the apoptosis signaling triggered by AT2R overexpression, levels of caspase proteins were measured. Overexpression of AT2R significantly induced caspase-8, caspase-9, and caspase-3 cleavage, and decreased Bcl-2, pAkt, and pERK expression levels. AT2R-induced cell apoptosis was successfully blocked by the caspase inhibitor Z-VAD-FMK. Our findings suggested that AT2R overexpression triggers the apoptosis of INS-1 cells and dysfunction in insulin secretion. In conclusion, more careful design and consideration are required when applying AT2R-related therapies in treating diabetes.

  18. Mechanisms Regulating Insulin Response to Intragastric Glucose in Lean and Non-Diabetic Obese Subjects: A Randomized, Double-Blind, Parallel-Group Trial

    PubMed Central

    Meyer-Gerspach, Anne Christin; Cajacob, Lucian; Riva, Daniele; Herzog, Raphael; Drewe, Juergen; Beglinger, Christoph; Wölnerhanssen, Bettina K.

    2016-01-01

    Background/Objectives The changes in blood glucose concentrations that result from an oral glucose challenge are dependent on the rate of gastric emptying, the rate of glucose absorption and the rate of insulin-driven metabolism that include the incretins, glucose-dependent insulinotropic peptide (GIP) and glucagon-like peptide-1 (GLP-1). The rate of insulin-driven metabolism is clearly altered in obese subjects, but it is controversial which of these factors is predominant. We aimed to quantify gastric emptying, plasma insulin, C-peptide, glucagon and glucose responses, as well as incretin hormone secretions in obese subjects and healthy controls during increasing glucose loads. Subjects/Methods The study was conducted as a randomized, double-blind, parallel-group trial in a hospital research unit. A total of 12 normal weight (6 men and 6 women) and 12 non-diabetic obese (BMI > 30, 6 men and 6 women) participants took part in the study. Subjects received intragastric loads of 10 g, 25 g and 75 g glucose dissolved in 300 ml tap water. Results Main outcome measures were plasma GLP-1 and GIP, plasma glucagon, glucose, insulin, C-peptide and gastric emptying. The primary findings are: i) insulin resistance (P < 0.001) and hyperinsulinemia (P < 0.001); ii) decreased insulin disposal (P < 0.001); iii) trend for reduced GLP-1 responses at 75 g glucose; and iv) increased fasting glucagon levels (P < 0.001) in obese subjects. Conclusions It seems that, rather than changes in incretin secretion, fasting hyperglucagonemia and consequent hyperglycemia play a role in reduced disposal of insulin, contributing to hyperinsulinemia and insulin resistance. Trial Registration ClinicalTrials.gov NCT01875575 PMID:26942445

  19. Trehalose prevents adipocyte hypertrophy and mitigates insulin resistance.

    PubMed

    Arai, Chikako; Arai, Norie; Mizote, Akiko; Kohno, Keizo; Iwaki, Kanso; Hanaya, Toshiharu; Arai, Shigeyuki; Ushio, Simpei; Fukuda, Shigeharu

    2010-12-01

    Trehalose has been shown to evoke lower insulin secretion than glucose in oral saccharide tolerance tests in humans. Given this hypoinsulinemic effect of trehalose, we hypothesized that trehalose suppresses adipocyte hypertrophy by reducing storage of triglyceride and mitigates insulin resistance in mice fed a high-fat diet (HFD). Mice were fed an HFD and given drinking water containing 2.5% saccharide (glucose [Glc], trehalose [Tre], maltose [Mal], high-fructose corn syrup, or fructose [Fru]) ad libitum. After 7 weeks of HFD and saccharide intake, fasting serum insulin levels in the Tre/HFD group were significantly lower than in the Mal/HFD and Glc/HFD groups (P < .05). Furthermore, the Tre/HFD group showed a significantly suppressed elevation of homeostasis model assessment-insulin resistance compared with the Mal/HFD group (P < .05) and showed a trend toward lower homeostasis model assessment-insulin resistance than the Glc/HFD group. After 8 weeks of feeding, mesenteric adipocyte size in the Tre/HFD group showed significantly less hypertrophy than the Glc/HFD, Mal/HFD, high-fructose corn syrup/HFD, or Fru/HFD group. Analysis of gene expression in mesenteric adipocytes showed that no statistically significant difference in the expression of monocyte chemoattractant protein-1 (MCP-1) messenger RNA (mRNA) was observed between the Tre/HFD group and the distilled water/standard diet group, whereas a significant increase in the MCP-1 mRNA expression was observed in the Glc/HFD, Mal/HFD, Fru/HFD, and distilled water/HFD groups. Thus, our data indicate that trehalose prevents adipocyte hypertrophy and mitigates insulin resistance in HFD-fed mice by reducing insulin secretion and down-regulating mRNA expression of MCP-1. These findings further suggest that trehalose is a functional saccharide that mitigates insulin resistance. Copyright © 2010 Elsevier Inc. All rights reserved.

  20. Phenolic Compounds from Fermented Berry Beverages Modulated Gene and Protein Expression To Increase Insulin Secretion from Pancreatic β-Cells in Vitro.

    PubMed

    Johnson, Michelle H; de Mejia, Elvira Gonzalez

    2016-03-30

    Berries are a rich source of bioactive phenolic compounds that are able to bind and inhibit the enzyme dipeptidyl peptidase-IV (DPP-IV), a current target for type-2 diabetes therapy. The objectives were to determine the role of berry phenolic compounds to modulate incretin-cleaving DPP-IV and its substrate glucagon-like peptide-1 (GLP-1), insulin secretion from pancreatic β-cells, and genes and proteins involved in the insulin secretion pathway using cell culture. Anthocyanins (ANC) from 50% blueberry-50% blackberry (Blu-Bla) and 100% blackberry (Bla) fermented beverages at 50 μM cyanidin-3-glucoside equivalents increased (p < 0.05) glucose-stimulated insulin secretion from pancreatic β-cells (iNS-1E) both when applied directly and following simulated absorption through Caco-2 cells (by 233 and 100 μIU insulin/mL, respectively). ANC 50%Blu-Bla and ANC 100%Bla upregulated the gene for incretin hormone GLP-1 (fold-change 3.0 ± 1.4 and 2.0 ± 0.3, respectively) and genes in the insulin secretory pathway including insulin-like growth factor 1 receptor (iGF1R, 2.3 ± 0.6 and 1.6 ± 0.3, respectively), and increased (p < 0.05) the protein expression of insulin-like growth factor 2 (IGF-II), insulin-like growth factor binding proteins (IGFBP-2 and 3), and vascular endothelial growth factor (VEGF) in iNS-1E cells. Taken together, anthocyanins, predominantly delphinidin-3-arabinoside, from fermented berry beverages have the potential to modulate DPP-IV and its substrate GLP-1, to increase insulin secretion, and to upregulate expression of mRNA of insulin-receptor associated genes and proteins in pancreatic β-cells.

  1. Sleep duration and insulin resistance in individuals without type 2 diabetes: the PPP-Botnia study.

    PubMed

    Pyykkönen, Antti-Jussi; Isomaa, Bo; Pesonen, Anu-Katriina; Eriksson, Johan G; Groop, Leif; Tuomi, Tiinamaija; Räikkönen, Katri

    2014-08-01

    Both short and long sleep duration may increase risk of type 2 diabetes (diabetes). We studied if short and long sleep durations were associated with insulin resistance (IR) and insulin secretion in individuals without diabetes, and if the associations remained after we excluded individuals who reported more frequent and severe complaints of sleep apnea and insomnia. An oral glucose tolerance test (OGTT) was performed for 722 adults without diabetes. Indices of IR and insulin secretion were calculated. Sleep duration and complaints of sleep apnea and insomnia were self-reported. In comparison to average sleepers (6-9 h/night), short sleepers (< 6 h/night) had higher 120-min insulin and AUC glucose, and long sleepers (≥ 9 h/night) had higher fasting and 120-min insulin, 120-min glucose, and HOMAIR and lower Insulin Sensitivity Index. After adjusting for confounders and after excluding individuals who reported more frequent and severe complaints of sleep apnea and insomnia, long sleep duration remained significantly associated with IR and insulin secretion. Long but not short sleep duration is associated with IR and insulin secretion in individuals without diabetes whether or not accompanied by sleep complaints. Long sleepers may benefit from targeted preventions and interventions that aim at reducing risk of future diabetes.

  2. Glucose-mediated control of ghrelin release from primary cultures of gastric mucosal cells

    PubMed Central

    Sakata, Ichiro; Park, Won-Mee; Walker, Angela K.; Piper, Paul K.; Chuang, Jen-Chieh; Osborne-Lawrence, Sherri

    2012-01-01

    The peptide hormone ghrelin is released from a distinct group of gastrointestinal cells in response to caloric restriction, whereas its levels fall after eating. The mechanisms by which ghrelin secretion is regulated remain largely unknown. Here, we have used primary cultures of mouse gastric mucosal cells to investigate ghrelin secretion, with an emphasis on the role of glucose. Ghrelin secretion from these cells upon exposure to different d-glucose concentrations, the glucose antimetabolite 2-deoxy-d-glucose, and other potential secretagogues was assessed. The expression profile of proteins involved in glucose transport, metabolism, and utilization within highly enriched pools of mouse ghrelin cells and within cultured ghrelinoma cells was also determined. Ghrelin release negatively correlated with d-glucose concentration. Insulin blocked ghrelin release, but only in a low d-glucose environment. 2-Deoxy-d-glucose prevented the inhibitory effect of high d-glucose exposure on ghrelin release. mRNAs encoding several facilitative glucose transporters, hexokinases, the ATP-sensitive potassium channel subunit Kir6.2, and sulfonylurea type 1 receptor were expressed highly within ghrelin cells, although neither tolbutamide nor diazoxide exerted direct effects on ghrelin secretion. These findings suggest that direct exposure of ghrelin cells to low ambient d-glucose stimulates ghrelin release, whereas high d-glucose and glucose metabolism within ghrelin cells block ghrelin release. Also, low d-glucose sensitizes ghrelin cells to insulin. Various glucose transporters, channels, and enzymes that mediate glucose responsiveness in other cell types may contribute to the ghrelin cell machinery involved in regulating ghrelin secretion under these different glucose environments, although their exact roles in ghrelin release remain uncertain. PMID:22414807

  3. Transformation of postingestive glucose responses after deletion of sweet taste receptor subunits or gastric bypass surgery

    PubMed Central

    Geraedts, Maartje C. P.; Takahashi, Tatsuyuki; Vigues, Stephan; Markwardt, Michele L.; Nkobena, Andongfac; Cockerham, Renee E.; Hajnal, Andras; Dotson, Cedrick D.; Rizzo, Mark A.

    2012-01-01

    The glucose-dependent secretion of the insulinotropic hormone glucagon-like peptide-1 (GLP-1) is a critical step in the regulation of glucose homeostasis. Two molecular mechanisms have separately been suggested as the primary mediator of intestinal glucose-stimulated GLP-1 secretion (GSGS): one is a metabotropic mechanism requiring the sweet taste receptor type 2 (T1R2) + type 3 (T1R3) while the second is a metabolic mechanism requiring ATP-sensitive K+ (KATP) channels. By quantifying sugar-stimulated hormone secretion in receptor knockout mice and in rats receiving Roux-en-Y gastric bypass (RYGB), we found that both of these mechanisms contribute to GSGS; however, the mechanisms exhibit different selectivity, regulation, and localization. T1R3−/− mice showed impaired glucose and insulin homeostasis during an oral glucose challenge as well as slowed insulin granule exocytosis from isolated pancreatic islets. Glucose, fructose, and sucralose evoked GLP-1 secretion from T1R3+/+, but not T1R3−/−, ileum explants; this secretion was not mimicked by the KATP channel blocker glibenclamide. T1R2−/− mice showed normal glycemic control and partial small intestine GSGS, suggesting that T1R3 can mediate GSGS without T1R2. Robust GSGS that was KATP channel-dependent and glucose-specific emerged in the large intestine of T1R3−/− mice and RYGB rats in association with elevated fecal carbohydrate throughout the distal gut. Our results demonstrate that the small and large intestines utilize distinct mechanisms for GSGS and suggest novel large intestine targets that could mimic the improved glycemic control seen after RYGB. PMID:22669246

  4. Children with classic congenital adrenal hyperplasia have elevated serum leptin concentrations and insulin resistance: potential clinical implications.

    PubMed

    Charmandari, Evangelia; Weise, Martina; Bornstein, Stefan R; Eisenhofer, Graeme; Keil, Margaret F; Chrousos, George P; Merke, Deborah P

    2002-05-01

    Leptin is secreted by the white adipose tissue and modulates energy homeostasis. Nutritional, neural, neuroendocrine, paracrine, and autocrine factors, including the sympathetic nervous system and the adrenal medulla, have been implicated in the regulation of leptin secretion. Classic congenital adrenal hyperplasia (CAH) is characterized by a defect in cortisol and aldosterone secretion, impaired development and function of the adrenal medulla, and adrenal hyperandrogenism. To examine leptin secretion in patients with classic CAH in relation to their adrenomedullary function and insulin and androgen secretion, we studied 18 children with classic CAH (12 boys and 6 girls; age range 2-12 yr) and 28 normal children (16 boys and 12 girls; age range 5-12 yr) matched for body mass index (BMI). Serum leptin concentrations were significantly higher in patients with CAH than in control subjects (8.1 +/- 2.0 vs. 2.5 +/- 0.6 ng/ml, P = 0.01), and this difference persisted when leptin values were corrected for BMI. When compared with their normal counterparts, children with CAH had significantly lower plasma epinephrine (7.1 +/- 1.3 vs. 50.0 +/- 4.2, P < 0.001) and free metanephrine concentrations (18.4 +/- 2.4 vs. 46.5 +/- 4.0, P < 0.001) and higher fasting serum insulin (10.6 +/- 1.4 vs. 3.2 +/- 0.2 microU/ml, P < 0.001) and testosterone (23.7 +/- 5.3 vs. 4.6 +/- 0.5 ng/dl, P = 0.003) concentrations. Insulin resistance determined by the homeostasis model assessment method was significantly greater in children with classic CAH than in normal children (2.2 +/- 0.3 vs. 0.7 +/- 0.04, P < 0.001). Leptin concentrations were significantly and negatively correlated with epinephrine (r = -0.50, P = 0.001) and free metanephrine (r = -0.48, P = 0.002) concentrations. Stepwise multiple linear regression analysis indicated that serum leptin concentrations were best predicted by BMI in both patients and controls. Gender predicted serum leptin concentrations in controls but not in patients with classic CAH. No association was found between the dose of hydrocortisone and serum leptin (r = -0.17, P = 0.5) or insulin (r = 0.24, P = 0.3) concentrations in children with CAH. Our findings indicate that children with classic CAH have elevated fasting serum leptin and insulin concentrations, and insulin resistance. These most likely reflect differences in long-term adrenomedullary hypofunction and glucocorticoid therapy. Elevated leptin and insulin concentrations in patients with CAH may further enhance adrenal and ovarian androgen production, decrease the therapeutic efficacy of glucocorticoids, and contribute to later development of polycystic ovary syndrome and/or the metabolic syndrome and their complications.

  5. A Model for the Estimation of Hepatic Insulin Extraction After a Meal.

    PubMed

    Piccinini, Francesca; Dalla Man, Chiara; Vella, Adrian; Cobelli, Claudio

    2016-09-01

    Quantitative assessment of hepatic insulin extraction (HE) after an oral glucose challenge, e.g., a meal, is important to understand the regulation of carbohydrate metabolism. The aim of the current study is to develop a model of system for estimating HE. Nine different models, of increasing complexity, were tested on data of 204 normal subjects, who underwent a mixed meal tolerance test, with frequent measurement of plasma glucose, insulin, and C-peptide concentrations. All these models included a two-compartment model of C-peptide kinetics, an insulin secretion model, a compartmental model of insulin kinetics (with number of compartments ranging from one to three), and different HE descriptions, depending on plasma glucose and insulin. Model performances were compared on the basis of data fit, precision of parameter estimates, and parsimony criteria. The three-compartment model of insulin kinetics, coupled with HE depending on glucose concentration, showed the best fit and a good ability to precisely estimate the parameters. In addition, the model calculates basal and total indices of HE ( HE b and HE tot , respectively), and provides an index of HE sensitivity to glucose ( S G HE ). A new physiologically based HE model has been developed, which allows an improved quantitative description of glucose regulation. The use of the new model provides an in-depth description of insulin kinetics, thus enabling a better understanding of a given subject's metabolic state.

  6. Mangiferin suppresses endoplasmic reticulum stress in perivascular adipose tissue and prevents insulin resistance in the endothelium.

    PubMed

    Xu, Xiaoshan; Chen, Yupeng; Song, Junna; Hou, Fangjie; Ma, Xuelian; Liu, Baolin; Huang, Fang

    2018-06-01

    Mangiferin is a naturally occurring glucosylxanthone with beneficial effects on glucose and lipid homeostasis. This study investigates the potential therapeutic effect of Mangiferin in perivascular adipose tissue (PVAT) and whether it contributes to regulating insulin action in the endothelium. Palmitate challenge evoked ROS-associated endoplasmic reticulum stress (ER stress) and NLRP3 inflammasome activation in PVAT. The conditioned medium from PA-stimulated PVAT was prepared to induce endothelial insulin resistance, and improved endothelium-dependent vasodilation in response to insulin was detected in vitro and in vivo. Mangiferin treatment enhanced LKB1-dependent AMPK activity and suppressed ER stress with downregulation of TXNIP induction, leading to the inhibition of NLRP3 inflammasome activation evidenced by attenuated NLRP3 and cleaved caspase-1 expression as well as reduced IL-1β secretion. Moreover, Mangiferin restored insulin-mediated Akt and eNOS phosphorylations with increased NO production, immunohistochemistry examination of adipocytes, and endothelial tissue in high-fat diet-fed mice also showed that oral administration of Mangiferin inhibited ER stress and NLRP3 induction in PVAT, and then effectively prevented insulin resistance in the vessel endothelium. Taken together, these results revealed that Mangiferin suppressed ER stress-associated NLRP3 inflammasome activation in PVAT through regulation of AMPK activity, which prevented endothelial insulin resistance. These findings suggested that the amelioration of PVAT dysfunction may be a therapeutic strategy for the prevention of endothelial insulin resistance.

  7. A branched chain amino acid metabolite drives vascular transport of fat and causes insulin resistance

    PubMed Central

    Jang, Cholsoon; Oh, Sungwhan F; Wada, Shogo; Rowe, Glenn C; Liu, Laura; Chan, Mun Chun; Rhee, James; Hoshino, Atsushi; Kim, Boa; Ibrahim, Ayon; Baca, Luisa G; Kim, Esl; Ghosh, Chandra C; Parikh, Samir M; Jiang, Aihua; Chu, Qingwei; Forman, Daniel E.; Lecker, Stewart H.; Krishnaiah, Saikumari; Rabinowitz, Joshua D; Weljie, Aalim M; Baur, Joseph A; Kasper, Dennis L; Arany, Zoltan

    2016-01-01

    Epidemiological and experimental data implicate branched chain amino acids (BCAAs) in the development of insulin resistance, but the mechanisms underlying this link remain unclear.1–3 Insulin resistance in skeletal muscle stems from excess accumulation of lipid species4, a process that requires blood-borne lipids to first traverse the blood vessel wall. Little is known, however, of how this trans-endothelial transport occurs or is regulated. Here, we leverage PGC-1α, a transcriptional coactivator that regulates broad programs of FA consumption, to identify 3-hydroxy-isobutyrate (3-HIB), a catabolic intermediate of the BCAA valine, as a novel paracrine regulator of trans-endothelial fatty acids (FA) transport. 3-HIB is secreted from muscle cells, activates endothelial FA transport, stimulates muscle FA uptake in vivo, and promotes muscle lipid accumulation and insulin resistance in animals. Conversely, inhibiting the synthesis of 3-HIB in muscle cells blocks the promotion of endothelial FA uptake. 3-HIB levels are elevated in muscle from db/db mice and from subjects with diabetes. These data thus unveil a novel mechanism that regulates trans-endothelial flux of FAs, revealing 3-HIB as a new bioactive signaling metabolite that links the regulation of FA flux to BCAA catabolism and provides a mechanistic explanation for how increased BCAA catabolic flux can cause diabetes. PMID:26950361

  8. Conventional kinesin KIF5B mediates adiponectin secretion in 3T3-L1 adipocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cui, Ju, E-mail: juzi.cui@gmail.com; Pang, Jing; Lin, Ya-Jun

    2016-08-05

    Insulin stimulates adiponectin secretion and glucose transporter type 4 (GLUT4) translocation in adipocyte to regulate metabolism homeostasis. Similar to GLUT4 translocation, intracellular trafficking and release of adiponectin in adipocytes relies on the trans-Golgi network and endosomal system. Recent studies show that the heavy chain of conventional kinesin (KIF5B) mediates GLUT4 translocation in murine 3T3-L1 adipocytes, however, the motor machinery involved in mediating intracellular trafficking and release of adiponectin is unknown. Here, we examined the role of KIF5B in the regulation of adiponectin secretion. The KIF5B level was up-regulated during 3T3-L1 adipogenesis. This increase in cytosolic KIF5B was synchronized with themore » induction of adiponectin. Endogenous KIF5B and adiponectin were partially colocalized at the peri-nuclear and cytosolic regions. In addition, adiponectin-containing vesicles were co-immunoprecipitated with KIF5B. Knockdown of KIF5B resulted in a marked inhibition of adiponectin secretion and overexpression of KIF5B enhanced adiponectin release, whereas leptin secretion was not affected by changes in KIF5B expression. These data suggest that the secretion of adiponectin, but not leptin, is dependent on functional KIF5B. - Highlights: • The KIF5B level was up regulated during 3T3-L1 adipogenesis. • Endogenous KIF5B and adiponectin were partially colicalized. • Adiponectin-containing vesicles were co-immunoprecipitated with KIF5B. • The secretion of adiponectin, but not leptin, is dependent on functional KIF5B.« less

  9. Desnutrin/ATGL activates PPARδ to promote mitochondrial function for insulin secretion in islet β cells.

    PubMed

    Tang, Tianyi; Abbott, Marcia J; Ahmadian, Maryam; Lopes, Andressa B; Wang, Yuhui; Sul, Hei Sook

    2013-12-03

    Excessive caloric intake leading to obesity is associated with insulin resistance and dysfunction of islet β cells. High-fat feeding decreases desnutrin (also called ATGL/PNPLA2) levels in islets. Here we show that desnutrin ablation via RIP-Cre (βKO) or RIP-CreER results in hyperglycemia with impaired glucose-stimulated insulin secretion (GSIS). Due to decreased lipolysis, islets have higher TAG content but lower free FA levels. βKO islets exhibit impaired mitochondrial respiration and lower production of ATP required for GSIS, along with decreased expression of PPARδ target genes involved in mitochondrial oxidation. Furthermore, synthetic PPARδ, but not PPARα, agonist restores GSIS and expression of mitochondrial oxidative genes in βKO mice, revealing that desnutrin-catalyzed lipolysis generates PPARδ ligands. Finally, adenoviral expression of desnutrin in βKO islets restores all defects of βKO islet phenotype and function, including GSIS and mitochondrial defects, demonstrating the critical role of the desnutrin-PPARδ-mitochondrial oxidation axis in regulating islet β cell GSIS. Copyright © 2013 Elsevier Inc. All rights reserved.

  10. Rac1 Regulates Endometrial Secretory Function to Control Placental Development.

    PubMed

    Davila, Juanmahel; Laws, Mary J; Kannan, Athilakshmi; Li, Quanxi; Taylor, Robert N; Bagchi, Milan K; Bagchi, Indrani C

    2015-08-01

    During placenta development, a succession of complex molecular and cellular interactions between the maternal endometrium and the developing embryo ensures reproductive success. The precise mechanisms regulating this maternal-fetal crosstalk remain unknown. Our study revealed that the expression of Rac1, a member of the Rho family of GTPases, is markedly elevated in mouse decidua on days 7 and 8 of gestation. To investigate its function in the uterus, we created mice bearing a conditional deletion of the Rac1 gene in uterine stromal cells. Ablation of Rac1 did not affect the formation of the decidua but led to fetal loss in mid gestation accompanied by extensive hemorrhage. To gain insights into the molecular pathways affected by the loss of Rac1, we performed gene expression profiling which revealed that Rac1 signaling regulates the expression of Rab27b, another GTPase that plays a key role in targeting vesicular trafficking. Consequently, the Rac1-null decidual cells failed to secrete vascular endothelial growth factor A, which is a critical regulator of decidual angiogenesis, and insulin-like growth factor binding protein 4, which regulates the bioavailability of insulin-like growth factors that promote proliferation and differentiation of trophoblast cell lineages in the ectoplacental cone. The lack of secretion of these key factors by Rac1-null decidua gave rise to impaired angiogenesis and dysregulated proliferation of trophoblast cells, which in turn results in overexpansion of the trophoblast giant cell lineage and disorganized placenta development. Further experiments revealed that RAC1, the human ortholog of Rac1, regulates the secretory activity of human endometrial stromal cells during decidualization, supporting the concept that this signaling G protein plays a central and conserved role in controlling endometrial secretory function. This study provides unique insights into the molecular mechanisms regulating endometrial secretions that mediate stromal-endothelial and stromal-trophoblast crosstalk critical for placenta development and establishment of pregnancy.

  11. Is exenatide improving the treatment of type 2 diabetes? Analysis of the individual clinical trials with exenatide.

    PubMed

    Doggrell, Sheila A

    2007-01-01

    The obesity epidemic in the developed and developing world is being followed by an epidemic of type 2 diabetes. In type 2 diabetes, subjects cannot manage glucose properly because they do not produce enough insulin, and the peripheral tissues have become resistant to insulin. Glucagon-like peptide 1 (GLP-1) is an intestinal peptide hormone that is secreted in response to food to regulate the postprandial blood glucose concentration. One of the actions of GLP-1 is to stimulate insulin secretion. In subjects with type 2 diabetes, intravenous or subcutaneous GLP-1 stimulated insulin production and decreased blood glucose levels. However, as GLP-1 is rapidly metabolised, it is not suitable for use in most subjects with type 2 diabetes. Exendin-4 is a 39-amino acid peptide that acts as an agonist at the GLP-1 receptor. After subcutaneous administration, synthetic exendin-4 (exenatide) decreased postprandial concentrations of glucose and insulin, and fasting glucose levels in subjects with type 2 diabetes, and the effects lasted several hours. Subsequently, exenatide was been trialled in subjects taking metformin only, a sulfonylurea only, or metformin and a sulfonylurea, and shown to improve glycemic control with few adverse events, initially over 30 weeks, and then extended to 82 weeks. Exenatide may also be as effective as insulin glargine in subjects with type 2 diabetes not adequately controlled with the oral agents. In conclusion, exenatide represents a new and beneficial addition to the medicines used to treat type 2 diabetes.

  12. Glutathione peroxidase mimic ebselen improves glucose-stimulated insulin secretion in murine islets.

    PubMed

    Wang, Xinhui; Yun, Jun-Won; Lei, Xin Gen

    2014-01-10

    Glutathione peroxidase (GPX) mimic ebselen and superoxide dismutase (SOD) mimic copper diisopropylsalicylate (CuDIPs) were used to rescue impaired glucose-stimulated insulin secretion (GSIS) in islets of GPX1 and(or) SOD1-knockout mice. Ebselen improved GSIS in islets of all four tested genotypes. The rescue in the GPX1 knockout resulted from a coordinated transcriptional regulation of four key GSIS regulators and was mediated by the peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PGC-1α)-mediated signaling pathways. In contrast, CuDIPs improved GSIS only in the SOD1 knockout and suppressed gene expression of the PGC-1α pathway. Islets from the GPX1 and(or) SOD1 knockout mice provided metabolically controlled intracellular hydrogen peroxide (H2O2) and superoxide conditions for the present study to avoid confounding effects. Bioinformatics analyses of gene promoters and expression profiles guided the search for upstream signaling pathways to link the ebselen-initiated H2O2 scavenging to downstream key events of GSIS. The RNA interference was applied to prove PGC-1α as the main mediator for that link. Our study revealed a novel metabolic use and clinical potential of ebselen in rescuing GSIS in the GPX1-deficient islets and mice, along with distinct differences between the GPX and SOD mimics in this regard. These findings highlight the necessities and opportunities of discretional applications of various antioxidant enzyme mimics in treating insulin secretion disorders. REBOUND TRACK: This work was rejected during standard peer review and rescued by Rebound Peer Review (Antioxid Redox Signal 16: 293-296, 2012) with the following serving as open reviewers: Regina Brigelius-Flohe, Vadim Gladyshev, Dexing Hou, and Holger Steinbrenner.

  13. Whole Genome SNP Genotyping and Exome Sequencing Reveal Novel Genetic Variants and Putative Causative Genes in Congenital Hyperinsulinism

    PubMed Central

    Proverbio, Maria Carla; Mangano, Eleonora; Gessi, Alessandra; Bordoni, Roberta; Spinelli, Roberta; Asselta, Rosanna; Valin, Paola Sogno; Di Candia, Stefania; Zamproni, Ilaria; Diceglie, Cecilia; Mora, Stefano; Caruso-Nicoletti, Manuela; Salvatoni, Alessandro; De Bellis, Gianluca; Battaglia, Cristina

    2013-01-01

    Congenital hyperinsulinism of infancy (CHI) is a rare disorder characterized by severe hypoglycemia due to inappropriate insulin secretion. The genetic causes of CHI have been found in genes regulating insulin secretion from pancreatic β-cells; recessive inactivating mutations in the ABCC8 and KCNJ11 genes represent the most common events. Despite the advances in understanding the molecular pathogenesis of CHI, specific genetic determinants in about 50 % of the CHI patients remain unknown, suggesting additional locus heterogeneity. In order to search for novel loci contributing to the pathogenesis of CHI, we combined a family-based association study, using the transmission disequilibrium test on 17 CHI patients lacking mutations in ABCC8/KCNJ11, with a whole-exome sequencing analysis performed on 10 probands. This strategy allowed the identification of the potential causative mutations in genes implicated in the regulation of insulin secretion such as transmembrane proteins (CACNA1A, KCNH6, KCNJ10, NOTCH2, RYR3, SCN8A, TRPV3, TRPC5), cytosolic (ACACB, CAMK2D, CDKAL1, GNAS, NOS2, PDE4C, PIK3R3) and mitochondrial enzymes (PC, SLC24A6), and in four genes (CSMD1, SLC37A3, SULF1, TLL1) suggested by TDT family-based association study. Moreover, the exome-sequencing approach resulted to be an efficient diagnostic tool for CHI, allowing the identification of mutations in three causative CHI genes (ABCC8, GLUD1, and HNF1A) in four out of 10 patients. Overall, the present study should be considered as a starting point to design further investigations: our results might indeed contribute to meta-analysis studies, aimed at the identification/confirmation of novel causative or modifier genes. PMID:23869231

  14. Vitamin D deficiency impairs glucose-stimulated insulin secretion and increases insulin resistance by reducing PPAR-γ expression in nonobese Type 2 diabetic rats.

    PubMed

    Park, Sunmin; Kim, Da Sol; Kang, Suna

    2016-01-01

    Human studies have provided relatively strong associations of poor vitamin D status with Type 2 diabetes but do not explain the nature of the association. Here, we explored the physiological pathways that may explain how vitamin D status modulates energy, lipid and glucose metabolisms in nonobese Type 2 diabetic rats. Goto-Kakizaki (GK) rats were fed high-fat diets containing 25 (VD-low), 1000 (VD-normal) or 10,000 (VD-high) cholecalciferol-IU/kg diet for 8 weeks. Energy expenditure, insulin resistance, insulin secretory capacity and lipid metabolism were measured. Serum 25-OH-D levels, an index of vitamin D status, increased dose dependently with dietary vitamin D. VD-low resulted in less fat oxidation without a significant difference in energy expenditure and less lean body mass in the abdomen and legs comparison to the VD-normal group. In comparison to VD-low, VD-normal had lower serum triglycerides and intracellular fat accumulation in the liver and skeletal muscles which was associated with down-regulation of the mRNA expressions of sterol regulatory element binding protein-1c and fatty acid synthase and up-regulation of gene expressions of peroxisome proliferator-activated receptors (PPAR)-α and carnitine palmitoyltransferase-1. In euglycemic hyperinsulinemic clamp, whole-body and hepatic insulin resistance was exacerbated in the VD-low group but not in the VD-normal group, possibly through decreasing hepatic insulin signaling and PPAR-γ expression in the adipocytes. In 3T3-L1 adipocytes 1,25-(OH)2-D (10 nM) increased triglyceride accumulation by elevating PPAR-γ expression and treatment with a PPAR-γ antagonist blocked the triglyceride deposition induced by 1,25-(OH)2-D treatment. VD-low impaired glucose-stimulated insulin secretion in hyperglycemic clamp and decreased β-cell mass by decreasing β-cell proliferation. In conclusion, vitamin D deficiency resulted in the dysregulation of glucose metabolism in GK rats by simultaneously increasing insulin resistance by decreasing adipose PPAR-γ expression and deteriorating β-cell function and mass. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Endocrine system on chip for a diabetes treatment model.

    PubMed

    Nguyen, Dao Thi Thuy; van Noort, Danny; Jeong, In-Kyung; Park, Sungsu

    2017-02-21

    The endocrine system is a collection of glands producing hormones which, among others, regulates metabolism, growth and development. One important group of endocrine diseases is diabetes, which is caused by a deficiency or diminished effectiveness of endogenous insulin. By using a microfluidic perfused 3D cell-culture chip, we developed an 'endocrine system on chip' to potentially be able to screen drugs for the treatment of diabetes by measuring insulin release over time. Insulin-secreting β-cells are located in the pancreas, while L-cells, located in the small intestines, stimulate insulin secretion. Thus, we constructed a co-culture of intestinal-pancreatic cells to measure the effect of glucose on the production of glucagon-like peptide-1 (GLP-1) from the L-cell line (GLUTag) and insulin from the pancreatic β-cell line (INS-1). After three days of culture, both cell lines formed aggregates, exhibited 3D cell morphology, and showed good viability (>95%). We separately measured the dynamic profile of GLP-1 and insulin release at glucose concentrations of 0.5 and 20 mM, as well as the combined effect of GLP-1 on insulin production at these glucose concentrations. In response to glucose stimuli, GLUTag and INS-1 cells produced higher amounts of GLP-1 and insulin, respectively, compared to a static 2D cell culture. INS-1 combined with GLUTag cells exhibited an even higher insulin production in response to glucose stimulation. At higher glucose concentrations, the diabetes model on chip showed faster saturation of the insulin level. Our results suggest that the endocrine system developed in this study is a useful tool for observing dynamical changes in endocrine hormones (GLP-1 and insulin) in a glucose-dependent environment. Moreover, it can potentially be used to screen GLP-1 analogues and natural insulin and GLP-1 stimulants for diabetes treatment.

  16. Fuel-induced amplification of insulin secretion in mouse pancreatic islets exposed to a high sulfonylurea concentration: role of the NADPH/NADP+ ratio.

    PubMed

    Panten, U; Rustenbeck, I

    2008-01-01

    The aim of this study was to examine whether the cytosolic NADPH/NADP+ ratio of beta cells serves as an amplifying signal in fuel-induced insulin secretion and whether such a function is mediated by cytosolic alpha-ketoglutarate. Pancreatic islets and islet cells were isolated from albino mice by collagenase digestion. Insulin secretion of incubated or perifused islets was measured by ELISA. The NADPH and NADP+ content of incubated islets was determined by enzymatic cycling. The cytosolic Ca2+ concentration ([Ca2+]c) in islets was measured by microfluorimetry and the activity of ATP-sensitive K+ channels in islet cells by patch-clamping. Both 30 mmol/l glucose and 10 mmol/l alpha-ketoisocaproate stimulated insulin secretion and elevated the NADPH/NADP+ ratio of islets preincubated in the absence of fuel. The increase in the NADPH/NADP+ ratio was abolished in the presence of 2.7 micromol/l glipizide (closing all ATP-sensitive K+ channels). However, alpha-ketoisocaproate, but not glucose, still stimulated insulin secretion. That glipizide did not inhibit alpha-ketoisocaproate-induced insulin secretion was not the result of elevated [Ca2+]c, as glucose caused a more marked [Ca2+]c increase. Insulin release triggered by glipizide alone was moderately amplified by dimethyl alpha-ketoglutarate (which is cleaved to produce cytosolic alpha-ketoglutarate), but there was no indication of a signal function of cytosolic alpha-ketoglutarate. The results strongly suggest that the NADPH/NADP+ ratio in the beta cell cytosol does not serve as an amplifying signal in fuel-induced insulin release. The study supports the view that amplification results from the intramitochondrial production of citrate by citrate synthase and from the associated export of citrate into the cytosol.

  17. The level of menadione redox-cycling in pancreatic β-cells is proportional to the glucose concentration: role of NADH and consequences for insulin secretion

    PubMed Central

    Heart, Emma; Palo, Meridith; Womack, Trayce; Smith, Peter J. S.; Gray, Joshua P.

    2011-01-01

    Pancreatic β-cells release insulin in response to elevation of glucose from basal (4-7 mM) to stimulatory (8-16 mM) levels. Metabolism of glucose by the β-cell results in the production of low levels of reactive oxygen intermediates (ROI), such as hydrogen peroxide (H2O2), a newly recognized coupling factor linking glucose metabolism to insulin secretion. However, high and toxic levels of H2O2 inhibit insulin secretion. Menadione, which produces H2O2 via redox cycling mechanism in a dose-dependent manner, was investigated for its effect on β-cell metabolism and insulin secretion in INS-1 832/13, a rat β-cell insulinoma cell line, and primary rodent islets. Menadione-dependent redox cycling and resulting H2O2 production under stimulatory glucose exceeded several-fold those reached at basal glucose. This was paralleled by a differential effect of menadione (0.1-10 μM) on insulin secretion, which was enhanced at basal, but inhibited at stimulatory glucose. Redox cycling of menadione and H2O2 formation was dependent on glycolytically-derived NADH, as inhibition of glycolysis and application of non-glycogenic insulin secretagogues did not support redox cycling. In addition, activity of plasma membrane electron transport, a system dependent in part on glycolytically-derived NADH, was also inhibited by menadione. Menadione-dependent redox cycling was sensitive to the NQO1 inhibitor dicoumarol and the flavoprotein inhibitor diphenylene iodonium, suggesting a role for NQO1 and other oxidoreductases in this process. These data may explain the apparent dichotomy between the stimulatory and inhibitory effects of H2O2 and menadione on insulin secretion. PMID:22115979

  18. The level of menadione redox-cycling in pancreatic β-cells is proportional to the glucose concentration: role of NADH and consequences for insulin secretion.

    PubMed

    Heart, Emma; Palo, Meridith; Womack, Trayce; Smith, Peter J S; Gray, Joshua P

    2012-01-15

    Pancreatic β-cells release insulin in response to elevation of glucose from basal (4-7mM) to stimulatory (8-16mM) levels. Metabolism of glucose by the β-cell results in the production of low levels of reactive oxygen intermediates (ROI), such as hydrogen peroxide (H(2)O(2)), a newly recognized coupling factor linking glucose metabolism to insulin secretion. However, high and toxic levels of H(2)O(2) inhibit insulin secretion. Menadione, which produces H(2)O(2) via redox cycling mechanism in a dose-dependent manner, was investigated for its effect on β-cell metabolism and insulin secretion in INS-1 832/13, a rat β-cell insulinoma cell line, and primary rodent islets. Menadione-dependent redox cycling and resulting H(2)O(2) production under stimulatory glucose exceeded several-fold those reached at basal glucose. This was paralleled by a differential effect of menadione (0.1-10μM) on insulin secretion, which was enhanced at basal, but inhibited at stimulatory glucose. Redox cycling of menadione and H(2)O(2) formation was dependent on glycolytically-derived NADH, as inhibition of glycolysis and application of non-glycogenic insulin secretagogues did not support redox cycling. In addition, activity of plasma membrane electron transport, a system dependent in part on glycolytically-derived NADH, was also inhibited by menadione. Menadione-dependent redox cycling was sensitive to the NQO1 inhibitor dicoumarol and the flavoprotein inhibitor diphenylene iodonium, suggesting a role for NQO1 and other oxidoreductases in this process. These data may explain the apparent dichotomy between the stimulatory and inhibitory effects of H(2)O(2) and menadione on insulin secretion. Published by Elsevier Inc.

  19. Somatostatin modulates insulin-degrading-enzyme metabolism: implications for the regulation of microglia activity in AD.

    PubMed

    Tundo, Grazia; Ciaccio, Chiara; Sbardella, Diego; Boraso, Mariaserena; Viviani, Barbara; Coletta, Massimiliano; Marini, Stefano

    2012-01-01

    The deposition of β-amyloid (Aβ) into senile plaques and the impairment of somatostatin-mediated neurotransmission are key pathological events in the onset of Alzheimer's disease (AD). Insulin-degrading-enzyme (IDE) is one of the main extracellular protease targeting Aβ, and thus it represents an interesting pharmacological target for AD therapy. We show that the active form of somatostatin-14 regulates IDE activity by affecting its expression and secretion in microglia cells. A similar effect can also be observed when adding octreotide. Following a previous observation where somatostatin directly interacts with IDE, here we demonstrate that somatostatin regulates Aβ catabolism by modulating IDE proteolytic activity in IDE gene-silencing experiments. As a whole, these data indicate the relevant role played by somatostatin and, potentially, by analogue octreotide, in preventing Aβ accumulation by partially restoring IDE activity.

  20. Crosstalk Between the Unfolded Protein Response, MicroRNAs, and Insulin Signaling Pathways: In Search of Biomarkers for the Diagnosis and Treatment of Type 2 Diabetes.

    PubMed

    Berry, Chinar; Lal, Megha; Binukumar, B K

    2018-01-01

    Type 2 diabetes mellitus (T2DM) is a metabolic disorder that is characterized by functional defects in glucose metabolism and insulin secretion. Its complex etiology and multifaceted nature have made it difficult to design effective therapies for early diagnosis and treatment. Several lines of evidence indicate that aberrant activation of the unfolded protein response (UPR) in response to endoplasmic reticulum (ER) stress impairs the β cell's ability to respond to glucose and promotes apoptosis. Elucidating the molecular mechanisms that govern β cell dysfunction and cell death can help investigators design therapies to halt or prevent the development of T2DM. Early diagnosis of T2DM, however, warrants additionally the identification of potential biomarkers. MicroRNAs (miRNAs) are key regulators of transcriptional processes that modulate various features of insulin signaling, such as insulin sensitivity, glucose tolerance, and insulin secretion. A deeper understanding of how changes in patterns of expression of miRNAs correlate with altered glucose metabolism can enable investigators to develop methods for the early diagnosis and treatment of T2DM. The first part of this review examines how altered expression of specific UPR pathway proteins disrupts ER function and causes β cell dysfunction, while the second part discusses the potential role of miRNAs in the diagnostic and treatment of T2DM.

  1. Characterisation of insulin-producing cells differentiated from tonsil derived mesenchymal stem cells.

    PubMed

    Kim, So-Yeon; Kim, Ye-Ryung; Park, Woo-Jae; Kim, Han Su; Jung, Sung-Chul; Woo, So-Youn; Jo, Inho; Ryu, Kyung-Ha; Park, Joo-Won

    2015-01-01

    Tonsil-derived (T-) mesenchymal stem cells (MSCs) display mutilineage differentiation potential and self-renewal capacity and have potential as a banking source. Diabetes mellitus is a prevalent disease in modern society, and the transplantation of pancreatic progenitor cells or various stem cell-derived insulin-secreting cells has been suggested as a novel therapy for diabetes. The potential of T-MSCs to trans-differentiate into pancreatic progenitor cells or insulin-secreting cells has not yet been investigated. We examined the potential of human T-MSCs to trans-differentiate into pancreatic islet cells using two different methods based on β-mercaptoethanol and insulin-transferin-selenium, respectively. First, we compared the efficacy of the two methods for inducing differentiation into insulin-producing cells. We demonstrated that the insulin-transferin-selenium method is more efficient for inducing differentiation into insulin-secreting cells regardless of the source of the MSCs. Second, we compared the differentiation potential of two different MSC types: T-MSCs and adipose-derived MSCs (A-MSCs). T-MSCs had a differentiation capacity similar to that of A-MSCs and were capable of secreting insulin in response to glucose concentration. Islet-like clusters differentiated from T-MSCs had lower synaptotagmin-3, -5, -7, and -8 levels, and consequently lower secreted insulin levels than cells differentiated from A-MSCs. These results imply that T-MSCs can differentiate into functional pancreatic islet-like cells and could provide a novel, alternative cell therapy for diabetes mellitus. Copyright © 2015 International Society of Differentiation. Published by Elsevier B.V. All rights reserved.

  2. Not So Giants: Mice Lacking Both Somatostatin and Cortistatin Have High GH Levels but Show No Changes in Growth Rate or IGF-1 Levels.

    PubMed

    Pedraza-Arévalo, S; Córdoba-Chacón, J; Pozo-Salas, A I; L-López, F; de Lecea, L; Gahete, M D; Castaño, J P; Luque, R M

    2015-06-01

    Somatostatin (SST) and cortistatin (CORT) are two highly related neuropeptides involved in the regulation of various endocrine secretions. In particular, SST and CORT are two primary negative regulators of GH secretion. Consequently, single SST or CORT knockout mice exhibit elevated GH levels; however, this does not lead to increased IGF-1 levels or somatic growth. This apparent lack of correspondence has been suggested to result from compensatory mechanisms between both peptides. To test this hypothesis, in this study we explored, for the first time, the consequences of simultaneously deleting endogenous SST and CORT by generating a double SST/CORT knockout mouse model and exploring its endocrine and metabolic phenotype. Our results demonstrate that simultaneous deletion of SST and CORT induced a drastic elevation of endogenous GH levels, which, surprisingly, did not lead to changes in growth rate or IGF-1 levels, suggesting the existence of additional factors/systems that, in the absence of endogenous SST and CORT, could counteract GH actions. Notably, elevation in circulating GH levels were not accompanied by changes in pituitary GH expression or by alterations in the expression of its main regulators (GHRH and ghrelin) or their receptors (GHRH receptor, GHS receptor, or SST/CORT receptors) at the hypothalamic or pituitary level. However, although double-SST/CORT knockout male mice exhibited normal glucose and insulin levels, they had improved insulin sensitivity compared with the control mice. Therefore, these results suggest the existence of an intricate interplay among the known (SST/CORT), and likely unknown, inhibitory components of the GH/IGF-1 axis to regulate somatic growth and glucose/insulin homeostasis.

  3. Subjective sleep complaints are associated with insulin resistance in individuals without diabetes: the PPP-Botnia Study.

    PubMed

    Pyykkönen, Antti-Jussi; Isomaa, Bo; Pesonen, Anu-Katriina; Eriksson, Johan G; Groop, Leif; Tuomi, Tiinamaija; Räikkönen, Katri

    2012-11-01

    Sleep disorders and subjective sleep complaints have been associated with increased risk of type 2 diabetes. The evidence with respect to insulin resistance (IR) and insulin secretion in individuals without type 2 diabetes has been scarce and elusive. We examined if subjective sleep complaints and their co-occurrence were associated with IR and insulin secretion in adult women and men without diabetes. Women (n = 442) and men (n = 354) 18-75 years of age without type 2 diabetes underwent an oral glucose tolerance test (OGTT), with insulin and glucose measured at fasting and at 30 and 120 min. Complaints related to sleep apnea, insomnia, and daytime sleepiness were self-rated with the Basic Nordic Sleep Questionnaire. In comparison with individuals with no or minor sleep complaints, those with more frequent complaints of sleep apnea, insomnia, and daytime sleepiness were more insulin resistant, as evidenced by higher fasting insulin concentrations and insulin and glucose responses to OGTT, and more frequently had high homeostasis model assessment of IR and low insulin sensitivity index values. The likelihood of being insulin resistant increased significantly and linearly according to the accumulation of co-occurring sleep complaints. These associations changed only a little when adjusted for mediating and confounding factors and for depressive symptoms. Sleep complaints were not associated with indices of deficiency in insulin secretion. Subjective sleep complaints were associated with IR. The likelihood of being insulin resistant increased according to accumulation of co-occurring sleep complaints. Sleep complaints were not associated with deficiency in insulin secretion.

  4. Impact of short-term high-fat feeding on glucose and insulin metabolism in young healthy men.

    PubMed

    Brøns, Charlotte; Jensen, Christine B; Storgaard, Heidi; Hiscock, Natalie J; White, Andrew; Appel, Julie S; Jacobsen, Stine; Nilsson, Emma; Larsen, Claus M; Astrup, Arne; Quistorff, Bjørn; Vaag, Allan

    2009-05-15

    A high-fat, high-calorie diet is associated with obesity and type 2 diabetes. However, the relative contribution of metabolic defects to the development of hyperglycaemia and type 2 diabetes is controversial. Accumulation of excess fat in muscle and adipose tissue in insulin resistance and type 2 diabetes may be linked with defective mitochondrial oxidative phosphorylation. The aim of the current study was to investigate acute effects of short-term fat overfeeding on glucose and insulin metabolism in young men. We studied the effects of 5 days' high-fat (60% energy) overfeeding (+50%) versus a control diet on hepatic and peripheral insulin action by a hyperinsulinaemic euglycaemic clamp, muscle mitochondrial function by (31)P magnetic resonance spectroscopy, and gene expression by qrt-PCR and microarray in 26 young men. Hepatic glucose production and fasting glucose levels increased significantly in response to overfeeding. However, peripheral insulin action, muscle mitochondrial function, and general and specific oxidative phosphorylation gene expression were unaffected by high-fat feeding. Insulin secretion increased appropriately to compensate for hepatic, and not for peripheral, insulin resistance. High-fat feeding increased fasting levels of plasma adiponectin, leptin and gastric inhibitory peptide (GIP). High-fat overfeeding increases fasting glucose levels due to increased hepatic glucose production. The increased insulin secretion may compensate for hepatic insulin resistance possibly mediated by elevated GIP secretion. Increased insulin secretion precedes the development of peripheral insulin resistance, mitochondrial dysfunction and obesity in response to overfeeding, suggesting a role for insulin per se as well GIP, in the development of peripheral insulin resistance and obesity.

  5. Voluntary running exercise prevents β-cell failure in susceptible islets of the Zucker diabetic fatty rat.

    PubMed

    Delghingaro-Augusto, Viviane; Décary, Simon; Peyot, Marie-Line; Latour, Martin G; Lamontagne, Julien; Paradis-Isler, Nicolas; Lacharité-Lemieux, Marianne; Akakpo, Huguette; Birot, Olivier; Nolan, Christopher J; Prentki, Marc; Bergeron, Raynald

    2012-01-15

    Physical activity improves glycemic control in type 2 diabetes (T2D), but its contribution to preserving β-cell function is uncertain. We evaluated the role of physical activity on β-cell secretory function and glycerolipid/fatty acid (GL/FA) cycling in male Zucker diabetic fatty (ZDF) rats. Six-week-old ZDF rats engaged in voluntary running for 6 wk (ZDF-A). Inactive Zucker lean and ZDF (ZDF-I) rats served as controls. ZDF-I rats displayed progressive hyperglycemia with β-cell failure evidenced by falling insulinemia and reduced insulin secretion to oral glucose. Isolated ZDF-I rat islets showed reduced glucose-stimulated insulin secretion expressed per islet and per islet protein. They were also characterized by loss of the glucose regulation of fatty acid oxidation and GL/FA cycling, reduced mRNA expression of key β-cell genes, and severe reduction of insulin stores. Physical activity prevented diabetes in ZDF rats through sustaining β-cell compensation to insulin resistance shown in vivo and in vitro. Surprisingly, ZDF-A islets had persistent defects in fatty acid oxidation, GL/FA cycling, and β-cell gene expression. ZDF-A islets, however, had preserved islet insulin mRNA and insulin stores compared with ZDF-I rats. Physical activity did not prevent hyperphagia, dyslipidemia, or obesity in ZDF rats. In conclusion, islets of ZDF rats have a susceptibility to failure that is possibly due to altered β-cell fatty acid metabolism. Depletion of pancreatic islet insulin stores is a major contributor to islet failure in this T2D model, preventable by physical activity.

  6. Comparison of the physiological relevance of systemic vs. portal insulin delivery to evaluate whole body glucose flux during an insulin clamp

    PubMed Central

    Farmer, Tiffany D.; Jenkins, Erin C.; O'Brien, Tracy P.; McCoy, Gregory A.; Havlik, Allison E.; Nass, Erik R.; Nicholson, Wendell E.; Printz, Richard L.

    2014-01-01

    To understand the underlying pathology of metabolic diseases, such as diabetes, an accurate determination of whole body glucose flux needs to be made by a method that maintains key physiological features. One such feature is a positive differential in insulin concentration between the portal venous and systemic arterial circulation (P/S-IG). P/S-IG during the determination of the relative contribution of liver and extra-liver tissues/organs to whole body glucose flux during an insulin clamp with either systemic (SID) or portal (PID) insulin delivery was examined with insulin infusion rates of 1, 2, and 5 mU·kg−1·min−1 under either euglycemic or hyperglycemic conditions in 6-h-fasted conscious normal rats. A P/S-IG was initially determined with endogenous insulin secretion to exist with a value of 2.07. During an insulin clamp, while inhibiting endogenous insulin secretion by somatostatin, P/S-IG remained at 2.2 with PID, whereas, P/S-IG disappeared completely with SID, which exhibited higher arterial and lower portal insulin levels compared with PID. Consequently, glucose disappearance rates and muscle glycogen synthetic rates were higher, but suppression of endogenous glucose production and liver glycogen synthetic rates were lower with SID compared with PID. When the insulin clamp was performed with SID at 2 and 5 mU·kg−1·min−1 without managing endogenous insulin secretion under euglycemic but not hyperglycemic conditions, endogenous insulin secretion was completely suppressed with SID, and the P/S-IG disappeared. Thus, compared with PID, an insulin clamp with SID underestimates the contribution of liver in response to insulin to whole body glucose flux. PMID:25516552

  7. Regulation of lipoprotein lipase in primary cultures of isolated human adipocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kern, P.A.; Marshall, S.; Eckel, R.H.

    1985-01-01

    To study the regulation of adipose tissue lipoprotein lipase (LPL) in human adipocytes, omental adipose tissue was obtained from healthy subjects and digested in collagenase. The isolated adipocytes thus obtained were suspended in Medium 199 and cultured at 37 degrees C. Cell viability was demonstrated in adipocytes cultured for up to 72 h by constancy of cell number, cell size, trypan-blue exclusion, and specific /sup 125/I-insulin binding. In addition, chloroquine induced an increase in cell-associated /sup 125/I-insulin at 24, 48, and 72 h after preparation. Thus, isolated adipocytes retained their ability to bind, internalize, and degrade insulin. LPL was measuredmore » as activity secreted into the culture medium (CM), released from cells by heparin (HR), and extracted from cell digests. A broad range of heparin concentrations produced a prompt release of LPL from a rapidly replenishable pool of cellular activity. When cells were cultured in medium containing 10% fetal bovine serum, there was a marked stimulation of CM and HR. The secretory response to serum (CM) correlated strongly with HR 24 h after preparation. In addition, HR was found to correlate logarithmically and inversely with body mass index. Insulin, at 400 ng/ml only, increased HR by 36 +/- 10%, an effect simulated by lower concentrations of insulin-like growth factor-1 (IGF1). Thus, LPL is produced and regulated in isolated human adipocytes. The degree of adiposity and serum are important regulators of HR activity, whereas insulin is stimulatory only at a pharmacologic concentration. This effect of insulin may be mediated through the IGF1 receptor. Isolated human adipocytes represent a novel and useful system for the study of LPL and lipid metabolism as well as for other aspects of adipocyte biology.« less

  8. Liver X receptor agonists augment human islet function through activation of anaplerotic pathways and glycerolipid/free fatty acid cycling.

    PubMed

    Ogihara, Takeshi; Chuang, Jen-Chieh; Vestermark, George L; Garmey, James C; Ketchum, Robert J; Huang, Xiaolun; Brayman, Kenneth L; Thorner, Michael O; Repa, Joyce J; Mirmira, Raghavendra G; Evans-Molina, Carmella

    2010-02-19

    Recent studies in rodent models suggest that liver X receptors (LXRs) may play an important role in the maintenance of glucose homeostasis and islet function. To date, however, no studies have comprehensively examined the role of LXRs in human islet biology. Human islets were isolated from non-diabetic donors and incubated in the presence or absence of two synthetic LXR agonists, TO-901317 and GW3965, under conditions of low and high glucose. LXR agonist treatment enhanced both basal and stimulated insulin secretion, which corresponded to an increase in the expression of genes involved in anaplerosis and reverse cholesterol transport. Furthermore, enzyme activity of pyruvate carboxylase, a key regulator of pyruvate cycling and anaplerotic flux, was also increased. Whereas LXR agonist treatment up-regulated known downstream targets involved in lipogenesis, we observed no increase in the accumulation of intra-islet triglyceride at the dose of agonist used in our study. Moreover, LXR activation increased expression of the genes encoding hormone-sensitive lipase and adipose triglyceride lipase, two enzymes involved in lipolysis and glycerolipid/free fatty acid cycling. Chronically, insulin gene expression was increased after treatment with TO-901317, and this was accompanied by increased Pdx-1 nuclear protein levels and enhanced Pdx-1 binding to the insulin promoter. In conclusion, our data suggest that LXR agonists have a direct effect on the islet to augment insulin secretion and expression, actions that should be considered either as therapeutic or unintended side effects, as these agents are developed for clinical use.

  9. Nuclear factor κB–inducing kinase activation as a mechanism of pancreatic β cell failure in obesity

    PubMed Central

    Malle, Elisabeth K.; Zammit, Nathan W.; Walters, Stacey N.; Koay, Yen Chin; Wu, Jianmin; Tan, Bernice M.; Villanueva, Jeanette E.; Brink, Robert; Loudovaris, Tom; Cantley, James; McAlpine, Shelli R.; Hesselson, Daniel

    2015-01-01

    The nuclear factor κB (NF-κB) pathway is a master regulator of inflammatory processes and is implicated in insulin resistance and pancreatic β cell dysfunction in the metabolic syndrome. Whereas canonical NF-κB signaling is well studied, there is little information on the divergent noncanonical NF-κB pathway in the context of pancreatic islet dysfunction. Here, we demonstrate that pharmacological activation of the noncanonical NF-κB–inducing kinase (NIK) disrupts glucose homeostasis in zebrafish in vivo. We identify NIK as a critical negative regulator of β cell function, as pharmacological NIK activation results in impaired glucose-stimulated insulin secretion in mouse and human islets. NIK levels are elevated in pancreatic islets isolated from diet-induced obese (DIO) mice, which exhibit increased processing of noncanonical NF-κB components p100 to p52, and accumulation of RelB. TNF and receptor activator of NF-κB ligand (RANKL), two ligands associated with diabetes, induce NIK in islets. Mice with constitutive β cell–intrinsic NIK activation present impaired insulin secretion with DIO. NIK activation triggers the noncanonical NF-κB transcriptional network to induce genes identified in human type 2 diabetes genome-wide association studies linked to β cell failure. These studies reveal that NIK contributes a central mechanism for β cell failure in diet-induced obesity. PMID:26122662

  10. Glucocorticoid Signaling Enhances Expression of Glucose-Sensing Molecules in Immature Pancreatic Beta-Like Cells Derived from Murine Embryonic Stem Cells In Vitro.

    PubMed

    Ghazalli, Nadiah; Wu, Xiaoxing; Walker, Stephanie; Trieu, Nancy; Hsin, Li-Yu; Choe, Justin; Chen, Chialin; Hsu, Jasper; LeBon, Jeanne; Kozlowski, Mark T; Rawson, Jeffrey; Tirrell, David A; Yip, M L Richard; Ku, Hsun Teresa

    2018-06-06

    Pluripotent stem cells may serve as an alternative source of beta-like cells for replacement therapy of type 1 diabetes; however, the beta-like cells generated in many differentiation protocols are immature. The maturation of endogenous beta cells involves an increase in insulin expression starting in late gestation and a gradual acquisition of the abilities to sense glucose and secrete insulin by week 2 after birth in mice; however, what molecules regulate these maturation processes are incompletely known. In this study, we aim to identify small molecules that affect immature beta cells. A cell-based assay, using pancreatic beta-like cells derived from murine embryonic stem (ES) cells harboring a transgene containing an insulin 1-promoter driven enhanced green fluorescent protein reporter, was used to screen a compound library (NIH Clinical Collection-003). Cortisone, a glucocorticoid, was among five positive hit compounds. Quantitative reverse transcription-polymerase chain reaction analysis revealed that glucocorticoids enhance the gene expression of not only insulin 1 but also glucose transporter-2 (Glut2; Slc2a2) and glucokinase (Gck), two molecules important for glucose sensing. Mifepristone, a pharmacological inhibitor of glucocorticoid receptor (GR) signaling, reduced the effects of glucocorticoids on Glut2 and Gck expression. The effects of glucocorticoids on ES-derived cells were further validated in immature primary islets. Isolated islets from 1-week-old mice had an increased Glut2 and Gck expression in response to a 4-day treatment of exogenous hydrocortisone in vitro. Gene deletion of GR in beta cells using rat insulin 2 promoter-driven Cre crossed with GR flox/flox mice resulted in a reduced gene expression of Glut2, but not Gck, and an abrogation of insulin secretion when islets were incubated in 0.5 mM d-glucose and stimulated by 17 mM d-glucose in vitro. These results demonstrate that glucocorticoids positively regulate glucose sensors in immature murine beta-like cells.

  11. Quercetin induces insulin secretion by direct activation of L-type calcium channels in pancreatic beta cells

    PubMed Central

    Bardy, G; Virsolvy, A; Quignard, J F; Ravier, M A; Bertrand, G; Dalle, S; Cros, G; Magous, R; Richard, S; Oiry, C

    2013-01-01

    Background and Purpose Quercetin is a natural polyphenolic flavonoid that displays anti-diabetic properties in vivo. Its mechanism of action on insulin-secreting beta cells is poorly documented. In this work, we have analysed the effects of quercetin both on insulin secretion and on the intracellular calcium concentration ([Ca2+]i) in beta cells, in the absence of any co-stimulating factor. Experimental Approach Experiments were performed on both INS-1 cell line and rat isolated pancreatic islets. Insulin release was quantified by the homogeneous time-resolved fluorescence method. Variations in [Ca2+]i were measured using the ratiometric fluorescent Ca2+ indicator Fura-2. Ca2+ channel currents were recorded with the whole-cell patch-clamp technique. Key Results Quercetin concentration-dependently increased insulin secretion and elevated [Ca2+]i. These effects were not modified by the SERCA inhibitor thapsigargin (1 μmol·L−1), but were nearly abolished by the L-type Ca2+ channel antagonist nifedipine (1 μmol·L−1). Similar to the L-type Ca2+ channel agonist Bay K 8644, quercetin enhanced the L-type Ca2+ current by shifting its voltage-dependent activation towards negative potentials, leading to the increase in [Ca2+]i and insulin secretion. The effects of quercetin were not inhibited in the presence of a maximally active concentration of Bay K 8644 (1 μmol·L−1), with the two drugs having cumulative effects on [Ca2+]i. Conclusions and Implications Taken together, our results show that quercetin stimulates insulin secretion by increasing Ca2+ influx through an interaction with L-type Ca2+ channels at a site different from that of Bay K 8644. These data contribute to a better understanding of quercetin's mechanism of action on insulin secretion. PMID:23530660

  12. Enhancement of glucose uptake in skeletal muscle L6 cells and insulin secretion in pancreatic hamster-insulinoma-transfected cells by application of non-thermal plasma jet

    NASA Astrophysics Data System (ADS)

    Kumar, Naresh; Kaushik, Nagendra K.; Park, Gyungsoon; Choi, Eun H.; Uhm, Han S.

    2013-11-01

    Type-II diabetes Mellitus is characterized by defects in insulin action on peripheral tissues, such as skeletal muscle, adipose tissue, and liver and pancreatic beta cells. Since the skeletal muscle accounts for approximately 75% of insulin-stimulated glucose-uptake in our body, impaired insulin secretion from defected beta cell plays a major role in the afflicted glucose homoeostasis. It was shown that the intracellular reactive oxygen species and nitric oxide level was increased by non-thermal-plasma treatment in ambient air. These increased intracellular reactive species may enhance glucose uptake and insulin secretion through the activation of intracellular calcium (Ca+) and cAMP production.

  13. Radiofrequency radiation emitted from Wi-Fi (2.4 GHz) causes impaired insulin secretion and increased oxidative stress in rat pancreatic islets.

    PubMed

    Masoumi, Ali; Karbalaei, Narges; Mortazavi, S M J; Shabani, Mohammad

    2018-06-18

    There is a great concern regarding the possible adverse effects of electromagnetic radiation (EMR). This study investigated the effects of EMR induced by Wi-Fi (2.45GHz) on insulin secretion and antioxidant redox systems in the rat pancreas. Adult male Sprague-Dawley rats in the weight range of 230 to 260 g were divided into control, sham, Wi-Fi exposed groups. After long term exposure (4 h/day for 45 days) to Wi-Fi electromagnetic radiation, plasma levels of glucose and insulin during intraperitoneal glucose tolerance test were measured. Islet insulin secretion and content, lipid peroxidation and antioxidant status in pancreas of rats were determined. Our data showed that the weight gain in the WI-FI exposed group was significantly lower than the control group (p<0.05). Wi-Fi (2.45 GHz) exposed group showed hyperglycemia. Plasma insulin level and glucose-stimulated insulin secretion from pancreatic islet were significantly reduced in the Wi-Fi exposed group. EMR emitted from Wi-Fi caused a significant increase in lipid peroxidation and a significant decrease in GSH level, SOD and GPx activities of the pancreas. these data showed that EMR of Wi-Fi leads to hyperglycemia, increased oxidative stress and impaired insulin secretion in the rat pancreatic islets.

  14. Review of methods for measuring β-cell function: Design considerations from the Restoring Insulin Secretion (RISE) Consortium.

    PubMed

    Hannon, Tamara S; Kahn, Steven E; Utzschneider, Kristina M; Buchanan, Thomas A; Nadeau, Kristen J; Zeitler, Philip S; Ehrmann, David A; Arslanian, Silva A; Caprio, Sonia; Edelstein, Sharon L; Savage, Peter J; Mather, Kieren J

    2018-01-01

    The Restoring Insulin Secretion (RISE) study was initiated to evaluate interventions to slow or reverse the progression of β-cell failure in type 2 diabetes (T2D). To design the RISE study, we undertook an evaluation of methods for measurement of β-cell function and changes in β-cell function in response to interventions. In the present paper, we review approaches for measurement of β-cell function, focusing on methodologic and feasibility considerations. Methodologic considerations included: (1) the utility of each technique for evaluating key aspects of β-cell function (first- and second-phase insulin secretion, maximum insulin secretion, glucose sensitivity, incretin effects) and (2) tactics for incorporating a measurement of insulin sensitivity in order to adjust insulin secretion measures for insulin sensitivity appropriately. Of particular concern were the capacity to measure β-cell function accurately in those with poor function, as is seen in established T2D, and the capacity of each method for demonstrating treatment-induced changes in β-cell function. Feasibility considerations included: staff burden, including time and required methodological expertise; participant burden, including time and number of study visits; and ease of standardizing methods across a multicentre consortium. After this evaluation, we selected a 2-day measurement procedure, combining a 3-hour 75-g oral glucose tolerance test and a 2-stage hyperglycaemic clamp procedure, augmented with arginine. © 2017 John Wiley & Sons Ltd.

  15. Measuring mitochondrial uncoupling protein-2 level and activity in insulinoma cells.

    PubMed

    Barlow, Jonathan; Hirschberg, Verena; Brand, Martin D; Affourtit, Charles

    2013-01-01

    Mitochondrial uncoupling protein-2 (UCP2) regulates glucose-stimulated insulin secretion (GSIS) by pancreatic beta cells-the physiological role of the beta cell UCP2 remains a subject of debate. Experimental studies informing this debate benefit from reliable measurements of UCP2 protein level and activity. In this chapter, we describe how UCP2 protein can be detected in INS-1 insulinoma cells and how it can be knocked down by RNA interference. We demonstrate briefly that UCP2 knockdown lowers glucose-induced rises in mitochondrial respiratory activity, coupling efficiency of oxidative phosphorylation, levels of mitochondrial reactive oxygen species, and insulin secretion. We provide protocols for the detection of the respective UCP2 phenotypes, which are indirect, but invaluable measures of UCP2 activity. We also introduce a convenient method to normalize cellular respiration to cell density allowing measurement of UCP2 effects on specific mitochondrial oxygen consumption. Copyright © 2013 Elsevier Inc. All rights reserved.

  16. Glucagon-Like Peptide 1 Analogs and their Effects on Pancreatic Islets.

    PubMed

    Tudurí, Eva; López, Miguel; Diéguez, Carlos; Nadal, Angel; Nogueiras, Rubén

    2016-05-01

    Glucagon-like peptide 1 (GLP-1) exerts many actions that improve glycemic control. GLP-1 stimulates glucose-stimulated insulin secretion and protects β cells, while its extrapancreatic effects include cardioprotection, reduction of hepatic glucose production, and regulation of satiety. Although an appealing antidiabetic drug candidate, the rapid degradation of GLP-1 by dipeptidyl peptidase 4 (DPP-4) means that its therapeutic use is unfeasible, and this prompted the development of two main GLP-1 therapies: long-acting GLP-1 analogs and DPP-4 inhibitors. In this review, we focus on the pancreatic effects exerted by current GLP-1 derivatives used to treat diabetes. Based on the results from in vitro and in vivo studies in humans and animal models, we describe the specific actions of GLP-1 analogs on the synthesis, processing, and secretion of insulin, islet morphology, and β cell proliferation and apoptosis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. MiRNAs in β-Cell Development, Identity, and Disease

    PubMed Central

    Martinez-Sanchez, Aida; Rutter, Guy A.; Latreille, Mathieu

    2017-01-01

    Pancreatic β-cells regulate glucose metabolism by secreting insulin, which in turn stimulates the utilization or storage of the sugar by peripheral tissues. Insulin insufficiency and a prolonged period of insulin resistance are usually the core components of type 2 diabetes (T2D). Although, decreased insulin levels in T2D have long been attributed to a decrease in β-cell function and/or mass, this model has recently been refined with the recognition that a loss of β-cell “identity” and dedifferentiation also contribute to the decline in insulin production. MicroRNAs (miRNAs) are key regulatory molecules that display tissue-specific expression patterns and maintain the differentiated state of somatic cells. During the past few years, great strides have been made in understanding how miRNA circuits impact β-cell identity. Here, we review current knowledge on the role of miRNAs in regulating the acquisition of the β-cell fate during development and in maintaining mature β-cell identity and function during stress situations such as obesity, pregnancy, aging, or diabetes. We also discuss how miRNA function could be harnessed to improve our ability to generate β-cells for replacement therapy for T2D. PMID:28123396

  18. Enhanced insulin secretion responsiveness and islet adrenergic desensitization after chronic norepinephrine suppression is discontinued in fetal sheep

    PubMed Central

    Chen, Xiaochuan; Green, Alice S.; Macko, Antoni R.; Yates, Dustin T.; Kelly, Amy C.

    2013-01-01

    Intrauterine growth-restricted (IUGR) fetuses experience prolonged hypoxemia, hypoglycemia, and elevated norepinephrine (NE) concentrations, resulting in hypoinsulinemia and β-cell dysfunction. Previously, we showed that acute adrenergic blockade revealed enhanced insulin secretion responsiveness in the IUGR fetus. To determine whether chronic exposure to NE alone enhances β-cell responsiveness afterward, we continuously infused NE into fetal sheep for 7 days and, after terminating the infusion, evaluated glucose-stimulated insulin secretion (GSIS) and glucose-potentiated arginine-induced insulin secretion (GPAIS). During treatment, NE-infused fetuses had greater (P < 0.05) plasma NE concentrations and exhibited hyperglycemia (P < 0.01) and hypoinsulinemia (P < 0.01) compared with controls. GSIS during the NE infusion was also reduced (P < 0.05) compared with pretreatment values. GSIS and GPAIS were approximately fourfold greater (P < 0.01) in NE fetuses 3 h after the 7 days that NE infusion was discontinued compared with age-matched controls or pretreatment GSIS and GPAIS values of NE fetuses. In isolated pancreatic islets from NE fetuses, mRNA concentrations of adrenergic receptor isoforms (α1D, α2A, α2C, and β1), G protein subunit-αi-2, and uncoupling protein 2 were lower (P < 0.05) compared with controls, but β-cell regulatory genes were not different. Our findings indicate that chronic exposure to elevated NE persistently suppresses insulin secretion. After removal, NE fetuses demonstrated a compensatory enhancement in insulin secretion that was associated with adrenergic desensitization and greater stimulus-secretion coupling in pancreatic islets. PMID:24253046

  19. Nervous glucose sensing regulates postnatal β cell proliferation and glucose homeostasis

    PubMed Central

    Tarussio, David; Metref, Salima; Seyer, Pascal; Mounien, Lourdes; Vallois, David; Magnan, Christophe; Foretz, Marc; Thorens, Bernard

    2013-01-01

    How glucose sensing by the nervous system impacts the regulation of β cell mass and function during postnatal development and throughout adulthood is incompletely understood. Here, we studied mice with inactivation of glucose transporter 2 (Glut2) in the nervous system (NG2KO mice). These mice displayed normal energy homeostasis but developed late-onset glucose intolerance due to reduced insulin secretion, which was precipitated by high-fat diet feeding. The β cell mass of adult NG2KO mice was reduced compared with that of WT mice due to lower β cell proliferation rates in NG2KO mice during the early postnatal period. The difference in proliferation between NG2KO and control islets was abolished by ganglionic blockade or by weaning the mice on a carbohydrate-free diet. In adult NG2KO mice, first-phase insulin secretion was lost, and these glucose-intolerant mice developed impaired glucagon secretion when fed a high-fat diet. Electrophysiological recordings showed reduced parasympathetic nerve activity in the basal state and no stimulation by glucose. Furthermore, sympathetic activity was also insensitive to glucose. Collectively, our data show that GLUT2-dependent control of parasympathetic activity defines a nervous system/endocrine pancreas axis that is critical for β cell mass establishment in the postnatal period and for long-term maintenance of β cell function. PMID:24334455

  20. Insulin Dynamics in Young Women with Polycystic Ovary Syndrome and Normal Glucose Tolerance across Categories of Body Mass Index

    PubMed Central

    Manco, Melania; Castagneto-Gissey, Lidia; Arrighi, Eugenio; Carnicelli, Annamaria; Brufani, Claudia; Luciano, Rosa; Mingrone, Geltrude

    2014-01-01

    Background Evidence favours insulin resistance and compensatory hyperinsulinemia as the predominant, perhaps primary, defects in polycystic ovary syndrome (PCOS). The aim of the present study was to evaluate insulin metabolism in young women with PCOS but normal glucose tolerance as compared with age, body mass index and insulin resistance-matched controls to answer the question whether women with PCOS hypersecrete insulin in comparison to appropriately insulin resistance-matched controls. Research Design and Methods Sixty-nine cases were divided according to their body mass index (BMI) in normal-weight (N = 29), overweight (N = 24) and obese patients (N = 16). Controls were 479 healthy women (age 16–49 y). Whole body Insulin Sensitivity (WBISI), fasting, and total insulin secretion were estimated following an oral glucose tolerance test (C-peptide deconvolution method). Results Across classes of BMI, PCOS patients had greater insulin resistance than matched controls (p<0.0001 for all the comparisons), but they showed higher fasting and total insulin secretion than their age, BMI and insulin resistance-matched peers (p<0.0001 for all the comparisons). Conclusion Women with PCOS show higher insulin resistance but also larger insulin secretion to maintain normal glucose homeostasis than age-, BMI- and insulin resistance-matched controls. PMID:24705280

  1. Disruption of a Novel Krüppel-like Transcription Factor p300-regulated Pathway for Insulin Biosynthesis Revealed by Studies of the c.-331 INS Mutation Found in Neonatal Diabetes Mellitus*

    PubMed Central

    Bonnefond, Amélie; Lomberk, Gwen; Buttar, Navtej; Busiah, Kanetee; Vaillant, Emmanuel; Lobbens, Stéphane; Yengo, Loïc; Dechaume, Aurélie; Mignot, Brigitte; Simon, Albane; Scharfmann, Raphaël; Neve, Bernadette; Tanyolaç, Sinan; Hodoglugil, Ugur; Pattou, François; Cavé, Hélène; Iovanna, Juan; Stein, Roland; Polak, Michel; Vaxillaire, Martine; Froguel, Philippe; Urrutia, Raul

    2011-01-01

    Krüppel-like transcription factors (KLFs) have elicited significant attention because of their regulation of essential biochemical pathways and, more recently, because of their fundamental role in the mechanisms of human diseases. Neonatal diabetes mellitus is a monogenic disorder with primary alterations in insulin secretion. We here describe a key biochemical mechanism that underlies neonatal diabetes mellitus insulin biosynthesis impairment, namely a homozygous mutation within the insulin gene (INS) promoter, c.-331C>G, which affects a novel KLF-binding site. The combination of careful expression profiling, electromobility shift assays, reporter experiments, and chromatin immunoprecipitation demonstrates that, among 16 different KLF proteins tested, KLF11 is the most reliable activator of this site. Congruently, the c.-331C>G INS mutation fails to bind KLF11, thus inhibiting activation by this transcription factor. Klf11−/− mice recapitulate the disruption in insulin production and blood levels observed in patients. Thus, these data demonstrate an important role for KLF11 in the regulation of INS transcription via the novel c.-331 KLF site. Lastly, our screening data raised the possibility that other members of the KLF family may also regulate this promoter under distinct, yet unidentified, cellular contexts. Collectively, this study underscores a key role for KLF proteins in biochemical mechanisms of human diseases, in particular, early infancy onset diabetes mellitus. PMID:21592955

  2. Protein malnutrition after weaning disrupts peripheral clock and daily insulin secretion in mice.

    PubMed

    Borck, Patricia Cristine; Batista, Thiago Martins; Vettorazzi, Jean Franciesco; Camargo, Rafael Ludemann; Boschero, Antonio Carlos; Vieira, Elaine; Carneiro, Everardo Magalhães

    2017-12-01

    Changes in nutritional state may alter circadian rhythms through alterations in expression of clock genes. Protein deficiency has a profound effect on body metabolism, but the effect of this nutrient restriction after weaning on biological clock has not been explored. Thus, this study aims to investigate whether the protein restriction affects the daily oscillation in the behavior and metabolic rhythms, as well as expression of clock genes in peripheral tissues. Male C57BL/6 J mice, after weaning, were fed a normal-protein (NP) diet or a low-protein (LP) diet for 8 weeks. Mice fed an LP diet did not show difference in locomotor activity and energy expenditure, but the food intake was increased, with parallel increased expression of the orexigenic neuropeptide Npy and disruption of the anorexigenic Pomc oscillatory pattern in the hypothalamus. LP mice showed disruption in the daily rhythmic patterns of plasma glucose, triglycerides and insulin. Also, the rhythmic expression of clock genes in peripheral tissues and pancreatic islets was altered in LP mice. In pancreatic islets, the disruption of clock genes was followed by impairment of daily glucose-stimulated insulin secretion and the expression of genes involved in exocytosis. Pharmacological activation of REV-ERBα could not restore the insulin secretion in LP mice. The present study demonstrates that protein restriction, leading to development of malnutrition, alters the peripheral clock and metabolic outputs, suggesting that this nutrient provides important entraining cues to regulate the daily fluctuation of biological clock. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Beyond the morphology of the glucose curve following an oral glucose tolerance test in obese youth.

    PubMed

    Nolfe, Giuseppe; Spreghini, Maria Rita; Sforza, Rita Wietrzycowska; Morino, Giuseppe; Manco, Melania

    2012-01-01

    To describe the morphology of glucose curve during the oral glucose tolerance test (OGTT) and any association with glucose tolerance, insulin action and secretion in obese youth. Cross-sectional. OGTT data of 553 patients were analysed. Subjects were divided in groups based on the morphology (i.e. monophasic, biphasic, triphasic and upward monotonous) of glucose curve. Insulin action was estimated by the homeostasis model assessment of insulin resistance, the insulin sensitivity, the muscle insulin sensitivity and the hepatic insulin resistance indexes (HIRI), and the oral glucose insulin sensitivity (OGIS). Insulin secretion was estimated by the insulinogenic index (IGI). Disposition index, including the insulin secretion-sensitivity index-2, and areas under glucose (AUC(G)) and insulin (AUC(I)) curves were computed. In patients with normal glucose tolerance (n=522), prevalent morphology of the glucose curve was monophasic (n=285, 54%). Monophasic morphology was associated with the highest concentration of 1 h plasma glucose (P<0.0001) and AUC(G) (P<0.0001); biphasic morphology with better insulin sensitivity as estimated by OGIS (P<0.03) and lower AUC(I) (P<0.0001); triphasic morphology with the highest values of HIRI (P<0.02) and IGI (P<0.007). By combining morphologies of glucose and insulin curves or time of the glucose peak, a deeper characterisation of different phenotypes of glucose metabolism emerged. Morphologies of the glucose curve seem reflecting different metabolic phenotypes of insulin action and secretion, particularly when combined with morphologies of insulin curve or time of glucose peak. Such findings may deserve validation in cohort study, in which glucose metabolism would be estimated by using gold standard techniques.

  4. Saponins from the traditional medicinal plant Momordica charantia stimulate insulin secretion in vitro

    PubMed Central

    Keller, Amy C.; Ma, Jun; Kavalier, Adam; He, Kan; Brillantes, Anne-Marie B.; Kennelly, Edward J.

    2012-01-01

    The antidiabetic activity of Momordica charantia (L.), Cucurbitaceae, a widely-used treatment for diabetes in a number of traditional medicine systems, was investigated in vitro. Antidiabetic activity has been reported for certain saponins isolated from M. charantia. In this study insulin secretion was measured in MIN6 β-cells incubated with an ethanol extract, saponin-rich fraction, and five purified saponins and cucurbitane triterpenoids from M. charantia, 3β,7β,25-trihydroxycucurbita-5,23(E)-dien-19-al (1), momordicine I (2), momordicine II (3), 3-hydroxycucurbita-5,24-dien-19-al-7,23-di-O-β-glucopyranoside (4), and kuguaglycoside G (5). Treatments were compared to incubation with high glucose (27 mM) and the insulin secretagogue, glipizide (50 μM). At 125 μg/ml, an LC-ToF-MS characterized saponin-rich fraction stimulated insulin secretion significantly more than the DMSO vehicle, p=0.02. At concentrations 10 and 25 μg/ml, compounds 3 and 5 also significantly stimulated insulin secretion as compared to the vehicle, p≤0.007, and p= 0.002, respectively. This is the first report of a saponin-rich fraction, and isolated compounds from M. charantia, stimulating insulin secretion in an in vitro, static incubation assay. PMID:22133295

  5. Role of the M3 muscarinic acetylcholine receptor in beta-cell function and glucose homeostasis.

    PubMed

    Gautam, D; Han, S-J; Duttaroy, A; Mears, D; Hamdan, F F; Li, J H; Cui, Y; Jeon, J; Wess, J

    2007-11-01

    The release of insufficient amounts of insulin in the presence of elevated blood glucose levels is one of the key features of type 2 diabetes. Various lines of evidence indicate that acetylcholine (ACh), the major neurotransmitter of the parasympathetic nervous system, can enhance glucose-stimulated insulin secretion from pancreatic beta-cells. Studies with isolated islets prepared from whole body M(3) muscarinic ACh receptor knockout mice showed that cholinergic amplification of glucose-dependent insulin secretion is exclusively mediated by the M(3) muscarinic receptor subtype. To investigate the physiological relevance of this muscarinic pathway, we used Cre/loxP technology to generate mutant mice that lack M(3) receptors only in pancreatic beta-cells. These mutant mice displayed impaired glucose tolerance and significantly reduced insulin secretion. In contrast, transgenic mice overexpressing M(3) receptors in pancreatic beta-cells showed a pronounced increase in glucose tolerance and insulin secretion and were resistant to diet-induced glucose intolerance and hyperglycaemia. These findings indicate that beta-cell M(3) muscarinic receptors are essential for maintaining proper insulin secretion and glucose homeostasis. Moreover, our data suggest that enhancing signalling through beta-cell M(3) muscarinic receptors may represent a new avenue in the treatment of glucose intolerance and type 2 diabetes.

  6. Effect of Ezetimibe on Insulin Secretion in db/db Diabetic Mice

    PubMed Central

    Zhong, Yong; Wang, Jun; Gu, Ping; Shao, Jiaqing; Lu, Bin; Jiang, Shisen

    2012-01-01

    Objective. To investigate the effect of ezetimibe on the insulin secretion in db/db mice. Methods. The db/db diabetic mice aged 8 weeks were randomly assigned into 2 groups and intragastrically treated with ezetimibe or placebo for 6 weeks. The age matched db/m mice served as controls. At the end of experiment, glucose tolerance test was performed and then the pancreas was collected for immunohistochemistry. In addition, in vitro perfusion of pancreatic islets was employed for the detection of insulin secretion in the first phase. Results. In the ezetimibe group, the fasting blood glucose was markedly reduced, and the total cholesterol (TC) and low-density lipoprotein cholesterol (LDL-C) were significantly lowered when compared with those in the control group (P < 0.05). At 120 min after glucose tolerance test, the area under curve in the ezetimibe group was significantly smaller than that in the control group (P < 0.05), but the AUCINS0−30 was markedly higher. In vitro perfusion of pancreatic islets revealed the first phase insulin secretion was improved. In addition, the insulin expression in the pancreas in the ezetimibe group was significantly increased as compared to the control group. Conclusion. Ezetimibe can improve glucose tolerance, recover the first phase insulin secretion, and protect the function of β cells in mice. PMID:23118741

  7. A critical role for beta cell M3 muscarinic acetylcholine receptors in regulating insulin release and blood glucose homeostasis in vivo.

    PubMed

    Gautam, Dinesh; Han, Sung-Jun; Hamdan, Fadi F; Jeon, Jongrye; Li, Bo; Li, Jian Hua; Cui, Yinghong; Mears, David; Lu, Huiyan; Deng, Chuxia; Heard, Thomas; Wess, Jürgen

    2006-06-01

    One of the hallmarks of type 2 diabetes is that pancreatic beta cells fail to release sufficient amounts of insulin in the presence of elevated blood glucose levels. Insulin secretion is modulated by many hormones and neurotransmitters including acetylcholine, the major neurotransmitter of the peripheral parasympathetic nervous system. The physiological role of muscarinic acetylcholine receptors expressed by pancreatic beta cells remains unclear at present. Here, we demonstrate that mutant mice selectively lacking the M3 muscarinic acetylcholine receptor subtype in pancreatic beta cells display impaired glucose tolerance and greatly reduced insulin release. In contrast, transgenic mice selectively overexpressing M3 receptors in pancreatic beta cells show a profound increase in glucose tolerance and insulin release. Moreover, these mutant mice are resistant to diet-induced glucose intolerance and hyperglycemia. These findings indicate that beta cell M3 muscarinic receptors play a key role in maintaining proper insulin release and glucose homeostasis.

  8. Switching from high-fat to low-fat diet normalizes glucose metabolism and improves glucose-stimulated insulin secretion and insulin sensitivity but not body weight in C57BL/6J mice.

    PubMed

    Agardh, Carl-David; Ahrén, Bo

    2012-03-01

    Environmental factors such as a high-fat diet contribute to type 2 diabetes and obesity. This study examined glycemia, insulin sensitivity, and β-cell function after switching from a high-fat diet to a low-fat diet in mice. C57BL/6J mice were fed a high-fat diet or low-fat diet for 18 months, after which mice on the high-fat diet either maintained this diet or switched to a low-fat diet for 4 weeks. Body weight and glucose and insulin responses to intraperitoneal glucose were determined. Insulin secretion (insulinogenic index: the 10-minute insulin response divided by the 10-minute glucose level) and insulin sensitivity (1 divided by basal insulin) were determined. After 18 months on a high-fat diet, mice had glucose intolerance, marked hyperinsulinemia, and increased body weight compared to mice on a low-fat diet (P < 0.001). Switching from a high-fat diet to low-fat diet normalized glucose tolerance, reduced but not normalized body weight (P < 0.001), increased insulin secretion (248 ± 39 vs 141 ± 46 pmol/mmol; P = 0.028) and improved but not normalized insulin sensitivity (3.2 ± 0.1 vs 1.0 ± 0.1 [pmol/L]; P = 0.012). Switching from a high-fat diet to low-fat diet normalizes glucose tolerance and improves but not normalizes insulin secretion and insulin sensitivity. These effects are more pronounced than the reduced body weight.

  9. Microarray profiling of gene expression in human adipocytes in response to anthocyanins.

    PubMed

    Tsuda, Takanori; Ueno, Yuki; Yoshikawa, Toshikazu; Kojo, Hitoshi; Osawa, Toshihiko

    2006-04-14

    Adipocyte dysfunction is strongly associated with the development of obesity and insulin resistance. It is accepted that the regulation of adipocytokine secretion or the adipocyte specific gene expression is one of the most important targets for the prevention of obesity and amelioration of insulin sensitivity. Recently, we demonstrated that anthocyanins, which are pigments widespread in the plant kingdom, have the potency of anti-obesity in mice and the enhancement adipocytokine secretion and its gene expression in adipocytes. In this study, we have shown the gene expression profile in human adipocytes treated with anthocyanins (cyanidin 3-glucoside; C3G or cyanidin; Cy). The human adipocytes were treated with 100 microM C3G, Cy or vehicle for 24 h. The total RNA from the adipocytes was isolated and carried out GeneChip microarray analysis. Based on the gene expression profile, we demonstrated the significant changes of adipocytokine expression (up-regulation of adiponectin and down-regulation of plasminogen activator inhibitor-1 and interleukin-6). Some of lipid metabolism related genes (uncoupling protein2, acylCoA oxidase1 and perilipin) also significantly induced in both common the C3G or Cy treatment groups. These studies have provided an overview of the gene expression profiles in human adipocytes treated with anthocyanins and demonstrated that anthocyanins can regulate adipocytokine gene expression to ameliorate adipocyte function related with obesity and diabetes that merit further investigation.

  10. E-cadherin interactions regulate beta-cell proliferation in islet-like structures.

    PubMed

    Carvell, Melanie J; Marsh, Phil J; Persaud, Shanta J; Jones, Peter M

    2007-01-01

    Islet function is dependent on cells within the islet interacting with each other. E-cadherin (ECAD) mediates Ca(2+)-dependent homophilic cell adhesion between b-cells within islets and has been identified as a tumour suppressor. We generated clones of the MIN6 beta-cell line that stably over- (S) and under-express (alphaS) ECAD. Modified expression of ECAD was confirmed by quantitative RT-PCR, immunoblotting and immunocytochemistry. Preproinsulin mRNA, insulin content and basal rates of insulin secretion were higher in S cells compared to aS and control (V) cells. However, stimulated insulin secretory responses were unaffected by ECAD expression levels. ECAD expression did affect proliferation, with enhanced ECAD expression being associated with reduced proliferation and vice versa. Formation of islet-like structures was associated with a significant reduction in proliferation of V and S cells but not alphaS cells. These data suggest that ECAD expression levels do not modulate insulin secretory function but are consistent with a role for ECAD in the regulation of beta-cell proliferation. Copyright (c) 2007 S. Karger AG, Basel.

  11. Fibroblast growth factor regulates insulin-like growth factor-binding protein production by vascular smooth muscle cells.

    PubMed

    Ververis, J; Ku, L; Delafontaine, P

    1994-02-01

    Insulin-like growth factor I is an important mitogen for vascular smooth muscle cells, and its effects are regulated by several binding proteins. Western ligand blotting of conditioned medium from rat aortic smooth muscle cells detected a 24 kDa binding protein and a 28 kDa glycosylated variant of this protein, consistent with insulin-like growth factor binding protein-4 by size. Low amounts of a glycosylated 38 to 42 kDa doublet (consistent with binding protein-3) and a 31 kDa non-glycosylated protein also were present. Basic fibroblast growth factor markedly increased secretion of the 24 kDa binding protein and its 28 kDa glycosylated variant. This effect was dose- and time-dependent and was inhibited by co-incubation with cycloheximide. Crosslinking of [125I]-insulin-like growth factor I to cell monolayers revealed no surface-associated binding proteins, either basally or after agonist treatment. Induction of binding protein production by fibroblast growth factor at sites of vascular injury may be important in vascular proliferative responses in vivo.

  12. Preserved insulin sensitivity predicts metabolically healthy obese phenotype in children and adolescents.

    PubMed

    Vukovic, Rade; Milenkovic, Tatjana; Mitrovic, Katarina; Todorovic, Sladjana; Plavsic, Ljiljana; Vukovic, Ana; Zdravkovic, Dragan

    2015-12-01

    Available data on metabolically healthy obese (MHO) phenotype in children suggest that gender, puberty, waist circumference, insulin sensitivity, and other laboratory predictors have a role in distinguishing these children from metabolically unhealthy obese (MUO) youth. The goal of this study was to identify predictors of MHO phenotype and to analyze glucose and insulin metabolism during oral glucose tolerance test (OGTT) in MHO children. OGTT was performed in 244 obese children and adolescents aged 4.6-18.9 years. Subjects were classified as MHO in case of no fulfilled criterion of metabolic syndrome except anthropometry or as MUO (≥2 fulfilled criteria). Among the subjects, 21.7 % had MHO phenotype, and they were more likely to be female, younger, and in earlier stages of pubertal development, with lower degree of abdominal obesity. Insulin resistance was the only independent laboratory predictor of MUO phenotype (OR 1.59, CI 1.13-2.25), with 82 % sensitivity and 60 % specificity for diagnosing MUO using HOMA-IR cutoff point of ≥2.85. Although no significant differences were observed in glucose regulation, MUO children had higher insulin demand throughout OGTT, with 1.53 times higher total insulin secretion. Further research is needed to investigate the possibility of targeted treatment of insulin resistance to minimize pubertal cross-over to MUO in obese children. • Substantial proportion of the obese youth (21-68 %) displays a metabolically healthy (MHO) phenotype. • Gender, puberty, waist circumference, insulin sensitivity, and lower levels of uric acid and transaminases have a possible role in distinguishing MHO from metabolically unhealthy obese (MUO) children. • Insulin resistance was found to be the only significant laboratory predictor of MUO when adjusted for gender, puberty, and the degree of abdominal obesity. • Besides basal insulin resistance, MUO children were found to have a significantly higher insulin secretion throughout OGTT in order to maintain glucose homeostasis.

  13. E4orf1 induction in adipose tissue promotes insulin-independent signaling in the adipocyte

    PubMed Central

    Kusminski, Christine M.; Gallardo-Montejano, Violeta I.; Wang, Zhao V.; Hegde, Vijay; Bickel, Perry E.; Dhurandhar, Nikhil V.; Scherer, Philipp E.

    2015-01-01

    Background/Purpose Type 2 diabetes remains a worldwide epidemic with major pathophysiological changes as a result of chronic insulin resistance. Insulin regulates numerous biochemical pathways related to carbohydrate and lipid metabolism. Methods We have generated a novel mouse model that allows us to constitutively activate, in an inducible fashion, the distal branch of the insulin signaling transduction pathway specifically in adipocytes. Results Using the adenoviral 36 E4orf1 protein, we chronically stimulate locally the Ras-ERK-MAPK signaling pathway. At the whole body level, this leads to reduced body-weight gain under a high fat diet challenge. Despite overlapping glucose tolerance curves, there is a reduced requirement for insulin action under these conditions. The mice further exhibit reduced circulating adiponectin levels that ultimately lead to impaired lipid clearance, and inflamed and fibrotic white adipose tissues. Nevertheless, they are protected from diet-induced hepatic steatosis. As we observe constitutively elevated p-Akt levels in the adipocytes, even under conditions of low insulin levels, this pinpoints enhanced Ras-ERK-MAPK signaling in transgenic adipocytes as a potential alternative route to bypass proximal insulin signaling events. Conclusion We conclude that E4orf1 expression in the adipocyte leads to enhanced baseline activation of the distal insulin signaling node, yet impaired insulin receptor stimulation in the presence of insulin, with important implications for the regulation of adiponectin secretion. The resulting systemic phenotype is complex, yet highlights the powerful nature of manipulating selective branches of the insulin signaling network within the adipocyte. PMID:26500839

  14. Hepatic glucose sensing is required to preserve β cell glucose competence

    PubMed Central

    Seyer, Pascal; Vallois, David; Poitry-Yamate, Carole; Schütz, Frédéric; Metref, Salima; Tarussio, David; Maechler, Pierre; Staels, Bart; Lanz, Bernard; Grueter, Rolf; Decaris, Julie; Turner, Scott; da Costa, Anabela; Preitner, Frédéric; Minehira, Kaori; Foretz, Marc; Thorens, Bernard

    2013-01-01

    Liver glucose metabolism plays a central role in glucose homeostasis and may also regulate feeding and energy expenditure. Here we assessed the impact of glucose transporter 2 (Glut2) gene inactivation in adult mouse liver (LG2KO mice). Loss of Glut2 suppressed hepatic glucose uptake but not glucose output. In the fasted state, expression of carbohydrate-responsive element-binding protein (ChREBP) and its glycolytic and lipogenic target genes was abnormally elevated. Feeding, energy expenditure, and insulin sensitivity were identical in LG2KO and control mice. Glucose tolerance was initially normal after Glut2 inactivation, but LG2KO mice exhibited progressive impairment of glucose-stimulated insulin secretion even though β cell mass and insulin content remained normal. Liver transcript profiling revealed a coordinated downregulation of cholesterol biosynthesis genes in LG2KO mice that was associated with reduced hepatic cholesterol in fasted mice and reduced bile acids (BAs) in feces, with a similar trend in plasma. We showed that chronic BAs or farnesoid X receptor (FXR) agonist treatment of primary islets increases glucose-stimulated insulin secretion, an effect not seen in islets from Fxr–/– mice. Collectively, our data show that glucose sensing by the liver controls β cell glucose competence and suggest BAs as a potential mechanistic link. PMID:23549084

  15. Serum omentin levels in adolescent girls with anorexia nervosa and obesity.

    PubMed

    Oświęcimska, J; Suwała, A; Świętochowska, E; Ostrowska, Z; Gorczyca, P; Ziora-Jakutowicz, K; Machura, E; Szczepańska, M; Kukla, M; Stojewska, M; Ziora, D; Ziora, K

    2015-01-01

    It is believed that omentin is secreted by stromal cells of adipose tissue and modulates insulin sensitivity. Data from a few studies have shown lower serum omentin in obese children and higher in anorexia nervosa. However, to date, there is lack of research on serum omentin concentrations in adolescent patients in a wide range of body mass index (BMI) and insulin resistance. In this cross-sectional study omentin-1 serum concentrations were evaluated using commercially available ELISA kit in 47 Polish girls with restrictive anorexia nervosa (AN), 50 with simple obesity (OB) and 39 healthy controls (C). The mean serum omentin-1 concentration in girls with AN was statistically significantly higher than that of C and OB girls. Statistically significant (P<0.0001) negative correlations between the serum concentrations of omentin-1 and body weight (r=-0.73), BMI (r=-0.75), standard deviation score for body mass index (BMI-SDS) (r=-0.75), insulin (r=-0.81) and HOMA-IR index (r=-0.82) were seen in the entire examined population. We conclude, that omentin-1 is the nutritional marker reflecting body weight and insulin resistance. Our findings support the hypothesized role of omentin in maintenance of body weight and regulation of appetite and suggest the adaptation of its secretion to body weight and glucose metabolism.

  16. Store-operated Ca2+ Entry Mediated by Orai1 and TRPC1 Participates to Insulin Secretion in Rat β-Cells*

    PubMed Central

    Sabourin, Jessica; Le Gal, Loïc; Saurwein, Lisa; Haefliger, Jacques-Antoine; Raddatz, Eric; Allagnat, Florent

    2015-01-01

    Store-operated Ca2+ channels (SOCs) are voltage-independent Ca2+ channels activated upon depletion of the endoplasmic reticulum Ca2+ stores. Early studies suggest the contribution of such channels to Ca2+ homeostasis in insulin-secreting pancreatic β-cells. However, their composition and contribution to glucose-stimulated insulin secretion (GSIS) remains unclear. In this study, endoplasmic reticulum Ca2+ depletion triggered by acetylcholine (ACh) or thapsigargin stimulated the formation of a ternary complex composed of Orai1, TRPC1, and STIM1, the key proteins involved in the formation of SOCs. Ca2+ imaging further revealed that Orai1 and TRPC1 are required to form functional SOCs and that these channels are activated by STIM1 in response to thapsigargin or ACh. Pharmacological SOCs inhibition or dominant negative blockade of Orai1 or TRPC1 using the specific pore mutants Orai1-E106D and TRPC1-F562A impaired GSIS in rat β-cells and fully blocked the potentiating effect of ACh on secretion. In contrast, pharmacological or dominant negative blockade of TRPC3 had no effect on extracellular Ca2+ entry and GSIS. Finally, we observed that prolonged exposure to supraphysiological glucose concentration impaired SOCs function without altering the expression levels of STIM1, Orai1, and TRPC1. We conclude that Orai1 and TRPC1, which form SOCs regulated by STIM1, play a key role in the effect of ACh on GSIS, a process that may be impaired in type 2 diabetes. PMID:26494622

  17. Microfluidic glucose stimulation reveals limited coordination of intracellular Ca2+ activity oscillations in pancreatic islets

    PubMed Central

    Rocheleau, Jonathan V.; Walker, Glenn M.; Head, W. Steven; McGuinness, Owen P.; Piston, David W.

    2004-01-01

    The pancreatic islet is a functional microorgan involved in maintaining normoglycemia through regulated secretion of insulin and other hormones. Extracellular glucose stimulates insulin secretion from islet β cells through an increase in redox state, which can be measured by NAD(P)H autofluorescence. Glucose concentrations over ≈7 mM generate synchronous oscillations in β cell intracellular Ca2+ concentration ([Ca2+]i), which lead to pulsatile insulin secretion. Prevailing models assume that the pancreatic islet acts as a functional syncytium, and the whole islet [Ca2+]i response has been modeled in terms of islet bursting and pacemaker models. To test these models, we developed a microfluidic device capable of partially stimulating an islet, while allowing observation of the NAD(P)H and [Ca2+]i responses. We show that β cell [Ca2+]i oscillations occur only within regions stimulated with more than ≈6.6 mM glucose. Furthermore, we show that tolbutamide, an antagonist of the ATP-sensitive K+ channel, allows these oscillations to travel farther into the nonstimulated regions of the islet. Our approach shows that the extent of Ca2+ propagation across the islet depends on a delicate interaction between the degree of coupling and the extent of ATP-sensitive K+-channel activation and illustrates an experimental paradigm that will have utility for many other biological systems. PMID:15317941

  18. Disruption of protein-tyrosine phosphatase 1B expression in the pancreas affects β-cell function.

    PubMed

    Liu, Siming; Xi, Yannan; Bettaieb, Ahmed; Matsuo, Kosuke; Matsuo, Izumi; Kulkarni, Rohit N; Haj, Fawaz G

    2014-09-01

    Protein-tyrosine phosphatase 1B (PTP1B) is a physiological regulator of glucose homeostasis and energy balance. However, the role of PTP1B in pancreatic endocrine function remains largely unknown. To investigate the metabolic role of pancreatic PTP1B, we generated mice with pancreas PTP1B deletion (panc-PTP1B KO). Mice were fed regular chow or a high-fat diet, and metabolic parameters, insulin secretion and glucose tolerance were determined. On regular chow, panc-PTP1B KO and control mice exhibited comparable glucose tolerance whereas aged panc-PTP1B KO exhibited mild glucose intolerance. Furthermore, high-fat feeding promoted earlier impairment of glucose tolerance and attenuated glucose-stimulated insulin secretion in panc-PTP1B KO mice. The secretory defect in glucose-stimulated insulin secretion was recapitulated in primary islets ex vivo, suggesting that the effects were likely cell-autonomous. At the molecular level, PTP1B deficiency in vivo enhanced basal and glucose-stimulated tyrosyl phosphorylation of EphA5 in islets. Consistently, PTP1B overexpression in the glucose-responsive MIN6 β-cell line attenuated EphA5 tyrosyl phosphorylation, and substrate trapping identified EphA5 as a PTP1B substrate. In summary, these studies identify a novel role for PTP1B in pancreatic endocrine function.

  19. Effects of Taurine Supplementation on Neuronal Excitability and Glucose Homeostasis.

    PubMed

    El Idrissi, Abdeslem; El Hilali, Fatiha; Rotondo, Salvatore; Sidime, Francoise

    2017-01-01

    In this study we examined the role of chronic taurine supplementation on plasma glucose homeostasis and brain excitability through activation of the insulin receptor. FVB/NJ male mice were supplemented with taurine in drinking water (0.05% w/v) for 4 weeks and subjected to a glucose tolerance test (7.5 mg/kg BW) after 12 h fasting. We found that taurine-fed mice were slightly hypoglycemic prior to glucose injection and showed significantly reduced plasma glucose at 30 and 60 min post-glucose injection when compared to control mice. Previously, we reported that taurine supplementation induces biochemical changes that target the GABAergic system. Those studies show that taurine-fed mice are hyperexcitable, have reduced GABA A receptors expression and increased GAD and somatostatin expression in the brain. In this study, we found that taurine-fed mice had a significant increase in insulin receptor (IR) immuno-reactivity in the pancreas and all brain regions examined. At the mRNA level, we found that the IR showed differential regional expression. Surprisingly, we found that neurons express the gene for insulin and that taurine had a significant role in regulating insulin gene expression. We propose that increased insulin production and secretion in taurine-fed mice cause an increase activation of the central IR and may be partially responsible for the increased neuronal excitability observed in taurine supplemented mice. Furthermore, the high levels of neuronal insulin expression and its regulation by taurine implicates taurine in the regulation of metabolic homeostasis.

  20. Cucurbitacin E reduces obesity and related metabolic dysfunction in mice by targeting JAK-STAT5 signaling pathway

    PubMed Central

    Murtaza, Munazza; Khan, Gulnaz; Aftab, Meha Fatima; Afridi, Shabbir Khan; Ghaffar, Safina; Ahmed, Ayaz; Hafizur, Rahman M.

    2017-01-01

    Several members of cucurbitaceae family have been reported to regulate growth of cancer by interfering with STAT3 signaling. In the present study, we investigated the unique role and molecular mechanism of cucurbitacins (Cucs) in reducing symptoms of metabolic syndrome in mice. Cucurbitacin E (CuE) was found to reduce adipogenesis in murine adipocytes. CuE treatment diminished hypertrophy of adipocytes, visceral obesity and lipogenesis gene expression in diet induced mice model of metabolic syndrome (MetS). CuE also ameliorated adipose tissue dysfunction by reducing hyperleptinemia and TNF-alpha levels and enhancing hypoadiponectinemia. Results show that CuE mediated these effects by attenuating Jenus kinase- Signal transducer and activator of transcription 5 (JAK- STAT5) signaling in visceral fat tissue. As a result, CuE treatment also reduced PPAR gamma expression. Glucose uptake enhanced in adipocytes after stimulation with CuE and insulin resistance diminished in mice treated with CuE, as reflected by reduced glucose intolerance and glucose stimulated insulin secretion. CuE restored insulin sensitivity indirectly by inhibiting JAK phosphorylation and improving AMPK activity. Consequently, insulin signaling was up-regulated in mice muscle. As CuE positively regulated adipose tissue function and suppressed visceral obesity, dyslipedemia, hyperglycemia and insulin resistance in mice model of MetS, we suggest that CuE can be used as novel approach to treat metabolic diseases. PMID:28598969

  1. Cucurbitacin E reduces obesity and related metabolic dysfunction in mice by targeting JAK-STAT5 signaling pathway.

    PubMed

    Murtaza, Munazza; Khan, Gulnaz; Aftab, Meha Fatima; Afridi, Shabbir Khan; Ghaffar, Safina; Ahmed, Ayaz; Hafizur, Rahman M; Waraich, Rizwana Sanaullah

    2017-01-01

    Several members of cucurbitaceae family have been reported to regulate growth of cancer by interfering with STAT3 signaling. In the present study, we investigated the unique role and molecular mechanism of cucurbitacins (Cucs) in reducing symptoms of metabolic syndrome in mice. Cucurbitacin E (CuE) was found to reduce adipogenesis in murine adipocytes. CuE treatment diminished hypertrophy of adipocytes, visceral obesity and lipogenesis gene expression in diet induced mice model of metabolic syndrome (MetS). CuE also ameliorated adipose tissue dysfunction by reducing hyperleptinemia and TNF-alpha levels and enhancing hypoadiponectinemia. Results show that CuE mediated these effects by attenuating Jenus kinase- Signal transducer and activator of transcription 5 (JAK- STAT5) signaling in visceral fat tissue. As a result, CuE treatment also reduced PPAR gamma expression. Glucose uptake enhanced in adipocytes after stimulation with CuE and insulin resistance diminished in mice treated with CuE, as reflected by reduced glucose intolerance and glucose stimulated insulin secretion. CuE restored insulin sensitivity indirectly by inhibiting JAK phosphorylation and improving AMPK activity. Consequently, insulin signaling was up-regulated in mice muscle. As CuE positively regulated adipose tissue function and suppressed visceral obesity, dyslipedemia, hyperglycemia and insulin resistance in mice model of MetS, we suggest that CuE can be used as novel approach to treat metabolic diseases.

  2. Antibodies against glutamic acid decarboxylase and indices of insulin resistance and insulin secretion in nondiabetic adults: a cross-sectional study

    PubMed Central

    Mendivil, Carlos O; Toloza, Freddy JK; Ricardo-Silgado, Maria L; Morales-Álvarez, Martha C; Mantilla-Rivas, Jose O; Pinzón-Cortés, Jairo A; Lemus, Hernán N

    2017-01-01

    Background Autoimmunity against insulin-producing beta cells from pancreatic islets is a common phenomenon in type 1 diabetes and latent autoimmune diabetes in adults. Some reports have also related beta-cell autoimmunity to insulin resistance (IR) in type 2 diabetes. However, the extent to which autoimmunity against components of beta cells is present and relates to IR and insulin secretion in nondiabetic adults is uncertain. Aim To explore the association between antibodies against glutamic acid decarboxylase (GADA), a major antigen from beta cells, and indices of whole-body IR and beta-cell capacity/insulin secretion in adults who do not have diabetes. Methods We studied 81 adults of both sexes aged 30–70, without known diabetes or any autoimmune disease. Participants underwent an oral glucose tolerance test (OGTT) with determination of plasma glucose and insulin at 0, 30, 60, 90, and 120 minutes. From these results we calculated indices of insulin resistance (homeostasis model assessment of insulin resistance [HOMA-IR] and incremental area under the insulin curve [iAUCins]) and insulin secretion (corrected insulin response at 30 minutes and HOMA beta-cell%). GADAs were measured in fasting plasma using immunoenzymatic methods. Results We found an overall prevalence of GADA positivity of 21.3%, without differences by sex and no correlation with age. GADA titers did not change monotonically across quartiles of any of the IR or insulin secretion indices studies. GADA did not correlate linearly with fasting IR expressed as HOMA-IR (Spearman’s r=−0.18, p=0.10) or postabsorptive IR expressed as iAUCins (r=−0.15, p=0.18), but did show a trend toward a negative correlation with insulin secretory capacity expressed by the HOMA-beta cell% index (r=−0.20, p=0.07). Hemoglobin A1c, body mass index, and waist circumference were not associated with GADA titers. Conclusion GADA positivity is frequent and likely related to impaired beta-cell function among adults without known diabetes. PMID:28507444

  3. A factorial design to identify process parameters affecting whole mechanically disrupted rat pancreata in a perfusion bioreactor.

    PubMed

    Sharp, Jamie; Spitters, Tim Wgm; Vermette, Patrick

    2018-03-01

    Few studies report whole pancreatic tissue culture, as it is a difficult task using traditional culture methods. Here, a factorial design was used to investigate the singular and combinational effects of flow, dissolved oxygen concentration (D.O.) and pulsation on whole mechanically disrupted rat pancreata in a perfusion bioreactor. Whole rat pancreata were cultured for 72 h under defined bioreactor process conditions. Secreted insulin was measured and histological (haematoxylin and eosin (H&E)) as well as immunofluorescent insulin staining were performed and quantified. The combination of flow and D.O. had the most significant effect on secreted insulin at 5 h and 24 h. The D.O. had the biggest effect on tissue histological quality, and pulsation had the biggest effect on the number of insulin-positive structures. Based on the factorial design analysis, bioreactor conditions using high flow, low D.O., and pulsation were selected to further study glucose-stimulated insulin secretion. Here, mechanically disrupted rat pancreata were cultured for 24 h under these bioreactor conditions and were then challenged with high glucose concentration for 6 h and high glucose + IBMX (an insulin secretagogue) for a further 6 h. These cultures secreted insulin in response to high glucose concentration in the first 6 h, however stimulated-insulin secretion was markedly weaker in response to high glucose concentration + IBMX thereafter. After this bioreactor culture period, higher tissue metabolic activity was found compared to that of non-bioreacted static controls. More insulin- and glucagon-positive structures, and extensive intact endothelial structures were observed compared to non-bioreacted static cultures. H&E staining revealed more intact tissue compared to static cultures. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 34:432-444, 2018. © 2017 American Institute of Chemical Engineers.

  4. [The mechanisms underlying the therapeutic effects of reflexotherapy and drinking mineral waters in the patients presenting with metabolic syndrome].

    PubMed

    Zhernov, V A; Frolkov, V K; Zubarkina, M M

    Both acupuncture and drinking mineral water can influence the metabolism of carbohydrates and lipids as well as their hormonal regulation, but the possibility of the application of these therapeutic factors for the correction of insulin resistance has not been studied in the patients presenting with metabolic syndrome. The objective of the present study was to evaluate the effects produced by the intake of drinking mineral water and acupuncture on the various parameters characterizing the patients suffering from metabolic syndrome in combination with altered insulin resistance. Ninety patients with this condition included in the study underwent the analysis of their the blood pressure, body mass index, blood glucose and lipid levels, insulin and cortisol secretion. We undertook the analysis of the effects of the single and repeated intakes of Essentuki No 17 mineral water included in the combined treatment of the patients with metabolic syndrome and revealed many common responses of the organism to its therapeutic action. Specifically, the stress-type reactions suggested the initiation of the adaptive processes in the system of hormonal regulation of carbohydrate and lipid metabolism. Simultaneously, the manifestations of insulin resistance became less pronounced indicating that both acupuncture and drinking mineral water suppressed the action of the main pathogenic mechanisms underlying the development of metabolic syndrome. Moreover, it was shown that acupuncture had a stronger hypotensive effect in the combination with the decrease of the overproduction of cortisol whereas the intake of the mineral water had a greater metabolic potential and contributed to the intensification of the basal secretion of glucocorticoids. Both reflexotherapy and drinking mineral water have a well apparent effect on the pathogenetic reactions of the metabolic syndrome and therefore can be used in addition to the standard therapy to activate the non-specific, phylogenetically established and enshrined at the genetic level self-healing responses by mainstreaming the adaptation processes and the formation of the adaptive reactions initiated by stressor components. The addition of acupuncture or domestic mineral water intake to the standard therapy of the patients suffering from metabolic syndrome significantly enhances the effectiveness of the treatment. The beneficial therapeutic action of acupuncture and drinking mineral water is underlain by their impact on the mechanisms of resistance to insulin that manifests itself as a decrease of the fasting secretion of this hormone and optimization of carbohydrate and lipid metabolism. The therapeutic effect of acupuncture and drinking mineral water is realized through the induction of the stress-initiating reactions which activate the processes of adaptation, with reflexotherapy largely acting on the cardiovascular system and drinking mineral water on the system responsible for insulin regulation of the metabolic processes.

  5. Treatments for diabetes mellitus type II: New perspectives regarding the possible role of calcium and cAMP interaction.

    PubMed

    Carvalho, Diego Soares; de Almeida, Alexandre Aparecido; Borges, Aurélio Ferreira; Campos, Vannucci

    2018-07-05

    Diabetes mellitus (DM) is among the top ten causes of death worldwide. It is considered to be one of the major global epidemics of the 21st century, with a significant impact on public health budgets. DM is a metabolic disorder with multiple etiologies. Its pathophysiology is marked by dysfunction of pancreatic β-cells which compromises the synthesis and secretion of insulin along with resistance to insulin action in peripheral tissues (muscle and adipose). Subjects presenting insulin resistance in DM type 2 often also exhibit increased insulin secretion and hyperinsulinemia. Insulin secretion is controlled by several factors such as nutrients, hormones, and neural factors. Exocytosis of insulin granules has, as its main stimulus, increased intracellular calcium ([Ca +2 ]i) and it is further amplified by cyclic AMP (cAMP). In the event of this hyperfunction, it is very common for β-cells to go into exhaustion leading to failure or death. Several animal studies have demonstrated pleiotropic effects of L-type Ca 2+ channel blockers (CCBs). In animal models of obesity and diabetes, treatment with CCBs promoted restoration of insulin secretion, glycemic control, and reduction of pancreatic β-cell apoptosis. In addition, hypertensive individuals treated with CCBs presented a lower incidence of DM when compared with other antihypertensive agents. In this review, we propose that pharmacological manipulation of the Ca 2+ /cAMP interaction system could lead to important targets for pharmacological improvement of insulin secretion in DM type 2. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Effect of disruption of actin filaments by Clostridium botulinum C2 toxin on insulin secretion in HIT-T15 cells and pancreatic islets.

    PubMed Central

    Li, G; Rungger-Brändle, E; Just, I; Jonas, J C; Aktories, K; Wollheim, C B

    1994-01-01

    To examine their role in insulin secretion, actin filaments (AFs) were disrupted by Clostridium botulinum C2 toxin that ADP-ribosylates G-actin. Ribosylation also prevents polymerization of G-actin to F-actin and inhibits AF assembly by capping the fast-growing end of F-actin. Pretreatment of HIT-T15 cells with the toxin inhibited stimulated insulin secretion in a time- and dose-dependent manner. The toxin did not affect cellular insulin content or nonstimulated secretion. In static incubation, toxin treatment caused 45-50% inhibition of secretion induced by nutrients alone (10 mM glucose + 5 mM glutamine + 5 mM leucine) or combined with bombesin (phospholipase C-activator) and 20% reduction of that potentiated by forskolin (stimulator of adenylyl cyclase). In perifusion, the stimulated secretion during the first phase was marginally diminished, whereas the second phase was inhibited by approximately 80%. Pretreatment of HIT cells with wartmannin, a myosin light chain kinase inhibitor, caused a similar pattern of inhibition of the biphasic insulin release as C2 toxin. Nutrient metabolism and bombesin-evoked rise in cytosolic free Ca2+ were not affected by C2 toxin, indicating that nutrient recognition and the coupling between receptor activation and second messenger generation was not changed. In the toxin-treated cells, the AF web beneath the plasma membrane and the diffuse cytoplasmic F-actin fibers disappeared, as shown both by staining with an antibody against G- and F-actin and by staining F-actin with fluorescent phallacidin. C2 toxin dose-dependently reduced cellular F-actin content. Stimulation of insulin secretion was not associated with changes in F-actin content and organization. Treatment of cells with cytochalasin E and B, which shorten AFs, inhibited the stimulated insulin release by 30-50% although differing in their effects on F-actin content. In contrast to HIT-T15 cells, insulin secretion was potentiated in isolated rat islets after disruption of microfilaments with C2 toxin, most notably during the first phase. This effect was, however, diminished, and the second phase became slightly inhibited when the islets were degranulated. These results indicate an important role for AFs in insulin secretion. In the poorly granulated HIT-T15 cells actin-myosin interactions may participate in the recruitment of secretory granules to the releasable pool. In native islet beta-cells the predominant function of AFs appears to be the limitation of the access of granules to the plasma membrane. Images PMID:7865885

  7. Nicotinic Acid Adenine Dinucleotide Phosphate (NAADP) and Endolysosomal Two-pore Channels Modulate Membrane Excitability and Stimulus-Secretion Coupling in Mouse Pancreatic β Cells*

    PubMed Central

    Arredouani, Abdelilah; Ruas, Margarida; Collins, Stephan C.; Parkesh, Raman; Clough, Frederick; Pillinger, Toby; Coltart, George; Rietdorf, Katja; Royle, Andrew; Johnson, Paul; Braun, Matthias; Zhang, Quan; Sones, William; Shimomura, Kenju; Morgan, Anthony J.; Lewis, Alexander M.; Chuang, Kai-Ting; Tunn, Ruth; Gadea, Joaquin; Teboul, Lydia; Heister, Paula M.; Tynan, Patricia W.; Bellomo, Elisa A.; Rutter, Guy A.; Rorsman, Patrik; Churchill, Grant C.; Parrington, John; Galione, Antony

    2015-01-01

    Pancreatic β cells are electrically excitable and respond to elevated glucose concentrations with bursts of Ca2+ action potentials due to the activation of voltage-dependent Ca2+ channels (VDCCs), which leads to the exocytosis of insulin granules. We have examined the possible role of nicotinic acid adenine dinucleotide phosphate (NAADP)-mediated Ca2+ release from intracellular stores during stimulus-secretion coupling in primary mouse pancreatic β cells. NAADP-regulated Ca2+ release channels, likely two-pore channels (TPCs), have recently been shown to be a major mechanism for mobilizing Ca2+ from the endolysosomal system, resulting in localized Ca2+ signals. We show here that NAADP-mediated Ca2+ release from endolysosomal Ca2+ stores activates inward membrane currents and depolarizes the β cell to the threshold for VDCC activation and thereby contributes to glucose-evoked depolarization of the membrane potential during stimulus-response coupling. Selective pharmacological inhibition of NAADP-evoked Ca2+ release or genetic ablation of endolysosomal TPC1 or TPC2 channels attenuates glucose- and sulfonylurea-induced membrane currents, depolarization, cytoplasmic Ca2+ signals, and insulin secretion. Our findings implicate NAADP-evoked Ca2+ release from acidic Ca2+ storage organelles in stimulus-secretion coupling in β cells. PMID:26152717

  8. Indices of insulin secretion during a liquid mixed-meal test in obese youth with diabetes

    USDA-ARS?s Scientific Manuscript database

    To compare indices of insulin secretion, insulin sensitivity (IS),and oral disposition index (oDI) during the liquid mixed-meal test in obese youth with clinically diagnosed type 2 diabetes mellitus (T2DM) and negative autoantibodies (Ab-) versus those with T2DM and positive autoantibodies (Ab+) to ...

  9. Effect of Gymnema sylvestre Administration on Metabolic Syndrome, Insulin Sensitivity, and Insulin Secretion.

    PubMed

    Zuñiga, Laura Y; González-Ortiz, Manuel; Martínez-Abundis, Esperanza

    2017-08-01

    Gymnema sylvestre is a medicinal plant whose consumption has demonstrated benefits on lipid and glucose levels, blood pressure, and body weight (BWt). The aim of this study was to evaluate the effect of G. sylvestre administration on metabolic syndrome (MetS), insulin secretion, and insulin sensitivity. A randomized, double-blind, placebo-controlled clinical trial was carried out in 24 patients (without pharmacological treatment), 30-60 years old, with diagnosis of MetS in accordance with the modified International Diabetes Federation criteria. Patients were randomly assigned to receive G. sylvestre or placebo twice daily before breakfast and dinner in 300 mg capsules for a total of 600 mg per day for 12 weeks. Before and after the intervention, the components of MetS were evaluated as well as BWt, body mass index (BMI), total cholesterol, low-density lipoprotein cholesterol, and very low-density lipoprotein (VLDL). Area under the curve of glucose and insulin, phases of insulin secretion, and insulin sensitivity were calculated. Statistical analysis was performed using Wilcoxon signed-rank, Mann-Whitney U, and chi-square tests; P ≤ .05 was considered statistically significant. After G. sylvestre administration, significant decreases in BWt (81.3 ± 10.6 kg vs. 77.9 ± 8.4 kg, P = .02), BMI (31.2 ± 2.5 kg/m 2 vs. 30.4 ± 2.2 kg/m 2 , P = .02), and VLDL levels (0.45 ± 0.15 mmol/dL vs. 0.35 ± 0.15 mmol/dL, P = .05) were observed, without modifying the components of MetS, insulin secretion, and insulin sensitivity. In conclusion, G. sylvestre administration decreased BWt, BMI, and VLDL levels in subjects with MetS, without changes in insulin secretion and insulin sensitivity.

  10. Hydrogel Microencapsulated Insulin-Secreting Cells Increase Keratinocyte Migration, Epidermal Thickness, Collagen Fiber Density, and Wound Closure in a Diabetic Mouse Model of Wound Healing.

    PubMed

    Aijaz, Ayesha; Faulknor, Renea; Berthiaume, François; Olabisi, Ronke M

    2015-11-01

    Wound healing is a hierarchical process of intracellular and intercellular signaling. Insulin is a potent chemoattractant and mitogen for cells involved in wound healing. Insulin's potential to promote keratinocyte growth and stimulate collagen synthesis in fibroblasts is well described. However, there currently lacks an appropriate delivery mechanism capable of consistently supplying a wound environment with insulin; current approaches require repeated applications of insulin, which increase the chances of infecting the wound. In this study, we present a novel cell-based therapy that delivers insulin to the wound area in a constant or glucose-dependent manner by encapsulating insulin-secreting cells in nonimmunogenic poly(ethylene glycol) diacrylate (PEGDA) hydrogel microspheres. We evaluated cell viability and insulin secretory characteristics of microencapsulated cells. Glucose stimulation studies verified free diffusion of glucose and insulin through the microspheres, while no statistical difference in insulin secretion was observed between cells in microspheres and cells in monolayers. Scratch assays demonstrated accelerated keratinocyte migration in vitro when treated with microencapsulated cells. In excisional wounds on the dorsa of diabetic mice, microencapsulated RIN-m cells accelerated wound closure by postoperative day 7; a statistically significant increase over AtT-20ins-treated and control groups. Histological results indicated significantly greater epidermal thickness in both microencapsulated RIN-m and AtT-20ins-treated wounds. The results suggest that microencapsulation enables insulin-secreting cells to persist long enough at the wound site for a therapeutic effect and thereby functions as an effective delivery vehicle to accelerate wound healing.

  11. Induction of pancreatic duct cells of neonatal rats into insulin-producing cells with fetal bovine serum: A natural protocol and its use for patch clamp experiments

    PubMed Central

    Leng, San-Hua; Lu, Fu-Er

    2005-01-01

    AIM: To induce the pancreatic duct cells into endocrine cells with a new natural protocol for electrophysiological study. METHODS: The pancreatic duct cells of neonatal rats were isolated, cultured and induced into endocrine cells with 15% fetal bovine serum for a period of 20 d. During this period, insulin secretion, MTT value, and morphological change of neonatal and adult pancreatic islet cells were comparatively investigated. Pancreatic β-cells were identified by morphological and electrophysiological characteristics, while ATP sensitive potassium channels (KATP), voltage-dependent potassium channels (KV), and voltage-dependent calcium channels (KCA) in β-cells were identified by patch clamp technique. RESULTS: After incubation with fetal bovine serum, the neonatal duct cells budded out, changed from duct-like cells into islet clusters. In the first 4 d, MTT value and insulin secretion increased slowly (MTT value from 0.024±0.003 to 0.028±0.003, insulin secretion from 2.6±0.6 to 3.1±0.8 mIU/L). Then MTT value and insulin secretion increased quickly from d 5 to d 10 (MTT value from 0.028±0.003 to 0.052±0.008, insulin secretion from 3.1±0.8 to 18.3±2.6 mIU/L), then reached high plateau (MTT value >0.052±0.008, insulin secretion >18.3±2.6 mIU/L). In contrast, for the isolated adult pancreatic islet cells, both insulin release and MTT value were stable in the first 4 d (MTT value from 0.029±0.01 to 0.031±0.011, insulin secretion from 13.9±3.1 to 14.3±3.3 mIU/L), but afterwards they reduced gradually (MTT value <0.031±0.011, insulin secretion <8.2±1.5 mIU/L), and the pancreatic islet cells became dispersed, broken or atrophied correspondingly. The differentiated neonatal cells were identified as pancreatic islet cells by dithizone staining method, and pancreatic β-cells were further identified by both morphological features and electrophysiological characteristics, i.e. the existence of recording currents from KATP, KV, and KCA. CONCLUSION: Islet cells differentiated from neonatal pancreatic duct cells with the new natural protocol are more advantageous in performing patch clamp study over the isolated adult pancreatic islet cells. PMID:16437601

  12. Larval hemolymph of rhinoceros beetle, Allomyrina dichotoma, enhances insulin secretion through ATF3 gene expression in INS-1 pancreatic β-cells.

    PubMed

    Kim, Seung-Whan; Suh, Hyun-Woo; Yoo, Bo-Kyung; Kwon, Kisang; Yu, Kweon; Choi, Ji-Young; Kwon, O-Yu

    2018-05-22

    In this study, we show that INS-1 pancreatic β-cells treated for 2 h with hemolymph of larvae of rhinoceros beetle, Allomyrina dichotoma, secreted about twice as much insulin compared to control cells without such treatment. Activating transcription factor 3 (ATF3) was the highest upregulated gene in DNA chip analysis. The A. dichotoma hemolymph dose-dependently induced increased expression levels of genes encoding ATF3 and insulin. Conversely, treatment with ATF3 siRNA inhibited expression levels of both genes and curbed insulin secretion. These results suggest that the A. dichotoma hemolymph has potential for treating and preventing diabetes or diabetes-related complications.

  13. Non-alcoholic fatty liver disease and impaired proinsulin conversion as newly identified predictors of the long-term non-response to a lifestyle intervention for diabetes prevention: results from the TULIP study.

    PubMed

    Schmid, Vera; Wagner, Robert; Sailer, Corinna; Fritsche, Louise; Kantartzis, Konstantinos; Peter, Andreas; Heni, Martin; Häring, Hans-Ulrich; Stefan, Norbert; Fritsche, Andreas

    2017-12-01

    Lifestyle intervention is effective to prevent type 2 diabetes. However, a considerable long-term non-response occurs to a standard lifestyle intervention. We investigated which risk phenotypes at baseline and their changes during the lifestyle intervention predict long-term glycaemic non-response to the intervention. Of 300 participants at high risk for type 2 diabetes who participated in a 24 month lifestyle intervention with diet modification and increased physical activity, 190 participants could be re-examined after 8.7 ± 1.6 years. All individuals underwent a five-point 75 g OGTT and measurements of body fat compartments and liver fat content with MRI and spectroscopy at baseline, 9 and 24 months during the lifestyle intervention, and at long-term follow-up. Fasting proinsulin to insulin conversion (PI/I ratio) and insulin sensitivity and secretion were calculated from the OGTT. Non-response to lifestyle intervention was defined as no decrease in glycaemia, i.e. no decrease in AUC for glucose at 0-120 min during OGTT (AUCglucose 0-120 min ). Before the lifestyle intervention, 56% of participants had normal glucose regulation and 44% individuals had impaired fasting glucose and/or impaired glucose tolerance. At long-term follow-up, 11% had developed diabetes. Multivariable regression analysis with adjustment for age, sex, BMI and change in BMI during the lifestyle intervention revealed that baseline insulin secretion and insulin sensitivity, as well as change in insulin sensitivity during the lifestyle intervention, predicted long-term glycaemic control after 9 years. In addition, increased hepatic lipid content as well as impaired fasting proinsulin conversion at baseline were newly detected phenotypes that independently predicted long-term glycaemic control. Increased hepatic lipid content and impaired proinsulin conversion are new predictors, independent of change in body weight, for non-response to lifestyle intervention in addition to the confirmed factors, impaired insulin secretion and insulin sensitivity.

  14. Somatostatin Modulates Insulin-Degrading-Enzyme Metabolism: Implications for the Regulation of Microglia Activity in AD

    PubMed Central

    Tundo, Grazia; Ciaccio, Chiara; Sbardella, Diego; Boraso, Mariaserena; Viviani, Barbara; Coletta, Massimiliano; Marini, Stefano

    2012-01-01

    The deposition of β-amyloid (Aβ) into senile plaques and the impairment of somatostatin-mediated neurotransmission are key pathological events in the onset of Alzheimer's disease (AD). Insulin-degrading-enzyme (IDE) is one of the main extracellular protease targeting Aβ, and thus it represents an interesting pharmacological target for AD therapy. We show that the active form of somatostatin-14 regulates IDE activity by affecting its expression and secretion in microglia cells. A similar effect can also be observed when adding octreotide. Following a previous observation where somatostatin directly interacts with IDE, here we demonstrate that somatostatin regulates Aβ catabolism by modulating IDE proteolytic activity in IDE gene-silencing experiments. As a whole, these data indicate the relevant role played by somatostatin and, potentially, by analogue octreotide, in preventing Aβ accumulation by partially restoring IDE activity. PMID:22509294

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Er-Wen; Department of Forensic Pathology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou; Xue, Sheng-Jiang

    Highlights: • Levels of EEN expression paralleled with the rate of cell proliferation. • EEN was involved in the proliferation and survival of multiple myeloma (MM) cells. • EEN regulated the activity of IGF-1-Akt/mTOR pathway. • EEN regulated proliferation and survival of MM cells by enhancing IGF-1 secretion. - Abstract: The molecular mechanisms of multiple myeloma are not well defined. EEN is an endocytosis-regulating molecule. Here we report that EEN regulates the proliferation and survival of multiple myeloma cells, by regulating IGF-1 secretion. In the present study, we observed that EEN expression paralleled with cell proliferation, EEN accelerated cell proliferation,more » facilitated cell cycle transition from G1 to S phase by regulating cyclin-dependent kinases (CDKs) pathway, and delayed cell apoptosis via Bcl2/Bax-mitochondrial pathway. Mechanistically, we found that EEN was indispensable for insulin-like growth factor-1 (IGF-1) secretion and the activation of protein kinase B-mammalian target of rapamycin (Akt-mTOR) pathway. Exogenous IGF-1 overcame the phenotype of EEN depletion, while IGF-1 neutralization overcame that of EEN over-expression. Collectively, these data suggest that EEN may play a pivotal role in excessive cell proliferation and insufficient cell apoptosis of bone marrow plasma cells in multiple myeloma. Therefore, EEN may represent a potential diagnostic marker or therapeutic target for multiple myeloma.« less

  16. Insulin secretion and insulin action in non-insulin-dependent diabetes mellitus: which defect is primary?

    PubMed

    Reaven, G M

    1984-01-01

    Defects in both insulin secretion and insulin action exist in patients with non-insulin-dependent diabetes mellitus (NIDDM). The loss of the acute plasma insulin response to intravenous glucose is seen in patients with relatively mild degrees of fasting hyperglycemia, but patients with severe fasting hyperglycemia also demonstrate absolute hypoinsulinemia in response to an oral glucose challenge. In contrast, day-long circulating insulin levels are within normal limits even in severely hyperglycemic patients with NIDDM. The relationship between NIDDM and insulin action in NIDDM is less complex, and is a characteristic feature of the syndrome. This metabolic defect is independent of obesity, and the severity of the resistance to insulin-stimulated glucose uptake increases with magnitude of hyperglycemia. Control of hyperglycemia with exogenous insulin ameliorates the degree of insulin resistance, and reduction of insulin resistance with weight loss in obese patients with NIDDM leads to an enhanced insulin response. Since neither therapeutic intervention is capable of restoring all metabolic abnormalities to normal, these observations do not tell us which of these two defects is primarily responsible for the development of NIDDM. Similarly, the observation that most patients with impaired glucose tolerance are hyperinsulinemic and insulin resistant does not prove that insulin resistance is the primary defect in NIDDM. In conclusion, reduction in both insulin secretion and action is seen in patients with NIDDM, and the relationship between these two metabolic abnormalities is very complex.(ABSTRACT TRUNCATED AT 250 WORDS)

  17. Rp-cAMPS Prodrugs Reveal the cAMP Dependence of First-Phase Glucose-Stimulated Insulin Secretion

    PubMed Central

    Schwede, Frank; Chepurny, Oleg G.; Kaufholz, Melanie; Bertinetti, Daniela; Leech, Colin A.; Cabrera, Over; Zhu, Yingmin; Mei, Fang; Cheng, Xiaodong; Manning Fox, Jocelyn E.; MacDonald, Patrick E.; Genieser, Hans-G.; Herberg, Friedrich W.

    2015-01-01

    cAMP-elevating agents such as the incretin hormone glucagon-like peptide-1 potentiate glucose-stimulated insulin secretion (GSIS) from pancreatic β-cells. However, a debate has existed since the 1970s concerning whether or not cAMP signaling is essential for glucose alone to stimulate insulin secretion. Here, we report that the first-phase kinetic component of GSIS is cAMP-dependent, as revealed through the use of a novel highly membrane permeable para-acetoxybenzyl (pAB) ester prodrug that is a bioactivatable derivative of the cAMP antagonist adenosine-3′,5′-cyclic monophosphorothioate, Rp-isomer (Rp-cAMPS). In dynamic perifusion assays of human or rat islets, a step-wise increase of glucose concentration leads to biphasic insulin secretion, and under these conditions, 8-bromoadenosine-3′,5′-cyclic monophosphorothioate, Rp-isomer, 4-acetoxybenzyl ester (Rp-8-Br-cAMPS-pAB) inhibits first-phase GSIS by up to 80%. Surprisingly, second-phase GSIS is inhibited to a much smaller extent (≤20%). Using luciferase, fluorescence resonance energy transfer, and bioluminescence resonance energy transfer assays performed in living cells, we validate that Rp-8-Br-cAMPS-pAB does in fact block cAMP-dependent protein kinase activation. Novel effects of Rp-8-Br-cAMPS-pAB to block the activation of cAMP-regulated guanine nucleotide exchange factors (Epac1, Epac2) are also validated using genetically encoded Epac biosensors, and are independently confirmed in an in vitro Rap1 activation assay using Rp-cAMPS and Rp-8-Br-cAMPS. Thus, in addition to revealing the cAMP dependence of first-phase GSIS from human and rat islets, these findings establish a pAB-based chemistry for the synthesis of highly membrane permeable prodrug derivatives of Rp-cAMPS that act with micromolar or even nanomolar potency to inhibit cAMP signaling in living cells. PMID:26061564

  18. Role of the Transcription Factor Sox4 in Insulin Secretion and Impaired Glucose Tolerance

    PubMed Central

    Goldsworthy, Michelle; Hugill, Alison; Freeman, Helen; Horner, Emma; Shimomura, Kenju; Bogani, Debora; Pieles, Guido; Mijat, Vesna; Arkell, Ruth; Bhattacharya, Shoumo; Ashcroft, Frances M.; Cox, Roger D.

    2008-01-01

    OBJECTIVES— To identify, map, clone, and functionally validate a novel mouse model for impaired glucose tolerance and insulin secretion. RESEARCH DESIGN AND METHODS— Haploinsufficiency of the insulin receptor and associated mild insulin resistance has been used to sensitize an N-ethyl-N-nitrosourea (ENU) screen to identify novel mutations resulting in impaired glucose tolerance and diabetes. The new impaired glucose tolerance 4 (IGT4) model was selected using an intraperitoneal glucose tolerance test and inheritance of the phenotype confirmed by generation of backcross progeny. Segregation of the phenotype was correlated with genotype information to map the location of the gene and candidates sequenced for mutations. The function of the SRY-related high mobility group (HMG)-box 4 (Sox4) gene in insulin secretion was tested using another ENU allele and by small interfering RNA silencing in insulinoma cells. RESULTS— We describe two allelic autosomal dominant mutations in the highly conserved HMG box of the transcription factor Sox4. Previously associated with pancreas development, Sox4 mutations in the adult mouse result in an insulin secretory defect, which exhibits impaired glucose tolerance in association with insulin receptor+/−–induced insulin resistance. Elimination of the Sox4 transcript in INS1 and Min6 cells resulted in the abolition of glucose-stimulated insulin release similar to that observed for silencing of the key metabolic enzyme glucokinase. Intracellular calcium measurements in treated cells indicate that this defect lies downstream of the ATP-sensitive K+ channel (KATP channel) and calcium influx. CONCLUSIONS— IGT4 represents a novel digenic model of insulin resistance coupled with an insulin secretory defect. The Sox4 gene has a role in insulin secretion in the adult β-cell downstream of the KATP channel. PMID:18477811

  19. Exposures to arsenite and methylarsonite produce insulin resistance and impair insulin-dependent glycogen metabolism in hepatocytes.

    PubMed

    Zhang, Chongben; Fennel, Emily M J; Douillet, Christelle; Stýblo, Miroslav

    2017-12-01

    Environmental exposure to inorganic arsenic (iAs) has been shown to disturb glucose homeostasis, leading to diabetes. Previous laboratory studies have suggested several mechanisms that may underlie the diabetogenic effects of iAs exposure, including (i) inhibition of insulin signaling (leading to insulin resistance) in glucose metabolizing peripheral tissues, (ii) inhibition of insulin secretion by pancreatic β cells, and (iii) dysregulation of the methylation or expression of genes involved in maintenance of glucose or insulin metabolism and function. Published studies have also shown that acute or chronic iAs exposures may result in depletion of hepatic glycogen stores. However, effects of iAs on pathways and mechanisms that regulate glycogen metabolism in the liver have never been studied. The present study examined glycogen metabolism in primary murine hepatocytes exposed in vitro to arsenite (iAs 3+ ) or its methylated metabolite, methylarsonite (MAs 3+ ). The results show that 4-h exposures to iAs 3+ and MAs 3+ at concentrations as low as 0.5 and 0.2 µM, respectively, decreased glycogen content in insulin-stimulated hepatocytes by inhibiting insulin-dependent activation of glycogen synthase (GS) and by inducing activity of glycogen phosphorylase (GP). Further investigation revealed that both iAs 3+ and MAs 3+ inhibit insulin-dependent phosphorylation of protein kinase B/Akt, one of the mechanisms involved in the regulation of GS and GP by insulin. Thus, inhibition of insulin signaling (i.e., insulin resistance) is likely responsible for the dysregulation of glycogen metabolism in hepatocytes exposed to iAs 3+ and MAs 3+ . This study provides novel information about the mechanisms by which iAs exposure impairs glucose homeostasis, pointing to hepatic metabolism of glycogen as one of the targets.

  20. Inadequate vitamin D status: does it contribute to the disorders comprising syndrome 'X'?

    PubMed

    Boucher, B J

    1998-04-01

    Environmental factors are important in the aetiology of glucose intolerance, type II diabetes and IHD. The lack of vitamin D, which is necessary for adequate insulin secretion, relates demographically to increased risk of myocardial infarction. These disorders are connected, degenerative vascular disease increasing with glucose intolerance and diabetes and, with its risk factors, comprising syndrome 'X'. Evidence is presented suggesting that vitamin D deficiency may be an avoidable risk factor for syndrome 'X', adding another preventative measure to current recommendations which are aimed at reducing the worldwide epidemic of these disorders. Experimentally, vitamin D deficiency progressively reduces insulin secretion; glucose intolerance follows and becomes irreversible. Relationships between vitamin D status, glucose tolerance and 30 min insulin secretion during oral glucose tolerance tests are reported in British Asians; insulin secretion, but not glycaemia, improving with short-term supplementation. Studies showing reduction in blood pressure and in risk of heart attack and diabetes with exercise (usually outdoor), rarely consider the role of vitamin D status. Glycaemia and insulin secretion in elderly European men, however, relate to vitamin D status, independent of season or physical activity. Prolonged supplementation can improve glycaemia. Hypertension improves with vitamin D treatment with or without initial deficiency. Vitamin D status and climate are reviewed as risk factors for myocardial infarction; the risk reducing with altitude despite increasing cold. Glycaemia and fibrinogenaemia improve with insulin secretion increases in summer. Variation in vitamin D requirements could arise from genetic differences in vitamin D processing since bone density can vary with vitamin D-receptor genotype. Vitamin D receptors are present in islet beta cells and we report insulin secretion in healthy Asians differing profoundly with the Apa I genotype, being independent of vitamin D status. Those at risk of vitamin D deficiency include the elderly, those living indoors or having a covered-up style of dress, especially dark-skinned immigrants, and pregnant women, and these are groups recognized as being at increased risk of diabetes.

  1. Leptin in the interplay of inflammation, metabolism and immune system disorders.

    PubMed

    Abella, Vanessa; Scotece, Morena; Conde, Javier; Pino, Jesús; Gonzalez-Gay, Miguel Angel; Gómez-Reino, Juan J; Mera, Antonio; Lago, Francisca; Gómez, Rodolfo; Gualillo, Oreste

    2017-02-01

    Leptin is one of the most relevant factors secreted by adipose tissue and the forerunner of a class of molecules collectively called adipokines. Initially discovered in 1994, its crucial role as a central regulator in energy homeostasis has been largely described during the past 20 years. Once secreted into the circulation, leptin reaches the central and peripheral nervous systems and acts by binding and activating the long form of leptin receptor (LEPR), regulating appetite and food intake, bone mass, basal metabolism, reproductive function and insulin secretion, among other processes. Research on the regulation of different adipose tissues has provided important insights into the intricate network that links nutrition, metabolism and immune homeostasis. The neuroendocrine and immune systems communicate bi-directionally through common ligands and receptors during stress responses and inflammation, and control cellular immune responses in several pathological situations including immune-inflammatory rheumatic diseases. This Review discusses the latest findings regarding the role of leptin in the immune system and metabolism, with particular emphasis on its effect on autoimmune and/or inflammatory rheumatic diseases, such as rheumatoid arthritis and osteoarthritis.

  2. Metabolic function of the CTRP family of hormones

    PubMed Central

    Seldin, Marcus M.; Tan, Stefanie Y.; Wong, G. William

    2013-01-01

    Maintaining proper energy balance in mammals entails intimate crosstalk between various tissues and organs. These inter-organ communications are mediated, to a great extent, by secreted hormones that circulate in blood. Regulation of the complex metabolic networks by secreted hormones (e.g., insulin, glucagon, leptin, adiponectin, FGF21) constitutes an important mechanism governing the integrated control of whole-body metabolism. Disruption of hormone-mediated metabolic circuits frequently results in dysregulated energy metabolism and pathology. As part of an effort to identify novel metabolic hormones, we recently characterized a highly conserved family of fifteen secreted proteins, the C1q/TNF-related proteins (CTRP1–15). While related to adiponectin in sequence and structural organization, each CTRP has its own unique tissue expression profile and non-redundant function in regulating sugar and/or fat metabolism. Here, we summarize the current understanding of the physiological functions of CTRPs, emphasizing their metabolic roles. Future studies using gain-of-function and loss-of-function mouse models will provide greater mechanistic insights into the critical role CTRPs play in regulating systemic energy homeostasis. PMID:23963681

  3. A branched-chain amino acid metabolite drives vascular fatty acid transport and causes insulin resistance.

    PubMed

    Jang, Cholsoon; Oh, Sungwhan F; Wada, Shogo; Rowe, Glenn C; Liu, Laura; Chan, Mun Chun; Rhee, James; Hoshino, Atsushi; Kim, Boa; Ibrahim, Ayon; Baca, Luisa G; Kim, Esl; Ghosh, Chandra C; Parikh, Samir M; Jiang, Aihua; Chu, Qingwei; Forman, Daniel E; Lecker, Stewart H; Krishnaiah, Saikumari; Rabinowitz, Joshua D; Weljie, Aalim M; Baur, Joseph A; Kasper, Dennis L; Arany, Zoltan

    2016-04-01

    Epidemiological and experimental data implicate branched-chain amino acids (BCAAs) in the development of insulin resistance, but the mechanisms that underlie this link remain unclear. Insulin resistance in skeletal muscle stems from the excess accumulation of lipid species, a process that requires blood-borne lipids to initially traverse the blood vessel wall. How this trans-endothelial transport occurs and how it is regulated are not well understood. Here we leveraged PPARGC1a (also known as PGC-1α; encoded by Ppargc1a), a transcriptional coactivator that regulates broad programs of fatty acid consumption, to identify 3-hydroxyisobutyrate (3-HIB), a catabolic intermediate of the BCAA valine, as a new paracrine regulator of trans-endothelial fatty acid transport. We found that 3-HIB is secreted from muscle cells, activates endothelial fatty acid transport, stimulates muscle fatty acid uptake in vivo and promotes lipid accumulation in muscle, leading to insulin resistance in mice. Conversely, inhibiting the synthesis of 3-HIB in muscle cells blocks the ability of PGC-1α to promote endothelial fatty acid uptake. 3-HIB levels are elevated in muscle from db/db mice with diabetes and from human subjects with diabetes, as compared to those without diabetes. These data unveil a mechanism in which the metabolite 3-HIB, by regulating the trans-endothelial flux of fatty acids, links the regulation of fatty acid flux to BCAA catabolism, providing a mechanistic explanation for how increased BCAA catabolic flux can cause diabetes.

  4. CO2/HCO3−- and Calcium-regulated Soluble Adenylyl Cyclase as a Physiological ATP Sensor*

    PubMed Central

    Zippin, Jonathan H.; Chen, Yanqiu; Straub, Susanne G.; Hess, Kenneth C.; Diaz, Ana; Lee, Dana; Tso, Patrick; Holz, George G.; Sharp, Geoffrey W. G.; Levin, Lonny R.; Buck, Jochen

    2013-01-01

    The second messenger molecule cAMP is integral for many physiological processes. In mammalian cells, cAMP can be generated from hormone- and G protein-regulated transmembrane adenylyl cyclases or via the widely expressed and structurally and biochemically distinct enzyme soluble adenylyl cyclase (sAC). sAC activity is uniquely stimulated by bicarbonate ions, and in cells, sAC functions as a physiological carbon dioxide, bicarbonate, and pH sensor. sAC activity is also stimulated by calcium, and its affinity for its substrate ATP suggests that it may be sensitive to physiologically relevant fluctuations in intracellular ATP. We demonstrate here that sAC can function as a cellular ATP sensor. In cells, sAC-generated cAMP reflects alterations in intracellular ATP that do not affect transmembrane AC-generated cAMP. In β cells of the pancreas, glucose metabolism generates ATP, which corresponds to an increase in cAMP, and we show here that sAC is responsible for an ATP-dependent cAMP increase. Glucose metabolism also elicits insulin secretion, and we further show that sAC is necessary for normal glucose-stimulated insulin secretion in vitro and in vivo. PMID:24100033

  5. A disulfide-bond A oxidoreductase-like protein (DsbA-L) regulates adiponectin multimerization

    PubMed Central

    Liu, Meilian; Zhou, Lijun; Xu, Aimin; Lam, Karen S. L.; Wetzel, Michael D.; Xiang, Ruihua; Zhang, Jingjing; Xin, Xiaoban; Dong, Lily Q.; Liu, Feng

    2008-01-01

    Impairments in adiponectin multimerization lead to defects in adiponectin secretion and function and are associated with diabetes, yet the underlying mechanisms remain largely unknown. We have identified an adiponectin-interacting protein, previously named GST-kappa, by yeast 2-hybrid screening. The adiponectin-interacting protein contains 2 thioredoxin domains and has very little sequence similarity to other GST isoforms. However, this protein shares high sequence and secondary structure homology to bacterial disulfide-bond A oxidoreductase (DsbA) and is thus renamed DsbA-like protein (DsbA-L). DsbA-L is highly expressed in adipose tissue, and its expression level is negatively correlated with obesity in mice and humans. DsbA-L expression in 3T3-L1 adipocytes is stimulated by the insulin sensitizer rosiglitazone and inhibited by the inflammatory cytokine TNFα. Overexpression of DsbA-L promoted adiponectin multimerization while suppressing DsbA-L expression by RNAi markedly and selectively reduced adiponectin levels and secretion in 3T3-L1 adipocytes. Our results identify DsbA-L as a key regulator for adiponectin biosynthesis and uncover a potential new target for developing therapeutic drugs for the treatment of insulin resistance and its associated metabolic disorders. PMID:19011089

  6. Leptin as a Marker of Body Fat and Hyperinsulinemia in College Students

    ERIC Educational Resources Information Center

    Kempf, Angela M.; Strother, Myra L.; Li, Chaoyang; Kaur, Harsohena; Huang, Terry T-K.

    2006-01-01

    Little is known about obesity and insulin resistance in college students. Leptin is a hormone secreted by fat cells and has been shown to strongly correlate with both obesity and insulin resistance in children and adults. We investigated associations of leptin with insulin secretion and action in 119 normal-weight students aged 18-24 years. Leptin…

  7. Heterogeneous Contribution of Insulin Sensitivity and Secretion Defects to Gestational Diabetes Mellitus

    PubMed Central

    Powe, Camille E.; Allard, Catherine; Battista, Marie-Claude; Doyon, Myriam; Bouchard, Luigi; Ecker, Jeffrey L.; Perron, Patrice; Florez, Jose C.; Thadhani, Ravi

    2016-01-01

    OBJECTIVE To characterize physiologic subtypes of gestational diabetes mellitus (GDM). RESEARCH DESIGN AND METHODS Insulin sensitivity and secretion were estimated in 809 women at 24–30 weeks' gestation, using oral glucose tolerance test–based indices. In women with GDM (8.3%), defects in insulin sensitivity or secretion were defined below the 25th percentile in women with normal glucose tolerance (NGT). GDM subtypes were defined based on the defect(s) present. RESULTS Relative to women with NGT, women with predominant insulin sensitivity defects (51% of GDM) had higher BMI and fasting glucose, larger infants (birth weight z score 0.57 [−0.01 to 1.37] vs. 0.03 [−0.53 to 0.52], P = 0.001), and greater risk of GDM-associated adverse outcomes (57.6 vs. 28.2%, P = 0.003); differences were independent of BMI. Women with predominant insulin secretion defects (30% of GDM) had BMI, fasting glucose, infant birth weights, and risk of adverse outcomes similar to those in women with NGT. CONCLUSIONS Heterogeneity of physiologic processes underlying hyperglycemia exists among women with GDM. GDM with impaired insulin sensitivity confers a greater risk of adverse outcomes. PMID:27208340

  8. Mangiferin induces islet regeneration in aged mice through regulating p16INK4a

    PubMed Central

    Liu, Yilong; Huai, Guoli; Sun, Minghan; Deng, Shaoping; Yang, Hongji; Tong, Rongsheng; Wang, Yi

    2018-01-01

    Previous studies by our group on mangiferin demonstrated that it exerts an antihyperglycemic effect through the regulation of cell cycle proteins in 3-month-old, partially pancreatectomized (PPx) mice. However, β-cell proliferation is known to become severely restricted with advanced age. Therefore, it is unknown whether mangiferin is able to reverse the diabetic condition and retain β-cell regeneration capability in aged mice. In the present study, 12-month-old C57BL/6J mice that had undergone PPx were subjected to mangiferin treatment (90 mg/kg) for 28 days. Mangiferin-treated aged mice exhibited decreased blood glucose levels and increased glucose tolerance, which was accompanied with higher serum insulin levels when compared with those in untreated PPx control mice. In addition, islet hyperplasia, elevated β-cell proliferation and reduced β-cell apoptosis were also identified in the mice that received mangiferin treatment. Further studies on the mRNA transcript and protein expression levels indicated comparatively increased levels of cyclins D1 and D2 and cyclin-dependent kinase 4 in mangiferin-treated mice, while the levels of p27Kip1 and p16INK4a were decreased relative to those in the untreated PPx controls. Of note, mangiferin treatment improved the proliferation rate of islet β-cells in adult mice overexpressing p16INK4a, suggesting that mangiferin induced β-cell proliferation via the regulation of p16INK4a. In addition, the mRNA transcription levels of critical genes associated with insulin secretion, including pancreatic and duodenal homeobox 1, glucose transporter 2 and glucokinase, were observed to be upregulated after mangiferin treatment. Taken together, it was indicated that mangiferin treatment significantly induced β-cell proliferation and inhibited β-cell apoptosis by regulating cell cycle checkpoint proteins. Furthermore, mangiferin was also demonstrated to regulate genes associated with insulin secretion. Collectively these, results suggest the therapeutic potential of mangiferin in the treatment of diabetes in aged individuals. PMID:29512742

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heart, Emma; Palo, Meridith; Womack, Trayce

    Pancreatic β-cells release insulin in response to elevation of glucose from basal (4–7 mM) to stimulatory (8–16 mM) levels. Metabolism of glucose by the β-cell results in the production of low levels of reactive oxygen intermediates (ROI), such as hydrogen peroxide (H{sub 2}O{sub 2}), a newly recognized coupling factor linking glucose metabolism to insulin secretion. However, high and toxic levels of H{sub 2}O{sub 2} inhibit insulin secretion. Menadione, which produces H{sub 2}O{sub 2} via redox cycling mechanism in a dose-dependent manner, was investigated for its effect on β-cell metabolism and insulin secretion in INS-1 832/13, a rat β-cell insulinoma cellmore » line, and primary rodent islets. Menadione-dependent redox cycling and resulting H{sub 2}O{sub 2} production under stimulatory glucose exceeded several-fold those reached at basal glucose. This was paralleled by a differential effect of menadione (0.1–10 μM) on insulin secretion, which was enhanced at basal, but inhibited at stimulatory glucose. Redox cycling of menadione and H{sub 2}O{sub 2} formation was dependent on glycolytically-derived NADH, as inhibition of glycolysis and application of non-glycogenic insulin secretagogues did not support redox cycling. In addition, activity of plasma membrane electron transport, a system dependent in part on glycolytically-derived NADH, was also inhibited by menadione. Menadione-dependent redox cycling was sensitive to the NQO1 inhibitor dicoumarol and the flavoprotein inhibitor diphenylene iodonium, suggesting a role for NQO1 and other oxidoreductases in this process. These data may explain the apparent dichotomy between the stimulatory and inhibitory effects of H{sub 2}O{sub 2} and menadione on insulin secretion. -- Highlights: ► Menadione stimulation or inhibition of insulin secretion is dependent upon applied glucose levels. ► Menadione-dependent H{sub 2}O{sub 2} production is proportional to applied glucose levels. ► Quinone-mediated redox cycling is dependent on glycolysis.« less

  10. Investigation of intracellular signalling cascades mediating stimulatory effect of a Gymnema sylvestre extract on insulin secretion from isolated mouse and human islets of Langerhans.

    PubMed

    Al-Romaiyan, A; Liu, B; Docherty, R; Huang, G-C; Amiel, S; Persaud, S J; Jones, P M

    2012-12-01

    Traditional plant-based remedies such as Gymnema sylvestre (GS) extracts have been used to treat diabetes mellitus for many centuries. We have shown previously that a novel GS extract, OSA®, has a direct effect on insulin secretion but its mode of action has not been studied in detail Thus this study investigated the possible underlying mechanism(s) by which OSA® exerts its action. The effects of OSA® on [Ca(2+)]i and K(+) conductances were assessed by Ca(2+) microfluorimetry and electrophysiology in dispersed mouse islets and MIN6 β-cells, respectively. Isolated mouse (from 20 to 25 mice) and human (from 3 donors) islets, and MIN6 β-cells, were used to investigate whether the stimulatory effect of OSA® on insulin secretion was dependent on the presence of extracellular calcium and protein kinase activation. OSA ®-induced insulin secretion from mouse islets and MIN6 β-cells was inhibited by nifedipine, a voltage-gated Ca(2+) channel blocker, and by the removal of extracellular Ca(2+), respectively. OSA® did not affect the activities of KATP channels or voltage-dependent K(+) channels in MIN6 β-cells but it caused an increase in intracellular Ca(2+) ([Ca(2+)]i) concentrations in Fura-2-loaded mouse islet cells. The insulin secretagogue effect of OSA® was dependent, in part, on protein kinase activation since incubating mouse or human islets with staurosporine, a general protein kinase inhibitor, resulted in partial inhibition of OSA®-induced insulin secretion. Experiments using permeabilized, Ca(2+)-clamped MIN6 β-cells revealed a Ca(2+)-independent component action of OSA® at a late stage in the stimulus-response coupling pathway. OSA®-induced insulin secretion was unexpectedly associated with a decrease in intracellular cAMP levels. These data indicate that the GS isolate OSA® stimulates insulin secretion from mouse and human islets in vitro, at least in part as a consequence of Ca(2+) influx and protein kinase activation. © 2012 Blackwell Publishing Ltd.

  11. Role of endogenously released cholecystokinin in determining postprandial insulin levels in man: effects of loxiglumide, a specific cholecystokinin receptor antagonist.

    PubMed

    Baum, F; Nauck, M A; Ebert, R; Cantor, P; Hoffmann, G; Choudhury, A R; Schmidt, W E; Creutzfeldt, W

    1992-01-01

    To estimate the contribution of postprandial cholecystokinin (CCK) responses to circulating insulin concentrations and insulin secretion, a specific CCK receptor antagonist (loxiglumide; 10 mg/kg body weight/h) or saline were infused intravenously in normal volunteers, beginning 90 min before insulin secretion was stimulated on separate occasions by the intraduodenal administrations of glucose, glucose and protein, and glucose plus protein with the admixture of pancreatin. The release of CCK (radioimmunoassay) was stimulated by the protein component of the nutrients from basal 2.4 +/- 0.4 to 8.0 +/- 1.2 pmol/l. CCK plasma levels were significantly higher with loxiglumide (p < 0.05). Glucose-dependent insulinotropic polypeptide (GIP) was also released by all nutrient mixtures. Loxiglumide significantly inhibited the amount of bilirubin and pancreatic enzymes recovered from duodenal aspirates. In contrast, in none of the experiments, C-peptide increments and hence insulin secretion rates were altered by loxiglumide. With glucose and protein as intraduodenal stimulus (no pancreatin added), the plasma amino acids rose significantly less (by approximately 50% of the control experiment) and the increment in insulin (but not C-peptide) concentrations was significantly reduced by loxiglumide. This is most likely explained by a change in insulin metabolic clearance. This effect cannot be a primary action of CCK because there was no similar effect of loxiglumide with the same intraduodenal stimulus plus added pancreatin. Pancreatic enzymes reduced maldigestion secondary to loxiglumide effects on pancreatic exocrine secretion: The increment in circulating amino acid concentrations was similar with and without loxiglumide. In conclusion, CCK does not alter insulin secretion and, therefore, is not an incretin hormone in man. Blocking CCK actions on the exocrine pancreas by loxiglumide, however, can secondarily cause reductions in postprandial insulin profiles by altering insulin clearance. These changes are possibly related to reductions in circulating amino acid concentrations.

  12. Characterization of Acyl-CoA Synthetase Isoforms In Pancreatic Beta Cells: Gene Silencing Shows Participation of ACSL3 and ACSL4 In Insulin Secretion

    PubMed Central

    Ansari, Israr-ul H.; Longacre, Melissa J.; Stoker, Scott W.; Kendrick, Mindy A.; O’Neill, Lucas M.; Zitur, Laura J.; Fernandez, Luis A.; Ntambi, James M.; MacDonald, Michael J.

    2017-01-01

    Long-chain acyl-CoA synthetases (ACSLs) convert fatty acids to fatty acyl-CoAs to regulate various physiologic processes. We characterized the ACSL isoforms in a cell line of homogeneous rat beta cells (INS-1 832/13 cells) and human pancreatic islets. ACSL4 and ACSL3 proteins were present in the beta cells and human and rat pancreatic islets and concentrated in insulin secretory granules and less in mitochondria and negligible in other intracellular organelles. ACSL1 and ACSL6 proteins were not seen in INS-1 832/13 cells or pancreatic islets. ACSL5 protein was seen only in INS-1 832/13 cells. With shRNA-mediated gene silencing we developed stable ACSL knockdown cell lines from INS-1 832/13 cells. Glucose-stimulated insulin release was inhibited ~ 50% with ACSL4 and ACSL3 knockdown and unaffected in cell lines with knockdown of ACSL5, ACLS6 and ACSL1. Lentivirus shRNA-mediated gene silencing of ACSL4 and ACSL3 in human pancreatic islets inhibited glucose-stimulated insulin release. ACSL4 and ACSL3 knockdown cells showed inhibition of ACSL enzyme activity more with arachidonate than with palmitate as a substrate, consistent with their preference for unsaturated fatty acids as substrates. ACSL4 knockdown changed the patterns of fatty acids in phosphatidylserines and phosphatidylethanolamines. The results show the involvement of ACLS4 and ACLS3 in insulin secretion. PMID:28193492

  13. Betacellulin ameliorates hyperglycemia in obese diabetic db/db mice.

    PubMed

    Oh, Yoon Sin; Shin, Seungjin; Li, Hui Ying; Park, Eun-Young; Lee, Song Mi; Choi, Cheol Soo; Lim, Yong; Jung, Hye Seung; Jun, Hee-Sook

    2015-11-01

    We found that administration of a recombinant adenovirus (rAd) expressing betacellulin (BTC) into obese diabetic db/db mice ameliorated hyperglycemia. Exogenous glucose clearance was significantly improved, and serum insulin levels were significantly higher in rAd-BTC-treated mice than rAd-β-gal-treated control mice. rAd-BTC treatment increased insulin/bromodeoxyuridine double-positive cells in the islets, and islets from rAd-BTC-treated mice exhibited a significant increase in the level of G1-S phase-related cyclins as compared with control mice. In addition, BTC treatment increased messenger RNA (mRNA) and protein levels of these cyclins and cyclin-dependent kinases in MIN-6 cells. BTC treatment induced intracellular Ca(2+) levels through phospholipase C-γ1 activation, and upregulated calcineurin B (CnB1) levels as well as calcineurin activity. Upregulation of CnB1 by BTC treatment was observed in isolated islet cells from db/db mice. When treated with CnB1 small interfering RNA (siRNA) in MIN-6 cells and isolated islets, induction of cell cycle regulators by BTC treatment was blocked and consequently reduced BTC-induced cell viability. As well as BTC's effects on cell survival and insulin secretion, our findings demonstrate a novel pathway by which BTC controls beta-cell regeneration in the obese diabetic condition by regulating G1-S phase cell cycle expression through Ca(2+) signaling pathways. Administration of BTC to db/db mice results in amelioration of hyperglycemia. BTC stimulates beta-cell proliferation in db/db mice. Ca(2+) signaling was involved in BTC-induced beta-cell proliferation. BTC has an anti-apoptotic effect and potentiates glucose-stimulated insulin secretion.

  14. Pancreas-Specific Sirt1-Deficiency in Mice Compromises Beta-Cell Function without Development of Hyperglycemia.

    PubMed

    Pinho, Andreia V; Bensellam, Mohammed; Wauters, Elke; Rees, Maxine; Giry-Laterriere, Marc; Mawson, Amanda; Ly, Le Quan; Biankin, Andrew V; Wu, Jianmin; Laybutt, D Ross; Rooman, Ilse

    2015-01-01

    Sirtuin 1 (Sirt1) has been reported to be a critical positive regulator of glucose-stimulated insulin secretion in pancreatic beta-cells. The effects on islet cells and blood glucose levels when Sirt1 is deleted specifically in the pancreas are still unclear. This study examined islet glucose responsiveness, blood glucose levels, pancreatic islet histology and gene expression in Pdx1Cre; Sirt1ex4F/F mice that have loss of function and loss of expression of Sirt1 specifically in the pancreas. We found that in the Pdx1Cre; Sirt1ex4F/F mice, the relative insulin positive area and the islet size distribution were unchanged. However, beta-cells were functionally impaired, presenting with lower glucose-stimulated insulin secretion. This defect was not due to a reduced expression of insulin but was associated with a decreased expression of the glucose transporter Slc2a2/Glut2 and of the Glucagon like peptide-1 receptor (Glp1r) as well as a marked down regulation of endoplasmic reticulum (ER) chaperones that participate in the Unfolded Protein Response (UPR) pathway. Counter intuitively, the Sirt1-deficient mice did not develop hyperglycemia. Pancreatic polypeptide (PP) cells were the only other islet cells affected, with reduced numbers in the Sirt1-deficient pancreas. This study provides new mechanistic insights showing that beta-cell function in Sirt1-deficient pancreas is affected due to altered glucose sensing and deregulation of the UPR pathway. Interestingly, we uncovered a context in which impaired beta-cell function is not accompanied by increased glycemia. This points to a unique compensatory mechanism. Given the reduction in PP, investigation of its role in the control of blood glucose is warranted.

  15. Role of Medium- and Short-Chain L-3-Hydroxyacyl-CoA Dehydrogenase in the Regulation of Body Weight and Thermogenesis

    PubMed Central

    Schulz, Nadja; Himmelbauer, Heinz; Rath, Michaela; van Weeghel, Michel; Houten, Sander; Kulik, Wim; Suhre, Karsten; Scherneck, Stephan; Vogel, Heike; Kluge, Reinhart; Wiedmer, Petra; Joost, Hans-Georg

    2011-01-01

    Dysregulation of fatty acid oxidation plays a pivotal role in the pathophysiology of obesity and insulin resistance. Medium- and short-chain-3-hydroxyacyl-coenzyme A (CoA) dehydrogenase (SCHAD) (gene name, hadh) catalyze the third reaction of the mitochondrial β-oxidation cascade, the oxidation of 3-hydroxyacyl-CoA to 3-ketoacyl-CoA, for medium- and short-chain fatty acids. We identified hadh as a putative obesity gene by comparison of two genome-wide scans, a quantitative trait locus analysis previously performed in the polygenic obese New Zealand obese mouse and an earlier described small interfering RNA-mediated mutagenesis in Caenorhabditis elegans. In the present study, we show that mice lacking SCHAD (hadh−/−) displayed a lower body weight and a reduced fat mass in comparison with hadh+/+ mice under high-fat diet conditions, presumably due to an impaired fuel efficiency, the loss of acylcarnitines via the urine, and increased body temperature. Food intake, total energy expenditure, and locomotor activity were not altered in knockout mice. Hadh−/− mice exhibited normal fat tolerance at 20 C. However, during cold exposure, knockout mice were unable to clear triglycerides from the plasma and to maintain their normal body temperature, indicating that SCHAD plays an important role in adaptive thermogenesis. Blood glucose concentrations in the fasted and postprandial state were significantly lower in hadh−/− mice, whereas insulin levels were elevated. Accordingly, insulin secretion in response to glucose and glucose plus palmitate was elevated in isolated islets of knockout mice. Therefore, our data indicate that SCHAD is involved in thermogenesis, in the maintenance of body weight, and in the regulation of nutrient-stimulated insulin secretion. PMID:21990309

  16. Aerobic Exercise Training Attenuates Tumor Growth and Reduces Insulin Secretion in Walker 256 Tumor-Bearing Rats

    PubMed Central

    Moreira, Veridiana Mota; da Silva Franco, Claudinéia Conationi; Prates, Kelly Valério; Gomes, Rodrigo Mello; de Moraes, Ana Maria Praxedes; Ribeiro, Tatiane Aparecida; Martins, Isabela Peixoto; Previate, Carina; Pavanello, Audrei; Matiusso, Camila Cristina Ianoni; Almeida, Douglas Lopes; Francisco, Flávio Andrade; Malta, Ananda; Tófolo, Laize Peron; da Silva Silveira, Sandra; Saavedra, Lucas Paulo Jacinto; Machado, Katia; da Silva, Paulo Henrique Olivieri; Fabrício, Gabriel S.; Palma-Rigo, Kesia; de Souza, Helenir Medri; de Fátima Silva, Flaviane; Biazi, Giuliana Regina; Pereira, Taís Susane; Vieira, Elaine; Miranda, Rosiane Aparecida; de Oliveira, Júlio Cezar; da Costa Lima, Luiz Delmar; Rinaldi, Wilson; Ravanelli, Maria Ida; de Freitas Mathias, Paulo Cezar

    2018-01-01

    Aerobic exercise training can improve insulin sensitivity in many tissues; however, the relationship among exercise, insulin, and cancer cell growth is unclear. We tested the hypothesis that aerobic exercise training begun during adolescence can attenuate Walker 256 tumor growth in adult rats and alter insulin secretion. Thirty-day-old male Wistar rats engaged in treadmill running for 8 weeks, 3 days/week, 44 min/day, at 55–65% VO2max until they were 90 days old (TC, Trained Control). An equivalently aged group was kept inactive during the same period (SC, Sedentary Control). Then, half the animals of the SC and TC groups were reserved as the control condition and the other half were inoculated with Walker 256 cancer cells, yielding two additional groups (Sedentary Walker and Trained Walker). Zero mortalities were observed in tumor-bearing rats. Body weight (BW), food intake, plasma glucose, insulin levels, and peripheral insulin sensitivity were analyzed before and after tumor cell inoculation. We also evaluated tumor growth, metastasis and cachexia. Isolated pancreatic islets secretory activity was analyzed. In addition, we evaluated mechanic sensibility. Our results showed improved physical performance according to the final workload and VO2max and reduced BW in trained rats at the end of the running protocol. Chronic adaptation to the aerobic exercise training decreased tumor weight, cachexia and metastasis and were associated with low glucose and insulin levels and high insulin sensitivity before and after tumor cell inoculation. Aerobic exercise started at young age also reduced pancreatic islet insulin content and insulin secretion in response to a glucose stimulus, without impairing islet morphology in trained rats. Walker 256 tumor-bearing sedentary rats also presented reduced pancreatic islet insulin content, without changing insulin secretion through isolated pancreatic islets. The mechanical sensitivity test indicated that aerobic exercise training did not cause injury or trigger inflammatory processes prior to tumor cell inoculation. Taken together, the current study suggests that aerobic exercise training applied during adolescence may mitigate tumor growth and related disorders in Walker 256 tumor-bearing adult rats. Improved insulin sensibility, lower glucose and insulin levels and/or reduced insulin secretion stimulated by glucose may be implicated in this tumor attenuation.

  17. Aerobic Exercise Training Attenuates Tumor Growth and Reduces Insulin Secretion in Walker 256 Tumor-Bearing Rats.

    PubMed

    Moreira, Veridiana Mota; da Silva Franco, Claudinéia Conationi; Prates, Kelly Valério; Gomes, Rodrigo Mello; de Moraes, Ana Maria Praxedes; Ribeiro, Tatiane Aparecida; Martins, Isabela Peixoto; Previate, Carina; Pavanello, Audrei; Matiusso, Camila Cristina Ianoni; Almeida, Douglas Lopes; Francisco, Flávio Andrade; Malta, Ananda; Tófolo, Laize Peron; da Silva Silveira, Sandra; Saavedra, Lucas Paulo Jacinto; Machado, Katia; da Silva, Paulo Henrique Olivieri; Fabrício, Gabriel S; Palma-Rigo, Kesia; de Souza, Helenir Medri; de Fátima Silva, Flaviane; Biazi, Giuliana Regina; Pereira, Taís Susane; Vieira, Elaine; Miranda, Rosiane Aparecida; de Oliveira, Júlio Cezar; da Costa Lima, Luiz Delmar; Rinaldi, Wilson; Ravanelli, Maria Ida; de Freitas Mathias, Paulo Cezar

    2018-01-01

    Aerobic exercise training can improve insulin sensitivity in many tissues; however, the relationship among exercise, insulin, and cancer cell growth is unclear. We tested the hypothesis that aerobic exercise training begun during adolescence can attenuate Walker 256 tumor growth in adult rats and alter insulin secretion. Thirty-day-old male Wistar rats engaged in treadmill running for 8 weeks, 3 days/week, 44 min/day, at 55-65% VO 2max until they were 90 days old (TC, Trained Control). An equivalently aged group was kept inactive during the same period (SC, Sedentary Control). Then, half the animals of the SC and TC groups were reserved as the control condition and the other half were inoculated with Walker 256 cancer cells, yielding two additional groups (Sedentary Walker and Trained Walker). Zero mortalities were observed in tumor-bearing rats. Body weight (BW), food intake, plasma glucose, insulin levels, and peripheral insulin sensitivity were analyzed before and after tumor cell inoculation. We also evaluated tumor growth, metastasis and cachexia. Isolated pancreatic islets secretory activity was analyzed. In addition, we evaluated mechanic sensibility. Our results showed improved physical performance according to the final workload and VO 2max and reduced BW in trained rats at the end of the running protocol. Chronic adaptation to the aerobic exercise training decreased tumor weight, cachexia and metastasis and were associated with low glucose and insulin levels and high insulin sensitivity before and after tumor cell inoculation. Aerobic exercise started at young age also reduced pancreatic islet insulin content and insulin secretion in response to a glucose stimulus, without impairing islet morphology in trained rats. Walker 256 tumor-bearing sedentary rats also presented reduced pancreatic islet insulin content, without changing insulin secretion through isolated pancreatic islets. The mechanical sensitivity test indicated that aerobic exercise training did not cause injury or trigger inflammatory processes prior to tumor cell inoculation. Taken together, the current study suggests that aerobic exercise training applied during adolescence may mitigate tumor growth and related disorders in Walker 256 tumor-bearing adult rats. Improved insulin sensibility, lower glucose and insulin levels and/or reduced insulin secretion stimulated by glucose may be implicated in this tumor attenuation.

  18. From the Cover: Cell-replacement therapy for diabetes: Generating functional insulin-producing tissue from adult human liver cells

    NASA Astrophysics Data System (ADS)

    Sapir, Tamar; Shternhall, Keren; Meivar-Levy, Irit; Blumenfeld, Tamar; Cohen, Hamutal; Skutelsky, Ehud; Eventov-Friedman, Smadar; Barshack, Iris; Goldberg, Iris; Pri-Chen, Sarah; Ben-Dor, Lya; Polak-Charcon, Sylvie; Karasik, Avraham; Shimon, Ilan; Mor, Eytan; Ferber, Sarah

    2005-05-01

    Shortage in tissue availability from cadaver donors and the need for life-long immunosuppression severely restrict the large-scale application of cell-replacement therapy for diabetic patients. This study suggests the potential use of adult human liver as alternate tissue for autologous beta-cell-replacement therapy. By using pancreatic and duodenal homeobox gene 1 (PDX-1) and soluble factors, we induced a comprehensive developmental shift of adult human liver cells into functional insulin-producing cells. PDX-1-treated human liver cells express insulin, store it in defined granules, and secrete the hormone in a glucose-regulated manner. When transplanted under the renal capsule of diabetic, immunodeficient mice, the cells ameliorated hyperglycemia for prolonged periods of time. Inducing developmental redirection of adult liver offers the potential of a cell-replacement therapy for diabetics by allowing the patient to be the donor of his own insulin-producing tissue. pancreas | transdifferentiation

  19. Effect of Diacerein on Insulin Secretion and Metabolic Control in Drug-Naïve Patients With Type 2 Diabetes

    PubMed Central

    Ramos-Zavala, Maria G.; González-Ortiz, Manuel; Martínez-Abundis, Esperanza; Robles-Cervantes, José A.; González-López, Roberto; Santiago-Hernández, Nestor J.

    2011-01-01

    OBJECTIVE To assess the effect of diacerein on insulin secretion and metabolic control in drug-naïve patients with type 2 diabetes. RESEARCH DESIGN AND METHODS A randomized, double-blind, placebo-controlled clinical trial was carried out in 40 drug-naïve adult patients with type 2 diabetes. A metabolic profile including interleukin (IL)-1β, tumor necrosis factor-α, IL-6, and fasting insulin levels was carried out before the intervention and 2 months afterward. A hyperglycemic-hyperinsulinemic clamp technique was performed to assess the phases of insulin secretion and insulin sensitivity. After randomization, 20 patients received diacerein (50 mg once daily) for the first 15 days and twice daily for 45 additional days. The remaining patients received placebo. Intra- and intergroup differences were calculated by Wilcoxon signed rank and Mann-Whitney U tests. RESULTS There were significant increases in first (102 ± 63 vs. 130 ± 75 pmol/L; P < 0.01), late (219 ± 111 vs. 280 ± 135 pmol/L; P < 0.01), and total insulin (178 ± 91 vs. 216 ± 99 pmol/L; P < 0.01) secretions without changes in insulin sensitivity after diacerein administration. There were significant decreases in fasting glucose (7.9 ± 1.4 vs. 6.8 ± 1.0 mmol/L; P < 0.01) and in A1C levels (8.3 ± 1.0 vs. 7.0 ± 0.8%; P < 0.001) after diacerein administration. There were no significant changes after placebo administration in the above-mentioned evaluations. CONCLUSIONS Insulin secretion increased and metabolic control improved after diacerein administration in drug-naïve patients with type 2 diabetes. PMID:21610123

  20. Incretin hormone receptors are required for normal beta cell development and function in female mice.

    PubMed

    Omar, Bilal; Ahlkvist, Linda; Yamada, Yuchiro; Seino, Yutaka; Ahrén, Bo

    2016-05-01

    The incretin hormones, glucose dependent insulinotropic polypeptide (GIP) and glucagon-like peptide 1 (GLP-1), potentiate insulin secretion and are responsible for the majority of insulin secretion that occurs after a meal. They may also, however, have a fundamental role in pancreatic beta cell development and function, independently of their role in potentiating insulin secretion after a meal. This has led to observations that a loss of GIP or GLP-1 action affects normal beta cell function, however each one of the incretin hormones may compensate when the action of the other is lost and therefore the overall impact of the incretin hormones on beta cell function is not known. We therefore utilized a mouse line deficient in both the GLP-1 and GIP receptor genes, the double incretin receptor knockout (DIRKO), to determine the consequences of a lifelong, complete lack of incretin hormone action on beta cell function, in vivo, in intact animals. We found that DIRKO mice displayed impaired glucose tolerance and insulin secretion in response to both oral glucose and mixed meal tolerance tests compared to wild-type mice. Assessment of beta cell function using the hyperglycemic clamp technique revealed an 80% decrease in first phase insulin response in DIRKO mice, but a normal second phase insulin secretion. A similar decline was seen when wild-type mice were given acute intravenous injection of glucose together with the GLP-1 receptor antagonist Ex9-39. Ex vivo assessments of the pancreas revealed significantly fewer islets in the pancreata of DIRKO mice despite no differences in total pancreatic mass. Insulin secretion from isolated islets of DIRKO mice was impaired to a similar extent to that seen during the hyperglycemic clamp. Insulin secretion in wild-type islets was impaired by acute treatment with Ex9-39 to a similar extent as the in vivo intravenous glucose tolerance tests. In conclusion, a loss of the action of both incretin hormones results in direct impairment of beta cell function both in vivo and in vitro in a process that appears to be independent of the intestinally secreted incretin hormones. We therefore conclude that the incretin hormones together significantly impact both beta-cell function and beta-cell development. Copyright © 2016. Published by Elsevier Inc.

Top