Wang, Yang; Liu, Liping; Moore, Daniel J; Shen, Xi; Peek, Richard M.; Acra, Sari A; Li, Hui; Ren, Xiubao; Polk, D Brent; Yan, Fang
2016-01-01
p40, a Lactobacillus rhamnosus GG (LGG)-derived protein, transactivates epidermal growth factor receptor (EGFR) in intestinal epithelial cells, leading to amelioration of intestinal injury and inflammation. To elucidate mechanisms by which p40 regulates mucosal immunity to prevent inflammation, this study aimed to determine the effects and mechanisms of p40 on regulation of a proliferation-inducing ligand (APRIL) expression in intestinal epithelial cells for promoting IgA production. p40 up-regulated April gene expression and protein production in mouse small intestine epithelial (MSIE) cells, which were inhibited by blocking EGFR expression and kinase activity. Enteroids from Egfrfl/fl , but not Egfrfl/fl-Vil-Cre mice with EGFR specifically deleted in intestinal epithelial cells, exhibited increased April gene expression by p40 treatment. p40-conditioned media from MSIE cells increased B cell class switching to IgA+ cells and IgA production, which was suppressed by APRIL receptor neutralizing antibodies. Treatment of B cells with p40 did not show any effects on IgA production. p40 treatment increased April gene expression and protein production in small intestinal epithelial cells, fecal IgA levels, IgA+B220+, IgA+CD19+, and IgA+ plasma cells in lamina propria of Egfrfl/fl, but not Egfrfl/fl-Vil-Cre mice. Thus, p40 up-regulates EGFR-dependent APRIL production in intestinal epithelial cells, which may contribute to promoting IgA production. PMID:27353252
Baranwal, Somesh
2015-01-01
Adherens junctions (AJs) and tight junctions (TJs) are crucial regulators of the integrity and restitution of the intestinal epithelial barrier. The structure and function of epithelial junctions depend on their association with the cortical actin cytoskeleton that, in polarized epithelial cells, is represented by a prominent perijunctional actomyosin belt. The assembly and stability of the perijunctional cytoskeleton is controlled by constant turnover (disassembly and reassembly) of actin filaments. Actin-interacting protein (Aip) 1 is an emerging regulator of the actin cytoskeleton, playing a critical role in filament disassembly. In this study, we examined the roles of Aip1 in regulating the structure and remodeling of AJs and TJs in human intestinal epithelium. Aip1 was enriched at apical junctions in polarized human intestinal epithelial cells and normal mouse colonic mucosa. Knockdown of Aip1 by RNA interference increased the paracellular permeability of epithelial cell monolayers, decreased recruitment of AJ/TJ proteins to steady-state intercellular contacts, and attenuated junctional reassembly in a calcium-switch model. The observed defects of AJ/TJ structure and functions were accompanied by abnormal organization and dynamics of the perijunctional F-actin cytoskeleton. Moreover, loss of Aip1 impaired the apico-basal polarity of intestinal epithelial cell monolayers and inhibited formation of polarized epithelial cysts in 3-D Matrigel. Our findings demonstrate a previously unanticipated role of Aip1 in regulating the structure and remodeling of intestinal epithelial junctions and early steps of epithelial morphogenesis. PMID:25792565
Lechuga, Susana; Baranwal, Somesh; Ivanov, Andrei I
2015-05-01
Adherens junctions (AJs) and tight junctions (TJs) are crucial regulators of the integrity and restitution of the intestinal epithelial barrier. The structure and function of epithelial junctions depend on their association with the cortical actin cytoskeleton that, in polarized epithelial cells, is represented by a prominent perijunctional actomyosin belt. The assembly and stability of the perijunctional cytoskeleton is controlled by constant turnover (disassembly and reassembly) of actin filaments. Actin-interacting protein (Aip) 1 is an emerging regulator of the actin cytoskeleton, playing a critical role in filament disassembly. In this study, we examined the roles of Aip1 in regulating the structure and remodeling of AJs and TJs in human intestinal epithelium. Aip1 was enriched at apical junctions in polarized human intestinal epithelial cells and normal mouse colonic mucosa. Knockdown of Aip1 by RNA interference increased the paracellular permeability of epithelial cell monolayers, decreased recruitment of AJ/TJ proteins to steady-state intercellular contacts, and attenuated junctional reassembly in a calcium-switch model. The observed defects of AJ/TJ structure and functions were accompanied by abnormal organization and dynamics of the perijunctional F-actin cytoskeleton. Moreover, loss of Aip1 impaired the apico-basal polarity of intestinal epithelial cell monolayers and inhibited formation of polarized epithelial cysts in 3-D Matrigel. Our findings demonstrate a previously unanticipated role of Aip1 in regulating the structure and remodeling of intestinal epithelial junctions and early steps of epithelial morphogenesis. Copyright © 2015 the American Physiological Society.
Chandrakesan, Parthasarathy; May, Randal; Weygant, Nathaniel; Qu, Dongfeng; Berry, William L; Sureban, Sripathi M; Ali, Naushad; Rao, Chinthalapally; Huycke, Mark; Bronze, Michael S; Houchen, Courtney W
2016-11-23
Crypt epithelial survival and regeneration after injury require highly coordinated complex interplay between resident stem cells and diverse cell types. The function of Dclk1 expressing tuft cells regulating intestinal epithelial DNA damage response for cell survival/self-renewal after radiation-induced injury is unclear. Intestinal epithelial cells (IECs) were isolated and purified and utilized for experimental analysis. We found that small intestinal crypts of Villin Cre ;Dclk1 f/f mice were hypoplastic and more apoptotic 24 h post-total body irradiation, a time when stem cell survival is p53-independent. Injury-induced ATM mediated DNA damage response, pro-survival genes, stem cell markers, and self-renewal ability for survival and restitution were reduced in the isolated intestinal epithelial cells. An even greater reduction in these signaling pathways was observed 3.5 days post-TBI, when peak crypt regeneration occurs. We found that interaction with Dclk1 is critical for ATM and COX2 activation in response to injury. We determined that Dclk1 expressing tuft cells regulate the whole intestinal epithelial cells following injury through paracrine mechanism. These findings suggest that intestinal tuft cells play an important role in regulating the ATM mediated DNA damage response, for epithelial cell survival/self-renewal via a Dclk1 dependent mechanism, and these processes are indispensable for restitution and function after severe radiation-induced injury.
Zinc Transporter SLC39A7/ZIP7 Promotes Intestinal Epithelial Self-Renewal by Resolving ER Stress
Ohashi, Wakana; Kimura, Shunsuke; Iwanaga, Toshihiko; Furusawa, Yukihiro; Irié, Tarou; Izumi, Hironori; Watanabe, Takashi; Hara, Takafumi; Ohara, Osamu; Koseki, Haruhiko; Sato, Toshiro; Robine, Sylvie; Mori, Hisashi; Hattori, Yuichi; Mishima, Kenji; Ohno, Hiroshi; Hase, Koji; Fukada, Toshiyuki
2016-01-01
Zinc transporters play a critical role in spatiotemporal regulation of zinc homeostasis. Although disruption of zinc homeostasis has been implicated in disorders such as intestinal inflammation and aberrant epithelial morphology, it is largely unknown which zinc transporters are responsible for the intestinal epithelial homeostasis. Here, we show that Zrt-Irt-like protein (ZIP) transporter ZIP7, which is highly expressed in the intestinal crypt, is essential for intestinal epithelial proliferation. Mice lacking Zip7 in intestinal epithelium triggered endoplasmic reticulum (ER) stress in proliferative progenitor cells, leading to significant cell death of progenitor cells. Zip7 deficiency led to the loss of Olfm4+ intestinal stem cells and the degeneration of post-mitotic Paneth cells, indicating a fundamental requirement for Zip7 in homeostatic intestinal regeneration. Taken together, these findings provide evidence for the importance of ZIP7 in maintenance of intestinal epithelial homeostasis through the regulation of ER function in proliferative progenitor cells and maintenance of intestinal stem cells. Therapeutic targeting of ZIP7 could lead to effective treatment of gastrointestinal disorders. PMID:27736879
MiR-29a promotes intestinal epithelial apoptosis in ulcerative colitis by down-regulating Mcl-1.
Lv, Bo; Liu, Zhihui; Wang, Shuping; Liu, Fengbin; Yang, Xiaojun; Hou, Jiangtao; Hou, Zhengkun; Chen, Bin
2014-01-01
While it's widely accepted that the etiology of ulcerative colitis (UC) involves both genetic and environmental factors, the pathogenesis of ulcerative colitis is still poorly understood. Intestinal epithelial apoptosis is one of the most common histopathological changes of UC and the expression of a number of apoptosis genes may contribute to the progression of UC. MicroRNAs have recently emerged as powerful regulators of diverse cellular processes and have been shown to be involved in many immune-mediated disorders such as psoriasis, rheumatoid arthritis, lupus, and asthma. A unique microRNA expression profile has been identified in UC, suggesting that, microRNAs play an important role in the pathogenesis of UC. We investigated the role of miR-29a in intestinal epithelial apoptosis in UC. The expression of miR-29a and Mcl-1, an anti-apoptotic BCL-2 family member, was evaluated in both UC patients and UC mice model induced by dextran sodium sulfate (DSS). The apoptosis rate of intestinal epithelial cells was also evaluated. In UC patients and DSS-induced UC in mice, the expression of miR-29a and Mcl-1, were up-regulated and down-regulated, respectively. We identified a miR-29a binding site (7 nucleotides) on the 3'UTR of mcl-1 and mutation in this binding site on the 3'UTR of mcl-1 led to mis-match between miR-29a and mcl-1. Knockout of Mcl-1 caused apoptosis of the colonic epithelial HT29 cells. In addition, miR-29a regulated intestinal epithelial apoptosis by down-regulating the expression of Mcl-1. miR-29a is involved in the pathogenesis of UC by regulating intestinal epithelial apoptosis via Mcl-1.
YAN, FANG; CAO, HANWEI; COVER, TIMOTHY L.; WHITEHEAD, ROBERT; WASHINGTON, M. KAY; POLK, D. BRENT
2011-01-01
Background & Aims Increased inflammatory cytokine levels and intestinal epithelial cell apoptosis leading to disruption of epithelial integrity are major pathologic factors in inflammatory bowel diseases. The probiotic bacterium Lactobacillus rhamnosus GG (LGG) and factors recovered from LGG broth culture supernatant (LGG-s) prevent cytokine-induced apoptosis in human and mouse intestinal epithelial cells by regulating signaling pathways. Here, we purify and characterize 2 secreted LGG proteins that regulate intestinal epithelial cell antiapoptotic and proliferation responses. Methods LGG proteins were purified from LGG-s, analyzed, and used to generate polyclonal antibodies for immunodepletion of respective proteins from LGG-conditioned cell culture media (CM). Mouse colon epithelial cells and cultured colon explants were treated with purified proteins in the absence or presence of tumor necrosis factor (TNF). Akt activation, proliferation, tissue injury, apoptosis, and caspase-3 activation were determined. Results We purified 2 novel proteins, p75 (75 kilodaltons) and p40 (40 kilodaltons), from LGG-s. Each of these purified protein preparations activated Akt, inhibited cytokine-induced epithelial cell apoptosis, and promoted cell growth in human and mouse colon epithelial cells and cultured mouse colon explants. TNF-induced colon epithelial damage was significantly reduced by p75 and p40. Immunodepletion of p75 and p40 from LGG-CM reversed LGG-CM activation of Akt and its inhibitory effects on cytokine-induced apoptosis and loss of intestinal epithelial cells. Conclusions p75 and p40 are the first probiotic bacterial proteins demonstrated to promote intestinal epithelial homeostasis through specific signaling pathways. These findings suggest that probiotic bacterial components may be useful for preventing cytokine-mediated gastrointestinal diseases. PMID:17258729
A vesicle trafficking protein αSNAP regulates Paneth cell differentiation in vivo.
Lechuga, Susana; Naydenov, Nayden G; Feygin, Alex; Jimenez, Antonio J; Ivanov, Andrei I
2017-05-13
A soluble N-ethylmaleimide-sensitive factor-attachment protein alpha (αSNAP) is a multifunctional scaffolding protein that regulates intracellular vesicle trafficking and signaling. In cultured intestinal epithelial cells, αSNAP has been shown to be essential for cell survival, motility, and adhesion; however, its physiologic functions in the intestinal mucosa remain unknown. In the present study, we used a mouse with a spontaneous hydrocephalus with hop gait (hyh) mutation of αSNAP to examine the roles of this trafficking protein in regulating intestinal epithelial homeostasis in vivo. Homozygous hyh mice demonstrated decreased expression of αSNAP protein in the intestinal epithelium, but did not display gross abnormalities of epithelial architecture in the colon and ileum. Such αSNAP depletion attenuated differentiation of small intestinal epithelial enteroids ex vivo. Furthermore, αSNAP-deficient mutant animals displayed reduced formation of lysozyme granules in small intestinal crypts and decreased expression of lysozyme and defensins in the intestinal mucosa, which is indicative of defects in Paneth cell differentiation. By contrast, development of Goblet cells, enteroendocrine cells, and assembly of enterocyte apical junctions was not altered in hyh mutant mice. Our data revealed a novel role of αSNAP in the intestinal Paneth cell differentiation in vivo. Copyright © 2017 Elsevier Inc. All rights reserved.
A VESICLE TRAFFICKING PROTEIN αSNAP REGULATES PANETH CELL DIFFERENTIATION IN VIVO
Lechuga, Susana; Naydenov, Nayden G.; Feygin, Alex; Jimenez, Antonio J.; Ivanov, Andrei I.
2017-01-01
A soluble N-ethylmaleimide-sensitive factor-attachment protein alpha (αSNAP) is a multifunctional scaffolding protein that regulates intracellular vesicle trafficking and signaling. In cultured intestinal epithelial cells, αSNAP has been shown to be essential for cell survival, motility, and adhesion; however, its physiologic functions in the intestinal mucosa remain unknown. In the present study, we used a mouse with a spontaneous hydrocephalus with hop gait (hyh) mutation of αSNAP to examine the roles of this trafficking protein in regulating intestinal epithelial homeostasis in vivo. Homozygous hyh mice demonstrated decreased expression of αSNAP protein in the intestinal epithelium, but did not display gross abnormalities of epithelial architecture in the colon and ileum. Such αSNAP depletion attenuated differentiation of small intestinal epithelial enteroids ex vivo. Furthermore, αSNAP-deficient mutant animals displayed reduced formation of lysozyme granules in small intestinal crypts and decreased expression of lysozyme and defensins in the intestinal mucosa, which is indicative of defects in Paneth cell differentiation. By contrast, development of Goblet cells, enteroendocrine cells, and assembly of enterocyte apical junctions was not altered in hyh mutant mice. Our data revealed a novel role of αSNAP in the intestinal Paneth cell differentiation in vivo. PMID:28359759
Dalton, Jane E; Cruickshank, Sheena M; Egan, Charlotte E; Mears, Rainy; Newton, Darren J; Andrew, Elizabeth M; Lawrence, Beth; Howell, Gareth; Else, Kathryn J; Gubbels, Marc-Jan; Striepen, Boris; Smith, Judith E; White, Stanley J; Carding, Simon R
2006-09-01
Intestinal epithelial integrity and permeability is dependent on intercellular tight junction (TJ) complexes. How TJ integrity is regulated remains unclear, although phosphorylation and dephosphorylation of the integral membrane protein occludin is an important determinant of TJ formation and epithelial permeability. We have investigated the role intestinal intraepithelial lymphocytes (iIELs) play in regulating epithelial permeability in response to infection. Recombinant strains of Toxoplasma gondii were used to assess intestinal epithelial barrier function and TJ integrity in mice with intact or depleted populations of iIELs. Alterations in epithelial permeability were correlated with TJ structure and the state of phosphorylation of occludin. iIEL in vivo reconstitution experiments were used to identify the iIELs required to maintain epithelial permeability and TJ integrity. In the absence of gammadelta+ iIELs, intestinal epithelial barrier function and the ability to restrict epithelial transmigration of Toxoplasma and the unrelated intracellular bacterial pathogen Salmonella typhimurium was severely compromised. Leaky epithelium in gammadelta+ iIEL-deficient mice was associated with the absence of phosphorylation of serine residues of occludin and lack of claudin 3 and zona occludens-1 proteins in TJ complexes. These deficiencies were attributable to the absence of a single subset of gammadelta T-cell receptor (TCR-Vgamma7+) iIELs that, after reconstituting gammadelta iIEL-deficient mice, restored epithelial barrier function and TJ complexes, resulting in increased resistance to infection. These findings identify a novel role for gammadelta+ iIELs in maintaining TJ integrity and epithelial barrier function that have implications for understanding the pathogenesis of intestinal inflammatory diseases associated with disruption of TJ complexes.
Sumagin, Ronen; Parkos, Charles A
2014-01-01
Epithelial adhesion molecules play essential roles in regulating cellular function and maintaining mucosal tissue homeostasis. Some form epithelial junctional complexes to provide structural support for epithelial monolayers and act as a selectively permeable barrier separating luminal contents from the surrounding tissue. Others serve as docking structures for invading viruses and bacteria, while also regulating the immune response. They can either obstruct or serve as footholds for the immune cells recruited to mucosal surfaces. Currently, it is well appreciated that adhesion molecules collectively serve as environmental cue sensors and trigger signaling events to regulate epithelial function through their association with the cell cytoskeleton and various intracellular adapter proteins. Immune cells, particularly neutrophils (PMN) during transepithelial migration (TEM), can modulate adhesion molecule expression, conformation, and distribution, significantly impacting epithelial function and tissue homeostasis. This review discusses the roles of key intestinal epithelial adhesion molecules in regulating PMN trafficking and outlines the potential consequences on epithelial function. PMID:25838976
Protein tyrosine phosphatase non-receptor type 2 and inflammatory bowel disease.
Spalinger, Marianne R; McCole, Declan F; Rogler, Gerhard; Scharl, Michael
2016-01-21
Genome wide association studies have associated single nucleotide polymorphisms within the gene locus encoding protein tyrosine phosphatase non-receptor type 2 (PTPN2) with the onset of inflammatory bowel disease (IBD) and other inflammatory disorders. Expression of PTPN2 is enhanced in actively inflamed intestinal tissue featuring a marked up-regulation in intestinal epithelial cells. PTPN2 deficient mice suffer from severe intestinal and systemic inflammation and display aberrant innate and adaptive immune responses. In particular, PTPN2 is involved in the regulation of inflammatory signalling cascades, and critical for protecting intestinal epithelial barrier function, regulating innate and adaptive immune responses, and finally for maintaining intestinal homeostasis. On one hand, dysfunction of PTPN2 has drastic effects on innate host defence mechanisms, including increased secretion of pro-inflammatory cytokines, limited autophagosome formation in response to invading pathogens, and disruption of the intestinal epithelial barrier. On the other hand, PTPN2 function is crucial for controlling adaptive immune functions, by regulating T cell proliferation and differentiation as well as maintaining T cell tolerance. In this way, dysfunction of PTPN2 contributes to the manifestation of IBD. The aim of this review is to present an overview of recent findings on the role of PTPN2 in intestinal homeostasis and the impact of dysfunctional PTPN2 on intestinal inflammation.
Reid, Graham K; Berardinelli, Andrew J; Ray, Laurie; Jackson, Arena R; Neish, Andrew S; Hansen, Jason M; Denning, Patricia W
2017-08-01
BackgroundThe intracellular redox potential of the glutathione (GSH)/glutathione disulfide (GSSG) couple regulates cellular processes. In vitro studies indicate that a reduced GSH/GSSG redox potential favors proliferation, whereas a more oxidized redox potential favors differentiation. Intestinal growth depends upon an appropriate balance between the two. However, how the ontogeny of intestinal epithelial cellular (IEC) GSH/GSSG redox regulates these processes in the developing intestine has not been fully characterized in vivo.MethodsOntogeny of intestinal GSH redox potential and growth were measured in neonatal mice.ResultsWe show that IEC GSH/GSSG redox potential becomes increasingly reduced (primarily driven by increased GSH concentration) over the first 3 weeks of life. Increased intracellular GSH has been shown to drive proliferation through increased poly-ADP-ribose polymerase (PARP) activity. We show that increasing IEC poly-ADP-ribose chains can be measured over the first 3 weeks of life, indicating an increase in IEC PARP activity. These changes are accompanied by increased intestinal growth and IEC proliferation as assessed by villus height/crypt depth, intestinal length, and Ki67 staining.ConclusionUnderstanding how IEC GSH/GSSG redox potential is developmentally regulated may provide insight into how premature human intestinal redox states can be manipulated to optimize intestinal growth and adaptation.
USDA-ARS?s Scientific Manuscript database
Invasion of intestinal epithelial cells by Campylobacter jejuni is a critical step during infection of the human intestine by this important human pathogen. In this study we investigated the role played by DNA supercoiling in the regulation of invasion of epithelial cells and the mechanism by which ...
USDA-ARS?s Scientific Manuscript database
Interleukin (IL)-10 is an anti-inflammatory cytokine which regulates host innate immune response. Besides T cells which are the major source of IL-10, the intestinal epithelial cells (IECs) also have been shown to express IL-10 to maintain the epithelial integrity in mammals. In chickens, there is n...
Stroma provides an intestinal stem cell niche in the absence of epithelial Wnts.
Kabiri, Zahra; Greicius, Gediminas; Madan, Babita; Biechele, Steffen; Zhong, Zhendong; Zaribafzadeh, Hamed; Edison; Aliyev, Jamal; Wu, Yonghui; Bunte, Ralph; Williams, Bart O; Rossant, Janet; Virshup, David M
2014-06-01
Wnt/β-catenin signaling supports intestinal homeostasis by regulating proliferation in the crypt. Multiple Wnts are expressed in Paneth cells as well as other intestinal epithelial and stromal cells. Ex vivo, Wnts secreted by Paneth cells can support intestinal stem cells when Wnt signaling is enhanced with supplemental R-Spondin 1 (RSPO1). However, in vivo, the source of Wnts in the stem cell niche is less clear. Genetic ablation of Porcn, an endoplasmic reticulum resident O-acyltransferase that is essential for the secretion and activity of all vertebrate Wnts, confirmed the role of intestinal epithelial Wnts in ex vivo culture. Unexpectedly, mice lacking epithelial Wnt activity (Porcn(Del)/Villin-Cre mice) had normal intestinal proliferation and differentiation, as well as successful regeneration after radiation injury, indicating that epithelial Wnts are dispensable for these processes. Consistent with a key role for stroma in the crypt niche, intestinal stromal cells endogenously expressing Wnts and Rspo3 support the growth of Porcn(Del) organoids ex vivo without RSPO1 supplementation. Conversely, increasing pharmacologic PORCN inhibition, affecting both stroma and epithelium, reduced Lgr5 intestinal stem cells, inhibited recovery from radiation injury, and at the highest dose fully blocked intestinal proliferation. We conclude that epithelial Wnts are dispensable and that stromal production of Wnts can fully support normal murine intestinal homeostasis.
Intestinal epithelial wound healing assay in an epithelial-mesenchymal co-culture system.
Seltana, Amira; Basora, Nuria; Beaulieu, Jean-François
2010-01-01
Rapid and efficient healing of epithelial damage is critical to the functional integrity of the small intestine. Epithelial repair is a complex process that has largely been studied in cultured epithelium but to a much lesser extent in mucosa. We describe a novel method for the study of wound healing using a co-culture system that combined an intestinal epithelial Caco-2/15 cell monolayer cultured on top of human intestinal myofibroblasts, which together formed a basement membrane-like structure that contained many of the major components found at the epithelial-mesenchymal interface in the human intestine. To investigate the mechanism of restitution, small lesions were generated in epithelial cell monolayers on plastic or in co-cultures without disturbing the underlying mesenchymal layer. Monitoring of wound healing showed that repair was more efficient in Caco-2/15-myofibroblast co-cultures than in Caco-2/15 monolayers and involved the deposition of basement membrane components. Functional experiments showed that the addition of type I collagen or human fibronectin to the culture medium significantly accelerated wound closure on epithelial cell co-cultures. This system may provide a new tool to investigate the mechanisms that regulate wound healing in the intestinal epithelium.
USDA-ARS?s Scientific Manuscript database
The current study investigated the mechanism of immune regulation of IL-25 and the contribution of IL-25 to nematode infection-induced alterations in intestinal smooth muscle and epithelial cell function. Mice were infected with an enteric nematode or injected with IL-25 or IL-13. In vitro smooth m...
Ex vivo gut culture for studying differentiation and migration of small intestinal epithelial cells
Fu, Xing; Du, Min
2018-01-01
Epithelial cultures are commonly used for studying gut health. However, due to the absence of mesenchymal cells and gut structure, epithelial culture systems including recently developed three-dimensional organoid culture cannot accurately represent in vivo gut development, which requires intense cross-regulation of the epithelial layer with the underlying mesenchymal tissue. In addition, organoid culture is costly. To overcome this, a new culture system was developed using mouse embryonic small intestine. Cultured intestine showed spontaneous peristalsis, indicating the maintenance of the normal gut physiological structure. During 10 days of ex vivo culture, epithelial cells moved along the gut surface and differentiated into different epithelial cell types, including enterocytes, Paneth cells, goblet cells and enteroendocrine cells. We further used the established ex vivo system to examine the role of AMP-activated protein kinase (AMPK) on gut epithelial health. Tamoxifen-induced AMPKα1 knockout vastly impaired epithelial migration and differentiation of the developing ex vivo gut, showing the crucial regulatory function of AMPK α1 in intestinal health. PMID:29643147
The role of JAM-A in inflammatory bowel disease: unrevealing the ties that bind.
Vetrano, Stefania; Danese, Silvio
2009-05-01
Tight junctions (TJ) are junctional proteins whose function is to maintain an intact intestinal epithelial barrier and regulate the paracellular movement of water and solutes. Altered TJ structure and epithelial permeability are observed in inflammatory bowel disease and seem to have an important role in the pathogenesis of these diseases. Junctional adhesion molecule-A (JAM-A) is a protein expressed at tight junctions of epithelial and endothelial cells, as well as on circulating leukocytes. Its function at tight junctions appears to be crucial as an extracellular adhesive molecule in the direct regulation of intestinal barrier function. This review focuses on the role of JAM-A in controlling mucosal homeostasis by regulating the integrity and permeability of epithelial barrier function.
Regulation of Intestinal Epithelial Cells Properties and Functions by Amino Acids.
Kong, Shanshan; Zhang, Yanhui H; Zhang, Weiqiang
2018-01-01
Intestinal epithelial cells (IECs) line the surface of intestinal epithelium, where they play important roles in the digestion of food, absorption of nutrients, and protection of the human body from microbial infections, and others. Dysfunction of IECs can cause diseases. The development, maintenance, and functions of IECs are strongly influenced by external nutrition, such as amino acids. Amino acids play important roles in regulating the properties and functions of IECs. In this article, we briefly reviewed the current understanding of the roles of amino acids in the regulation of IECs' properties and functions in physiological state, including in IECs homeostasis (differentiation, proliferation, and renewal), in intestinal epithelial barrier structure and functions, and in immune responses. We also summarized some important findings on the effects of amino acids supplementation (e.g., glutamine and arginine) in restoring IECs' and intestine functions in some diseased states. These findings will further our understanding of the important roles of amino acids in the homeostasis of IECs and could potentially help identify novel targets and reagents for the therapeutic interventions of diseases associated with dysfunctional IECs.
Zundler, Sebastian; Caioni, Massimiliano; Müller, Martina; Strauch, Ulrike; Kunst, Claudia; Woelfel, Gisela
2016-01-01
Background Potassium channels have been shown to determine wound healing in different tissues, but their role in intestinal epithelial restitution–the rapid closure of superficial wounds by intestinal epithelial cells (IEC)–remains unclear. Methods In this study, the regulation of IEC migration by potassium channel modulation was explored with and without additional epidermal growth factor (EGF) under baseline and interferon-γ (IFN-γ)-pretreated conditions in scratch assays and Boyden chamber assays using the intestinal epithelial cell lines IEC-18 and HT-29. To identify possibly involved subcellular pathways, Western Blot (WB)-analysis of ERK and Akt phosphorylation was conducted and PI3K and ERK inhibitors were used in scratch assays. Furthermore, mRNA-levels of the potassium channel KCNN4 were determined in IEC from patients suffering from inflammatory bowel diseases (IBD). Results Inhibition of Ca2+-dependent potassium channels significantly increased intestinal epithelial restitution, which could not be further promoted by additional EGF. In contrast, inhibition of KCNN4 after pretreatment with IFN-γ led to decreased or unaffected migration. This effect was abolished by EGF. Changes in Akt, but not in ERK phosphorylation strongly correlated with these findings and PI3K but not ERK inhibition abrogated the effect of KCNN4 inhibition. Levels of KCNN4 mRNA were higher in samples from IBD patients compared with controls. Conclusions Taken together, we demonstrate that inhibition of KCNN4 differentially regulates IEC migration in IFN-γ-pretreated vs. non pretreated conditions. Moreover, our data propose that the PI3K signaling cascade is responsible for this differential regulation. Therefore, we present a cellular model that contributes new aspects to epithelial barrier dysfunction in chronic intestinal inflammation, resulting in propagation of inflammation and symptoms like ulcers or diarrhea. PMID:26824610
Murchie, Ryan; Guo, Cong-Hui; Persaud, Avinash; Muise, Aleixo; Rotin, Daniela
2014-01-01
Protein tyrosine phosphatase (PTP)σ (PTPRS) was shown previously to be associated with susceptibility to inflammatory bowel disease (IBD). PTPσ−/− mice exhibit an IBD-like phenotype in the intestine and show increased susceptibility to acute models of murine colitis. However, the function of PTPσ in the intestine is uncharacterized. Here, we show an intestinal epithelial barrier defect in the PTPσ−/− mouse, demonstrated by a decrease in transepithelial resistance and a leaky intestinal epithelium that was determined by in vivo tracer analysis. Increased tyrosine phosphorylation was observed at the plasma membrane of epithelial cells lining the crypts of the small bowel and colon of the PTPσ−/− mouse, suggesting the presence of PTPσ substrates in these regions. Using mass spectrometry, we identified several putative PTPσ intestinal substrates that were hyper–tyrosine-phosphorylated in the PTPσ−/− mice relative to wild type. Among these were proteins that form or regulate the apical junction complex, including ezrin. We show that ezrin binds to and is dephosphorylated by PTPσ in vitro, suggesting it is a direct PTPσ substrate, and identified ezrin-Y353/Y145 as important sites targeted by PTPσ. Moreover, subcellular localization of the ezrin phosphomimetic Y353E or Y145 mutants were disrupted in colonic Caco-2 cells, similar to ezrin mislocalization in the colon of PTPσ−/− mice following induction of colitis. Our results suggest that PTPσ is a positive regulator of intestinal epithelial barrier, which mediates its effects by modulating epithelial cell adhesion through targeting of apical junction complex-associated proteins (including ezrin), a process impaired in IBD. PMID:24385580
FAK Regulates Intestinal Epithelial Cell Survival and Proliferation during Mucosal Wound Healing
Tilghman, Robert W.; Casanova, James E.; Bouton, Amy H.
2011-01-01
Background Following damage to the intestinal epithelium, restoration of epithelial barrier integrity is triggered by a robust proliferative response. In other tissues, focal adhesion kinase (FAK) regulates many of the cellular processes that are critical for epithelial homeostasis and restitution, including cell migration, proliferation and survival. However, few studies to date have determined how FAK contributes to mucosal wound healing in vivo. Methodology and Principal Findings To examine the role of FAK in intestinal epithelial homeostasis and during injury, we generated intestinal epithelium (IE)-specific conditional FAK knockout mice. Colitis was induced with dextran-sulfate-sodium (DSS) and intestinal tissues were analyzed by immunohistochemistry and immunoblotting. While intestinal development occurred normally in mice lacking FAK, FAK-deficient animals were profoundly susceptible to colitis. The loss of epithelial FAK resulted in elevated p53 expression and an increased sensitivity to apoptosis, coincident with a failure to upregulate epithelial cell proliferation. FAK has been reported to function as a mechanosensor, inducing cyclin D1 expression and promoting cell cycle progression under conditions in which tissue/matrix stiffness is increased. Collagen deposition, a hallmark of inflammatory injury resulting in increased tissue rigidity, was observed in control and FAK knockout mice during colitis. Despite this fibrotic response, the colonic epithelium in FAK-deficient mice exhibited significantly reduced cyclin D1 expression, suggesting that proliferation is uncoupled from fibrosis in the absence of FAK. In support of this hypothesis, proliferation of Caco-2 cells increased proportionally with matrix stiffness in vitro only under conditions of normal FAK expression; FAK depleted cells exhibited reduced proliferation concomitant with attenuated cyclin D1 expression. Conclusions In the colon, FAK functions as a regulator of epithelial cell survival and proliferation under conditions of mucosal injury and a mechanosensor of tissue compliance, inducing repair-driven proliferation in the colonic epithelium through upregulation of cyclin D1. PMID:21887232
Erlotinib promotes endoplasmic reticulum stress-mediated injury in the intestinal epithelium
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fan, Lu; Hu, Lingna; Yang, Baofang
Erlotinib, a popular drug for treating non-small cell lung cancer (NSCLC), causes diarrhea in approximately 55% of patients receiving this drug. In the present study, we found that erlotinib induced barrier dysfunction in rat small intestine epithelial cells (IEC-6) by increasing epithelial permeability and down-regulating E-cadherin. The mRNA levels of various pro-inflammatory cytokines (Il-6, Il-25 and Il-17f) were increased after erlotinib treatment in IEC-6 cells. Erlotinib concentration- and time-dependently induced apoptosis and endoplasmic reticulum (ER) stress in both IEC-6 and human colon epithelial cells (CCD 841 CoN). Intestinal epithelial injury was also observed in male C57BL/6J mice administrated with erlotinib.more » Knockdown of C/EBP homologous protein (CHOP) with small interference RNA partially reversed erlotinib-induced apoptosis, production of IL-6 and down-regulation of E-cadherin in cultured intestinal epithelial cells. In conclusion, erlotinib caused ER stress-mediated injury in the intestinal epithelium, contributing to its side effects of diarrhea in patients. - Highlights: • Erlotinib destroyed barrier integrity both in vitro and in vivo. • Erlotinib induced inflammation both in vitro and in vivo. • Erlotinib induced apoptosis both in vitro and in vivo. • ER stress contributed to erlotinib-induced barrier dysfunction.« less
Epithelial stem cells and intestinal cancer.
Tan, Shawna; Barker, Nick
2015-06-01
The mammalian intestine is comprised of an epithelial layer that serves multiple functions in order to maintain digestive activity as well as intestinal homeostasis. This epithelial layer contains highly proliferative stem cells which facilitate its characteristic rapid regeneration. How these stem cells contribute to tissue repair and normal homeostasis are actively studied, and while we have a greater understanding of the molecular mechanisms and cellular locations that underlie stem cell regulation in this tissue, much still remains undiscovered. This review describes epithelial stem cells in both intestinal and non-intestinal tissues, as well as the strategies that have been used to further characterize the cells. Through a discussion of the current understanding of intestinal self-renewal and tissue regeneration in response to injury, we focus on how dysregulation of critical signaling pathways results in potentially oncogenic aberrations, and highlight issues that should be addressed in order for effective intestinal cancer therapies to be devised. Copyright © 2014 Elsevier Ltd. All rights reserved.
Yang, Zhengtao; Fu, Yunhe; Gong, Pengtao; Zheng, Jingtong; Liu, Li; Yu, Yuqiang; Li, Jianhua; Li, He; Yang, Ju; Zhang, Xichen
2015-08-01
Cryptosporidium parvum (C. parvum) is an intestinal parasite that causes diarrhea in neonatal calves. It results in significant morbidity of neonatal calves and economic losses for producers worldwide. Innate resistance against C. parvum is thought to depend on engagement of pattern recognition receptors. However, the role of innate responses to C. parvum has not been elucidated in bovine. The aim of this study was to evaluate the role of TLRs in host-cell responses during C. parvum infection of cultured bovine intestinal epithelial cells. The expressions of TLRs in bovine intestinal epithelial cells were detected by qRT-PCR. To determine which, if any, TLRs may play a role in the response of bovine intestinal epithelial cells to C. parvum, the cells were stimulated with C. parvum and the expression of TLRs were tested by qRT-PCR. The expression of NF-κB was detected by western blotting. Further analyses were carried out in bovine TLRs transfected HEK293 cells and by TLRs-DN transfected bovine intestinal epithelial cells. The results showed that bovine intestinal epithelial cells expressed all known TLRs. The expression of TLR2 and TLR4 were up-regulated when bovine intestinal epithelial cells were treated with C. parvum. Meanwhile, C. parvum induced IL-8 production in TLR2 or TLR4/MD-2 transfected HEK293 cells. Moreover, C. parvum induced NF-κB activation and cytokine expression in bovine intestinal epithelial cells. The induction of NF-κB activation and cytokine expression by C. parvum were reduced in TLR2-DN and TLR4-DN transfected cells. The results showed that bovine intestinal epithelial cells expressed all known TLRs, and bovine intestinal epithelial cells recognized and responded to C. parvum via TLR2 and TLR4. Copyright © 2015 Elsevier Ltd. All rights reserved.
Tran, Hoa T.; Barnich, Nicolas; Mizoguchi, Emiko
2011-01-01
Summary The small and large intestines contain an abundance of luminal antigens derived from food products and enteric microorganisms. The function of intestinal epithelial cells is tightly regulated by several factors produced by enteric bacteria and the epithelial cells themselves. Epithelial cells actively participate in regulating the homeostasis of intestine, and failure of this function leads to abnormal and host-microbial interactions resulting in the development of intestinal inflammation. Major determinants of host susceptibility against luminal commensal bacteria include genes regulating mucosal immune responses, intestinal barrier function and microbial defense. Of note, it has been postulated that commensal bacterial adhesion and invasion on/into host cells may be strongly involved in the pathogenesis of inflammatory bowel disease (IBD). During the intestinal inflammation, the composition of the commensal flora is altered, with increased population of aggressive and detrimental bacteria and decreased populations of protective bacteria. In fact, some pathogenic bacteria, including Adherent Invasive Escherichia coli, Listeria monocytogenes and Vibrio cholerae are likely to initiate their adhesion to the host cells by expressing accessory molecules such as chitinases and/or chitin-binding proteins on themselves. In addition, several inducible molecules (e.g., chitinase 3-like-1, CEACAM6) are also induced on the host cells (e.g. epithelial cells, lamina proprial macrophages) under inflammatory conditions, and are actively participated in the host-microbial interactions. In this review, we will summarize and discuss the potential roles of these important molecules during the development of acute and chronic inflammatory conditions. PMID:21938682
MiR-144 Increases Intestinal Permeability in IBS-D Rats by Targeting OCLN and ZO1.
Hou, Qiuke; Huang, Yongquan; Zhu, Shuilian; Li, Peiwu; Chen, Xinlin; Hou, Zhengkun; Liu, Fengbin
2017-01-01
Irritable bowel syndrome with diarrhoea (IBS-D) is a chronic, functional bowel disorder characterized by abdominal pain or diarrhoea and altered bowel habits, which correlate with intestinal hyperpermeability. MicroRNAs (miRNAs) are involved in regulating intestinal permeability in IBS-D. However, the role of miRNAs in regulating intestinal permeability and protecting the epithelial barrier remains unclear. Our goals were to (i) identify differential expression of miRNAs and their targets in the distal colon of IBS-D rats; (ii) verify in vitro whether occludin (OCLN) and zonula occludens 1 (ZO1/TJP1) were direct targets of miR-144 and were down-regulated in IBS-D rats; and (iii) determine whether down-regulation of miR-144 in vitro could reverse the pathological hallmarks of intestinal hyperpermeability via targeting OCLN and ZO1. The IBS-D rat model was established using 4% acetic acid and evaluated by haematoxylin-eosin (HE) staining. The distal colon was obtained in order to perform miRNA microarray analysis and to isolate and culture colonic epithelial cells. When differential expression of miRNA was found, the results were verified by qRT-PCR, and the target genes were further explored by bioinformatics analysis. Correlation analyses were carried out to compare the expression of miRNA and target genes. Then, mutants, miRNA mimics and inhibitors of the target genes were constructed and transfected to colonic epithelial cells. qRT-PCR, western blotting, enzyme-linked immunosorbent assays (ELISAs) and dual-luciferase assays were used to investigate the expression of miR-144 and OCLN, ZO1 in IBS-D rats. There were 8 up-regulated and 18 down-regulated miRNAs identified in the IBS-D rat model. Of these, miR-144 was markedly up-regulated and resulted in the down-regulation of OCLN and ZO1 expression. Overexpression of miR-144 by transfection of miR-144 precursor markedly inhibited the expression of OCLN and ZO1. Further studies confirmed that OCLN and ZO1 were direct targets of miR-144. Additionally, intestinal hyperpermeability was enhanced by miR-144 up-regulation and attenuated by miR-144 down-regulation in IBS-D rat colonic epithelial cells. Moreover, rescue experiments showed that overexpression of OCLN and ZO1 significantly eliminated the inhibitory effect of miR-144, which showed a stronger effect on the attenuation of intestinal hyperpermeability. Up-regulation of miR-144 could promote intestinal hyperpermeability and impair the protective effect of the epithelial barrier by directly targeting OCLN and ZO1. miR-144 is likely a key regulator of intestinal hyperpermeability and could be a potential therapeutic target for IBS-D. © 2017 The Author(s). Published by S. Karger AG, Basel.
Kang, Xin; Liang, Zhengkai; Zhan, Libin; Song, Jianbo; Wang, Yi; Yang, Yilun; Fan, Zhiwei; Bai, Lizhi
2017-01-01
Objective The aim of the present study was to examine whether Dai-Huang-Fu-Zi-Tang (DHFZT) could regulate mitochondrial permeability transition pore (MPTP) of intestinal mucosa epithelial cells for alleviating intestinal injury associated with severe acute pancreatitis (SAP). Methods A total of 72 Sprague-Dawley rats were randomly divided into 3 groups (sham group, SAP group, and DHFZT group, n = 24 per group). The rats in each group were divided into 4 subgroups (n = 6 per subgroup) accordingly at 1, 3, 6, and 12 h after the operation. The contents of serum amylase, D-lactic acid, diamine oxidase activity, and degree of MPTP were measured by dry chemical method and enzyme-linked immunosorbent assay. The change of mitochondria of intestinal epithelial cells was observed by transmission electron microscopy. Results The present study showed that DHFZT inhibited the openness of MPTP at 3, 6, and 12 h after the operation. Meanwhile, it reduced the contents of serum D-lactic acid and activity of diamine oxidase activity and also drastically relieved histopathological manifestations and epithelial cells injury of intestine. Conclusion DHFZT alleviates intestinal injury associated SAP via reducing the openness of MPTP. In addition, DHFZT could also decrease the content of serum diamine oxidase activity and D-lactic acid after SAP. PMID:29403537
Gao, Jin-Hang; Wen, Shi-Lei; Tong, Huan; Wang, Chun-Hui; Yang, Wen-Juan; Tang, Shi-Hang; Yan, Zhao-Ping; Tai, Yang; Ye, Cheng; Liu, Rui; Huang, Zhi-Yin; Tang, Ying-Mei; Yang, Jin-Hui; Tang, Cheng-Wei
2016-06-01
Inflammatory transport through the gut-liver axis may facilitate liver cirrhosis. Cyclooxygenase-2 (COX-2) has been considered as one of the important molecules that regulates intestinal epithelial barrier function. This study was aimed to test the hypothesis that inhibition of COX-2 by celecoxib might alleviate liver cirrhosis via reduction of intestinal inflammatory transport in thiacetamide (TAA) rat model. COX-2/prostaglandin E2 (PGE2)/EP-2/p-ERK integrated signal pathways regulated the expressions of intestinal zonula occludens-1 (ZO-1) and E-cadherin, which maintain the function of intestinal epithelial barrier. Celecoxib not only decreased the intestinal permeability to a 4-kDa FITC-dextran but also significantly increased expressions of ZO-1 and E-cadherin. When celecoxib greatly decreased intestinal levels of LPS, TNF-α, and IL-6, it significantly enhanced T cell subsets reduced by TAA. As a result, liver fibrosis induced by TAA was significantly alleviated in the celecoxib group. These data indicated that celecoxib improved the integrity of intestinal epithelial barrier, blocked inflammatory transport through the dysfunctional gut-liver axis, and ameliorated the progress of liver cirrhosis. Copyright © 2016 the American Physiological Society.
Robinson, J M; Henderson, W A
2018-01-12
We report a method using functional-molecular databases and network modelling to identify hypothetical mRNA-miRNA interaction networks regulating intestinal epithelial barrier function. The model forms a data-analysis component of our cell culture experiments, which produce RNA expression data from Nanostring Technologies nCounter ® system. The epithelial tight-junction (TJ) and actin cytoskeleton interact as molecular components of the intestinal epithelial barrier. Upstream regulation of TJ-cytoskeleton interaction is effected by the Rac/Rock/Rho signaling pathway and other associated pathways which may be activated or suppressed by extracellular signaling from growth factors, hormones, and immune receptors. Pathway activations affect epithelial homeostasis, contributing to degradation of the epithelial barrier associated with osmotic dysregulation, inflammation, and tumor development. The complexity underlying miRNA-mRNA interaction networks represents a roadblock for prediction and validation of competing-endogenous RNA network function. We developed a network model to identify hypothetical co-regulatory motifs in a miRNA-mRNA interaction network related to epithelial function. A mRNA-miRNA interaction list was generated using KEGG and miRWalk2.0 databases. R-code was developed to quantify and visualize inherent network structures. We identified a sub-network with a high number of shared, targeting miRNAs, of genes associated with cellular proliferation and cancer, including c-MYC and Cyclin D.
Ey, Birgit; Eyking, Annette; Gerken, Guido; Podolsky, Daniel K; Cario, Elke
2009-08-14
Gap junctional intercellular communication (GJIC) coordinates cellular functions essential for sustaining tissue homeostasis; yet its regulation in the intestine is not well understood. Here, we identify a novel physiological link between Toll-like receptor (TLR) 2 and GJIC through modulation of Connexin-43 (Cx43) during acute and chronic inflammatory injury of the intestinal epithelial cell (IEC) barrier. Data from in vitro studies reveal that TLR2 activation modulates Cx43 synthesis and increases GJIC via Cx43 during IEC injury. The ulcerative colitis-associated TLR2-R753Q mutant targets Cx43 for increased proteasomal degradation, impairing TLR2-mediated GJIC during intestinal epithelial wounding. In vivo studies using mucosal RNA interference show that TLR2-mediated mucosal healing depends functionally on intestinal epithelial Cx43 during acute inflammatory stress-induced damage. Mice deficient in TLR2 exhibit IEC-specific alterations in Cx43, whereas administration of a TLR2 agonist protects GJIC by blocking accumulation of Cx43 and its hyperphosphorylation at Ser368 to prevent spontaneous chronic colitis in MDR1alpha-deficient mice. Finally, adding the TLR2 agonist to three-dimensional intestinal mucosa-like cultures of human biopsies preserves intestinal epithelial Cx43 integrity and polarization ex vivo. In conclusion, Cx43 plays an important role in innate immune control of commensal-mediated intestinal epithelial wound repair.
Ey, Birgit; Eyking, Annette; Gerken, Guido; Podolsky, Daniel K.; Cario, Elke
2009-01-01
Gap junctional intercellular communication (GJIC) coordinates cellular functions essential for sustaining tissue homeostasis; yet its regulation in the intestine is not well understood. Here, we identify a novel physiological link between Toll-like receptor (TLR) 2 and GJIC through modulation of Connexin-43 (Cx43) during acute and chronic inflammatory injury of the intestinal epithelial cell (IEC) barrier. Data from in vitro studies reveal that TLR2 activation modulates Cx43 synthesis and increases GJIC via Cx43 during IEC injury. The ulcerative colitis-associated TLR2-R753Q mutant targets Cx43 for increased proteasomal degradation, impairing TLR2-mediated GJIC during intestinal epithelial wounding. In vivo studies using mucosal RNA interference show that TLR2-mediated mucosal healing depends functionally on intestinal epithelial Cx43 during acute inflammatory stress-induced damage. Mice deficient in TLR2 exhibit IEC-specific alterations in Cx43, whereas administration of a TLR2 agonist protects GJIC by blocking accumulation of Cx43 and its hyperphosphorylation at Ser368 to prevent spontaneous chronic colitis in MDR1α-deficient mice. Finally, adding the TLR2 agonist to three-dimensional intestinal mucosa-like cultures of human biopsies preserves intestinal epithelial Cx43 integrity and polarization ex vivo. In conclusion, Cx43 plays an important role in innate immune control of commensal-mediated intestinal epithelial wound repair. PMID:19528242
Yan, Fang; Cao, Hanwei; Cover, Timothy L.; Washington, M. Kay; Shi, Yan; Liu, LinShu; Chaturvedi, Rupesh; Peek, Richard M.; Wilson, Keith T.; Polk, D. Brent
2011-01-01
Probiotic bacteria can potentially have beneficial effects on the clinical course of several intestinal disorders, but our understanding of probiotic action is limited. We have identified a probiotic bacteria–derived soluble protein, p40, from Lactobacillus rhamnosus GG (LGG), which prevents cytokine-induced apoptosis in intestinal epithelial cells. In the current study, we analyzed the mechanisms by which p40 regulates cellular responses in intestinal epithelial cells and p40’s effects on experimental colitis using mouse models. We show that the recombinant p40 protein activated EGFR, leading to Akt activation. Activation of EGFR by p40 was required for inhibition of cytokine-induced apoptosis in intestinal epithelial cells in vitro and ex vivo. Furthermore, we developed a pectin/zein hydrogel bead system to specifically deliver p40 to the mouse colon, which activated EGFR in colon epithelial cells. Administration of p40-containing beads reduced intestinal epithelial apoptosis and disruption of barrier function in the colon epithelium in an EGFR-dependent manner, thereby preventing and treating DSS-induced intestinal injury and acute colitis. Furthermore, p40 activation of EGFR was required for ameliorating colon epithelial cell apoptosis and chronic inflammation in oxazolone-induced colitis. These data define what we believe to be a previously unrecognized mechanism of probiotic-derived soluble proteins in protecting the intestine from injury and inflammation. PMID:21606592
Hu, Jun; Chen, Lingli; Zheng, Wenyong; Shi, Min; Liu, Liu; Xie, Chunlin; Wang, Xinkai; Niu, Yaorong; Hou, Qiliang; Xu, Xiaofan; Xu, Baoyang; Tang, Yimei; Zhou, Shuyi; Yan, Yiqin; Yang, Tao; Ma, Libao; Yan, Xianghua
2018-01-01
Increased intestinal epithelial barrier function damages caused by early weaning stress have adverse effects on swine health and feed utilization efficiency. Probiotics have emerged as the promising antibiotic alternatives used for intestinal barrier function damage prevention. Our previous data showed that Lactobacillus frumenti was identified as a predominant Lactobacillus in the intestinal microbiota of weaned piglets. However, whether the intestinal epithelial barrier function in piglets was regulated by L. frumenti is still unclear. Here, piglets received a PBS vehicle or PBS suspension (2 ml, 108 CFU/ml) containing the L. frumenti by oral gavage once a day during the period of 6–20 days of age prior to early weaning. Our data demonstrated that oral administration of L. frumenti significantly improved the intestinal mucosal integrity and decreased the serum endotoxin and D-lactic acid levels in early-weaned piglets (26 days of age). The intestinal tight junction proteins (including ZO-1, Occludin, and Claudin-1) were significantly up-regulated by L. frumenti administration. The serum immunoglobulin G (IgG) levels, intestinal secretory immunoglobulin A (sIgA) levels, and interferon-γ (IFN-γ) levels were significantly increased by L. frumenti administration. Furthermore, our data revealed that oral administration of L. frumenti significantly increased the relative abundances of health-promoting microbes (including L. frumenti, Lactobacillus gasseri LA39, Parabacteroides distasonis, and Kazachstania telluris) and decreased the relative abundances of opportunistic pathogens (including Desulfovibrio desulfuricans and Candida humilis). Functional alteration of the intestinal bacterial community by L. frumenti administration was characterized by the significantly increased fatty acids and protein metabolism and decreased diseases-associated metabolic pathways. These findings suggest that L. frumenti facilitates intestinal epithelial barrier function maintenance in early-weaned piglets and may be a promising antibiotic alternative used for intestinal epithelial barrier function damage prevention in mammals. PMID:29867808
Oxygen in the regulation of intestinal epithelial transport
Ward, Joseph B J; Keely, Simon J; Keely, Stephen J
2014-01-01
The transport of fluid, nutrients and electrolytes to and from the intestinal lumen is a primary function of epithelial cells. Normally, the intestine absorbs approximately 9 l of fluid and 1 kg of nutrients daily, driven by epithelial transport processes that consume large amounts of cellular energy and O2. The epithelium exists at the interface of the richly vascularised mucosa, and the anoxic luminal environment and this steep O2 gradient play a key role in determining the expression pattern of proteins involved in fluid, nutrient and electrolyte transport. However, the dynamic nature of the splanchnic circulation necessitates that the epithelium can evoke co-ordinated responses to fluctuations in O2 availability, which occur either as a part of the normal digestive process or as a consequence of several pathophysiological conditions. While it is known that hypoxia-responsive signals, such as reactive oxygen species, AMP-activated kinase, hypoxia-inducible factors, and prolyl hydroxylases are all important in regulating epithelial responses to altered O2 supply, our understanding of the molecular mechanisms involved is still limited. Here, we aim to review the current literature regarding the role that O2 plays in regulating intestinal transport processes and to highlight areas of research that still need to be addressed. PMID:24710059
Si-Tahar, M; Merlin, D; Sitaraman, S; Madara, J L
2000-06-01
Epithelial cells participate in immune regulation and mucosal integrity by generating a range of biologically active mediators. In the intestine, little is known about the potential endogenous anti-inflammatory molecules. Secretory leukocyte proteinase inhibitor (SLPI) is a major serine proteinase inhibitor, a potent antibiotic, and thus a potential anti-inflammatory molecule, although it is not known if it is secreted by intestinal epithelial cells. We show, by reverse-transcription polymerase chain reaction, the presence of SLPI messenger RNA in human model intestinal epithelial cell lines (Caco2-BBE, T84, and HT29-Cl.19A) and human jejunum and colon biopsy specimens. The polymerase chain reaction product was cloned and sequenced and is identical to that of SLPI isolated previously from the human parotid gland. As analyzed by enzyme-linked immunosorbent assay, the constitutive secretion of SLPI occurs in a markedly polarized manner toward the apical surface and is enhanced by inflammatory mediators including tumor necrosis factor alpha and interleukin 1beta (approximately 3.5-fold increase over control value). SLPI release is also stimulated by activation of protein kinase C isoenzymes, but not by activation of adenosine 3',5'-cyclic monophosphate- or Ca(2+)-regulated signaling molecules. SLPI protein is detectable in intestinal lavage fluids collected from normal adult humans. Recombinant SLPI attenuates digestive enzyme (trypsin)- or leukocyte proteinase (elastase)-induced permeability alteration of a model epithelia in a dose-dependent manner. Moreover, SLPI exhibits an antibacterial activity against at least one major intestinal pathogen, Salmonella typhimurium. In contrast, SLPI does not influence epithelial barrier integrity as assessed by transepithelial conductance measurements or electrogenic ion transport. These results establish that human intestinal epithelium expresses and apically secretes SLPI, a molecule that may significantly contribute to the protection against attack from inflammatory cells and digestive enzymes, as well as against microbial infection.
USDA-ARS?s Scientific Manuscript database
Two major functions of the intestinal epithelium are to act as a physical barrier and to regulate the movement of nutrients, ions and fluid. Nematode infection induces alterations in smooth and epithelial cell function, including increased fluid in the intestinal lumen, which are attributed to a ST...
Dalton, Jane E.; Overweg, Karin; Egan, Charlotte E.; Bongaerts, Roy J.; Newton, Darren J.; Cruickshank, Sheena M.; Andrew, Elizabeth M.; Carding, Simon R.
2013-01-01
Antimicrobial proteins influence intestinal microbial ecology and limit proliferation of pathogens, yet the regulation of their expression has only been partially elucidated. Here, we have identified a putative pathway involving epithelial cells and intestinal intraepithelial lymphocytes (iIELs) that leads to antimicrobial protein (AMP) production by Paneth cells. Mice lacking γδ iIELs (TCRδ-/-) express significantly reduced levels of the AMP angiogenin 4 (Ang4). These mice were also unable to up-regulate Ang4 production following oral challenge by Salmonella, leading to higher levels of mucosal invasion compared to their wild type counterparts during the first 2 hours post-challenge. The transfer of γδ iIELs from wild type (WT) mice to TCRδ-/- mice restored Ang4 production and Salmonella invasion levels were reduced to those obtained in WT mice. The ability to restore Ang4 production in TCRδ-/- mice was shown to be restricted to γδ iIELs expressing Vγ7-encoded TCRs. Using a novel intestinal crypt co-culture system we identified a putative pathway of Ang4 production initiated by exposure to Salmonella, intestinal commensals or microbial antigens that induced intestinal epithelial cells to produce cytokines including IL‑23 in a TLR-mediated manner. Exposure of TCR-Vγ7+ γδ iIELs to IL-23 promoted IL‑22 production, which triggered Paneth cells to secrete Ang4. These findings identify a novel role for γδ iIELs in mucosal defence through sensing immediate epithelial cell cytokine responses and influencing AMP production. This in turn can contribute to the maintenance of intestinal microbial homeostasis and epithelial barrier function, and limit pathogen invasion. PMID:24358364
Walker, Catherine R; Hautefort, Isabelle; Dalton, Jane E; Overweg, Karin; Egan, Charlotte E; Bongaerts, Roy J; Newton, Darren J; Cruickshank, Sheena M; Andrew, Elizabeth M; Carding, Simon R
2013-01-01
Antimicrobial proteins influence intestinal microbial ecology and limit proliferation of pathogens, yet the regulation of their expression has only been partially elucidated. Here, we have identified a putative pathway involving epithelial cells and intestinal intraepithelial lymphocytes (iIELs) that leads to antimicrobial protein (AMP) production by Paneth cells. Mice lacking γδ iIELs (TCRδ(-/-)) express significantly reduced levels of the AMP angiogenin 4 (Ang4). These mice were also unable to up-regulate Ang4 production following oral challenge by Salmonella, leading to higher levels of mucosal invasion compared to their wild type counterparts during the first 2 hours post-challenge. The transfer of γδ iIELs from wild type (WT) mice to TCRδ(-/-) mice restored Ang4 production and Salmonella invasion levels were reduced to those obtained in WT mice. The ability to restore Ang4 production in TCRδ(-/-) mice was shown to be restricted to γδ iIELs expressing Vγ7-encoded TCRs. Using a novel intestinal crypt co-culture system we identified a putative pathway of Ang4 production initiated by exposure to Salmonella, intestinal commensals or microbial antigens that induced intestinal epithelial cells to produce cytokines including IL‑23 in a TLR-mediated manner. Exposure of TCR-Vγ7(+) γδ iIELs to IL-23 promoted IL‑22 production, which triggered Paneth cells to secrete Ang4. These findings identify a novel role for γδ iIELs in mucosal defence through sensing immediate epithelial cell cytokine responses and influencing AMP production. This in turn can contribute to the maintenance of intestinal microbial homeostasis and epithelial barrier function, and limit pathogen invasion.
Nardilysin controls intestinal tumorigenesis through HDAC1/p53-dependent transcriptional regulation.
Kanda, Keitaro; Sakamoto, Jiro; Matsumoto, Yoshihide; Ikuta, Kozo; Goto, Norihiro; Morita, Yusuke; Ohno, Mikiko; Nishi, Kiyoto; Eto, Koji; Kimura, Yuto; Nakanishi, Yuki; Ikegami, Kanako; Yoshikawa, Takaaki; Fukuda, Akihisa; Kawada, Kenji; Sakai, Yoshiharu; Ito, Akihiro; Yoshida, Minoru; Kimura, Takeshi; Chiba, Tsutomu; Nishi, Eiichiro; Seno, Hiroshi
2018-04-19
Colon cancer is a complex disease affected by a combination of genetic and epigenetic factors. Here we demonstrate that nardilysin (N-arginine dibasic convertase; NRDC), a metalloendopeptidase of the M16 family, regulates intestinal tumorigenesis via its nuclear functions. NRDC is highly expressed in human colorectal cancers. Deletion of the Nrdc gene in ApcMin mice crucially suppressed intestinal tumor development. In ApcMin mice, epithelial cell-specific deletion of Nrdc recapitulated the tumor suppression observed in Nrdc-null mice. Moreover, epithelial cell-specific overexpression of Nrdc significantly enhanced tumor formation in ApcMin mice. Notably, epithelial NRDC controlled cell apoptosis in a gene dosage-dependent manner. In human colon cancer cells, nuclear NRDC directly associated with HDAC1, and controlled both acetylation and stabilization of p53, with alterations of p53 target apoptotic factors. These findings demonstrate that NRDC is critically involved in intestinal tumorigenesis through its epigenetic regulatory function, and targeting NRDC may lead to a novel prevention or therapeutic strategy against colon cancer.
Effects of Weaning on Intestinal Upper Villus Epithelial Cells of Piglets
Wang, Xiaocheng; Tan, Bie; Li, Tiejun; Yin, Yulong
2016-01-01
The intestinal upper villus epithelial cells represent the differentiated epithelial cells and play key role in digesting and absorbing lumenal nutrients. Weaning stress commonly results in a decrease in villus height and intestinal dysfunction in piglets. However, no study have been conducted to test the effects of weaning on the physiology and functions of upper villus epithelial cells. A total of 40 piglets from 8 litters were weaned at 14 days of age and one piglet from each litter was killed at 0 d (w0d), 1 d (w1d), 3 d (w3d), 5 d (w5d), and 7 d (w7d) after weaning, respectively. The upper villus epithelial cells in mid-jejunum were isolated using the distended intestinal sac method. The expression of proteins in upper villus epithelial cells was analyzed using the isobaric tags for relative and absolute quantification or Western blotting. The expression of proteins involved in energy metabolism, Golgi vesicle transport, protein amino acid glycosylation, secretion by cell, transmembrane transport, ion transport, nucleotide catabolic process, translational initiation, and epithelial cell differentiation and apoptosis, was mainly reduced during the post-weaning period, and these processes may be regulated by mTOR signaling pathway. These results indicated that weaning inhibited various cellular processes in jejunal upper villus epithelial cells, and provided potential new directions for exploring the effects of weaning on the functions of intestine and improving intestinal functions in weaning piglets. PMID:27022727
Extrinsic control of Wnt signaling in the intestine.
Koch, Stefan
The canonical Wnt/β-catenin signaling pathway is a central regulator of development and tissue homeostasis. In the intestine, Wnt signaling is primarily known as the principal organizer of epithelial stem cell identity and proliferation. Within the last decade, numerous scientific breakthroughs have shed light on epithelial self-organization in the gut, and organoids are now routinely used to study stem cell biology and intestinal pathophysiology. The contribution of non-epithelial cells to Wnt signaling in the gut has received less attention. However, there is mounting evidence that stromal cells are a rich source of Wnt pathway activators and inhibitors, which can dynamically shape Wnt signaling to control epithelial proliferation and restitution. Elucidating the extent and mechanisms of paracrine Wnt signaling in the intestine has the potential to broaden our understanding of epithelial homeostasis, and may be of particular relevance for disorders such as inflammatory bowel diseases and colitis-associated cancers. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
Immunopathology of childhood celiac disease-Key role of intestinal epithelial cells.
Pietz, Grzegorz; De, Rituparna; Hedberg, Maria; Sjöberg, Veronika; Sandström, Olof; Hernell, Olle; Hammarström, Sten; Hammarström, Marie-Louise
2017-01-01
Celiac disease is a chronic inflammatory disease of the small intestine mucosa due to permanent intolerance to dietary gluten. The aim was to elucidate the role of small intestinal epithelial cells in the immunopathology of celiac disease in particular the influence of celiac disease-associated bacteria. Duodenal biopsies were collected from children with active celiac disease, treated celiac disease, and clinical controls. Intestinal epithelial cells were purified and analyzed for gene expression changes at the mRNA and protein levels. Two in vitro models for human intestinal epithelium, small intestinal enteroids and polarized tight monolayers, were utilized to assess how interferon-γ, interleukin-17A, celiac disease-associated bacteria and gluten influence intestinal epithelial cells. More than 25 defense-related genes, including IRF1, SPINK4, ITLN1, OAS2, CIITA, HLA-DMB, HLA-DOB, PSMB9, TAP1, BTN3A1, and CX3CL1, were significantly upregulated in intestinal epithelial cells at active celiac disease. Of these genes, 70% were upregulated by interferon-γ via the IRF1 pathway. Most interestingly, IRF1 was also upregulated by celiac disease-associated bacteria. The NLRP6/8 inflammasome yielding CASP1 and biologically active interleukin-18, which induces interferon-γ in intraepithelial lymphocytes, was expressed in intestinal epithelial cells. A key factor in the epithelial reaction in celiac disease appears to be over-expression of IRF1 that could be inherent and/or due to presence of undesirable microbes that act directly on IRF1. Dual activation of IRF1 and IRF1-regulated genes, both directly and via the interleukin-18 dependent inflammasome would drastically enhance the inflammatory response and lead to the pathological situation seen in active celiac disease.
Immunopathology of childhood celiac disease—Key role of intestinal epithelial cells
Hedberg, Maria; Sjöberg, Veronika; Sandström, Olof; Hernell, Olle; Hammarström, Sten
2017-01-01
Background & Aims Celiac disease is a chronic inflammatory disease of the small intestine mucosa due to permanent intolerance to dietary gluten. The aim was to elucidate the role of small intestinal epithelial cells in the immunopathology of celiac disease in particular the influence of celiac disease-associated bacteria. Methods Duodenal biopsies were collected from children with active celiac disease, treated celiac disease, and clinical controls. Intestinal epithelial cells were purified and analyzed for gene expression changes at the mRNA and protein levels. Two in vitro models for human intestinal epithelium, small intestinal enteroids and polarized tight monolayers, were utilized to assess how interferon-γ, interleukin-17A, celiac disease-associated bacteria and gluten influence intestinal epithelial cells. Results More than 25 defense-related genes, including IRF1, SPINK4, ITLN1, OAS2, CIITA, HLA-DMB, HLA-DOB, PSMB9, TAP1, BTN3A1, and CX3CL1, were significantly upregulated in intestinal epithelial cells at active celiac disease. Of these genes, 70% were upregulated by interferon-γ via the IRF1 pathway. Most interestingly, IRF1 was also upregulated by celiac disease-associated bacteria. The NLRP6/8 inflammasome yielding CASP1 and biologically active interleukin-18, which induces interferon-γ in intraepithelial lymphocytes, was expressed in intestinal epithelial cells. Conclusion A key factor in the epithelial reaction in celiac disease appears to be over-expression of IRF1 that could be inherent and/or due to presence of undesirable microbes that act directly on IRF1. Dual activation of IRF1 and IRF1-regulated genes, both directly and via the interleukin-18 dependent inflammasome would drastically enhance the inflammatory response and lead to the pathological situation seen in active celiac disease. PMID:28934294
Geng, Hua; Bu, Heng-Fu; Liu, Fangyi; Wu, Longtao; Pfeifer, Karl; Chou, Pauline M; Wang, Xiao; Sun, Jiaren; Lu, Lu; Pandey, Ashutosh; Bartolomei, Marisa S; De Plaen, Isabelle G; Wang, Peng; Yu, Jindan; Qian, Jiaming; Tan, Xiao-Di
2018-04-03
Inflammation affects regeneration of the intestinal epithelia; long non-coding RNAs (lncRNAs) regulate cell functions, such as proliferation, differentiation, and migration. We investigated the mechanisms by which the lncRNA H19, imprinted maternally expressed transcript (H19) regulates regeneration of intestinal epithelium using cell cultures and mouse models of inflammation. We performed RNA-sequencing transcriptome analyses of intestinal tissues from mice with lipopolysaccharide (LPS)-induced sepsis to identify lncRNAs associated with inflammation; findings were confirmed by quantitative real-time polymerase chain reaction and in situ hybridization analyses of intestinal tissues from mice with sepsis or dextran sulfate sodium (DSS)-induced mucosal wound healing and patients with ulcerative colitis compared to healthy individuals (controls). We screened cytokines for their ability to induce expression of H19 in HT-29 cells and intestinal epithelial cells (IECs), and confirmed findings in crypt epithelial organoids derived from mouse small intestine. IECs were incubated with different signal transduction inhibitors and effects on H19 lncRNA levels were measured. We assessed intestinal epithelial proliferation or regeneration in H19 ΔEx1/+ mice given LPS or DSS vs wild-type littermates (control mice). H19 was overexpressed in IECs using lentiviral vectors and cell proliferation was measured. We performed RNA antisense purification, RNA immunoprecipitation, and luciferase reporter assays to study functions of H19 in IECs. In RNA-sequencing transcriptome analysis of lncRNA expression in intestinal tissues from mice, we found levels of H19 only changed significantly with LPS exposure. Levels of H19 lncRNA increased in intestinal tissues of patients with ulcerative colitis, mice with LPS-induced sepsis, or mice with DSS-induced colitis, compared with controls. Increased H19 lncRNA localized to epithelial cells in the intestine, regardless of Lgr5 messenger RNA expression. Exposure of IECs to interleukin (IL) 22 increased levels of H19 lncRNA with time and dose, which required STAT3 and protein kinase A activity. IL22 induced expression of H19 in mouse intestinal epithelial organoids within 6 hours. Exposure to IL22 increased growth of intestinal epithelial organoids derived from control mice, but not H19 ΔEx1/+ mice. Overexpression of H19 in HT-29 cells increased their proliferation. Intestinal mucosa healed more slowly after withdrawal of DSS from H19 ΔEx1/+ mice vs control mice. Crypt epithelial cells from H19 ΔEx1/+ mice proliferated more slowly than those from control mice after exposure to LPS. H19 lncRNA bound to p53 and microRNAs that inhibit cell proliferation, including microRNA 34a and let-7; H19 lncRNA binding blocked their function, leading to increased expression of genes that promote regeneration of the epithelium. The level of lncRNA H19 is increased in inflamed intestinal tissues from mice and patients. The inflammatory cytokine IL22 induces expression of H19 in IECs, which is required for intestinal epithelial proliferation and mucosal healing. H19 lncRNA appears to inhibit p53 protein and microRNA 34a and let-7 to promote proliferation of IECs and epithelial regeneration. Copyright © 2018 AGA Institute. Published by Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Lihua; Wang, Wensheng; Xiao, Weidong
2012-08-10
Highlights: Black-Right-Pointing-Pointer Ang II-induced apoptosis in intestinal epithelial cell through AT2 receptor. Black-Right-Pointing-Pointer The apoptosis process involves in the Bax/Bcl-2 intrinsic pathway. Black-Right-Pointing-Pointer GATA-6 short hairpin RNA reduced Bax expression, but not Bcl-2. Black-Right-Pointing-Pointer GATA-6 may play a critical role in apoptosis in response to the Ang II challenge. -- Abstract: Angiotensin II (Ang II) has been shown to play an important role in cell apoptosis. However, the mechanisms of Ang-II-induced apoptosis in intestinal epithelial cells are not fully understood. GATA-6 is a zinc finger transcription factor expressed in the colorectal epithelium, which directs cell proliferation, differentiation and apoptosis. Inmore » the present study we investigated the underlying mechanism of which GATA-6 affects Ang-II induced apoptosis in intestinal epithelial cells. The in vitro intestinal epithelial cell apoptosis model was established by co-culturing Caco-2 cells with Ang II. Pretreatment with Angiotensin type 2 (AT2) receptor antagonist, PD123319, significantly reduced the expression of Bax and prevented the Caco-2 cells apoptosis induced by Ang II. In addition, Ang II up-regulated the expression of GATA-6. Interestingly, GATA-6 short hairpin RNA prevented Ang II-induced intestinal epithelial cells apoptosis and reduced the expression of Bax, but not Bcl-2. Taken together, the present study suggests that Angiotensin II promotes apoptosis in intestinal epithelial cells through GATA-6 and the Bax pathway in an AT2 receptor-dependent manner.« less
Lee, J Scott; Wang, Ruth X; Alexeev, Erica E; Lanis, Jordi M; Battista, Kayla D; Glover, Louise E; Colgan, Sean P
2018-04-20
Intestinal epithelial cells form a selectively permeable barrier to protect colon tissues from luminal microbiota and antigens and to mediate nutrient, fluid, and waste flux in the intestinal tract. Dysregulation of the epithelial cell barrier coincides with profound shifts in metabolic energy, especially in the colon, which exists in an energetically depleting state of physiological hypoxia. However, studies that systematically examine energy flux and adenylate metabolism during intestinal epithelial barrier development and restoration after disruption are lacking. Here, to delineate barrier-related energy flux, we developed an HPLC-based profiling method to track changes in energy flux and adenylate metabolites during barrier development and restoration. Cultured epithelia exhibited pooling of phosphocreatine and maintained ATP during barrier development. EDTA-induced epithelial barrier disruption revealed that hypoxanthine levels correlated with barrier resistance. Further studies uncovered that hypoxanthine supplementation improves barrier function and wound healing and that hypoxanthine appears to do so by increasing intracellular ATP, which improved cytoskeletal G- to F-actin polymerization. Hypoxanthine supplementation increased the adenylate energy charge in the murine colon, indicating potential to regulate adenylate energy charge-mediated metabolism in intestinal epithelial cells. Moreover, experiments in a murine colitis model disclosed that hypoxanthine loss during active inflammation correlates with markers of disease severity. In summary, our results indicate that hypoxanthine modulates energy metabolism in intestinal epithelial cells and is critical for intestinal barrier function. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.
Ikemura, Kenji; Iwamoto, Takuya; Okuda, Masahiro
2014-08-01
Drug transporters, drug-metabolizing enzymes, and tight junctions in the small intestine function as an absorption barrier and sometimes as a facilitator of orally administered drugs. The expression of these proteins often fluctuates and thereby causes individual pharmacokinetic variability. MicroRNAs (miRNAs), which are small non-coding RNAs, have recently emerged as a new class of gene regulator. MiRNAs post-transcriptionally regulate gene expression by binding to target mRNA to suppress its translation or regulate its degradation. They have been shown to be key regulators of proteins associated with pharmacokinetics. Moreover, the role of miRNAs on the expression of some proteins expressed in the small intestine has recently been clarified. In this review, we summarize current knowledge regarding the role of miRNAs in the regulation of drug transporters, drug-metabolizing enzymes, and tight junctions as well as its implication for intestinal barrier function. MiRNAs play vital roles in the differentiation, architecture, and barrier function of intestinal epithelial cells, and directly and/or indirectly regulate the expression and function of proteins associated with drug absorption in intestinal epithelial cells. Moreover, the variation of miRNA expression caused by pathological and physiological conditions as well as genetic factors should affect the expression of these proteins. Therefore, miRNAs could be significant factors affecting inter- and intra-individual variations in the pharmacokinetics and intestinal absorption of drugs. Overall, miRNAs could be promising targets for personalized pharmacotherapy or other attractive therapies through intestinal absorption of drugs. Copyright © 2014 Elsevier Inc. All rights reserved.
Keely, Simon; Kelly, Caleb J.; Weissmueller, Thomas; Burgess, Adrianne; Wagner, Brandie D.; Robertson, Charles E.; Harris, J. Kirk; Colgan, Sean P.
2012-01-01
Within the intestinal mucosa, epithelial cells serve multiple functions to partition the lumen from the lamina propria. As part of their natural function, intestinal epithelial cells actively transport electrolytes with passive water movement as a mechanism for mucosal hydration. Here, we hypothesized that electrogenic Cl- secretion, and associated mucosal hydration, influences bacterial-epithelial interactions and significantly influences the composition of the intestinal microbiota. An initial screen of different epithelial secretagogues identified lubiprostone as the most potent agonist for which to define these principles. In in vitro studies using cultured T84 cells, lubiprostone decreased E. coli translocation in a concentration-dependent manner (p < 0.001) and decreased S. typhimurium internalization and translocation by as much as 71 ± 6% (p < 0.01). Such decreases in bacterial translocation were abolished by inhibition of electrogenic Cl- secretion and water transport using the Na-K-Cl- antagonist bumetanide (p < 0.01). Extensions of these findings to microbiome analysis in vivo revealed that lubiprostone delivered orally to mice fundamentally shifted the intestinal microbiota, with notable changes within the Firmicutes and Bacteroidetes phyla of resident colonic bacteria. Such findings document a previously unappreciated role for epithelial Cl- secretion and water transport in influencing bacterial-epithelial interactions and suggest that active mucosal hydration functions as a primitive innate epithelial defense mechanism. PMID:22614705
CDX1 protein expression in normal, metaplastic, and neoplastic human alimentary tract epithelium.
Silberg, D G; Furth, E E; Taylor, J K; Schuck, T; Chiou, T; Traber, P G
1997-08-01
CDX1 is an intestine-specific transcription factor expressed early in intestinal development that may be involved in regulation of proliferation and differentiation of intestinal epithelial cells. We examined the pattern of CDX1 protein expression in metaplastic and neoplastic tissue to provide insight into its possible role in abnormal differentiation. Tissue samples were stained by immunohistochemistry using an affinity-purified, polyclonal antibody against a peptide epitope of CDX1. Specific nuclear staining was found in epithelial cells of the small intestine and colon. Esophagus and stomach did not express CDX1 protein; however, adjacent areas of intestinal metaplastic tissue intensely stained for CDX1. Adenocarcinomas of the stomach and esophagus had both positive and negative nuclear staining for CDX1. Colonic epithelial cells in adenomatous polyps and adenocarcinomas had a decreased intensity of staining compared with normal colonic crypts in the same specimen. CDX1 may be important in the transition from normal gastric and esophageal epithelium to intestinal-type metaplasia. The variability in expression of CDX1 in gastric and esophageal adenocarcinomas suggests more than one pathway in the development of these carcinomas. The decrease of CDX1 in colonic adenocarcinomas may indicate a role for CDX1 in growth regulation and in the maintenance of the differentiated phenotype.
Yang, Yang; Qiu, Yuan; Wang, Wensheng; Xiao, Weidong; Liang, Hongyin; Zhang, Chaojun; Yang, Hanwenbo; Teitelbaum, Daniel H; Sun, Li-Hua; Yang, Hua
2014-01-01
Intestinal barrier function failure from ischemia/reperfusion (I/R) and acute hypoxia has been implicated as a critical determinant in the predisposition to intestinal inflammation and a number of inflammatory disorders. Here, we identified the role of Adenosine A2B receptor (A2BAR) in the regulation of intestinal barrier function under I/R and acute hypoxic conditions. C57BL/6J mice were used, and were randomized into three groups: Sham, I/R, IR+PSB1115 (a specific A2BAR antagonist) groups. After surgery, the small bowel was harvested for immunohistochemical staining, RNA and protein content, and intestinal permeability analyses. Using an epithelial cell culture model, we investigated the influence of hypoxia on the epithelial function, and the role of A2BAR in the expressions of tight junction and epithelial permeability. The expressions of Claudin-1, occludin and ZO-1 were detected by RT-PCR and Western-Blot. Epithelial barrier function was assessed with transepithelial resistance (TER). The A2BAR antagonist, PSB1115, significantly increased tight junction protein expression after intestinal I/R or acute hypoxia conditions. PSB1115 also attenuated the disrupted distribution of TJ proteins. Furthermore, inhibition of A2BAR attenuated the decrease in TER induced by I/R or acute hypoxic conditions, and maintained intestinal barrier function. Antagonism of A2BAR activity improves intestinal epithelial structure and barrier function in a mouse model of intestinal I/R and a cell model of acute hypoxia. These findings support a potentially destructive role for A2BAR under intestinal I/R and acute hypoxic conditions.
Oittinen, Mikko; Popp, Alina; Kurppa, Kalle; Lindfors, Katri; Mäki, Markku; Kaikkonen, Minna U; Viiri, Keijo
2017-02-01
Canonical Wnt/β-catenin signaling regulates the homeostasis of intestinal epithelium by controlling the balance between intestinal stem cell self-renewal and differentiation but epigenetic mechanisms enacting the process are not known. We hypothesized that epigenetic regulator, Polycomb Repressive Complex-2 (PRC2), is involved in Wnt-mediated epithelial homeostasis on the crypt-villus axis and aberrancies therein are implicated both in celiac disease and in intestinal malignancies. We found that PRC2 establishes repressive crypt and villus specific trimethylation of histone H3 lysine 27 (H3K27me3) signature on genes responsible for, for example, nutrient transport and cell killing in crypts and, for example, proliferation and differentiation in mature villi, suggesting that PRC2 facilitates the Wnt-governed intestinal homeostasis. When celiac patients are on gluten-containing diet PRC2 is out-of-bounds active and consequently its target genes were found affected in intestinal epithelium. Significant set of effective intestinal PRC2 targets are also differentially expressed in colorectal adenoma and carcinomas. Our results suggest that PRC2 gives rise and maintains polar crypt and villus specific H3K27me3 signatures. As H3K27me3 is a mark enriched in developmentally important genes, identified intestinal PRC2 targets are possibly imperative drivers for enterocyte differentiation and intestinal stem cell maintenance downstream to Wnt-signaling. Our work also elucidates the mechanism sustaining the crypt hyperplasia in celiac disease and suggest that PRC2-dependent fostering of epithelial stemness is a common attribute in intestinal diseases in which epithelial hyperplasia or neoplasia prevails. Finally, this work demonstrates that in intestine PRC2 represses genes having both pro-stemness and pro-differentiation functions, fact need to be considered when designing epigenetic therapies including PRC2 as a drug target. Stem Cells 2017;35:445-457. © 2016 AlphaMed Press.
Hwang, Soonyean; Zimmerman, Noah P.; Agle, Kimberle A.; Turner, Jerrold R.; Kumar, Suresh N.; Dwinell, Michael B.
2012-01-01
Chemokines and other immune mediators enhance epithelial barrier repair. The intestinal barrier is established by highly regulated cell-cell contacts between epithelial cells. The goal of these studies was to define the role for the chemokine CXCL12 in regulating E-cadherin during collective sheet migration during epithelial restitution. Mechanisms regulating E-cadherin were investigated using Caco2BBE and IEC-6 model epithelia. Genetic knockdown confirmed a critical role for E-cadherin in in vitro restitution and in vivo wound repair. During restitution, both CXCL12 and TGF-β1 tightened the monolayer by decreasing the paracellular space between migrating epithelial cells. However, CXCL12 differed from TGF-β1 by stimulating the significant increase in E-cadherin membrane localization during restitution. Chemokine-stimulated relocalization of E-cadherin was paralleled by an increase in barrier integrity of polarized epithelium during restitution. CXCL12 activation of its cognate receptor CXCR4 stimulated E-cadherin localization and monolayer tightening through Rho-associated protein kinase activation and F-actin reorganization. These data demonstrate a key role for E-cadherin in intestinal epithelial restitution. PMID:22549778
C1orf106 is a colitis risk gene that regulates stability of epithelial adherens junctions.
Mohanan, Vishnu; Nakata, Toru; Desch, A Nicole; Lévesque, Chloé; Boroughs, Angela; Guzman, Gaelen; Cao, Zhifang; Creasey, Elizabeth; Yao, Junmei; Boucher, Gabrielle; Charron, Guy; Bhan, Atul K; Schenone, Monica; Carr, Steven A; Reinecker, Hans-Christian; Daly, Mark J; Rioux, John D; Lassen, Kara G; Xavier, Ramnik J
2018-03-09
Polymorphisms in C1orf106 are associated with increased risk of inflammatory bowel disease (IBD). However, the function of C1orf106 and the consequences of disease-associated polymorphisms are unknown. Here we demonstrate that C1orf106 regulates adherens junction stability by regulating the degradation of cytohesin-1, a guanine nucleotide exchange factor that controls activation of ARF6. By limiting cytohesin-1-dependent ARF6 activation, C1orf106 stabilizes adherens junctions. Consistent with this model, C1orf106 -/- mice exhibit defects in the intestinal epithelial cell barrier, a phenotype observed in IBD patients that confers increased susceptibility to intestinal pathogens. Furthermore, the IBD risk variant increases C1orf106 ubiquitination and turnover with consequent functional impairments. These findings delineate a mechanism by which a genetic polymorphism fine-tunes intestinal epithelial barrier integrity and elucidate a fundamental mechanism of cellular junctional control. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
Murata, Yoji; Kotani, Takenori; Supriatna, Yana; Kitamura, Yasuaki; Imada, Shinya; Kawahara, Kohichi; Nishio, Miki; Daniwijaya, Edwin Widyanto; Sadakata, Hisanobu; Kusakari, Shinya; Mori, Munemasa; Kanazawa, Yoshitake; Saito, Yasuyuki; Okawa, Katsuya; Takeda-Morishita, Mariko; Okazawa, Hideki; Ohnishi, Hiroshi; Azuma, Takeshi; Suzuki, Akira; Matozaki, Takashi
2015-08-04
Intestinal epithelial cells contribute to regulation of intestinal immunity in mammals, but the detailed molecular mechanisms of such regulation have remained largely unknown. Stomach-cancer-associated protein tyrosine phosphatase 1 (SAP-1, also known as PTPRH) is a receptor-type protein tyrosine phosphatase that is localized specifically at microvilli of the brush border in gastrointestinal epithelial cells. Here we show that SAP-1 ablation in interleukin (IL)-10-deficient mice, a model of inflammatory bowel disease, resulted in a marked increase in the severity of colitis in association with up-regulation of mRNAs for various cytokines and chemokines in the colon. Tyrosine phosphorylation of carcinoembryonic antigen-related cell adhesion molecule (CEACAM) 20, an intestinal microvillus-specific transmembrane protein of the Ig superfamily, was greatly increased in the intestinal epithelium of the SAP-1-deficient animals, suggesting that this protein is a substrate for SAP-1. Tyrosine phosphorylation of CEACAM20 by the protein tyrosine kinase c-Src and the consequent association of CEACAM20 with spleen tyrosine kinase (Syk) promoted the production of IL-8 in cultured cells through the activation of nuclear factor-κB (NF-κB). In addition, SAP-1 and CEACAM20 were found to form a complex through interaction of their ectodomains. SAP-1 and CEACAM20 thus constitute a regulatory system through which the intestinal epithelium contributes to intestinal immunity.
Nandan, Mandayam O.; Ghaleb, Amr M.; Liu, Yang; Bialkowska, Agnieszka B.; McConnell, Beth B.; Shroyer, Kenneth R.; Robine, Sylvie
2014-01-01
Krüppel-like factor 5 (KLF5) is a pro-proliferative transcriptional regulator primarily expressed in the intestinal crypt epithelial cells. Constitutive intestine-specific deletion of Klf5 is neonatal lethal suggesting a crucial role for KLF5 in intestinal development and homeostasis. We have previously shown Klf5 to play an active role regulating intestinal tumorigenesis. Here we examine the effect of inducible intestine-specific deletion of Klf5 in adult mice. Klf5 is lost from the intestine beginning at day 3 after the start of a 5-day treatment with the inducer tamoxifen. Although the mice have no significant weight loss or lethality, the colonic tissue shows signs of epithelial distress starting at day 3 following induction. Accompanying the morphological changes is a significant loss of proliferative crypt epithelial cells as revealed by BrdU or Ki67 staining at days 3 & 5 after start of tamoxifen. We also observed a loss of goblet cells from the colon and Paneth cells from the small intestine upon induced deletion of Klf5. In addition, loss of Klf5 from the colonic epithelium is accompanied by a regenerative response that coincides with an expansion in the zone of Sox9 expression along the crypt axis. At day 11, both proliferation and Sox9 expression return to baseline levels. Microarray and quantitative PCR analyses reveal an upregulation of several regeneration-associated genes (Reg1A, Reg3G and Reg3B) and down-regulation of many Klf5 targets (Ki-67, cyclin B, Cdc2 and cyclin D1). Sox9 and Reg1A protein levels are also increased upon Klf5 loss. Lentiviral-mediated knockdown of KLF5 and exogenous expression of KLF5 in colorectal cancer cell lines confirm that Sox9 expression is negatively regulated by KLF5. Furthermore, ChIP assays reveal a direct association of KLF5 with both the Sox9 and Reg1A promoters. We have shown that disruption of epithelial homeostasis due to Klf5 loss from the adult colon is followed by a regenerative response led by Sox9 and the Reg family of proteins. Our study demonstrates that adult mouse colonic tissue undergoes acute physiological changes to accommodate the loss of Klf5 withstanding epithelial damage further signifying importance of Klf5 in colonic homeostasis. PMID:24440658
Wang, Jia; Sinnett-Smith, James; Stevens, Jan V; Young, Steven H; Rozengurt, Enrique
2016-08-19
We examined the regulation of Yes-associated protein (YAP) localization, phosphorylation, and transcriptional activity in intestinal epithelial cells. Our results show that stimulation of intestinal epithelial IEC-18 cells with the G protein-coupled receptor (GPCR) agonist angiotensin II, a potent mitogen for these cells, induced rapid translocation of YAP from the nucleus to the cytoplasm (within 15 min) and a concomitant increase in YAP phosphorylation at Ser(127) and Ser(397) Angiotensin II elicited YAP phosphorylation and cytoplasmic accumulation in a dose-dependent manner (ED50 = 0.3 nm). Similar YAP responses were provoked by stimulation with vasopressin or serum. Treatment of the cells with the protein kinase D (PKD) family inhibitors CRT0066101 and kb NB 142-70 prevented the increase in YAP phosphorylation on Ser(127) and Ser(397) via Lats2, YAP cytoplasmic accumulation, and increase in the mRNA levels of YAP/TEAD-regulated genes (Ctgf and Areg). Furthermore, siRNA-mediated knockdown of PKD1, PKD2, and PKD3 markedly attenuated YAP nuclear-cytoplasmic shuttling, phosphorylation at Ser(127), and induction of Ctgf and Areg expression in response to GPCR activation. These results identify a novel role for the PKD family in the control of biphasic localization, phosphorylation, and transcriptional activity of YAP in intestinal epithelial cells. In turn, YAP and TAZ are necessary for the stimulation of the proliferative response of intestinal epithelial cells to GPCR agonists that act via PKD. The discovery of interaction between YAP and PKD pathways identifies a novel cross-talk in signal transduction and demonstrates, for the first time, that the PKDs feed into the YAP pathway. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
Hu, Madeleine D; Ethridge, Alexander D; Lipstein, Rebecca; Kumar, Sushil; Wang, Yitang; Jabri, Bana; Turner, Jerrold R; Edelblum, Karen L
2018-06-08
Intraepithelial lymphocytes (IELs) expressing the γδ TCR (γδ IELs) provide continuous surveillance of the intestinal epithelium. However, the mechanisms regulating the basal motility of these cells within the epithelial compartment have not been well defined. We investigated whether IL-15 contributes to γδ IEL localization and migratory behavior in addition to its role in IEL differentiation and survival. Using advanced live cell imaging techniques in mice, we find that compartmentalized overexpression of IL-15 in the lamina propria shifts the distribution of γδ T cells from the epithelial compartment to the lamina propria. This mislocalization could be rescued by epithelial IL-15 overexpression, indicating that epithelial IL-15 is essential for γδ IEL migration into the epithelium. Furthermore, in vitro analyses demonstrated that exogenous IL-15 stimulates γδ IEL migration into cultured epithelial monolayers, and inhibition of IL-2Rβ significantly attenuates the basal motility of these cells. Intravital microscopy showed that impaired IL-2Rβ signaling induced γδ IEL idling within the lateral intercellular space, which resulted in increased early pathogen invasion. Similarly, the redistribution of γδ T cells to the lamina propria due to local IL-15 overproduction also enhanced bacterial translocation. These findings thus reveal a novel role for IL-15 in mediating γδ T cell localization within the intestinal mucosa and regulating γδ IEL motility and patrolling behavior as a critical component of host defense. Copyright © 2018 by The American Association of Immunologists, Inc.
Helminths and intestinal barrier function
McKay, Derek M.; Shute, Adam; Lopes, Fernando
2017-01-01
ABSTRACT Approximately one-sixth of the worlds' population is infected with helminths and this class of parasite takes a major toll on domestic livestock. The majority of species of parasitic helminth that infect mammals live in the gut (the only niche for tapeworms) where they contact the hosts' epithelial cells. Here, the helminth-intestinal epithelial interface is reviewed in terms of the impact on, and regulation of epithelial barrier function, both intrinsic (epithelial permeability) and extrinsic (mucin, bacterial peptides, commensal bacteria) elements of the barrier. The data available on direct effects of helminths on epithelial permeability are scant, fragmentary and pales in comparison with knowledge of mobilization of immune reactions and effector cells in response to helminth parasites and how these impact intestinal barrier function. The interaction of helminth-host and helminth-host-bacteria is an important determinant of gut form and function and precisely defining these interactions will radically alter our understanding of normal gut physiology and pathophysiological reactions, revealing new approaches to infection with parasitic helminths, bacterial pathogens and idiopathic auto-inflammatory disease. PMID:28452686
Butyrate modulating effects on pro-inflammatory pathways in human intestinal epithelial cells.
Elce, A; Amato, F; Zarrilli, F; Calignano, A; Troncone, R; Castaldo, G; Canani, R B
2017-10-13
Butyrate acts as energy source for intestinal epithelial cells and as key mediator of several immune processes, modulating gene expression mainly through histone deacetylation inhibition. Thanks to these effects, butyrate has been proposed for the treatment of many intestinal diseases. Aim of this study was to investigate the effect of butyrate on the expression of a large series of target genes encoding proteins involved in pro-inflammatory pathways. We performed quantitative real-time-PCR analysis of the expression of 86 genes encoding proteins bearing to pro-inflammatory pathways, before and after butyrate exposure, in primary epithelial cells derived from human small intestine and colon. Butyrate significantly down-regulated the expression of genes involved in inflammatory response, among which nuclear factor kappa beta, interferon-gamma, Toll like 2 receptor and tumour necrosis factor-alpha. Further confirmations of these data, including studies at protein level, would support the use of butyrate as effective therapeutic strategy in intestinal inflammatory disorders.
Cario, Elke; Podolsky, Daniel K.
2000-01-01
Initiation and perpetuation of the inflammatory intestinal responses in inflammatory bowel disease (IBD) may result from an exaggerated host defense reaction of the intestinal epithelium to endogenous lumenal bacterial flora. Intestinal epithelial cell lines constitutively express several functional Toll-like receptors (TLRs) which appear to be key regulators of the innate response system. The aim of this study was to characterize the expression pattern of TLR2, TLR3, TLR4, and TLR5 in primary intestinal epithelial cells from patients with IBD. Small intestinal and colonic biopsy specimens were collected from patients with IBD (Crohn's disease [CD], ulcerative colitis [UC]) and controls. Non-IBD specimens were assessed by immunofluorescence histochemistry using polyclonal antibodies specific for TLR2, TLR3, TLR4, and TLR5. Primary intestinal epithelial cells (IEC) of normal mucosa constitutively expressed TLR3 and TLR5, while TLR2 and TLR4 were only barely detectable. In active IBD, the expression of TLR3 and TLR4 was differentially modulated in the intestinal epithelium. TLR3 was significantly downregulated in IEC in active CD but not in UC. In contrast, TLR4 was strongly upregulated in both UC and CD. TLR2 and TLR5 expression remained unchanged in IBD. These data suggest that IBD may be associated with distinctive changes in selective TLR expression in the intestinal epithelium, implying that alterations in the innate response system may contribute to the pathogenesis of these disorders. PMID:11083826
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu Zeping; Yang Xiaoxia; Chan Suiyung
Diarrhea is a common dose-limiting toxicity associated with cancer chemotherapy, in particular for drugs such as irinotecan (CPT-11), 5-fluouracil, oxaliplatin, capecitabine and raltitrexed. St. John's wort (Hypericum perforatum, SJW) has anti-inflammatory activity, and our preliminary study in the rat and a pilot study in cancer patients found that treatment of SJW alleviated irinotecan-induced diarrhea. In the present study, we investigated whether SJW modulated various pro-inflammatory cytokines including interleukins (IL-1{beta}, IL-2, IL-6), interferon (IFN-{gamma}) and tumor necrosis factor-{alpha} (TNF-{alpha}) and intestinal epithelium apoptosis in rats. The rats were treated with irinotecan at 60 mg/kg for 4 days in combination with oralmore » SJW or SJW-free control vehicle at 400 mg/kg for 8 days. Diarrhea, tissue damage, body weight loss, various cytokines including IL-1{beta}, IL-2, IL-6, IFN-{gamma} and TNF-{alpha} and intestinal epithelial apoptosis were monitored over 11 days. Our studies demonstrated that combined SJW markedly reduced CPT-11-induced diarrhea and intestinal lesions. The production of pro-inflammatory cytokines such as IL-1{beta}, IFN-{gamma} and TNF-{alpha} was significantly up-regulated in intestine. In the mean time, combined SJW significantly suppressed the intestinal epithelial apoptosis induced by CPT-11 over days 5-11. In particular, combination of SJW significantly inhibited the expression of TNF-{alpha} mRNA in the intestine over days 5-11. In conclusion, inhibition of pro-inflammatory cytokines and intestinal epithelium apoptosis partly explained the protective effect of SJW against the intestinal toxicities induced by irinotecan. Further studies are warranted to explore the potential for STW as an agent in combination with chemotherapeutic drugs to lower their dose-limiting toxicities.« less
Jones, B A; Gores, G J
1997-12-01
Cell death of gastrointestinal epithelial cells occurs by a process referred to as apoptosis. In this review, we succinctly define apoptosis and summarize the role of apoptosis in the physiology and pathophysiology of epithelial cells in the liver, pancreas, and small and large intestine. The physiological mediators regulating apoptosis in gastrointestinal epithelial cells, when known, are discussed. Selected pathophysiological consequences of excessive apoptosis and inhibition of apoptosis are used to illustrate the significance of apoptosis in disease processes. These examples demonstrate that excessive apoptosis may result in epithelial cell atrophy, injury, and dysfunction, whereas inhibition of apoptosis results in hyperplasia and promotes malignant transformation. The specific cellular mechanisms responsible for dysregulation of epithelial cell apoptosis during pathophysiological disturbances are emphasized. Potential future areas of physiological research regarding apoptosis in gastrointestinal epithelia are highlighted when appropriate.
Regulation of antibacterial defense in the small intestine by the nuclear bile acid receptor.
Inagaki, Takeshi; Moschetta, Antonio; Lee, Youn-Kyoung; Peng, Li; Zhao, Guixiang; Downes, Michael; Yu, Ruth T; Shelton, John M; Richardson, James A; Repa, Joyce J; Mangelsdorf, David J; Kliewer, Steven A
2006-03-07
Obstruction of bile flow results in bacterial proliferation and mucosal injury in the small intestine that can lead to the translocation of bacteria across the epithelial barrier and systemic infection. These adverse effects of biliary obstruction can be inhibited by administration of bile acids. Here we show that the farnesoid X receptor (FXR), a nuclear receptor for bile acids, induces genes involved in enteroprotection and inhibits bacterial overgrowth and mucosal injury in ileum caused by bile duct ligation. Mice lacking FXR have increased ileal levels of bacteria and a compromised epithelial barrier. These findings reveal a central role for FXR in protecting the distal small intestine from bacterial invasion and suggest that FXR agonists may prevent epithelial deterioration and bacterial translocation in patients with impaired bile flow.
Pazos, Michael; Siccardi, Dario; Mumy, Karen L.; Bien, Jeffrey D.; Louie, Steve; Shi, Hai Ning; Gronert, Karsten; Mrsny, Randall J.; McCormick, Beth A.
2008-01-01
Neutrophil transmigration across mucosal surfaces contributes to dysfunction of epithelial barrier properties, a characteristic underlying many mucosal inflammatory diseases. Thus, insight into the directional movement of neutrophils across epithelial barriers will provide important information relating to the mechanisms of such inflammatory disorders. The eicosanoid hepoxilin A3, an endogenous product of 12-lipoxygenase activity, is secreted from the apical surface of the epithelial barrier and establishes a chemotatic gradient to guide neutrophils from the submucosa, across epithelia to the luminal site of an inflammatory stimulus - the final step in neutrophil recruitment. Currently, little is known regarding how hepoxilin A3 is secreted from the intestinal epithelium during an inflammatory insult. In this study we reveal that hepoxilin A3 is a substrate for the apical efflux ABC transporter, multi-drug resistance protein 2 (MRP2). Moreover, using multiple in vitro and in vivo models we show that induction of intestinal inflammation profoundly up-regulates apical expression of MRP2, and that interfering with hepoxilin A3 synthesis and/or inhibition of MRP2 function results in a marked reduction in inflammation and severity of disease. Lastly, examination of inflamed intestinal epithelia in human biopsies revealed up-regulation of MRP2. Thus, blocking hepoxilin A3 synthesis and/or inhibiting MRP2 may lead to the development of new therapeutic strategies for the treatment of epithelial-associated inflammatory conditions. PMID:19017997
Hasebe, Takashi; Fujimoto, Kenta; Kajita, Mitsuko; Fu, Liezhen; Shi, Yun-Bo; Ishizuya-Oka, Atsuko
2017-04-01
In Xenopus laevis intestine during metamorphosis, the larval epithelial cells are removed by apoptosis, and the adult epithelial stem (AE) cells appear concomitantly. They proliferate and differentiate to form the adult epithelium (Ep). Thyroid hormone (TH) is well established to trigger this remodeling by regulating the expression of various genes including Notch receptor. To study the role of Notch signaling, we have analyzed the expression of its components, including the ligands (DLL and Jag), receptor (Notch), and targets (Hairy), in the metamorphosing intestine by real-time reverse transcription-polymerase chain reaction and in situ hybridization or immunohistochemistry. We show that they are up-regulated during both natural and TH-induced metamorphosis in a tissue-specific manner. Particularly, Hairy1 is specifically expressed in the AE cells. Moreover, up-regulation of Hairy1 and Hairy2b by TH was prevented by treating tadpoles with a γ-secretase inhibitor (GSI), which inhibits Notch signaling. More importantly, TH-induced up-regulation of LGR5, an adult intestinal stem cell marker, was suppressed by GSI treatment. Our results suggest that Notch signaling plays a role in stem cell development by regulating the expression of Hairy genes during intestinal remodeling. Furthermore, we show with organ culture experiments that prolonged exposure of tadpole intestine to TH plus GSI leads to hyperplasia of secretory cells and reduction of absorptive cells. Our findings here thus provide evidence for evolutionarily conserved role of Notch signaling in intestinal cell fate determination but more importantly reveal, for the first time, an important role of Notch pathway in the formation of adult intestinal stem cells during vertebrate development. Stem Cells 2017;35:1028-1039. © 2016 The Authors STEM CELLS published by Wiley Periodicals, Inc. on behalf of AlphaMed Press.
Fujimoto, Kenta; Kajita, Mitsuko; Fu, Liezhen; Shi, Yun‐Bo; Ishizuya‐Oka, Atsuko
2016-01-01
Abstract In Xenopus laevis intestine during metamorphosis, the larval epithelial cells are removed by apoptosis, and the adult epithelial stem (AE) cells appear concomitantly. They proliferate and differentiate to form the adult epithelium (Ep). Thyroid hormone (TH) is well established to trigger this remodeling by regulating the expression of various genes including Notch receptor. To study the role of Notch signaling, we have analyzed the expression of its components, including the ligands (DLL and Jag), receptor (Notch), and targets (Hairy), in the metamorphosing intestine by real‐time reverse transcription‐polymerase chain reaction and in situ hybridization or immunohistochemistry. We show that they are up‐regulated during both natural and TH‐induced metamorphosis in a tissue‐specific manner. Particularly, Hairy1 is specifically expressed in the AE cells. Moreover, up‐regulation of Hairy1 and Hairy2b by TH was prevented by treating tadpoles with a γ‐secretase inhibitor (GSI), which inhibits Notch signaling. More importantly, TH‐induced up‐regulation of LGR5, an adult intestinal stem cell marker, was suppressed by GSI treatment. Our results suggest that Notch signaling plays a role in stem cell development by regulating the expression of Hairy genes during intestinal remodeling. Furthermore, we show with organ culture experiments that prolonged exposure of tadpole intestine to TH plus GSI leads to hyperplasia of secretory cells and reduction of absorptive cells. Our findings here thus provide evidence for evolutionarily conserved role of Notch signaling in intestinal cell fate determination but more importantly reveal, for the first time, an important role of Notch pathway in the formation of adult intestinal stem cells during vertebrate development. Stem Cells 2017;35:1028–1039 PMID:27870267
Noda, Seiko; Yamada, Asako; Nakaoka, Kanae; Goseki-Sone, Masae
2017-10-01
Vitamin D insufficiency is associated with a greater risk of osteoporosis and also influences skeletal muscle functions, differentiation, and development. The principal function of vitamin D in calcium homeostasis is to increase the absorption of calcium from the intestine, and the level of alkaline phosphatase (ALP) activity, a differentiation marker for intestinal epithelial cells, is regulated by vitamin D. Intestinal-type ALP is expressed at a high concentration in the brush border membrane of intestinal epithelial cells, and is known to be affected by several kinds of nutrients. Recent reviews have highlighted the importance of intestinal-type ALP in gut homeostasis. Intestinal-type ALP controls bacterial endotoxin-induced inflammation by dephosphorylating lipopolysaccharide and is a gut mucosal defense factor. In this study, we investigated the influence of vitamin D on the expression of 2 types of alternative mRNA variants encoding the human alkaline phosphatase, intestinal (ALPI) gene in human Caco-2 cells as an in vitro model of the small intestinal epithelium. After treatment with 1-alpha,25-dihydroxyvitamin D 3 , the biologically active form of vitamin D 3 , there were significant increases in the ALP activities of Caco-2 cells. Inhibitor and thermal inactivation experiments showed that the increased ALP had properties of intestinal-type ALP. Reverse transcription-polymerase chain reaction analysis revealed that expression of the 2 types of alternative mRNA variants from the ALPI gene was markedly enhanced by vitamin D in Caco-2 cells. In conclusion, these findings agree with the hypothesis: vitamin D up-regulated the expression of 2 types of human intestinal alkaline phosphatase alternative splicing variants in Caco-2 cells; vitamin D may be an important regulator of ALPI gene expression in gut homeostasis. Copyright © 2017 Elsevier Inc. All rights reserved.
Obata, Yuuki; Kimura, Shunsuke; Nakato, Gaku; Iizuka, Keito; Miyagawa, Yurika; Nakamura, Yutaka; Furusawa, Yukihiro; Sugiyama, Machiko; Suzuki, Keiichiro; Ebisawa, Masashi; Fujimura, Yumiko; Yoshida, Hisahiro; Iwanaga, Toshihiko; Hase, Koji; Ohno, Hiroshi
2014-12-01
Intrinsic Notch signaling in intestinal epithelial cells restricts secretory cell differentiation. In gut-associated lymphoid tissue (GALT), stromal cells located beneath the follicle-associated epithelium (FAE) abundantly express the Notch ligand delta-like 1 (Dll1). Here, we show that mice lacking Rbpj-a gene encoding a transcription factor implicated in Notch signaling-in intestinal epithelial cells have defective GALT maturation. This defect can be attributed to the expansion of goblet cells, which leads to the down-regulation of CCL20 in FAE. These data demonstrate that epithelial Notch signaling maintained by stromal cells contributes to the full maturation of GALT by restricting secretory cell differentiation in FAE. © 2014 The Authors.
Jacouton, Elsa; Mach, Núria; Cadiou, Julie; Lapaque, Nicolas; Clément, Karine; Doré, Joël; van Hylckama Vlieg, Johan E. T.; Smokvina, Tamara; Blottière, Hervé M
2015-01-01
Background and Objectives Identification of new targets for metabolic diseases treatment or prevention is required. In this context, FIAF/ANGPTL4 appears as a crucial regulator of energy homeostasis. Lactobacilli are often considered to display beneficial effect for their hosts, acting on different regulatory pathways. The aim of the present work was to study the effect of several lactobacilli strains on Fiaf gene expression in human intestinal epithelial cells (IECs) and on mice tissues to decipher the underlying mechanisms. Subjects and Methods Nineteen lactobacilli strains have been tested on HT–29 human intestinal epithelial cells for their ability to regulate Fiaf gene expression by RT-qPCR. In order to determine regulated pathways, we analysed the whole genome transcriptome of IECs. We then validated in vivo bacterial effects using C57BL/6 mono-colonized mice fed with normal chow. Results We identified one strain (Lactobacillus rhamnosus CNCMI–4317) that modulated Fiaf expression in IECs. This regulation relied potentially on bacterial surface-exposed molecules and seemed to be PPAR-γ independent but PPAR-α dependent. Transcriptome functional analysis revealed that multiple pathways including cellular function and maintenance, lymphoid tissue structure and development, as well as lipid metabolism were regulated by this strain. The regulation of immune system and lipid and carbohydrate metabolism was also confirmed by overrepresentation of Gene Ontology terms analysis. In vivo, circulating FIAF protein was increased by the strain but this phenomenon was not correlated with modulation Fiaf expression in tissues (except a trend in distal small intestine). Conclusion We showed that Lactobacillus rhamnosus CNCMI–4317 induced Fiaf expression in human IECs, and increased circulating FIAF protein level in mice. Moreover, this effect was accompanied by transcriptome modulation of several pathways including immune response and metabolism in vitro. PMID:26439630
Sumagin, Ronen; Robin, Alex Z.; Nusrat, Asma; Parkos, Charles A.
2014-01-01
Neutrophil (PMN) transepithelial migration (TEM) and accumulation in luminal spaces is a hallmark of mucosal inflammation. TEM has been extensively modeled, however the functional consequences and molecular basis of PMN interactions with luminal epithelial ligands are not clear. Here we report that cytokine-induced expression of a PMN ligand, intercellular adhesion molecule-1 (ICAM-1), exclusively on the luminal (apical) membrane of the intestinal epithelium results in accumulation and enhanced motility of transmigrated PMN on the apical epithelial surface. Using complementary in-vitro and in-vivo approaches we demonstrate that ligation of epithelial ICAM-1 by PMN or with specific antibodies results in myosin light chain kinase (MLCK)-dependent increases in epithelial permeability that are associated with enhanced PMN TEM. Effects of ICAM-1 ligation on epithelial permeability and PMN migration in-vivo were blocked after intraluminal addition of peptides derived from the cytoplasmic domain of ICAM-1. These findings provide new evidence for functional interactions between PMN and epithelial cells after migration into the intestinal lumen. While such interactions may aid in clearance of invading microorganisms by promoting PMN recruitment, engagement of ICAM-1 under pathologic conditions would increase accumulation of epithelial-associated PMN, thus contributing to mucosal injury as observed in conditions including ulcerative colitis. PMID:24345805
Gupta, Rajnish A; Sarraf, Pasha; Brockman, Jeffrey A; Shappell, Scott B; Raftery, Laurel A; Willson, Timothy M; DuBois, Raymond N
2003-02-28
Peroxisome proliferator-activated receptor gamma (PPARgamma) and transforming growth factor-beta (TGF-beta) are key regulators of epithelial cell biology. However, the molecular mechanisms by which either pathway induces growth inhibition and differentiation are incompletely understood. We have identified transforming growth factor-simulated clone-22 (TSC-22) as a target gene of both pathways in intestinal epithelial cells. TSC-22 is member of a family of leucine zipper containing transcription factors with repressor activity. Although little is known regarding its function in mammals, the Drosophila homolog of TSC-22, bunched, plays an essential role in fly development. The ability of PPARgamma to induce TSC-22 was not dependent on an intact TGF-beta1 signaling pathway and was specific for the gamma isoform. Localization studies revealed that TSC-22 mRNA is enriched in the postmitotic epithelial compartment of the normal human colon. Cells transfected with wild-type TSC-22 exhibited reduced growth rates and increased levels of p21 compared with vector-transfected cells. Furthermore, transfection with a dominant negative TSC-22 in which both repressor domains were deleted was able to reverse the p21 induction and growth inhibition caused by activation of either the PPARgamma or TGF-beta pathways. These results place TSC-22 as an important downstream component of PPARgamma and TGF-beta signaling during intestinal epithelial cell differentiation.
Xu, Xiaoping; Sun, Shibo; Xie, Fang; Ma, Juanjuan; Tang, Jing; He, Shuying; Bai, Lan
2017-07-01
Epithelial-mesenchymal transition (EMT) has been considered a fundamental mechanism in complications of Crohn's disease (CD), especially intestinal fibrosis. However, the mechanism underlying EMT regulation in intestinal fibrosis remains unclear. This study aimed to investigate the role of advanced oxidation protein products (AOPPs) in the occurrence of intestinal EMT. AOPPs accumulated in CD tissues and were associated with EMT marker expression in fibrotic lesions from CD patients. Challenge with AOPPs induced intestinal epithelial cell (IEC) phenotype transdifferentiation, fibroblast-like phenotype acquisition, and production of extracellular matrix, both in vitro and in vivo. The effect of AOPPs was mainly mediated by a protein kinase C (PKC) δ-mediated redox-dependent pathway, including phosphorylation of PKC δ, recruitment of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase, production of reactive oxygen species, and NF-κB p65 activation. Inhibition of AOPP-redox signaling activation effectively blocked AOPP-induced EMT in vitro. Studies performed in normal rats showed that chronic administration of AOPPs triggered the occurrence of EMT in rat intestinal epithelia, accompanied by disruption of intestinal integrity, and by promotion of collagen deposition. These effects could be reversed by inhibition of NADPH oxidase. Innovation and Conclusion: This is the first study to demonstrate that AOPPs triggered the occurrence of EMT in IECs in vitro and in vivo through PKC δ-mediated redox-dependent signaling. Our study identifies the role of AOPPs and, in turn, EMT in intestinal fibrosis and provides novel potential targets for the treatment of intestinal fibrotic diseases. Antioxid. Redox Signal. 27, 37-56.
Toll-like receptors 2 and 4 modulate intestinal IL-10 differently in ileum and colon
Layunta, Elena; Grasa, Laura; Pardo, Julián; García, Santiago; Alcalde, Ana I
2017-01-01
Background Inflammatory bowel diseases are consequence of an intestinal homeostasis breakdown in which innate immune dysregulation is implicated. Toll-like receptor (TLR)2 and TLR4 are immune recognition receptors expressed in the intestinal epithelium, the first physical-physiological barrier for microorganisms, to inform the host of the presence of Gram-positive and Gram-negative organisms. Interleukin (IL)-10 is an essential anti-inflammatory cytokine that contributes to maintenance of intestinal homeostasis. Aim Our main aim was to investigate intestinal IL-10 synthesis and release, and whether TLR2 and TLR4 are determinants of IL-10 expression in the intestinal tract. Methods We used Caco-2 cell line as an enterocyte-like cell model, and also ileum and colon from mice deficient in TLR2, TLR4 or TLR2/4 to test the involvement of TLR signaling. Results Intestinal epithelial cells are able to synthesize and release IL-10 and their expression is increased after TLR2 or TLR4 activation. IL-10 regulation seems to be tissue specific, with IL-10 expression in the ileum regulated by a compensation between TLR2 and TLR4 expression, whereas in the colon, TLR2 and TLR4 affect IL-10 expression independently. Conclusions Intestinal epithelial cells could release IL-10 in response to TLR activation, playing an intestinal tissue-dependent and critical intestinal immune role. PMID:29774159
Toll-like receptors 2 and 4 modulate intestinal IL-10 differently in ileum and colon.
Latorre, Eva; Layunta, Elena; Grasa, Laura; Pardo, Julián; García, Santiago; Alcalde, Ana I; Mesonero, José E
2018-04-01
Inflammatory bowel diseases are consequence of an intestinal homeostasis breakdown in which innate immune dysregulation is implicated. Toll-like receptor (TLR)2 and TLR4 are immune recognition receptors expressed in the intestinal epithelium, the first physical-physiological barrier for microorganisms, to inform the host of the presence of Gram-positive and Gram-negative organisms. Interleukin (IL)-10 is an essential anti-inflammatory cytokine that contributes to maintenance of intestinal homeostasis. Our main aim was to investigate intestinal IL-10 synthesis and release, and whether TLR2 and TLR4 are determinants of IL-10 expression in the intestinal tract. We used Caco-2 cell line as an enterocyte-like cell model, and also ileum and colon from mice deficient in TLR2, TLR4 or TLR2/4 to test the involvement of TLR signaling. Intestinal epithelial cells are able to synthesize and release IL-10 and their expression is increased after TLR2 or TLR4 activation. IL-10 regulation seems to be tissue specific, with IL-10 expression in the ileum regulated by a compensation between TLR2 and TLR4 expression, whereas in the colon, TLR2 and TLR4 affect IL-10 expression independently. Intestinal epithelial cells could release IL-10 in response to TLR activation, playing an intestinal tissue-dependent and critical intestinal immune role.
Ion channel TRPV1-dependent activation of PTP1B suppresses EGFR-associated intestinal tumorigenesis
de Jong, Petrus R.; Takahashi, Naoki; Harris, Alexandra R.; Lee, Jihyung; Bertin, Samuel; Jeffries, James; Jung, Michael; Duong, Jen; Triano, Amy I.; Lee, Jongdae; Niv, Yaron; Herdman, David S.; Taniguchi, Koji; Kim, Chang-Whan; Dong, Hui; Eckmann, Lars; Stanford, Stephanie M.; Bottini, Nunzio; Corr, Maripat; Raz, Eyal
2014-01-01
The intestinal epithelium has a high rate of turnover, and dysregulation of pathways that regulate regeneration can lead to tumor development; however, the negative regulators of oncogenic events in the intestinal epithelium are not fully understood. Here we identified a feedback loop between the epidermal growth factor receptor (EGFR), a known mediator of proliferation, and the transient receptor potential cation channel, subfamily V, member 1 (TRPV1), in intestinal epithelial cells (IECs). We found that TRPV1 was expressed by IECs and was intrinsically activated upon EGFR stimulation. Subsequently, TRPV1 activation inhibited EGFR-induced epithelial cell proliferation via activation of Ca2+/calpain and resulting activation of protein tyrosine phosphatase 1B (PTP1B). In a murine model of multiple intestinal neoplasia (ApcMin/+ mice), TRPV1 deficiency increased adenoma formation, and treatment of these animals with an EGFR kinase inhibitor reversed protumorigenic phenotypes, supporting a functional association between TRPV1 and EGFR signaling in IECs. Administration of a TRPV1 agonist suppressed intestinal tumorigenesis in ApcMin/+ mice, similar to — as well as in conjunction with — a cyclooxygenase-2 (COX-2) inhibitor, which suggests that targeting both TRPV1 and COX-2 has potential as a therapeutic approach for tumor prevention. Our findings implicate TRPV1 as a regulator of growth factor signaling in the intestinal epithelium through activation of PTP1B and subsequent suppression of intestinal tumorigenesis. PMID:25083990
Choi, Hye Jin; Kim, Juil; Park, Seong-Hwan; Do, Kee Hun; Yang, Hyun; Moon, Yuseok
2012-06-20
The widely used food additive carrageenan (CGN) has been shown to induce intestinal inflammation, ulcerative colitis-like symptoms, or neoplasm in the gut epithelia in animal models, which are also clinical features of human inflammatory bowel disease. In this study, the effects of CGN on pro-inflammatory transcription factors NF-κB and early growth response gene 1 product (EGR-1) were evaluated in terms of human intestinal epithelial barrier integrity. Both pro-inflammatory transcription factors were elevated by CGN and only NF-κB activation was shown to be involved in the induction of pro-inflammatory cytokine interleukin-8. Moreover, the integrity of the in vitro epithelial monolayer under the CGN insult was maintained by both activated pro-inflammatory transcription factors NF-κB and EGR-1. Suppression of NF-κB or EGR-1 aggravated barrier disruption by CGN, which was associated with the reduced gene expression of tight junction component zonula occludens 1 and its irregular localization in the epithelial monolayer. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Trafficking Ion Transporters to the Apical Membrane of Polarized Intestinal Enterocytes.
Engevik, Amy Christine; Goldenring, James R
2018-01-02
Epithelial cells lining the gastrointestinal tract require distinct apical and basolateral domains to function properly. Trafficking and insertion of enzymes and transporters into the apical brush border of intestinal epithelial cells is essential for effective digestion and absorption of nutrients. Specific critical ion transporters are delivered to the apical brush border to facilitate fluid and electrolyte uptake. Maintenance of these apical transporters requires both targeted delivery and regulated membrane recycling. Examination of altered apical trafficking in patients with Microvillus Inclusion disease caused by inactivating mutations in MYO5B has led to insights into the regulation of apical trafficking by elements of the apical recycling system. Modeling of MYO5B loss in cell culture and animal models has led to recognition of Rab11a and Rab8a as critical regulators of apical brush border function. All of these studies show the importance of apical membrane trafficking dynamics in maintenance of polarized epithelial cell function. Copyright © 2018 Cold Spring Harbor Laboratory Press; all rights reserved.
Obata, Yuuki; Takahashi, Daisuke; Ebisawa, Masashi; Kakiguchi, Kisa; Yonemura, Shigenobu; Jinnohara, Toshi; Kanaya, Takashi; Fujimura, Yumiko; Ohmae, Masumi; Hase, Koji; Ohno, Hiroshi
2012-03-01
Intestinal epithelial cells (IECs) have important functions as the first line of defense against diverse microorganisms on the luminal surface. Impaired integrity of IEC has been implicated in increasing the risk for inflammatory disorders in the gut. Notch signaling plays a critical role in the maintenance of epithelial integrity by regulating the balance of secretory and absorptive cell lineages, and also by facilitating epithelial cell proliferation. We show in this article that mice harboring IEC-specific deletion of Rbpj (RBP-J(ΔIEC)), a transcription factor that mediates signaling through Notch receptors, spontaneously develop chronic colitis characterized by the accumulation of Th17 cells in colonic lamina propria. Intestinal bacteria are responsible for the development of colitis, because their depletion with antibiotics prevented the development of colitis in RBP-J(ΔIEC) mice. Furthermore, bacterial translocation was evident in the colonic mucosa of RBP-J(ΔIEC) mice before the onset of colitis, suggesting attenuated epithelial barrier functions in these mice. Indeed, RBP-J(ΔIEC) mice displayed increase in intestinal permeability after rectal administration of FITC-dextran. In addition to the defect in physical barrier, loss of Notch signaling led to arrest of epithelial cell turnover caused by downregulation of Hes1, a transcriptional repressor of p27(Kip1) and p57(Kip2). Thus, epithelial cell-intrinsic Notch signaling ensures integrity and homeostasis of IEC, and this mechanism is required for containment of intestinal inflammation.
Down-regulation of intestinal epithelial innate response by probiotic yeasts isolated from kefir.
Romanin, David; Serradell, María; González Maciel, Dolores; Lausada, Natalia; Garrote, Graciela L; Rumbo, Martín
2010-06-15
Kefir is obtained by milk fermentation with a complex microbial population included in a matrix of polysaccharide and proteins. Several health-promoting activities has been attributed to kefir consumption. The aim of this study was to select microorganisms from kefir able to down-regulate intestinal epithelial innate response and further characterize this activity. Caco-2 cells stably transfected with a human CCL20 promoter luciferase reporter were used to screen a collection of 24 yeast and 23 bacterial strains isolated from kefir. The Toll-like receptor 5 agonist, flagellin was used to activate the reporter cells, while pre-incubation with the selected strains was tested to identify strains with the capacity to inhibit cell activation. In this system, 21 yeast strains from the genera Saccharomyces, Kluyveromyces and Issatchenkia inhibited almost 100% of the flagellin-dependent activation, whereas only some lactobacilli strains showed a partial effect. K. marxianus CIDCA 8154 was selected for further characterization. Inhibitory activity was confirmed at transcriptional level on Caco-2/TC-7 and HT-29 cells upon flagellin stimulation. A similar effect was observed using other pro-inflammatory stimulation such as IL-1beta and TNF-alpha. Pre-incubation with yeasts induced a down-regulation of NF-kappaB signalling in epithelial cells in vitro, as well as expression of other pro-inflammatory chemokines such as CXCL8 and CXCL2. Furthermore, modulation of CCL20 mRNA expression upon flagellin stimulation was evidenced in vivo, in a mouse ligated intestinal loop model. Results indicate kefir contains microorganisms able to abolish the intestinal epithelial inflammatory response that could explain some of the properties attributed to this fermented milk. Copyright 2010 Elsevier B.V. All rights reserved.
Su, Yuan; Shi, Yufang; Stolow, Melissa A.; Shi, Yun-Bo
1997-01-01
Thyroid hormone (T3 or 3,5,3′-triiodothyronine) plays a causative role during amphibian metamorphosis. To investigate how T3 induces some cells to die and others to proliferate and differentiate during this process, we have chosen the model system of intestinal remodeling, which involves apoptotic degeneration of larval epithelial cells and proliferation and differentiation of other cells, such as the fibroblasts and adult epithelial cells, to form the adult intestine. We have established in vitro culture conditions for intestinal epithelial cells and fibroblasts. With this system, we show that T3 can enhance the proliferation of both cell types. However, T3 also concurrently induces larval epithelial apoptosis, which can be inhibited by the extracellular matrix (ECM). Our studies with known inhibitors of mammalian cell death reveal both similarities and differences between amphibian and mammalian cell death. These, together with gene expression analysis, reveal that T3 appears to simultaneously induce different pathways that lead to specific gene regulation, proliferation, and apoptotic degeneration of the epithelial cells. Thus, our data provide an important molecular and cellular basis for the differential responses of different cell types to the endogenous T3 during metamorphosis and support a role of ECM during frog metamorphosis. PMID:9396758
Tutton, P J; Barkla, D H
1988-01-01
Glucocorticoid and mineralocorticoid receptors are present in normal epithelial cells of both the small and large intestine and there have also been contentious reports of androgen, oestrogen and progesterone receptors in the epithelium of the normal large intestine. The majority of reports suggest that stimulation of the intestinal glucocorticoid receptors results in increased proliferation of epithelial cells in the small bowel, as does stimulation of androgen receptors and possibly mineralocorticoid receptors. The proliferative response of the normal intestine to oestrogens is difficult to evaluate and that to progestigens appears not to have been reported. Epidemiological studies reveal a higher incidence of bowel cancer in premenopausal women than in men of the same age and yet there is a lower incidence of these tumors in women of higher parity. These findings have been atributted to a variety of non-epithelial gender characteristic such as differences in bile metabolism, colonic bacterial and fecal transit times. In experimental animals, androgens have also been shown to influence carcinogenesis and this could well be attributed to changes in food intake etc. However, many studies have now revealed steroid hormone receptors on colorectal tumor cells and thus a direct effect of the steroid hormones on the epithelium during and after malignant transformation must now be considered.
Green, Benedict T; Brown, David R
2016-01-01
The intestinal epithelium is a critical barrier between the internal and external milieux of the mammalian host. Epithelial interactions between these two host environments have been shown to be modulated by several different, cross-communicating cell types residing in the gut mucosa. These include enteric neurons, whose activity is influenced by bacterial pathogens, and their secreted products. Neurotransmitters appear to influence epithelial associations with bacteria in the intestinal lumen. For example, internalization of Salmonella enterica and Escherichia coli O157:H7 into the Peyer's patch mucosa of the small intestine is altered after the inhibition of neural activity with saxitoxin, a neuronal sodium channel blocker. Catecholamine neurotransmitters, such as dopamine and norepinephrine, also alter bacterial internalization in Peyer's patches. In the large intestine, norepinephrine increases the mucosal adherence of E. coli. These neurotransmitter actions are mediated by well-defined catecholamine receptors situated on the basolateral membranes of epithelial cells rather than through direct interactions with luminal bacteria. Investigations of the involvement of neuroepithelial communication in the regulation of interactions between the intestinal mucosa and luminal bacteria will provide novel insights into the mechanisms underlying bacterial colonization and pathogenesis at mucosal surfaces.
Barrera, G J; Tortolero, G Sanchez
2016-01-01
Trefoil factors are effector molecules in gastrointestinal tract physiology. Each one improves healing of the gastrointestinal tract. Trefoil factors may be grouped into three classes: the gastric peptides (TFF1), spasmolytic peptide (TFF2) and intestinal trefoil factor (TFF3). Significant amounts of TFF3 are present in human breast milk. Previously, we have reported that trefoil factor 3 isolated from human breast milk produces down regulation of cytokines and promotes human beta defensins expression in intestinal epithelial cells. This study aimed to determine the molecular mechanism involved. Here we showed that the presence of TFF3 strongly correlated with protease activated receptors 2 (PAR-2) activation in human intestinal cells. Intracellular calcium ((Ca2+)i)mobilization was induced by the treatment with: 1) TFF3, 2) synthetic PAR-2 agonist peptide. The co-treatment with a synthetic PAR-2 antagonist peptide and TFF3 eliminates the latter's effect. Additionally, we demonstrated the existence of interactions among TFF3 and PAR-2 receptors through far Western blot and co-precipitation. Finally, down regulation of PAR-2 by siRNA resulted in a decrease of TFF3 induced intracellular (Ca2+)i mobilization, cytokine regulation and defensins expression. These findings suggest that TFF3 activates intestinal cells through PAR-2 (Fig. 4, Ref. 19).
Sibony, Michal; Abdullah, Majd; Greenfield, Laura; Raju, Deepa; Wu, Ted; Rodrigues, David M; Galindo-Mata, Esther; Mascarenhas, Heidi; Philpott, Dana J; Silverberg, Mark S; Jones, Nicola L
2015-12-01
Autophagy is implicated in Crohn's disease (CD) pathogenesis. Recent evidence suggests autophagy regulates the microRNA (miRNA)-induced silencing complex (miRISC). Therefore, autophagy may play a novel role in CD by regulating expression of miRISC, thereby altering miRNA silencing. As microbes associated with CD can alter autophagy, we hypothesized that microbial disruption of autophagy affects the critical miRISC component AGO2. AGO2 expression was assessed in epithelial and immune cells, and intestinal organoids with disrupted autophagy. Microarray technology was used to determine the expression of downstream miRNAs in cells with defective autophagy. Increased AGO2 was detected in autophagy-deficient ATG5-/- and ATG16-/- mouse embryonic fibroblast cells (MEFs) in comparison with wild-type MEFs. Chemical agents and VacA toxin, which disrupt autophagy, increased AGO2 expression in MEFs, epithelial cells lines, and human monocytes, respectively. Increased AGO2 was also detected in ATG7-/- intestinal organoids, in comparison with wild-type organoids. Five miRNAs were differentially expressed in autophagy-deficient MEFs. Pathway enrichment analysis of the differentially expressed miRNAs implicated signaling pathways previously associated with CD. Taken together, our results suggest that autophagy is involved in the regulation of the critical miRISC component AGO2 in epithelial and immune cells and primary intestinal epithelial cells. We propose a mechanism by which autophagy alters miRNA expression, which likely impacts the regulation of CD-associated pathways. Furthermore, as enteric microbial products can manipulate autophagy and AGO2, our findings suggest a novel mechanism by which enteric microbes could influence miRNA to promote disease.
Yang, Yang; Wang, Wen-Sheng; Qiu, Yuan; Sun, Li-Hua; Yang, Hua
2013-05-01
To investigate the role of cyclic adenosine monophosphate(cAMP) in the regulation of intestinal epithelial barrier function under hypoxia. Intestinal epithelial barrier was established by Caco-2 monolayers. Cells were divided into four groups: normoxia (Nx), normoxia plus Forskolin(Nx+FSK), hypoxia(Hx), hypoxia plus SQ22536(Hx+SQ22536). cAMP concentrations of different groups were assessed by cAMP enzyme immunoassay kit. RT-PCR and Western blotting were used to detect the mRNA and protein expressions of claudin-1 and occludin under normoxic and hypoxic condition. Caco-2 monolayers were grown on Millicell filters, and transepithelial electrical resistance(TER) was measured using a Millipore electric resistance system. The concentration of cAMP under hypoxic conditions(Hx group) was higher compared with Nx group [(6.30±0.50) pmol/L vs. (2.38±0.18) pmol/L, P<0.01]. At the same time, both mRNA and protein expressions of claudin-1 and occluding were lower in Hx group than those in Nx group(all P<0.05). TER decreased by 76.30±0.64(P<0.01). When the monolayers were exposed to hypoxia plus SQ22536 (Hx+SQ22536 group), the concentration of cAMP was(2.12±0.23) pmol/L, which was lower than that under hypoxic conditions(Hx group, P<0.01). Both mRNA and protein expressions of claudin-1 and occludin were higher compared to Hx group (all P<0.01). TER increased by 32.96±2.16 (P<0.05). When Caco-2 cells are exposed to hypoxia, barrier function, claudin-1 and occludin expression are diminished in parallel with a high level of intracellular cAMP compared with the normoxic condition. Inhibition of the intracellular cAMP level under hypoxia can maintain the intestinal epithelial function through regulating the claudin-1 and occludin expression and attenuate the permeability of intestinal mucosa.
Cholinergic regulation of epithelial ion transport in the mammalian intestine
Hirota, C L; McKay, D M
2006-01-01
Acetylcholine (ACh) is critical in controlling epithelial ion transport and hence water movements for gut hydration. Here we review the mechanism of cholinergic control of epithelial ion transport across the mammalian intestine. The cholinergic nervous system affects basal ion flux and can evoke increased active ion transport events. Most studies rely on measuring increases in short-circuit current (ISC = active ion transport) evoked by adding ACh or cholinomimetics to intestinal tissue mounted in Ussing chambers. Despite subtle species and gut regional differences, most data indicate that, under normal circumstances, the effect of ACh on intestinal ion transport is mainly an increase in Cl- secretion due to interaction with epithelial M3 muscarinic ACh receptors (mAChRs) and, to a lesser extent, neuronal M1 mAChRs; however, AChR pharmacology has been plagued by a lack of good receptor subtype-selective compounds. Mice lacking M3 mAChRs display intact cholinergically-mediated intestinal ion transport, suggesting a possible compensatory mechanism. Inflamed tissues often display perturbations in the enteric cholinergic system and reduced intestinal ion transport responses to cholinomimetics. The mechanism(s) underlying this hyporesponsiveness are not fully defined. Inflammation-evoked loss of mAChR-mediated control of epithelial ion transport in the mouse reveals a role for neuronal nicotinic AChRs, representing a hitherto unappreciated braking system to limit ACh-evoked Cl- secretion. We suggest that: i) pharmacological analyses should be supported by the use of more selective compounds and supplemented with molecular biology techniques targeting specific ACh receptors and signalling molecules, and ii) assessment of ion transport in normal tissue must be complemented with investigations of tissues from patients or animals with intestinal disease to reveal control mechanisms that may go undetected by focusing on healthy tissue only. PMID:16981004
Ahrens, Richard; Waddell, Amanda; Seidu, Luqman; Blanchard, Carine; Carey, Rebecca; Forbes, Elizabeth; Lampinen, Maria; Wilson, Tara; Cohen, Elizabeth; Stringer, Keith; Ballard, Edgar; Munitz, Ariel; Xu, Huan; Lee, Nancy; Lee, James J; Rothenberg, Marc E; Denson, Lee; Hogan, Simon P
2008-11-15
Clinical studies have demonstrated a link between the eosinophil-selective chemokines, eotaxins (eotaxin-1/CCL11 and eotaxin-2/CCL24), eosinophils, and the inflammatory bowel diseases, Crohn's disease and ulcerative colitis (UC). However, the cellular source and individual contribution of the eotaxins to colonic eosinophilic accumulation in inflammatory bowel diseases remain unclear. In this study we demonstrate, by gene array and quantitative PCR, elevated levels of eotaxin-1 mRNA in the rectosigmoid colon of pediatric UC patients. We show that elevated levels of eotaxin-1 mRNA positively correlated with rectosigmoid eosinophil numbers. Further, colonic eosinophils appeared to be degranulating, and the levels positively correlated with disease severity. Using the dextran sodium sulfate (DSS)-induced intestinal epithelial injury model, we show that DSS treatment of mice strongly induced colonic eotaxin-1 and eotaxin-2 expression and eosinophil levels. Analysis of eosinophil-deficient mice defined an effector role for eosinophils in disease pathology. DSS treatment of eotaxin-2(-/-) and eotaxin-1/2(-/-) mice demonstrated that eosinophil recruitment was dependent on eotaxin-1. In situ and immunofluorescence analysis-identified eotaxin-1 expression was restricted to intestinal F4/80(+)CD11b(+) macrophages in DSS-induced epithelial injury and to CD68(+) intestinal macrophages and the basolateral compartment of intestinal epithelial cells in pediatric UC. These data demonstrate that intestinal macrophage and epithelial cell-derived eotaxin-1 plays a critical role in the regulation of eosinophil recruitment in colonic eosinophilic disease such as pediatric UC and provides a basis for targeting the eosinophil/eotaxin-1 axis in UC.
Chng, Song Hui; Kundu, Parag; Dominguez-Brauer, Carmen; Teo, Wei Ling; Kawajiri, Kaname; Fujii-Kuriyama, Yoshiaki; Mak, Tak Wah; Pettersson, Sven
2016-04-12
Diet and microbiome derived indole derivatives are known to activate the ligand induced transcription factor, the Aryl hydrocarbon Receptor (AhR). While the current understanding of AhR biology has confirmed its role in mucosal lymphocytes, its function in intestinal antigen presenting cells (APCs) is poorly understood. Here, we report that Cre-mediated deletion of AhR in CD11c-expressing cells in C57/BL6 mice is associated with altered intestinal epithelial morphogenesis in vivo. Moreover, when co-cultured with AhR-deficient DCs ex vivo, intestinal organoids showed reduced SRY (sex determining region Y)-box 9 and increased Mucin 2 expression, which correlates with reduced Paneth cells and increased goblet cell differentiation, similar to the data obtained in vivo. Further, characterization of intestinal APC subsets, devoid of AhR, revealed an expression pattern associated with aberrant intrinsic Wnt pathway regulation. At a functional level, the loss of AhR in APCs resulted in a dysfunctional epithelial barrier, associated with a more aggressive chemically induced colitis compared to wild type animals. Our results are consistent with a model whereby the AhR signalling pathway may participate in the regulation of innate immunity through intestinal epithelium development and mucosal immunity.
Maier, Eva; Anderson, Rachel C.; Roy, Nicole C.
2014-01-01
The human gastrointestinal tract is colonised by trillions of commensal bacteria, most of which are obligate anaerobes residing in the large intestine. Appropriate bacterial colonisation is generally known to be critical for human health. In particular, the development and function of the immune system depends on microbial colonisation, and a regulated cross-talk between commensal bacteria, intestinal epithelial cells and immune cells is required to maintain mucosal immune homeostasis. This homeostasis is disturbed in various inflammatory disorders, such as inflammatory bowel diseases. Several in vitro and in vivo studies indicate a role for Faecalibacterium prausnitzii, Bacteroides thetaiotaomicron, Bacteroides fragilis, Akkermansia muciniphila and segmented filamentous bacteria in maintaining intestinal immune homeostasis. These obligate anaerobes are abundant in the healthy intestine but reduced in several inflammatory diseases, suggesting an association with protective effects on human health. However, knowledge of the mechanisms underlying the effects of obligate anaerobic intestinal bacteria remains limited, in part due to the difficulty of co-culturing obligate anaerobes together with oxygen-requiring human epithelial cells. By using novel dual-environment co-culture models, it will be possible to investigate the effects of the unstudied majority of intestinal microorganisms on the human epithelia. This knowledge will provide opportunities for improving human health and reducing the risk of inflammatory diseases. PMID:25545102
Proteomic changes during intestinal cell maturation in vivo
Chang, Jinsook; Chance, Mark R.; Nicholas, Courtney; Ahmed, Naseem; Guilmeau, Sandra; Flandez, Marta; Wang, Donghai; Byun, Do-Sun; Nasser, Shannon; Albanese, Joseph M.; Corner, Georgia A.; Heerdt, Barbara G.; Wilson, Andrew J.; Augenlicht, Leonard H.; Mariadason, John M.
2008-01-01
Intestinal epithelial cells undergo progressive cell maturation as they migrate along the crypt-villus axis. To determine molecular signatures that define this process, proteins differentially expressed between the crypt and villus were identified by 2D-DIGE and MALDI-MS. Forty-six differentially expressed proteins were identified, several of which were validated by immunohistochemistry. Proteins upregulated in the villus were enriched for those involved in brush border assembly and lipid uptake, established features of differentiated intestinal epithelial cells. Multiple proteins involved in glycolysis were also upregulated in the villus, suggesting increased glycolysis is a feature of intestinal cell differentiation. Conversely, proteins involved in nucleotide metabolism, and protein processing and folding were increased in the crypt, consistent with functions associated with cell proliferation. Three novel paneth cell markers, AGR2, HSPA5 and RRBP1 were also identified. Notably, significant correlation was observed between overall proteomic changes and corresponding gene expression changes along the crypt-villus axis, indicating intestinal cell maturation is primarily regulated at the transcriptional level. This proteomic profiling analysis identified several novel proteins and functional processes differentially induced during intestinal cell maturation in vivo. Integration of proteomic, immunohistochemical, and parallel gene expression datasets demonstrate the coordinated manner in which intestinal cell maturation is regulated. PMID:18824147
Maier, Eva; Anderson, Rachel C; Roy, Nicole C
2014-12-24
The human gastrointestinal tract is colonised by trillions of commensal bacteria, most of which are obligate anaerobes residing in the large intestine. Appropriate bacterial colonisation is generally known to be critical for human health. In particular, the development and function of the immune system depends on microbial colonisation, and a regulated cross-talk between commensal bacteria, intestinal epithelial cells and immune cells is required to maintain mucosal immune homeostasis. This homeostasis is disturbed in various inflammatory disorders, such as inflammatory bowel diseases. Several in vitro and in vivo studies indicate a role for Faecalibacterium prausnitzii, Bacteroides thetaiotaomicron, Bacteroides fragilis, Akkermansia muciniphila and segmented filamentous bacteria in maintaining intestinal immune homeostasis. These obligate anaerobes are abundant in the healthy intestine but reduced in several inflammatory diseases, suggesting an association with protective effects on human health. However, knowledge of the mechanisms underlying the effects of obligate anaerobic intestinal bacteria remains limited, in part due to the difficulty of co-culturing obligate anaerobes together with oxygen-requiring human epithelial cells. By using novel dual-environment co-culture models, it will be possible to investigate the effects of the unstudied majority of intestinal microorganisms on the human epithelia. This knowledge will provide opportunities for improving human health and reducing the risk of inflammatory diseases.
Myosin Light Chain Kinase Mediates Intestinal Barrier Disruption following Burn Injury
Chen, Chuanli; Wang, Pei; Su, Qin; Wang, Shiliang; Wang, Fengjun
2012-01-01
Background Severe burn injury results in the loss of intestinal barrier function, however, the underlying mechanism remains unclear. Myosin light chain (MLC) phosphorylation mediated by MLC kinase (MLCK) is critical to the pathophysiological regulation of intestinal barrier function. We hypothesized that the MLCK-dependent MLC phosphorylation mediates the regulation of intestinal barrier function following burn injury, and that MLCK inhibition attenuates the burn-induced intestinal barrier disfunction. Methodology/Principal Findings Male balb/c mice were assigned randomly to either sham burn (control) or 30% total body surface area (TBSA) full thickness burn without or with intraperitoneal injection of ML-9 (2 mg/kg), an MLCK inhibitor. In vivo intestinal permeability to fluorescein isothiocyanate (FITC)-dextran was measured. Intestinal mucosa injury was assessed histologically. Tight junction proteins ZO-1, occludin and claudin-1 was analyzed by immunofluorescent assay. Expression of MLCK and phosphorylated MLC in ileal mucosa was assessed by Western blot. Intestinal permeability was increased significantly after burn injury, which was accompanied by mucosa injury, tight junction protein alterations, and increase of both MLCK and MLC phosphorylation. Treatment with ML-9 attenuated the burn-caused increase of intestinal permeability, mucosa injury, tight junction protein alterations, and decreased MLC phosphorylation, but not MLCK expression. Conclusions/Significance The MLCK-dependent MLC phosphorylation mediates intestinal epithelial barrier dysfunction after severe burn injury. It is suggested that MLCK-dependent MLC phosphorylation may be a critical target for the therapeutic treatment of intestinal epithelial barrier disruption after severe burn injury. PMID:22529961
Meir, Michael; Flemming, Sven; Burkard, Natalie; Bergauer, Lisa; Metzger, Marco; Germer, Christoph-Thomas; Schlegel, Nicolas
2015-10-15
Recent data suggest that neurotrophic factors from the enteric nervous system are involved in intestinal epithelial barrier regulation. In this context the glial cell line-derived neurotrophic factor (GDNF) was shown to affect gut barrier properties in vivo directly or indirectly by largely undefined processes in a model of inflammatory bowel disease (IBD). We further investigated the potential role and mechanisms of GDNF in the regulation of intestinal barrier functions. Immunostaining of human gut specimen showed positive GDNF staining in enteric neuronal plexus and in enterocytes. In Western blots of the intestinal epithelial cell lines Caco2 and HT29B6, significant amounts of GDNF were detected, suggesting that enterocytes represent an additional source of GDNF. Application of recombinant GDNF on Caco2 and HT29B6 cells for 24 h resulted in significant epithelial barrier stabilization in monolayers with immature barrier functions. Wound-healing assays showed a significantly faster closure of the wounded areas after GDNF application. GDNF augmented cAMP levels and led to significant inactivation of p38 MAPK in immature cells. Activation of p38 MAPK signaling by SB-202190 mimicked GDNF-induced barrier maturation, whereas the p38 MAPK activator anisomycin blocked GDNF-induced effects. Increasing cAMP levels had adverse effects on barrier maturation, as revealed by permeability measurements. However, increased cAMP augmented the proliferation rate in Caco2 cells, and GDNF-induced proliferation of epithelial cells was abrogated by the PKA inhibitor H89. Our data show that enterocytes represent an additional source of GDNF synthesis. GDNF contributes to wound healing in a cAMP/PKA-dependent manner and promotes barrier maturation in immature enterocytes cells by inactivation of p38 MAPK signaling. Copyright © 2015 the American Physiological Society.
IFN-γ-mediated induction of an apical IL-10 receptor on polarized intestinal epithelia.
Kominsky, Douglas J; Campbell, Eric L; Ehrentraut, Stefan F; Wilson, Kelly E; Kelly, Caleb J; Glover, Louise E; Collins, Colm B; Bayless, Amanda J; Saeedi, Bejan; Dobrinskikh, Evgenia; Bowers, Brittelle E; MacManus, Christopher F; Müller, Werner; Colgan, Sean P; Bruder, Dunja
2014-02-01
Cytokines secreted at sites of inflammation impact the onset, progression, and resolution of inflammation. In this article, we investigated potential proresolving mechanisms of IFN-γ in models of inflammatory bowel disease. Guided by initial microarray analysis, in vitro studies revealed that IFN-γ selectively induced the expression of IL-10R1 on intestinal epithelia. Further analysis revealed that IL-10R1 was expressed predominantly on the apical membrane of polarized epithelial cells. Receptor activation functionally induced canonical IL-10 target gene expression in epithelia, concomitant with enhanced barrier restitution. Furthermore, knockdown of IL-10R1 in intestinal epithelial cells results in impaired barrier function in vitro. Colonic tissue isolated from murine colitis revealed that levels of IL-10R1 and suppressor of cytokine signaling 3 were increased in the epithelium and coincided with increased tissue IFN-γ and IL-10 cytokines. In parallel, studies showed that treatment of mice with rIFN-γ was sufficient to drive expression of IL-10R1 in the colonic epithelium. Studies of dextran sodium sulfate colitis in intestinal epithelial-specific IL-10R1-null mice revealed a remarkable increase in disease susceptibility associated with increased intestinal permeability. Together, these results provide novel insight into the crucial and underappreciated role of epithelial IL-10 signaling in the maintenance and restitution of epithelial barrier and of the temporal regulation of these pathways by IFN-γ.
γδ T cells in homeostasis and host defence of epithelial barrier tissues.
Nielsen, Morten M; Witherden, Deborah A; Havran, Wendy L
2017-12-01
Epithelial surfaces line the body and provide a crucial interface between the body and the external environment. Tissue-resident epithelial γδ T cells represent a major T cell population in the epithelial tissues and are ideally positioned to carry out barrier surveillance and aid in tissue homeostasis and repair. In this Review, we focus on the intraepithelial γδ T cell compartment of the two largest epithelial tissues in the body - namely, the epidermis and the intestine - and provide a comprehensive overview of the crucial contributions of intraepithelial γδ T cells to tissue integrity and repair, host homeostasis and protection in the context of the symbiotic relationship with the microbiome and during pathogen clearance. Finally, we describe epithelium-specific butyrophilin-like molecules and briefly review their emerging role in selectively shaping and regulating epidermal and intestinal γδ T cell repertoires.
Intestinal stem cells and their defining niche.
Tan, David Wei-Min; Barker, Nick
2014-01-01
The intestinal epithelium is a classic example of a rapidly self-renewing tissue fueled by dedicated resident stem cells. These stem cells reside at the crypt base, generating committed progeny that mature into the various functional epithelial lineages while following a rapid migratory path toward the villi. Two models of intestinal stem cell location were proposed half a century ago and data have been presented in support of both models, dividing the scientific community. Molecular markers have been identified and validated using new techniques such as in vivo lineage tracing and ex vivo organoid culture. The intestinal stem cell niche comprises both epithelial cells, in particular the Paneth cell, and the stromal compartment, where cell-associated ligands and soluble factors regulate stem cell behavior. This review highlights the recent advances in identifying and characterizing the intestinal stem cells and their defining niche. © 2014 Elsevier Inc. All rights reserved.
Notch inhibition counteracts Paneth cell death in absence of caspase-8.
Jeon, M K; Kaemmerer, E; Schneider, U; Schiffer, M; Klaus, C; Hennings, J; Clahsen, T; Ackerstaff, T; Niggemann, M; Schippers, A; Longerich, T; Sellge, G; Trautwein, C; Wagner, N; Liedtke, C; Gassler, N
2018-05-16
Opposing activities of Notch and Wnt signaling regulate mucosal barrier homeostasis and differentiation of intestinal epithelial cells. Specifically, Wnt activity is essential for differentiation of secretory cells including Wnt3-producing Paneth cells, whereas Notch signaling strongly promotes generation of absorptive cells. Loss of caspase-8 in intestinal epithelium (casp8 ∆int ) is associated with fulminant epithelial necroptosis, severe Paneth cell death, secondary intestinal inflammation, and an increase in Notch activity. Here, we found that pharmacological Notch inhibition with dibenzazepine (DBZ) is able to essentially rescue the loss of Paneth cells, deescalate the inflammatory phenotype, and reduce intestinal permeability in casp8 ∆int mice. The secretory cell metaplasia in DBZ-treated casp8 ∆int animals is proliferative, indicating for Notch activities partially insensitive to gamma-secretase inhibition in a casp8 ∆int background. Our data suggest that casp8 acts in the intestinal Notch network.
Noordstra, Ivar; Liu, Qingyang; Nijenhuis, Wilco; Hua, Shasha; Jiang, Kai; Baars, Matthijs; Remmelzwaal, Sanne; Martin, Maud; Kapitein, Lukas C; Akhmanova, Anna
2016-11-15
The microtubule cytoskeleton regulates cell polarity by spatially organizing membrane trafficking and signaling processes. In epithelial cells, microtubules form parallel arrays aligned along the apico-basal axis, and recent work has demonstrated that the members of CAMSAP/Patronin family control apical tethering of microtubule minus ends. Here, we show that in mammalian intestinal epithelial cells, the spectraplakin ACF7 (also known as MACF1) specifically binds to CAMSAP3 and is required for the apical localization of CAMSAP3-decorated microtubule minus ends. Loss of ACF7 but not of CAMSAP3 or its homolog CAMSAP2 affected the formation of polarized epithelial cysts in three-dimensional cultures. In short-term epithelial polarization assays, knockout of CAMSAP3, but not of CAMSAP2, caused microtubule re-organization into a more radial centrosomal array, redistribution of Rab11-positive (also known as Rab11A) endosomes from the apical cell surface to the pericentrosomal region and inhibition of actin brush border formation at the apical side of the cell. We conclude that ACF7 is an important regulator of apico-basal polarity in mammalian intestinal cells and that a radial centrosome-centered microtubule organization can act as an inhibitor of epithelial polarity. © 2016. Published by The Company of Biologists Ltd.
Cohran, Valeria; Managlia, Elizabeth; Bradford, Emily M; Goretsky, Tatiana; Li, Ting; Katzman, Rebecca B; Cheresh, Paul; Brown, Jeffrey B; Hawkins, Jennifer; Liu, Shirley X L; De Plaen, Isabelle G; Weitkamp, Jörn-Hendrik; Helmrath, Michael; Zhang, Zheng; Barrett, Terrence A
2016-07-01
Intestinal adaptation to small-bowel resection (SBR) after necrotizing enterocolitis expands absorptive surface areas and promotes enteral autonomy. Survivin increases proliferation and blunts apoptosis. The current study examines survivin in intestinal epithelial cells after ileocecal resection. Wild-type and epithelial Pik3r1 (p85α)-deficient mice underwent sham surgery or 30% resection. RNA and protein were isolated from small bowel to determine levels of β-catenin target gene expression, activated caspase-3, survivin, p85α, and Trp53. Healthy and post-resection human infant small-bowel sections were analyzed for survivin, Ki-67, and TP53 by immunohistochemistry. Five days after ileocecal resection, epithelial levels of survivin increased relative to sham-operated on mice, which correlated with reduced cleaved caspase-3, p85α, and Trp53. At baseline, p85α-deficient intestinal epithelial cells had less Trp53 and more survivin, and relative responses to resection were blunted compared with wild-type. In infant small bowel, survivin in transit amplifying cells increased 71% after SBR. Resection increased proliferation and decreased numbers of TP53-positive epithelial cells. Data suggest that ileocecal resection reduces p85α, which lowers TP53 activation and releases survivin promoter repression. The subsequent increase in survivin among transit amplifying cells promotes epithelial cell proliferation and lengthens crypts. These findings suggest that SBR reduces p85α and TP53, which increases survivin and intestinal epithelial cell expansion during therapeutic adaptation in patients with short bowel syndrome. Copyright © 2016 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Amin, Md Ruhul; Ghannad, Leda; Othman, Ahmad
2009-05-08
Serotonin (5-HT) decreases NHE2 and NHE3 activities under acute conditions in human intestinal epithelial cells. Here, we have investigated the effects of 5-HT on expression of the human NHE3 gene and the mechanisms underlying its transcriptional regulation in differentiated C2BBe1 cells. Treatment of the human intestinal epithelial cell line, C2BBe1, with 5-HT (20 {mu}M) resulted in a significant decrease in NHE3 mRNA and protein expression. In transient transfection studies, 5-HT repressed the NHE3 promoter activity by {approx}55%. The repression of the NHE3 promoter activity in response to 5-HT was accompanied by reduced DNA-binding activity of transcription factors Sp1 and Sp3more » to the NHE3 promoter without alteration in their nuclear levels. Pharmacological inhibitors of protein kinase C reversed the inhibitory effect of 5-HT on the promoter activity. Our data indicate that 5-HT suppresses the transcriptional activity of the NHE3 promoter and this effect may be mediated by PKC{alpha} and modulation of DNA-binding affinities of Sp1 and Sp3.« less
Campbell, Eric L.; MacManus, Christopher F.; Kominsky, Douglas J.; Keely, Simon; Glover, Louise E.; Bowers, Brittelle E.; Scully, Melanie; Bruyninckx, Walter J.; Colgan, Sean P.
2010-01-01
Resolvin-E1 (RvE1) has been demonstrated to promote inflammatory resolution in numerous disease models. Given the importance of epithelial cells to coordination of mucosal inflammation, we hypothesized that RvE1 elicits an epithelial resolution signature. Initial studies revealed that the RvE1-receptor (ChemR23) is expressed on intestinal epithelial cells (IECs) and that microarray profiling of cells exposed to RvE1 revealed regulation of inflammatory response gene expression. Notably, RvE1 induced intestinal alkaline phosphatase (ALPI) expression and significantly enhanced epithelial ALPI enzyme activity. One role recently attributed to ALPI is the detoxification of bacterial LPS. In our studies, RvE1-exposed epithelia detoxified LPS (assessed by attenuation of NF-κB signaling). Furthermore, in epithelial-bacterial interaction assays, we determined that ALPI retarded the growth of Escherichia coli. To define these features in vivo, we used a murine dextran sulfate sodium (DSS) model of colitis. Compared with vehicle controls, administration of RvE1 resulted in significant improvement of disease activity indices (e.g., body weight, colon length) concomitant with increased ALPI expression in the intestinal epithelium. Moreover, inhibition of ALPI activity resulted in increased severity of colitis in DSS-treated animals and partially abrogated the protective influence of RvE1. Together, these data implicate a previously unappreciated role for ALPI in RvE1-mediated inflammatory resolution. PMID:20660763
Campbell, Eric L; MacManus, Christopher F; Kominsky, Douglas J; Keely, Simon; Glover, Louise E; Bowers, Brittelle E; Scully, Melanie; Bruyninckx, Walter J; Colgan, Sean P
2010-08-10
Resolvin-E1 (RvE1) has been demonstrated to promote inflammatory resolution in numerous disease models. Given the importance of epithelial cells to coordination of mucosal inflammation, we hypothesized that RvE1 elicits an epithelial resolution signature. Initial studies revealed that the RvE1-receptor (ChemR23) is expressed on intestinal epithelial cells (IECs) and that microarray profiling of cells exposed to RvE1 revealed regulation of inflammatory response gene expression. Notably, RvE1 induced intestinal alkaline phosphatase (ALPI) expression and significantly enhanced epithelial ALPI enzyme activity. One role recently attributed to ALPI is the detoxification of bacterial LPS. In our studies, RvE1-exposed epithelia detoxified LPS (assessed by attenuation of NF-kappaB signaling). Furthermore, in epithelial-bacterial interaction assays, we determined that ALPI retarded the growth of Escherichia coli. To define these features in vivo, we used a murine dextran sulfate sodium (DSS) model of colitis. Compared with vehicle controls, administration of RvE1 resulted in significant improvement of disease activity indices (e.g., body weight, colon length) concomitant with increased ALPI expression in the intestinal epithelium. Moreover, inhibition of ALPI activity resulted in increased severity of colitis in DSS-treated animals and partially abrogated the protective influence of RvE1. Together, these data implicate a previously unappreciated role for ALPI in RvE1-mediated inflammatory resolution.
Ji, Yun; Wu, Zhenlong; Dai, Zhaolai; Sun, Kaiji; Zhang, Qing; Wu, Guoyao
2016-01-01
High intake of dietary cysteine is extremely toxic to animals and the underlying mechanism remains largely unknown. This study was conducted to test the hypothesis that excessive L-cysteine induces cell death by activating endoplasmic reticulum (ER) stress and mitogen-activated protein kinase (MAPK) signaling in intestinal porcine epithelial cells. Jejunal enterocytes were cultured in the presence of 0-10 mmol/L L-cysteine. Cell viability, morphologic alterations, mRNA levels for genes involved in ER stress, protein abundances for glucose-regulated protein 78, C/EBP homologous protein (CHOP), alpha subunit of eukaryotic initiation factor-2 (eIF2α), extracellular signal-regulated kinase (ERK1/2), p38 MAPK, and c-Jun N-terminal protein kinase (JNK1/2) were determined. The results showed that L-cysteine (5-10 mmol/L) reduced cell viability (P < 0.05) and led to vacuole-like cell death in intestinal porcine epithelial cells. These adverse effects of L-cysteine were not affected by the autophagy inhibitor 3-methyladenine. The protein abundances for CHOP, phosphorylated (p)-eIF2α, p-JNK1/2, p-p38 MAPK, and the spliced form of XBP-1 mRNA were enhanced (P < 0.05), whereas those for p-ERK1/2 were reduced (P < 0.05). Collectively, excessive L-cysteine induces vacuole-like cell death via the activation of ER stress and MAPK signaling in small intestinal epithelial cells. These signaling pathways may be potential targets for developing effective strategies to prevent the toxicity of dietary cysteine.
Schuhmann, D; Godoy, P; Weiß, C; Gerloff, A; Singer, M V; Dooley, S; Böcker, U
2011-01-01
The intestinal epithelial barrier represents an important component in the pathogenesis of inflammatory bowel diseases. Interferon (IFN)-γ, a T helper type 1 (Th1) cytokine, regulated by the interleukin (IL)-18/IL-18 binding protein (bp) system, modulates the integrity of this barrier. The aim of this work was to study functionally the consequences of IFN-γ on intestinal epithelial cells (IEC) and to interfere selectively with identified adverse IFN-γ effects. IEC lines were stimulated with IFN-γ. IL-18 and IL-18bp were assessed by enzyme-linked immunosorbent assay. Staining of phosphatidylserine, DNA laddering, lactate dehydrogenase (LDH) release, cleavage of poly-adenosine diphosphate-ribose-polymerase (PARP) and activation of caspase-3 were analysed to determine cell death. Inhibitors of tyrosine kinase, caspase-3 or p38 mitogen-activated kinase ((MAP) activity were used. Cytokines were measured in supernatants of colonic biopsies of healthy controls and inflammatory bowel disease (IBD) patients. In IEC lines, IFN-γ up-regulated IL-18bp selectively. Ex vivo, IFN-γ was present in supernatants from cultured biopsies and up-regulated with inflammation. Contrary to previous reports, IFN-γ alone induced apoptosis in IEC lines, as demonstrated by phosphatidylserin staining, DNA cleavage and LDH release. Further, activation of caspase-3, PARP cleavage and expression of pro-apoptotic Bad were induced. Partial inhibition of caspase-3 and of p38 but not JAK tyrosine kinase, preserved up-regulation of IL-18bp expression. Selective inhibition of IFN-γ mediated apoptosis, while preserving its beneficial consequences on the ratio of IL-18/IL-18bp, could contribute to the integrity of the mucosal barrier in intestinal inflammation. PMID:21078084
Ahrens, Richard; Waddell, Amanda; Seidu, Luqman; Blanchard, Carine; Carey, Rebecca; Forbes, Elizabeth; Lampinen, Maria; Wilson, Tara; Cohen, Elizabeth; Stringer, Keith; Ballard, Edgar; Munitz, Ariel; Xu, Huan; Lee, Nancy; Lee, James J.; Rothenberg, Marc E.; Denson, Lee; Hogan, Simon P.
2009-01-01
Clinical studies have demonstrated a link between the eosinophil-selective chemokines, eotaxins (eotaxin-1/CCL11 and eotaxin-2/CCL24), eosinophils, and the inflammatory bowel diseases, Crohn’s disease and ulcerative colitis (UC). However, the cellular source and individual contribution of the eotaxins to colonic eosinophilic accumulation in inflammatory bowel diseases remain unclear. In this study we demonstrate, by gene array and quantitative PCR, elevated levels of eotaxin-1 mRNA in the rectosigmoid colon of pediatric UC patients. We show that elevated levels of eotaxin-1 mRNA positively correlated with rectosigmoid eosinophil numbers. Further, colonic eosinophils appeared to be degranulating, and the levels positively correlated with disease severity. Using the dextran sodium sulfate (DSS)-induced intestinal epithelial injury model, we show that DSS treatment of mice strongly induced colonic eotaxin-1 and eotaxin-2 expression and eosinophil levels. Analysis of eosinophil-deficient mice defined an effector role for eosinophils in disease pathology. DSS treatment of eotaxin-2−/− and eotaxin-1/2−/− mice demonstrated that eosinophil recruitment was dependent on eotaxin-1. In situ and immunofluorescence analysis-identified eotaxin-1 expression was restricted to intestinal F4/80+CD11b+ macrophages in DSS-induced epithelial injury and to CD68+ intestinal macrophages and the basolateral compartment of intestinal epithelial cells in pediatric UC. These data demonstrate that intestinal macrophage and epithelial cell-derived eotaxin-1 plays a critical role in the regulation of eosinophil recruitment in colonic eosinophilic disease such as pediatric UC and provides a basis for targeting the eosinophil/eotaxin-1 axis in UC. PMID:18981162
Gabastou, J M; Kernéis, S; Bernet-Camard, M F; Barbat, A; Coconnier, M H; Kaper, J B; Servin, A L
1995-09-01
Pathogens and eucaryotic cells are active partners during the process of pathogenicity. To gain access to enterocytes and to cross the epithelial membrane, many enterovirulent microorganisms interact with the brush border membrane-associated components as receptors. Recent reports provide evidence that intestinal cell differentiation plays a role in microbial pathogenesis. Human enteropathogenic Escherichia coli (EPEC) develop their pathogenicity upon infecting enterocytes. To determine if intestinal epithelial cell differentiation influences EPEC pathogenicity, we examined the infection of human intestinal epithelial cells by JPN 15 (pMAR7) [EAF+ eae+] EPEC strain as a function of the cell differentiation. The human embryonic intestinal INT407 cells, the human colonic T84 cells, the human undifferentiated HT-29 cells (HT-29 Std) and two enterocytic cell lines, HT-29 glc-/+ and Caco-2 cells, were used as cellular models. Cells were infected apically with the EPEC strain and the cell-association and cell-entry were examined by quantitative determination using metabolically radiolabeled bacteria, as well as by light, scanning and transmission electron microscopy. [EAF+ eae+] EPEC bacteria efficiently colonized the cultured human intestinal cells. Diffuse bacterial adhesion occurred to undifferentiated HT-29 Std and INT407 cells, whereas characteristic EPEC cell clusters were observed on fully differentiated enterocytic HT-29 glc-/+ cells and on colonic crypt T84 cells. As shown using the Caco-2 cell line, which spontaneously differentiates in culture, the formation of EPEC clusters increased as a function of the epithelial cell differentiation. In contrast, efficient cell-entry of [EAF+ eae+] EPEC bacteria occurred in recently differentiated Caco-2 cells and decreased when the cells were fully differentiated.(ABSTRACT TRUNCATED AT 250 WORDS)
Schoenborn, Alexi A; von Furstenberg, Richard J; Valsaraj, Smrithi; Hussain, Farah S; Stein, Molly; Shanahan, Michael T; Henning, Susan J; Gulati, Ajay S
2018-06-08
Paneth cells (PCs) are epithelial cells found in the small intestine, next to intestinal stem cells (ISCs) at the base of the crypts. PCs secrete antimicrobial peptides (AMPs) that regulate the commensal gut microbiota. In contrast, little is known regarding how the enteric microbiota reciprocally influences PC function. In this study, we sought to characterize the impact of the enteric microbiota on PC biology in the mouse small intestine. This was done by first enumerating jejunal PCs in germ-free (GF) versus conventionally-raised (CR) mice. We next evaluated the possible functional consequences of altered PC biology in these experimental groups by assessing epithelial proliferation, ISC numbers, and the production of AMPs. We found that PC numbers were significantly increased in CR versus GF mice; however, there were no differences in ISC numbers or cycling activity between groups. Of the AMPs assessed, only Reg3γ transcript expression was significantly increased in CR mice. Intriguingly, this increase was abrogated in cultured CR versus GF enteroids, and could not be re-induced with various bacterial ligands. Our findings demonstrate the enteric microbiota regulates PC function by increasing PC numbers and inducing Reg3γ expression, though the latter effect may not involve direct interactions between bacteria and the intestinal epithelium. In contrast, the enteric microbiota does not appear to regulate jejunal ISC census and proliferation. These are critical findings for investigators using GF mice and the enteroid system to study PC and ISC biology.
A Central Role for Heme Oxygenase-1 in the Control of Intestinal Epithelial Chemokine Expression.
Onyiah, Joseph C; Schaefer, Rachel E M; Colgan, Sean P
2018-05-23
In mucosal inflammatory disorders, the protective influence of heme oxygenase-1 (HO-1) and its metabolic byproducts, carbon monoxide (CO) and biliverdin, is a topic of significant interest. Mechanisms under investigation include the regulation of macrophage function and mucosal cytokine expression. While there is an increasing recognition of the importance of epithelial-derived factors in the maintenance of intestinal mucosal homeostasis, the contribution of intestinal epithelial cell (IEC) HO-1 on inflammatory responses has not previously been investigated. We examined the influence of modulating HO-1 expression on the inflammatory response of human IECs. Engineered deficiency of HO-1 in Caco-2 and T84 IECs led to increased proinflammatory chemokine expression in response to pathogenic bacteria and inflammatory cytokine stimulation. Crosstalk with activated leukocytes also led to increased chemokine expression in HO-1-deficient cells in an IL-1β dependent manner. Treatment of Caco-2 cells with a pharmacological inducer of HO-1 led to the inhibition of chemokine expression. Mechanistic studies suggest that HO-1 and HO-1-related transcription factors, but not HO-1 metabolic products, are partly responsible for the influence of HO-1 on chemokine expression. In conclusion, our data identify HO-1 as a central regulator of IEC chemokine expression that may contribute to homeo-stasis in the intestinal mucosa. © 2018 S. Karger AG, Basel.
Regulation of intestinal permeability: The role of proteases
Van Spaendonk, Hanne; Ceuleers, Hannah; Witters, Leonie; Patteet, Eveline; Joossens, Jurgen; Augustyns, Koen; Lambeir, Anne-Marie; De Meester, Ingrid; De Man, Joris G; De Winter, Benedicte Y
2017-01-01
The gastrointestinal barrier is - with approximately 400 m2 - the human body’s largest surface separating the external environment from the internal milieu. This barrier serves a dual function: permitting the absorption of nutrients, water and electrolytes on the one hand, while limiting host contact with noxious luminal antigens on the other hand. To maintain this selective barrier, junction protein complexes seal the intercellular space between adjacent epithelial cells and regulate the paracellular transport. Increased intestinal permeability is associated with and suggested as a player in the pathophysiology of various gastrointestinal and extra-intestinal diseases such as inflammatory bowel disease, celiac disease and type 1 diabetes. The gastrointestinal tract is exposed to high levels of endogenous and exogenous proteases, both in the lumen and in the mucosa. There is increasing evidence to suggest that a dysregulation of the protease/antiprotease balance in the gut contributes to epithelial damage and increased permeability. Excessive proteolysis leads to direct cleavage of intercellular junction proteins, or to opening of the junction proteins via activation of protease activated receptors. In addition, proteases regulate the activity and availability of cytokines and growth factors, which are also known modulators of intestinal permeability. This review aims at outlining the mechanisms by which proteases alter the intestinal permeability. More knowledge on the role of proteases in mucosal homeostasis and gastrointestinal barrier function will definitely contribute to the identification of new therapeutic targets for permeability-related diseases. PMID:28405139
Faccioli, Claudemir Kuhn; Chedid, Renata Alari; Mori, Ricardo Hideo; Amaral, Antônio Carlos do; Franceschini-Vicentini, Irene Bastos; Vicentini, Carlos Alberto
2016-09-01
This cytochemical study investigated the acid and alkaline phosphatase of the digestive tract of Hemisorubim platyrhynchos. Acid phosphatase was detected in the lining epithelium throughout the digestive tract, whereas alkaline phosphatase was only observed in the intestine. In the esophagus, an acid phosphatase reaction occurred in the apical cytoplasm of the epithelial cells and was related to epithelial protection and freeing of superficial cells for sloughing. Similar results were also observed in epithelial cells of gastric epithelium. In the gastric glands, acid phosphatase occurred in lysosomes of the oxynticopeptic cells acting in the macromolecule degradation for use as an energy source, whereas in the vesiculotubular system, its presence could be related to secretion processes. Furthermore, acid phosphatase in the intestine occurred in microvilli and lysosomes of the enterocytes and was correlated to absorption and intracellular digestion. However, no difference was reported among the regions of the intestine. However, alkaline phosphatase reaction revealed a large number of reaction dots in the anterior intestine, with the number decreasing toward the posterior intestine. This enzyme has been related to several functions, highlighting its role in the nutrient absorption primarily in the anterior intestine but also being essential in pH regulation because this is a carnivorous species with many gastric glands with secretions that could damage the intestine. Copyright © 2016 Elsevier GmbH. All rights reserved.
Lai, Yu; Zhong, Wa; Yu, Tao; Xia, Zhong-Sheng; Li, Jie-Yao; Ouyang, Hui; Shan, Ti-Dong; Yang, Hong-Sheng; Chen, Qi-Kui
2015-01-01
The effect of rebamipide on repairing intestinal mucosal damage induced by nonsteroidal anti-inflammatory drugs and its mechanism remain unclear. In this study, we sought to explore the mechanism whereby rebamipide could promote the regeneration of aspirin-induced intestinal mucosal damage. BALB/c mice were administered aspirin (200 mg/kg/d) for 5 days to induce acute small intestinal injury (SII). Subsequently, SII mice were treated with rebamipide (320 mg/kg/d) for 5 days. The structure of intestinal barrier was observed with transmission electron microscope, and Zo-1 and occludin expressions were detected. The proliferative index was indicated by the percentage of proliferating cell nuclear antigen positive cells. The prostaglandin E2 (PGE2) levels in the small intestine tissues were measured by an enzyme immunoassay. The mRNA and protein expression levels of cyclooxygenase (COX) and β-catenin signal were detected in the small intestine using quantitative PCR and Western blot, respectively. COX expression was significantly down-regulated in aspirin induced SII (P < 0.05). In SII mice treated with rebamipide, histopathological findings of aspirin-induced intestinal inflammation were significantly milder and tight junctions between intestinal epithelial cells were improved significantly. The proliferative index increased after rebamipide treatment when compared with that in the control mice. The expressions of COX-2, β-catenin, and c-myc and the PGE2 concentrations in small intestinal tissues were significantly increased in mice with rebamipide treatments (P < 0.05). Rebamipide administration in aspirin-induced SII mice could improve the intestinal barrier structure and promote the regeneration of small intestinal epithelial injury through up-regulating COX-2 expression and the accumulation of β-catenin.
Yu, Tao; Xia, Zhong-Sheng; Li, Jie-Yao; Ouyang, Hui; Shan, Ti-Dong; Yang, Hong-Sheng; Chen, Qi-Kui
2015-01-01
Background The effect of rebamipide on repairing intestinal mucosal damage induced by nonsteroidal anti-inflammatory drugs and its mechanism remain unclear. In this study, we sought to explore the mechanism whereby rebamipide could promote the regeneration of aspirin-induced intestinal mucosal damage. Methods BALB/c mice were administered aspirin (200 mg/kg/d) for 5 days to induce acute small intestinal injury (SII). Subsequently, SII mice were treated with rebamipide (320 mg/kg/d) for 5 days. The structure of intestinal barrier was observed with transmission electron microscope, and Zo-1 and occludin expressions were detected. The proliferative index was indicated by the percentage of proliferating cell nuclear antigen positive cells. The prostaglandin E2 (PGE2) levels in the small intestine tissues were measured by an enzyme immunoassay. The mRNA and protein expression levels of cyclooxygenase (COX) and β-catenin signal were detected in the small intestine using quantitative PCR and Western blot, respectively. Results COX expression was significantly down-regulated in aspirin induced SII (P < 0.05). In SII mice treated with rebamipide, histopathological findings of aspirin-induced intestinal inflammation were significantly milder and tight junctions between intestinal epithelial cells were improved significantly. The proliferative index increased after rebamipide treatment when compared with that in the control mice. The expressions of COX-2, β-catenin, and c-myc and the PGE2 concentrations in small intestinal tissues were significantly increased in mice with rebamipide treatments (P < 0.05). Conclusion Rebamipide administration in aspirin-induced SII mice could improve the intestinal barrier structure and promote the regeneration of small intestinal epithelial injury through up-regulating COX-2 expression and the accumulation of β-catenin. PMID:26135128
Kanwar, Jagat R; Kanwar, Rupinder K
2009-01-31
Enprocal is a high-protein micro-nutrient rich formulated supplementary food designed to meet the nutritional needs of the frail elderly and be delivered to them in every day foods. We studied the potential of Enprocal to improve gut and immune health using simple and robust bioassays for gut cell proliferation, intestinal integrity/permeability, immunomodulatory, anti-inflammatory and anti-oxidative activities. Effects of Enprocal were compared with whey protein concentrate 80 (WPC), heat treated skim milk powder, and other commercially available milk derived products. Enprocal (undigested) and digested (Enprocal D) selectively enhanced cell proliferation in normal human intestinal epithelial cells (FHs74-Int) and showed no cytotoxicity. In a dose dependent manner Enprocal induced cell death in Caco-2 cells (human colon adencarcinoma epithelial cells). Digested Enprocal (Enprocal D: gut enzyme cocktail treated) maintained the intestinal integrity in transepithelial resistance (TEER) assay, increased the permeability of horseradish peroxidase (HRP) and did not induce oxidative stress to the gut epithelial cells. Enprocal D upregulated the surface expression of co-stimulatory (CD40, CD86, CD80), MHC I and MHC II molecules on PMA differentiated THP-1 macrophages in coculture transwell model, and inhibited the monocyte/lymphocyte (THP-1/Jurkat E6-1 cells)-epithelial cell adhesion. In cytokine secretion analyses, Enprocal D down-regulated the secretion of proinflammatory cytokines (IL-1beta and TNF-alpha) and up-regulated IFN-gamma, IL-2 and IL-10. Our results indicate that Enprocal creates neither oxidative injury nor cytotoxicity, stimulates normal gut cell proliferation, up regulates immune cell activation markers and may aid in the production of antibodies. Furthermore, through downregulation of proinflammatory cytokines, Enprocal appears to be beneficial in reducing the effects of chronic gut inflammatory diseases such as inflammatory bowel disease (IBD). Stimulation of normal human fetal intestinal cell proliferation without cell cytotoxicity indicates it may also be given as infant food particularly for premature babies.
Rebamipide promotes healing of colonic ulceration through enhanced epithelial restitution.
Takagi, Tomohisa; Naito, Yuji; Uchiyama, Kazuhiko; Okuda, Toshimitsu; Mizushima, Katsura; Suzuki, Takahiro; Handa, Osamu; Ishikawa, Takeshi; Yagi, Nobuaki; Kokura, Satoshi; Ichikawa, Hiroshi; Yoshikawa, Toshikazu
2011-09-07
To investigate the efficacy of rebamipide in a rat model of colitis and restitution of intestinal epithelial cells in vitro. Acute colitis was induced with trinitrobenzene sulfonic acid (TNBS) in male Wistar rats. Rats received intrarectal rebamipide treatment daily starting on day 7 and were sacrificed on day 14 after TNBS administration. The distal colon was removed to evaluate the various parameters of inflammation. Moreover, wound healing assays were used to determine the enhanced restitution of rat intestinal epithelial (RIE) cells treated with rebamipide. Intracolonic administration of rebamipide accelerated TNBS-induced ulcer healing. Increases in the wet weight of the colon after TNBS administration were significantly inhibited by rebamipide. The wound assay revealed that rebamipide enhanced the migration of RIE cells through phosphorylation of extracellular signal-regulated kinase (ERK) and activation of Rho kinase. Rebamipide enema healed intestinal injury by enhancing restitution of RIE cells, via ERK activation. Rebamipide might be a novel therapeutic approach for inflammatory bowel disease.
Rebamipide promotes healing of colonic ulceration through enhanced epithelial restitution
Takagi, Tomohisa; Naito, Yuji; Uchiyama, Kazuhiko; Okuda, Toshimitsu; Mizushima, Katsura; Suzuki, Takahiro; Handa, Osamu; Ishikawa, Takeshi; Yagi, Nobuaki; Kokura, Satoshi; Ichikawa, Hiroshi; Yoshikawa, Toshikazu
2011-01-01
AIM: To investigate the efficacy of rebamipide in a rat model of colitis and restitution of intestinal epithelial cells in vitro. METHODS: Acute colitis was induced with trinitrobenzene sulfonic acid (TNBS) in male Wistar rats. Rats received intrarectal rebamipide treatment daily starting on day 7 and were sacrificed on day 14 after TNBS administration. The distal colon was removed to evaluate the various parameters of inflammation. Moreover, wound healing assays were used to determine the enhanced restitution of rat intestinal epithelial (RIE) cells treated with rebamipide. RESULTS: Intracolonic administration of rebamipide accelerated TNBS-induced ulcer healing. Increases in the wet weight of the colon after TNBS administration were significantly inhibited by rebamipide. The wound assay revealed that rebamipide enhanced the migration of RIE cells through phosphorylation of extracellular signal-regulated kinase (ERK) and activation of Rho kinase. CONCLUSION: Rebamipide enema healed intestinal injury by enhancing restitution of RIE cells, via ERK activation. Rebamipide might be a novel therapeutic approach for inflammatory bowel disease. PMID:21987622
Site-specific programming of the host epithelial transcriptome by the gut microbiota.
Sommer, Felix; Nookaew, Intawat; Sommer, Nina; Fogelstrand, Per; Bäckhed, Fredrik
2015-03-28
The intestinal epithelium separates us from the microbiota but also interacts with it and thus affects host immune status and physiology. Previous studies investigated microbiota-induced responses in the gut using intact tissues or unfractionated epithelial cells, thereby limiting conclusions about regional differences in the epithelium. Here, we sought to investigate microbiota-induced transcriptional responses in specific fractions of intestinal epithelial cells. To this end, we used microarray analysis of laser capture microdissection (LCM)-harvested ileal and colonic tip and crypt epithelial fractions from germ-free and conventionally raised mice and from mice during the time course of colonization. We found that about 10% of the host's transcriptome was microbially regulated, mainly including genes annotated with functions in immunity, cell proliferation, and metabolism. The microbial impact on host gene expression was highly site specific, as epithelial responses to the microbiota differed between cell fractions. Specific transcriptional regulators were enriched in each fraction. In general, the gut microbiota induced a more rapid response in the colon than in the ileum. Our study indicates that the microbiota engage different regulatory networks to alter host gene expression in a particular niche. Understanding host-microbiota interactions on a cellular level may facilitate signaling pathways that contribute to health and disease and thus provide new therapeutic strategies.
Rodiño-Janeiro, Bruno K; Martínez, Cristina; Fortea, Marina; Lobo, Beatriz; Pigrau, Marc; Nieto, Adoración; González-Castro, Ana María; Salvo-Romero, Eloísa; Guagnozzi, Danila; Pardo-Camacho, Cristina; Iribarren, Cristina; Azpiroz, Fernando; Alonso-Cotoner, Carmen; Santos, Javier; Vicario, Maria
2018-02-02
Disturbed intestinal epithelial barrier and mucosal micro-inflammation characterize irritable bowel syndrome (IBS). Despite intensive research demonstrating ovarian hormones modulation of IBS severity, there is still limited knowledge on the mechanisms underlying female predominance in this disorder. Our aim was to identify molecular pathways involved in epithelial barrier dysfunction and female predominance in diarrhea-predominant IBS (IBS-D) patients. Total RNA and protein were obtained from jejunal mucosal biopsies from healthy controls and IBS-D patients meeting the Rome III criteria. IBS severity was recorded based on validated questionnaires. Gene and protein expression profiles were obtained and data integrated to explore biological and molecular functions. Results were validated by western blot. Tight junction signaling, mitochondrial dysfunction, regulation of actin-based motility by Rho, and cytoskeleton signaling were differentially expressed in IBS-D. Decreased TESK1-dependent cofilin 1 phosphorylation (pCFL1) was confirmed in IBS-D, which negatively correlated with bowel movements only in female participants. In conclusion, deregulation of cytoskeleton dynamics through TESK1/CFL1 pathway underlies epithelial intestinal dysfunction in the small bowel mucosa of IBS-D, particularly in female patients. Further understanding of the mechanisms involving sex-mediated regulation of mucosal epithelial integrity may have significant preventive, diagnostic, and therapeutic implications for IBS.
Rosenberg, I M; Göke, M; Kanai, M; Reinecker, H C; Podolsky, D K
1997-10-01
Epithelial cell kinase (Eck) is a member of a large family of receptor tyrosine kinases whose functions remain largely unknown. Expression and regulation of Eck and its cognate ligand B61 were analyzed in the human colonic adenocarcinoma cell line Caco-2. Immunocytochemical staining demonstrated coexpression of Eck and B61 in the same cells, suggestive of an autocrine loop. Eck levels were maximal in preconfluent cells. In contrast, B61 levels were barely detectable in preconfluent cells and increased progressively after the cells reached confluence. Caco-2 cells cultured in the presence of added B61 showed a significant reduction in the levels of dipeptidyl peptidase and sucrase-isomaltase mRNA, markers of Caco-2 cell differentiation. Cytokines interleukin-1beta (IL-1beta), basic fibroblast growth factor, IL-2, epidermal growth factor, and transforming growth factor-beta modulated steady-state levels of Eck and B61 mRNA and regulated Eck activation as assessed by tyrosine phosphorylation. Functionally, stimulation of Eck by B61 resulted in increased proliferation, enhanced barrier function, and enhanced restitution of injured epithelial monolayers. These results suggest that the Eck-B61 interaction, a target of regulatory peptides, plays a role in intestinal epithelial cell development, migration, and barrier function, contributing to homeostasis and preservation of continuity of the epithelial barrier.
The Tumor Suppressor Gene, RASSF1A, Is Essential for Protection against Inflammation -Induced Injury
Fiteih, Yahya; Law, Jennifer; Volodko, Natalia; Mohamed, Anwar; El-Kadi, Ayman O. S.; Liu, Lei; Odenbach, Jeff; Thiesen, Aducio; Onyskiw, Christina; Ghazaleh, Haya Abu; Park, Jikyoung; Lee, Sean Bong; Yu, Victor C.; Fernandez-Patron, Carlos; Alexander, R. Todd; Wine, Eytan; Baksh, Shairaz
2013-01-01
Ras association domain family protein 1A (RASSF1A) is a tumor suppressor gene silenced in cancer. Here we report that RASSF1A is a novel regulator of intestinal inflammation as Rassf1a+/−, Rassf1a−/− and an intestinal epithelial cell specific knockout mouse (Rassf1a IEC-KO) rapidly became sick following dextran sulphate sodium (DSS) administration, a chemical inducer of colitis. Rassf1a knockout mice displayed clinical symptoms of inflammatory bowel disease including: increased intestinal permeability, enhanced cytokine/chemokine production, elevated nuclear factor of kappa light polypeptide gene enhancer in B-cells (NFκB) activity, elevated colonic cell death and epithelial cell injury. Furthermore, epithelial restitution/repair was inhibited in DSS-treated Rassf1a−/− mice with reduction of several makers of proliferation including Yes associated protein (YAP)-driven proliferation. Surprisingly, tyrosine phosphorylation of YAP was detected which coincided with increased nuclear p73 association, Bax-driven epithelial cell death and p53 accumulation resulting in enhanced apoptosis and poor survival of DSS-treated Rassf1a knockout mice. We can inhibit these events and promote the survival of DSS-treated Rassf1a knockout mice with intraperitoneal injection of the c-Abl and c-Abl related protein tyrosine kinase inhibitor, imatinib/gleevec. However, p53 accumulation was not inhibited by imatinib/gleevec in the Rassf1a−/− background which revealed the importance of p53-dependent cell death during intestinal inflammation. These observations suggest that tyrosine phosphorylation of YAP (to drive p73 association and up-regulation of pro-apoptotic genes such as Bax) and accumulation of p53 are consequences of inflammation-induced injury in DSS-treated Rassf1a−/− mice. Mechanistically, we can detect robust associations of RASSF1A with membrane proximal Toll-like receptor (TLR) components to suggest that RASSF1A may function to interfere and restrict TLR-driven activation of NFκB. Failure to restrict NFκB resulted in the inflammation-induced DNA damage driven tyrosine phosphorylation of YAP, subsequent p53 accumulation and loss of intestinal epithelial homeostasis. PMID:24146755
Le Dréan, Gwenola; Haure-Mirande, Vianney; Ferrier, Laurent; Bonnet, Christian; Hulin, Philippe; de Coppet, Pierre; Segain, Jean-Pierre
2014-03-01
Proinflammatory cytokines produced by immune cells play a central role in the increased intestinal epithelial permeability during inflammation. Expansion of visceral adipose tissue (VAT) is currently considered a consequence of intestinal inflammation. Whether VAT per se plays a role in early modifications of intestinal barrier remains unknown. The aim of this study was to demonstrate the direct role of adipocytes in regulating paracellular permeability of colonic epithelial cells (CECs). We show in adult rats born with intrauterine growth retardation, a model of VAT hypertrophy, and in rats with VAT graft on the colon, that colonic permeability was increased without any inflammation. This effect was associated with altered expression of tight junction (TJ) proteins occludin and ZO-1. In coculture experiments, adipocytes decreased transepithelial resistance (TER) of Caco-2 CECs and induced a disorganization of ZO-1 on TJs. Intraperitoneal administration of leptin to lean rats increased colonic epithelial permeability and altered ZO-1 expression and organization. Treatment of HT29-19A CECs with leptin, but not adiponectin, dose-dependently decreased TER and altered TJ and F-actin cytoskeleton organization through a RhoA-ROCK-dependent pathway. Our data show that adipocytes and leptin directly alter TJ function in CECs and suggest that VAT could impair colonic epithelial barrier.
Caballero-Franco, Celia; Guma, Monica; Choo, Min-Kyung; Sano, Yasuyo; Enzler, Thomas; Karin, Michael; Mizoguchi, Atsushi; Park, Jin Mo
2015-01-01
The protein kinase p38α mediates cellular responses to environmental and endogenous cues that direct tissue homeostasis and immune responses. Studies of mice lacking p38α in several different cell types have demonstrated that p38α signaling is essential to maintaining the proliferation-differentiation balance in developing and steady-state tissues. The mechanisms underlying these roles involve cell-autonomous control of signaling and gene expression by p38α. Here we show that p38α regulates gut-associated lymphoid tissue (GALT) formation in a non-cell-autonomous manner. From an investigation of mice with intestinal epithelial cell-specific deletion of the p38α gene, we find that p38α serves to limit NF-κB signaling and thereby attenuate GALT-promoting chemokine expression in the intestinal epithelium. Loss of this regulation results in GALT hyperplasia and, in some animals, mucosa-associated B cell lymphoma. These anomalies occur independently of luminal microbial stimuli and are likely driven by direct epithelial-lymphoid interactions. Our study illustrates a novel p38α-dependent mechanism preventing excessive generation of epithelial-derived signals that drive lymphoid tissue overgrowth and malignancy. PMID:26792803
Cario, Elke; Gerken, Guido; Podolsky, Daniel K
2004-07-01
Protein kinase C (PKC) has been implicated in regulation of intestinal epithelial integrity in response to lumenal bacteria. Intestinal epithelial cells (IECs) constitutively express Toll-like receptor (TLR)2, which contains multiple potential PKC binding sites. The aim of this study was to determine whether TLR2 may activate PKC in response to specific ligands, thus potentially modulating barrier function in IECs. TLR2 agonist (synthetic bacterial lipopeptide Pam(3)CysSK4, peptidoglycan)-induced activation of PKC-related signaling cascades were assessed by immunoprecipitation, Western blotting, immunofluorescence, and kinase assays-combined with functional transfection studies in the human model IEC lines HT-29 and Caco-2. Transepithelial electrical resistance characterized intestinal epithelial barrier function. Stimulation with TLR2 ligands led to activation (phosphorylation, enzymatic activity, translocation) of specific PKC isoforms (PKCalpha and PKCdelta). Phosphorylation of PKC by TLR2 ligands was blocked specifically by transfection with a TLR2 deletion mutant. Ligand-induced activation of TLR2 greatly enhanced transepithelial resistance in IECs, which was prevented by pretreatment with PKC-selective antagonists. This effect correlated with apical tightening and sealing of tight junction (TJ)-associated ZO-1, which was mediated via PKC in response to TLR2 ligands, whereas morphologic changes of occludin, claudin-1, or actin cytoskeleton were not evident. Downstream the endogenous PKC substrate myristoylated alanine-rich C kinase substrate (MARCKS), but not transcriptional factor activator protein-1 (AP-1), was activated significantly on stimulation. The present study provides evidence that PKC is an essential component of the TLR2 signaling pathway with the physiologic consequence of directly enhancing intestinal epithelial integrity through translocation of ZO-1 on activation.
Chaturvedi, Lakshmi S.; Marsh, Harold M.
2011-01-01
Repetitive deformation enhances intestinal epithelial migration across tissue fibronectin. We evaluated the contribution of RhoA and its effectors Rho-associated kinase (ROK/ROCK) and mammalian diaphanous formins (mDia1) to deformation-induced intestinal epithelial motility across fibronectin and the responsible focal adhesion kinase (FAK), extracellular signal-regulated kinase (ERK), p38, and myosin light chain (MLC) signaling. We reduced RhoA, ROCK1, ROCK2, and mDia1 by smart-pool double-stranded short-interfering RNAs (siRNA) and pharmacologically inhibited RhoA, ROCK, and FAK in human Caco-2 intestinal epithelial monolayers on fibronectin-coated membranes subjected to 10% repetitive deformation at 10 cycles/min. Migration was measured by wound closure. Stimulation of migration by deformation was prevented by exoenzyme C3, Y27632, or selective RhoA, ROCK1, and ROCK2 or mDia1 siRNAs. RhoA, ROCK inhibition, or RhoA, ROCK1, ROCK2, mDia1, and FAK reduction by siRNA blocked deformation-induced nuclear ERK phosphorylation without preventing ERK phosphorylation in the cytoplasmic protein fraction. Furthermore, RhoA, ROCK inhibition or RhoA, ROCK1, ROCK2, and mDia1 reduction by siRNA also blocked strain-induced FAK-Tyr925, p38, and MLC phosphorylation. These results suggest that RhoA, ROCK, mDia1, FAK, ERK, p38, and MLC all mediate the stimulation of intestinal epithelial migration by repetitive deformation. This pathway may be an important target for interventions to promote mechanotransduced mucosal healing during inflammation. PMID:21849669
Feedback control of AHR signalling regulates intestinal immunity.
Schiering, Chris; Wincent, Emma; Metidji, Amina; Iseppon, Andrea; Li, Ying; Potocnik, Alexandre J; Omenetti, Sara; Henderson, Colin J; Wolf, C Roland; Nebert, Daniel W; Stockinger, Brigitta
2017-02-09
The aryl hydrocarbon receptor (AHR) recognizes xenobiotics as well as natural compounds such as tryptophan metabolites, dietary components and microbiota-derived factors, and it is important for maintenance of homeostasis at mucosal surfaces. AHR activation induces cytochrome P4501 (CYP1) enzymes, which oxygenate AHR ligands, leading to their metabolic clearance and detoxification. Thus, CYP1 enzymes have an important feedback role that curtails the duration of AHR signalling, but it remains unclear whether they also regulate AHR ligand availability in vivo. Here we show that dysregulated expression of Cyp1a1 in mice depletes the reservoir of natural AHR ligands, generating a quasi AHR-deficient state. Constitutive expression of Cyp1a1 throughout the body or restricted specifically to intestinal epithelial cells resulted in loss of AHR-dependent type 3 innate lymphoid cells and T helper 17 cells and increased susceptibility to enteric infection. The deleterious effects of excessive AHR ligand degradation on intestinal immune functions could be counter-balanced by increasing the intake of AHR ligands in the diet. Thus, our data indicate that intestinal epithelial cells serve as gatekeepers for the supply of AHR ligands to the host and emphasize the importance of feedback control in modulating AHR pathway activation.
Diet, Microbiome, and the Intestinal Epithelium: An Essential Triumvirate?
Guzman, Javier Rivera; Conlin, Victoria Susan; Jobin, Christian
2013-01-01
The intestinal epithelium represents a critical barrier protecting the host against diverse luminal noxious agents, as well as preventing the uncontrolled uptake of bacteria that could activate an immune response in a susceptible host. The epithelial monolayer that constitutes this barrier is regulated by a meshwork of proteins that orchestrate complex biological function such as permeability, transepithelial electrical resistance, and movement of various macromolecules. Because of its key role in maintaining host homeostasis, factors regulating barrier function have attracted sustained attention from the research community. This paper will address the role of bacteria, bacterial-derived metabolism, and the interplay of dietary factors in controlling intestinal barrier function. PMID:23586037
Rifaximin-mediated changes to the epithelial cell proteome: 2-D gel analysis.
Schrodt, Caroline; McHugh, Erin E; Gawinowicz, Mary Ann; Dupont, Herbert L; Brown, Eric L
2013-01-01
Rifaximin is a semi-synthetic rifamycin derivative that is used to treat different conditions including bacterial diarrhea and hepatic encephalopathy. Rifaximin is of particular interest because it is poorly adsorbed in the intestines and has minimal effect on colonic microflora. We previously demonstrated that rifaximin affected epithelial cell physiology by altering infectivity by enteric pathogens and baseline inflammation suggesting that rifaximin conferred cytoprotection against colonization and infection. Effects of rifaximin on epithelial cells were further examined by comparing the protein expression profile of cells pretreated with rifaximin, rifampin (control antibiotic), or media (untreated). Two-dimensional (2-D) gel electrophoresis identified 36 protein spots that were up- or down-regulated by over 1.7-fold in rifaximin treated cells compared to controls. 15 of these spots were down-regulated, including annexin A5, intestinal-type alkaline phosphatase, histone H4, and histone-binding protein RbbP4. 21 spots were up-regulated, including heat shock protein (HSP) 90α and fascin. Many of the identified proteins are associated with cell structure and cytoskeleton, transcription and translation, and cellular metabolism. These data suggested that in addition to its antimicrobial properties, rifaximin may alter host cell physiology that provides cytoprotective effects against bacterial pathogens.
Rifaximin-Mediated Changes to the Epithelial Cell Proteome: 2-D Gel Analysis
Schrodt, Caroline; McHugh, Erin E.; Gawinowicz, Mary Ann; DuPont, Herbert L.; Brown, Eric L.
2013-01-01
Rifaximin is a semi-synthetic rifamycin derivative that is used to treat different conditions including bacterial diarrhea and hepatic encephalopathy. Rifaximin is of particular interest because it is poorly adsorbed in the intestines and has minimal effect on colonic microflora. We previously demonstrated that rifaximin affected epithelial cell physiology by altering infectivity by enteric pathogens and baseline inflammation suggesting that rifaximin conferred cytoprotection against colonization and infection. Effects of rifaximin on epithelial cells were further examined by comparing the protein expression profile of cells pretreated with rifaximin, rifampin (control antibiotic), or media (untreated). Two-dimensional (2-D) gel electrophoresis identified 36 protein spots that were up- or down-regulated by over 1.7-fold in rifaximin treated cells compared to controls. 15 of these spots were down-regulated, including annexin A5, intestinal-type alkaline phosphatase, histone H4, and histone-binding protein RbbP4. 21 spots were up-regulated, including heat shock protein (HSP) 90α and fascin. Many of the identified proteins are associated with cell structure and cytoskeleton, transcription and translation, and cellular metabolism. These data suggested that in addition to its antimicrobial properties, rifaximin may alter host cell physiology that provides cytoprotective effects against bacterial pathogens. PMID:23922656
Lee, Sei-Jung; Leoni, Giovanna; Neumann, Philipp-Alexander; Chun, Jerold; Nusrat, Asma
2013-01-01
Maintenance of the epithelial barrier in the intestinal tract is necessary to protect the host from the hostile luminal environment. Phospholipase C-β (PLC-β) has been implicated to control myriad signaling cascades. However, the biological effects of selective PLC-β isozymes are poorly understood. We describe novel findings that lysophosphatidic acid (LPA) regulates PLC-β1 and PLC-β2 via two distinct pathways to enhance intestinal epithelial cell (IEC) proliferation and migration that facilitate wound closure and recovery of the intestinal epithelial barrier. LPA acting on the LPA1 receptor promotes IEC migration by facilitating the interaction of Gαq with PLC-β2. LPA-induced cell proliferation is PLC-β1 dependent and involves translocation of Gαq to the nucleus, where it interacts with PLC-β1 to induce cell cycle progression. An in vivo study using LPA1-deficient mice (Lpar1−/−) shows a decreased number of proliferating IECs and migration along the crypt-luminal axis. Additionally, LPA enhances migration and proliferation of IECs in an LPA1-dependent manner, and Lpar1−/− mice display defective mucosal wound repair that requires cell proliferation and migration. These findings delineate novel LPA1-dependent lipid signaling that facilitates mucosal wound repair via spatial targeting of distinct PLC-βs within the cell. PMID:23478264
Roulis, Manolis; Nikolaou, Christoforos; Kotsaki, Elena; Kaffe, Eleanna; Karagianni, Niki; Koliaraki, Vasiliki; Salpea, Klelia; Ragoussis, Jiannis; Aidinis, Vassilis; Martini, Eva; Becker, Christoph; Herschman, Harvey R.; Vetrano, Stefania; Danese, Silvio; Kollias, George
2014-01-01
Tumor progression locus-2 (Tpl2) kinase is a major inflammatory mediator in immune cell types recently found to be genetically associated with inflammatory bowel diseases (IBDs). Here we show that Tpl2 may exert a dominant homeostatic rather than inflammatory function in the intestine mediated specifically by subepithelial intestinal myofibroblasts (IMFs). Mice with complete or IMF-specific Tpl2 ablation are highly susceptible to epithelial injury-induced colitis showing impaired compensatory proliferation in crypts and extensive ulcerations without significant changes in inflammatory responses. Following epithelial injury, IMFs sense innate or inflammatory signals and activate, via Tpl2, the cyclooxygenase-2 (Cox-2)-prostaglandin E2 (PGE2) pathway, which we show here to be essential for the epithelial homeostatic response. Exogenous PGE2 administration rescues mice with complete or IMF-specific Tpl2 ablation from defects in crypt function and susceptibility to colitis. We also show that Tpl2 expression is decreased in IMFs isolated from the inflamed ileum of IBD patients indicating that Tpl2 function in IMFs may be highly relevant to human disease. The IMF-mediated mechanism we propose also involves the IBD-associated genes IL1R1, MAPK1, and the PGE2 receptor-encoding PTGER4. Our results establish a previously unidentified myofibroblast-specific innate pathway that regulates intestinal homeostasis and may underlie IBD susceptibility in humans. PMID:25316791
Venkatesh, Madhukumar; Mukherjee, Subhajit; Wang, Hongwei; Li, Hao; Sun, Katherine; Benechet, Alaxandre P.; Qiu, Zhijuan; Maher, Leigh; Redinbo, Matthew R.; Phillips, Robert S.; Fleet, James C.; Kortagere, Sandhya; Mukherjee, Paromita; Fasano, Alessio; Le Ven, Jessica; Nicholson, Jeremy K.; Dumas, Marc E.; Khanna, Kamal M.; Mani, Sridhar
2014-01-01
SUMMARY Intestinal microbial metabolites are conjectured to affect mucosal integrity through an incompletely characterized mechanism. Here we showed microbial-specific indoles regulated intestinal barrier function through the xenobiotic sensor, pregnane X receptor (PXR). Indole 3-propionic acid (IPA), in the context of indole, is as a ligand for PXR in vivo, and IPA down-regulated enterocyte TNF–α while up-regulated junctional protein-coding mRNAs. PXR-deficient (Nr1i2−/−) mice showed a distinctly “leaky” gut physiology coupled with up-regulation of the Toll-like receptor (TLR) signaling pathway. These defects in the epithelial barrier were corrected in Nr1i2−/−Tlr4−/− mice. Our results demonstrate that a direct chemical communication between the intestinal symbionts and PXR regulates mucosal integrity through a pathway which involves luminal sensing and signaling by TLR4. PMID:25065623
Metformin Improves Ileal Epithelial Barrier Function in Interleukin-10 Deficient Mice
Xue, Yansong; Zhang, Hanying; Sun, Xiaofei; Zhu, Mei-Jun
2016-01-01
Background and aims The impairment of intestinal epithelial barrier is the main etiologic factor of inflammatory bowel disease. The proper intestinal epithelial proliferation and differentiation is crucial for maintaining intestinal integrity. Metformin is a common anti-diabetic drug. The objective is to evaluate the protective effects of metformin on ileal epithelial barrier integrity using interleukin-10 deficient (IL10KO) mice. Methods Wild-type and IL10KO mice were fed with/without metformin for 6 weeks and then ileum was collected for analyses. The mediatory role of AMP-activated protein kinase (AMPK) was further examined by gain and loss of function study in vitro. Results Compared to wild-type mice, IL10KO mice had increased proliferation, reduced goblet cell and Paneth cell lineage differentiation in the ileum tissue, which was accompanied with increased crypt expansion. Metformin supplementation mitigated intestinal cell proliferation, restored villus/crypt ratio, increased goblet cell and Paneth cell differentiation and improved barrier function. In addition, metformin supplementation in IL10KO mice suppressed macrophage pro-inflammatory activity as indicated by reduced M1 macrophage abundance and decreased pro-inflammatory cytokine IL-1β, TNF-α and IFN-γ expressions. As a target of metformin, AMPK phosphorylation was enhanced in mice treated with metformin, regardless of mouse genotypes. In correlation, the mRNA level of differentiation regulator including bmp4, bmpr2 and math1 were also increased in IL10KO mice supplemented with metformin, which likely explains the enhanced epithelial differentiation in IL10KO mice with metformin. Consistently, in Caco-2 cells, metformin promoted claudin-3 and E-cadherin assembly and mitigated TNF-α-induced fragmentation of tight junction proteins. Gain and loss of function assay also demonstrated AMPK was correlated with epithelial differentiation and proliferation. Conclusions Metformin supplementation promotes secretory cell lineage differentiation, suppresses inflammation and improves epithelial barrier function in IL10KO mice likely through activation of AMPK, showing its beneficial effects on gut epithelial. PMID:28002460
Paul, Gisela; Marchelletta, Ronald R; McCole, Declan F; Barrett, Kim E
2012-01-13
The epidermal growth factor receptor (EGFr) regulates many cellular functions, such as proliferation, apoptosis, and ion transport. Our aim was to investigate whether long term treatment with interferon-γ (IFN-γ) modulates EGF activation of downstream signaling pathways in intestinal epithelial cells and if this contributes to dysregulation of epithelial ion transport in inflammation. Polarized monolayers of T(84) and HT29/cl.19A colonocytes were preincubated with IFN-γ prior to stimulation with EGF. Basolateral potassium transport was studied in Ussing chambers. We also studied inflamed colonic mucosae from C57BL/6 mice treated with dextran sulfate sodium or mdr1a knock-out mice and controls. IFN-γ increased intestinal epithelial EGFr expression without increasing its phosphorylation. Conversely, IFN-γ caused a significant decrease in EGF-stimulated phosphorylation of specific EGFr tyrosine residues and activation of ERK but not Akt-1. In IFNγ-pretreated cells, the inhibitory effect of EGF on carbachol-stimulated K(+) channel activity was lost. In inflamed colonic tissues, EGFr expression was significantly increased, whereas ERK phosphorylation was reduced. Thus, although it up-regulates EGFr expression, IFN-γ causes defective EGFr activation in colonic epithelial cells via reduced phosphorylation of specific EGFr tyrosine residues. This probably accounts for altered downstream signaling consequences. These observations were corroborated in the setting of colitis. IFN-γ also abrogates the ability of EGF to inhibit carbachol-stimulated basolateral K(+) currents. Our data suggest that, in the setting of inflammation, the biological effect of EGF, including the inhibitory effect of EGF on Ca(2+)-dependent ion transport, is altered, perhaps contributing to diarrheal and other symptoms in vivo.
Schulte, Ralf; Autenrieth, Ingo B.
1998-01-01
In response to bacterial entry epithelial cells up-regulate expression and secretion of various proinflammatory cytokines, including interleukin-8 (IL-8). We studied Yersinia enterocolitica O:8-induced IL-8 secretion by intestinal epithelial cells as a function of cell differentiation. For this purpose, human T84 intestinal epithelial cells were grown on permeable supports, which led to the formation of tight monolayers of polarized intestinal epithelial cells. To analyze IL-8 secretion as a function of cell differentiation, T84 monolayers were infected from the apical or basolateral side at different stages of differentiation. Both virulent (plasmid-carrying) and nonvirulent (plasmid-cured) Y. enterocolitica strains invaded nondifferentiated T84 cells from the apical side. Yersinia invasion into T84 cells was followed by secretion of IL-8. After polarized differentiation of T84 cells Y. enterocolitica was no longer able to invade from the apical side or to induce IL-8 secretion by T84 cells. However, Y. enterocolitica invaded and induced IL-8 secretion by polarized T84 cells after infection from the basolateral side. Basolateral invasion required the presence of the Yersinia invasion locus, inv, suggesting β1 integrin-mediated cell invasion. After basolateral infection, Yersinia-induced IL-8 secretion was not strictly dependent on cell invasion. Thus, although the plasmid-carrying Y. enterocolitica strain did not significantly invade T84 cells, it induced significant IL-8 secretion. Taken together, these data show that Yersinia-triggered IL-8 secretion by intestinal epithelial cells depends on cell differentiation and might be induced by invasion as well as by basolateral adhesion, suggesting that invasion is not essential for triggering IL-8 production. Whether IL-8 secretion is involved in the pathogenesis of Yersinia-induced abscess formation in Peyer’s patch tissue remains to be shown. PMID:9488416
Zanello, Galliano; Berri, Mustapha; Dupont, Joëlle; Sizaret, Pierre-Yves; D'Inca, Romain
2011-01-01
Background Enterotoxigenic Escherichia coli (ETEC) infections result in large economic losses in the swine industry worldwide. ETEC infections cause pro-inflammatory responses in intestinal epithelial cells and subsequent diarrhea in pigs, leading to reduced growth rate and mortality. Administration of probiotics as feed additives displayed health benefits against intestinal infections. Saccharomyces cerevisiae (Sc) is non-commensal and non-pathogenic yeast used as probiotic in gastrointestinal diseases. However, the immuno-modulatory effects of Sc in differentiated porcine intestinal epithelial cells exposed to ETEC were not investigated. Methodology/Principal Findings We reported that the yeast Sc (strain CNCM I-3856) modulates transcript and protein expressions involved in inflammation, recruitment and activation of immune cells in differentiated porcine intestinal epithelial IPEC-1 cells. We demonstrated that viable Sc inhibits the ETEC-induced expression of pro-inflammatory transcripts (IL-6, IL-8, CCL20, CXCL2, CXCL10) and proteins (IL-6, IL-8). This inhibition was associated to a decrease of ERK1/2 and p38 MAPK phosphorylation, an agglutination of ETEC by Sc and an increase of the anti-inflammatory PPAR-γ nuclear receptor mRNA level. In addition, Sc up-regulates the mRNA levels of both IL-12p35 and CCL25. However, measurement of transepithelial electrical resistance displayed that Sc failed to maintain the barrier integrity in monolayer exposed to ETEC suggesting that Sc does not inhibit ETEC enterotoxin activity. Conclusions Sc (strain CNCM I-3856) displays multiple immuno-modulatory effects at the molecular level in IPEC-1 cells suggesting that Sc may influence intestinal inflammatory reaction. PMID:21483702
Zhang, Wei; Zhu, Yao-Hong; Yang, Jin-Cai; Yang, Gui-Yan; Zhou, Dong; Wang, Jiu-Feng
2015-01-01
Enterotoxigenic Escherichia coli (ETEC) are important intestinal pathogens that cause diarrhea in humans and animals. Although probiotic bacteria may protect against ETEC-induced enteric infections, the underlying mechanisms are unknown. In this study, porcine intestinal epithelial J2 cells (IPEC-J2) were pre-incubated with and without Lactobacillus rhamnosus ATCC 7469 and then exposed to F4+ ETEC. Increases in TLR4 and NOD2 mRNA expression were observed at 3 h after F4+ ETEC challenge, but these increases were attenuated by L. rhamnosus treatment. Expression of TLR2 and NOD1 mRNA was up-regulated in cells pre-treated with L. rhamnosus. Pre-treatment with L. rhamnosus counteracted F4+ ETEC-induced increases in TNF-α concentration. Increased PGE2. concentrations were observed in cells infected with F4+ ETEC and in cells treated with L. rhamnosus only. A decrease in phosphorylated epidermal growth factor receptor (EGFR) was observed at 3 h after F4+ ETEC challenge in cells treated with L. rhamnosus. Pre-treatment with L. rhamnosus enhanced Akt phosphorylation and increased ZO-1 and occludin protein expression. Our findings suggest that L. rhamnosus protects intestinal epithelial cells from F4+ ETEC-induced damage, partly through the anti-inflammatory response involving synergism between TLR2 and NOD1. In addition, L. rhamnosus promotes EGFR-independent Akt activation, which may activate intestinal epithelial cells in response to bacterial infection, in turn increasing tight junction integrity and thus enhancing the barrier function and restricting pathogen invasion. Pre-incubation with L. rhamnosus was superior to co-incubation in reducing the adhesion of F4+ ETEC to IPEC-J2 cells and subsequently attenuating F4+ ETEC-induced mucin layer destruction and suppressing apoptosis. Our data indicate that a selected L. rhamnosus strain interacts with porcine intestinal epithelial cells to maintain the epithelial barrier and promote intestinal epithelial cell activation in response to bacterial infection, thus protecting cells from the deleterious effects of F4+ ETEC.
Yang, Jin-Cai; Yang, Gui-Yan; Zhou, Dong; Wang, Jiu-Feng
2015-01-01
Enterotoxigenic Escherichia coli (ETEC) are important intestinal pathogens that cause diarrhea in humans and animals. Although probiotic bacteria may protect against ETEC-induced enteric infections, the underlying mechanisms are unknown. In this study, porcine intestinal epithelial J2 cells (IPEC-J2) were pre-incubated with and without Lactobacillus rhamnosus ATCC 7469 and then exposed to F4+ ETEC. Increases in TLR4 and NOD2 mRNA expression were observed at 3 h after F4+ ETEC challenge, but these increases were attenuated by L. rhamnosus treatment. Expression of TLR2 and NOD1 mRNA was up-regulated in cells pre-treated with L. rhamnosus. Pre-treatment with L. rhamnosus counteracted F4+ ETEC-induced increases in TNF-α concentration. Increased PGE2. concentrations were observed in cells infected with F4+ ETEC and in cells treated with L. rhamnosus only. A decrease in phosphorylated epidermal growth factor receptor (EGFR) was observed at 3 h after F4+ ETEC challenge in cells treated with L. rhamnosus. Pre-treatment with L. rhamnosus enhanced Akt phosphorylation and increased ZO-1 and occludin protein expression. Our findings suggest that L. rhamnosus protects intestinal epithelial cells from F4+ ETEC-induced damage, partly through the anti-inflammatory response involving synergism between TLR2 and NOD1. In addition, L. rhamnosus promotes EGFR-independent Akt activation, which may activate intestinal epithelial cells in response to bacterial infection, in turn increasing tight junction integrity and thus enhancing the barrier function and restricting pathogen invasion. Pre-incubation with L. rhamnosus was superior to co-incubation in reducing the adhesion of F4+ ETEC to IPEC-J2 cells and subsequently attenuating F4+ ETEC-induced mucin layer destruction and suppressing apoptosis. Our data indicate that a selected L. rhamnosus strain interacts with porcine intestinal epithelial cells to maintain the epithelial barrier and promote intestinal epithelial cell activation in response to bacterial infection, thus protecting cells from the deleterious effects of F4+ ETEC. PMID:25915861
Hagen, S J; Trier, J S
1988-07-01
We used post-embedding immunocytochemical techniques and affinity-purified anti-actin antibody to evaluate localization of actin in epithelial cells of small intestine by fluorescence and electron microscopy. Small intestine was fixed with 2% formaldehyde-0.1% glutaraldehyde and embedded in Lowicryl K4M. One-micron or thin sections were stained with antibody followed by rhodamine- or colloidal gold-labeled goat anti-rabbit IgG, respectively. Label was present overlying microvilli, the apical terminal web, and the cytoplasm directly adjacent to occluding and intermediate junctions. Label was associated with outer mitochondrial membranes of all cells and the supranuclear Golgi region of goblet cells. Lateral cytoplasmic interdigitations between mature cells and subplasmalemmal filaments next to intrusive cells were densely labeled. The cytoplasm adjacent to unplicated domains of lateral membrane was focally labeled. Label was prominent over organized filament bundles within the subplasmalemmal web at the base of mature cells, whereas there was focal labeling of the cytoplasm adjacent to the basal membrane of undifferentiated cells. Basolateral epithelial cell processes were labeled. Label was focally present overlying the cellular ground substance. Our results demonstrate that actin is distributed in a distinctive fashion within intestinal epithelial cells. This distribution suggests that in addition to its function as a structural protein, actin may participate in regulation of epithelial tight junction permeability, in motile processes including migration of cells from the crypt to the villus tip, in accommodation of intrusive intraepithelial cells and in adhesion of cells to one another and to their substratum.
Podkowa, Dagmara; Goniakowska-Witalińska, Lucyna
2002-01-01
A light and transmission electron microscopic study of the intestine of catfish C. aeneus shows that the anterior part of the intestine is a site of digestion and absorption and its structure is typical of that of other teleostean fishes. However, in this species the thin-walled posterior intestine is adapted to air breathing. In this region mucosa is smooth and lined with respiratory epithelium with capillary network. Several types of cells are observed in the epithelium: flattened respiratory epithelial cells with short microvili, goblet cells, scarce epithelial cells with numerous longer microvilli, and two types of endocrine cells (EC). The solitary brush cells with several long and thick microvilli described here are the first observation of such cells in the gastrointestinal tract of fishes. Bodies of respiratory epithelial cells lie between capillaries. Their cytoplasm, apart from typical organelles contains dense and lamellar bodies, which are a site of accumulation of surfactant. In regions where capillaries are covered by thin cytoplasmic sheets of respiratory epithelial cells, a thin (0.24-3.00 microm) air-blood barrier is formed, thus enabling gas exchange. Epithelial cells with longer microvilli do not participate in the formation of the air-blood barrier and are probably responsible for absorbtion. EC of the closed type are dispersed within the epithelium. Their cytoplasm contains characteristic round or oval dense core vesicles 69 to 230 nm in diameter. The role of EC and brush cells in the regulation of processes related to absorbtion, and to respiration, is disscused.
γδ T cells in homeostasis and host defence of epithelial barrier tissues
Nielsen, Morten M.; Witherden, Deborah A.; Havran, Wendy L.
2018-01-01
Epithelial surfaces line the body and provide a critical interface between the body and the external environment which is essential to maintaining the symbiotic relationship between the host and the microbiome. Tissue-resident epithelial γδ T cells represent a major T cell population in epithelia and are ideally positioned to perform barrier surveillance and aid in tissue homeostasis and repair. In this review we focus on the intraepithelial γδ compartment in the two largest epithelial tissues in the body, namely the epidermis and intestine, and provide a comprehensive overview of the crucial contributions of intraepithelial γδ cells at these sites to tissue integrity and repair, host homeostasis and host protection in the context of the symbiotic relationship with the microbiome and during pathogen clearance. Finally, we address epithelia-specific butyrophilin-like molecules and touch upon their emerging role in selectively shaping and regulating epidermal and intestinal γδ T cell repertoires. PMID:28920588
Serotonin is an endogenous regulator of intestinal CYP1A1 via AhR.
Manzella, Christopher; Singhal, Megha; Alrefai, Waddah A; Saksena, Seema; Dudeja, Pradeep K; Gill, Ravinder K
2018-04-17
Aryl hydrocarbon receptor (AhR) is a nuclear receptor that controls xenobiotic detoxification via induction of cytochrome P450 1A1 (CYP1A1) and regulates immune responses in the intestine. Metabolites of L-tryptophan activate AhR, which confers protection against intestinal inflammation. We tested the hypothesis that serotonin (5-HT) is an endogenous activator of AhR in intestinal epithelial cells. Treatment of Caco-2 monolayers with 5-HT induced CYP1A1 mRNA in a time- and concentration-dependent manner and also stimulated CYP1A1 activity. CYP1A1 induction by 5-HT was dependent upon uptake via serotonin transporter (SERT). Antagonism of AhR and knockdown of AhR and its binding partner aryl hydrocarbon receptor nuclear translocator (ARNT) attenuated CYP1A1 induction by 5-HT. Activation of AhR was evident by its nuclear translocation after 5-HT treatment and by induction of an AhR-responsive luciferase reporter. In vivo studies showed a dramatic decrease in CYP1A1 expression and other AhR target genes in SERT KO ileal mucosa by microarray analysis. These results suggest that intracellular accumulation of 5-HT via SERT induces CYP1A1 expression via AhR in intestinal epithelial cells, and SERT deficiency in vivo impairs activation of AhR. Our studies provide a novel link between the serotonergic and AhR pathways which has implications in xenobiotic metabolism and intestinal inflammation.
Terc, Joshua; Hansen, Ashleigh; Alston, Laurie; Hirota, Simon A
2014-05-13
The intestinal epithelial barrier plays a key role in the maintenance of homeostasis within the gastrointestinal tract. Barrier dysfunction leading to increased epithelial permeability is associated with a number of gastrointestinal disorders including the inflammatory bowel diseases (IBD) - Crohn's disease and ulcerative colitis. It is thought that the increased permeability in patients with IBD may be driven by alterations in the epithelial wound healing response. To this end considerable study has been undertaken to identify signaling pathways that may accelerate intestinal epithelial wound healing and normalize the barrier dysfunction observed in IBD. In the current study we examined the role of the pregnane X receptor (PXR) in modulating the intestinal epithelial wound healing response. Mutations and reduced mucosal expression of the PXR are associated with IBD, and others have reported that PXR agonists can dampen intestinal inflammation. Furthermore, stimulation of the PXR has been associated with increased cell migration and proliferation, two of the key processes involved in wound healing. We hypothesized that PXR agonists would enhance intestinal epithelial repair. Stimulation of Caco-2 intestinal epithelial cells with rifaximin, rifampicin and SR12813, all potent agonists of the PXR, significantly increased wound closure. This effect was driven by p38 MAP kinase-dependent cell migration, and occurred in the absence of cell proliferation. Treating mice with a rodent specific PXR agonist, pregnenolone 16α-carbonitrile (PCN), attenuated the intestinal barrier dysfunction observed in the dextran sulphate sodium (DSS) model of experimental colitis, an effect that occurred independent of the known anti-inflammatory effects of PCN. Taken together our data indicate that the activation of the PXR can enhance intestinal epithelial repair and suggest that targeting the PXR may help to normalize intestinal barrier dysfunction observed in patients with IBD. Furthermore, our data provide additional insight into the potential mechanisms through which rifaximin elicits its clinical efficacy in the treatment of IBD. Copyright © 2014 Elsevier B.V. All rights reserved.
Control of Paneth Cell Fate, Intestinal Inflammation, and Tumorigenesis by PKCλ/ι.
Nakanishi, Yuki; Reina-Campos, Miguel; Nakanishi, Naoko; Llado, Victoria; Elmen, Lisa; Peterson, Scott; Campos, Alex; De, Surya K; Leitges, Michael; Ikeuchi, Hiroki; Pellecchia, Maurizio; Blumberg, Richard S; Diaz-Meco, Maria T; Moscat, Jorge
2016-09-20
Paneth cells are a highly specialized population of intestinal epithelial cells located in the crypt adjacent to Lgr5(+) stem cells, from which they differentiate through a process that requires downregulation of the Notch pathway. Their ability to store and release antimicrobial peptides protects the host from intestinal pathogens and controls intestinal inflammation. Here, we show that PKCλ/ι is required for Paneth cell differentiation at the level of Atoh1 and Gfi1, through the control of EZH2 stability by direct phosphorylation. The selective inactivation of PKCλ/ι in epithelial cells results in the loss of mature Paneth cells, increased apoptosis and inflammation, and enhanced tumorigenesis. Importantly, PKCλ/ι expression in human Paneth cells decreases with progression of Crohn's disease. Kaplan-Meier survival analysis of colorectal cancer (CRC) patients revealed that low PRKCI levels correlated with significantly worse patient survival rates. Therefore, PKCλ/ι is a negative regulator of intestinal inflammation and cancer through its role in Paneth cell homeostasis. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.
Dommels, Y. E.M.; Zhu, S.; Davy, M.; Martell, S.; Hedderley, D.; Barnett, M. P.G.; McNabb, W. C.; Roy, N. C.
2007-01-01
Multidrug resistance targeted mutation (mdr1a−/−) mice spontaneously develop intestinal inflammation. The aim of this study was to further characterize the intestinal inflammation in mdr1a−/− mice. Intestinal samples were collected to measure inflammation and gene expression changes over time. The first signs of inflammation occurred around 16 weeks of age and most mdr1a−/− mice developed inflammation between 16 and 27 weeks of age. The total histological injury score was the highest in the colon. The inflammatory lesions were transmural and discontinuous, revealing similarities to human inflammatory bowel diseases (IBD). Genes involved in inflammatory response pathways were up-regulated whereas genes involved in biotransformation and transport were down-regulated in colonic epithelial cell scrapings of inflamed mdra1−/− mice at 25 weeks of age compared to non-inflamed FVB mice. These results show overlap to human IBD and strengthen the use of this in vivo model to study human IBD. The anti-inflammatory regenerating islet-derived genes were expressed at a lower level during inflammation initiation in non-inflamed colonic epithelial cell scrapings of mdr1a−/− mice at 12 weeks of age. This result suggests that an insufficiently suppressed immune response could be crucial to the initiation and development of intestinal inflammation in mdr1a−/− mice. PMID:18850176
Breast milk-derived exosomes promote intestinal epithelial cell growth.
Hock, Alison; Miyake, Hiromu; Li, Bo; Lee, Carol; Ermini, Leonardo; Koike, Yuhki; Chen, Yong; Määttänen, Pekka; Zani, Augusto; Pierro, Agostino
2017-05-01
Breast milk administration prevents necrotizing enterocolitis (NEC). However, the mechanism remains unclear. Exosomes are cell-derived vesicles highly present in human milk and regulate intercellular signaling, inflammation, and immune response. We hypothesized that milk-derived exosomes beneficially affect intestinal epithelial cells. Rat milk was collected, and exosomes were isolated using ExoQuick reagent and visualized by Nanoparticle Tracking Analysis. Protein was extracted from encapsulating exosomes, and concentration was measured. 2×10 4 intestinal epithelial cells (IEC-18) were treated for five hours with 0.5-μg/μl exosomes, an equal volume of exosome-free milk, or control solution (PBS). IEC-18 viability was measured using a colorimetric assay (MTT), and gene expression was analyzed by qRT-PCR. Data were compared using one-way ANOVA with Bonferroni post-test. Rat milk was collected, and exosome isolation was confirmed. Compared to control, treatment with exosomes significantly increased IEC viability, proliferation, and stem cell activity (all p<0.05). However, administration of exosome-free milk had less significant effects. Rat milk-derived exosomes promote IEC viability, enhance proliferation, and stimulate intestinal stem cell activity. These findings provide insight into the mechanism of action of breast milk in the intestines. Exosome administration is a promising prevention method for infants at risk of developing NEC when breastfeeding is not tolerated. Copyright © 2017 Elsevier Inc. All rights reserved.
Chiba, Eriko; Villena, Julio; Hosoya, Shoichi; Takanashi, Naoya; Shimazu, Tomoyuki; Aso, Hisashi; Tohno, Masanori; Suda, Yoshihito; Kawai, Yasushi; Saito, Tadao; Miyazawa, Kenji; He, Fang; Kitazawa, Haruki
2012-10-01
We evaluated whether a bovine intestinal epithelial (BIE) cell line could serve as a useful in vitro model system for studying antiviral immune responses in bovine intestinal epithelial cells (IECs) and for the primary screening of immunobiotic microorganisms with antiviral protective capabilities. Immunofluorescent analyses revealed that toll-like receptor 3 (TLR3) was expressed in BIE cells, and the results of real-time quantitative PCR showed that these cells respond to stimulation with poly(I:C) by up-regulating pro-inflammatory cytokines and type I interferons. In addition, we demonstrated that BIE cells are useful for the primary screening of immunobiotic lactic acid bacteria strains which are able to beneficially modulate antiviral immune responses triggered by TLR3 activation in bovine IECs. The characterization of BIE cells performed in the present study represents an important step towards the establishment of a valuable bovine in vitro system that could be used for the development of immunomodulatory feed for bovine hosts. Copyright © 2011 Elsevier Ltd. All rights reserved.
Regulation of Bicarbonate Secretion in Marine Fish Intestine by the Calcium-Sensing Receptor.
Gregório, Sílvia F; Fuentes, Juan
2018-04-04
In marine fish, high epithelial intestinal HCO₃ − secretion generates luminal carbonate precipitates of divalent cations that play a key role in water and ion homeostasis. The present study was designed to expose the putative role for calcium and the calcium-sensing receptor (CaSR) in the regulation of HCO₃ − secretion in the intestine of the sea bream ( Sparus aurata L.). Effects on the expression of the CaSR in the intestine were evaluated by qPCR and an increase was observed in the anterior intestine in fed fish compared with unfed fish and with different regions of intestine. CaSR expression reflected intestinal fluid calcium concentration. In addition, anterior intestine tissue was mounted in Ussing chambers to test the putative regulation of HCO₃ − secretion in vitro using the anterior intestine. HCO₃ − secretion was sensitive to varying calcium levels in luminal saline and to calcimimetic compounds known to activate/block the CaSR i.e., R 568 and NPS-2143. Subsequent experiments were performed in intestinal sacs to measure water absorption and the sensitivity of water absorption to varying luminal levels of calcium and calcimimetics were exposed as well. It appears, that CaSR mediates HCO₃ − secretion and water absorption in marine fish as shown by responsiveness to calcium levels and calcimimetic compounds.
Dang, Xitong; Eliceiri, Brian P.; Baird, Andrew; Costantini, Todd W.
2015-01-01
The human genome contains a unique, distinct, and human-specific α7-nicotinic acetylcholine receptor (α7nAChR) gene [CHRNA7 (gene-encoding α7-nicotinic acetylcholine receptor)] called CHRFAM7A (gene-encoding dup-α7-nicotinic acetylcholine receptor) on a locus of chromosome 15 associated with mental illness, including schizophrenia. Located 5′ upstream from the “wild-type” CHRNA7 gene that is found in other vertebrates, we demonstrate CHRFAM7A expression in a broad range of epithelial cells and sequenced the CHRFAM7A transcript found in normal human fetal small intestine epithelial (FHs) cells to prove its identity. We then compared its expression to CHRNA7 in 11 gut epithelial cell lines, showed that there is a differential response to LPS when compared to CHRNA7, and characterized the CHRFAM7A promoter. We report that both CHRFAM7A and CHRNA7 gene expression are widely distributed in human epithelial cell lines but that the levels of CHRFAM7A gene expression vary up to 5000-fold between different gut epithelial cells. A 3-hour treatment of epithelial cells with 100 ng/ml LPS increased CHRFAM7A gene expression by almost 1000-fold but had little effect on CHRNA7 gene expression. Mapping the regulatory elements responsible for CHRFAM7A gene expression identifies a 1 kb sequence in the UTR of the CHRFAM7A gene that is modulated by LPS. Taken together, these data establish the presence, identity, and differential regulation of the human-specific CHRFAM7A gene in human gut epithelial cells. In light of the fact that CHRFAM7A expression is reported to modulate ligand binding to, and alter the activity of, the wild-type α7nAChR ligand-gated pentameric ion channel, the findings point to the existence of a species-specific α7nAChR response that might regulate gut epithelial function in a human-specific fashion.—Dang, X., Eliceiri, B. P., Baird, A., Costantini, T. W. CHRFAM7A: a human-specific α7-nicotinic acetylcholine receptor gene shows differential responsiveness of human intestinal epithelial cells to LPS. PMID:25681457
Rogala, Allison R; Schoenborn, Alexi A; Fee, Brian E; Cantillana, Viviana A; Joyce, Maria J; Gharaibeh, Raad Z; Roy, Sayanty; Fodor, Anthony A; Sartor, R Balfour; Taylor, Gregory A; Gulati, Ajay S
2018-02-07
Crohn's disease (CD) represents a chronic inflammatory disorder of the intestinal tract. Several susceptibility genes have been linked to CD, though their precise role in the pathogenesis of this disorder remains unclear. Immunity-related GTPase M ( IRGM ) is an established risk allele in CD. We have shown previously that conventionally raised (CV) mice lacking the IRGM ortholog, Irgm1 exhibit abnormal Paneth cells (PCs) and increased susceptibility to intestinal injury. In the present study, we sought to utilize this model system to determine if environmental conditions impact these phenotypes, as is thought to be the case in human CD. To accomplish this, wild-type and Irgm1 -/- mice were rederived into specific pathogen-free (SPF) and germ-free (GF) conditions. We next assessed how these differential housing environments influenced intestinal injury patterns, and epithelial cell morphology and function in wild-type and Irgm1 -/- mice. Remarkably, in contrast to CV mice, SPF Irgm1 -/- mice showed only a slight increase in susceptibility to dextran sodium sulfate-induced inflammation. SPF Irgm1 -/- mice also displayed minimal abnormalities in PC number and morphology, and in antimicrobial peptide expression. Goblet cell numbers and epithelial proliferation were also unaffected by Irgm1 in SPF conditions. No microbial differences were observed between wild-type and Irgm1 -/- mice, but gut bacterial communities differed profoundly between CV and SPF mice. Specifically, Helicobacter sequences were significantly increased in CV mice; however, inoculating SPF Irgm1 -/- mice with Helicobacter hepaticus was not sufficient to transmit a pro-inflammatory phenotype. In summary, our findings suggest the impact of Irgm1-deficiency on susceptibility to intestinal inflammation and epithelial function is critically dependent on environmental influences. This work establishes the importance of Irgm1 -/- mice as a model to elucidate host-environment interactions that regulate mucosal homeostasis and intestinal inflammatory responses. Defining such interactions will be essential for developing novel preventative and therapeutic strategies for human CD. © 2018. Published by The Company of Biologists Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murano, Tatsuro; Okamoto, Ryuichi, E-mail: rokamoto.gast@tmd.ac.jp; Department of Advanced GI Therapeutics, Graduate School, Tokyo Medical and Dental University, Tokyo
Highlights: •Hes1 enhances IL-22-STAT3 signaling in human intestinal epithelial cells. •Hes1 enhances REG family gene induction by IL-22-STAT3 signaling. •Protein level of Hes1 restricts the response to IL-22. •Present regulation of a cytokine signal represents a new mode of Hes1 function. -- Abstract: Notch signaling plays an essential role in the proliferation and differentiation of intestinal epithelial cells (IECs). We have previously shown that Notch signaling is up-regulated in the inflamed mucosa of ulcerative colitis (UC) and thereby plays an indispensable role in tissue regeneration. Here we show that in addition to Notch signaling, STAT3 signaling is highly activated inmore » the inflamed mucosa of UC. Forced expression of the Notch target gene Hes1 dramatically enhanced the IL-22-mediated STAT3-dependent transcription in human IECs. This enhancement of STAT3-dependent transcription was achieved by the extended phosphorylation of STAT3 by Hes1. Microarray analysis revealed that Hes1-mediated enhancement of IL-22-STAT3 signaling significantly increased the induction of genes encoding antimicrobial peptides, such as REG1A, REG3A and REG3G, in human IECs. Conversely, the reduction of Hes1 protein levels with a γ-secretase inhibitor significantly down-regulated the induction of those genes in IECs, resulting in a markedly poor response to IL-22. Our present findings identify a new role for the molecular function of Hes1 in which the protein can interact with cytokine signals and regulate the immune response of IECs.« less
Wang, Li; Zhang, Ren; Chen, Jian; Wu, Qihui; Kuang, Zaoyuan
2017-04-01
Tumor necrosis factor-alpha (TNF-α) plays an important role in the developing process of inflammatory bowel disease. Tight junction protein zonula occludens-1 (ZO-1), one of epithelial junctional proteins, maintains the permeability of intestinal barrier. The objective of this study was to investigate the mechanism of the protective effect of baicalin on TNF-α-induced injury and ZO-1 expression in intestinal epithelial cells (IECs). We found that baicalin pretreatment significantly improved cell viability and cell migration following TNF-α stimulation. miR-191a inhibitor increased the protective effect of baicalin on cell motility injured by TNF-α. In addition, miR-191a down-regulated the mRNA and protein level of its target gene ZO-1. TNF-α stimulation increased miR-191a expression, leading to the decline of ZO-1 mRNA and protein. Moreover, pretreatment with baicalin reversed TNF-α induced decrease of ZO-1 and increase of miR-191a, miR-191a inhibitor significantly enhanced ZO-1 protein expression restored by baicalin. These results indicate that baicalin exerts a protective effect on IEC-6 (rat small intestinal epithelial cells) cells against TNF-α-induced injury, which is at least partly via inhibiting the expression of miR-191a, thus increasing ZO-1 mRNA and protein levels.
Martínez, Cristina; Rodiño-Janeiro, Bruno K; Lobo, Beatriz; Stanifer, Megan L; Klaus, Bernd; Granzow, Martin; González-Castro, Ana M; Salvo-Romero, Eloisa; Alonso-Cotoner, Carmen; Pigrau, Marc; Roeth, Ralph; Rappold, Gudrun; Huber, Wolfgang; González-Silos, Rosa; Lorenzo, Justo; de Torres, Inés; Azpiroz, Fernando; Boulant, Steeve; Vicario, María; Niesler, Beate; Santos, Javier
2017-09-01
Micro-RNAs (miRNAs) play a crucial role in controlling intestinal epithelial barrier function partly by modulating the expression of tight junction (TJ) proteins. We have previously shown differential messenger RNA (mRNA) expression correlated with ultrastructural abnormalities of the epithelial barrier in patients with diarrhoea-predominant IBS (IBS-D). However, the participation of miRNAs in these differential mRNA-associated findings remains to be established. Our aims were (1) to identify miRNAs differentially expressed in the small bowel mucosa of patients with IBS-D and (2) to explore putative target genes specifically involved in epithelial barrier function that are controlled by specific dysregulated IBS-D miRNAs. Healthy controls and patients meeting Rome III IBS-D criteria were studied. Intestinal tissue samples were analysed to identify potential candidates by: (a) miRNA-mRNA profiling; (b) miRNA-mRNA pairing analysis to assess the co-expression profile of miRNA-mRNA pairs; (c) pathway analysis and upstream regulator identification; (d) miRNA and target mRNA validation. Candidate miRNA-mRNA pairs were functionally assessed in intestinal epithelial cells. IBS-D samples showed distinct miRNA and mRNA profiles compared with healthy controls. TJ signalling was associated with the IBS-D transcriptional profile. Further validation of selected genes showed consistent upregulation in 75% of genes involved in epithelial barrier function. Bioinformatic analysis of putative miRNA binding sites identified hsa-miR-125b-5p and hsa-miR-16 as regulating expression of the TJ genes CGN (cingulin) and CLDN2 (claudin-2), respectively. Consistently, protein expression of CGN and CLDN2 was upregulated in IBS-D, while the respective targeting miRNAs were downregulated. In addition, bowel dysfunction, perceived stress and depression and number of mast cells correlated with the expression of hsa-miR-125b-5p and hsa-miR-16 and their respective target proteins. Modulation of the intestinal epithelial barrier function in IBS-D involves both transcriptional and post-transcriptional mechanisms. These molecular mechanisms include miRNAs as master regulators in controlling the expression of TJ proteins and are associated with major clinical symptoms. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.
Caballero-Franco, Celia; Guma, Monica; Choo, Min-Kyung; Sano, Yasuyo; Enzler, Thomas; Karin, Michael; Mizoguchi, Atsushi; Park, Jin Mo
2016-03-01
The protein kinase p38α mediates cellular responses to environmental and endogenous cues that direct tissue homeostasis and immune responses. Studies of mice lacking p38α in several different cell types have demonstrated that p38α signaling is essential to maintaining the proliferation-differentiation balance in developing and steady-state tissues. The mechanisms underlying these roles involve cell-autonomous control of signaling and gene expression by p38α. In this study, we show that p38α regulates gut-associated lymphoid tissue (GALT) formation in a noncell-autonomous manner. From an investigation of mice with intestinal epithelial cell-specific deletion of the p38α gene, we find that p38α serves to limit NF-κB signaling and thereby attenuate GALT-promoting chemokine expression in the intestinal epithelium. Loss of this regulation results in GALT hyperplasia and, in some animals, mucosa-associated B cell lymphoma. These anomalies occur independently of luminal microbial stimuli and are most likely driven by direct epithelial-lymphoid interactions. Our study illustrates a novel p38α-dependent mechanism preventing excessive generation of epithelial-derived signals that drive lymphoid tissue overgrowth and malignancy. Copyright © 2016 by The American Association of Immunologists, Inc.
Parker, Aimee; Maclaren, Oliver J.; Fletcher, Alexander G.; Muraro, Daniele; Kreuzaler, Peter A.; Byrne, Helen M.; Maini, Philip K.; Watson, Alastair J. M.; Pin, Carmen
2017-01-01
The functional integrity of the intestinal epithelial barrier relies on tight coordination of cell proliferation and migration, with failure to regulate these processes resulting in disease. It is not known whether cell proliferation is sufficient to drive epithelial cell migration during homoeostatic turnover of the epithelium. Nor is it known precisely how villus cell migration is affected when proliferation is perturbed. Some reports suggest that proliferation and migration may not be related while other studies support a direct relationship. We used established cell-tracking methods based on thymine analog cell labeling and developed tailored mathematical models to quantify cell proliferation and migration under normal conditions and when proliferation is reduced and when it is temporarily halted. We found that epithelial cell migration velocities along the villi are coupled to cell proliferation rates within the crypts in all conditions. Furthermore, halting and resuming proliferation results in the synchronized response of cell migration on the villi. We conclude that cell proliferation within the crypt is the primary force that drives cell migration along the villus. This methodology can be applied to interrogate intestinal epithelial dynamics and characterize situations in which processes involved in cell turnover become uncoupled, including pharmacological treatments and disease models.—Parker, A., Maclaren, O. J., Fletcher, A. G., Muraro, D., Kreuzaler, P. A., Byrne, H. M., Maini, P. K., Watson, A. J. M., Pin, C. Cell proliferation within small intestinal crypts is the principal driving force for cell migration on villi. PMID:27811059
Urokinase and the intestinal mucosa: evidence for a role in epithelial cell turnover
Gibson, P; Birchall, I; Rosella, O; Albert, V; Finch, C; Barkla, D; Young, G
1998-01-01
Background—The functions of urokinase in intestinal epithelia are unknown. Aims—To determine the relation of urokinase expressed by intestinal epithelial cells to their position in the crypt-villus/surface axis and of mucosal urokinase activity to epithelial proliferative kinetics in the distal colon. Methods—Urokinase expression was examined immunohistochemically in human intestinal mucosa. Urokinase activity was measured colorimetrically in epithelial cells isolated sequentially from the crypt-villus axis of the rat small intestine. In separate experiments, urokinase activity and epithelial kinetics (measured stathmokinetically) were measured in homogenates of distal colonic mucosa of 14 groups of eight rats fed diets known to alter epithelial turnover. Results—From the crypt base, an ascending gradient of expression and activity of urokinase was associated with the epithelial cells. Median mucosal urokinase activities in each of the dietary groups of rats correlated positively with autologous median number of metaphase arrests per crypt (r=0.68; p<0.005) and per 100 crypt cells (r=0.75; p<0.001), but not with crypt column height. Conclusions—Localisation of an enzyme capable of leading to digestion of cell substratum in the region where cells are loosely attached to their basement membrane, and the association of its activity with indexes of cell turnover, suggest a role for urokinase in facilitating epithelial cell loss in the intestine. Keywords: urokinase; intestinal epithelium; colon; epithelial proliferation PMID:9824347
Cell death at the intestinal epithelial front line.
Delgado, Maria Eugenia; Grabinger, Thomas; Brunner, Thomas
2016-07-01
The intestinal epithelium represents the largest epithelial surface in our body. This single-cell-layer epithelium mediates important functions in the absorption of nutrients and in the maintenance of barrier function, preventing luminal microorganisms from invading the body. Due to its constant regeneration the intestinal epithelium is a tissue not only with very high proliferation rates but also with very prominent physiological and pathophysiological cell death induction. The normal physiological differentiation and maturation of intestinal epithelial cells leads to their shedding and apoptotic cell death within a few days, without disturbing the epithelial barrier integrity. In contrast excessive intestinal epithelial cell death induced by irradiation, drugs and inflammation severely impairs the vital functions of this tissue. In this review we discuss cell death processes in the intestinal epithelium in health and disease, with special emphasis on cell death triggered by the tumour necrosis factor receptor family. © 2015 FEBS.
Cario, Elke; Brown, Dennis; McKee, Mary; Lynch-Devaney, Kathryn; Gerken, Guido; Podolsky, Daniel K.
2002-01-01
Commensal-associated molecular patterns, the major products of nonpathogenic bacteria, are present at high concentrations at the apical surface of the intestinal epithelium. However, the nature of the interaction of commensal-associated molecular patterns with the lumenal surface of the epithelium has not been defined. We have recently demonstrated that intestinal epithelial cells constitutively express several Toll-like receptors (TLRs) in vitro and in vivo that seem to be the key receptors responsible for immune cell activation in response to various bacterial products. In this study we characterize the subcellular distribution of two major TLRs, TLR2 and TLR4, and their ligand-specific dynamic regulation in the model human intestinal epithelial cell line T84. Immunocytochemical studies indicate that TLR2 and TLR4 are constitutively expressed at the apical pole of differentiated T84 cells. After stimulation with lipopolysaccharide or peptidoglycan, TLRs selectively traffic to cytoplasmic compartments near the basolateral membrane. Thus, we demonstrate that TLRs are positioned at the apical pole where they are poised to monitor the sensitive balance of the lumenal microbial array. The results of this dynamic epithelial surveillance can then be conveyed to the underlying cell populations of the lamina propria via these innate immune pattern recognition receptors. PMID:11786410
Guo, Bao-Jian; Bian, Zhao-Xiang; Qiu, Hong-Cong; Wang, Yi-Tao; Wang, Ying
2017-08-01
Inflammatory bowel disease (IBD) is a group of chronic inflammatory disorders that includes Crohn's disease (CD) and ulcerative colitis (UC). Homeostasis of various regulatory factors involved with intestinal immunity is disrupted in IBD, including the intestinal epithelial barrier, macrophages, and cellular mediators such as cytokines and chemokines. No successful treatment is currently available for the management of IBD. Natural products and herbal medicines have exhibited efficacy for UC and CD in experimental models and clinical trials with the following activities: (1) maintenance of integrity of the intestinal epithelial barrier, (2) regulation of macrophage activation, (3) modulation of innate and adaptive immune response, and (4) inhibition of TNF-α activity. Here, we discuss the major factors involved in the pathogenesis of IBD and the current development of natural products and herbs for the treatment of IBD. © 2017 New York Academy of Sciences.
O'Callaghan, John; Buttó, Ludovica F; MacSharry, John; Nally, Kenneth; O'Toole, Paul W
2012-08-01
Lactobacillus salivarius strain UCC118 is a human intestinal isolate that has been extensively studied for its potential probiotic effects in human and animal models. The objective of this study was to determine the effect of L. salivarius UCC118 on gene expression responses in the Caco-2 cell line to improve understanding of how the strain might modulate intestinal epithelial cell phenotypes. Exposure of Caco-2 cells to UCC118 led to the induction of several human genes (TNFAIP3, NFKBIA, and BIRC3) that are negative regulators of inflammatory signaling pathways. Induction of chemokines (CCL20, CXCL-1, and CXCL-2) with antimicrobial functions was also observed. Disruption of the UCC118 sortase gene srtA causes reduced bacterial adhesion to epithelial cells. Transcription of three mucin genes was reduced significantly when Caco-2 cells were stimulated with the ΔsrtA derivative of UCC118 compared to cells stimulated with the wild type, but there was no significant change in the transcription levels of the anti-inflammatory genes. UCC118 genes that were significantly upregulated upon exposure to Caco-2 cells were identified by bacterial genome microarray and consisted primarily of two groups of genes connected with purine metabolism and the operon for synthesis of the Abp118 bacteriocin. Following incubation with Caco-2 cells, the bacteriocin synthesis genes were transcribed at higher levels in the wild type than in the ΔsrtA derivative. These data indicate that L. salivarius UCC118 influences epithelial cells both through modulation of the inflammatory response and by modulation of intestinal cell mucin production. Sortase-anchored cell surface proteins of L. salivarius UCC118 have a central role in promoting the interaction between the bacterium and epithelial cells.
Chappell, Alfred E.; Bunz, Michael; Smoll, Eric; Dong, Hui; Lytle, Christian; Barrett, Kim E.; McCole, Declan F.
2018-01-01
Reactive oxygen species (ROS) are key mediators in a number of inflammatory conditions, including inflammatory bowel disease (IBD). ROS, including hydrogen peroxide (H2O2), modulate intestinal epithelial ion transport and are believed to contribute to IBD-associated diarrhea. Intestinal crypt fluid secretion, driven by electrogenic Cl− secretion, hydrates and sterilizes the crypt, thus reducing bacterial adherence. Here, we show that pathophysiological concentrations of H2O2 inhibit Ca2+-dependent Cl− secretion across T84 colonic epithelial cells by elevating cytosolic Ca2+, which contributes to activation of two distinct signaling pathways. One involves recruitment of the Ca2+-responsive kinases, Src and Pyk-2, as well as extracellular signal-regulated kinase (ERK). A separate pathway recruits p38 MAP kinase and phosphoinositide 3-kinase (PI3-K) signaling. The ion transport response to Ca2+-dependent stimuli is mediated in part by K+ efflux through basolateral K+ channels and Cl− uptake by the Na+-K+-2Cl− cotransporter, NKCC1. We demonstrate that H2O2 inhibits Ca2+-dependent basolateral K+ efflux and also inhibits NKCC1 activity independently of inhibitory effects on apical Cl− conductance. Thus, we have demonstrated that H2O2 inhibits Ca2+-dependent Cl− secretion through multiple negative regulatory signaling pathways and inhibition of specific ion transporters. These findings increase our understanding of mechanisms by which inflammation disturbs intestinal epithelial function and contributes to intestinal pathophysiology.—Chappell, A. E., Bunz, M., Smoll, E., Dong, H., Lytle, C., Barrett, K. E., McCole, D. F. Hydrogen peroxide inhibits Ca2+-dependent chloride secretion across colonic epithelial cells via distinct kinase signaling pathways and ion transport proteins. FASEB J. 22, 000–000 (2008) PMID:18211955
Pagel, René; Bär, Florian; Schröder, Torsten; Sünderhauf, Annika; Künstner, Axel; Ibrahim, Saleh M; Autenrieth, Stella E; Kalies, Kathrin; König, Peter; Tsang, Anthony H; Bettenworth, Dominik; Divanovic, Senad; Lehnert, Hendrik; Fellermann, Klaus; Oster, Henrik; Derer, Stefanie; Sina, Christian
2017-11-01
Endogenous circadian clocks regulate 24-h rhythms of physiology and behavior. Circadian rhythm disruption (CRD) is suggested as a risk factor for inflammatory bowel disease. However, the underlying molecular mechanisms remain unknown. Intestinal biopsies from Per1/2 mutant and wild-type (WT) mice were investigated by electron microscopy, immunohistochemistry, and bromodeoxyuridine pulse-chase experiments. TNF-α was injected intraperitoneally, with or without necrostatin-1, into Per1/2 mice or rhythmic and externally desynchronized WT mice to study intestinal epithelial cell death. Experimental chronic colitis was induced by oral administration of dextran sodium sulfate. In vitro , caspase activity was assayed in Per1/2-specific small interfering RNA-transfected cells. Wee1 was overexpressed to study antiapoptosis and the cell cycle. Genetic ablation of circadian clock function or environmental CRD in mice increased susceptibility to severe intestinal inflammation and epithelial dysregulation, accompanied by excessive necroptotic cell death and a reduced number of secretory epithelial cells. Receptor-interacting serine/threonine-protein kinase (RIP)-3-mediated intestinal necroptosis was linked to increased mitotic cell cycle arrest via Per1/2-controlled Wee1, resulting in increased antiapoptosis via cellular inhibitor of apoptosis-2. Together, our data suggest that circadian rhythm stability is pivotal for the maintenance of mucosal barrier function. CRD increases intestinal necroptosis, thus rendering the gut epithelium more susceptible to inflammatory processes.-Pagel, R., Bär, F., Schröder, T., Sünderhauf, A., Künstner, A., Ibrahim, S. M., Autenrieth, S. E., Kalies, K., König, P., Tsang, A. H., Bettenworth, D., Divanovic, S., Lehnert, H., Fellermann, K., Oster, H., Derer, S., Sina, C. Circadian rhythm disruption impairs tissue homeostasis and exacerbates chronic inflammation in the intestine. © FASEB.
Wang, Guangzhi; Yao, Jihong; Li, Zhenlu; Zu, Guo; Feng, Dongcheng; Shan, Wen; Li, Yang; Hu, Yan; Zhao, Yongfu; Tian, Xiaofeng
2016-06-10
Reactive oxygen species (ROS) generation and massive epithelial apoptosis are critical in the pathogenesis of intestinal ischemia/reperfusion (I/R) injury. We previously found that the Sirtuin 1 (SIRT1)-mediated antioxidant pathway was impaired in the intestine after I/R. Here, we investigate the potential role of SIRT1-targeting microRNAs (miRNAs) in regulating ROS accumulation and apoptosis in intestinal I/R, and the important role SIRT1 involved in. C57BL/6 mice were subjected to intestinal I/R induced by occlusion of the superior mesenteric artery followed by reperfusion. Caco-2 cells were incubated under hypoxia/reoxygenation condition to mimic I/R in vivo. We find that SIRT1 is gradually repressed during the early reperfusion, and that this repression results in intestinal ROS accumulation and apoptosis. Using bioinformatics analysis and real-time PCR, we demonstrate that miR-34a-5p and miR-495-3p are significantly increased among the 41 putative miRNAs that can target SIRT1. Inhibition of miR-34a-5p, but not miR-495-3p, attenuates intestinal I/R injury, as demonstrated by repressing p66shc upregulation, manganese superoxide dismutase repression, and the caspase-3 activation in vitro and in vivo; it further alleviates systemic injury, as demonstrated by reducing inflammatory cytokine release, attenuating lung and liver lesions, and improving survival. Interestingly, SIRT1 plays an indispensable role in the protection afforded by miR-34a-5p inhibition. This study provides the first evidence of miRNAs in regulating oxidative stress and apoptosis in intestinal I/R. miR-34a-5p knockdown attenuates intestinal I/R injury through promoting SIRT1-mediated suppression of epithelial ROS accumulation and apoptosis. This may represent a novel prophylactic approach to intestinal I/R injury. Antioxid. Redox Signal. 24, 961-973.
Smaldini, Paola L; Stanford, John; Romanin, David E; Fossati, Carlos A; Docena, Guillermo H
2014-08-01
The immunomodulatory power of heat-killed Gordonia bronchialis was studied on gut epithelial cells activated with pro-inflammatory stimuli (flagellin, TNF-α or IL-1β). Light emission of luciferase-transfected epithelial cells and mRNA expression of IL-1β, TNF-α, IL-6, CCL20, IL-8 and MCP-1 were measured. NF-κB activation was assessed by immunofluorescence and immunoblotting, and induction of reactive oxygen species (ROS) was evaluated. In vivo inhibitory properties of G. bronchialis were studied with ligated intestinal loop assay and in a mouse model of food allergy. G. bronchialis promoted the down-regulation of the expression of CCL20 and IL-1β on activated epithelial cells in a dose-dependent manner. A concomitant blocking of nuclear p65 translocation with increased production of ROS was found. In vivo experiments confirmed the inhibition of CCL20 expression and the suppression of IgE sensitization and hypersensitivity symptoms in the food allergy mouse model. In conclusion, heat-killed G. bronchialis inhibited the activation of NF-κB pathway in human epithelial cells, and suppressed the expression of CCL20. These results indicate that G. bronchialis may be used to modulate the initial steps of innate immune activation, which further suppress the allergic sensitization. This approach may be exploited as a therapy for intestinal inflammation. © The Author(s) 2013 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.
Madara, J L; Patapoff, T W; Gillece-Castro, B; Colgan, S P; Parkos, C A; Delp, C; Mrsny, R J
1993-01-01
Neutrophil transmigration across intestinal epithelia is thought to contribute to epithelial dysfunction and characterizes many inflammatory intestinal diseases. Neutrophils activated by factors, normally present in the lumen, release a neutrophil-derived secretagogue activity to which intestinal epithelia respond with an electrogenic chloride secretion, the transport event which underlies secretory diarrhea. Using sequential ultrafiltration, column chromatographic, and mass and Raman spectroscopic techniques, neutrophil-derived secretagogue was identified as 5'-AMP. Additional studies suggested that neutrophil-derived 5'-AMP is subsequently converted to adenosine at the epithelial cell surface by ecto-5'-nucleotidase and that adenosine subsequently activates intestinal secretion through adenosine receptors on the apical membrane of target intestinal epithelial cells. These findings suggest that this ATP metabolite may serve as a neutrophil-derived paracrine mediator that contributes to secretory diarrhea in states of intestinal inflammation. PMID:8486793
Ferrari, Daniela; Cimino, Francesco; Fratantonio, Deborah; Molonia, Maria Sofia; Bashllari, Romina; Busà, Rossana; Saija, Antonella; Speciale, Antonio
2017-01-01
Intestinal epithelium represents a protective physical barrier and actively contributes to the mucosal immune system. Polarized basolateral intestinal secretion of inflammatory mediators, followed by activation of NF- κ B signaling and inflammatory pathways in endothelial cells, efficiently triggers extravasation of neutrophils from the vasculature, therefore contributing to the development and maintenance of intestinal inflammation. Proper regulation of NF- κ B activation at the epithelial interface is crucial for the maintenance of physiological tissue homeostasis. Many papers reported that anthocyanins, a group of compounds belonging to flavonoids, possess anti-inflammatory effects and modulate NF- κ B activity. In this study, by using a coculture in vitro system, we aimed to evaluate the effects of TNF- α -stimulated intestinal cells on endothelial cells activation, as well as the protective effects of cyanidin-3-glucoside (C3G). In this model, TNF- α induced nuclear translocation of NF- κ B and TNF- α and IL-8 gene expression in Caco-2 cells, whereas C3G pretreatment dose-dependently reduced these effects. Furthermore, TNF- α -stimulated Caco-2 cells induced endothelial cells activation with increased E-selectin and VCAM-1 mRNA, leukocyte adhesion, and NF- κ B levels in HUVECs, which were inhibited by C3G. We demonstrated that selective inhibition of the NF- κ B pathway in epithelial cells represents the main mechanism by which C3G exerts these protective effects. Thus, anthocyanins could contribute to the management of chronic gut inflammatory diseases.
Yu, Shui-Xing; Chen, Wei; Liu, Zhen-Zhen; Zhou, Feng-Hua; Yan, Shi-Qing; Hu, Gui-Qiu; Qin, Xiao-Xia; Zhang, Jie; Ma, Ke; Du, Chong-Tao; Gu, Jing-Min; Deng, Xu-Ming; Han, Wen-Yu; Yang, Yong-Jun
2018-01-01
The intestinal mucosal barrier is critical for host defense against pathogens infection. Here, we demonstrate that the mixed lineage kinase-like protein (MLKL), a necroptosis effector, promotes intestinal epithelial barrier function by enhancing inflammasome activation. MLKL -/- mice were more susceptible to Salmonella infection compared with wild-type counterparts, with higher mortality rates, increased body weight loss, exacerbated intestinal inflammation, more bacterial colonization, and severe epithelial barrier disruption. MLKL deficiency promoted early epithelial colonization of Salmonella prior to developing apparent intestinal pathology. Active MLKL was predominantly expressed in crypt epithelial cells, and experiments using bone marrow chimeras found that the protective effects of MLKL were dependent on its expression in non-hematopoietic cells. Intestinal mucosa of MLKL -/- mice had impaired caspase-1 and gasdermin D cleavages and decreased interleukin (IL)-18 release. Moreover, administration of exogenous recombinant IL-18 rescued the phenotype of increased bacterial colonization in MLKL -/- mice. Thus, our results uncover the role of MLKL in enhancing inflammasome activation in intestinal epithelial cells to inhibit early bacterial colonization.
Intestinal Cell Proliferation and Senescence Are Regulated by Receptor Guanylyl Cyclase C and p21*
Basu, Nirmalya; Saha, Sayanti; Khan, Imran; Ramachandra, Subbaraya G.; Visweswariah, Sandhya S.
2014-01-01
Guanylyl cyclase C (GC-C) is expressed in intestinal epithelial cells and serves as the receptor for bacterial heat-stable enterotoxin (ST) peptides and the guanylin family of gastrointestinal hormones. Activation of GC-C elevates intracellular cGMP, which modulates intestinal fluid-ion homeostasis and differentiation of enterocytes along the crypt-villus axis. GC-C activity can regulate colonic cell proliferation by inducing cell cycle arrest, and mice lacking GC-C display increased cell proliferation in colonic crypts. Activation of GC-C by administration of ST to wild type, but not Gucy2c−/−, mice resulted in a reduction in carcinogen-induced aberrant crypt foci formation. In p53-deficient human colorectal carcinoma cells, ST led to a transcriptional up-regulation of p21, the cell cycle inhibitor, via activation of the cGMP-responsive kinase PKGII and p38 MAPK. Prolonged treatment of human colonic carcinoma cells with ST led to nuclear accumulation of p21, resulting in cellular senescence and reduced tumorigenic potential. Our results, therefore, identify downstream effectors for GC-C that contribute to regulating intestinal cell proliferation. Thus, genomic responses to a bacterial toxin can influence intestinal neoplasia and senescence. PMID:24217248
Genomic dissection of conserved transcriptional regulation in intestinal epithelial cells
Camp, J. Gray; Weiser, Matthew; Cocchiaro, Jordan L.; Kingsley, David M.; Furey, Terrence S.; Sheikh, Shehzad Z.; Rawls, John F.
2017-01-01
The intestinal epithelium serves critical physiologic functions that are shared among all vertebrates. However, it is unknown how the transcriptional regulatory mechanisms underlying these functions have changed over the course of vertebrate evolution. We generated genome-wide mRNA and accessible chromatin data from adult intestinal epithelial cells (IECs) in zebrafish, stickleback, mouse, and human species to determine if conserved IEC functions are achieved through common transcriptional regulation. We found evidence for substantial common regulation and conservation of gene expression regionally along the length of the intestine from fish to mammals and identified a core set of genes comprising a vertebrate IEC signature. We also identified transcriptional start sites and other putative regulatory regions that are differentially accessible in IECs in all 4 species. Although these sites rarely showed sequence conservation from fish to mammals, surprisingly, they drove highly conserved IEC expression in a zebrafish reporter assay. Common putative transcription factor binding sites (TFBS) found at these sites in multiple species indicate that sequence conservation alone is insufficient to identify much of the functionally conserved IEC regulatory information. Among the rare, highly sequence-conserved, IEC-specific regulatory regions, we discovered an ancient enhancer upstream from her6/HES1 that is active in a distinct population of Notch-positive cells in the intestinal epithelium. Together, these results show how combining accessible chromatin and mRNA datasets with TFBS prediction and in vivo reporter assays can reveal tissue-specific regulatory information conserved across 420 million years of vertebrate evolution. We define an IEC transcriptional regulatory network that is shared between fish and mammals and establish an experimental platform for studying how evolutionarily distilled regulatory information commonly controls IEC development and physiology. PMID:28850571
Intestinal Alkaline Phosphatase Regulates Tight Junction Protein Levels
Liu, Wei; Hu, Dong; Huo, Haizhong; Zhang, Weifeng; Adiliaghdam, Fatemeh; Morrison, Sarah; Ramirez, Juan M; Gul, Sarah S; Hamarneh, Sulaiman R; Hodin, Richard A
2017-01-01
BACKGROUND Intestinal alkaline phosphatase (IAP) plays a pivotal role in maintaining gut health and well-being. Oral supplementation with IAP in mice improves gut barrier function and prevents luminal proinflammatory factors from gaining access to the circulation. In this study, we sought to explore the relationship between IAP and tight junction protein (TJP) expression and function. STUDY DESIGN The effect of IAP deletion on TJP levels was studied in mouse embryonic fibroblasts (MEFs) generated from IAP-knockout and wild type mice. Regulation of TJPs by IAP was assayed in the human colon cancer Caco-2 and T84 cells by overexpressing the human IAP gene. Tight junction protein levels and localization were measured by using RT q-PCR and antibodies targeting the specific TJPs. Finally, the effect of IAP on inflammation-induced intestinal permeability was measured by in vitro trans-well epithelial electrical resistance (TEER). RESULTS Intestinal alkaline phosphatase gene deletion in MEFs resulted in significantly lower levels of ZO-1, ZO-2, and Occludin compared with levels in wild-type control cells; IAP over-expression in Caco-2 and T84 cells resulted in approximate 2-fold increases in the mRNA levels of ZO-1 and ZO-2. The IAP treatment ameliorated lipopolysaccharide-induced increased permeability in the Caco-2 trans-well system. Furthermore, IAP treatment preserved the localization of the ZO-1 and Occludin proteins during inflammation and was also associated with improved epithelial barrier function. CONCLUSIONS Intestinal alkaline phosphatase is a major regulator of gut mucosal permeability and appears to work at least partly through improving TJP levels and localization. These data provide a strong foundation to develop IAP as a novel therapy to maintain gut barrier function. PMID:27106638
Intestinal Alkaline Phosphatase Regulates Tight Junction Protein Levels.
Liu, Wei; Hu, Dong; Huo, Haizhong; Zhang, Weifeng; Adiliaghdam, Fatemeh; Morrison, Sarah; Ramirez, Juan M; Gul, Sarah S; Hamarneh, Sulaiman R; Hodin, Richard A
2016-06-01
Intestinal alkaline phosphatase (IAP) plays a pivotal role in maintaining gut health and well-being. Oral supplementation with IAP in mice improves gut barrier function and prevents luminal proinflammatory factors from gaining access to the circulation. In this study, we sought to explore the relationship between IAP and tight junction protein (TJP) expression and function. The effect of IAP deletion on TJP levels was studied in mouse embryonic fibroblasts (MEFs) generated from IAP-knockout and wild type mice. Regulation of TJPs by IAP was assayed in the human colon cancer Caco-2 and T84 cells by overexpressing the human IAP gene. Tight junction protein levels and localization were measured by using RT q-PCR and antibodies targeting the specific TJPs. Finally, the effect of IAP on inflammation-induced intestinal permeability was measured by in vitro trans-well epithelial electrical resistance (TEER). Intestinal alkaline phosphatase gene deletion in MEFs resulted in significantly lower levels of ZO-1, ZO-2, and Occludin compared with levels in wild-type control cells; IAP overexpression in Caco-2 and T84 cells resulted in approximate 2-fold increases in the mRNA levels of ZO-1 and ZO-2. The IAP treatment ameliorated lipopolysaccharide-induced increased permeability in the Caco-2 trans-well system. Furthermore, IAP treatment preserved the localization of the ZO-1 and Occludin proteins during inflammation and was also associated with improved epithelial barrier function. Intestinal alkaline phosphatase is a major regulator of gut mucosal permeability and appears to work at least partly through improving TJP levels and localization. These data provide a strong foundation to develop IAP as a novel therapy to maintain gut barrier function. Copyright © 2016. Published by Elsevier Inc.
Sun, M; He, C; Wu, W; Zhou, G; Liu, F; Cong, Y; Liu, Z
2017-03-01
Intestinal epithelial cells (IECs), an important barrier to gut microbiota, are subject to low oxygen tension, particularly during intestinal inflammation. Hypoxia inducible factor-1α (HIF-1α) is expressed highly in the inflamed mucosa of inflammatory bowel disease (IBD) and functions as a key regulator in maintenance of intestinal homeostasis. However, how IEC-derived HIF-1α regulates intestinal immune responses in IBD is still not understood completely. We report here that the expression of HIF-1α and IL-33 was increased significantly in the inflamed mucosa of IBD patients as well as mice with colitis induced by dextran sulphate sodium (DSS). The levels of interleukin (IL)-33 were correlated positively with that of HIF-1α. A HIF-1α-interacting element was identified in the promoter region of IL-33, indicating that HIF-1α activity regulates IL-33 expression. Furthermore, tumour necrosis factor (TNF) facilitated the HIF-1α-dependent IL-33 expression in IEC. Our data thus demonstrate that HIF-1α-dependent IL-33 in IEC functions as a regulatory cytokine in inflamed mucosa of IBD, thereby regulating the intestinal inflammation and maintaining mucosal homeostasis. © 2016 British Society for Immunology.
PERP, a host tetraspanning membrane protein, is required for S almonella‐induced inflammation
Hallstrom, Kelly N.; Srikanth, C. V.; Agbor, Terence A.; Dumont, Christopher M.; Peters, Kristen N.; Paraoan, Luminita; Casanova, James E.; Boll, Erik J.
2015-01-01
Summary S almonella enterica Typhimurium induces intestinal inflammation through the activity of type III secreted effector (T3SE) proteins. Our prior results indicate that the secretion of the T3SE SipA and the ability of SipA to induce epithelial cell responses that lead to induction of polymorphonuclear transepithelial migration are not coupled to its direct delivery into epithelial cells from S almonella. We therefore tested the hypothesis that SipA interacts with a membrane protein located at the apical surface of intestinal epithelial cells. Employing a split ubiquitin yeast‐two‐hybrid screen, we identified the tetraspanning membrane protein, p53 effector related to PMP‐22 (PERP), as a SipA binding partner. SipA and PERP appear to have intersecting activities as we found PERP to be involved in proinflammatory pathways shown to be regulated by SipA. In sum, our studies reveal a critical role for PERP in the pathogenesis of S. Typhimurium, and for the first time demonstrate that SipA, a T3SE protein, can engage a host protein at the epithelial surface. PMID:25486861
Sorobetea, Daniel; Holm, Jacob Bak; Henningsson, Henrietta; Kristiansen, Karsten; Svensson-Frej, Marcus
2017-02-01
A hallmark of parasite infection is the accumulation of innate immune cells, notably granulocytes and mast cells, at the site of infection. While this is typically viewed as a transient response, with the tissue returning to steady state once the infection is cleared, we found that mast cells accumulated in the large-intestinal epithelium following infection with the nematode Trichuris muris and persisted at this site for several months after worm expulsion. Mast cell accumulation in the epithelium was associated with the induction of type-2 immunity and appeared to be driven by increased maturation of local progenitors in the intestinal lamina propria. Furthermore, we also detected increased local and systemic levels of the mucosal mast cell protease MCPt-1, which correlated highly with the persistent epithelial mast cell population. Finally, the mast cells appeared to have striking consequences on epithelial barrier integrity, by regulation of gut permeability long after worm expulsion. These findings highlight the importance of mast cells not only in the early phases of infection but also at later stages, which has functional implications on the mucosal tissue. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Beigel, Florian; Friedrich, Matthias; Probst, Corina; Sotlar, Karl; Göke, Burkhard; Diegelmann, Julia; Brand, Stephan
2014-01-01
Objective Oncostatin M (OSM) is produced by activated T cells, monocytes, and dendritic cells and signals through two distinct receptor complexes consisting of gp130 and LIFR (I) or OSMR-β and gp130 (II), respectively. Aim of this study was to analyze the role of OSM in intestinal epithelial cells (IEC) and intestinal inflammation. Methods OSM expression and OSM receptor distribution was analyzed by PCR and immunohistochemistry experiments, signal transduction by immunoblotting. Gene expression studies were performed by microarray analysis and RT-PCR. Apoptosis was measured by caspases-3/7 activity. IEC migration and proliferation was studied in wounding and water soluble tetrazolium assays. Results The IEC lines Caco-2, DLD-1, SW480, HCT116 and HT-29 express mRNA for the OSM receptor subunits gp130 and OSMR-β, while only HCT116, HT-29 and DLD-1 cells express LIFR mRNA. OSM binding to its receptor complex activates STAT1, STAT3, ERK-1/2, SAPK/JNK-1/2, and Akt. Microarray analysis revealed 79 genes that were significantly up-regulated (adj.-p≤0.05) by OSM in IEC. Most up-regulated genes belong to the functional categories “immunity and defense” (p = 2.1×10−7), “apoptosis” (p = 3.7×10−4) and “JAK/STAT cascade” (p = 3.4×10−6). Members of the SERPIN gene family were among the most strongly up-regulated genes. OSM significantly increased STAT3- and MEK1-dependent IEC cell proliferation (p<0.05) and wound healing (p = 3.9×10−5). OSM protein expression was increased in colonic biopsies of patients with active inflammatory bowel disease (IBD). Conclusions OSM promotes STAT3-dependent intestinal epithelial cell proliferation and wound healing in vitro. Considering the increased OSM expression in colonic biopsy specimens of patients with active IBD, OSM upregulation may modulate a barrier-protective host response in intestinal inflammation. Further in vivo studies are warranted to elucidate the exact role of OSM in intestinal inflammation and the potential of OSM as a drug target in IBD. PMID:24710357
Inhibition of EV71 by curcumin in intestinal epithelial cells.
Huang, Hsing-I; Chio, Chi-Chong; Lin, Jhao-Yin
2018-01-01
EV71 is a positive-sense single-stranded RNA virus that belongs to the Picornaviridae family. EV71 infection may cause various symptoms ranging from hand-foot-and-mouth disease to neurological pathological conditions such as aseptic meningitis, ataxia, and acute transverse myelitis. There is currently no effective treatment or vaccine available. Various compounds have been examined for their ability to restrict EV71 replication. However, most experiments have been performed in rhabdomyosarcoma or Vero cells. Since the gastrointestinal tract is the entry site for this pathogen, we anticipated that orally ingested agents may exert beneficial effects by decreasing virus replication in intestinal epithelial cells. In this study, curcumin (diferuloylmethane, C21H20O6), an active ingredient of turmeric (Curcuma longa Linn) with anti-cancer properties, was investigated for its anti-enterovirus activity. We demonstrate that curcumin treatment inhibits viral translation and increases host cell viability. Curcumin does not exert its anti-EV71 effects by modulating virus attachment or virus internal ribosome entry site (IRES) activity. Furthermore, curcumin-mediated regulation of mitogen-activated protein kinase (MAPK) signaling pathways is not involved. We found that protein kinase C delta (PKCδ) plays a role in virus translation in EV71-infected intestinal epithelial cells and that curcumin treatment decreases the phosphorylation of this enzyme. In addition, we show evidence that curcumin also limits viral translation in differentiated human intestinal epithelial cells. In summary, our data demonstrate the anti-EV71 properties of curcumin, suggesting that ingestion of this phytochemical may protect against enteroviral infections.
Inhibition of EV71 by curcumin in intestinal epithelial cells
Chio, Chi-Chong; Lin, Jhao-Yin
2018-01-01
EV71 is a positive-sense single-stranded RNA virus that belongs to the Picornaviridae family. EV71 infection may cause various symptoms ranging from hand-foot-and-mouth disease to neurological pathological conditions such as aseptic meningitis, ataxia, and acute transverse myelitis. There is currently no effective treatment or vaccine available. Various compounds have been examined for their ability to restrict EV71 replication. However, most experiments have been performed in rhabdomyosarcoma or Vero cells. Since the gastrointestinal tract is the entry site for this pathogen, we anticipated that orally ingested agents may exert beneficial effects by decreasing virus replication in intestinal epithelial cells. In this study, curcumin (diferuloylmethane, C21H20O6), an active ingredient of turmeric (Curcuma longa Linn) with anti-cancer properties, was investigated for its anti-enterovirus activity. We demonstrate that curcumin treatment inhibits viral translation and increases host cell viability. Curcumin does not exert its anti-EV71 effects by modulating virus attachment or virus internal ribosome entry site (IRES) activity. Furthermore, curcumin-mediated regulation of mitogen-activated protein kinase (MAPK) signaling pathways is not involved. We found that protein kinase C delta (PKCδ) plays a role in virus translation in EV71-infected intestinal epithelial cells and that curcumin treatment decreases the phosphorylation of this enzyme. In addition, we show evidence that curcumin also limits viral translation in differentiated human intestinal epithelial cells. In summary, our data demonstrate the anti-EV71 properties of curcumin, suggesting that ingestion of this phytochemical may protect against enteroviral infections. PMID:29370243
Zhan, Kang; Jiang, Maocheng; Sui, Yannan; Yan, Kang; Lin, Miao; Zhao, Guoqi
2017-06-01
Primary mouse intestinal epithelial cells (MIEs) are not ideal models for long-term culture in vitro and a limited amount of approximate three generations. In addition, the mechanism that arginine-arginine dipeptide (Arg-Arg) regulates mouse intestinal inflammatory response remains unknown. Therefore, the aim of this study was to establish immortal MIEs and study the effects of Arg-Arg on inflammatory response after challenging the MIEs with lipopolysaccharide (LPS) or staphylococcal enterotoxin C (rSEC). Our data showed that immortalized MIEs could be cultured over 100 generations. The immortalized MIEs showed positive reaction against cytokeratine 18 antigen, E-cadherin, and peptide transporters (Pept1) using indirect immunofluorescence. Cytokeratine 18 and Pept1 can be expressed in immortalized MIEs by immunoblotting. Fatty acid-binding proteins (FABPs) and villin known as intestinal epithelial cell functional protein were constitutively expressed in immortalized MIEs. For inflammatory response, these results showed that Arg-Arg can decrease the LPS-induced expression of IL-1β and the rSEC-induced expression of TNF-α; however, it can upregulate the LPS-induced expression of IL-6 and TNF-α and the rSEC-induced expression level of IL-1β. In addition, in the MAPK signaling pathway, pSAPK/JNK and p-Erk1/2 in LPS with Arg-Arg treatment were upregulated than that in LPS treatment. p-p38 in LPS with Arg-Arg treatment was attenuated than that in LPS treatment. pSAPK/JNK and p-p38 in rSEC with Arg-Arg treatment were enhanced than that in rSEC treatment. Conversely, p-Erk1/2 in rSEC with Arg-Arg treatment was attenuated than that in rSEC treatment. These novel findings suggest that Arg-Arg dipeptide plays an important role for regulation of the immunologic balance in mouse intestinal inflammatory response.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Eun Sang; Lee, Hae-June; Lee, Yoon-Jin
Highlights: • UPR activation precedes caspase activation in irradiated IEC-6 cells. • Chemical ER stress inducers radiosensitize IEC-6 cells. • siRNAs that targeted ER stress responses ameliorate IR-induced cell death. • Chemical chaperons prevent cell death in irradiated IEC-6 cells. - Abstract: Radiotherapy, which is one of the most effective approaches to the treatment of various cancers, plays an important role in malignant cell eradication in the pelvic area and abdomen. However, it also generates some degree of intestinal injury. Apoptosis in the intestinal epithelium is the primary pathological factor that initiates radiation-induced intestinal injury, but the mechanism by whichmore » ionizing radiation (IR) induces apoptosis in the intestinal epithelium is not clearly understood. Recently, IR has been shown to induce endoplasmic reticulum (ER) stress, thereby activating the unfolded protein response (UPR) signaling pathway in intestinal epithelial cells. However, the consequences of the IR-induced activation of the UPR signaling pathway on radiosensitivity in intestinal epithelial cells remain to be determined. In this study, we investigated the role of ER stress responses in IR-induced intestinal epithelial cell death. We show that chemical ER stress inducers, such as tunicamycin or thapsigargin, enhanced IR-induced caspase 3 activation and DNA fragmentation in intestinal epithelial cells. Knockdown of Xbp1 or Atf6 with small interfering RNA inhibited IR-induced caspase 3 activation. Treatment with chemical chaperones prevented ER stress and subsequent apoptosis in IR-exposed intestinal epithelial cells. Our results suggest a pro-apoptotic role of ER stress in IR-exposed intestinal epithelial cells. Furthermore, inhibiting ER stress may be an effective strategy to prevent IR-induced intestinal injury.« less
Ishizuka, Satoshi; Iwama, Ami; Dinoto, Achmad; Suksomcheep, Akarat; Maeta, Kohshi; Kasai, Takanori; Hara, Hiroshi; Yokota, Atsushi
2009-05-01
We evaluated the effects of Bifidobacterium breve JCM1192(T )and/or raffinose on epithelial proliferation in the rat small and large intestines. WKAH/Hkm Slc rats (4 wk old) were fed a control diet, a diet supplemented with either encapsulated B. breve (30 g/kg diet, 1.5 x 10(7) colony-forming unit/g capsule) or raffinose (30 g/kg diet), or a diet supplemented with both encapsulated B. breve and raffinose, for 3 wk. Epithelial proliferation in the small intestine, as assessed by bromodeoxyuridine immunohistochemistry, was increased only in the B. breve plus raffinose-fed group. We determined the number of bifidobacteria in cecal contents using fluorescence in situ hybridization and confirmed the presence of ingested B. breve only in the B. breve plus raffinose-fed group. This suggests that the ingested B. breve cells used raffinose and were activated in the small intestine, where they subsequently influenced epithelial proliferation. In conclusion, we found a prominent synbiotic effect of encapsulated B. breve in combination with raffinose on epithelial proliferation in rat small intestine but not in large intestine. To our knowledge, this is the first report of a synbiotic that affects epithelial proliferation.
Protective effect of NSA on intestinal epithelial cells in a necroptosis model
Dong, Wei; Zhang, Min; Zhu, Yaxi; Chen, Yuanhan; Zhao, Xingchen; Li, Ruizhao; Zhang, Li; Ye, Zhiming; Liang, Xingling
2017-01-01
Objective This study aimed to investigate the protective effect of the necroptosis inhibitor necrosulfonamide (NSA) on intestinal epithelial cells using a novel in vitro necroptosis model that mimics inflammatory bowel disease (IBD). Methods 2,4,6-trinitrobenzenesulfonic acid (TNBS) was perfused into the rectum of BALB/c mice to established a colitis model. Pathologic injury and cell death were evaluated. A novel in vitro model of necroptosis was established in Caco-2 cells using TNF-α and Z-VAD-fmk, and the cells were treated with or without NSA. Morphologic changes, manner of cell death and the levels of phosphorylation of receptor-interacting protein kinase 3 (p-RIPK3) and mixed-lineage kinase domain-like (p-MLKL) were detected. Results In the TNBS-induced colitis in mice, TUNEL-positive and caspase-3-negative cells were observed in the intestinal mucosa, and p-RIPK3 was found to be elevated. Under the stimulation of TNF-α and Z-VAD-fmk, the morphologic damage in the Caco-2 cells was aggravated, the proportion of necrosis was increased, and the level of p-RIPK3 and p-MLKL were increased, confirming that the regulated cell death was necroptosis. NSA reversed the morphological abnormalities and reduced necrotic cell death induced by TNF-α and Z-VAD-fmk. Conclusion NSA can inhibit necroptosis in intestinal epithelial cells in vitro and might confer a potential protective effect against IBD. PMID:29156831
Protective effect of NSA on intestinal epithelial cells in a necroptosis model.
Dong, Wei; Zhang, Min; Zhu, Yaxi; Chen, Yuanhan; Zhao, Xingchen; Li, Ruizhao; Zhang, Li; Ye, Zhiming; Liang, Xingling
2017-10-17
This study aimed to investigate the protective effect of the necroptosis inhibitor necrosulfonamide (NSA) on intestinal epithelial cells using a novel in vitro necroptosis model that mimics inflammatory bowel disease (IBD). 2,4,6-trinitrobenzenesulfonic acid (TNBS) was perfused into the rectum of BALB/c mice to established a colitis model. Pathologic injury and cell death were evaluated. A novel in vitro model of necroptosis was established in Caco-2 cells using TNF- α and Z-VAD-fmk, and the cells were treated with or without NSA. Morphologic changes, manner of cell death and the levels of phosphorylation of receptor-interacting protein kinase 3 (p-RIPK3) and mixed-lineage kinase domain-like (p-MLKL) were detected. In the TNBS-induced colitis in mice, TUNEL-positive and caspase-3-negative cells were observed in the intestinal mucosa, and p-RIPK3 was found to be elevated. Under the stimulation of TNF- α and Z-VAD-fmk, the morphologic damage in the Caco-2 cells was aggravated, the proportion of necrosis was increased, and the level of p-RIPK3 and p-MLKL were increased, confirming that the regulated cell death was necroptosis. NSA reversed the morphological abnormalities and reduced necrotic cell death induced by TNF- α and Z-VAD-fmk. NSA can inhibit necroptosis in intestinal epithelial cells in vitro and might confer a potential protective effect against IBD.
Lü, Xuena; Man, Chaoxin; Han, Linlin; Shan, Yi; Qu, Xingguang; Liu, Ying; Yang, Shiqin; Xue, Yuqing; Zhang, Yinghua
2012-01-01
Intestinal epithelial cells can respond to certain bacteria by producing an array of cytokines and chemokines which are associated with host immune responses. Lactobacillus acidophilus NCFM is a characterized probiotic, originally isolated from human feces. This study aimed to test the ability of L. acidophilus NCFM to stimulate cytokine and chemokine production in intestinal epithelial cells and to elucidate the mechanisms involved in their upregulation. In experiments using intestinal epithelial cell lines and mouse models, we observed that L. acidophilus NCFM could rapidly but transiently upregulate a number of effector genes encoding cytokines and chemokines such as interleukin 1α (IL-1α), IL-1β, CCL2, and CCL20 and that cytokines showed lower expression levels with L. acidophilus NCFM treatment than chemokines. Moreover, L. acidophilus NCFM could activate a pathogen-associated molecular pattern receptor, Toll-like receptor 2 (TLR2), in intestinal epithelial cell lines. The phosphorylation of NF-κB p65 and p38 mitogen-activated protein kinase (MAPK) in intestinal epithelial cell lines was also enhanced by L. acidophilus NCFM. Furthermore, inhibitors of NF-κB (pyrrolidine dithiocarbamate [PDTC]) and p38 MAPK (SB203580) significantly reduced cytokine and chemokine production in the intestinal epithelial cell lines stimulated by L. acidophilus NCFM, suggesting that both NF-κB and p38 MAPK signaling pathways were important for the production of cytokines and chemokines induced by L. acidophilus NCFM. PMID:22357649
Proteolytic Regulation of the Intestinal Epithelial Barrier: Mechanisms and Interventions
2014-09-01
DSS protocol to evaluate molecular markers of acute inflammation in the subepithelial lamina propria, including quantity and nature of immune cell...will be investigated by immunostaining of colonic segments for Ki-67, a nuclear protein preferentially expressed during active phases of the cell
Corcionivoschi, Nicolae; Alvarez, Luis A.; Sharp, Thomas H.; Strengert, Monika; Alemka, Abofu; Mantell, Judith; Verkade, Paul; Knaus, Ulla G.; Bourke, Billy
2013-01-01
Summary Reactive oxygen species (ROS) play key roles in mucosal defense, yet how they are induced and the consequences for pathogens are unclear. We report that ROS generated by epithelial NADPH oxidases (Nox1/Duox2) during Campylobacter jejuni infection impair bacterial capsule formation and virulence by altering bacterial signal transduction. Upon C. jejuni invasion, ROS released from the intestinal mucosa inhibit the bacterial phosphotyrosine network that is regulated by the outer membrane tyrosine kinase Cjtk (Cj1170/OMP50). ROS-mediated Cjtk inactivation results in an overall decrease in the phosphorylation of C. jejuni outer membrane / periplasmic proteins including UDP-GlcNAc/Glc 4-epimerase (Gne), an enzyme required for N-glycosylation and capsule formation. Cjtk positively regulates Gne by phosphorylating an active site tyrosine, while loss of Cjtk or ROS treatment inhibits Gne activity, causing altered polysaccharide synthesis. Thus, epithelial NADPH oxidases are an early antibacterial defense system in the intestinal mucosa that modifies virulence by disrupting bacterial signaling. PMID:22817987
Lindquist, Randall L; Bayat-Sarmadi, Jannike; Leben, Ruth; Niesner, Raluca; Hauser, Anja E
2018-05-04
The balance between various cellular subsets of the innate and adaptive immune system and microbiota in the gastrointestinal tract is carefully regulated to maintain tolerance to the normal flora and dietary antigens, while protecting against pathogens. The intestinal epithelial cells and the network of dendritic cells and macrophages in the lamina propria are crucial lines of defense that regulate this balance. The complex relationship between the myeloid compartment (dendritic cells and macrophages) and lymphocyte compartment (T cells and innate lymphoid cells), as well as the impact of the epithelial cell layer have been studied in depth in recent years, revealing that the regulatory and effector functions of both innate and adaptive immune compartments exhibit more plasticity than had been previously appreciated. However, little is known about the metabolic activity of these cellular compartments, which is the basic function underlying all other additional tasks the cells perform. Here we perform intravital NAD(P)H fluorescence lifetime imaging in the small intestine of fluorescent reporter mice to monitor the NAD(P)H-dependent metabolism of epithelial and myeloid cells. The majority of myeloid cells which comprise the surveilling network in the lamina propria have a low metabolic activity and remain resting even upon stimulation. Only a few myeloid cells, typically localized at the tip of the villi, are metabolically active and are able to activate NADPH oxidases upon stimulation, leading to an oxidative burst. In contrast, the epithelial cells are metabolically highly active and, although not considered professional phagocytes, are also able to activate NADPH oxidases, leading to massive production of reactive oxygen species. Whereas the oxidative burst in myeloid cells is mainly catalyzed by the NOX2 isotype, in epithelial cells other isotypes of the NADPH oxidases family are involved, especially NOX4. They are constitutively expressed by the epithelial cells, but activated only on demand to ensure rapid defense against pathogens. This minimizes the potential for inadvertent damage from resting NOX activation, while maintaining the capacity to respond quickly if needed.
Jijon, H B; Suarez-Lopez, L; Diaz, O E; Das, S; De Calisto, J; Yaffe, M B; Pittet, M J; Mora, J R; Belkaid, Y; Xavier, R J; Villablanca, E J
2018-05-01
Retinoic acid (RA), a dietary vitamin A metabolite, is crucial in maintaining intestinal homeostasis. RA acts on intestinal leukocytes to modulate their lineage commitment and function. Although the role of RA has been characterized in immune cells, whether intestinal epithelial cells (IECs) rely on RA signaling to exert their immune-regulatory function has not been examined. Here we demonstrate that lack of RA receptor α (RARα) signaling in IECs results in deregulated epithelial lineage specification, leading to increased numbers of goblet cells and Paneth cells. Mechanistically, lack of RARα resulted in increased KLF4 + goblet cell precursors in the distal bowel, whereas RA treatment inhibited klf4 expression and goblet cell differentiation in zebrafish. These changes in secretory cells are associated with increased Reg3g, reduced luminal bacterial detection, and an underdeveloped intestinal immune system, as evidenced by an almost complete absence of lymphoid follicles and gut resident mononuclear phagocytes. This underdeveloped intestinal immune system shows a decreased ability to clear infection with Citrobacter rodentium. Collectively, our findings indicate that epithelial cell-intrinsic RARα signaling is critical to the global development of the intestinal immune system.
Yu, Shui-Xing; Chen, Wei; Liu, Zhen-Zhen; Zhou, Feng-Hua; Yan, Shi-Qing; Hu, Gui-Qiu; Qin, Xiao-Xia; Zhang, Jie; Ma, Ke; Du, Chong-Tao; Gu, Jing-Min; Deng, Xu-Ming; Han, Wen-Yu; Yang, Yong-Jun
2018-01-01
The intestinal mucosal barrier is critical for host defense against pathogens infection. Here, we demonstrate that the mixed lineage kinase-like protein (MLKL), a necroptosis effector, promotes intestinal epithelial barrier function by enhancing inflammasome activation. MLKL−/− mice were more susceptible to Salmonella infection compared with wild-type counterparts, with higher mortality rates, increased body weight loss, exacerbated intestinal inflammation, more bacterial colonization, and severe epithelial barrier disruption. MLKL deficiency promoted early epithelial colonization of Salmonella prior to developing apparent intestinal pathology. Active MLKL was predominantly expressed in crypt epithelial cells, and experiments using bone marrow chimeras found that the protective effects of MLKL were dependent on its expression in non-hematopoietic cells. Intestinal mucosa of MLKL−/− mice had impaired caspase-1 and gasdermin D cleavages and decreased interleukin (IL)-18 release. Moreover, administration of exogenous recombinant IL-18 rescued the phenotype of increased bacterial colonization in MLKL−/− mice. Thus, our results uncover the role of MLKL in enhancing inflammasome activation in intestinal epithelial cells to inhibit early bacterial colonization. PMID:29456533
Kimura, Rino; Takahashi, Nobuyuki; Goto, Tsuyoshi; Murota, Kaeko; Kawada, Teruo
2013-01-01
Postprandial lipidemia is a risk factor for cardiovascular diseases. Thus, the suppression of postprandial lipidemia is valuable for disease management. Peroxisome proliferator-activated receptor- (PPAR ) is a key regulator in the lipid metabolism of peripheral tissues such as the liver and skeletal muscle, whose activation enhances fatty acid oxidation and decreases circulating lipid level. Recently, we have shown that bezafibrate, an agonistic compound for PPAR , suppresses post-prandial lipidemia by enhancing fatty acid oxidation in intestinal epithelial cells under physiological conditions. However, it was not elucidated whether the effect of PPAR on postprandial lipidemia is also observed under obese conditions, which change lipid metabolisms in various tissues and cells. Here, we observed that bezafibrate enhanced fatty acid oxidation in intestinal epithelial cells of obese diabetic KK-Ay mice. Bezafibrate treatment increased the mRNA expression levels of fatty acid oxidation-related genes, which are targets of PPAR , and enhanced CO2 production from [14C]-palmitic acid. The bezafibrate-treated mice showed the suppression of increasing serum triacylglyceride level after the oral administration of olive oil. Moreover, the effects of bezafibrate on mRNA expression and fatty acid oxidation were shown in only the proximal intestinal epithelial cells. These findings indicate that PPAR activation suppresses postprandial lipidemia under obese conditions through the enhancement of fatty acid oxidation, and that only the proximal intestine con-tributes to the effects in mice, suggesting that intestinal PPAR can be a target for prevention of obese-induced postprandial lipidemia. © 2013 Asian Oceanian Association for the Study of Obesity. Published by Elsevier Ltd. All rights reserved.
Okada, Morihiro; Miller, Thomas C.; Fu, Liezhen
2015-01-01
The T3-dependent anuran metamorphosis resembles postembryonic development in mammals, the period around birth when plasma T3 levels peak. In particular, the remodeling of the intestine during metamorphosis mimics neonatal intestinal maturation in mammals when the adult intestinal epithelial self-renewing system is established. We have been using intestinal metamorphosis to investigate how the organ-specific adult stem cells are formed during vertebrate development. Early studies in Xenopus laevis have shown that this process involves complete degeneration of the larval epithelium and de novo formation of adult stem cells. A tissue-specific microarray analysis of intestinal gene expression during Xenopus laevis metamorphosis has identified a number of candidate stem cell genes. Here we have carried out detailed analyses of one such gene, amidohydrolase domain containing 1 (AMDHD1) gene, which encodes an enzyme in the histidine catabolic pathway. We show that AMDHD1 is exclusively expressed in the proliferating adult epithelial stem cells during metamorphosis with little expression in other intestinal tissues. We further provide evidence that T3 activates AMDHD1 gene expression directly at the transcription level through T3 receptor binding to the AMDHD1 gene in the intestine. In addition, we have reported earlier that histidine ammonia-lyase gene, another gene in histidine catabolic pathway, is similarly regulated by T3 in the intestine. These results together suggest that histidine catabolism plays a critical role in the formation and/or proliferation of adult intestinal stem cells during metamorphosis. PMID:26086244
Okada, Morihiro; Miller, Thomas C; Fu, Liezhen; Shi, Yun-Bo
2015-09-01
The T3-dependent anuran metamorphosis resembles postembryonic development in mammals, the period around birth when plasma T3 levels peak. In particular, the remodeling of the intestine during metamorphosis mimics neonatal intestinal maturation in mammals when the adult intestinal epithelial self-renewing system is established. We have been using intestinal metamorphosis to investigate how the organ-specific adult stem cells are formed during vertebrate development. Early studies in Xenopus laevis have shown that this process involves complete degeneration of the larval epithelium and de novo formation of adult stem cells. A tissue-specific microarray analysis of intestinal gene expression during Xenopus laevis metamorphosis has identified a number of candidate stem cell genes. Here we have carried out detailed analyses of one such gene, amidohydrolase domain containing 1 (AMDHD1) gene, which encodes an enzyme in the histidine catabolic pathway. We show that AMDHD1 is exclusively expressed in the proliferating adult epithelial stem cells during metamorphosis with little expression in other intestinal tissues. We further provide evidence that T3 activates AMDHD1 gene expression directly at the transcription level through T3 receptor binding to the AMDHD1 gene in the intestine. In addition, we have reported earlier that histidine ammonia-lyase gene, another gene in histidine catabolic pathway, is similarly regulated by T3 in the intestine. These results together suggest that histidine catabolism plays a critical role in the formation and/or proliferation of adult intestinal stem cells during metamorphosis.
Huang, Yong; Chen, Yabing; Sun, Huan; Lan, Daoliang
2016-01-01
Intestinal epithelial cells, which serve as the first physical barrier to protect intestinal tract from external antigens, have an important role in the local innate immunity. Screening of reference genes that have stable expression levels after viral infection in porcine intestinal epithelial cells is critical for ensuring the reliability of the expression analysis on anti-infection genes in porcine intestinal epithelial cells. In this study, nine common reference genes in pigs, including ACTB, B2M, GAPDH, HMBS, SDHA, HPRT1, TBP, YWHAZ, and RPL32, were chosen as the candidate reference genes. Porcine sapelovirus (PSV) was used as a model virus to infect porcine intestinal epithelial cell line (IPEC-J2). The expression stability of the nine genes was assessed by the geNorm, NormFinder, and BestKeeper software. Moreover, RefFinder program was used to evaluate the analytical results of above three softwares, and a relative expression experiment of selected target gene was used to verify the analysis results. The comprehensive results indicated that the gene combination of TBP and RPL32 has the most stable expression, which could be considered as an appropriate reference gene for research on gene expression after PSV infection in IPEC-J2cells. The results provided essential data for expression analysis of anti-infection genes in porcine intestinal epithelial cells.
Aherne, CM; Saeedi, B; Collins, CB; Masterson, JC; McNamee, EN; Perrenoud, L; Rapp, CR; Curtis, VF; Bayless, A; Fletcher, A; Glover, LE; Evans, CM; Jedlicka, P; Furuta, GT; de Zoeten, EF; Colgan, SP; Eltzschig, HK
2015-01-01
Central to inflammatory bowel disease (IBD) pathogenesis is loss of mucosal barrier function. Emerging evidence implicates extracellular adenosine signaling in attenuating mucosal inflammation. We hypothesized that adenosine-mediated protection from intestinal barrier dysfunction involves tissue-specific signaling through the A2B adenosine receptor (Adora2b) at the intestinal mucosal surface. To address this hypothesis, we combined pharmacologic studies and studies in mice with global or tissue-specific deletion of the Adora2b receptor. Adora2b−/− mice experienced a significantly heightened severity of colitis, associated with a more acute onset of disease and loss of intestinal epithelial barrier function. Comparison of mice with Adora2b deletion on vascular endothelial cells (Adora2bfl/flVeCadCre+) or intestinal epithelia (Adora2bfl/flVillinCre+) revealed a selective role for epithelial Adora2b signaling in attenuating colonic inflammation. In vitro studies with Adora2b knockdown in intestinal epithelial cultures or pharmacologic studies highlighted Adora2b-driven phosphorylation of vasodilator-stimulated phosphoprotein (VASP) as a specific barrier repair response. Similarly, in vivo studies in genetic mouse models or treatment studies with an Adora2b agonist (BAY 60-6583) recapitulate these findings. Taken together, our results suggest that intestinal epithelial Adora2b signaling provides protection during intestinal inflammation via enhancing mucosal barrier responses. PMID:25850656
Ji, Chen-Guang; Xie, Xiao-Li; Yin, Jie; Qi, Wei; Chen, Lei; Bai, Yun; Wang, Na; Zhao, Dong-Qiang; Jiang, Xiao-Yu; Jiang, Hui-Qing
2017-04-01
Bile acids stimulate intestinal epithelial proliferation in vitro. We sought to investigate the role of the bile acid receptor TGR5 in the protection of intestinal epithelial proliferation in obstructive jaundice. Intestinal tissues and serum samples were obtained from patients with malignant obstructive jaundice and from bile duct ligation (BDL) rats. Intestinal permeability and morphological changes in the intestinal mucosa were observed. The functions of TGR5 in cell proliferation in intestinal epithelial injury were determined by overexpression or knockdown studies in Caco-2 and FHs 74 Int cells pretreated with lipopolysaccharide (LPS). Internal biliary drainage was superior to external biliary drainage in recovering intestinal permeability and mucosal histology in patients with obstructive jaundice. In BDL rats, feeding of chenodeoxycholic acid (CDCA) decreased intestinal mucosa injury. The levels of PCNA, a marker of proliferation, increased in response to CDCA feeding and were paralleled by elevated TGR5 expression. CDCA upregulated TGR5 expression and promoted proliferation in Caco-2 and FHs 74 Int cells pretreated with LPS. Overexpression of TGR5 resulted in increased PCNA, cell viability, EdU incorporation, and the proportion of cells in S phase, whereas knockdown of TGR5 had the opposite effect. Our data indicate that bile acids promote intestinal epithelial cell proliferation and decrease mucosal injury by upregulating TGR5 expression in obstructive jaundice. Copyright © 2016 Elsevier Inc. All rights reserved.
Composite regulation of ERK activity dynamics underlying tumour-specific traits in the intestine.
Muta, Yu; Fujita, Yoshihisa; Sumiyama, Kenta; Sakurai, Atsuro; Taketo, M Mark; Chiba, Tsutomu; Seno, Hiroshi; Aoki, Kazuhiro; Matsuda, Michiyuki; Imajo, Masamichi
2018-06-05
Acting downstream of many growth factors, extracellular signal-regulated kinase (ERK) plays a pivotal role in regulating cell proliferation and tumorigenesis, where its spatiotemporal dynamics, as well as its strength, determine cellular responses. Here, we uncover the ERK activity dynamics in intestinal epithelial cells (IECs) and their association with tumour characteristics. Intravital imaging identifies two distinct modes of ERK activity, sustained and pulse-like activity, in IECs. The sustained and pulse-like activities depend on ErbB2 and EGFR, respectively. Notably, activation of Wnt signalling, the earliest event in intestinal tumorigenesis, augments EGFR signalling and increases the frequency of ERK activity pulses through controlling the expression of EGFR and its regulators, rendering IECs sensitive to EGFR inhibition. Furthermore, the increased pulse frequency is correlated with increased cell proliferation. Thus, ERK activity dynamics are defined by composite inputs from EGFR and ErbB2 signalling in IECs and their alterations might underlie tumour-specific sensitivity to pharmacological EGFR inhibition.
Pedersen, Gitte
2015-01-01
Ulcerative colitis (UC) and Crohn's disease (CD), collectively referred to as inflammatory bowel disease (IBD), are chronic immune disorders affecting the gastrointestinal tract. The aetiology of IBD remains an enigma, but increasing evidence suggests that the development of IBD may be triggered by a disturbance in the balance between gut commensal bacteria and host response in the intestinal mucosa. It is now known that epithelial cells have the capacity to secrete and respond to a range of immunological mediators and this suggests that these cells play a prominent role in the pathogenesis of IBD. Current knowledge about the intestinal epithelium has mainly been obtained using models based on animal cells, transformed human intestinal cell lines and isolated cells from resected colonic bowel segments. Species difference, malignant origin and confounders related to surgery, obviously make these cell models however less applicable for patophysiological studies. Consequently, there was a clear need for models of representative intestinal epithelial cells that would allow functional and dynamic studies of the differentiated human colonic epithelium in vitro. The primary purpose of this thesis was to explore and validate the optimal conditions for establishing a model based on short-term cultures of human colonic epithelial cells obtained from endoscopical biopsies. The cell cultures were accordingly used to describe the interplay between proinflammatory cytokines and colonic epithelium, with focus on alterations in viability, butyrate metabolism and secretion of a chemokine and metalloproteinases (MMP). Finally, the model was used to characterize expression and activation of receptors like toll like receptor (TLR)9 and peroxisome activated proliferators (PPAR)- known to be important players in regulation of innate and adaptive immune responses in human colonic epithelium. The results showed that it is possible to establish short-term cultures of representative, viable human colonic epithelial cells from endoscopic mucosal biopsies of patients with IBD. Short-time isolation by EGTA/EDTA from colonic biopsies allowed establishment of small scale cultures of epithelial cells which were viable and metabolic active for up to 48 hours in vitro. The cell model preserved important cellular metabolic and immunological functions of the human colonic epithelium, including the ability to oxidate butyrate, detoxificate phenolic compounds and secrete the chemokine interleukin (IL)-8 in vitro. Tumour necrosis factor (TNF)-α and interferon (IFN)-γ are pro-inflammatory cytokines, which are present in increased amounts in inflamed colonic mucosa. The precise mechanisms of cytokine-mediated mucosal injury are unknown, but one might be that TNF-α and IFN-γ directly impair epithelial cell function similar to effects seen on distinct target cells in other autoimmune diseases. Using the model, both cytokines were found directly to impair the viability of colonic epithelial cells and to induce secretion of IL-8 in vitro. Interestingly, the cells from inflamed IBD mucosa were less sensitive to cytokine-induced damage, which suggests that an intrinsic defense mechanism is triggered in these cells, perhaps as a result of exposure to toxic luminal factors or high local cytokine levels in vivo. TNF-α and IFN-γ may also be involved in regulation of intestinal inflammation through stimulation of MMP expression and proteolytic activity. We found that colonic epithelial cells express a range of MMPs and moreover that expression of distinct MMPs is increased in cells from inflamed IBD mucosa. Using a functional peptide cleavage assay it was shown that epithelial cells secreted proteolytic active enzymes and that the functional MMP activity was increased in inflamed IBD mucosa. This suggests that colonic epithelial cells, like myofibroblasts and immune cells, may contribute to local intestinal mucosal damage, through secretion of active MMPs. Disturbance of recognition and discrimination of potentially harmful pathogens from commensals in the intestinal mucosa have increasingly been implicated in the pathogenesis of IBD. Our results revealed that colonic epithelial cells express TLR9, a key pattern recognition receptor. Interestingly, the differentiated epithelial cells, which have been exposed to the luminal bacterial flora in vivo, were unresponsive to TLR9 ligand stimulation, contrasting findings in the epithelial cell line HT-29 that is cultured continuously in bacteria free environment. These findings suggest, theoretically, that colonic epithelium may regulate immune responses to microbial antigens including commensal bacterial DNA through modulation of the TLR9 pathway. Currently, the results are in line with the emerging view, that the epithelium represents an important frontline cellular component of the innate immune system in the gut. PPARγ is a nuclear receptor involved in the regulation of lipid and carbonhydrate metabolism. Recent studies in rodent colitis models suggest that PPARγ also is involved in modulation of inflammatory processes in the colon. Using the model, we characterise expression and activity of PPARs in human colonic epithelium and, additionally, evaluated the functional significance of a possible imbalanced PPARγ regulation in relation to inflammation. Our experiments showed that colonic epithelial cells express PPARγ and furthermore that PPARγ signalling was impaired in inflamed UC epithelium. It was possible to restore PPARγ signalling in the cell cultures by stimulation with rosiglitazone (a synthetic PPARγ ligand) in vitro. Hence, these experiments prompted us to design a small controlled, clinical study exploring the possible stimulatory effects of rosiglitazone (a PPAR ligand) in vivo. Interestingly, it was found that topical application of rosiglitazone in patients with active distal UC reduced clinical activity and mucosal inflammation similar to the effects measured in patients treated with mesalazine enemas. Moreover, rectal application of rosiglitazone induced PPARγ signalling in the epithelium in vivo, supporting the view that activation of PPARγ may be a new potential therapeutic target in the treatment of UC. Overall, the in vitro model of representative human colonic epithelial cells has shown to be a useful technique for detailed studies of metabolic and immunological functions that are important for homeostasis of the colonic epithelium. Currently, the findings support the view that intestinal epithelial cells actively participate in immunological processes in the colonic mucosa. Additionally, the model seems to be applicable for generating and evaluating new therapeutic approaches from laboratory bench to bed line as illustrated by the PPARγ study. It is therefore probable, that studies in models of representative colonic epithelial cells, as the one described here, could contribute with important knowledge about the pathogenesis of human inflammatory colonic diseases also in the future.
Host-Microbe Interactions in the Neonatal Intestine: Role of Human Milk Oligosaccharides123
Donovan, Sharon M.; Wang, Mei; Li, Min; Friedberg, Iddo; Schwartz, Scott L.; Chapkin, Robert S.
2012-01-01
The infant intestinal microbiota is shaped by genetics and environment, including the route of delivery and early dietary intake. Data from germ-free rodents and piglets support a critical role for the microbiota in regulating gastrointestinal and immune development. Human milk oligosaccharides (HMO) both directly and indirectly influence intestinal development by regulating cell proliferation, acting as prebiotics for beneficial bacteria and modulating immune development. We have shown that the gut microbiota, the microbial metatranscriptome, and metabolome differ between porcine milk–fed and formula-fed (FF) piglets. Our goal is to define how early nutrition, specifically HMO, shapes host-microbe interactions in breast-fed (BF) and FF human infants. We an established noninvasive method that uses stool samples containing intact sloughed epithelial cells to quantify intestinal gene expression profiles in human infants. We hypothesized that a systems biology approach, combining i) HMO composition of the mother’s milk with the infant’s gut gene expression and fecal bacterial composition, ii) gene expression, and iii short-chain fatty acid profiles would identify important mechanistic pathways affecting intestinal development of BF and FF infants in the first few months of life. HMO composition was analyzed by HLPC Chip/time-of-flight MS and 3 HMO clusters were identified using principle component analysis. Initial findings indicated that both host epithelial cell mRNA expression and the microbial phylogenetic profiles provided strong feature sets that distinctly classified the BF and FF infants. Ongoing analyses are designed to integrate the host transcriptome, bacterial phylogenetic profiles, and functional metagenomic data using multivariate statistical analyses. PMID:22585924
Dheer, Rishu; Santaolalla, Rebeca; Davies, Julie M.; Lang, Jessica K.; Phillips, Matthew C.; Pastorini, Cristhine; Vazquez-Pertejo, Maria T.
2016-01-01
Evidence obtained from gene knockout studies supports the role of Toll-like receptor 4 (TLR4) in intestinal inflammation and microbiota recognition. Increased epithelial TLR4 expression is observed in patients with inflammatory bowel disease. However, little is known of the effect of increased TLR4 signaling on intestinal homeostasis. Here, we examined the effect of increased TLR4 signaling on epithelial function and microbiota by using transgenic villin-TLR4 mice that overexpress TLR4 in the intestinal epithelium. Our results revealed that villin-TLR4 mice are characterized by increases in the density of mucosa-associated bacteria and bacterial translocation. Furthermore, increased epithelial TLR4 signaling was associated with an impaired epithelial barrier, altered expression of antimicrobial peptide genes, and altered epithelial cell differentiation. The composition of the colonic luminal and mucosa-associated microbiota differed between villin-TLR4 and wild-type (WT) littermates. Interestingly, WT mice cohoused with villin-TLR4 mice displayed greater susceptibility to acute colitis than singly housed WT mice did. The results of this study suggest that epithelial TLR4 expression shapes the microbiota and affects the functional properties of the epithelium. The changes in the microbiota induced by increased epithelial TLR4 signaling are transmissible and exacerbate dextran sodium sulfate-induced colitis. Together, our findings imply that host innate immune signaling can modulate intestinal bacteria and ultimately the host's susceptibility to colitis. PMID:26755160
DOE Office of Scientific and Technical Information (OSTI.GOV)
Laiko, Marina; Murtazina, Rakhilya; Malyukova, Irina
Shiga toxins (Stx) 1 and 2 are responsible for intestinal and systemic sequelae of infection by enterohemorrhagic Escherichia coli (EHEC). However, the mechanisms through which enterocytes are damaged remain unclear. While secondary damage from ischemia and inflammation are postulated mechanisms for all intestinal effects, little evidence excludes roles for more primary toxin effects on intestinal epithelial cells. We now document direct pathologic effects of Stx on intestinal epithelial cells. We study a well-characterized rabbit model of EHEC infection, intestinal tissue and stool samples from EHEC-infected patients, and T84 intestinal epithelial cells treated with Stx1. Toxin uptake by intestinal epithelial cellsmore » in vitro and in vivo causes galectin-3 depletion from enterocytes by increasing the apical galectin-3 secretion. This Shiga toxin-mediated galectin-3 depletion impairs trafficking of several brush border structural proteins and transporters, including villin, dipeptidyl peptidase IV, and the sodium-proton exchanger 2, a major colonic sodium absorptive protein. The mistargeting of proteins responsible for the absorptive function might be a key event in Stx1-induced diarrhea. These observations provide new evidence that human enterocytes are directly damaged by Stx1. Conceivably, depletion of galectin-3 from enterocytes and subsequent apical protein mistargeting might even provide a means whereby other pathogens might alter intestinal epithelial absorption and produce diarrhea.« less
Barrila, Jennifer; Yang, Jiseon; Crabbé, Aurélie; Sarker, Shameema F; Liu, Yulong; Ott, C Mark; Nelman-Gonzalez, Mayra A; Clemett, Simon J; Nydam, Seth D; Forsyth, Rebecca J; Davis, Richard R; Crucian, Brian E; Quiriarte, Heather; Roland, Kenneth L; Brenneman, Karen; Sams, Clarence; Loscher, Christine; Nickerson, Cheryl A
2017-01-01
Three-dimensional models of human intestinal epithelium mimic the differentiated form and function of parental tissues often not exhibited by two-dimensional monolayers and respond to Salmonella in key ways that reflect in vivo infections. To further enhance the physiological relevance of three-dimensional models to more closely approximate in vivo intestinal microenvironments encountered by Salmonella , we developed and validated a novel three-dimensional co-culture infection model of colonic epithelial cells and macrophages using the NASA Rotating Wall Vessel bioreactor. First, U937 cells were activated upon collagen-coated scaffolds. HT-29 epithelial cells were then added and the three-dimensional model was cultured in the bioreactor until optimal differentiation was reached, as assessed by immunohistochemical profiling and bead uptake assays. The new co-culture model exhibited in vivo-like structural and phenotypic characteristics, including three-dimensional architecture, apical-basolateral polarity, well-formed tight/adherens junctions, mucin, multiple epithelial cell types, and functional macrophages. Phagocytic activity of macrophages was confirmed by uptake of inert, bacteria-sized beads. Contribution of macrophages to infection was assessed by colonization studies of Salmonella pathovars with different host adaptations and disease phenotypes (Typhimurium ST19 strain SL1344 and ST313 strain D23580; Typhi Ty2). In addition, Salmonella were cultured aerobically or microaerobically, recapitulating environments encountered prior to and during intestinal infection, respectively. All Salmonella strains exhibited decreased colonization in co-culture (HT-29-U937) relative to epithelial (HT-29) models, indicating antimicrobial function of macrophages. Interestingly, D23580 exhibited enhanced replication/survival in both models following invasion. Pathovar-specific differences in colonization and intracellular co-localization patterns were observed. These findings emphasize the power of incorporating a series of related three-dimensional models within a study to identify microenvironmental factors important for regulating infection.
ADAM10 Regulates Notch Function in Intestinal Stem Cells of Mice
Tsai, Yu-Hwai; VanDussen, Kelli L.; Sawey, Eric T.; Wade, Alex W.; Kasper, Chelsea; Rakshit, Sabita; Bhatt, Riha G.; Stoeck, Alex; Maillard, Ivan; Crawford, Howard C.; Samuelson, Linda C.; Dempsey, Peter J.
2014-01-01
BACKGROUND & AIMS ADAM10 is a cell surface sheddase that regulates physiological processes including Notch signaling. ADAM10 is expressed in all intestinal epithelial cell types but the requirement for ADAM10 signaling in crypt homeostasis is not well defined. METHODS We analyzed intestinal tissues from mice with constitutive (Vil-Cre;Adam10f/f mice) and conditional (Vil-CreER;Adam10f/f and Lgr5-CreER;Adam10f/f mice) deletion of ADAM10. We performed cell lineage tracing experiments in mice that expressed a gain-of-function allele of Notch in the intestine (Rosa26NICD) or mice with intestine-specific disruption of Notch (Rosa26DN-MAML), to examine the effects of ADAM10 deletion on cell fate specification and intestinal stem cell maintenance. RESULTS Loss of ADAM10 from developing and adult intestine caused lethality associated with altered intestinal morphology, reduced progenitor cell proliferation, and increased secretory cell differentiation. ADAM10 deletion led to the replacement of intestinal cell progenitors with 2 distinct, post-mitotic, secretory cell lineages: intermediate-like (Paneth/goblet) and enteroendocrine cells. Based on analysis of Rosa26NICD and Rosa26DN-MAML mice, we determined that ADAM10 controls these cell fate decisions by regulating Notch signaling. Cell lineage tracing experiments showed that ADAM10 is required for survival of Lgr5+ crypt-based columnar cells. Our findings indicate that Notch-activated stem cells have a competitive advantage for occupation of the stem cell niche. CONCLUSIONS ADAM10 acts in a cell autonomous manner within the intestinal crypt compartment to regulate Notch signaling. This process is required for progenitor cell lineage specification and crypt-based columnar cell maintenance. PMID:25038433
Saxena, Kapil; Simon, Lukas M; Zeng, Xi-Lei; Blutt, Sarah E; Crawford, Sue E; Sastri, Narayan P; Karandikar, Umesh C; Ajami, Nadim J; Zachos, Nicholas C; Kovbasnjuk, Olga; Donowitz, Mark; Conner, Margaret E; Shaw, Chad A; Estes, Mary K
2017-01-24
The intestinal epithelium can limit enteric pathogens by producing antiviral cytokines, such as IFNs. Type I IFN (IFN-α/β) and type III IFN (IFN-λ) function at the epithelial level, and their respective efficacies depend on the specific pathogen and site of infection. However, the roles of type I and type III IFN in restricting human enteric viruses are poorly characterized as a result of the difficulties in cultivating these viruses in vitro and directly obtaining control and infected small intestinal human tissue. We infected nontransformed human intestinal enteroid cultures from multiple individuals with human rotavirus (HRV) and assessed the host epithelial response by using RNA-sequencing and functional assays. The dominant transcriptional pathway induced by HRV infection is a type III IFN-regulated response. Early after HRV infection, low levels of type III IFN protein activate IFN-stimulated genes. However, this endogenous response does not restrict HRV replication because replication-competent HRV antagonizes the type III IFN response at pre- and posttranscriptional levels. In contrast, exogenous IFN treatment restricts HRV replication, with type I IFN being more potent than type III IFN, suggesting that extraepithelial sources of type I IFN may be the critical IFN for limiting enteric virus replication in the human intestine.
Saxena, Kapil; Simon, Lukas M.; Zeng, Xi-Lei; Blutt, Sarah E.; Crawford, Sue E.; Sastri, Narayan P.; Karandikar, Umesh C.; Ajami, Nadim J.; Zachos, Nicholas C.; Kovbasnjuk, Olga; Donowitz, Mark; Conner, Margaret E.; Shaw, Chad A.; Estes, Mary K.
2017-01-01
The intestinal epithelium can limit enteric pathogens by producing antiviral cytokines, such as IFNs. Type I IFN (IFN-α/β) and type III IFN (IFN-λ) function at the epithelial level, and their respective efficacies depend on the specific pathogen and site of infection. However, the roles of type I and type III IFN in restricting human enteric viruses are poorly characterized as a result of the difficulties in cultivating these viruses in vitro and directly obtaining control and infected small intestinal human tissue. We infected nontransformed human intestinal enteroid cultures from multiple individuals with human rotavirus (HRV) and assessed the host epithelial response by using RNA-sequencing and functional assays. The dominant transcriptional pathway induced by HRV infection is a type III IFN-regulated response. Early after HRV infection, low levels of type III IFN protein activate IFN-stimulated genes. However, this endogenous response does not restrict HRV replication because replication-competent HRV antagonizes the type III IFN response at pre- and posttranscriptional levels. In contrast, exogenous IFN treatment restricts HRV replication, with type I IFN being more potent than type III IFN, suggesting that extraepithelial sources of type I IFN may be the critical IFN for limiting enteric virus replication in the human intestine. PMID:28069942
Real-time Measurement of Epithelial Barrier Permeability in Human Intestinal Organoids.
Hill, David R; Huang, Sha; Tsai, Yu-Hwai; Spence, Jason R; Young, Vincent B
2017-12-18
Advances in 3D culture of intestinal tissues obtained through biopsy or generated from pluripotent stem cells via directed differentiation, have resulted in sophisticated in vitro models of the intestinal mucosa. Leveraging these emerging model systems will require adaptation of tools and techniques developed for 2D culture systems and animals. Here, we describe a technique for measuring epithelial barrier permeability in human intestinal organoids in real-time. This is accomplished by microinjection of fluorescently-labeled dextran and imaging on an inverted microscope fitted with epifluorescent filters. Real-time measurement of the barrier permeability in intestinal organoids facilitates the generation of high-resolution temporal data in human intestinal epithelial tissue, although this technique can also be applied to fixed timepoint imaging approaches. This protocol is readily adaptable for the measurement of epithelial barrier permeability following exposure to pharmacologic agents, bacterial products or toxins, or live microorganisms. With minor modifications, this protocol can also serve as a general primer on microinjection of intestinal organoids and users may choose to supplement this protocol with additional or alternative downstream applications following microinjection.
[Dual role for prostaglandin D2 in intestinal epithelial homeostasis].
Le Loupp, Anne-Gaelle; Bach-Ngohou, Kalyane; Bettan, Armel; Denis, Marc; Masson, Damien
2015-01-01
Prostaglandin D2 (PGD2) and derivatives are lipid mediators involved in the control of the intestinal epithelial barrier homeostasis. Their involvement in the pathophysiology of chronic inflammatory bowel disease (IBD) is still debated. Several results highlight the duality of PGD2 as an anti- or pro-inflammatory mediator. This duality seems to be related to a differential expression of its receptors by intestinal epithelial cells and the surrounding immunocompetent cells. The enteric glial cells from the enteric nervous system (ENS) express the lipocalin-type-prostaglandin D synthase and secrete PGD2 and 15d-PGJ2. The protective role of the ENS in the homeostatic control of the epithelial intestinal barrier and its involvement in the pathogenesis of IBD have already been demonstrated. Thus, these lipid mediators seem to be new actors of the neuro-glio-epithelial unit and could play a crucial role maintaining gut barrier integrity. © 2015 médecine/sciences – Inserm.
Bröer, Angelika; Juelich, Torsten; Vanslambrouck, Jessica M; Tietze, Nadine; Solomon, Peter S; Holst, Jeff; Bailey, Charles G; Rasko, John E J; Bröer, Stefan
2011-07-29
Amino acid uptake in the intestine and kidney is mediated by a variety of amino acid transporters. To understand the role of epithelial neutral amino acid uptake in whole body homeostasis, we analyzed mice lacking the apical broad-spectrum neutral (0) amino acid transporter B(0)AT1 (Slc6a19). A general neutral aminoaciduria was observed similar to human Hartnup disorder which is caused by mutations in SLC6A19. Na(+)-dependent uptake of neutral amino acids into the intestine and renal brush-border membrane vesicles was abolished. No compensatory increase of peptide transport or other neutral amino acid transporters was detected. Mice lacking B(0)AT1 showed a reduced body weight. When adapted to a standard 20% protein diet, B(0)AT1-deficient mice lost body weight rapidly on diets containing 6 or 40% protein. Secretion of insulin in response to food ingestion after fasting was blunted. In the intestine, amino acid signaling to the mammalian target of rapamycin (mTOR) pathway was reduced, whereas the GCN2/ATF4 stress response pathway was activated, indicating amino acid deprivation in epithelial cells. The results demonstrate that epithelial amino acid uptake is essential for optimal growth and body weight regulation.
Intestinal epithelial barrier function and tight junction proteins with heat and exercise
Zuhl, Micah N.; Moseley, Pope L.
2015-01-01
A single layer of enterocytes and tight junctions (intercellular multiprotein complexes) form the intestinal epithelial barrier that controls transport of molecules through transcellular and paracellular pathways. A dysfunctional or “leaky” intestinal tight junction barrier allows augmented permeation of luminal antigens, endotoxins, and bacteria into the blood stream. Various substances and conditions have been shown to affect the maintenance of the intestinal epithelial tight junction barrier. The primary focus of the present review is to analyze the effects of exertional or nonexertional (passive hyperthermia) heat stress on tight junction barrier function in in vitro and in vivo (animals and humans) models. Our secondary focus is to review changes in tight junction proteins in response to exercise or hyperthermic conditions. Finally, we discuss some pharmacological or nutritional interventions that may affect the cellular mechanisms involved in maintaining homeostasis of the intestinal epithelial tight junction barrier during heat stress or exercise. PMID:26359485
Intestinal epithelial barrier function and tight junction proteins with heat and exercise.
Dokladny, Karol; Zuhl, Micah N; Moseley, Pope L
2016-03-15
A single layer of enterocytes and tight junctions (intercellular multiprotein complexes) form the intestinal epithelial barrier that controls transport of molecules through transcellular and paracellular pathways. A dysfunctional or "leaky" intestinal tight junction barrier allows augmented permeation of luminal antigens, endotoxins, and bacteria into the blood stream. Various substances and conditions have been shown to affect the maintenance of the intestinal epithelial tight junction barrier. The primary focus of the present review is to analyze the effects of exertional or nonexertional (passive hyperthermia) heat stress on tight junction barrier function in in vitro and in vivo (animals and humans) models. Our secondary focus is to review changes in tight junction proteins in response to exercise or hyperthermic conditions. Finally, we discuss some pharmacological or nutritional interventions that may affect the cellular mechanisms involved in maintaining homeostasis of the intestinal epithelial tight junction barrier during heat stress or exercise. Copyright © 2016 the American Physiological Society.
Kon, Shunsuke; Ishibashi, Kojiro; Katoh, Hiroto; Kitamoto, Sho; Shirai, Takanobu; Tanaka, Shinya; Kajita, Mihoko; Ishikawa, Susumu; Yamauchi, Hajime; Yako, Yuta; Kamasaki, Tomoko; Matsumoto, Tomohiro; Watanabe, Hirotaka; Egami, Riku; Sasaki, Ayana; Nishikawa, Atsuko; Kameda, Ikumi; Maruyama, Takeshi; Narumi, Rika; Morita, Tomoko; Sasaki, Yoshiteru; Enoki, Ryosuke; Honma, Sato; Imamura, Hiromi; Oshima, Masanobu; Soga, Tomoyoshi; Miyazaki, Jun-Ichi; Duchen, Michael R; Nam, Jin-Min; Onodera, Yasuhito; Yoshioka, Shingo; Kikuta, Junichi; Ishii, Masaru; Imajo, Masamichi; Nishida, Eisuke; Fujioka, Yoichiro; Ohba, Yusuke; Sato, Toshiro; Fujita, Yasuyuki
2017-05-01
Recent studies have revealed that newly emerging transformed cells are often apically extruded from epithelial tissues. During this process, normal epithelial cells can recognize and actively eliminate transformed cells, a process called epithelial defence against cancer (EDAC). Here, we show that mitochondrial membrane potential is diminished in RasV12-transformed cells when they are surrounded by normal cells. In addition, glucose uptake is elevated, leading to higher lactate production. The mitochondrial dysfunction is driven by upregulation of pyruvate dehydrogenase kinase 4 (PDK4), which positively regulates elimination of RasV12-transformed cells. Furthermore, EDAC from the surrounding normal cells, involving filamin, drives the Warburg-effect-like metabolic alteration. Moreover, using a cell-competition mouse model, we demonstrate that PDK-mediated metabolic changes promote the elimination of RasV12-transformed cells from intestinal epithelia. These data indicate that non-cell-autonomous metabolic modulation is a crucial regulator for cell competition, shedding light on the unexplored events at the initial stage of carcinogenesis.
Xia, Lu; Dai, Lei; Yu, Qinghua; Yang, Qian
2017-11-01
Transmissible gastroenteritis virus (TGEV) is a coronavirus characterized by diarrhea and high morbidity rates, and the mortality rate is 100% in piglets less than 2 weeks old. Pigs infected with TGEV often suffer secondary infection by other pathogens, which aggravates the severity of diarrhea, but the mechanisms remain unknown. Here, we hypothesized that persistent TGEV infection stimulates the epithelial-mesenchymal transition (EMT), and thus enterotoxigenic Escherichia coli (ETEC) can more easily adhere to generating cells. Intestinal epithelial cells are the primary targets of TGEV and ETEC infections. We found that TGEV can persistently infect porcine intestinal columnar epithelial cells (IPEC-J2) and cause EMT, consistent with multiple changes in key cell characteristics. Infected cells display fibroblast-like shapes; exhibit increases in levels of mesenchymal markers with a corresponding loss of epithelial markers; have enhanced expression levels of interleukin-1β (IL-1β), IL-6, IL-8, transforming growth factor β (TGF-β), and tumor necrosis factor alpha (TNF-α) mRNAs; and demonstrate increases in migratory and invasive behaviors. Additional experiments showed that the activation of the phosphatidylinositol 3-kinase (PI3K)/Akt and extracellular signal-regulated kinase (ERK) signaling pathways via TGF-β is critical for the TGEV-mediated EMT process. Cellular uptake is also modified in cells that have undergone EMT. TGEV-infected cells have higher levels of integrin α5 and fibronectin and exhibit enhanced ETEC K88 adhesion. Reversal of EMT reduces ETEC K88 adhesion and inhibits the expression of integrin α5 and fibronectin. Overall, these results suggest that TGEV infection induces EMT in IPEC-J2 cells, increasing the adhesion of ETEC K88 in the intestine and facilitating dual infection. IMPORTANCE Transmissible gastroenteritis virus (TGEV) causes pig diarrhea and is often followed by secondary infection by other pathogens. In this study, we showed that persistent TGEV infection induces an EMT in porcine intestinal columnar epithelial cells (IPEC-J2) and enhances the adhesion of the secondary pathogen ETEC K88. Additional experiments suggest that integrin α5 and fibronectin play an important role in TGEV-enhanced ETEC K88 adhesion. Reversal of EMT reduces the expression of integrin α5 and fibronectin and also reduces ETEC K88 adhesion. We conclude that TGEV infection triggers EMT and facilitates dual infection. Our results provide new insights into secondary infection and suggest that targeted anti-EMT therapy may have implications for the prevention and treatment of secondary infection. Copyright © 2017 American Society for Microbiology.
Aherne, Carol M.; Collins, Colm B.; Eltzschig, Holger K.
2013-01-01
The intestinal epithelium is a dynamic barrier playing an active role in intestinal homeostasis and inflammation. Intestinal barrier function is dysregulated during inflammatory bowel disease (IBD), with epithelial cells playing a significant part in generating an inflammatory milieu through the release of signals that attract leukocytes to the intestinal lamina propria. However, it is increasingly appreciated that the intestinal epithelium mediates a counterbalancing response to drive resolution. Drawing analogies with neuronal development, where the balance of chemoattractive and chemorepellent signals is key to directed neuronal movement it has been postulated that such secreted cues play a role in leukocyte migration. Netrin-1 is one of the best-described neuronal guidance molecules, which has been shown to play a significant role in directed migration of leukocytes. Prior to our study the potential role of netrin-1 in IBD was poorly characterized. We defined netrin-1 as an intestinal epithelial-derived protein capable of limiting neutrophil recruitment to attenuate acute colitis. Our study highlights that the intestinal epithelium releases factors during acute inflammation that are responsible for fine-tuning the immune response. Exploration of these epithelial-mediated protective mechanisms will shed light on the complexity of the intestinal epithelial barrier in health and disease. PMID:24665394
Tutton, P J; Barkla, D H
1987-01-01
The role of extracellular amines such as noradrenaline and serotonin and their interaction with cyclic nucleotides and intracellular polyamines in the regulation of intestinal epithelial cell proliferation is reviewed with particular reference to the differences between normal and neoplastic cells. In respect to the normal epithelium of the small intestine there is a strong case to support the notion that cell proliferation is controlled by, amongst other things, sympathetic nerves. In colonic carcinomas, antagonists for certain serotonin receptors, for histamine H2 receptors and for dopamine D2 receptors inhibit both cell division and tumour growth. Because of the reproducible variations between tumour lines in the response to these antagonists, this inhibition appears to be due to a direct effect on the tumour cells rather than an indirect effect via the tumour host or stroma. This conclusion is supported by the cytocidal effects of toxic congeners of serotonin on the tumour cells. The most salient difference between the amine responses of normal and neoplastic cells relates to the issue of amine uptake. Proliferation of crypt cells is promoted by amine uptake inhibitors, presumably because they block amine re-uptake by the amine secreting cells--sympathetic neurones and enteroendocrine cells. However, tumour cell proliferation is strongly inhibited by amine uptake inhibitors, suggesting that neoplastic cells can, and need to take up the amine before being stimulated by it. Recent revelations in the field of oncogenes also support an important association between amines, cyclic nucleotides and cell division. The ras oncogenes code for a protein that is a member of a family of molecules which relay information from extracellular regulators, such as biogenic amines, to the intracellular regulators, including cyclic nucleotides. Evidence is presented suggesting that enteroendocrine cells, enterocytes, carcinoid tumour cells and adenocarcinoma cells all have the same embryonic origin and that cells exhibiting an admixture of endocrine and proliferative properties exist in colonic tumours, but not in the normal intestinal epithelium. Thus, it appears that in the normal intestine a clear structural and functional distinction exists between the regulating cells (i.e. the sympathetic neurones and enteroendocrine cells) and the regulated cells (i.e. the undifferentiated crypt cells): cells that have acquired a regulating role are no longer able to divide and cells which are able to divide do not take up or store amines.(ABSTRACT TRUNCATED AT 400 WORDS)
Gao, Jing; Gao, Jin; Qian, Lan; Wang, Xia; Wu, Mingyuan; Zhang, Yang; Ye, Hao; Zhu, Shunying; Yu, Yan; Han, Wei
2014-08-01
Chemotherapy-induced mucositis (CIM) is a major does limiting side-effect of chemoagents such as 5-fluorouracil (5-FU). Molecules involved in this disease process are still not fully understood. We proposed that the homeostatically regulated genes during CIM may participate in the disease. A cluster of such genes were previously identified by expression gene-array from the mouse jejunum in 5-FU-induced mucositis model. Here, we report that CXCL4 is such a homeostatically regulated gene and serves as a new target for the antibody treatment of CIM. CXCL4 and its receptor CXCR3 were confirmed at both the gene and protein levels to be homeostatically regulated during 5-FU-induced mucositis. Using of CXCL4 neutralizing monoclonal antibody (CXCL4mab) decreased the incidence, severity, and duration of the chemotherapy-induced diarrhea, the major symptom of CIM, in a 5-FU mouse CIM model. Mechanistically, CXCL4mab reduced the apoptosis of the crypt epithelia by suppression of the 5-FU-induced expression of p53 and Bax through its receptor CXCR3. The downstream signaling pathway of CXCL4 in activation of the epithelial apoptosis was identified in an intestinal epithelial cell line (IEC-6). CXCL4 activated the phosphorylation of p38 MAPK, which mediated the stimulated expression of p53 and Bax, and resulted in the ultimate activation of Caspase-8, -9, and -3. Taken together, activation of CXCL4 expression by 5-FU in mice participates in 5-FU-induced intestinal mucositis through upregulation of p53 via activation of p38-MAPK, and CXCL4mab is potentially beneficial in preventing CIM in the intestinal tract.
Gao, Jing; Gao, Jin; Qian, Lan; Wang, Xia; Wu, Mingyuan; Zhang, Yang; Ye, Hao; Zhu, Shunying; Yu, Yan; Han, Wei
2014-01-01
Chemotherapy-induced mucositis (CIM) is a major does limiting side-effect of chemoagents such as 5-fluorouracil (5-FU). Molecules involved in this disease process are still not fully understood. We proposed that the homeostatically regulated genes during CIM may participate in the disease. A cluster of such genes were previously identified by expression gene-array from the mouse jejunum in 5-FU-induced mucositis model. Here, we report that CXCL4 is such a homeostatically regulated gene and serves as a new target for the antibody treatment of CIM. CXCL4 and its receptor CXCR3 were confirmed at both the gene and protein levels to be homeostatically regulated during 5-FU-induced mucositis. Using of CXCL4 neutralizing monoclonal antibody (CXCL4mab) decreased the incidence, severity, and duration of the chemotherapy-induced diarrhea, the major symptom of CIM, in a 5-FU mouse CIM model. Mechanistically, CXCL4mab reduced the apoptosis of the crypt epithelia by suppression of the 5-FU-induced expression of p53 and Bax through its receptor CXCR3. The downstream signaling pathway of CXCL4 in activation of the epithelial apoptosis was identified in an intestinal epithelial cell line (IEC-6). CXCL4 activated the phosphorylation of p38 MAPK, which mediated the stimulated expression of p53 and Bax, and resulted in the ultimate activation of Caspase-8, -9, and -3. Taken together, activation of CXCL4 expression by 5-FU in mice participates in 5-FU-induced intestinal mucositis through upregulation of p53 via activation of p38-MAPK, and CXCL4mab is potentially beneficial in preventing CIM in the intestinal tract. PMID:24800927
Cdx genes, inflammation, and the pathogenesis of intestinal metaplasia
Stairs, Doug B.; Kong, Jianping; Lynch, John P.
2018-01-01
Intestinal metaplasia is a biologically interesting and clinically relevant condition in which one differentiated type of epithelium is replaced by another that is morphologically similar to normal intestinal epithelium. Two classic examples of this are gastric intestinal metaplasia and Barrett’s esophagus. In both, a chronic inflammatory microenvironment, provoked either by Helicobacter pylori infection of the stomach or acid and bile reflux into the esophagus, precedes the metaplasia. The Caudal-related homeodomain transcription factors Cdx1 and Cdx2 are critical regulators of the normal intetinal epithelial cell phenotype. Ectopic expression of Cdx1 and Cdx2 occurs in both gastric intestinal metaplasia as well as in Barrett’s esophagus. This expression precedes the onset of the metaplasia and implies a causal role for these factors in this process. We will review the observations regarding the role of chronic inflammation and the Cdx transcription factors in the pathogenesis of gastric intestinal metaplasia and Barrett’s esophagus. PMID:21075347
Greicius, Gediminas; Kabiri, Zahra; Sigmundsson, Kristmundur; Liang, Chao; Bunte, Ralph; Singh, Manvendra K; Virshup, David M
2018-04-03
Wnts and R-spondins (RSPOs) support intestinal homeostasis by regulating crypt cell proliferation and differentiation. Ex vivo, Wnts secreted by Paneth cells in organoids can regulate the proliferation and differentiation of Lgr5 -expressing intestinal stem cells. However, in vivo, Paneth cell and indeed all epithelial Wnt production is completely dispensable, and the cellular source of Wnts and RSPOs that maintain the intestinal stem-cell niche is not known. Here we investigated both the source and the functional role of stromal Wnts and RSPO3 in regulation of intestinal homeostasis. RSPO3 is highly expressed in pericryptal myofibroblasts in the lamina propria and is several orders of magnitude more potent than RSPO1 in stimulating both Wnt/β-catenin signaling and organoid growth. Stromal Rspo3 ablation ex vivo resulted in markedly decreased organoid growth that was rescued by exogenous RSPO3 protein. Pdgf receptor alpha ( PdgfRα ) is known to be expressed in pericryptal myofibroblasts. We therefore evaluated if PdgfRα identified the key stromal niche cells. In vivo, Porcn excision in PdgfRα + cells blocked intestinal crypt formation, demonstrating that Wnt production in the stroma is both necessary and sufficient to support the intestinal stem-cell niche. Mice with Rspo3 excision in the PdgfRα + cells had decreased intestinal crypt Wnt/β-catenin signaling and Paneth cell differentiation and were hypersensitive when stressed with dextran sodium sulfate. The data support a model of the intestinal stem-cell niche regulated by both Wnts and RSPO3 supplied predominantly by stromal pericryptal myofibroblasts marked by PdgfRα . Copyright © 2018 the Author(s). Published by PNAS.
Greicius, Gediminas; Kabiri, Zahra; Sigmundsson, Kristmundur; Liang, Chao; Bunte, Ralph; Singh, Manvendra K.
2018-01-01
Wnts and R-spondins (RSPOs) support intestinal homeostasis by regulating crypt cell proliferation and differentiation. Ex vivo, Wnts secreted by Paneth cells in organoids can regulate the proliferation and differentiation of Lgr5-expressing intestinal stem cells. However, in vivo, Paneth cell and indeed all epithelial Wnt production is completely dispensable, and the cellular source of Wnts and RSPOs that maintain the intestinal stem-cell niche is not known. Here we investigated both the source and the functional role of stromal Wnts and RSPO3 in regulation of intestinal homeostasis. RSPO3 is highly expressed in pericryptal myofibroblasts in the lamina propria and is several orders of magnitude more potent than RSPO1 in stimulating both Wnt/β-catenin signaling and organoid growth. Stromal Rspo3 ablation ex vivo resulted in markedly decreased organoid growth that was rescued by exogenous RSPO3 protein. Pdgf receptor alpha (PdgfRα) is known to be expressed in pericryptal myofibroblasts. We therefore evaluated if PdgfRα identified the key stromal niche cells. In vivo, Porcn excision in PdgfRα+ cells blocked intestinal crypt formation, demonstrating that Wnt production in the stroma is both necessary and sufficient to support the intestinal stem-cell niche. Mice with Rspo3 excision in the PdgfRα+ cells had decreased intestinal crypt Wnt/β-catenin signaling and Paneth cell differentiation and were hypersensitive when stressed with dextran sodium sulfate. The data support a model of the intestinal stem-cell niche regulated by both Wnts and RSPO3 supplied predominantly by stromal pericryptal myofibroblasts marked by PdgfRα. PMID:29559533
van Lidth de Jeude, J F; Meijer, B J; Wielenga, M C B; Spaan, C N; Baan, B; Rosekrans, S L; Meisner, S; Shen, Y H; Lee, A S; Paton, J C; Paton, A W; Muncan, V; van den Brink, G R; Heijmans, J
2017-06-15
Intestinal epithelial stem cells are highly sensitive to differentiation induced by endoplasmic reticulum (ER) stress. Colorectal cancer develops from mutated intestinal epithelial stem cells. The most frequent initiating mutation occurs in Apc, which results in hyperactivated Wnt signalling. This causes hyperproliferation and reduced sensitivity to chemotherapy, but whether these mutated stem cells are sensitive to ER stress induced differentiation remains unknown. Here we examined this by generating mice in which both Apc and ER stress repressor chaperone Grp78 can be conditionally deleted from the intestinal epithelium. For molecular studies, we used intestinal organoids derived from these mice. Homozygous loss of Apc alone resulted in crypt elongation, activation of the Wnt signature and accumulation of intestinal epithelial stem cells, as expected. This phenotype was however completely rescued on activation of ER stress by additional deletion of Grp78. In these Apc-Grp78 double mutant animals, stem cells were rapidly lost and repopulation occurred by non-mutant cells that had escaped recombination, suggesting that Apc-Grp78 double mutant stem cells had lost self-renewal capacity. Although in Apc-Grp78 double mutant mice the Wnt signature was lost, these intestines exhibited ubiquitous epithelial presence of nuclear β-catenin. This suggests that ER stress interferes with Wnt signalling downstream of nuclear β-catenin. In conclusion, our findings indicate that ER stress signalling results in loss of Apc mutated intestinal epithelial stem cells by interference with the Wnt signature. In contrast to many known inhibitors of Wnt signalling, ER stress acts downstream of β-catenin. Therefore, ER stress poses a promising target in colorectal cancers, which develop as a result of Wnt activating mutations.
Shi, Junxiu; Wang, Yifan; He, Jian; Li, Pingping; Jin, Rong; Wang, Ke; Xu, Xi; Hao, Jie; Zhang, Yan; Liu, Hongju; Chen, Xiaoping; Wu, Hounan; Ge, Qing
2017-08-01
Exposure to microgravity leads to alterations in multiple systems, but microgravity-related changes in the gastrointestinal tract and its clinical significance have not been well studied. We used the hindlimb unloading (HU) mouse model to simulate a microgravity condition and investigated the changes in intestinal microbiota and colonic epithelial cells. Compared with ground-based controls (Ctrls), HU affected fecal microbiota composition with a profile that was characterized by the expansion of Firmicutes and decrease of Bacteroidetes. The colon epithelium of HU mice showed decreased goblet cell numbers, reduced epithelial cell turnover, and decreased expression of genes that are involved in defense and inflammatory responses. As a result, increased susceptibility to dextran sulfate sodium-induced epithelial injury was observed in HU mice. Cohousing of Ctrl mice with HU mice resulted in HU-like epithelial changes in Ctrl mice. Transplantation of feces from Ctrl to HU mice alleviated these epithelial changes in HU mice. Results indicate that HU changes intestinal microbiota, which leads to altered colonic epithelial cell homeostasis, impaired barrier function, and increased susceptibility to colitis. We further demonstrate that alteration in gastrointestinal motility may contribute to HU-associated dysbiosis. These animal results emphasize the necessity of evaluating astronauts' intestinal homeostasis during distant space travel.-Shi, J., Wang, Y., He, J., Li, P., Jin, R., Wang, K., Xu, X., Hao, J., Zhang, Y., Liu, H., Chen, X., Wu, H., Ge, Q. Intestinal microbiota contributes to colonic epithelial changes in simulated microgravity mouse model. © FASEB.
Huang, G T; Eckmann, L; Savidge, T C; Kagnoff, M F
1996-01-01
The acute host response to gastrointestinal infection with invasive bacteria is characterized by an accumulation of neutrophils in the lamina propria, and neutrophil transmigration to the luminal side of the crypts. Intestinal epithelial cells play an important role in the recruitment of inflammatory cells to the site of infection through the secretion of chemokines. However, little is known regarding the expression, by epithelial cells, of molecules that are involved in interactions between the epithelium and neutrophils following bacterial invasion. We report herein that expression of ICAM-1 on human colon epithelial cell lines, and on human enterocytes in an in vivo model system, is upregulated following infection with invasive bacteria. Increased ICAM-1 expression in the early period (4-9 h) after infection appeared to result mainly from a direct interaction between invaded bacteria and host epithelial cells since it co-localized to cells invaded by bacteria, and the release of soluble factors by epithelial cells played only a minor role in mediating increased ICAM-1 expression. Furthermore, ICAM-1 was expressed on the apical side of polarized intestinal epithelial cells, and increased expression was accompanied by increased neutrophil adhesion to these cells. ICAM-1 expression by intestinal epithelial cells following infection with invasive bacteria may function to maintain neutrophils that have transmigrated through the epithelium in close contact with the intestinal epithelium, thereby reducing further invasion of the mucosa by invading pathogens. PMID:8755670
Cabada, Miguel M.; Nichols, Joan; Gomez, Guillermo; White, A. Clinton
2013-01-01
The study of human intestinal pathogens has been limited by the lack of methods for the long-term culture of primary human intestinal epithelial cells (PECs). The development of infection models with PECs would allow a better understanding of host-parasite interactions. The objective of this study was to develop a novel method for prolonged in vitro cultivation of PECs that can be used to study Cryptosporidium infection. We isolated intact crypts from human intestines removed during weight loss surgery. The fragments of intestinal layers were cultivated with culture medium supplemented with growth factors and antiapoptotic molecules. After 7 days, the PECs formed self-regenerating cell clusters, forming villi that resemble intestinal epithelium. The PECs proliferated and remained viable for at least 60 days. The cells expressed markers for intestinal stem cells, epithelial cells, and mature enterocytes. The PECs were infected with Cryptosporidium. In contrast to older models in which parasite numbers decay, the burden of parasites increased for >120 h. In summary, we describe here a novel method for the cultivation of self-regenerating human epithelial cells from small intestinal crypts, which contain both intestinal stem cells and mature villus cells. We present data that suggest these cells support Cryptosporidium better than existing cell lines. PECs should provide an improved tool for studying host-parasite interactions involving Cryptosporidium and other intestinal pathogens. PMID:23509153
Guo, Zhongyuan; Martucci, Nicole J.; Moreno-Olivas, Fabiola; Tako, Elad; Mahler, Gretchen J.
2017-01-01
Ingestion of titanium dioxide (TiO2) nanoparticles from products such as agricultural chemicals, processed food, and nutritional supplements is nearly unavoidable. The gastrointestinal tract serves as a critical interface between the body and the external environment, and is the site of essential nutrient absorption. The goal of this study was to examine the effects of ingesting the 30 nm TiO2 nanoparticles with an in vitro cell culture model of the small intestinal epithelium, and to determine how acute or chronic exposure to nano-TiO2 influences intestinal barrier function, reactive oxygen species generation, proinflammatory signaling, nutrient absorption (iron, zinc, fatty acids), and brush border membrane enzyme function (intestinal alkaline phosphatase). A Caco-2/HT29-MTX cell culture model was exposed to physiologically relevant doses of TiO2 nanoparticles for acute (four hours) or chronic (five days) time periods. Exposure to TiO2 nanoparticles significantly decreased intestinal barrier function following chronic exposure. Reactive oxygen species (ROS) generation, proinflammatory signaling, and intestinal alkaline phosphatase activity all showed increases in response to nano-TiO2. Iron, zinc, and fatty acid transport were significantly decreased following exposure to TiO2 nanoparticles. This is because nanoparticle exposure induced a decrease in absorptive microvilli in the intestinal epithelial cells. Nutrient transporter protein gene expression was also altered, suggesting that cells are working to regulate the transport mechanisms disturbed by nanoparticle ingestion. Overall, these results show that intestinal epithelial cells are affected at a functional level by physiologically relevant exposure to nanoparticles commonly ingested from food. PMID:28944308
MacEachern, Sarah J.; Patel, Bhavik A.; Keenan, Catherine M.; Dicay, Michael; Chapman, Kevin; McCafferty, Donna-Marie; Savidge, Tor C.; Beck, Paul L.; MacNaughton, Wallace K.; Sharkey, Keith A.
2015-01-01
Background & Aims Disturbances in the control of ion transport lead to epithelial barrier dysfunction in patients with colitis. Enteric glia regulate intestinal barrier function and colonic ion transport. However, it is not clear whether enteric glia are involved in the epithelial hypo-responsiveness. We investigated enteric glial regulation of ion transport in mice with trinitrobenzene sulphonic acid- or dextran sodium sulfate-induced colitis and in Il10−/− mice. Methods Electrically-evoked ion transport was measured in full-thickness segments of colon from CD1 and Il10−/− mice with or without colitis in Ussing chambers. Nitric oxide (NO) production was assessed using amperometry. Bacterial translocation was investigated in the liver, spleen and blood of mice. Results Electrical stimulation of the colon evoked a tetrodotoxin-sensitive chloride secretion. In mice with colitis, ion transport almost completely disappeared. Inhibiting inducible NO synthase (NOS2), but not neuronal NOS (NOS1), partially restored the evoked secretory response. Blocking glial function with fluoroacetate, which is not a NOS2 inhibitor, also partially restored ion transport. Combined NOS2 inhibition and fluoroacetate administration fully restored secretion. Epithelial responsiveness to vasoactive intestinal peptide was increased after enteric glial function was blocked in mice with colitis. In colons of mice without colitis, NO was produced in the myenteric plexus almost completely via NOS1. NO production was increased in mice with colitis, compared to mice without colitis; a substantial proportion of NOS2 was blocked by fluoroacetate administration. Inhibition of enteric glial function in vivo reduced the severity of trinitrobenzene sulphonic acid -induced colitis and associated bacterial translocation. Conclusions Increased production of NOS2 in enteric glia contributes to the dysregulation of intestinal ion transport in mice with colitis. Blocking enteric glial function in these mice restores epithelial barrier function and reduces bacterial translocation. PMID:25865048
MacEachern, Sarah J; Patel, Bhavik A; Keenan, Catherine M; Dicay, Michael; Chapman, Kevin; McCafferty, Donna-Marie; Savidge, Tor C; Beck, Paul L; MacNaughton, Wallace K; Sharkey, Keith A
2015-08-01
Disturbances in the control of ion transport lead to epithelial barrier dysfunction in patients with colitis. Enteric glia regulate intestinal barrier function and colonic ion transport. However, it is not clear whether enteric glia are involved in epithelial hyporesponsiveness. We investigated enteric glial regulation of ion transport in mice with trinitrobenzene sulfonic acid- or dextran sodium sulfate-induced colitis and in Il10(-/-) mice. Electrically evoked ion transport was measured in full-thickness segments of colon from CD1 and Il10(-/-) mice with or without colitis in Ussing chambers. Nitric oxide (NO) production was assessed using amperometry. Bacterial translocation was investigated in the liver, spleen, and blood of mice. Electrical stimulation of the colon evoked a tetrodotoxin-sensitive chloride secretion. In mice with colitis, ion transport almost completely disappeared. Inhibiting inducible NO synthase (NOS2), but not neuronal NOS (NOS1), partially restored the evoked secretory response. Blocking glial function with fluoroacetate, which is not a NOS2 inhibitor, also partially restored ion transport. Combined NOS2 inhibition and fluoroacetate administration fully restored secretion. Epithelial responsiveness to vasoactive intestinal peptide was increased after enteric glial function was blocked in mice with colitis. In colons of mice without colitis, NO was produced in the myenteric plexus almost completely via NOS1. NO production was increased in mice with colitis, compared with mice without colitis; a substantial proportion of NOS2 was blocked by fluoroacetate administration. Inhibition of enteric glial function in vivo reduced the severity of trinitrobenzene sulfonic acid-induced colitis and associated bacterial translocation. Increased production of NOS2 in enteric glia contributes to the dysregulation of intestinal ion transport in mice with colitis. Blocking enteric glial function in these mice restores epithelial barrier function and reduces bacterial translocation. Copyright © 2015 AGA Institute. Published by Elsevier Inc. All rights reserved.
Bu, Heng-Fu; Wang, Xiao; Tang, Yi; Koti, Viola; Tan, Xiao-Di
2015-01-01
Peptidoglycan is a potent immune adjuvant derived from bacterial cell walls. Previous investigations suggest that intestinal epithelium may absorb peptidoglycan from the lumen. Nonetheless, how peptidoglycan is taken up and crosses intestinal epithelium remains largely unclear. Here, we first characterized peptidoglycan transport in vitro using IEC-18 and HT29-CL19A cells, which represent less mature epithelial cells in intestinal crypts. With fluorescent microscopy, we visualized internalization of dual-labeled peptidoglycan by enterocytes. Engulfed peptidoglycan was found to form a complex with peptidoglycan recognition protein-3, which may facilitate delivering peptidoglycan in vivo. Utilizing electronic microscopy, we revealed that uptake of apical peptidoglycan across intestinal epithelial monolayers was involved in phagocytosis, multivesicular body formation, and exosome secretion. We also studied transport of peptidoglycan using the transwell system. Our data indicated that apically loaded peptidoglycan was exocytosed to the basolateral compartment with exosomes by HT29-CL19A cells. The peptidoglycan-contained basolateral exosome extracts induced macrophage activation. Through gavaging mice with labeled peptidoglycan, we found that luminal peptidoglycan was taken up by columnar epithelial cells in crypts of the small intestine. Furthermore, we showed that pre-confluent immature but not post-confluent mature C2BBe1 cells engulfed peptidoglycan via a toll-like receptor 2-dependent manner. Together, our findings suggest that (1) crypt-based immature intestinal epithelial cells play an important role in transport of luminal peptidoglycan over the intestinal epithelium; and (2) luminal peptidoglycan is transcytosed across intestinal epithelia via a toll-like receptor 2-meciated phagocytosis-multivesicular body-exosome pathway. The absorbed peptidoglycan and its derivatives may facilitate maintenance of intestinal immune homeostasis. PMID:20020500
Khavinson, V Kh; Timofeeva, N M; Malinin, V V; Gordova, L A; Nikitina, A A
2002-12-01
Per os administration of Vilon (Lys-Glu) or Epithalon (Ala-Glu-Asp-Gly) to aged Wistar rats for 1 month significantly increased activity of membrane enzymes maltase and alkaline phosphatase in epithelial layer of the small intestine. In addition, Vilon significantly increased activity of cytosolic glycyl-L-leucine dipeptidase in the stromal and seromuscular layers of the small intestine in comparison with the control rats not treated with this agent. These findings suggest improvement of trophic and barrier functions of the small intestine and corroborate the hypothesis on the existence of not only epithelial, but also subepithelial enzymatic barrier supporting the enzyme system in the small intestine, especially in aged animals.
USDA-ARS?s Scientific Manuscript database
Arginine is an essential amino acid in neonates synthesized by gut epithelial cells and a precursor for nitric oxide (NO) that regulates vasodilatation and blood flow. Arginine supplementation has been shown to improve intestinal integrity in ischemia-reperfusion models and low plasma levels are ass...
Leaky gut and diabetes mellitus: what is the link?
de Kort, S; Keszthelyi, D; Masclee, A A M
2011-06-01
Diabetes mellitus is a chronic disease requiring lifelong medical attention. With hundreds of millions suffering worldwide, and a rapidly rising incidence, diabetes mellitus poses a great burden on healthcare systems. Recent studies investigating the underlying mechanisms involved in disease development in diabetes point to the role of the dys-regulation of the intestinal barrier. Via alterations in the intestinal permeability, intestinal barrier function becomes compromised whereby access of infectious agents and dietary antigens to mucosal immune elements is facilitated, which may eventually lead to immune reactions with damage to pancreatic beta cells and can lead to increased cytokine production with consequent insulin resistance. Understanding the factors regulating the intestinal barrier function will provide important insight into the interactions between luminal antigens and immune response elements. This review analyses recent advances in the mechanistic understanding of the role of the intestinal epithelial barrier function in the development of type 1 and type 2 diabetes. Given our current knowledge, we may assume that reinforcing the intestinal barrier can offer and open new therapeutic horizons in the treatment of type 1 and type 2 diabetes. © 2011 The Authors. obesity reviews © 2011 International Association for the Study of Obesity.
Miyoshi, Yuka; Tanabe, Soichi; Suzuki, Takuya
2016-07-01
Intracellular zinc is required for a variety of cell functions, but its precise roles in the maintenance of the intestinal tight junction (TJ) barrier remain unclear. The present study investigated the essential roles of intracellular zinc in the preservation of intestinal TJ integrity and the underlying molecular mechanisms. Depletion of intracellular zinc in both intestinal Caco-2 cells and mouse colons through the application of a cell-permeable zinc chelator N,N,N',N'-tetrakis(2-pyridylmethyl)ethylenediamine (TPEN) induced a disruption of the TJ barrier, as indicated by increased FITC-labeled dextran flux and decreased transepithelial electrical resistance. The TPEN-induced TJ disruption is associated with downregulation of two TJ proteins, occludin and claudin-3. Biotinylation of cell surface proteins revealed that the zinc depletion induced the proteolysis of occludin but not claudin-3. Occludin proteolysis was sensitive to the inhibition of calpain activity, and increased calpain activity was observed in the zinc-depleted cells. Although quantitative PCR analysis and promoter reporter assay have demonstrated that the zinc depletion-induced claudin-3 downregulation occurred at transcriptional levels, a site-directed mutation in the egr1 binding site in the claudin-3 promoter sequence induced loss of both the basal promoter activity and the TPEN-induced decreases. Reduced egr1 expression by a specific siRNA also inhibited claudin-3 expression and transepithelial electrical resistance maintenance in cells. This study shows that intracellular zinc has an essential role in the maintenance of the intestinal epithelial TJ barrier through regulation of occludin proteolysis and claudin-3 transcription. Copyright © 2016 the American Physiological Society.
Characterization of newly established bovine intestinal epithelial cell line.
Miyazawa, Kohtaro; Hondo, Tetsuya; Kanaya, Takashi; Tanaka, Sachi; Takakura, Ikuro; Itani, Wataru; Rose, Michael T; Kitazawa, Haruki; Yamaguchi, Takahiro; Aso, Hisashi
2010-01-01
Membranous epithelial cells (M cells) of the follicle-associated epithelium in Peyer's patches have a high capacity for transcytosis of several viruses and microorganisms. Here, we report that we have successfully established a bovine intestinal epithelial cell line (BIE cells) and developed an in vitro M cell model. BIE cells have a cobblestone morphology and microvilli-like structures, and strongly express cell-to-cell junctional proteins and cytokeratin, which is a specific intermediate filament protein of epithelial cells. After co-culture with murine intestinal lymphocytes or treatment with supernatant from bovine PBMC cultured with IL-2, BIE cells acquired the ability of transcytosis. Therefore, BIE cells have typical characteristics of bovine intestinal epithelial cells and also have the ability to differentiate into an M cell like linage. In addition, our results indicate that contact between immune cells and epithelial cells may not be absolutely required for the differentiation of M cells. We think that BIE cells will be useful for studying the transport mechanisms of various pathogens and also the evaluation of drug delivery via M cells.
Nlrp9b inflammasome restricts rotavirus infection in intestinal epithelial cells.
Zhu, Shu; Ding, Siyuan; Wang, Penghua; Wei, Zheng; Pan, Wen; Palm, Noah W; Yang, Yi; Yu, Hua; Li, Hua-Bing; Wang, Geng; Lei, Xuqiu; de Zoete, Marcel R; Zhao, Jun; Zheng, Yunjiang; Chen, Haiwei; Zhao, Yujiao; Jurado, Kellie A; Feng, Ningguo; Shan, Liang; Kluger, Yuval; Lu, Jun; Abraham, Clara; Fikrig, Erol; Greenberg, Harry B; Flavell, Richard A
2017-06-29
Rotavirus, a leading cause of severe gastroenteritis and diarrhoea in young children, accounts for around 215,000 deaths annually worldwide. Rotavirus specifically infects the intestinal epithelial cells in the host small intestine and has evolved strategies to antagonize interferon and NF-κB signalling, raising the question as to whether other host factors participate in antiviral responses in intestinal mucosa. The mechanism by which enteric viruses are sensed and restricted in vivo, especially by NOD-like receptor (NLR) inflammasomes, is largely unknown. Here we uncover and mechanistically characterize the NLR Nlrp9b that is specifically expressed in intestinal epithelial cells and restricts rotavirus infection. Our data show that, via RNA helicase Dhx9, Nlrp9b recognizes short double-stranded RNA stretches and forms inflammasome complexes with the adaptor proteins Asc and caspase-1 to promote the maturation of interleukin (Il)-18 and gasdermin D (Gsdmd)-induced pyroptosis. Conditional depletion of Nlrp9b or other inflammasome components in the intestine in vivo resulted in enhanced susceptibility of mice to rotavirus replication. Our study highlights an important innate immune signalling pathway that functions in intestinal epithelial cells and may present useful targets in the modulation of host defences against viral pathogens.
Pathogenicity of Shigella in chickens.
Shi, Run; Yang, Xia; Chen, Lu; Chang, Hong-tao; Liu, Hong-ying; Zhao, Jun; Wang, Xin-wei; Wang, Chuan-qing
2014-01-01
Shigellosis in chickens was first reported in 2004. This study aimed to determine the pathogenicity of Shigella in chickens and the possibility of cross-infection between humans and chickens. The pathogenicity of Shigella in chickens was examined via infection of three-day-old SPF chickens with Shigella strain ZD02 isolated from a human patient. The virulence and invasiveness were examined by infection of the chicken intestines and primary chicken intestinal epithelial cells. The results showed Shigella can cause death via intraperitoneal injection in SPF chickens, but only induce depression via crop injection. Immunohistochemistry and transmission electron microscopy revealed the Shigella can invade the intestinal epithelia. Immunohistochemistry of the primary chicken intestinal epithelial cells infected with Shigella showed the bacteria were internalized into the epithelial cells. Electron microscopy also confirmed that Shigella invaded primary chicken intestinal epithelia and was encapsulated by phagosome-like membranes. Our data demonstrate that Shigella can invade primary chicken intestinal epithelial cells in vitro and chicken intestinal mucosa in vivo, resulting in pathogenicity and even death. The findings suggest Shigella isolated from human or chicken share similar pathogenicity as well as the possibility of human-poultry cross-infection, which is of public health significance.
Pathogenicity of Shigella in Chickens
Chen, Lu; Chang, Hong-tao; Liu, Hong-ying; Zhao, Jun; Wang, Xin-wei; Wang, Chuan-qing
2014-01-01
Shigellosis in chickens was first reported in 2004. This study aimed to determine the pathogenicity of Shigella in chickens and the possibility of cross-infection between humans and chickens. The pathogenicity of Shigella in chickens was examined via infection of three-day-old SPF chickens with Shigella strain ZD02 isolated from a human patient. The virulence and invasiveness were examined by infection of the chicken intestines and primary chicken intestinal epithelial cells. The results showed Shigella can cause death via intraperitoneal injection in SPF chickens, but only induce depression via crop injection. Immunohistochemistry and transmission electron microscopy revealed the Shigella can invade the intestinal epithelia. Immunohistochemistry of the primary chicken intestinal epithelial cells infected with Shigella showed the bacteria were internalized into the epithelial cells. Electron microscopy also confirmed that Shigella invaded primary chicken intestinal epithelia and was encapsulated by phagosome-like membranes. Our data demonstrate that Shigella can invade primary chicken intestinal epithelial cells in vitro and chicken intestinal mucosa in vivo, resulting in pathogenicity and even death. The findings suggest Shigella isolated from human or chicken share similar pathogenicity as well as the possibility of human-poultry cross-infection, which is of public health significance. PMID:24949637
Epithelial-derived IL-33 promotes intestinal tumorigenesis in Apc Min/+ mice.
He, Zhengxiang; Chen, Lili; Souto, Fabricio O; Canasto-Chibuque, Claudia; Bongers, Gerold; Deshpande, Madhura; Harpaz, Noam; Ko, Huaibin M; Kelley, Kevin; Furtado, Glaucia C; Lira, Sergio A
2017-07-14
Increased expression of Interleukin (IL)-33 has been detected in intestinal samples of patients with ulcerative colitis, a condition associated with increased risk for colon cancer, but its role in the development of colorectal cancer has yet to be fully examined. Here, we investigated the role of epithelial expressed IL-33 during development of intestinal tumors. IL-33 expression was detected in epithelial cells in colorectal cancer specimens and in the Apc Min/+ mice. To better understand the role of epithelial-derived IL-33 in the intestinal tumorigenesis, we generated transgenic mice expressing IL-33 in intestinal epithelial cells (V33 mice). V33 Apc Min/+ mice, resulting from the cross of V33 with Apc Min/+ mice, had increased intestinal tumor burden compared with littermate Apc Min/+ mice. Consistently, Apc Min/+ mice deficient for IL-33 receptor (ST2), had reduced polyp burden. Mechanistically, overexpression of IL-33 promoted expansion of ST2 + regulatory T cells, increased Th2 cytokine milieu, and induced alternatively activated macrophages in the gut. IL-33 promoted marked changes in the expression of antimicrobial peptides, and antibiotic treatment of V33 Apc Min/+ mice abrogated the tumor promoting-effects of IL-33 in the colon. In conclusion, elevated IL-33 signaling increases tumor development in the Apc Min/+ mice.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Severson, Eric A.; Kwon, Mike; Hilgarth, Roland S.
2010-07-02
The Apical Junctional Complex (AJC) encompassing the tight junction (TJ) and adherens junction (AJ) plays a pivotal role in regulating epithelial barrier function and epithelial cell proliferative processes through signaling events that remain poorly characterized. A potential regulator of AJC protein expression is Glycogen Synthase Kinase-3 (GSK-3). GSK-3 is a constitutively active kinase that is repressed during epithelial-mesenchymal transition (EMT). In the present study, we report that GSK-3 activity regulates the structure and function of the AJC in polarized model intestinal (SK-CO15) and kidney (Madin-Darby Canine Kidney (MDCK)) epithelial cells. Reduction of GSK-3 activity, either by small molecule inhibitors ormore » siRNA targeting GSK-3 alpha and beta mRNA, resulted in increased permeability to both ions and bulk solutes. Immunofluorescence labeling and immunoblot analyses revealed that the barrier defects correlated with decreased protein expression of AJC transmembrane proteins Occludin, Claudin-1 and E-cadherin without influencing other TJ proteins, Zonula Occludens-1 (ZO-1) and Junctional Adhesion Molecule A (JAM-A). The decrease in Occludin and E-cadherin protein expression correlated with downregulation of the corresponding mRNA levels for these respective proteins following GSK-3 inhibition. These observations implicate an important role of GSK-3 in the regulation of the structure and function of the AJC that is mediated by differential modulation of mRNA transcription of key AJC proteins, Occludin, Claudin-1 and E-cadherin.« less
Mroz, Magdalena S; Lajczak, Natalia K; Goggins, Bridie J; Keely, Simon; Keely, Stephen J
2018-03-01
The intestinal epithelium constitutes an innate barrier which, upon injury, undergoes self-repair processes known as restitution. Although bile acids are known as important regulators of epithelial function in health and disease, their effects on wound healing processes are not yet clear. Here we set out to investigate the effects of the colonic bile acids, deoxycholic acid (DCA) and ursodeoxycholic acid (UDCA), on epithelial restitution. Wound healing in T 84 cell monolayers grown on transparent, permeable supports was assessed over 48 h with or without bile acids. Cell migration was measured in Boyden chambers. mRNA and protein expression were measured by RT-PCR and Western blotting. DCA (50-150 µM) significantly inhibited wound closure in cultured epithelial monolayers and attenuated cell migration in Boyden chamber assays. DCA also induced nuclear accumulation of the farnesoid X receptor (FXR), whereas an FXR agonist, GW4064 (10 µM), inhibited wound closure. Both DCA and GW4064 attenuated the expression of CFTR Cl - channels, whereas inhibition of CFTR activity with either CFTR- inh -172 (10 µM) or GlyH-101 (25 µM) also prevented wound healing. Promoter/reporter assays revealed that FXR-induced downregulation of CFTR is mediated at the transcriptional level. In contrast, UDCA (50-150 µM) enhanced wound healing in vitro and prevented the effects of DCA. Finally, DCA inhibited and UDCA promoted mucosal healing in an in vivo mouse model. In conclusion, these studies suggest bile acids are important regulators of epithelial wound healing and are therefore good targets for development of new drugs to modulate intestinal barrier function in disease treatment. NEW & NOTEWORTHY The secondary bile acid, deoxycholic acid, inhibits colonic epithelial wound healing, an effect which appears to be mediated by activation of the nuclear bile acid receptor, FXR, with subsequent downregulation of CFTR expression and activity. In contrast, ursodeoxycholic acid promotes wound healing, suggesting it may provide an alternative approach to prevent the losses of barrier function that are associated with mucosal inflammation in IBD patients.
Ratajczak, Céline; Duez, Catherine; Grangette, Corinne; Pochard, Pierre; Tonnel, André-Bernard; Pestel, Joël
2007-01-01
Lactic acid bacteria (LAB) are Gram positive nonpathogenic commensal organisms present in human gastrointestinal tract. In vivo, LAB are separated from antigen-presenting cells such as dendritic cells (DC) by the intestinal epithelial barrier. In this study, the impact of one LAB strain (Lactobacillus casei ATCC393) on human monocyte-derived DC from allergic and healthy donors was assessed by using a polarized epithelium model. Confocal and flow cytometer analyses showed that immature DC efficiently captured FITC-labelled L. casei through the epithelial layer. After interaction with L. casei, DC acquired a partial maturation status (i.e., CD86 and CD54 increase) and increased their interleukin (IL)-10 and IL-12 production. Interestingly, after activation by L. casei in the presence of experimental epithelium, DC from allergic patients instructed autologous naïve CD4+ T cells to produce more interferon-γ than without the epithelium. Thus by modulating human DC reactivity, LAB and intestinal epithelium might modify T cell immune response and regulate the development of allergic reaction. PMID:17497025
Ratajczak, Céline; Duez, Catherine; Grangette, Corinne; Pochard, Pierre; Tonnel, André-Bernard; Pestel, Joël
2007-01-01
Lactic acid bacteria (LAB) are Gram positive nonpathogenic commensal organisms present in human gastrointestinal tract. In vivo, LAB are separated from antigen-presenting cells such as dendritic cells (DC) by the intestinal epithelial barrier. In this study, the impact of one LAB strain (Lactobacillus casei ATCC393) on human monocyte-derived DC from allergic and healthy donors was assessed by using a polarized epithelium model. Confocal and flow cytometer analyses showed that immature DC efficiently captured FITC-labelled L. casei through the epithelial layer. After interaction with L. casei, DC acquired a partial maturation status (i.e., CD86 and CD54 increase) and increased their interleukin (IL)-10 and IL-12 production. Interestingly, after activation by L. casei in the presence of experimental epithelium, DC from allergic patients instructed autologous naïve CD4(+) T cells to produce more interferon-gamma than without the epithelium. Thus by modulating human DC reactivity, LAB and intestinal epithelium might modify T cell immune response and regulate the development of allergic reaction.
Okada, Morihiro; Miller, Thomas C; Wen, Luan; Shi, Yun-Bo
2017-05-11
The Myc/Mad/Max network has long been shown to be an important factor in regulating cell proliferation, death and differentiation in diverse cell types. In general, Myc-Max heterodimers activate target gene expression to promote cell proliferation, although excess of c-Myc can also induce apoptosis. In contrast, Mad competes against Myc to form Mad-Max heterodimers that bind to the same target genes to repress their expression and promote differentiation. The role of the Myc/Mad/Max network during vertebrate development, especially, the so-called postembryonic development, a period around birth in mammals, is unclear. Using thyroid hormone (T3)-dependent Xenopus metamorphosis as a model, we show here that Mad1 is induced by T3 in the intestine during metamorphosis when larval epithelial cell death and adult epithelial stem cell development take place. More importantly, we demonstrate that Mad1 is expressed in the larval cells undergoing apoptosis, whereas c-Myc is expressed in the proliferating adult stem cells during intestinal metamorphosis, suggesting that Mad1 may have a role in cell death during development. By using transcription activator-like effector nuclease-mediated gene-editing technology, we have generated Mad1 knockout Xenopus animals. This has revealed that Mad1 is not essential for embryogenesis or metamorphosis. On the other hand, consistent with its spatiotemporal expression profile, Mad1 knockout leads to reduced larval epithelial apoptosis but surprisingly also results in increased adult stem cell proliferation. These findings not only reveal a novel role of Mad1 in regulating developmental cell death but also suggest that a balance of Mad and Myc controls cell fate determination during adult organ development.
Okada, Morihiro; Miller, Thomas C; Wen, Luan; Shi, Yun-Bo
2017-01-01
The Myc/Mad/Max network has long been shown to be an important factor in regulating cell proliferation, death and differentiation in diverse cell types. In general, Myc–Max heterodimers activate target gene expression to promote cell proliferation, although excess of c-Myc can also induce apoptosis. In contrast, Mad competes against Myc to form Mad–Max heterodimers that bind to the same target genes to repress their expression and promote differentiation. The role of the Myc/Mad/Max network during vertebrate development, especially, the so-called postembryonic development, a period around birth in mammals, is unclear. Using thyroid hormone (T3)-dependent Xenopus metamorphosis as a model, we show here that Mad1 is induced by T3 in the intestine during metamorphosis when larval epithelial cell death and adult epithelial stem cell development take place. More importantly, we demonstrate that Mad1 is expressed in the larval cells undergoing apoptosis, whereas c-Myc is expressed in the proliferating adult stem cells during intestinal metamorphosis, suggesting that Mad1 may have a role in cell death during development. By using transcription activator-like effector nuclease-mediated gene-editing technology, we have generated Mad1 knockout Xenopus animals. This has revealed that Mad1 is not essential for embryogenesis or metamorphosis. On the other hand, consistent with its spatiotemporal expression profile, Mad1 knockout leads to reduced larval epithelial apoptosis but surprisingly also results in increased adult stem cell proliferation. These findings not only reveal a novel role of Mad1 in regulating developmental cell death but also suggest that a balance of Mad and Myc controls cell fate determination during adult organ development. PMID:28492553
Ruh, Joachim; Schmidt, Eduard; Vogel, Frank
2003-05-01
Oxygen radicals are formed by the endothelium and blood cells and have specific functions in various organs systems. On the level of the microcirculation, oxygen radicals take part in the regulation of the leukocyte-endothelial interaction. The involvement of oxygen radicals has previously been found in conditions such as sepsis, ischemia-reperfusion, and inflammation. Indomethacin is a clinically applied nonsteroidal antiphlogistic, and in previous studies in the rat, it has been found to induce an inflammatory reaction in the small intestine characterized by edema and reddening of the intestinal epithelium, ulceration, and dysregulation in the intestinal-epithelial barrier function. In the present study, we investigated the effect of N-acetylcysteine on erythrocyte velocity and the arteriolar diameter of the main arteriole in single villi, thus providing insight in the perfusion of the mucosa in indomethacin-induced intestinal inflammation. N-Acetylcysteine is known to inactivate superoxide and its precursors. Therefore, we used N-acetylcysteine to investigate whether superoxide and its precursors participate in the regulation of blood supply to single villi in this animal model. We found that indomethacin induced an increase in villous perfusion that was significantly reduced by N-acetylcysteine, indicating that superoxide and its precursors may participate in the regulation of blood supply to the mucosa in this animal model of intestinal inflammation.
Wang, YongQi; Xie, Jinkun; Zhang, Xuelin; Gu, Honggang
2017-01-01
Objective To explore the effects and mechanism of Jinhong Tablet on intestinal mucosal barrier function and SIRS in rats with acute biliary infection. Methods 36 SD male rats were divided into three groups: sham operation (control), acute biliary infection (ABI) model, and Jinhong Tablet (Jinhong) group. Jinhong group were force-fed with Jinhong Tablet, while the other two groups received oral saline. At days 3 and 5, morphological changes of intestinal mucosa were assessed. Serum diamine oxidase (DAO), D-lactate, and endotoxin levels were measured. And the genes bcl-2 and bax in intestinal tissues were tested by real-time PCR and Western blotting. Results Intestinal damage was significantly less severe in Jinhong group compared with ABI group, as indicated by Chiu's scoring, TUNEL analysis, and serum DAO, D-lactic acid, and endotoxin levels. Additionally, the expression of bax mRNA and protein was decreased and the ratio of bcl-2/bax mRNA and protein was increased compared with ABI group. Conclusion Jinhong Tablet had a positive intervention on acute biliary infection through improving inflammation and intestinal mucosal barrier, inhibiting excessive apoptosis of intestinal epithelial cells via bax and bcl-2 gene, and protein regulation. PMID:29234407
Abiko, Yukie; Kojima, Takashi; Murata, Masaki; Tsujiwaki, Mitsuhiro; Takeuchi, Masaya; Sawada, Norimasa; Mori, Michio
2013-12-01
DDC (3,5-diethoxycarbonyl-1,4-dihydrocollidine)-fed mice are widely used as a model for cholestatic liver disease. We examined the expression of tight junction protein claudin subspecies by immunofluorescent histochemistry in small intestine and kidney tissues of mice fed a DDC diet for 12 weeks. In the small intestine, decreases in claudin-3, claudin-7 and claudin-15 were observed in villous epithelial cells corresponding to the severity of histological changes while leaving the abundance of these claudin subspecies unchanged in crypt cells. Nevertheless, the proliferative activity of intestinal crypt cells measured by immunohistochemistry for Ki-67 decreased in the mice fed the DDC diet compared with that of control mice. These results suggest the possibility that DDC feeding affects the barrier function of villous epithelial cells and thus inhibits the proliferative activity of crypt epithelial cells. On the other hand, in the kidney, remarkable changes were found in the subcellular localization of claudin subspecies in a segment-specific manner, although histological changes of renal epithelial cells were quite minimal. These results indicate that immunohistochemistry for claudin subspecies can serve as a useful tool for detecting minute functional alterations of intestinal and renal epithelial cells.
NASA Astrophysics Data System (ADS)
Blanchette, James; Lopez, Jennifer; Park, Kinam; Peppas, Nicholas
2002-03-01
Oral protein delivery requires protection from the harsh environment of the stomach, release in the small intestine and passage from the intestinal lumen into the circulation. Hydrogels that swell in response to the pH change when passing from the stomach to the small intestine can accomplish the first two points. The ability to enhance the permeability of intestinal epithelial cells is currently under investigation. Methacrylic acid-containing hydrogels have shown the ability to bind calcium ions that decreases the concentration of free extracellular calcium for these epithelial cells. This change triggers a number of intracellular events including rearrangement of the cytoskeleton leading to increased permeability. Studies done on Caco-2 cells (human colon adenocarcinoma) measuring changes in transepithelial resistance are used to assess the effect of the polymer-cell interactions on the integrity of intestinal epithelial cell monolayers.
Nutrient-induced intestinal adaption and its effect in obesity.
Dailey, Megan J
2014-09-01
Obese and lean individuals respond differently to nutrients with changes in digestion, absorption and hormone release. This may be a result of differences in intestinal epithelial morphology and function driven by the hyperphagia or the type of diet associated with obesity. It is well known that the maintenance and growth of the intestine is driven by the amount of luminal nutrients, with high nutrient content resulting in increases in cell number, villi length and crypt depth. In addition, the type of nutrient appears to contribute to alterations in the morphology and function of the epithelial cells. This intestinal adaptation may be what is driving the differences in nutrient processing in lean versus obese individuals. This review describes how nutrients may be able to induce changes in intestinal epithelial cell proliferation, differentiation and function and the link between intestinal adaptation and obesity. Copyright © 2014 Elsevier Inc. All rights reserved.
Vancamelbeke, Maaike; Vanuytsel, Tim; Farré, Ricard; Verstockt, Sare; Ferrante, Marc; Van Assche, Gert; Rutgeerts, Paul; Schuit, Frans; Vermeire, Séverine; Arijs, Ingrid; Cleynen, Isabelle
2017-10-01
Intestinal barrier defects are common in patients with inflammatory bowel disease (IBD). To identify which components could underlie these changes, we performed an in-depth analysis of epithelial barrier genes in IBD. A set of 128 intestinal barrier genes was selected. Polygenic risk scores were generated based on selected barrier gene variants that were associated with Crohn's disease (CD) or ulcerative colitis (UC) in our study. Gene expression was analyzed using microarray and quantitative reverse transcription polymerase chain reaction. Influence of barrier gene variants on expression was studied by cis-expression quantitative trait loci mapping and comparing patients with low- and high-risk scores. Barrier risk scores were significantly higher in patients with IBD than controls. At single-gene level, the associated barrier single-nucleotide polymorphisms were most significantly enriched in PTGER4 for CD and HNF4A for UC. As a group, the regulating proteins were most enriched for CD and UC. Expression analysis showed that many epithelial barrier genes were significantly dysregulated in active CD and UC, with overrepresentation of mucus layer genes. In uninflamed CD ileum and IBD colon, most barrier gene levels restored to normal, except for MUC1 and MUC4 that remained persistently increased compared with controls. Expression levels did not depend on cis-regulatory variants nor combined genetic risk. We found genetic and transcriptomic dysregulations of key epithelial barrier genes and components in IBD. Of these, we believe that mucus genes, in particular MUC1 and MUC4, play an essential role in the pathogenesis of IBD and could represent interesting targets for treatment.
Host-microbiota interactions in the intestine.
Elson, Charles O; Alexander, Katie L
2015-01-01
The comprehensive collection of bacterial species, termed microbiota, within human and other mammalian hosts has profound effects on both innate and adaptive immunity. Multiple host innate mechanisms contribute to intestinal homeostasis, including epithelial production of protective mucin layers maintaining spatial segregation in the intestine as well as epithelial cell secretion of a broad range of antimicrobial peptides. Additionally, epithelial cells employ autophagy to contain and eliminate invading bacteria; interestingly, genetic variants in specific autophagy genes are linked to susceptibility to Crohn's disease. Innate lymphoid cells, which rapidly respond to cytokine and microbial signals, have emerged as important regulators of the intestinal immune response to the microbiota. With regard to adaptive immunity, specific microbial species stimulate induction of regulatory T cells while others induce effector T cells within the gut. Such stimulation is subject to dysregulation during inflammation and disease, contributing to 'dysbiosis' or an abnormal microbiota composition that has been associated with a variety of immune-mediated inflammatory disorders, including celiac disease. The microbiota communicates with the immune system and vice versa; thus, an abnormal microbiota composition likely translates into an altered host immune response, though the exact mechanisms of such are not yet clear. Immunoglobulin A plays a critical role in limiting bacterial access to the host and in maintaining mutualism with the microbiota. Perturbation of the mucosal barrier via infection or other means can induce effector T cells reactive to the intestinal microbiota, and these cells can persist as memory cells for extended periods of time and potentially serve as pathogenic effector cells upon re-encounter with antigen. Health is associated with a diverse microbiota that functions to maintain the balance between T effector and T regulatory cells in the intestine. Whether dysbiosis can be reversed in immune-mediated disease, thus restoring health, is a question of intense interest for this active area of research. © 2015 S. Karger AG, Basel.
Reovirus-Induced Apoptosis in the Intestine Limits Establishment of Enteric Infection.
Brown, Judy J; Short, Sarah P; Stencel-Baerenwald, Jennifer; Urbanek, Kelly; Pruijssers, Andrea J; McAllister, Nicole; Ikizler, Mine; Taylor, Gwen; Aravamudhan, Pavithra; Khomandiak, Solomiia; Jabri, Bana; Williams, Christopher S; Dermody, Terence S
2018-05-15
Several viruses induce intestinal epithelial cell death during enteric infection. However, it is unclear whether proapoptotic capacity promotes or inhibits replication in this tissue. We infected mice with two reovirus strains that infect the intestine but differ in the capacity to alter immunological tolerance to new food antigen. Infection with reovirus strain T1L, which induces an inflammatory immune response to fed antigen, is prolonged in the intestine, whereas T3D-RV, which does not induce this response, is rapidly cleared from the intestine. Compared with T1L, T3D-RV infection triggered apoptosis of intestinal epithelial cells and subsequent sloughing of dead cells into the intestinal lumen. We conclude that the infection advantage of T1L derives from its capacity to subvert host restriction by epithelial cell apoptosis, providing a possible mechanism by which T1L enhances inflammatory signals during antigen feeding. Using a panel of T1L × T3D-RV reassortant viruses, we identified the viral M1 and M2 gene segments as determinants of reovirus-induced apoptosis in the intestine. Expression of the T1L M1 and M2 genes in a T3D-RV background was sufficient to limit epithelial cell apoptosis and enhance viral infection to levels displayed by T1L. These findings define additional reovirus gene segments required for enteric infection of mice and illuminate the antiviral effect of intestinal epithelial cell apoptosis in limiting enteric viral infection. Viral strain-specific differences in the capacity to infect the intestine may be useful in identifying viruses capable of ameliorating tolerance to fed antigen in autoimmune conditions like celiac disease. IMPORTANCE Acute viral infections are thought to be cleared by the host with few lasting consequences. However, there may be much broader and long-lasting effects of viruses on immune homeostasis. Infection with reovirus, a common, nonpathogenic virus, triggers inflammation against innocuous food antigens, implicating this virus in the development of celiac disease, an autoimmune intestinal disorder triggered by exposure to dietary gluten. Using two reovirus strains that differ in the capacity to abrogate oral tolerance, we found that strain-specific differences in the capacity to replicate in the intestine inversely correlate with the capacity to induce apoptotic death of intestinal epithelial cells, providing a host-mediated process to restrict intestinal infection. This work contributes new knowledge about virus-host interactions in the intestine and establishes a foundation for future studies to define mechanisms by which viruses break oral tolerance in celiac disease. Copyright © 2018 American Society for Microbiology.
Fredenburgh, Laura E.; Velandia, Margarita M. Suarez; Ma, Jun; Olszak, Torsten; Cernadas, Manuela; Englert, Joshua A.; Chung, Su Wol; Liu, Xiaoli; Begay, Cynthia; Padera, Robert F.; Blumberg, Richard S.; Walsh, Stephen R.; Baron, Rebecca M.; Perrella, Mark A.
2011-01-01
Sepsis remains the leading cause of death in critically ill patients despite modern advances in critical care. Intestinal barrier dysfunction may lead to secondary bacterial translocation and the development of the multiple organ dysfunction syndrome during sepsis. Cyclooxygenase-2 (COX-2) is highly upregulated in the intestine during sepsis and we hypothesized that it may be critical in the maintenance of intestinal epithelial barrier function during peritonitis-induced polymicrobial sepsis. COX-2−/− and COX-2+/+ BALB/c mice underwent cecal ligation and puncture (CLP) or sham surgery. Mice chimeric for COX-2 were derived by bone marrow transplantation and underwent CLP. C2BBe1 cells, an intestinal epithelial cell line, were treated with the COX-2 inhibitor NS-398, PGD2, or vehicle and stimulated with cytokines. COX-2−/− mice developed exaggerated bacteremia and increased mortality compared with COX-2+/+ mice following CLP. Mice chimeric for COX-2 exhibited the recipient phenotype suggesting that epithelial COX-2 expression in the ileum attenuates bacteremia following CLP. Absence of COX-2 significantly increased epithelial permeability of the ileum and reduced expression of the tight junction proteins zonula occludens-1 (ZO-1), occludin, and claudin-1 in the ileum following CLP. Furthermore, PGD2 attenuated cytokine-induced hyperpermeability and ZO-1 downregulation in NS-398-treated C2BBe1 cells. Our findings reveal that absence of COX-2 is associated with enhanced intestinal epithelial permeability and leads to exaggerated bacterial translocation and increased mortality during peritonitis-induced sepsis. Taken together, our results suggest that epithelial expression of COX-2 in the ileum is a critical modulator of tight junction protein expression and intestinal barrier function during sepsis. PMID:21967897
Nighot, Prashant; Al-Sadi, Rana; Guo, Shuhong; Watterson, D. Martin; Ma, Thomas
2015-01-01
Recent studies have implicated a pathogenic role for matrix metalloproteinases 9 (MMP-9) in inflammatory bowel disease. Although loss of epithelial barrier function has been shown to be a key pathogenic factor for the development of intestinal inflammation, the role of MMP-9 in intestinal barrier function remains unclear. The aim of this study was to investigate the role of MMP-9 in intestinal barrier function and intestinal inflammation. Wild-type (WT) and MMP-9−/− mice were subjected to experimental dextran sodium sulfate (DSS) colitis by administration of 3% DSS in drinking water for 7 days. The mouse colonic permeability was measured in vivo by recycling perfusion of the entire colon using fluorescently labeled dextran. The DSS-induced increase in the colonic permeability was accompanied by an increase in intestinal epithelial cell MMP-9 expression in WT mice. The DSS-induced increase in intestinal permeability and the severity of DSS colitis was found to be attenuated in MMP-9−/− mice. The colonic protein expression of myosin light chain kinase (MLCK) and phospho-MLC was found to be significantly increased after DSS administration in WT mice but not in MMP-9−/− mice. The DSS-induced increase in colonic permeability and colonic inflammation was attenuated in MLCK−/− mice and MLCK inhibitor ML-7-treated WT mice. The DSS-induced increase in colonic surface epithelial cell MLCK mRNA was abolished in MMP-9−/− mice. Lastly, increased MMP-9 protein expression was detected within the colonic surface epithelial cells in ulcerative colitis cases. These data suggest a role of MMP-9 in modulation of colonic epithelial permeability and inflammation via MLCK. PMID:26514773
Sääf, Annika M.; Halbleib, Jennifer M.; Chen, Xin; Yuen, Siu Tsan; Leung, Suet Yi
2007-01-01
Posttranslational mechanisms are implicated in the development of epithelial cell polarity, but little is known about the patterns of gene expression and transcriptional regulation during this process. We characterized temporal patterns of gene expression during cell–cell adhesion-initiated polarization of cultured human Caco-2 cells, which develop structural and functional polarity resembling enterocytes in vivo. A distinctive switch in gene expression patterns occurred upon formation of cell–cell contacts. Comparison to gene expression patterns in normal human colon and colon tumors revealed that the pattern in proliferating, nonpolarized Caco-2 cells paralleled patterns seen in human colon cancer in vivo, including expression of genes involved in cell proliferation. The pattern switched in polarized Caco-2 cells to one more closely resembling that in normal colon tissue, indicating that regulation of transcription underlying Caco-2 cell polarization is similar to that during enterocyte differentiation in vivo. Surprisingly, the temporal program of gene expression in polarizing Caco-2 cells involved changes in signaling pathways (e.g., Wnt, Hh, BMP, FGF) in patterns similar to those during migration and differentiation of intestinal epithelial cells in vivo, despite the absence of morphogen gradients and interactions with stromal cells characteristic of enterocyte differentiation in situ. The full data set is available at http://microarray-pubs.stanford.edu/CACO2. PMID:17699589
Kober, Olivia I.; Ahl, David; Pin, Carmen; Holm, Lena; Carding, Simon R.
2014-01-01
Intestinal homeostasis is maintained by a hierarchy of immune defenses acting in concert to minimize contact between luminal microorganisms and the intestinal epithelial cell surface. The intestinal mucus layer, covering the gastrointestinal tract epithelial cells, contributes to mucosal homeostasis by limiting bacterial invasion. In this study, we used γδ T-cell-deficient (TCRδ−/−) mice to examine whether and how γδ T-cells modulate the properties of the intestinal mucus layer. Increased susceptibility of TCRδ−/− mice to dextran sodium sulfate (DSS)-induced colitis is associated with a reduced number of goblet cells. Alterations in the number of goblet cells and crypt lengths were observed in the small intestine and colon of TCRδ−/− mice compared with C57BL/6 wild-type (WT) mice. Addition of keratinocyte growth factor to small intestinal organoid cultures from TCRδ−/− mice showed a marked increase in crypt growth and in both goblet cell number and redistribution along the crypts. There was no apparent difference in the thickness or organization of the mucus layer between TCRδ−/− and WT mice, as measured in vivo. However, γδ T-cell deficiency led to reduced sialylated mucins in association with increased gene expression of gel-secreting Muc2 and membrane-bound mucins, including Muc13 and Muc17. Collectively, these data provide evidence that γδ T cells play an important role in the maintenance of mucosal homeostasis by regulating mucin expression and promoting goblet cell function in the small intestine. PMID:24503767
Kober, Olivia I; Ahl, David; Pin, Carmen; Holm, Lena; Carding, Simon R; Juge, Nathalie
2014-04-01
Intestinal homeostasis is maintained by a hierarchy of immune defenses acting in concert to minimize contact between luminal microorganisms and the intestinal epithelial cell surface. The intestinal mucus layer, covering the gastrointestinal tract epithelial cells, contributes to mucosal homeostasis by limiting bacterial invasion. In this study, we used γδ T-cell-deficient (TCRδ(-/-)) mice to examine whether and how γδ T-cells modulate the properties of the intestinal mucus layer. Increased susceptibility of TCRδ(-/-) mice to dextran sodium sulfate (DSS)-induced colitis is associated with a reduced number of goblet cells. Alterations in the number of goblet cells and crypt lengths were observed in the small intestine and colon of TCRδ(-/-) mice compared with C57BL/6 wild-type (WT) mice. Addition of keratinocyte growth factor to small intestinal organoid cultures from TCRδ(-/-) mice showed a marked increase in crypt growth and in both goblet cell number and redistribution along the crypts. There was no apparent difference in the thickness or organization of the mucus layer between TCRδ(-/-) and WT mice, as measured in vivo. However, γδ T-cell deficiency led to reduced sialylated mucins in association with increased gene expression of gel-secreting Muc2 and membrane-bound mucins, including Muc13 and Muc17. Collectively, these data provide evidence that γδ T cells play an important role in the maintenance of mucosal homeostasis by regulating mucin expression and promoting goblet cell function in the small intestine.
Long, Y; Du, L; Kim, J J; Chen, B; Zhu, Y; Zhang, Y; Yao, S; He, H; Zheng, X; Huang, Z; Dai, N
2018-04-11
Alterations in intestinal permeability regulated by tight junctions (TJs) are associated with immune activation and visceral hypersensitivity in irritable bowel syndrome (IBS). Myosin light chain kinase (MLCK) is an important mediator of epithelial TJ. The aim of this study is to investigate the role of MLCK in the pathogenesis of IBS using a post infectious IBS (PI-IBS) mouse model. Trichinella spiralis-infected PI-IBS mouse model was used. Urine lactulose/mannitol ratio was measured to assess intestinal epithelial permeability. Western blotting was used to evaluate intestinal TJ protein (zonula occludens-1) and MLCK-associated protein expressions. Immune profile was assessed by measuring Th (T helper) 1/Th2 cytokine expression. Visceral sensitivity was determined by abdominal withdrawal reflex in response to colorectal distension. Eight weeks after inoculation with T. spiralis, PI-IBS mice developed decreased pain and volume thresholds during colorectal distention, increased urine lactulose/mannitol ratio, elevated colonic Th1/Th2 cytokine ratio, and decreased zonula occludens-1 expression compared to the control mice. MLCK expression was dramatically elevated in the colonic mucosa of PI-IBS mice compared to the control mice, alongside increased pMLC/MLC and decreased MLCP expression. Administration of MLCK inhibitor and TJ blocker both reversed the increased intestinal permeability, visceral hypersensitivity, and Th1-dominant immune profile in PI-IBS mice. MLCK is a pivotal step in inducing increased intestinal permeability promoting low-grade intestinal immune activation and visceral hypersensitivity in PI-IBS mice. MLCK inhibitor may provide a potential therapeutic option in the treatment of IBS. © 2018 John Wiley & Sons Ltd.
Kim, Seungbum; Goel, Ruby; Kumar, Ashok; Qi, Yanfei; Lobaton, Gil; Hosaka, Koji; Mohammed, Mohammed; Handberg, Eileen M.; Richards, Elaine M.; Pepine, Carl J.; Raizada, Mohan K.
2018-01-01
Recent evidence indicates a link between gut pathology and microbiome with hypertension (HTN) in animal models. However, whether this association exists in humans is unknown. Thus, our objectives in the present study were to test the hypotheses that high blood pressure (BP) patients have distinct gut microbiomes and that gut–epithelial barrier function markers and microbiome composition could predict systolic BP (SBP). Fecal samples, analyzed by shotgun metagenomics, displayed taxonomic and functional changes, including altered butyrate production between patients with high BP and reference subjects. Significant increases in plasma of intestinal fatty acid binding protein (I-FABP), lipopolysaccharide (LPS), and augmented gut-targetting proinflammatory T helper 17 (Th17) cells in high BP patients demonstrated increased intestinal inflammation and permeability. Zonulin, a gut epithelial tight junction protein regulator, was markedly elevated, further supporting gut barrier dysfunction in high BP. Zonulin strongly correlated with SBP (R2 = 0.5301, P<0.0001). Two models predicting SBP were built using stepwise linear regression analysis of microbiome data and circulating markers of gut health, and validated in a separate cohort by prediction of SBP from zonulin in plasma (R2 = 0.4608, P<0.0001). The mouse model of HTN, chronic angiotensin II (Ang II) infusion, was used to confirm the effects of butyrate and gut barrier function on the cardiovascular system and BP. These results support our conclusion that intestinal barrier dysfunction and microbiome function are linked to HTN in humans. They suggest that manipulation of gut microbiome and its barrier functions could be the new therapeutic and diagnostic avenues for HTN. PMID:29507058
Wice, B M; Gordon, J I
1992-01-01
The human intestinal epithelium is rapidly and perpetually renewed as the descendants of multipotent stem cells located in crypts undergo proliferation, differentiation, and eventual exfoliation during a very well organized migration along the crypt to villus axis. The mechanisms that establish and maintain this balance between proliferation and differentiation are largely unknown. We have utilized HT-29 cells, derived from a human colon adenocarcinoma, as a model system for identifying gene products that may regulate these processes. Proliferating HT-29 cells cultured in the absence of glucose (e.g., using inosine as the carbon source) have some of the characteristics of undifferentiated but committed crypt epithelial cells while postconfluent cells cultured in the absence of glucose resemble terminally differentiated enterocytes or goblet cells. A cDNA library, constructed from exponentially growing HT-29 cells maintained in inosine-containing media, was sequentially screened with a series of probes depleted of sequences encoding housekeeping functions and enriched for intestine-specific sequences that are expressed in proliferating committed, but not differentiated, epithelial cells. Of 100,000 recombinant phage surveyed, one was found whose cDNA was derived from an apparently gut-specific mRNA. It encodes a 316 residue, 35,463-D protein that is a new member of the annexin/lipocortin family. Other family members have been implicated in regulation of cellular growth and in signal transduction pathways. RNA blot and in situ hybridization studies indicate that the gene encoding this new annexin exhibits region-specific expression along both axes of the human gut: (a) highest levels of mRNA are present in the jejunum with marked and progressive reductions occurring distally; (b) its mRNA appears in crypt-associated epithelial cells and increases in concentration as they exit the crypt. Villus-associated epithelial cells continue to transcribe this gene during their differentiation/translocation up the villus. Immunocytochemical studies reveal that the intestine-specific annexin (ISA) is associated with the plasma membrane of undifferentiated, proliferating crypt epithelial cells as well as differentiated villus enterocytes. In polarized enterocytes, the highest concentrations of ISA are found at the apical compared to basolateral membrane. In vitro studies using an octapeptide derived from residues 2-9 of the primary translation product of ISA mRNA and purified myristoyl-CoA:protein N-myristoyltransferase suggested that it is N-myristoylated. In vivo labeling studies confirmed that myristate is covalently attached to ISA via a hydroxylamine resistant amide linkage. The restricted cellular expression and acylation of ISA distinguish it from other known annexins.(ABSTRACT TRUNCATED AT 400 WORDS)
Okamura, Ayako; Koyanagi, Satoru; Dilxiat, Adila; Kusunose, Naoki; Chen, Jia Jun; Matsunaga, Naoya; Shibata, Shigenobu; Ohdo, Shigehiro
2014-01-01
Digested proteins are mainly absorbed as small peptides composed of two or three amino acids. The intestinal absorption of small peptides is mediated via only one transport system: the proton-coupled peptide transporter-1 (PepT1) encoded from the soluble carrier protein Slc15a1. In mammals, intestinal expression of PepT1/Slc15a1 oscillates during the daily feeding cycle. Although the oscillation in the intestinal expression of PepT1/Slc15a1 is suggested to be controlled by molecular components of circadian clock, we demonstrated here that bile acids regulated the oscillation of PepT1/Slc15a1 expression through modulating the activity of peroxisome proliferator-activated receptor α (PPARα). Nocturnally active mice mainly consumed their food during the dark phase. PPARα activated the intestinal expression of Slc15a1 mRNA during the light period, and protein levels of PepT1 peaked before the start of the dark phase. After food intake, bile acids accumulated in intestinal epithelial cells. Intestinal accumulated bile acids interfered with recruitment of co-transcriptional activator CREB-binding protein/p300 on the promoter region of Slc15a1 gene, thereby suppressing PPARα-mediated transactivation of Slc15a1. The time-dependent suppression of PPARα-mediated transactivation by bile acids caused an oscillation in the intestinal expression of PepT1/Slc15a1 during the daily feeding cycle that led to circadian changes in the intestinal absorption of small peptides. These findings suggest a molecular clock-independent mechanism by which bile acid-regulated PPARα activity governs the circadian expression of intestinal peptide transporter. PMID:25016014
Bowie, Rachel V; Donatello, Simona; Lyes, Clíona; Owens, Mark B; Babina, Irina S; Hudson, Lance; Walsh, Shaun V; O'Donoghue, Diarmuid P; Amu, Sylvie; Barry, Sean P; Fallon, Padraic G; Hopkins, Ann M
2012-04-15
Intestinal epithelial barrier disruption is a feature of inflammatory bowel disease (IBD), but whether barrier disruption precedes or merely accompanies inflammation remains controversial. Tight junction (TJ) adhesion complexes control epithelial barrier integrity. Since some TJ proteins reside in cholesterol-enriched regions of the cell membrane termed lipid rafts, we sought to elucidate the relationship between rafts and intestinal epithelial barrier function. Lipid rafts were isolated from Caco-2 intestinal epithelial cells primed with the proinflammatory cytokine interferon-γ (IFN-γ) or treated with methyl-β-cyclodextrin as a positive control for raft disruption. Rafts were also isolated from the ilea of mice in which colitis had been induced in conjunction with in vivo intestinal permeability measurements, and lastly from intestinal biopsies of ulcerative colitis (UC) patients with predominantly mild or quiescent disease. Raft distribution was analyzed by measuring activity of the raft-associated enzyme alkaline phosphatase and by performing Western blot analysis for flotillin-1. Epithelial barrier integrity was estimated by measuring transepithelial resistance in cytokine-treated cells or in vivo permeability to fluorescent dextran in colitic mice. Raft and nonraft fractions were analyzed by Western blotting for the TJ proteins occludin and zonula occludens-1 (ZO-1). Our results revealed that lipid rafts were disrupted in IFN-γ-treated cells, in the ilea of mice with subclinical colitis, and in UC patients with quiescent inflammation. This was not associated with a clear pattern of occludin or ZO-1 relocalization from raft to nonraft fractions. Significantly, a time-course study in colitic mice revealed that disruption of lipid rafts preceded the onset of increased intestinal permeability. Our data suggest for the first time that lipid raft disruption occurs early in the inflammatory cascade in murine and human colitis and, we speculate, may contribute to subsequent disruption of epithelial barrier function.
Multifunctional Bioreactor System for Human Intestine Tissues
2017-01-01
The three-dimensional (3D) cultivation of intestinal cells and tissues in dynamic bioreactor systems to represent in vivo intestinal microenvironments is essential for developing regenerative medicine treatments for intestinal diseases. We have previously developed in vitro human intestinal tissue systems using a 3D porous silk scaffold system with intestinal architectures and topographical features for the adhesion, growth, and differentiation of intestinal cells under static culture conditions. In this study, we designed and fabricated a multifunctional bioreactor system that incorporates pre-epithelialized 3D silk scaffolds in a dynamic culture environment for in vitro engineering of human intestine tissues. The bioreactor system allows for control of oxygen levels in perfusion fluids (aerobic simulated intestinal fluid (SIF), microaerobic SIF, and anaerobic SIF), while ensuring control over the mechanical and chemical microenvironments present in native human intestines. The bioreactor system also enables 3D cell culture with spatial separation and cultivation of cocultured epithelial and stromal cells. Preliminary functional analysis of tissues housed in the bioreactor demonstrated that the 3D tissue constructs survived and maintained typical phenotypes of intestinal epithelium, including epithelial tight junction formation, intestinal biomarker expression, microvilli formation, and mucus secretion. The unique combination of a dynamic bioreactor and 3D intestinal constructs offers utility for engineering human intestinal tissues for the study of intestinal diseases and discovery options for new treatments. PMID:29333491
ACF7 regulates colonic permeability.
Liang, Yong; Shi, Chenzhang; Yang, Jun; Chen, Hongqi; Xia, Yang; Zhang, Peng; Wang, Feng; Han, Huazhong; Qin, Huanlong
2013-04-01
Colonic paracellular permeability is regulated by various factors, including dynamics of the cytoskeleton. Recently, ACF7 has been found to play a critical role in cytoskeletal dynamics as an essential integrator. To elucidate the physiological importance of ACF7 and paracellular permeability, we conditionally knocked out ACF7 in the intestinal mucosa of mice. Histopathological findings indicated that ACF7 deficiency resulted in significant interstitial proliferation and columnar epithelial cell rearrangement. Decreased colonic paracellular permeability was detected using a Ussing chamber and the FITC-inulin method. In order to clarify the underlying mechanism, we further analyzed the expression levels of three important tight junction proteins. Downregulation of ZO-1, occludin and claudin-1 was identified. Immunofluorescence provided strong evidence that ZO-1, occludin and claudin-1 were weakly stained. We hypothesized that ACF7 regulates cytoskeleton dynamics to alter mucosal epithelial arrangement and colonic paracellular permeability.
Cell organisation in the colonic crypt: a theoretical comparison of the pedigree and niche concepts.
van der Wath, Richard C; Gardiner, Bruce S; Burgess, Antony W; Smith, David W
2013-01-01
The intestinal mucosa is a monolayer of rapidly self-renewing epithelial cells which is not only responsible for absorption of water and nutrients into the bloodstream but also acts as a protective barrier against harmful microbes entering the body. New functional epithelial cells are produced from stem cells, and their proliferating progeny. These stem cells are found within millions of crypts (tubular pits) spaced along the intestinal tract. The entire intestinal epithelium is replaced every 2-3 days in mice (3-5 days in humans) and hence cell production, differentiation, migration and turnover need to be tightly regulated. Malfunctions in this regulation are strongly linked to inflammatory bowel diseases and to the formation of adenomas and ultimately cancerous tumours. Despite a great deal of biological experimentation and observation, precisely how colonic crypts are regulated to produce mature colonocytes remains unclear. To assist in understanding how cell organisation in crypts is achieved, two very different conceptual models of cell behaviour are developed here, referred to as the 'pedigree' and the 'niche' models. The pedigree model proposes that crypt cells are largely preprogrammed and receive minimal prompting from the environment as they move through a routine of cell differentiation and proliferation to become mature colonocytes. The niche model proposes that crypt cells are primarily influenced by the local microenvironments along the crypt, and that predetermined cell behaviour plays a negligible role in their development. In this paper we present a computational model of colonic crypts in the mouse, which enables a comparison of the quality and controllability of mature coloncyte production by crypts operating under these two contrasting conceptual models of crypt regulation.
Cell Organisation in the Colonic Crypt: A Theoretical Comparison of the Pedigree and Niche Concepts
van der Wath, Richard C.; Gardiner, Bruce S.; Burgess, Antony W.; Smith, David W.
2013-01-01
The intestinal mucosa is a monolayer of rapidly self-renewing epithelial cells which is not only responsible for absorption of water and nutrients into the bloodstream but also acts as a protective barrier against harmful microbes entering the body. New functional epithelial cells are produced from stem cells, and their proliferating progeny. These stem cells are found within millions of crypts (tubular pits) spaced along the intestinal tract. The entire intestinal epithelium is replaced every 2–3 days in mice (3–5 days in humans) and hence cell production, differentiation, migration and turnover need to be tightly regulated. Malfunctions in this regulation are strongly linked to inflammatory bowel diseases and to the formation of adenomas and ultimately cancerous tumours. Despite a great deal of biological experimentation and observation, precisely how colonic crypts are regulated to produce mature colonocytes remains unclear. To assist in understanding how cell organisation in crypts is achieved, two very different conceptual models of cell behaviour are developed here, referred to as the ‘pedigree’ and the ‘niche’ models. The pedigree model proposes that crypt cells are largely preprogrammed and receive minimal prompting from the environment as they move through a routine of cell differentiation and proliferation to become mature colonocytes. The niche model proposes that crypt cells are primarily influenced by the local microenvironments along the crypt, and that predetermined cell behaviour plays a negligible role in their development. In this paper we present a computational model of colonic crypts in the mouse, which enables a comparison of the quality and controllability of mature coloncyte production by crypts operating under these two contrasting conceptual models of crypt regulation. PMID:24069177
Regoli, Mari; Man, Angela; Gicheva, Nadhezda; Dumont, Antonio; Ivory, Kamal; Pacini, Alessandra; Morucci, Gabriele; Branca, Jacopo J V; Lucattelli, Monica; Santosuosso, Ugo; Narbad, Arjan; Gulisano, Massimo; Bertelli, Eugenio; Nicoletti, Claudio
2018-01-01
Interaction between intestinal epithelial cells (IECs) and the underlying immune systems is critical for maintaining intestinal immune homeostasis and mounting appropriate immune responses. We have previously showed that the T helper type 1 (T H 1) cytokine IL-12 plays a key role in the delicate immunological balance in the gut and the lack of appropriate levels of IL-12 had important consequences for health and disease, particularly with regard to food allergy. Here, we sought to understand the role of IL-12 in the regulation of lymphoepithelial cross talk and how this interaction affects immune responses locally and systemically. Using a combination of microscopy and flow cytometry techniques we observed that freshly isolated IECs expressed an incomplete, yet functional IL-12 receptor (IL-12R) formed solely by the IL-12Rβ2 chain that albeit the lack of the complementary IL-12β1 chain responded to ex vivo challenge with IL-12. Furthermore, the expression of IL-12Rβ2 on IECs is strategically located at the interface between epithelial and immune cells of the lamina propria and using in vitro coculture models and primary intestinal organoids we showed that immune-derived signals were required for the expression of IL-12Rβ2 on IECs. The biological relevance of the IEC-associated IL-12Rβ2 was assessed in vivo in a mouse model of food allergy characterized by allergy-associated diminished intestinal levels of IL-12 and in chimeric mice that lack the IL-12Rβ2 chain on IECs. These experimental models enabled us to show that the antiallergic properties of orally delivered recombinant Lactococcus lactis secreting bioactive IL-12 (rLc-IL12) were reduced in mice lacking the IL-12β2 chain on IECs. Finally, we observed that the oral delivery of IL-12 was accompanied by the downregulation of the production of the IEC-derived proallergic cytokine thymic stromal lymphopoietin (TSLP). However, further analysis of intestinal levels of TSLP in IL-12Rβ2 -/- mice suggested that this event was not directly linked to the IEC-associated IL-12Rβ2 chain. We interpreted these data as showing that IEC-associated IL12Rβ2 is a component of the cytokine network operating at the interface between the intestinal epithelium and immune system that plays a role in immune regulation.
Gu, Min; Jia, Qian; Zhang, Zhiyu; Bai, Nan; Xu, Xiaojie; Xu, Bingying
2018-06-01
Soybean meal-induced enteritis (SBMIE) is a well-described condition in the distal intestine (DI) of several cultured fish species, but the exact cause is still unclear. The work on Atlantic salmon and zebrafish suggested soya-saponins, as heat-stable anti-nutritional factors in soybean meal, are the major causal agents. However, this conclusion was not supported by the research on some other fish, such as gilthead sea bream and European sea bass. Our previous work proved that soybean could induce SBMIE on turbot and the present work aimed to investigate whether soya-saponins alone could cause SBMIE and the effects of soya-saponins on the intestinal barrier function in juvenile turbot. Turbots with initial weight 11.4 ± 0.02 g were fed one of four fishmeal-based diets containing graded levels of soya-saponins (0, 2.5, 7.5, 15 g kg -1 ) for 8 weeks. At the end of the trial, all fish were weighed and plasma was obtained for diamine oxidase (DAO) activity and d-lactate level analysis and DI was sampled for histological evaluation and quantification of antioxidant parameters and inflammatory marker genes. The activities of superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase and intestinal glutathione level were selected to evaluated intestinal antioxidant system. The distal intestinal epithelial cell (IEC) proliferation and apoptosis were investigated by proliferating cell nuclear antigen (PCNA) labelling and TdT-mediated dUTP nick end labeling (TUNEL), respectively. The results showed that soya-saponins caused significantly dose-dependent decrease in the growth performance and nutrient utilization (p < 0.05). Enteritis developed in DI of the fish fed diet containing soya-saponins. Significantly dose-dependent increases in severity of the inflammation concomitant with up-regulated expression of il-1β, il-8, and tnf-α, increased IEC proliferation and apoptosis, and decreases in selected antioxidant parameters were detected (p < 0.05). The epithelial permeability (evaluated by the plasma DAO activity and d-lactate level) was significantly increased with the increasing of dietary level of soya-saponins (p < 0.05), which was concomitant with the destroyed the intracellular junctions. In conclusion, the present work proved that soya-saponins induced enteritis and compromised the intestinal barrier functions. Based on the present work, strategies focus on regulation of cell apoptosis, epithelial permeability, intracellular junctions and redox homeostasis worth further investigating to develop new and efficient ways for SBMIE alleviation. Copyright © 2018 Elsevier Ltd. All rights reserved.
USDA-ARS?s Scientific Manuscript database
Non-steroidal anti-inflammatory drugs (NSAIDs) are among the most widely used drugs for the suppression of inflammation and pain. However, the analgesic properties of NSAIDs are also associated with significant negative side effects, most notably in the gastrointestinal (GI) tract. Increasingly, evi...
Nlrp9b inflammasome restricts rotavirus infection in intestinal epithelial cells
Zhu, Shu; Ding, Siyuan; Wang, Penghua; Wei, Zheng; Pan, Wen; Palm, Noah W; Yang, Yi; Yu, Hua; Li, Hua-Bing; Wang, Geng; Lei, Xuqiu; de Zoete, Marcel R.; Zhao, Jun; Zheng, Yunjiang; Chen, Haiwei; Zhao, Yujiao; Jurado, Kellie A.; Feng, Ningguo; Shan, Liang; Kluger, Yuval; Lu, Jun; Abraham, Clara; Fikrig, Erol; Greenberg, Harry B.; Flavell, Richard A.
2018-01-01
Rotavirus, a leading cause of severe gastroenteritis and diarrhoea in young children, accounts for around 215,000 deaths annually worldwide1. Rotavirus specifically infects the intestinal epithelial cells in the host small intestine and has evolved strategies to antagonize interferon and NF-κB signalling2–5, raising the question as to whether other host factors participate in antiviral responses in intestinal mucosa. The mechanism by which enteric viruses are sensed and restricted in vivo, especially by NOD-like receptor (NLR) inflammasomes, is largely unknown. Here we uncover and mechanistically characterize the NLR Nlrp9b that is specifically expressed in intestinal epithelial cells and restricts rotavirus infection. Our data show that, via RNA helicase Dhx9, Nlrp9b recognizes short double-stranded RNA stretches and forms inflammasome complexes with the adaptor proteins Asc and caspase-1 to promote the maturation of interleukin (Il)-18 and gasdermin D (Gsdmd)-induced pyroptosis. Conditional depletion of Nlrp9b or other inflammasome components in the intestine in vivo resulted in enhanced susceptibility of mice to rotavirus replication. Our study highlights an important innate immune signalling pathway that functions in intestinal epithelial cells and may present useful targets in the modulation of host defences against viral pathogens. PMID:28636595
Ganguli, Kriston; Collado, Maria Carmen; Rautava, Jaana; Lu, Lei; Satokari, Reetta; von Ossowski, Ingemar; Reunanen, Justus; de Vos, Willem M.; Palva, Airi; Isolauri, Erika; Salminen, Seppo; Walker, W. Allan; Rautava, Samuli
2015-01-01
Background Bacterial contact in utero modulates fetal and neonatal immune responses. Maternal probiotic supplementation reduces the risk of immune-mediated disease in the infant. We investigated the immunomodulatory properties of live Lactobacillus rhamnosus GG and its SpaC pilus adhesin in human fetal intestinal models. Methods TNF-α mRNA expression was measured by qPCR in a human fetal intestinal organ culture model exposed to live L. rhamnosus GG and proinflammatory stimuli. Binding of recombinant SpaC pilus protein to intestinal epithelial cells was assessed in human fetal intestinal organ culture and the human fetal intestinal epithelial cell line H4 by immunohistochemistry and immunofluorescence, respectively. TLR-related gene expression in fetal ileal organ culture after exposure to recombinant SpaC was assessed by qPCR. Results Live L. rhamnosus GG significantly attenuates pathogen-induced TNF-α mRNA expression in the human fetal gut. Recombinant SpaC protein was found to adhere to the fetal gut and to modulate varying levels of TLR-related gene expression. Conclusion The human fetal gut is responsive to luminal microbes. L. rhamnosus GG significantly attenuates fetal intestinal inflammatory responses to pathogenic bacteria. The L. rhamnosus GG pilus adhesin SpaC binds to immature human intestinal epithelial cells and directly modulates intestinal epithelial cell innate immune gene expression. PMID:25580735
USDA-ARS?s Scientific Manuscript database
Protein p40, a Lactobacillus rhamnosus GG (LGG)-derived soluble protein, ameliorates intestinal injury and colitis, reduces apoptosis and preserves barrier function by activation of EGF receptor (EGFR) in intestinal epithelial cells. The aim of this study was to determine the mechanisms by which p40...
Lajczak, Natalia K; Saint-Criq, Vinciane; O'Dwyer, Aoife M; Perino, Alessia; Adorini, Luciano; Schoonjans, Kristina; Keely, Stephen J
2017-09-01
Bile acids and epithelial-derived human β-defensins (HβDs) are known to be important factors in the regulation of colonic mucosal barrier function and inflammation. We hypothesized that bile acids regulate colonic HβD expression and aimed to test this by investigating the effects of deoxycholic acid (DCA) and ursodeoxycholic acid on the expression and release of HβD1 and HβD2 from colonic epithelial cells and mucosal tissues. DCA (10-150 µM) stimulated the release of both HβD1 and HβD2 from epithelial cell monolayers and human colonic mucosal tissue in vitro In contrast, ursodeoxycholic acid (50-200 µM) inhibited both basal and DCA-induced defensin release. Effects of DCA were mimicked by the Takeda GPCR 5 agonist, INT-777 (50 μM), but not by the farnesoid X receptor agonist, GW4064 (10 μM). INT-777 also stimulated colonic HβD1 and HβD2 release from wild-type, but not Takeda GPCR 5 -/- , mice. DCA stimulated phosphorylation of the p65 subunit of NF-κB, an effect that was attenuated by ursodeoxycholic acid, whereas an NF-κB inhibitor, BMS-345541 (25 μM), inhibited DCA-induced HβD2, but not HβD1, release. We conclude that bile acids can differentially regulate colonic epithelial HβD expression and secretion and discuss the implications of our findings for intestinal health and disease.-Lajczak, N. K., Saint-Criq, V., O'Dwyer, A. M., Perino, A., Adorini, L., Schoonjans, K., Keely, S. J. Bile acids deoxycholic acid and ursodeoxycholic acid differentially regulate human β-defensin-1 and -2 secretion by colonic epithelial cells. © FASEB.
BCL-2 Modifying Factor (BMF) Is a Central Regulator of Anoikis in Human Intestinal Epithelial Cells*
Hausmann, Martin; Leucht, Katharina; Ploner, Christian; Kiessling, Stephan; Villunger, Andreas; Becker, Helen; Hofmann, Claudia; Falk, Werner; Krebs, Michaela; Kellermeier, Silvia; Fried, Michael; Schölmerich, Jürgen; Obermeier, Florian; Rogler, Gerhard
2011-01-01
BCL-2 modifying factor (BMF) is a sentinel considered to register damage at the cytoskeleton and to convey a death signal to B-cell lymphoma 2. B-cell lymphoma 2 is neutralized by BMF and thereby facilitates cytochrome C release from mitochondria. We investigated the role of BMF for intestinal epithelial cell (IEC) homeostasis. Acute colitis was induced in Bmf-deficient mice (Bmf−/−) with dextran sulfate sodium. Colonic crypt length in Bmf−/− mice was significantly increased as compared with WT mice. Dextran sulfate sodium induced less signs of colitis in Bmf−/− mice, as weight loss was reduced compared with the WT. Primary human IEC exhibited increased BMF in the extrusion zone. Quantitative PCR showed a significant up-regulation of BMF expression after initiation of anoikis in primary human IEC. BMF was found on mitochondria during anoikis, as demonstrated by Western blot analysis. RNAi mediated knockdown of BMF reduced the number of apoptotic cells and led to reduced caspase 3 activity. A significant increase in phospho-AKT was determined after RNAi treatment. BMF knockdown supports survival of IEC. BMF is induced in human IEC by the loss of cell attachment and is likely to play an important role in the regulation of IEC survival. PMID:21673109
ADAM10 regulates Notch function in intestinal stem cells of mice.
Tsai, Yu-Hwai; VanDussen, Kelli L; Sawey, Eric T; Wade, Alex W; Kasper, Chelsea; Rakshit, Sabita; Bhatt, Riha G; Stoeck, Alex; Maillard, Ivan; Crawford, Howard C; Samuelson, Linda C; Dempsey, Peter J
2014-10-01
A disintegrin and metalloproteinase domain-containing protein 10 (ADAM10) is a cell surface sheddase that regulates physiologic processes, including Notch signaling. ADAM10 is expressed in all intestinal epithelial cell types, but the requirement for ADAM10 signaling in crypt homeostasis is not well defined. We analyzed intestinal tissues from mice with constitutive (Vil-Cre;Adam10(f/f) mice) and conditional (Vil-CreER;Adam10(f/f) and Leucine-rich repeat-containing GPCR5 [Lgr5]-CreER;Adam10(f/f) mice) deletion of ADAM10. We performed cell lineage-tracing experiments in mice that expressed a gain-of-function allele of Notch in the intestine (Rosa26(NICD)), or mice with intestine-specific disruption of Notch (Rosa26(DN-MAML)), to examine the effects of ADAM10 deletion on cell fate specification and intestinal stem cell maintenance. Loss of ADAM10 from developing and adult intestine caused lethality associated with altered intestinal morphology, reduced progenitor cell proliferation, and increased secretory cell differentiation. ADAM10 deletion led to the replacement of intestinal cell progenitors with 2 distinct, post-mitotic, secretory cell lineages: intermediate-like (Paneth/goblet) and enteroendocrine cells. Based on analysis of Rosa26(NICD) and Rosa26(DN-MAML) mice, we determined that ADAM10 controls these cell fate decisions by regulating Notch signaling. Cell lineage-tracing experiments showed that ADAM10 is required for survival of Lgr5(+) crypt-based columnar cells. Our findings indicate that Notch-activated stem cells have a competitive advantage for occupation of the stem cell niche. ADAM10 acts in a cell autonomous manner within the intestinal crypt compartment to regulate Notch signaling. This process is required for progenitor cell lineage specification and crypt-based columnar cell maintenance. Copyright © 2014 AGA Institute. Published by Elsevier Inc. All rights reserved.
Bai, Wenxia; Bai, Jian'an; Li, Yanhai; Tian, Delong; Shi, Ruihua
2017-04-08
Many autophagy-related genes, to our knowledge, have been identified as Crohn's disease (CD) polymorphic sites by genomic wide studies. As a novel member of the microtubule-associated protein 1 (MAP1) family, MAP1S is a microtubule-binding proteins involved in autophagy. However, its expression and potential functions in CD have not been understood. For the first time, we discovered the up-regulated MAP1S and autophagy level (indicated by LC3-Ⅱ/LC3-Ⅰ) in inflamed epithelium among CD patients. Similarly, in TNBS-induced murine colitis model, MAP1S expression was obviously increased. Meanwhile, we found the co-location of MAP1S and active-caspase 3 which acted as "apoptotic executor" which might indicate the basis of their co-efficient. At the cellular level, MAP1S silencing inhibited starvation-induced over-expression of active-caspase 3 partially via Wnt/β-catenin signaling activation in HCT-116 cells. Finally, we demonstrated that IWP-2, an inhibitor of the Wnt/β-catenin signaling, reversed the down-regulation of active-caspase 3 induced by MAP1S siRNA in HCT-116 cells. Taken together, our results suggested that MAP1S were up-regulated among CD patients and MAP1S-related autophagy inhibits apoptosis of intestinal epithelial cells (IECs) through Wnt/β-catenin signaling pathway which might play a vital role in the protection of intestinal mucosal barrier and inhibition the progression of CD. Copyright © 2017 Elsevier Inc. All rights reserved.
Wnt Signaling in Adult Epithelial Stem Cells and Cancer.
Tan, Si Hui; Barker, Nick
2018-01-01
Wnt/β-catenin signaling is integral to the homeostasis and regeneration of many epithelial tissues due to its critical role in adult stem cell regulation. It is also implicated in many epithelial cancers, with mutations in core pathway components frequently present in patient tumors. In this chapter, we discuss the roles of Wnt/β-catenin signaling and Wnt-regulated stem cells in homeostatic, regenerative and cancer contexts of the intestines, stomach, skin, and liver. We also examine the sources of Wnt ligands that form part of the stem cell niche. Despite the diversity in characteristics of various tissue stem cells, the role(s) of Wnt/β-catenin signaling is generally coherent in maintaining stem cell fate and/or promoting proliferation. It is also likely to play similar roles in cancer stem cells, making the pathway a salient therapeutic target for cancer. While promising progress is being made in the field, deeper understanding of the functions and signaling mechanisms of the pathway in individual epithelial tissues will expedite efforts to modulate Wnt/β-catenin signaling in cancer treatment and tissue regeneration. Copyright © 2018 Elsevier Inc. All rights reserved.
Physiology of Intestinal Absorption and Secretion
Kiela, Pawel R.; Ghishan, Fayez K.
2016-01-01
Virtually all nutrients from the diet are absorbed into blood across the highly polarized epithelial cell layer forming the small and large intestinal mucosa. Anatomical, histological, and functional specializations along the gastrointestinal tract are responsible for the effective and regulated nutrient transport via both passive and active mechanisms. In this chapter, we summarize the current state of knowledge regarding the mechanism of intestinal absorption of key nutrients such as sodium, anions (chloride, sulfate, oxalate), carbohydrates, amino acids and peptides, lipids, lipidand water-soluble vitamins, as well as the major minerals and micronutrients. This outline, including the molecular identity, specificity, and coordinated activities of key transport proteins and genes involved, serves as the background for the following chapters focused on the pathophysiology of acquired and congenital intestinal malabsorption, as well as clinical tools to test and treat malabsorptive symptoms. PMID:27086882
Fatal winter dysentery with severe anemia in an adult cow.
Natsuaki, Sumiko; Goto, Keiichi; Nakamura, Kikuyasu; Yamada, Manabu; Ueo, Hiroshi; Komori, Toshihiro; Shirakawa, Hitomi; Uchinuno, Yukinori
2007-09-01
An adult dairy cow fatally affected with winter dysentery was investigated pathologically and virologically. The cow had severe anemia and diarrhea with massive blood. Pathologically, the loss of surface epithelial cells and necrosis of crypt epithelial cells in the large intestine were observed. Bovine coronavirus (BCV) antigen was observed in necrotic crypt epithelial cells of the large intestine. Virus particles were found in the necrotic epithelial cells of the large intestine. Virologically, BCV was isolated from the feces of the dead cow. The dead cow had no serum antibody against BCV although the co-habitants did. These suggest that severe infection of BCV in the cow without the BCV antibody accompanied by severe hemorrhagic anemia resulted in the cow's death.
Guo, Shuhong; Nighot, Meghali; Al-Sadi, Rana; Alhmoud, Tarik; Nighot, Prashant; Ma, Thomas Y.
2015-01-01
Gut-derived bacterial lipopolysaccharides (LPS) play an essential role in inducing intestinal and systemic inflammatory responses and have been implicated as a pathogenic factor of necrotizing enterocolitis (NEC) and inflammatory bowel disease (IBD). The defective intestinal tight junction (TJ) barrier has been shown to be an important factor contributing to the development of intestinal inflammation. LPS, at physiological concentrations, cause an increase in intestinal tight junction permeability (TJP) via a TLR-4 dependent process; however the intracellular mechanisms that mediate LPS regulation of intestinal TJP remain unclear. The aim of this study was to investigate the adaptor proteins and the signaling interactions that mediate LPS modulation of intestinal TJ barrier using an in-vitro and in-vivo model system. LPS caused a TLR-4 dependent activation of membrane-associated adaptor protein FAK in Caco-2 monolayers. LPS caused an activation of both MyD88-dependent and –independent pathways. SiRNA silencing of MyD88 prevented LPS-induced increase in TJP. LPS caused a MyD88-dependent activation of IRAK4. TLR-4, FAK and MyD88 were co-localized. SiRNA silencing of TLR-4 inhibited TLR-4 associated FAK activation; and FAK knockdown prevented MyD88 activation. In-vivo studies also confirmed that LPS-induced increase in mouse intestinal permeability was associated with FAK and MyD88 activation; knockdown of intestinal epithelial FAK prevented LPS-induced increase in intestinal permeability. Additionally, high dose LPS-induced intestinal inflammation was also dependent on TLR-4/FAK/MyD88 signal-transduction axis. Our data show for the first time that LPS-induced increase in intestinal TJP and intestinal inflammation was regulated by TLR-4 dependent activation of FAK-MyD88-IRAK4 signaling pathway. PMID:26466961
NASA Astrophysics Data System (ADS)
Som, Avira; Leung, Hui Min; Chu, Kengyeh; Eaton, Alex D.; Hurley, Bryan P.; Tearney, Guillermo J.
2017-02-01
The intestinal epithelial barrier provides protection from external threats that enter the digestive system and persist beyond passage through the stomach. The effects of toxic agents on the intestinal epithelial cell monolayer have not been fully characterized at a cellular level as live imaging of this dynamic interplay at sufficient resolution to interpret cellular responses presents technological challenges. Using a high-resolution native contrast modality called Micro-Optical Coherence Tomography (μOCT), we generated real-time 3D images depicting the impact of the chemical agent EDTA on polarized intestinal epithelial monolayers. Within minutes following application of EDTA, we observed a change in the uniformity of epithelial surface thickness and loss of the edge brightness associated with the apical surface. These observations were measured by generating computer algorithms which quantify imaged-based events changing over time, thus providing parallel graphed data to pair with video. The imaging platform was designed to monitor epithelial monolayers prior to and following application of chemical agents in order to provide a comprehensive account of monolayer behavior at baseline conditions and immediately following exposure. Furthermore, the platform was designed to simultaneously measure continuous trans-epithelial electric resistance (TEER) in order to define the progressive loss of barrier integrity of the cell monolayer following exposure to toxic agents and correlate these findings to image-based metrics. This technological image-based experimental platform provides a novel means to characterize mechanisms that impact the intestinal barrier and, in future efforts, can be applied to study the impact of disease relevant agents such as enteric pathogens and enterotoxins.
Diversity of the human intestinal microbial flora.
Eckburg, Paul B; Bik, Elisabeth M; Bernstein, Charles N; Purdom, Elizabeth; Dethlefsen, Les; Sargent, Michael; Gill, Steven R; Nelson, Karen E; Relman, David A
2005-06-10
The human endogenous intestinal microflora is an essential "organ" in providing nourishment, regulating epithelial development, and instructing innate immunity; yet, surprisingly, basic features remain poorly described. We examined 13,355 prokaryotic ribosomal RNA gene sequences from multiple colonic mucosal sites and feces of healthy subjects to improve our understanding of gut microbial diversity. A majority of the bacterial sequences corresponded to uncultivated species and novel microorganisms. We discovered significant intersubject variability and differences between stool and mucosa community composition. Characterization of this immensely diverse ecosystem is the first step in elucidating its role in health and disease.
Wani, Nissar Ahmad; Thakur, Shilpa; Najar, Rauf Ahmad; Nada, Ritambhara; Khanduja, Krishan Lal; Kaur, Jyotdeep
2013-03-01
Folate mediated one-carbon metabolism is of fundamental importance for various cellular processes, including DNA synthesis and methylation of biological molecules. Due to the exogenous requirement of folate in mammals, there exists a well developed epithelial folate transport system for regulation of normal folate homeostasis. The intestinal and renal folate uptake is tightly and diversely regulated and disturbances in folate homeostasis like in alcoholism have pathological consequences. The study was sought to delineate the regulatory mechanism of folate uptake in intestine and reabsorption in renal tubular cells that could evaluate insights of malabsorption during alcoholism. The folate transporters PCFT and RFC were found to be associated with lipid rafts of membrane surfaces in intestine and kidney. Importantly, the observed lower intestinal and renal folate uptake was associated with decreased levels of folate transporter viz. PCFT and RFC in lipid rafts of intestinal and renal membrane surfaces. The decreased association of folate transporters in lipid rafts was associated with decreased protein and mRNA levels. In addition, immunohistochemical studies showed that alcoholic conditions deranged that localization of PCFT and RFC. These findings could explain the possible mechanistic insights that may result in folate malabsorption during alcoholism. Copyright © 2013 Elsevier Inc. All rights reserved.
Role of calcium signaling in epithelial bicarbonate secretion.
Jung, Jinsei; Lee, Min Goo
2014-06-01
Transepithelial bicarbonate secretion plays a key role in the maintenance of fluid and protein secretion from epithelial cells and the protection of the epithelial cell surface from various pathogens. Epithelial bicarbonate secretion is mainly under the control of cAMP and calcium signaling. While the physiological roles and molecular mechanisms of cAMP-induced bicarbonate secretion are relatively well defined, those induced by calcium signaling remain poorly understood in most epithelia. The present review summarizes the current status of knowledge on the role of calcium signaling in epithelial bicarbonate secretion. Specifically, this review introduces how cytosolic calcium signaling can increase bicarbonate secretion by regulating membrane transport proteins and how it synergizes with cAMP-induced mechanisms in epithelial cells. In addition, tissue-specific variations in the pancreas, salivary glands, intestines, bile ducts, and airways are discussed. We hope that the present report will stimulate further research into this important topic. These studies will provide the basis for future medicines for a wide spectrum of epithelial disorders including cystic fibrosis, Sjögren's syndrome, and chronic pancreatitis. Copyright © 2014 Elsevier Ltd. All rights reserved.
Mei, N
1986-01-01
The possible role of the autonomic nervous system (ANS) in nutrition must be reevaluated in view of recent experimental data. The ANS plays a major part in both initiating and maintaining peristalsis and in coordinating gastrointestinal motility. Intestinal absorption involves extra-epithelial mechanisms such as motility and vasomotricity of the digestive tract. In addition, the ANS (sympathetic fibres) might act directly on enterocytes, or indirectly via the intestinal plexuses through a glucose-dependent mechanism. The control of exocrine and endocrine secretions depends partly on the ANS. In particular the mucous mechanoreceptors, chemoreceptors and thermoreceptors located in the intestinal area supply the sensory information needed in that kind of regulation. The efferent fibres of the ANS intervene in the control of storage of carbohydrates in the liver and of lipids in brown adipose tissue. On the other hand, gastrointestinal afferents might be implicated in this mechanism through the hypothalamic ventro-median nucleus. Finally, these data are consistent with a modern conception suggesting that the ANS is largely involved in the regulation of visceral motility, homeostasis and alimentary behaviour.
Fernando, Elizabeth H; Dicay, Michael; Stahl, Martin; Gordon, Marilyn H; Vegso, Andrew; Baggio, Cristiane; Alston, Laurie; Lopes, Fernando; Baker, Kristi; Hirota, Simon; McKay, Derek M; Vallance, Bruce; MacNaughton, Wallace K
2017-11-01
Cancer cell lines have been the mainstay of intestinal epithelial experimentation for decades, due primarily to their immortality and ease of culture. However, because of the inherent biological abnormalities of cancer cell lines, many cellular biologists are currently transitioning away from these models and toward more representative primary cells. This has been particularly challenging, but recent advances in the generation of intestinal organoids have brought the routine use of primary cells within reach of most epithelial biologists. Nevertheless, even with the proliferation of publications that use primary intestinal epithelial cells, there is still a considerable amount of trial and error required for laboratories to establish a consistent and reliable method to culture three-dimensional (3D) intestinal organoids and primary epithelial monolayers. We aim to minimize the time other laboratories spend troubleshooting the technique and present a standard method for culturing primary epithelial cells. Therefore, we have described our optimized, high-yield, cost-effective protocol to grow 3D murine colonoids for more than 20 passages and our detailed methods to culture these cells as confluent monolayers for at least 14 days, enabling a wide variety of potential future experiments. By supporting and expanding on the current literature of primary epithelial culture optimization and detailed use in experiments, we hope to help enable the widespread adoption of these innovative methods and allow consistency of results obtained across laboratories and institutions. NEW & NOTEWORTHY Primary intestinal epithelial monolayers are notoriously difficult to maintain culture, even with the recent advances in the field. We describe, in detail, the protocols required to maintain three-dimensional cultures of murine colonoids and passage these primary epithelial cells to confluent monolayers in a standardized, high-yield and cost-effective manner. Copyright © 2017 the American Physiological Society.
Replication of CMV in the gut of HIV-infected individuals and epithelial barrier dysfunction
Somsouk, Ma; Hunt, Peter W.
2017-01-01
Although invasive cytomegalovirus (CMV) disease is uncommon in the era of antiretroviral therapy (ART), asymptomatic CMV coinfection is nearly ubiquitous in HIV infected individuals. While microbial translocation and gut epithelial barrier dysfunction may promote persistent immune activation in treated HIV infection, potentially contributing to morbidity and mortality, it has been unclear whether CMV replication in individuals with no symptoms of CMV disease might play a role in this process. We hypothesized that persistent CMV replication in the intestinal epithelium of HIV/CMV-coinfected individuals impairs gut epithelial barrier function. Using a combination of state-of-the-art in situ hybridization technology (RNAscope) and immunohistochemistry, we detected CMV DNA and proteins and evidence of intestinal damage in rectosigmoid samples from CMV-positive individuals with both untreated and ART-suppressed HIV infection. Two different model systems, primary human intestinal cells differentiated in vitro to form polarized monolayers and a humanized mouse model of human gut, together demonstrated that intestinal epithelial cells are fully permissive to CMV replication. Independent of HIV, CMV disrupted tight junctions of polarized intestinal cells, significantly reducing transepithelial electrical resistance, a measure of monolayer integrity, and enhancing transepithelial permeability. The effect of CMV infection on the intestinal epithelium is mediated, at least in part, by the CMV-induced proinflammatory cytokine IL-6. Furthermore, letermovir, a novel anti-CMV drug, dampened the effects of CMV on the epithelium. Together, our data strongly suggest that CMV can disrupt epithelial junctions, leading to bacterial translocation and chronic inflammation in the gut and that CMV could serve as a target for therapeutic intervention to prevent or treat gut epithelial barrier dysfunction during HIV infection. PMID:28241080
Neuroimmune interactions: potential target for mitigating or treating intestinal radiation injury.
Wang, J; Hauer-Jensen, M
2007-09-01
Intestinal radiation injury is characterized by breakdown of the epithelial barrier and mucosal inflammation. In addition to replicative and apoptotic cell death, radiation also induces changes in cellular function, as well as alterations secondary to tissue injury. The recognition of these "non-cytocidal" radiation effects has enhanced the understanding of normal tissue radiation toxicity, thus allowing an integrated systems biology-based approach to modulating radiation responses and providing a mechanistic rationale for interventions to mitigate or treat radiation injuries. The enteric nervous system regulates intestinal motility, blood flow and enterocyte function. The enteric nervous system also plays a central role in maintaining the physiological state of the intestinal mucosa and in coordinating inflammatory and fibroproliferative processes. The afferent component of the enteric nervous system, in addition to relaying sensory information, also exerts important effector functions and contributes critically to preserving mucosal integrity. Interactions between afferent nerves, mast cells as well as other cells of the resident mucosal immune system serve to maintain mucosal homeostasis and to ensure an appropriate response to injury. Notably, enteric sensory neurons regulate the activation threshold of mast cells by secreting substance P, calcitonin gene-related peptide and other neuropeptides, whereas mast cells signal to enteric nerves by the release of histamine, nerve growth factor and other mediators. This article reviews how enteric neurons interact with mast cells and other immune cells to regulate the intestinal radiation response and how these interactions may be modified to mitigate intestinal radiation toxicity. These data are not only applicable to radiation therapy, but also to intestinal injury in a radiological terrorism scenario.
[Biomarkers of Metabolism and Iron Nutrition].
Sermini, Carmen Gloria; Acevedo, María José; Arredondo, Miguel
2017-01-01
Iron deficiency anemia is the most common nutritional deficiency worldwide, and the most susceptible groups are infants, preschoolers, women of childbearing age, and pregnant women. It is therefore essential to understand the mechanisms of regulation of iron uptake, transport, and absorption at the cellular level, particularly in enterocytes, and to identify blood biomarkers that allow the evaluation of iron status. This review describes how iron absorption is regulated by intestinal epithelial cells, the main proteins involved (iron transporters, oxidoreductases, storage proteins), and the main blood biomarkers of iron metabolism.
Impaired Cell Volume Regulation in Intestinal Crypt Epithelia of Cystic Fibrosis Mice
NASA Astrophysics Data System (ADS)
Valverde, M. A.; O'Brien, J. A.; Sepulveda, F. V.; Ratcliff, R. A.; Evans, M. J.; Colledge, W. H.
1995-09-01
Cystic fibrosis is a disease characterized by abnormalities in the epithelia of the lungs, intestine, salivary and sweat glands, liver, and reproductive systems, often as a result of inadequate hydration of their secretions. The primary defect in cystic fibrosis is the altered activity of a cAMP-activated Cl^- channel, the cystic fibrosis transmembrane conductance regulator (CFTR) channel. However, it is not clear how a defect in the CFTR Cl^- channel function leads to the observed pathological changes. Although much is known about the structural properties and regulation of the CFTR, little is known of its relationship to cellular functions other than the cAMP-dependent Cl^- secretion. Here we report that cell volume regulation after hypotonic challenge is also defective in intestinal crypt epithelial cells isolated from CFTR -/- mutant mice. Moreover, the impairment of the regulatory volume decrease in CFTR -/- crypts appears to be related to the inability of a K^+ conductance to provide a pathway for the exit of this cation during the volume adjustments. This provides evidence that the lack of CFTR protein may have additional consequences for the cellular function other than the abnormal cAMP-mediated Cl^- secretion.
Chen, Y P; Hsiao, P J; Hong, W S; Dai, T Y; Chen, M J
2012-01-01
Lactobacillus kefiranofaciens M1, isolated from and identified in Taiwanese milk kefir grain, has demonstrated immune-modulating activity. In the present study, we further investigated the effects of Lb. kefiranofaciens M1 on intestinal epithelial cells in vitro and on dextran sodium sulfate (DSS)-induced colitis in vivo. The possible mechanisms regarding the cytokine products and intestinal epithelial barrier restoration as well as the putative receptor for the protective effects of Lb. kefiranofaciens M1 were investigated. In vitro results indicated that Lb. kefiranofaciens M1 could strengthen the epithelial barrier function in vitro by increasing the transepithelial electrical resistance (TEER) and significantly upregulated the level of the chemokine CCL-20 at both the apical and basolateral sites. The in vivo effects of Lb. kefiranofaciens M1 on the regulation of intestinal physiology indicate that this strain could ameliorate DSS-induced colitis with a significant attenuation of the bleeding score and colon length shortening. Production of proinflammatory cytokines was decreased and that of the antiinflammatory cytokine IL-10 was increased in the DSS-treated mice given Lb. kefiranofaciens M1. The putative receptor for the protective effects of Lb. kefiranofaciens M1 was toll-like receptor 2 (TLR2), which was involved in probiotic-induced cytokine production in vitro and in attenuation of the bleeding score and colon length shortening in vivo. In this study, the kefir lactobacillus Lb. kefiranofaciens M1 clearly demonstrated an anticolitis effect. Based on these results, Lb. kefiranofaciens M1 has the potential to be applied in fermented dairy products as an alternative therapy for intestinal disorders. Copyright © 2012 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Roubos-van den Hil, P J; Nout, M J R; Beumer, R R; van der Meulen, J; Zwietering, M H
2009-03-01
This study aimed to investigate the effect of processed soya bean, during the successive stages of tempe fermentation and different fermentation times, on adhesion of enterotoxigenic Escherichia coli (ETEC) K88 to intestinal brush border cells as well as Caco-2 intestinal epithelial cells; and to clarify the mechanism of action. Tempe was prepared at controlled laboratory scale using Rhizopus microsporus var. microsporus as the inoculum. Extracts of raw, soaked and cooked soya beans reduced ETEC adhesion to brush border cells by 40%. Tempe extracts reduced adhesion by 80% or more. ETEC adhesion to Caco-2 cells reduced by 50% in the presence of tempe extracts. ETEC K88 bacteria were found to interact with soya bean extracts, and this may contribute to the observed decrease of ETEC adhesion to intestinal epithelial cells. Fermented soya beans (tempe) reduce the adhesion of ETEC to intestinal epithelial cells of pig and human origin. This reduced adhesion is caused by an interaction between ETEC K88 bacteria and soya bean compounds. The results strengthen previous observations on the anti-diarrhoeal effect of tempe. This effect indicates that soya-derived compounds may reduce adhesion of ETEC to intestinal cells in pigs as well as in humans and prevent against diarrhoeal diseases.
SIRT1 inhibits the mouse intestinal motility and epithelial proliferation
USDA-ARS?s Scientific Manuscript database
SIRT1 inhibits the mouse intestinal motility and epithelial proliferation. Sirtuin 1 (SIRT1), a NAD+-dependent histone deacetylase, is involved in a wide array of cellular processes, including glucose homeostasis, energy metabolism, proliferation and apoptosis, and immune response. However, it is un...
Choi, Yun-Hee; McNally, Brian T; Igarashi, Peter
2013-07-01
Hepatocyte nuclear factor-1β (HNF-1β) is an epithelial tissue-specific transcription factor that regulates gene expression in the kidney, liver, pancreas, intestine, and other organs. Mutations of HNF-1β in humans produce renal cysts and congenital kidney anomalies. Here, we identify the LIM-domain protein zyxin as a novel binding partner of HNF-1β in renal epithelial cells. Zyxin shuttles to the nucleus where it colocalizes with HNF-1β. Immunoprecipitation of zyxin in leptomycin B-treated cells results in coprecipitation of HNF-1β. The protein interaction requires the second LIM domain of zyxin and two distinct domains of HNF-1β. Overexpression of zyxin stimulates the transcriptional activity of HNF-1β, whereas small interfering RNA silencing of zyxin inhibits HNF-1β-dependent transcription. Epidermal growth factor (EGF) induces translocation of zyxin into the nucleus and stimulates HNF-1β-dependent promoter activity. The EGF-mediated nuclear translocation of zyxin requires activation of Akt. Expression of dominant-negative mutant HNF-1β, knockdown of zyxin, or inhibition of Akt inhibits EGF-stimulated cell migration. These findings reveal a novel pathway by which extracellular signals are transmitted to the nucleus to regulate the activity of a transcription factor that is essential for renal epithelial differentiation.
Sha, Ailong; Sun, Hushan; Wang, Yiyan
2013-02-01
The study was designed to determine whether methionine-enkephalin (met-Enk) or delta opioid receptor was present in the digestive system of Octopus ocellatus. The results showed that they were both in the bulbus oris, esophagus, crop, stomach, gastric cecum, intestine, posterior salivary glands of O. ocellatus, one of them, met-Enk in the rectum, anterior salivary glands, digestive gland. And the distributions were extensive in the digestive system. Strong or general met-Enk immunoreactivity was observed in the inner epithelial cells of the bulbus oris, esophagus, stomach, gastric cecum, intestine, anterior salivary glands and the adventitia of the intestine and rectum, and so was the delta opioid receptor immunoreactivity in the inner epithelial cells of the bulbus oris, esophagus, and crop, however, they were weak in other parts. Combining with delta opioid receptor, met-Enk may be involved in the regulations of food intake, absorption, movement of gastrointestinal smooth muscle and secretion of digestive gland. The different densities of met-Enk and delta opioid receptor may be related to the different functions in the digestive system of O. ocellatus. Copyright © 2012 Elsevier Ltd. All rights reserved.
O'Boyle, Nicky; Boyd, Aoife
2013-01-01
Vibrio parahaemolyticus elicits gastroenteritis by deploying Type III Secretion Systems (TTSS) to deliver effector proteins into epithelial cells of the human intestinal tract. The bacteria must adhere to the human cells to allow colonization and operation of the TTSS translocation apparatus bridging the bacterium and the host cell. This article first reviews recent advances in identifying the molecules responsible for intercellular adherence. V. parahaemolyticus possesses two TTSS, each of which delivers an exclusive set of effectors and mediates unique effects on the host cell. TTSS effectors primarily target and alter the activation status of host cell signaling proteins, thereby bringing about changes in the regulation of cellular behavior. TTSS1 is responsible for the cytotoxicity of V. parahaemolyticus, while TTSS2 is necessary for the enterotoxicity of the pathogen. Recent publications have elucidated the function of several TTSS effectors and their importance in the virulence of the bacterium. This review will explore the ability of the TTSS to manipulate activities of human intestinal cells and how this modification of cell function favors bacterial colonization and persistence of V. parahaemolyticus in the host. PMID:24455490
Lan, Annaïg; Andriamihaja, Mireille; Blouin, Jean-Marc; Liu, Xinxin; Descatoire, Véronique; Desclée de Maredsous, Caroline; Davila, Anne-Marie; Walker, Francine; Tomé, Daniel; Blachier, François
2015-01-01
We have previously shown that high-protein (HP) diet ingestion causes marked changes in the luminal environment of the colonic epithelium. This study aimed to evaluate the impact of such modifications on small intestinal and colonic mucosa, two segments with different transit time and physiological functions. Rats were fed with either normal protein (NP; 14% protein) or HP (53% protein) isocaloric diet for 2 weeks, and parameters related to intestinal mucous-secreting cells and to several innate/adaptive immune characteristics (myeloperoxidase activity, cytokine and epithelial TLR expression, proportion of immune cells in gut-associated lymphoid tissues) were measured in the ileum and colon. In ileum from HP animals, we observed hyperplasia of mucus-producing cells concomitant with an increased expression of Muc2 at both gene and protein levels, reduction of mucosal myeloperoxidase activity, down-regulation of Tlr4 gene expression in enterocytes and down-regulation of mucosal Th cytokines associated with CD4+ lymphocyte reduction in mesenteric lymph nodes. These changes coincided with an increased amount of acetate in the ileal luminal content. In colon, HP diet ingestion resulted in a lower number of goblet cells at the epithelial surface but increased goblet cell number in colonic crypts together with an increased Muc3 and a slight reduction of Il-6 gene expression. Our data suggest that HP diet modifies the goblet cell distribution in colon and, in ileum, increases goblet cell activity and decreases parameters related to basal gut inflammatory status. The impact of HP diet on intestinal mucosa in terms of beneficial or deleterious effects is discussed. Copyright © 2015 Elsevier Inc. All rights reserved.
Rahman, Khalidur; Desai, Chirayu; Iyer, Smita S; Thorn, Natalie E; Kumar, Pradeep; Liu, Yunshan; Smith, Tekla; Neish, Andrew S; Li, Hongliang; Tan, Shiyun; Wu, Pengbo; Liu, Xiaoxiong; Yu, Yuanjie; Farris, Alton B; Nusrat, Asma; Parkos, Charles A; Anania, Frank A
2016-10-01
There is evidence from clinical studies that compromised intestinal epithelial permeability contributes to the development of nonalcoholic steatohepatitis (NASH), but the exact mechanisms are not clear. Mice with disruption of the gene (F11r) encoding junctional adhesion molecule A (JAM-A) have defects in intestinal epithelial permeability. We used these mice to study how disruption of the intestinal epithelial barrier contributes to NASH. Male C57BL/6 (control) or F11r(-/-) mice were fed a normal diet or a diet high in saturated fat, fructose, and cholesterol (HFCD) for 8 weeks. Liver and intestinal tissues were collected and analyzed by histology, quantitative reverse-transcription polymerase chain reaction, and flow cytometry. Intestinal epithelial permeability was assessed in mice by measuring permeability to fluorescently labeled dextran. The intestinal microbiota were analyzed using 16S ribosomal RNA sequencing. We also analyzed biopsy specimens from proximal colons of 30 patients with nonalcoholic fatty liver disease (NAFLD) and 19 subjects without NAFLD (controls) undergoing surveillance colonoscopy. F11r(-/-) mice fed a HFCD, but not a normal diet, developed histologic and pathologic features of severe NASH including steatosis, lobular inflammation, hepatocellular ballooning, and fibrosis, whereas control mice fed a HFCD developed only modest steatosis. Interestingly, there were no differences in body weight, ratio of liver weight:body weight, or glucose homeostasis between control and F11r(-/-) mice fed a HFCD. In these mice, liver injury was associated with significant increases in mucosal inflammation, tight junction disruption, and intestinal epithelial permeability to bacterial endotoxins, compared with control mice or F11r(-/-) mice fed a normal diet. The HFCD led to a significant increase in inflammatory microbial taxa in F11r(-/-) mice, compared with control mice. Administration of oral antibiotics or sequestration of bacterial endotoxins with sevelamer hydrochloride reduced mucosal inflammation and restored normal liver histology in F11r(-/-) mice fed a HFCD. Protein and transcript levels of JAM-A were significantly lower in the intestinal mucosa of patients with NAFLD than without NAFLD; decreased expression of JAM-A correlated with increased mucosal inflammation. Mice with defects in intestinal epithelial permeability develop more severe steatohepatitis after a HFCD than control mice, and colon tissues from patients with NAFLD have lower levels of JAM-A and higher levels of inflammation than subjects without NAFLD. These findings indicate that intestinal epithelial barrier function and microbial dysbiosis contribute to the development of NASH. Restoration of intestinal barrier integrity and manipulation of gut microbiota might be developed as therapeutic strategies for patients with NASH. Copyright © 2016 AGA Institute. Published by Elsevier Inc. All rights reserved.
Ductal cancers of the pancreas frequently express markers of gastrointestinal epithelial cells.
Sessa, F; Bonato, M; Frigerio, B; Capella, C; Solcia, E; Prat, M; Bara, J; Samloff, I M
1990-06-01
It has been found by immunohistochemical staining that antigens normally found in gastric and/or intestinal epithelial cells are expressed in most differentiated duct cell carcinomas of the pancreas. Among 88 such tumors, 93% and 92%, respectively, expressed M1 and cathepsin E, markers of gastric surface-foveolar epithelial cells, 51% expressed pepsinogen II, a marker of gastroduodenal mucopeptic cells, 48% expressed CAR-5, a marker of colorectal epithelial cells, and 35% expressed M3SI, a marker of small intestinal goblet cells. Most of the tumors also expressed normal pancreatic duct antigens; 97% expressed DU-PAN-2, and 59% expressed N-terminus gastrin-releasing peptide. In agreement with these findings, electron microscopy revealed malignant cells with fine structural features of gastric foveolar cells, gastric mucopeptic cells, intestinal goblet cells, intestinal columnar cells, pancreatic duct epithelial cells, and cells with features of more than one cell type. Normal pancreatic duct epithelium did not express any marker of gastrointestinal epithelial cells, whereas such benign lesions as mucinous cell hypertrophy and papillary hyperplasia commonly expressed gut-type antigens but rarely expressed pancreatic duct cell markers. By contrast, lesions characterized by atypical papillary hyperplasia commonly expressed both gastric and pancreatic duct cell markers. Metaplastic pyloric-type glands expressed pepsinogen II and, except for their expression of cathepsin E, were indistinguishable from normal pyloric glands. In marked contrast, the immunohistochemical and ultrastructural features of 14 ductuloacinar cell tumors were those of cells lining terminal ductules, centroacinar cells, and/or acinar cells; none expressed any gut-type antigen. The results indicate that gastrointestinal differentiation is common in both benign and malignant lesions of pancreatic duct epithelium and suggest that duct cell carcinomas are histogenetically related to gastric- and intestinal-type metaplastic changes of epithelial cells lining the main and interlobular ducts of the pancreas.
Chao, Tianle; Wang, Guizhi; Ji, Zhibin; Liu, Zhaohua; Hou, Lei; Wang, Jin; Wang, Jianmin
2017-07-13
The large intestine, also known as the hindgut, is an important part of the animal digestive system. Recent studies on digestive system development in ruminants have focused on the rumen and the small intestine, but the molecular mechanisms underlying sheep large intestine metabolism remain poorly understood. To identify genes related to intestinal metabolism and to reveal molecular regulation mechanisms, we sequenced and compared the transcriptomes of mucosal epithelial tissues among the cecum, proximal colon and duodenum. A total of 4,221 transcripts from 3,254 genes were identified as differentially expressed transcripts. Between the large intestine and duodenum, differentially expressed transcripts were found to be significantly enriched in 6 metabolism-related pathways, among which PPAR signaling was identified as a key pathway. Three genes, CPT1A, LPL and PCK1, were identified as higher expression hub genes in the large intestine. Between the cecum and colon, differentially expressed transcripts were significantly enriched in 5 lipid metabolism related pathways, and CEPT1 and MBOAT1 were identified as hub genes. This study provides important information regarding the molecular mechanisms of intestinal metabolism in sheep and may provide a basis for further study.
Qin, Xin; Dong, Hui; Lu, Fu-Er
2016-06-01
Intestinal tight junction is an important part of the small intestinal mucosa barrier. It plays a very significant role in maintaining the intestinal mucosal permeability and integrity, preventing the bacterial endotoxin and toxic macromolecular substances into the body so as to keep a stable internal environment. Numerous studies have shown that intestinal mucosal barrier dysfunction is closely related to the development of diabetes. Therefore, protecting intestinal tight junction and maintaining the mucosal barrier have great significance in the prevention and treatment of diabetes. The effect of berberine in diabetes treatment is obvious. However, the pharmacological study found that the bioavailability of berberine is extremely low. Some scholars put forward that the major site of pharmaceutical action of berberine might be in the gut. Studies have shown that berberine could regulate the intestinal flora and intestinal hormone secretion, protect the intestinal barrier, inhibit the absorption of glucose, eliminate the intestinal inflammation and so on. Recently studies have found that the hypoglycemic effect of berberine is likely to relate with the influence on intestinal tight junction and the protection of mucosal barrier. Here is the review about the association between intestinal tight junction barrier dysfunction and diabetes, and the related hypoglycemic mechanism of berberine. Copyright© by the Chinese Pharmaceutical Association.
WNT signaling controls expression of pro-apoptotic BOK and BAX in intestinal cancer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zeilstra, Jurrit; Joosten, Sander P.J.; Wensveen, Felix M.
Research highlights: {yields} Intestinal adenomas initiated by aberrant activation of the WNT pathway displayed an increased sensitivity to apoptosis. {yields} Expression profiling of apoptosis-related genes in Apc{sup Min/+} mice revealed the differential expression of pro-apoptotic Bok and Bax. {yields} APC-mutant adenomatous crypts in FAP patients showed strongly increased BAX immunoreactivity. {yields} Blocking of {beta}-catenin/TCF-4-mediated signaling in colon cancer cells reduced the expression of BOK and BAX. -- Abstract: In a majority of cases, colorectal cancer is initiated by aberrant activation of the WNT signaling pathway. Mutation of the genes encoding the WNT signaling components adenomatous polyposis coli or {beta}-catenin causesmore » constitutively active {beta}-catenin/TCF-mediated transcription, driving the transformation of intestinal crypts to cancer precursor lesions, called dysplastic aberrant crypt foci. Deregulated apoptosis is a hallmark of adenomatous colon tissue. However, the contribution of WNT signaling to this process is not fully understood. We addressed this role by analyzing the rate of epithelial apoptosis in aberrant crypts and adenomas of the Apc{sup Min/+} mouse model. In comparison with normal crypts and adenomas, aberrant crypts displayed a dramatically increased rate of apoptotic cell death. Expression profiling of apoptosis-related genes along the crypt-villus axis and in Apc mutant adenomas revealed increased expression of two pro-apoptotic Bcl-2 family members in intestinal adenomas, Bok and Bax. Analysis of the colon of familial adenomatous polyposis (FAP) patients along the crypt-to-surface axis, and of dysplastic crypts, corroborated this expression pattern. Disruption of {beta}-catenin/TCF-4-mediated signaling in the colorectal cancer cell line Ls174T significantly decreased BOK and BAX expression, confirming WNT-dependent regulation in intestinal epithelial cells. Our results suggest a feedback mechanism by which uncontrolled epithelial cell proliferation in the stem cell compartment can be counterbalanced by an increased propensity to undergo cell death.« less
Koppes, Abigail N; Kamath, Megha; Pfluger, Courtney A; Burkey, Daniel D; Dokmeci, Mehmet; Wang, Lin; Carrier, Rebecca L
2016-08-22
Native small intestine possesses distinct multi-scale structures (e.g., crypts, villi) not included in traditional 2D intestinal culture models for drug delivery and regenerative medicine. The known impact of structure on cell function motivates exploration of the influence of intestinal topography on the phenotype of cultured epithelial cells, but the irregular, macro- to submicron-scale features of native intestine are challenging to precisely replicate in cellular growth substrates. Herein, we utilized chemical vapor deposition of Parylene C on decellularized porcine small intestine to create polymeric intestinal replicas containing biomimetic irregular, multi-scale structures. These replicas were used as molds for polydimethylsiloxane (PDMS) growth substrates with macro to submicron intestinal topographical features. Resultant PDMS replicas exhibit multiscale resolution including macro- to micro-scale folds, crypt and villus structures, and submicron-scale features of the underlying basement membrane. After 10 d of human epithelial colorectal cell culture on PDMS substrates, the inclusion of biomimetic topographical features enhanced alkaline phosphatase expression 2.3-fold compared to flat controls, suggesting biomimetic topography is important in induced epithelial differentiation. This work presents a facile, inexpensive method for precisely replicating complex hierarchal features of native tissue, towards a new model for regenerative medicine and drug delivery for intestinal disorders and diseases.
[Cell renovation in the intestinal epithelium in aging].
Gusel'nikova, E A; Konovalov, S S; Poliakova, V O; Kvetnoĭ, I M
2010-01-01
The ability to cell renovation of two basic cell types of intestinal mucosa is the important mechanism for the regulation and support of the gut physiological functions in aging and under the influence of the ecological negative factors. The study of the processes of cell renovation of the intestinal epithelial and neuroendocrine cells in physiological and radiological aging has a great interest, because the irradiation in the subletal doses could be considered as the model of artificial aging, and this fact enables studying of the radiological influence as the ecological factor, promoting the aging. In this study, the increase of cell proliferation in intestinal mucosa in physiological as well as artificial aging was observed. It was shown, that the total population of mitotic cells increases two times. These data testify about active participation of the mechanisms of cell renovation in the safety of gut functions during aging.
Taylor, C T; Murphy, A; Kelleher, D; Baird, A W
1997-01-01
BACKGROUND: Elements of the mucosal immune system may play an important part in regulating epithelial barrier function in the intestinal tract. Intraepithelial lymphocytes (IELs) represent a subtype of immunocyte which is strategically placed to regulate epithelial function at most mucosal sites. AIMS AND METHODS: An IEL derived cell line (SC1) was used to examine its effects on the model epithelium T84--a tumour derived cell line which retains the phenotype of colonic crypt cells. Transepithelial electrical resistance (TER) was used as a marker of epithelial integrity. RESULTS: Coculture of T84 cells with SC1 produced a significant fall in TER as did exposure of T84 monolayers to IEL derived supernatant. Recombinant interferon-gamma (rIFN gamma) also reduced TER in T84 monolayers. Cycloheximide prevented the effects of IEL supernatant and of rIFN gamma on TER. The fall in TER in response to rIFN gamma was attenuated by blocking antibodies, which did not alter the fall in resistance induced by IEL supernatant. Fractions of IEL supernatant, separated on the basis of size, evoked temporally distinct changes in TER. Ultrastructural studies support the hypothesis that the slow onset but severe fall in TER indicates catastrophic effects on the monolayer. The more rapid onset fall in TER was not associated with gross changes in monolayer morphology. Reduction of TER by IEL supernatant was not influenced by inhibitors of tyrosine phosphatase or of protein kinase C. Although herbimycin did reduce the rapid onset change in TER, the tyrosine kinase inhibitor genistein did not alter responses to IEL supernatant. CONCLUSIONS: Mucosal T cells may influence barrier function by a process involving new protein synthesis by epithelial cells. This model may have relevance in some inflammatory conditions of the gastrointestinal tract. Images PMID:9203943
Landy, Jonathan; Ronde, Emma; English, Nick; Clark, Sue K; Hart, Ailsa L; Knight, Stella C; Ciclitira, Paul J; Al-Hassi, Hafid Omar
2016-01-01
Inflammatory bowel diseases are characterised by inflammation that compromises the integrity of the epithelial barrier. The intestinal epithelium is not only a static barrier but has evolved complex mechanisms to control and regulate bacterial interactions with the mucosal surface. Apical tight junction proteins are critical in the maintenance of epithelial barrier function and control of paracellular permeability. The characterisation of alterations in tight junction proteins as key players in epithelial barrier function in inflammatory bowel diseases is rapidly enhancing our understanding of critical mechanisms in disease pathogenesis as well as novel therapeutic opportunities. Here we give an overview of recent literature focusing on the role of tight junction proteins, in particular claudins, in inflammatory bowel diseases and inflammatory bowel disease associated colorectal cancer. PMID:27003989
DOE Office of Scientific and Technical Information (OSTI.GOV)
Horita, Nobukatsu; Tsuchiya, Kiichiro, E-mail: kii.gast@tmd.ac.jp; Hayashi, Ryohei
Highlights: • Lentivirus mixed with Matrigel enables direct infection of intestinal organoids. • Our original approach allows the marking of a single stem cell in a crypt. • Time-lapse imaging shows the dynamics of a single stem cell. • Our lentivirus transgene system demonstrates plural long-lived stem cells in a crypt. - Abstract: Background and aims: The dynamics of intestinal stem cells are crucial for regulation of intestinal function and maintenance. Although crypt stem cells have been identified in the intestine by genetic marking methods, identification of plural crypt stem cells has not yet been achieved as they are visualisedmore » in the same colour. Methods: Intestinal organoids were transferred into Matrigel® mixed with lentivirus encoding mCherry. The dynamics of mCherry-positive cells was analysed using time-lapse imaging, and the localisation of mCherry-positive cells was analysed using 3D immunofluorescence. Results: We established an original method for the introduction of a transgene into an organoid generated from mouse small intestine that resulted in continuous fluorescence of the mCherry protein in a portion of organoid cells. Three-dimensional analysis using confocal microscopy showed a single mCherry-positive cell in an organoid crypt that had been cultured for >1 year, which suggested the presence of long-lived mCherry-positive and -negative stem cells in the same crypt. Moreover, a single mCherry-positive stem cell in a crypt gave rise to both crypt base columnar cells and transit amplifying cells. Each mCherry-positive and -negative cell contributed to the generation of organoids. Conclusions: The use of our original lentiviral transgene system to mark individual organoid crypt stem cells showed that long-lived plural crypt stem cells might independently serve as intestinal epithelial cells, resulting in the formation of a completely functional villus.« less
Thwaites, D T; Ford, D; Glanville, M; Simmons, N L
1999-09-01
The intestinal absorption of many nutrients and drug molecules is mediated by ion-driven transport mechanisms in the intestinal enterocyte plasma membrane. Clearly, the establishment and maintenance of the driving forces - transepithelial ion gradients - are vital for maximum nutrient absorption. The purpose of this study was to determine the nature of intracellular pH (pH(i)) regulation in response to H(+)-coupled transport at the apical membrane of human intestinal epithelial Caco-2 cells. Using isoform-specific primers, mRNA transcripts of the Na(+)/H(+) exchangers NHE1, NHE2, and NHE3 were detected by RT-PCR, and identities were confirmed by sequencing. The functional profile of Na(+)/H(+) exchange was determined by a combination of pH(i), (22)Na(+) influx, and EIPA inhibition experiments. Functional NHE1 and NHE3 activities were identified at the basolateral and apical membranes, respectively. H(+)/solute-induced acidification (using glycylsarcosine or beta-alanine) led to Na(+)-dependent, EIPA-inhibitable pH(i) recovery or EIPA-inhibitable (22)Na(+) influx at the apical membrane only. Selective activation of apical (but not basolateral) Na(+)/H(+) exchange by H(+)/solute cotransport demonstrates that coordinated activity of H(+)/solute symport with apical Na(+)/H(+) exchange optimizes the efficient absorption of nutrients and Na(+), while maintaining pH(i) and the ion gradients involved in driving transport.
The Spectrin cytoskeleton regulates the Hippo signalling pathway.
Fletcher, Georgina C; Elbediwy, Ahmed; Khanal, Ichha; Ribeiro, Paulo S; Tapon, Nic; Thompson, Barry J
2015-04-01
The Spectrin cytoskeleton is known to be polarised in epithelial cells, yet its role remains poorly understood. Here, we show that the Spectrin cytoskeleton controls Hippo signalling. In the developing Drosophila wing and eye, loss of apical Spectrins (alpha/beta-heavy dimers) produces tissue overgrowth and mis-regulation of Hippo target genes, similar to loss of Crumbs (Crb) or the FERM-domain protein Expanded (Ex). Apical beta-heavy Spectrin binds to Ex and co-localises with it at the apical membrane to antagonise Yki activity. Interestingly, in both the ovarian follicular epithelium and intestinal epithelium of Drosophila, apical Spectrins and Crb are dispensable for repression of Yki, while basolateral Spectrins (alpha/beta dimers) are essential. Finally, the Spectrin cytoskeleton is required to regulate the localisation of the Hippo pathway effector YAP in response to cell density human epithelial cells. Our findings identify both apical and basolateral Spectrins as regulators of Hippo signalling and suggest Spectrins as potential mechanosensors. © 2015 The Authors. Published under the terms of the CC BY 4.0 license.
Down-regulation of Intestinal Apical Calcium Entry Channel TRPV6 by Ubiquitin E3 Ligase Nedd4-2*
Zhang, Wei; Na, Tao; Wu, Guojin; Jing, Haiyan; Peng, Ji-Bin
2010-01-01
Nedd4-2 is an archetypal HECT ubiquitin E3 ligase that disposes target proteins for degradation. Because of the proven roles of Nedd4-2 in degradation of membrane proteins, such as epithelial Na+ channel, we examined the effect of Nedd4-2 on the apical Ca2+ channel TRPV6, which is involved in transcellular Ca2+ transport in the intestine using the Xenopus laevis oocyte system. We demonstrated that a significant amount of Nedd4-2 protein was distributed to the absorptive epithelial cells in ileum, cecum, and colon along with TRPV6. When co-expressed in oocytes, Nedd4-2 and, to a lesser extent, Nedd4 down-regulated the protein abundance and Ca2+ influx of TRPV6 and TRPV5, respectively. TRPV6 ubiquitination was increased, and its stability was decreased by Nedd4-2. The Nedd4-2 inhibitory effects on TRPV6 were partially blocked by proteasome inhibitor MG132 but not by the lysosome inhibitor chloroquine. The rate of TRPV6 internalization was not significantly altered by Nedd4-2. The HECT domain was essential to the inhibitory effect of Nedd4-2 on TRPV6 and to their association. The WW1 and WW2 domains interacted with TRPV6 terminal regions, and a disruption of the interactions by D204H and D376H mutations in the WW1 and WW2 domains increased TRPV6 ubiquitination and degradation. Thus, WW1 and WW2 may serve as a molecular switch to limit the ubiquitination of TRPV6 by the HECT domain. In conclusion, Nedd4-2 may regulate TRPV6 protein abundance in intestinal epithelia by controlling TRPV6 ubiquitination. PMID:20843805
Down-regulation of intestinal apical calcium entry channel TRPV6 by ubiquitin E3 ligase Nedd4-2.
Zhang, Wei; Na, Tao; Wu, Guojin; Jing, Haiyan; Peng, Ji-Bin
2010-11-19
Nedd4-2 is an archetypal HECT ubiquitin E3 ligase that disposes target proteins for degradation. Because of the proven roles of Nedd4-2 in degradation of membrane proteins, such as epithelial Na(+) channel, we examined the effect of Nedd4-2 on the apical Ca(2+) channel TRPV6, which is involved in transcellular Ca(2+) transport in the intestine using the Xenopus laevis oocyte system. We demonstrated that a significant amount of Nedd4-2 protein was distributed to the absorptive epithelial cells in ileum, cecum, and colon along with TRPV6. When co-expressed in oocytes, Nedd4-2 and, to a lesser extent, Nedd4 down-regulated the protein abundance and Ca(2+) influx of TRPV6 and TRPV5, respectively. TRPV6 ubiquitination was increased, and its stability was decreased by Nedd4-2. The Nedd4-2 inhibitory effects on TRPV6 were partially blocked by proteasome inhibitor MG132 but not by the lysosome inhibitor chloroquine. The rate of TRPV6 internalization was not significantly altered by Nedd4-2. The HECT domain was essential to the inhibitory effect of Nedd4-2 on TRPV6 and to their association. The WW1 and WW2 domains interacted with TRPV6 terminal regions, and a disruption of the interactions by D204H and D376H mutations in the WW1 and WW2 domains increased TRPV6 ubiquitination and degradation. Thus, WW1 and WW2 may serve as a molecular switch to limit the ubiquitination of TRPV6 by the HECT domain. In conclusion, Nedd4-2 may regulate TRPV6 protein abundance in intestinal epithelia by controlling TRPV6 ubiquitination.
Richmond, Amy L.; Kabi, Amrita; Homer, Craig R.; García, Noemí Marina; Nickerson, Kourtney P.; NesvizhskiI, Alexey I.; Sreekumar, Arun; Chinnaiyan, Arul M.; Nuñez, Gabriel; McDonald, Christine
2013-01-01
BACKGROUND & AIMS Polymorphisms that reduce the function of nucleotide-binding oligomerization domain (NOD)2, a bacterial sensor, have been associated with Crohn’s disease (CD). No proteins that regulate NOD2 activity have been identified as selective pharmacologic targets. We sought to discover regulators of NOD2 that might be pharmacologic targets for CD therapies. METHODS Carbamoyl phosphate synthetase/ aspartate transcarbamylase/dihydroorotase (CAD) is an enzyme required for de novo pyrimidine nucleotide synthesis; it was identified as a NOD2-interacting protein by immunoprecipitation-coupled mass spectrometry. CAD expression was assessed in colon tissues from individuals with and without inflammatory bowel disease by immunohistochemistry. The interaction between CAD and NOD2 was assessed in human HCT116 intestinal epithelial cells by immunoprecipitation, immunoblot, reporter gene, and gentamicin protection assays. We also analyzed human cell lines that express variants of NOD2 and the effects of RNA interference, overexpression and CAD inhibitors. RESULTS CAD was identified as a NOD2-interacting protein expressed at increased levels in the intestinal epithelium of patients with CD compared with controls. Overexpression of CAD inhibited NOD2-dependent activation of nuclear factor κB and p38 mitogen-activated protein kinase, as well as intracellular killing of Salmonella. Reduction of CAD expression or administration of CAD inhibitors increased NOD2-dependent signaling and antibacterial functions of NOD2 variants that are and are not associated with CD. CONCLUSIONS The nucleotide synthesis enzyme CAD is a negative regulator of NOD2. The antibacterial function of NOD2 variants that have been associated with CD increased in response to pharmacologic inhibition of CAD. CAD is a potential therapeutic target for CD. PMID:22387394
Bribi, Noureddine; Algieri, Francesca; Rodriguez-Nogales, Alba; Vezza, Teresa; Garrido-Mesa, Jose; Utrilla, María Pilar; Del Mar Contreras, María; Maiza, Fadila; Segura-Carretero, Antonio; Rodriguez-Cabezas, Maria Elena; Gálvez, Julio
2016-08-15
Fumaria capreolata L. (Papaveraceae) is a botanical drug used in North Africa for its gastro-intestinal and anti-inflammatory properties. It is characterized for the presence of several alkaloids that could be responsible for some of its effects, including an immunomodulatory activity. To test in vivo the intestinal anti-inflammatory properties of the total alkaloid fraction extracted from the aerial parts of F. capreolata (AFC), and to evaluate its effects on an intestinal epithelial cell line. AFC was chemically characterized by liquid chromatography coupled to diode array detection and high resolution mass spectrometry. Different doses of AFC (25, 50 and 100mg/kg) were assayed in the DNBS model of experimental colitis in mice, and the colonic damage was evaluated both histologically and biochemically. In addition, in vitro experiments were performed with this alkaloid fraction on the mouse intestinal epithelial cell line CMT93 stimulated with LPS. The chemical analysis of AFC revealed the presence of 23 alkaloids, being the most abundants stylopine, protopine and coptisine. Oral administration of AFC produced a significant inhibition of the release and the expression of IL-6 and TNF-α in the colonic tissue. It also suppressed in vivo the transcription of other pro-inflammatory mediators such as IL-1β, iNOS, IL-12 and IL-17. Furthermore, AFC showed an immunomodulatory effect in vitro since it was able to inhibit the mRNA expression of IL-6, TNF-α and ICAM-1. Moreover, the beneficial effect of AFC in the colitic mice could also be associated with the normalization of the expression of MUC-2 and ZO-1, which are important for the intestinal epithelial integrity. The present study suggests that AFC, containing 1.3% of stylopine and 0.9% of protopine, significantly exerted intestinal anti-inflammatory effects in an experimental model of mouse colitis. This fact could be related to a modulation of the intestinal immune response and a restoration of the intestinal epithelial function. Copyright © 2016 Elsevier GmbH. All rights reserved.
Roach, Gillian; Wallace, Rachel Heath; Cameron, Amy; Ozel, Rifat Emrah; Hongay, Cintia F.; Baral, Reshica; Andreescu, Silvana; Wallace, Kenneth N.
2013-01-01
The vertebrate intestinal epithelium is renewed continuously from stem cells at the base of the crypt in mammals or base of the fold in fish over the life of the organism. As stem cells divide, newly formed epithelial cells make an initial choice between a secretory or enterocyte fate. This choice has previously been demonstrated to involve Notch signaling as well as Atonal and Her transcription factors in both embryogenesis and adults. Here, we demonstrate that in contrast to the atoh1 in mammals, ascl1a is responsible for formation of secretory cells in zebrafish. ascl1a−/− embryos lack all intestinal epithelial secretory cells and instead differentiate into enterocytes. ascl1a−/− embryos also fail to induce intestinal epithelial expression of deltaD suggesting that ascl1a plays a role in initiation of Notch signaling. Inhibition of Notch signaling increases the number of ascl1a and deltaD expressing intestinal epithelial cells as well as the number of developing secretory cells during two specific time periods: between 30 and 34 hpf and again between 64 and 74 hpf. Loss of enteroendocrine products results in loss of anterograde motility in ascl1a−/− embryos. 5HT produced by enterochromaffin cells is critical in motility and secretion within the intestine. We find that addition of exogenous 5HT to ascl1a−/− embryos at near physiological levels (measured by differential pulse voltammetry) induce anterograde motility at similar levels to wild type velocity, distance, and frequency. Removal or doubling the concentration of 5HT in WT embryos does not significantly affect anterograde motility, suggesting that the loss of additional enteroendocrine products in ascl1a−/− embryos also contributes to intestinal motility. Thus, zebrafish intestinal epithelial cells appear to have a common secretory progenitor from which all subtypes form. Loss of enteroendocrine cells reveals the critical need for enteroendocrine products in maintenance of normal intestinal motility. PMID:23353550
To better understand and study the infection of the protozoan parasite Cryptosporidium parvum, a more sensitive in vitro assay is required. In vivo, this parasite infects the epithelial cells of the microvilli layer in the small intestine. While cell infection models using colon,...
Ritchie, Jennifer M.; Rui, Haopeng; Zhou, Xiaohui; Iida, Tetsuya; Kodoma, Toshio; Ito, Susuma; Davis, Brigid M.; Bronson, Roderick T.; Waldor, Matthew K.
2012-01-01
Vibrio parahaemolyticus is a leading cause of seafood-borne gastroenteritis in many parts of the world, but there is limited knowledge of the pathogenesis of V. parahaemolyticus-induced diarrhea. The absence of an oral infection-based small animal model to study V. parahaemolyticus intestinal colonization and disease has constrained analyses of the course of infection and the factors that mediate it. Here, we demonstrate that infant rabbits oro-gastrically inoculated with V. parahaemolyticus develop severe diarrhea and enteritis, the main clinical and pathologic manifestations of disease in infected individuals. The pathogen principally colonizes the distal small intestine, and this colonization is dependent upon type III secretion system 2. The distal small intestine is also the major site of V. parahaemolyticus-induced tissue damage, reduced epithelial barrier function, and inflammation, suggesting that disease in this region of the gastrointestinal tract accounts for most of the diarrhea that accompanies V. parahaemolyticus infection. Infection appears to proceed through a characteristic sequence of steps that includes remarkable elongation of microvilli and the formation of V. parahaemolyticus-filled cavities within the epithelial surface, and culminates in villus disruption. Both depletion of epithelial cell cytoplasm and epithelial cell extrusion contribute to formation of the cavities in the epithelial surface. V. parahaemolyticus also induces proliferation of epithelial cells and recruitment of inflammatory cells, both of which occur before wide-spread damage to the epithelium is evident. Collectively, our findings suggest that V. parahaemolyticus damages the host intestine and elicits disease via previously undescribed processes and mechanisms. PMID:22438811
A Key Claudin Extracellular Loop Domain is Critical for Epithelial Barrier Integrity
Mrsny, Randall J.; Brown, G. Thomas; Gerner-Smidt, Kirsten; Buret, Andre G.; Meddings, Jon B.; Quan, Clifford; Koval, Michael; Nusrat, Asma
2008-01-01
Intercellular tight junctions (TJs) regulate epithelial barrier properties. Claudins are major structural constituents of TJs and belong to a large family of tetra-spanning membrane proteins that have two predicted extracellular loops (ELs). Given that claudin-1 is widely expressed in epithelia, we further defined the role of its EL domains in determining TJ function. The effects of several claudin-1 EL mimetic peptides on epithelial barrier structure and function were examined. Incubation of model human intestinal epithelial cells with a 27-amino acid peptide corresponding to a portion of the first EL domain (Cldn-153–80) reversibly interfered with epithelial barrier function by inducing the rearrangement of key TJ proteins: occludin, claudin-1, junctional adhesion molecule-A, and zonula occludens-1. Cldn-153–80 associated with both claudin-1 and occludin, suggesting both the direct interference with the ability of these proteins to assemble into functional TJs and their close interaction under physiological conditions. These effects were specific for Cldn-153–80, because peptides corresponding to other claudin-1 EL domains failed to influence TJ function. Furthermore, the oral administration of Cldn-153–80 to rats increased paracellular gastric permeability. Thus, the identification of a critical claudin-1 EL motif, Cldn-153–80, capable of regulating TJ structure and function, offers a useful adjunct to treatments that require drug delivery across an epithelial barrier. PMID:18349130
van Dop, Willemijn A; Rosekrans, Sanne L; Uhmann, Anja; Jaks, Viljar; Offerhaus, G Johan A; van den Bergh Weerman, Marius A; Kasper, Maria; Heijmans, Jarom; Hardwick, James C H; Verspaget, Hein W; Hommes, Daan W; Toftgård, Rune; Hahn, Heidi; van den Brink, Gijs R
2013-03-01
In the intestine Hedgehog (Hh) signalling is directed from epithelium to mesenchyme and negatively regulates epithelial precursor cell fate. The role of Hh signalling in the oesophagus has not been studied in vivo. Here the authors examined the role of Hh signalling in epithelial homeostasis of oesophagus. The authors used transgenic mice in which the Hh receptor Patched1 (Ptch1) could be conditionally inactivated in a body-wide manner and mice in which Gli1 could be induced specifically in the epithelium of the skin and oesophagus. Effects on epithelial homeostasis of the oesophagus were examined using immunohistochemistry, in situ hybridisation, transmission electron microscopy and real-time PCR. Hh signalling was examined in patients with oesophageal squamous cell carcinoma (SCC) by quantitative real-time PCR. Sonic Hh is signalled in an autocrine manner in the basal layer of the oesophagus. Activation of Hh signalling resulted in an expansion of the epithelial precursor cell compartment and failure of epithelial maturation and migration. Levels of Hh targets GLI1, HHIP and PTCH1 were increased in SCC compared with normal tissue from the same patients. Here the authors find that Hh signalling positively regulates the precursor cell compartment in the oesophageal epithelium in an autocrine manner. Since Hh signalling targets precursor cells in the oesophageal epithelium and signalling is increased in SCCs, Hh signalling may be involved in oesophageal SCC formation.
Satora, Leszek; Kozioł, Katarzyna; Zebrowski, Jacek
2017-06-01
Accessory respiratory organs in fish exhibit great diversity but share the presence of numerous capillaries covered by a simple squamous epithelium. The adoption of the intestine for respiratory function needs certain special modifications. In this study, we explored immunohistochemical and metabolic fingerprint features that could underlay this adaptation in bronze corydoras Corydoras aeneus. Immunohistochemical localization of the cytoplasmic domain of epidermal growth factor receptor (EGFR) in the respiratory part of intestine demonstrated a strong positive immunoreaction in epithelial cells and connective tissue. Fourier Transfer Infrared (FTIR) spectroscopy coupled with chemometrics discriminated between anterior and posterior region of intestine in terms of secondary structure of proteins and the abundance of p-cresol and other phenolics. The latter were reduced in the posterior part of intestine, indicating the cessation of digestive function in this region. It has been suggested that aquatic hypoxia via endocrine cells (hypoxia-sensitive) activate EGFR, which induce proliferation of squamous epithelial cells, thereby enabling gas diffusion in the posterior part of intestine. It seems that hypoxia and normoxia are opposed conditions adjusting the production of squamous epithelial cells in this intestine. The physiological role of EGFR in the respiratory intestine of bronze corydoras is of interest not only from an evolutionary aspect but also in terms of a potential model for observations process proliferation squamous epithelial cells. Future investigations on the molecular responses to different water oxygen levels in air-breathing bronze corydoras fish are required to clarify the mechanism responsible for squamous cell proliferation. Copyright © 2017 Elsevier GmbH. All rights reserved.
Werner, Lael; Paclik, Daniela; Fritz, Christina; Reinhold, Dirk; Roggenbuck, Dirk; Sturm, Andreas
2012-09-15
Pancreatic autoantibodies are Crohn disease-specific serologic markers. The function and immunological role of their recently identified autoantigen, glycoprotein 2 (GP2), are unknown. We therefore investigated the impact of GP2 on modulation of innate and adaptive immune responses to evaluate its potential therapeutic use in mucosal inflammation. Our data indicate a previously unknown function for GP2 as an immunomodulator. GP2 was ubiquitously expressed on cells vital to mucosal immune responses. The expression of GP2 was upregulated on activated human T cells, and it was further influenced by pharmaceutical TNF-α inhibitors. Recombinant GP2 significantly decreased human intestinal epithelial cells, mucosal and peripheral T cell proliferation, apoptosis, and activation, and it distinctly modulated cytokine secretion. Furthermore, intestinal epithelial cells stimulated with GP2 potently attracted T cells. In conclusion, we demonstrate a novel role for GP2 in immune regulation that could provide a platform for new therapeutic interventions in the treatment of Crohn disease.
Taverner, Alistair; Dondi, Ruggero; Almansour, Khaled; Laurent, Floriane; Owens, Siân-Eleri; Eggleston, Ian M; Fotaki, Nikoletta; Mrsny, Randall J
2015-07-28
The intestinal epithelium functions to effectively restrict the causal uptake of luminal contents but has been demonstrated to transiently increase paracellular permeability properties to provide an additional entry route for dietary macromolecules. We have examined a method to emulate this endogenous mechanism as a means of enhancing the oral uptake of insulin. Two sets of stable Permeant Inhibitor of Phosphatase (PIP) peptides were rationally designed to stimulate phosphorylation of intracellular epithelial myosin light chain (MLC) and screened using Caco-2 monolayers in vitro. Apical application of PIP peptide 640, designed to disrupt protein-protein interactions between protein phosphatase 1 (PP1) and its regulator CPI-17, resulted in a reversible and non-toxic transient reduction in Caco-2 monolayer trans-epithelial electric resistance (TEER) and opening of the paracellular route to 4kDa fluorescent dextran but not 70kDa dextran in vitro. Apical application of PIP peptide 250, designed to impede MYPT1-mediated regulation of PP1, also decreased TEER in a reversible and non-toxic manner but transiently opened the paracellular route to both 4 and 70kDa fluorescent dextrans. Direct injection of PIP peptides 640 or 250 with human insulin into the lumen of rat jejunum caused a decrease in blood glucose levels that was PIP peptide and insulin dose-dependent and correlated with increased pMLC levels. Systemic levels of insulin suggested approximately 3-4% of the dose injected into the intestinal lumen was absorbed, relative to a subcutaneous injection. Measurement of insulin levels in the portal vein showed a time window of absorption that was consistent with systemic concentration-time profiles and approximately 50% first-pass clearance by the liver. Monitoring the uptake of a fluorescent form of insulin suggested its uptake occurred via the paracellular route. Together, these studies add validation to the presence of an endogenous mechanism used by the intestinal epithelium to dynamically regulate its paracellular permeability properties and better define the potential to enhance the oral delivery of biopharmaceuticals via a transient regulation of an endogenous mechanism controlling the intestinal paracellular barrier. Copyright © 2015. Published by Elsevier B.V.
Zhai, Zongzhao; Boquete, Jean-Philippe; Lemaitre, Bruno
2018-05-03
Intestinal infection triggers potent immune responses to combat pathogens and concomitantly drives epithelial renewal to maintain barrier integrity. Current models propose that epithelial renewal is primarily driven by damage caused by reactive oxygen species (ROS). Here we found that in Drosophila, the Imd-NF-κB pathway controlled enterocyte (EC) shedding upon infection, via a mechanism independent of ROS-associated apoptosis. Mechanistically, the Imd pathway synergized with JNK signaling to induce epithelial cell shedding specifically in the context of bacterial infection, requiring also the reduced expression of the transcription factor GATAe. Furthermore, cell-specific NF-κB responses enabled simultaneous production of antimicrobial peptides (AMPs) and epithelial shedding in different EC populations. Thus, the Imd-NF-κB pathway is central to the intestinal antibacterial response by mediating both AMP production and the maintenance of barrier integrity. Considering the similarities between Drosophila Imd signaling and mammalian TNFR pathway, our findings suggest the existence of an evolutionarily conserved genetic program in immunity-induced epithelial shedding. Copyright © 2018 Elsevier Inc. All rights reserved.
Polyamine regulation of ornithine decarboxylase and its antizyme in intestinal epithelial cells.
Yuan, Q; Ray, R M; Viar, M J; Johnson, L R
2001-01-01
Ornithine decarboxylase (ODC) is feedback regulated by polyamines. ODC antizyme mediates this process by forming a complex with ODC and enhancing its degradation. It has been reported that polyamines induce ODC antizyme and inhibit ODC activity. Since exogenous polyamines can be converted to each other after they are taken up into cells, we used an inhibitor of S-adenosylmethionine decarboxylase, diethylglyoxal bis(guanylhydrazone) (DEGBG), to block the synthesis of spermidine and spermine from putrescine and investigated the specific roles of individual polyamines in the regulation of ODC in intestinal epithelial crypt (IEC-6) cells. We found that putrescine, spermidine, and spermine inhibited ODC activity stimulated by serum to 85, 46, and 0% of control, respectively, in the presence of DEGBG. ODC activity increased in DEGBG-treated cells, despite high intracellular putrescine levels. Although exogenous spermidine and spermine reduced ODC activity of DEGBG-treated cells close to control levels, spermine was more effective than spermidine. Exogenous putrescine was much less effective in inducing antizyme than spermidine or spermine. High putrescine levels in DEGBG-treated cells did not induce ODC antizyme when intracellular spermidine and spermine levels were low. The decay of ODC activity and reduction of ODC protein levels were not accompanied by induction of antizyme in the presence of DEGBG. Our results indicate that spermine is the most, and putrescine the least, effective polyamine in regulating ODC activity, and upregulation of antizyme is not required for the degradation of ODC protein.
[Epithelial intestine cells transdifferentiate into bladder urothelium in experiments in vivo].
Popov, B K; Zaĭchik, A M; Bud'ko, M B; Zlobina, O V; Tolkunova, E N; Zhidkova, O V; Petrov, N S
2011-01-01
The autoplastic surgery by intestine tissue has been used for reconstructive therapy of the urinary tract since the middle of the last century; however, cell mechanisms of the urothelium engraftment are still obscure. Intestine stem cells possess plasticity and presumably enable after the autoplastic surgery to transdifferentiate into mature cells of urinary tract. Using the preliminary developed in vivo model for evaluation of somatic cells transdifferentiation into urothelium, we have found that the epithelial intestine cells producing Gfp transdifferentiate into the cryoinjured bladder urothelium of the syngenetic C57BL mice. Gfp was detected in the bladder tissue of mice-recipients using reverted polymerase chain reaction, primary fluorescence and immunofluorescence, while colocalization of the Gfp and Her-4 revealing similar to urothelium staining pattern was demonstrated in a few urothelium cells by double immunohistochemical staining of the bladder tissue with specific antibodies. The results obtained suggest that epithelial intestine cells enable to transdifferentiate into bladder urothelium, however the transdifferentiation level is low and presumably can not provide full functional urothelium engraftment in the case of autoplastic bladder surgery by intestine tissue.
Probiotics and down-regulation of the allergic response.
Kalliomäki, Marko A; Isolauri, Erika
2004-11-01
The first clinical trials with probiotics, especially in the treatment of atopic eczema, have yielded encouraging results. Experimental studies have found that probiotics exert strain-specific effects in the intestinal lumen and on epithelial cells and immune cells with anti-allergic potential. These effects include enhancement in antigen degradation and gut barrier function and induction of regulatory and proinflammatory immune responses, the latter of which occurs more likely beyond the intestinal epithelium. Future studies should address more accurately how these and other possible mechanisms operate in the complex gastrointestinal macroenvironment in vivo and how these mechanisms are related to the clinical effects in a dose-dependent manner.
Alternative functional in vitro models of human intestinal epithelia
Kauffman, Amanda L.; Gyurdieva, Alexandra V.; Mabus, John R.; Ferguson, Chrissa; Yan, Zhengyin; Hornby, Pamela J.
2013-01-01
Physiologically relevant sources of absorptive intestinal epithelial cells are crucial for human drug transport studies. Human adenocarcinoma-derived intestinal cell lines, such as Caco-2, offer conveniences of easy culture maintenance and scalability, but do not fully recapitulate in vivo intestinal phenotypes. Additional sources of renewable physiologically relevant human intestinal cells would provide a much needed tool for drug discovery and intestinal physiology. We compared two alternative sources of human intestinal cells, commercially available primary human intestinal epithelial cells (hInEpCs) and induced pluripotent stem cell (iPSC)-derived intestinal cells to Caco-2, for use in in vitro transwell monolayer intestinal transport assays. To achieve this for iPSC-derived cells, intestinal organogenesis was adapted to transwell differentiation. Intestinal cells were assessed by marker expression through immunocytochemical and mRNA expression analyses, monolayer integrity through Transepithelial Electrical Resistance (TEER) measurements and molecule permeability, and functionality by taking advantage the well-characterized intestinal transport mechanisms. In most cases, marker expression for primary hInEpCs and iPSC-derived cells appeared to be as good as or better than Caco-2. Furthermore, transwell monolayers exhibited high TEER with low permeability. Primary hInEpCs showed molecule efflux indicative of P-glycoprotein (Pgp) transport. Primary hInEpCs and iPSC-derived cells also showed neonatal Fc receptor-dependent binding of immunoglobulin G variants. Primary hInEpCs and iPSC-derived intestinal cells exhibit expected marker expression and demonstrate basic functional monolayer formation, similar to or better than Caco-2. These cells could offer an alternative source of human intestinal cells for understanding normal intestinal epithelial physiology and drug transport. PMID:23847534
Alternative functional in vitro models of human intestinal epithelia.
Kauffman, Amanda L; Gyurdieva, Alexandra V; Mabus, John R; Ferguson, Chrissa; Yan, Zhengyin; Hornby, Pamela J
2013-01-01
Physiologically relevant sources of absorptive intestinal epithelial cells are crucial for human drug transport studies. Human adenocarcinoma-derived intestinal cell lines, such as Caco-2, offer conveniences of easy culture maintenance and scalability, but do not fully recapitulate in vivo intestinal phenotypes. Additional sources of renewable physiologically relevant human intestinal cells would provide a much needed tool for drug discovery and intestinal physiology. We compared two alternative sources of human intestinal cells, commercially available primary human intestinal epithelial cells (hInEpCs) and induced pluripotent stem cell (iPSC)-derived intestinal cells to Caco-2, for use in in vitro transwell monolayer intestinal transport assays. To achieve this for iPSC-derived cells, intestinal organogenesis was adapted to transwell differentiation. Intestinal cells were assessed by marker expression through immunocytochemical and mRNA expression analyses, monolayer integrity through Transepithelial Electrical Resistance (TEER) measurements and molecule permeability, and functionality by taking advantage the well-characterized intestinal transport mechanisms. In most cases, marker expression for primary hInEpCs and iPSC-derived cells appeared to be as good as or better than Caco-2. Furthermore, transwell monolayers exhibited high TEER with low permeability. Primary hInEpCs showed molecule efflux indicative of P-glycoprotein (Pgp) transport. Primary hInEpCs and iPSC-derived cells also showed neonatal Fc receptor-dependent binding of immunoglobulin G variants. Primary hInEpCs and iPSC-derived intestinal cells exhibit expected marker expression and demonstrate basic functional monolayer formation, similar to or better than Caco-2. These cells could offer an alternative source of human intestinal cells for understanding normal intestinal epithelial physiology and drug transport.
Synthesis of protein in intestinal cells exposed to cholera toxin
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peterson, J.W.; Berg, W.D. Jr.; Coppenhaver, D.H.
1987-11-01
The mechanism by which cyclic adenosine monophosphate (AMP), formed by intestinal epithelial cells in response to cholera toxin, ultimately results in alterations in water and electrolyte transport is poorly understood. Several studies have indicated that inhibitors of transcription or translation block much of the transport of ions and water in the intestine and edema formation in tissue elicited by cholera toxin. Data presented in this study confirmed the inhibitory effects of cycloheximide on cholera toxin-induced fluid accumulation in the rabbit intestinal loop model. Neither cycloheximide nor actinomycin D altered the amount of cyclic AMP that accumulated in intestinal cells andmore » Chinese hamster ovary cells exposed to cholera toxin. An increase in (/sup 3/H) leucine incorporation was readily demonstrable in intestinal epithelial cells from rabbits challenged with Vibrio cholerae. Similarly, intestinal epithelial cells incubated with cholera toxin for 4 hr synthesized substantially more protein than controls as determined by relative incorporation of (/sup 35/S) methionine. Most of the new protein synthesized in response to cholera toxin was membrane associated and of high molecular weight. The possible significance of the toxin-induced protein relative to cholera pathogenesis was discussed.« less
Secor, Stephen M; Taylor, Josi R; Grosell, Martin
2012-01-01
Snakes exhibit an apparent dichotomy in the regulation of gastrointestinal (GI) performance with feeding and fasting; frequently feeding species modestly regulate intestinal function whereas infrequently feeding species rapidly upregulate and downregulate intestinal function with the start and completion of each meal, respectively. The downregulatory response with fasting for infrequently feeding snakes is hypothesized to be a selective attribute that reduces energy expenditure between meals. To ascertain the links between feeding habit, whole-animal metabolism, and GI function and metabolism, we measured preprandial and postprandial metabolic rates and gastric and intestinal acid-base secretion, epithelial conductance and oxygen consumption for the frequently feeding diamondback water snake (Nerodia rhombifer) and the infrequently feeding Burmese python (Python molurus). Independent of body mass, Burmese pythons possess a significantly lower standard metabolic rate and respond to feeding with a much larger metabolic response compared with water snakes. While fasting, pythons cease gastric acid and intestinal base secretion, both of which are stimulated with feeding. In contrast, fasted water snakes secreted gastric acid and intestinal base at rates similar to those of digesting snakes. We observed no difference between fasted and fed individuals for either species in gastric or intestinal transepithelial potential and conductance, with the exception of a significantly greater gastric transepithelial potential for fed pythons at the start of titration. Water snakes experienced no significant change in gastric or intestinal metabolism with feeding. Fed pythons, in contrast, experienced a near-doubling of gastric metabolism and a tripling of intestinal metabolic rate. For fasted individuals, the metabolic rate of the stomach and small intestine was significantly lower for pythons than for water snakes. The fasting downregulation of digestive function for pythons is manifested in a depressed gastric and intestinal metabolism, which selectively serves to reduce basal metabolism and hence promote survival between infrequent meals. By maintaining elevated GI performance between meals, fasted water snakes incur the additional cost of tissue activity, which is expressed in a higher standard metabolic rate.
Enteric Virome Sensing—Its Role in Intestinal Homeostasis and Immunity
Metzger, Rebecca N.; Krug, Anne B.; Eisenächer, Katharina
2018-01-01
Pattern recognition receptors (PRRs) sensing commensal microorganisms in the intestine induce tightly controlled tonic signaling in the intestinal mucosa, which is required to maintain intestinal barrier integrity and immune homeostasis. At the same time, PRR signaling pathways rapidly trigger the innate immune defense against invasive pathogens in the intestine. Intestinal epithelial cells and mononuclear phagocytes in the intestine and the gut-associated lymphoid tissues are critically involved in sensing components of the microbiome and regulating immune responses in the intestine to sustain immune tolerance against harmless antigens and to prevent inflammation. These processes have been mostly investigated in the context of the bacterial components of the microbiome so far. The impact of viruses residing in the intestine and the virus sensors, which are activated by these enteric viruses, on intestinal homeostasis and inflammation is just beginning to be unraveled. In this review, we will summarize recent findings indicating an important role of the enteric virome for intestinal homeostasis as well as pathology when the immune system fails to control the enteric virome. We will provide an overview of the virus sensors and signaling pathways, operative in the intestine and the mononuclear phagocyte subsets, which can sense viruses and shape the intestinal immune response. We will discuss how these might interact with resident enteric viruses directly or in context with the bacterial microbiome to affect intestinal homeostasis. PMID:29570694
Liu, Lan; Ouyang, Miao; Rao, Jaladanki N.; Zou, Tongtong; Xiao, Lan; Chung, Hee Kyoung; Wu, Jing; Donahue, James M.; Gorospe, Myriam; Wang, Jian-Ying
2015-01-01
The mammalian intestinal epithelium is one of the most rapidly self-renewing tissues in the body, and its integrity is preserved through strict regulation. The RNA-binding protein (RBP) ELAV-like family member 1 (CELF1), also referred to as CUG-binding protein 1 (CUGBP1), regulates the stability and translation of target mRNAs and is implicated in many aspects of cellular physiology. We show that CELF1 competes with the RBP HuR to modulate MYC translation and regulates intestinal epithelial homeostasis. Growth inhibition of the small intestinal mucosa by fasting in mice was associated with increased CELF1/Myc mRNA association and decreased MYC expression. At the molecular level, CELF1 was found to bind the 3′-untranslated region (UTR) of Myc mRNA and repressed MYC translation without affecting total Myc mRNA levels. HuR interacted with the same Myc 3′-UTR element, and increasing the levels of HuR decreased CELF1 binding to Myc mRNA. In contrast, increasing the concentrations of CELF1 inhibited formation of the [HuR/Myc mRNA] complex. Depletion of cellular polyamines also increased CELF1 and enhanced CELF1 association with Myc mRNA, thus suppressing MYC translation. Moreover, ectopic CELF1 overexpression caused G1-phase growth arrest, whereas CELF1 silencing promoted cell proliferation. These results indicate that CELF1 represses MYC translation by decreasing Myc mRNA association with HuR and provide new insight into the molecular functions of RBPs in the regulation of intestinal mucosal growth. PMID:25808495
Scott, Kevin G-E; Meddings, Jonathon B; Kirk, David R; Lees-Miller, Susan P; Buret, André G
2002-10-01
Giardiasis causes malabsorptive diarrhea, and symptoms can be present in the absence of any significant morphologic injury to the intestinal mucosa. The effects of giardiasis on epithelial permeability in vivo remain unknown, and the role of T cells and myosin light chain kinase (MLCK) in altered intestinal barrier function is unclear. This study was conducted to determine whether Giardia spp. alters intestinal permeability in vivo, to assess whether these abnormalities are dependent on T cells, and to assess the role of MLCK in altered epithelial barrier function. Immunocompetent and isogenic athymic mice were inoculated with axenic Giardia muris trophozoites or sterile vehicle (control), then assessed for trophozoite colonization and gastrointestinal permeability. Mechanistic studies using nontransformed human duodenal epithelial monolayers (SCBN) determined the effects of Giardia on myosin light chain (MLC) phosphorylation, transepithelial fluorescein isothiocyanate-dextran fluxes, cytoskeletal F-actin, tight junctional zonula occludens-1 (ZO-1), and MLCK. Giardia infection caused a significant increase in small intestinal, but not gastric or colonic, permeability that correlated with trophozoite colonization in both immunocompetent and athymic mice. In vitro, Giardia increased permeability and phosphorylation of MLC and reorganized F-actin and ZO-1. These alterations were abolished with an MLCK inhibitor. Disruption of small intestinal barrier function is T cell independent, disappears on parasite clearance, and correlates with reorganization of cytoskeletal F-actin and tight junctional ZO-1 in an MLCK-dependent fashion.
Dall'Acqua, Stefano; Catanzaro, Daniela; Cocetta, Veronica; Igl, Nadine; Ragazzi, Eugenio; Giron, Maria Cecilia; Cecconello, Laura; Montopoli, Monica
2016-03-01
The triterpene esters ᴪ taraxasterol-3-O-myristate (1) and arnidiol-3-O-myristate (2) were tested for their ability to protect epithelial intestinal barrier in an in vitro model. Their effects on ROS production and on trans-epithelial resistance were investigated on CaCo-2 cell monolayers both in basal and stress-induced conditions. Both compounds were able to modulate the stress damage induced by H2O2 and INFγ+TNFα, showing a potential use as model compounds for the study of new therapeutic agents for intestinal inflammations. Copyright © 2016 Elsevier B.V. All rights reserved.
Digestive system dysfunction in cystic fibrosis: challenges for nutrition therapy.
Li, Li; Somerset, Shawn
2014-10-01
Cystic fibrosis can affect food digestion and nutrient absorption. The underlying mutation of the cystic fibrosis trans-membrane regulator gene depletes functional cystic fibrosis trans-membrane regulator on the surface of epithelial cells lining the digestive tract and associated organs, where Cl(-) secretion and subsequently secretion of water and other ions are impaired. This alters pH and dehydrates secretions that precipitate and obstruct the lumen, causing inflammation and the eventual degradation of the pancreas, liver, gallbladder and intestine. Associated conditions include exocrine pancreatic insufficiency, impaired bicarbonate and bile acid secretion and aberrant mucus formation, commonly leading to maldigestion and malabsorption, particularly of fat and fat-soluble vitamins. Pancreatic enzyme replacement therapy is used to address this insufficiency. The susceptibility of pancreatic lipase to acidic and enzymatic inactivation and decreased bile availability often impedes its efficacy. Brush border digestive enzyme activity and intestinal uptake of certain disaccharides and amino acids await clarification. Other complications that may contribute to maldigestion/malabsorption include small intestine bacterial overgrowth, enteric circular muscle dysfunction, abnormal intestinal mucus, and intestinal inflammation. However, there is some evidence that gastric digestive enzymes, colonic microflora, correction of fatty acid abnormalities using dietary n-3 polyunsaturated fatty acid supplementation and emerging intestinal biomarkers can complement nutrition management in cystic fibrosis. Copyright © 2014 Editrice Gastroenterologica Italiana S.r.l. Published by Elsevier Ltd. All rights reserved.
Jiang, Bin; Wang, Hui; Shen, Cunsi; Chen, Hao
2017-01-01
Intestinal fibrotic stricture is a major complication of Crohn's disease (CD) and epithelial-to-mesenchymal transition (EMT) is considered as an important contributor to the formation of intestinal fibrosis by increasing extracellular matrix (ECM) proteins. Curcumin, a compound derived from rhizomes of Curcuma, has been demonstrated with a potent antifibrotic effect. However, its effect on intestinal fibrosis and the potential mechanism is not completely understood. Here we found that curcumin pretreatment significantly represses TGF-β1-induced Smad pathway and decreases its downstream α-smooth muscle actin (α-SMA) gene expression in intestinal epithelial cells (IEC-6); in contrast, curcumin increases expression of E-cadherin and peroxisome proliferator-activated receptor γ (PPARγ) in IEC-6. Moreover, curcumin promotes nuclear translocation of PPARγ and the inhibitory effect of curcumin on EMT could be reversed by PPARγ antagonist GW9662. Consistently, in the rat model of intestinal fibrosis induced by 2,4,5-trinitrobenzene sulphonic acid (TNBS), oral curcumin attenuates intestinal fibrosis by increasing the expression of PPARγ and E-cadherin and decreasing the expression of α-SMA, FN, and CTGF in colon tissue. Collectively, these results indicated that curcumin is able to prevent EMT progress in intestinal fibrosis by PPARγ-mediated repression of TGF-β1/Smad pathway. PMID:28203261
NASA Technical Reports Server (NTRS)
Ott, Mark; Yang, J; Barilla, J.; Crabbe, A.; Sarker, S. F.; Liu, Y.
2017-01-01
Three-dimensional/3-D organotypic models of human intestinal epithelium mimic the differentiated form and function of parental tissues often not exhibited by 2-D monolayers and respond to Salmonella in ways that reflect in vivo infections. To further enhance the physiological relevance of 3-D models to more closely approximate in vivo intestinal microenvironments during infection, we developed and validated a novel 3-D intestinal co-culture model containing multiple epithelial cell types and phagocytic macrophages, and applied to study enteric infection by different Salmonella pathovars.
Secretory IgA's Complex Roles in Immunity and Mucosal Homeostasis in the Gut
Mantis, Nicholas J.; Rol, Nicolas; Corthésy, Blaise
2013-01-01
Secretory IgA (SIgA) serves as the first line of defense in protecting the intestinal epithelium from enteric toxins and pathogenic microorganisms. Through a process known as immune exclusion, SIgA promotes the clearance of antigens and pathogenic microorganisms from the intestinal lumen by blocking their access to epithelial receptors, entrapping them in mucus, and facilitating their removal by peristaltic and mucociliary activities. In addition, SIgA functions in mucosal immunity and intestinal homeostasis through mechanisms that have only recently been revealed. In just the past several years, SIgA has been identified as having the capacity to directly quench bacterial virulence factors, influence the composition of the intestinal microbiota by Fab-dependent and -independent mechanisms, promote the retro-transport of antigens across the intestinal epithelium to dendritic cell (DC) subsets in gut-associated lymphoid tissue, and, finally, to down-regulate pro-inflammatory responses normally associated with the uptake of highly pathogenic bacteria and potentially allergenic antigens. This review summarizes the intrinsic biological activities now associated with SIgA and their relationships to immunity and intestinal homeostasis. PMID:21975936
Riehl, Terrence E; Santhanam, Srikanth; Foster, Lynne; Ciorba, Matthew; Stenson, William F
2015-12-01
Hyaluronic acid, a glycosaminoglycan in the extracellular matrix, binds to CD44 and Toll-like receptor 4 (TLR4). We previously addressed the role of hyaluronic acid in small intestinal and colonic growth in mice. We addressed the role of exogenous hyaluronic acid by giving hyaluronic acid intraperitoneally and the role of endogenous hyaluronic acid by giving PEP-1, a peptide that blocks hyaluronic acid binding to its receptors. Exogenous hyaluronic acid increased epithelial proliferation but had no effect on intestinal length. PEP-1 resulted in a shortened small intestine and colon and diminished epithelial proliferation. In the current study, we sought to determine whether the effects of hyaluronic acid on growth were mediated by signaling through CD44 or TLR4 by giving exogenous hyaluronic acid or PEP-1 twice a week from 3-8 wk of age to wild-type, CD44(-/-), and TLR4(-/-) mice. These studies demonstrated that signaling through both CD44 and TLR4 were important in mediating the effects of hyaluronic acid on growth in the small intestine and colon. Extending our studies to early postnatal life, we assessed the effects of exogenous hyaluronic acid and PEP-1 on Lgr5(+) stem cell proliferation and crypt fission. Administration of PEP-1 to Lgr5(+) reporter mice from postnatal day 7 to day 14 decreased Lgr5(+) cell proliferation and decreased crypt fission. These studies indicate that endogenous hyaluronic acid increases Lgr5(+) stem cell proliferation, crypt fission, and intestinal lengthening and that these effects are dependent on signaling through CD44 and TLR4. Copyright © 2015 the American Physiological Society.
Jayakumar, Asha; Bothwell, Alfred L M
2017-08-01
Intestinal tumorigenesis in the ApcMin/+ model is initiated by aberrant activation of Wnt pathway. Increased IL-4 expression in human colorectal cancer tissue and growth of colon cancer cell lines implied that IL-4-induced Stat6-mediated tumorigenic signaling likely contributes to intestinal tumor progression in ApcMin/+ mice. Stat6 also appears to promote expansion of myeloid-derived suppressor cells (MDSCs) cells. MDSCs promote polyp formation in the ApcMin/+ model. Hence, Stat6 could have a broad role in coordinating both polyp cell proliferation and MDSC expansion. We found that IL-4-induced Stat6-mediated proliferation of intestinal epithelial cells is augmented by platelet-derived growth factor-BB, a tumor-promoting growth factor. To determine whether polyp progression in ApcMin/+ mice is dependent on Stat6 signaling, we disrupted Stat6 in this model. Total polyps in the small intestine were fewer in ApcMin/+ mice lacking Stat6. Furthermore, proliferation of polyp epithelial cells was reduced, indicating that Stat6 in part controlled polyp formation. Stat6 also promoted expansion of MDSCs in the spleen and lamina propria of ApcMin/+ mice, implying regulation of antitumor T-cell response. More CD8 cells and reduced PD-1 expression on CD4 cells correlated with reduced polyps. In addition, a strong CD8-mediated cytotoxic response led to killing of tumor cells in Stat6-deficient ApcMin/+ mice. Therefore, these findings show that Stat6 has an oncogenic role in intestinal tumorigenesis by promoting polyp cell proliferation and immunosuppressive mediators, and preventing an active cytotoxic process. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
The expression of REG 1A and REG 1B is increased during acute amebic colitis.
Peterson, Kristine M; Guo, Xiaoti; Elkahloun, Abdel G; Mondal, Dinesh; Bardhan, Pradip K; Sugawara, Akira; Duggal, Priya; Haque, Rashidul; Petri, William A
2011-09-01
Entamoeba histolytica, a protozoan parasite, is an important cause of diarrhea and colitis in the developing world. Amebic colitis is characterized by ulceration of the intestinal mucosa. We performed microarray analysis of intestinal biopsies during acute and convalescent amebiasis in order to identify genes potentially involved in tissue injury or repair. Colonic biopsy samples were obtained from 8 patients during acute E. histolytica colitis and again 60 days after recovery. Gene expression in the biopsies was evaluated using microarray, and confirmed by reverse transcriptase quantitative polymerase chain reaction (RT-qPCR). REG 1A and REG 1B were the most up-regulated of all genes in the human intestine in acute versus convalescent E. histolytica disease: as determined by microarray, the levels of induction were 7.4-fold and 10.7 fold for REG 1A and B; p=0.003 and p=0.006 respectively. Increased expression of REG 1A and REG 1B protein in the colonic crypt epithelial cells during acute amebiasis was similarly observed by immunohistochemistry. Because REG 1 protein is anti-apoptotic and pro-proliferative, and since E. histolytica induces apoptosis of the intestinal epithelium as part of its disease process, we next tested if REG 1 might be protective during amebiasis by preventing parasite-induced apoptosis. Intestinal epithelial cells from REG 1-/- mice were found to be more susceptible to spontaneous, and parasite-induced, apoptosis in vitro (p=0.03). We concluded that REG 1A and REG 1B were upregulated during amebiasis and may function to protect the intestinal epithelium from parasite-induced apoptosis. Published by Elsevier Ireland Ltd.
Patel, Chirag; Douard, Veronique; Yu, Shiyan; Tharabenjasin, Phuntila; Gao, Nan
2015-01-01
Marked increases in fructose consumption have been tightly linked to metabolic diseases. One-third of ingested fructose is metabolized in the small intestine, but the underlying mechanisms regulating expression of fructose-metabolizing enzymes are not known. We used genetic mouse models to test the hypothesis that fructose absorption via glucose transporter protein, member 5 (GLUT5), metabolism via ketohexokinase (KHK), as well as GLUT5 trafficking to the apical membrane via the Ras-related protein in brain 11a (Rab11a)-dependent endosomes are required for the regulation of intestinal fructolytic and gluconeogenic enzymes. Fructose feeding increased the intestinal mRNA and protein expression of these enzymes in the small intestine of adult wild-type (WT) mice compared with those gavage fed with lysine or glucose. Fructose did not increase expression of these enzymes in the GLUT5 knockout (KO) mice. Blocking intracellular fructose metabolism by KHK ablation also prevented fructose-induced upregulation. Glycolytic hexokinase I expression was similar between WT and GLUT5- or KHK-KO mice and did not vary with feeding solution. Gavage feeding with the fructose-specific metabolite glyceraldehyde did not increase enzyme expression, suggesting that signaling occurs before the hydrolysis of fructose to three-carbon compounds. Impeding GLUT5 trafficking to the apical membrane using intestinal epithelial cell-specific Rab11a-KO mice impaired fructose-induced upregulation. KHK expression was uniformly distributed along the villus but was localized mainly in the basal region of the cytosol of enterocytes. The feedforward upregulation of fructolytic and gluconeogenic enzymes specifically requires GLUT5 and KHK and may proactively enhance the intestine's ability to process anticipated increases in dietary fructose concentrations. PMID:26084694
Intestinal epithelial cell secretion of RELM-beta protects against gastrointestinal worm infection
USDA-ARS?s Scientific Manuscript database
IL-4 and IL-13 protect against parasitic helminths, but little is known about the mechanism of host protection. We show that IL-4/IL-13 confer immunity against worms by inducing intestinal epithelial cells (IEC) to differentiate into goblet cells that secrete resistin-like molecule beta (RELMB). R...
Bisping, G; Lügering, N; Lütke-Brintrup, S; Pauels, H -G; Schürmann, G; Domschke, W; Kucharzik, T
2001-01-01
Intestinal epithelial cells seem to play a key role during IBD. The network of cellular interactions between epithelial cells and lamina propria mononuclear cells is still incompletely understood. In the following co-culture model we investigated the influence of intestinal epithelial cells on cytokine expression of T cytotoxic and T helper cells from patients with IBD and healthy controls. Peripheral blood mononuclear cells (PBMC) were purified by a Ficoll–Hypaque gradient followed by co-incubation with epithelial cells in multiwell cell culture insert plates in direct contact as well as separated by transwell filters. We used Caco-2 cells as well as freshly isolated colonic epithelia obtained from surgical specimens. Three-colour immunofluorescence flow cytometry was performed after collection, stimulation and staining of PBMC with anti-CD4, anti-CD8, anti-IFN-γ and anti-IL-4. Patients with IBD (Crohn's disease (CD), n = 12; ulcerative colitis (UC), n = 16) and healthy controls (n = 10) were included in the study. After 24 h of co-incubation with Caco-2 cells we found a significant increase of IFN-γ-producing CD8+ lymphocytes in patients with IBD. In contrast, healthy controls did not respond to the epithelial stimulus. No significant differences could be found between CD and UC or active and inactive disease. A significant increase of IFN-γ+/CD8+ lymphocytes in patients with UC was also seen after direct co-incubation with primary cultures of colonic crypt cells. The observed epithelial–lymphocyte interaction seems to be MHC I-restricted. No significant epithelial cell-mediated effects on cytokine expression were detected in the PBMC CD4+ subsets. Patients with IBD—even in an inactive state of disease—exert an increased capacity for IFN-γ induction in CD8+ lymphocytes mediated by intestinal epithelial cells. This mechanism may be important during chronic intestinal inflammation, as in the case of altered mucosal barrier function epithelial cells may become targets for IFN-γ-producing CD8+ lymphocytes. PMID:11167992
IFN-λ suppresses intestinal inflammation by non-translational regulation of neutrophil function.
Broggi, Achille; Tan, Yunhao; Granucci, Francesca; Zanoni, Ivan
2017-10-01
Interferon-λ (IFN-λ) is a central regulator of mucosal immunity; however, its signaling specificity relative to that of type I interferons is poorly defined. IFN-λ can induce antiviral interferon-stimulated genes (ISGs) in epithelia, while the effect of IFN-λ in non-epithelial cells remains unclear. Here we report that neutrophils responded to IFN-λ. We found that in addition to inducing ISG transcription, IFN-λ (but not IFN-β) specifically activated a translation-independent signaling pathway that diminished the production of reactive oxygen species and degranulation in neutrophils. In mice, IFN-λ was elicited by enteric viruses and acted on neutrophils to decrease oxidative stress and intestinal damage. Thus, IFN-λ acted as a unique immunomodulatory agent by modifying transcriptional and non-translational neutrophil responses, which might permit a controlled development of the inflammatory process.
Shimazu, Tomoyuki; Villena, Julio; Tohno, Masanori; Fujie, Hitomi; Hosoya, Shoichi; Shimosato, Takeshi; Aso, Hisashi; Suda, Yoshihito; Kawai, Yasushi; Saito, Tadao; Makino, Seiya; Ikegami, Shuji; Itoh, Hiroyuki
2012-01-01
The effect of Lactobacillus jensenii TL2937 on the inflammatory immune response triggered by enterotoxigenic Escherichia coli (ETEC) and lipopolysaccharide (LPS) in a porcine intestinal epitheliocyte cell line (PIE cells) was evaluated. Challenges with ETEC or LPS elicited Toll-like receptor 4 (TLR4)-mediated inflammatory responses in cultured PIE cells, indicating that our cell line may be useful for studying inflammation in the guts of weaning piglets. In addition, we demonstrated that L. jensenii TL2937 attenuated the expression of proinflammatory cytokines and chemokines caused by ETEC or LPS challenge by downregulating TLR4-dependent nuclear factorκB (NF-κB) and mitogen-activated protein kinase (MAPK) activation. Furthermore, we demonstrated that L. jensenii TL2937 stimulation of PIE cells upregulated three negative regulators of TLRs: A20, Bcl-3, and MKP-1, deepening the understanding of an immunobiotic mechanism of action. L. jensenii TL2937-mediated induction of negative regulators of TLRs would have a substantial physiological impact on homeostasis in PIE cells, because excessive TLR inflammatory signaling would be downregulated. These results indicated that PIE cells can be used to study the mechanisms involved in the protective activity of immunobiotics against intestinal inflammatory damage and may provide useful information for the development of new immunologically functional feeds that help to prevent inflammatory intestinal disorders, including weaning-associated intestinal inflammation. PMID:22083706
Graves, Christina L; Harden, Scott W; LaPato, Melissa; Nelson, Michael; Amador, Byron; Sorenson, Heather; Frazier, Charles J; Wallet, Shannon M
2014-12-01
Intestinal epithelial cells (IECs) serve as an important physiologic barrier between environmental antigens and the host intestinal immune system. Thus, IECs serve as a first line of defense and may act as sentinel cells during inflammatory insults. Despite recent renewed interest in IEC contributions to host immune function, the study of primary IEC has been hindered by lack of a robust culture technique, particularly for small intestinal and adult tissues. Here, a novel adaptation for culture of primary IEC is described for human duodenal organ donor tissue as well as duodenum and colon of adult mice. These epithelial cell cultures display characteristic phenotypes and are of high purity. In addition, the innate immune function of human primary IEC, specifically with regard to Toll-like receptor (TLR) expression and microbial ligand responsiveness, is contrasted with a commonly used intestinal epithelial cell line (HT-29). Specifically, TLR expression at the mRNA level and production of cytokine (IFNγ and TNFα) in response to TLR agonist stimulation is assessed. Differential expression of TLRs as well as innate immune responses to ligand stimulation is observed in human-derived cultures compared to that of HT-29. Thus, use of this adapted method to culture primary epithelial cells from adult human donors and from adult mice will allow for more appropriate studies of IECs as innate immune effectors. Published by Elsevier B.V.
MohanKumar, Krishnan; Killingsworth, Cheryl R; McIlwain, R Britt; Timpa, Joseph G; Jagadeeswaran, Ramasamy; Namachivayam, Kopperuncholan; Kurundkar, Ashish R; Kelly, David R; Garzon, Steven A; Maheshwari, Akhil
2014-02-01
Neonates and young infants exposed to extracorporeal circulation during extracorporeal membrane oxygenation (ECMO) and cardiopulmonary bypass are at risk of developing a systemic inflammatory response syndrome with multi-organ dysfunction. We used a piglet model of ECMO to investigate the hypothesis that epithelial apoptosis is an early event that precedes villous damage during ECMO-related bowel injury. Healthy 3-week-old piglets were subjected to ECMO for up to 8 h. Epithelial apoptosis was measured in histopathological analysis, nuclear imaging, and terminal deoxynucleotidyl transferase dUTP nick end labeling. Plasma intestinal fatty acid-binding protein (I-FABP) levels were measured by enzyme immunoassay. Intestinal mast cells were isolated by fluorescence-assisted cell sorting. Cleaved caspase-8, caspase-9, phospho-p38 MAPK, and fas ligand expression were investigated by immunohistochemistry, western blots, and reverse transcriptase-quantitative PCR. Piglet ECMO was associated with increased gut epithelial apoptosis. Extensive apoptotic changes were noted on villus tips and in scattered crypt cells after 2 h of ECMO. After 8 h, the villi were denuded and apoptotic changes were evident in a majority of crypt cells. Increased circulating I-FABP levels, a marker of gut epithelial injury, showed that epithelial injury occurred during ECMO. We detected increased cleaved caspase-8, but not cleaved caspase-9, in epithelial cells indicating that the extrinsic apoptotic pathway was active. ECMO was associated with increased fas ligand expression in intestinal mast cells, which was induced through activation of the p38 mitogen-activated protein kinase. We conclude that epithelial apoptosis is an early event that initiates gut mucosal injury in a piglet model of ECMO.
MohanKumar, Krishnan; Killingsworth, Cheryl R.; McILwain, R. Britt; Timpa, Joseph G.; Jagadeeswaran, Ramasamy; Namachivayam, Kopperuncholan; Kurundkar, Ashish R.; Kelly, David R.; Garzon, Steven A.; Maheshwari, Akhil
2013-01-01
Background Neonates and young infants exposed to extracorporeal circulation during extracorporeal membrane oxygenation (ECMO) and cardiopulmonary bypass (CPB) are at risk of developing a systemic inflammatory response syndrome (SIRS) with multi-organ dysfunction. We used a piglet model of ECMO to investigate the hypothesis that epithelial apoptosis is an early event that precedes villous damage during ECMO-related bowel injury. Methods Healthy 3-week-old piglets were subjected to ECMO for up to 8h. Epithelial apoptosis was measured in histopathological analysis, nuclear imaging, and terminal deoxynucleotidyl transferase dUTP nick end labeling. Plasma intestinal-fatty acid-binding protein (I-FABP) levels were measured by enzyme immunoassay. Intestinal mast cells were isolated by fluorescence-assisted cell sorting. Cleaved caspase-8, caspase-9, phospho-p38 MAPK, and fas ligand expression was investigated by immunohistochemistry, Western blots, and reverse transcriptase-quantitative polymerase chain reaction. Results Piglet ECMO was associated with increased gut epithelial apoptosis. Extensive apoptotic changes were noted on villus tips and in scattered crypt cells after 2h of ECMO. After 8h, the villi were denuded and apoptotic changes were evident in a majority of crypt cells. Increased circulating I-FABP levels, a marker of gut epithelial injury, showed that epithelial injury occurred during ECMO. We detected increased cleaved caspase-8, but not cleaved caspase-9, in epithelial cells indicating that the extrinsic apoptotic pathway was active. ECMO was associated with increased fas ligand expression in intestinal mast cells, which was induced through activation of the p38 mitogen-activated protein kinase. Conclusions Epithelial apoptosis is an early event that initiates gut mucosal injury in a piglet model of ECMO. PMID:24365747
Elisia, Ingrid; Kitts, David D
2013-01-01
Gamma-tocopherol (γ-Toc) and δ-Toc are two vitamin E isoforms for which biological activities are not well established, yet these isoforms are present in many different sources of vegetable oils and, therefore, contribute significantly to the total dietary intake of vitamin E. Infant formula also contains relatively high amounts of γ-Toc and δ-Toc, compared with that found in human milk. The efficacy of γ-Toc and δ-Toc to modulate cellular events that include oxidative stress, inflammatory response, and apoptosis-mediated cytotoxicity, relative to α-Toc, was determined using differentiated Caco-2 and primary FHs 74 Int cells intestinal epithelial cell lines. Antioxidant capacity of Toc-isoforms followed the order of δ-Toc > γ-Toc > α-Toc against peroxyl radical-induced membrane oxidation in both Caco-2 and FHs 74 Int cells, respectively. The different Toc-isoforms suppressed inflammatory response in interferon (IFN) γ/phorbol myristate acetate (PMA)-induced Caco-2 adult-derived intestinal epithelial cells, but exacerbated both IL8 and PGE2 secretion in fetal-derived FHs 74 Int intestinal epithelial cells. Lastly, Toc exhibited an isoform-dependent apoptosis-mediated cytotoxicity, whereby δ-Toc elicited the greatest apoptosis followed by γ-Toc, whereas α-Toc was not cytotoxic. Cellular uptake of non-α-Toc isoforms were greater (P < 0.05) than that observed for α-Toc in both intestinal epithelial cell lines which in part explains the superior bioactive function observed for both γ-Toc and δ-Toc, compared with α-Toc. We conclude that the non-α-Toc isoforms of vitamin E have distinct roles that influence oxidative stress and inflammatory responses in both adult and fetal-derived intestinal epithelial cell lines. © 2013 International Union of Biochemistry and Molecular Biology.
Hafner, Christian; Meyer, Stefanie; Langmann, Thomas; Schmitz, Gerd; Bataille, Frauke; Hagen, Ilja; Becker, Bernd; Roesch, Alexander; Rogler, Gerhard; Landthaler, Michael; Vogt, Thomas
2005-01-01
AIM: Eph receptor tyrosine kinases and their membrane bound receptor-like ligands, the ephrins, represent a bi-directional cell-cell contact signaling system that directs epithelial movements in development. The meaning of this system in the adult human gut is unknown. We investigated the Eph/ephrin mRNA expression in the intestinal epithelium of healthy controls and patients with inflammatory bowel disease (IBD). METHODS: mRNA expression profiles of all Eph/ephrin family members in normal small intestine and colon were established by real-time RT-PCR. In addition, differential expression in IBD was investigated by cDNA array technology, and validated by both real-time RT-PCR and immunohistochemistry. Potential effects of enhanced EphB/ephrin-B signaling were analyzed in an in vitro IEC-6 cell scratch wound model. RESULTS: Human adult intestinal mucosa exhibits a complex pattern of Eph receptors and ephrins. Beside the known prominent co-expression of EphA2 and ephrinA1, we found abundantly co-expressed EphB2 and ephrin-B1/2. Interestingly, cDNA array data, validated by real-time PCR and immunohistochemistry, showed upregulation of ephrin-B2 in both perilesional and lesional intestinal epithelial cells of IBD patients, suggesting a role in epithelial homeostasis. Stimulation of ephrin-B signaling in ephrin-B1/2 expressing rat IEC-6-cells with recombinant EphB1-Fc resulted in a significant dose-dependent acceleration of wound closure. Furthermore, fluorescence microscopy showed that EphB1-Fc induced coordinated migration of wound edge cells is associated with enhanced formation of lamellipodial protrusions into the wound, increased actin stress fiber assembly and production of laminin at the wound edge. CONCLUSION: EphB/ephrin-B signaling might represent a novel protective mechanism that promotes intestinal epithelial wound healing, with potential impact on epithelial restitution in IBD. PMID:15996027
L. fermentum CECT 5716 prevents stress-induced intestinal barrier dysfunction in newborn rats.
Vanhaecke, T; Aubert, P; Grohard, P-A; Durand, T; Hulin, P; Paul-Gilloteaux, P; Fournier, A; Docagne, F; Ligneul, A; Fressange-Mazda, C; Naveilhan, P; Boudin, H; Le Ruyet, P; Neunlist, M
2017-08-01
Intestinal epithelial barrier (IEB) dysfunction plays a critical role in various intestinal disorders affecting infants and children, including the development of food allergies and colitis. Recent studies highlighted the role of probiotics in regulating IEB functions and behavior in adults, but their effects in the newborn remain largely unknown. We therefore characterized in rat pups, the impact of Lactobacillus fermentum CECT 5716 (L. fermentum) on stress-induced IEB dysfunction, systemic immune response and exploratory behavior. Newborn rats received daily by gavage either L. fermentum or water. Intestinal permeability to fluorescein sulfonic acid (FSA) and horseradish peroxidase (HRP) was measured following maternal separation (MS) and water avoidance stress (WAS). Immunohistochemical, transcriptomic, and Western blot analysis of zonula occludens-1 (ZO-1) distribution and expression were performed. Anxiety-like and exploratory behavior was assessed using the elevated plus maze test. Cytokine secretion of activated splenocytes was also evaluated. L. fermentum prevented MS and WAS-induced IEB dysfunction in vivo. L. fermentum reduced permeability to both FSA and HRP in the small intestine but not in the colon. L. fermentum increased expression of ZO-1 and prevented WAS-induced ZO-1 disorganization in ileal epithelial cells. L. fermentum also significantly reduced stress-induced increase in plasma corticosteronemia. In activated splenocytes, L. fermentum enhanced IFNγ secretion while it prevented IL-4 secretion. Finally, L. fermentum increased exploratory behavior. These results suggest that L. fermentum could provide a novel tool for the prevention and/or treatment of gastrointestinal disorders associated with altered IEB functions in the newborn. © 2017 John Wiley & Sons Ltd.
Kanmani, Paulraj; Albarracin, Leonardo; Kobayashi, Hisakazu; Iida, Hikaru; Komatsu, Ryoya; Humayun Kober, A K M; Ikeda-Ohtsubo, Wakako; Suda, Yoshihito; Aso, Hisashi; Makino, Seiya; Kano, Hiroshi; Saito, Tadao; Villena, Julio; Kitazawa, Haruki
2018-01-01
Previous studies demonstrated that the extracellular polysaccharides (EPSs) produced by Lactobacillus delbrueckii OLL1073R-1 (LDR-1) improve antiviral immunity, especially in the systemic and respiratory compartments. However, it was not studied before whether those EPSs are able to beneficially modulate intestinal antiviral immunity. In addition, LDR-1-host interaction has been evaluated mainly with immune cells while its interaction with intestinal epithelial cells (IECs) was not addressed before. In this work, we investigated the capacity of EPSs from LDR-1 to modulate the response of porcine IECs (PIE cells) to the stimulation with the Toll-like receptor (TLR)-3 agonist poly(I:C) and the role of TLR2, TLR4, and TLR negative regulators in the immunoregulatory effect. We showed that innate immune response triggered by TLR3 activation in porcine IECs was differentially modulated by EPS from LDR-1. EPSs treatment induced an increment in the expression of interferon (IFN)-α and IFN-β in PIE cells after the stimulation with poly(I:C) as well as the expression of the antiviral factors MxA and RNase L. Those effects were related to the reduced expression of A20 in EPS-treated PIE cells. EPS from LDR-1 was also able to reduce the expression of IL-6 and proinflammatory chemokines. Although further in vivo studies are needed, our results suggest that these EPSs or a yogurt fermented with LDR-1 have potential to improve intestinal innate antiviral response and protect against intestinal viruses. Copyright © 2017 Elsevier Ltd. All rights reserved.
Schall, K A; Holoyda, K A; Grant, C N; Levin, D E; Torres, E R; Maxwell, A; Pollack, H A; Moats, R A; Frey, M R; Darehzereshki, A; Al Alam, D; Lien, C; Grikscheit, T C
2015-08-01
Loss of significant intestinal length from congenital anomaly or disease may lead to short bowel syndrome (SBS); intestinal failure may be partially offset by a gain in epithelial surface area, termed adaptation. Current in vivo models of SBS are costly and technically challenging. Operative times and survival rates have slowed extension to transgenic models. We created a new reproducible in vivo model of SBS in zebrafish, a tractable vertebrate model, to facilitate investigation of the mechanisms of intestinal adaptation. Proximal intestinal diversion at segment 1 (S1, equivalent to jejunum) was performed in adult male zebrafish. SBS fish emptied distal intestinal contents via stoma as in the human disease. After 2 wk, S1 was dilated compared with controls and villus ridges had increased complexity, contributing to greater villus epithelial perimeter. The number of intervillus pockets, the intestinal stem cell zone of the zebrafish increased and contained a higher number of bromodeoxyuridine (BrdU)-labeled cells after 2 wk of SBS. Egf receptor and a subset of its ligands, also drivers of adaptation, were upregulated in SBS fish. Igf has been reported as a driver of intestinal adaptation in other animal models, and SBS fish exposed to a pharmacological inhibitor of the Igf receptor failed to demonstrate signs of intestinal adaptation, such as increased inner epithelial perimeter and BrdU incorporation. We describe a technically feasible model of human SBS in the zebrafish, a faster and less expensive tool to investigate intestinal stem cell plasticity as well as the mechanisms that drive intestinal adaptation. Copyright © 2015 the American Physiological Society.
Schall, K. A.; Holoyda, K. A.; Grant, C. N.; Levin, D. E.; Torres, E. R.; Maxwell, A.; Pollack, H. A.; Moats, R. A.; Frey, M. R.; Darehzereshki, A.; Al Alam, D.; Lien, C.
2015-01-01
Loss of significant intestinal length from congenital anomaly or disease may lead to short bowel syndrome (SBS); intestinal failure may be partially offset by a gain in epithelial surface area, termed adaptation. Current in vivo models of SBS are costly and technically challenging. Operative times and survival rates have slowed extension to transgenic models. We created a new reproducible in vivo model of SBS in zebrafish, a tractable vertebrate model, to facilitate investigation of the mechanisms of intestinal adaptation. Proximal intestinal diversion at segment 1 (S1, equivalent to jejunum) was performed in adult male zebrafish. SBS fish emptied distal intestinal contents via stoma as in the human disease. After 2 wk, S1 was dilated compared with controls and villus ridges had increased complexity, contributing to greater villus epithelial perimeter. The number of intervillus pockets, the intestinal stem cell zone of the zebrafish increased and contained a higher number of bromodeoxyuridine (BrdU)-labeled cells after 2 wk of SBS. Egf receptor and a subset of its ligands, also drivers of adaptation, were upregulated in SBS fish. Igf has been reported as a driver of intestinal adaptation in other animal models, and SBS fish exposed to a pharmacological inhibitor of the Igf receptor failed to demonstrate signs of intestinal adaptation, such as increased inner epithelial perimeter and BrdU incorporation. We describe a technically feasible model of human SBS in the zebrafish, a faster and less expensive tool to investigate intestinal stem cell plasticity as well as the mechanisms that drive intestinal adaptation. PMID:26089336
Ming, Zhenping; Gong, Ai-Yu; Wang, Yang; Zhang, Xin-Tian; Li, Min; Mathy, Nicholas W; Strauss-Soukup, Juliane K; Chen, Xian-Ming
2017-12-27
Intestinal infection by Cryptosporidium parvum causes inhibition of epithelial turnover, but underlying mechanisms are unclear. Previous studies demonstrate that a panel of parasite RNA transcripts of low protein-coding potential are delivered into infected epithelial cells. Using in vitro and in vivo models of intestinal cryptosporidiosis, we report here that host delivery of parasite Cdg7_FLc_1000 RNA results in inhibition of epithelial cell migration through suppression of the gene encoding sphingomyelinase 3 (SMPD3). Delivery of Cdg7_FLc_1000 into infected cells promotes the histone methyltransferase G9a-mediated H3K9 methylation in the SMPD3 locus. The DNA-binding transcriptional repressor, PR domain zinc finger protein 1, is required for the assembly of Cdg7_FLc_1000 into the G9a complex and associated with the enrichment of H3K9 methylation at the gene locus. Pathologically, nuclear transfer of Cryptosporidium parvum Cdg7_FLc_1000 RNA is involved in the attenuation of intestinal epithelial cell migration via trans-suppression of host cell SMPD3. © The Author(s) 2017. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail: journals.permissions@oup.com.
Wang, Yanbo; Yan, Xuxia; Fu, Linglin
2013-01-01
Nano-selenium (Se), with its high bioavailability and low toxicity, has attracted wide attention for its potential application in the prevention of oxidative damage in animal tissues. However, the effect of nano-Se of different sizes on the intestinal epithelial cells of the crucian carp (Carassius auratus gibelio) is poorly understood. Our study showed that different sizes and doses of nano-Se have varied effects on the cellular protein contents and the enzyme activities of secreted lactate dehydrogenase, intracellular sodium potassium adenosine triphosphatase, glutathione peroxidase, and superoxide dismutase. It was also indicated that nano-Se had a size-dependent effect on the primary intestinal epithelial cells of the crucian carp. Thus, these findings may bring us a step closer to understanding the size effect and the bioavailability of nano-Se on the intestinal tract of the crucian carp.
Wang, Yanbo; Yan, Xuxia; Fu, Linglin
2013-01-01
Nano-selenium (Se), with its high bioavailability and low toxicity, has attracted wide attention for its potential application in the prevention of oxidative damage in animal tissues. However, the effect of nano-Se of different sizes on the intestinal epithelial cells of the crucian carp (Carassius auratus gibelio) is poorly understood. Our study showed that different sizes and doses of nano-Se have varied effects on the cellular protein contents and the enzyme activities of secreted lactate dehydrogenase, intracellular sodium potassium adenosine triphosphatase, glutathione peroxidase, and superoxide dismutase. It was also indicated that nano-Se had a size-dependent effect on the primary intestinal epithelial cells of the crucian carp. Thus, these findings may bring us a step closer to understanding the size effect and the bioavailability of nano-Se on the intestinal tract of the crucian carp. PMID:24204137
Fiorentino, Maria; Levine, Myron M.
2014-01-01
Bacterial dysentery due to Shigella species is a major cause of morbidity and mortality worldwide. The pathogenesis of Shigella is based on the bacteria's ability to invade and replicate within the colonic epithelium, resulting in severe intestinal inflammatory response and epithelial destruction. Although the mechanisms of pathogenesis of Shigella in the colon have been extensively studied, little is known on the effect of wild-type Shigella on the small intestine and the role of the host response in the development of the disease. Moreover, to the best of our knowledge no studies have described the effects of apically administered Shigella flexneri 2a and S. dysenteriae 1 vaccine strains on human small intestinal enterocytes. The aim of this study was to assess the coordinated functional and immunological human epithelial responses evoked by strains of Shigella and candidate vaccines on small intestinal enterocytes. To model the interactions of Shigella with the intestinal mucosa, we apically exposed monolayers of human intestinal Caco2 cells to increasing bacterial inocula. We monitored changes in paracellular permeability, examined the organization of tight-junctions and the pro-inflammatory response of epithelial cells. Shigella infection of Caco2 monolayers caused severe mucosal damage, apparent as a drastic increase in paracellular permeability and disruption of tight junctions at the cell-cell boundary. Secretion of pro-inflammatory IL-8 was independent of epithelial barrier dysfunction. Shigella vaccine strains elicited a pro-inflammatory response without affecting the intestinal barrier integrity. Our data show that wild-type Shigella infection causes a severe alteration of the barrier function of a small intestinal cell monolayer (a proxy for mucosa) and might contribute (along with enterotoxins) to the induction of watery diarrhea. Diarrhea may be a mechanism by which the host attempts to eliminate harmful bacteria and transport them from the small to the large intestine where they invade colonocytes inducing a strong inflammatory response. PMID:24416363
Proteolytic Regulation of the Intestinal Epithelial Barrier: Mechanisms and Interventions
2013-09-01
gastrointestinal tract. The two main forms of inflammatory bowel diseases, Crohn’s disease and Ulcerative Colitis , currently affect over 1 million Americans...gastrointestinal tract. The two main forms of IBD, Crohn’s disease and Ulcerative Colitis , currently affect over 1 million Americans including military personnel...apoptosis and barrier disruption. IL-13 production and claudin-2 expression are both increased in human ulcerative colitis and Crohn’s disease (14; 15
Wang, Xiaoqing; Hu, Weiwei; Zhu, Liqi; Yang, Qian
2017-04-28
Intestinal epithelial cells are the targets for transmissible gastroenteritis (TGE) virus (TGEV) infection. It is urgent to develop a novel candidate against TGEV entry. Bacillus subtilis is a probiotic with excellent anti-microorganism properties and one of its secretions, surfactin, has been regarded as a versatile weapon for most plant pathogens, especially for the enveloped virus. We demonstrate for the first time that B. subtilis OKB105 and its surfactin can effectively inhibit one animal coronavirus, TGEV, entering the intestinal porcine epithelial cell line (IPEC-J2). Then, several different experiments were performed to seek the might mechanisms. The plaque assays showed that surfactant could reduce the plaque generation of TGEV in a dose-dependent manner. Meanwhile, after incubation with TGEV for 1.5 h, B. subtilis could attach TGEV particles to their surface so that the number of virus to bind to the host cells was declined. Furthermore, our data showed that the inhibition of B. subtilis was closely related to the competition with TGEV for the viral entry receptors, including epidermal growth factor receptor (EGFR) and aminopeptidase N (APN) protein. In addition, Western blotting and apoptosis analysis indicated that B. subtilis could enhance the resistance of IPEC-J2 cells by up-regulating the expression of toll-like receptor (TLR)-6 and reducing the percentage of apoptotic cells. Taken together, our results suggest that B. subtilis OKB105 and its surfactin can antagonize TGEV entry in vitro and may serve as promising new candidates for TGEV prevention. © 2017 The Author(s).
NASA Technical Reports Server (NTRS)
Conrad, A. H.; Jaffredo, T.; Conrad, G. W.; Spooner, B. S. (Principal Investigator)
1995-01-01
Two principal isoforms of cytoplasmic myosin II, A and B (CMIIA and CMIIB), are present in different proportions in different tissues. Isoform-specific monoclonal and polyclonal antibodies to avian CMIIA and CMIIB reveal the cellular distributions of these isoforms in interphase and dividing embryonic avian cardiac, intestinal epithelial, spleen, and dorsal root ganglia cells in primary cell culture. Embryonic cardiomyocytes react with antibodies to CMIIB but not to CMIIA, localize CMIIB in stress-fiber-like-structures during interphase, and markedly concentrate CMIIB in networks in the cleavage furrow during cytokinesis. In contrast, cardiac fibroblasts localize both CMIIA and CMIIB in stress fibers and networks during interphase, and demonstrate slight and independently regulated concentration of CMIIA and CMIIB in networks in their cleavage furrows. V-myc-immortalized cardiomyocytes, an established cell line, have regained the ability to express CMIIA, as well as CMIIB, and localize both CMIIA and CMIIB in stress fibers and networks in interphase cells and in cleavage furrows in dividing cells. Conversely, some intestinal epithelial, spleen, and dorsal root ganglia interphase cells express only CMIIA, organized primarily in networks. Of these, intestinal epithelial cells express both CMIIA and CMIIB when they divide, whereas some dividing cells from both spleen and dorsal root ganglia express only CMIIA and concentrate it in their cleavage furrows. These results suggest that within a given tissue, different cell types express different isoforms of CMII, and that cells expressing either CMIIA or CMIIB alone, or simultaneously, can form a cleavage furrow and divide.
Hamady, Zaed Z R; Scott, Nigel; Farrar, Mark D; Lodge, J Peter A; Holland, Keith T; Whitehead, Terence; Carding, Simon R
2010-04-01
Human growth factors are potential therapeutic agents for various inflammatory disorders affecting the gastrointestinal tract. However, they are unstable when administered orally and systemic administration requires high doses increasing the risk of unwanted side effects. Live microorganism-based delivery systems can overcome these problems although they suffer from the inability to control heterologous protein production and there are concerns regarding biosafety and environmental contamination. To overcome these limitations we have developed a new live bacteria drug-delivery system using the human commensal gut bacterium Bacteroides ovatus engineered to secrete human growth factors in response to dietary xylan. The anaerobic nature of B ovatus provides an inherent biosafety feature. B ovatus strains expressing human keratinocyte growth factor-2, which plays a central role in intestinal epithelial homeostasis and repair (BO-KGF), were generated by homologous recombination and evaluated using the dextran sodium sulfate (DSS)-induced model of intestinal epithelial injury and colitis. In response to xylan BO-KGF produced biologically active KGF both in vitro and in vivo. In DSS treated mice administration of xylan and BO-KGF had a significant therapeutic effect in reducing weight loss, improving stool consistency, reducing rectal bleeding, accelerating healing of damaged epithelium, reducing inflammation and neutrophil infiltration, reducing expression of pro-inflammatory cytokines, and accelerating production of goblet cells. BO-KGF and xylan treatment also had a marked prophylactic effect limiting the development of inflammation and disruption of the epithelial barrier. This novel, diet-regulated, live bacterial drug delivery system may be applicable to treating various bowel disorders.
Haines, R J; Wang, C Y; Yang, C G Y; Eitnier, R A; Wang, F; Wu, M H
2017-12-01
Clinical studies in burn patients demonstrate a close association between leaky guts and increased incidence or severity of sepsis and other complications. Severe thermal injury triggers intestinal inflammation that contributes to intestinal epithelial hyperpermeability, which exacerbates systemic response leading to multiple organ failure and sepsis. In this study, we identified a significant function of a particular palmitoyl acyltransferase, zinc finger DHHC domain-containing protein-21 (ZDHHC21), in mediating signaling events required for gut hyperpermeability induced by inflammation. Using quantitative PCR, we show that ZDHHC21 mRNA production was enhanced twofold when intestinal epithelial cells were treated with TNF-α-IFN-γ in vitro. In addition, pharmacological targeting of palmitoyl acyltransferases with 2-bromopalmitate (2-BP) showed significant improvement in TNF-α-IFN-γ-mediated epithelial barrier dysfunction by using electric cell-substrate impedance-sensing assays, as well as FITC-labeled dextran permeability assays. Using acyl-biotin exchange assay and click chemistry, we show that TNF-α-IFN-γ treatment of intestinal epithelial cells results in enhanced detection of total palmitoylated proteins and this response is inhibited by 2-BP. Using ZDHHC21-deficient mice or wild-type mice treated with 2-BP, we showed that mice with impaired ZDHHC21 expression or pharmacological inhibition resulted in attenuated intestinal barrier dysfunction caused by thermal injury. Moreover, hematoxylin and eosin staining of the small intestine, as well as transmission electron microscopy, showed that mice with genetic interruption of ZDHHC21 had attenuated villus structure disorganization associated with thermal injury-induced intestinal barrier damage. Taken together, these results suggest an important role of ZDHHC21 in mediating gut hyperpermeability resulting from thermal injury. NEW & NOTEWORTHY Increased mucosal permeability in the gut is one of the major complications following severe burn. Here we report the novel finding that zinc finger DHHC domain-containing protein-21 (ZDHHC21) mediates gut epithelial hyperpermeability resulting from an experimental model of thermal injury. The hyperpermeability response was significantly attenuated with a pharmacological inhibitor of palmitoyl acyltransferases and in mice with genetic ablation of ZDHHC21. These findings suggest that ZDHHC21 may serve as a novel therapeutic target for treating burn-induced intestinal barrier dysfunction. Copyright © 2017 the American Physiological Society.
Advanced three-dimensional culture of equine intestinal epithelial stem cells.
Stewart, A Stieler; Freund, J M; Gonzalez, L M
2018-03-01
Intestinal epithelial stem cells are critical to epithelial repair following gastrointestinal injury. The culture of intestinal stem cells has quickly become a cornerstone of a vast number of new research endeavours that range from determining tissue viability to testing drug efficacy for humans. This study aims to describe the methods of equine stem cell culture and highlights the future benefits of these techniques for the advancement of equine medicine. To describe the isolation and culture of small intestinal stem cells into three-dimensional (3D) enteroids in horses without clinical gastrointestinal abnormalities. Descriptive study. Intestinal samples were collected by sharp dissection immediately after euthanasia. Intestinal crypts containing intestinal stem cells were dissociated from the underlying tissue layers, plated in a 3D matrix and supplemented with growth factors. After several days, resultant 3D enteroids were prepared for immunofluorescent imaging and polymerase chain reaction (PCR) analysis to detect and characterise specific cell types present. Intestinal crypts were cryopreserved immediately following collection and viability assessed. Intestinal crypts were successfully cultured and matured into 3D enteroids containing a lumen and budding structures. Immunofluorescence and PCR were used to confirm the existence of stem cells and all post mitotic, mature cell types, described to exist in the horse intestinal epithelium. Previously frozen crypts were successfully cultured following a freeze-thaw cycle. Tissues were all derived from normal horses. Application of this technique for the study of specific disease was not performed at this time. The successful culture of equine intestinal crypts into 3D "mini-guts" allows for in vitro studies of the equine intestine. Additionally, these results have relevance to future development of novel therapies that harness the regenerative potential of equine intestine in horses with gastrointestinal disease (colic). © 2017 EVJ Ltd.
Adesso, Simona; Autore, Giuseppina; Quaroni, Andrea; Popolo, Ada; Severino, Lorella; Marzocco, Stefania
2017-12-11
Fusarium mycotoxins are fungal metabolites whose ability to affect cereal grains as multi-contaminants is progressively increasing. The trichothecene mycotoxins nivalenol (NIV) and deoxynivalenol (DON) are often found in almost all agricultural commodities worldwide. They are able to affect animal and human health, including at the intestinal level. In this study, NIV, both alone and in combination with DON, induced inflammation and increased the inflammatory response induced by lipopolysaccharide (LPS) plus Interferon-γ (IFN) in the non-tumorigenic intestinal epithelial cell line (IEC-6). The inflammatory response induced by NIV and DON involves tumor necrosis factor-α (TNF-α) production, inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) expression, nitrotyrosine formation, reactive oxygen species (ROS) release, Nuclear Factor-κB (NF-κB), Nuclear factor (erythroid-derived 2)-like 2 (Nrf2) and inflammasome activation. The pro-inflammatory effect was strongly induced by NIV and by the mycotoxin mixture, when compared to DON alone. Mechanistic studies indicate a pivotal role for ROS in the observed pro-inflammatory effects induced by mycotoxins. In this study, the interactions between NIV and DON point out the importance of their food co-contamination, further highlighting the risk assessment process that is of growing concern.
Functional relevance of intestinal epithelial cells in inflammatory bowel disease.
Okamoto, Ryuichi; Watanabe, Mamoru
2016-01-01
The intestinal epithelium constitutes a physical barrier between inner and outer side of our body. It also functions as a "hub" which connects factors that determine the development of inflammatory bowel disease, such as microbiota, susceptibility genes, and host immune response. Accordingly, recent studies have implicated and further featured the role of intestinal epithelial cell dysfunction in the pathophysiology of inflammatory bowel disease. For example, mucin producing goblet cells are usually "depleted" in ulcerative colitis patients. Studies have shown that those goblet cells exhibit various immune-regulatory functions in addition to mucin production, such as antigen presentation or cytokine production. Paneth cells are another key cell lineage that has been deeply implicated in the pathophysiology of Crohn's disease. Several susceptibility genes for Crohn's disease may lead to impairment of anti-bacterial peptide production and secretion by Paneth cells. Also, other susceptibility genes may determine the survival of Paneth cells, which leads to reduced Paneth cell function in the patient small intestinal mucosa. Further studies may reveal other unexpected roles of the intestinal epithelium in the pathophysiology of inflammatory bowel disease, and may help to develop alternative therapies targeted to intestinal epithelial cell functions.
Kuwahara, Atsukazu; Kuwahara, Yuko; Inui, Toshio; Marunaka, Yoshinori
2018-01-01
The diffuse chemosensory system (DCS) is well developed in the apparatuses of endodermal origin like gastrointestinal (GI) tract. The primary function of the GI tract is the extraction of nutrients from the diet. Therefore, the GI tract must possess an efficient surveillance system that continuously monitors the luminal contents for beneficial or harmful compounds. Recent studies have shown that specialized cells in the intestinal lining can sense changes in the luminal content. The chemosensory cells in the GI tract belong to the DCS which consists of enteroendocrine and related cells. These cells initiate various important local and remote reflexes. Although neural and hormonal involvements in ion transport in the GI tract are well documented, involvement of the DCS in the regulation of intestinal ion transport is much less understood. Since activation of luminal chemosensory receptors is a primary signal that elicits changes in intestinal ion transport and motility and failure of the system causes dysfunctions in host homeostasis, as well as functional GI disorders, study of the regulation of GI function by the DCS has become increasingly important. This review discusses the role of the DCS in epithelial ion transport, with particular emphasis on the involvement of free fatty acid receptor 2 (FFA2) and free fatty acid receptor 3 (FFA3). PMID:29510573
Folgueira, C; Sanchez-Rebordelo, E; Barja-Fernandez, S; Leis, R; Tovar, S; Casanueva, F F; Dieguez, C; Nogueiras, R; Seoane, L M
2016-03-01
Uroguanylin (UGN) is a 16 amino acid peptide produced mainly by intestinal epithelial cells. Nutrients intake increases circulating levels of prouroguanylin that is processed and converted to UGN to activate the guanylyl cyclase 2C receptor (GUCY2C). Given that the UGN-GUCY2C system has been proposed as a novel gut-brain endocrine axis regulating energy balance, the aim of the present study was to investigate the regulation of UGN protein levels in duodenum and circulating levels in lean and obese mice under different nutritional conditions and its potential interaction with leptin. Swiss, C57BL/6 wild-type and ob/ob male adult mice under different nutritional conditions were used: fed ad libitum standard diet (control); 48 h fasting (fasted); 48 h fasting followed by 24 h of feeding (refed); and fed high-fat diet (45 %) during 10 weeks. In addition, peripheral leptin administration was performed. Intestinal uroguanylin expression was studied by Western blot analysis; plasma levels were measured by ELISA. Food deprivation significantly reduced plasma UGN levels, which were correlated with the lower protein levels of UGN in duodenum. These effects were reverted after refeeding and leptin challenge. Consistently, in ob/ob mice UGN expression was decreased, whereas leptin treatment up-regulated UGN levels in duodenum in these genetically modified mice compared to WT. Diet-induced obese mice displayed increased UGN levels in intestine and plasma in comparison with lean mice. Our findings suggest that UGN levels are correlated with energy balance status and that the regulation of UGN by nutritional status is leptin-dependent.
Riehl, Terrence E; George, Robert J; Sturmoski, Mark A; May, Randal; Dieckgraefe, Brian; Anant, Shrikant; Houchen, Courtney W
2006-12-01
Azoxymethane (AOM) is a potent DNA-damaging agent and carcinogen that induces intestinal and colonic tumors in rodents. Evaluation of the stem cell population by colony formation assay reveals that, within 8 h after treatment, AOM (10 mg/kg) elicited a prosurvival response. In wild-type (WT) mice, AOM treatment induced a 2.5-fold increase in intestinal crypt stem cell survival. AOM treatment increased stem cell survival in cyclooxygenase (COX)-2(-/-) but not COX-1(-/-) mice, confirming a role of COX-1 in the AOM-induced increase in stem cell survival. COX-1 mRNA and protein expression as well as COX-1-derived PGE(2) synthesis were increased 8 h after AOM treatment. Immunohistochemical staining of COX-1 demonstrated expression of the enzyme in the crypt epithelial cells, especially in the columnar epithelial cells between the Paneth cells adjacent to the stem cell zone. WT mice receiving AOM exhibited increased intestinal apoptosis and a simultaneous reduction in crypt mitotic figures within 8 h of injection. There were no significant differences in baseline or AOM-induced intestinal epithelial apoptosis between WT and COX-1(-/-) mice, but there was a complete reversal of the AOM-mediated reduction in mitosis in COX-1(-/-) mice. This suggests that COX-1-derived PGE(2) may play a key role in the early phase of intestinal tumorigenesis in response to DNA damage and suggests that COX-1 may be a potential therapeutic target in this model of colon cancer.
Barrier-protective function of intestinal epithelial Toll-like receptor 2.
Cario, E
2008-11-01
The intestinal epithelial cell (IEC) barrier plays an important role in maintaining mucosal immune homeostasis. Dysregulated IEC barrier function appears to trigger and perpetuate inflammation in inflammatory bowel diseases (IBD). Novel risk variants in the Toll-like receptor 2 (TLR2) gene have previously been associated with a more severe disease phenotype in a subgroup of IBD patients. Recent studies have provided important insights of the commensal and host defense mechanisms to maintain functional barrier integrity of the intestinal epithelium through TLR2. Deficient TLR2 signaling may imbalance commensal-dependent intestinal epithelial barrier defense, facilitating mucosal injury and leading to increased susceptibility of colitis. Treatment with a synthetic TLR2 ligand significantly suppresses mucosal inflammation by efficiently protecting tight junction-associated integrity of the intestinal epithelium in vivo. These beneficial effects may be supplemented by TLR2-induced anti-inflammatory immune responses (such as interleukin-10 production) in lamina propria mononuclear cells. Thus, cell-specific TLR2 targeting may offer a novel therapeutic approach to human IBD therapy by protecting IEC barrier function.
miR-146a mediates protective innate immune tolerance in the neonate intestine.
Chassin, Cécilia; Kocur, Magdalena; Pott, Johanna; Duerr, Claudia U; Gütle, Dominique; Lotz, Michael; Hornef, Mathias W
2010-10-21
After birth, the intestinal mucosa undergoes a dramatic transition from a sterile protected site to an environmentally exposed and permanently colonized surface. The mechanisms that facilitate this transition are ill defined. Here, we demonstrate that microRNA-146a-mediated translational repression and proteolytic degradation of the essential Toll-like receptor (TLR) signaling molecule interleukin 1 receptor associated kinase 1 (IRAK1) is sufficient to induce intestinal epithelial innate immune tolerance and provide protection from bacteria-induced epithelial damage in neonates. Despite low IRAK1 protein levels, continuous TLR4- and IRAK1-dependent signal transduction induced by intraepithelial endotoxin persistence during the neonatal period maintains tolerance through sustained miR-146a expression. Strikingly, it additionally facilitates transcription of a distinct set of genes involved in cell survival, differentiation, and homeostasis. Thus, our results identify the underlying molecular mechanisms of intestinal epithelial innate immune tolerance during the neonatal period and characterize tolerance as an active condition involved in the establishment of intestinal mucosal homeostasis. Copyright © 2010 Elsevier Inc. All rights reserved.
Naturally occurring glucagon-like peptide-2 (GLP-2) receptors in human intestinal cell lines.
Sams, Anette; Hastrup, Sven; Andersen, Marie; Thim, Lars
2006-02-17
Although clinical trials with GLP-2 receptor agonists are currently ongoing, the mechanisms behind GLP-2-induced intestinal epithelial growth remain to be understood. To approach the GLP-2 mechanism of action this study aimed to identify intestinal cell lines endogenously expressing the GLP-2 receptor. Here we report the first identification of a cell line endogenously expressing functional GLP-2 receptors. The human intestinal epithelial cell line, FHC, expressed GLP-2 receptor encoding mRNA (RT-PCR) and GLP-2 receptor protein (Western blot). In cultured FHC cells, GLP-2 induced concentration dependent cAMP accumulation (pEC(50)=9.7+/-0.04 (mean+/-S.E.M., n=4)). In addition, a naturally occurring human intestinal fibroblast cell line, 18Co, endogenously expressing GLP-2 receptor encoding mRNA (RT-PCR) and protein (Western blot) was identified. No receptor functionality (binding or G-protein signalling) could be demonstrated in 18Co cells. The identified gut-relevant cell lines provide tools for future clarification of the mechanisms underlying GLP-2-induced epithelial growth.
BowelScope: Accuracy of Detection Using ENdocuff Optimisation of Mucosal Abnormalities
2017-05-05
Colorectal Neoplasms; Colonic Polyp; Adenoma; Neoplasia GI; Digestive System Neoplasms; Intestinal Neoplasms; Neoplasms, Glandular and Epithelial; Digestive Disease; Intestinal Diseases; Colonic Diseases; Rectal Diseases; Intestinal Polyps; Polyps; Pathological Conditions, Anatomical
TLR/MyD88-mediated Innate Immunity in Intestinal Graft-versus-Host Disease.
Lee, Young-Kwan; Kang, Myungsoo; Choi, Eun Young
2017-06-01
Graft-versus-host disease (GHVD) is a severe complication after allogeneic hematopoietic stem cell transplantation. The degree of inflammation in the gastrointestinal tract, a major GVHD target organ, correlates with the disease severity. Intestinal inflammation is initiated by epithelial damage caused by pre-conditioning irradiation. In combination with damages caused by donor-derived T cells, such damage disrupts the epithelial barrier and exposes innate immune cells to pathogenic and commensal intestinal bacteria, which release ligands for Toll-like receptors (TLRs). Dysbiosis of intestinal microbiota and signaling through the TLR/myeloid differentiation primary response gene 88 (MyD88) pathways contribute to the development of intestinal GVHD. Understanding the changes in the microbial flora and the roles of TLR signaling in intestinal GVHD will facilitate the development of preventative and therapeutic strategies.
Oral PEG 15-20 protects the intestine against radiation : role of lipid rafts.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Valuckaite, V.; Zaborina, O.; Long, J.
Intestinal injury following abdominal radiation therapy or accidental exposure remains a significant clinical problem that can result in varying degrees of mucosal destruction such as ulceration, vascular sclerosis, intestinal wall fibrosis, loss of barrier function, and even lethal gut-derived sepsis. We determined the ability of a high-molecular-weight polyethylene glycol-based copolymer, PEG 15-20, to protect the intestine against the early and late effects of radiation in mice and rats and to determine its mechanism of action by examining cultured rat intestinal epithelia. Rats were exposed to fractionated radiation in an established model of intestinal injury, whereby an intestinal segment is surgicallymore » placed into the scrotum and radiated daily. Radiation injury score was decreased in a dose-dependent manner in rats gavaged with 0.5 or 2.0 g/kg per day of PEG 15-20 (n = 9-13/group, P < 0.005). Complementary studies were performed in a novel mouse model of abdominal radiation followed by intestinal inoculation with Pseudomonas aeruginosa (P. aeruginosa), a common pathogen that causes lethal gut-derived sepsis following radiation. Mice mortality was decreased by 40% in mice drinking 1% PEG 15-20 (n = 10/group, P < 0.001). Parallel studies were performed in cultured rat intestinal epithelial cells treated with PEG 15-20 before radiation. Results demonstrated that PEG 15-20 prevented radiation-induced intestinal injury in rats, prevented apoptosis and lethal sepsis attributable to P. aeruginosa in mice, and protected cultured intestinal epithelial cells from apoptosis and microbial adherence and possible invasion. PEG 15-20 appeared to exert its protective effect via its binding to lipid rafts by preventing their coalescence, a hallmark feature in intestinal epithelial cells exposed to radiation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moon, Yuseok; Yang, Hyun; Kim, Yung Bu
Non-steroidal anti-inflammatory drugs (NSAIDs) are used to relieve pain and inflammation and have also received considerable attention because of their preventive effects against human cancer. However, the drug application is sometimes limited by the severe gastrointestinal ulcers and mucosal complications. In the present study, NSAID sulindac sulfide was investigated for the cytotoxic injury in the intestinal epithelial cells in association with an immediate inducible factor, early growth response gene 1 (EGR-1). Previously we reported that sulindac sulfide can suppress tumor cell invasion by inducing EGR-1. Extending the previous study, EGR-1 induction by sulindac sulfide was observed both in the non-transformedmore » and transformed human intestinal epithelial cell lines. In terms of signaling pathway, ERK1/2 MAP kinases and its substrate Elk-1 transcription factor were involved in the sulindac sulfide-induced EGR-1 gene expression. Moreover, sulindac sulfide stimulated the nuclear translocation of the transcription factor EGR-1, which was also mediated by ERK1/2 signaling pathway. The roles of EGR-1 signals in the apoptotic cell death were assessed in the intestinal epithelial cells. Suppression of EGR-1 expression retarded cellular growth and colony forming activity in the intestinal epithelial cells. Moreover, induced EGR-1 ameliorated sulindac sulfide-mediated apoptotic cell death and enhanced the cellular survival. Taken all together, sulindac sulfide activated ERK1/2 MAP kinases which then mediated EGR-1 induction and nuclear translocation, all of which played important roles in the cellular survival from NSAID-mediated cytotoxicity in the human intestinal epithelial cells, implicating the protective roles of EGR-1 in the NSAID-mediated mucosal injuries.« less
Wang, Lihong; Shi, Yan; Cao, Hanwei; Liu, Liping; Washington, M. Kay; Chaturvedi, Rupesh; Israel, Dawn A.; Cao, Hailong; Wang, Bangmao; Peek, Richard M.; Wilson, Keith T.; Polk, D. Brent
2012-01-01
Inflammatory bowel disease (IBD) results from dysregulation of intestinal mucosal immune responses to microflora in genetically susceptible hosts. A major challenge for IBD research is to develop new strategies for treating this disease. Berberine, an alkaloid derived from plants, is an alternative medicine for treating bacterial diarrhea and intestinal parasite infections. Recent studies suggest that berberine exerts several other beneficial effects, including inducing anti-inflammatory responses. This study determined the effect of berberine on treating dextran sulfate sodium (DSS)-induced intestinal injury and colitis in mice. Berberine was administered through gavage to mice with established DSS-induced intestinal injury and colitis. Clinical parameters, intestinal integrity, proinflammatory cytokine production, and signaling pathways in colonic macrophages and epithelial cells were determined. Berberine ameliorated DSS-induced body weight loss, myeloperoxidase activity, shortening of the colon, injury, and inflammation scores. DSS-upregulated proinflammatory cytokine levels in the colon, including TNF, IFN-γ, KC, and IL-17 were reduced by berberine. Berberine decreased DSS-induced disruption of barrier function and apoptosis in the colon epithelium. Furthermore, berberine inhibited proinflammatory cytokine production in colonic macrophages and epithelial cells in DSS-treated mice and promoted apoptosis of colonic macrophages. Activation of signaling pathways involved in stimulation of proinflammatory cytokine production, including MAPK and NF-κB, in colonic macrophages and epithelial cells from DSS-treated mice was decreased by berberine. In summary, berberine promotes recovery of DSS-induced colitis and exerts inhibitory effects on proinflammatory responses in colonic macrophages and epithelial cells. Thus berberine may represent a new therapeutic approach for treating gastrointestinal inflammatory disorders. PMID:22173918
Vikström, Elena; Magnusson, Karl-Eric; Vécsey-Semjén, Beatrix; Colque-Navarro, Patricia; Möllby, Roland
2012-01-01
Increased microvascular permeability is a hallmark of sepsis and septic shock. Intestinal mucosal dysfunction may allow translocation of bacteria and their products, thereby promoting sepsis and inflammation. Although Staphylococcus aureus alpha-toxin significantly contributes to sepsis and perturbs the endothelial barrier function, little is known about possible effects of S. aureus alpha-toxin on human epithelial barrier functions. We hypothesize that S. aureus alpha-toxin in the blood can impair the intestinal epithelial barrier and thereby facilitate the translocation of luminal bacteria into the blood, which may in turn aggravate a septic condition. Here, we showed that staphylococcal alpha-toxin disrupts the barrier integrity of human intestinal epithelial Caco-2 cells as evidenced by decreased transepithelial electrical resistance (TER) and reduced cellular levels of junctional proteins, such as ZO-1, ZO-3, and E-cadherin. The Caco-2 cells also responded to alpha-toxin with an elevated cytosolic calcium ion concentration ([Ca2+]i), elicited primarily by calcium influx from the extracellular environment, as well as with a significant reduction in TER, which was modulated by intracellular calcium chelation. Moreover, a significantly larger reduction in TER and amounts of the junctional proteins, viz., ZO-3 and occludin, was achieved by basolateral than by apical application of the alpha-toxin. These experimental findings thus support the hypothesis that free staphylococcal alpha-toxin in the bloodstream may cause intestinal epithelial barrier dysfunction and further aggravate the septic condition by promoting the release of intestinal bacteria into the underlying tissues and the blood. PMID:22354024
Kortman, Guus A. M.; Roelofs, Rian W. H. M.; Swinkels, Dorine W.; de Jonge, Marien I.; Burt, Sara A.
2014-01-01
Oral iron therapy can increase the abundance of bacterial pathogens, e.g., Salmonella spp., in the large intestine of African children. Carvacrol is a natural compound with antimicrobial activity against various intestinal bacterial pathogens, among which is the highly prevalent Salmonella enterica serovar Typhimurium. This study aimed to explore a presumed interaction between carvacrol and bacterial iron handling and to assess the potential of carvacrol in preventing the increase of bacterial pathogenicity during high iron availability. S. Typhimurium was cultured with increasing concentrations of iron and carvacrol to study the effects of these combined interventions on growth, adhesion to intestinal epithelial cells, and iron uptake/influx in both bacterial and epithelial cells. In addition, the ability of carvacrol to remove iron from the high-affinity ligand transferrin and an Fe-dye complex was examined. Carvacrol retarded growth of S. Typhimurium at all iron conditions. Furthermore, iron-induced epithelial adhesion was effectively reduced by carvacrol at high iron concentrations. The reduction of growth and virulence by carvacrol was not paralleled by a change in iron uptake or influx into S. Typhimurium. In contrast, bioavailability of iron for epithelial cells was moderately decreased under these conditions. Further, carvacrol was shown to lack the properties of an iron binding molecule; however, it was able to weaken iron-ligand interactions by which it may possibly interfere with bacterial virulence. In conclusion, our in vitro data suggest that carvacrol has the potential to serve as a novel dietary supplement to prevent pathogenic overgrowth and colonization in the large intestine during oral iron therapy. PMID:24379194
Buckner, Diana; Wilson, Suzanne; Kurk, Sandra; Hardy, Michele; Miessner, Nicole; Jutila, Mark A
2006-09-01
Innate immune system stimulants (innate adjuvants) offer complementary approaches to vaccines and antimicrobial compounds to increase host resistance to infection. The authors established fetal bovine intestinal epithelial cell (BIEC) cultures to screen natural product and synthetic compound libraries for novel mucosal adjuvants. They showed that BIECs from fetal intestine maintained an in vivo phenotype as reflected in cytokeratin expression, expression of antigens restricted to intestinal enterocytes, and induced interleukin-8 (IL-8) production. BIECs could be infected by and support replication of bovine rotavirus. A semi-high-throughput enzyme-linked immunosorbent assay-based assay that measured IL-8 production by BIECs was established and used to screen commercially available natural compounds for novel adjuvant activity. Five novel hits were identified, demonstrating the utility of the assay for selecting and screening new epithelial cell adjuvants. Although the identified compounds had not previously been shown to induce IL-8 production in epithelial cells, other known functions for 3 of the 5 were consistent with this activity. Statistical analysis of the throughput data demonstrated that the assay is adaptable to a high-throughput format for screening both synthetic and natural product derived compound libraries.
Valentin-Vega, Yasmine A.; Box, Neil; Terzian, Tamara; Lozano, Guillermina
2014-01-01
Mdm4 is a critical inhibitor of the p53 tumor suppressor. Mdm4 null mice die early during embryogenesis due to increased p53 activity. In this study, we explore the role that Mdm4 plays in the intestinal epithelium by crossing mice carrying the Mdm4 floxed allele to mice with the Villin Cre transgene. Our data show that loss of Mdm4 (Mdm4intΔ) in this tissue resulted in viable animals with no obvious morphological abnormalities. However, these mutants displayed increased p53 levels and apoptosis exclusively in the proliferative compartment of the intestinal epithelium. This phenotype was completely rescued in a p53 null background. Notably, the observed compartmentalized apoptosis in proliferative intestinal epithelial cells was not due to restricted Mdm4 expression in this region. Thus, in this specific cellular context, p53 is negatively regulated by Mdm4 exclusively in highly proliferative cells. PMID:19371999
An Intestinal Farnesoid X Receptor–Ceramide Signaling Axis Modulates Hepatic Gluconeogenesis in Mice
Xie, Cen; Shi, Jingmin; Gao, Xiaoxia; Sun, Dongxue; Sun, Lulu; Wang, Ting; Takahashi, Shogo; Anitha, Mallappa; Krausz, Kristopher W.; Patterson, Andrew D.
2017-01-01
Increasing evidence supports the view that intestinal farnesoid X receptor (FXR) is involved in glucose tolerance and that FXR signaling can be profoundly impacted by the gut microbiota. Selective manipulation of the gut microbiota–FXR signaling axis was reported to significantly impact glucose intolerance, but the precise molecular mechanism remains largely unknown. Here, caffeic acid phenethyl ester (CAPE), an over-the-counter dietary supplement and an inhibitor of bacterial bile salt hydrolase, increased levels of intestinal tauro-β-muricholic acid, which selectively suppresses intestinal FXR signaling. Intestinal FXR inhibition decreased ceramide levels by suppressing expression of genes involved in ceramide synthesis specifically in the intestinal ileum epithelial cells. The lower serum ceramides mediated decreased hepatic mitochondrial acetyl-CoA levels and pyruvate carboxylase (PC) activities and attenuated hepatic gluconeogenesis, independent of body weight change and hepatic insulin signaling in vivo; this was reversed by treatment of mice with ceramides or the FXR agonist GW4064. Ceramides substantially attenuated mitochondrial citrate synthase activities primarily through the induction of endoplasmic reticulum stress, which triggers increased hepatic mitochondrial acetyl-CoA levels and PC activities. These results reveal a mechanism by which the dietary supplement CAPE and intestinal FXR regulates hepatic gluconeogenesis and suggest that inhibiting intestinal FXR is a strategy for treating hyperglycemia. PMID:28223344
Chen, Mingmin; Sultan, Ayesha; Cinar, Ayhan; Yeruva, Sunil; Riederer, Brigitte; Singh, Anurag Kumar; Li, Junhua; Bonhagen, Janina; Chen, Gang; Yun, Chris; Donowitz, Mark; Hogema, Boris; deJonge, Hugo; Seidler, Ursula
2010-01-01
Trafficking and regulation of the epithelial brush border membrane (BBM) Na+/H+ exchanger 3 (NHE3) in the intestine involves interaction with four different members of the NHERF family in a signal-dependent and possibly segment-specific fashion. The aim of this research was to study the role of NHERF2 (E3KARP) in intestinal NHE3 BBM localization and second messenger-mediated and receptor-mediated inhibition of NHE3. Immunolocalization of NHE3 in WT mice revealed predominant microvillar localization in jejunum and colon, a mixed distribution in the proximal ileum but localization near the terminal web in the distal ileum. The terminal web localization of NHE3 in the distal ileum correlated with reduced acid-activated NHE3 activity (fluorometrically assessed). NHERF2 ablation resulted in a shift of NHE3 to the microvilli and higher basal fluid absorption rates in the ileum, but no change in overall NHE3 protein or mRNA expression. Forskolin-induced NHE3 inhibition was preserved in the absence of NHERF2, whereas Ca2+ ionophore- or carbachol-mediated inhibition was abolished. Likewise, Escherichia coli heat stable enterotoxin peptide (STp) lost its inhibitory effect on intestinal NHE3. It is concluded that in native murine intestine, the NHE3 adaptor protein NHERF2 plays important roles in tethering NHE3 to a position near the terminal web and in second messenger inhibition of NHE3 in a signal- and segment-specific fashion, and is therefore an important regulator of intestinal fluid transport. PMID:20962002
A Celiac Diasease Associated lncRNA Named HCG14 Regulates NOD1 Expression in Intestinal Cells.
Santin, Izortze; Jauregi-Miguel, Amaia; Velayos, Teresa; Castellanos-Rubio, Ainara; Garcia-Etxebarria, Koldo; Romero-Garmendia, Irati; Fernandez-Jimenez, Nora; Irastorza, Iñaki; Castaño, Luis; Bilbao, Jose Ramón
2018-03-29
To identify additional celiac disease associated loci in the Major Histocompatibility Complex independent from classical HLA risk alleles (HLA-DR3-DQ2) and to characterize their potential functional impact in celiac disease pathogenesis at the intestinal level. We performed a high resolution SNP genotyping of the MHC region, comparing HLA-DR3 homozygous celiac patients and non-celiac controls carrying a single copy of the B8-DR3-DQ2 conserved extended haplotype. Expression level of potential novel risk genes was determined by RT-PCR in intestinal biopsies and in intestinal and immune cells isolated from control and celiac individuals. Small interfering RNA-driven silencing of selected genes was performed in the intestinal cell line T84. MHC genotyping revealed two associated SNPs, one located in TRIM27 gene and another in the non-coding gene HCG14. After stratification analysis, only HCG14 showed significant association independent from HLA-DR-DQ loci Expression of HCG14 was slightly downregulated in epithelial cells isolated from duodenal biopsies of celiac patients, and eQTL analysis revealed that polymorphisms in HCG14 region were associated with decreased NOD1 expression in duodenal intestinal cells. We have sucessfully employed a conserved extended haplotype-matching strategy and identified a novel additional celiac disease risk variant in the lncRNA HGC14. This lncRNA seems to regulate the expression of NOD1 in an allele-specific manner. Further functional studies are needed to clarify the role of HCG14 in the regulation of gene expression and to determine the molecular mechanisms by which the risk variant in HCG14 contributes to celiac disease pathogenesis.
Gong, Zhen-Yu; Yuan, Zhi-Qiang; Dong, Zhi-Wei; Peng, Yi-Zhi
2017-01-01
Severe burns may lead to intestinal inflammation and oxidative stress resulting in intestinal barrier damage and gut dysfunction. In the management of severe burns, therapies are needed to attenuate whole-body inflammatory responses and control the burden of oxidative stress. In this study, we evaluated the effects of oral glutamine (Gln) with probiotics on burn-induced intestinal inflammation and oxidative stress using a Wistar rat burn injury model. We then explored potential molecular mechanisms for the effects of glutamine and probiotics on intestinal tissue inflammation and oxidative stress. We found that glutamine and probiotics together significantly inhibited nitric oxide (NO) content; reduced levels of the inflammatory factors TNF-α, IL-6, and IL-8; and altered expression of oxidative stress factors including reactive oxygen species and superoxide dismutase. We found that the apoptotic proportion of intestinal epithelial cells in severely burned subjects was notably decreased following treatment with glutamine plus probiotics. We also found that glutamine and probiotics given together markedly reduced NO content by down-regulating the expression of iNOS in blood and intestinal tissue. These findings indicate that regulation of the iNOS gene plays a pivotal role in inflammation and oxidative stress in the response to severe burns in the Wistar rat. We then further investigated the mechanism by which combined therapy with glutamine and probiotics might reduce expression of iNOS and found that this treatment resulted in increased methylation of the iNOS gene. The methylation level of the iNOS gene was found to be regulated via differential expression of DNMT1 and Tet1. Collectively, our results suggest that combined therapy with glutamine and probiotics can markedly reduce the synthesis of NO, suppressing intestinal inflammation and oxidative stress in the Wistar rat burn injury model. PMID:28560003
2010-01-01
Background Recent epidemiological analyses have implicated acute Campylobacter enteritis as a factor that may incite or exacerbate inflammatory bowel disease (IBD) in susceptible individuals. We have demonstrated previously that C. jejuni disrupts the intestinal barrier function by rapidly inducing epithelial translocation of non-invasive commensal bacteria via a transcellular lipid raft-mediated mechanism ('transcytosis'). To further characterize this mechanism, the aim of this current study was to elucidate whether C. jejuni utilizes M cells to facilitate transcytosis of commensal intestinal bacteria. Results C. jejuni induced translocation of non-invasive E. coli across confluent Caco-2 epithelial monolayers in the absence of disrupted transepithelial electrical resistance or increased permeability to a 3 kDa dextran probe. C. jejuni-infected monolayers displayed increased numbers of cells expressing the M cell-specific marker, galectin-9, reduced numbers of enterocytes that stained with the absorptive enterocyte marker, Ulex europaeus agglutinin-1, and reduced activities of enzymes typically associated with absorptive enterocytes (namely alkaline phosphatase, lactase, and sucrase). Furthermore, in Campylobacter-infected monolayers, E. coli were observed to be internalized specifically within epithelial cells displaying M-like cell characteristics. Conclusion These data indicate that C. jejuni may utilize M cells to promote transcytosis of non-invasive bacteria across the intact intestinal epithelial barrier. This mechanism may contribute to the inflammatory immune responses against commensal intestinal bacteria commonly observed in IBD patients. PMID:21040540
Genetics Home Reference: hereditary folate malabsorption
... PCFT is important for normal functioning of intestinal epithelial cells, which are cells that line the walls of the intestine. ... intestinal absorption and transport into systemic compartments and tissues. Expert Rev Mol Med. 2009 Jan 28;11: ...
Microbiota-host interplay at the gut epithelial level, health and nutrition.
Lallès, Jean-Paul
2016-01-01
Growing evidence suggests the implication of the gut microbiota in various facets of health and disease. In this review, the focus is put on microbiota-host molecular cross-talk at the gut epithelial level with special emphasis on two defense systems: intestinal alkaline phosphatase (IAP) and inducible heat shock proteins (iHSPs). Both IAP and iHSPs are induced by various microbial structural components (e.g. lipopolysaccharide, flagellin, CpG DNA motifs), metabolites (e.g. n-butyrate) or secreted signal molecules (e.g., toxins, various peptides, polyphosphate). IAP is produced in the small intestine and secreted into the lumen and in the interior milieu. It detoxifies microbial components by dephosphorylation and, therefore, down-regulates microbe-induced inflammation mainly by inhibiting NF-κB pro-inflammatory pathway in enterocytes. IAP gene expression and enzyme activity are influenced by the gut microbiota. Conversely, IAP controls gut microbiota composition both directly, and indirectly though the detoxification of pro-inflammatory free luminal adenosine triphosphate and inflammation inhibition. Inducible HSPs are expressed by gut epithelial cells in proportion to the microbial load along the gastro-intestinal tract. They are also induced by various microbial components, metabolites and secreted molecules. Whether iHSPs contribute to shape the gut microbiota is presently unknown. Both systems display strong anti-inflammatory and anti-oxidant properties that are protective to the gut and the host. Importantly, epithelial gene expressions and protein concentrations of IAP and iHSPs can be stimulated by probiotics, prebiotics and a large variety of dietary components, including macronutrients (protein and amino acids, especially L-glutamine, fat, fiber), and specific minerals (e.g. calcium) and vitamins (e.g. vitamins K1 and K2). Some food components (e.g. lectins, soybean proteins, various polyphenols) may inhibit or disturb these systems. The general cellular and molecular mechanisms involved in the microbiota-host epithelial crosstalk and subsequent gut protection through IAP and iHSPs are reviewed along with their nutritional modulation. Special emphasis is also given to the pig, an economically important species and valuable biomedical model.
Samak, Geetha; Chaudhry, Kamaljit K; Gangwar, Ruchika; Narayanan, Damodaran; Jaggar, Jonathan H; Rao, RadhaKrishna
2015-02-01
Disruption of intestinal epithelial tight junctions is an important event in the pathogenesis of ulcerative colitis. Dextran sodium sulfate (DSS) induces colitis in mice with symptoms similar to ulcerative colitis. However, the mechanism of DSS-induced colitis is unknown. We investigated the mechanism of DSS-induced disruption of intestinal epithelial tight junctions and barrier dysfunction in Caco-2 cell monolayers in vitro and mouse colon in vivo. DSS treatment resulted in disruption of tight junctions, adherens junctions and actin cytoskeleton leading to barrier dysfunction in Caco-2 cell monolayers. DSS induced a rapid activation of c-Jun N-terminal kinase (JNK), and the inhibition or knockdown of JNK2 attenuated DSS-induced tight junction disruption and barrier dysfunction. In mice, DSS administration for 4 days caused redistribution of tight junction and adherens junction proteins from the epithelial junctions, which was blocked by JNK inhibitor. In Caco-2 cell monolayers, DSS increased intracellular Ca(2+) concentration, and depletion of intracellular Ca(2+) by 1,2-bis-(o-aminophenoxy)ethane-N,N,N',N'-tetra-acetic acid tetrakis(acetoxymethyl ester) (BAPTA/AM) or thapsigargin attenuated DSS-induced JNK activation, tight junction disruption and barrier dysfunction. Knockdown of apoptosis signal-regulated kinase 1 (Ask1) or MKK7 blocked DSS-induced tight junction disruption and barrier dysfunction. DSS activated c-Src by a Ca2+ and JNK-dependent mechanism. Inhibition of Src kinase activity or knockdown of c-Src blocked DSS-induced tight junction disruption and barrier dysfunction. DSS increased tyrosine phosphorylation of occludin, zonula occludens-1 (ZO-1), E-cadherin and β-catenin. SP600125 abrogated DSS-induced tyrosine phosphorylation of junctional proteins. Recombinant JNK2 induced threonine phosphorylation and auto-phosphorylation of c-Src. The present study demonstrates that Ca(2+)/Ask1/MKK7/JNK2/cSrc signalling cascade mediates DSS-induced tight junction disruption and barrier dysfunction.
Seifert, Stephanie; Rodriguez Gómez, Manuel; Watzl, Bernhard; Holzapfel, Wilhelm H; Franz, Charles M A P; Vizoso Pinto, María G
2010-12-01
Probiotics have been shown to enhance immune defenses, but their mechanisms of action are only partially understood. We investigated the modulation of signal pathways involved in innate immunity in enterocytes by Lactobacillus johnsonii BFE 6128 isolated from 'Kule naoto', a Maasai traditional fermented milk product. This lactobacillus sensitized HT29 intestinal epithelial cells toward recognition of Salmonella enterica serovar Typhimurium by increasing the IL-8 levels released after challenge with this pathogen and by differentially modulating genes related to toll-like receptor (TLR) pathways and innate immunity. Thus, the modulation of pro-inflammatory mediators and TLR-pathway-related molecules may be an important mechanism contributing to the potential stimulation of innate immunity by lactobacilli at the intestinal epithelial level.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kimura, Rino; Takahashi, Nobuyuki, E-mail: nobu@kais.kyoto-u.ac.jp; Murota, Kaeko
Highlights: {yields} PPAR{alpha} activation increased mRNA expression levels of fatty acid oxidation-related genes in human intestinal epithelial Caco-2 cells. {yields} PPAR{alpha} activation also increased oxygen consumption rate and CO{sub 2} production and decreased secretion of triglyceride and ApoB from Caco-2 cells. {yields} Orally administration of bezafibrate increased mRNA expression levels of fatty acid oxidation-related genes and CO{sub 2} production in small intestinal epithelial cells. {yields} Treatment with bezafibrate decreased postprandial serum concentration of triglyceride after oral injection of olive oil in mice. {yields} It suggested that intestinal lipid metabolism regulated by PPAR{alpha} activation suppresses postprandial lipidemia. -- Abstract: Activation ofmore » peroxisome proliferator-activated receptor (PPAR)-{alpha} which regulates lipid metabolism in peripheral tissues such as the liver and skeletal muscle, decreases circulating lipid levels, thus improving hyperlipidemia under fasting conditions. Recently, postprandial serum lipid levels have been found to correlate more closely to cardiovascular diseases than fasting levels, although fasting hyperlipidemia is considered an important risk of cardiovascular diseases. However, the effect of PPAR{alpha} activation on postprandial lipidemia has not been clarified. In this study, we examined the effects of PPAR{alpha} activation in enterocytes on lipid secretion and postprandial lipidemia. In Caco-2 enterocytes, bezafibrate, a potent PPAR{alpha} agonist, increased mRNA expression levels of fatty acid oxidation-related genes, such as acyl-CoA oxidase, carnitine palmitoyl transferase, and acyl-CoA synthase, and oxygen consumption rate (OCR) and suppressed secretion levels of both triglycerides and apolipoprotein B into the basolateral side. In vivo experiments revealed that feeding high-fat-diet containing bezafibrate increased mRNA expression levels of fatty acid oxidation-related genes and production of CO{sub 2} and acid soluble metabolites in enterocytes. Moreover, bezafibrate treatment suppressed postprandial lipidemia after oral administration of olive oil to the mice. These findings indicate that PPAR{alpha} activation suppresses postprandial lipidemia through enhancement of fatty acid oxidation in enterocytes, suggesting that intestinal lipid metabolism regulated by PPAR{alpha} activity is a novel target of PPAR{alpha} agonist for decreasing circulating levels of lipids under postprandial conditions.« less
Plog, Stephanie; Klymiuk, Nikolai; Binder, Stefanie; Van Hook, Matthew J.; Thoreson, Wallace B.; Gruber, Achim D.; Mundhenk, Lars
2015-01-01
The human CLCA4 (chloride channel regulator, calcium-activated) modulates the intestinal phenotype of cystic fibrosis (CF) patients via an as yet unknown pathway. With the generation of new porcine CF models, species-specific differences between human modifiers of CF and their porcine orthologs are considered critical for the translation of experimental data. Specifically, the porcine ortholog to the human CF modulator gene CLCA4 has recently been shown to be duplicated into two separate genes, CLCA4a and CLCA4b. Here, we characterize the duplication product, CLCA4b, in terms of its genomic structure, tissue and cellular expression patterns as well as its in vitro electrophysiological properties. The CLCA4b gene is a pig-specific duplication product of the CLCA4 ancestor and its protein is exclusively expressed in small and large intestinal crypt epithelial cells, a niche specifically occupied by no other porcine CLCA family member. Surprisingly, a unique deleterious mutation of the CLCA4b gene is spread among modern and ancient breeds in the pig population, but this mutation did not result in an apparent phenotype in homozygously affected animals. Electrophysiologically, neither the products of the wild type nor of the mutated CLCA4b genes were able to evoke a calcium-activated anion conductance, a consensus feature of other CLCA proteins. The apparently pig-specific duplication of the CLCA4 gene with unique expression of the CLCA4b protein variant in intestinal crypt epithelial cells where the porcine CFTR is also present raises the question of whether it may modulate the porcine CF phenotype. Moreover, the naturally occurring null variant of CLCA4b will be valuable for the understanding of CLCA protein function and their relevance in modulating the CF phenotype. PMID:26474299
ROCK activity affects IL-1-induced signaling possibly through MKK4 and p38 MAPK in Caco-2 cells.
Banerjee, Sayantan; McGee, Dennis W
2016-09-01
Elevated levels of interleukin-1 (IL-1) accompany inflammatory bowel disease. IL-1-stimulated intestinal epithelial cells can secrete potent chemokines like CXCL8 to exacerbate inflammation. Previously, we found that inhibiting the Rho-associated kinase (ROCK) could inhibit IL-1- or TNF-α-induced CXCL8 secretion by the Caco-2 colonic epithelial cell line. This ROCK inhibition did not affect IκBα phosphorylation and degradation, but suppressed the phosphorylation of c-Jun N-terminal kinase (JNK). Therefore, ROCK must play an important role in epithelial cell CXCL8 responses through an effect on the JNK signaling pathway. Here, we extend these studies by showing that inhibiting ROCK suppressed the IL-1-induced phosphorylation of MKK4, a known activator of JNK, but not MKK7. Yet, ROCK inhibition had no significant effect on the IL-1-induced phosphorylation of extracellular-signal-regulated kinase (ERK) 1/2. Inhibiting ROCK also suppressed the phosphorylation of p38 MAPK after IL-1 stimulation, but this inhibition had no significant effect on the stability of CXCL8 messenger RNA (mRNA) after IL-1 stimulation. These results suggest that ROCK may be important in IL-1-induced signaling through MKK4 to JNK and the activation of p38 MAPK. Finally, inhibiting ROCK in IL-1 and TNF-α co-stimulated Caco-2 cells also resulted in a significant suppression of CXCL8 secretion and mRNA levels suggesting that inhibiting ROCK may be a mechanism to inhibit the overall response of epithelial cells to both cytokines. These studies indicate a novel signaling event, which could provide a target for suppressing intestinal epithelial cells (IEC) chemokine responses involved in mucosal inflammation.
Li, Xin; Wang, Chen; Nie, Jiao; Lv, Dong; Wang, Tianyi; Xu, Youqing
2013-09-01
Intestinal hyperpermeability is a causal factor for the development of alcoholic endotoxemia and steatohepatitis. However, the mechanisms governing this link remain unknown. The purpose of this study was to determine whether toll-like receptor 4 (TLR4) is involved in ethanol's deleterious effects on the intestinal barrier. Caco-2 cells were incubated in vitro with 1-10% ethanol. The results indicated that ethanol had a dose-dependent effect in increasing TLR4 expression and intercellular permeability. Then the effects of TLR4 on protein kinase C (PKC) and the intercellular junction protein occludin were assessed with and without pretreatment with a TLR4 inhibitor. The results indicated that TLR4 increased nonspecific PKC activity and reduced the expression of phosphorylated occludin in the membrane, which increased intercellular permeability. These effects were prevented by pretreatment with TLR4 mAb. Wild-type C57BL/6 mice were fed an ethanol or isocaloric liquid diet for 6 weeks. Hepatitis was diagnosed by the presence of an associated elevated blood endotoxin level. Chronic ethanol treatment significantly elevated blood endotoxin levels, intestinal permeability, and the expression of TLR4 in the ileum and colon. Moreover, ethanol exposure reduced the distribution of phosphorylated occludin in the intestinal epithelium because of PKC activation. In conclusion, chronic ethanol exposure induces a high response of TLR4 to lipopolysaccharide (LPS), and TLR4 increases intestinal permeability through down-regulation of phosphorylated occludin expression in the intestinal epithelial barrier, accompanied by membrane PKC hyperactivity. Copyright © 2013 Elsevier Inc. All rights reserved.
Policing the intestinal epithelial barrier: Innate immune functions of intraepithelial lymphocytes.
Hu, Madeleine D; Jia, Luo; Edelblum, Karen L
2018-03-01
This review will explore the contribution of IELs to mucosal innate immunity and highlight the similarities in IEL functional responses to bacteria, viruses and protozoan parasite invasion. IELs rapidly respond to microbial invasion by activating host defense responses, including the production of mucus and antimicrobial peptides to prevent microbes from reaching the epithelial surface. During active infection, IELs promote epithelial cytolysis, cytokine and chemokine production to limit pathogen invasion, replication and dissemination. Commensal-induced priming of IEL effector function or continuous surveillance of the epithelium may be important contributing factors to the rapidity of response. Impaired microbial recognition, dysregulated innate immune signaling or microbial dysbiosis may limit the protective function of IELs and increase susceptibility to disease. Further understanding of the mechanisms regulating IEL surveillance and sentinel function may provide insight into the development of more effective targeted therapies designed to reinforce the mucosal barrier.
Thang, P H; Ruffin, N; Brodin, D; Rethi, B; Cam, P D; Hien, N T; Lopalco, L; Vivar, N; Chiodi, F
2010-08-01
Interleukin (IL)-7 is a key cytokine in T-cell homeostasis. Stromal cells, intestinal epithelial cells and keratinocytes are known to produce this cytokine. The mechanisms and cellular factors regulating IL-7 production are still unclear. We assessed whether IL-1beta and interferon (IFN)-gamma, cytokines produced during inflammatory conditions, may impact on IL-7 production. We used human intestinal epithelial cells (DLD-1 cell line) and bone marrow stromal cells (HS27 cell line), known to produce IL-7; IL-7 production was evaluated at the mRNA and protein levels. To assess whether treatment of HS27 cells with IL-1beta and/or IFN-gamma leads to changes in the gene expression of cytokines, Toll-like receptors (TLRs) and chemokines, we analysed gene expression profiles using the whole-genome microarray Human Gene 1.0 ST. We found that IFN-gamma enhanced the expression of IL-7 mRNA (P < 0.001) in both cell lines. IL-1beta treatment led to a significant down-regulation (P < 0.001) of IL-7 mRNA expression in both cell lines. The IL-7 concentration in supernatants collected from treated DLD-1 and HS27 cell cultures reflected the trend of IL-7 mRNA levels. The gene profiles revealed dramatic changes in expression of cytokines and their receptors (IL-7/IL-7R alpha; IL-1alpha,IL-1beta/IL-1R1; IFN-gamma/IFN-gammaR1), of IFN regulatory factors (IRF-1 and 2), of TLRs and of important chemo-attractants for T cells. The microarray results were verified by additional methods. Our results are discussed in the setting of inflammation and T-cell survival in the gut compartment during HIV-1 infection where stromal and epithelial cells may produce factors that contribute to impaired IL-7 homeostasis and homing of T cells.
Hansmann, Jan; Winter, Dominic; Schramm, Guido; Erttmann, Klaus D.; Liebau, Eva
2016-01-01
The cellular redox state is important for the regulation of multiple functions and is essential for the maintenance of cellular homeostasis and antioxidant defense. In the excretory/secretory (E/S) products of Strongyloides ratti and Trichuris suis sequences for thioredoxin (Trx) and Trx-like protein (Trx-lp) were identified. To characterize the antioxidant Trx-lp and its interaction with the parasite's mucosal habitat, S. ratti and T. suis Trx-lps were cloned and recombinantly expressed. The primary antioxidative activity was assured by reduction of insulin and IgM. Further analysis applying an in vitro mucosal 3D-cell culture model revealed that the secreted Trx-lps were able to bind to monocytic and intestinal epithelial cells and induce the time-dependent release of cytokines such as TNF-α, IL-22, and TSLP. In addition, the redox proteins also possessed chemotactic activity for monocytic THP-1 cells and fostered epithelial wound healing activity. These results confirm that the parasite-secreted Trx-lps are multifunctional proteins that can affect the host intestinal mucosa. PMID:27872753
Hu, Jun; Nie, Yangfan; Chen, Shifeng; Xie, Chunlin; Fan, Qiwen; Wang, Zhichang; Long, Baisheng; Yan, Guokai; Zhong, Qing; Yan, Xianghua
2017-08-01
Leucine serves not only as a substrate for protein synthesis, but also as a signal molecule involved in protein metabolism. However, whether the levels of cellular reactive oxygen species (ROS), which have damaging effects on cellular DNA, proteins, and lipids, are regulated by leucine is still unclear. Here, we report that leucine supplementation reduces ROS levels in intestinal epithelial cells of weaned piglets. A proteomics analysis revealed that leucine supplementation induces an energy metabolism switch from oxidative phosphorylation (OXPHOS) towards glycolysis. The leucine-induced ROS reduction and the energy metabolism switch were further validated in cultured cells. Mechanistically, our data revealed that leucine-induced ROS reduction actually depends on the energy metabolism switch from OXPHOS towards glycolysis through the mechanistic target of rapamycin (mTOR)- hypoxia-inducible factor-1alpha (HIF-1α) pathway. These findings reveal a vital regulatory role of leucine as the signal molecule involved in an energy metabolism switch in mammals. Copyright © 2017 Elsevier Ltd. All rights reserved.
Iyer, Shankar S; Gensollen, Thomas; Gandhi, Amit; Oh, Sungwhan F; Neves, Joana F; Collin, Frederic; Lavin, Richard; Serra, Carme; Glickman, Jonathan; de Silva, Punyanganie S A; Sartor, R Balfour; Besra, Gurdyal; Hauser, Russell; Maxwell, Anthony; Llebaria, Amadeu; Blumberg, Richard S
2018-05-17
Genome-wide association studies have identified risk loci associated with the development of inflammatory bowel disease, while epidemiological studies have emphasized that pathogenesis likely involves host interactions with environmental elements whose source and structure need to be defined. Here, we identify a class of compounds derived from dietary, microbial, and industrial sources that are characterized by the presence of a five-membered oxazole ring and induce CD1d-dependent intestinal inflammation. We observe that minimal oxazole structures modulate natural killer T cell-dependent inflammation by regulating lipid antigen presentation by CD1d on intestinal epithelial cells (IECs). CD1d-restricted production of interleukin 10 by IECs is limited through activity of the aryl hydrocarbon receptor (AhR) pathway in response to oxazole induction of tryptophan metabolites. As such, the depletion of the AhR in the intestinal epithelium abrogates oxazole-induced inflammation. In summary, we identify environmentally derived oxazoles as triggers of CD1d-dependent intestinal inflammatory responses that occur via activation of the AhR in the intestinal epithelium. Crown Copyright © 2018. Published by Elsevier Inc. All rights reserved.
Tissue damage-induced intestinal stem cell division in Drosophila
Amcheslavsky, Alla; Jiang, Jin; Ip, Y. Tony
2009-01-01
SUMMARY Stem cell division is essential for tissue integrity during growth, aging, and pathogenic assaults. Adult gastrointestinal tract encounters numerous stimulations and impaired tissue regeneration may lead to inflammatory diseases and cancer. Intestinal stem cells in adult Drosophila have recently been identified and shown to replenish the various cell types within the midgut. However, it is not known whether these intestinal stem cells can respond to environmental challenges. By feeding dextran sulfate sodium and bleomycin to flies and by expressing apoptotic proteins, we show that Drosophila intestinal stem cells can increase the rate of division in response to tissue damage. Moreover, if tissue damage results in epithelial cell loss, the newly formed enteroblasts can differentiate into mature epithelial cells. By using this newly established system of intestinal stem cell proliferation and tissue regeneration, we find that the insulin receptor signaling pathway is required for intestinal stem cell division. PMID:19128792
Gasdermin D (Gsdmd) is dispensable for mouse intestinal epithelium development.
Fujii, Tomoaki; Tamura, Masaru; Tanaka, Shigekazu; Kato, Yoriko; Yamamoto, Hiromi; Mizushina, Youichi; Shiroishi, Toshihiko
2008-08-01
Members of the novel gene family Gasdermin (Gsdm) are exclusively expressed in a highly tissue-specific manner in the epithelium of skin and the gastrointestinal tract. Based on their expression patterns and the phenotype of the Gsdma3 spontaneous mutations, it is inferred that the Gsdm family genes are involved in epithelial cell growth and/or differentiations in different tissues. To investigate possible roles of the Gsdm gene family in the development of intestinal tracts, we generated a Gsdmd mutant mouse, which is a solitary member of the Gsdmd subfamily and which is predominantly expressed in the intestinal tract by means of targeted disruption. In the mutant homozygotes, we found no abnormality of intestinal tract morphology. Moreover, in mutant mice, there was normal differentiation of all constituent cell types of the intestinal epithelium. Thus, this study clearly shows that Gsdmd is not essential for development of mouse intestinal tract or epithelial cell differentiation.
Knudsen, David; Jutfelt, Fredrik; Sundh, Henrik; Sundell, Kristina; Koppe, Wolfgang; Frøkiaer, Hanne
2008-07-01
Saponins are naturally occurring amphiphilic molecules and have been associated with many biological activities. The aim of the present study was to investigate whether soya saponins trigger the onset of soyabean-induced enteritis in Atlantic salmon (Salmo salar L.), and to examine if dietary soya saponins increase the epithelial permeability of the distal intestine in Atlantic salmon. Seven experimental diets containing different levels of soya saponins were fed to seawater-adapted Atlantic salmon for 53 d. The diets included a fishmeal-based control diet, two fishmeal-based diets with different levels of added soya saponins, one diet containing 25% lupin kernel meal, two diets based on 25% lupin kernel meal with different levels of added soya saponins, and one diet containing 25% defatted soyabean meal. The effect on intestinal morphology, intestinal epithelial permeability and faecal DM content was examined. Fish fed 25% defatted soyabean meal displayed severe enteritis, whereas fish fed 25% lupin kernel meal had normal intestinal morphology. The combination of soya saponins and fishmeal did not induce morphological changes but fish fed soya saponins in combination with lupin kernel meal displayed significant enteritis. Increased epithelial permeability was observed in fish fed 25% defatted soyabean meal and in fish fed soya saponin concentrate independent of the protein source in the feed. The study demonstrates that soya saponins, in combination with one or several unidentified components present in legumes, induce an inflammatory reaction in the distal intestine of Atlantic salmon. Soya saponins increase the intestinal epithelial permeability but do not, per se, induce enteritis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Waseda, Masazumi; Arimura, Sumimasa; Shimura, Eri
Appropriate immune responses and mucosal barrier functions are required for the maintenance of intestinal homeostasis. Defects in this defense system may lead to inflammatory disorders such as inflammatory bowel disease. Downstream of tyrosine kinases 1 (Dok-1) and its closest homolog, Dok-2, are preferentially expressed in immune cells, and play essential roles in the negative regulation of multiple signaling pathways in both innate and adaptive immunity. However, the function of these proteins in intestinal homeostasis remained unclear. Here we show that Dok-1/-2 double knockout (DKO) mice were highly susceptible to dextran sodium sulfate (DSS)-induced colitis compared with Dok-1 or Dok-2 singlemore » KO and wild type (WT) mice. Furthermore, DSS-treated Dok-1/-2 DKO mice exhibited increased colonic tissue damage accompanied by reduced proliferation of the epithelial cells relative to WT controls, suggesting that Dok-1/-2 DKO mice have defects in the repair of intestinal epithelial lesions. In addition, the levels of the Th17 cytokines IL-17A and IL-22, which have protective roles in DSS-induced colitis, were reduced in DSS-treated Dok-1/-2 DKO mice compared with WT mice. Taken together, our results demonstrate that Dok-1 and Dok-2 negatively regulate intestinal inflammation, apparently through the induction of IL-17A and IL-22 expression. - Highlights: • Dok-1 and Dok-2 play a cooperative role in protection against DSS-induced colitis. • Dok-1/-2 double KO (DKO) mice show extensive ulceration of the colon after DSS treatment. • Proliferation of colonic epithelium is inhibited in DSS-treated Dok-1/-2 DKO mice. • Expression of IL-17A and IL-22 is reduced in the colon of DSS-treated Dok-1/-2 DKO mice.« less
Does dietary fibre stimulate intestinal epithelial cell proliferation in germ free rats?
Goodlad, R A; Ratcliffe, B; Fordham, J P; Wright, N A
1989-01-01
The aim of the present experiment was to investigate the role of hind gut fermentation in the proliferative response of the intestinal epithelium to dietary fibre. We have previously shown that refeeding starved rats with an elemental diet supplemented with fermentable dietary fibre (but not inert bulk) is capable of stimulating intestinal epithelial cell proliferation throughout the gastrointestinal tract. Three groups of 10 germ free (GF) rats and three groups of 10 conventional (CV) rats, were used. All groups were starved for three days and then refed for two days with either an elemental diet (Flexical); Flexical plus 30% kaolin; or Flexical plus 30% of a fibre mixture. Cell production was determined by the accumulation of vincristine arrested metaphases in microdissected crypts. There was no significant difference between refeeding the rats with an elemental diet alone or with kaolin supplementation, however, the addition of fibre in CV rats was associated with a significant increase in intestinal crypt cell production rate in both the small intestine (p less than 0.01) and the colon (p less than 0.001). This marked proliferative effects of fibre was abolished in the GF rats. It can be concluded that it is the products of hind gut fermentation, not fibre per se that stimulate intestinal epithelial cell proliferation in the colon and small intestine. PMID:2546871
Oltean, M; Joshi, M; Björkman, E; Oltean, S; Casselbrant, A; Herlenius, G; Olausson, M
2012-08-01
Rapidly progressing mucosal breakdown limits the intestinal preservation time below 10 h. Recent studies indicate that intraluminal solutions containing polyethylene glycol (PEG) alleviate preservation injury of intestines stored in UW-Viaspan. We investigated whether a low-sodium PEG solution is beneficial for intestines stored in histidine-tryptophane-ketoglutarate (HTK) preservation solution. Rat intestines used as control tissue (group 1) were perfused with HTK, groups 2 and 3 received either a customized PEG-3350 (group 2) or an electrolyte solution (group 3) intraluminally before cold storage. Tissue injury, brush-border maltase activity, zonula occludens-1 (ZO-1) and claudin-3 expression in the tight junctions (TJ) were analyzed after 8, 14 and 20 h. We measured epithelial resistance and permeability (Ussing chamber) after 8 and 14 h. Group 2 had superior morphology while maltase activity was similar in all groups. TJ proteins rapidly decreased and decolocalized in groups 1 3; these negative events were delayed in group 2, where colocalization persisted for about 14 h. Intestines in group 2 had higher epithelial resistance and lower permeability than the other groups. These results suggest that a customized PEG solution intraluminally reduces the intestinal preservation injury by improving several major epithelial characteristics without negatively affecting the brush-border enzymes or promoting edema. © Copyright 2012 The American Society of Transplantation and the American Society of Transplant Surgeons.
Bacterial Community Assembly and Turnover within the Intestines of Developing Zebrafish
Yan, Qingyun; van der Gast, Christopher J.; Yu, Yuhe
2012-01-01
Background The majority of animal associated microorganisms are present in digestive tract communities. These intestinal communities arise from selective pressures of the gut habitats as well as host's genotype are regarded as an extra ‘organ’ regulate functions that have not evolved wholly on the host. They are functionally essential in providing nourishment, regulating epithelial development, and influencing immunity in the vertebrate host. As vertebrates are born free of microorganisms, what is poorly understood is how intestinal bacterial communities assemble and develop in conjunction with the development of the host. Methodology/Principal Findings Set within an ecological framework, we investigated the bacterial community assembly and turnover within the intestinal habitats of developing zebrafish (from larvae to adult animals). Spatial and temporal species-richness relationships and Mantel and partial Mantel tests revealed that turnover was low and that richness and composition was best predicted by time and not intestinal volume (habitat size) or changes in food diet. We also observed that bacterial communities within the zebrafish intestines were deterministically assembled (reflected by the observed low turnover) switching to stochastic assembly in the later stages of zebrafish development. Conclusions/Significance This study is of importance as it provides a novel insight into how intestinal bacterial communities assemble in tandem with the host's development (from early to adult stages). It is our hope that by studying intestinal microbiota of this vertebrate model with such or some more refined approaches in the future could well provide ecological insights for clinical benefit. In addition, this study also adds to our still fledgling knowledge of how spatial and temporal species-richness relationships are shaped and provides further mounting evidence that bacterial community assembly and dynamics are shaped by both deterministic and stochastic considerations. PMID:22276219
Zhu, Cui; Chen, Zhuang; Jiang, Zongyong
2016-01-01
Stomach and intestines are involved in the secretion of gastrointestinal fluids and the absorption of nutrients and fluids, which ensure normal gut functions. Aquaporin water channels (AQPs) represent a major transcellular route for water transport in the gastrointestinal tract. Until now, at least 11 AQPs (AQP1–11) have been found to be present in the stomach, small and large intestines. These AQPs are distributed in different cell types in the stomach and intestines, including gastric epithelial cells, gastric glands cells, absorptive epithelial cells (enterocytes), goblet cells and Paneth cells. AQP1 is abundantly distributed in the endothelial cells of the gastrointestinal tract. AQP3 and AQP4 are mainly distributed in the basolateral membrane of epithelial cells in the stomach and intestines. AQP7, AQP8, AQP10 and AQP11 are distributed in the apical of enterocytes in the small and large intestines. Although AQP-null mice displayed almost no phenotypes in gastrointestinal tracts, the alterations of the expression and localization of these AQPs have been shown to be associated with the pathology of gastrointestinal disorders, which suggests that AQPs play important roles serving as potential therapeutic targets. Therefore, this review provides an overview of the expression, localization and distribution of AQPs in the stomach, small and large intestine of human and animals. Furthermore, this review emphasizes the potential roles of AQPs in the physiology and pathophysiology of stomach and intestines. PMID:27589719
Zhu, Cui; Chen, Zhuang; Jiang, Zongyong
2016-08-29
Stomach and intestines are involved in the secretion of gastrointestinal fluids and the absorption of nutrients and fluids, which ensure normal gut functions. Aquaporin water channels (AQPs) represent a major transcellular route for water transport in the gastrointestinal tract. Until now, at least 11 AQPs (AQP1-11) have been found to be present in the stomach, small and large intestines. These AQPs are distributed in different cell types in the stomach and intestines, including gastric epithelial cells, gastric glands cells, absorptive epithelial cells (enterocytes), goblet cells and Paneth cells. AQP1 is abundantly distributed in the endothelial cells of the gastrointestinal tract. AQP3 and AQP4 are mainly distributed in the basolateral membrane of epithelial cells in the stomach and intestines. AQP7, AQP8, AQP10 and AQP11 are distributed in the apical of enterocytes in the small and large intestines. Although AQP-null mice displayed almost no phenotypes in gastrointestinal tracts, the alterations of the expression and localization of these AQPs have been shown to be associated with the pathology of gastrointestinal disorders, which suggests that AQPs play important roles serving as potential therapeutic targets. Therefore, this review provides an overview of the expression, localization and distribution of AQPs in the stomach, small and large intestine of human and animals. Furthermore, this review emphasizes the potential roles of AQPs in the physiology and pathophysiology of stomach and intestines.
Vinderola, Gabriel; Perdigón, Gabriela; Duarte, Jairo; Farnworth, Edward; Matar, Chantal
2006-11-01
Nutritional status has a major impact on the immune system. Probiotic effects ascribed to fermented dairy products arise not only from whole microorganisms but also from metabolites (peptides, exopolysaccharides) produced during the fermentation. We recently demonstrated the immunomodulating capacity of kefir in a murine model. We now aimed at studying the immunomodulating capacity in vivo of the products derived from milk fermentation by kefir microflora (PMFKM) on the gut. BALB/c mice received the PMFKM for 2, 5 or 7 consecutive days. IgA+ and IgG+ cells were determined on histological slices of the small and large intestine. IL-4, IL-6, IL-10, IL-12, IFNgamma and TNFalpha were determined in the gut, intestinal fluid and blood serum. IL-6 was also determined in the supernatant of a primary culture of small intestine epithelial cells challenged with PMFKM. PMFKM up-regulated IL-6 secretion, necessary for B-cell terminal differentiation to IgA secreting cells in the gut lamina propria. There was an increase in the number of IgA+ cells in the small and large intestine. The increase in the number of IgA+ cells was accompanied by an increase in the number of IL-4+, IL-10+ and IL-6+ cells in the small intestine. Effects of PMFKM in the large intestine were less widely apparent than the ones observed at the small intestine lamina propria. All cytokines that increased in the small intestine lamina propria, also did so in blood serum, reflecting here the immunostimulation achieved in the gut mucosa. We observed that the PMFKM induced a mucosal response and it was able to up and down regulate it for protective immunity, maintaining the intestinal homeostasis, enhancing the IgA production at both the small and large intestine level. The opportunity exists then to manipulate the constituents of the lumen of the intestine through dietary means, thereby enhancing the health status of the host.
Barrera, Girolamo Jose; Sanchez, Gabriela; Gonzalez, Jose Emanuele
2012-01-01
Trefoil factors (TFF) are secretory products of mucin producing cells. They play a key role in the maintenance of the surface integrity of oral mucosa and enhance healing of the gastrointestinal mucosa by a process called restitution. TFF comprises the gastric peptides (TFF1), spasmolytic peptide (TFF2), and the intestinal trefoil factor (TFF3). They have an important and necessary role in epithelial restitution within the gastrointestinal tract. Significant amounts of TFF are present in human milk. This study aimed to determine a possible correlation between TFF3 isolated from human breast milk and levels of cytokines (IL8 and IL6) and defensins (hBD2 and hBD4) in intestinal epithelial cells HT-29 treated with trefoil. Samples of human milk were collected within 2-4 weeks postpartum from healthy human mothers (18-30-years-old) by manual breast massage, and TFF3 was purified by ammonium sulfate precipitation, isoelectric precipitation, DEAE-chromatography, and gel filtration. In this work we measured the concentrations and mRNA levels of cytokines and defensins by immunoassay (ELISA) and semiquantitative RT-PCR technique, respectively. Also we measured the peroxidase activity. We present the first evidence of human milk TFF3 purification. Here we show that the presence of TFF3 isolated from milk strongly correlates with downregulation of IL8 and IL6 in human intestinal epithelial cells. On the other hand, TFF3 activated the epithelial cells in culture to produce beta defensins 2 (hBD2) and beta defensins 4 (hBD4). These findings suggest that TFF can activate intestinal epithelial cells and could actively participate in the immune system of breastfed babies by inducing the production of peptides related to innate defence, such as defensins. PMID:23198942
Stzepourginski, Igor; Nigro, Giulia; Jacob, Jean-Marie; Dulauroy, Sophie; Sansonetti, Philippe J; Eberl, Gérard; Peduto, Lucie
2017-01-24
The intestinal epithelium is continuously renewed by intestinal epithelial stem cells (IESCs) positioned at the base of each crypt. Mesenchymal-derived factors are essential to maintain IESCs; however, the cellular composition and development of such mesenchymal niche remains unclear. Here, we identify pericryptal CD34 + Gp38 + αSMA - mesenchymal cells closely associated with Lgr5 + IESCs. We demonstrate that CD34 + Gp38 + cells are the major intestinal producers of the niche factors Wnt2b, Gremlin1, and R-spondin1, and are sufficient to promote maintenance of Lgr5 + IESCs in intestinal organoids, an effect mainly mediated by Gremlin1. CD34 + Gp38 + cells develop after birth in the intestinal submucosa and expand around the crypts during the third week of life in mice, independently of the microbiota. We further show that pericryptal CD34 + gp38 + cells are rapidly activated by intestinal injury, up-regulating niche factors Gremlin1 and R-spondin1 as well as chemokines, proinflammatory cytokines, and growth factors with key roles in gut immunity and tissue repair, including IL-7, Ccl2, Ptgs2, and Amphiregulin. Our results indicate that CD34 + Gp38 + mesenchymal cells are programmed to develop in the intestine after birth to constitute a specialized microenvironment that maintains IESCs at homeostasis and contribute to intestinal inflammation and repair after injury.
Quinlan, Jonathan M; Yu, Wei-Yuan; Hornsey, Mark A; Tosh, David; Slack, Jonathan M W
2006-05-25
Study of the normal development of the intestinal epithelium has been hampered by a lack of suitable model systems, in particular ones that enable the introduction of exogenous genes. Production of such a system would advance our understanding of normal epithelial development and help to shed light on the pathogenesis of intestinal neoplasia. The criteria for a reliable culture system include the ability to perform real time observations and manipulations in vitro, the preparation of wholemounts for immunostaining and the potential for introducing genes. The new culture system involves growing mouse embryo intestinal explants on fibronectin-coated coverslips in basal Eagle's medium+20% fetal bovine serum. Initially the cultures maintain expression of the intestinal transcription factor Cdx2 together with columnar epithelial (cytokeratin 8) and mesenchymal (smooth muscle actin) markers. Over a few days of culture, differentiation markers appear characteristic of absorptive epithelium (sucrase-isomaltase), goblet cells (Periodic Acid Schiff positive), enteroendocrine cells (chromogranin A) and Paneth cells (lysozyme). Three different approaches were tested to express genes in the developing cultures: transfection, electroporation and adenoviral infection. All could introduce genes into the mesenchyme, but only to a small extent into the epithelium. However the efficiency of adenovirus infection can be greatly improved by a limited enzyme digestion, which makes accessible the lateral faces of cells bearing the Coxsackie and Adenovirus Receptor. This enables reliable delivery of genes into epithelial cells. We describe a new in vitro culture system for the small intestine of the mouse embryo that recapitulates its normal development. The system both provides a model for studying normal development of the intestinal epithelium and also allows for the manipulation of gene expression. The explants can be cultured for up to two weeks, they form the full repertoire of intestinal epithelial cell types (enterocytes, goblet cells, Paneth cells and enteroendocrine cells) and the method for gene introduction into the epithelium is efficient and reliable.
Qiu, Yueqin; Jiang, Zongyong; Hu, Shenglan; Wang, Li; Ma, Xianyong; Yang, Xuefen
2017-11-13
Interleukin (IL)-22-producing Natural Killer (NK) cells protect the gut epithelial cell barrier from pathogens. A strain of probiotics, Lactobacillus plantarum (L. plantarum, LP), was previously found by our laboratory to significantly improve the mucosal barrier integrity and function of the small intestine in pigs. However, it was unclear whether LP benefited the intestinal mucosal barrier via interactions with the intestinal NK cells. The present study, therefore, was focused on the therapeutic effect of NK cells that were stimulated by LP on attenuating enterotoxigenic Escherichia coli (ETEC)-induced the damage to the integrity of the epithelial cell barrier. The results showed that LP can efficiently increase protein levels of the natural cytotoxicity receptor (NCR) family, and the expression levels of IL-22 mRNA and protein in NK cells. Transfer of NK cells stimulated by LP conferred protection against ETEC K88-induced intestinal epithelial barrier damage in NCM460 cells. We found that NK cells stimulated by LP could partially offset the reduction in NCM460 cell monolayers transepithelial electrical resistance (TEER) caused by ETEC K88, and increase ZO-1 and occludin mRNA and protein expressions by ETEC K88-infected NCM460 cells. Furthermore, adding NK cells that were stimulated by LP to ETEC K88-infected NCM460cells, IL-22R1, p-Stat3, and p-Tyk2 expression by NCM460 cells was increased. Mechanistic experiment showed that NK cells stimulated by LP lost the function of maintaining TEER of NCM460 cells challenged with ETEC K88, when polyclonal anti-IL-22 antibody was used to block IL-22 production. Collectively, our results suggested that LP stimulation of NK could enhance IL-22 production, which might be able to provide defense against ETEC-induced damage to the integrity of intestinal epithelial barrier.
Fukata, Masayuki; Shang, Limin; Santaolalla, Rebeca; Sotolongo, John; Pastorini, Cristhine; España, Cecilia; Ungaro, Ryan; Harpaz, Noam; Cooper, Harry S.; Elson, Greg; Kosco-Vilbois, Marie; Zaias, Julia; Perez, Maria T.; Mayer, Lloyd; Vamadevan, Arunan S.; Lira, Sergio A.; Abreu, Maria T.
2010-01-01
Chronic intestinal inflammation culminates in cancer and a link to TLR4 has been suggested by our observation that TLR4 deficiency prevents colitis-associated neoplasia. In the current study, we address the effect of the aberrant activation of epithelial TLR4 on induction of colitis and colitis-associated tumor development. We take a translational approach to address the consequences of increased TLR signaling in the intestinal mucosa. Mice transgenic for a constitutively-active TLR4 under the intestine-specific villin promoter (villin-TLR4 mice) were treated with DSS for acute colitis and azoxymethane-dextran sulfate sodium. TLR4 expression was analyzed by immunohistochemistry in colonic tissue from patients with ulcerative colitis and ulcerative colitis associated cancer. The effect of an antagonist TLR4 Ab was tested in prevention of colitis-associated neoplasia in the AOM-DSS model. Villin-TLR4 mice were highly susceptible to both acute colitis and colitis-associated neoplasia. Villin-TLR4 mice had increased epithelial expression of COX-2 and mucosal PGE2 production at baseline. Increased severity of colitis in villin-TLR4 mice was characterized by enhanced expression of inflammatory mediators and increased neutrophilic infiltration. In human UC samples, TLR4 expression was upregulated in almost all CAC and progressively increases with grade of dysplasia. As a proof of principle, a TLR4/MD-2 antagonist antibody inhibited colitis-associated neoplasia in the mouse model. Our results show that regulation of TLR's can affect the outcome of both acute colitis and its consequences—cancer. Targeting TLR4 and other TLR's may ultimately play a role in prevention or treatment of colitis-associated cancer. PMID:21674704
Lough, Denver; Dai, Hui; Yang, Mei; Reichensperger, Joel; Cox, Lisa; Harrison, Carrie; Neumeister, Michael W
2013-11-01
Discovery of leucine-rich repeat-containing G-protein-coupled receptors 5 and 6 (LGR5 and LGR6) as markers of adult epithelial stem cells of the skin and intestine permits researchers to draw on the intrinsic cellular fundamentals of wound healing and proliferation dynamics of epithelial surfaces. In this study, the authors use the intestine-derived human alpha defensin 5 to stimulate epithelial proliferation, bacterial reduction, and hair production in burn wound beds to provide the field with initial insight on augmenting wound healing in tissues devoid of adnexal stem cells. Murine third-degree burn wound beds were treated with (1) intestine-derived human alpha defensin 5, (2) skin-derived human beta defensin 1, and (3) sulfadiazine to determine their roles in wound healing, bacterial reduction, and hair growth. The human alpha defensin 5 peptide significantly enhanced wound healing and reduced basal bacterial load compared with human beta defensin 1 and sulfadiazine. Human alpha defensin 5 was the only therapy to induce LGR stem cell migration into the wound bed. In addition, gene heat mapping showed significant mRNA up-regulation of key wound healing and Wnt pathway transcripts such as Wnt1 and Wisp1. Ex vivo studies showed enhanced cell migration in human alpha defensin 5-treated wounds compared with controls. Application of human alpha defensin 5 increases LGR stem cell migration into wound beds, leading to enhanced healing, bacterial reduction, and hair production through the augmentation of key Wnt and wound healing transcripts. These findings can be used to derive gut protein-based therapeutics in wound healing.
Expression of monocarboxylate transporter 1 (MCT1) in the dog intestine.
Shimoyama, Yumiko; Kirat, Doaa; Akihara, Yuko; Kawasako, Kazufumi; Komine, Misa; Hirayama, Kazuko; Matsuda, Kazuya; Okamoto, Minoru; Iwano, Hidetomo; Kato, Seiyu; Taniyama, Hiroyuki
2007-06-01
In this study, the expression and distribution of monocarboxyolate transporter 1 (MCT1) along the intestines (duodenum, jejunum, ileum, cecum, colon and rectum) of dogs were investigated at both the mRNA and protein levels. The expression of MCT1 protein and its distribution were confirmed by Western blotting and immunohistochemical staining using the antibody for MCT1. We identified mRNA coding for MCT1 and a 43-kDa band of MCT1 protein in all regions from the duodenum to the rectum. Immunoreactive staining for MCT1 was also observed in epithelial cells throughout the intestines. MCT1 immunoreactivity was greater in the large intestine than in the small intestine. MCT1 protein was predominantly expressed on the basolateral membranes along intestinal epithelial cells, suggesting that MCT1 may play an important role in lactate efflux and transport of short-chain fatty acids (SCFAs) to the bloodstream across the basolateral membranes of the dog intestine.
Wnt signalling pathway parameters for mammalian cells.
Tan, Chin Wee; Gardiner, Bruce S; Hirokawa, Yumiko; Layton, Meredith J; Smith, David W; Burgess, Antony W
2012-01-01
Wnt/β-catenin signalling regulates cell fate, survival, proliferation and differentiation at many stages of mammalian development and pathology. Mutations of two key proteins in the pathway, APC and β-catenin, have been implicated in a range of cancers, including colorectal cancer. Activation of Wnt signalling has been associated with the stabilization and nuclear accumulation of β-catenin and consequential up-regulation of β-catenin/TCF gene transcription. In 2003, Lee et al. constructed a computational model of Wnt signalling supported by experimental data from analysis of time-dependent concentration of Wnt signalling proteins in Xenopus egg extracts. Subsequent studies have used the Xenopus quantitative data to infer Wnt pathway dynamics in other systems. As a basis for understanding Wnt signalling in mammalian cells, a confocal live cell imaging measurement technique is developed to measure the cell and nuclear volumes of MDCK, HEK293T cells and 3 human colorectal cancer cell lines and the concentrations of Wnt signalling proteins β-catenin, Axin, APC, GSK3β and E-cadherin. These parameters provide the basis for formulating Wnt signalling models for kidney/intestinal epithelial mammalian cells. There are significant differences in concentrations of key proteins between Xenopus extracts and mammalian whole cell lysates. Higher concentrations of Axin and lower concentrations of APC are present in mammalian cells. Axin concentrations are greater than APC in kidney epithelial cells, whereas in intestinal epithelial cells the APC concentration is higher than Axin. Computational simulations based on Lee's model, with this new data, suggest a need for a recalibration of the model.A quantitative understanding of Wnt signalling in mammalian cells, in particular human colorectal cancers requires a detailed understanding of the concentrations of key protein complexes over time. Simulations of Wnt signalling in mammalian cells can be initiated with the parameters measured in this report.
Di Luccia, B; D'Apuzzo, E; Varriale, F; Baccigalupi, L; Ricca, E; Pollice, A
2016-09-01
The interaction between the enteric microbiota and intestinal cells often involves signal molecules that affect both microbial behaviour and host responses. Examples of such signal molecules are the molecules secreted by bacteria that induce quorum sensing mechanisms in the producing microorganism and signal transduction pathways in the host cells. The pentapeptide competence and sporulation factor (CSF) of Bacillus subtilis is a well characterized quorum sensing factor that controls competence and spore formation in the producing bacterium and induces cytoprotective heat shock proteins in intestinal epithelial cells. We analysed several Bacillus strains isolated from human ileal biopsies of healthy volunteers and observed that some of them were unable to produce CSF but still able to act in a CSF-like fashion on model intestinal epithelial cells. One of those strains belonging to the Bacillus megaterium species secreted at least two factors with effects on intestinal HT29 cells: a peptide smaller than 3 kDa able to induce heat shock protein 27 (hsp27) and p38-MAPK, and a larger molecule able to induce protein kinase B (PKB/Akt) with a pro-proliferative effect.
López-Garrido, Javier; Casadesús, Josep
2012-01-01
Invasion of intestinal epithelial cells is a critical step in Salmonella infection and requires the expression of genes located in Salmonella pathogenicity island 1 (SPI-1). A key factor for SPI-1 expression is DNA adenine (Dam) methylation, which activates synthesis of the SPI-1 transcriptional activator HilD. Dam-dependent regulation of hilD is postranscriptional (and therefore indirect), indicating the involvement of unknown cell functions under Dam methylation control. A genetic screen has identified the std fimbrial operon as the missing link between Dam methylation and SPI-1. We show that all genes in the std operon are part of a single transcriptional unit, and describe three previously uncharacterized ORFs (renamed stdD, stdE, and stdF). We present evidence that two such loci (stdE and stdF) are involved in Dam-dependent control of Salmonella SPI-1: in a Dam(-) background, deletion of stdE or stdF suppresses SPI-1 repression; in a Dam(+) background, constitutive expression of StdE and/or StdF represses SPI-1. Repression of SPI-1 by products of std operon explains the invasion defect of Salmonella Dam(-) mutants, which constitutively express the std operon. Dam-dependent repression of std in the ileum may be required to permit invasion, as indicated by two observations: constitutive expression of StdE and StdF reduces invasion of epithelial cells in vitro (1,000 fold) and attenuates Salmonella virulence in the mouse model (>60 fold). In turn, crosstalk between std and SPI-1 may play a role in intestinal infections by preventing expression of SPI-1 in the caecum, an intestinal compartment in which the std operon is known to be expressed.
Kono, Toru; Kaneko, Atsushi; Hira, Yoshiki; Suzuki, Tatsuya; Chisato, Naoyuki; Ohtake, Nobuhiro; Miura, Naoko; Watanabe, Tsuyoshi
2010-06-01
Adrenomedullin (ADM) is a member of the calcitonin family of regulatory peptides, and is reported to have anti-inflammatory effects in animal models of Crohn's disease (CD). We investigated the therapeutic effects of daikenchuto (DKT), an extracted Japanese herbal medicine, on the regulation of endogenous ADM in the gastrointestinal tract in a CD mouse model. Colitis was induced in mice by intrarectal instillation of 2,4,6-trinitrobenzenesulfonic acid (TNBS); afterwards, DKT was given orally. Colonic damage was assessed on day 3 by macroscopic and microscopic observation, enzyme immunoassays of proinflammatory cytokines in the colonic mucosa, and serum amyloid A (SAA), a hepatic acute-phase protein. To determine the involvement of ADM, an ADM antagonist was instilled intrarectally before DKT administration. The effect of DKT on ADM production by intestinal epithelial cells was evaluated by enzyme immunoassay and real-time PCR. DKT significantly attenuated mucosal damage and colonic inflammatory adhesions, and inhibited elevations of SAA in plasma and the proinflammatory cytokines TNFα and IFNγ in the colon. Small and large intestinal epithelial cells produced higher levels of ADM after DKT stimulation. A DKT-treated IEC-6 cell line also showed enhanced ADM production at protein and mRNA levels. Abolition of this effect by pretreatment with an ADM antagonist shows that DKT appears to exert its anti-colitis effect via up-regulation of endogenous ADM in the intestinal tract. DKT exerts beneficial effects in a CD mouse model through endogenous release and production of ADM. Endogenous ADM may be a therapeutic target for CD. Copyright © 2009 European Crohn's and Colitis Organisation. Published by Elsevier B.V. All rights reserved.
Protelytic Regulation of the Intestinal Epithelial Barrier: Mechanisms and Interventions
2015-09-01
group) during the course of the DSS protocol to assess gut permeability by serum FITC- dextran concentration after gavage and by ex vivo TEER...TEER and by the flux of 4kDa FITC conjugated dextran across monolayers (months 1-3) Year 1 and 2 summary - Preliminary data showed that after treatment...macromolecular FITC- dextran . We have been able to consistently induce barrier disruption of T84 cultures using IL-13 in combination with the
Nakaoka, Kanae; Yamada, Asako; Noda, Seiko; Goseki-Sone, Masae
2018-05-01
Intestinal alkaline phosphatase (IAP) is expressed at a high concentration in the brush border membrane of intestinal epithelial cells. Intestinal alkaline phosphatase controls bacterial endotoxin-induced inflammation by dephosphorylating lipopolysaccharide and is a gut mucosal defense factor. Previously, we reported that IAP activity in the duodenum was significantly decreased in male rats receiving a high-fat diet with vitamin D restriction. Here, we tested the hypothesis that IAP is also regulated by a vitamin D-restricted high-fat diet in an animal model of menopause. Twenty-four female rats were ovariectomized (OVX), and another 6 female rats were sham operated. The OVX rats were divided into 4 groups and fed experimental diets: a basic control diet, a basic control diet with vitamin D restriction, a high-fat diet, and a high-fat diet with vitamin D restriction. After 28days of the experimental diets, the vitamin D-restricted high-fat diet decreased alkaline phosphatase activity in the duodenum of the OVX groups. The vitamin D-restricted high-fat diet down-regulated mRNA expressions of IAP isozymes in the duodenum of the OVX groups. These findings support the hypothesis that the expression of IAP is suppressed by a vitamin D-restricted high-fat diet in OVX rats. An adequate vitamin D intake and prevention of low vitamin D levels may be important for IAP expression in gut homeostasis. Copyright © 2018 Elsevier Inc. All rights reserved.
Modulation of Intestinal Paracellular Transport by Bacterial Pathogens.
Roxas, Jennifer Lising; Viswanathan, V K
2018-03-25
The passive and regulated movement of ions, solutes, and water via spaces between cells of the epithelial monolayer plays a critical role in the normal intestinal functioning. This paracellular pathway displays a high level of structural and functional specialization, with the membrane-spanning complexes of the tight junctions, adherens junctions, and desmosomes ensuring its integrity. Tight junction proteins, like occludin, tricellulin, and the claudin family isoforms, play prominent roles as barriers to unrestricted paracellular transport. The past decade has witnessed major advances in our understanding of the architecture and function of epithelial tight junctions. While it has been long appreciated that microbes, notably bacterial and viral pathogens, target and disrupt junctional complexes and alter paracellular permeability, the precise mechanisms remain to be defined. Notably, renewed efforts will be required to interpret the available data on pathogen-mediated barrier disruption in the context of the most recent findings on tight junction structure and function. While much of the focus has been on pathogen-induced dysregulation of junctional complexes, commensal microbiota and their products may influence paracellular permeability and contribute to the normal physiology of the gut. Finally, microbes and their products have become important tools in exploring host systems, including the junctional properties of epithelial cells. © 2018 American Physiological Society. Compr Physiol 8:823-842, 2018. Copyright © 2018 American Physiological Society. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cong, Yingying; Li, Xiaoxue; Bai, Yunyun
Infection of polarized intestinal epithelial cells by porcine epidemic diarrhea virus (PEDV) was characterized. Indirect immunofluorescence assay, real-time PCR, and transmission electron microscopy confirmed PEDV can be successfully propagated in immortalized swine small intestine epithelial cells (IECs). Infection involved porcine aminpeptidase N (pAPN), a reported cellular receptor for PEDV, transient expression of pAPN and siRNA targeted pAPN increased and decreased the infectivity of PEDV in IECs, respectively. Subsequently, polarized entry into and release from both Vero E6 and IECs was analyzed. PEDV entry into polarized cells and pAPN grown on membrane inserts occurs via apical membrane. The progeny virus releasedmore » into the medium was also quantified which demonstrated that PEDV is preferentially released from the apical membrane. Collectively, our data demonstrate that pAPN, the cellular receptor for PEDV, mediates polarized PEDV infection. These results imply the possibility that PEDV infection may proceed by lateral spread of virus in intestinal epithelial cells. - Highlights: • PEDV infection of polarized intestinal epithelial cells (IECs) was characterized. • Porcine aminpeptidase N (pAPN) facilitated PEDV infection in IECs. • PEDV entry into and release from polarized cell via its apical membrane. • PEDV infection may proceed by lateral spread of virus in IECs.« less
Xiao, Guizhen; Tang, Liqun; Yuan, Fangfang; Zhu, Wei; Zhang, Shaoheng; Liu, Zhifeng; Geng, Yan; Qiu, Xiaowen
2013-01-01
Objective Dysfunction of the intestinal epithelial tight junction (TJ) barrier is known to have an important etiologic role in the pathophysiology of heat stroke. N-3 polyunsaturated fatty acids (PUFAs), including eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), play a role in maintaining and protecting the TJ structure and function. This study is aimed at investigating whether n-3 PUFAs could alleviate heat stress-induced dysfunction of intestinal tight junction. Methods Human intestinal epithelial Caco-2 cells were pre-incubated with EPA, DHA or arachidonic acid (AA) and then exposed to heat stress. Transepithelial electrical resistance (TEER) and Horseradish Peroxidase (HRP) permeability were measured to analyze barrier integrity. Levels of TJ proteins, including occludin, ZO-1 and claudin-2, were analyzed by Western blot and localized by immunofluorescence microscopy. Messenger RNA levels were determined by quantitative real time polymerase chain reaction (Q-PCR). TJ morphology was observed by transmission electron microscopy. Results EPA effectively attenuated the decrease in TEER and impairment of intestinal permeability in HRP flux induced by heat exposure. EPA significantly elevated the expression of occludin and ZO-1, while DHA was less effective and AA was not at all effective. The distortion and redistribution of TJ proteins, and disruption of morphology were also effectively prevented by pretreatment with EPA. Conclusion This study indicates for the first time that EPA is more potent than DHA in protecting against heat-induced permeability dysfunction and epithelial barrier damage of tight junction. PMID:24066055
Patel, Chirag; Douard, Veronique; Yu, Shiyan; Gao, Nan; Ferraris, Ronaldo P.
2015-01-01
Dietary fructose that is linked to metabolic abnormalities can up-regulate its own absorption, but the underlying regulatory mechanisms are not known. We hypothesized that glucose transporter (GLUT) protein, member 5 (GLUT5) is the primary fructose transporter and that fructose absorption via GLUT5, metabolism via ketohexokinase (KHK), as well as GLUT5 trafficking to the apical membrane via the Ras-related protein-in-brain 11 (Rab11)a-dependent endosomes are each required for regulation. Introducing fructose but not lysine and glucose solutions into the lumen increased by 2- to 10-fold the heterogeneous nuclear RNA, mRNA, protein, and activity levels of GLUT5 in adult wild-type mice consuming chow. Levels of GLUT5 were >100-fold that of candidate apical fructose transporters GLUTs 7, 8, and 12 whose expression, and that of GLUT 2 and the sodium-dependent glucose transporter protein 1 (SGLT1), was not regulated by luminal fructose. GLUT5-knockout (KO) mice exhibited no facilitative fructose transport and no compensatory increases in activity and expression of SGLT1 and other GLUTs. Fructose could not up-regulate GLUT5 in GLUT5-KO, KHK-KO, and intestinal epithelial cell-specific Rab11a-KO mice. The fructose-specific metabolite glyceraldehyde did not increase GLUT5 expression. GLUT5 is the primary transporter responsible for facilitative absorption of fructose, and its regulation specifically requires fructose uptake and metabolism and normal GLUT5 trafficking to the apical membrane.—Patel, C., Douard, V., Yu, S., Gao, N., Ferraris, R. P. Transport, metabolism, and endosomal trafficking-dependent regulation of intestinal fructose absorption. PMID:26071406
Proteomic analysis of the enterocyte brush border
McConnell, Russell E.; Benesh, Andrew E.; Mao, Suli; Tabb, David L.
2011-01-01
The brush border domain at the apex of intestinal epithelial cells is the primary site of nutrient absorption in the intestinal tract and the primary surface of interaction with microbes that reside in the lumen. Because the brush border is positioned at such a critical physiological interface, we set out to create a comprehensive list of the proteins that reside in this domain using shotgun mass spectrometry. The resulting proteome contains 646 proteins with diverse functions. In addition to the expected collection of nutrient processing and transport components, we also identified molecules expected to function in the regulation of actin dynamics, membrane bending, and extracellular adhesion. These results provide a foundation for future studies aimed at defining the molecular mechanisms underpinning brush border assembly and function. PMID:21330445
Regulation of inflammation by microbiota interactions with the host.
Blander, J Magarian; Longman, Randy S; Iliev, Iliyan D; Sonnenberg, Gregory F; Artis, David
2017-07-19
The study of the intestinal microbiota has begun to shift from cataloging individual members of the commensal community to understanding their contributions to the physiology of the host organism in health and disease. Here, we review the effects of the microbiome on innate and adaptive immunological players from epithelial cells and antigen-presenting cells to innate lymphoid cells and regulatory T cells. We discuss recent studies that have identified diverse microbiota-derived bioactive molecules and their effects on inflammation within the intestine and distally at sites as anatomically remote as the brain. Finally, we highlight new insights into how the microbiome influences the host response to infection, vaccination and cancer, as well as susceptibility to autoimmune and neurodegenerative disorders.
Pongkorpsakol, Pawin; Yimnual, Chantapol; Chatsudthipong, Varanuj; Rukachaisirikul, Vatcharin; Muanprasat, Chatchai
2017-06-01
Intestinal Cl - secretion is involved in the pathogenesis of secretory diarrheas including cholera. We recently demonstrated that flufenamic acid (FFA) suppressed Vibrio cholerae El Tor variant-induced intestinal fluid secretion via mechanisms involving AMPK activation and NF-κB-suppression. The present study aimed to investigate the effect of FFA on transepithelial Cl - secretion in human intestinal epithelial (T84) cells. FFA inhibited cAMP-dependent Cl - secretion in T84 cell monolayers with IC 50 of ∼8 μM. Other fenamate drugs including tolfenamic acid, meclofenamic acid and mefenamic acid exhibited the same effect albeit with lower potency. FFA also inhibited activities of CFTR, a cAMP-activated apical Cl - channel, and KCNQ1/KCNE3, a cAMP-activated basolateral K + channel. Mechanisms of CFTR inhibition by FFA did not involve activation of its negative regulators. Interestingly, FFA inhibited Ca 2+ -dependent Cl - secretion with IC 50 of ∼10 μM. FFA inhibited activities of Ca 2+ -activated Cl - channels and K Ca 3.1, a Ca 2+ -activated basolateral K + channels, but had no effect on activities of Na + -K + -Cl - cotransporters and Na + -K + ATPases. These results indicate that FFA inhibits both cAMP and Ca 2+ -dependent Cl - secretion by suppressing activities of both apical Cl - channels and basolateral K + channels. FFA and other fenamate drugs may be useful in the treatment of secretory diarrheas. Copyright © 2017 The Authors. Production and hosting by Elsevier B.V. All rights reserved.
IL-33 activates tumor stroma to promote intestinal polyposis.
Maywald, Rebecca L; Doerner, Stephanie K; Pastorelli, Luca; De Salvo, Carlo; Benton, Susan M; Dawson, Emily P; Lanza, Denise G; Berger, Nathan A; Markowitz, Sanford D; Lenz, Heinz-Josef; Nadeau, Joseph H; Pizarro, Theresa T; Heaney, Jason D
2015-05-12
Tumor epithelial cells develop within a microenvironment consisting of extracellular matrix, growth factors, and cytokines produced by nonepithelial stromal cells. In response to paracrine signals from tumor epithelia, stromal cells modify the microenvironment to promote tumor growth and metastasis. Here, we identify interleukin 33 (IL-33) as a regulator of tumor stromal cell activation and mediator of intestinal polyposis. In human colorectal cancer, IL-33 expression was induced in the tumor epithelium of adenomas and carcinomas, and expression of the IL-33 receptor, IL1RL1 (also referred to as IL1-R4 or ST2), localized predominantly to the stroma of adenoma and both the stroma and epithelium of carcinoma. Genetic and antibody abrogation of responsiveness to IL-33 in the Apc(Min/+) mouse model of intestinal tumorigenesis inhibited proliferation, induced apoptosis, and suppressed angiogenesis in adenomatous polyps, which reduced both tumor number and size. Similar to human adenomas, IL-33 expression localized to tumor epithelial cells and expression of IL1RL1 associated with two stromal cell types, subepithelial myofibroblasts and mast cells, in Apc(Min/+) polyps. In vitro, IL-33 stimulation of human subepithelial myofibroblasts induced the expression of extracellular matrix components and growth factors associated with intestinal tumor progression. IL-33 deficiency reduced mast cell accumulation in Apc(Min/+) polyps and suppressed the expression of mast cell-derived proteases and cytokines known to promote polyposis. Based on these findings, we propose that IL-33 derived from the tumor epithelium promotes polyposis through the coordinated activation of stromal cells and the formation of a protumorigenic microenvironment.
Thapa, Dinesh; Lee, Jong Suk; Park, Su-Young; Bae, Yun-Hee; Bae, Soo-Kyung; Kwon, Jun Bum; Kim, Kyoung-Jin; Kwak, Mi-Kyoung; Park, Young-Joon; Choi, Han Gon; Kim, Jung-Ae
2008-11-01
Increased interleukin (IL)-8 plays an important role not only in activation and recruitment of neutrophils but also in inducing exaggerated angiogenesis at the inflamed site. In the present study, we investigated the fact that clotrimazole (CLT) inhibits intestinal inflammation, and the inhibitory action is mediated through suppression of IL-8 expression. In the trinitrobenzene sulfonic acid (TNBS)-induced rat colitis model, CLT dose-dependently protected from the TNBS-induced weight loss, colon ulceration, and myeloperoxidase activity increase. In the lesion site, CLT also suppressed the TNBS-induced angiogenesis, IL-8 expression, and nuclear factor (NF)-kappaB activation. In a cellular model of colitis using tumor necrosis factor (TNF)-alpha-stimulated HT29 colon epithelial cells, treatment with CLT significantly suppressed TNF-alpha-mediated IL-8 induction and NF-kappaB transcriptional activity revealed by a luciferase reporter gene assay. Furthermore, cotreatment with CLT and pyrrolidine dithiocarbamate, a NF-kappaB inhibitor, synergistically reduced the NF-kappaB transcriptional activity as well as IL-8 expression. In an in vitro angiogenesis assay, CLT suppressed IL-8-induced proliferation, tube formation, and invasion of human umbilical vein endothelial cells. The in vivo angiogenesis assay using chick chorioallantoic membrane also showed that CLT significantly inhibited the IL-8-induced formation of new blood vessels. Taken together, these results suggest that CLT may prevent the progression of intestinal inflammation by not only down-regulating IL-8 expression but also inhibiting the action of IL-8 in both colon epithelial and vascular endothelial cells during pathogenesis of intestinal inflammation.
IGF-1 protects intestinal epithelial cells from oxidative stress-induced apoptosis.
Baregamian, Naira; Song, Jun; Jeschke, Marc G; Evers, B Mark; Chung, Dai H
2006-11-01
Reactive oxygen species (ROS) are involved in the pathogenesis of necrotizing enterocolitis (NEC) in premature infants. We have recently found that activation of multiple cellular signaling transduction pathways occurs during ROS-induced intestinal cell apoptosis; the phosphatidylinositol 3-kinase (PI3-K) pathway plays an anti-apoptotic role during this process. Insulin-like growth factor (IGF)-1 activates PI3-K pathway to promote cell survival; however, the effects of IGF-1 treatment during gut injury are not clearly defined. The purpose of this study was to determine whether IGF-1 protects intestinal cells from ROS-induced apoptosis. Rat intestinal epithelial (RIE)-1 cells were treated with either IGF-1 (100 nm), hydrogen peroxide (H2O2; 500 microm), or combination. Western blotting was performed to assess phosphorylation of Akt, a downstream effector of PI3-K. Cell Death Detection ELISA, DCHF, and JC-1 assays were performed to demonstrate protective effects of IGF-1. Wortmannin, an inhibitor of PI3-K, was used to show PI3-K-dependent mechanism of action for IGF-1. H2O2 treatment resulted in increased intestinal epithelial cell apoptosis with intracellular ROS generation and mitochondrial membrane depolarization; IGF-1 pre-treatment attenuated this response without affecting ROS production. H2O2-induced phosphorylation of Akt was further increased with IGF-1 treatment; wortmannin abolished these effects in RIE-1 cells. PI3-K pathway is activated during ROS-induced intestinal epithelial cell injury; IGF-1 exerted an anti-apoptotic effect during this response by PI3-K activation. A better understanding of the exact role of IGF-1-mediated activation of PI3-K may allow us to facilitate the development of novel therapy against NEC.
Servin, Alain L
2014-10-01
The pathogenicity and clinical pertinence of diffusely adhering Escherichia coli expressing the Afa/Dr adhesins (Afa/Dr DAEC) in urinary tract infections (UTIs) and pregnancy complications are well established. In contrast, the implication of intestinal Afa/Dr DAEC in diarrhea is still under debate. These strains are age dependently involved in diarrhea in children, are apparently not involved in diarrhea in adults, and can also be asymptomatic intestinal microbiota strains in children and adult. This comprehensive review analyzes the epidemiology and diagnosis and highlights recent progress which has improved the understanding of Afa/Dr DAEC pathogenesis. Here, I summarize the roles of Afa/Dr DAEC virulence factors, including Afa/Dr adhesins, flagella, Sat toxin, and pks island products, in the development of specific mechanisms of pathogenicity. In intestinal epithelial polarized cells, the Afa/Dr adhesins trigger cell membrane receptor clustering and activation of the linked cell signaling pathways, promote structural and functional cell lesions and injuries in intestinal barrier, induce proinflammatory responses, create angiogenesis, instigate epithelial-mesenchymal transition-like events, and lead to pks-dependent DNA damage. UTI-associated Afa/Dr DAEC strains, following adhesin-membrane receptor cell interactions and activation of associated lipid raft-dependent cell signaling pathways, internalize in a microtubule-dependent manner within urinary tract epithelial cells, develop a particular intracellular lifestyle, and trigger a toxin-dependent cell detachment. In response to Afa/Dr DAEC infection, the host epithelial cells generate antibacterial defense responses. Finally, I discuss a hypothetical role of intestinal Afa/Dr DAEC strains that can act as "silent pathogens" with the capacity to emerge as "pathobionts" for the development of inflammatory bowel disease and intestinal carcinogenesis. Copyright © 2014, American Society for Microbiology. All Rights Reserved.
Differentiation of a murine intestinal epithelial cell line (MIE) toward the M cell lineage.
Kanaya, Takashi; Miyazawa, Kohtaro; Takakura, Ikuro; Itani, Wataru; Watanabe, Kouichi; Ohwada, Shyuichi; Kitazawa, Haruki; Rose, Michael T; McConochie, Huw R; Okano, Hideyuki; Yamaguchi, Takahiro; Aso, Hisashi
2008-08-01
M cells are a kind of intestinal epithelial cell in the follicle-associated epithelium of Peyer's patches. These cells can transport antigens and microorganisms into underlying lymphoid tissues. Despite the important role of M cells in mucosal immune responses, the origin and mechanisms of differentiation as well as cell death of M cells remain unclear. To clarify the mechanism of M cell differentiation, we established a novel murine intestinal epithelial cell line (MIE) from the C57BL/6 mouse. MIE cells grow rapidly and have a cobblestone morphology, which is a typical feature of intestinal epithelial cells. Additionally, they express cytokeratin, villin, cell-cell junctional proteins, and alkaline phosphatase activity and can form microvilli. Their expression of Musashi-1 antigen indicates that they may be close to intestinal stem cells or transit-amplifying cells. MIE cells are able to differentiate into the M cell lineage following coculture with intestinal lymphocytes, but not with Peyer's patch lymphocytes (PPL). However, PPL costimulated with anti-CD3/CD28 MAbs caused MIE cells to display typical features of M cells, such as transcytosis activity, the disorganization of microvilli, and the expression of M cell markers. This transcytosis activity of MIE cells was not induced by T cells isolated from PPL costimulated with the same MAbs and was reduced by the depletion of the T cell population from PPL. A mixture of T cells treated with MAbs and B cells both from PPL led MIE cells to differentiate into M cells. We report here that MIE cells have the potential ability to differentiate into M cells and that this differentiation required activated T cells and B cells.
2014-01-01
SUMMARY The pathogenicity and clinical pertinence of diffusely adhering Escherichia coli expressing the Afa/Dr adhesins (Afa/Dr DAEC) in urinary tract infections (UTIs) and pregnancy complications are well established. In contrast, the implication of intestinal Afa/Dr DAEC in diarrhea is still under debate. These strains are age dependently involved in diarrhea in children, are apparently not involved in diarrhea in adults, and can also be asymptomatic intestinal microbiota strains in children and adult. This comprehensive review analyzes the epidemiology and diagnosis and highlights recent progress which has improved the understanding of Afa/Dr DAEC pathogenesis. Here, I summarize the roles of Afa/Dr DAEC virulence factors, including Afa/Dr adhesins, flagella, Sat toxin, and pks island products, in the development of specific mechanisms of pathogenicity. In intestinal epithelial polarized cells, the Afa/Dr adhesins trigger cell membrane receptor clustering and activation of the linked cell signaling pathways, promote structural and functional cell lesions and injuries in intestinal barrier, induce proinflammatory responses, create angiogenesis, instigate epithelial-mesenchymal transition-like events, and lead to pks-dependent DNA damage. UTI-associated Afa/Dr DAEC strains, following adhesin-membrane receptor cell interactions and activation of associated lipid raft-dependent cell signaling pathways, internalize in a microtubule-dependent manner within urinary tract epithelial cells, develop a particular intracellular lifestyle, and trigger a toxin-dependent cell detachment. In response to Afa/Dr DAEC infection, the host epithelial cells generate antibacterial defense responses. Finally, I discuss a hypothetical role of intestinal Afa/Dr DAEC strains that can act as “silent pathogens” with the capacity to emerge as “pathobionts” for the development of inflammatory bowel disease and intestinal carcinogenesis. PMID:25278576
Matsuura, Kazuo; Shi, Yun-Bo
2012-01-01
Background The formation and/or maturation of adult organs in vertebrates often takes place during postembryonic development, a period around birth in mammals when thyroid hormone (T3) levels are high. The T3-dependent anuran metamorphosis serves as a model to study postembryonic development. Studies on the remodeling of the intestine during Xenopus (X.) laevis metamorphosis have shown that the development of the adult intestine involves de novo formation of adult stem cells in a process controlled by T3. On the other hand, X. tropicalis, highly related to X. laevis, offers a number of advantages for studying developmental mechanisms, especially at genome-wide level, over X. laevis, largely due to its shorter life cycle and sequenced genome. To establish X. tropicalis intestinal metamorphosis as a model for adult organogenesis, we analyzed the morphological and cytological changes in X. tropicalis intestine during metamorphosis. Methodology/Principal Findings We observed that in X. tropicalis, the premetamorphic intestine was made of mainly a monolayer of larval epithelial cells surrounded by little connective tissue except in the single epithelial fold, the typhlosole. During metamorphosis, the larval epithelium degenerates and adult epithelium develops to form a multi-folded structure with elaborate connective tissue and muscles. Interestingly, typhlosole, which is likely critical for adult epithelial development, is present along the entire length of the small intestine in premetamorphic tadpoles, in contrast to X. laevis, where it is present only in the anterior 1/3. T3-treatment induces intestinal remodeling, including the shortening of the intestine and the typhlosole, just like in X. laevis. Conclusions/Significance Our observations indicate that the intestine undergoes similar metamorphic changes in X. laevis and X. tropicalis, making it possible to use the large amount of information available on X. laevis intestinal metamorphosis and the genome sequence information and genetic advantages of X. tropicalis to dissect the pathways governing adult intestinal development. PMID:23071801
Higuchi, Teruhisa; Moriyama, Mitsuhiko; Fukushima, Akiko; Matsumura, Hiroshi; Matsuoka, Shunichi; Kanda, Tatsuo; Sugitani, Masahiko; Tsunemi, Akiko; Ueno, Takahiro; Fukuda, Noboru
2018-05-25
Excess iron is associated with non-alcoholic steatohepatitis (NASH). mRNA expression of duodenal cytochrome b, divalent metal transporter 1, ferroportin 1, hepcidin, hephaestin and transferrin receptor 1 in liver were higher in high fat, high cholesterol-containing diet (HFCD) group than in normal diet (ND) group. mRNA levels of divalent metal transporter 1 and transferrin receptor 1, which stimulate iron absorption and excretion, were enhanced in small intestine. Epithelial mucosa of small intestine in HFCD group was characterized by plasma cell and eosinophil infiltration and increased vacuoles. Iron absorption was enhanced in this NASH model in the context of chronic inflammation of small intestinal epithelial cells, consequences of intestinal epithelial cell impairment caused by HFCD. Iron is transported to hepatocytes via portal blood, and abnormalities in iron absorption and excretion occur in small intestine from changes in iron transporter expression, which also occurs in NASH liver. Knockdown of hepcidin antimicrobial peptide led to enhanced heavy chain of ferritin expression in human hepatocytes, indicating association between hepcidin production and iron storage in hepatocytes. Iron-related transporters in liver and lower/upper portions of small intestine play critical roles in NASH development. Expression of iron metabolism-related genes in liver and small intestine was analyzed in stroke-prone spontaneously hypertensive rats (SHR-SP), which develop NASH. Five-week-old SHR-SP fed ND or HFCD were examined. mRNA and protein levels of iron metabolism-related genes in liver and small intestine from 12- and 19-week-old rats were evaluated by real-time RT-PCR and immunohistochemistry or Western blot.
NoxO1 Controls Proliferation of Colon Epithelial Cells.
Moll, Franziska; Walter, Maria; Rezende, Flávia; Helfinger, Valeska; Vasconez, Estefania; De Oliveira, Tiago; Greten, Florian R; Olesch, Catherine; Weigert, Andreas; Radeke, Heinfried H; Schröder, Katrin
2018-01-01
Reactive oxygen species (ROS) produced by enzymes of the NADPH oxidase family serve as second messengers for cellular signaling. Processes such as differentiation and proliferation are regulated by NADPH oxidases. In the intestine, due to the exceedingly fast and constant renewal of the epithelium both processes have to be highly controlled and balanced. Nox1 is the major NADPH oxidase expressed in the gut, and its function is regulated by cytosolic subunits such as NoxO1. We hypothesize that the NoxO1-controlled activity of Nox1 contributes to a proper epithelial homeostasis and renewal in the gut. NoxO1 is highly expressed in the colon. Knockout of NoxO1 reduces the production of superoxide in colon crypts and is not subsidized by an elevated expression of its homolog p47phox. Knockout of NoxO1 increases the proliferative capacity and prevents apoptosis of colon epithelial cells. In mouse models of dextran sulfate sodium (DSS)-induced colitis and azoxymethane/DSS induced colon cancer, NoxO1 has a protective role and may influence the population of natural killer cells. NoxO1 affects colon epithelium homeostasis and prevents inflammation.
How Shigella Utilizes Ca(2+) Jagged Edge Signals during Invasion of Epithelial Cells.
Bonnet, Mariette; Tran Van Nhieu, Guy
2016-01-01
Shigella, the causative agent of bacillary dysentery invades intestinal epithelial cells using a type III secretion system (T3SS). Through the injection of type III effectors, Shigella manipulates the actin cytoskeleton to induce its internalization in epithelial cells. At early invasion stages, Shigella induces atypical Ca(2+) responses confined at entry sites allowing local cytoskeletal remodeling for bacteria engulfment. Global Ca(2+) increase in the cell triggers the opening of connexin hemichannels at the plasma membrane that releases ATP in the extracellular milieu, favoring Shigella invasion and spreading through purinergic receptor signaling. During intracellular replication, Shigella regulates inflammatory and death pathways to disseminate within the epithelium. At later stages of infection, Shigella downregulates hemichannel opening and the release of extracellular ATP to dampen inflammatory signals. To avoid premature cell death, Shigella activates cell survival by upregulating the PI3K/Akt pathway and downregulating the levels of p53. Furthermore, Shigella interferes with pro-apoptotic caspases, and orients infected cells toward a slow necrotic cell death linked to mitochondrial Ca(2+) overload. In this review, we will focus on the role of Ca(2+) responses and their regulation by Shigella during the different stages of bacterial infection.
How Shigella Utilizes Ca2+ Jagged Edge Signals during Invasion of Epithelial Cells
Bonnet, Mariette; Tran Van Nhieu, Guy
2016-01-01
Shigella, the causative agent of bacillary dysentery invades intestinal epithelial cells using a type III secretion system (T3SS). Through the injection of type III effectors, Shigella manipulates the actin cytoskeleton to induce its internalization in epithelial cells. At early invasion stages, Shigella induces atypical Ca2+ responses confined at entry sites allowing local cytoskeletal remodeling for bacteria engulfment. Global Ca2+ increase in the cell triggers the opening of connexin hemichannels at the plasma membrane that releases ATP in the extracellular milieu, favoring Shigella invasion and spreading through purinergic receptor signaling. During intracellular replication, Shigella regulates inflammatory and death pathways to disseminate within the epithelium. At later stages of infection, Shigella downregulates hemichannel opening and the release of extracellular ATP to dampen inflammatory signals. To avoid premature cell death, Shigella activates cell survival by upregulating the PI3K/Akt pathway and downregulating the levels of p53. Furthermore, Shigella interferes with pro-apoptotic caspases, and orients infected cells toward a slow necrotic cell death linked to mitochondrial Ca2+ overload. In this review, we will focus on the role of Ca2+ responses and their regulation by Shigella during the different stages of bacterial infection. PMID:26904514
Hirotani, Yoshihiko; Ikeda, Kenji; Kato, Ryuji; Myotoku, Michiaki; Umeda, Takashi; Ijiri, Yoshio; Tanaka, Kazuhiko
2008-09-01
Indirect evidence suggests that lactoferrin (Lf), a major iron-binding protein in human milk, induces enterocyte growth and proliferation, depending on its concentration and affects the function and permeability of the intestinal mucosa. The bacterial endotoxin (lipopolysaccharide, LPS) is known to cause mucosal hyperpermeability in vivo. However, protective effects of Lf against LPS-mediated intestinal mucosal damage and barrier function in epithelial cells are not yet fully clarified. The aim of this study was to investigate whether Lf can reduce the cellular injury and alter epithelial hyperpermeability caused by LPS in human intestinal Caco-2 cells. When cell viability was measured by a WST-1 assay (tetrazolium salt-based assay), the protective effects against LPS-induced damage to Caco-2 cells were observed at doses of 800 and 1000 microg/ml Lf. The barrier function of Caco-2 monolayer tight junctions was assessed by measuring transepithelial electrical resistance (TEER) and permeability of FITC-labeled dextran 4000 (FD-4). The treatment of Caco-2 cells with Lf at doses of 400 and 1000 microg/ml significantly increased TEER as compared to treatment with LPS alone for 2 h (p<0.05). Further, at doses of 400 and 1000 microg/ml, Lf inhibited the enhancement of LPS-mediated permeability in Caco-2 cell monolayer. The results of this study suggest that Lf may have protective effects against LPS-mediated intestinal mucosal damage and impairment of barrier function in intestinal epithelial cells.
Yuqi, Luo; Chengtang, Wu; Ying, Wen; Shangtong, Lei; Kangxiong, Liao
2008-09-01
The purpose was to investigate the expression of musashi-1 (msi-1) and its significances in small intestinal mucosa that was severely damaged by high-dose 5-FU. A total of 40 adult C57BL/6J mice were divided into two groups: the control group (n = 8, group A) and experimental group (n = 32). The mice in the control group were treated with PBS by intraperitoneal injection, and the other mice were treated with high-dose 5-FU (150 mg/kg body weight for 5 consecutive days) by intraperitoneal injection. At the 1st (group B), 3rd (group C) and 5th (group D) day after treatment with high-dose 5-FU, the dying mice were killed, HE staining and immunohistochemical techniques were used to detect the expression of the putative marker of intestinal epithelial stem cells, msi-1, in samples of the middle intestine from these mice, and the percentage of the msi-1-positive cells from the intestinal mucosal cells of the mice in group B was detected by FACS. After treatment with high-dose 5-FU, the intestinal mucosa suffered severe damage: the villi and crypts disappeared, the number of msi-1-positive cells increased greatly, the intestinal epithelial cells could be divided into two fractions by FACS, and the percentage of msi-1-positive cells was up to 67.75% in the fraction in which the value of FSC was higher. After treatment with high-dose 5-FU, the percentage of intestinal stem cells had increased significantly, which was useful for the further isolation and enrichment of intestinal epithelial stem cells.
Wang, Hua; Sun, Rui-Ting; Li, Yang; Yang, Yue-Feng; Xiao, Feng-Jun; Zhang, Yi-Kun; Wang, Shao-Xia; Sun, Hui-Yan; Zhang, Qun-Wei; Wu, Chu-Tse; Wang, Li-Sheng
2015-01-01
Effective therapeutic strategies to address intestinal complications after radiation exposure are currently lacking. Mesenchymal stem cells (MSCs), which display the ability to repair the injured intestine, have been considered as delivery vehicles for repair genes. In this study, we evaluated the therapeutic effect of hepatocyte growth factor (HGF)-gene-modified MSCs on radiation-induced intestinal injury (RIII). Female 6- to 8-week-old mice were radiated locally at the abdomen with a single 13-Gy dose of radiation and then treated with saline control, Ad-HGF or Ad-Null-modified MSCs therapy. The transient engraftment of human MSCs was detected via real-time PCR and immunostaining. The therapeutic effects of non- and HGF-modified MSCs were evaluated via FACS to determine the lymphocyte immunophenotypes; via ELISA to measure cytokine expression; via immunostaining to determine tight junction protein expression; via PCNA staining to examine intestinal epithelial cell proliferation; and via TUNEL staining to detect intestinal epithelial cell apoptosis. The histopathological recovery of the radiation-injured intestine was significantly enhanced following non- or HGF-modified MSCs treatment. Importantly, the radiation-induced immunophenotypic disorders of the mesenteric lymph nodes and Peyer's patches were attenuated in both MSCs-treated groups. Treatment with HGF-modified MSCs reduced the expression and secretion of inflammatory cytokines, including tumor necrosis factor alpha (TNF-α) and interferon-gamma (IFN-γ), increased the expression of the anti-inflammatory cytokine IL-10 and the tight junction protein ZO-1, and promoted the proliferation and reduced the apoptosis of intestinal epithelial cells. Treatment of RIII with HGF-gene-modified MSCs reduces local inflammation and promotes the recovery of small intestinal histopathology in a mouse model. These findings might provide an effective therapeutic strategy for RIII.
Huang, Yalan; Feng, Yanhai; Wang, Yu; Wang, Pei; Wang, Fengjun; Ren, Hui
2018-01-01
The disruption of intestinal barrier plays a vital role in the pathophysiological changes after severe burn injury, however, the underlying mechanisms are poorly understood. Severe burn causes the disruption of intestinal tight junction (TJ) barrier. Previous studies have shown that endoplasmic reticulum (ER) stress and autophagy are closely associated with the impairment of intestinal mucosa. Thus, we hypothesize that ER stress and autophagy are likely involved in burn injury-induced intestinal epithelial barrier dysfunction. Mice received a 30% total body surface area (TBSA) full-thickness burn, and were sacrificed at 0, 1, 2, 6, 12 and 24 h postburn. The results showed that intestinal permeability was increased significantly after burn injury, accompanied by the damage of mucosa and the alteration of TJ proteins. Severe burn induced ER stress, as indicated by increased intraluminal chaperone binding protein (BIP), CCAAT/enhancer-binding protein homologous protein (CHOP) and inositol-requiring enzyme 1(IRE1)/X-box binding protein 1 splicing (XBP1). Autophagy was activated after burn injury, as evidenced by the increase of autophagy related protein 5 (ATG5), Beclin 1 and LC3II/LC3I ratio and the decrease of p62. Besides, the number of autophagosomes was also increased after burn injury. The levels of p-PI3K(Ser191), p-PI3K(Ser262), p-AKT(Ser473), and p-mTOR were decreased postburn, suggesting that autophagy-related PI3K/AKT/mTOR pathway is involved in the intestinal epithelial barrier dysfunction following severe burn. In summary, severe burn injury induces the ER stress and autophagy in intestinal epithelia, leading to the disruption of intestinal barrier. PMID:29740349
Celiac Disease: Role of the Epithelial Barrier.
Schumann, Michael; Siegmund, Britta; Schulzke, Jörg D; Fromm, Michael
2017-03-01
In celiac disease (CD) a T-cell-mediated response to gluten is mounted in genetically predisposed individuals, resulting in a malabsorptive enteropathy histologically highlighted by villous atrophy and crypt hyperplasia. Recent data point to the epithelial layer as an under-rated hot spot in celiac pathophysiology to date. This overview summarizes current functional and genetic evidence on the role of the epithelial barrier in CD, consisting of the cell membranes and the apical junctional complex comprising sealing as well as ion and water channel-forming tight junction proteins and the adherens junction. Moreover, the underlying mechanisms are discussed, including apoptosis of intestinal epithelial cells, biology of intestinal stem cells, alterations in the apical junctional complex, transcytotic uptake of gluten peptides, and possible implications of a defective epithelial polarity. Current research is directed toward new treatment options for CD that are alternatives or complementary therapeutics to a gluten-free diet. Thus, strategies to target an altered epithelial barrier therapeutically also are discussed.
Growth Factor FGF2 Cooperates with Interleukin-17 to Repair Intestinal Epithelial Damage.
Song, Xinyang; Dai, Dai; He, Xiao; Zhu, Shu; Yao, Yikun; Gao, Hanchao; Wang, Jingjing; Qu, Fangfang; Qiu, Ju; Wang, Honglin; Li, Xiaoxia; Shen, Nan; Qian, Youcun
2015-09-15
The intestinal epithelial barrier plays a critical role in the mucosal immunity. However, it remains largely unknown how the epithelial barrier is maintained after damage. Here we show that growth factor FGF2 synergized with interleukin-17 (IL-17) to induce genes for repairing of damaged epithelium. FGF2 or IL-17 deficiency resulted in impaired epithelial proliferation, increased pro-inflammatory microbiota outgrowth, and consequently worse pathology in a DSS-induced colitis model. The dysregulated microbiota in the model induced transforming growth factor beta 1 (TGFβ1) expression, which in turn induced FGF2 expression mainly in regulatory T cells. Act1, an essential adaptor in IL-17 signaling, suppressed FGF2-induced ERK activation through binding to adaptor molecule GRB2 to interfere with its association with guanine nucleotide exchange factor SOS1. Act1 preferentially bound to IL-17 receptor complex, releasing its suppressive effect on FGF2 signaling. Thus, microbiota-driven FGF2 and IL-17 cooperate to repair the damaged intestinal epithelium through Act1-mediated direct signaling cross-talk. Copyright © 2015 Elsevier Inc. All rights reserved.
Neutrophil-derived JAML Inhibits Repair of Intestinal Epithelial Injury During Acute Inflammation
Weber, Dominique A.; Sumagin, Ronen; McCall, Ingrid C.; Leoni, Giovanna; Neumann, Philipp A.; Andargachew, Rakieb; Brazil, Jennifer C.; Medina-Contreras, Oscar; Denning, Timothy L.; Nusrat, Asma; Parkos, Charles A.
2014-01-01
Neutrophil transepithelial migration (TEM) during acute inflammation is associated with mucosal injury. Using models of acute mucosal injury in-vitro and in-vivo, we describe a new mechanism by which neutrophils infiltrating the intestinal mucosa disrupt epithelial homeostasis. We report that junctional adhesion molecule-like protein (JAML) is cleaved from neutrophil surface by zinc-metalloproteases during TEM. Neutrophil-derived soluble JAML bound to the epithelial tight junction protein coxsackie-adenovirus receptor (CAR) resulting in compromised barrier and inhibition of wound repair, through decreased epithelial proliferation. The deleterious effects of JAML on barrier and wound repair were reversed with an anti-JAML mAb that inhibits JAML-CAR binding. Thus, JAML released from transmigrating neutrophils across inflamed epithelia can promote recruitment of leukocytes and aid in clearance of invading microorganisms. However, sustained release of JAML under pathologic conditions associated with persistence of large numbers of infiltrated neutrophil would compromise intestinal barrier and inhibit mucosal healing. Targeting JAML-CAR interactions may thus improve mucosal healing responses under conditions of dysregulated neutrophil recruitment. PMID:24621992
Immune evasion of porcine enteric coronaviruses and viral modulation of antiviral innate signaling.
Zhang, Qingzhan; Yoo, Dongwan
2016-12-02
Porcine epidemic diarrhea virus (PEDV) and porcine deltacoronavirus (PDCoV) are emerged and reemerging viruses in pigs, and together with transmissible gastroenteritis virus (TGEV), pose significant economic concerns to the swine industry. These viruses infect epithelial cells of the small intestine and cause watery diarrhea, dehydration, and a high mortality in neonatal piglets. Type I interferons (IFN-α/β) are major antiviral cytokines forming host innate immunity, and in turn, these enteric coronaviruses have evolved to modulate the host innate immune signaling during infection. Accumulating evidence however suggests that IFN induction and signaling in the intestinal epithelial cells differ from other epithelial cells, largely due to distinct features of the gut epithelial mucosal surface and commensal microflora, and it appears that type III interferon (IFN-λ) plays a key role to maintain the antiviral state in the gut. This review describes the recent understanding on the immune evasion strategies of porcine enteric coronaviruses and the role of different types of IFNs for intestinal antiviral innate immunity. Copyright © 2016 Elsevier B.V. All rights reserved.
Lechuga, Susana; Ivanov, Andrei I
2017-07-01
The intestinal epithelium forms a key protective barrier that separates internal organs from the harmful environment of the gut lumen. Increased permeability of the gut barrier is a common manifestation of different inflammatory disorders contributing to the severity of disease. Barrier permeability is controlled by epithelial adherens junctions and tight junctions. Junctional assembly and integrity depend on fundamental homeostatic processes such as cell differentiation, rearrangements of the cytoskeleton, and vesicle trafficking. Alterations of intestinal epithelial homeostasis during mucosal inflammation may impair structure and remodeling of apical junctions, resulting in increased permeability of the gut barrier. In this review, we summarize recent advances in our understanding of how altered epithelial homeostasis affects the structure and function of adherens junctions and tight junctions in the inflamed gut. Specifically, we focus on the transcription reprogramming of the cell, alterations in the actin cytoskeleton, and junctional endocytosis and exocytosis. We pay special attention to knockout mouse model studies and discuss the relevance of these mechanisms to human gastrointestinal disorders. Copyright © 2017 Elsevier B.V. All rights reserved.
Studies of the kallikrein-kinin system and prostaglandins in epithelial ion transport.
Margolius, H S; Halushka, P V; Chao, J; Miller, D H; Cuthbert, A W; Spayne, J A
1985-01-01
Tissue kallikrein of colon mucosa is synthesized rapidly, and this synthetic process can now be examined in relation to hormonal or dietary manipulations or pathological circumstances that affect intestinal ion transport. Although the identical renal tissue enzyme is known to be enriched in membranes of distal convoluted tubular epithelial cells, the precise localization of the intestinal enzyme is uncertain. An understanding of the intestinal cellular locale of kallikrein will help in defining its local role. That tissue kallikreins can be inhibited by monovalent cations and some drugs (e.g., amiloride) and that kallikrein inhibitors affect cation transport across epithelial surfaces containing such enzymes must be reconciled with the new observations of kinin-induced chloride secretion. Extracellular calcium, eicosanoid synthesis, and cyclic nucleotide production are involved in the secretory response to kinins, although an absolute requirement for intact eicosanoid synthesis may not exist.
A single-cell survey of the small intestinal epithelium
Haber, Adam L.; Biton, Moshe; Rogel, Noga; Herbst, Rebecca H.; Shekhar, Karthik; Smillie, Christopher; Burgin, Grace; Delorey, Toni M.; Howitt, Michael R.; Katz, Yarden; Tirosh, Itay; Beyaz, Semir; Dionne, Danielle; Zhang, Mei; Raychowdhury, Raktima; Garrett, Wendy S.; Rozenblatt-Rosen, Orit; Shi, Hai Ning; Yilmaz, Omer; Xavier, Ramnik J.; Regev, Aviv
2018-01-01
Intestinal epithelial cells (IECs) absorb nutrients, respond to microbes, provide barrier function and help coordinate immune responses. We profiled 53,193 individual epithelial cells from mouse small intestine and organoids, and characterized novel subtypes and their gene signatures. We showed unexpected diversity of hormone-secreting enteroendocrine cells and constructed their novel taxonomy. We distinguished between two tuft cell subtypes, one of which expresses the epithelial cytokine TSLP and CD45 (Ptprc), the pan-immune marker not previously associated with non-hematopoietic cells. We also characterized how cell-intrinsic states and cell proportions respond to bacterial and helminth infections. Salmonella infection caused an increase in Paneth cells and enterocytes abundance, and broad activation of an antimicrobial program. In contrast, Heligmosomoides polygyrus caused an expansion of goblet and tuft cell populations. Our survey highlights new markers and programs, associates sensory molecules to cell types, and uncovers principles of gut homeostasis and response to pathogens. PMID:29144463
Knoop, Kathryn A; Kumar, Nachiket; Butler, Betsy R; Sakthivel, Senthilkumar K; Taylor, Rebekah T; Nochi, Tomonori; Akiba, Hisaya; Yagita, Hideo; Kiyono, Hiroshi; Williams, Ifor R
2009-11-01
Microfold cells (M cells) are specialized epithelial cells situated over Peyer's patches (PP) and other organized mucosal lymphoid tissues that transport commensal bacteria and other particulate Ags into intraepithelial pockets accessed by APCs. The TNF superfamily member receptor activator of NF-kappaB ligand (RANKL) is selectively expressed by subepithelial stromal cells in PP domes. We found that RANKL null mice have <2% of wild-type levels of PP M cells and markedly diminished uptake of 200 nm diameter fluorescent beads. Ab-mediated neutralization of RANKL in adult wild-type mice also eliminated most PP M cells. The M cell deficit in RANKL null mice was corrected by systemic administration of exogenous RANKL. Treatment with RANKL also induced the differentiation of villous M cells on all small intestinal villi with the capacity for avid uptake of Salmonella and Yersinia organisms and fluorescent beads. The RANK receptor for RANKL is expressed by epithelial cells throughout the small intestine. We conclude that availability of RANKL is the critical factor controlling the differentiation of M cells from RANK-expressing intestinal epithelial precursor cells.
Wu, Richard Y; Määttänen, Pekka; Napper, Scott; Scruten, Erin; Li, Bo; Koike, Yuhki; Johnson-Henry, Kathene C; Pierro, Agostino; Rossi, Laura; Botts, Steven R; Surette, Michael G; Sherman, Philip M
2017-10-10
Prebiotics are non-digestible food ingredients that enhance the growth of certain microbes within the gut microbiota. Prebiotic consumption generates immune-modulatory effects that are traditionally thought to reflect microbial interactions within the gut. However, recent evidence suggests they may also impart direct microbe-independent effects on the host, though the mechanisms of which are currently unclear. Kinome arrays were used to profile the host intestinal signaling responses to prebiotic exposures in the absence of microbes. Identified pathways were functionally validated in Caco-2Bbe1 intestinal cell line and in vivo model of murine endotoxemia. We found that prebiotics directly regulate host mucosal signaling to alter response to bacterial infection. Intestinal epithelial cells (IECs) exposed to prebiotics are hyporesponsive to pathogen-induced mitogen-activated protein kinase (MAPK) and nuclear factor kappa B (NF-κB) activations, and have a kinome profile distinct from non-treated cells pertaining to multiple innate immune signaling pathways. Consistent with this finding, mice orally gavaged with prebiotics showed dampened inflammatory response to lipopolysaccharide (LPS) without alterations in the gut microbiota. These findings provide molecular mechanisms of direct host-prebiotic interactions to support prebiotics as potent modulators of host inflammation.
Removal of the intestinal mucosa: photochemical approach in bladder augmentation
NASA Astrophysics Data System (ADS)
Haselhuhn, Gregory D.; Kropp, Kenneth A.; Keck, Rick W.; Selman, Steven H.
1995-03-01
Experiments were undertaken to determine whether 5-aminoleuvinic acid in combination with light could be used as an adjunct to intestinal bladder augmentation with the aim of removing intestinal mucosa with subsequent re-epithelialization of the treated segment with urothelium. Histopathologic studies of so-treated intestinal segments used in bladder augmentation demonstrate the feasibility of this approach.
Plaul, Silvia E; Pastor, Raquel; Díaz, Alcira O; Barbeito, Claudio G
2016-03-01
The Neotropical catfish, Corydoras paleatus (Callichthyidae) is a facultative air-breathing teleost that makes use of the caudal portion of the intestine as an accessory air-breathing organ. This portion is highly modified, being well vascularized with capillaries between epithelial cells, which makes it well suited for gas exchange. Instead, the cranial portion is a digestion and absorption site, as it has a typical intestinal epithelium with columnar cells arranged in a single row, villi and less vascularized tunica mucosa. Therefore, the intestine was studied by light and electron microscopy to assess differences between the cranial, middle and caudal portions. To characterize the potential for cell proliferation of this organ, we used anti-proliferating cell nuclear antigen antibody and anti-Na(+) K(+) -ATPase monoclonal antibody to detect the presence of Na(+) /K(+) pump. In C. paleatus it was observed that cell dynamics showed a decreasing gradient of proliferation in cranio-caudal direction. Also, the intestine of this catfish is an important organ in ionoregulation: the basolateral Na(+) /K(+) pump may have an active role, transporting Na(+) out of the cell while helping to maintain the repose potential and to regulate cellular volume. © 2016 Wiley Periodicals, Inc.
Satoh-Takayama, Naoko; Serafini, Nicolas; Verrier, Thomas; Rekiki, Abdessalem; Renauld, Jean-Christophe; Frankel, Gad; Di Santo, James P
2014-11-20
Interleukin-22 (IL-22) plays a critical role in mucosal defense, although the molecular mechanisms that ensure IL-22 tissue distribution remain poorly understood. We show that the CXCL16-CXCR6 chemokine-chemokine receptor axis regulated group 3 innate lymphoid cell (ILC3) diversity and function. CXCL16 was constitutively expressed by CX3CR1(+) intestinal dendritic cells (DCs) and coexpressed with IL-23 after Citrobacter rodentium infection. Intestinal ILC3s expressed CXCR6 and its ablation generated a selective loss of the NKp46(+) ILC3 subset, a depletion of intestinal IL-22, and the inability to control C. rodentium infection. CD4(+) ILC3s were unaffected by CXCR6 deficiency and remained clustered within lymphoid follicles. In contrast, the lamina propria of Cxcr6(-/-) mice was devoid of ILC3s. The loss of ILC3-dependent IL-22 epithelial stimulation reduced antimicrobial peptide expression that explained the sensitivity of Cxcr6(-/-) mice to C. rodentium. Our results delineate a critical CXCL16-CXCR6 crosstalk that coordinates the intestinal topography of IL-22 secretion required for mucosal defense. Copyright © 2014 Elsevier Inc. All rights reserved.
Zhang, Ying; Li, Jianguo
2012-11-16
Carbachol is a cholinergic agonist that protects the intestines after trauma or burn injury. The present study determines the beneficial effects of carbachol and the mechanisms by which it ameliorates the lipopolysaccharide (LPS)-induced intestinal barrier breakdown. Rats were injected intraperitoneally with 10 mg/kg LPS. Results showed that the gut barrier permeability was reduced, the ultrastructural disruption of tight junctions (TJs) was prevented, the redistribution of zonula occludens-1 and claudin-2 proteins was partially reversed, and the nuclear factor-kappa beta (NF-κβ) and myosin light-chain kinase (MLCK) activation in the intestinal epithelium were suppressed after carbachol administration in LPS-exposed rats. Pretreatment with the α7 nicotinic acetylcholine receptor (α7nAchR) antagonist α-bungarotoxin blocked the protective action of carbachol. These results suggested that carbachol treatment can protect LPS-induced intestinal barrier dysfunction. Carbachol exerts its beneficial effect on the amelioration of the TJ damage by inhibiting the NF-κβ and MLCK pathways in an α7nAchR-dependent manner. Copyright © 2012 Elsevier Inc. All rights reserved.
Iron Absorption in Drosophila melanogaster
Mandilaras, Konstantinos; Pathmanathan, Tharse; Missirlis, Fanis
2013-01-01
The way in which Drosophila melanogaster acquires iron from the diet remains poorly understood despite iron absorption being of vital significance for larval growth. To describe the process of organismal iron absorption, consideration needs to be given to cellular iron import, storage, export and how intestinal epithelial cells sense and respond to iron availability. Here we review studies on the Divalent Metal Transporter-1 homolog Malvolio (iron import), the recent discovery that Multicopper Oxidase-1 has ferroxidase activity (iron export) and the role of ferritin in the process of iron acquisition (iron storage). We also describe what is known about iron regulation in insect cells. We then draw upon knowledge from mammalian iron homeostasis to identify candidate genes in flies. Questions arise from the lack of conservation in Drosophila for key mammalian players, such as ferroportin, hepcidin and all the components of the hemochromatosis-related pathway. Drosophila and other insects also lack erythropoiesis. Thus, systemic iron regulation is likely to be conveyed by different signaling pathways and tissue requirements. The significance of regulating intestinal iron uptake is inferred from reports linking Drosophila developmental, immune, heat-shock and behavioral responses to iron sequestration. PMID:23686013
Stoeker, Laura L; Overman, Elizabeth L; Nordone, Shila K; Moeser, Adam J; Simões, Rita D; Dean, Gregg A
2013-05-15
HIV infection is associated with intestinal mucosal dysfunction and probiotics offer the therapeutic potential to enhance the mucosal barrier in HIV+ patients. To evaluate the response of immunocompromised hosts to probiotics, we orally administered Lactobacillus acidophilus to cats with chronic feline immunodeficiency virus (FIV) infection. FIV infection significantly affected transcellular, but not paracellular, transport of small molecules across the intestinal epithelium. Additionally, probiotic treatment of FIV+ cats resulted in changes in cytokine release and mucosal leukocyte percentages that were not paralleled in FIV- cats. These results suggest a novel role for FIV in upregulating transcellular transport across the gastrointestinal epithelial barrier and demonstrate the potential therapeutic use of probiotic bacteria to restore intestinal homeostasis. Copyright © 2013 Elsevier B.V. All rights reserved.
Barnett, Alicia M.; Roy, Nicole C.; McNabb, Warren C.; Cookson, Adrian L.
2016-01-01
Caprine milk contains the highest amount of oligosaccharides among domestic animals, which are structurally similar to human milk oligosaccharides (HMOs). This suggests caprine milk oligosaccharides may offer similar protective and developmental effects to that of HMOs. However, to date, studies using oligosaccharides from caprine milk have been limited. Thus, this study aimed to examine the impact of a caprine milk oligosaccharide-enriched fraction (CMOF) on barrier function of epithelial cell co-cultures of absorptive enterocytes (Caco-2 cells) and mucus-secreting goblet cells (HT29-MTX cells), that more closely simulate the cell proportions found in the small (90:10) and large intestine (75:25). Treatment of epithelial co-cultures with 0.4, 1.0, 2.0 and 4.0 mg/mL of CMOF was shown to have no effect on metabolic activity but did enhance cell epithelial barrier integrity as measured by trans-epithelial electrical resistance (TEER), in a dose-dependent manner. The CMOF at the maximum concentration tested (4.0 mg/mL) enhanced TEER, mucin gene expression and mucin protein abundance of epithelial co-cultures, all of which are essential components of intestinal barrier function. PMID:27164134
Barnett, Alicia M; Roy, Nicole C; McNabb, Warren C; Cookson, Adrian L
2016-05-06
Caprine milk contains the highest amount of oligosaccharides among domestic animals, which are structurally similar to human milk oligosaccharides (HMOs). This suggests caprine milk oligosaccharides may offer similar protective and developmental effects to that of HMOs. However, to date, studies using oligosaccharides from caprine milk have been limited. Thus, this study aimed to examine the impact of a caprine milk oligosaccharide-enriched fraction (CMOF) on barrier function of epithelial cell co-cultures of absorptive enterocytes (Caco-2 cells) and mucus-secreting goblet cells (HT29-MTX cells), that more closely simulate the cell proportions found in the small (90:10) and large intestine (75:25). Treatment of epithelial co-cultures with 0.4, 1.0, 2.0 and 4.0 mg/mL of CMOF was shown to have no effect on metabolic activity but did enhance cell epithelial barrier integrity as measured by trans-epithelial electrical resistance (TEER), in a dose-dependent manner. The CMOF at the maximum concentration tested (4.0 mg/mL) enhanced TEER, mucin gene expression and mucin protein abundance of epithelial co-cultures, all of which are essential components of intestinal barrier function.
Léguillier, Teddy; Vandormael-Pournin, Sandrine; Artus, Jérôme; Houlard, Martin; Picard, Christel; Bernex, Florence; Robine, Sylvie; Cohen-Tannoudji, Michel
2012-07-15
Recent studies have shown that factors involved in transcription-coupled mRNA processing are important for the maintenance of genome integrity. How these processes are linked and regulated in vivo remains largely unknown. In this study, we addressed in the mouse model the function of Omcg1, which has been shown to participate in co-transcriptional processes, including splicing and transcription-coupled repair. Using inducible mouse models, we found that Omcg1 is most critically required in intestinal progenitors. In absence of OMCG1, proliferating intestinal epithelial cells underwent abnormal mitosis followed by apoptotic cell death. As a consequence, the crypt proliferative compartment of the small intestine was quickly and totally abrogated leading to the rapid death of the mice. Lack of OMCG1 in embryonic stem cells led to a similar cellular phenotype, with multiple mitotic defects and rapid cell death. We showed that mutant intestinal progenitors and embryonic stem cells exhibited a reduced cell cycle arrest following irradiation, suggesting that mitotic defects may be consecutive to M phase entry with unrepaired DNA damages. These findings unravel a crucial role for pre-mRNA processing in the homeostasis of the small intestine and point to a major role of OMCG1 in the maintenance of genome integrity.
Curcumin Anti-Apoptotic Action in a Model of Intestinal Epithelial Inflammatory Damage
Loganes, Claudia; Lega, Sara; Bramuzzo, Matteo; Vecchi Brumatti, Liza; Piscianz, Elisa; Valencic, Erica; Tommasini, Alberto; Marcuzzi, Annalisa
2017-01-01
The purpose of this study is to determine if a preventive treatment with curcumin can protect intestinal epithelial cells from inflammatory damage induced by IFNγ. To achieve this goal we have used a human intestinal epithelial cell line (HT29) treated with IFNγ to undergo apoptotic changes that can reproduce the damage of intestinal epithelia exposed to inflammatory cytokines. In this model, we measured the effect of curcumin (curcuminoid from Curcuma Longa) added as a pre-treatment at different time intervals before stimulation with IFNγ. Curcumin administration to HT29 culture before the inflammatory stimulus IFNγ reduced the cell apoptosis rate. This effect gradually declined with the reduction of the curcumin pre-incubation time. This anti-apoptotic action by curcumin pre-treatment was paralleled by a reduction of secreted IL7 in the HT29 culture media, while there was no relevant change in the other cytokine levels. Even though curcumin pre-administration did not impact the activation of the NF-κB pathway, a slight effect on the phosphorylation of proteins in this inflammatory signaling pathway was observed. In conclusion, curcumin pre-treatment can protect intestinal cells from inflammatory damage. These results can be the basis for studying the preventive role of curcumin in inflammatory bowel diseases. PMID:28587282
Curcumin Anti-Apoptotic Action in a Model of Intestinal Epithelial Inflammatory Damage.
Loganes, Claudia; Lega, Sara; Bramuzzo, Matteo; Vecchi Brumatti, Liza; Piscianz, Elisa; Valencic, Erica; Tommasini, Alberto; Marcuzzi, Annalisa
2017-06-06
The purpose of this study is to determine if a preventive treatment with curcumin can protect intestinal epithelial cells from inflammatory damage induced by IFNγ. To achieve this goal we have used a human intestinal epithelial cell line (HT29) treated with IFNγ to undergo apoptotic changes that can reproduce the damage of intestinal epithelia exposed to inflammatory cytokines. In this model, we measured the effect of curcumin (curcuminoid from Curcuma Longa ) added as a pre-treatment at different time intervals before stimulation with IFNγ. Curcumin administration to HT29 culture before the inflammatory stimulus IFNγ reduced the cell apoptosis rate. This effect gradually declined with the reduction of the curcumin pre-incubation time. This anti-apoptotic action by curcumin pre-treatment was paralleled by a reduction of secreted IL7 in the HT29 culture media, while there was no relevant change in the other cytokine levels. Even though curcumin pre-administration did not impact the activation of the NF-κB pathway, a slight effect on the phosphorylation of proteins in this inflammatory signaling pathway was observed. In conclusion, curcumin pre-treatment can protect intestinal cells from inflammatory damage. These results can be the basis for studying the preventive role of curcumin in inflammatory bowel diseases.
Fox, Amy C.; McConnell, Kevin W.; Yoseph, Benyam P.; Breed, Elise; Liang, Zhe; Clark, Andrew T.; O'Donnell, David; Zee-Cheng, Brendan; Jung, Enjae; Dominguez, Jessica A.; Dunne, W. Michael; Burd, Eileen M.; Coopersmith, Craig M.
2012-01-01
The endogenous bacteria have been hypothesized to play a significant role in the pathophysiology of critical illness, although their role in sepsis is poorly understood. The purpose of this study was to determine how commensal bacteria alter the host response to sepsis. Conventional and germ free (GF) C57Bl/6 mice were subjected to Pseudomonas aeruginosa pneumonia. All GF mice died within two days while 44% of conventional mice survived for 7 days (p=0.001). Diluting the dose of bacteria 10-fold in GF mice led to similar survival in GF and conventional mice. When animals with similar mortality were assayed for intestinal integrity, GF mice had lower levels of intestinal epithelial apoptosis but similar levels of proliferation and intestinal permeability. GF mice had significantly lower levels of TNF and IL-1β in BAL fluid compared to conventional mice without changes in systemic cytokine production. Under conventional conditions, sepsis unmasks lymphocyte control of intestinal epithelial apoptosis, since sepsis induces a greater increase in gut apoptosis in Rag-1−/− mice than wild type (WT) mice. However, in a separate set of experiments, gut apoptosis was similar between septic GF Rag-1−/− mice and septic GF WT mice. These data demonstrate that the endogenous bacteria play a protective role in mediating mortality from pneumonia-induced sepsis, potentially mediated through altered intestinal apoptosis and the local pro-inflammatory response. Additionally, sepsis-induced lymphocyte-dependent increases in gut epithelial apoptosis appear to be mediated by the endogenous bacteria. PMID:23042193
Fox, Amy C; McConnell, Kevin W; Yoseph, Benyam P; Breed, Elise; Liang, Zhe; Clark, Andrew T; O'Donnell, David; Zee-Cheng, Brendan; Jung, Enjae; Dominguez, Jessica A; Dunne, W Michael; Burd, Eileen M; Coopersmith, Craig M
2012-11-01
The endogenous bacteria have been hypothesized to play a significant role in the pathophysiology of critical illness, although their role in sepsis is poorly understood. The purpose of this study was to determine how commensal bacteria alter the host response to sepsis. Conventional and germ-free (GF) C57Bl/6 mice were subjected to Pseudomonas aeruginosa pneumonia. All GF mice died within 2 days, whereas 44% of conventional mice survived for 7 days (P = 0.001). Diluting the dose of bacteria 10-fold in GF mice led to similar survival in GF and conventional mice. When animals with similar mortality were assayed for intestinal integrity, GF mice had lower levels of intestinal epithelial apoptosis but similar levels of proliferation and intestinal permeability. Germ-free mice had significantly lower levels of tumor necrosis factor and interleukin 1β in bronchoalveolar lavage fluid compared with conventional mice without changes in systemic cytokine production. Under conventional conditions, sepsis unmasks lymphocyte control of intestinal epithelial apoptosis, because sepsis induces a greater increase in gut apoptosis in Rag-1 mice than in wild-type mice. However, in a separate set of experiments, gut apoptosis was similar between septic GF Rag-1 mice and septic GF wild-type mice. These data demonstrate that the endogenous bacteria play a protective role in mediating mortality from pneumonia-induced sepsis, potentially mediated through altered intestinal apoptosis and the local proinflammatory response. In addition, sepsis-induced lymphocyte-dependent increases in gut epithelial apoptosis appear to be mediated by the endogenous bacteria.
Georgopoulou, U; Sire, M F; Vernier, J M
1986-01-01
An immunofluorescence technique using antibodies against the Fc and Fab fragments of human IgG (IgGH) was used to study the absorption of proteins by the intestinal epithelial cells of rainbow trout after oral or anal administration. Cellular absorption of a high molecular weight protein, hepatitis-B surface antigen (HBsAg), was also studied by using two monoclonal antibodies, one specific for the confirmation of the antigen (implying disulfide bridges), and the other that reacts with the constituent polypeptides. Both absorbed IgGH and HBsAg were seen to be segregated in the apical vacuolar system, a characteristic feature of intestinal epithelial cells. The same antibodies were used with an everted sac technique in conjunction with immunofluorescence, to show the intravacuolar degradation of IgGH and HBsAg following absorption. By using an antibody against cathepsin D, it was possible to demonstrate, by immunofluorescence, the localization of this enzyme in the same vacuolar system. After coupling the antibody to peroxidase or to the protein A/colloidalgold complex, the ultrastructural antigenic sites of cathepsin D could be seen to be localized in the interior of the vacuoles. The vacuolar localization of a cathepsin B activity was determined by incubating sections of intestinal mucosa, or isolated epithelial cells, with a specific synthetic substrate (Z-Ala-Arg-Arg-methoxynaphthylamide). The supranuclear hyaloplasmic vacuoles of intestinal epithelial cells may be considered to be phagolysosomes that assure the degradation of absorbed proteins. This function may be of fundamental importance in the in the nutritional processes of this species.
Estevez, Ana Y; Strange, Kevin
2005-01-01
Inositol-1,4,5-trisphosphate (IP3)-dependent Ca2+ oscillations in Caenorhabditis elegans intestinal epithelial cells regulate the nematode defecation cycle. The role of plasma membrane ion channels in intestinal cell oscillatory Ca2+ signalling is unknown. We have shown previously that cultured intestinal cells express a Ca2+-selective conductance, IORCa, that is biophysically similar to TRPM7 currents. IORCa activates slowly and stabilizes when cells are patch clamped with pipette solutions containing 10 mm BAPTA and free Ca2+ concentrations of ∼17 nm. However, when BAPTA concentration is lowered to 1 mm, IORCa oscillates. Oscillations in channel activity induced simultaneous oscillations in cytoplasmic Ca2+ levels. Removal of extracellular Ca2+ inhibited IORCa oscillations, whereas readdition of Ca2+ to the bath caused a rapid and transient reactivation of the current. Experimental manoeuvres that elevated intracellular Ca2+ blocked current oscillations. Elevation of intracellular Ca2+ in the presence of 10 mm BAPTA to block IORCa oscillations led to a dose-dependent increase in the rate of current activation. At intracellular Ca2+ concentrations of 250 nm, current activation was transient. Patch pipette solutions buffered with 1–4 mm of either BAPTA or EGTA gave rise to similar patterns of IORCa oscillations. We conclude that changes in Ca2+ concentration close to the intracellular opening of the channel pore regulate channel activity. Low concentrations of Ca2+ activate the channel. As Ca2+ enters and accumulates near the pore mouth, channel activity is inhibited. Oscillating plasma membrane Ca2+ entry may play a role in generating intracellular Ca2+ oscillations that regulate the C. elegans defecation rhythm. PMID:15961418
van Goor, Mark K C; Hoenderop, Joost G J; van der Wijst, Jenny
2017-06-01
Maintaining plasma calcium levels within a narrow range is of vital importance for many physiological functions. Therefore, calcium transport processes in the intestine, bone and kidney are tightly regulated to fine-tune the rate of absorption, storage and excretion. The TRPV5 and TRPV6 calcium channels are viewed as the gatekeepers of epithelial calcium transport. Several calciotropic hormones control the channels at the level of transcription, membrane expression, and function. Recent technological advances have provided the first near-atomic resolution structural models of several TRPV channels, allowing insight into their architecture. While this field is still in its infancy, it has increased our understanding of molecular channel regulation and holds great promise for future structure-function studies of these ion channels. This review will summarize the mechanisms that control the systemic calcium balance, as well as extrapolate structural views to the molecular functioning of TRPV5/6 channels in epithelial calcium transport. Copyright © 2016. Published by Elsevier B.V.
Expression of the monocarboxylate transporter 1 (MCT1) in cells of the porcine intestine.
Welter, Harald; Claus, Rolf
2008-06-01
Uptake of energy into cells and its allocation to individual cellular compartments by transporters are essential for tissue homeostasis. The present study gives an analysis of MCT1 expression and its cellular occurrence in the porcine intestine. Tissue portions from duodenum, jejunum, ileum, colon ascendens, colon transversum and colon descendens were collected and prepared for immunohistochemistry, Western blot and real time RT-PCR. A 169bp porcine MCT1 cDNA fragment was amplified and published. MCT1 mRNA expression in the large intestine was 20 fold higher compared to the small intestine. Western blot detected a single protein band of 41kDa at a much higher amount of MCT1 protein in the large intestine vs. the small intestine. MCT1 protein was detected in mitochondrial fractions of the large but not the small intestine. Immunohistochemistry in the small intestine showed that immune cells in the lamina propria and in the lymphoid follicles primarily expressed MCT1 while in the colon epithelial cells were the main source of MCT1. In summary, cellular expression of MCT1 differs between epithelial cells in the colon and small intestine. A possible role of MCT1 for uptake of butyrate into immune cells and the overall role of MCT1 for intestinal immune cell function remains elusive.
The intestinal complement system in inflammatory bowel disease: Shaping intestinal barrier function.
Sina, Christian; Kemper, Claudia; Derer, Stefanie
2018-06-01
The complement system is part of innate sensor and effector systems such as the Toll-like receptors (TLRs). It recognizes and quickly systemically and/or locally respond to microbial-associated molecular patterns (MAMPs) with a tailored defense reaction. MAMP recognition by intestinal epithelial cells (IECs) and appropriate immune responses are of major importance for the maintenance of intestinal barrier function. Enterocytes highly express various complement components that are suggested to be pivotal for proper IEC function. Appropriate activation of the intestinal complement system seems to play an important role in the resolution of chronic intestinal inflammation, while over-activation and/or dysregulation may worsen intestinal inflammation. Mice deficient for single complement components suffer from enhanced intestinal inflammation mimicking the phenotype of patients with chronic inflammatory bowel disease (IBD) such as Crohn's disease (CD) or ulcerative colitis (UC). However, the mechanisms leading to complement expression in IECs seem to differ markedly between UC and CD patients. Hence, how IECs, intestinal bacteria and epithelial cell expressed complement components interact in the course of IBD still remains to be mostly elucidated to define potential unique patterns contributing to the distinct subtypes of intestinal inflammation observed in CD and UC. Copyright © 2018 Elsevier Ltd. All rights reserved.
Intestinal epithelial TOLLerance versus inTOLLerance of commensals.
Cario, Elke; Podolsky, Daniel K
2005-05-01
This brief review summarizes the current understanding of Toll-like receptor (TLRs) mediated intestinal epithelial mechanisms of commensal tolerance versus intolerance and provides an update on the downstream negative control of signaling responses through decreased surface expression, interregulation with NOD2, overexpression of Tollip, various inhibitors of NF-kappaB as well as soluble tolerizing mediators present in lumen and serum which all may maintain or--when dysregulated--impair mucosal homeostasis in health or disease, respectively.
Eaton, A D; Zimmermann, C; Delaney, B; Hurley, B P
2017-08-01
An experimental platform employing human derived intestinal epithelial cell (IEC) line monolayers grown on permeable Transwell ® filters was previously investigated to differentiate between hazardous and innocuous proteins. This approach was effective at distinguishing these types of proteins and perturbation of monolayer integrity, particularly transepithelial electrical resistance (TEER), was the most sensitive indicator. In the current report, in vitro indicators of monolayer integrity, cytotoxicity, and inflammation were evaluated using primary (non-transformed) human polarized small intestinal epithelial barriers cultured on Transwell ® filters to compare effects of a hazardous protein (Clostridium difficile Toxin A [ToxA]) and an innocuous protein (bovine serum albumin [BSA]). ToxA exerted a reproducible decrease on barrier integrity at doses comparable to those producing effects observed from cell line-derived IEC monolayers, with TEER being the most sensitive indicator. In contrast, BSA, tested at concentrations substantially higher than ToxA, did not cause changes in any of the tested variables. These results demonstrate a similarity in response to certain proteins between cell line-derived polarized IEC models and a primary human polarized small intestinal epithelial barrier model, thereby reinforcing the potential usefulness of cell line-derived polarized IECs as a valid experimental platform to differentiate between hazardous and non-hazardous proteins. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
Kantor, Harvey S.; Tao, Pearl; Wisdom, Charlene
1974-01-01
Heat-labile enterotoxin preparations obtained from two enteropathogenic strains of Escherichia coli of porcine and human origin were shown to stimulate adenylate cyclase activity of human embryonic intestinal epithelial cells in culture. Comparable results were also obtained when cholera toxin was used. The degree of enzyme stimulation was proportional to the concentration of enterotoxin. Similar preparations from two strains of non-enterotoxigenic E. coli had no effect on adenylate cyclase activity. Cells exposed to enterotoxin could be washed after 1 min of contact time without altering the subsequent course of maximum adenylate cyclase activity, which was maintained for at least 18 h at 37 C. During long periods (18 h) of tissue culture incubation, the determination of adenylate cyclase activity was 200- to 300-fold more sensitive than quantitating fluid accumulation in the adult rabbit ileal loop model. Decreasing the incubation time appreciably reduced the sensitivity of the epithelial cells to enterotoxin. E. coli enterotoxin is an effective activator of nonintestinal adenylate cyclase systems. Treatment of KB and HEp-2 cell lines with enterotoxin also resulted in significant enzyme stimulation. The intestinal epithelial cell tissue culture model provides a sensitive homogenous biological system for studying the response of intestinal adenylate cyclase to enterotoxin while eliminating the numerous cellular and tissue components present in the ligated ileal loop model. PMID:4364505
Epithelial propionyl‐ and butyrylcholine as novel regulators of colonic ion transport
Moreno, Sarah; Gerbig, Stefanie; Schulz, Sabine; Spengler, Bernhard; Bader, Sandra
2016-01-01
Abstract Background and Purpose The colonic surface epithelium produces acetylcholine, released after the binding of propionate to GPCRs for this short‐chain fatty acid (SCFA). This epithelial acetylcholine then induces anion secretion via stimulation of acetylcholine receptors. The key enzyme responsible for acetylcholine synthesis, choline acetyltransferase, is known to be unselective as regards the fatty acid used for esterification of choline. As the colonic epithelium is permanently exposed to high concentrations of different SCFAs produced by bacterial fermentation, we investigated whether choline esters other than acetylcholine, propionylcholine and butyrylcholine, are produced by the colonic epithelium, too, and whether these ‘atypical’ esters are able to stimulate the acetylcholine receptors involved in the regulation of colonic ion transport. Experimental Approach Desorption electrospray ionization mass spectroscopy (DESI‐MS), Ussing chamber and Ca2+‐imaging experiments were performed on rat distal colon. Key Results DESI‐MS analyses revealed the production of acetylcholine, propionylcholine and butyrylcholine in the surface epithelium. Relative expression rates were 2–3% in comparison with acetylcholine. In Ussing chamber experiments, both atypical choline esters caused a concentration‐dependent increase in short‐circuit current, that is, stimulated anion secretion. Inhibitor experiments in the absence and presence of the submucosal plexus revealed the involvement of neuronal and epithelial acetylcholine receptors. While butyrylcholine obviously stimulated both nicotinic and muscarinic receptors, propionylcholine predominantly acted on muscarinic receptors. Conclusions and Implications These results suggest a novel pathway for communication between intestinal microbes producing SCFA and the host via modification of epithelial production of choline esters involved in the paracrine regulation of the colonic epithelium. PMID:27423041
Rebamipide ameliorates radiation-induced intestinal injury in a mouse model.
Shim, Sehwan; Jang, Hyo-Sun; Myung, Hyun-Wook; Myung, Jae Kyung; Kang, Jin-Kyu; Kim, Min-Jung; Lee, Seung Bum; Jang, Won-Suk; Lee, Sun-Joo; Jin, Young-Woo; Lee, Seung-Sook; Park, Sunhoo
2017-08-15
Radiation-induced enteritis is a major side effect in cancer patients undergoing abdominopelvic radiotherapy. Radiation exposure produces an uncontrolled inflammatory cascade and epithelial cell loss leading to impaired epithelial barrier function. The goal of this study was to determine the effect of rebamipide on regeneration of the intestinal epithelia after radiation injury. The abdomens of C57BL/6 mice were exposed to 13Gy of irradiation (IR) and then the mice were treated with rebamipide. Upon IR, intestinal epithelia were destroyed structurally at the microscopic level and bacterial translocation was increased. The intestinal damage reached a maximum level on day 6 post-IR and intestinal regeneration occurred thereafter. We found that rebamipide significantly ameliorated radiation-induced intestinal injury. In mice treated with rebamipide after IR, intestinal barrier function recovered and expression of the tight junction components of the intestinal barrier were upregulated. Rebamipide administration reduced radiation-induced intestinal mucosal injury. The levels of proinflammatory cytokines and matrix metallopeptidase 9 (MMP9) were significantly reduced upon rebamipide administration. Intestinal cell proliferation and β-catenin expression also increased upon rebamipide administration. These data demonstrate that rebamipide reverses impairment of the intestinal barrier by increasing intestinal cell proliferation and attenuating the inflammatory response by inhibiting MMP9 and proinflammatory cytokine expression in a murine model of radiation-induced enteritis. Copyright © 2017 Elsevier Inc. All rights reserved.
Feng, Wenqian; Wu, Yancheng; Chen, Guangxin; Fu, Shoupeng; Li, Bai; Huang, Bingxu; Wang, Dali; Wang, Wei; Liu, Juxiong
2018-06-27
Butyric acid plays an important role in maintaining intestinal health. Butyric acid has received special attention as a short-chain fatty acid, but its role in protecting the intestinal barrier is poorly characterized. Butyric acid not only provides energy for epithelial cells but also acts as a histone deacetylase inhibitor; it is also a natural ligand for G protein-coupled receptor 109A (GPR109A). A GPR109A analog was expressed in Sus scrofa and mediated the anti-inflammatory effects of beta-hydroxybutyric acid. This study investigated the effects of butyrate on growth performance, diarrhea symptoms, and tight junction protein levels in 21-day-old weaned piglets. We also studied the mechanism by which butyric acid regulates intestinal permeability. Twenty-four piglets that had been weaned at an age of 21 days were divided randomly into 2 equal groups: basal diet group and sodium butyrate + basal diet group. Diarrhea rate, growth performance during 3 weeks of feeding on these diets were observed, the lactulose-mannitol ratio in urine were detected by High Performance Liquid Chromatography, the expression levels of tight junction proteins in the intestinal tract and related signaling molecules, such as GPR109A and Akt, in the colon were examined by quantitative real-time PCR or western blot analyses on day 21. Caco-2 cells were used as a colon cell model and cultured with or without sodium butyrate to assess the expression of tight junction proteins and the activation of related signaling molecules. GPR109A-short hairpin RNA (shRNA) and specific antagonists of Akt and ERK1/2 were used as signaling pathway inhibitors to elucidate the mechanism by which butyric acid regulates the expression of tight junction proteins and the colonic epithelial barrier. The sodium butyrate diet alleviated diarrhea symptoms and decreased intestinal permeability without affecting the growth of early weaned piglets. The expression levels of the tight junction proteins Claudin-3, Occludin, and zonula occludens 1 were up-regulated by sodium butyrate in the colon and Caco-2 cells. GPR109A knockdown using shRNA or blockade of the Akt signaling pathway in Caco-2 cells suppressed sodium butyrate-induced Claudin-3 expression. Sodium butyrate acts on the Akt signaling pathway to facilitate Claudin-3 expression in the colon in a GPR109A-dependent manner. © 2018 The Author(s). Published by S. Karger AG, Basel.
Biological pathways involved in the development of inflammatory bowel disease.
Zemljic, Mateja; Pejkovic, Bozena; Krajnc, Ivan; Lipovsek, Saska
2014-10-01
Apoptosis, autophagy and necrosis are three distinct functional types of the mammalian cell death network. All of them are characterized by a number of cell's morphological changes. The inappropriate induction of cell death is involved in the pathogenesis of a number of diseases.Pathogenesis of inflammatory bowel diseases (ulcerative colitis, Crohn's disease) includes an abnormal immunological response to disturbed intestinal microflora. One of the most important reason in pathogenesis of chronic inflammatory disease and subsequent multiple organ pathology is a barrier function of the gut, regulating cellular viability. Recent findings have begun to explain the mechanisms by which intestinal epithelial cells are able to survive in such an environment and how loss of normal regulatory processes may lead to inflammatory bowel disease (IBD).This review focuses on the regulation of biological pathways in development and homeostasis in IBD. Better understanding of the physiological functions of biological pathways and their influence on inflammation, immunity, and barrier function will simplify our expertice of homeostasis in the gastrointestinal tract and in upgrading diagnosis and treatment.
Cao, Yi; Wu, Ben-Juan; Zheng, Wei-Ping; Yin, Ming-Li; Liu, Tao; Song, Hong-Li
2017-07-01
In this study, we explored the effects of mesenchymal stem cells (MSCs) from bone marrow overexpressing heme oxygenase-1 (HO-1) on the damaged human intestinal epithelial barrier in vitro. Rat MSCs were isolated from bone marrow and transduced with rat HO-1 recombinant adenovirus (HO-MSCs) for stable expression of HO-1. Colorectal adenocarinoma 2 (Caco2) cells were treated with tumor necrosis factor-α (TNF-α) to establish a damaged colon epithelial model. Damaged Caco2 were cocultured with MSCs, Ad-MSCs, Ad-HO + MSCs or HO-MSCs. mRNA and protein expression of Zona occludens-1 (ZO-1) and human HO-1 and the release of cytokines were measured. ZO-1 and human HO-1 in Caco2 were significantly decreased after treatment with TNF-α; and this effect was reduced when coculture with MSCs from bone marrow. Expression of ZO-1 was not significantly affected by Caco2 treatment with TNF-α, Ad-HO, and MSCs. In contrast, ZO-1 and human HO-1 increased significantly when the damaged Caco2 was treated with HO-MSCs. HO-MSCs showed the strongest effect on the expression of ZO-1 in colon epithelial cells. Coculture with HO-MSCs showed the most significant effects on reducing the expression of IL-2, IL-6, IFN-γ and increasing the expression of IL-10. HO-MSCs protected the intestinal epithelial barrier, in which endogenous HO-1 was involved. HO-MSCs play an important role in the repair process by reducing the release of inflammatory cytokines and increasing the release of anti-inflammatory factors. These results suggested that HO-MSCs from bone marrow were more effective in repairing the damaged intestinal epithelial barrier, and the effectiveness of MSCs was improved by HO-1 gene transduction, which provides favorable support for the application of stem cell therapy in the intestinal diseases. © 2017 The Authors. Cell Biology International Published by John Wiley & Sons Ltd on behalf of International Federation of Cell Biology.
Goldspink, Deborah A; Gadsby, Jonathan R; Bellett, Gemma; Keynton, Jennifer; Tyrrell, Benjamin J; Lund, Elizabeth K; Powell, Penny P; Thomas, Paul; Mogensen, Mette M
2013-09-01
Microtubule end-binding (EB) proteins influence microtubule dynamic instability, a process that is essential for microtubule reorganisation during apico-basal epithelial differentiation. Here, we establish for the first time that expression of EB2, but not that of EB1, is crucial for initial microtubule reorganisation during apico-basal epithelial differentiation, and that EB2 downregulation promotes bundle formation. EB2 siRNA knockdown during early stages of apico-basal differentiation prevented microtubule reorganisation, whereas its downregulation at later stages promoted microtubule stability and bundle formation. Interestingly, although EB1 is not essential for microtubule reorganisation, its knockdown prevented apico-basal bundle formation and epithelial elongation. siRNA depletion of EB2 in undifferentiated epithelial cells induced the formation of straight, less dynamic microtubules with EB1 and ACF7 lattice association and co-alignment with actin filaments, a phenotype that could be rescued by inhibition with formin. Importantly, in situ inner ear and intestinal crypt epithelial tissue revealed direct correlations between a low level of EB2 expression and the presence of apico-basal microtubule bundles, which were absent where EB2 was elevated. EB2 is evidently important for initial microtubule reorganisation during epithelial polarisation, whereas its downregulation facilitates EB1 and ACF7 microtubule lattice association, microtubule-actin filament co-alignment and bundle formation. The spatiotemporal expression of EB2 thus dramatically influences microtubule organisation, EB1 and ACF7 deployment and epithelial differentiation.
Sláma, Karel; Lukáš, Jan
2011-02-01
Larvae of the greater waxmoth (Galleria mellonella) become paralysed by the venom of the braconid wasp (Habrobracon hebetor) a few minutes after intoxication. The profound neuromuscular paralysis, which may last for several weeks, includes all somatic muscles that are innervated through neuromuscular transmission. The peristaltic contractions of the heart and intestine, which are regulated by the depolarisation potentials of the myocardium or intestinal epithelial muscles, remain unaffected and fully functional. Heartbeat patterns and intestinal pulsations were monitored in the motionless, paralysed larvae by means of advanced electrocardiographic recording methods (contact thermography, pulse-light optocardiography). The records revealed more or less constant cardiac pulsations characterised by 20-25 systolic contractions per minute. The contractions were peristaltically propagated in the forward (anterograde) direction, with a more or less constant speed of 10mm per second (23-25°C). Additional electrocardiographic investigations on larvae immobilised by decapitation revealed the autonomic (brain independent) nature of heartbeat regulation. Sectioning performed in the middle of the heart (4th abdominal segment) seriously impaired the pacemaker rhythmicity and slowed down the rate of heartbeat in the anterior sections. By contrast, the functions of the posterior compartments of the disconnected heart remained unaffected. These results confirmed our previous conclusions about the existence of an autonomic, myogenic, pacemaker nodus in the terminal part of an insect heart. They show an analogy to the similar myogenic, sinoatrial or atrioventricular nodi regulating rhythmicity of the human heart. Peristaltic contractions of the intestine also represent a purely myogenic system, which is fully functional in larvae with complete neuromuscular paralysis. Unlike the constant anterograde direction of the heartbeat, intestinal peristaltic waves periodically reversed anterograde and retrograde directions. A possibility that the functional similarity between insect and human hearts may open new avenues in the field of comparative cardiology has been discussed. Copyright © 2010 Elsevier Ltd. All rights reserved.
Elatrech, Imen; Marzaioli, Viviana; Boukemara, Hanane; Bournier, Odile; Neut, Christel; Darfeuille-Michaud, Arlette; Luis, José; Dubuquoy, Laurent; El-Benna, Jamel; My-Chan Dang, Pham; Marie, Jean-Claude
2015-05-01
Increased reactive oxygen species (ROS) production is associated with inflamed ileal lesions in Crohn's disease colonized by pathogenic adherent-invasive Escherichia coli LF82. We investigated whether such ileal bacteria can modulate ROS production by epithelial cells, thus impacting on inflammation and mucin expression. Ileal bacteria from patients with Crohn's disease were incubated with cultured epithelial T84 cells, and ROS production was assayed using the luminol-amplified chemiluminescence method. The gentamicin protection assay was used for bacterial invasion of T84 cell. The expression of NADPH oxidase (NOX) subunits, mucin, and IL-8 was analyzed by quantitative real-time PCR and Western blots. Involvement of NOX and ROS was analyzed using diphenyleneiodonium (DPI) and N-acetylcysteine (NAC). Among different bacteria tested, only LF82 induced an increase of ROS production by T84 cells in a dose-dependent manner. This response was inhibited by DPI and NAC. Heat- or ethanol-attenuated LF82 bacteria and the mutant LF82ΔFimA, which does not express pili type 1 and poorly adheres to epithelial cells, did not induce the oxidative response. The LF82-induced oxidative response coincides with its invasion in T84 cells, and both processes were inhibited by DPI. Also, we observed an increased expression of NOX1 and NOXO1 in response to LF82 bacteria versus the mutant LF82ΔFimA. Furthermore, LF82 inhibited mucin gene expression (MUC2 and MUC5AC) in T84 cells while increasing the chemotactic IL-8 expression, both in a DPI-sensitive manner. Adherent-invasive E. coli LF82 induced ROS production by intestinal NADPH oxidase and altered mucin and IL-8 expression, leading to perpetuation of inflammatory lesions in Crohn's disease.
Tir Is Essential for the Recruitment of Tks5 to Enteropathogenic Escherichia coli Pedestals.
Jensen, Helene H; Pedersen, Hans N; Stenkjær, Eva; Pedersen, Gitte A; Login, Frédéric H; Nejsum, Lene N
2015-01-01
Enteropathogenic Escherichia coli (EPEC) is a bacterial pathogen that infects the epithelial lining of the small intestine and causes diarrhea. Upon attachment to the intestinal epithelium, EPEC uses a Type III Secretion System to inject its own high affinity receptor Translocated intimin receptor (Tir) into the host cell. Tir facilitates tight adhesion and recruitment of actin-regulating proteins leading to formation of an actin pedestal beneath the infecting bacterium. The pedestal has several similarities with podosomes, which are basolateral actin-rich extensions found in some migrating animal cells. Formation of podosomes is dependent upon the early podosome-specific scavenger protein Tks5, which is involved in actin recruitment. Although Tks5 is expressed in epithelial cells, and podosomes and EPEC pedestals share many components in their structure and mechanism of formation, the potential role of Tks5 in EPEC infections has not been studied. The aim of this study was to determine the subcellular localization of Tks5 in epithelial cells and to investigate if Tks5 is recruited to the EPEC pedestal. In an epithelial MDCK cell line stably expressing Tks5-EGFP, Tks5 localized to actin bundles. Upon infection, EPEC recruited Tks5-EGFP. Tir, but not Tir phosphorylation was essential for the recruitment. Time-lapse microscopy revealed that Tks5-EGFP was recruited instantly upon EPEC attachment to host cells, simultaneously with actin and N-WASp. EPEC infection of cells expressing a ΔPX-Tks5 deletion version of Tks5 showed that EPEC was able to both infect and form pedestals when the PX domain was deleted from Tks5. Future investigations will clarify the role of Tks5 in EPEC infection and pedestal formation.
Tir Is Essential for the Recruitment of Tks5 to Enteropathogenic Escherichia coli Pedestals
Jensen, Helene H.; Pedersen, Hans N.; Stenkjær, Eva; Pedersen, Gitte A.; Login, Frédéric H.; Nejsum, Lene N.
2015-01-01
Enteropathogenic Escherichia coli (EPEC) is a bacterial pathogen that infects the epithelial lining of the small intestine and causes diarrhea. Upon attachment to the intestinal epithelium, EPEC uses a Type III Secretion System to inject its own high affinity receptor Translocated intimin receptor (Tir) into the host cell. Tir facilitates tight adhesion and recruitment of actin-regulating proteins leading to formation of an actin pedestal beneath the infecting bacterium. The pedestal has several similarities with podosomes, which are basolateral actin-rich extensions found in some migrating animal cells. Formation of podosomes is dependent upon the early podosome-specific scavenger protein Tks5, which is involved in actin recruitment. Although Tks5 is expressed in epithelial cells, and podosomes and EPEC pedestals share many components in their structure and mechanism of formation, the potential role of Tks5 in EPEC infections has not been studied. The aim of this study was to determine the subcellular localization of Tks5 in epithelial cells and to investigate if Tks5 is recruited to the EPEC pedestal. In an epithelial MDCK cell line stably expressing Tks5-EGFP, Tks5 localized to actin bundles. Upon infection, EPEC recruited Tks5-EGFP. Tir, but not Tir phosphorylation was essential for the recruitment. Time-lapse microscopy revealed that Tks5-EGFP was recruited instantly upon EPEC attachment to host cells, simultaneously with actin and N-WASp. EPEC infection of cells expressing a ΔPX-Tks5 deletion version of Tks5 showed that EPEC was able to both infect and form pedestals when the PX domain was deleted from Tks5. Future investigations will clarify the role of Tks5 in EPEC infection and pedestal formation. PMID:26536015
Priyamvada, Shubha; Kumar, Anoop; Natarajan, Arivarasu A.; Gill, Ravinder K.; Alrefai, Waddah A.; Dudeja, Pradeep K.
2012-01-01
Monocarboxylate transporter isoform-1 (MCT1) plays an important role in the absorption of short-chain fatty acids (SCFAs) in the colon. Butyrate, a major SCFA, serves as the primary energy source for the colonic mucosa, maintains epithelial integrity, and ameliorates intestinal inflammation. Previous studies have shown substrate (butyrate)-induced upregulation of MCT1 expression and function via transcriptional mechanisms. The present studies provide evidence that short-term MCT1 regulation by substrates could be mediated via a novel nutrient sensing mechanism. Short-term regulation of MCT1 by butyrate was examined in vitro in human intestinal C2BBe1 and rat intestinal IEC-6 cells and ex vivo in rat intestinal mucosa. Effects of pectin feeding on MCT1, in vivo, were determined in rat model. Butyrate treatment (30–120 min) of C2BBe1 cells increased MCT1 function {p-(chloromercuri) benzene sulfonate (PCMBS)-sensitive [14C]butyrate uptake} in a pertussis toxin-sensitive manner. The effects were associated with decreased intracellular cAMP levels, increased Vmax of butyrate uptake, and GPR109A-dependent increase in apical membrane MCT1 level. Nicotinic acid, an agonist for the SCFA receptor GPR109A, also increased MCT1 function and decreased intracellular cAMP. Pectin feeding increased apical membrane MCT1 levels and nicotinate-induced transepithelial butyrate flux in rat colon. Our data provide strong evidence for substrate-induced enhancement of MCT1 surface expression and function via a novel nutrient sensing mechanism involving GPR109A as a SCFA sensor. PMID:22982338
Cornick, Steve; Moreau, France; Gaisano, Herbert Y; Chadee, Kris
2017-10-03
Intestinal mucus secretion is critical in maintaining mucosal host defense against a myriad of pathogens by preventing direct association with the epithelium. Entamoeba histolytica specifically binds colonic MUC2 mucin and also induces potent hypersecretion from goblet cells; however, characterization of the nature of the mechanisms controlling mucus release remains elusive. In this report, we identify vesicle SNARE vesicle-associated membrane protein 8 (VAMP8) present on mucin granules as orchestrating regulated exocytosis in human goblet cells in response to the presence of E. histolytica VAMP8 was specifically activated during E. histolytica infection, and ablation of VAMP8 led to impaired mucin secretion. As a consequence, loss of VAMP8 increased E. histolytica adherence to epithelial cells associated with enhanced cell death through apoptosis characterized by caspase 3 and 9 cleavages and DNA fragmentation. With the mucosal barrier compromised in Vamp8 -/- animals, E. histolytica induced an aggressive proinflammatory response with elevated levels of interleukin-1 alpha (IL-1α), IL-1β, and tumor necrosis factor alpha (TNF-α) secretion. This report is the first to characterize regulated mucin exocytosis in intestinal goblet cells in response to a pathogen and the downstream consequences of improper mucin secretion in mucosal barrier defense. IMPORTANCE The intestinal tract is exposed to countless substances and pathogens, and yet homeostasis is maintained, in part by the mucus layer that houses the microbiota and spatially separates potential threats from the underlying single layer of epithelium. Despite the critical role of mucus in innate host defense, characterization of the mechanisms by which mucus is secreted from specialized goblet cells in the gut remains elusive. Here, we describe the machinery that regulates mucus secretion as well as the consequence during infection with the colonic pathogen Entamoeba histolytica Abolishment of the key machinery protein VAMP8 abrogated mucus release in cultured human colonic goblet cells and during E. histolytica infection in Vamp8 -/- mice, which showed enhanced amoeba contact and killing of epithelial cells, triggering a potent proinflammatory response. This report highlights the importance of the VAMP8 secretory machinery in facilitating mucus release from intestinal goblet cells and the dire consequences that occur during disease pathogenesis if these pathways are not functional. Copyright © 2017 Cornick et al.
Gastrointestinal Epithelial Organoid Cultures from Postsurgical Tissues.
Hahn, Soojung; Yoo, Jongman
2017-08-17
An organoid is a cellular structure three-dimensionally (3D) cultured from self-organizing stem cells in vitro, which has a cell population, architectures, and organ specific functions like the originating organs. Recent advances in the 3D culture of isolated intestinal crypts or gastric glands have enabled the generation of human gastrointestinal epithelial organoids. Gastrointestinal organoids recapitulate the human in vivo physiology because of all the intestinal epithelial cell types that differentiated and proliferated from tissue resident stem cells. Thus far, gastrointestinal organoids have been extensively used for generating gastrointestinal disease models. This protocol describes the method of isolating a gland or crypt using stomach or colon tissue after surgery and establishing them into gastroids or colonoids.
Sideri, Aristea; Stavrakis, Dimitris; Bowe, Collin; Shih, David Q.; Fleshner, Phillip; Arsenescu, Violeta; Arsenescu, Razvan; Turner, Jerrold R.; Pothoulakis, Charalabos
2015-01-01
In inflammatory bowel disease (IBD), obesity is associated with worsening of the course of disease. Here, we examined the role of obesity in the development of colitis and studied mesenteric fat-epithelial cell interactions in patients with IBD. We combined the diet-induce obesity with the trinitrobenzene sulfonic acid (TNBS) colitis mouse model to create groups with obesity, colitis, and their combination. Changes in the mesenteric fat and intestine were assessed by histology, myeloperoxidase assay, and cytokine mRNA expression by real-time PCR. Medium from human mesenteric fat and cultured preadipocytes was obtained from obese patients and those with IBD. Histological analysis showed inflammatory cell infiltrate and increased histological damage in the intestine and mesenteric fat of obese mice with colitis compared with all other groups. Obesity also increased the expression of proinflammatory cytokines including IL-1β, TNF-α, monocyte chemoattractant protein 1, and keratinocyte-derived chemokine, while it decreased the TNBS-induced increases in IL-2 and IFN-γ in mesenteric adipose and intestinal tissues. Human mesenteric fat isolated from obese patients and those with and IBD demonstrated differential release of adipokines and growth factors compared with controls. Fat-conditioned media reduced adiponectin receptor 1 (AdipoR1) expression in human NCM460 colonic epithelial cells. AdipoR1 intracolonic silencing in mice exacerbated TNBS-induced colitis. In conclusion, obesity worsens the outcome of experimental colitis, and obesity- and IBD-associated changes in adipose tissue promote differential mediator release in mesenteric fat that modulates colonocyte responses and may affect the course of colitis. Our results also suggest an important role for AdipoR1 for the fat-intestinal axis in the regulation of inflammation during colitis. PMID:25591865
Characterization of in vitro effects of microcystin-LR on intestinal epithelial cells.
Zhou, Yuan; Xu, Xiaoping; Yu, Beibei; Yu, Guang
2017-05-01
The intestinal epithelium is a single-cell layer that provides an important barrier against natural toxins. Microcystin-LR (MC-LR), a cyclic heptapeptide, is one of the best known toxins able to alter the functions of intestine. This study evaluated the toxic effects and the possible mechanisms of MC-LR on barrier function of the intestinal epithelial cells. Intestinal epithelial cells (IEC-6) were exposed to 0, 6.25, 12.5, 25 and 50 μM MC-LR. Cell viability significantly decreased, while the ratio of apoptotic cells increased after exposure to 12.5μM and higer concentration of MC-LR. As expected, the integrity of a polarized IEC-6 monolayer was affected by MC-LR exposure, as demonstrated by a decrease in the transepithelial electrical resistance (TEER) values, becoming most pronounced at 50μM, 24 h. No effects were detected on the protein expression levels of the tight junction protein claudin at 50μM. However, the expression of occludin and zonula occludens-1 (ZO-1) declined. Furthermore, MC-LR can immigrate into IEC-6 cells. The activity of protein phosphatases 2A (PP2A) decreased from the concentration of 12.5 μM, showing a dose-dependent decline. These results provide new information that strengthens the concept that the intestinal epithelium is important targets for toxic effects of water contaminants like MC-LR. © 2016 Wiley Periodicals, Inc. Environ Toxicol 32: 1539-1547, 2017. © 2016 Wiley Periodicals, Inc.
The interaction of gut microbes with host ABC transporters
Mercado-Lubo, Regino
2010-01-01
ATP binding cassette (ABC) transporters are increasingly recognized for their ability to modulate the absorption, distribution, metabolism, secretion and toxicity of xenobiotics. In addition to their essential function in drug resistance, there is also emerging evidence documenting the important role ABC transporters play in tissue defense. In this respect, the gastrointestinal tract represents a critical vanguard of defense against oral exposure of drugs while at the same time functions as a physical barrier between the lumenal contents (including bacteria) and the intestinal epithelium. Given emerging evidence suggesting that multidrug resistance protein (MDR) plays an important role in host-bacterial interactions in the gastrointestinal tract, this review will discuss the interplay between MDR of the intestinal epithelial cell barrier and gut microbes in health and disease. In particular, we will explore host-microbe interactions involving three apically restricted ABC transporters of the intestinal epithelium; P-glycoprotein (P-gp), multidrug resistance-associated protein 2 (MRP2) and cystic fibrosis transmembrane regulator (CFTR). PMID:21327038
A role for intestinal TLR4-driven inflammatory response during activity-based anorexia
Belmonte, Liliana; Achamrah, Najate; Nobis, Séverine; Guérin, Charlène; Riou, Gaëtan; Bôle-Feysot, Christine; Boyer, Olivier; Richard, Vincent; Rego, Jean Claude Do; Déchelotte, Pierre; Goichon, Alexis; Coëffier, Moïse
2016-01-01
Anorexia nervosa (AN) is associated with low-grade systemic inflammation and altered gut microbiota. However, the molecular origin of the inflammation remains unknown. Toll-like receptors are key regulators of innate immune response and their activation seems also to be involved in the control of food intake. We used activity-based anorexia (ABA) model to investigate the role of TLR4 and its contribution in anorexia-associated low-grade inflammation. Here, we found that ABA affected early the intestinal inflammatory status and the hypothalamic response. Indeed, TLR4 was upregulated both on colonic epithelial cells and intestinal macrophages, leading to elevated downstream mucosal cytokine production. These mucosal changes occurred earlier than hypothalamic changes driving to increased levels of IL-1β and IL-1R1 as well as increased levels of plasma corticosterone. Paradoxically, TLR4-deficient mice exhibited greater vulnerability to ABA with increased mortality rate, suggesting a major contribution of TLR4-mediated responses during ABA-induced weight loss. PMID:27779218
A role for intestinal TLR4-driven inflammatory response during activity-based anorexia.
Belmonte, Liliana; Achamrah, Najate; Nobis, Séverine; Guérin, Charlène; Riou, Gaëtan; Bôle-Feysot, Christine; Boyer, Olivier; Richard, Vincent; Rego, Jean Claude Do; Déchelotte, Pierre; Goichon, Alexis; Coëffier, Moïse
2016-10-25
Anorexia nervosa (AN) is associated with low-grade systemic inflammation and altered gut microbiota. However, the molecular origin of the inflammation remains unknown. Toll-like receptors are key regulators of innate immune response and their activation seems also to be involved in the control of food intake. We used activity-based anorexia (ABA) model to investigate the role of TLR4 and its contribution in anorexia-associated low-grade inflammation. Here, we found that ABA affected early the intestinal inflammatory status and the hypothalamic response. Indeed, TLR4 was upregulated both on colonic epithelial cells and intestinal macrophages, leading to elevated downstream mucosal cytokine production. These mucosal changes occurred earlier than hypothalamic changes driving to increased levels of IL-1β and IL-1R1 as well as increased levels of plasma corticosterone. Paradoxically, TLR4-deficient mice exhibited greater vulnerability to ABA with increased mortality rate, suggesting a major contribution of TLR4-mediated responses during ABA-induced weight loss.
Characterization of Growth Hormone Resistance in Experimental and Ulcerative Colitis.
Soendergaard, Christoffer; Kvist, Peter Helding; Thygesen, Peter; Reslow, Mats; Nielsen, Ole Haagen; Kopchick, John Joseph; Holm, Thomas Lindebo
2017-09-23
Growth hormone (GH) resistance may develop as a consequence of inflammation during conditions such as inflammatory bowel disease, encompassing ulcerative colitis (UC). However, the specific role of the GH-insulin growth factor (IGF)-1-axis and/or the functional consequences of GH resistance in this condition are unclear. In situ hybridization targeting the GH receptor (GHR) and relevant transcriptional analyses were performed in patients with UC and in IL-10 knock-out mice with piroxicam accelerated colitis (PAC). Using cultured primary epithelial cells, the effects of inflammation on the molecular mechanisms governing GH resistance was verified. Also, the therapeutic potential of GH on mucosal healing was tested in the PAC model. Inflammation induced intestinal GH resistance in UC and experimental colitis by down-regulating GHR expression and up-regulating suppressor of cytokine signalling (SOCS) proteins. These effects are driven by pro-inflammatory mediators (tumor necrosis factor (TNF)-α, interleukin (IL)-1β and IL-6) as confirmed using primary epithelial cells. Treatment of experimental colitis with GH increased IGF-1 and body weight of the mice, but had no effects on colonic inflammation or mucosal healing. The high transcriptional similarity between UC and experimental colitis accentuates the formation of intestinal GH resistance during inflammation. Inflammation-induced GH resistance not only impairs general growth but induces a state of local resistance, which potentially impairs the actions of GH on mucosal healing during colitis when using long-acting GH therapy.
Characterization of Growth Hormone Resistance in Experimental and Ulcerative Colitis
Kvist, Peter Helding; Thygesen, Peter; Reslow, Mats; Nielsen, Ole Haagen; Kopchick, John Joseph; Holm, Thomas Lindebo
2017-01-01
Growth hormone (GH) resistance may develop as a consequence of inflammation during conditions such as inflammatory bowel disease, encompassing ulcerative colitis (UC). However, the specific role of the GH–insulin growth factor (IGF)-1-axis and/or the functional consequences of GH resistance in this condition are unclear. In situ hybridization targeting the GH receptor (GHR) and relevant transcriptional analyses were performed in patients with UC and in IL-10 knock-out mice with piroxicam accelerated colitis (PAC). Using cultured primary epithelial cells, the effects of inflammation on the molecular mechanisms governing GH resistance was verified. Also, the therapeutic potential of GH on mucosal healing was tested in the PAC model. Inflammation induced intestinal GH resistance in UC and experimental colitis by down-regulating GHR expression and up-regulating suppressor of cytokine signalling (SOCS) proteins. These effects are driven by pro-inflammatory mediators (tumor necrosis factor (TNF)-α, interleukin (IL)-1β and IL-6) as confirmed using primary epithelial cells. Treatment of experimental colitis with GH increased IGF-1 and body weight of the mice, but had no effects on colonic inflammation or mucosal healing. The high transcriptional similarity between UC and experimental colitis accentuates the formation of intestinal GH resistance during inflammation. Inflammation-induced GH resistance not only impairs general growth but induces a state of local resistance, which potentially impairs the actions of GH on mucosal healing during colitis when using long-acting GH therapy. PMID:28946616
Walsh, Mary F; Ampasala, Dinakar R; Rishi, Arun K; Basson, Marc D
2009-02-01
TGF-beta and FAK modulate cell migration, differentiation, proliferation and apoptosis, and TGF-beta promotes FAK transcription in intestinal epithelial cells via Smad-dependent and independent pathways. We utilized a 1320 bp FAK promoter-luciferase construct to characterize basal and TGF-beta-mediated FAK gene transcription in IEC-6 cells. Inhibiting JNK or Akt negated TGF-beta-stimulated promoter activity; ERK inhibition did not block the TGF-beta effect but increased basal activity. Co-transfection with Co-Smad4 enhanced the TGF-beta response while the inhibitory Smad7 abolished it. Serial deletions sequentially removing the four Smad binding elements (SBE) in the 5' untranslated region of the promoter revealed that the two most distal SBE's are positive regulators while SBE3 exerts a negative influence. Mutational deletion of two upstream p53 sites enhanced basal but did not affect TGF-beta-stimulated increases in promoter activity. TGF-beta increased DNA binding of Smad4, phospho-Smad2/3 and Runx1/AML1a to the most distal 435 bp containing 3 SBE and 2 AML1a sites by ChIP assay. However, although point mutation of SBE1 ablated the TGF-beta-mediated rise in SV40-promoter activity, mutation of AML1a sites did not. TGF-beta regulation of FAK transcription reflects a complex interplay between positive and negative non-Smad signals and SBE's, the last independent of p53 or AML1a.
Clinical importance of IL-22 cascade in IBD.
Mizoguchi, Atsushi; Yano, Arisa; Himuro, Hidetomo; Ezaki, Yui; Sadanaga, Takayuki; Mizoguchi, Emiko
2018-04-01
IL-22 is a relatively new cytokine that is characterized by several unique biological properties. In the intestines, the effect of IL-22 is restricted mainly to non-lymphoid cells such as epithelial cells. Interestingly, the expression pattern and major cellular source of IL-22 have distinct difference between large and small intestines. IL-22 possesses an ability to constitutively activate STAT3 for promoting epithelial cell regeneration and reinforcing mucosal barrier integrity through stimulating the expression of anti-bacterial peptide and mucins. Of note, IL-22 is characterized as a two-faced cytokine that can play not only protective but also deleterious roles in the intestinal inflammation depending on the cytokine environment such as the expression levels of IL-23, T-bet, and IL-22 binding protein. Most importantly, clinical relevance of IL-22 to inflammatory bowel disease has been well highlighted. Mucosal healing, which represents the current therapeutic goal for IBD, can be induced by IL-22. Indeed, indigo naturalis, which can activate IL-22 pathway through Ahr, has been shown in a clinical trial to exhibit a strong therapeutic effect on ulcerative colitis. Despite the beneficial effect of IL-22, continuous activation of the IL-22 pathway increases the risk of colitis-associated cancer, particularly in patients with an extended history of IBD. This review article discusses how IL-22 regulates colitis, how beneficial versus deleterious effects of IL-22 is determined, and why IL-22 represents a promising target for IBD therapy.
Nutritional modulators of ulcerative colitis: Clinical efficacies and mechanistic view
Sung, Mi-Kyung; Park, Mi-Young
2013-01-01
Ulcerative colitis (UC) is an inflammation-associated disease of the colon and rectum. The onset and progress of the disease are directly influenced by the nature of the intestinal microflora, the intestinal barrier function, and the immunological responses of the host. The epithelial invasion of pathogenic bacteria due to excess contact and/or barrier dysfunction is related to inflammation mediated by intestinal immune responses. Although the etiology of UC is not clearly understood, recent studies have shown a rising incidence of UC worldwide, and this phenomenon is more prominent in Asian countries and in Asian immigrants in Western countries. The increased prevalence of UC also contributes to an increased risk of developing colorectal cancer. Environmental factors, including changes in dietary habits, have been suggested as major risk factors of UC. A systematic review showed a negative association between UC risk and vegetable intake, whereas total fat, omega-6 fatty acids and meat intake were positively associated with an increased risk of UC. Individual dietary factors and energy balance have been suggested as having important roles in inducing changes in the microbial population and intestinal barrier integrity and in regulating inflammatory immune responses, directly or indirectly. Excess energy intake is now known to increase pathogenic microbial populations. Likewise, the application of appropriate probiotics may reverse the pathogenic progression of the disease. In the meantime, dietary anti-inflammatory compounds, including omega-3 fatty acids and other phytochemicals, may directly suppress inflammatory responses in the course of UC development. In this review, the increased prevalence of UC and its management are interpreted from the standpoint of nutritional modulation to regulate the intestinal microflora population, intestinal epithelium permeability, and inflammatory responses. PMID:23467687
Nutritional modulators of ulcerative colitis: clinical efficacies and mechanistic view.
Sung, Mi-Kyung; Park, Mi-Young
2013-02-21
Ulcerative colitis (UC) is an inflammation-associated disease of the colon and rectum. The onset and progress of the disease are directly influenced by the nature of the intestinal microflora, the intestinal barrier function, and the immunological responses of the host. The epithelial invasion of pathogenic bacteria due to excess contact and/or barrier dysfunction is related to inflammation mediated by intestinal immune responses. Although the etiology of UC is not clearly understood, recent studies have shown a rising incidence of UC worldwide, and this phenomenon is more prominent in Asian countries and in Asian immigrants in Western countries. The increased prevalence of UC also contributes to an increased risk of developing colorectal cancer. Environmental factors, including changes in dietary habits, have been suggested as major risk factors of UC. A systematic review showed a negative association between UC risk and vegetable intake, whereas total fat, omega-6 fatty acids and meat intake were positively associated with an increased risk of UC. Individual dietary factors and energy balance have been suggested as having important roles in inducing changes in the microbial population and intestinal barrier integrity and in regulating inflammatory immune responses, directly or indirectly. Excess energy intake is now known to increase pathogenic microbial populations. Likewise, the application of appropriate probiotics may reverse the pathogenic progression of the disease. In the meantime, dietary anti-inflammatory compounds, including omega-3 fatty acids and other phytochemicals, may directly suppress inflammatory responses in the course of UC development. In this review, the increased prevalence of UC and its management are interpreted from the standpoint of nutritional modulation to regulate the intestinal microflora population, intestinal epithelium permeability, and inflammatory responses.
Cross-talk between adipose and gastric leptins for the control of food intake and energy metabolism.
Cammisotto, Philippe G; Levy, Emile; Bukowiecki, Ludwik J; Bendayan, Moise
2010-09-01
The understanding of the regulation of food intake has become increasingly complex. More than 20 hormones, both orexigenic and anorexigenic, have been identified. After crossing the blood-brain barrier, they reach their main site of action located in several hypothalamic areas and interact to balance satiety and hunger. One of the most significant advances in this matter has been the discovery of leptin. This hormone plays fundamental roles in the control of appetite and in regulating energy expenditure. In accordance with the lipostatic theory stated by Kennedy in 1953, leptin was originally discovered in white adipose tissue. Its expression by other tissues was later established. Among them, the gastric mucosa has been shown to secrete large amounts of leptin. Both the adipose and the gastric tissues share similar characteristics in the synthesis and storage of leptin in granules, in the formation of a complex with the soluble receptor and a secretion modulated by hormones and energy substrates. However while adipose tissue secretes leptin in a slow constitutive endocrine way, the gastric mucosa releases leptin in a rapid regulated exocrine fashion into the gastric juice. Exocrine-secreted leptin survives the extreme hydrolytic conditions of the gastric juice and reach the duodenal lumen in an intact active form. Scrutiny into transport mechanisms revealed that a significant amount of the exocrine leptin crosses the intestinal wall by active transcytosis. Leptin receptors, expressed on the luminal and basal membrane of intestinal epithelial cells, are involved in the control of nutrient absorption by enterocytes, mucus secretion by goblet cells and motility, among other processes, and this control is indeed different depending upon luminal or basal stimulus. Gastric leptin after transcytosis reaches the central nervous system, to control food intake. Studies using the Caco-2, the human intestinal cell line, in vitro allowed analysis of the mechanisms of leptin actions on the intestinal mucosa, identification of the mechanisms of leptin transcytosis and understanding the modulation of leptin receptors by nutrients and hormones. Exocrine-secreted gastric leptin thus participates in a physiological axis independent in terms of time and regulation from that of adipose tissue to rapidly control food intake and nutrient absorption. Adipocytes and gastric epithelial cells are two cell types the metabolism of which is closely linked to food intake and energy storage. The coordinated secretion of adipose and gastric leptins ensures proper management of food processing and energy storage. Copyright (c) 2010 Elsevier GmbH. All rights reserved.
Safety concerns over the use of intestinal permeation enhancers: A mini-review.
McCartney, Fiona; Gleeson, John P; Brayden, David J
2016-01-01
Intestinal permeation enhancers (PEs) are key components in ∼12 oral peptide formulations in clinical trials for a range of molecules, primarily insulin and glucagon-like-peptide 1 (GLP-1) analogs. The main PEs comprise medium chain fatty acid-based systems (sodium caprate, sodium caprylate, and N-[8-(2-hydroxybenzoyl) amino] caprylate (SNAC)), bile salts, acyl carnitines, and EDTA. Their mechanism of action is complex with subtle differences between the different molecules. With the exception of SNAC and EDTA, most PEs fluidize the plasma membrane causing plasma membrane perturbation, as well as enzymatic and intracellular mediator changes that lead to alteration of intestinal epithelial tight junction protein expression. The question arises as to whether PEs can cause irreversible epithelial damage and tight junction openings sufficient to permit co-absorption of payloads with bystander pathogens, lipopolysaccharides and its fragment, or exo- and endotoxins that may be associated with sepsis, inflammation and autoimmune conditions. Most PEs seem to cause membrane perturbation to varying extents that is rapidly reversible, and overall evidence of pathogen co-absorption is generally lacking. It is unknown however, whether the intestinal epithelial damage-repair cycle is sustained during repeat-dosing regimens for chronic therapy.
Pervolaraki, Kalliopi; Stanifer, Megan L; Münchau, Stephanie; Renn, Lynnsey A; Albrecht, Dorothee; Kurzhals, Stefan; Senís, Elena; Grimm, Dirk; Schröder-Braunstein, Jutta; Rabin, Ronald L; Boulant, Steeve
2017-01-01
Intestinal epithelial cells (IECs) are constantly exposed to commensal flora and pathogen challenges. How IECs regulate their innate immune response to maintain gut homeostasis remains unclear. Interferons (IFNs) are cytokines produced during infections. While type I IFN receptors are ubiquitously expressed, type III IFN receptors are expressed only on epithelial cells. This epithelium specificity strongly suggests exclusive functions at epithelial surfaces, but the relative roles of type I and III IFNs in the establishment of an antiviral innate immune response in human IECs are not clearly defined. Here, we used mini-gut organoids to define the functions of types I and III IFNs to protect the human gut against viral infection. We show that primary non-transformed human IECs, upon viral challenge, upregulate the expression of both type I and type III IFNs at the transcriptional level but only secrete type III IFN in the supernatant. However, human IECs respond to both type I and type III IFNs by producing IFN-stimulated genes that in turn induce an antiviral state. Using genetic ablation of either type I or type III IFN receptors, we show that either IFN can independently restrict virus infection in human IECs. Importantly, we report, for the first time, differences in the mechanisms by which each IFN establishes the antiviral state. Contrary to type I IFN, the antiviral activity induced by type III IFN is strongly dependent on the mitogen-activated protein kinases signaling pathway, suggesting a pathway used by type III IFNs that non-redundantly contributes to the antiviral state. In conclusion, we demonstrate that human intestinal epithelial cells specifically regulate their innate immune response favoring type III IFN-mediated signaling, which allows for efficient protection against pathogens without producing excessive inflammation. Our results strongly suggest that type III IFN constitutes the frontline of antiviral response in the human gut. We propose that mucosal surfaces, particularly the gastrointestinal tract, have evolved to favor type III IFN-mediated response to pathogen infections as it allows for spatial segregation of signaling and moderate production of inflammatory signals which we propose are key to maintain gut homeostasis.
Madsen, Steffen S; Weber, Claus; Nielsen, Andreas M; Mohiseni, Mohammad; Bosssus, Maryline C; Tipsmark, Christian K; Borg, Bertil
2015-10-01
Mature three-spined stickleback males use spiggin threads secreted from their kidney to glue together nest material. This requires strongly hypertrophied renal proximal tubular cells, which compromises renal osmoregulatory function during the breeding period. Experimental evidence suggests that the intestine takes over hypotonic fluid secretion at that stage but the mechanism is unexplored. To unravel the molecular mechanism we analyzed and compared transcript levels of several membrane proteins involved in water and salt transport in intestinal and renal tissues, in non-mature males (NM), mature males (MM), and mature females (MF). Aquaporin paralogs aqp1a, -3a, -8aa, -8ab, -10a, and -10b, two Na(+),K(+)-ATPase alpha-1 subunit isoforms (nka547, nka976), Na(+),K(+),2Cl(-)-, and Na(+),Cl(-)-cotransporters (nkcc1a, nkcc2, ncc), the cystic fibrosis transmembrane conductance regulator (cftr) and two claudin isoforms (cldn2, cldn15a) were expressed in the intestine and kidney in all groups. There were no differences in aqp and cldn expression between intestines of NM and MM; nkcc2 was lower and nka levels tended to be higher in intestines of MM than in NM. In the kidney, aqp1 and aqp8ab levels were lower in MM than in NM, whereas aqp3a, nkcc1a, cldn15a, and spiggin were markedly elevated. This was accompanied by marked hypertrophy of kidney tubules in MM. The data support an altered kidney function in terms of water handling in mature males, whereas there was no support for modified trans-epithelial water permeability or salt-secretory activity in the intestine of mature males. Salt-absorptive activity in the intestine may, however, be down-regulated during male maturation. Copyright © 2015 Elsevier Inc. All rights reserved.
Davis, Hayley; Irshad, Shazia; Bansal, Mukesh; Rafferty, Hannah; Boitsova, Tatjana; Bardella, Chiara; Jaeger, Emma; Lewis, Annabelle; Freeman-Mills, Luke; Giner, Francesc Castro; Rodenas-Cuadrado, Pedro; Mallappa, Sreelakshmi; Clark, Susan; Thomas, Huw; Jeffery, Rosemary; Poulsom, Richard; Rodriguez-Justo, Manuel; Novelli, Marco; Chetty, Runjan; Silver, Andrew; Sansom, Owen James; Greten, Florian R; Wang, Lai Mun; East, James Edward; Tomlinson, Ian; Leedham, Simon John
2015-01-01
Hereditary mixed polyposis syndrome (HMPS) is characterized by the development of mixed-morphology colorectal tumors and is caused by a 40-kb genetic duplication that results in aberrant epithelial expression of the gene encoding mesenchymal bone morphogenetic protein antagonist, GREM1. Here we use HMPS tissue and a mouse model of the disease to show that epithelial GREM1 disrupts homeostatic intestinal morphogen gradients, altering cell fate that is normally determined by position along the vertical epithelial axis. This promotes the persistence and/or reacquisition of stem cell properties in Lgr5-negative progenitor cells that have exited the stem cell niche. These cells form ectopic crypts, proliferate, accumulate somatic mutations and can initiate intestinal neoplasia, indicating that the crypt base stem cell is not the sole cell of origin of colorectal cancer. Furthermore, we show that epithelial expression of GREM1 also occurs in traditional serrated adenomas, sporadic premalignant lesions with a hitherto unknown pathogenesis, and these lesions can be considered the sporadic equivalents of HMPS polyps.