Selective attention to temporal features on nested time scales.
Henry, Molly J; Herrmann, Björn; Obleser, Jonas
2015-02-01
Meaningful auditory stimuli such as speech and music often vary simultaneously along multiple time scales. Thus, listeners must selectively attend to, and selectively ignore, separate but intertwined temporal features. The current study aimed to identify and characterize the neural network specifically involved in this feature-selective attention to time. We used a novel paradigm where listeners judged either the duration or modulation rate of auditory stimuli, and in which the stimulation, working memory demands, response requirements, and task difficulty were held constant. A first analysis identified all brain regions where individual brain activation patterns were correlated with individual behavioral performance patterns, which thus supported temporal judgments generically. A second analysis then isolated those brain regions that specifically regulated selective attention to temporal features: Neural responses in a bilateral fronto-parietal network including insular cortex and basal ganglia decreased with degree of change of the attended temporal feature. Critically, response patterns in these regions were inverted when the task required selectively ignoring this feature. The results demonstrate how the neural analysis of complex acoustic stimuli with multiple temporal features depends on a fronto-parietal network that simultaneously regulates the selective gain for attended and ignored temporal features. © The Author 2013. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Features of Coping with Disease in Iranian Multiple Sclerosis Patients: a Qualitative Study.
Dehghani, Ali; Dehghan Nayeri, Nahid; Ebadi, Abbas
2018-03-01
Introduction: Coping with disease is of the main components improving the quality of life in multiple sclerosis patients. Identifying the characteristics of this concept is based on the experiences of patients. Using qualitative research is essential to improve the quality of life. This study was conducted to explore the features of coping with the disease in patients with multiple sclerosis. Method: In this conventional content analysis study, eleven multiple sclerosis patients from Iran MS Society in Tehran (Iran) participated. Purposive sampling was used to select participants. Data were gathered using semi structured interviews. To analyze data, a conventional content analysis approach was used to identify meaning units and to make codes and categories. Results: Results showed that features of coping with disease in multiple sclerosis patients consists of (a) accepting the current situation, (b) maintenance and development of human interactions, (c) self-regulation and (d) self-efficacy. Each of these categories is composed of sub-categories and codes that showed the perception and experience of patients about the coping with disease. Conclusion: Accordingly, a unique set of features regarding features of coping with the disease were identified among the patients with multiple sclerosis. Therefore, working to ensure the emergence of, and subsequent reinforcement of these features in MS patients can be an important step in improving the adjustment and quality of their lives.
Kuo, Janice R; Khoury, Jennifer E; Metcalfe, Rebecca; Fitzpatrick, Skye; Goodwill, Alasdair
2015-01-01
Childhood abuse has been consistently linked with borderline personality disorder (BPD) and recent studies suggest that some forms of childhood abuse might be uniquely related to both BPD and BPD features. In addition, difficulties with emotion regulation have been found to be associated with childhood abuse, BPD, as well as BPD features. The present study examined (1) whether frequency of childhood emotional abuse is uniquely associated with BPD feature severity when controlling for other forms of childhood abuse and (2) whether difficulties with emotion regulation accounts for the relationship between childhood emotional abuse and BPD feature severity. A sample of undergraduates (n=243) completed the Childhood Trauma Questionnaire - Short Form, Difficulties in Emotion Regulation Scale, and Borderline Symptom List-23. Multiple regression analyses and Structural Equation Modeling were conducted. Results indicated that frequency of childhood emotional abuse (and not sexual or physical abuse) was uniquely associated with BPD feature severity. In addition, while there was no direct path between childhood emotional abuse, childhood physical abuse, or childhood sexual abuse and BPD features, there was an indirect relationship between childhood emotional abuse and BPD features through difficulties with emotion regulation. These findings suggest that, of the different forms of childhood abuse, emotional abuse specifically, may have a developmental role in BPD pathology. Prevention and treatment of BPD pathology might benefit from the provision of emotion regulation strategies. Copyright © 2014 Elsevier Ltd. All rights reserved.
Xu, Juan; Li, Chuan-Xing; Li, Yong-Sheng; Lv, Jun-Ying; Ma, Ye; Shao, Ting-Ting; Xu, Liang-De; Wang, Ying-Ying; Du, Lei; Zhang, Yun-Peng; Jiang, Wei; Li, Chun-Quan; Xiao, Yun; Li, Xia
2011-02-01
Synergistic regulations among multiple microRNAs (miRNAs) are important to understand the mechanisms of complex post-transcriptional regulations in humans. Complex diseases are affected by several miRNAs rather than a single miRNA. So, it is a challenge to identify miRNA synergism and thereby further determine miRNA functions at a system-wide level and investigate disease miRNA features in the miRNA-miRNA synergistic network from a new view. Here, we constructed a miRNA-miRNA functional synergistic network (MFSN) via co-regulating functional modules that have three features: common targets of corresponding miRNA pairs, enriched in the same gene ontology category and close proximity in the protein interaction network. Predicted miRNA synergism is validated by significantly high co-expression of functional modules and significantly negative regulation to functional modules. We found that the MFSN exhibits a scale free, small world and modular architecture. Furthermore, the topological features of disease miRNAs in the MFSN are distinct from non-disease miRNAs. They have more synergism, indicating their higher complexity of functions and are the global central cores of the MFSN. In addition, miRNAs associated with the same disease are close to each other. The structure of the MFSN and the features of disease miRNAs are validated to be robust using different miRNA target data sets.
Catch-slip bonds can be dispensable for motor force regulation during skeletal muscle contraction
NASA Astrophysics Data System (ADS)
Dong, Chenling; Chen, Bin
2015-07-01
It is intriguing how multiple molecular motors can perform coordinated and synchronous functions, which is essential in various cellular processes. Recent studies on skeletal muscle might have shed light on this issue, where rather precise motor force regulation was partly attributed to the specific stochastic features of a single attached myosin motor. Though attached motors can randomly detach from actin filaments either through an adenosine triphosphate (ATP) hydrolysis cycle or through "catch-slip bond" breaking, their respective contribution in motor force regulation has not been clarified. Here, through simulating a mechanical model of sarcomere with a coupled Monte Carlo method and finite element method, we find that the stochastic features of an ATP hydrolysis cycle can be sufficient while those of catch-slip bonds can be dispensable for motor force regulation.
Cancer stem cells and differentiation therapy.
Jin, Xiong; Jin, Xun; Kim, Hyunggee
2017-10-01
Cancer stem cells can generate tumors from only a small number of cells, whereas differentiated cancer cells cannot. The prominent feature of cancer stem cells is its ability to self-renew and differentiate into multiple types of cancer cells. Cancer stem cells have several distinct tumorigenic abilities, including stem cell signal transduction, tumorigenicity, metastasis, and resistance to anticancer drugs, which are regulated by genetic or epigenetic changes. Like normal adult stem cells involved in various developmental processes and tissue homeostasis, cancer stem cells maintain their self-renewal capacity by activating multiple stem cell signaling pathways and inhibiting differentiation signaling pathways during cancer initiation and progression. Recently, many studies have focused on targeting cancer stem cells to eradicate malignancies by regulating stem cell signaling pathways, and products of some of these strategies are in preclinical and clinical trials. In this review, we describe the crucial features of cancer stem cells related to tumor relapse and drug resistance, as well as the new therapeutic strategy to target cancer stem cells named "differentiation therapy."
The Global Regulatory Architecture of Transcription during the Caulobacter Cell Cycle
Zhou, Bo; Schrader, Jared M.; Kalogeraki, Virginia S.; Abeliuk, Eduardo; Dinh, Cong B.; Pham, James Q.; Cui, Zhongying Z.; Dill, David L.; McAdams, Harley H.; Shapiro, Lucy
2015-01-01
Each Caulobacter cell cycle involves differentiation and an asymmetric cell division driven by a cyclical regulatory circuit comprised of four transcription factors (TFs) and a DNA methyltransferase. Using a modified global 5′ RACE protocol, we globally mapped transcription start sites (TSSs) at base-pair resolution, measured their transcription levels at multiple times in the cell cycle, and identified their transcription factor binding sites. Out of 2726 TSSs, 586 were shown to be cell cycle-regulated and we identified 529 binding sites for the cell cycle master regulators. Twenty-three percent of the cell cycle-regulated promoters were found to be under the combinatorial control of two or more of the global regulators. Previously unknown features of the core cell cycle circuit were identified, including 107 antisense TSSs which exhibit cell cycle-control, and 241 genes with multiple TSSs whose transcription levels often exhibited different cell cycle timing. Cumulatively, this study uncovered novel new layers of transcriptional regulation mediating the bacterial cell cycle. PMID:25569173
The global regulatory architecture of transcription during the Caulobacter cell cycle.
Zhou, Bo; Schrader, Jared M; Kalogeraki, Virginia S; Abeliuk, Eduardo; Dinh, Cong B; Pham, James Q; Cui, Zhongying Z; Dill, David L; McAdams, Harley H; Shapiro, Lucy
2015-01-01
Each Caulobacter cell cycle involves differentiation and an asymmetric cell division driven by a cyclical regulatory circuit comprised of four transcription factors (TFs) and a DNA methyltransferase. Using a modified global 5' RACE protocol, we globally mapped transcription start sites (TSSs) at base-pair resolution, measured their transcription levels at multiple times in the cell cycle, and identified their transcription factor binding sites. Out of 2726 TSSs, 586 were shown to be cell cycle-regulated and we identified 529 binding sites for the cell cycle master regulators. Twenty-three percent of the cell cycle-regulated promoters were found to be under the combinatorial control of two or more of the global regulators. Previously unknown features of the core cell cycle circuit were identified, including 107 antisense TSSs which exhibit cell cycle-control, and 241 genes with multiple TSSs whose transcription levels often exhibited different cell cycle timing. Cumulatively, this study uncovered novel new layers of transcriptional regulation mediating the bacterial cell cycle.
Lear, Bridget C; Zhang, Luoying; Allada, Ravi
2009-07-01
Discrete clusters of circadian clock neurons temporally organize daily behaviors such as sleep and wake. In Drosophila, a network of just 150 neurons drives two peaks of timed activity in the morning and evening. A subset of these neurons expresses the neuropeptide pigment dispersing factor (PDF), which is important for promoting morning behavior as well as maintaining robust free-running rhythmicity in constant conditions. Yet, how PDF acts on downstream circuits to mediate rhythmic behavior is unknown. Using circuit-directed rescue of PDF receptor mutants, we show that PDF targeting of just approximately 30 non-PDF evening circadian neurons is sufficient to drive morning behavior. This function is not accompanied by large changes in core molecular oscillators in light-dark, indicating that PDF RECEPTOR likely regulates the output of these cells under these conditions. We find that PDF also acts on this focused set of non-PDF neurons to regulate both evening activity phase and period length, consistent with modest resetting effects on core oscillators. PDF likely acts on more distributed pacemaker neuron targets, including the PDF neurons themselves, to regulate rhythmic strength. Here we reveal defining features of the circuit-diagram for PDF peptide function in circadian behavior, revealing the direct neuronal targets of PDF as well as its behavioral functions at those sites. These studies define a key direct output circuit sufficient for multiple PDF dependent behaviors.
Poly(A) code analyses reveal key determinants for tissue-specific mRNA alternative polyadenylation
Weng, Lingjie; Li, Yi; Xie, Xiaohui; Shi, Yongsheng
2016-01-01
mRNA alternative polyadenylation (APA) is a critical mechanism for post-transcriptional gene regulation and is often regulated in a tissue- and/or developmental stage-specific manner. An ultimate goal for the APA field has been to be able to computationally predict APA profiles under different physiological or pathological conditions. As a first step toward this goal, we have assembled a poly(A) code for predicting tissue-specific poly(A) sites (PASs). Based on a compendium of over 600 features that have known or potential roles in PAS selection, we have generated and refined a machine-learning algorithm using multiple high-throughput sequencing-based data sets of tissue-specific and constitutive PASs. This code can predict tissue-specific PASs with >85% accuracy. Importantly, by analyzing the prediction performance based on different RNA features, we found that PAS context, including the distance between alternative PASs and the relative position of a PAS within the gene, is a key feature for determining the susceptibility of a PAS to tissue-specific regulation. Our poly(A) code provides a useful tool for not only predicting tissue-specific APA regulation, but also for studying its underlying molecular mechanisms. PMID:27095026
Integrative FourD omics approach profiles the target network of the carbon storage regulatory system
Sowa, Steven W.; Gelderman, Grant; Leistra, Abigail N.; Buvanendiran, Aishwarya; Lipp, Sarah; Pitaktong, Areen; Vakulskas, Christopher A.; Romeo, Tony; Baldea, Michael
2017-01-01
Abstract Multi-target regulators represent a largely untapped area for metabolic engineering and anti-bacterial development. These regulators are complex to characterize because they often act at multiple levels, affecting proteins, transcripts and metabolites. Therefore, single omics experiments cannot profile their underlying targets and mechanisms. In this work, we used an Integrative FourD omics approach (INFO) that consists of collecting and analyzing systems data throughout multiple time points, using multiple genetic backgrounds, and multiple omics approaches (transcriptomics, proteomics and high throughput sequencing crosslinking immunoprecipitation) to evaluate simultaneous changes in gene expression after imposing an environmental stress that accentuates the regulatory features of a network. Using this approach, we profiled the targets and potential regulatory mechanisms of a global regulatory system, the well-studied carbon storage regulatory (Csr) system of Escherichia coli, which is widespread among bacteria. Using 126 sets of proteomics and transcriptomics data, we identified 136 potential direct CsrA targets, including 50 novel ones, categorized their behaviors into distinct regulatory patterns, and performed in vivo fluorescence-based follow up experiments. The results of this work validate 17 novel mRNAs as authentic direct CsrA targets and demonstrate a generalizable strategy to integrate multiple lines of omics data to identify a core pool of regulator targets. PMID:28126921
Dynamic hydro-climatic networks in pristine and regulated rivers
NASA Astrophysics Data System (ADS)
Botter, G.; Basso, S.; Lazzaro, G.; Doulatyari, B.; Biswal, B.; Schirmer, M.; Rinaldo, A.
2014-12-01
Flow patterns observed at-a-station are the dynamical byproduct of a cascade of processes involving different compartments of the hydro-climatic network (e.g., climate, rainfall, soil, vegetation) that regulates the transformation of rainfall into streamflows. In complex branching rivers, flow regimes result from the heterogeneous arrangement around the stream network of multiple hydrologic cascades that simultaneously occur within distinct contributing areas. As such, flow regimes are seen as the integrated output of a complex "network of networks", which can be properly characterized by its degree of temporal variability and spatial heterogeneity. Hydrologic networks that generate river flow regimes are dynamic in nature. In pristine rivers, the time-variance naturally emerges at multiple timescales from climate variability (namely, seasonality and inter-annual fluctuations), implying that the magnitude (and the features) of the water flow between two nodes may be highly variable across different seasons and years. Conversely, the spatial distribution of river flow regimes within pristine rivers involves scale-dependent transport features, as well as regional climatic and soil use gradients, which in small and meso-scale catchments (A < 103 km2) are usually mild enough to guarantee quite uniform flow regimes and high spatial correlations. Human-impacted rivers, instead, constitute hybrid networks where observed spatio-temporal patterns are dominated by anthropogenic shifts, such as landscape alterations and river regulation. In regulated rivers, the magnitude and the features of water flows from node to node may change significantly through time due to damming and withdrawals. However, regulation may impact river regimes in a spatially heterogeneous manner (e.g. in localized river reaches), with a significant decrease of spatial correlations and network connectivity. Provided that the spatial and temporal dynamics of flow regimes in complex rivers may strongly impact important biotic processes involved in the river food web (e.g. biofilm and riparian vegetation dynamics), the study of rivers as dynamic networks provides important clues to water management strategies and freshwater ecosystem studies.
Kistler, Christine E; Crutchfield, Trisha M; Sutfin, Erin L; Ranney, Leah M; Berman, Micah L; Zarkin, Gary A; Goldstein, Adam O
2017-06-07
To inform potential governmental regulations, we aimed to develop a list of electronic nicotine delivery system (ENDS) product features important to U.S. consumers by age and gender. We employed qualitative data methods. Participants were eligible if they had used an ENDS at least once. Groups were selected by age and gender (young adult group aged 18-25, n = 11; middle-age group aged 26-64, n = 9; and women's group aged 26-64, n = 9). We conducted five individual older adult interviews (aged 68-80). Participants discussed important ENDS features. We conducted a structured content analysis of the group and interview responses. Of 34 participants, 68% were white and 56% were female. Participants mentioned 12 important ENDS features, including: (1) user experience; (2) social acceptability; (3) cost; (4) health risks/benefits; (5) ease of use; (6) flavors; (7) smoking cessation aid; (8) nicotine content; (9) modifiability; (10) ENDS regulation; (11) bridge between tobacco cigarettes; (12) collectability. The most frequently mentioned ENDS feature was modifiability for young adults, user experience for middle-age and older adults, and flavor for the women's group. This study identified multiple features important to ENDS consumers. Groups differed in how they viewed various features by age and gender. These results can inform ongoing regulatory efforts.
Kistler, Christine E.; Crutchfield, Trisha M.; Sutfin, Erin L.; Ranney, Leah M.; Berman, Micah L.; Zarkin, Gary A.; Goldstein, Adam O.
2017-01-01
To inform potential governmental regulations, we aimed to develop a list of electronic nicotine delivery system (ENDS) product features important to U.S. consumers by age and gender. We employed qualitative data methods. Participants were eligible if they had used an ENDS at least once. Groups were selected by age and gender (young adult group aged 18–25, n = 11; middle-age group aged 26–64, n = 9; and women’s group aged 26–64, n = 9). We conducted five individual older adult interviews (aged 68–80). Participants discussed important ENDS features. We conducted a structured content analysis of the group and interview responses. Of 34 participants, 68% were white and 56% were female. Participants mentioned 12 important ENDS features, including: (1) user experience; (2) social acceptability; (3) cost; (4) health risks/benefits; (5) ease of use; (6) flavors; (7) smoking cessation aid; (8) nicotine content; (9) modifiability; (10) ENDS regulation; (11) bridge between tobacco cigarettes; (12) collectability. The most frequently mentioned ENDS feature was modifiability for young adults, user experience for middle-age and older adults, and flavor for the women’s group. This study identified multiple features important to ENDS consumers. Groups differed in how they viewed various features by age and gender. These results can inform ongoing regulatory efforts. PMID:28590444
Sowa, Steven W; Gelderman, Grant; Leistra, Abigail N; Buvanendiran, Aishwarya; Lipp, Sarah; Pitaktong, Areen; Vakulskas, Christopher A; Romeo, Tony; Baldea, Michael; Contreras, Lydia M
2017-02-28
Multi-target regulators represent a largely untapped area for metabolic engineering and anti-bacterial development. These regulators are complex to characterize because they often act at multiple levels, affecting proteins, transcripts and metabolites. Therefore, single omics experiments cannot profile their underlying targets and mechanisms. In this work, we used an Integrative FourD omics approach (INFO) that consists of collecting and analyzing systems data throughout multiple time points, using multiple genetic backgrounds, and multiple omics approaches (transcriptomics, proteomics and high throughput sequencing crosslinking immunoprecipitation) to evaluate simultaneous changes in gene expression after imposing an environmental stress that accentuates the regulatory features of a network. Using this approach, we profiled the targets and potential regulatory mechanisms of a global regulatory system, the well-studied carbon storage regulatory (Csr) system of Escherichia coli, which is widespread among bacteria. Using 126 sets of proteomics and transcriptomics data, we identified 136 potential direct CsrA targets, including 50 novel ones, categorized their behaviors into distinct regulatory patterns, and performed in vivo fluorescence-based follow up experiments. The results of this work validate 17 novel mRNAs as authentic direct CsrA targets and demonstrate a generalizable strategy to integrate multiple lines of omics data to identify a core pool of regulator targets. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.
Minireview: The Year in Review of Estrogen Regulation of Metabolism
2012-01-01
Gonadal steroids are critical regulators of physiology, yet we approach physiology and science with the simplest perspective/model, the male one. Female models of whole animal physiology are complex to study and, therefore, are often not used in research. Estrogens are one of the sex hormones that we know are important for both men and women. Estrogens regulate key features of metabolism such as food intake, body weight, glucose homeostasis/insulin sensitivity, body fat distribution, lipolysis/lipogenesis, inflammation, locomotor activity, energy expenditure, reproduction, and cognition. Furthermore, estrogens have multiple sites of action including some unexpected ones, which was demonstrated elegantly through a series of papers this year. PMID:23051593
McLaughlin, Ian; Dani, John A; De Biasi, Mariella
2017-08-01
Abstinence from chronic use of addictive drugs triggers an aversive withdrawal syndrome that compels relapse and deters abstinence. Many features of this syndrome are common across multiple drugs, involving both affective and physical symptoms. Some of the network signaling underlying withdrawal symptoms overlaps with activity that is associated with aversive mood states, including anxiety and depression. Given these shared features, it is not surprising that a particular circuit, the dorsal diencephalic conduction system, and the medial habenula (MHb) and interpeduncular nucleus (IPN), in particular, have been identified as critical to the emergence of aversive states that arise both as a result and, independently, of drug addiction. As the features of this circuit continue to be characterized, the MHb-IPN axis is emerging as a viable target for therapeutics to aid in the treatment of addiction to multiple drugs of abuse as well as mood-associated disorders. This is an article for the special issue XVth International Symposium on Cholinergic Mechanisms. © 2017 International Society for Neurochemistry.
Protein disulfide isomerase a multifunctional protein with multiple physiological roles
NASA Astrophysics Data System (ADS)
Ali Khan, Hyder; Mutus, Bulent
2014-08-01
Protein disulfide isomerase (PDI), is a member of the thioredoxin superfamily of redox proteins. PDI has three catalytic activities including, thiol-disulfide oxireductase, disulfide isomerase and redox-dependent chaperone. Originally, PDI was identified in the lumen of the endoplasmic reticulum and subsequently detected at additional locations, such as cell surfaces and the cytosol. This review will provide an overview of the recent advances in relating the structural features of PDI to its multiple catalytic roles as well as its physiological and pathophysiological functions related to redox regulation and protein folding.
Molecular machinery of signal transduction and cell cycle regulation in Plasmodium.
Koyama, Fernanda C; Chakrabarti, Debopam; Garcia, Célia R S
2009-05-01
The regulation of the Plasmodium cell cycle is not understood. Although the Plasmodium falciparum genome is completely sequenced, about 60% of the predicted proteins share little or no sequence similarity with other eukaryotes. This feature impairs the identification of important proteins participating in the regulation of the cell cycle. There are several open questions that concern cell cycle progression in malaria parasites, including the mechanism by which multiple nuclear divisions is controlled and how the cell cycle is managed in all phases of their complex life cycle. Cell cycle synchrony of the parasite population within the host, as well as the circadian rhythm of proliferation, are striking features of some Plasmodium species, the molecular basis of which remains to be elucidated. In this review we discuss the role of indole-related molecules as signals that modulate the cell cycle in Plasmodium and other eukaryotes, and we also consider the possible role of kinases in the signal transduction and in the responses it triggers.
Selective Audiovisual Semantic Integration Enabled by Feature-Selective Attention.
Li, Yuanqing; Long, Jinyi; Huang, Biao; Yu, Tianyou; Wu, Wei; Li, Peijun; Fang, Fang; Sun, Pei
2016-01-13
An audiovisual object may contain multiple semantic features, such as the gender and emotional features of the speaker. Feature-selective attention and audiovisual semantic integration are two brain functions involved in the recognition of audiovisual objects. Humans often selectively attend to one or several features while ignoring the other features of an audiovisual object. Meanwhile, the human brain integrates semantic information from the visual and auditory modalities. However, how these two brain functions correlate with each other remains to be elucidated. In this functional magnetic resonance imaging (fMRI) study, we explored the neural mechanism by which feature-selective attention modulates audiovisual semantic integration. During the fMRI experiment, the subjects were presented with visual-only, auditory-only, or audiovisual dynamical facial stimuli and performed several feature-selective attention tasks. Our results revealed that a distribution of areas, including heteromodal areas and brain areas encoding attended features, may be involved in audiovisual semantic integration. Through feature-selective attention, the human brain may selectively integrate audiovisual semantic information from attended features by enhancing functional connectivity and thus regulating information flows from heteromodal areas to brain areas encoding the attended features.
Regulation of alternative mRNA splicing: old players and new perspectives.
Dvinge, Heidi
2018-06-01
Nearly all human multi-exon genes are subject to alternative splicing in one or more cell types. The splicing machinery, therefore, has to select between multiple splice sites in a context-dependent manner, relying on sequence features in cis and trans-acting splicing regulators that either promote or repress splice site recognition and spliceosome assembly. However, the functional coupling between multiple gene regulatory layers signifies that splicing can also be modulated by transcriptional or epigenetic characteristics. Other, less obvious, aspects of alternative splicing have come to light in recent years, often involving core components of the spliceosome previously thought to perform a basal rather than a regulatory role in splicing. Together this paints a highly dynamic picture of splicing regulation, where the final splice site choice is governed by the entire transcriptional environment of a gene and its cellular context. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Caracciolo, Daniele; Agnelli, Luca; Neri, Antonino; Walker, Brian A.; Morgan, Gareth J.; Cannataro, Mario
2015-01-01
Multiple Myeloma (MM) is a malignancy characterized by the hyperdiploid (HD-MM) and the non-hyperdiploid (nHD-MM) subtypes. To shed light within the molecular architecture of these subtypes, we used a novel integromics approach. By annotated MM patient mRNA/microRNA (miRNA) datasets, we investigated mRNAs and miRNAs profiles with relation to changes in transcriptional regulators expression. We found that HD-MM displays specific gene and miRNA expression profiles, involving the Signal Transducer and Activator of Transcription (STAT)3 pathway as well as the Transforming Growth Factor–beta (TGFβ) and the transcription regulator Nuclear Protein-1 (NUPR1). Our data define specific molecular features of HD-MM that may translate in the identification of novel relevant druggable targets. PMID:26056083
Study of traits and recalcitrance reduction of field-grown COMT down-regulated switchgrass
Li, Mi; Pu, Yunqiao; Yoo, Chang Geun; ...
2017-01-03
The native recalcitrance of plants hinders the biomass conversion process using current biorefinery techniques. Down-regulation of the caffeic acid O-methyltransferase (COMT) gene in the lignin biosynthesis pathway of switchgrass reduced the thermochemical and biochemical conversion recalcitrance of biomass. Due to potential environmental influences on lignin biosynthesis and deposition, studying the consequences of physicochemical changes in field-grown plants without pretreatment is essential to evaluate the performance of lignin-altered plants. In this study, we determined the chemical composition, cellulose crystallinity and the degree of its polymerization, molecular weight of hemicellulose, and cellulose accessibility of cell walls in order to better understand themore » fundamental features of why biomass is recalcitrant to conversion without pretreatment. The most important is to investigate whether traits and features are stable in the dynamics of field environmental effects over multiple years.« less
Parenti, Ilaria; Teresa-Rodrigo, María E; Pozojevic, Jelena; Ruiz Gil, Sara; Bader, Ingrid; Braunholz, Diana; Bramswig, Nuria C; Gervasini, Cristina; Larizza, Lidia; Pfeiffer, Lutz; Ozkinay, Ferda; Ramos, Feliciano; Reiz, Benedikt; Rittinger, Olaf; Strom, Tim M; Watrin, Erwan; Wendt, Kerstin; Wieczorek, Dagmar; Wollnik, Bernd; Baquero-Montoya, Carolina; Pié, Juan; Deardorff, Matthew A; Gillessen-Kaesbach, Gabriele; Kaiser, Frank J
2017-03-01
The coordinated tissue-specific regulation of gene expression is essential for the proper development of all organisms. Mutations in multiple transcriptional regulators cause a group of neurodevelopmental disorders termed "transcriptomopathies" that share core phenotypical features including growth retardation, developmental delay, intellectual disability and facial dysmorphism. Cornelia de Lange syndrome (CdLS) belongs to this class of disorders and is caused by mutations in different subunits or regulators of the cohesin complex. Herein, we report on the clinical and molecular characterization of seven patients with features overlapping with CdLS who were found to carry mutations in chromatin regulators previously associated to other neurodevelopmental disorders that are frequently considered in the differential diagnosis of CdLS. The identified mutations affect the methyltransferase-encoding genes KMT2A and SETD5 and different subunits of the SWI/SNF chromatin-remodeling complex. Complementary to this, a patient with Coffin-Siris syndrome was found to carry a missense substitution in NIPBL. Our findings indicate that mutations in a variety of chromatin-associated factors result in overlapping clinical phenotypes, underscoring the genetic heterogeneity that should be considered when assessing the clinical and molecular diagnosis of neurodevelopmental syndromes. It is clear that emerging molecular mechanisms of chromatin dysregulation are central to understanding the pathogenesis of these clinically overlapping genetic disorders.
Selective Audiovisual Semantic Integration Enabled by Feature-Selective Attention
Li, Yuanqing; Long, Jinyi; Huang, Biao; Yu, Tianyou; Wu, Wei; Li, Peijun; Fang, Fang; Sun, Pei
2016-01-01
An audiovisual object may contain multiple semantic features, such as the gender and emotional features of the speaker. Feature-selective attention and audiovisual semantic integration are two brain functions involved in the recognition of audiovisual objects. Humans often selectively attend to one or several features while ignoring the other features of an audiovisual object. Meanwhile, the human brain integrates semantic information from the visual and auditory modalities. However, how these two brain functions correlate with each other remains to be elucidated. In this functional magnetic resonance imaging (fMRI) study, we explored the neural mechanism by which feature-selective attention modulates audiovisual semantic integration. During the fMRI experiment, the subjects were presented with visual-only, auditory-only, or audiovisual dynamical facial stimuli and performed several feature-selective attention tasks. Our results revealed that a distribution of areas, including heteromodal areas and brain areas encoding attended features, may be involved in audiovisual semantic integration. Through feature-selective attention, the human brain may selectively integrate audiovisual semantic information from attended features by enhancing functional connectivity and thus regulating information flows from heteromodal areas to brain areas encoding the attended features. PMID:26759193
Solidarity and the Universal Declaration on Bioethics and Human Rights.
Gunson, Darryl
2009-06-01
Recent work has stressed the importance of the concept of solidarity to bioethics and social philosophy generally. But can and should it feature in documents such as the Universal Declaration on Bioethics and Human Rights as anything more than a vague notion with multiple possible interpretations? Although noting the tension between universality and particularity that such documents have to deal with, and also noting that solidarity has a political content, the paper explores the suggestion that solidarity should feature more centrally in international regulations. The paper concludes with the view that when solidarity is seen aright, the UDBHR is an implicitly solidaristic document.
Brockhoff, Alisa; Huff, Markus
2016-10-01
Multiple object tracking (MOT) plays a fundamental role in processing and interpreting dynamic environments. Regarding the type of information utilized by the observer, recent studies reported evidence for the use of object features in an automatic, low- level manner. By introducing a novel paradigm that allowed us to combine tracking with a noninterfering top-down task, we tested whether a voluntary component can regulate the deployment of attention to task-relevant features in a selective manner. In four experiments we found conclusive evidence for a task-driven selection mechanism that guides attention during tracking: The observers were able to ignore or prioritize distinct objects. They marked the distinct (cued) object (target/distractor) more or less often than other objects of the same type (targets /distractors)-but only when they had received an identification task that required them to actively process object features (cues) during tracking. These effects are discussed with regard to existing theoretical approaches to attentive tracking, gaze-cue usability as well as attentional readiness, a term that originally stems from research on attention capture and visual search. Our findings indicate that existing theories of MOT need to be adjusted to allow for flexible top-down, voluntary processing during tracking.
Kozhemyakina, Elena; Lassar, Andrew B.; Zelzer, Elazar
2015-01-01
Decades of work have identified the signaling pathways that regulate the differentiation of chondrocytes during bone formation, from their initial induction from mesenchymal progenitor cells to their terminal maturation into hypertrophic chondrocytes. Here, we review how multiple signaling molecules, mechanical signals and morphological cell features are integrated to activate a set of key transcription factors that determine and regulate the genetic program that induces chondrogenesis and chondrocyte differentiation. Moreover, we describe recent findings regarding the roles of several signaling pathways in modulating the proliferation and maturation of chondrocytes in the growth plate, which is the ‘engine’ of bone elongation. PMID:25715393
SOX2 regulates common and specific stem cell features in the CNS and endoderm derived organs.
Hagey, Daniel W; Klum, Susanne; Kurtsdotter, Idha; Zaouter, Cecile; Topcic, Danijal; Andersson, Olov; Bergsland, Maria; Muhr, Jonas
2018-02-01
Stem cells are defined by their capacities to self-renew and generate progeny of multiple lineages. The transcription factor SOX2 has key roles in the regulation of stem cell characteristics, but whether SOX2 achieves these functions through similar mechanisms in distinct stem cell populations is not known. To address this question, we performed RNA-seq and SOX2 ChIP-seq on embryonic mouse cortex, spinal cord, stomach and lung/esophagus. We demonstrate that, although SOX2 binds a similar motif in the different cell types, its target regions are primarily cell-type-specific and enriched for the distinct binding motifs of appropriately expressed interacting co-factors. Furthermore, cell-type-specific SOX2 binding in endodermal and neural cells is most often found around genes specifically expressed in the corresponding tissue. Consistent with this, we demonstrate that SOX2 target regions can act as cis-regulatory modules capable of directing reporter expression to appropriate tissues in a zebrafish reporter assay. In contrast, SOX2 binding sites found in both endodermal and neural tissues are associated with genes regulating general stem cell features, such as proliferation. Notably, we provide evidence that SOX2 regulates proliferation through conserved mechanisms and target genes in both germ layers examined. Together, these findings demonstrate how SOX2 simultaneously regulates cell-type-specific, as well as core transcriptional programs in neural and endodermal stem cells.
Splicing predictions reliably classify different types of alternative splicing
Busch, Anke; Hertel, Klemens J.
2015-01-01
Alternative splicing is a key player in the creation of complex mammalian transcriptomes and its misregulation is associated with many human diseases. Multiple mRNA isoforms are generated from most human genes, a process mediated by the interplay of various RNA signature elements and trans-acting factors that guide spliceosomal assembly and intron removal. Here, we introduce a splicing predictor that evaluates hundreds of RNA features simultaneously to successfully differentiate between exons that are constitutively spliced, exons that undergo alternative 5′ or 3′ splice-site selection, and alternative cassette-type exons. Surprisingly, the splicing predictor did not feature strong discriminatory contributions from binding sites for known splicing regulators. Rather, the ability of an exon to be involved in one or multiple types of alternative splicing is dictated by its immediate sequence context, mainly driven by the identity of the exon's splice sites, the conservation around them, and its exon/intron architecture. Thus, the splicing behavior of human exons can be reliably predicted based on basic RNA sequence elements. PMID:25805853
Clinical features and pathophysiology of Complex Regional Pain Syndrome – current state of the art
Marinus, Johan; Moseley, G. Lorimer; Birklein, Frank; Baron, Ralf; Maihöfner, Christian; Kingery, Wade S.; van Hilten, Jacobus J.
2017-01-01
That a minor injury can trigger a complex regional pain syndrome (CRPS) - multiple system dysfunction, severe and often chronic pain and disability - has fascinated scientists and perplexed clinicians for decades. However, substantial advances across several medical disciplines have recently increased our understanding of CRPS. Compelling evidence implicates biological pathways that underlie aberrant inflammation, vasomotor dysfunction, and maladaptive neuroplasticity in the clinical features of CRPS. Collectively, the evidence points to CRPS being a multifactorial disorder that is associated with an aberrant host response to tissue injury. Varying susceptibility to perturbed regulation of any of the underlying biological pathways probably accounts for the clinical heterogeneity of CRPS. PMID:21683929
oPOSSUM: integrated tools for analysis of regulatory motif over-representation
Ho Sui, Shannan J.; Fulton, Debra L.; Arenillas, David J.; Kwon, Andrew T.; Wasserman, Wyeth W.
2007-01-01
The identification of over-represented transcription factor binding sites from sets of co-expressed genes provides insights into the mechanisms of regulation for diverse biological contexts. oPOSSUM, an internet-based system for such studies of regulation, has been improved and expanded in this new release. New features include a worm-specific version for investigating binding sites conserved between Caenorhabditis elegans and C. briggsae, as well as a yeast-specific version for the analysis of co-expressed sets of Saccharomyces cerevisiae genes. The human and mouse applications feature improvements in ortholog mapping, sequence alignments and the delineation of multiple alternative promoters. oPOSSUM2, introduced for the analysis of over-represented combinations of motifs in human and mouse genes, has been integrated with the original oPOSSUM system. Analysis using user-defined background gene sets is now supported. The transcription factor binding site models have been updated to include new profiles from the JASPAR database. oPOSSUM is available at http://www.cisreg.ca/oPOSSUM/ PMID:17576675
Automated simultaneous multiple feature classification of MTI data
NASA Astrophysics Data System (ADS)
Harvey, Neal R.; Theiler, James P.; Balick, Lee K.; Pope, Paul A.; Szymanski, John J.; Perkins, Simon J.; Porter, Reid B.; Brumby, Steven P.; Bloch, Jeffrey J.; David, Nancy A.; Galassi, Mark C.
2002-08-01
Los Alamos National Laboratory has developed and demonstrated a highly capable system, GENIE, for the two-class problem of detecting a single feature against a background of non-feature. In addition to the two-class case, however, a commonly encountered remote sensing task is the segmentation of multispectral image data into a larger number of distinct feature classes or land cover types. To this end we have extended our existing system to allow the simultaneous classification of multiple features/classes from multispectral data. The technique builds on previous work and its core continues to utilize a hybrid evolutionary-algorithm-based system capable of searching for image processing pipelines optimized for specific image feature extraction tasks. We describe the improvements made to the GENIE software to allow multiple-feature classification and describe the application of this system to the automatic simultaneous classification of multiple features from MTI image data. We show the application of the multiple-feature classification technique to the problem of classifying lava flows on Mauna Loa volcano, Hawaii, using MTI image data and compare the classification results with standard supervised multiple-feature classification techniques.
Circuit Design Features of a Stable Two-Cell System.
Zhou, Xu; Franklin, Ruth A; Adler, Miri; Jacox, Jeremy B; Bailis, Will; Shyer, Justin A; Flavell, Richard A; Mayo, Avi; Alon, Uri; Medzhitov, Ruslan
2018-02-08
Cell communication within tissues is mediated by multiple paracrine signals including growth factors, which control cell survival and proliferation. Cells and the growth factors they produce and receive constitute a circuit with specific properties that ensure homeostasis. Here, we used computational and experimental approaches to characterize the features of cell circuits based on growth factor exchange between macrophages and fibroblasts, two cell types found in most mammalian tissues. We found that the macrophage-fibroblast cell circuit is stable and robust to perturbations. Analytical screening of all possible two-cell circuit topologies revealed the circuit features sufficient for stability, including environmental constraint and negative-feedback regulation. Moreover, we found that cell-cell contact is essential for the stability of the macrophage-fibroblast circuit. These findings illustrate principles of cell circuit design and provide a quantitative perspective on cell interactions. Copyright © 2018 Elsevier Inc. All rights reserved.
The sequence, structure and evolutionary features of HOTAIR in mammals
2011-01-01
Background An increasing number of long noncoding RNAs (lncRNAs) have been identified recently. Different from all the others that function in cis to regulate local gene expression, the newly identified HOTAIR is located between HoxC11 and HoxC12 in the human genome and regulates HoxD expression in multiple tissues. Like the well-characterised lncRNA Xist, HOTAIR binds to polycomb proteins to methylate histones at multiple HoxD loci, but unlike Xist, many details of its structure and function, as well as the trans regulation, remain unclear. Moreover, HOTAIR is involved in the aberrant regulation of gene expression in cancer. Results To identify conserved domains in HOTAIR and study the phylogenetic distribution of this lncRNA, we searched the genomes of 10 mammalian and 3 non-mammalian vertebrates for matches to its 6 exons and the two conserved domains within the 1800 bp exon6 using Infernal. There was just one high-scoring hit for each mammal, but many low-scoring hits were found in both mammals and non-mammalian vertebrates. These hits and their flanking genes in four placental mammals and platypus were examined to determine whether HOTAIR contained elements shared by other lncRNAs. Several of the hits were within unknown transcripts or ncRNAs, many were within introns of, or antisense to, protein-coding genes, and conservation of the flanking genes was observed only between human and chimpanzee. Phylogenetic analysis revealed discrete evolutionary dynamics for orthologous sequences of HOTAIR exons. Exon1 at the 5' end and a domain in exon6 near the 3' end, which contain domains that bind to multiple proteins, have evolved faster in primates than in other mammals. Structures were predicted for exon1, two domains of exon6 and the full HOTAIR sequence. The sequence and structure of two fragments, in exon1 and the domain B of exon6 respectively, were identified to robustly occur in predicted structures of exon1, domain B of exon6 and the full HOTAIR in mammals. Conclusions HOTAIR exists in mammals, has poorly conserved sequences and considerably conserved structures, and has evolved faster than nearby HoxC genes. Exons of HOTAIR show distinct evolutionary features, and a 239 bp domain in the 1804 bp exon6 is especially conserved. These features, together with the absence of some exons and sequences in mouse, rat and kangaroo, suggest ab initio generation of HOTAIR in marsupials. Structure prediction identifies two fragments in the 5' end exon1 and the 3' end domain B of exon6, with sequence and structure invariably occurring in various predicted structures of exon1, the domain B of exon6 and the full HOTAIR. PMID:21496275
Zheng, Haiyong; Wang, Ruchen; Yu, Zhibin; Wang, Nan; Gu, Zhaorui; Zheng, Bing
2017-12-28
Plankton, including phytoplankton and zooplankton, are the main source of food for organisms in the ocean and form the base of marine food chain. As the fundamental components of marine ecosystems, plankton is very sensitive to environment changes, and the study of plankton abundance and distribution is crucial, in order to understand environment changes and protect marine ecosystems. This study was carried out to develop an extensive applicable plankton classification system with high accuracy for the increasing number of various imaging devices. Literature shows that most plankton image classification systems were limited to only one specific imaging device and a relatively narrow taxonomic scope. The real practical system for automatic plankton classification is even non-existent and this study is partly to fill this gap. Inspired by the analysis of literature and development of technology, we focused on the requirements of practical application and proposed an automatic system for plankton image classification combining multiple view features via multiple kernel learning (MKL). For one thing, in order to describe the biomorphic characteristics of plankton more completely and comprehensively, we combined general features with robust features, especially by adding features like Inner-Distance Shape Context for morphological representation. For another, we divided all the features into different types from multiple views and feed them to multiple classifiers instead of only one by combining different kernel matrices computed from different types of features optimally via multiple kernel learning. Moreover, we also applied feature selection method to choose the optimal feature subsets from redundant features for satisfying different datasets from different imaging devices. We implemented our proposed classification system on three different datasets across more than 20 categories from phytoplankton to zooplankton. The experimental results validated that our system outperforms state-of-the-art plankton image classification systems in terms of accuracy and robustness. This study demonstrated automatic plankton image classification system combining multiple view features using multiple kernel learning. The results indicated that multiple view features combined by NLMKL using three kernel functions (linear, polynomial and Gaussian kernel functions) can describe and use information of features better so that achieve a higher classification accuracy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xiao, Xiao; Yang, Hanjing; Arutiunian, Vagan
The catalytic activity of human cytidine deaminase APOBEC3B (A3B) has been correlated with kataegic mutational patterns within multiple cancer types. The molecular basis of how the N-terminal non-catalytic CD1 regulates the catalytic activity and consequently, biological function of A3B remains relatively unknown. Here, we report the crystal structure of a soluble human A3B-CD1 variant and delineate several structural elements of CD1 involved in molecular assembly, nucleic acid interactions and catalytic regulation of A3B. We show that (i) A3B expressed in human cells exists in hypoactive high-molecular-weight (HMW) complexes, which can be activated without apparent dissociation into low-molecular-weight (LMW) species aftermore » RNase A treatment. (ii) Multiple surface hydrophobic residues of CD1 mediate the HMW complex assembly and affect the catalytic activity, including one tryptophan residue W127 that likely acts through regulating nucleic acid binding. (iii) One of the highly positively charged surfaces on CD1 is involved in RNA-dependent attenuation of A3B catalysis. (iv) Surface hydrophobic residues of CD1 are involved in heterogeneous nuclear ribonucleoproteins (hnRNPs) binding to A3B. The structural and biochemical insights described here suggest that unique structural features on CD1 regulate the molecular assembly and catalytic activity of A3B through distinct mechanisms.« less
miRegulome: a knowledge-base of miRNA regulomics and analysis.
Barh, Debmalya; Kamapantula, Bhanu; Jain, Neha; Nalluri, Joseph; Bhattacharya, Antaripa; Juneja, Lucky; Barve, Neha; Tiwari, Sandeep; Miyoshi, Anderson; Azevedo, Vasco; Blum, Kenneth; Kumar, Anil; Silva, Artur; Ghosh, Preetam
2015-08-05
miRNAs regulate post transcriptional gene expression by targeting multiple mRNAs and hence can modulate multiple signalling pathways, biological processes, and patho-physiologies. Therefore, understanding of miRNA regulatory networks is essential in order to modulate the functions of a miRNA. The focus of several existing databases is to provide information on specific aspects of miRNA regulation. However, an integrated resource on the miRNA regulome is currently not available to facilitate the exploration and understanding of miRNA regulomics. miRegulome attempts to bridge this gap. The current version of miRegulome v1.0 provides details on the entire regulatory modules of miRNAs altered in response to chemical treatments and transcription factors, based on validated data manually curated from published literature. Modules of miRegulome (upstream regulators, downstream targets, miRNA regulated pathways, functions, diseases, etc) are hyperlinked to an appropriate external resource and are displayed visually to provide a comprehensive understanding. Four analysis tools are incorporated to identify relationships among different modules based on user specified datasets. miRegulome and its tools are helpful in understanding the biology of miRNAs and will also facilitate the discovery of biomarkers and therapeutics. With added features in upcoming releases, miRegulome will be an essential resource to the scientific community. http://bnet.egr.vcu.edu/miRegulome.
Lopez, Richard B; Stillman, Paul E; Heatherton, Todd F; Freeman, Jonathan B
2018-01-01
In this review, we present the case for using computer mouse-tracking techniques to examine psychological processes that support (and hinder) self-regulation of eating. We first argue that computer mouse-tracking is suitable for studying the simultaneous engagement of-and dynamic interactions between-multiple perceptual and cognitive processes as they unfold and interact over a fine temporal scale (i.e., hundreds of milliseconds). Next, we review recent work that implemented mouse-tracking techniques by measuring mouse movements as participants chose between various food items (of varying nutritional content). Lastly, we propose next steps for future investigations to link behavioral features from mouse-tracking paradigms, corresponding neural correlates, and downstream eating behaviors.
Hierarchical Feedback Modules and Reaction Hubs in Cell Signaling Networks
Xu, Jianfeng; Lan, Yueheng
2015-01-01
Despite much effort, identification of modular structures and study of their organizing and functional roles remain a formidable challenge in molecular systems biology, which, however, is essential in reaching a systematic understanding of large-scale cell regulation networks and hence gaining capacity of exerting effective interference to cell activity. Combining graph theoretic methods with available dynamics information, we successfully retrieved multiple feedback modules of three important signaling networks. These feedbacks are structurally arranged in a hierarchical way and dynamically produce layered temporal profiles of output signals. We found that global and local feedbacks act in very different ways and on distinct features of the information flow conveyed by signal transduction but work highly coordinately to implement specific biological functions. The redundancy embodied with multiple signal-relaying channels and feedback controls bestow great robustness and the reaction hubs seated at junctions of different paths announce their paramount importance through exquisite parameter management. The current investigation reveals intriguing general features of the organization of cell signaling networks and their relevance to biological function, which may find interesting applications in analysis, design and control of bio-networks. PMID:25951347
A diverse and intricate signalling network regulates stem cell fate in the shoot apical meristem.
Dodsworth, Steven
2009-12-01
At the shoot apex of plants is a small region known as the shoot apical meristem (SAM) that maintains a population of undifferentiated (stem) cells whilst providing cells for developing lateral organs and the stem. All aerial structures of the plant develop from the SAM post-embryogenesis, enabling plants to grow in a characteristic modular fashion with great phenotypic and developmental plasticity throughout their lifetime. The maintenance of the stem cell population is intimately balanced with cell recruitment into differentiating tissues through intercellular communication involving a complex signalling network. Recent studies have shown that diverse regulators function in SAM maintenance, many of which converge on the WUSCHEL (WUS) gene. In this review the diverse regulatory modules that function in SAM maintenance are discussed: transcriptional and epigenetic control, hormonal regulation, and the balance with organogenesis. The central role of WUS as an integrator of multiple signals is highlighted; in addition, accessory feedback loops emerge as a feature enabling dynamic regulation of the stem cell niche.
RNA regulators responding to ribosomal protein S15 are frequent in sequence space
Slinger, Betty L.; Meyer, Michelle M.
2016-01-01
There are several natural examples of distinct RNA structures that interact with the same ligand to regulate the expression of homologous genes in different organisms. One essential question regarding this phenomenon is whether such RNA regulators are the result of convergent or divergent evolution. Are the RNAs derived from some common ancestor and diverged to the point where we cannot identify the similarity, or have multiple solutions to the same biological problem arisen independently? A key variable in assessing these alternatives is how frequently such regulators arise within sequence space. Ribosomal protein S15 is autogenously regulated via an RNA regulator in many bacterial species; four apparently distinct regulators have been functionally validated in different bacterial phyla. Here, we explore how frequently such regulators arise within a partially randomized sequence population. We find many RNAs that interact specifically with ribosomal protein S15 from Geobacillus kaustophilus with biologically relevant dissociation constants. Furthermore, of the six sequences we characterize, four show regulatory activity in an Escherichia coli reporter assay. Subsequent footprinting and mutagenesis analysis indicates that protein binding proximal to regulatory features such as the Shine–Dalgarno sequence is sufficient to enable regulation, suggesting that regulation in response to S15 is relatively easily acquired. PMID:27580716
Design and Testing of a Variable Pressure Regulator for the Constellation Space Suit
NASA Technical Reports Server (NTRS)
Gill, Larry; Campbell, Colin
2008-01-01
The next generation space suit requires additional capabilities for controlling and adjusting internal pressure than previous design suits. Next generation suit pressures will range from slight pressure, for astronaut prebreath comfort, to hyperbaric pressure levels for emergency medical treatment. Carleton was awarded a contract in 2008 to design and build a proof of concept bench top demonstrator regulator having five setpoints which are selectable using input electronic signaling. Although the basic regulator architecture is very similar to the existing SOP regulator used in the current EMU, the major difference is the electrical selectivity of multiple setpoints rather than the mechanical On/Off feature found on the SOP regulator. The concept regulator employs a linear actuator stepper motor combination to provide variable compression to a custom design main regulator spring. This concept allows for a continuously adjustable outlet pressures from 8.2 psid (maximum) down to "firm" zero thus effectively allowing it to serve as a shutoff valve. This paper details the regulator design and presents test results on regulation band width, command set point accuracy; slue rate and regulation stability, particularly when the set point is being slued. Projections for a flight configuration version are also offered for performance, architectural layout and weight.
A multiple-feature and multiple-kernel scene segmentation algorithm for humanoid robot.
Liu, Zhi; Xu, Shuqiong; Zhang, Yun; Chen, Chun Lung Philip
2014-11-01
This technical correspondence presents a multiple-feature and multiple-kernel support vector machine (MFMK-SVM) methodology to achieve a more reliable and robust segmentation performance for humanoid robot. The pixel wise intensity, gradient, and C1 SMF features are extracted via the local homogeneity model and Gabor filter, which would be used as inputs of MFMK-SVM model. It may provide multiple features of the samples for easier implementation and efficient computation of MFMK-SVM model. A new clustering method, which is called feature validity-interval type-2 fuzzy C-means (FV-IT2FCM) clustering algorithm, is proposed by integrating a type-2 fuzzy criterion in the clustering optimization process to improve the robustness and reliability of clustering results by the iterative optimization. Furthermore, the clustering validity is employed to select the training samples for the learning of the MFMK-SVM model. The MFMK-SVM scene segmentation method is able to fully take advantage of the multiple features of scene image and the ability of multiple kernels. Experiments on the BSDS dataset and real natural scene images demonstrate the superior performance of our proposed method.
Zhao, Xiaowei; Ning, Qiao; Ai, Meiyue; Chai, Haiting; Yang, Guifu
2016-06-07
As a selective and reversible protein post-translational modification, S-glutathionylation generates mixed disulfides between glutathione (GSH) and cysteine residues, and plays an important role in regulating protein activity, stability, and redox regulation. To fully understand S-glutathionylation mechanisms, identification of substrates and specific S-Glutathionylated sites is crucial. Experimental identification of S-glutathionylated sites is labor-intensive and time consuming, so establishing an effective computational method is much desirable due to their convenient and fast speed. Therefore, in this study, a new bioinformatics tool named SSGlu (Species-Specific identification of Protein S-glutathionylation Sites) was developed to identify species-specific protein S-glutathionylated sites, utilizing support vector machines that combine multiple sequence-derived features with a two-step feature selection. By 5-fold cross validation, the performance of SSGlu was measured with an AUC of 0.8105 and 0.8041 for Homo sapiens and Mus musculus, respectively. Additionally, SSGlu was compared with the existing methods, and the higher MCC and AUC of SSGlu demonstrated that SSGlu was very promising to predict S-glutathionylated sites. Furthermore, a site-specific analysis showed that S-glutathionylation intimately correlated with the features derived from its surrounding sites. The conclusions derived from this study might help to understand more of the S-glutathionylation mechanism and guide the related experimental validation. For public access, SSGlu is freely accessible at http://59.73.198.144:8080/SSGlu/. Copyright © 2016 Elsevier Ltd. All rights reserved.
Intracellular Protein Shuttling: A Mechanism Relevant for Myelin Repair in Multiple Sclerosis?
Göttle, Peter; Küry, Patrick
2015-01-01
A prominent feature of demyelinating diseases such as multiple sclerosis (MS) is the degeneration and loss of previously established functional myelin sheaths, which results in impaired signal propagation and axonal damage. However, at least in early disease stages, partial replacement of lost oligodendrocytes and thus remyelination occur as a result of resident oligodendroglial precursor cell (OPC) activation. These cells represent a widespread cell population within the adult central nervous system (CNS) that can differentiate into functional myelinating glial cells to restore axonal functions. Nevertheless, the spontaneous remyelination capacity in the adult CNS is inefficient because OPCs often fail to generate new oligodendrocytes due to the lack of stimulatory cues and the presence of inhibitory factors. Recent studies have provided evidence that regulated intracellular protein shuttling is functionally involved in oligodendroglial differentiation and remyelination activities. In this review we shed light on the role of the subcellular localization of differentiation-associated factors within oligodendroglial cells and show that regulation of intracellular localization of regulatory factors represents a crucial process to modulate oligodendroglial maturation and myelin repair in the CNS. PMID:26151843
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Mi; Pu, Yunqiao; Yoo, Chang Geun
The native recalcitrance of plants hinders the biomass conversion process using current biorefinery techniques. Down-regulation of the caffeic acid O-methyltransferase (COMT) gene in the lignin biosynthesis pathway of switchgrass reduced the thermochemical and biochemical conversion recalcitrance of biomass. Due to potential environmental influences on lignin biosynthesis and deposition, studying the consequences of physicochemical changes in field-grown plants without pretreatment is essential to evaluate the performance of lignin-altered plants. In this study, we determined the chemical composition, cellulose crystallinity and the degree of its polymerization, molecular weight of hemicellulose, and cellulose accessibility of cell walls in order to better understand themore » fundamental features of why biomass is recalcitrant to conversion without pretreatment. The most important is to investigate whether traits and features are stable in the dynamics of field environmental effects over multiple years.« less
Mof-Tree: A Spatial Access Method To Manipulate Multiple Overlapping Features.
ERIC Educational Resources Information Center
Manolopoulos, Yannis; Nardelli, Enrico; Papadopoulos, Apostolos; Proietti, Guido
1997-01-01
Investigates the manipulation of large sets of two-dimensional data representing multiple overlapping features, and presents a new access method, the MOF-tree. Analyzes storage requirements and time with respect to window query operations involving multiple features. Examines both the pointer-based and pointerless MOF-tree representations.…
Computer Based Behavioral Biometric Authentication via Multi-Modal Fusion
2013-03-01
the decisions made by each individual modality. Fusion of features is the simple concatenation of feature vectors from multiple modalities to be...of Features BayesNet MDL 330 LibSVM PCA 80 J48 Wrapper Evaluator 11 3.5.3 Ensemble Based Decision Level Fusion. In ensemble learning multiple ...The high fusion percentages validate our hypothesis that by combining features from multiple modalities, classification accuracy can be improved. As
Fifteen years of APC/cyclosome: a short and impressive biography.
Simpson-Lavy, Kobi J; Oren, Yifat S; Feine, Oren; Sajman, Julia; Listovsky, Tammy; Brandeis, Michael
2010-02-01
The APC/C (anaphase-promoting complex/cyclosome) discovered exactly 15 years ago by Avram Heshko and Marc Kirschner is by far the most complex ubiquitin ligase discovered so far. The APC/C is composed of roughly a dozen subunits and measures a massive 1.5 MDa. This huge complex, as well as its multiple modes of regulation, boasts impressive evolutionary conservation. One of its most puzzling features is its split personality: regulation of mitotic exit events on the one hand, and its ongoing activity during G(1)-phase, G(0)-phase and in terminally differentiated cells. The present short review is intended to provide a basic description of our current understanding of the APC/C, focusing on recent findings concerning its role in G(1)-phase and in differentiated cells.
Seq-ing answers: uncovering the unexpected in global gene regulation.
Otto, George Maxwell; Brar, Gloria Ann
2018-04-19
The development of techniques for measuring gene expression globally has greatly expanded our understanding of gene regulatory mechanisms in depth and scale. We can now quantify every intermediate and transition in the canonical pathway of gene expression-from DNA to mRNA to protein-genome-wide. Employing such measurements in parallel can produce rich datasets, but extracting the most information requires careful experimental design and analysis. Here, we argue for the value of genome-wide studies that measure multiple outputs of gene expression over many timepoints during the course of a natural developmental process. We discuss our findings from a highly parallel gene expression dataset of meiotic differentiation, and those of others, to illustrate how leveraging these features can provide new and surprising insight into fundamental mechanisms of gene regulation.
Visualizing Human Migration Trhough Space and Time
NASA Astrophysics Data System (ADS)
Zambotti, G.; Guan, W.; Gest, J.
2015-07-01
Human migration has been an important activity in human societies since antiquity. Since 1890, approximately three percent of the world's population has lived outside of their country of origin. As globalization intensifies in the modern era, human migration persists even as governments seek to more stringently regulate flows. Understanding this phenomenon, its causes, processes and impacts often starts from measuring and visualizing its spatiotemporal patterns. This study builds a generic online platform for users to interactively visualize human migration through space and time. This entails quickly ingesting human migration data in plain text or tabular format; matching the records with pre-established geographic features such as administrative polygons; symbolizing the migration flow by circular arcs of varying color and weight based on the flow attributes; connecting the centroids of the origin and destination polygons; and allowing the user to select either an origin or a destination feature to display all flows in or out of that feature through time. The method was first developed using ArcGIS Server for world-wide cross-country migration, and later applied to visualizing domestic migration patterns within China between provinces, and between states in the United States, all through multiple years. The technical challenges of this study include simplifying the shapes of features to enhance user interaction, rendering performance and application scalability; enabling the temporal renderers to provide time-based rendering of features and the flow among them; and developing a responsive web design (RWD) application to provide an optimal viewing experience. The platform is available online for the public to use, and the methodology is easily adoptable to visualizing any flow, not only human migration but also the flow of goods, capital, disease, ideology, etc., between multiple origins and destinations across space and time.
Bioinformatics Knowledge Map for Analysis of Beta-Catenin Function in Cancer
Arighi, Cecilia N.; Wu, Cathy H.
2015-01-01
Given the wealth of bioinformatics resources and the growing complexity of biological information, it is valuable to integrate data from disparate sources to gain insight into the role of genes/proteins in health and disease. We have developed a bioinformatics framework that combines literature mining with information from biomedical ontologies and curated databases to create knowledge “maps” of genes/proteins of interest. We applied this approach to the study of beta-catenin, a cell adhesion molecule and transcriptional regulator implicated in cancer. The knowledge map includes post-translational modifications (PTMs), protein-protein interactions, disease-associated mutations, and transcription factors co-activated by beta-catenin and their targets and captures the major processes in which beta-catenin is known to participate. Using the map, we generated testable hypotheses about beta-catenin biology in normal and cancer cells. By focusing on proteins participating in multiple relation types, we identified proteins that may participate in feedback loops regulating beta-catenin transcriptional activity. By combining multiple network relations with PTM proteoform-specific functional information, we proposed a mechanism to explain the observation that the cyclin dependent kinase CDK5 positively regulates beta-catenin co-activator activity. Finally, by overlaying cancer-associated mutation data with sequence features, we observed mutation patterns in several beta-catenin PTM sites and PTM enzyme binding sites that varied by tissue type, suggesting multiple mechanisms by which beta-catenin mutations can contribute to cancer. The approach described, which captures rich information for molecular species from genes and proteins to PTM proteoforms, is extensible to other proteins and their involvement in disease. PMID:26509276
Gcn4-Mediator Specificity Is Mediated by a Large and Dynamic Fuzzy Protein-Protein Complex.
Tuttle, Lisa M; Pacheco, Derek; Warfield, Linda; Luo, Jie; Ranish, Jeff; Hahn, Steven; Klevit, Rachel E
2018-03-20
Transcription activation domains (ADs) are inherently disordered proteins that often target multiple coactivator complexes, but the specificity of these interactions is not understood. Efficient transcription activation by yeast Gcn4 requires its tandem ADs and four activator-binding domains (ABDs) on its target, the Mediator subunit Med15. Multiple ABDs are a common feature of coactivator complexes. We find that the large Gcn4-Med15 complex is heterogeneous and contains nearly all possible AD-ABD interactions. Gcn4-Med15 forms via a dynamic fuzzy protein-protein interface, where ADs bind the ABDs in multiple orientations via hydrophobic regions that gain helicity. This combinatorial mechanism allows individual low-affinity and specificity interactions to generate a biologically functional, specific, and higher affinity complex despite lacking a defined protein-protein interface. This binding strategy is likely representative of many activators that target multiple coactivators, as it allows great flexibility in combinations of activators that can cooperate to regulate genes with variable coactivator requirements. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.
He, Xin; Samee, Md. Abul Hassan; Blatti, Charles; Sinha, Saurabh
2010-01-01
Quantitative models of cis-regulatory activity have the potential to improve our mechanistic understanding of transcriptional regulation. However, the few models available today have been based on simplistic assumptions about the sequences being modeled, or heuristic approximations of the underlying regulatory mechanisms. We have developed a thermodynamics-based model to predict gene expression driven by any DNA sequence, as a function of transcription factor concentrations and their DNA-binding specificities. It uses statistical thermodynamics theory to model not only protein-DNA interaction, but also the effect of DNA-bound activators and repressors on gene expression. In addition, the model incorporates mechanistic features such as synergistic effect of multiple activators, short range repression, and cooperativity in transcription factor-DNA binding, allowing us to systematically evaluate the significance of these features in the context of available expression data. Using this model on segmentation-related enhancers in Drosophila, we find that transcriptional synergy due to simultaneous action of multiple activators helps explain the data beyond what can be explained by cooperative DNA-binding alone. We find clear support for the phenomenon of short-range repression, where repressors do not directly interact with the basal transcriptional machinery. We also find that the binding sites contributing to an enhancer's function may not be conserved during evolution, and a noticeable fraction of these undergo lineage-specific changes. Our implementation of the model, called GEMSTAT, is the first publicly available program for simultaneously modeling the regulatory activities of a given set of sequences. PMID:20862354
Understanding Evolutionary Potential in Virtual CPU Instruction Set Architectures
Bryson, David M.; Ofria, Charles
2013-01-01
We investigate fundamental decisions in the design of instruction set architectures for linear genetic programs that are used as both model systems in evolutionary biology and underlying solution representations in evolutionary computation. We subjected digital organisms with each tested architecture to seven different computational environments designed to present a range of evolutionary challenges. Our goal was to engineer a general purpose architecture that would be effective under a broad range of evolutionary conditions. We evaluated six different types of architectural features for the virtual CPUs: (1) genetic flexibility: we allowed digital organisms to more precisely modify the function of genetic instructions, (2) memory: we provided an increased number of registers in the virtual CPUs, (3) decoupled sensors and actuators: we separated input and output operations to enable greater control over data flow. We also tested a variety of methods to regulate expression: (4) explicit labels that allow programs to dynamically refer to specific genome positions, (5) position-relative search instructions, and (6) multiple new flow control instructions, including conditionals and jumps. Each of these features also adds complication to the instruction set and risks slowing evolution due to epistatic interactions. Two features (multiple argument specification and separated I/O) demonstrated substantial improvements in the majority of test environments, along with versions of each of the remaining architecture modifications that show significant improvements in multiple environments. However, some tested modifications were detrimental, though most exhibit no systematic effects on evolutionary potential, highlighting the robustness of digital evolution. Combined, these observations enhance our understanding of how instruction architecture impacts evolutionary potential, enabling the creation of architectures that support more rapid evolution of complex solutions to a broad range of challenges. PMID:24376669
Lukman, Suryani; Lane, David P.; Verma, Chandra S.
2013-01-01
The transcription factor p53 regulates cellular integrity in response to stress. p53 is mutated in more than half of cancerous cells, with a majority of the mutations localized to the DNA binding domain (DBD). In order to map the structural and dynamical features of the DBD, we carried out multiple copy molecular dynamics simulations (totaling 0.8 μs). Simulations show the loop 1 to be the most dynamic element among the DNA-contacting loops (loops 1-3). Loop 1 occupies two major conformational states: extended and recessed; the former but not the latter displays correlations in atomic fluctuations with those of loop 2 (~24 Å apart). Since loop 1 binds to the major groove whereas loop 2 binds to the minor groove of DNA, our results begin to provide some insight into the possible mechanism underpinning the cooperative nature of DBD binding to DNA. We propose (1) a novel mechanism underlying the dynamics of loop 1 and the possible tread-milling of p53 on DNA and (2) possible mutations on loop 1 residues to restore the transcriptional activity of an oncogenic mutation at a distant site. PMID:24324553
Jaiswal, Ravi K.; Prabha, Tangirala Surya; Manjeera, Gowravaram; Gopal, Balasubramanian
2013-01-01
The relative levels of different σ factors dictate the expression profile of a bacterium. Extracytoplasmic function σ factors synchronize the transcriptional profile with environmental conditions. The cellular concentration of free extracytoplasmic function σ factors is regulated by the localization of this protein in a σ/anti-σ complex. Anti-σ factors are multi-domain proteins with a receptor to sense environmental stimuli and a conserved anti-σ domain (ASD) that binds a σ factor. Here we describe the structure of Mycobacterium tuberculosis anti-σD (RsdA) in complex with the -35 promoter binding domain of σD (σD4). We note distinct conformational features that enable the release of σD by the selective proteolysis of the ASD in RsdA. The structural and biochemical features of the σD/RsdA complex provide a basis to reconcile diverse regulatory mechanisms that govern σ/anti-σ interactions despite high overall structural similarity. Multiple regulatory mechanisms embedded in an ASD scaffold thus provide an elegant route to rapidly re-engineer the expression profile of a bacterium in response to an environmental stimulus. PMID:23314154
Splicing regulatory factors, ageing and age-related disease.
Latorre, Eva; Harries, Lorna W
2017-07-01
Alternative splicing is a co-transcriptional process, which allows for the production of multiple transcripts from a single gene and is emerging as an important control point for gene expression. Alternatively expressed isoforms often have antagonistic function and differential temporal or spatial expression patterns, yielding enormous plasticity and adaptability to cells and increasing their ability to respond to environmental challenge. The regulation of alternative splicing is critical for numerous cellular functions in both pathological and physiological conditions, and deregulated alternative splicing is a key feature of common chronic diseases. Isoform choice is controlled by a battery of splicing regulatory proteins, which include the serine arginine rich (SRSF) proteins and the heterogeneous ribonucleoprotein (hnRNP) classes of genes. These important splicing regulators have been implicated in age-related disease, and in the ageing process itself. This review will outline the important contribution of splicing regulator proteins to ageing and age-related disease. Copyright © 2017 Elsevier B.V. All rights reserved.
Multivalency regulates activity in an intrinsically disordered transcription factor
Clark, Sarah; Myers, Janette B; King, Ashleigh; Fiala, Radovan; Novacek, Jiri; Pearce, Grant; Heierhorst, Jörg; Reichow, Steve L
2018-01-01
The transcription factor ASCIZ (ATMIN, ZNF822) has an unusually high number of recognition motifs for the product of its main target gene, the hub protein LC8 (DYNLL1). Using a combination of biophysical methods, structural analysis by NMR and electron microscopy, and cellular transcription assays, we developed a model that proposes a concerted role of intrinsic disorder and multiple LC8 binding events in regulating LC8 transcription. We demonstrate that the long intrinsically disordered C-terminal domain of ASCIZ binds LC8 to form a dynamic ensemble of complexes with a gradient of transcriptional activity that is inversely proportional to LC8 occupancy. The preference for low occupancy complexes at saturating LC8 concentrations with both human and Drosophila ASCIZ indicates that negative cooperativity is an important feature of ASCIZ-LC8 interactions. The prevalence of intrinsic disorder and multivalency among transcription factors suggests that formation of heterogeneous, dynamic complexes is a widespread mechanism for tuning transcriptional regulation. PMID:29714690
TAM receptors regulate multiple features of microglial physiology.
Fourgeaud, Lawrence; Través, Paqui G; Tufail, Yusuf; Leal-Bailey, Humberto; Lew, Erin D; Burrola, Patrick G; Callaway, Perri; Zagórska, Anna; Rothlin, Carla V; Nimmerjahn, Axel; Lemke, Greg
2016-04-14
Microglia are damage sensors for the central nervous system (CNS), and the phagocytes responsible for routine non-inflammatory clearance of dead brain cells. Here we show that the TAM receptor tyrosine kinases Mer and Axl regulate these microglial functions. We find that adult mice deficient in microglial Mer and Axl exhibit a marked accumulation of apoptotic cells specifically in neurogenic regions of the CNS, and that microglial phagocytosis of the apoptotic cells generated during adult neurogenesis is normally driven by both TAM receptor ligands Gas6 and protein S. Using live two-photon imaging, we demonstrate that the microglial response to brain damage is also TAM-regulated, as TAM-deficient microglia display reduced process motility and delayed convergence to sites of injury. Finally, we show that microglial expression of Axl is prominently upregulated in the inflammatory environment that develops in a mouse model of Parkinson's disease. Together, these results establish TAM receptors as both controllers of microglial physiology and potential targets for therapeutic intervention in CNS disease.
Diversity of the human intestinal microbial flora.
Eckburg, Paul B; Bik, Elisabeth M; Bernstein, Charles N; Purdom, Elizabeth; Dethlefsen, Les; Sargent, Michael; Gill, Steven R; Nelson, Karen E; Relman, David A
2005-06-10
The human endogenous intestinal microflora is an essential "organ" in providing nourishment, regulating epithelial development, and instructing innate immunity; yet, surprisingly, basic features remain poorly described. We examined 13,355 prokaryotic ribosomal RNA gene sequences from multiple colonic mucosal sites and feces of healthy subjects to improve our understanding of gut microbial diversity. A majority of the bacterial sequences corresponded to uncultivated species and novel microorganisms. We discovered significant intersubject variability and differences between stool and mucosa community composition. Characterization of this immensely diverse ecosystem is the first step in elucidating its role in health and disease.
Taddei, Lucilla; Stella, Giulio Rocco; Rogato, Alessandra; Bailleul, Benjamin; Fortunato, Antonio Emidio; Annunziata, Rossella; Sanges, Remo; Thaler, Michael; Lepetit, Bernard; Lavaud, Johann; Jaubert, Marianne; Finazzi, Giovanni; Bouly, Jean-Pierre; Falciatore, Angela
2016-01-01
Diatoms are phytoplanktonic organisms that grow successfully in the ocean where light conditions are highly variable. Studies of the molecular mechanisms of light acclimation in the marine diatom Phaeodactylum tricornutum show that carotenoid de-epoxidation enzymes and LHCX1, a member of the light-harvesting protein family, both contribute to dissipate excess light energy through non-photochemical quenching (NPQ). In this study, we investigate the role of the other members of the LHCX family in diatom stress responses. Our analysis of available genomic data shows that the presence of multiple LHCX genes is a conserved feature of diatom species living in different ecological niches. Moreover, an analysis of the levels of four P. tricornutum LHCX transcripts in relation to protein expression and photosynthetic activity indicates that LHCXs are differentially regulated under different light intensities and nutrient starvation, mostly modulating NPQ capacity. We conclude that multiple abiotic stress signals converge to regulate the LHCX content of cells, providing a way to fine-tune light harvesting and photoprotection. Moreover, our data indicate that the expansion of the LHCX gene family reflects functional diversification of its members which could benefit cells responding to highly variable ocean environments. PMID:27225826
JOVIAL/Ada Microprocessor Study.
1982-04-01
Study Final Technical Report interesting feature of the nodes is that they provide multiple virtual terminals, so it is possible to monitor several...Terminal Interface Tasking Except ion Handling A more elaborate system could allow such features as spooling, background jobs or multiple users. To a large...Another editor feature is the buffer. Buffers may hold small amounts of text or entire text objects. They allow multiple files to be edited simultaneously
Tremblay-LeMay, Rosemarie; Rastgoo, Nasrin; Chang, Hong
2018-03-27
Even with recent advances in therapy regimen, multiple myeloma patients commonly develop drug resistance and relapse. The relevance of targeting the PD-1/PD-L1 axis has been demonstrated in pre-clinical models. Monotherapy with PD-1 inhibitors produced disappointing results, but combinations with other drugs used in the treatment of multiple myeloma seemed promising, and clinical trials are ongoing. However, there have recently been concerns about the safety of PD-1 and PD-L1 inhibitors combined with immunomodulators in the treatment of multiple myeloma, and several trials have been suspended. There is therefore a need for alternative combinations of drugs or different approaches to target this pathway. Protein expression of PD-L1 on cancer cells, including in multiple myeloma, has been associated with intrinsic aggressive features independent of immune evasion mechanisms, thereby providing a rationale for the adoption of new strategies directly targeting PD-L1 protein expression. Drugs modulating the transcriptional and post-transcriptional regulation of PD-L1 could represent new therapeutic strategies for the treatment of multiple myeloma, help potentiate the action of other drugs or be combined to PD-1/PD-L1 inhibitors in order to avoid the potentially problematic combination with immunomodulators. This review will focus on the pathophysiology of PD-L1 expression in multiple myeloma and drugs that have been shown to modulate this expression.
Wagner, Andreas; Ortman, Scott; Maxfield, Robert
2016-01-01
Standards are specifications to which the elements of a technology must conform. Here, we apply this notion to the biochemical ‘technologies' of nature, where objects like DNA and proteins, as well as processes like the regulation of gene activity are highly standardized. We introduce the concept of standards with multiple examples, ranging from the ancient genetic material RNA, to Palaeolithic stone axes, and digital electronics, and we discuss common ways in which standards emerge in nature and technology. We then focus on the question of how standards can facilitate technological and biological innovation. Innovation-enhancing standards include those of proteins and digital electronics. They share common features, such as that few standardized building blocks can be combined through standard interfaces to create myriad useful objects or processes. We argue that such features will also characterize the most innovation-enhancing standards of future technologies. PMID:26864893
Free energy landscape of activation in a signaling protein at atomic resolution
Pontiggia, F.; Pachov, D.V.; Clarkson, M.W.; Villali, J.; Hagan, M.F.; Pande, V.S.; Kern, D.
2015-01-01
The interconversion between inactive and active protein states, traditionally described by two static structures, is at the heart of signaling. However, how folded states interconvert is largely unknown due to the inability to experimentally observe transition pathways. Here we explore the free energy landscape of the bacterial response regulator NtrC by combining computation and NMR, and discover unexpected features underlying efficient signaling. We find that functional states are defined purely in kinetic and not structural terms. The need of a well-defined conformer, crucial to the active state, is absent in the inactive state, which comprises a heterogeneous collection of conformers. The transition between active and inactive states occurs through multiple pathways, facilitated by a number of nonnative transient hydrogen bonds, thus lowering the transition barrier through both entropic and enthalpic contributions. These findings may represent general features for functional conformational transitions within the folded state. PMID:26073309
Wagner, Andreas; Ortman, Scott; Maxfield, Robert
2016-02-01
Standards are specifications to which the elements of a technology must conform. Here, we apply this notion to the biochemical 'technologies' of nature, where objects like DNA and proteins, as well as processes like the regulation of gene activity are highly standardized. We introduce the concept of standards with multiple examples, ranging from the ancient genetic material RNA, to Palaeolithic stone axes, and digital electronics, and we discuss common ways in which standards emerge in nature and technology. We then focus on the question of how standards can facilitate technological and biological innovation. Innovation-enhancing standards include those of proteins and digital electronics. They share common features, such as that few standardized building blocks can be combined through standard interfaces to create myriad useful objects or processes. We argue that such features will also characterize the most innovation-enhancing standards of future technologies. © 2016 The Author(s).
Ship Detection Based on Multiple Features in Random Forest Model for Hyperspectral Images
NASA Astrophysics Data System (ADS)
Li, N.; Ding, L.; Zhao, H.; Shi, J.; Wang, D.; Gong, X.
2018-04-01
A novel method for detecting ships which aim to make full use of both the spatial and spectral information from hyperspectral images is proposed. Firstly, the band which is high signal-noise ratio in the range of near infrared or short-wave infrared spectrum, is used to segment land and sea on Otsu threshold segmentation method. Secondly, multiple features that include spectral and texture features are extracted from hyperspectral images. Principal components analysis (PCA) is used to extract spectral features, the Grey Level Co-occurrence Matrix (GLCM) is used to extract texture features. Finally, Random Forest (RF) model is introduced to detect ships based on the extracted features. To illustrate the effectiveness of the method, we carry out experiments over the EO-1 data by comparing single feature and different multiple features. Compared with the traditional single feature method and Support Vector Machine (SVM) model, the proposed method can stably achieve the target detection of ships under complex background and can effectively improve the detection accuracy of ships.
Features in visual search combine linearly
Pramod, R. T.; Arun, S. P.
2014-01-01
Single features such as line orientation and length are known to guide visual search, but relatively little is known about how multiple features combine in search. To address this question, we investigated how search for targets differing in multiple features (intensity, length, orientation) from the distracters is related to searches for targets differing in each of the individual features. We tested race models (based on reaction times) and co-activation models (based on reciprocal of reaction times) for their ability to predict multiple feature searches. Multiple feature searches were best accounted for by a co-activation model in which feature information combined linearly (r = 0.95). This result agrees with the classic finding that these features are separable i.e., subjective dissimilarity ratings sum linearly. We then replicated the classical finding that the length and width of a rectangle are integral features—in other words, they combine nonlinearly in visual search. However, to our surprise, upon including aspect ratio as an additional feature, length and width combined linearly and this model outperformed all other models. Thus, length and width of a rectangle became separable when considered together with aspect ratio. This finding predicts that searches involving shapes with identical aspect ratio should be more difficult than searches where shapes differ in aspect ratio. We confirmed this prediction on a variety of shapes. We conclude that features in visual search co-activate linearly and demonstrate for the first time that aspect ratio is a novel feature that guides visual search. PMID:24715328
Metabolic Features of Multiple Myeloma.
El Arfani, Chaima; De Veirman, Kim; Maes, Ken; De Bruyne, Elke; Menu, Eline
2018-04-14
Cancer is known for its cellular changes contributing to tumour growth and cell proliferation. As part of these changes, metabolic rearrangements are identified in several cancers, including multiple myeloma (MM), which is a condition whereby malignant plasma cells accumulate in the bone marrow (BM). These metabolic changes consist of generation, inhibition and accumulation of metabolites and metabolic shifts in MM cells. Changes in the BM micro-environment could be the reason for such adjustments. Enhancement of glycolysis and glutaminolysis is found in MM cells compared to healthy cells. Metabolites and enzymes can be upregulated or downregulated and play a crucial role in drug resistance. Therefore, this review will focus on changes in glucose and glutamine metabolism linked with the emergence of drug resistance. Moreover, metabolites do not only affect other metabolic components to benefit cancer development; they also interfere with transcription factors involved in proliferation and apoptotic regulation.
Rivas, Hembly G.; Schmaling, Summer K.; Gaglia, Marta M.
2016-01-01
The ability to shut off host gene expression is a shared feature of many viral infections, and it is thought to promote viral replication by freeing host cell machinery and blocking immune responses. Despite the molecular differences between viruses, an emerging theme in the study of host shutoff is that divergent viruses use similar mechanisms to enact host shutoff. Moreover, even viruses that encode few proteins often have multiple mechanisms to affect host gene expression, and we are only starting to understand how these mechanisms are integrated. In this review we discuss the multiplicity of host shutoff mechanisms used by the orthomyxovirus influenza A virus and members of the alpha- and gamma-herpesvirus subfamilies. We highlight the surprising similarities in their mechanisms of host shutoff and discuss how the different mechanisms they use may play a coordinated role in gene regulation. PMID:27092522
Impulsive action: emotional impulses and their control
Frijda, Nico H.; Ridderinkhof, K. Richard; Rietveld, Erik
2014-01-01
This paper presents a novel theoretical view on impulsive action, integrating thus far separate perspectives on non-reflective action, motivation, emotion regulation, and impulse control. We frame impulsive action in terms of directedness of the individual organism toward, away, or against other givens – toward future states and away from one’s present state. First, appraisal of a perceived or thought-of event or object on occasion, rapidly and without premonition or conscious deliberation, triggers a motive to modify one’s relation to that event or object. Situational specifics of the event as perceived and appraised motivate and guide selection of readiness for a particular kind of purposive action. Second, perception of complex situations can give rise to multiple appraisals, multiple motives, and multiple simultaneous changes in action readiness. Multiple states of action readiness may interact in generating action, by reinforcing or attenuating each other, thereby yielding impulse control. We show how emotion control can itself result from a motive state or state of action readiness. Our view links impulsive action mechanistically to states of action readiness, which is the central feature of what distinguishes one kind of emotion from another. It thus provides a novel theoretical perspective to the somewhat fragmented literature on impulsive action. PMID:24917835
The Regulation of Filamentous Growth in Yeast
Cullen, Paul J.; Sprague, George F.
2012-01-01
Filamentous growth is a nutrient-regulated growth response that occurs in many fungal species. In pathogens, filamentous growth is critical for host–cell attachment, invasion into tissues, and virulence. The budding yeast Saccharomyces cerevisiae undergoes filamentous growth, which provides a genetically tractable system to study the molecular basis of the response. Filamentous growth is regulated by evolutionarily conserved signaling pathways. One of these pathways is a mitogen activated protein kinase (MAPK) pathway. A remarkable feature of the filamentous growth MAPK pathway is that it is composed of factors that also function in other pathways. An intriguing challenge therefore has been to understand how pathways that share components establish and maintain their identity. Other canonical signaling pathways—rat sarcoma/protein kinase A (RAS/PKA), sucrose nonfermentable (SNF), and target of rapamycin (TOR)—also regulate filamentous growth, which raises the question of how signals from multiple pathways become integrated into a coordinated response. Together, these pathways regulate cell differentiation to the filamentous type, which is characterized by changes in cell adhesion, cell polarity, and cell shape. How these changes are accomplished is also discussed. High-throughput genomics approaches have recently uncovered new connections to filamentous growth regulation. These connections suggest that filamentous growth is a more complex and globally regulated behavior than is currently appreciated, which may help to pave the way for future investigations into this eukaryotic cell differentiation behavior. PMID:22219507
Human-specific features of spatial gene expression and regulation in eight brain regions.
Xu, Chuan; Li, Qian; Efimova, Olga; He, Liu; Tatsumoto, Shoji; Stepanova, Vita; Oishi, Takao; Udono, Toshifumi; Yamaguchi, Katsushi; Shigenobu, Shuji; Kakita, Akiyoshi; Nawa, Hiroyuki; Khaitovich, Philipp; Go, Yasuhiro
2018-06-13
Molecular maps of the human brain alone do not inform us of the features unique to humans. Yet, the identification of these features is important for understanding both the evolution and nature of human cognition. Here, we approached this question by analyzing gene expression and H3K27ac chromatin modification data collected in eight brain regions of humans, chimpanzees, gorillas, a gibbon and macaques. An analysis of spatial transcriptome trajectories across eight brain regions in four primate species revealed 1,851 genes showing human-specific transcriptome differences in one or multiple brain regions, in contrast to 240 chimpanzee-specific ones. More than half of these human-specific differences represented elevated expression of genes enriched in neuronal and astrocytic markers in the human hippocampus, while the rest were enriched in microglial markers and displayed human-specific expression in several frontal cortical regions and the cerebellum. An analysis of the predicted regulatory interactions driving these differences revealed the role of transcription factors in species-specific transcriptome changes, while epigenetic modifications were linked to spatial expression differences conserved across species. Published by Cold Spring Harbor Laboratory Press.
Regulation of podocalyxin trafficking by Rab small GTPases in epithelial cells
Mrozowska, Paulina S.; Fukuda, Mitsunori
2016-01-01
ABSTRACT The characteristic feature of polarity establishment in MDCK II cells is transcytosis of apical glycoprotein podocalyxin (PCX) from the outer plasma membrane to the newly formed apical domain. This transcytotic event consists of multiple steps, including internalization from the plasma membrane, transport through early endosomes and Rab11-positive recycling endosomes, and delivery to the apical membrane. These steps are known to be tightly coordinated by Rab small GTPases, which act as molecular switches cycling between active GTP-bound and inactive GDP-bound states. However, our knowledge regarding which sets of Rabs regulate particular steps of PCX trafficking was rather limited. Recently, we have performed a comprehensive analysis of Rab GTPase engagement in the transcytotic pathway of PCX during polarity establishment in 2-dimensional (2D) and 3-dimensional (3D) MDCK II cell cultures. In this Commentary we summarize our findings and set them in the context of previous reports. PMID:27463697
Mitochondria-Associated Membranes (MAMs): Overview and Its Role in Parkinson's Disease.
Rodríguez-Arribas, M; Yakhine-Diop, S M S; Pedro, J M Bravo-San; Gómez-Suaga, P; Gómez-Sánchez, R; Martínez-Chacón, G; Fuentes, J M; González-Polo, R A; Niso-Santano, M
2017-10-01
Mitochondria-associated membranes (MAMs) are structures that regulate physiological functions between endoplasmic reticulum (ER) and mitochondria in order to maintain calcium signaling and mitochondrial biogenesis. Several proteins located in MAMs, including those encoded by PARK genes and some of neurodegeneration-related proteins (huntingtin, presenilin, etc.), ensure this regulation. In this regard, MAM alteration is associated with neurodegenerative diseases such as Parkinson's (PD), Alzheimer's (AD), and Huntington's diseases (HD) and contributes to the appearance of the pathogenesis features, i.e., autophagy dysregulation, mitochondrial dysfunction, oxidative stress, and lately, neuronal death. Moreover,, ER stress and/or damaged mitochondria can be the cause of these disruptions. Therefore, ER-mitochondria contact structure and function are crucial to multiple cellular processes. This review is focused on the molecular interaction between ER and mitochondria indispensable to MAM formation and on MAM alteration-induced etiology of neurodegenerative diseases.
IVF policy and global/local politics: the making of multiple-embryo transfer regulation in Taiwan.
Wu, Chia-Ling
2012-08-01
This paper analyzes the regulatory trajectory of multiple-embryo transfer in in-vitro fertilization (IVF) in Taiwan. Taking a latecomer to policy-making as the case, it argues the importance of conceptualizing the global/local dynamics in policy-making for assisted reproductive technology (ART). The conceptual framework is built upon recent literature on standardization, science policy, and global assemblage. I propose three interrelated features that reveal the "global in the local": (1) the power relationships among stakeholders, (2) the selected global form that involved actors drew upon, and (3) the re-contextualized assemblage made of local networks. Data included archives, interviews, and participant observation. In different historical periods the specific stakeholders selected different preferred global forms for Taiwan, such as Britain's code of ethics in the 1990s, the American guideline in the early 2000s, and the European trend in the mid-2000s. The global is heterogeneous. The failure to transfer the British regulation, the revision of the American guideline by adding one more embryo than it specified, and the gap between the cited European trend and the "no more than four" in Taiwan's 2007 Human Reproduction Law all show that the local network further transforms the selected global form, confining it to rhetoric only or tailoring it to local needs. Overall, Taiwanese practitioners successfully maintained their medical autonomy to build a 'flexible standardization'. Multiple pregnancy remains the most common health risk of IVF in Taiwan. Copyright © 2012 Elsevier Ltd. All rights reserved.
This dataset consists of various site features from multiple Superfund sites in U.S. EPA Region 8. These data were acquired from multiple sources at different times and were combined into one region-wide layer.
Secure image retrieval with multiple keys
NASA Astrophysics Data System (ADS)
Liang, Haihua; Zhang, Xinpeng; Wei, Qiuhan; Cheng, Hang
2018-03-01
This article proposes a secure image retrieval scheme under a multiuser scenario. In this scheme, the owner first encrypts and uploads images and their corresponding features to the cloud; then, the user submits the encrypted feature of the query image to the cloud; next, the cloud compares the encrypted features and returns encrypted images with similar content to the user. To find the nearest neighbor in the encrypted features, an encryption with multiple keys is proposed, in which the query feature of each user is encrypted by his/her own key. To improve the key security and space utilization, global optimization and Gaussian distribution are, respectively, employed to generate multiple keys. The experiments show that the proposed encryption can provide effective and secure image retrieval for each user and ensure confidentiality of the query feature of each user.
ERIC Educational Resources Information Center
Lee, Hyunjoo
2012-01-01
The purpose of this study was to investigate the effects of goal relations on self-regulation in the pursuit of multiple goals, focusing on self-regulated performance, the self-regulatory process, and task enjoyment. The effect of multiple goal relations on self-regulation was explored in a set of three studies. Goal relations were divided into…
Harnessing Genetic Variation in Leaf Angle to Increase Productivity of Sorghum bicolor
Truong, Sandra K.; McCormick, Ryan F.; Rooney, William L.; Mullet, John E.
2015-01-01
The efficiency with which a plant intercepts solar radiation is determined primarily by its architecture. Understanding the genetic regulation of plant architecture and how changes in architecture affect performance can be used to improve plant productivity. Leaf inclination angle, the angle at which a leaf emerges with respect to the stem, is a feature of plant architecture that influences how a plant canopy intercepts solar radiation. Here we identify extensive genetic variation for leaf inclination angle in the crop plant Sorghum bicolor, a C4 grass species used for the production of grain, forage, and bioenergy. Multiple genetic loci that regulate leaf inclination angle were identified in recombinant inbred line populations of grain and bioenergy sorghum. Alleles of sorghum dwarf-3, a gene encoding a P-glycoprotein involved in polar auxin transport, are shown to change leaf inclination angle by up to 34° (0.59 rad). The impact of heritable variation in leaf inclination angle on light interception in sorghum canopies was assessed using functional-structural plant models and field experiments. Smaller leaf inclination angles caused solar radiation to penetrate deeper into the canopy, and the resulting redistribution of light is predicted to increase the biomass yield potential of bioenergy sorghum by at least 3%. These results show that sorghum leaf angle is a heritable trait regulated by multiple loci and that genetic variation in leaf angle can be used to modify plant architecture to improve sorghum crop performance. PMID:26323882
Description of the PMAD DC test bed architecture and integration sequence
NASA Technical Reports Server (NTRS)
Beach, R. F.; Trash, L.; Fong, D.; Bolerjack, B.
1991-01-01
NASA-Lewis is responsible for the development, fabrication, and assembly of the electric power system (EPS) for the Space Station Freedom (SSF). The SSF power system is radically different from previous spacecraft power systems in both the size and complexity of the system. Unlike past spacecraft power system the SSF EPS will grow and be maintained on orbit and must be flexible to meet changing user power needs. The SSF power system is also unique in comparison with terrestrial power systems because it is dominated by power electronic converters which regulate and control the power. Although spacecraft historically have used power converters for regulation they typically involved only a single series regulating element. The SSF EPS involves multiple regulating elements, two or more in series, prior to the load. These unique system features required the construction of a testbed which would allow the development of spacecraft power system technology. A description is provided of the Power Management and Distribution (PMAD) DC Testbed which was assembled to support the design and early evaluation of the SSF EPS. A description of the integration process used in the assembly sequence is also given along with a description of the support facility.
The Orphan Nuclear Receptor TR4 Is a Vitamin A-activated Nuclear Receptor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, X. Edward; Suino-Powell, Kelly M.; Xu, Yong
2015-11-30
Testicular receptors 2 and 4 (TR2/4) constitute a subgroup of orphan nuclear receptors that play important roles in spermatogenesis, lipid and lipoprotein regulation, and the development of the central nervous system. Currently, little is known about the structural features and the ligand regulation of these receptors. Here we report the crystal structure of the ligand-free TR4 ligand binding domain, which reveals an autorepressed conformation. The ligand binding pocket of TR4 is filled by the C-terminal half of helix 10, and the cofactor binding site is occupied by the AF-2 helix, thus preventing ligand-independent activation of the receptor. However, TR4 exhibitsmore » constitutive transcriptional activity on multiple promoters, which can be further potentiated by nuclear receptor coactivators. Mutations designed to disrupt cofactor binding, dimerization, or ligand binding substantially reduce the transcriptional activity of this receptor. Importantly, both retinol and retinoic acid are able to promote TR4 to recruit coactivators and to activate a TR4-regulated reporter. These findings demonstrate that TR4 is a ligand-regulated nuclear receptor and suggest that retinoids might have a much wider regulatory role via activation of orphan receptors such as TR4.« less
The RNA-binding protein Hfq is important for ribosome biogenesis and affects translation fidelity.
Andrade, José M; Dos Santos, Ricardo F; Chelysheva, Irina; Ignatova, Zoya; Arraiano, Cecília M
2018-06-01
Ribosome biogenesis is a complex process involving multiple factors. Here, we show that the widely conserved RNA chaperone Hfq, which can regulate sRNA-mRNA basepairing, plays a critical role in rRNA processing and ribosome assembly in Escherichia coli Hfq binds the 17S rRNA precursor and facilitates its correct processing and folding to mature 16S rRNA Hfq assists ribosome assembly and associates with pre-30S particles but not with mature 30S subunits. Inactivation of Hfq strikingly decreases the pool of mature 70S ribosomes. The reduction in ribosome levels depends on residues located in the distal face of Hfq but not on residues found in the proximal and rim surfaces which govern interactions with the sRNAs. Our results indicate that Hfq-mediated regulation of ribosomes is independent of its function as sRNA-regulator. Furthermore, we observed that inactivation of Hfq compromises translation efficiency and fidelity, both features of aberrantly assembled ribosomes. Our work expands the functions of the Sm-like protein Hfq beyond its function in small RNA-mediated regulation and unveils a novel role of Hfq as crucial in ribosome biogenesis and translation. © 2018 The Authors.
Calcium as a signal integrator in developing epithelial tissues.
Brodskiy, Pavel A; Zartman, Jeremiah J
2018-05-16
Decoding how tissue properties emerge across multiple spatial and temporal scales from the integration of local signals is a grand challenge in quantitative biology. For example, the collective behavior of epithelial cells is critical for shaping developing embryos. Understanding how epithelial cells interpret a diverse range of local signals to coordinate tissue-level processes requires a systems-level understanding of development. Integration of multiple signaling pathways that specify cell signaling information requires second messengers such as calcium ions. Increasingly, specific roles have been uncovered for calcium signaling throughout development. Calcium signaling regulates many processes including division, migration, death, and differentiation. However, the pleiotropic and ubiquitous nature of calcium signaling implies that many additional functions remain to be discovered. Here we review a selection of recent studies to highlight important insights into how multiple signals are transduced by calcium transients in developing epithelial tissues. Quantitative imaging and computational modeling have provided important insights into how calcium signaling integration occurs. Reverse-engineering the conserved features of signal integration mediated by calcium signaling will enable novel approaches in regenerative medicine and synthetic control of morphogenesis.
Diversity and regulation of plant Ca2+ pumps: insights from expression in yeast
NASA Technical Reports Server (NTRS)
Sze, H.; Liang, F.; Hwang, I.; Curran, A. C.; Harper, J. F.; Evans, M. L. (Principal Investigator)
2000-01-01
The spatial and temporal regulation of calcium concentration in plant cells depends on the coordinate activities of channels and active transporters located on different organelles and membranes. Several Ca2+ pumps have been identified and characterized by functional expression of plant genes in a yeast mutant (K616). This expression system has opened the way to a genetic and biochemical characterization of the regulatory and catalytic features of diverse Ca2+ pumps. Plant Ca(2+)-ATPases fall into two major types: AtECA1 represents one of four or more members of the type IIA (ER-type) Ca(2+)-ATPases in Arabidopsis, and AtACA2 is one of seven or more members of the type IIB (PM-type) Ca(2+)-ATPases that are regulated by a novel amino terminal domain. Type IIB pumps are widely distributed on membranes, including the PM (plasma membrane), vacuole, and ER (endoplasmic reticulum). The regulatory domain serves multiple functions, including autoinhibition, calmodulin binding, and sites for modification by phosphorylation. This domain, however, is considerably diverse among several type IIB ATPases, suggesting that the pumps are differentially regulated. Understanding of Ca2+ transporters at the molecular level is providing insights into their roles in signaling networks and in regulating fundamental processes of cell biology.
A let-7-to-miR-125 MicroRNA Switch Regulates Neuronal Integrity and Lifespan in Drosophila
Chawla, Geetanjali; Deosthale, Padmini; Childress, Sue; Wu, Yen-chi; Sokol, Nicholas S.
2016-01-01
Messenger RNAs (mRNAs) often contain binding sites for multiple, different microRNAs (miRNAs). However, the biological significance of this feature is unclear, since such co-targeting miRNAs could function coordinately, independently, or redundantly with one another. Here, we show that two co-transcribed Drosophila miRNAs, let-7 and miR-125, non-redundantly regulate a common target, the transcription factor Chronologically Inappropriate Morphogenesis (Chinmo). We first characterize novel adult phenotypes associated with loss of both let-7 and miR-125, which are derived from a common, polycistronic transcript that also encodes a third miRNA, miR-100. Consistent with the coordinate upregulation of all three miRNAs in aging flies, these phenotypes include brain degeneration and shortened lifespan. However, transgenic rescue analysis reveal separable roles for these miRNAs: adult miR-125 but not let-7 mutant phenotypes are associated with ectopic Chinmo expression in adult brains and are suppressed by chinmo reduction. In contrast, let-7 is predominantly responsible for regulating chinmo during nervous system formation. These results indicate that let-7 and miR-125 function during two distinct stages, development and adulthood, rather than acting at the same time. These different activities are facilitated by an increased rate of processing of let-7 during development and a lower rate of decay of the accumulated miR-125 in the adult nervous system. Thus, this work not only establishes a key role for the highly conserved miR-125 in aging. It also demonstrates that two co-transcribed miRNAs function independently during distinct stages to regulate a common target, raising the possibility that such biphasic control may be a general feature of clustered miRNAs. PMID:27508495
Feature diagnosticity and task context shape activity in human scene-selective cortex.
Lowe, Matthew X; Gallivan, Jason P; Ferber, Susanne; Cant, Jonathan S
2016-01-15
Scenes are constructed from multiple visual features, yet previous research investigating scene processing has often focused on the contributions of single features in isolation. In the real world, features rarely exist independently of one another and likely converge to inform scene identity in unique ways. Here, we utilize fMRI and pattern classification techniques to examine the interactions between task context (i.e., attend to diagnostic global scene features; texture or layout) and high-level scene attributes (content and spatial boundary) to test the novel hypothesis that scene-selective cortex represents multiple visual features, the importance of which varies according to their diagnostic relevance across scene categories and task demands. Our results show for the first time that scene representations are driven by interactions between multiple visual features and high-level scene attributes. Specifically, univariate analysis of scene-selective cortex revealed that task context and feature diagnosticity shape activity differentially across scene categories. Examination using multivariate decoding methods revealed results consistent with univariate findings, but also evidence for an interaction between high-level scene attributes and diagnostic visual features within scene categories. Critically, these findings suggest visual feature representations are not distributed uniformly across scene categories but are shaped by task context and feature diagnosticity. Thus, we propose that scene-selective cortex constructs a flexible representation of the environment by integrating multiple diagnostically relevant visual features, the nature of which varies according to the particular scene being perceived and the goals of the observer. Copyright © 2015 Elsevier Inc. All rights reserved.
Proteomic changes during intestinal cell maturation in vivo
Chang, Jinsook; Chance, Mark R.; Nicholas, Courtney; Ahmed, Naseem; Guilmeau, Sandra; Flandez, Marta; Wang, Donghai; Byun, Do-Sun; Nasser, Shannon; Albanese, Joseph M.; Corner, Georgia A.; Heerdt, Barbara G.; Wilson, Andrew J.; Augenlicht, Leonard H.; Mariadason, John M.
2008-01-01
Intestinal epithelial cells undergo progressive cell maturation as they migrate along the crypt-villus axis. To determine molecular signatures that define this process, proteins differentially expressed between the crypt and villus were identified by 2D-DIGE and MALDI-MS. Forty-six differentially expressed proteins were identified, several of which were validated by immunohistochemistry. Proteins upregulated in the villus were enriched for those involved in brush border assembly and lipid uptake, established features of differentiated intestinal epithelial cells. Multiple proteins involved in glycolysis were also upregulated in the villus, suggesting increased glycolysis is a feature of intestinal cell differentiation. Conversely, proteins involved in nucleotide metabolism, and protein processing and folding were increased in the crypt, consistent with functions associated with cell proliferation. Three novel paneth cell markers, AGR2, HSPA5 and RRBP1 were also identified. Notably, significant correlation was observed between overall proteomic changes and corresponding gene expression changes along the crypt-villus axis, indicating intestinal cell maturation is primarily regulated at the transcriptional level. This proteomic profiling analysis identified several novel proteins and functional processes differentially induced during intestinal cell maturation in vivo. Integration of proteomic, immunohistochemical, and parallel gene expression datasets demonstrate the coordinated manner in which intestinal cell maturation is regulated. PMID:18824147
Luo, Jing; Wang, An-Lu; Xu, Hao; Shi, Da-Zhuo; Chen, Ke-Ji
2016-11-01
Stenosis of the coronary artery has been considered as an essential component of ischemic heart disease (IHD). Consequently, revascularization [e.g., percutaneous coronary intervention (PCI) and coronary artery bypass] has been the primary therapeutic approach to IHD. Such strategy has indeed revolutionized the management of IHD patients. However, not all patients with myocardial ischemia have visible coronary stenosis. Moreover, cardiovascular events occur in nearly 20% patients with stable coronary artery disease who have undergone PCI. The recently proposed "solar system" hypothesis of IHD postulates that coronary stenosis is only one (albeit important) of its features. Mechanistic contribution and clinical implication of multiple pathophysiological processes beyond coronary stenosis are highlighted in this hypothesis. On the basis of a holistic regulation and individualized medicine, Chinese medicine (CM) has been used in the real-world setting to manage a variety of diseases, including IHD, for more than two thousands years. In this article, we summarize the evidence of CM that supports the "solar system" IHD hypothesis, and argue for a comprehensive approach to IHD. At the theoretical level, the central features of this approach include a holistic view of disease and human subjects, as well as individualized medicine. At the practical level, this approach emphasizes anoxia-tolerance and self-healing.
Multiple Hypotheses Image Segmentation and Classification With Application to Dietary Assessment
Zhu, Fengqing; Bosch, Marc; Khanna, Nitin; Boushey, Carol J.; Delp, Edward J.
2016-01-01
We propose a method for dietary assessment to automatically identify and locate food in a variety of images captured during controlled and natural eating events. Two concepts are combined to achieve this: a set of segmented objects can be partitioned into perceptually similar object classes based on global and local features; and perceptually similar object classes can be used to assess the accuracy of image segmentation. These ideas are implemented by generating multiple segmentations of an image to select stable segmentations based on the classifier’s confidence score assigned to each segmented image region. Automatic segmented regions are classified using a multichannel feature classification system. For each segmented region, multiple feature spaces are formed. Feature vectors in each of the feature spaces are individually classified. The final decision is obtained by combining class decisions from individual feature spaces using decision rules. We show improved accuracy of segmenting food images with classifier feedback. PMID:25561457
Multiple hypotheses image segmentation and classification with application to dietary assessment.
Zhu, Fengqing; Bosch, Marc; Khanna, Nitin; Boushey, Carol J; Delp, Edward J
2015-01-01
We propose a method for dietary assessment to automatically identify and locate food in a variety of images captured during controlled and natural eating events. Two concepts are combined to achieve this: a set of segmented objects can be partitioned into perceptually similar object classes based on global and local features; and perceptually similar object classes can be used to assess the accuracy of image segmentation. These ideas are implemented by generating multiple segmentations of an image to select stable segmentations based on the classifier's confidence score assigned to each segmented image region. Automatic segmented regions are classified using a multichannel feature classification system. For each segmented region, multiple feature spaces are formed. Feature vectors in each of the feature spaces are individually classified. The final decision is obtained by combining class decisions from individual feature spaces using decision rules. We show improved accuracy of segmenting food images with classifier feedback.
Crack Damage Detection Method via Multiple Visual Features and Efficient Multi-Task Learning Model.
Wang, Baoxian; Zhao, Weigang; Gao, Po; Zhang, Yufeng; Wang, Zhe
2018-06-02
This paper proposes an effective and efficient model for concrete crack detection. The presented work consists of two modules: multi-view image feature extraction and multi-task crack region detection. Specifically, multiple visual features (such as texture, edge, etc.) of image regions are calculated, which can suppress various background noises (such as illumination, pockmark, stripe, blurring, etc.). With the computed multiple visual features, a novel crack region detector is advocated using a multi-task learning framework, which involves restraining the variability for different crack region features and emphasizing the separability between crack region features and complex background ones. Furthermore, the extreme learning machine is utilized to construct this multi-task learning model, thereby leading to high computing efficiency and good generalization. Experimental results of the practical concrete images demonstrate that the developed algorithm can achieve favorable crack detection performance compared with traditional crack detectors.
Regulatory insights into the production of UDP-N-acetylglucosamine by Lactobacillus casei
Rodríguez-Díaz, Jesús; Rubio-del-Campo, Antonio; Yebra, María J.
2012-01-01
UDP-N-acetylglucosamine (UDP-GlcNAc) is an important sugar nucleotide used as a precursor of cell wall components in bacteria, and as a substrate in the synthesis of oligosaccharides in eukaryotes. In bacteria UDP-GlcNAc is synthesized from the glycolytic intermediate D-fructose-6-phosphate (fructose-6P) by four successive reactions catalyzed by three enzymes: glucosamine-6-phosphate synthase (GlmS), phosphoglucosamine mutase (GlmM) and the bi-functional enzyme glucosamine-1-phosphate acetyltransferase/ N-acetylglucosamine-1-phosphate uridyltransferase (GlmU). We have previously reported a metabolic engineering strategy in Lactobacillus casei directed to increase the intracellular levels of UDP-GlcNAc by homologous overexpression of the genes glmS, glmM and glmU. One of the most remarkable features regarding the production of UDP-GlcNAc in L. casei was to find multiple regulation points on its biosynthetic pathway: (1) regulation by the NagB enzyme, (2) glmS RNA specific degradation through the possible participation of a glmS riboswitch mechanism, (3) regulation of the GlmU activity probably by end product inhibition and (4) transcription of glmU. PMID:22825354
Hui, YU; Ramkrishna, MITRA; Jing, YANG; YuanYuan, LI; ZhongMing, ZHAO
2016-01-01
Identification of differential regulators is critical to understand the dynamics of cellular systems and molecular mechanisms of diseases. Several computational algorithms have recently been developed for this purpose by using transcriptome and network data. However, it remains largely unclear which algorithm performs better under a specific condition. Such knowledge is important for both appropriate application and future enhancement of these algorithms. Here, we systematically evaluated seven main algorithms (TED, TDD, TFactS, RIF1, RIF2, dCSA_t2t, and dCSA_r2t), using both simulated and real datasets. In our simulation evaluation, we artificially inactivated either a single regulator or multiple regulators and examined how well each algorithm detected known gold standard regulators. We found that all these algorithms could effectively discern signals arising from regulatory network differences, indicating the validity of our simulation schema. Among the seven tested algorithms, TED and TFactS were placed first and second when both discrimination accuracy and robustness against data variation were considered. When applied to two independent lung cancer datasets, both TED and TFactS replicated a substantial fraction of their respective differential regulators. Since TED and TFactS rely on two distinct features of transcriptome data, namely differential co-expression and differential expression, both may be applied as mutual references during practical application. PMID:25326829
Structural Evolution of Differential Amino Acid Effector Regulation in Plant Chorismate Mutases*
Westfall, Corey S.; Xu, Ang; Jez, Joseph M.
2014-01-01
Chorismate mutase converts chorismate into prephenate for aromatic amino acid biosynthesis. To understand the molecular basis of allosteric regulation in the plant chorismate mutases, we analyzed the three Arabidopsis thaliana chorismate mutase isoforms (AtCM1–3) and determined the x-ray crystal structures of AtCM1 in complex with phenylalanine and tyrosine. Functional analyses show a wider range of effector control in the Arabidopsis chorismate mutases than previously reported. AtCM1 is activated by tryptophan with phenylalanine and tyrosine acting as negative effectors; however, tryptophan, cysteine, and histidine activate AtCM3. AtCM2 is a nonallosteric form. The crystal structure of AtCM1 in complex with tyrosine and phenylalanine identifies differences in the effector sites of the allosterically regulated yeast enzyme and the other two Arabidopsis isoforms. Site-directed mutagenesis of residues in the effector site reveals key features leading to differential effector regulation in these enzymes. In AtCM1, mutations of Gly-213 abolish allosteric regulation, as observed in AtCM2. A second effector site position, Gly-149 in AtCM1 and Asp-132 in AtCM3, controls amino acid effector specificity in AtCM1 and AtCM3. Comparisons of chorismate mutases from multiple plants suggest that subtle differences in the effector site are conserved in different lineages and may lead to specialized regulation of this branch point enzyme. PMID:25160622
Effects of Self-Paced Encoding and Practice on Age-Related Deficits in Binding Three Features
ERIC Educational Resources Information Center
Kinjo, Hikari
2010-01-01
Although much literature suggests that the age-related decline in episodic memory could be due to difficulties in binding features of information, previous studies focused mainly on memory of paired associations rather than memory of multiple bound features. In reality, however, there are many situations that require binding multiple features…
Du, Juan; Liu, Shuyan; He, Jie; Liu, Xi; Qu, Ying; Yan, Wenqing; Fan, Jianling; Li, Rong; Xi, Hao; Fu, Weijun; Zhang, Chunyang; Yang, Jing; Hou, Jian
2015-06-20
Side population (SP) cells are an enriched source of cancer-initiating cells with stemness characteristics, generated by increased ABC transporter activity, which has served as a unique hallmark for multiple myeloma (MM) stem cell studies. Here we isolated and identified MM SP cells via Hoechst 33342 staining. Furthermore, we demonstrate that SP cells possess abnormal cell cycle, clonogenicity, and high drug efflux characteristics-all of which are features commonly seen in stem cells. Interestingly, we found that bortezomib, As2O3, and melphalan all affected apoptosis and clonogenicity in SP cells. We followed by characterizing the miRNA signature of MM SP cells and validated the specific miR-451 target tuberous sclerosis 1 (TSC1) gene to reveal that it activates the PI3K/Akt/mTOR signaling in MM SP cells. Inhibition of miR-451 enhanced anti-myeloma novel agents' effectiveness, through increasing cells apoptosis, decreasing clonogenicity, and reducing MDR1 mRNA expression. Moreover, the novel specific PI3K/Akt/mTOR signaling inhibitor S14161 displayed its prowess as a potential therapeutic agent by targeting MM SP cells. Our findings offer insights into the mechanisms regulating MM SP cells and provide a novel strategy to overcome resistance to existing therapies against myeloma.
A Multiple Sensor Machine Vision System for Automatic Hardwood Feature Detection
D. Earl Kline; Richard W. Conners; Daniel L. Schmoldt; Philip A. Araman; Robert L. Brisbin
1993-01-01
A multiple sensor machine vision prototype is being developed to scan full size hardwood lumber at industrial speeds for automatically detecting features such as knots holes, wane, stain, splits, checks, and color. The prototype integrates a multiple sensor imaging system, a materials handling system, a computer system, and application software. The prototype provides...
Decomposition and extraction: a new framework for visual classification.
Fang, Yuqiang; Chen, Qiang; Sun, Lin; Dai, Bin; Yan, Shuicheng
2014-08-01
In this paper, we present a novel framework for visual classification based on hierarchical image decomposition and hybrid midlevel feature extraction. Unlike most midlevel feature learning methods, which focus on the process of coding or pooling, we emphasize that the mechanism of image composition also strongly influences the feature extraction. To effectively explore the image content for the feature extraction, we model a multiplicity feature representation mechanism through meaningful hierarchical image decomposition followed by a fusion step. In particularly, we first propose a new hierarchical image decomposition approach in which each image is decomposed into a series of hierarchical semantical components, i.e, the structure and texture images. Then, different feature extraction schemes can be adopted to match the decomposed structure and texture processes in a dissociative manner. Here, two schemes are explored to produce property related feature representations. One is based on a single-stage network over hand-crafted features and the other is based on a multistage network, which can learn features from raw pixels automatically. Finally, those multiple midlevel features are incorporated by solving a multiple kernel learning task. Extensive experiments are conducted on several challenging data sets for visual classification, and experimental results demonstrate the effectiveness of the proposed method.
Visual Prediction Error Spreads Across Object Features in Human Visual Cortex
Summerfield, Christopher; Egner, Tobias
2016-01-01
Visual cognition is thought to rely heavily on contextual expectations. Accordingly, previous studies have revealed distinct neural signatures for expected versus unexpected stimuli in visual cortex. However, it is presently unknown how the brain combines multiple concurrent stimulus expectations such as those we have for different features of a familiar object. To understand how an unexpected object feature affects the simultaneous processing of other expected feature(s), we combined human fMRI with a task that independently manipulated expectations for color and motion features of moving-dot stimuli. Behavioral data and neural signals from visual cortex were then interrogated to adjudicate between three possible ways in which prediction error (surprise) in the processing of one feature might affect the concurrent processing of another, expected feature: (1) feature processing may be independent; (2) surprise might “spread” from the unexpected to the expected feature, rendering the entire object unexpected; or (3) pairing a surprising feature with an expected feature might promote the inference that the two features are not in fact part of the same object. To formalize these rival hypotheses, we implemented them in a simple computational model of multifeature expectations. Across a range of analyses, behavior and visual neural signals consistently supported a model that assumes a mixing of prediction error signals across features: surprise in one object feature spreads to its other feature(s), thus rendering the entire object unexpected. These results reveal neurocomputational principles of multifeature expectations and indicate that objects are the unit of selection for predictive vision. SIGNIFICANCE STATEMENT We address a key question in predictive visual cognition: how does the brain combine multiple concurrent expectations for different features of a single object such as its color and motion trajectory? By combining a behavioral protocol that independently varies expectation of (and attention to) multiple object features with computational modeling and fMRI, we demonstrate that behavior and fMRI activity patterns in visual cortex are best accounted for by a model in which prediction error in one object feature spreads to other object features. These results demonstrate how predictive vision forms object-level expectations out of multiple independent features. PMID:27810936
Reillo, Isabel; Borrell, Víctor
2012-09-01
Expansion and folding of the cerebral cortex are landmark features of mammalian brain evolution. This is recapitulated during embryonic development, and specialized progenitor cell populations known as intermediate radial glia cells (IRGCs) are believed to play central roles. Because developmental mechanisms involved in cortical expansion and folding are likely conserved across phylogeny, it is crucial to identify features specific for gyrencephaly from those unique to primate brain development. Here, we studied multiple features of cortical development in ferret, a gyrencephalic carnivore, in comparison with primates. Analyzing the combinatorial expression of transcription factors, cytoskeletal proteins, and cell cycle parameters, we identified a combination of traits that distinguish in ferret similar germinal layers as in primates. Transcription factor analysis indicated that inner subventricular zone (ISVZ) and outer subventricular zone (OSVZ) may contain an identical mixture of progenitor cell subpopulations in ferret. However, we found that these layers emerge at different time points, differ in IRGC abundance, and progenitors have different cell cycle kinetics and self-renewal dynamics. Thus, ISVZ and OSVZ are likely distinguished by genetic differences regulating progenitor cell behavior and dynamics. Our findings demonstrate that some, but not all, features of primate cortical development are shared by the ferret, suggesting a conserved role in the evolutionary emergence of gyrencephaly.
Severe developmental delay and multiple strawberry naevi: a new syndrome?
Upton, C J; Young, I D
1993-01-01
An 18 month old girl with dysmorphic features, severe developmental delay, multiple strawberry naevi, and capillary naevi is described. No previous report of a similar association of features has been identified. Images PMID:8230170
76 FR 15798 - Special Conditions: Boeing 747-468, Installation of a Medical Lift
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-22
... a novel or unusual design feature associated with the installation of a medical lift. The applicable airworthiness regulations do not contain adequate or appropriate safety standards for this design feature. These... airworthiness regulations do not contain adequate or appropriate safety standards for this design feature. Type...
Distinguish self- and hetero-perceived stress through behavioral imaging and physiological features.
Spodenkiewicz, Michel; Aigrain, Jonathan; Bourvis, Nadège; Dubuisson, Séverine; Chetouani, Mohamed; Cohen, David
2018-03-02
Stress reactivity is a complex phenomenon associated to multiple and multimodal expressions. Response to stressors has an obvious survival function and may be seen as an internal regulation to adapt to threat or danger. The intensity of this internal response can be assessed as the self-perception of the stress response. In species with social organization, this response also serves a communicative function, so-called hetero-perception. Our study presents multimodal stress detection assessment - a new methodology combining behavioral imaging and physiological monitoring for analyzing stress from these two perspectives. The system is based on automatic extraction of 39 behavioral (2D+3D video recording) and 62 physiological (Nexus-10 recording) features during a socially evaluated mental arithmetic test. The analysis with machine learning techniques for automatic classification using Support Vector Machine (SVM) show that self-perception and hetero-perception of social stress are both close but different phenomena: self-perception was significantly correlated with hetero-perception but significantly differed from it. Also, assessing stress with SVM through multimodality gave excellent classification results (F1 score values: 0.9±0.012 for hetero-perception and 0.87±0.021 for self-perception). In the best selected feature subsets, we found some common behavioral and physiological features that allow classification of both self- and hetero-perceived stress. However, we also found the contributing features for automatic classifications had opposite distributions: self-perception classification was mainly based on physiological features and hetero-perception was mainly based on behavioral features. Copyright © 2017. Published by Elsevier Inc.
Common features of microRNA target prediction tools
Peterson, Sarah M.; Thompson, Jeffrey A.; Ufkin, Melanie L.; Sathyanarayana, Pradeep; Liaw, Lucy; Congdon, Clare Bates
2014-01-01
The human genome encodes for over 1800 microRNAs (miRNAs), which are short non-coding RNA molecules that function to regulate gene expression post-transcriptionally. Due to the potential for one miRNA to target multiple gene transcripts, miRNAs are recognized as a major mechanism to regulate gene expression and mRNA translation. Computational prediction of miRNA targets is a critical initial step in identifying miRNA:mRNA target interactions for experimental validation. The available tools for miRNA target prediction encompass a range of different computational approaches, from the modeling of physical interactions to the incorporation of machine learning. This review provides an overview of the major computational approaches to miRNA target prediction. Our discussion highlights three tools for their ease of use, reliance on relatively updated versions of miRBase, and range of capabilities, and these are DIANA-microT-CDS, miRanda-mirSVR, and TargetScan. In comparison across all miRNA target prediction tools, four main aspects of the miRNA:mRNA target interaction emerge as common features on which most target prediction is based: seed match, conservation, free energy, and site accessibility. This review explains these features and identifies how they are incorporated into currently available target prediction tools. MiRNA target prediction is a dynamic field with increasing attention on development of new analysis tools. This review attempts to provide a comprehensive assessment of these tools in a manner that is accessible across disciplines. Understanding the basis of these prediction methodologies will aid in user selection of the appropriate tools and interpretation of the tool output. PMID:24600468
Common features of microRNA target prediction tools.
Peterson, Sarah M; Thompson, Jeffrey A; Ufkin, Melanie L; Sathyanarayana, Pradeep; Liaw, Lucy; Congdon, Clare Bates
2014-01-01
The human genome encodes for over 1800 microRNAs (miRNAs), which are short non-coding RNA molecules that function to regulate gene expression post-transcriptionally. Due to the potential for one miRNA to target multiple gene transcripts, miRNAs are recognized as a major mechanism to regulate gene expression and mRNA translation. Computational prediction of miRNA targets is a critical initial step in identifying miRNA:mRNA target interactions for experimental validation. The available tools for miRNA target prediction encompass a range of different computational approaches, from the modeling of physical interactions to the incorporation of machine learning. This review provides an overview of the major computational approaches to miRNA target prediction. Our discussion highlights three tools for their ease of use, reliance on relatively updated versions of miRBase, and range of capabilities, and these are DIANA-microT-CDS, miRanda-mirSVR, and TargetScan. In comparison across all miRNA target prediction tools, four main aspects of the miRNA:mRNA target interaction emerge as common features on which most target prediction is based: seed match, conservation, free energy, and site accessibility. This review explains these features and identifies how they are incorporated into currently available target prediction tools. MiRNA target prediction is a dynamic field with increasing attention on development of new analysis tools. This review attempts to provide a comprehensive assessment of these tools in a manner that is accessible across disciplines. Understanding the basis of these prediction methodologies will aid in user selection of the appropriate tools and interpretation of the tool output.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-04-27
... DEPARTMENT OF DEFENSE Defense Acquisition Regulations System 48 CFR Part 207 RIN 0750-AH12 Defense Federal Acquisition Regulation Supplement; Definition of Multiple-Award Contract (DFARS Case 2011-D016) AGENCY: Defense Acquisition Regulations System, Department of Defense (DoD). ACTION: Final rule. SUMMARY...
NASA Astrophysics Data System (ADS)
Sun, Wenqing; Tseng, Tzu-Liang B.; Zheng, Bin; Zhang, Jianying; Qian, Wei
2015-03-01
A novel breast cancer risk analysis approach is proposed for enhancing performance of computerized breast cancer risk analysis using bilateral mammograms. Based on the intensity of breast area, five different sub-regions were acquired from one mammogram, and bilateral features were extracted from every sub-region. Our dataset includes 180 bilateral mammograms from 180 women who underwent routine screening examinations, all interpreted as negative and not recalled by the radiologists during the original screening procedures. A computerized breast cancer risk analysis scheme using four image processing modules, including sub-region segmentation, bilateral feature extraction, feature selection, and classification was designed to detect and compute image feature asymmetry between the left and right breasts imaged on the mammograms. The highest computed area under the curve (AUC) is 0.763 ± 0.021 when applying the multiple sub-region features to our testing dataset. The positive predictive value and the negative predictive value were 0.60 and 0.73, respectively. The study demonstrates that (1) features extracted from multiple sub-regions can improve the performance of our scheme compared to using features from whole breast area only; (2) a classifier using asymmetry bilateral features can effectively predict breast cancer risk; (3) incorporating texture and morphological features with density features can boost the classification accuracy.
NASA Astrophysics Data System (ADS)
Ma, Chuang; Bao, Zhong-Kui; Zhang, Hai-Feng
2017-10-01
So far, many network-structure-based link prediction methods have been proposed. However, these methods only highlight one or two structural features of networks, and then use the methods to predict missing links in different networks. The performances of these existing methods are not always satisfied in all cases since each network has its unique underlying structural features. In this paper, by analyzing different real networks, we find that the structural features of different networks are remarkably different. In particular, even in the same network, their inner structural features are utterly different. Therefore, more structural features should be considered. However, owing to the remarkably different structural features, the contributions of different features are hard to be given in advance. Inspired by these facts, an adaptive fusion model regarding link prediction is proposed to incorporate multiple structural features. In the model, a logistic function combing multiple structural features is defined, then the weight of each feature in the logistic function is adaptively determined by exploiting the known structure information. Last, we use the "learnt" logistic function to predict the connection probabilities of missing links. According to our experimental results, we find that the performance of our adaptive fusion model is better than many similarity indices.
Salient object detection method based on multiple semantic features
NASA Astrophysics Data System (ADS)
Wang, Chunyang; Yu, Chunyan; Song, Meiping; Wang, Yulei
2018-04-01
The existing salient object detection model can only detect the approximate location of salient object, or highlight the background, to resolve the above problem, a salient object detection method was proposed based on image semantic features. First of all, three novel salient features were presented in this paper, including object edge density feature (EF), object semantic feature based on the convex hull (CF) and object lightness contrast feature (LF). Secondly, the multiple salient features were trained with random detection windows. Thirdly, Naive Bayesian model was used for combine these features for salient detection. The results on public datasets showed that our method performed well, the location of salient object can be fixed and the salient object can be accurately detected and marked by the specific window.
GeneNetFinder2: Improved Inference of Dynamic Gene Regulatory Relations with Multiple Regulators.
Han, Kyungsook; Lee, Jeonghoon
2016-01-01
A gene involved in complex regulatory interactions may have multiple regulators since gene expression in such interactions is often controlled by more than one gene. Another thing that makes gene regulatory interactions complicated is that regulatory interactions are not static, but change over time during the cell cycle. Most research so far has focused on identifying gene regulatory relations between individual genes in a particular stage of the cell cycle. In this study we developed a method for identifying dynamic gene regulations of several types from the time-series gene expression data. The method can find gene regulations with multiple regulators that work in combination or individually as well as those with single regulators. The method has been implemented as the second version of GeneNetFinder (hereafter called GeneNetFinder2) and tested on several gene expression datasets. Experimental results with gene expression data revealed the existence of genes that are not regulated by individual genes but rather by a combination of several genes. Such gene regulatory relations cannot be found by conventional methods. Our method finds such regulatory relations as well as those with multiple, independent regulators or single regulators, and represents gene regulatory relations as a dynamic network in which different gene regulatory relations are shown in different stages of the cell cycle. GeneNetFinder2 is available at http://bclab.inha.ac.kr/GeneNetFinder and will be useful for modeling dynamic gene regulations with multiple regulators.
ERIC Educational Resources Information Center
Aslan, Cem Sinan
2016-01-01
The aim of this study is to compare the multiple intelligence areas of a group of physical education and sports students according to their demographic features. In the study, "Multiple Intelligence Scale", consisting of 27 items, whose Turkish validity and reliability study have been done by Babacan (2012) and which is originally owned…
FEATURE 3, LARGE GUN POSITION, SHOWING MULTIPLE COMPARTMENTS, VIEW FACING ...
FEATURE 3, LARGE GUN POSITION, SHOWING MULTIPLE COMPARTMENTS, VIEW FACING SOUTH. - Naval Air Station Barbers Point, Anti-Aircraft Battery Complex-Large Gun Position, East of Coral Sea Road, northwest of Hamilton Road, Ewa, Honolulu County, HI
Multiple conformations are a conserved and regulatory feature of the RB1 5′ UTR
Kutchko, Katrina M.; Sanders, Wes; Ziehr, Ben; Phillips, Gabriela; Solem, Amanda; Halvorsen, Matthew; Weeks, Kevin M.; Moorman, Nathaniel
2015-01-01
Folding to a well-defined conformation is essential for the function of structured ribonucleic acids (RNAs) like the ribosome and tRNA. Structured elements in the untranslated regions (UTRs) of specific messenger RNAs (mRNAs) are known to control expression. The importance of unstructured regions adopting multiple conformations, however, is still poorly understood. High-resolution SHAPE-directed Boltzmann suboptimal sampling of the Homo sapiens Retinoblastoma 1 (RB1) 5′ UTR yields three distinct conformations compatible with the experimental data. Private single nucleotide variants (SNVs) identified in two patients with retinoblastoma each collapse the structural ensemble to a single but distinct well-defined conformation. The RB1 5′ UTRs from Bos taurus (cow) and Trichechus manatus latirostris (manatee) are divergent in sequence from H. sapiens (human) yet maintain structural compatibility with high-probability base pairs. SHAPE chemical probing of the cow and manatee RB1 5′ UTRs reveals that they also adopt multiple conformations. Luciferase reporter assays reveal that 5′ UTR mutations alter RB1 expression. In a traditional model of disease, causative SNVs disrupt a key structural element in the RNA. For the subset of patients with heritable retinoblastoma-associated SNVs in the RB1 5′ UTR, the absence of multiple structures is likely causative of the cancer. Our data therefore suggest that selective pressure will favor multiple conformations in eukaryotic UTRs to regulate expression. PMID:25999316
Code of Federal Regulations, 2010 CFR
2010-10-01
... 48 Federal Acquisition Regulations System 1 2010-10-01 2010-10-01 false Policy. 22.503 Section 22.503 Federal Acquisition Regulations System FEDERAL ACQUISITION REGULATION SOCIOECONOMIC PROGRAMS... require multiple construction contractors and/or subcontractors employing workers in multiple crafts or...
FEATURE 3, LARGE GUN POSITION, SHOWING MULTIPLE COMPARTMENTS, VIEW FACING ...
FEATURE 3, LARGE GUN POSITION, SHOWING MULTIPLE COMPARTMENTS, VIEW FACING SOUTH (with scale stick). - Naval Air Station Barbers Point, Anti-Aircraft Battery Complex-Large Gun Position, East of Coral Sea Road, northwest of Hamilton Road, Ewa, Honolulu County, HI
Multiple feature extraction by using simultaneous wavelet transforms
NASA Astrophysics Data System (ADS)
Mazzaferri, Javier; Ledesma, Silvia; Iemmi, Claudio
2003-07-01
We propose here a method to optically perform multiple feature extraction by using wavelet transforms. The method is based on obtaining the optical correlation by means of a Vander Lugt architecture, where the scene and the filter are displayed on spatial light modulators (SLMs). Multiple phase filters containing the information about the features that we are interested in extracting are designed and then displayed on an SLM working in phase mostly mode. We have designed filters to simultaneously detect edges and corners or different characteristic frequencies contained in the input scene. Simulated and experimental results are shown.
Genome-wide chromatin state transitions associated with developmental and environmental cues.
Zhu, Jiang; Adli, Mazhar; Zou, James Y; Verstappen, Griet; Coyne, Michael; Zhang, Xiaolan; Durham, Timothy; Miri, Mohammad; Deshpande, Vikram; De Jager, Philip L; Bennett, David A; Houmard, Joseph A; Muoio, Deborah M; Onder, Tamer T; Camahort, Ray; Cowan, Chad A; Meissner, Alexander; Epstein, Charles B; Shoresh, Noam; Bernstein, Bradley E
2013-01-31
Differences in chromatin organization are key to the multiplicity of cell states that arise from a single genetic background, yet the landscapes of in vivo tissues remain largely uncharted. Here, we mapped chromatin genome-wide in a large and diverse collection of human tissues and stem cells. The maps yield unprecedented annotations of functional genomic elements and their regulation across developmental stages, lineages, and cellular environments. They also reveal global features of the epigenome, related to nuclear architecture, that also vary across cellular phenotypes. Specifically, developmental specification is accompanied by progressive chromatin restriction as the default state transitions from dynamic remodeling to generalized compaction. Exposure to serum in vitro triggers a distinct transition that involves de novo establishment of domains with features of constitutive heterochromatin. We describe how these global chromatin state transitions relate to chromosome and nuclear architecture, and discuss their implications for lineage fidelity, cellular senescence, and reprogramming. Copyright © 2013 Elsevier Inc. All rights reserved.
Generalized query-based active learning to identify differentially methylated regions in DNA.
Haque, Md Muksitul; Holder, Lawrence B; Skinner, Michael K; Cook, Diane J
2013-01-01
Active learning is a supervised learning technique that reduces the number of examples required for building a successful classifier, because it can choose the data it learns from. This technique holds promise for many biological domains in which classified examples are expensive and time-consuming to obtain. Most traditional active learning methods ask very specific queries to the Oracle (e.g., a human expert) to label an unlabeled example. The example may consist of numerous features, many of which are irrelevant. Removing such features will create a shorter query with only relevant features, and it will be easier for the Oracle to answer. We propose a generalized query-based active learning (GQAL) approach that constructs generalized queries based on multiple instances. By constructing appropriately generalized queries, we can achieve higher accuracy compared to traditional active learning methods. We apply our active learning method to find differentially DNA methylated regions (DMRs). DMRs are DNA locations in the genome that are known to be involved in tissue differentiation, epigenetic regulation, and disease. We also apply our method on 13 other data sets and show that our method is better than another popular active learning technique.
Multiple Scenarios of Transition to Chaos in the Alternative Splicing Model
NASA Astrophysics Data System (ADS)
Kogai, Vladislav V.; Likhoshvai, Vitaly A.; Fadeev, Stanislav I.; Khlebodarova, Tamara M.
We have investigated the scenarios of transition to chaos in the mathematical model of a genetic system constituted by a single transcription factor-encoding gene, the expression of which is self-regulated by a feedback loop that involves protein isoforms. Alternative splicing results in the synthesis of protein isoforms providing opposite regulatory outcomes — activation or repression. The model is represented by a differential equation with two delayed arguments. The possibility of transition to chaos dynamics via all classical scenarios: a cascade of period-doubling bifurcations, quasiperiodicity and type-I, type-II and type-III intermittencies, has been numerically demonstrated. The parametric features of each type of transition to chaos have been described.
The prediction of palmitoylation site locations using a multiple feature extraction method.
Shi, Shao-Ping; Sun, Xing-Yu; Qiu, Jian-Ding; Suo, Sheng-Bao; Chen, Xiang; Huang, Shu-Yun; Liang, Ru-Ping
2013-03-01
As an extremely important and ubiquitous post-translational lipid modification, palmitoylation plays a significant role in a variety of biological and physiological processes. Unlike other lipid modifications, protein palmitoylation and depalmitoylation are highly dynamic and can regulate both protein function and localization. The dynamic nature of palmitoylation is poorly understood because of the limitations in current assay methods. The in vivo or in vitro experimental identification of palmitoylation sites is both time consuming and expensive. Due to the large volume of protein sequences generated in the post-genomic era, it is extraordinarily important in both basic research and drug discovery to rapidly identify the attributes of a new protein's palmitoylation sites. In this work, a new computational method, WAP-Palm, combining multiple feature extraction, has been developed to predict the palmitoylation sites of proteins. The performance of the WAP-Palm model is measured herein and was found to have a sensitivity of 81.53%, a specificity of 90.45%, an accuracy of 85.99% and a Matthews correlation coefficient of 72.26% in 10-fold cross-validation test. The results obtained from both the cross-validation and independent tests suggest that the WAP-Palm model might facilitate the identification and annotation of protein palmitoylation locations. The online service is available at http://bioinfo.ncu.edu.cn/WAP-Palm.aspx. Copyright © 2013 Elsevier Inc. All rights reserved.
Genome-Wide Identification and Expression Analysis of WRKY Gene Family in Capsicum annuum L.
Diao, Wei-Ping; Snyder, John C; Wang, Shu-Bin; Liu, Jin-Bing; Pan, Bao-Gui; Guo, Guang-Jun; Wei, Ge
2016-01-01
The WRKY family of transcription factors is one of the most important families of plant transcriptional regulators with members regulating multiple biological processes, especially in regulating defense against biotic and abiotic stresses. However, little information is available about WRKYs in pepper (Capsicum annuum L.). The recent release of completely assembled genome sequences of pepper allowed us to perform a genome-wide investigation for pepper WRKY proteins. In the present study, a total of 71 WRKY genes were identified in the pepper genome. According to structural features of their encoded proteins, the pepper WRKY genes (CaWRKY) were classified into three main groups, with the second group further divided into five subgroups. Genome mapping analysis revealed that CaWRKY were enriched on four chromosomes, especially on chromosome 1, and 15.5% of the family members were tandemly duplicated genes. A phylogenetic tree was constructed depending on WRKY domain' sequences derived from pepper and Arabidopsis. The expression of 21 selected CaWRKY genes in response to seven different biotic and abiotic stresses (salt, heat shock, drought, Phytophtora capsici, SA, MeJA, and ABA) was evaluated by quantitative RT-PCR; Some CaWRKYs were highly expressed and up-regulated by stress treatment. Our results will provide a platform for functional identification and molecular breeding studies of WRKY genes in pepper.
Plant metabolic clusters - from genetics to genomics.
Nützmann, Hans-Wilhelm; Huang, Ancheng; Osbourn, Anne
2016-08-01
Contents 771 I. 771 II. 772 III. 780 IV. 781 V. 786 786 References 786 SUMMARY: Plant natural products are of great value for agriculture, medicine and a wide range of other industrial applications. The discovery of new plant natural product pathways is currently being revolutionized by two key developments. First, breakthroughs in sequencing technology and reduced cost of sequencing are accelerating the ability to find enzymes and pathways for the biosynthesis of new natural products by identifying the underlying genes. Second, there are now multiple examples in which the genes encoding certain natural product pathways have been found to be grouped together in biosynthetic gene clusters within plant genomes. These advances are now making it possible to develop strategies for systematically mining multiple plant genomes for the discovery of new enzymes, pathways and chemistries. Increased knowledge of the features of plant metabolic gene clusters - architecture, regulation and assembly - will be instrumental in expediting natural product discovery. This review summarizes progress in this area. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.
Herrero-Martin, Griselda; Puri, Sapna; Taketo, Makoto Mark; Rojas, Anabel; Hebrok, Matthias; Cano, David A.
2016-01-01
Organ formation is achieved through the complex interplay between signaling pathways and transcriptional cascades. The canonical Wnt signaling pathway plays multiple roles during embryonic development including patterning, proliferation and differentiation in distinct tissues. Previous studies have established the importance of this pathway at multiple stages of pancreas formation as well as in postnatal organ function and homeostasis. In mice, gain-of-function experiments have demonstrated that activation of the canonical Wnt pathway results in pancreatic hypoplasia, a phenomenon whose underlying mechanisms remains to be elucidated. Here, we show that ectopic activation of epithelial canonical Wnt signaling causes aberrant induction of gastric and intestinal markers both in the pancreatic epithelium and mesenchyme, leading to the development of gut-like features. Furthermore, we provide evidence that β -catenin-induced impairment of pancreas formation depends on Hedgehog signaling. Together, our data emphasize the developmental plasticity of pancreatic progenitors and further underscore the key role of precise regulation of signaling pathways to maintain appropriate organ boundaries. PMID:27736991
C. elegans Major Fats Are Stored in Vesicles Distinct from Lysosome-Related Organelles
O’Rourke, Eyleen J.; Soukas, Alexander A.; Carr, Christopher E.; Ruvkun, Gary
2010-01-01
SUMMARY Genetic conservation allows ancient features of fat storage endocrine pathways to be explored in C. elegans. Multiple studies have used Nile red or BODIPY-labeled fatty acids to identify regulators of fat mass. When mixed with their food, E. coli bacteria, Nile red, and BODIPY-labeled fatty acids stain multiple spherical cellular structures in the C. elegans major fat storage organ, the intestine. However, here we demonstrate that, in the conditions previously reported, the lysosome-related organelles stained by Nile red and BODIPY-labeled fatty acids are not the C. elegans major fat storage compartment. We show that the major fat stores are contained in a distinct cellular compartment that is not stained by Nile red. Using biochemical assays, we validate oil red O staining as a method to assess major fat stores in C. elegans, allowing for efficient and accurate genetic and functional genomic screens for genes that control fat accumulation at the organismal level. PMID:19883620
Chauhan, Rinki; Ravi, Janani; Datta, Pratik; Chen, Tianlong; Schnappinger, Dirk; Bassler, Kevin E.; Balázsi, Gábor; Gennaro, Maria Laura
2016-01-01
Accessory sigma factors, which reprogram RNA polymerase to transcribe specific gene sets, activate bacterial adaptive responses to noxious environments. Here we reconstruct the complete sigma factor regulatory network of the human pathogen Mycobacterium tuberculosis by an integrated approach. The approach combines identification of direct regulatory interactions between M. tuberculosis sigma factors in an E. coli model system, validation of selected links in M. tuberculosis, and extensive literature review. The resulting network comprises 41 direct interactions among all 13 sigma factors. Analysis of network topology reveals (i) a three-tiered hierarchy initiating at master regulators, (ii) high connectivity and (iii) distinct communities containing multiple sigma factors. These topological features are likely associated with multi-layer signal processing and specialized stress responses involving multiple sigma factors. Moreover, the identification of overrepresented network motifs, such as autoregulation and coregulation of sigma and anti-sigma factor pairs, provides structural information that is relevant for studies of network dynamics. PMID:27029515
Hwang, Wonjun; Wang, Haitao; Kim, Hyunwoo; Kee, Seok-Cheol; Kim, Junmo
2011-04-01
The authors present a robust face recognition system for large-scale data sets taken under uncontrolled illumination variations. The proposed face recognition system consists of a novel illumination-insensitive preprocessing method, a hybrid Fourier-based facial feature extraction, and a score fusion scheme. First, in the preprocessing stage, a face image is transformed into an illumination-insensitive image, called an "integral normalized gradient image," by normalizing and integrating the smoothed gradients of a facial image. Then, for feature extraction of complementary classifiers, multiple face models based upon hybrid Fourier features are applied. The hybrid Fourier features are extracted from different Fourier domains in different frequency bandwidths, and then each feature is individually classified by linear discriminant analysis. In addition, multiple face models are generated by plural normalized face images that have different eye distances. Finally, to combine scores from multiple complementary classifiers, a log likelihood ratio-based score fusion scheme is applied. The proposed system using the face recognition grand challenge (FRGC) experimental protocols is evaluated; FRGC is a large available data set. Experimental results on the FRGC version 2.0 data sets have shown that the proposed method shows an average of 81.49% verification rate on 2-D face images under various environmental variations such as illumination changes, expression changes, and time elapses.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-12-17
...-0001; Sequence 21] General Services Administration Acquisition Regulation: Modifications (Multiple... Modifications (Multiple Award Schedule). DATES: Submit comments on or before: February 15, 2013. FOR FURTHER INFORMATION CONTACT: Ms. Dana Munson, General Services Acquisition Policy Division, GSA, (202) 357-9652 or...
Feature level fusion of hand and face biometrics
NASA Astrophysics Data System (ADS)
Ross, Arun A.; Govindarajan, Rohin
2005-03-01
Multibiometric systems utilize the evidence presented by multiple biometric sources (e.g., face and fingerprint, multiple fingers of a user, multiple matchers, etc.) in order to determine or verify the identity of an individual. Information from multiple sources can be consolidated in several distinct levels, including the feature extraction level, match score level and decision level. While fusion at the match score and decision levels have been extensively studied in the literature, fusion at the feature level is a relatively understudied problem. In this paper we discuss fusion at the feature level in 3 different scenarios: (i) fusion of PCA and LDA coefficients of face; (ii) fusion of LDA coefficients corresponding to the R,G,B channels of a face image; (iii) fusion of face and hand modalities. Preliminary results are encouraging and help in highlighting the pros and cons of performing fusion at this level. The primary motivation of this work is to demonstrate the viability of such a fusion and to underscore the importance of pursuing further research in this direction.
Endedijk, Maaike D; Brekelmans, Mieke; Sleegers, Peter; Vermunt, Jan D
Self-regulated learning has benefits for students' academic performance in school, but also for expertise development during their professional career. This study examined the validity of an instrument to measure student teachers' regulation of their learning to teach across multiple and different kinds of learning events in the context of a postgraduate professional teacher education programme. Based on an analysis of the literature, we developed a log with structured questions that could be used as a multiple-event instrument to determine the quality of student teachers' regulation of learning by combining data from multiple learning experiences. The findings showed that this structured version of the instrument measured student teachers' regulation of their learning in a valid and reliable way. Furthermore, with the aid of the Structured Learning Report individual differences in student teachers' regulation of learning could be discerned. Together the findings indicate that a multiple-event instrument can be used to measure regulation of learning in multiple contexts for various learning experiences at the same time, without the necessity of relying on students' ability to rate themselves across all these different experiences. In this way, this instrument can make an important contribution to bridging the gap between two dominant approaches to measure SRL, the traditional aptitude and event measurement approach.
Mulder, D J; Gander, S; Hurlbut, D J; Soboleski, D A; Smith, R G; Justinich, C J
2009-09-01
This report describes the unusual case of a 12-year-old boy with multiple polyps in the oesophagus and concurrent eosinophilic oesophagitis (EoE). Polyps were of a fibrous-inflammatory composition featuring eosinophils, mast cells, hyperplastic epithelium and fibrosis, which are all features described with EoE. EoE is an increasingly recognised clinicopathological disorder characterised by large numbers of eosinophils infiltrating the oesophageal mucosa. Polyps in the oesophagus are rare, have not previously been associated with EoE, and may represent a new feature of the disease.
ERIC Educational Resources Information Center
Korneeva, Svetlana A.; Zherebnenko, Oksana A.; Mukhamedzyanova, Flera G.; Moskalenko, Svetlana V.; Gorelikova, Olga N.
2016-01-01
The research paper presents an analysis of the interrelation between the lateral organisation profiles' indicators and self-regulation features. The existence of significant distinctions in the processes of self-regulation among respondents with different variants of lateral profiles of the interhemispheric asymmetry is proved, as well as the…
Multiple capacitors for natural genetic variation in Drosophila melanogaster.
Takahashi, Kazuo H
2013-03-01
Cryptic genetic variation (CGV) or a standing genetic variation that is not ordinarily expressed as a phenotype is released when the robustness of organisms is impaired under environmental or genetic perturbations. Evolutionary capacitors modulate the amount of genetic variation exposed to natural selection and hidden cryptically; they have a fundamental effect on the evolvability of traits on evolutionary timescales. In this study, I have demonstrated the effects of multiple genomic regions of Drosophila melanogaster on CGV in wing shape. I examined the effects of 61 genomic deficiencies on quantitative and qualitative natural genetic variation in the wing shape of D. melanogaster. I have identified 10 genomic deficiencies that do not encompass a known candidate evolutionary capacitor, Hsp90, exposing natural CGV differently depending on the location of the deficiencies in the genome. Furthermore, five genomic deficiencies uncovered qualitative CGV in wing morphology. These findings suggest that CGV in wing shape of wild-type D. melanogaster is regulated by multiple capacitors with divergent functions. Future analysis of genes encompassed by these genomic regions would help elucidate novel capacitor genes and better understand the general features of capacitors regarding natural genetic variation. © 2012 Blackwell Publishing Ltd.
Doshi, Urmi; Holliday, Michael J.; Eisenmesser, Elan Z.; Hamelberg, Donald
2016-01-01
Detailed understanding of how conformational dynamics orchestrates function in allosteric regulation of recognition and catalysis remains ambiguous. Here, we simulate CypA using multiple-microsecond-long atomistic molecular dynamics in explicit solvent and carry out NMR experiments. We analyze a large amount of time-dependent multidimensional data with a coarse-grained approach and map key dynamical features within individual macrostates by defining dynamics in terms of residue–residue contacts. The effects of substrate binding are observed to be largely sensed at a location over 15 Å from the active site, implying its importance in allostery. Using NMR experiments, we confirm that a dynamic cluster of residues in this distal region is directly coupled to the active site. Furthermore, the dynamical network of interresidue contacts is found to be coupled and temporally dispersed, ranging over 4 to 5 orders of magnitude. Finally, using network centrality measures we demonstrate the changes in the communication network, connectivity, and influence of CypA residues upon substrate binding, mutation, and during catalysis. We identify key residues that potentially act as a bottleneck in the communication flow through the distinct regions in CypA and, therefore, as targets for future mutational studies. Mapping these dynamical features and the coupling of dynamics to function has crucial ramifications in understanding allosteric regulation in enzymes and proteins, in general. PMID:27071107
A dynamic cellular vertex model of growing epithelial tissues
NASA Astrophysics Data System (ADS)
Lin, Shao-Zhen; Li, Bo; Feng, Xi-Qiao
2017-04-01
Intercellular interactions play a significant role in a wide range of biological functions and processes at both the cellular and tissue scales, for example, embryogenesis, organogenesis, and cancer invasion. In this paper, a dynamic cellular vertex model is presented to study the morphomechanics of a growing epithelial monolayer. The regulating role of stresses in soft tissue growth is revealed. It is found that the cells originating from the same parent cell in the monolayer can orchestrate into clustering patterns as the tissue grows. Collective cell migration exhibits a feature of spatial correlation across multiple cells. Dynamic intercellular interactions can engender a variety of distinct tissue behaviors in a social context. Uniform cell proliferation may render high and heterogeneous residual compressive stresses, while stress-regulated proliferation can effectively release the stresses, reducing the stress heterogeneity in the tissue. The results highlight the critical role of mechanical factors in the growth and morphogenesis of epithelial tissues and help understand the development and invasion of epithelial tumors.
The Signaling Networks of the Herpesvirus Entry Mediator (TNFRSF14) in Immune Regulation
Steinberg, Marcos; Cheung, Timothy C.; Ware, Carl F.
2012-01-01
Summary The tumor necrosis factor (TNF) receptor superfamily member herpesvirus entry mediator (HVEM) (TNFRSF14) regulates T-cell immune responses by activating both inflammatory and inhibitory signaling pathways. HVEM acts as both a receptor for the canonical TNF-related ligands, LIGHT [lymphotoxin-like, exhibits inducible expression, and competes with herpes simplex virus glycoprotein D for HVEM, a receptor expressed on T lymphocytes] and lymphotoxin-α, and as a ligand for the immunoglobulin superfamily proteins BTLA (B and T lymphocyte attenuator) and CD160, a feature distinguishing HVEM from other immune regulatory molecules. The ability of HVEM to interact with multiple ligands in distinct configurations creates a functionally diverse set of intrinsic and bidirectional signaling pathways that control both inflammatory and inhibitory responses. The HVEM system is integrated into the larger LTβR and TNFR network through extensive shared ligand and receptor usage. Experimental mouse models and human diseases indicate that dysregulation of HVEM network may contribute to autoimmune pathogenesis, making it an attractive target for drug intervention. PMID:22017438
Selective Inhibition of Tumor Oncogenes by Disruption of Super-Enhancers
Lovén, Jakob; Hoke, Heather A.; Lin, Charles Y.; Lau, Ashley; Orlando, David A.; Vakoc, Christopher R.; Bradner, James E.; Lee, Tong Ihn; Young, Richard A.
2013-01-01
Summary Chromatin regulators have become attractive targets for cancer therapy, but it is unclear why inhibition of these ubiquitous regulators should have gene-specific effects in tumor cells. Here, we investigate how inhibition of the widely expressed transcriptional coactivator BRD4 leads to selective inhibition of the MYC oncogene in multiple myeloma (MM). BRD4 and Mediator were found to co-occupy thousands of enhancers associated with active genes. They also co-occupied a small set of exceptionally large super-enhancers associated with genes that feature prominently in MM biology, including the MYC oncogene. Treatment of MM tumor cells with the BET-bromodomain inhibitor JQ1 led to preferential loss of BRD4 at super-enhancers and consequent transcription elongation defects that preferentially impacted genes with super-enhancers, including MYC. Super-enhancers were found at key oncogenic drivers in many other tumor cells. These observations have implications for the discovery of cancer therapeutics directed at components of super-enhancers in diverse tumor types. PMID:23582323
The Yeast Nuclear Pore Complex and Transport Through It
Aitchison, John D.; Rout, Michael P.
2012-01-01
Exchange of macromolecules between the nucleus and cytoplasm is a key regulatory event in the expression of a cell’s genome. This exchange requires a dedicated transport system: (1) nuclear pore complexes (NPCs), embedded in the nuclear envelope and composed of proteins termed nucleoporins (or “Nups”), and (2) nuclear transport factors that recognize the cargoes to be transported and ferry them across the NPCs. This transport is regulated at multiple levels, and the NPC itself also plays a key regulatory role in gene expression by influencing nuclear architecture and acting as a point of control for various nuclear processes. Here we summarize how the yeast Saccharomyces has been used extensively as a model system to understand the fundamental and highly conserved features of this transport system, revealing the structure and function of the NPC; the NPC’s role in the regulation of gene expression; and the interactions of transport factors with their cargoes, regulatory factors, and specific nucleoporins. PMID:22419078
Progress and Prospects for Stem Cell Engineering
Ashton, Randolph S.; Keung, Albert J.; Peltier, Joseph; Schaffer, David V.
2018-01-01
Stem cells offer tremendous biomedical potential owing to their abilities to self-renew and differentiate into cell types of multiple adult tissues. Researchers and engineers have increasingly developed novel discovery technologies, theoretical approaches, and cell culture systems to investigate microenvironmental cues and cellular signaling events that control stem cell fate. Many of these technologies facilitate high-throughput investigation of microenvironmental signals and the intracellular signaling networks and machinery processing those signals into cell fate decisions. As our aggregate empirical knowledge of stem cell regulation grows, theoretical modeling with systems and computational biology methods has and will continue to be important for developing our ability to analyze and extract important conceptual features of stem cell regulation from complex data. Based on this body of knowledge, stem cell engineers will continue to develop technologies that predictably control stem cell fate with the ultimate goal of being able to accurately and economically scale up these systems for clinical-grade production of stem cell therapeutics. PMID:22432628
Fast linear feature detection using multiple directional non-maximum suppression.
Sun, C; Vallotton, P
2009-05-01
The capacity to detect linear features is central to image analysis, computer vision and pattern recognition and has practical applications in areas such as neurite outgrowth detection, retinal vessel extraction, skin hair removal, plant root analysis and road detection. Linear feature detection often represents the starting point for image segmentation and image interpretation. In this paper, we present a new algorithm for linear feature detection using multiple directional non-maximum suppression with symmetry checking and gap linking. Given its low computational complexity, the algorithm is very fast. We show in several examples that it performs very well in terms of both sensitivity and continuity of detected linear features.
Purcell, Maureen K.; Marjara, Inderjit Singh; Batts, William; Kurath, Gael; Hansen, John D.
2010-01-01
There are three main genetic lineages or genogroups of Infectious hematopoietic necrosis virus (IHNV) in N. America. Strains representing the M genogroup are more virulent in rainbow trout relative to the U genogroup. In this study, we used microarray analysis to evaluate potential mechanisms responsible for host-specific virulence in rainbow trout that were given intraperitoneal injections of buffer or a representative M or U type virus strain. Reverse transcriptase quantitative PCR (RT-qPCR) was used to assess viral load and gene expression of select immune genes. Viral load was significantly higher in trout infected with the M virus starting at 24 h post-infection (p.i.) and continuing until 72 h p.i. Microarray analysis of the 48 h time point revealed 153 up-regulated and 248 down-regulated features in response to M virus infection but only 62 up-regulated and 49 down-regulated features following U virus infection. Translation and transcription features were among the most frequent down-regulated features in response to M virus infection and may be associated with the host cell shutoff phenomenon. A greater host cell shutoff response by the M virus may facilitate subversion of the host cell transcriptional machinery and enhance viral replication, suggesting the M virus may be better optimized to manipulate the rainbow trout transcriptional and translational machinery. Anti-viral associated features were the most commonly up-regulated features. A common set of features were up-regulated in both the M and U infection groups, but were induced to a higher magnitude in the M infection group. Gene expression of the anti-viral genes Mx-1 and Vig-1 was correlated but not entirely dependent on viral load in the anterior kidney. Slower replication of the U virus may allow the host more time to induce protective anti-viral immune mechanisms.
Sajadi, Seyede Fateme; Arshadi, Nasrin; Zargar, Yadolla; Mehrabizade Honarmand, Mahnaz; Hajjari, Zahra
2015-06-01
Numerous studies have demonstrated that early maladaptive schemas, emotional dysregulation are supposed to be the defining core of borderline personality disorder. Many studies have also found a strong association between the diagnosis of borderline personality and the occurrence of suicide ideation and dissociative symptoms. The present study was designed to investigate the relationship between borderline personality features and schema, emotion regulation, dissociative experiences and suicidal ideation among high school students in Shiraz City, Iran. In this descriptive correlational study, 300 students (150 boys and 150 girls) were selected from the high schools in Shiraz, Iran, using the multi-stage random sampling. Data were collected using some instruments including borderline personality feature scale for children, young schema questionnaire-short form, difficulties in emotion-regulation scale (DERS), dissociative experience scale and beck suicide ideation scale. Data were analyzed using the Pearson correlation coefficient and multivariate regression analysis. The results showed a significant positive correlation between schema, emotion regulation, dissociative experiences and suicide ideation with borderline personality features. Moreover, the results of multivariate regression analysis suggested that among the studied variables, schema was the most effective predicting variable of borderline features (P < 0.001). The findings of this study are in accordance with findings from previous studies, and generally show a meaningful association between schema, emotion regulation, dissociative experiences, and suicide ideation with borderline personality features.
Johar, Kaid; Priya, Anusha; Dhar, Shilpa; Liu, Qiuli; Wong-Riley, Margaret T T
2013-11-01
Neurons are highly dependent on oxidative metabolism for their energy supply, and cytochrome c oxidase (COX) is a key energy-generating enzyme in the mitochondria. A unique feature of COX is that it is one of only four proteins in mammalian cells that are bigenomically regulated. Of its thirteen subunits, three are encoded in the mitochondrial genome and ten are nuclear-encoded on nine different chromosomes. The mechanism of regulating this multisubunit, bigenomic enzyme poses a distinct challenge. In recent years, we found that nuclear respiratory factors 1 and 2 (NRF-1 and NRF-2) mediate such bigenomic coordination. The latest candidate is the specificity factor (Sp) family of proteins. In N2a cells, we found that Sp1 regulates all 13 COX subunits. However, we discovered recently that in primary neurons, it is Sp4 and not Sp1 that regulates some of the key glutamatergic receptor subunit genes. The question naturally arises as to the role of Sp4 in regulating COX in primary neurons. The present study utilized multiple approaches, including chromatin immunoprecipitation, promoter mutational analysis, knockdown and over-expression of Sp4, as well as functional assays to document that Sp4 indeed functionally regulate all 13 subunits of COX as well as mitochondrial transcription factors A and B. The present study discovered that among the specificity family of transcription factors, it is the less known neuron-specific Sp4 that regulates the expression of all 13 subunits of mitochondrial cytochrome c oxidase (COX) enzyme in primary neurons. Sp4 also regulates the three mitochondrial transcription factors (TFAM, TFB1M, and TFB2M) and a COX assembly protein SURF-1 in primary neurons. © 2013 International Society for Neurochemistry.
Dogan, Nergiz; Wu, Weisheng; Morrissey, Christapher S.; ...
2015-04-23
Regulated gene expression controls organismal development, and variation in regulatory patterns has been implicated in complex traits. Thus accurate prediction of enhancers is important for further understanding of these processes. Genome-wide measurement of epigenetic features, such as histone modifications and occupancy by transcription factors, is improving enhancer predictions, but the contribution of these features to prediction accuracy is not known. Given the importance of the hematopoietic transcription factor TAL1 for erythroid gene activation, we predicted candidate enhancers based on genomic occupancy by TAL1 and measured their activity. Contributions of multiple features to enhancer prediction were evaluated based on the resultsmore » of these and other studies. Results: TAL1-bound DNA segments were active enhancers at a high rate both in transient transfections of cultured cells (39 of 79, or 56%) and transgenic mice (43 of 66, or 65%). The level of binding signal for TAL1 or GATA1 did not help distinguish TAL1-bound DNA segments as active versus inactive enhancers, nor did the density of regulation-related histone modifications. A meta-analysis of results from this and other studies (273 tested predicted enhancers) showed that the presence of TAL1, GATA1, EP300, SMAD1, H3K4 methylation, H3K27ac, and CAGE tags at DNase hypersensitive sites gave the most accurate predictors of enhancer activity, with a success rate over 80% and a median threefold increase in activity. Chromatin accessibility assays and the histone modifications H3K4me1 and H3K27ac were sensitive for finding enhancers, but they have high false positive rates unless transcription factor occupancy is also included. Conclusions: Occupancy by key transcription factors such as TAL1, GATA1, SMAD1, and EP300, along with evidence of transcription, improves the accuracy of enhancer predictions based on epigenetic features.« less
Praticò, A.D.; Serra, A.; Maiolino, L.; Cocuzza, S.; Di Mauro, P.; Licciardello, L.; Milone, P.; Privitera, G.; Belfiore, G.; Di Pietro, M.; Di Raimondo, F.; Romano, A.; Chiarenza, A.; Muglia, M.; Polizzi, A.; Evans, D.G.
2016-01-01
SUMMARY Neurofibromatosis type 2 [NF2; MIM # 101000] is an autosomal dominant disorder characterised by the occurrence of vestibular schwannomas (VSs), schwannomas of other cranial, spinal and cutaneous nerves, cranial and spinal meningiomas and/or other central nervous system (CNS) tumours (e.g., ependymomas, astrocytomas). Additional features include early onset cataracts, optic nerve sheath meningiomas, retinal hamartomas, dermal schwannomas (i.e., NF2-plaques), and (few) café-au-lait spots. Clinically, NF2 children fall into two main groups: (1) congenital NF2 - with bilateral VSs detected as early as the first days to months of life, which can be stable/asymptomatic for one-two decades and suddenly progress; and (2) severe pre-pubertal (Wishart type) NF2- with multiple (and rapidly progressive) CNS tumours other-than-VS, which usually present first, years before VSs [vs. the classical adult (Gardner type) NF2, with bilateral VSs presenting in young adulthood, sometimes as the only disease feature]. Some individuals can develop unilateral VS associated with ipsilateral meningiomas or multiple schwannomas localised to one part of the peripheral nervous system [i.e., mosaic NF2] or multiple non-VS, non-intradermal cranial, spinal and peripheral schwannomas (histologically proven) [schwannomatosis]. NF2 is caused by mutations in the NF2 gene at chromosome 22q12.1, which encodes for a protein called merlin or schwannomin, most similar to the exrin-readixin-moesin (ERM) proteins; mosaicNF2 is due to mosaic phenomena for the NF2 gene, whilst schwannomatosis is caused by coupled germ-line and mosaic mutations either in the SMARCB1 gene [SWNTS1; MIM # 162091] or the LZTR1 gene [SWNTS2; MIM # 615670] both falling within the 22q region and the NF2 gene. Data driven from in vitro and animal studies on the merlin pathway [e.g., post-translational and upstream/downstream regulation] allowed biologically targeted treatment strategies [e.g., Lapatinib, Erlotinib, Bevacizumab] aimed to multiple tumour shrinkage and/or regression and tumour arrest of progression with functional improvement. PMID:27958595
Tan, Boon Siang Nicholas; Kwek, Joly; Wong, Chong Kum Edwin; Saner, Nicholas J.; Yap, Charlotte; Felquer, Fernando; Morris, Michael B.; Gardner, David K.; Rathjen, Peter D.; Rathjen, Joy
2016-01-01
Multiple pluripotent cell populations, which together comprise the pluripotent cell lineage, have been identified. The mechanisms that control the progression between these populations are still poorly understood. The formation of early primitive ectoderm-like (EPL) cells from mouse embryonic stem (mES) cells provides a model to understand how one such transition is regulated. EPL cells form from mES cells in response to l-proline uptake through the transporter Slc38a2. Using inhibitors of cell signaling we have shown that Src family kinases, p38 MAPK, ERK1/2 and GSK3β are required for the transition between mES and EPL cells. ERK1/2, c-Src and GSK3β are likely to be enforcing a receptive, primed state in mES cells, while Src family kinases and p38 MAPK are involved in the establishment of EPL cells. Inhibition of these pathways prevented the acquisition of most, but not all, features of EPL cells, suggesting that other pathways are required. L-proline activation of differentiation is mediated through metabolism and changes to intracellular metabolite levels, specifically reactive oxygen species. The implication of multiple signaling pathways in the process suggests a model in which the context of Src family kinase activation determines the outcomes of pluripotent cell differentiation. PMID:27723793
The separation between the 5'-3' ends in long RNA molecules is short and nearly constant.
Leija-Martínez, Nehemías; Casas-Flores, Sergio; Cadena-Nava, Rubén D; Roca, Joan A; Mendez-Cabañas, José A; Gomez, Eduardo; Ruiz-Garcia, Jaime
2014-12-16
RNA molecules play different roles in coding, decoding and gene expression regulation. Such roles are often associated to the RNA secondary or tertiary structures. The folding dynamics lead to multiple secondary structures of long RNA molecules, since an RNA molecule might fold into multiple distinct native states. Despite an ensemble of different structures, it has been theoretically proposed that the separation between the 5' and 3' ends of long single-stranded RNA molecules (ssRNA) remains constant, independent of their base content and length. Here, we present the first experimental measurements of the end-to-end separation in long ssRNA molecules. To determine this separation, we use single molecule Fluorescence Resonance Energy Transfer of fluorescently end-labeled ssRNA molecules ranging from 500 to 5500 nucleotides in length, obtained from two viruses and a fungus. We found that the end-to-end separation is indeed short, within 5-9 nm. It is remarkable that the separation of the ends of all RNA molecules studied remains small and similar, despite the origin, length and differences in their secondary structure. This implies that the ssRNA molecules are 'effectively circularized' something that might be a general feature of RNAs, and could result in fine-tuning for translation and gene expression regulation. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.
Comparative genetic screens in human cells reveal new regulatory mechanisms in WNT signaling
Lebensohn, Andres M; Dubey, Ramin; Neitzel, Leif R; Tacchelly-Benites, Ofelia; Yang, Eungi; Marceau, Caleb D; Davis, Eric M; Patel, Bhaven B; Bahrami-Nejad, Zahra; Travaglini, Kyle J; Ahmed, Yashi; Lee, Ethan; Carette, Jan E; Rohatgi, Rajat
2016-01-01
The comprehensive understanding of cellular signaling pathways remains a challenge due to multiple layers of regulation that may become evident only when the pathway is probed at different levels or critical nodes are eliminated. To discover regulatory mechanisms in canonical WNT signaling, we conducted a systematic forward genetic analysis through reporter-based screens in haploid human cells. Comparison of screens for negative, attenuating and positive regulators of WNT signaling, mediators of R-spondin-dependent signaling and suppressors of constitutive signaling induced by loss of the tumor suppressor adenomatous polyposis coli or casein kinase 1α uncovered new regulatory features at most levels of the pathway. These include a requirement for the transcription factor AP-4, a role for the DAX domain of AXIN2 in controlling β-catenin transcriptional activity, a contribution of glycophosphatidylinositol anchor biosynthesis and glypicans to R-spondin-potentiated WNT signaling, and two different mechanisms that regulate signaling when distinct components of the β-catenin destruction complex are lost. The conceptual and methodological framework we describe should enable the comprehensive understanding of other signaling systems. DOI: http://dx.doi.org/10.7554/eLife.21459.001 PMID:27996937
The role of angiogenic factors in fibroid pathogenesis: potential implications for future therapy
Tal, Reshef; Segars, James H.
2014-01-01
Background It is well established that tumors are dependent on angiogenesis for their growth and survival. Although uterine fibroids are known to be benign tumors with reduced vascularization, recent work demonstrates that the vasculature of fibroids is grossly and microscopically abnormal. Accumulating evidence suggests that angiogenic growth factor dysregulation may be implicated in these vascular and other features of fibroid pathophysiology. Methods Literature searches were performed in PubMed and Google Scholar for articles with content related to angiogenic growth factors and myometrium/leiomyoma. The findings are hereby reviewed and discussed. Results Multiple growth factors involved in angiogenesis are differentially expressed in leiomyoma compared with myometrium. These include epidermal growth factor (EGF), heparin-binding-EGF, vascular endothelial growth factor, basic fibroblast growth factor, platelet-derived growth factor, transforming growth factor-β and adrenomedullin. An important paradox is that although leiomyoma tissues are hypoxic, leiomyoma feature down-regulation of key molecular regulators of the hypoxia response. Furthermore, the hypoxic milieu of leiomyoma may contribute to fibroid development and growth. Notably, common treatments for fibroids such as GnRH agonists and uterine artery embolization (UAE) are shown to work at least partly via anti-angiogenic mechanisms. Conclusions Angiogenic growth factors play an important role in mechanisms of fibroid pathophysiology, including abnormal vasculature and fibroid growth and survival. Moreover, the fibroid's abnormal vasculature together with its aberrant hypoxic and angiogenic response may make it especially vulnerable to disruption of its vascular supply, a feature which could be exploited for treatment. Further experimental studies are required in order to gain a better understanding of the growth factors that are involved in normal and pathological myometrial angiogenesis, and to assess the potential of anti-angiogenic treatment strategies for uterine fibroids. PMID:24077979
Trubiani, O; Cataldi, A; De Angelis, F; D'Arcangelo, C; Caputi, S
2012-01-01
To evaluate morphological features, cell growth and interleukin-6 (IL-6) and interleukin-8 (IL-8) secretion in expanded ex vivo human dental pulp mesenchymal stem cells (DP-MSCs) after exposure to 2-hydroxyethyl methacrylate (HEMA). Dental pulp mesenchymal stem cells were derived from the dental pulps of 10 young donors. After in vitro isolation, DP-MSCs were treated with 3 and 5 mmol L(-1) HEMA, and after 24, 48 and 72 h of incubation, their morphological features, cell growth, IL-6 and IL-8 secretion were analysed. Differences in the cell growth and in the interleukin secretion were analysed for statistical significance with two-way anova tests and the Holm-Sidak method for multiple comparisons. Dental pulp mesenchymal stem cells revealed a decrease in cell growth with both treatments (P < 0.05), more evident at 5 mmol L(-1) . Microscopic analysis displayed extensive cytotoxic effects in treated cells, which lost their fibroblastoid features and became retracted, even roundish, with a large number of granules. An up-regulation of IL-6 and IL-8 in treated cells cytokines was evident (P < 0.05). 2-Hydroxyethyl methacrylate exhibited cytotoxicity, inhibited cell growth and induced morphological changes in cultured DP-MSCs. Moreover, in treated samples, an up-regulation of soluble mediators of inflammation such as IL-6 and IL-8 cytokines was found. The direct application of HEMA potentially induces an inflammation process that could be the starting point for toxic response and cell damage in DP-MSCs. © 2011 International Endodontic Journal.
Deficient GABAergic gliotransmission may cause broader sensory tuning in schizophrenia.
Hoshino, Osamu
2013-12-01
We examined how the depression of intracortical inhibition due to a reduction in ambient GABA concentration impairs perceptual information processing in schizophrenia. A neural network model with a gliotransmission-mediated ambient GABA regulatory mechanism was simulated. In the network, interneuron-to-glial-cell and principal-cell-to-glial-cell synaptic contacts were made. The former hyperpolarized glial cells and let their transporters import (remove) GABA from the extracellular space, thereby lowering ambient GABA concentration, reducing extrasynaptic GABAa receptor-mediated tonic inhibitory current, and thus exciting principal cells. In contrast, the latter depolarized the glial cells and let the transporters export GABA into the extracellular space, thereby elevating the ambient GABA concentration and thus inhibiting the principal cells. A reduction in ambient GABA concentration was assumed for a schizophrenia network. Multiple dynamic cell assemblies were organized as sensory feature columns. Each cell assembly responded to one specific feature stimulus. The tuning performance of the network to an applied feature stimulus was evaluated in relation to the level of ambient GABA. Transporter-deficient glial cells caused a deficit in GABAergic gliotransmission and reduced ambient GABA concentration, which markedly deteriorated the tuning performance of the network, broadening the sensory tuning. Interestingly, the GABAergic gliotransmission mechanism could regulate local ambient GABA levels: it augmented ambient GABA around stimulus-irrelevant principal cells, while reducing ambient GABA around stimulus-relevant principal cells, thereby ensuring their selective responsiveness to the applied stimulus. We suggest that a deficit in GABAergic gliotransmission may cause a reduction in ambient GABA concentration, leading to a broadening of sensory tuning in schizophrenia. The GABAergic gliotransmission mechanism proposed here may have an important role in the regulation of local ambient GABA levels, thereby improving the sensory tuning performance of the cortex.
FALDO: a semantic standard for describing the location of nucleotide and protein feature annotation.
Bolleman, Jerven T; Mungall, Christopher J; Strozzi, Francesco; Baran, Joachim; Dumontier, Michel; Bonnal, Raoul J P; Buels, Robert; Hoehndorf, Robert; Fujisawa, Takatomo; Katayama, Toshiaki; Cock, Peter J A
2016-06-13
Nucleotide and protein sequence feature annotations are essential to understand biology on the genomic, transcriptomic, and proteomic level. Using Semantic Web technologies to query biological annotations, there was no standard that described this potentially complex location information as subject-predicate-object triples. We have developed an ontology, the Feature Annotation Location Description Ontology (FALDO), to describe the positions of annotated features on linear and circular sequences. FALDO can be used to describe nucleotide features in sequence records, protein annotations, and glycan binding sites, among other features in coordinate systems of the aforementioned "omics" areas. Using the same data format to represent sequence positions that are independent of file formats allows us to integrate sequence data from multiple sources and data types. The genome browser JBrowse is used to demonstrate accessing multiple SPARQL endpoints to display genomic feature annotations, as well as protein annotations from UniProt mapped to genomic locations. Our ontology allows users to uniformly describe - and potentially merge - sequence annotations from multiple sources. Data sources using FALDO can prospectively be retrieved using federalised SPARQL queries against public SPARQL endpoints and/or local private triple stores.
FALDO: a semantic standard for describing the location of nucleotide and protein feature annotation
Bolleman, Jerven T.; Mungall, Christopher J.; Strozzi, Francesco; ...
2016-06-13
Nucleotide and protein sequence feature annotations are essential to understand biology on the genomic, transcriptomic, and proteomic level. Using Semantic Web technologies to query biological annotations, there was no standard that described this potentially complex location information as subject-predicate-object triples. In this paper, we have developed an ontology, the Feature Annotation Location Description Ontology (FALDO), to describe the positions of annotated features on linear and circular sequences. FALDO can be used to describe nucleotide features in sequence records, protein annotations, and glycan binding sites, among other features in coordinate systems of the aforementioned “omics” areas. Using the same data formatmore » to represent sequence positions that are independent of file formats allows us to integrate sequence data from multiple sources and data types. The genome browser JBrowse is used to demonstrate accessing multiple SPARQL endpoints to display genomic feature annotations, as well as protein annotations from UniProt mapped to genomic locations. Our ontology allows users to uniformly describe – and potentially merge – sequence annotations from multiple sources. Finally, data sources using FALDO can prospectively be retrieved using federalised SPARQL queries against public SPARQL endpoints and/or local private triple stores.« less
Multiple cueing dissociates location- and feature-based repetition effects
Hu, Kesong; Zhan, Junya; Li, Bingzhao; He, Shuchang; Samuel, Arthur G.
2014-01-01
There is an extensive literature on the phenomenon of inhibition of return (IOR): When attention is drawn to a peripheral location and then removed, response time is delayed if a target appears in the previously inspected location. Recent research suggests that non-spatial attribute repetition (i.e., if a target shares a feature like color with the earlier, cueing, stimulus) can have a similar inhibitory effect, at least when the target appears in the previously cued location. What remains unknown is whether location- and feature-based inhibitory effects can be dissociated. In the present study, we used a multiple cueing approach to investigate the properties of location- and feature-based repetition effects. In two experiments (detection, and discrimination), location-based IOR was absent but feature-based inhibition was consistently observed. Thus, the present results indicate that feature- and location-based inhibitory effects are dissociable. The results also provide support for the view that the attentional consequences of multiple cues reflect the overall center of gravity of the cues. We suggest that the repetition costs associated with feature and location repetition may be best understood as a consequence of the pattern of activation for object files associated with the stimuli present in the displays. PMID:24907677
FALDO: a semantic standard for describing the location of nucleotide and protein feature annotation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bolleman, Jerven T.; Mungall, Christopher J.; Strozzi, Francesco
Nucleotide and protein sequence feature annotations are essential to understand biology on the genomic, transcriptomic, and proteomic level. Using Semantic Web technologies to query biological annotations, there was no standard that described this potentially complex location information as subject-predicate-object triples. In this paper, we have developed an ontology, the Feature Annotation Location Description Ontology (FALDO), to describe the positions of annotated features on linear and circular sequences. FALDO can be used to describe nucleotide features in sequence records, protein annotations, and glycan binding sites, among other features in coordinate systems of the aforementioned “omics” areas. Using the same data formatmore » to represent sequence positions that are independent of file formats allows us to integrate sequence data from multiple sources and data types. The genome browser JBrowse is used to demonstrate accessing multiple SPARQL endpoints to display genomic feature annotations, as well as protein annotations from UniProt mapped to genomic locations. Our ontology allows users to uniformly describe – and potentially merge – sequence annotations from multiple sources. Finally, data sources using FALDO can prospectively be retrieved using federalised SPARQL queries against public SPARQL endpoints and/or local private triple stores.« less
Classifying four-category visual objects using multiple ERP components in single-trial ERP.
Qin, Yu; Zhan, Yu; Wang, Changming; Zhang, Jiacai; Yao, Li; Guo, Xiaojuan; Wu, Xia; Hu, Bin
2016-08-01
Object categorization using single-trial electroencephalography (EEG) data measured while participants view images has been studied intensively. In previous studies, multiple event-related potential (ERP) components (e.g., P1, N1, P2, and P3) were used to improve the performance of object categorization of visual stimuli. In this study, we introduce a novel method that uses multiple-kernel support vector machine to fuse multiple ERP component features. We investigate whether fusing the potential complementary information of different ERP components (e.g., P1, N1, P2a, and P2b) can improve the performance of four-category visual object classification in single-trial EEGs. We also compare the classification accuracy of different ERP component fusion methods. Our experimental results indicate that the classification accuracy increases through multiple ERP fusion. Additional comparative analyses indicate that the multiple-kernel fusion method can achieve a mean classification accuracy higher than 72 %, which is substantially better than that achieved with any single ERP component feature (55.07 % for the best single ERP component, N1). We compare the classification results with those of other fusion methods and determine that the accuracy of the multiple-kernel fusion method is 5.47, 4.06, and 16.90 % higher than those of feature concatenation, feature extraction, and decision fusion, respectively. Our study shows that our multiple-kernel fusion method outperforms other fusion methods and thus provides a means to improve the classification performance of single-trial ERPs in brain-computer interface research.
Kim, Tae Jung; Goo, Jin Mo; Lee, Kyung Won; Park, Chang Min; Lee, Hyun Ju
2009-05-01
To retrospectively compare the clinical, pathological, and thin-section CT features of persistent multiple ground-glass opacity (GGO) nodules with those of solitary GGO nodules. Histopathologic specimens were obtained from 193 GGO nodules in 136 patients (87 women, 49 men; mean age, 57; age range 33-81). The clinical data, pathologic findings, and thin-section CT features of multiple and solitary GGO nodules were compared by using t-test or Fisher's exact test. Multiple GGO nodules (n=105) included atypical adenomatous hyperplasia (AAH) (n=31), bronchioloalveolar carcinoma (BAC) (n=33), adenocarcinoma (n=34) and focal interstitial fibrosis (n=7). Solitary GGO nodules included AAH (n=8), BAC (n=15), adenocarcinoma (n=55) and focal interstitial fibrosis (n=10). AAH (P=.001) and BAC (P=.029) were more frequent in multiple GGO nodules, whereas adenocarcinoma (P<.001) was more frequent in solitary GGO nodules. Female sex (P<.001), nonsmoker (P=.012) and multiple primary lung cancers (P<.001) were more frequent for multiple GGO nodules, which were smaller (12 mm+/-7.9) than solitary GGO nodules (17 mm+/-8.1) (P<.001). Air-bronchogram (P=.019), bubble-lucency (P=.004), and pleural retraction (P<.001) were more frequent in solitary GGO nodules. There was no postoperative recurrence except for one patient with multiple GGO nodules and one with solitary GGO nodule. Clinical, pathological, and thin-section CT features of persistent multiple GGO nodules were found to differ from those of solitary GGO nodules. Nevertheless, the two nodule types can probably be followed up and managed in a similar manner because their prognoses were found to be similar.
Alamgir, Mohammed; Turton, Stephen M; Macgregor, Colin J; Pert, Petina L
2016-10-01
As ecosystem services supply from tropical forests is declining due to deforestation and forest degradation, much effort is essential to sustain ecosystem services supply from tropical forested landscapes, because tropical forests provide the largest flow of multiple ecosystem services among the terrestrial ecosystems. In order to sustain multiple ecosystem services, understanding ecosystem services capacity across heterogeneous forest types and identifying certain ecosystem services that could be managed to leverage positive effects across the wider bundle of ecosystem services are required. We sampled three forest types, tropical rainforests, sclerophyll forests, and rehabilitated plantation forests, over an area of 32,000m(2) from Wet Tropics bioregion, Australia, aiming to compare supply and evaluate interactions and patterns of eight ecosystem services (global climate regulation, air quality regulation, erosion regulation, nutrient regulation, cyclone protection, habitat provision, energy provision, and timber provision). On average, multiple ecosystem services were highest in the rainforests, lowest in sclerophyll forests, and intermediate in rehabilitated plantation forests. However, a wide variation was apparent among the plots across the three forest types. Global climate regulation service had a synergistic impact on the supply of multiple ecosystem services, while nutrient regulation service was found to have a trade-off impact. Considering multiple ecosystem services, most of the rehabilitated plantation forest plots shared the same ordination space with rainforest plots in the ordination analysis, indicating that rehabilitated plantation forests may supply certain ecosystem services nearly equivalent to rainforests. Two synergy groups and one trade-off group were identified. Apart from conserving rainforests and sclerophyll forests, our findings suggest two additional integrated pathways to sustain the supply of multiple ecosystem services from a heterogeneous tropical forest landscape: (i) rehabilitation of degraded forests aiming to provide global climate regulation and habitat provision ecosystem services and (ii) management intervention to sustain global climate regulation and habitat provision ecosystem services. Copyright © 2016 Elsevier B.V. All rights reserved.
Multiple Representations-Based Face Sketch-Photo Synthesis.
Peng, Chunlei; Gao, Xinbo; Wang, Nannan; Tao, Dacheng; Li, Xuelong; Li, Jie
2016-11-01
Face sketch-photo synthesis plays an important role in law enforcement and digital entertainment. Most of the existing methods only use pixel intensities as the feature. Since face images can be described using features from multiple aspects, this paper presents a novel multiple representations-based face sketch-photo-synthesis method that adaptively combines multiple representations to represent an image patch. In particular, it combines multiple features from face images processed using multiple filters and deploys Markov networks to exploit the interacting relationships between the neighboring image patches. The proposed framework could be solved using an alternating optimization strategy and it normally converges in only five outer iterations in the experiments. Our experimental results on the Chinese University of Hong Kong (CUHK) face sketch database, celebrity photos, CUHK Face Sketch FERET Database, IIIT-D Viewed Sketch Database, and forensic sketches demonstrate the effectiveness of our method for face sketch-photo synthesis. In addition, cross-database and database-dependent style-synthesis evaluations demonstrate the generalizability of this novel method and suggest promising solutions for face identification in forensic science.
Feature point based 3D tracking of multiple fish from multi-view images
Qian, Zhi-Ming
2017-01-01
A feature point based method is proposed for tracking multiple fish in 3D space. First, a simplified representation of the object is realized through construction of two feature point models based on its appearance characteristics. After feature points are classified into occluded and non-occluded types, matching and association are performed, respectively. Finally, the object's motion trajectory in 3D space is obtained through integrating multi-view tracking results. Experimental results show that the proposed method can simultaneously track 3D motion trajectories for up to 10 fish accurately and robustly. PMID:28665966
Feature point based 3D tracking of multiple fish from multi-view images.
Qian, Zhi-Ming; Chen, Yan Qiu
2017-01-01
A feature point based method is proposed for tracking multiple fish in 3D space. First, a simplified representation of the object is realized through construction of two feature point models based on its appearance characteristics. After feature points are classified into occluded and non-occluded types, matching and association are performed, respectively. Finally, the object's motion trajectory in 3D space is obtained through integrating multi-view tracking results. Experimental results show that the proposed method can simultaneously track 3D motion trajectories for up to 10 fish accurately and robustly.
Hyun, Seung Won; Wong, Weng Kee
2016-01-01
We construct an optimal design to simultaneously estimate three common interesting features in a dose-finding trial with possibly different emphasis on each feature. These features are (1) the shape of the dose-response curve, (2) the median effective dose and (3) the minimum effective dose level. A main difficulty of this task is that an optimal design for a single objective may not perform well for other objectives. There are optimal designs for dual objectives in the literature but we were unable to find optimal designs for 3 or more objectives to date with a concrete application. A reason for this is that the approach for finding a dual-objective optimal design does not work well for a 3 or more multiple-objective design problem. We propose a method for finding multiple-objective optimal designs that estimate the three features with user-specified higher efficiencies for the more important objectives. We use the flexible 4-parameter logistic model to illustrate the methodology but our approach is applicable to find multiple-objective optimal designs for other types of objectives and models. We also investigate robustness properties of multiple-objective optimal designs to mis-specification in the nominal parameter values and to a variation in the optimality criterion. We also provide computer code for generating tailor made multiple-objective optimal designs. PMID:26565557
Hyun, Seung Won; Wong, Weng Kee
2015-11-01
We construct an optimal design to simultaneously estimate three common interesting features in a dose-finding trial with possibly different emphasis on each feature. These features are (1) the shape of the dose-response curve, (2) the median effective dose and (3) the minimum effective dose level. A main difficulty of this task is that an optimal design for a single objective may not perform well for other objectives. There are optimal designs for dual objectives in the literature but we were unable to find optimal designs for 3 or more objectives to date with a concrete application. A reason for this is that the approach for finding a dual-objective optimal design does not work well for a 3 or more multiple-objective design problem. We propose a method for finding multiple-objective optimal designs that estimate the three features with user-specified higher efficiencies for the more important objectives. We use the flexible 4-parameter logistic model to illustrate the methodology but our approach is applicable to find multiple-objective optimal designs for other types of objectives and models. We also investigate robustness properties of multiple-objective optimal designs to mis-specification in the nominal parameter values and to a variation in the optimality criterion. We also provide computer code for generating tailor made multiple-objective optimal designs.
Culyba, Matthew J; Kubiak, Jeffrey M; Mo, Charlie Y; Goulian, Mark; Kohli, Rahul M
2018-06-01
Biochemical pathways are often genetically encoded as simple transcription regulation networks, where one transcription factor regulates the expression of multiple genes in a pathway. The relative timing of each promoter's activation and shut-off within the network can impact physiology. In the DNA damage repair pathway (known as the SOS response) of Escherichia coli, approximately 40 genes are regulated by the LexA repressor. After a DNA damaging event, LexA degradation triggers SOS gene transcription, which is temporally separated into subsets of 'early', 'middle', and 'late' genes. Although this feature plays an important role in regulating the SOS response, both the range of this separation and its underlying mechanism are not experimentally defined. Here we show that, at low doses of DNA damage, the timing of promoter activities is not separated. Instead, timing differences only emerge at higher levels of DNA damage and increase as a function of DNA damage dose. To understand mechanism, we derived a series of synthetic SOS gene promoters which vary in LexA-operator binding kinetics, but are otherwise identical, and then studied their activity over a large dose-range of DNA damage. In distinction to established models based on rapid equilibrium assumptions, the data best fit a kinetic model of repressor occupancy at promoters, where the drop in cellular LexA levels associated with higher doses of DNA damage leads to non-equilibrium binding kinetics of LexA at operators. Operators with slow LexA binding kinetics achieve their minimal occupancy state at later times than operators with fast binding kinetics, resulting in a time separation of peak promoter activity between genes. These data provide insight into this remarkable feature of the SOS pathway by demonstrating how a single transcription factor can be employed to control the relative timing of each gene's transcription as a function of stimulus dose.
NASA Astrophysics Data System (ADS)
Nemoto, Mitsutaka; Hayashi, Naoto; Hanaoka, Shouhei; Nomura, Yukihiro; Miki, Soichiro; Yoshikawa, Takeharu; Ohtomo, Kuni
2016-03-01
The purpose of this study is to evaluate the feasibility of a novel feature generation, which is based on multiple deep neural networks (DNNs) with boosting, for computer-assisted detection (CADe). It is hard and time-consuming to optimize the hyperparameters for DNNs such as stacked denoising autoencoder (SdA). The proposed method allows using SdA based features without the burden of the hyperparameter setting. The proposed method was evaluated by an application for detecting cerebral aneurysms on magnetic resonance angiogram (MRA). A baseline CADe process included four components; scaling, candidate area limitation, candidate detection, and candidate classification. Proposed feature generation method was applied to extract the optimal features for candidate classification. Proposed method only required setting range of the hyperparameters for SdA. The optimal feature set was selected from a large quantity of SdA based features by multiple SdAs, each of which was trained using different hyperparameter set. The feature selection was operated through ada-boost ensemble learning method. Training of the baseline CADe process and proposed feature generation were operated with 200 MRA cases, and the evaluation was performed with 100 MRA cases. Proposed method successfully provided SdA based features just setting the range of some hyperparameters for SdA. The CADe process by using both previous voxel features and SdA based features had the best performance with 0.838 of an area under ROC curve and 0.312 of ANODE score. The results showed that proposed method was effective in the application for detecting cerebral aneurysms on MRA.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Er-Wen; Department of Forensic Pathology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou; Xue, Sheng-Jiang
Highlights: • Levels of EEN expression paralleled with the rate of cell proliferation. • EEN was involved in the proliferation and survival of multiple myeloma (MM) cells. • EEN regulated the activity of IGF-1-Akt/mTOR pathway. • EEN regulated proliferation and survival of MM cells by enhancing IGF-1 secretion. - Abstract: The molecular mechanisms of multiple myeloma are not well defined. EEN is an endocytosis-regulating molecule. Here we report that EEN regulates the proliferation and survival of multiple myeloma cells, by regulating IGF-1 secretion. In the present study, we observed that EEN expression paralleled with cell proliferation, EEN accelerated cell proliferation,more » facilitated cell cycle transition from G1 to S phase by regulating cyclin-dependent kinases (CDKs) pathway, and delayed cell apoptosis via Bcl2/Bax-mitochondrial pathway. Mechanistically, we found that EEN was indispensable for insulin-like growth factor-1 (IGF-1) secretion and the activation of protein kinase B-mammalian target of rapamycin (Akt-mTOR) pathway. Exogenous IGF-1 overcame the phenotype of EEN depletion, while IGF-1 neutralization overcame that of EEN over-expression. Collectively, these data suggest that EEN may play a pivotal role in excessive cell proliferation and insufficient cell apoptosis of bone marrow plasma cells in multiple myeloma. Therefore, EEN may represent a potential diagnostic marker or therapeutic target for multiple myeloma.« less
ERIC Educational Resources Information Center
Chandler, Terrell N.
1996-01-01
The System for Training of Aviation Regulations (STAR) provides comprehensive training in understanding and applying Federal aviation regulations. STAR gives multiple vantage points with multimedia presentations and storytelling within four categories of learning environments: overviews, scenarios, challenges, and resources. Discusses the…
Abscisic-acid-dependent basic leucine zipper (bZIP) transcription factors in plant abiotic stress.
Banerjee, Aditya; Roychoudhury, Aryadeep
2017-01-01
One of the major causes of significant crop loss throughout the world is the myriad of environmental stresses including drought, salinity, cold, heavy metal toxicity, and ultraviolet-B (UV-B) rays. Plants as sessile organisms have evolved various effective mechanism which enable them to withstand this plethora of stresses. Most of such regulatory mechanisms usually follow the abscisic-acid (ABA)-dependent pathway. In this review, we have primarily focussed on the basic leucine zipper (bZIP) transcription factors (TFs) activated by the ABA-mediated signalosome. Upon perception of ABA by specialized receptors, the signal is transduced via various groups of Ser/Thr kinases, which phosphorylate the bZIP TFs. Following such post-translational modification of TFs, they are activated so that they bind to specific cis-acting sequences called abscisic-acid-responsive elements (ABREs) or GC-rich coupling elements (CE), thereby influencing the expression of their target downstream genes. Several in silico techniques have been adopted so far to predict the structural features, recognize the regulatory modification sites, undergo phylogenetic analyses, and facilitate genome-wide survey of TF under multiple stresses. Current investigations on the epigenetic regulation that controls greater accessibility of the inducible regions of DNA of the target gene to the bZIP TFs exclusively under stress situations, along with the evolved stress memory responses via genomic imprinting mechanism, have been highlighted. The potentiality of overexpression of bZIP TFs, either in a homologous or in a heterologous background, in generating transgenic plants tolerant to various abiotic stressors have also been addressed by various groups. The present review will provide a coherent documentation on the functional characterization and regulation of bZIP TFs under multiple environmental stresses, with the major goal of generating multiple-stress-tolerant plant cultivars in near future.
Cortese, Leonardo; Caligiuri, Michael P; Malla, Ashok K; Manchanda, Rahul; Takhar, Jatinder; Haricharan, Raj
2005-06-01
From the very inception of the modern diagnostic scheme for psychotic disorders, abnormalities in motor function have been observed in these conditions. Despite convergence from multiple areas of research supporting the notion that multiple frontal-subcortical circuits regulate motor and limbic behavior, the precise relationship between motor abnormalities and psychopathology has not been elucidated. The goals of this study were to examine the prevalence of extrapyramidal signs (EPS) in first-episode schizophrenia patients and their relationships to three psychopathological dimensions (positive psychosis syndrome, negative syndrome, and disorganization). We assessed EPS using traditional observer-based as well as quantitative instrumental measures in 39 neuroleptic-naive first-episode schizophrenia subjects. Subjects were followed for 6 months after initiating antipsychotic treatment to examine the stability of motor-limbic relationships. Four main findings emerged from this study. First, depending on the measure used the prevalence of dyskinesia prior to treatment ranged from 13% to 20%. The prevalence of parkinsonism ranged from 18% to 28%. Second, severity of dyskinesia was associated with the positive psychotic syndrome; whereas parkinsonism was associated with the positive psychosis, negative syndrome and disorganization. Third, psychopathology improved significantly across all symptom dimensions following antipsychotic treatment, while EPS remained stable. This suggests that some motor abnormalities in schizophrenia may reflect trait characteristics. Fourth, abnormalities on the pre-treatment instrumental measure of parkinsonism predicted greater improvement on positive psychosis symptoms following treatment (p=0.008). Our findings support the notion that neuromotor disturbances may be a core feature of schizophrenia in a substantial proportion of patients and implicate multiple fronto-striatal circuits regulating limbic and neuromotor behavior in schizophrenia.
Reed, Benjamin J.; Locke, Melissa N.; Gardner, Richard G.
2015-01-01
In the canonical view of protein function, it is generally accepted that the three-dimensional structure of a protein determines its function. However, the past decade has seen a dramatic growth in the identification of proteins with extensive intrinsically disordered regions (IDRs), which are conformationally plastic and do not appear to adopt single three-dimensional structures. One current paradigm for IDR function is that disorder enables IDRs to adopt multiple conformations, expanding the ability of a protein to interact with a wide variety of disparate proteins. The capacity for many interactions is an important feature of proteins that occupy the hubs of protein networks, in particular protein-modifying enzymes that usually have a broad spectrum of substrates. One such protein modification is ubiquitination, where ubiquitin is attached to proteins through ubiquitin ligases (E3s) and removed through deubiquitinating enzymes. Numerous proteomic studies have found that thousands of proteins are dynamically regulated by cycles of ubiquitination and deubiquitination. Thus, how these enzymes target their wide array of substrates is of considerable importance for understanding the function of the cell's diverse ubiquitination networks. Here, we characterize a yeast deubiquitinating enzyme, Ubp10, that possesses IDRs flanking its catalytic protease domain. We show that Ubp10 possesses multiple, distinct binding modules within its IDRs that are necessary and sufficient for directing protein interactions important for Ubp10's known roles in gene silencing and ribosome biogenesis. The human homolog of Ubp10, USP36, also has IDRs flanking its catalytic domain, and these IDRs similarly contain binding modules important for protein interactions. This work highlights the significant protein interaction scaffolding abilities of IDRs in the regulation of dynamic protein ubiquitination. PMID:26149687
'Dressed for success' C-type lectin receptors for the delivery of glyco-vaccines to dendritic cells.
Unger, Wendy W J; van Kooyk, Yvette
2011-02-01
Current strategies in immunotherapy for the treatment of tumors or autoimmunity focus on direct in vivo targeting of antigens to dendritic cells (DC), as these cells are the key regulators of immune responses. Multiple DC subsets can be distinguished in both humans and mice, based on phenotype and location. Moreover, recent data show that these subsets have distinct functions. All these features have implications for the design of DC-targeting vaccines. In this review we integrate recent knowledge on the different DC subsets in human and mice and how DC-expressed C-type lectin receptors (CLR) can be exploited for the induction of either antigen-specific immunity or tolerance. Copyright © 2010 Elsevier Ltd. All rights reserved.
... this page: //medlineplus.gov/ency/article/000737.htm Multiple sclerosis To use the sharing features on this page, please enable JavaScript. Multiple sclerosis (MS) is an autoimmune disease that affects the ...
Hu, Long; Xu, Zhiyu; Hu, Boqin; Lu, Zhi John
2017-01-09
Recent genomic studies suggest that novel long non-coding RNAs (lncRNAs) are specifically expressed and far outnumber annotated lncRNA sequences. To identify and characterize novel lncRNAs in RNA sequencing data from new samples, we have developed COME, a coding potential calculation tool based on multiple features. It integrates multiple sequence-derived and experiment-based features using a decompose-compose method, which makes it more accurate and robust than other well-known tools. We also showed that COME was able to substantially improve the consistency of predication results from other coding potential calculators. Moreover, COME annotates and characterizes each predicted lncRNA transcript with multiple lines of supporting evidence, which are not provided by other tools. Remarkably, we found that one subgroup of lncRNAs classified by such supporting features (i.e. conserved local RNA secondary structure) was highly enriched in a well-validated database (lncRNAdb). We further found that the conserved structural domains on lncRNAs had better chance than other RNA regions to interact with RNA binding proteins, based on the recent eCLIP-seq data in human, indicating their potential regulatory roles. Overall, we present COME as an accurate, robust and multiple-feature supported method for the identification and characterization of novel lncRNAs. The software implementation is available at https://github.com/lulab/COME. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.
NASA Astrophysics Data System (ADS)
Yang, Bisheng; Dong, Zhen; Liu, Yuan; Liang, Fuxun; Wang, Yongjun
2017-04-01
In recent years, updating the inventory of road infrastructures based on field work is labor intensive, time consuming, and costly. Fortunately, vehicle-based mobile laser scanning (MLS) systems provide an efficient solution to rapidly capture three-dimensional (3D) point clouds of road environments with high flexibility and precision. However, robust recognition of road facilities from huge volumes of 3D point clouds is still a challenging issue because of complicated and incomplete structures, occlusions and varied point densities. Most existing methods utilize point or object based features to recognize object candidates, and can only extract limited types of objects with a relatively low recognition rate, especially for incomplete and small objects. To overcome these drawbacks, this paper proposes a semantic labeling framework by combing multiple aggregation levels (point-segment-object) of features and contextual features to recognize road facilities, such as road surfaces, road boundaries, buildings, guardrails, street lamps, traffic signs, roadside-trees, power lines, and cars, for highway infrastructure inventory. The proposed method first identifies ground and non-ground points, and extracts road surfaces facilities from ground points. Non-ground points are segmented into individual candidate objects based on the proposed multi-rule region growing method. Then, the multiple aggregation levels of features and the contextual features (relative positions, relative directions, and spatial patterns) associated with each candidate object are calculated and fed into a SVM classifier to label the corresponding candidate object. The recognition performance of combining multiple aggregation levels and contextual features was compared with single level (point, segment, or object) based features using large-scale highway scene point clouds. Comparative studies demonstrated that the proposed semantic labeling framework significantly improves road facilities recognition precision (90.6%) and recall (91.2%), particularly for incomplete and small objects.
Hamby, Mary E.; Coppola, Giovanni; Ao, Yan; Geschwind, Daniel H.; Khakh, Baljit S.; Sofroniew, Michael V.
2012-01-01
Inflammation features in CNS disorders such as stroke, trauma, neurodegeneration, infection, and autoimmunity in which astrocytes play critical roles. To elucidate how inflammatory mediators alter astrocyte functions, we examined effects of transforming growth factor-β1 (TGF-β1), lipopolysaccharide (LPS), and interferon-gamma (IFNγ), alone and in combination, on purified, mouse primary cortical astrocyte cultures. We used microarrays to conduct whole-genome expression profiling, and measured calcium signaling, which is implicated in mediating dynamic astrocyte functions. Combinatorial exposure to TGF-β1, LPS, and IFNγ significantly modulated astrocyte expression of >6800 gene probes, including >380 synergistic changes not predicted by summing individual treatment effects. Bioinformatic analyses revealed significantly and markedly upregulated molecular networks and pathways associated in particular with immune signaling and regulation of cell injury, death, growth, and proliferation. Highly regulated genes included chemokines, growth factors, enzymes, channels, transporters, and intercellular and intracellular signal transducers. Notably, numerous genes for G-protein-coupled receptors (GPCRs) and G-protein effectors involved in calcium signaling were significantly regulated, mostly down (for example, Cxcr4, Adra2a, Ednra, P2y1, Gnao1, Gng7), but some up (for example, P2y14, P2y6, Ccrl2, Gnb4). We tested selected cases and found that changes in GPCR gene expression were accompanied by significant, parallel changes in astrocyte calcium signaling evoked by corresponding GPCR-specific ligands. These findings identify pronounced changes in the astrocyte transcriptome induced by TGF-β1, LPS, and IFNγ, and show that these inflammatory stimuli upregulate astrocyte molecular networks associated with immune- and injury-related functions and significantly alter astrocyte calcium signaling stimulated by multiple GPCRs. PMID:23077035
Arneson, Douglas; Bhattacharya, Anindya; Shu, Le; Mäkinen, Ville-Petteri; Yang, Xia
2016-09-09
Human diseases are commonly the result of multidimensional changes at molecular, cellular, and systemic levels. Recent advances in genomic technologies have enabled an outpour of omics datasets that capture these changes. However, separate analyses of these various data only provide fragmented understanding and do not capture the holistic view of disease mechanisms. To meet the urgent needs for tools that effectively integrate multiple types of omics data to derive biological insights, we have developed Mergeomics, a computational pipeline that integrates multidimensional disease association data with functional genomics and molecular networks to retrieve biological pathways, gene networks, and central regulators critical for disease development. To make the Mergeomics pipeline available to a wider research community, we have implemented an online, user-friendly web server ( http://mergeomics. idre.ucla.edu/ ). The web server features a modular implementation of the Mergeomics pipeline with detailed tutorials. Additionally, it provides curated genomic resources including tissue-specific expression quantitative trait loci, ENCODE functional annotations, biological pathways, and molecular networks, and offers interactive visualization of analytical results. Multiple computational tools including Marker Dependency Filtering (MDF), Marker Set Enrichment Analysis (MSEA), Meta-MSEA, and Weighted Key Driver Analysis (wKDA) can be used separately or in flexible combinations. User-defined summary-level genomic association datasets (e.g., genetic, transcriptomic, epigenomic) related to a particular disease or phenotype can be uploaded and computed real-time to yield biologically interpretable results, which can be viewed online and downloaded for later use. Our Mergeomics web server offers researchers flexible and user-friendly tools to facilitate integration of multidimensional data into holistic views of disease mechanisms in the form of tissue-specific key regulators, biological pathways, and gene networks.
Explosive hazard detection using MIMO forward-looking ground penetrating radar
NASA Astrophysics Data System (ADS)
Shaw, Darren; Ho, K. C.; Stone, Kevin; Keller, James M.; Popescu, Mihail; Anderson, Derek T.; Luke, Robert H.; Burns, Brian
2015-05-01
This paper proposes a machine learning algorithm for subsurface object detection on multiple-input-multiple-output (MIMO) forward-looking ground-penetrating radar (FLGPR). By detecting hazards using FLGPR, standoff distances of up to tens of meters can be acquired, but this is at the degradation of performance due to high false alarm rates. The proposed system utilizes an anomaly detection prescreener to identify potential object locations. Alarm locations have multiple one-dimensional (ML) spectral features, two-dimensional (2D) spectral features, and log-Gabor statistic features extracted. The ability of these features to reduce the number of false alarms and increase the probability of detection is evaluated for both co-polarizations present in the Akela MIMO array. Classification is performed by a Support Vector Machine (SVM) with lane-based cross-validation for training and testing. Class imbalance and optimized SVM kernel parameters are considered during classifier training.
Waldman, Amy; Ghezzi, Angelo; Bar-Or, Amit; Mikaeloff, Yann; Tardieu, Marc; Banwell, Brenda
2015-01-01
The clinical features, diagnostic challenges, neuroimaging appearance, therapeutic options, and pathobiological research progress in childhood—and adolescent—onset multiple sclerosis have been informed by many new insights in the past 7 years. National programmes in several countries, collaborative research efforts, and an established international paediatric multiple sclerosis study group have contributed to revised clinical diagnostic definitions, identified clinical features of multiple sclerosis that differ by age of onset, and made recommendations regarding the treatment of paediatric multiple sclerosis. The relative risks conveyed by genetic and environmental factors to paediatric multiple sclerosis have been the subject of several large cohort studies. MRI features have been characterised in terms of qualitative descriptions of lesion distribution and applicability of MRI aspects to multiple sclerosis diagnostic criteria, and quantitative studies have assessed total lesion burden and the effect of the disease on global and regional brain volume. Humoral-based and cell-based assays have identified antibodies against myelin, potassium-channel proteins, and T-cell profiles that support an adult-like T-cell repertoire and cellular reactivity against myelin in paediatric patients with multiple sclerosis. Finally, the safety and efficacy of standard first-line therapies in paediatric multiple sclerosis populations are now appreciated in more detail, and consensus views on the future conduct and feasibility of phase 3 trials for new drugs have been proposed. PMID:25142460
Sparsity-aware tight frame learning with adaptive subspace recognition for multiple fault diagnosis
NASA Astrophysics Data System (ADS)
Zhang, Han; Chen, Xuefeng; Du, Zhaohui; Yang, Boyuan
2017-09-01
It is a challenging problem to design excellent dictionaries to sparsely represent diverse fault information and simultaneously discriminate different fault sources. Therefore, this paper describes and analyzes a novel multiple feature recognition framework which incorporates the tight frame learning technique with an adaptive subspace recognition strategy. The proposed framework consists of four stages. Firstly, by introducing the tight frame constraint into the popular dictionary learning model, the proposed tight frame learning model could be formulated as a nonconvex optimization problem which can be solved by alternatively implementing hard thresholding operation and singular value decomposition. Secondly, the noises are effectively eliminated through transform sparse coding techniques. Thirdly, the denoised signal is decoupled into discriminative feature subspaces by each tight frame filter. Finally, in guidance of elaborately designed fault related sensitive indexes, latent fault feature subspaces can be adaptively recognized and multiple faults are diagnosed simultaneously. Extensive numerical experiments are sequently implemented to investigate the sparsifying capability of the learned tight frame as well as its comprehensive denoising performance. Most importantly, the feasibility and superiority of the proposed framework is verified through performing multiple fault diagnosis of motor bearings. Compared with the state-of-the-art fault detection techniques, some important advantages have been observed: firstly, the proposed framework incorporates the physical prior with the data-driven strategy and naturally multiple fault feature with similar oscillation morphology can be adaptively decoupled. Secondly, the tight frame dictionary directly learned from the noisy observation can significantly promote the sparsity of fault features compared to analytical tight frames. Thirdly, a satisfactory complete signal space description property is guaranteed and thus weak feature leakage problem is avoided compared to typical learning methods.
Adhikari, Badri; Hou, Jie; Cheng, Jianlin
2018-03-01
In this study, we report the evaluation of the residue-residue contacts predicted by our three different methods in the CASP12 experiment, focusing on studying the impact of multiple sequence alignment, residue coevolution, and machine learning on contact prediction. The first method (MULTICOM-NOVEL) uses only traditional features (sequence profile, secondary structure, and solvent accessibility) with deep learning to predict contacts and serves as a baseline. The second method (MULTICOM-CONSTRUCT) uses our new alignment algorithm to generate deep multiple sequence alignment to derive coevolution-based features, which are integrated by a neural network method to predict contacts. The third method (MULTICOM-CLUSTER) is a consensus combination of the predictions of the first two methods. We evaluated our methods on 94 CASP12 domains. On a subset of 38 free-modeling domains, our methods achieved an average precision of up to 41.7% for top L/5 long-range contact predictions. The comparison of the three methods shows that the quality and effective depth of multiple sequence alignments, coevolution-based features, and machine learning integration of coevolution-based features and traditional features drive the quality of predicted protein contacts. On the full CASP12 dataset, the coevolution-based features alone can improve the average precision from 28.4% to 41.6%, and the machine learning integration of all the features further raises the precision to 56.3%, when top L/5 predicted long-range contacts are evaluated. And the correlation between the precision of contact prediction and the logarithm of the number of effective sequences in alignments is 0.66. © 2017 Wiley Periodicals, Inc.
ERIC Educational Resources Information Center
Schuengel, C.; Sterkenburg, P. S.; Jeczynski, P.; Janssen, C. G. C.; Jongbloed, G.
2009-01-01
In a controlled multiple case design study, the development of a therapeutic relationship and its role in affect regulation were studied in 6 children with visual disabilities, severe intellectual disabilities, severe challenging behavior, and prolonged social deprivation. In the 1st phase, children had sessions with an experimental therapist…
Narad, Priyanka; Kumar, Abhishek; Chakraborty, Amlan; Patni, Pranav; Sengupta, Abhishek; Wadhwa, Gulshan; Upadhyaya, K C
2017-09-01
Transcription factors are trans-acting proteins that interact with specific nucleotide sequences known as transcription factor binding site (TFBS), and these interactions are implicated in regulation of the gene expression. Regulation of transcriptional activation of a gene often involves multiple interactions of transcription factors with various sequence elements. Identification of these sequence elements is the first step in understanding the underlying molecular mechanism(s) that regulate the gene expression. For in silico identification of these sequence elements, we have developed an online computational tool named transcription factor information system (TFIS) for detecting TFBS for the first time using a collection of JAVA programs and is mainly based on TFBS detection using position weight matrix (PWM). The database used for obtaining position frequency matrices (PFM) is JASPAR and HOCOMOCO, which is an open-access database of transcription factor binding profiles. Pseudo-counts are used while converting PFM to PWM, and TFBS detection is carried out on the basis of percent score taken as threshold value. TFIS is equipped with advanced features such as direct sequence retrieving from NCBI database using gene identification number and accession number, detecting binding site for common TF in a batch of gene sequences, and TFBS detection after generating PWM from known raw binding sequences in addition to general detection methods. TFIS can detect the presence of potential TFBSs in both the directions at the same time. This feature increases its efficiency. And the results for this dual detection are presented in different colors specific to the orientation of the binding site. Results obtained by the TFIS are more detailed and specific to the detected TFs as integration of more informative links from various related web servers are added in the result pages like Gene Ontology, PAZAR database and Transcription Factor Encyclopedia in addition to NCBI and UniProt. Common TFs like SP1, AP1 and NF-KB of the Amyloid beta precursor gene is easily detected using TFIS along with multiple binding sites. In another scenario of embryonic developmental process, TFs of the FOX family (FOXL1 and FOXC1) were also identified. TFIS is platform-independent which is publicly available along with its support and documentation at http://tfistool.appspot.com and http://www.bioinfoplus.com/tfis/ . TFIS is licensed under the GNU General Public License, version 3 (GPL-3.0).
Cacci, Emanuele; Negri, Rodolfo; Biagioni, Stefano; Lupo, Giuseppe
2017-01-01
Neural stem/progenitor cell (NSPC) self-renewal and differentiation in the developing and the adult brain are controlled by extra-cellular signals and by the inherent competence of NSPCs to produce appropriate responses. Stage-dependent responsiveness of NSPCs to extrinsic cues is orchestrated at the epigenetic level. Epigenetic mechanisms such as DNA methylation, histone modifications and non-coding RNA-mediated regulation control crucial aspects of NSPC development and function, and are also implicated in pathological conditions. While their roles in the regulation of stem cell fate have been largely explored in pluripotent stem cell models, the epigenetic signature of NSPCs is also key to determine their multipotency as well as their progressive bias towards specific differentiation outcomes. Here we review recent developments in this field, focusing on the roles of histone methylation marks and the protein complexes controlling their deposition in NSPCs of the developing cerebral cortex and the adult subventricular zone. In this context, we describe how bivalent promoters, carrying antagonistic epigenetic modifications, feature during multiple steps of neural development, from neural lineage specification to neuronal differentiation. Furthermore, we discuss the emerging cross-talk between epigenetic regulators and microRNAs, and how the interplay between these different layers of regulation can finely tune the expression of genes controlling NSPC maintenance and differentiation. In particular, we highlight recent advances in the identification of astrocyte-enriched microRNAs and their function in cell fate choices of NSPCs differentiating towards glial lineages.
Emotion recognition based on multiple order features using fractional Fourier transform
NASA Astrophysics Data System (ADS)
Ren, Bo; Liu, Deyin; Qi, Lin
2017-07-01
In order to deal with the insufficiency of recently algorithms based on Two Dimensions Fractional Fourier Transform (2D-FrFT), this paper proposes a multiple order features based method for emotion recognition. Most existing methods utilize the feature of single order or a couple of orders of 2D-FrFT. However, different orders of 2D-FrFT have different contributions on the feature extraction of emotion recognition. Combination of these features can enhance the performance of an emotion recognition system. The proposed approach obtains numerous features that extracted in different orders of 2D-FrFT in the directions of x-axis and y-axis, and uses the statistical magnitudes as the final feature vectors for recognition. The Support Vector Machine (SVM) is utilized for the classification and RML Emotion database and Cohn-Kanade (CK) database are used for the experiment. The experimental results demonstrate the effectiveness of the proposed method.
Middelbeek, Jeroen; Kamermans, Alwin; Kuipers, Arthur J.; Hoogerbrugge, Peter M.; Jalink, Kees; van Leeuwen, Frank N.
2015-01-01
Neuroblastoma is an embryonal tumor derived from poorly differentiated neural crest cells. Current research is aimed at identifying the molecular mechanisms that maintain the progenitor state of neuroblastoma cells and to develop novel therapeutic strategies that induce neuroblastoma cell differentiation. Mechanisms controlling neural crest development are typically dysregulated during neuroblastoma progression, and provide an appealing starting point for drug target discovery. Transcriptional programs involved in neural crest development act as a context dependent gene regulatory network. In addition to BMP, Wnt and Notch signaling, activation of developmental gene expression programs depends on the physical characteristics of the tissue microenvironment. TRPM7, a mechanically regulated TRP channel with kinase activity, was previously found essential for embryogenesis and the maintenance of undifferentiated neural crest progenitors. Hence, we hypothesized that TRPM7 may preserve progenitor-like, metastatic features of neuroblastoma cells. Using multiple neuroblastoma cell models, we demonstrate that TRPM7 expression closely associates with the migratory and metastatic properties of neuroblastoma cells in vitro and in vivo. Moreover, microarray-based expression profiling on control and TRPM7 shRNA transduced neuroblastoma cells indicates that TRPM7 controls a developmental transcriptional program involving the transcription factor SNAI2. Overall, our data indicate that TRPM7 contributes to neuroblastoma progression by maintaining progenitor-like features. PMID:25797249
Ogino, S; Kawasaki, T; Kirkner, G J; Ogawa, A; Dorfman, I; Loda, M; Fuchs, C S
2006-10-01
p21 (CDKN1A/CIP1/WAF1), one of the cyclin-dependent kinase inhibitors, plays a key role in regulating the cell cycle and is transcriptionally regulated by p53. Down-regulation of p21 is caused by TP53 mutations in colorectal cancer. CpG island methylator phenotype (CIMP) appears to be a distinct subtype of colorectal cancer with concordant methylation of multiple gene promoters and is associated with a high degree of microsatellite instability (MSI-H) and BRAF mutations. However, no study to date has evaluated the relationship between p21 expression and CIMP in colorectal cancer. The purpose of this study was to examine the inter-relationships between p21, p53, CIMP, MSI and KRAS/BRAF status in colorectal cancer. We utilized 737 relatively unbiased samples of colorectal cancers from two large prospective cohort studies. Using quantitative real-time PCR (MethyLight), we measured DNA methylation in five CIMP-specific gene promoters [CACNA1G, CDKN2A (p16/INK4A), CRABP1, MLH1 and NEUROG1]. CIMP-high (>or=4/5 methylated promoters) was diagnosed in 118 (16%) of the 737 tumours. We also assessed expression of p21 and p53 by immunohistochemistry. Among the 737 tumours, 371 (50%) showed p21 loss. Both p21 loss and p53 positivity were inversely associated with CIMP-high, MSI-H and BRAF mutations. The associations of p21 with these molecular features were still present after tumours were stratified by p53 status. In contrast, the associations of p53 positivity with the molecular features were no longer present after tumours were stratified by p21 status. When CIMP-high and non-CIMP-high tumours were stratified by MSI or KRAS/BRAF status, CIMP-high and MSI-H (but not BRAF mutations) were still inversely associated with p21 loss. In conclusion, down-regulation of p21 is inversely correlated with CIMP-high and MSI-H in colorectal cancer, independent of TP53 and BRAF status.
Feature generation and representations for protein-protein interaction classification.
Lan, Man; Tan, Chew Lim; Su, Jian
2009-10-01
Automatic detecting protein-protein interaction (PPI) relevant articles is a crucial step for large-scale biological database curation. The previous work adopted POS tagging, shallow parsing and sentence splitting techniques, but they achieved worse performance than the simple bag-of-words representation. In this paper, we generated and investigated multiple types of feature representations in order to further improve the performance of PPI text classification task. Besides the traditional domain-independent bag-of-words approach and the term weighting methods, we also explored other domain-dependent features, i.e. protein-protein interaction trigger keywords, protein named entities and the advanced ways of incorporating Natural Language Processing (NLP) output. The integration of these multiple features has been evaluated on the BioCreAtIvE II corpus. The experimental results showed that both the advanced way of using NLP output and the integration of bag-of-words and NLP output improved the performance of text classification. Specifically, in comparison with the best performance achieved in the BioCreAtIvE II IAS, the feature-level and classifier-level integration of multiple features improved the performance of classification 2.71% and 3.95%, respectively.
A multiple maximum scatter difference discriminant criterion for facial feature extraction.
Song, Fengxi; Zhang, David; Mei, Dayong; Guo, Zhongwei
2007-12-01
Maximum scatter difference (MSD) discriminant criterion was a recently presented binary discriminant criterion for pattern classification that utilizes the generalized scatter difference rather than the generalized Rayleigh quotient as a class separability measure, thereby avoiding the singularity problem when addressing small-sample-size problems. MSD classifiers based on this criterion have been quite effective on face-recognition tasks, but as they are binary classifiers, they are not as efficient on large-scale classification tasks. To address the problem, this paper generalizes the classification-oriented binary criterion to its multiple counterpart--multiple MSD (MMSD) discriminant criterion for facial feature extraction. The MMSD feature-extraction method, which is based on this novel discriminant criterion, is a new subspace-based feature-extraction method. Unlike most other subspace-based feature-extraction methods, the MMSD computes its discriminant vectors from both the range of the between-class scatter matrix and the null space of the within-class scatter matrix. The MMSD is theoretically elegant and easy to calculate. Extensive experimental studies conducted on the benchmark database, FERET, show that the MMSD out-performs state-of-the-art facial feature-extraction methods such as null space method, direct linear discriminant analysis (LDA), eigenface, Fisherface, and complete LDA.
Genome-Wide Identification and Expression Analysis of WRKY Gene Family in Capsicum annuum L.
Diao, Wei-Ping; Snyder, John C.; Wang, Shu-Bin; Liu, Jin-Bing; Pan, Bao-Gui; Guo, Guang-Jun; Wei, Ge
2016-01-01
The WRKY family of transcription factors is one of the most important families of plant transcriptional regulators with members regulating multiple biological processes, especially in regulating defense against biotic and abiotic stresses. However, little information is available about WRKYs in pepper (Capsicum annuum L.). The recent release of completely assembled genome sequences of pepper allowed us to perform a genome-wide investigation for pepper WRKY proteins. In the present study, a total of 71 WRKY genes were identified in the pepper genome. According to structural features of their encoded proteins, the pepper WRKY genes (CaWRKY) were classified into three main groups, with the second group further divided into five subgroups. Genome mapping analysis revealed that CaWRKY were enriched on four chromosomes, especially on chromosome 1, and 15.5% of the family members were tandemly duplicated genes. A phylogenetic tree was constructed depending on WRKY domain' sequences derived from pepper and Arabidopsis. The expression of 21 selected CaWRKY genes in response to seven different biotic and abiotic stresses (salt, heat shock, drought, Phytophtora capsici, SA, MeJA, and ABA) was evaluated by quantitative RT-PCR; Some CaWRKYs were highly expressed and up-regulated by stress treatment. Our results will provide a platform for functional identification and molecular breeding studies of WRKY genes in pepper. PMID:26941768
Transcriptional network systems in cartilage development and disease.
Nishimura, Riko; Hata, Kenji; Nakamura, Eriko; Murakami, Tomohiko; Takahata, Yoshifumi
2018-04-01
Transcription factors play important roles in the regulation of cartilage development by controlling the expression of chondrogenic genes. Genetic studies have revealed that Sox9/Sox5/Sox6, Runx2/Runx3 and Osterix in particular are essential for the sequential steps of cartilage development. Importantly, these transcription factors form network systems that are also required for appropriate cartilage development. Molecular cloning approaches have largely contributed to the identification of several transcriptional partners for Sox9 and Runx2 during cartilage development. Although the importance of a negative-feedback loop between Indian hedgehog (Ihh) and parathyroid hormone-related protein (PTHrP) in chondrocyte hypertrophy has been well established, recent studies indicate that several transcription factors interact with the Ihh-PTHrP loop and demonstrated that Ihh has multiple functions in the regulation of cartilage development. The most common cartilage disorder, osteoarthritis, has been reported to result from the pathological action of several transcription factors, including Runx2, C/EBPβ and HIF-2α. On the other hand, NFAT family members appear to play roles in the protection of cartilage from osteoarthritis. It is also becoming important to understand the homeostasis and regulation of articular chondrocytes, because they have different cellular and molecular features from chondrocytes of the growth plate. This review summarizes the regulation and roles of transcriptional network systems in cartilage development and their pathological roles in osteoarthritis.
Urate is a ligand for the transcriptional regulator PecS.
Perera, Inoka C; Grove, Anne
2010-09-24
PecS is a member of the MarR (multiple antibiotic resistance regulator) family, which has been shown in Erwinia to regulate the expression of virulence genes. MarR homologs typically bind a small molecule ligand, resulting in attenuated DNA binding. For PecS, the natural ligand has not been identified. We have previously shown that urate is a ligand for the Deinococcus radiodurans-encoded MarR homolog HucR (hypothetical uricase regulator) and identified residues responsible for ligand binding. We show here that all four residues involved in urate binding and propagation of conformational changes to DNA recognition helices are conserved in PecS homologs, suggesting that urate is the ligand for PecS. Consistent with this prediction, Agrobacterium tumefaciens PecS specifically binds urate, and urate attenuates DNA binding in vitro. PecS binds two operator sites in the intergenic region between the divergent pecS gene and pecM genes, one of which features two partially overlapping repeats to which PecS binds as a dimer on opposite faces of the duplex. Notably, urate dissociates PecS from cognate DNA, allowing transcription of both genes in vivo. Taken together, our data show that urate is a ligand for PecS and suggest that urate serves a novel function in signaling the colonization of a host plant. Copyright © 2010 Elsevier Ltd. All rights reserved.
Sagasser, Margaretha H; Kramer, Anneke W M; van der Vleuten, Cees P M
2012-08-06
Self-regulation is essential for professional development. It involves monitoring of performance, identifying domains for improvement, undertaking learning activities, applying newly learned knowledge and skills and self-assessing performance. Since self-assessment alone is ineffective in identifying weaknesses, learners should seek external feedback too. Externally regulated educational interventions, like reflection, learning portfolios, assessments and progress meetings, are increasingly used to scaffold self-regulation.The aim of this study is to explore how postgraduate trainees regulate their learning in the workplace, how external regulation promotes self-regulation and which elements facilitate or impede self-regulation and learning. In a qualitative study with a phenomenologic approach we interviewed first- and third-year GP trainees from two universities in the Netherlands. Twenty-one verbatim transcripts were coded. Through iterative discussion the researchers agreed on the interpretation of the data and saturation was reached. Trainees used a short and a long self-regulation loop. The short loop took one week at most and was focused on problems that were easy to resolve and needed minor learning activities. The long loop was focused on complex or recurring problems needing multiple and planned longitudinal learning activities. External assessments and formal training affected the long but not the short loop. The supervisor had a facilitating role in both loops. Self-confidence was used to gauge competence.Elements influencing self-regulation were classified into three dimensions: personal (strong motivation to become a good doctor), interpersonal (stimulation from others) and contextual (organizational and educational features). Trainees did purposefully self-regulate their learning. Learning in the short loop may not be visible to others. Trainees should be encouraged to actively seek and use external feedback in both loops. An important question for further research is which educational interventions might be used to scaffold learning in the short loop. Investing in supervisor quality remains important, since they are close to trainee learning in both loops.
2012-01-01
Background Self-regulation is essential for professional development. It involves monitoring of performance, identifying domains for improvement, undertaking learning activities, applying newly learned knowledge and skills and self-assessing performance. Since self-assessment alone is ineffective in identifying weaknesses, learners should seek external feedback too. Externally regulated educational interventions, like reflection, learning portfolios, assessments and progress meetings, are increasingly used to scaffold self-regulation. The aim of this study is to explore how postgraduate trainees regulate their learning in the workplace, how external regulation promotes self-regulation and which elements facilitate or impede self-regulation and learning. Methods In a qualitative study with a phenomenologic approach we interviewed first- and third-year GP trainees from two universities in the Netherlands. Twenty-one verbatim transcripts were coded. Through iterative discussion the researchers agreed on the interpretation of the data and saturation was reached. Results Trainees used a short and a long self-regulation loop. The short loop took one week at most and was focused on problems that were easy to resolve and needed minor learning activities. The long loop was focused on complex or recurring problems needing multiple and planned longitudinal learning activities. External assessments and formal training affected the long but not the short loop. The supervisor had a facilitating role in both loops. Self-confidence was used to gauge competence.Elements influencing self-regulation were classified into three dimensions: personal (strong motivation to become a good doctor), interpersonal (stimulation from others) and contextual (organizational and educational features). Conclusions Trainees did purposefully self-regulate their learning. Learning in the short loop may not be visible to others. Trainees should be encouraged to actively seek and use external feedback in both loops. An important question for further research is which educational interventions might be used to scaffold learning in the short loop. Investing in supervisor quality remains important, since they are close to trainee learning in both loops. PMID:22866981
Manifold Regularized Multitask Feature Learning for Multimodality Disease Classification
Jie, Biao; Zhang, Daoqiang; Cheng, Bo; Shen, Dinggang
2015-01-01
Multimodality based methods have shown great advantages in classification of Alzheimer’s disease (AD) and its prodromal stage, that is, mild cognitive impairment (MCI). Recently, multitask feature selection methods are typically used for joint selection of common features across multiple modalities. However, one disadvantage of existing multimodality based methods is that they ignore the useful data distribution information in each modality, which is essential for subsequent classification. Accordingly, in this paper we propose a manifold regularized multitask feature learning method to preserve both the intrinsic relatedness among multiple modalities of data and the data distribution information in each modality. Specifically, we denote the feature learning on each modality as a single task, and use group-sparsity regularizer to capture the intrinsic relatedness among multiple tasks (i.e., modalities) and jointly select the common features from multiple tasks. Furthermore, we introduce a new manifold-based Laplacian regularizer to preserve the data distribution information from each task. Finally, we use the multikernel support vector machine method to fuse multimodality data for eventual classification. Conversely, we also extend our method to the semisupervised setting, where only partial data are labeled. We evaluate our method using the baseline magnetic resonance imaging (MRI), fluorodeoxyglucose positron emission tomography (FDG-PET), and cerebrospinal fluid (CSF) data of subjects from AD neuroimaging initiative database. The experimental results demonstrate that our proposed method can not only achieve improved classification performance, but also help to discover the disease-related brain regions useful for disease diagnosis. PMID:25277605
A Pivotal Role of DELLAs in Regulating Multiple Hormone Signals.
Davière, Jean-Michel; Achard, Patrick
2016-01-04
Plant phenotypic plasticity is controlled by diverse hormone pathways, which integrate and convey information from multiple developmental and environmental signals. Moreover, in plants many processes such as growth, development, and defense are regulated in similar ways by multiple hormones. Among them, gibberellins (GAs) are phytohormones with pleiotropic actions, regulating various growth processes throughout the plant life cycle. Previous work has revealed extensive interplay between GAs and other hormones, but the molecular mechanism became apparent only recently. Molecular and physiological studies have demonstrated that DELLA proteins, considered as master negative regulators of GA signaling, integrate multiple hormone signaling pathways through physical interactions with transcription factors or regulatory proteins from different families. In this review, we summarize the latest progress in GA signaling and its direct crosstalk with the main phytohormone signaling, emphasizing the multifaceted role of DELLA proteins with key components of major hormone signaling pathways. Copyright © 2016 The Author. Published by Elsevier Inc. All rights reserved.
Application of machine learning on brain cancer multiclass classification
NASA Astrophysics Data System (ADS)
Panca, V.; Rustam, Z.
2017-07-01
Classification of brain cancer is a problem of multiclass classification. One approach to solve this problem is by first transforming it into several binary problems. The microarray gene expression dataset has the two main characteristics of medical data: extremely many features (genes) and only a few number of samples. The application of machine learning on microarray gene expression dataset mainly consists of two steps: feature selection and classification. In this paper, the features are selected using a method based on support vector machine recursive feature elimination (SVM-RFE) principle which is improved to solve multiclass classification, called multiple multiclass SVM-RFE. Instead of using only the selected features on a single classifier, this method combines the result of multiple classifiers. The features are divided into subsets and SVM-RFE is used on each subset. Then, the selected features on each subset are put on separate classifiers. This method enhances the feature selection ability of each single SVM-RFE. Twin support vector machine (TWSVM) is used as the method of the classifier to reduce computational complexity. While ordinary SVM finds single optimum hyperplane, the main objective Twin SVM is to find two non-parallel optimum hyperplanes. The experiment on the brain cancer microarray gene expression dataset shows this method could classify 71,4% of the overall test data correctly, using 100 and 1000 genes selected from multiple multiclass SVM-RFE feature selection method. Furthermore, the per class results show that this method could classify data of normal and MD class with 100% accuracy.
ERIC Educational Resources Information Center
Kliewer, Wendy; Reid-Quinones, Kathryn; Shields, Brian J.; Foutz, Lauren
2009-01-01
Associations between multiple risks, emotion regulation skill, and basal cortisol levels were examined in a community sample of 69 African American youth (mean age = 11.30 years; 49% male) living in an urban setting. Multiple risks were assessed at Time 1 and consisted of 10 demographic and psychosocial risk factors including parent, child, and…
The essence of yeast quiescence.
De Virgilio, Claudio
2012-03-01
Like all microorganisms, yeast cells spend most of their natural lifetime in a reversible, quiescent state that is primarily induced by limitation for essential nutrients. Substantial progress has been made in defining the features of quiescent cells and the nutrient-signaling pathways that shape these features. A view that emerges from the wealth of new data is that yeast cells dynamically configure the quiescent state in response to nutritional challenges by using a set of key nutrient-signaling pathways, which (1) regulate pathway-specific effectors, (2) converge on a few regulatory nodes that bundle multiple inputs to communicate unified, graded responses, and (3) mutually modulate their competences to transmit signals. Here, I present an overview of our current understanding of the architecture of these pathways, focusing on how the corresponding core signaling protein kinases (i.e. PKA, TORC1, Snf1, and Pho85) are wired to ensure an adequate response to nutrient starvation, which enables cells to tide over decades, if not centuries, of famine. © 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.
'My lips are sealed' - The impact of package resealability on the consumption of tempting foods.
De Bondt, Caroline; Van Kerckhove, Anneleen; Geuens, Maggie
2017-10-01
Resealable packages are nowadays omnipresent on store shelves. While the main advantage of the resealability feature is its ability to reclose the package in order to extend the shelf life of the food product inside, the present research's aim is to assess whether this advantage also has implications for palatable, energy-dense food consumption. Two studies provide intentional as well as behavioral evidence for the claim that consumers are better able to self-regulate their consumption and thus eat less in one occasion when a palatable, energy-dense food product is offered in a resealable (vs. unresealable) package. A third study investigates the effect of package resealability across multiple consumption occasions and reveals that the resealability feature limits the volume consumed on each occasion (conditional on consumption incidence) while it does not accelerate consumption frequency, resulting in a lower total consumed volume of palatable, energy-dense snacks over a six-day period. This research offers actionable insights for consumer welfare and public health care and aids manufacturers in delineating optimal food packaging strategies. Copyright © 2017 Elsevier Ltd. All rights reserved.
Kroll, Torsten; Schmidt, David; Schwanitz, Georg; Ahmad, Mubashir; Hamann, Jana; Schlosser, Corinne; Lin, Yu-Chieh; Böhm, Konrad J; Tuckermann, Jan; Ploubidou, Aspasia
2016-07-01
High-content analysis (HCA) converts raw light microscopy images to quantitative data through the automated extraction, multiparametric analysis, and classification of the relevant information content. Combined with automated high-throughput image acquisition, HCA applied to the screening of chemicals or RNAi-reagents is termed high-content screening (HCS). Its power in quantifying cell phenotypes makes HCA applicable also to routine microscopy. However, developing effective HCA and bioinformatic analysis pipelines for acquisition of biologically meaningful data in HCS is challenging. Here, the step-by-step development of an HCA assay protocol and an HCS bioinformatics analysis pipeline are described. The protocol's power is demonstrated by application to focal adhesion (FA) detection, quantitative analysis of multiple FA features, and functional annotation of signaling pathways regulating FA size, using primary data of a published RNAi screen. The assay and the underlying strategy are aimed at researchers performing microscopy-based quantitative analysis of subcellular features, on a small scale or in large HCS experiments. © 2016 by John Wiley & Sons, Inc. Copyright © 2016 John Wiley & Sons, Inc.
Yoshimoto, Junichiro; Shimizu, Yu; Okada, Go; Takamura, Masahiro; Okamoto, Yasumasa; Yamawaki, Shigeto; Doya, Kenji
2017-01-01
We propose a novel method for multiple clustering, which is useful for analysis of high-dimensional data containing heterogeneous types of features. Our method is based on nonparametric Bayesian mixture models in which features are automatically partitioned (into views) for each clustering solution. This feature partition works as feature selection for a particular clustering solution, which screens out irrelevant features. To make our method applicable to high-dimensional data, a co-clustering structure is newly introduced for each view. Further, the outstanding novelty of our method is that we simultaneously model different distribution families, such as Gaussian, Poisson, and multinomial distributions in each cluster block, which widens areas of application to real data. We apply the proposed method to synthetic and real data, and show that our method outperforms other multiple clustering methods both in recovering true cluster structures and in computation time. Finally, we apply our method to a depression dataset with no true cluster structure available, from which useful inferences are drawn about possible clustering structures of the data. PMID:29049392
Evolutionary Algorithm Based Feature Optimization for Multi-Channel EEG Classification.
Wang, Yubo; Veluvolu, Kalyana C
2017-01-01
The most BCI systems that rely on EEG signals employ Fourier based methods for time-frequency decomposition for feature extraction. The band-limited multiple Fourier linear combiner is well-suited for such band-limited signals due to its real-time applicability. Despite the improved performance of these techniques in two channel settings, its application in multiple-channel EEG is not straightforward and challenging. As more channels are available, a spatial filter will be required to eliminate the noise and preserve the required useful information. Moreover, multiple-channel EEG also adds the high dimensionality to the frequency feature space. Feature selection will be required to stabilize the performance of the classifier. In this paper, we develop a new method based on Evolutionary Algorithm (EA) to solve these two problems simultaneously. The real-valued EA encodes both the spatial filter estimates and the feature selection into its solution and optimizes it with respect to the classification error. Three Fourier based designs are tested in this paper. Our results show that the combination of Fourier based method with covariance matrix adaptation evolution strategy (CMA-ES) has the best overall performance.
Impact of feature saliency on visual category learning.
Hammer, Rubi
2015-01-01
People have to sort numerous objects into a large number of meaningful categories while operating in varying contexts. This requires identifying the visual features that best predict the 'essence' of objects (e.g., edibility), rather than categorizing objects based on the most salient features in a given context. To gain this capacity, visual category learning (VCL) relies on multiple cognitive processes. These may include unsupervised statistical learning, that requires observing multiple objects for learning the statistics of their features. Other learning processes enable incorporating different sources of supervisory information, alongside the visual features of the categorized objects, from which the categorical relations between few objects can be deduced. These deductions enable inferring that objects from the same category may differ from one another in some high-saliency feature dimensions, whereas lower-saliency feature dimensions can best differentiate objects from distinct categories. Here I illustrate how feature saliency affects VCL, by also discussing kinds of supervisory information enabling reflective categorization. Arguably, principles debated here are often being ignored in categorization studies.
Impact of feature saliency on visual category learning
Hammer, Rubi
2015-01-01
People have to sort numerous objects into a large number of meaningful categories while operating in varying contexts. This requires identifying the visual features that best predict the ‘essence’ of objects (e.g., edibility), rather than categorizing objects based on the most salient features in a given context. To gain this capacity, visual category learning (VCL) relies on multiple cognitive processes. These may include unsupervised statistical learning, that requires observing multiple objects for learning the statistics of their features. Other learning processes enable incorporating different sources of supervisory information, alongside the visual features of the categorized objects, from which the categorical relations between few objects can be deduced. These deductions enable inferring that objects from the same category may differ from one another in some high-saliency feature dimensions, whereas lower-saliency feature dimensions can best differentiate objects from distinct categories. Here I illustrate how feature saliency affects VCL, by also discussing kinds of supervisory information enabling reflective categorization. Arguably, principles debated here are often being ignored in categorization studies. PMID:25954220
Multiple sclerosis - discharge
... this page: //medlineplus.gov/ency/patientinstructions/000129.htm Multiple sclerosis - discharge To use the sharing features on this ... Your doctor has told you that you have multiple sclerosis (MS). This disease affects the brain and spinal ...
Shi, Xingjie; Zhao, Qing; Huang, Jian; Xie, Yang; Ma, Shuangge
2015-01-01
Motivation: Both gene expression levels (GEs) and copy number alterations (CNAs) have important biological implications. GEs are partly regulated by CNAs, and much effort has been devoted to understanding their relations. The regulation analysis is challenging with one gene expression possibly regulated by multiple CNAs and one CNA potentially regulating the expressions of multiple genes. The correlations among GEs and among CNAs make the analysis even more complicated. The existing methods have limitations and cannot comprehensively describe the regulation. Results: A sparse double Laplacian shrinkage method is developed. It jointly models the effects of multiple CNAs on multiple GEs. Penalization is adopted to achieve sparsity and identify the regulation relationships. Network adjacency is computed to describe the interconnections among GEs and among CNAs. Two Laplacian shrinkage penalties are imposed to accommodate the network adjacency measures. Simulation shows that the proposed method outperforms the competing alternatives with more accurate marker identification. The Cancer Genome Atlas data are analysed to further demonstrate advantages of the proposed method. Availability and implementation: R code is available at http://works.bepress.com/shuangge/49/ Contact: shuangge.ma@yale.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:26342102
Blackwood, Julie C; Hastings, Alan; Mumby, Peter J
2011-10-01
The interaction between multiple stressors on Caribbean coral reefs, namely, fishing effort and hurricane impacts, is a key element in the future sustainability of reefs. We develop an analytic model of coral-algal interactions and explicitly consider grazing by herbivorous reef fish. Further, we consider changes in structural complexity, or rugosity, in addition to the direct impacts of hurricanes, which are implemented as stochastic jump processes. The model simulations consider various levels of fishing effort corresponding to' several hurricane frequencies and impact levels dependent on geographic location. We focus on relatively short time scales so we do not explicitly include changes in ocean temperature, chemistry, or sea level rise. The general features of our approach would, however, apply to these other stressors and to the management of other systems in the face of multiple stressors. It is determined that the appropriate management policy, either local reef restoration or fisheries management, greatly depends on hurricane frequency and impact level. For sufficiently low hurricane impact and macroalgal growth rate, our results indicate that regions with lower-frequency hurricanes require stricter fishing regulations, whereas management in regions with higher-frequency hurricanes might be less concerned with enhancing grazing and instead consider whether local-scale restorative activities to increase vertical structure are cost-effective.
NASA Astrophysics Data System (ADS)
Judd, Jeffrey S.
Changes to the global workforce and technological advancements require graduating high school students to be more autonomous, self-directed, and critical in their thinking. To reflect societal changes, current educational reform has focused on developing more problem-based, collaborative, and student-centered classrooms to promote effective self-regulatory learning strategies, with the goal of helping students adapt to future learning situations and become life-long learners. This study identifies key features that may characterize these "powerful learning environments", which I term "high self-regulating learning environments" for ease of discussion, and examine the environment's role on students' motivation and self-regulatory processes. Using direct observation, surveys, and formal and informal interviews, I identified perceptions, motivations, and self-regulatory strategies of 67 students in my high school chemistry classes as they completed academic tasks in both high and low self-regulating learning environments. With social cognitive theory as a theoretical framework, I then examined how students' beliefs and processes changed after they moved from low to a high self-regulating learning environment. Analyses revealed that key features such as task meaning, utility, complexity, and control appeared to play a role in promoting positive changes in students' motivation and self-regulation. As embedded cases, I also included four students identified as high self-regulating, and four students identified as low self-regulating to examine whether the key features of high and low self-regulating learning environments played a similar role in both groups. Analysis of findings indicates that key features did play a significant role in promoting positive changes in both groups, with high self-regulating students' motivation and self-regulatory strategies generally remaining higher than the low self-regulating students; this was the case in both environments. Findings suggest that classroom learning environments and instruction can be modified using variations of these key features to promote specific or various levels of motivation and self-regulatory skill. In this way, educators may tailor their lessons or design their classrooms to better match and develop students' current level of motivation and self-regulation in order to maximize engagement in an academic task.
Rotavirus Infections - Multiple Languages
... Are Here: Home → Multiple Languages → All Health Topics → Rotavirus Infections URL of this page: https://medlineplus.gov/ ... V W XYZ List of All Topics All Rotavirus Infections - Multiple Languages To use the sharing features ...
Cosmetic Dentistry - Multiple Languages
... Here: Home → Multiple Languages → All Health Topics → Cosmetic Dentistry URL of this page: https://medlineplus.gov/languages/ ... W XYZ List of All Topics All Cosmetic Dentistry - Multiple Languages To use the sharing features on ...
Salmonella Infections - Multiple Languages
... Are Here: Home → Multiple Languages → All Health Topics → Salmonella Infections URL of this page: https://medlineplus.gov/ ... V W XYZ List of All Topics All Salmonella Infections - Multiple Languages To use the sharing features ...
Retrobulbar anaplastic astrocytoma in a dog: clinicopathological and ultrasonographic features.
Martín, E; Pérez, J; Mozos, E; López, R; Molleda, J M
2000-08-01
An 11-year-old entire female German shepherd dog was presented with a progressive non-painful exophthalmos of the right eye. Ultrasonographic examination revealed a solid and well-defined orbital mass compressing the globe. Thoracic radiography revealed multiple pulmonary metastases of different sizes. The histopathological and immunohistochemical features of both the retrobulbar tumour and pulmonary metastases were consistent with an anaplastic astrocytoma. This represents an unusual case of an extracranial astrocytoma with multiple pulmonary metastases. The clinical features and the ultrasonographic, histopathological and immunohistochemical findings are described.
Each cell counts: Hematopoiesis and immunity research in the era of single cell genomics.
Jaitin, Diego Adhemar; Keren-Shaul, Hadas; Elefant, Naama; Amit, Ido
2015-02-01
Hematopoiesis and immunity are mediated through complex interactions between multiple cell types and states. This complexity is currently addressed following a reductionist approach of characterizing cell types by a small number of cell surface molecular features and gross functions. While the introduction of global transcriptional profiling technologies enabled a more comprehensive view, heterogeneity within sampled populations remained unaddressed, obscuring the true picture of hematopoiesis and immune system function. A critical mass of technological advances in molecular biology and genomics has enabled genome-wide measurements of single cells - the fundamental unit of immunity. These new advances are expected to boost detection of less frequent cell types and fuzzy intermediate cell states, greatly expanding the resolution of current available classifications. This new era of single-cell genomics in immunology research holds great promise for further understanding of the mechanisms and circuits regulating hematopoiesis and immunity in both health and disease. In the near future, the accuracy of single-cell genomics will ultimately enable precise diagnostics and treatment of multiple hematopoietic and immune related diseases. Copyright © 2015 Elsevier Ltd. All rights reserved.
Electrochemical camera chip for simultaneous imaging of multiple metabolites in biofilms
Bellin, Daniel L.; Sakhtah, Hassan; Zhang, Yihan; Price-Whelan, Alexa; Dietrich, Lars E. P.; Shepard, Kenneth L.
2016-01-01
Monitoring spatial distribution of metabolites in multicellular structures can enhance understanding of the biochemical processes and regulation involved in cellular community development. Here we report on an electrochemical camera chip capable of simultaneous spatial imaging of multiple redox-active phenazine metabolites produced by Pseudomonas aeruginosa PA14 colony biofilms. The chip features an 8 mm × 8 mm array of 1,824 electrodes multiplexed to 38 parallel output channels. Using this chip, we demonstrate potential-sweep-based electrochemical imaging of whole-biofilms at measurement rates in excess of 0.2 s per electrode. Analysis of mutants with various capacities for phenazine production reveals distribution of phenazine-1-carboxylic acid (PCA) throughout the colony, with 5-methylphenazine-1-carboxylic acid (5-MCA) and pyocyanin (PYO) localized to the colony edge. Anaerobic growth on nitrate confirms the O2-dependence of PYO production and indicates an effect of O2 availability on 5-MCA synthesis. This integrated-circuit-based technique promises wide applicability in detecting redox-active species from diverse biological samples. PMID:26813638
Qualitative features of the HIV-specific CD8+ T-cell response associated with immunologic control.
Hersperger, Adam R; Migueles, Stephen A; Betts, Michael R; Connors, Mark
2011-05-01
Over the past 2 years, a clearer picture has emerged regarding the properties of HIV-specific CD8+ T cells associated with immunologic control of HIV replication. These properties represent a potential mechanism by which rare patients might control HIV replication in the absence of antiretroviral therapy. This review addresses the background and recent findings that have lead to our current understanding of these mechanism(s). Patients with immunologic control of HIV are not distinguished by targeted specificities, or greater numbers or breadth of their HIV-specific CD8+ T-cell response. For this reason, recent work has focused greater attention on qualitative features of this response. The qualitative features most closely associated with immunologic control of HIV are related to the granule-exocytosis-mediated elimination of HIV-infected CD4 T cells. The ability of HIV-specific CD8+ T cells to increase their contents of proteins known to mediate cytotoxicity, such as granzyme B and perforin, appears to be a critical means by which HIV-specific cytotoxic capacity is regulated. Investigation from multiple groups has now focused upon HIV-specific CD8+ T-cell granule-exocytosis-mediated cytotoxicity as a correlate of immunologic control of HIV. In the near future, a more detailed understanding of the qualities associated with immunologic control may provide critical insights regarding the necessary features of a response that should be stimulated by immunotherapies or T-cell-based vaccines.
Eddy current analysis of cracks grown from surface defects and non-metallic particles
NASA Astrophysics Data System (ADS)
Cherry, Matthew R.; Hutson, Alisha; Aldrin, John C.; Shank, Jared
2018-04-01
Eddy current methods are sensitive to any discrete change in conductivity. Traditionally this has been used to determine the presence of a crack. However, other features that are not cracks such as non-metallic inclusions, carbide stringers and surface voids can cause an eddy current indication that could potentially lead to a reject of an in-service component. These features may not actually be lifelimiting, meaning NDE methods could reject components with remaining useful life. In-depth analysis of signals from eddy current sensors could provide a means of sorting between rejectable indications and false-calls from geometric and non-conductive features. In this project, cracks were grown from voids and non-metallic inclusions in a nickel-based super-alloy and eddy current analysis was performed on multiple intermediate steps of fatigue. Data were collected with multiple different ECT probes and at multiple frequencies, and the results were analyzed. The results show how cracks growing from non-metallic features can skew eddy current signals and make characterization a challenge. Modeling and simulation was performed with multiple analysis codes, and the models were found to be in good agreement with the data for cracks growing away from voids and non-metallic inclusions.
Uppal, Karan; Soltow, Quinlyn A; Strobel, Frederick H; Pittard, W Stephen; Gernert, Kim M; Yu, Tianwei; Jones, Dean P
2013-01-16
Detection of low abundance metabolites is important for de novo mapping of metabolic pathways related to diet, microbiome or environmental exposures. Multiple algorithms are available to extract m/z features from liquid chromatography-mass spectral data in a conservative manner, which tends to preclude detection of low abundance chemicals and chemicals found in small subsets of samples. The present study provides software to enhance such algorithms for feature detection, quality assessment, and annotation. xMSanalyzer is a set of utilities for automated processing of metabolomics data. The utilites can be classified into four main modules to: 1) improve feature detection for replicate analyses by systematic re-extraction with multiple parameter settings and data merger to optimize the balance between sensitivity and reliability, 2) evaluate sample quality and feature consistency, 3) detect feature overlap between datasets, and 4) characterize high-resolution m/z matches to small molecule metabolites and biological pathways using multiple chemical databases. The package was tested with plasma samples and shown to more than double the number of features extracted while improving quantitative reliability of detection. MS/MS analysis of a random subset of peaks that were exclusively detected using xMSanalyzer confirmed that the optimization scheme improves detection of real metabolites. xMSanalyzer is a package of utilities for data extraction, quality control assessment, detection of overlapping and unique metabolites in multiple datasets, and batch annotation of metabolites. The program was designed to integrate with existing packages such as apLCMS and XCMS, but the framework can also be used to enhance data extraction for other LC/MS data software.
Investigation of automated feature extraction using multiple data sources
NASA Astrophysics Data System (ADS)
Harvey, Neal R.; Perkins, Simon J.; Pope, Paul A.; Theiler, James P.; David, Nancy A.; Porter, Reid B.
2003-04-01
An increasing number and variety of platforms are now capable of collecting remote sensing data over a particular scene. For many applications, the information available from any individual sensor may be incomplete, inconsistent or imprecise. However, other sources may provide complementary and/or additional data. Thus, for an application such as image feature extraction or classification, it may be that fusing the mulitple data sources can lead to more consistent and reliable results. Unfortunately, with the increased complexity of the fused data, the search space of feature-extraction or classification algorithms also greatly increases. With a single data source, the determination of a suitable algorithm may be a significant challenge for an image analyst. With the fused data, the search for suitable algorithms can go far beyond the capabilities of a human in a realistic time frame, and becomes the realm of machine learning, where the computational power of modern computers can be harnessed to the task at hand. We describe experiments in which we investigate the ability of a suite of automated feature extraction tools developed at Los Alamos National Laboratory to make use of multiple data sources for various feature extraction tasks. We compare and contrast this software's capabilities on 1) individual data sets from different data sources 2) fused data sets from multiple data sources and 3) fusion of results from multiple individual data sources.
Occupant traffic estimation through structural vibration sensing
NASA Astrophysics Data System (ADS)
Pan, Shijia; Mirshekari, Mostafa; Zhang, Pei; Noh, Hae Young
2016-04-01
The number of people passing through different indoor areas is useful in various smart structure applications, including occupancy-based building energy/space management, marketing research, security, etc. Existing approaches to estimate occupant traffic include vision-, sound-, and radio-based (mobile) sensing methods, which have placement limitations (e.g., requirement of line-of-sight, quiet environment, carrying a device all the time). Such limitations make these direct sensing approaches difficult to deploy and maintain. An indirect approach using geophones to measure floor vibration induced by footsteps can be utilized. However, the main challenge lies in distinguishing multiple simultaneous walkers by developing features that can effectively represent the number of mixed signals and characterize the selected features under different traffic conditions. This paper presents a method to monitor multiple persons. Once the vibration signals are obtained, features are extracted to describe the overlapping vibration signals induced by multiple footsteps, which are used for occupancy traffic estimation. In particular, we focus on analysis of the efficiency and limitations of the four selected key features when used for estimating various traffic conditions. We characterize these features with signals collected from controlled impulse load tests as well as from multiple people walking through a real-world sensing area. In our experiments, the system achieves the mean estimation error of +/-0.2 people for different occupant traffic conditions (from one to four) using k-nearest neighbor classifier.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kubota, Jun; Tsunemura, Mami; Amano, Shigeko
1997-05-15
Two brothers with multiple visceral artery aneurysms or dilatations and diffuse connective tissue fragility who did not have clinical features of Marfan syndrome are reported. One presented with retroperitoneal hemorrhage during angiography, and idiopathic medionecrosis was proved by resection of the aneurysms. These cases belong to the heterogeneous group of Marfan syndrome. The angiographical features (multiple dilation of visceral arteries) suggests fragility of connective tissue and is predictive of hazards during and after a catheterization and operation.
McClean, S.; Hill, B. T.
1994-01-01
Exposure of Chinese hamster ovary (CHO) cells to fractionated X-irradiation [ten fractions of 9 Gray (Gy)] resulted in the expression of a multiple drug resistance phenotype which was distinct from that of drug-selected cells in two features: (i) resistance to vinca alkaloids and epipodophyllotoxins but sensitivity to anthracyclines was retained; (ii) overexpression of P-glycoprotein (Pgp) but regulated by post-translational stability rather than by any elevation in Pgp mRNA (Hill et al., 1990). It was also reported that when these cells (designated DXR-10) were subsequently exposed to another ten fractions of 9 Gy (20 x 9 Gy in total), no further increases in drug resistance or in the extent of Pgp expression were observed. To examine this apparent plateauing of the drug resistance phenotype following X-ray pretreatment, DXR-10 cells were instead treated with ten pulsed vincristine exposures. The resultant cell line, designated DXR-10/VCR-10, proved to be more resistant to vincristine, implying that the effect of further drug selection was additive to that of X-ray pretreatment. In addition, these cells showed resistance to doxorubicin and increased Pgp expression which was matched by a concomitant elevation in Pgp mRNA. These findings appear to confirm that Pgp expression is differentially regulated in tumour cells showing drug resistance after drug as opposed to X-ray selection. Images Figure 2 Figure 3 Figure 5 PMID:7908216
Ethylene Response Factors Are Controlled by Multiple Harvesting Stresses in Hevea brasiliensis
Putranto, Riza-Arief; Duan, Cuifang; Kuswanhadi; Chaidamsari, Tetty; Rio, Maryannick; Piyatrakul, Piyanuch; Herlinawati, Eva; Pirrello, Julien; Dessailly, Florence; Leclercq, Julie; Bonnot, François; Tang, Chaorong; Hu, Songnian; Montoro, Pascal
2015-01-01
Tolerance of recurrent mechanical wounding and exogenous ethylene is a feature of the rubber tree. Latex harvesting involves tapping of the tree bark and ethephon is applied to increase latex flow. Ethylene is an essential element in controlling latex production. The ethylene signalling pathway leads to the activation of Ethylene Response Factor (ERF) transcription factors. This family has been identified in Hevea brasiliensis. This study set out to understand the regulation of ERF genes during latex harvesting in relation to abiotic stress and hormonal treatments. Analyses of the relative transcript abundance were carried out for 35 HbERF genes in latex, in bark from mature trees and in leaves from juvenile plants under multiple abiotic stresses. Twenty-one HbERF genes were regulated by harvesting stress in laticifers, revealing an overrepresentation of genes in group IX. Transcripts of three HbERF-IX genes from HbERF-IXc4, HbERF-IXc5 and HbERF-IXc6 were dramatically accumulated by combining wounding, methyl jasmonate and ethylene treatments. When an ethylene inhibitor was used, the transcript accumulation for these three genes was halted, showing ethylene-dependent induction. Subcellular localization and transactivation experiments confirmed that several members of HbERF-IX are activator-type transcription factors. This study suggested that latex harvesting induces mechanisms developed for the response to abiotic stress. These mechanisms probably depend on various hormonal signalling pathways. Several members of HbERF-IX could be essential integrators of complex hormonal signalling pathways in Hevea. PMID:25906196
Ji, S C; Pan, Y T; Lu, Q Y; Sun, Z Y; Liu, Y Z
2014-03-17
The purpose of this study was to identify critical genes associated with septic multiple trauma by comparing peripheral whole blood samples from multiple trauma patients with and without sepsis. A microarray data set was downloaded from the Gene Expression Omnibus (GEO) database. This data set included 70 samples, 36 from multiple trauma patients with sepsis and 34 from multiple trauma patients without sepsis (as a control set). The data were preprocessed, and differentially expressed genes (DEGs) were then screened for using packages of the R language. Functional analysis of DEGs was performed with DAVID. Interaction networks were then established for the most up- and down-regulated genes using HitPredict. Pathway-enrichment analysis was conducted for genes in the networks using WebGestalt. Fifty-eight DEGs were identified. The expression levels of PLAU (down-regulated) and MMP8 (up-regulated) presented the largest fold-changes, and interaction networks were established for these genes. Further analysis revealed that PLAT (plasminogen activator, tissue) and SERPINF2 (serpin peptidase inhibitor, clade F, member 2), which interact with PLAU, play important roles in the pathway of the component and coagulation cascade. We hypothesize that PLAU is a major regulator of the component and coagulation cascade, and down-regulation of PLAU results in dysfunction of the pathway, causing sepsis.
Experience improves feature extraction in Drosophila.
Peng, Yueqing; Xi, Wang; Zhang, Wei; Zhang, Ke; Guo, Aike
2007-05-09
Previous exposure to a pattern in the visual scene can enhance subsequent recognition of that pattern in many species from honeybees to humans. However, whether previous experience with a visual feature of an object, such as color or shape, can also facilitate later recognition of that particular feature from multiple visual features is largely unknown. Visual feature extraction is the ability to select the key component from multiple visual features. Using a visual flight simulator, we designed a novel protocol for visual feature extraction to investigate the effects of previous experience on visual reinforcement learning in Drosophila. We found that, after conditioning with a visual feature of objects among combinatorial shape-color features, wild-type flies exhibited poor ability to extract the correct visual feature. However, the ability for visual feature extraction was greatly enhanced in flies trained previously with that visual feature alone. Moreover, we demonstrated that flies might possess the ability to extract the abstract category of "shape" but not a particular shape. Finally, this experience-dependent feature extraction is absent in flies with defective MBs, one of the central brain structures in Drosophila. Our results indicate that previous experience can enhance visual feature extraction in Drosophila and that MBs are required for this experience-dependent visual cognition.
Segmentation of prostate boundaries from ultrasound images using statistical shape model.
Shen, Dinggang; Zhan, Yiqiang; Davatzikos, Christos
2003-04-01
This paper presents a statistical shape model for the automatic prostate segmentation in transrectal ultrasound images. A Gabor filter bank is first used to characterize the prostate boundaries in ultrasound images in both multiple scales and multiple orientations. The Gabor features are further reconstructed to be invariant to the rotation of the ultrasound probe and incorporated in the prostate model as image attributes for guiding the deformable segmentation. A hierarchical deformation strategy is then employed, in which the model adaptively focuses on the similarity of different Gabor features at different deformation stages using a multiresolution technique, i.e., coarse features first and fine features later. A number of successful experiments validate the algorithm.
Komatsu, Ken; Hashimoto, Masayoshi; Ozeki, Johji; Yamaji, Yasuyuki; Maejima, Kensaku; Senshu, Hiroko; Himeno, Misako; Okano, Yukari; Kagiwada, Satoshi; Namba, Shigetou
2010-03-01
Resistant plants respond rapidly to invading avirulent plant viruses by triggering a hypersensitive response (HR). An HR is accompanied by a restraint of virus multiplication and programmed cell death (PCD), both of which have been observed in systemic necrosis triggered by a successful viral infection. Here, we analyzed signaling pathways underlying the HR in resistance genotype plants and those leading to systemic necrosis. We show that systemic necrosis in Nicotiana benthamiana, induced by Plantago asiatica mosaic virus (PlAMV) infection, was associated with PCD, biochemical features, and gene expression patterns that are characteristic of HR. The induction of necrosis caused by PlAMV infection was dependent on SGT1, RAR1, and the downstream mitogen-activated protein kinase (MAPK) cascade involving MAPKKKalpha and MEK2. However, although SGT1 and RAR1 silencing led to an increased accumulation of PlAMV, silencing of the MAPKKKalpha-MEK2 cascade did not. This observation indicates that viral multiplication is partly restrained even in systemic necrosis induced by viral infection, and that this restraint requires SGT1 and RAR1 but not the MAPKKKalpha-MEK2 cascade. Similarly, although both SGT1 and MAPKKKalpha were essential for the Rx-mediated HR to Potato virus X (PVX), SGT1 but not MAPKKKalpha was involved in the restraint of PVX multiplication. These results suggest that systemic necrosis and HR consist of PCD and a restraint of virus multiplication, and that the latter is induced through unknown pathways independent from the former.
Carriers of the astronomical 2175 ? extinction feature
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bradley, J; Dai, Z; Ernie, R
2004-07-20
The 2175 {angstrom} extinction feature is by far the strongest spectral signature of interstellar dust observed by astronomers. Forty years after its discovery the origin of the feature and the nature of the carrier remain controversial. The feature is enigmatic because although its central wavelength is almost invariant its bandwidth varies strongly from one sightline to another, suggesting multiple carriers or a single carrier with variable properties. Using a monochromated transmission electron microscope and valence electron energy-loss spectroscopy we have detected a 5.7 eV (2175 {angstrom}) feature in submicrometer-sized interstellar grains within interplanetary dust particles (IDPs) collected in the stratosphere.more » The carriers are organic carbon and amorphous silicates that are abundant and closely associated with one another both in IDPs and in the interstellar medium. Multiple carriers rather than a single carrier may explain the invariant central wavelength and variable bandwidth of the astronomical 2175 {angstrom} feature.« less
Herbal Medicine - Multiple Languages
... Are Here: Home → Multiple Languages → All Health Topics → Herbal Medicine URL of this page: https://medlineplus.gov/languages/ ... V W XYZ List of All Topics All Herbal Medicine - Multiple Languages To use the sharing features on ...
Whooping Cough - Multiple Languages
... Are Here: Home → Multiple Languages → All Health Topics → Whooping Cough URL of this page: https://medlineplus.gov/languages/ ... V W XYZ List of All Topics All Whooping Cough - Multiple Languages To use the sharing features on ...
What's new in multiple sclerosis spasticity research? Poster session highlights.
Linker, Ralf
2017-11-01
Each year at the Multiple Sclerosis Experts Summit, relevant research in the field of multiple sclerosis spasticity is featured in poster sessions. The main studies presented at this year's meeting are summarized herein.
Zika Virus - Multiple Languages
... Are Here: Home → Multiple Languages → All Health Topics → Zika Virus URL of this page: https://medlineplus.gov/languages/ ... V W XYZ List of All Topics All Zika Virus - Multiple Languages To use the sharing features on ...
Pacemakers and Implantable Defibrillators - Multiple Languages
... Multiple Languages → All Health Topics → Pacemakers and Implantable Defibrillators URL of this page: https://medlineplus.gov/languages/ ... List of All Topics All Pacemakers and Implantable Defibrillators - Multiple Languages To use the sharing features on ...
Diabetic Foot - Multiple Languages
... Are Here: Home → Multiple Languages → All Health Topics → Diabetic Foot URL of this page: https://medlineplus.gov/languages/ ... V W XYZ List of All Topics All Diabetic Foot - Multiple Languages To use the sharing features on ...
Panic Disorder - Multiple Languages
... Are Here: Home → Multiple Languages → All Health Topics → Panic Disorder URL of this page: https://medlineplus.gov/languages/ ... V W XYZ List of All Topics All Panic Disorder - Multiple Languages To use the sharing features on ...
Domestic Violence - Multiple Languages
... Are Here: Home → Multiple Languages → All Health Topics → Domestic Violence URL of this page: https://medlineplus.gov/languages/ ... V W XYZ List of All Topics All Domestic Violence - Multiple Languages To use the sharing features on ...
Elder Abuse - Multiple Languages
... Are Here: Home → Multiple Languages → All Health Topics → Elder Abuse URL of this page: https://medlineplus.gov/languages/ ... V W XYZ List of All Topics All Elder Abuse - Multiple Languages To use the sharing features on ...
Head Lice - Multiple Languages
... Are Here: Home → Multiple Languages → All Health Topics → Head Lice URL of this page: https://medlineplus.gov/languages/ ... V W XYZ List of All Topics All Head Lice - Multiple Languages To use the sharing features on ...
Genital Warts - Multiple Languages
... Are Here: Home → Multiple Languages → All Health Topics → Genital Warts URL of this page: https://medlineplus.gov/languages/ ... V W XYZ List of All Topics All Genital Warts - Multiple Languages To use the sharing features on ...
Acoustic features of objects matched by an echolocating bottlenose dolphin.
Delong, Caroline M; Au, Whitlow W L; Lemonds, David W; Harley, Heidi E; Roitblat, Herbert L
2006-03-01
The focus of this study was to investigate how dolphins use acoustic features in returning echolocation signals to discriminate among objects. An echolocating dolphin performed a match-to-sample task with objects that varied in size, shape, material, and texture. After the task was completed, the features of the object echoes were measured (e.g., target strength, peak frequency). The dolphin's error patterns were examined in conjunction with the between-object variation in acoustic features to identify the acoustic features that the dolphin used to discriminate among the objects. The present study explored two hypotheses regarding the way dolphins use acoustic information in echoes: (1) use of a single feature, or (2) use of a linear combination of multiple features. The results suggested that dolphins do not use a single feature across all object sets or a linear combination of six echo features. Five features appeared to be important to the dolphin on four or more sets: the echo spectrum shape, the pattern of changes in target strength and number of highlights as a function of object orientation, and peak and center frequency. These data suggest that dolphins use multiple features and integrate information across echoes from a range of object orientations.
Improving Measurements of Self-Regulated Learning
ERIC Educational Resources Information Center
Winne, Philip H.
2010-01-01
Articles in this special issue present recent advances in using state-of-the-art software systems that gather data with which to examine and measure features of learning and particularly self-regulated learning (SRL). Despite important advances, there remain challenges. I examine key features of SRL and how they are measured using common tools. I…
Dysregulation of Mammalian Target of Rapamycin Signaling in Mouse Models of Autism.
Huber, Kimberly M; Klann, Eric; Costa-Mattioli, Mauro; Zukin, R Suzanne
2015-10-14
The mammalian target of rapamycin (mTOR) is a central regulator of a diverse array of cellular processes, including cell growth, proliferation, autophagy, translation, and actin polymerization. Components of the mTOR cascade are present at synapses and influence synaptic plasticity and spine morphogenesis. A prevailing view is that the study of mTOR and its role in autism spectrum disorders (ASDs) will elucidate the molecular mechanisms by which mTOR regulates neuronal function under physiological and pathological conditions. Although many ASDs arise as a result of mutations in genes with multiple molecular functions, they appear to converge on common biological pathways that give rise to autism-relevant behaviors. Dysregulation of mTOR signaling has been identified as a phenotypic feature common to fragile X syndrome, tuberous sclerosis complex 1 and 2, neurofibromatosis 1, phosphatase and tensin homolog, and potentially Rett syndrome. Below are a summary of topics covered in a symposium that presents dysregulation of mTOR as a unifying theme in a subset of ASDs. Copyright © 2015 the authors 0270-6474/15/3513836-07$15.00/0.
Characterization of axon formation in the embryonic stem cell-derived motoneuron.
Pan, Hung-Chuan; Wu, Ya-Ting; Shen, Shih-Cheng; Wang, Chi-Chung; Tsai, Ming-Shiun; Cheng, Fu-Chou; Lin, Shinn-Zong; Chen, Ching-Wen; Liu, Ching-San; Su, Hong-Lin
2011-01-01
The developing neural cell must form a highly organized architecture to properly receive and transmit nerve signals. Neural formation from embryonic stem (ES) cells provides a novel system for studying axonogenesis, which are orchestrated by polarity-regulating molecules. Here the ES-derived motoneurons, identified by HB9 promoter-driven green fluorescent protein (GFP) expression, showed characteristics of motoneuron-specific gene expression. In the majority of motoneurons, one of the bilateral neurites developed into an axon that featured with axonal markers, including Tau1, vesicle acetylcholine transporter, and synaptophysin. Interestingly, one third of the motoneurons developed bi-axonal processes but no multiple axonal GFP cell was found. The neuronal polarity-regulating proteins, including the phosphorylated AKT and ERK, were compartmentalized into both of the bilateral axonal tips. Importantly, this aberrant axon morphology was still present after the engraftment of GFP(+) neurons into the spinal cord, suggesting that even a mature neural environment fails to provide a proper niche to guide normal axon formation. These findings underscore the necessity for evaluating the morphogenesis and functionality of neurons before the clinical trials using ES or somatic stem cells.
Multiple structure-intrinsic disorder interactions regulate and coordinate Hox protein function
NASA Astrophysics Data System (ADS)
Bondos, Sarah
During animal development, Hox transcription factors determine fate of developing tissues to generate diverse organs and appendages. Hox proteins are famous for their bizarre mutant phenotypes, such as replacing antennae with legs. Clearly, the functions of individual Hox proteins must be distinct and reliable in vivo, or the organism risks malformation or death. However, within the Hox protein family, the DNA-binding homeodomains are highly conserved and the amino acids that contact DNA are nearly invariant. These observations raise the question: How do different Hox proteins correctly identify their distinct target genes using a common DNA binding domain? One possible means to modulate DNA binding is through the influence of the non-homeodomain protein regions, which differ significantly among Hox proteins. However genetic approaches never detected intra-protein interactions, and early biochemical attempts were hindered because the special features of ``intrinsically disordered'' sequences were not appreciated. We propose the first-ever structural model of a Hox protein to explain how specific contacts between distant, intrinsically disordered regions of the protein and the homeodomain regulate DNA binding and coordinate this activity with other Hox molecular functions.
Simon, Matthew J.; Iliff, Jeffrey J.
2015-01-01
Cerebrospinal fluid (CSF) circulation and turnover provides a sink for the elimination of solutes from the brain interstitium, serving an important homeostatic role for the function of the central nervous system. Disruption of normal CSF circulation and turnover is believed to contribute to the development of many diseases, including neurodegenerative conditions such as Alzheimer’s disease, ischemic and traumatic brain injury, and neuroinflammatory conditions such as multiple sclerosis. Recent insights into CSF biology suggesting that CSF and interstitial fluid exchange along a brain-wide network of perivascular spaces termed the ‘glymphatic’ system suggest that CSF circulation may interact intimately with glial and vascular function to regulate basic aspects of brain function. Dysfunction within this glial vascular network, which is a feature of the aging and injured brain, is a potentially critical link between brain injury, neuroinflammation and the development of chronic neurodegeneration. Ongoing research within this field may provide a powerful new framework for understanding the common links between neurodegenerative, neurovascular and neuroinflammatory disease, in addition to providing potentially novel therapeutic targets for these conditions. PMID:26499397
Anti-inflammatory effects of flavonoids in neurodegenerative disorders.
Spagnuolo, Carmela; Moccia, Stefania; Russo, Gian Luigi
2018-06-10
Neuroinflammation is one of the main mechanisms involved in the progression of several neurodegenerative diseases, such as Parkinson, Alzheimer, multiple sclerosis, amyotrophic lateral sclerosis and others. The activation of microglia is the main feature of neuroinflammation, promoting the release of pro-inflammatory cytokines and resulting in the progressive neuronal cell death. Natural compounds, such as flavonoids, possess neuroprotective potential probably related to their ability to modulate the inflammatory responses involved in neurodegenerative diseases. In fact, pure flavonoids (e.g., quercetin, genistein, hesperetin, epigallocatechin-3-gallate) or enriched-extracts, can reduce the expression of pro-inflammatory cytokines (IL-6, TNF-α, IL-1β and COX-2), down-regulate inflammatory markers and prevent neural damage. This anti-inflammatory activity is primarily related to the regulation of microglial cells, mediated by their effects on MAPKs and NF-κB signalling pathways, as demonstrated by in vivo and in vitro data. The present work reviews the role of inflammation in neurodegenerative diseases, highlighting the potential therapeutic effects of flavonoids as a promising approach to develop innovative neuroprotective strategy. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Structure of the Human Atg13-Atg101 HORMA Heterodimer: an Interaction Hub within the ULK1 Complex.
Qi, Shiqian; Kim, Do Jin; Stjepanovic, Goran; Hurley, James H
2015-10-06
The ULK1 complex, consisting of the ULK1 protein kinase itself, FIP200, Atg13, and Atg101, controls the initiation of autophagy in animals. We determined the structure of the complex of the human Atg13 HORMA (Hop1, Rev7, Mad2) domain in complex with the full-length HORMA domain-only protein Atg101. The two HORMA domains assemble with an architecture conserved in the Mad2 conformational heterodimer and the S. pombe Atg13-Atg101 HORMA complex. The WF finger motif that is essential for function in human Atg101 is sequestered in a hydrophobic pocket, suggesting that the exposure of this motif is regulated. Benzamidine molecules from the crystallization solution mark two hydrophobic pockets that are conserved in, and unique to, animals, and are suggestive of sites that could interact with other proteins. These features suggest that the activity of the animal Atg13-Atg101 subcomplex is regulated and that it is an interaction hub for multiple partners. Copyright © 2015 Elsevier Ltd. All rights reserved.
DNA Sequence-Mediated, Evolutionarily Rapid Redistribution of Meiotic Recombination Hotspots
Wahls, Wayne P.; Davidson, Mari K.
2011-01-01
Hotspots regulate the position and frequency of Spo11 (Rec12)-initiated meiotic recombination, but paradoxically they are suicidal and are somehow resurrected elsewhere in the genome. After the DNA sequence-dependent activation of hotspots was discovered in fission yeast, nearly two decades elapsed before the key realizations that (A) DNA site-dependent regulation is broadly conserved and (B) individual eukaryotes have multiple different DNA sequence motifs that activate hotspots. From our perspective, such findings provide a conceptually straightforward solution to the hotspot paradox and can explain other, seemingly complex features of meiotic recombination. We describe how a small number of single-base-pair substitutions can generate hotspots de novo and dramatically alter their distribution in the genome. This model also shows how equilibrium rate kinetics could maintain the presence of hotspots over evolutionary timescales, without strong selective pressures invoked previously, and explains why hotspots localize preferentially to intergenic regions and introns. The model is robust enough to account for all hotspots of humans and chimpanzees repositioned since their divergence from the latest common ancestor. PMID:22084420
UCHL3 Regulates Topoisomerase-Induced Chromosomal Break Repair by Controlling TDP1 Proteostasis.
Liao, Chunyan; Beveridge, Ryan; Hudson, Jessica J R; Parker, Jacob D; Chiang, Shih-Chieh; Ray, Swagat; Ashour, Mohamed E; Sudbery, Ian; Dickman, Mark J; El-Khamisy, Sherif F
2018-06-12
Genomic damage can feature DNA-protein crosslinks whereby their acute accumulation is utilized to treat cancer and progressive accumulation causes neurodegeneration. This is typified by tyrosyl DNA phosphodiesterase 1 (TDP1), which repairs topoisomerase-mediated chromosomal breaks. Although TDP1 levels vary in multiple clinical settings, the mechanism underpinning this variation is unknown. We reveal that TDP1 is controlled by ubiquitylation and identify UCHL3 as the deubiquitylase that controls TDP1 proteostasis. Depletion of UCHL3 increases TDP1 ubiquitylation and turnover rate and sensitizes cells to TOP1 poisons. Overexpression of UCHL3, but not a catalytically inactive mutant, suppresses TDP1 ubiquitylation and turnover rate. TDP1 overexpression in the topoisomerase therapy-resistant rhabdomyosarcoma is driven by UCHL3 overexpression. In contrast, UCHL3 is downregulated in spinocerebellar ataxia with axonal neuropathy (SCAN1), causing elevated levels of TDP1 ubiquitylation and faster turnover rate. These data establish UCHL3 as a regulator of TDP1 proteostasis and, consequently, a fine-tuner of protein-linked DNA break repair. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.
Plant Proteomics and Peptidomics in Host-Pathogen Interactions: The Weapons Used by Each Side.
Silva, Fabiana Aparecida Cavalcante; de Sousa Oliveira, Melquisedec; de Souza, Juliana Maria; Martins, Paulo Geovani Silva; Pestana-Calsa, Maria Clara; Junior, Tercilio Calsa
2017-01-01
Environmental biotic stress factors act continuously on plants, through multiple molecular interactions that eventually lead to the establishment and progress of symbiotic or pathogenic complex interactions. Proteins and peptides play noteworthy roles in such biological processes, usually being the main effectors since the initial recognizing and elicitor functions until the following transduction, gene regulation and physiological responses activities. Ranging from specific regulators to direct antimicrobial agents, plant or pathogen proteins and peptides comprise the arsenal available to each side in this biological war, resulting from the genetic coding potential inherited by each one. Post-translational research tools have widely contributed with valuable information on how the plant proteome works to achieve, maintain and adjust plant immunity in order to properly cope with the challenging pathogenic derived proteomes. These key proteins and peptides have great biotechnological potential since they represent distinctive features of each pathogen group (fungi, bacteria, viruses and other) in response to molecules of defense of host plants. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Sessa, Alessandro; Ciabatti, Ernesto; Drechsel, Daniela; Massimino, Luca; Colasante, Gaia; Giannelli, Serena; Satoh, Takashi; Akira, Shizuo; Guillemot, Francois; Broccoli, Vania
2017-06-01
The T-box containing Tbr2 gene encodes for a transcription factor essential for the specification of the intermediate neural progenitors (INPs) originating the excitatory neurons of the cerebral cortex. However, its overall mechanism of action, direct target genes and cofactors remain unknown. Herein, we carried out global gene expression profiling combined with genome-wide binding site identification to determine the molecular pathways regulated by TBR2 in INPs. This analysis led to the identification of novel protein-protein interactions that control multiple features of INPs including cell-type identity, morphology, proliferation and migration dynamics. In particular, NEUROG2 and JMJD3 were found to associate with TBR2 revealing unexplored TBR2-dependent mechanisms. These interactions can explain, at least in part, the role of this transcription factor in the implementation of the molecular program controlling developmental milestones during corticogenesis. These data identify TBR2 as a major determinant of the INP-specific traits by regulating both genetic and epigenetic pathways. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Caspase-2 Is Localized at the Golgi Complex and Cleaves Golgin-160 during Apoptosis
Mancini, Marie; Machamer, Carolyn E.; Roy, Sophie; Nicholson, Donald W.; Thornberry, Nancy A.; Casciola-Rosen, Livia A.; Rosen, Antony
2000-01-01
Caspases are an extended family of cysteine proteases that play critical roles in apoptosis. Animals deficient in caspases-2 or -3, which share very similar tetrapeptide cleavage specificities, exhibit very different phenotypes, suggesting that the unique features of individual caspases may account for distinct regulation and specialized functions. Recent studies demonstrate that unique apoptotic stimuli are transduced by distinct proteolytic pathways, with multiple components of the proteolytic machinery clustering at distinct subcellular sites. We demonstrate here that, in addition to its nuclear distribution, caspase-2 is localized to the Golgi complex, where it cleaves golgin-160 at a unique site not susceptible to cleavage by other caspases with very similar tetrapeptide specificities. Early cleavage at this site precedes cleavage at distal sites by other caspases. Prevention of cleavage at the unique caspase-2 site delays disintegration of the Golgi complex after delivery of a pro-apoptotic signal. We propose that the Golgi complex, like mitochondria, senses and integrates unique local conditions, and transduces pro-apoptotic signals through local caspases, which regulate local effectors. PMID:10791974
An overview of the molecular mechanisms and novel roles of Nrf2 in neurodegenerative disorders.
Yang, Yang; Jiang, Shuai; Yan, Juanjuan; Li, Yue; Xin, Zhenlong; Lin, Yan; Qu, Yan
2015-02-01
Recently, growing evidence has demonstrated that nuclear factor erythroid 2-related factor 2 (Nrf2) is a pivotal regulator of endogenous defense systems that function via the activation of a set of protective genes, and this is particularly clear in the central nervous system (CNS). Therefore, it is highly useful to summarize the current literature on the molecular mechanisms and role of Nrf2 in the CNS. In this review, we first briefly introduce the molecular features of Nrf2. We then discuss the regulation, cerebral actions, upstream modulators and downstream targets of Nrf2 pathway. Following this background, we expand our discussion to the role of Nrf2 in several major neurodegenerative disorders (NDDs) such as Alzheimer's disease, Parkinson's disease, Huntington's disease, multiple sclerosis and amyotrophic lateral sclerosis. Lastly, we discuss some potential future directions. The information reviewed here may be significant in the design of further experimental research and increase the potential of Nrf2 as a therapeutic target in the future. Copyright © 2014 Elsevier Ltd. All rights reserved.
Molecular switch-like regulation in motor proteins.
Tafoya, Sara; Bustamante, Carlos
2018-06-19
Motor proteins are powered by nucleotide hydrolysis and exert mechanical work to carry out many fundamental biological tasks. To ensure their correct and efficient performance, the motors' activities are allosterically regulated by additional factors that enhance or suppress their NTPase activity. Here, we review two highly conserved mechanisms of ATP hydrolysis activation and repression operating in motor proteins-the glutamate switch and the arginine finger-and their associated regulatory factors. We examine the implications of these regulatory mechanisms in proteins that are formed by multiple ATPase subunits. We argue that the regulatory mechanisms employed by motor proteins display features similar to those described in small GTPases, which require external regulatory elements, such as dissociation inhibitors, exchange factors and activating proteins, to switch the protein's function 'on' and 'off'. Likewise, similar regulatory roles are taken on by the motor's substrate, additional binding factors, and even adjacent subunits in multimeric complexes. However, in motor proteins, more than one regulatory factor and the two mechanisms described here often underlie the machine's operation. Furthermore, ATPase regulation takes place throughout the motor's cycle, which enables a more complex function than the binary 'active' and 'inactive' states.This article is part of a discussion meeting issue 'Allostery and molecular machines'. © 2018 The Author(s).
Batra, Jyotica; Szabó, András; Caulfield, Thomas R; Soares, Alexei S; Sahin-Tóth, Miklós; Radisky, Evette S
2013-04-05
Human chymotrypsin C (CTRC) is a pancreatic serine protease that regulates activation and degradation of trypsinogens and procarboxypeptidases by targeting specific cleavage sites within their zymogen precursors. In cleaving these regulatory sites, which are characterized by multiple flanking acidic residues, CTRC shows substrate specificity that is distinct from that of other isoforms of chymotrypsin and elastase. Here, we report the first crystal structure of active CTRC, determined at 1.9-Å resolution, revealing the structural basis for binding specificity. The structure shows human CTRC bound to the small protein protease inhibitor eglin c, which binds in a substrate-like manner filling the S6-S5' subsites of the substrate binding cleft. Significant binding affinity derives from burial of preferred hydrophobic residues at the P1, P4, and P2' positions of CTRC, although acidic P2' residues can also be accommodated by formation of an interfacial salt bridge. Acidic residues may also be specifically accommodated in the P6 position. The most unique structural feature of CTRC is a ring of intense positive electrostatic surface potential surrounding the primarily hydrophobic substrate binding site. Our results indicate that long-range electrostatic attraction toward substrates of concentrated negative charge governs substrate discrimination, which explains CTRC selectivity in regulating active digestive enzyme levels.
Kinase-dependent Regulation of Monoamine Neurotransmitter Transporters
Bermingham, Daniel P.
2016-01-01
Modulation of neurotransmission by the monoamines dopamine (DA), norepinephrine (NE), and serotonin (5-HT) is critical for normal nervous system function. Precise temporal and spatial control of this signaling in mediated in large part by the actions of monoamine transporters (DAT, NET, and SERT, respectively). These transporters act to recapture their respective neurotransmitters after release, and disruption of clearance and reuptake has significant effects on physiology and behavior and has been linked to a number of neuropsychiatric disorders. To ensure adequate and dynamic control of these transporters, multiple modes of control have evolved to regulate their activity and trafficking. Central to many of these modes of control are the actions of protein kinases, whose actions can be direct or indirectly mediated by kinase-modulated protein interactions. Here, we summarize the current state of our understanding of how protein kinases regulate monoamine transporters through changes in activity, trafficking, phosphorylation state, and interacting partners. We highlight genetic, biochemical, and pharmacological evidence for kinase-linked control of DAT, NET, and SERT and, where applicable, provide evidence for endogenous activators of these pathways. We hope our discussion can lead to a more nuanced and integrated understanding of how neurotransmitter transporters are controlled and may contribute to disorders that feature perturbed monoamine signaling, with an ultimate goal of developing better therapeutic strategies. PMID:27591044
Pocock, Ginger M.; Zimdars, Laraine L.; Yuan, Ming; Eliceiri, Kevin W.; Ahlquist, Paul; Sherer, Nathan M.
2017-01-01
Cis-acting RNA structural elements govern crucial aspects of viral gene expression. How these structures and other posttranscriptional signals affect RNA trafficking and translation in the context of single cells is poorly understood. Herein we describe a multicolor, long-term (>24 h) imaging strategy for measuring integrated aspects of viral RNA regulatory control in individual cells. We apply this strategy to demonstrate differential mRNA trafficking behaviors governed by RNA elements derived from three retroviruses (HIV-1, murine leukemia virus, and Mason-Pfizer monkey virus), two hepadnaviruses (hepatitis B virus and woodchuck hepatitis virus), and an intron-retaining transcript encoded by the cellular NXF1 gene. Striking behaviors include “burst” RNA nuclear export dynamics regulated by HIV-1’s Rev response element and the viral Rev protein; transient aggregations of RNAs into discrete foci at or near the nuclear membrane triggered by multiple elements; and a novel, pulsiform RNA export activity regulated by the hepadnaviral posttranscriptional regulatory element. We incorporate single-cell tracking and a data-mining algorithm into our approach to obtain RNA element–specific, high-resolution gene expression signatures. Together these imaging assays constitute a tractable, systems-based platform for studying otherwise difficult to access spatiotemporal features of viral and cellular gene regulation. PMID:27903772
Gatto, Francesco; Nookaew, Intawat; Nielsen, Jens
2014-01-01
Several common oncogenic pathways have been implicated in the emergence of renowned metabolic features in cancer, which in turn are deemed essential for cancer proliferation and survival. However, the extent to which different cancers coordinate their metabolism to meet these requirements is largely unexplored. Here we show that even in the heterogeneity of metabolic regulation a distinct signature encompassed most cancers. On the other hand, clear cell renal cell carcinoma (ccRCC) strongly deviated in terms of metabolic gene expression changes, showing widespread down-regulation. We observed a metabolic shift that associates differential regulation of enzymes in one-carbon metabolism with high tumor stage and poor clinical outcome. A significant yet limited set of metabolic genes that explained the partial divergence of ccRCC metabolism correlated with loss of von Hippel-Lindau tumor suppressor (VHL) and a potential activation of signal transducer and activator of transcription 1. Further network-dependent analyses revealed unique defects in nucleotide, one-carbon, and glycerophospholipid metabolism at the transcript and protein level, which contrasts findings in other tumors. Notably, this behavior is recapitulated by recurrent loss of heterozygosity in multiple metabolic genes adjacent to VHL. This study therefore shows how loss of heterozygosity, hallmarked by VHL deletion in ccRCC, may uniquely shape tumor metabolism. PMID:24550497
Torres-Valencia, Cristian A; Álvarez, Mauricio A; Orozco-Gutiérrez, Alvaro A
2014-01-01
Human emotion recognition (HER) allows the assessment of an affective state of a subject. Until recently, such emotional states were described in terms of discrete emotions, like happiness or contempt. In order to cover a high range of emotions, researchers in the field have introduced different dimensional spaces for emotion description that allow the characterization of affective states in terms of several variables or dimensions that measure distinct aspects of the emotion. One of the most common of such dimensional spaces is the bidimensional Arousal/Valence space. To the best of our knowledge, all HER systems so far have modelled independently, the dimensions in these dimensional spaces. In this paper, we study the effect of modelling the output dimensions simultaneously and show experimentally the advantages in modeling them in this way. We consider a multimodal approach by including features from the Electroencephalogram and a few physiological signals. For modelling the multiple outputs, we employ a multiple output regressor based on support vector machines. We also include an stage of feature selection that is developed within an embedded approach known as Recursive Feature Elimination (RFE), proposed initially for SVM. The results show that several features can be eliminated using the multiple output support vector regressor with RFE without affecting the performance of the regressor. From the analysis of the features selected in smaller subsets via RFE, it can be observed that the signals that are more informative into the arousal and valence space discrimination are the EEG, Electrooculogram/Electromiogram (EOG/EMG) and the Galvanic Skin Response (GSR).
16 CFR 1500.127 - Substances with multiple hazards.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Substances with multiple hazards. 1500.127 Section 1500.127 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FEDERAL HAZARDOUS SUBSTANCES ACT REGULATIONS HAZARDOUS SUBSTANCES AND ARTICLES; ADMINISTRATION AND ENFORCEMENT REGULATIONS § 1500.127...
Synthesis of the sulfur amino acids: cysteine and methionine.
Wirtz, Markus; Droux, Michel
2005-12-01
This review will assess new features reported for the molecular and biochemical aspects of cysteine and methionine biosynthesis in Arabidopsis thaliana with regards to early published data from other taxa including crop plants and bacteria (Escherichia coli as a model). By contrast to bacteria and fungi, plant cells present a complex organization, in which the sulfur network takes place in multiple sites. Particularly, the impact of sulfur amino-acid biosynthesis compartmentalization will be addressed in respect to localization of sulfur reduction. To this end, the review will focus on regulation of sulfate reduction by synthesis of cysteine through the cysteine synthase complex and the synthesis of methionine and its derivatives. Finally, regulatory aspects of sulfur amino-acid biosynthesis will be explored with regards to interlacing processes such as photosynthesis, carbon and nitrogen assimilation.
Role of the HTLV-1 viral factors in the induction of apoptosis.
Karimi, Mohammad; Mohammadi, Hamed; Hemmatzadeh, Maryam; Mohammadi, Asadollah; Rafatpanah, Houshang; Baradaran, Behzad
2017-01-01
Adult T-cell leukemia (ATL) and HTLV-1-associated Myelopathy/Tropical Spastic Paraparesis (HAM/TSP) are the two main diseases that are caused by the HTLV-1 virus. One of the features of HTLV-1 infection is its resistance against programmed cell death, which maintains the survival of cells to oncogenic transformation and underlies the viruses' therapeutic resistance. Two main genes by which the virus develops cancer are Tax and HBZ; playing an essential role in angiogenesis in regulating viral transcription and modulating multiple host factors as well as apoptosis pathways. Here we have reviewed by prior research how the apoptosis pathways are suppressed by the Tax and HBZ and new drugs which have been designed to deal with this suppression. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
Iparraguirre, Leire; Muñoz-Culla, Maider; Prada-Luengo, Iñigo; Castillo-Triviño, Tamara; Olascoaga, Javier; Otaegui, David
2017-09-15
Multiple sclerosis is an autoimmune disease, with higher prevalence in women, in whom the immune system is dysregulated. This dysregulation has been shown to correlate with changes in transcriptome expression as well as in gene-expression regulators, such as non-coding RNAs (e.g. microRNAs). Indeed, some of these have been suggested as biomarkers for multiple sclerosis even though few biomarkers have reached the clinical practice. Recently, a novel family of non-coding RNAs, circular RNAs, has emerged as a new player in the complex network of gene-expression regulation. MicroRNA regulation function through a 'sponge system' and a RNA splicing regulation function have been proposed for the circular RNAs. This regulating role together with their high stability in biofluids makes them seemingly good candidates as biomarkers. Given the dysregulation of both protein-coding and non-coding transcriptome that have been reported in multiple sclerosis patients, we hypothesised that circular RNA expression may also be altered. Therefore, we carried out expression profiling of 13.617 circular RNAs in peripheral blood leucocytes from multiple sclerosis patients and healthy controls finding 406 differentially expressed (P-value < 0.05, Fold change > 1.5) and demonstrate after validation that, circ_0005402 and circ_0035560 are underexpressed in multiple sclerosis patients and could be used as biomarkers of the disease. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Object-based benefits without object-based representations.
Fougnie, Daryl; Cormiea, Sarah M; Alvarez, George A
2013-08-01
Influential theories of visual working memory have proposed that the basic units of memory are integrated object representations. Key support for this proposal is provided by the same object benefit: It is easier to remember multiple features of a single object than the same set of features distributed across multiple objects. Here, we replicate the object benefit but demonstrate that features are not stored as single, integrated representations. Specifically, participants could remember 10 features better when arranged in 5 objects compared to 10 objects, yet memory for one object feature was largely independent of memory for the other object feature. These results rule out the possibility that integrated representations drive the object benefit and require a revision of the concept of object-based memory representations. We propose that working memory is object-based in regard to the factors that enhance performance but feature based in regard to the level of representational failure. PsycINFO Database Record (c) 2013 APA, all rights reserved.
Multiple Paths to Mathematics Practice in Al-Kashi's "Key to Arithmetic"
ERIC Educational Resources Information Center
Taani, Osama
2014-01-01
In this paper, I discuss one of the most distinguishing features of Jamshid al-Kashi's pedagogy from his "Key to Arithmetic", a well-known Arabic mathematics textbook from the fifteenth century. This feature is the multiple paths that he includes to find a desired result. In the first section light is shed on al-Kashi's life…
Rotator Cuff Injuries - Multiple Languages
... Are Here: Home → Multiple Languages → All Health Topics → Rotator Cuff Injuries URL of this page: https://medlineplus.gov/ ... V W XYZ List of All Topics All Rotator Cuff Injuries - Multiple Languages To use the sharing features ...
Robust object matching for persistent tracking with heterogeneous features.
Guo, Yanlin; Hsu, Steve; Sawhney, Harpreet S; Kumar, Rakesh; Shan, Ying
2007-05-01
This paper addresses the problem of matching vehicles across multiple sightings under variations in illumination and camera poses. Since multiple observations of a vehicle are separated in large temporal and/or spatial gaps, thus prohibiting the use of standard frame-to-frame data association, we employ features extracted over a sequence during one time interval as a vehicle fingerprint that is used to compute the likelihood that two or more sequence observations are from the same or different vehicles. Furthermore, since our domain is aerial video tracking, in order to deal with poor image quality and large resolution and quality variations, our approach employs robust alignment and match measures for different stages of vehicle matching. Most notably, we employ a heterogeneous collection of features such as lines, points, and regions in an integrated matching framework. Heterogeneous features are shown to be important. Line and point features provide accurate localization and are employed for robust alignment across disparate views. The challenges of change in pose, aspect, and appearances across two disparate observations are handled by combining a novel feature-based quasi-rigid alignment with flexible matching between two or more sequences. However, since lines and points are relatively sparse, they are not adequate to delineate the object and provide a comprehensive matching set that covers the complete object. Region features provide a high degree of coverage and are employed for continuous frames to provide a delineation of the vehicle region for subsequent generation of a match measure. Our approach reliably delineates objects by representing regions as robust blob features and matching multiple regions to multiple regions using Earth Mover's Distance (EMD). Extensive experimentation under a variety of real-world scenarios and over hundreds of thousands of Confirmatory Identification (CID) trails has demonstrated about 95 percent accuracy in vehicle reacquisition with both visible and Infrared (IR) imaging cameras.
Quantifying site-specific physical heterogeneity within an estuarine seascape
Kennedy, Cristina G.; Mather, Martha E.; Smith, Joseph M.
2017-01-01
Quantifying physical heterogeneity is essential for meaningful ecological research and effective resource management. Spatial patterns of multiple, co-occurring physical features are rarely quantified across a seascape because of methodological challenges. Here, we identified approaches that measured total site-specific heterogeneity, an often overlooked aspect of estuarine ecosystems. Specifically, we examined 23 metrics that quantified four types of common physical features: (1) river and creek confluences, (2) bathymetric variation including underwater drop-offs, (3) land features such as islands/sandbars, and (4) major underwater channel networks. Our research at 40 sites throughout Plum Island Estuary (PIE) provided solutions to two problems. The first problem was that individual metrics that measured heterogeneity of a single physical feature showed different regional patterns. We solved this first problem by combining multiple metrics for a single feature using a within-physical feature cluster analysis. With this approach, we identified sites with four different types of confluences and three different types of underwater drop-offs. The second problem was that when multiple physical features co-occurred, new patterns of total site-specific heterogeneity were created across the seascape. This pattern of total heterogeneity has potential ecological relevance to structure-oriented predators. To address this second problem, we identified sites with similar types of total physical heterogeneity using an across-physical feature cluster analysis. Then, we calculated an additive heterogeneity index, which integrated all physical features at a site. Finally, we tested if site-specific additive heterogeneity index values differed for across-physical feature clusters. In PIE, the sites with the highest additive heterogeneity index values were clustered together and corresponded to sites where a fish predator, adult striped bass (Morone saxatilis), aggregated in a related acoustic tracking study. In summary, we have shown general approaches to quantifying site-specific heterogeneity.
The Role of Attention in the Maintenance of Feature Bindings in Visual Short-term Memory
ERIC Educational Resources Information Center
Johnson, Jeffrey S.; Hollingworth, Andrew; Luck, Steven J.
2008-01-01
This study examined the role of attention in maintaining feature bindings in visual short-term memory. In a change-detection paradigm, participants attempted to detect changes in the colors and orientations of multiple objects; the changes consisted of new feature values in a feature-memory condition and changes in how existing feature values were…
Context-based automated defect classification system using multiple morphological masks
Gleason, Shaun S.; Hunt, Martin A.; Sari-Sarraf, Hamed
2002-01-01
Automatic detection of defects during the fabrication of semiconductor wafers is largely automated, but the classification of those defects is still performed manually by technicians. This invention includes novel digital image analysis techniques that generate unique feature vector descriptions of semiconductor defects as well as classifiers that use these descriptions to automatically categorize the defects into one of a set of pre-defined classes. Feature extraction techniques based on multiple-focus images, multiple-defect mask images, and segmented semiconductor wafer images are used to create unique feature-based descriptions of the semiconductor defects. These feature-based defect descriptions are subsequently classified by a defect classifier into categories that depend on defect characteristics and defect contextual information, that is, the semiconductor process layer(s) with which the defect comes in contact. At the heart of the system is a knowledge database that stores and distributes historical semiconductor wafer and defect data to guide the feature extraction and classification processes. In summary, this invention takes as its input a set of images containing semiconductor defect information, and generates as its output a classification for the defect that describes not only the defect itself, but also the location of that defect with respect to the semiconductor process layers.
SD-MSAEs: Promoter recognition in human genome based on deep feature extraction.
Xu, Wenxuan; Zhang, Li; Lu, Yaping
2016-06-01
The prediction and recognition of promoter in human genome play an important role in DNA sequence analysis. Entropy, in Shannon sense, of information theory is a multiple utility in bioinformatic details analysis. The relative entropy estimator methods based on statistical divergence (SD) are used to extract meaningful features to distinguish different regions of DNA sequences. In this paper, we choose context feature and use a set of methods of SD to select the most effective n-mers distinguishing promoter regions from other DNA regions in human genome. Extracted from the total possible combinations of n-mers, we can get four sparse distributions based on promoter and non-promoters training samples. The informative n-mers are selected by optimizing the differentiating extents of these distributions. Specially, we combine the advantage of statistical divergence and multiple sparse auto-encoders (MSAEs) in deep learning to extract deep feature for promoter recognition. And then we apply multiple SVMs and a decision model to construct a human promoter recognition method called SD-MSAEs. Framework is flexible that it can integrate new feature extraction or new classification models freely. Experimental results show that our method has high sensitivity and specificity. Copyright © 2016 Elsevier Inc. All rights reserved.
ERIC Educational Resources Information Center
Roscoe, Rod D.; Segedy, James R.; Sulcer, Brian; Jeong, Hogyeong; Biswas, Gautam
2013-01-01
To support self-regulated learning (SRL), computer-based learning environments (CBLEs) are often designed to be open-ended and multidimensional. These systems incorporate diverse features that allow students to enact and reveal their SRL strategies via the choices they make. However, research shows that students' use of such features is limited;…
Effects of Normal Aging on Memory for Multiple Contextual Features
ERIC Educational Resources Information Center
Gagnon, Sylvain; Soulard, Kathleen; Brasgold, Melissa; Kreller, Joshua
2007-01-01
Twenty-four younger (18-35 years) and 24 older adult participants (65 or older) were exposed to three experimental conditions involving the memorization words and their associated contextual features, with contextual feature complexity increasing from Conditions 1 to 3. In Condition 1, words presented varied only on one binary feature (color,…
Huang, Hao; Mackel, Brian J; Grove, Anne
2013-11-01
Many transcriptional regulators control gene activity by responding to specific ligands. Members of the multiple-antibiotic resistance regulator (MarR) family of transcriptional regulators feature prominently in this regard, and they frequently function as repressors in the absence of their cognate ligands. Plant pathogens such as Dickeya dadantii encode a MarR homolog named PecS that controls expression of a gene encoding the efflux pump PecM in addition to other virulence genes. We report here that the soil bacterium Streptomyces coelicolor also encodes a PecS homolog (SCO2647) that regulates a pecM gene (SCO2646). S. coelicolor PecS, which exists as a homodimer, binds the intergenic region between pecS and pecM genes with high affinity. Several potential PecS binding sites were found in this intergenic region. The binding of PecS to its target DNA can be efficiently attenuated by the ligand urate, which also quenches the intrinsic fluorescence of PecS, indicating a direct interaction between urate and PecS. In vivo measurement of gene expression showed that activity of pecS and pecM genes is significantly elevated after exposure of S. coelicolor cultures to urate. These results indicate that S. coelicolor PecS responds to the ligand urate by attenuated DNA binding in vitro and upregulation of gene activity in vivo. Since production of urate is associated with generation of reactive oxygen species by xanthine dehydrogenase, we propose that PecS functions under conditions of oxidative stress.
Huang, Hao; Mackel, Brian J.
2013-01-01
Many transcriptional regulators control gene activity by responding to specific ligands. Members of the multiple-antibiotic resistance regulator (MarR) family of transcriptional regulators feature prominently in this regard, and they frequently function as repressors in the absence of their cognate ligands. Plant pathogens such as Dickeya dadantii encode a MarR homolog named PecS that controls expression of a gene encoding the efflux pump PecM in addition to other virulence genes. We report here that the soil bacterium Streptomyces coelicolor also encodes a PecS homolog (SCO2647) that regulates a pecM gene (SCO2646). S. coelicolor PecS, which exists as a homodimer, binds the intergenic region between pecS and pecM genes with high affinity. Several potential PecS binding sites were found in this intergenic region. The binding of PecS to its target DNA can be efficiently attenuated by the ligand urate, which also quenches the intrinsic fluorescence of PecS, indicating a direct interaction between urate and PecS. In vivo measurement of gene expression showed that activity of pecS and pecM genes is significantly elevated after exposure of S. coelicolor cultures to urate. These results indicate that S. coelicolor PecS responds to the ligand urate by attenuated DNA binding in vitro and upregulation of gene activity in vivo. Since production of urate is associated with generation of reactive oxygen species by xanthine dehydrogenase, we propose that PecS functions under conditions of oxidative stress. PMID:23995633
Lin, Chang Sheng-Huei; Chao, Shi-Yu; Hammel, Michal; Nix, Jay C; Tseng, Hsiao-Ling; Tsou, Chih-Cheng; Fei, Chun-Hsien; Chiou, Huo-Sheng; Jeng, U-Ser; Lin, Yee-Shin; Chuang, Woei-Jer; Wu, Jiunn-Jong; Wang, Shuying
2014-01-01
Group A streptococcus (GAS, Streptococcus pyogenes) is a strict human pathogen that causes severe, invasive diseases. GAS does not produce catalase, but has an ability to resist killing by reactive oxygen species (ROS) through novel mechanisms. The peroxide response regulator (PerR), a member of ferric uptake regulator (Fur) family, plays a key role for GAS to cope with oxidative stress by regulating the expression of multiple genes. Our previous studies have found that expression of an iron-binding protein, Dpr, is under the direct control of PerR. To elucidate the molecular interactions of PerR with its cognate promoter, we have carried out structural studies on PerR and PerR-DNA complex. By combining crystallography and small-angle X-ray scattering (SAXS), we confirmed that the determined PerR crystal structure reflects its conformation in solution. Through mutagenesis and biochemical analysis, we have identified DNA-binding residues suggesting that PerR binds to the dpr promoter at the per box through a winged-helix motif. Furthermore, we have performed SAXS analysis and resolved the molecular architecture of PerR-DNA complex, in which two 30 bp DNA fragments wrap around two PerR homodimers by interacting with the adjacent positively-charged winged-helix motifs. Overall, we provide structural insights into molecular recognition of DNA by PerR and define the hollow structural arrangement of PerR-30bpDNA complex, which displays a unique topology distinct from currently proposed DNA-binding models for Fur family regulators.
Park, In-Hyun; Chen, Jie
2005-09-09
Skeletal myogenesis is a well orchestrated cascade of events regulated by multiple signaling pathways, one of which is recently characterized by its sensitivity to the bacterial macrolide rapamycin. Previously we reported that the mammalian target of rapamycin (mTOR) regulates the initiation of the differentiation program in mouse C2C12 myoblasts by controlling the expression of insulin-like growth factor-II in a kinase-independent manner. Here we provide experimental evidence suggesting that a different mode of mTOR signaling regulates skeletal myogenesis at a later stage. In the absence of endogenous mTOR function in C2C12 cells treated with rapamycin, a kinase-inactive mTOR fully supports myogenin expression, but causes a delay in contractile protein expression. Myoblasts fuse to form nascent myotubes in the absence of kinase-active mTOR, whereas the formation of mature myotubes by further fusion requires the catalytic activity of mTOR. Therefore, the two stages of myocyte fusion are molecularly separable at the level of mTOR signaling. In addition, our data suggest that a factor secreted into the culture medium is responsible for mediating the function of mTOR in regulating the late-stage fusion leading to mature myotubes. Furthermore, taking advantage of the unique features of cells stably expressing a mutant mTOR, we have performed cDNA microarray analysis to compare global gene expression profiles between mature and nascent myotubes, the results of which have implicated classes of genes and revealed candidate regulators in myotube maturation or functions of mature myotubes.
Hanington, Patrick C.; Lun, Cheng-Man; Adema, Coen M; Loker, Eric S
2010-01-01
Successful colonization of a compatible snail host by a digenetic trematode miracidium initiates a complex, proliferative development program requiring weeks to reach culmination in the form of production of cercariae which, once started, may persist for the remainder of the life span of the infected snail. How are such proliferative and invasive parasites able to circumvent host defenses and establish chronic infections? Using a microarray designed to monitor the internal defense and stress-related responses of the freshwater snail Biomphalaria glabrata, we have undertaken a time course study to monitor snail responses following exposure to two different trematode species to which the snail is susceptible: the medically important Schistosoma mansoni, exemplifying sporocyst production in its larval development, or Echinostoma paraensei, representing an emphasis on rediae production in its larval development. We sampled eight time points (0.5, 1, 2, 4, 8, 16 and 32 days p.i.) that cover the period required for cercariae to be produced. Following exposure to S. mansoni, there was a preponderance of up-regulated over down-regulated array features through 2 days p.i. but by 4 days p.i. and thereafter, this pattern was strongly reversed. For E. paraensei, there was a preponderance of down-regulated array features over up-regulated features at even 0.5 days p.i., a pattern that persists throughout the course of infection except for 1 day p.i., when up-regulated array features slightly outnumbered down-regulated features. Examination of particular array features revealed several that were up-regulated by both parasites early in the course of infection and one, fibrinogen related protein 4 (FREP 4), that remained significantly elevated throughout the course of infection with either parasite, effectively serving as a marker of infection. Many defense-related transcripts were persistently down-regulated, including several fibrinogen-containing lectins and homologs of molecules best known from vertebrate phagocytic cells. Our results are consistent with earlier studies suggesting that both parasites are able to interfere with host defense responses, including a tendency for E. paraensei to do so more rapidly and strongly than S. mansoni They further suggest mechanisms for how trematodes are able to establish the chronic infections necessary for their continued success. PMID:20083115
Repicky, Sarah; Broadie, Kendal
2009-02-01
Loss of the mRNA-binding protein FMRP results in the most common inherited form of both mental retardation and autism spectrum disorders: fragile X syndrome (FXS). The leading FXS hypothesis proposes that metabotropic glutamate receptor (mGluR) signaling at the synapse controls FMRP function in the regulation of local protein translation to modulate synaptic transmission strength. In this study, we use the Drosophila FXS disease model to test the relationship between Drosophila FMRP (dFMRP) and the sole Drosophila mGluR (dmGluRA) in regulation of synaptic function, using two-electrode voltage-clamp recording at the glutamatergic neuromuscular junction (NMJ). Null dmGluRA mutants show minimal changes in basal synapse properties but pronounced defects during sustained high-frequency stimulation (HFS). The double null dfmr1;dmGluRA mutant shows repression of enhanced augmentation and delayed onset of premature long-term facilitation (LTF) and strongly reduces grossly elevated post-tetanic potentiation (PTP) phenotypes present in dmGluRA-null animals. Null dfmr1 mutants show features of synaptic hyperexcitability, including multiple transmission events in response to a single stimulus and cyclic modulation of transmission amplitude during prolonged HFS. The double null dfmr1;dmGluRA mutant shows amelioration of these defects but does not fully restore wildtype properties in dfmr1-null animals. These data suggest that dmGluRA functions in a negative feedback loop in which excess glutamate released during high-frequency transmission binds the glutamate receptor to dampen synaptic excitability, and dFMRP functions to suppress the translation of proteins regulating this synaptic excitability. Removal of the translational regulator partially compensates for loss of the receptor and, similarly, loss of the receptor weakly compensates for loss of the translational regulator.
Storm, Michael P; Kumpfmueller, Benjamin; Bone, Heather K; Buchholz, Michael; Sanchez Ripoll, Yolanda; Chaudhuri, Julian B; Niwa, Hitoshi; Tosh, David; Welham, Melanie J
2014-01-01
The Zscan4 family of genes, encoding SCAN-domain and zinc finger-containing proteins, has been implicated in the control of early mammalian embryogenesis as well as the regulation of pluripotency and maintenance of genome integrity in mouse embryonic stem cells. However, many features of this enigmatic family of genes are poorly understood. Here we show that undifferentiated mouse embryonic stem cell (ESC) lines simultaneously express multiple members of the Zscan4 gene family, with Zscan4c, Zscan4f and Zscan4-ps2 consistently being the most abundant. Despite this, between only 0.1 and 0.7% of undifferentiated mouse pluripotent stem cells express Zscan4 protein at a given time, consistent with a very restricted pattern of Zscan4 transcripts reported previously. Herein we demonstrate that Zscan4 expression is regulated by the p110α catalytic isoform of phosphoinositide 3-kinases and is induced following exposure to a sub-class of DNA-damage-inducing agents, including Zeocin and Cisplatin. Furthermore, we observe that Zscan4 protein expression peaks during the G2 phase of the cell cycle, suggesting that it may play a critical role at this checkpoint. Studies with GAL4-fusion proteins suggest a role for Zscan4 in transcriptional regulation, further supported by the fact that protein interaction analyses demonstrate that Zscan4 interacts with both LSD1 and CtBP2 in ESC nuclei. This study advances and extends our understanding of Zscan4 expression, regulation and mechanism of action. Based on our data we propose that Zscan4 may regulate gene transcription in mouse ES cells through interaction with LSD1 and CtBP2.
Bone, Heather K.; Buchholz, Michael; Sanchez Ripoll, Yolanda; Chaudhuri, Julian B.; Niwa, Hitoshi; Tosh, David; Welham, Melanie J.
2014-01-01
The Zscan4 family of genes, encoding SCAN-domain and zinc finger-containing proteins, has been implicated in the control of early mammalian embryogenesis as well as the regulation of pluripotency and maintenance of genome integrity in mouse embryonic stem cells. However, many features of this enigmatic family of genes are poorly understood. Here we show that undifferentiated mouse embryonic stem cell (ESC) lines simultaneously express multiple members of the Zscan4 gene family, with Zscan4c, Zscan4f and Zscan4-ps2 consistently being the most abundant. Despite this, between only 0.1 and 0.7% of undifferentiated mouse pluripotent stem cells express Zscan4 protein at a given time, consistent with a very restricted pattern of Zscan4 transcripts reported previously. Herein we demonstrate that Zscan4 expression is regulated by the p110α catalytic isoform of phosphoinositide 3-kinases and is induced following exposure to a sub-class of DNA-damage-inducing agents, including Zeocin and Cisplatin. Furthermore, we observe that Zscan4 protein expression peaks during the G2 phase of the cell cycle, suggesting that it may play a critical role at this checkpoint. Studies with GAL4-fusion proteins suggest a role for Zscan4 in transcriptional regulation, further supported by the fact that protein interaction analyses demonstrate that Zscan4 interacts with both LSD1 and CtBP2 in ESC nuclei. This study advances and extends our understanding of Zscan4 expression, regulation and mechanism of action. Based on our data we propose that Zscan4 may regulate gene transcription in mouse ES cells through interaction with LSD1 and CtBP2. PMID:24594919
Chua, Ngee Kiat; Howe, Vicky; Jatana, Nidhi; Thukral, Lipi; Brown, Andrew J
2017-12-08
Cholesterol biosynthesis in the endoplasmic reticulum (ER) is tightly controlled by multiple mechanisms to regulate cellular cholesterol levels. Squalene monooxygenase (SM) is the second rate-limiting enzyme in cholesterol biosynthesis and is regulated both transcriptionally and post-translationally. SM undergoes cholesterol-dependent proteasomal degradation when cholesterol is in excess. The first 100 amino acids of SM (designated SM N100) are necessary for this degradative process and represent the shortest cholesterol-regulated degron identified to date. However, the fundamental intrinsic characteristics of this degron remain unknown. In this study, we performed a series of deletions, point mutations, and domain swaps to identify a 12-residue region (residues Gln-62-Leu-73), required for SM cholesterol-mediated turnover. Molecular dynamics and circular dichroism revealed an amphipathic helix within this 12-residue region. Moreover, 70% of the variation in cholesterol regulation was dependent on the hydrophobicity of this region. Of note, the earliest known Doa10 yeast degron, Deg1, also contains an amphipathic helix and exhibits 42% amino acid similarity with SM N100. Mutating SM residues Phe-35/Ser-37/Leu-65/Ile-69 into alanine, based on the key residues in Deg1, blunted SM cholesterol-mediated turnover. Taken together, our results support a model whereby the amphipathic helix in SM N100 attaches reversibly to the ER membrane depending on cholesterol levels; with excess, the helix is ejected and unravels, exposing a hydrophobic patch, which then serves as a degradation signal. Our findings shed new light on the regulation of a key cholesterol synthesis enzyme, highlighting the conservation of critical degron features from yeast to humans. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
Motor Vehicle Safety - Multiple Languages
... Are Here: Home → Multiple Languages → All Health Topics → Motor Vehicle Safety URL of this page: https://medlineplus.gov/languages/ ... V W XYZ List of All Topics All Motor Vehicle Safety - Multiple Languages To use the sharing features on ...
A non-viscous-featured fractograph in metallic glasses
NASA Astrophysics Data System (ADS)
Yang, G. N.; Shao, Y.; Yao, K. F.
2016-02-01
A fractograph of non-viscous feature but pure shear-offsets was found in three-point bending samples of a ductile Pd-Cu-Si metallic glass. A sustainable shear band multiplication with large plasticity during notch propagation was observed. Such non-viscous-featured fractograph was formed by a crack propagation manner of continual multiple shear bands formation in front of the crack-tip, instead of the conventional rapid fracture along shear bands. With a 2D model of crack propagation by multiple shear bands, we showed that such fracture process was achieved by a faster stress relaxation than shear-softening effect in the sample. This study confirmed that the viscous fracture along shear bands could be not a necessary process in ductile metallic glasses fracture, and could provide new ways to understand the plasticity in the shear-softened metallic glasses.
48 CFR 16.402-4 - Structuring multiple-incentive contracts.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 48 Federal Acquisition Regulations System 1 2010-10-01 2010-10-01 false Structuring multiple-incentive contracts. 16.402-4 Section 16.402-4 Federal Acquisition Regulations System FEDERAL ACQUISITION... include a cost incentive (or constraint) that operates to preclude rewarding a contractor for superior...
CHARGED PARTICLE MULTIPLICITIES IN ULTRA-RELATIVISTIC
NASA Astrophysics Data System (ADS)
Back, B. B.; Alver, B.; Back, B. B.; Baker, M. D.; Ballintijn, M.; Barton, D. S.; Betts, R. R.; Bickley, A. A.; Bindel, R.; Busza, W.; Carroll, A.; Chai, Z.; Chetluru, V.; Decowski, M. P.; Garcia, E.; Gburek, T.; George, N.; Gulbrandsen, K.; Halliwell, C.; Hamblen, J.; Harnarine, I.; Hauer, M.; Henderson, C.; Hofman, D. J.; Hollis, R. S.; Holynski, R.; Holzman, B.; Iordanova, A.; Johnson, E.; Kane, J. L.; Khan, N.; Kulinich, P.; Kuo, C. M.; Li, W.; Lin, W. T.; Loizides, C.; Manly, S.; Mignerey, A. C.; Nouicer, R.; Olszewski, A.; Pak, R.; Reed, C.; Richardson, E.; Roland, C.; Roland, G.; Sagerer, J.; Seals, H.; Sedykh, I.; Smith, C. E.; Stankiewicz, M. A.; Steinberg, P.; Stephans, G. S. F.; Sukhanov, A.; Szostak, A.; Tonjes, M. B.; Trzupek, A.; Vale, C.; Vannieuwenhuizen, G. J.; Vaurynovich, S. S.; Verdier, R.; Veres, G. I.; Walters, P.; Wenger, E.; Willhelm, D.; Wolfs, F. L. H.; Wosiek, B.; Wozniak, K.; Wyngaardt, S.; Wyslouch, B.
The PHOBOS collaboration has carried out a systematic study of charged particle multiplicities in Cu+Cu and Au+Au collisions at the Relativistic Heavy-Ion Collider (RHIC) at Brookhaven National Laboratory. A unique feature of the PHOBOS detector is its ability to measure charged particles over a very wide angular range from 0.5° to 179.5° corresponding to |η| <5.4. The general features of the charged particle multiplicity distributions as a function of pseudo-rapidity, collision energy and centrality, as well as system size, are discussed.
... having the disease. Are the leukodystrophies related to Multiple Sclerosis? The leukodystrophies do share some common features with multiple sclerosis (MS). Like the leukodystrophies, MS is caused by ...
SU-F-R-20: Image Texture Features Correlate with Time to Local Failure in Lung SBRT Patients
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andrews, M; Abazeed, M; Woody, N
Purpose: To explore possible correlation between CT image-based texture and histogram features and time-to-local-failure in early stage non-small cell lung cancer (NSCLC) patients treated with stereotactic body radiotherapy (SBRT).Methods and Materials: From an IRB-approved lung SBRT registry for patients treated between 2009–2013 we selected 48 (20 male, 28 female) patients with local failure. Median patient age was 72.3±10.3 years. Mean time to local failure was 15 ± 7.1 months. Physician-contoured gross tumor volumes (GTV) on the planning CT images were processed and 3D gray-level co-occurrence matrix (GLCM) based texture and histogram features were calculated in Matlab. Data were exported tomore » R and a multiple linear regression model was used to examine the relationship between texture features and time-to-local-failure. Results: Multiple linear regression revealed that entropy (p=0.0233, multiple R2=0.60) from GLCM-based texture analysis and the standard deviation (p=0.0194, multiple R2=0.60) from the histogram-based features were statistically significantly correlated with the time-to-local-failure. Conclusion: Image-based texture analysis can be used to predict certain aspects of treatment outcomes of NSCLC patients treated with SBRT. We found entropy and standard deviation calculated for the GTV on the CT images displayed a statistically significant correlation with and time-to-local-failure in lung SBRT patients.« less
49 CFR 236.386 - Restoring feature on power switches.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 49 Transportation 4 2011-10-01 2011-10-01 false Restoring feature on power switches. 236.386 Section 236.386 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD... Inspection and Tests § 236.386 Restoring feature on power switches. Restoring feature on power switches shall...
49 CFR 236.386 - Restoring feature on power switches.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 49 Transportation 4 2010-10-01 2010-10-01 false Restoring feature on power switches. 236.386 Section 236.386 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD... Inspection and Tests § 236.386 Restoring feature on power switches. Restoring feature on power switches shall...
49 CFR 236.386 - Restoring feature on power switches.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 49 Transportation 4 2012-10-01 2012-10-01 false Restoring feature on power switches. 236.386 Section 236.386 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD... Inspection and Tests § 236.386 Restoring feature on power switches. Restoring feature on power switches shall...
49 CFR 236.386 - Restoring feature on power switches.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 49 Transportation 4 2014-10-01 2014-10-01 false Restoring feature on power switches. 236.386 Section 236.386 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD... Inspection and Tests § 236.386 Restoring feature on power switches. Restoring feature on power switches shall...
49 CFR 236.386 - Restoring feature on power switches.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 49 Transportation 4 2013-10-01 2013-10-01 false Restoring feature on power switches. 236.386 Section 236.386 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD... Inspection and Tests § 236.386 Restoring feature on power switches. Restoring feature on power switches shall...
Contact-free heart rate measurement using multiple video data
NASA Astrophysics Data System (ADS)
Hung, Pang-Chan; Lee, Kual-Zheng; Tsai, Luo-Wei
2013-10-01
In this paper, we propose a contact-free heart rate measurement method by analyzing sequential images of multiple video data. In the proposed method, skin-like pixels are firstly detected from multiple video data for extracting the color features. These color features are synchronized and analyzed by independent component analysis. A representative component is finally selected among these independent component candidates to measure the HR, which achieves under 2% deviation on average compared with a pulse oximeter in the controllable environment. The advantages of the proposed method include: 1) it uses low cost and high accessibility camera device; 2) it eases users' discomfort by utilizing contact-free measurement; and 3) it achieves the low error rate and the high stability by integrating multiple video data.
Abraham, Karan J; Zhang, Xiao; Vidal, Ricardo; Paré, Geneviève C; Feilotter, Harriet E; Tron, Victor A
2016-04-01
Dysfunction of key miRNA pathways regulating basic cellular processes is a common driver of many cancers. However, the biological roles and/or clinical applications of such pathways in Merkel cell carcinoma (MCC), a rare but lethal cutaneous neuroendocrine (NE) malignancy, have yet to be determined. Previous work has established that miR-375 is highly expressed in MCC tumors, but its biological role in MCC remains unknown. Herein, we show that elevated miR-375 expression is a specific feature of well-differentiated MCC cell lines that express NE markers. In contrast, miR-375 is strikingly down-regulated in highly aggressive, undifferentiated MCC cell lines. Enforced miR-375 expression in these cells induced NE differentiation, and opposed cancer cell viability, migration, invasion, and survival, pointing to tumor-suppressive roles for miR-375. Mechanistically, miR-375-driven phenotypes were caused by the direct post-transcriptional repression of multiple Notch pathway proteins (Notch2 and RBPJ) linked to cancer and regulation of cell fate. Thus, we detail a novel molecular axis linking tumor-suppressive miR-375 and Notch with NE differentiation and cancer cell behavior in MCC. Our findings identify miR-375 as a putative regulator of NE differentiation, provide insight into the cell of origin of MCC, and suggest that miR-375 silencing may promote aggressive cancer cell behavior through Notch disinhibition. Copyright © 2016 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.
Central genes, pathways and modules that regulate bone mass.
Quiros-Gonzalez, Isabel; Yadav, Vijay K
2014-11-01
Bones are structures that give the shape and defined features to vertebrates, protect several soft organs and perform multiple endocrine influences on other organs. To achieve these functions bones are first modeled early during life and then constantly remodeled throughout life. The process of bone (re)modeling happens simultaneously at multitude of locations in the skeleton and ensures that vertebrates have a mechanically strong yet a flexible skeleton to the most part of their life. Given the extent of its occurrence in the body, bone remodeling is a highly energy demanding process and is co-ordinated with other physiological processes as diverse as energy metabolism, sleep-wake cycle and reproduction. Neuronal circuits in the brain play a very important role in the coordination of bone remodeling with other organ system functions, and perform this function in sync with environmental and peripheral hormonal cues. In this review, we will focus on the roles of hormonal signals and neural circuits that originate in, or impinge on, the brain in the regulation of bone mass. We will provide herein an updated view of how advances in molecular genetics have refined the neural circuits involved in the regulation of bone mass, from the whole brain level to the specific neuronal populations and their neurotransmitters. This will help to understand the mechanisms whereby vertebrate brain regulates bone mass by fine-tuning metabolic signals that originate in the brain or elsewhere in the body. Copyright © 2014 Elsevier Inc. All rights reserved.
Epigenetic control of alternative mRNA processing at the imprinted Herc3/Nap1l5 locus
Cowley, Michael; Wood, Andrew J.; Böhm, Sabrina; Schulz, Reiner; Oakey, Rebecca J.
2012-01-01
Alternative polyadenylation increases transcriptome diversity by generating multiple transcript isoforms from a single gene. It is thought that this process can be subject to epigenetic regulation, but few specific examples of this have been reported. We previously showed that the Mcts2/H13 locus is subject to genomic imprinting and that alternative polyadenylation of H13 transcripts occurs in an allele-specific manner, regulated by epigenetic mechanisms. Here, we demonstrate that allele-specific polyadenylation occurs at another imprinted locus with similar features. Nap1l5 is a retrogene expressed from the paternally inherited allele, is situated within an intron of a ‘host’ gene Herc3, and overlaps a CpG island that is differentially methylated between the parental alleles. In mouse brain, internal Herc3 polyadenylation sites upstream of Nap1l5 are used on the paternally derived chromosome, from which Nap1l5 is expressed, whereas a downstream site is used more frequently on the maternally derived chromosome. Ablating DNA methylation on the maternal allele at the Nap1l5 promoter increases the use of an internal Herc3 polyadenylation site and alters exon splicing. These changes demonstrate the influence of epigenetic mechanisms in regulating Herc3 alternative mRNA processing. Internal Herc3 polyadenylation correlates with expression levels of Nap1l5, suggesting a possible role for transcriptional interference. Similar mechanisms may regulate alternative polyadenylation elsewhere in the genome. PMID:22790983
Hudik, Elodie; Yoshioka, Yasushi; Domenichini, Séverine; Bourge, Mickaël; Soubigout-Taconnat, Ludivine; Mazubert, Christelle; Yi, Dalong; Bujaldon, Sandrine; Hayashi, Hiroyuki; De Veylder, Lieven; Bergounioux, Catherine; Benhamed, Moussa; Raynaud, Cécile
2014-01-01
The majority of research on cell cycle regulation is focused on the nuclear events that govern the replication and segregation of the genome between the two daughter cells. However, eukaryotic cells contain several compartmentalized organelles with specialized functions, and coordination among these organelles is required for proper cell cycle progression, as evidenced by the isolation of several mutants in which both organelle function and overall plant development were affected. To investigate how chloroplast dysfunction affects the cell cycle, we analyzed the crumpled leaf (crl) mutant of Arabidopsis (Arabidopsis thaliana), which is deficient for a chloroplastic protein and displays particularly severe developmental defects. In the crl mutant, we reveal that cell cycle regulation is altered drastically and that meristematic cells prematurely enter differentiation, leading to reduced plant stature and early endoreduplication in the leaves. This response is due to the repression of several key cell cycle regulators as well as constitutive activation of stress-response genes, among them the cell cycle inhibitor SIAMESE-RELATED5. One unique feature of the crl mutant is that it produces aplastidic cells in several organs, including the root tip. By investigating the consequence of the absence of plastids on cell cycle progression, we showed that nuclear DNA replication occurs in aplastidic cells in the root tip, which opens future research prospects regarding the dialogue between plastids and the nucleus during cell cycle regulation in higher plants. PMID:25037213
Hemifacial microsomia in cat-eye syndrome: 22q11.1-q11.21 as candidate loci for facial symmetry.
Quintero-Rivera, Fabiola; Martinez-Agosto, Julian A
2013-08-01
Cat-Eye syndrome (CES), (OMIM 115470) also known as chromosome 22 partial tetrasomy or inverted duplicated 22q11, was first reported by Haab [1879] based on the primary features of eye coloboma and anal atresia. However, >60% of the patients lack these primary features. Here, we present a 9-month-old female who at birth was noted to have multiple defects, including facial asymmetry with asymmetric retrognathia, bilateral mandibular hypoplasia, branchial cleft sinus, right-sided muscular torticollis, esotropia, and an atretic right ear canal with low-to-moderate sensorineural hearing loss, bilateral preauricular ear tag/pits, and two skin tags on her left cheek. There were no signs of any colobomas or anal atresia. Hemifacial microsomia (HFM) was suspected clinically. Chromosome studies and FISH identified an extra marker originated from 22q11 consistent with CES, and this was confirmed by aCGH. This report expands the phenotypic variability of CES and includes partial tetrasomy of 22q11.1-q11.21 in the differential diagnosis of HFM. In addition, our case as well as the previous association of 22q11.2 deletions and duplications with facial asymmetry and features of HFM, supports the hypothesis that this chromosome region harbors genes important in the regulation of body plan symmetry, and in particular facial harmony. Copyright © 2013 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Dhiman, R.; Kalbar, P.; Inamdar, A. B.
2017-12-01
Coastal area classification in India is a challenge for federal and state government agencies due to fragile institutional framework, unclear directions in implementation of costal regulations and violations happening at private and government level. This work is an attempt to improvise the objectivity of existing classification methods to synergies the ecological systems and socioeconomic development in coastal cities. We developed a Geographic information system coupled Multi-criteria Decision Making (GIS-MCDM) approach to classify urban coastal areas where utility functions are used to transform the costal features into quantitative membership values after assessing the sensitivity of urban coastal ecosystem. Furthermore, these membership values for costal features are applied in different weighting schemes to derive Coastal Area Index (CAI) which classifies the coastal areas in four distinct categories viz. 1) No Development Zone, 2) Highly Sensitive Zone, 3) Moderately Sensitive Zone and 4) Low Sensitive Zone based on the sensitivity of urban coastal ecosystem. Mumbai, a coastal megacity in India is used as case study for demonstration of proposed method. Finally, uncertainty analysis using Monte Carlo approach to validate the sensitivity of CAI under specific multiple scenarios is carried out. Results of CAI method shows the clear demarcation of coastal areas in GIS environment based on the ecological sensitivity. CAI provides better decision support for federal and state level agencies to classify urban coastal areas according to the regional requirement of coastal resources considering resilience and sustainable development. CAI method will strengthen the existing institutional framework for decision making in classification of urban coastal areas where most effective coastal management options can be proposed.
Additivity of Feature-Based and Symmetry-Based Grouping Effects in Multiple Object Tracking
Wang, Chundi; Zhang, Xuemin; Li, Yongna; Lyu, Chuang
2016-01-01
Multiple object tracking (MOT) is an attentional process wherein people track several moving targets among several distractors. Symmetry, an important indicator of regularity, is a general spatial pattern observed in natural and artificial scenes. According to the “laws of perceptual organization” proposed by Gestalt psychologists, regularity is a principle of perceptual grouping, such as similarity and closure. A great deal of research reported that feature-based similarity grouping (e.g., grouping based on color, size, or shape) among targets in MOT tasks can improve tracking performance. However, no additive feature-based grouping effects have been reported where the tracking objects had two or more features. “Additive effect” refers to a greater grouping effect produced by grouping based on multiple cues instead of one cue. Can spatial symmetry produce a similar grouping effect similar to that of feature similarity in MOT tasks? Are the grouping effects based on symmetry and feature similarity additive? This study includes four experiments to address these questions. The results of Experiments 1 and 2 demonstrated the automatic symmetry-based grouping effects. More importantly, an additive grouping effect of symmetry and feature similarity was observed in Experiments 3 and 4. Our findings indicate that symmetry can produce an enhanced grouping effect in MOT and facilitate the grouping effect based on color or shape similarity. The “where” and “what” pathways might have played an important role in the additive grouping effect. PMID:27199875
Dube, Blaire; Emrich, Stephen M; Al-Aidroos, Naseem
2017-10-01
Across 2 experiments we revisited the filter account of how feature-based attention regulates visual working memory (VWM). Originally drawing from discrete-capacity ("slot") models, the filter account proposes that attention operates like the "bouncer in the brain," preventing distracting information from being encoded so that VWM resources are reserved for relevant information. Given recent challenges to the assumptions of discrete-capacity models, we investigated whether feature-based attention plays a broader role in regulating memory. Both experiments used partial report tasks in which participants memorized the colors of circle and square stimuli, and we provided a feature-based goal by manipulating the likelihood that 1 shape would be probed over the other across a range of probabilities. By decomposing participants' responses using mixture and variable-precision models, we estimated the contributions of guesses, nontarget responses, and imprecise memory representations to their errors. Consistent with the filter account, participants were less likely to guess when the probed memory item matched the feature-based goal. Interestingly, this effect varied with goal strength, even across high probabilities where goal-matching information should always be prioritized, demonstrating strategic control over filter strength. Beyond this effect of attention on which stimuli were encoded, we also observed effects on how they were encoded: Estimates of both memory precision and nontarget errors varied continuously with feature-based attention. The results offer support for an extension to the filter account, where feature-based attention dynamically regulates the distribution of resources within working memory so that the most relevant items are encoded with the greatest precision. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
41 CFR 102-192.65 - What features must our finance systems have to keep track of mail costs?
Code of Federal Regulations, 2010 CFR
2010-07-01
... 41 Public Contracts and Property Management 3 2010-07-01 2010-07-01 false What features must our finance systems have to keep track of mail costs? 102-192.65 Section 102-192.65 Public Contracts and Property Management Federal Property Management Regulations System (Continued) FEDERAL MANAGEMENT REGULATION ADMINISTRATIVE PROGRAMS 192-MAIL...
Self-Regulation of Visual Attention and Facial Expression of Emotions in ADHD Children
ERIC Educational Resources Information Center
Kuhle, Hans J.; Kinkelbur, Jorg; Andes, Kerstin; Heidorn, Fridjof M.; Zeyer, Solveigh; Rautzenberg, Petra; Jansen, Fritz
2007-01-01
Objective: To test if visual focusing and mimic display as features of self-regulation in ADHD children show a curvilinear relation to rising methylphenidate (MPH) doses. To test if small dose steps of 2.5mg MPH cause significant changes in behavior. And to test the relation of these features to intellectual performance, parents' ratings, and…
Cai, Wen-Peng; Pan, Yu; Zhang, Shui-Miao; Wei, Cun; Dong, Wei; Deng, Guang-Hui
2017-10-01
The current study aimed to explore the association of cognitive emotion regulation, social support, resilience and acute stress responses in Chinese soldiers and to understand the multiple mediation effects of social support and resilience on the relationship between cognitive emotion regulation and acute stress responses. A total of 1477 male soldiers completed mental scales, including the cognitive emotion regulation questionnaire-Chinese version, the perceived social support scale, the Chinese version of the Connor-Davidson resilience scale, and the military acute stress scale. As hypothesized, physiological responses, psychological responses, and acute stress were associated with negative-focused cognitive emotion regulation, and negatively associated with positive-focused cognitive emotion regulation, social supports and resilience. Besides, positive-focused cognitive emotion regulation, social support, and resilience were significantly associated with one another, and negative-focused cognitive emotion regulation was negatively associated with social support. Regression analysis and bootstrap analysis showed that social support and resilience had partly mediating effects on negative strategies and acute stress, and fully mediating effects on positive strategies and acute stress. These results thus indicate that military acute stress is significantly associated with cognitive emotion regulation, social support, and resilience, and that social support and resilience have multiple mediation effects on the relationship between cognitive emotion regulation and acute stress responses. Copyright © 2017 Elsevier B.V. All rights reserved.
Capacity for visual features in mental rotation
Xu, Yangqing; Franconeri, Steven L.
2015-01-01
Although mental rotation is a core component of scientific reasoning, we still know little about its underlying mechanism. For instance - how much visual information can we rotate at once? Participants rotated a simple multi-part shape, requiring them to maintain attachments between features and moving parts. The capacity of this aspect of mental rotation was strikingly low – only one feature could remain attached to one part. Behavioral and eyetracking data showed that this single feature remained ‘glued’ via a singular focus of attention, typically on the object’s top. We argue that the architecture of the human visual system is not suited for keeping multiple features attached to multiple parts during mental rotation. Such measurement of the capacity limits may prove to be a critical step in dissecting the suite of visuospatial tools involved in mental rotation, leading to insights for improvement of pedagogy in science education contexts. PMID:26174781
Feature extraction from multiple data sources using genetic programming
NASA Astrophysics Data System (ADS)
Szymanski, John J.; Brumby, Steven P.; Pope, Paul A.; Eads, Damian R.; Esch-Mosher, Diana M.; Galassi, Mark C.; Harvey, Neal R.; McCulloch, Hersey D.; Perkins, Simon J.; Porter, Reid B.; Theiler, James P.; Young, Aaron C.; Bloch, Jeffrey J.; David, Nancy A.
2002-08-01
Feature extraction from imagery is an important and long-standing problem in remote sensing. In this paper, we report on work using genetic programming to perform feature extraction simultaneously from multispectral and digital elevation model (DEM) data. We use the GENetic Imagery Exploitation (GENIE) software for this purpose, which produces image-processing software that inherently combines spatial and spectral processing. GENIE is particularly useful in exploratory studies of imagery, such as one often does in combining data from multiple sources. The user trains the software by painting the feature of interest with a simple graphical user interface. GENIE then uses genetic programming techniques to produce an image-processing pipeline. Here, we demonstrate evolution of image processing algorithms that extract a range of land cover features including towns, wildfire burnscars, and forest. We use imagery from the DOE/NNSA Multispectral Thermal Imager (MTI) spacecraft, fused with USGS 1:24000 scale DEM data.
Lavie, N
1997-05-01
Predictions from Treisman's feature integration theory of attention were tested in a variant of the response-competition paradigm. Subjects made choice responses to particular color-shape conjunctions (e.g., a purple cross vs. a green circle) while withholding their responses to the opposite conjunctions (i.e., a purple circle vs. a green cross). The results showed that compatibility effects were based on both distractor color and shape. For unattended distractors in preknown irrelevant positions, compatibility effects were equivalent for conjunctive distractors (e.g., a purple cross and a blue triangle) and for disjunctive distractors (e.g., a purple triangle and a blue cross). Manipulation of attention to the distractors positions resulted in larger compatibility effects from conjoined features. These results accord with Treisman's claim that correct conjunction information is unavailable under conditions of inattention, and they provide new information on response-competition effects from multiple features.
Capacity for Visual Features in Mental Rotation.
Xu, Yangqing; Franconeri, Steven L
2015-08-01
Although mental rotation is a core component of scientific reasoning, little is known about its underlying mechanisms. For instance, how much visual information can someone rotate at once? We asked participants to rotate a simple multipart shape, requiring them to maintain attachments between features and moving parts. The capacity of this aspect of mental rotation was strikingly low: Only one feature could remain attached to one part. Behavioral and eye-tracking data showed that this single feature remained "glued" via a singular focus of attention, typically on the object's top. We argue that the architecture of the human visual system is not suited for keeping multiple features attached to multiple parts during mental rotation. Such measurement of capacity limits may prove to be a critical step in dissecting the suite of visuospatial tools involved in mental rotation, leading to insights for improvement of pedagogy in science-education contexts. © The Author(s) 2015.
Dynamic Integration of Task-Relevant Visual Features in Posterior Parietal Cortex
Freedman, David J.
2014-01-01
Summary The primate visual system consists of multiple hierarchically organized cortical areas, each specialized for processing distinct aspects of the visual scene. For example, color and form are encoded in ventral pathway areas such as V4 and inferior temporal cortex, while motion is preferentially processed in dorsal pathway areas such as the middle temporal area. Such representations often need to be integrated perceptually to solve tasks which depend on multiple features. We tested the hypothesis that the lateral intraparietal area (LIP) integrates disparate task-relevant visual features by recording from LIP neurons in monkeys trained to identify target stimuli composed of conjunctions of color and motion features. We show that LIP neurons exhibit integrative representations of both color and motion features when they are task relevant, and task-dependent shifts of both direction and color tuning. This suggests that LIP plays a role in flexibly integrating task-relevant sensory signals. PMID:25199703
Speeded induction under uncertainty: the influence of multiple categories and feature conjunctions.
Newell, Ben R; Paton, Helen; Hayes, Brett K; Griffiths, Oren
2010-12-01
When people are uncertain about the category membership of an item (e.g., Is it a dog or a dingo?), research shows that they tend to rely only on the dominant or most likely category when making inductions (e.g., How likely is it to befriend me?). An exception has been reported using speeded induction judgments where participants appeared to use information from multiple categories to make inductions (Verde, Murphy, & Ross, 2005). In two speeded induction studies, we found that participants tended to rely on the frequency with which features co-occurred when making feature predictions, independently of category membership. This pattern held whether categories were considered implicitly (Experiment 1) or explicitly (Experiment 2) prior to feature induction. The results converge with other recent work suggesting that people often rely on feature conjunction information, rather than category boundaries, when making inductions under uncertainty.
NASA Astrophysics Data System (ADS)
Soltanian-Zadeh, Hamid; Windham, Joe P.
1992-04-01
Maximizing the minimum absolute contrast-to-noise ratios (CNRs) between a desired feature and multiple interfering processes, by linear combination of images in a magnetic resonance imaging (MRI) scene sequence, is attractive for MRI analysis and interpretation. A general formulation of the problem is presented, along with a novel solution utilizing the simple and numerically stable method of Gram-Schmidt orthogonalization. We derive explicit solutions for the case of two interfering features first, then for three interfering features, and, finally, using a typical example, for an arbitrary number of interfering feature. For the case of two interfering features, we also provide simplified analytical expressions for the signal-to-noise ratios (SNRs) and CNRs of the filtered images. The technique is demonstrated through its applications to simulated and acquired MRI scene sequences of a human brain with a cerebral infarction. For these applications, a 50 to 100% improvement for the smallest absolute CNR is obtained.
Emotion dysregulation in hypochondriasis and depression.
Bailer, Josef; Witthöft, Michael; Erkic, Maja; Mier, Daniela
2017-11-01
The aim of this study was to explore whether certain aspects of emotion dysregulation (i.e., facets of alexithymia and rumination) are more closely linked to hypochondriasis than to depression and vice versa. Nineteen patients with hypochondriasis (HYP), 33 patients with depression, and 52 healthy control participants completed the Toronto Alexithymia Scale, the Response Styles Questionnaire, and additional symptom and illness behaviour scales. A clinical interview was used to establish DSM-IV diagnoses and to exclude all cases with more than one axis I diagnosis. Depression patients reported more difficulties describing feelings and more symptom- and self-focused rumination than both HYP patients and healthy individuals, whereas HYP patients differed only from healthy individuals in regard to more difficulties in identifying feelings and more symptom-focused rumination. Multiple regression analyses, including all assessed facets of emotion dysregulation, showed that the degree of somatoform features (somatic symptoms, health anxiety, and illness behaviour) was specifically predicted by higher difficulties in identifying feelings scores, whereas depressive symptom levels were specifically predicted by higher rumination scores. Specific associations were found between difficulties in identifying feelings and key features of HYP, whereas depression was linked to a more generalized pattern of emotion regulation deficits. Emotion dysregulation can be found in hypochondriasis and depression Difficulties in identifying own feelings are specifically linked to somatic symptoms, health anxiety, and illness behaviour, whereas a more generalized pattern of emotion dysregulation is found in relation to depression Further research is needed to investigate whether the effectiveness of current treatments for depression, hypochondriasis, health anxiety, and related disorders could be improved by additional emotion regulation interventions. Copyright © 2017 John Wiley & Sons, Ltd.
Dominguez, Daniel; Tsai, Yi-Hsuan; Gomez, Nicholas; Jha, Deepak Kumar; Davis, Ian; Wang, Zefeng
2016-01-01
Progression through the cell cycle is largely dependent on waves of periodic gene expression, and the regulatory networks for these transcriptome dynamics have emerged as critical points of vulnerability in various aspects of tumor biology. Through RNA-sequencing of human cells during two continuous cell cycles (>2.3 billion paired reads), we identified over 1 000 mRNAs, non-coding RNAs and pseudogenes with periodic expression. Periodic transcripts are enriched in functions related to DNA metabolism, mitosis, and DNA damage response, indicating these genes likely represent putative cell cycle regulators. Using our set of periodic genes, we developed a new approach termed “mitotic trait” that can classify primary tumors and normal tissues by their transcriptome similarity to different cell cycle stages. By analyzing >4 000 tumor samples in The Cancer Genome Atlas (TCGA) and other expression data sets, we found that mitotic trait significantly correlates with genetic alterations, tumor subtype and, notably, patient survival. We further defined a core set of 67 genes with robust periodic expression in multiple cell types. Proteins encoded by these genes function as major hubs of protein-protein interaction and are mostly required for cell cycle progression. The core genes also have unique chromatin features including increased levels of CTCF/RAD21 binding and H3K36me3. Loss of these features in uterine and kidney cancers is associated with altered expression of the core 67 genes. Our study suggests new chromatin-associated mechanisms for periodic gene regulation and offers a predictor of cancer patient outcomes. PMID:27364684
Microenvironmental Regulation by Fibrillin-1
Sengle, Gerhard; Tsutsui, Ko; Keene, Douglas R.; Tufa, Sara F.; Carlson, Eric J.; Charbonneau, Noe L.; Ono, Robert N.; Sasaki, Takako; Wirtz, Mary K.; Samples, John R.; Fessler, Liselotte I.; Fessler, John H.; Sekiguchi, Kiyotoshi; Hayflick, Susan J.; Sakai, Lynn Y.
2012-01-01
Fibrillin-1 is a ubiquitous extracellular matrix molecule that sequesters latent growth factor complexes. A role for fibrillin-1 in specifying tissue microenvironments has not been elucidated, even though the concept that fibrillin-1 provides extracellular control of growth factor signaling is currently appreciated. Mutations in FBN1 are mainly responsible for the Marfan syndrome (MFS), recognized by its pleiotropic clinical features including tall stature and arachnodactyly, aortic dilatation and dissection, and ectopia lentis. Each of the many different mutations in FBN1 known to cause MFS must lead to similar clinical features through common mechanisms, proceeding principally through the activation of TGFβ signaling. Here we show that a novel FBN1 mutation in a family with Weill-Marchesani syndrome (WMS) causes thick skin, short stature, and brachydactyly when replicated in mice. WMS mice confirm that this mutation does not cause MFS. The mutation deletes three domains in fibrillin-1, abolishing a binding site utilized by ADAMTSLIKE-2, -3, -6, and papilin. Our results place these ADAMTSLIKE proteins in a molecular pathway involving fibrillin-1 and ADAMTS-10. Investigations of microfibril ultrastructure in WMS humans and mice demonstrate that modulation of the fibrillin microfibril scaffold can influence local tissue microenvironments and link fibrillin-1 function to skin homeostasis and the regulation of dermal collagen production. Hence, pathogenetic mechanisms caused by dysregulated WMS microenvironments diverge from Marfan pathogenetic mechanisms, which lead to broad activation of TGFβ signaling in multiple tissues. We conclude that local tissue-specific microenvironments, affected in WMS, are maintained by a fibrillin-1 microfibril scaffold, modulated by ADAMTSLIKE proteins in concert with ADAMTS enzymes. PMID:22242013
Layman, W.S.; McEwen, D.P.; Beyer, L.A.; Lalani, S.R.; Fernbach, S.D.; Oh, E.; Swaroop, A.; Hegg, C.C.; Raphael, Y.; Martens, J.R.; Martin, D.M.
2009-01-01
Mutations in CHD7, a chromodomain gene, are present in a majority of individuals with CHARGE syndrome, a multiple anomaly disorder characterized by ocular Coloboma, Heart defects, Atresia of the choanae, Retarded growth and development, Genital hypoplasia and Ear anomalies. The clinical features of CHARGE syndrome are highly variable and incompletely penetrant. Olfactory dysfunction is a common feature in CHARGE syndrome and has been potentially linked to primary olfactory bulb defects, but no data confirming this mechanistic link have been reported. On the basis of these observations, we hypothesized that loss of Chd7 disrupts mammalian olfactory tissue development and function. We found severe defects in olfaction in individuals with CHD7 mutations and CHARGE, and loss of odor evoked electro-olfactogram responses in Chd7 deficient mice, suggesting reduced olfaction is due to a dysfunctional olfactory epithelium. Chd7 expression was high in basal olfactory epithelial neural stem cells and down-regulated in mature olfactory sensory neurons. We observed smaller olfactory bulbs, reduced olfactory sensory neurons, and disorganized epithelial ultrastructure in Chd7 mutant mice, despite apparently normal functional cilia and sustentacular cells. Significant reductions in the proliferation of neural stem cells and regeneration of olfactory sensory neurons in the mature Chd7Gt/+ olfactory epithelium indicate critical roles for Chd7 in regulating neurogenesis. These studies provide evidence that mammalian olfactory dysfunction due to Chd7 haploinsufficiency is linked to primary defects in olfactory neural stem cell proliferation and may influence olfactory bulb development. PMID:19279158
Visceral obesity: a "civilization syndrome".
Björntorp, P
1993-05-01
The controversial question of the relationship between obesity and disease has been considerably clearer after the demonstration in several prospective, epidemiological studies that the subgroup of central, visceral obesity is particularly prone to develop cardiovascular disease, stroke, and non-insulin dependent diabetes mellitus. Visceral obesity is associated with multiple central endocrine aberrations. The hypothalamo-adrenal axis is apparently sensitive to stimuli, sex steroid hormone secretion blunted, and hyperandrogenicity is found in women. In addition, there seem to be signs of central dysfunctions in the regulation of hemodynamic factors after stress, and growth hormone secretion appears to be particularly blunted. Several of these endocrine abnormalities are associated with insulin resistance, particularly glycogen synthesis in muscle. Fiber composition with low type I/type II ratio might be secondary to the prevailing hyperinsulinemia, but low capillary density in muscle may well be of importance. In combination with elevated turn-over of free fatty acids (FFA) this will probably provide powerful mechanisms whereby insulin resistance is created. Portal FFA, from the highly lipolytic visceral depots may, in addition, affect hepatic metabolism to induce increased gluconeogenesis, production of very low density lipoproteins as well as to perhaps inhibit clearance of insulin. By these mechanisms a Metabolic Syndrome Visceral adipocytes seem to have a high density of several steroid hormone receptors, directing steroid hormone effects particularly to these depots. The net effect of cortisol is apparently a stimulation of lipid storage, with opposing effects of sex steroid hormones which also facilitate lipid mobilization, regulations most often found at the gene transcription level. Growth hormone inhibits cortisol effects on lipid accumulation, and amplifies the lipid mobilizing effects of steroid hormones. The combined perturbations of hormonal secretions will therefore probably direct triglycerides toward visceral depots. Circulatory and nervous regulatory mechanisms require, however, more attention. The multiple central endocrine and nervous aberrations of visceral obesity suggest neuroendocrine dysregulations, and have features characteristic of the hypothalamic arousal seen after certain types of stress, alcohol intake, and smoking. Such factors can be traced to subjects with visceral fat accumulation. Standardized stress, eliciting a "defeat reaction" in primates is followed by an apparently identical syndrome. This integrated picture of the multiple symptoms of visceral obesity is based on epidemiological, clinical, experimental, cellular, and molecular evidence. The ingredients of positive energy balance, including physical inactivity, stress, smoking, and alcohol consumption are frequent features of modern, urbanized society. Visceral obesity may therefore be an expression of a "Civilization Syndrome."
Small RNA biology is systems biology.
Jost, Daniel; Nowojewski, Andrzej; Levine, Erel
2011-01-01
During the last decade small regulatory RNA (srRNA) emerged as central players in the regulation of gene expression in all kingdoms of life. Multiple pathways for srRNA biogenesis and diverse mechanisms of gene regulation may indicate that srRNA regulation evolved independently multiple times. However, small RNA pathways share numerous properties, including the ability of a single srRNA to regulate multiple targets. Some of the mechanisms of gene regulation by srRNAs have significant effect on the abundance of free srRNAs that are ready to interact with new targets. This results in indirect interactions among seemingly unrelated genes, as well as in a crosstalk between different srRNA pathways. Here we briefly review and compare the major srRNA pathways, and argue that the impact of srRNA is always at the system level. We demonstrate how a simple mathematical model can ease the discussion of governing principles. To demonstrate these points we review a few examples from bacteria and animals.
Recent Developments in OVERGRID, OVERFLOW-2 and Chimera Grid Tools Scripts
NASA Technical Reports Server (NTRS)
Chan, William M.
2004-01-01
OVERGRID and OVERFLOW-2 feature easy to use multiple-body dynamics. The new features of OVERGRID include a preliminary chemistry interface, standard atmosphere and mass properties calculators, a simple unsteady solution viewer, and a debris tracking interface. Script library development in Chimera Grid Tools has applications in turbopump grid generation. This viewgraph presentation profiles multiple component dynamics, validation test cases for a sphere, cylinder, and oscillating airfoil, and debris analysis.
Lee, Byung-Do; Park, Moo-Rim; Kwon, Kyung-Hwan
2015-09-01
A 59-year-old male who had suffered from multiple myeloma for nine years and had been administered bisphosphonates for seven years visited a dental hospital for pain relief due to extensive caries in his left maxillary molars. The molars were extracted, leaving an exposed wound for three months. The radiograph showed sequestra formation and irregular bone destruction in the left maxilla. Sudden pain and gingival swelling in the right mandibular molar area occurred six months later. The interseptum of the right lower second molar was observed to be necrotic during surgery. These findings coincided with the features of bisphosphonate-related osteonecrosis of the jaw (BRONJ). In this case, the long intravenous administration of bisphosphonates and tooth extraction were likely the etiologic factors of BRONJ in a patient with multiple myeloma; moreover, the bilateral occurrence of BRONJ is a characteristic feature.
Mora-Bautista, Víctor M; Mendoza-Rojas, Víctor; Contreras-García, Gustavo A
2017-06-01
Cornelia de Lange syndrome is a genetic disease characterized by distinctive facial features, failure to thrive, microcephaly and several malformations associated. Its main endocrinological features are anomalies of the genitalia. We present a 13-year-old boy, who suffered from complicated aspiration pneumonia and showed Cornelia de Lange syndrome phenotype, with global developmental delay, suction-swallowing abnormalities, short stature and abnormal genitalia associated. His bone age was delayed, so he underwent full endocrinological panel. Central hypothyroidism, growth hormone deficiency and low luteinizing hormone-follicle-stimulating hormone levels were observed and multiple pituitary hormone deficiencies diagnosis was made. Basal cortisol, adrenocorticotropic hormone and prolactin levels were normal. He received thyroid hormonal substitution. Multiple pituitary hormone deficiencies are an unusual feature of De Lange syndrome. We suggest evaluating all different endocrine axes in these patients. Sociedad Argentina de Pediatría.
Simultaneous Spectral-Spatial Feature Selection and Extraction for Hyperspectral Images.
Zhang, Lefei; Zhang, Qian; Du, Bo; Huang, Xin; Tang, Yuan Yan; Tao, Dacheng
2018-01-01
In hyperspectral remote sensing data mining, it is important to take into account of both spectral and spatial information, such as the spectral signature, texture feature, and morphological property, to improve the performances, e.g., the image classification accuracy. In a feature representation point of view, a nature approach to handle this situation is to concatenate the spectral and spatial features into a single but high dimensional vector and then apply a certain dimension reduction technique directly on that concatenated vector before feed it into the subsequent classifier. However, multiple features from various domains definitely have different physical meanings and statistical properties, and thus such concatenation has not efficiently explore the complementary properties among different features, which should benefit for boost the feature discriminability. Furthermore, it is also difficult to interpret the transformed results of the concatenated vector. Consequently, finding a physically meaningful consensus low dimensional feature representation of original multiple features is still a challenging task. In order to address these issues, we propose a novel feature learning framework, i.e., the simultaneous spectral-spatial feature selection and extraction algorithm, for hyperspectral images spectral-spatial feature representation and classification. Specifically, the proposed method learns a latent low dimensional subspace by projecting the spectral-spatial feature into a common feature space, where the complementary information has been effectively exploited, and simultaneously, only the most significant original features have been transformed. Encouraging experimental results on three public available hyperspectral remote sensing datasets confirm that our proposed method is effective and efficient.
NASA Astrophysics Data System (ADS)
Vijverberg, Koen; Ghafoorian, Mohsen; van Uden, Inge W. M.; de Leeuw, Frank-Erik; Platel, Bram; Heskes, Tom
2016-03-01
Cerebral small vessel disease (SVD) is a disorder frequently found among the old people and is associated with deterioration in cognitive performance, parkinsonism, motor and mood impairments. White matter hyperintensities (WMH) as well as lacunes, microbleeds and subcortical brain atrophy are part of the spectrum of image findings, related to SVD. Accurate segmentation of WMHs is important for prognosis and diagnosis of multiple neurological disorders such as MS and SVD. Almost all of the published (semi-)automated WMH detection models employ multiple complex hand-crafted features, which require in-depth domain knowledge. In this paper we propose to apply a single-layer network unsupervised feature learning (USFL) method to avoid hand-crafted features, but rather to automatically learn a more efficient set of features. Experimental results show that a computer aided detection system with a USFL system outperforms a hand-crafted approach. Moreover, since the two feature sets have complementary properties, a hybrid system that makes use of both hand-crafted and unsupervised learned features, shows a significant performance boost compared to each system separately, getting close to the performance of an independent human expert.
Contingent attentional capture across multiple feature dimensions in a temporal search task.
Ito, Motohiro; Kawahara, Jun I
2016-01-01
The present study examined whether attention can be flexibly controlled to monitor two different feature dimensions (shape and color) in a temporal search task. Specifically, we investigated the occurrence of contingent attentional capture (i.e., interference from task-relevant distractors) and resulting set reconfiguration (i.e., enhancement of single task-relevant set). If observers can restrict searches to a specific value for each relevant feature dimension independently, the capture and reconfiguration effect should only occur when the single relevant distractor in each dimension appears. Participants identified a target letter surrounded by a non-green square or a non-square green frame. The results revealed contingent attentional capture, as target identification accuracy was lower when the distractor contained a target-defining feature than when it contained a nontarget feature. Resulting set reconfiguration was also obtained in that accuracy was superior when the current target's feature (e.g., shape) corresponded to the defining feature of the present distractor (shape) than when the current target's feature did not match the distractor's feature (color). This enhancement was not due to perceptual priming. The present study demonstrated that the principles of contingent attentional capture and resulting set reconfiguration held even when multiple target feature dimensions were monitored. Copyright © 2015 Elsevier B.V. All rights reserved.
Chen, Qiang; Chen, Yunhao; Jiang, Weiguo
2016-07-30
In the field of multiple features Object-Based Change Detection (OBCD) for very-high-resolution remotely sensed images, image objects have abundant features and feature selection affects the precision and efficiency of OBCD. Through object-based image analysis, this paper proposes a Genetic Particle Swarm Optimization (GPSO)-based feature selection algorithm to solve the optimization problem of feature selection in multiple features OBCD. We select the Ratio of Mean to Variance (RMV) as the fitness function of GPSO, and apply the proposed algorithm to the object-based hybrid multivariate alternative detection model. Two experiment cases on Worldview-2/3 images confirm that GPSO can significantly improve the speed of convergence, and effectively avoid the problem of premature convergence, relative to other feature selection algorithms. According to the accuracy evaluation of OBCD, GPSO is superior at overall accuracy (84.17% and 83.59%) and Kappa coefficient (0.6771 and 0.6314) than other algorithms. Moreover, the sensitivity analysis results show that the proposed algorithm is not easily influenced by the initial parameters, but the number of features to be selected and the size of the particle swarm would affect the algorithm. The comparison experiment results reveal that RMV is more suitable than other functions as the fitness function of GPSO-based feature selection algorithm.
Hadoop neural network for parallel and distributed feature selection.
Hodge, Victoria J; O'Keefe, Simon; Austin, Jim
2016-06-01
In this paper, we introduce a theoretical basis for a Hadoop-based neural network for parallel and distributed feature selection in Big Data sets. It is underpinned by an associative memory (binary) neural network which is highly amenable to parallel and distributed processing and fits with the Hadoop paradigm. There are many feature selectors described in the literature which all have various strengths and weaknesses. We present the implementation details of five feature selection algorithms constructed using our artificial neural network framework embedded in Hadoop YARN. Hadoop allows parallel and distributed processing. Each feature selector can be divided into subtasks and the subtasks can then be processed in parallel. Multiple feature selectors can also be processed simultaneously (in parallel) allowing multiple feature selectors to be compared. We identify commonalities among the five features selectors. All can be processed in the framework using a single representation and the overall processing can also be greatly reduced by only processing the common aspects of the feature selectors once and propagating these aspects across all five feature selectors as necessary. This allows the best feature selector and the actual features to select to be identified for large and high dimensional data sets through exploiting the efficiency and flexibility of embedding the binary associative-memory neural network in Hadoop. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
Evolution of Bow-Tie Architectures in Biology
Friedlander, Tamar; Mayo, Avraham E.; Tlusty, Tsvi; Alon, Uri
2015-01-01
Bow-tie or hourglass structure is a common architectural feature found in many biological systems. A bow-tie in a multi-layered structure occurs when intermediate layers have much fewer components than the input and output layers. Examples include metabolism where a handful of building blocks mediate between multiple input nutrients and multiple output biomass components, and signaling networks where information from numerous receptor types passes through a small set of signaling pathways to regulate multiple output genes. Little is known, however, about how bow-tie architectures evolve. Here, we address the evolution of bow-tie architectures using simulations of multi-layered systems evolving to fulfill a given input-output goal. We find that bow-ties spontaneously evolve when the information in the evolutionary goal can be compressed. Mathematically speaking, bow-ties evolve when the rank of the input-output matrix describing the evolutionary goal is deficient. The maximal compression possible (the rank of the goal) determines the size of the narrowest part of the network—that is the bow-tie. A further requirement is that a process is active to reduce the number of links in the network, such as product-rule mutations, otherwise a non-bow-tie solution is found in the evolutionary simulations. This offers a mechanism to understand a common architectural principle of biological systems, and a way to quantitate the effective rank of the goals under which they evolved. PMID:25798588
Shen, Ding-Wu; Pouliot, Lynn M.; Hall, Matthew D.
2012-01-01
Cisplatin is one of the most effective broad-spectrum anticancer drugs. Its effectiveness seems to be due to the unique properties of cisplatin, which enters cells via multiple pathways and forms multiple different DNA-platinum adducts while initiating a cellular self-defense system by activating or silencing a variety of different genes, resulting in dramatic epigenetic and/or genetic alternations. As a result, the development of cisplatin resistance in human cancer cells in vivo and in vitro by necessity stems from bewilderingly complex genetic and epigenetic changes in gene expression and alterations in protein localization. Extensive published evidence has demonstrated that pleiotropic alterations are frequently detected during development of resistance to this toxic metal compound. Changes occur in almost every mechanism supporting cell survival, including cell growth-promoting pathways, apoptosis, developmental pathways, DNA damage repair, and endocytosis. In general, dozens of genes are affected in cisplatin-resistant cells, including pathways involved in copper metabolism as well as transcription pathways that alter the cytoskeleton, change cell surface presentation of proteins, and regulate epithelial-to-mesenchymal transition. Decreased accumulation is one of the most common features resulting in cisplatin resistance. This seems to be a consequence of numerous epigenetic and genetic changes leading to the loss of cell-surface binding sites and/or transporters for cisplatin, and decreased fluid phase endocytosis. PMID:22659329
Shen, Ding-Wu; Pouliot, Lynn M; Hall, Matthew D; Gottesman, Michael M
2012-07-01
Cisplatin is one of the most effective broad-spectrum anticancer drugs. Its effectiveness seems to be due to the unique properties of cisplatin, which enters cells via multiple pathways and forms multiple different DNA-platinum adducts while initiating a cellular self-defense system by activating or silencing a variety of different genes, resulting in dramatic epigenetic and/or genetic alternations. As a result, the development of cisplatin resistance in human cancer cells in vivo and in vitro by necessity stems from bewilderingly complex genetic and epigenetic changes in gene expression and alterations in protein localization. Extensive published evidence has demonstrated that pleiotropic alterations are frequently detected during development of resistance to this toxic metal compound. Changes occur in almost every mechanism supporting cell survival, including cell growth-promoting pathways, apoptosis, developmental pathways, DNA damage repair, and endocytosis. In general, dozens of genes are affected in cisplatin-resistant cells, including pathways involved in copper metabolism as well as transcription pathways that alter the cytoskeleton, change cell surface presentation of proteins, and regulate epithelial-to-mesenchymal transition. Decreased accumulation is one of the most common features resulting in cisplatin resistance. This seems to be a consequence of numerous epigenetic and genetic changes leading to the loss of cell-surface binding sites and/or transporters for cisplatin, and decreased fluid phase endocytosis.
Drawing on Text Features for Reading Comprehension and Composing
ERIC Educational Resources Information Center
Risko, Victoria J.; Walker-Dalhouse, Doris
2011-01-01
Students read multiple-genre texts such as graphic novels, poetry, brochures, digitized texts with videos, and informational and narrative texts. Features such as overlapping illustrations and implied cause-and-effect relationships can affect students' comprehension. Teaching with these texts and drawing attention to organizational features hold…
Multiple Paths to Mathematics Practice in Al-Kashi's Key to Arithmetic
NASA Astrophysics Data System (ADS)
Taani, Osama
2014-01-01
In this paper, I discuss one of the most distinguishing features of Jamshid al-Kashi's pedagogy from his Key to Arithmetic, a well-known Arabic mathematics textbook from the fifteenth century. This feature is the multiple paths that he includes to find a desired result. In the first section light is shed on al-Kashi's life and his contributions to mathematics and astronomy. Section 2 starts with a brief discussion of the contents and pedagogy of the Key to Arithmetic. Al-Kashi's multiple approaches are discussed through four different examples of his versatility in presenting a topic from multiple perspectives. These examples are multiple definitions, multiple algorithms, multiple formulas, and multiple methods for solving word problems. Section 3 is devoted to some benefits that can be gained by implementing al-Kashi's multiple paths approach in modern curricula. For this discussion, examples from two teaching modules taken from the Key to Arithmetic and implemented in Pre-Calculus and mathematics courses for preservice teachers are discussed. Also, the conclusions are supported by some aspects of these modules. This paper is an attempt to help mathematics educators explore more benefits from reading from original sources.
ROS-activated calcium signaling mechanisms regulating endothelial barrier function.
Di, Anke; Mehta, Dolly; Malik, Asrar B
2016-09-01
Increased vascular permeability is a common pathogenic feature in many inflammatory diseases. For example in acute lung injury (ALI) and its most severe form, the acute respiratory distress syndrome (ARDS), lung microvessel endothelia lose their junctional integrity resulting in leakiness of the endothelial barrier and accumulation of protein rich edema. Increased reactive oxygen species (ROS) generated by neutrophils (PMNs) and other inflammatory cells play an important role in increasing endothelial permeability. In essence, multiple inflammatory syndromes are caused by dysfunction and compromise of the barrier properties of the endothelium as a consequence of unregulated acute inflammatory response. This review focuses on the role of ROS signaling in controlling endothelial permeability with particular focus on ALI. We summarize below recent progress in defining signaling events leading to increased endothelial permeability and ALI. Copyright © 2016 Elsevier Ltd. All rights reserved.
Armstrong, Christine A; Tomita, Kazunori
2017-03-01
Aberrant activation of telomerase occurs in 85-90% of all cancers and underpins the ability of cancer cells to bypass their proliferative limit, rendering them immortal. The activity of telomerase is tightly controlled at multiple levels, from transcriptional regulation of the telomerase components to holoenzyme biogenesis and recruitment to the telomere, and finally activation and processivity. However, studies using cancer cell lines and other model systems have begun to reveal features of telomeres and telomerase that are unique to cancer. This review summarizes our current knowledge on the mechanisms of telomerase recruitment and activation using insights from studies in mammals and budding and fission yeasts. Finally, we discuss the differences in telomere homeostasis between normal cells and cancer cells, which may provide a foundation for telomere/telomerase targeted cancer treatments. © 2017 The Authors.
... birth and infant mortality. Solving premature birth Featured articles Accomplishments and lessons learned since the establishment of ... The impact of premature birth on society Featured articles How long should you wait before getting pregnant ...
[Difference in target antigens between central tolerance and peripheral tolerance deficiencies].
Chida, Natsuko; Kobayashi, Ichiro
2015-01-01
Failure of the immunotolerance mechanisms causes multiple organ-specific autoimmune disorders. Mutations of autoimmune regulator (AIRE) gene result in central immunotolerance deficiency named autoimmune polyendocrinopathy, candidiasis, ectodermal dystrophy (APECED). Mutations of FOXP3 genes cause regulatory T cell (Treg) deficiency named immune dysregulation, polyendocrinopathy, enteropathy, X-linked (IPEX) syndrome. Because T cell tolerance influences B cell tolerance, autoantibodies seem to reflect the presence of autoreactive T cells with the same antigen specificity. To date many differences in both clinical features and autoantibody profiles have been described between APECED and IPEX syndrome. In addition to the differences in target organs, we have found differences in the target antigens in the same organ, small intestine, between both disorders; anti-autoimmune enteropathy-related 75 kDa antigen (AIE-75) antibodies are specific to IPEX syndrome, whereas anti-tryptophan hydroxylase-1 (TPH-1) antibodies are specific to APECED. These facts suggest that immunotolerance to AIE-75 depends on the Treg, whereas the tolerance to TPH-1 depends on the central mechanisms. Furthermore, given the earlier onset and more serious clinical features of IPEX syndrome than APECED, physiological roles of Aire on the selection of Treg may be, if present, limited.
Moreno-Ortega, Beatriz; Fort, Guillaume; Muller, Bertrand; Guédon, Yann
2017-01-01
The identification of the limits between the cell division, elongation and mature zones in the root apex is still a matter of controversy when methods based on cellular features, molecular markers or kinematics are compared while methods based on cell length profiles have been comparatively underexplored. Segmentation models were developed to identify developmental zones within a root apex on the basis of epidermal cell length profiles. Heteroscedastic piecewise linear models were estimated for maize lateral roots of various lengths of both wild type and two mutants affected in auxin signaling (rtcs and rum-1). The outputs of these individual root analyses combined with morphological features (first root hair position and root diameter) were then globally analyzed using principal component analysis. Three zones corresponding to the division zone, the elongation zone and the mature zone were identified in most lateral roots while division zone and sometimes elongation zone were missing in arrested roots. Our results are consistent with an auxin-dependent coordination between cell flux, cell elongation and cell differentiation. The proposed segmentation models could extend our knowledge of developmental regulations in longitudinally organized plant organs such as roots, monocot leaves or internodes. PMID:29123533
Discovering cancer vulnerabilities using high-throughput micro-RNA screening.
Nikolic, Iva; Elsworth, Benjamin; Dodson, Eoin; Wu, Sunny Z; Gould, Cathryn M; Mestdagh, Pieter; Marshall, Glenn M; Horvath, Lisa G; Simpson, Kaylene J; Swarbrick, Alexander
2017-12-15
Micro-RNAs (miRNAs) are potent regulators of gene expression and cellular phenotype. Each miRNA has the potential to target hundreds of transcripts within the cell thus controlling fundamental cellular processes such as survival and proliferation. Here, we exploit this important feature of miRNA networks to discover vulnerabilities in cancer phenotype, and map miRNA-target relationships across different cancer types. More specifically, we report the results of a functional genomics screen of 1280 miRNA mimics and inhibitors in eight cancer cell lines, and its presentation in a sophisticated interactive data portal. This resource represents the most comprehensive survey of miRNA function in oncology, incorporating breast cancer, prostate cancer and neuroblastoma. A user-friendly web portal couples this experimental data with multiple tools for miRNA target prediction, pathway enrichment analysis and visualization. In addition, the database integrates publicly available gene expression and perturbation data enabling tailored and context-specific analysis of miRNA function in a particular disease. As a proof-of-principle, we use the database and its innovative features to uncover novel determinants of the neuroblastoma malignant phenotype. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.
Kalpakci, Allison; Ha, Carolyn; Sharp, Carla
2018-05-01
Borderline personality disorder (BPD) in adolescents is highly complex and heterogeneous. Within the disorder, research has suggested the existence of at least two subgroups: one with predominantly internalizing psychopathology features and one with predominantly externalizing psychopathology features. One process that may differentiate these groups is executive functioning (EF), given that poor EF is linked to externalizing psychopathology. Against this background, the current study used a multi-informant approach to examine whether adolescent patients with predominantly externalizing BPD presentations experience greater deficits in EF than adolescent patients with predominantly internalizing presentations. The sample included inpatient adolescents ages 12-17 (M = 15.26; SD = 1.51). Analyses revealed that multiple EF domains distinguished the BPD subgroups. More specifically, adolescents with externalizing presentations exhibited greater difficulties in broad domains related to global executive functioning, metacognition and behavioural regulation and specific domains related to inhibitory control, working memory, planning/organizing, monitoring and organization of materials. While this study is the first to examine EF and adolescent BPD in the context of internalizing and externalizing psychopathology, alternative approaches to examining this question are discussed. Copyright © 2018 John Wiley & Sons, Ltd. Copyright © 2018 John Wiley & Sons, Ltd.
Functional and Genomic Features of Human Genes Mutated in Neuropsychiatric Disorders.
Forero, Diego A; Prada, Carlos F; Perry, George
2016-01-01
In recent years, a large number of studies around the world have led to the identification of causal genes for hereditary types of common and rare neurological and psychiatric disorders. To explore the functional and genomic features of known human genes mutated in neuropsychiatric disorders. A systematic search was used to develop a comprehensive catalog of genes mutated in neuropsychiatric disorders (NPD). Functional enrichment and protein-protein interaction analyses were carried out. A false discovery rate approach was used for correction for multiple testing. We found several functional categories that are enriched among NPD genes, such as gene ontologies, protein domains, tissue expression, signaling pathways and regulation by brain-expressed miRNAs and transcription factors. Sixty six of those NPD genes are known to be druggable. Several topographic parameters of protein-protein interaction networks and the degree of conservation between orthologous genes were identified as significant among NPD genes. These results represent one of the first analyses of enrichment of functional categories of genes known to harbor mutations for NPD. These findings could be useful for a future creation of computational tools for prioritization of novel candidate genes for NPD.
Functional and Genomic Features of Human Genes Mutated in Neuropsychiatric Disorders
Forero, Diego A.; Prada, Carlos F.; Perry, George
2016-01-01
Background: In recent years, a large number of studies around the world have led to the identification of causal genes for hereditary types of common and rare neurological and psychiatric disorders. Objective: To explore the functional and genomic features of known human genes mutated in neuropsychiatric disorders. Methods: A systematic search was used to develop a comprehensive catalog of genes mutated in neuropsychiatric disorders (NPD). Functional enrichment and protein-protein interaction analyses were carried out. A false discovery rate approach was used for correction for multiple testing. Results: We found several functional categories that are enriched among NPD genes, such as gene ontologies, protein domains, tissue expression, signaling pathways and regulation by brain-expressed miRNAs and transcription factors. Sixty six of those NPD genes are known to be druggable. Several topographic parameters of protein-protein interaction networks and the degree of conservation between orthologous genes were identified as significant among NPD genes. Conclusion: These results represent one of the first analyses of enrichment of functional categories of genes known to harbor mutations for NPD. These findings could be useful for a future creation of computational tools for prioritization of novel candidate genes for NPD. PMID:27990183
Tsechpenakis, Gabriel; Bianchi, Laura; Metaxas, Dimitris; Driscoll, Monica
2008-05-01
The nematode Caenorhabditis elegans (C. elegans) is a genetic model widely used to dissect conserved basic biological mechanisms of development and nervous system function. C. elegans locomotion is under complex neuronal regulation and is impacted by genetic and environmental factors; thus, its analysis is expected to shed light on how genetic, environmental, and pathophysiological processes control behavior. To date, computer-based approaches have been used for analysis of C. elegans locomotion; however, none of these is both high resolution and high throughput. We used computer vision methods to develop a novel automated approach for analyzing the C. elegans locomotion. Our method provides information on the position, trajectory, and body shape during locomotion and is designed to efficiently track multiple animals (C. elegans) in cluttered images and under lighting variations. We used this method to describe in detail C. elegans movement in liquid for the first time and to analyze six unc-8, one mec-4, and one odr-1 mutants. We report features of nematode swimming not previously noted and show that our method detects differences in the swimming profile of mutants that appear at first glance similar.
Multivalent ligands control stem cell behaviour in vitro and in vivo
NASA Astrophysics Data System (ADS)
Conway, Anthony; Vazin, Tandis; Spelke, Dawn P.; Rode, Nikhil A.; Healy, Kevin E.; Kane, Ravi S.; Schaffer, David V.
2013-11-01
There is broad interest in designing nanostructured materials that can interact with cells and regulate key downstream functions. In particular, materials with nanoscale features may enable control over multivalent interactions, which involve the simultaneous binding of multiple ligands on one entity to multiple receptors on another and are ubiquitous throughout biology. Cellular signal transduction of growth factor and morphogen cues (which have critical roles in regulating cell function and fate) often begins with such multivalent binding of ligands, either secreted or cell-surface-tethered to target cell receptors, leading to receptor clustering. Cellular mechanisms that orchestrate ligand-receptor oligomerization are complex, however, so the capacity to control multivalent interactions and thereby modulate key signalling events within living systems is currently very limited. Here, we demonstrate the design of potent multivalent conjugates that can organize stem cell receptors into nanoscale clusters and control stem cell behaviour in vitro and in vivo. The ectodomain of ephrin-B2, normally an integral membrane protein ligand, was conjugated to a soluble biopolymer to yield multivalent nanoscale conjugates that potently induce signalling in neural stem cells and promote their neuronal differentiation both in culture and within the brain. Super-resolution microscopy analysis yielded insights into the organization of the receptor-ligand clusters at the nanoscale. We also found that synthetic multivalent conjugates of ephrin-B1 strongly enhance human embryonic and induced pluripotent stem cell differentiation into functional dopaminergic neurons. Multivalent bioconjugates are therefore powerful tools and potential nanoscale therapeutics for controlling the behaviour of target stem cells in vitro and in vivo.
Limits in feature-based attention to multiple colors.
Liu, Taosheng; Jigo, Michael
2017-11-01
Attention to a feature enhances the sensory representation of that feature. Although much has been learned about the properties of attentional modulation when attending to a single feature, the effectiveness of attending to multiple features is not well understood. We investigated this question in a series of experiments using a color-detection task while varying the number of attended colors in a cueing paradigm. Observers were shown either a single cue, two cues, or no cue (baseline) before detecting a coherent color target. We measured detection threshold by varying the coherence level of the target. Compared to the baseline condition, we found consistent facilitation of detection performance in the one-cue and two-cue conditions, but performance in the two-cue condition was lower than that in the one-cue condition. In the final experiment, we presented a 50% valid cue to emulate the situation in which observers were only able to attend a single color in the two-cue condition, and found equivalent detection thresholds with the standard two-cue condition. These results indicate a limit in attending to two colors and further imply that observers could effectively attend a single color at a time. Such a limit is likely due to an inability to maintain multiple active attentional templates for colors.
Constructing a Database from Multiple 2D Images for Camera Pose Estimation and Robot Localization
NASA Technical Reports Server (NTRS)
Wolf, Michael; Ansar, Adnan I.; Brennan, Shane; Clouse, Daniel S.; Padgett, Curtis W.
2012-01-01
The LMDB (Landmark Database) Builder software identifies persistent image features (landmarks) in a scene viewed multiple times and precisely estimates the landmarks 3D world positions. The software receives as input multiple 2D images of approximately the same scene, along with an initial guess of the camera poses for each image, and a table of features matched pair-wise in each frame. LMDB Builder aggregates landmarks across an arbitrarily large collection of frames with matched features. Range data from stereo vision processing can also be passed to improve the initial guess of the 3D point estimates. The LMDB Builder aggregates feature lists across all frames, manages the process to promote selected features to landmarks, and iteratively calculates the 3D landmark positions using the current camera pose estimations (via an optimal ray projection method), and then improves the camera pose estimates using the 3D landmark positions. Finally, it extracts image patches for each landmark from auto-selected key frames and constructs the landmark database. The landmark database can then be used to estimate future camera poses (and therefore localize a robotic vehicle that may be carrying the cameras) by matching current imagery to landmark database image patches and using the known 3D landmark positions to estimate the current pose.
Improved classification accuracy by feature extraction using genetic algorithms
NASA Astrophysics Data System (ADS)
Patriarche, Julia; Manduca, Armando; Erickson, Bradley J.
2003-05-01
A feature extraction algorithm has been developed for the purposes of improving classification accuracy. The algorithm uses a genetic algorithm / hill-climber hybrid to generate a set of linearly recombined features, which may be of reduced dimensionality compared with the original set. The genetic algorithm performs the global exploration, and a hill climber explores local neighborhoods. Hybridizing the genetic algorithm with a hill climber improves both the rate of convergence, and the final overall cost function value; it also reduces the sensitivity of the genetic algorithm to parameter selection. The genetic algorithm includes the operators: crossover, mutation, and deletion / reactivation - the last of these effects dimensionality reduction. The feature extractor is supervised, and is capable of deriving a separate feature space for each tissue (which are reintegrated during classification). A non-anatomical digital phantom was developed as a gold standard for testing purposes. In tests with the phantom, and with images of multiple sclerosis patients, classification with feature extractor derived features yielded lower error rates than using standard pulse sequences, and with features derived using principal components analysis. Using the multiple sclerosis patient data, the algorithm resulted in a mean 31% reduction in classification error of pure tissues.
Transcriptional Analysis of Fracture Healing and the Induction of Embryonic Stem Cell–Related Genes
Bais, Manish; McLean, Jody; Sebastiani, Paola; Young, Megan; Wigner, Nathan; Smith, Temple; Kotton, Darrell N.; Einhorn, Thomas A.; Gerstenfeld, Louis C.
2009-01-01
Fractures are among the most common human traumas. Fracture healing represents a unique temporarily definable post-natal process in which to study the complex interactions of multiple molecular events that regulate endochondral skeletal tissue formation. Because of the regenerative nature of fracture healing, it is hypothesized that large numbers of post-natal stem cells are recruited and contribute to formation of the multiple cell lineages that contribute to this process. Bayesian modeling was used to generate the temporal profiles of the transcriptome during fracture healing. The temporal relationships between ontologies that are associated with various biologic, metabolic, and regulatory pathways were identified and related to developmental processes associated with skeletogenesis, vasculogenesis, and neurogenesis. The complement of all the expressed BMPs, Wnts, FGFs, and their receptors were related to the subsets of transcription factors that were concurrently expressed during fracture healing. We further defined during fracture healing the temporal patterns of expression for 174 of the 193 genes known to be associated with human genetic skeletal disorders. In order to identify the common regulatory features that might be present in stem cells that are recruited during fracture healing to other types of stem cells, we queried the transcriptome of fracture healing against that seen in embryonic stem cells (ESCs) and mesenchymal stem cells (MSCs). Approximately 300 known genes that are preferentially expressed in ESCs and ∼350 of the known genes that are preferentially expressed in MSCs showed induction during fracture healing. Nanog, one of the central epigenetic regulators associated with ESC stem cell maintenance, was shown to be associated in multiple forms or bone repair as well as MSC differentiation. In summary, these data present the first temporal analysis of the transcriptome of an endochondral bone formation process that takes place during fracture healing. They show that neurogenesis as well as vasculogenesis are predominant components of skeletal tissue formation and suggest common pathways are shared between post-natal stem cells and those seen in ESCs. PMID:19415118
Understanding the Structure of Children's Emotion-Regulation Strategies
ERIC Educational Resources Information Center
Callear, Angela; Harvey, Shane Trevor; Bimler, David
2017-01-01
Emotion regulation is a central feature in human emotional development. However, measures based on children's observable emotion regulation behaviors are largely absent. An inventory of children's emotion regulation strategies was developed from current measures and four focus group discussions with experts in child behavior and emotion. From…
Grubert, Anna; Carlisle, Nancy B; Eimer, Martin
2016-12-01
The question whether target selection in visual search can be effectively controlled by simultaneous attentional templates for multiple features is still under dispute. We investigated whether multiple-color attentional guidance is possible when target colors remain constant and can thus be represented in long-term memory but not when they change frequently and have to be held in working memory. Participants searched for one, two, or three possible target colors that were specified by cue displays at the start of each trial. In constant-color blocks, the same colors remained task-relevant throughout. In variable-color blocks, target colors changed between trials. The contralateral delay activity (CDA) to cue displays increased in amplitude as a function of color memory load in variable-color blocks, which indicates that cued target colors were held in working memory. In constant-color blocks, the CDA was much smaller, suggesting that color representations were primarily stored in long-term memory. N2pc components to targets were measured as a marker of attentional target selection. Target N2pcs were attenuated and delayed during multiple-color search, demonstrating less efficient attentional deployment to color-defined target objects relative to single-color search. Importantly, these costs were the same in constant-color and variable-color blocks. These results demonstrate that attentional guidance by multiple-feature as compared with single-feature templates is less efficient both when target features remain constant and can be represented in long-term memory and when they change across trials and therefore have to be maintained in working memory.
The effects of emotion regulation on explicit memory depend on strategy and testing method.
Knight, Marisa; Ponzio, Allison
2013-12-01
Although previous work has shown that emotion regulation strategies can influence memory, the mechanisms through which different strategies produce different memory outcomes are not well understood. We examined how two cognitive reappraisal strategies with similar elaboration demands but diverging effects on visual attention and emotional arousal influenced explicit memory for emotional stimuli and for the strategies used to evaluate the stimuli. At encoding, participants used reappraisal to increase and decrease the personal relevance of neutral and emotional pictures. In two experiments, recall accuracy was highest for emotional pictures featured on increase trials, intermediate for emotional pictures featured on look (respond naturally) trials, and lowest for emotional pictures featured on decrease trials. This recall pattern emerged after a short delay (15 min) and persisted over a longer delay (48 hr). Memory accuracy for the strategies used to evaluate the pictures showed a different pattern: Strategy memory was better for emotional pictures featured on decrease and increase trials than for pictures featured on look trials. Our findings show that the effects of emotion regulation on memory depend both on the particular strategy engaged and the particular aspect of memory being tested.
Chondrodysplasia with multiple dislocations: comprehensive study of a series of 30 cases.
Ranza, E; Huber, C; Levin, N; Baujat, G; Bole-Feysot, C; Nitschke, P; Masson, C; Alanay, Y; Al-Gazali, L; Bitoun, P; Boute, O; Campeau, P; Coubes, C; McEntagart, M; Elcioglu, N; Faivre, L; Gezdirici, A; Johnson, D; Mihci, E; Nur, B G; Perrin, L; Quelin, C; Terhal, P; Tuysuz, B; Cormier-Daire, V
2017-06-01
The group of chondrodysplasia with multiple dislocations includes several entities, characterized by short stature, dislocation of large joints, hand and/or vertebral anomalies. Other features, such as epiphyseal or metaphyseal changes, cleft palate, intellectual disability are also often part of the phenotype. In addition, several conditions with overlapping features are related to this group and broaden the spectrum. The majority of these disorders have been linked to pathogenic variants in genes encoding proteins implicated in the synthesis or sulfation of proteoglycans (PG). In a series of 30 patients with multiple dislocations, we have performed exome sequencing and subsequent targeted analysis of 15 genes, implicated in chondrodysplasia with multiple dislocations, and related conditions. We have identified causative pathogenic variants in 60% of patients (18/30); when a clinical diagnosis was suspected, this was molecularly confirmed in 53% of cases. Forty percent of patients remain without molecular etiology. Pathogenic variants in genes implicated in PG synthesis are of major importance in chondrodysplasia with multiple dislocations and related conditions. The combination of hand features, growth failure severity, radiological aspects of long bones and of vertebrae allowed discrimination among the different conditions. We propose key diagnostic clues to the clinician. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Enchondromatosis with features of dysspondyloenchondromatosis and Maffucci syndrome.
Haga, N; Nakamura, K; Taniguchi, K; Nakamura, S
1998-01-01
We report a girl with multiple enchondromatosis, unequal leg length, short stature, congenital scoliosis, lymphangioma, and cutaneous hemangiomata. The skeletal findings were consistent with the clinical and radiological features of dysspondyloenchondromatosis except that short stature was not apparent in the neonatal period. Dysspondyloenchondromatosis is a rare disorder, one of the several types of multiple enchondromatosis with spinal abnormalities. In previous reports of this condition the association of vascular lesions usually found in Maffucci syndrome has not been described.
Gourévitch, Boris; Mellen, Nicholas
2014-09-01
In vertebrates, respiratory control is ascribed to heterogeneous respiration-modulated neurons along the Ventral Respiratory Column (VRC) in medulla, which includes the preBötzinger Complex (preBötC), the putative respiratory rhythm generator. Here, the functional anatomy of the VRC was characterized via optical recordings in the sagittaly sectioned neonate rat hindbrain, at sampling rates permitting coupling estimation between neuron pairs, so that each neuron was described using unitary, neuron-system, and coupling attributes. Structured coupling relations in local networks, significantly oriented coupling in the peri-inspiratory interval detected in pooled data, and significant correlations between firing rate and expiratory duration in subsets of neurons revealed network regulation at multiple timescales. Spatially averaged neuronal attributes, including coupling vectors, revealed a sharp boundary at the rostral margin of the preBötC, as well as other functional anatomical features congruent with identified structures, including the parafacial respiratory group and the nucleus ambiguus. Cluster analysis of attributes identified two spatially compact, homogenous groups: the first overlapped with the preBötC, and was characterized by strong respiratory modulation and dense bidirectional coupling with itself and other groups, consistent with a central role for the preBötC in respiratory control; the second lay between preBötC and the facial nucleus, and was characterized by weak respiratory modulation and weak coupling with other respiratory neurons, which is congruent with cardiovascular regulatory networks that are found in this region. Other groups identified using cluster analysis suggested that networks along VRC regulated expiratory duration, and the transition to and from inspiration, but these groups were heterogeneous and anatomically dispersed. Thus, by recording local networks in parallel, this study found evidence for respiratory regulation at multiple timescales along the VRC, as well as a role for the preBötC in the integration of functionally disparate respiratory neurons. Copyright © 2014 Elsevier Inc. All rights reserved.
Inomata, Naoko; Miyakawa, Mami; Aihara, Michiko
2017-07-01
Gibberellin-regulated protein (GRP) is a new allergen in peach allergy, with an amino acid sequence very well conserved through several botanical species. We investigated the allergenicity of GRP in fruit allergies other than peaches and identified the clinical characteristics of fruit allergy patients with GRP sensitization. One hundred consecutive Japanese patients with fruit allergies were enrolled in the present study. To identify the features of GRP sensitization, we selected patients with negative ImmunoCAP results for Bet v 1 homologs and profilin, which are marker allergens for pollen-food allergy syndrome (PFAS), or lipid transfer protein. These patients underwent specific immunoglobulin E measurements by enzyme-linked immunosorbent assay (ELISA) and skin prick tests (SPT) using purified nPru p 7. Twenty of 100 consecutive patients with fruit allergies had negative ImmunoCAP results for Bet v 1 homologs and profilin. Thirteen (65.0%) of the 20 patients had positive ELISA and/or SPT results using nPru p 7, whereas one of the 20 patients had positive ImmunoCAP results for Pru p 3. In 13 nPru p 7-sensitized patients, the causative foods were peaches (92.3%), apricots (61.5%), oranges (46.2%) and apples (30.8%). Ten patients (76.9%) had multiple causative fruits. Frequent symptoms included facial edema (92.3%) and laryngeal tightness (66.7%). In eight patients (61.5%), exercise or aspirin intake enhanced the allergic reaction onset as cofactors. The prevalence of GRP sensitization was high in Japanese fruit allergy patients except for PFAS patients. In conclusion, GRP-sensitized patients may have allergies to multiple fruits and may show peculiar characteristics such as facial swelling and cofactor dependence. © 2017 Japanese Dermatological Association.
Health Risks of an Inactive Lifestyle - Multiple Languages
... Are Here: Home → Multiple Languages → All Health Topics → Health Risks of an Inactive Lifestyle URL of this page: https://medlineplus.gov/languages/ ... V W XYZ List of All Topics All Health Risks of an Inactive Lifestyle - Multiple Languages To use the sharing features on ...
Batra, Jyotica; Szabó, András; Caulfield, Thomas R.; Soares, Alexei S.; Sahin-Tóth, Miklós; Radisky, Evette S.
2013-01-01
Human chymotrypsin C (CTRC) is a pancreatic serine protease that regulates activation and degradation of trypsinogens and procarboxypeptidases by targeting specific cleavage sites within their zymogen precursors. In cleaving these regulatory sites, which are characterized by multiple flanking acidic residues, CTRC shows substrate specificity that is distinct from that of other isoforms of chymotrypsin and elastase. Here, we report the first crystal structure of active CTRC, determined at 1.9-Å resolution, revealing the structural basis for binding specificity. The structure shows human CTRC bound to the small protein protease inhibitor eglin c, which binds in a substrate-like manner filling the S6-S5′ subsites of the substrate binding cleft. Significant binding affinity derives from burial of preferred hydrophobic residues at the P1, P4, and P2′ positions of CTRC, although acidic P2′ residues can also be accommodated by formation of an interfacial salt bridge. Acidic residues may also be specifically accommodated in the P6 position. The most unique structural feature of CTRC is a ring of intense positive electrostatic surface potential surrounding the primarily hydrophobic substrate binding site. Our results indicate that long-range electrostatic attraction toward substrates of concentrated negative charge governs substrate discrimination, which explains CTRC selectivity in regulating active digestive enzyme levels. PMID:23430245
Lee, Joseph G L; Averett, Paige E; Blanchflower, Tiffany; Landi, Nunzio; Gregory, Kyle R
2017-10-17
Cigarette packaging matters to consumer behavior. However, it is less clear which changes to packaging design would be salient for adult smokers. Such information is critically important to regulators in the United States who are charged with reviewing new tobacco products for their impact on population health. In this qualitative study, U.S. adult smokers ( n = 33) participated in six telephone-based focus groups in March 2017. Separate groups were comprised of lesbian, gay, and bisexual (LGB) participants; participants with less than four years of post-secondary education; a mix of LGB and straight participants; and, the general population. All groups were purposely selected for diversity. Open thematic coding identified salient design elements used on cigarette packaging. Smokers articulated design elements' use, meaning, and links with consumer behaviors. Three themes were identified: (1) the power of color, (2) supporting color with other design elements (e.g., logos/images, typography, the pack itself), and (3) the combined product brand experience of multiple design elements. Participants linked design elements to product characteristics and to consumer behavior (e.g., purchase). As the Food and Drug Administration is charged with regulating tobacco products, these findings suggest the importance of considering the cigarette pack part of the characteristics of a product.
Chen, Zan; Dempsey, Daniel R.; Thomas, Stefani N.; Hayward, Dawn; Bolduc, David M.; Cole, Philip A.
2016-01-01
PTEN is a tumor suppressor that functions to negatively regulate the PI3K/AKT pathway as the lipid phosphatase for phosphatidylinositol 3,4,5-triphosphate. Phosphorylation of a cluster of Ser/Thr residues (amino acids 380–385) on the C-terminal tail serves to alter the conformational state of PTEN from an open active state to a closed inhibited state, resulting in a reduction of plasma membrane localization and inhibition of enzyme activity. The relative contribution of each phosphorylation site to PTEN autoinhibition and the structural basis for the conformational closure is still unclear. To further the structural understanding of PTEN regulation by C-terminal tail phosphorylation, we used protein semisynthesis to insert stoichiometric and site-specific phospho-Ser/Thr(s) in the C-terminal tail of PTEN. Additionally, we employed photo-cross-linking to map the intramolecular PTEN interactions of the phospho-tail. Systematic evaluation of the PTEN C-tail phospho-cluster showed autoinhibition, and conformational closure was influenced by the aggregate effect of multiple phospho-sites rather than dominated by a single phosphorylation site. Moreover, photo-cross-linking suggested a direct interaction between the PTEN C-tail and a segment in the N-terminal region of the catalytic domain. Mutagenesis experiments provided additional insights into how the PTEN phospho-tail interacts with both the C2 and catalytic domains. PMID:27226612
Blanchflower, Tiffany; Landi, Nunzio; Gregory, Kyle R.
2017-01-01
Cigarette packaging matters to consumer behavior. However, it is less clear which changes to packaging design would be salient for adult smokers. Such information is critically important to regulators in the United States who are charged with reviewing new tobacco products for their impact on population health. In this qualitative study, U.S. adult smokers (n = 33) participated in six telephone-based focus groups in March 2017. Separate groups were comprised of lesbian, gay, and bisexual (LGB) participants; participants with less than four years of post-secondary education; a mix of LGB and straight participants; and, the general population. All groups were purposely selected for diversity. Open thematic coding identified salient design elements used on cigarette packaging. Smokers articulated design elements’ use, meaning, and links with consumer behaviors. Three themes were identified: (1) the power of color, (2) supporting color with other design elements (e.g., logos/images, typography, the pack itself), and (3) the combined product brand experience of multiple design elements. Participants linked design elements to product characteristics and to consumer behavior (e.g., purchase). As the Food and Drug Administration is charged with regulating tobacco products, these findings suggest the importance of considering the cigarette pack part of the characteristics of a product. PMID:29039769
Pinho, Andreia V; Mawson, Amanda; Gill, Anthony; Arshi, Mehreen; Warmerdam, Max; Giry-Laterriere, Marc; Eling, Nils; Lie, Triyana; Kuster, Evelyne; Camargo, Simone; Biankin, Andrew V; Wu, Jianmin; Rooman, Ilse
2016-11-15
Metabolic reprogramming is a feature of neoplasia and tumor growth. Sirtuin 1 (SIRT1) is a lysine deacetylase of multiple targets including metabolic regulators such as p53. SIRT1 regulates metaplasia in the pancreas. Nevertheless, it is unclear if SIRT1 affects the development of neoplastic lesions and whether metabolic gene expression is altered.To assess neoplastic lesion development, mice with a pancreas-specific loss of Sirt1 (Pdx1-Cre;Sirt1-lox) were bred into a KrasG12D mutant background (KC) that predisposes to the development of pancreatic intra-epithelial neoplasia (PanIN) and ductal adenocarcinoma (PDAC). Similar grade PanIN lesions developed in KC and KC;Sirt1-lox mice but specifically early mucinous PanINs occupied 40% less area in the KC;Sirt1-lox line, attributed to reduced proliferation. This was accompanied by reduced expression of proteins in the glycolysis pathway, such as GLUT1 and GAPDH.The stimulatory effect of SIRT1 on proliferation and glycolysis gene expression was confirmed in a human PDAC cell line. In resected PDAC samples, higher proliferation and expression of glycolysis genes correlated with poor patient survival. SIRT1 expression per se was not prognostic but low expression of Cell Cycle and Apoptosis Regulator 2 (CCAR2), a reported SIRT1 inhibitor, corresponded to poor patient survival.These findings open perspectives for novel targeted therapies in pancreatic cancer.
Multifarious Roles of Intrinsic Disorder in Proteins Illustrate Its Broad Impact on Plant Biology
Sun, Xiaolin; Rikkerink, Erik H.A.; Jones, William T.; Uversky, Vladimir N.
2013-01-01
Intrinsically disordered proteins (IDPs) are highly abundant in eukaryotic proteomes. Plant IDPs play critical roles in plant biology and often act as integrators of signals from multiple plant regulatory and environmental inputs. Binding promiscuity and plasticity allow IDPs to interact with multiple partners in protein interaction networks and provide important functional advantages in molecular recognition through transient protein–protein interactions. Short interaction-prone segments within IDPs, termed molecular recognition features, represent potential binding sites that can undergo disorder-to-order transition upon binding to their partners. In this review, we summarize the evidence for the importance of IDPs in plant biology and evaluate the functions associated with intrinsic disorder in five different types of plant protein families experimentally confirmed as IDPs. Functional studies of these proteins illustrate the broad impact of disorder on many areas of plant biology, including abiotic stress, transcriptional regulation, light perception, and development. Based on the roles of disorder in the protein–protein interactions, we propose various modes of action for plant IDPs that may provide insight for future experimental approaches aimed at understanding the molecular basis of protein function within important plant pathways. PMID:23362206
McCoy, Erica L.; Iwanaga, Ritsuko; Jedlicka, Paul; Abbey, Nee-Shamo; Chodosh, Lewis A.; Heichman, Karen A.; Welm, Alana L.; Ford, Heide L.
2009-01-01
Six1 is a developmentally regulated homeoprotein with limited expression in most normal adult tissues and frequent misexpression in a variety of malignancies. Here we demonstrate, using a bitransgenic mouse model, that misexpression of human Six1 in adult mouse mammary gland epithelium induces tumors of multiple histological subtypes in a dose-dependent manner. The neoplastic lesions induced by Six1 had an in situ origin, showed diverse differentiation, and exhibited progression to aggressive malignant neoplasms, as is often observed in human carcinoma of the breast. Strikingly, the vast majority of Six1-induced tumors underwent an epithelial-mesenchymal transition (EMT) and expressed multiple targets of activated Wnt signaling, including cyclin D1. Interestingly, Six1 and cyclin D1 coexpression was found to frequently occur in human breast cancers and was strongly predictive of poor prognosis. We further show that Six1 promoted a stem/progenitor cell phenotype in the mouse mammary gland and in Six1-driven mammary tumors. Our data thus provide genetic evidence for a potent oncogenic role for Six1 in mammary epithelial neoplasia, including promotion of EMT and stem cell–like features. PMID:19726883
Ak, Guntulu; Tomaszek, Sandra C.; Kosari, Farhad; Metintas, Muzaffer; Jett, James R.; Metintas, Selma; Yildirim, Huseyin; Dundar, Emine; Dong, Jie; Aubry, Marie Christine; Wigle, Dennis A.; Thomas, Charles F.
2015-01-01
Introduction. We investigated the expression of microRNAs and mRNAs in pleural tissues from patients with either malignant pleural mesothelioma or benign asbestos-related pleural effusion. Methods. Fresh frozen tissues from a total of 18 malignant pleural mesothelioma and 6 benign asbestos-related pleural effusion patients were studied. Expression profiling of mRNA and microRNA was performed using standard protocols. Results. We discovered significant upregulation of multiple microRNAs in malignant pleural mesothelioma compared to benign asbestos-related pleural effusion. Hsa-miR-484, hsa-miR-320, hsa-let-7a, and hsa-miR-125a-5p were able to discriminate malignant from benign disease. Dynamically regulated mRNAs were also identified. MET was the most highly overexpressed gene in malignant pleural mesothelioma compared to benign asbestos-related pleural effusion. Integrated analyses examining microRNA-mRNA interactions suggested multiple altered targets within the Notch signaling pathway. Conclusions. Specific microRNAs and mRNAs may have diagnostic utility in differentiating patients with malignant pleural mesothelioma from benign asbestos-related pleural effusion. These studies may be particularly helpful in patients who reside in a region with a high incidence of mesothelioma. PMID:25756049
Liu, Zhiya; Song, Xiaohong; Seger, Carol A.
2015-01-01
We examined whether the degree to which a feature is uniquely characteristic of a category can affect categorization above and beyond the typicality of the feature. We developed a multiple feature value category structure with different dimensions within which feature uniqueness and typicality could be manipulated independently. Using eye tracking, we found that the highest attentional weighting (operationalized as number of fixations, mean fixation time, and the first fixation of the trial) was given to a dimension that included a feature that was both unique and highly typical of the category. Dimensions that included features that were highly typical but not unique, or were unique but not highly typical, received less attention. A dimension with neither a unique nor a highly typical feature received least attention. On the basis of these results we hypothesized that subjects categorized via a rule learning procedure in which they performed an ordered evaluation of dimensions, beginning with unique and strongly typical dimensions, and in which earlier dimensions received higher weighting in the decision. This hypothesis accounted for performance on transfer stimuli better than simple implementations of two other common theories of category learning, exemplar models and prototype models, in which all dimensions were evaluated in parallel and received equal weighting. PMID:26274332
Liu, Zhiya; Song, Xiaohong; Seger, Carol A
2015-01-01
We examined whether the degree to which a feature is uniquely characteristic of a category can affect categorization above and beyond the typicality of the feature. We developed a multiple feature value category structure with different dimensions within which feature uniqueness and typicality could be manipulated independently. Using eye tracking, we found that the highest attentional weighting (operationalized as number of fixations, mean fixation time, and the first fixation of the trial) was given to a dimension that included a feature that was both unique and highly typical of the category. Dimensions that included features that were highly typical but not unique, or were unique but not highly typical, received less attention. A dimension with neither a unique nor a highly typical feature received least attention. On the basis of these results we hypothesized that subjects categorized via a rule learning procedure in which they performed an ordered evaluation of dimensions, beginning with unique and strongly typical dimensions, and in which earlier dimensions received higher weighting in the decision. This hypothesis accounted for performance on transfer stimuli better than simple implementations of two other common theories of category learning, exemplar models and prototype models, in which all dimensions were evaluated in parallel and received equal weighting.
Detecting bursts in the EEG of very and extremely premature infants using a multi-feature approach.
O'Toole, John M; Boylan, Geraldine B; Lloyd, Rhodri O; Goulding, Robert M; Vanhatalo, Sampsa; Stevenson, Nathan J
2017-07-01
To develop a method that segments preterm EEG into bursts and inter-bursts by extracting and combining multiple EEG features. Two EEG experts annotated bursts in individual EEG channels for 36 preterm infants with gestational age < 30 weeks. The feature set included spectral, amplitude, and frequency-weighted energy features. Using a consensus annotation, feature selection removed redundant features and a support vector machine combined features. Area under the receiver operator characteristic (AUC) and Cohen's kappa (κ) evaluated performance within a cross-validation procedure. The proposed channel-independent method improves AUC by 4-5% over existing methods (p < 0.001, n=36), with median (95% confidence interval) AUC of 0.989 (0.973-0.997) and sensitivity-specificity of 95.8-94.4%. Agreement rates between the detector and experts' annotations, κ=0.72 (0.36-0.83) and κ=0.65 (0.32-0.81), are comparable to inter-rater agreement, κ=0.60 (0.21-0.74). Automating the visual identification of bursts in preterm EEG is achievable with a high level of accuracy. Multiple features, combined using a data-driven approach, improves on existing single-feature methods. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
Taking multiple medicines safely
... medlineplus.gov/ency/patientinstructions/000883.htm Taking multiple medicines safely To use the sharing features on this ... directed. Why You May Need More Than One Medicine You may take more than one medicine to ...
ERIC Educational Resources Information Center
Chasmar, Justine
2017-01-01
This dissertation presents multiple studies with the purpose of understanding the connections between undergraduate engineering students' motivations, specifically students' Future Time Perspectives (FTPs) and Self-Regulated Learning (SRL). FTP refers to the views students hold about the future and how their perceptions of current tasks are…
ERIC Educational Resources Information Center
McDonough, Janet; Goudsouzian, Lara K.; Papaj, Agllai; Maceli, Ashley R.; Klepac-Ceraj, Vanja; Peterson, Celeste N.
2017-01-01
Course-based undergraduate research experiences (CUREs) have been shown to increase student retention and learning in the biological sciences. Most CURES cover only one aspect of gene regulation, such as transcriptional control. Here we present a new inquiry-based lab that engages understanding of gene expression from multiple perspectives.…
ERIC Educational Resources Information Center
Zumbrunn, Sharon; Bruning, Roger
2013-01-01
The purpose of this study was to investigate the effectiveness of implementing the Self-Regulated Strategy Development (SRSD) model of instruction (Graham & Harris, 2005; Harris & Graham, 1996) on the writing skills and knowledge of six first grade students. A multiple-baseline design across participants with multiple probes (Kazdin, 2010) was…
Curtis, Ross E; Kim, Seyoung; Woolford, John L; Xu, Wenjie; Xing, Eric P
2013-03-21
Association analysis using genome-wide expression quantitative trait locus (eQTL) data investigates the effect that genetic variation has on cellular pathways and leads to the discovery of candidate regulators. Traditional analysis of eQTL data via pairwise statistical significance tests or linear regression does not leverage the availability of the structural information of the transcriptome, such as presence of gene networks that reveal correlation and potentially regulatory relationships among the study genes. We employ a new eQTL mapping algorithm, GFlasso, which we have previously developed for sparse structured regression, to reanalyze a genome-wide yeast dataset. GFlasso fully takes into account the dependencies among expression traits to suppress false positives and to enhance the signal/noise ratio. Thus, GFlasso leverages the gene-interaction network to discover the pleiotropic effects of genetic loci that perturb the expression level of multiple (rather than individual) genes, which enables us to gain more power in detecting previously neglected signals that are marginally weak but pleiotropically significant. While eQTL hotspots in yeast have been reported previously as genomic regions controlling multiple genes, our analysis reveals additional novel eQTL hotspots and, more interestingly, uncovers groups of multiple contributing eQTL hotspots that affect the expression level of functional gene modules. To our knowledge, our study is the first to report this type of gene regulation stemming from multiple eQTL hotspots. Additionally, we report the results from in-depth bioinformatics analysis for three groups of these eQTL hotspots: ribosome biogenesis, telomere silencing, and retrotransposon biology. We suggest candidate regulators for the functional gene modules that map to each group of hotspots. Not only do we find that many of these candidate regulators contain mutations in the promoter and coding regions of the genes, in the case of the Ribi group, we provide experimental evidence suggesting that the identified candidates do regulate the target genes predicted by GFlasso. Thus, this structured association analysis of a yeast eQTL dataset via GFlasso, coupled with extensive bioinformatics analysis, discovers a novel regulation pattern between multiple eQTL hotspots and functional gene modules. Furthermore, this analysis demonstrates the potential of GFlasso as a powerful computational tool for eQTL studies that exploit the rich structural information among expression traits due to correlation, regulation, or other forms of biological dependencies.
Etemadifar, Masoud; Nourian, Sayed-Mohammadamin; Nourian, Niloofaralsadat; Abtahi, Seyed-Hossein; Sayahi, Farnaz; Saraf, Zahra; Fereidan-Esfahani, Mahboobeh
2016-06-01
It is estimated that early-onset multiple sclerosis multiple sclerosis (early-onset multiple sclerosis) approximately incorporates 3-5% of the multiple sclerosis population. In this report on early-onset multiple sclerosis, the authors aimed to define demographic, clinical and imaging features in a case-series of true-childhood multiple sclerosis and to compare its characteristics with juvenile multiple sclerosis. The authors inspected the records of multiple sclerosis patients who were registered by Isfahan MS Society. Clinical and demographic data of children with less than 16 years of age were reviewed retrospectively. Out of 4536 multiple sclerosis patients referred to the authors' center, 221 patients (4.8%) had multiple sclerosis starting at the age of 16 or less (11 true-childhood multiple sclerosis vs 210 juvenile-onset multiple sclerosis); the female to male ratio was 4.81:1. In the mean follow-up period of 6.2 years, 22 patients (10.5%) had positive family history of multiple sclerosis, 196 (88.6%) patients were classified as relapsing-remitting multiple sclerosis, the mean (± SD Expanded Disability Status Scale) was 1.5 ± 1.1 at the last evaluation. The most common initial presentation was optic nerve involvement (36.1%) and cerebellar sign and symptoms (14.6%). In all, 13 patients (5.8%) had experienced seizure in the course of multiple sclerosis. This study indicated that early-onset multiple sclerosis is not rare condition and overwhelmingly affects girls even at prepubertal onset. Physicians should consider multiple sclerosis in suspicious pediatric cases. © The Author(s) 2016.
Altered regulation of ELAVL1/HuR in HLA-B27-expressing U937 monocytic cells.
Sahlberg, Anna S; Ruuska, Marja; Granfors, Kaisa; Penttinen, Markus A
2013-01-01
To investigate the role of HLA-B27 expression in the regulation of RNA binding protein (RBP) Embryonic Lethal Abnormal Vision (ELAV) L1/Human antigen R (HuR) expression in Salmonella-infected or LPS-stimulated human monocytic cells, since HuR is a critical regulator of the post-transcriptional fate of many genes (e.g. TNFα) important in inflammatory response. U937 monocytic cells were stably transfected with pSV2neo resistant vector (mock), wild type HLA-B27, or mutated HLA-B27 with amino acid substitutions in the B pocket. Cells were differentiated, infected with Salmonella enteritidis or stimulated with lipopolysaccharide. The expression levels of HuR protein and cleavage products (CP1 and CP2) were detected by Western blotting and flow cytometry. Specific inhibitors were used to study the role of PKR and p38 in HuR expression and generation of CPs. TNFα and IL-10 secretion after p38 and PKR inhibition were measured by ELISA. Full length HuR is overexpressed and HuR cleavage is disturbed in U937 monocytic cells expressing HLA-B27 heavy chains (HC). Increased full length HuR expression, disturbed cleavage and reduced dependence on PKR after infection correlate with the expression of glutamic acid 45 in the B pocket that is linked to the misfolding of HLA-B27. Results show that the expression of HLA-B27 HCs modulates the intracellular environment of U937 monocyte/macrophages by altering HuR regulation. This phenomenon is at least partly dependent on the misfolding feature of the B27 molecule. Since HuR is an important regulator of multiple genes involved in inflammatory response observations offer an explanation how HLA-B27 may modulate inflammatory response.
Carlier, Aurelien L.; von Bodman, S. B.
2006-01-01
The upstream region of the Pantoea stewartii rcsA gene features two promoters, one for constitutive basal-level expression and a second autoregulated promoter for induced expression. The EsaR quorum-sensing repressor binds to a site centered between the two promoters, blocking transcription elongation from the regulated promoter under noninducing conditions. PMID:16740966
The influence of repressor DNA binding site architecture on transcriptional control.
Park, Dan M; Kiley, Patricia J
2014-08-26
How the architecture of DNA binding sites dictates the extent of repression of promoters is not well understood. Here, we addressed the importance of the number and information content of the three direct repeats (DRs) in the binding and repression of the icdA promoter by the phosphorylated form of the global Escherichia coli repressor ArcA (ArcA-P). We show that decreasing the information content of the two sites with the highest information (DR1 and DR2) eliminated ArcA binding to all three DRs and ArcA repression of icdA. Unexpectedly, we also found that DR3 occupancy functions principally in repression, since mutation of this low-information-content site both eliminated DNA binding to DR3 and significantly weakened icdA repression, despite the fact that binding to DR1 and DR2 was intact. In addition, increasing the information content of any one of the three DRs or addition of a fourth DR increased ArcA-dependent repression but perturbed signal-dependent regulation of repression. Thus, our data show that the information content and number of DR elements are critical architectural features for maintaining a balance between high-affinity binding and signal-dependent regulation of icdA promoter function in response to changes in ArcA-P levels. Optimization of such architectural features may be a common strategy to either dampen or enhance the sensitivity of DNA binding among the members of the large OmpR/PhoB family of regulators as well as other transcription factors. In Escherichia coli, the response regulator ArcA maintains homeostasis of redox carriers under O2-limiting conditions through a comprehensive repression of carbon oxidation pathways that require aerobic respiration to recycle redox carriers. Although a binding site architecture comprised of a variable number of sequence recognition elements has been identified within the promoter regions of ArcA-repressed operons, it is unclear how this variable architecture dictates transcriptional regulation. By dissecting the role of multiple sequence elements within the icdA promoter, we provide insight into the design principles that allow ArcA to repress transcription within diverse promoter contexts. Our data suggest that the arrangement of recognition elements is tailored to achieve sufficient repression of a given promoter while maintaining appropriate signal-dependent regulation of repression, providing insight into how diverse binding site architectures link changes in O2 with the fine-tuning of carbon oxidation pathway levels. Copyright © 2014 Park and Kiley.
NASA Astrophysics Data System (ADS)
Kang, Shouqiang; Ma, Danyang; Wang, Yujing; Lan, Chaofeng; Chen, Qingguo; Mikulovich, V. I.
2017-03-01
To effectively assess different fault locations and different degrees of performance degradation of a rolling bearing with a unified assessment index, a novel state assessment method based on the relative compensation distance of multiple-domain features and locally linear embedding is proposed. First, for a single-sample signal, time-domain and frequency-domain indexes can be calculated for the original vibration signal and each sensitive intrinsic mode function obtained by improved ensemble empirical mode decomposition, and the singular values of the sensitive intrinsic mode function matrix can be extracted by singular value decomposition to construct a high-dimensional hybrid-domain feature vector. Second, a feature matrix can be constructed by arranging each feature vector of multiple samples, the dimensions of each row vector of the feature matrix can be reduced by the locally linear embedding algorithm, and the compensation distance of each fault state of the rolling bearing can be calculated using the support vector machine. Finally, the relative distance between different fault locations and different degrees of performance degradation and the normal-state optimal classification surface can be compensated, and on the basis of the proposed relative compensation distance, the assessment model can be constructed and an assessment curve drawn. Experimental results show that the proposed method can effectively assess different fault locations and different degrees of performance degradation of the rolling bearing under certain conditions.
Analyzing and Integrating Models of Multiple Text Comprehension
ERIC Educational Resources Information Center
List, Alexandra; Alexander, Patricia A.
2017-01-01
We introduce a special issue featuring four theoretical models of multiple text comprehension. We present a central framework for conceptualizing the four models in this special issue. Specifically, we chart the models according to how they consider learner, texts, task, and context factors in explaining multiple text comprehension. In addition,…
Schooling Built on the Multiple Intelligences
ERIC Educational Resources Information Center
Kunkel, Christine D.
2009-01-01
This article features a school built on multiple intelligences. As the first multiple intelligences school in the world, the Key Learning Community shapes its students' days to include significant time in the musical, spatial and bodily-kinesthetic intelligences, as well as the more traditional areas of logical-mathematical and linguistics. In…
Classifying features in CT imagery: accuracy for some single- and multiple-species classifiers
Daniel L. Schmoldt; Jing He; A. Lynn Abbott
1998-01-01
Our current approach to automatically label features in CT images of hardwood logs classifies each pixel of an image individually. These feature classifiers use a back-propagation artificial neural network (ANN) and feature vectors that include a small, local neighborhood of pixels and the distance of the target pixel to the center of the log. Initially, this type of...
Fast and Efficient Feature Engineering for Multi-Cohort Analysis of EHR Data.
Ozery-Flato, Michal; Yanover, Chen; Gottlieb, Assaf; Weissbrod, Omer; Parush Shear-Yashuv, Naama; Goldschmidt, Yaara
2017-01-01
We present a framework for feature engineering, tailored for longitudinal structured data, such as electronic health records (EHRs). To fast-track feature engineering and extraction, the framework combines general-use plug-in extractors, a multi-cohort management mechanism, and modular memoization. Using this framework, we rapidly extracted thousands of features from diverse and large healthcare data sources in multiple projects.
The β-Arrestins: Multifunctional Regulators of G Protein-coupled Receptors*
Smith, Jeffrey S.; Rajagopal, Sudarshan
2016-01-01
The β-arrestins (βarrs) are versatile, multifunctional adapter proteins that are best known for their ability to desensitize G protein-coupled receptors (GPCRs), but also regulate a diverse array of cellular functions. To signal in such a complex fashion, βarrs adopt multiple conformations and are regulated at multiple levels to differentially activate downstream pathways. Recent structural studies have demonstrated that βarrs have a conserved structure and activation mechanism, with plasticity of their structural fold, allowing them to adopt a wide array of conformations. Novel roles for βarrs continue to be identified, demonstrating the importance of these dynamic regulators of cellular signaling. PMID:26984408
Plant MYB Transcription Factors: Their Role in Drought Response Mechanisms
Baldoni, Elena; Genga, Annamaria; Cominelli, Eleonora
2015-01-01
Water scarcity is one of the major causes of poor plant performance and limited crop yields worldwide and it is the single most common cause of severe food shortage in developing countries. Several molecular networks involved in stress perception, signal transduction and stress responses in plants have been elucidated so far. Transcription factors are major players in water stress signaling. In recent years, different MYB transcription factors, mainly in Arabidopsis thaliana (L.) Heynh. but also in some crops, have been characterized for their involvement in drought response. For some of them there is evidence supporting a specific role in response to water stress, such as the regulation of stomatal movement, the control of suberin and cuticular waxes synthesis and the regulation of flower development. Moreover, some of these genes have also been characterized for their involvement in other abiotic or biotic stresses, an important feature considering that in nature, plants are often simultaneously subjected to multiple rather than single environmental perturbations. This review summarizes recent studies highlighting the role of the MYB family of transcription factors in the adaptive responses to drought stress. The practical application value of MYBs in crop improvement, such as stress tolerance engineering, is also discussed. PMID:26184177
Plant MYB Transcription Factors: Their Role in Drought Response Mechanisms.
Baldoni, Elena; Genga, Annamaria; Cominelli, Eleonora
2015-07-13
Water scarcity is one of the major causes of poor plant performance and limited crop yields worldwide and it is the single most common cause of severe food shortage in developing countries. Several molecular networks involved in stress perception, signal transduction and stress responses in plants have been elucidated so far. Transcription factors are major players in water stress signaling. In recent years, different MYB transcription factors, mainly in Arabidopsis thaliana (L.) Heynh. but also in some crops, have been characterized for their involvement in drought response. For some of them there is evidence supporting a specific role in response to water stress, such as the regulation of stomatal movement, the control of suberin and cuticular waxes synthesis and the regulation of flower development. Moreover, some of these genes have also been characterized for their involvement in other abiotic or biotic stresses, an important feature considering that in nature, plants are often simultaneously subjected to multiple rather than single environmental perturbations. This review summarizes recent studies highlighting the role of the MYB family of transcription factors in the adaptive responses to drought stress. The practical application value of MYBs in crop improvement, such as stress tolerance engineering, is also discussed.
2010-01-01
Group-living species produce signals that alter the behavior and even the physiology of their social partners. Social insects possess especially sophisticated chemical communication systems that govern every aspect of colony life, including the defining feature of eusociality: reproductive division of labor. Current evidence hints at the central importance of queen pheromones, but progress has been hindered by the fact that such pheromones have only been isolated in honeybees. In a pair of papers on the ant Lasius niger, we identified and investigated a queen pheromone regulating worker sterility. The cuticular hydrocarbon 3-methylhentriacontane (3-MeC31) is correlated with queen maturity and fecundity and workers are also more likely to execute surplus queens that have low amounts of this chemical. Experiments with synthetic 3-MeC31 found that it inhibits ovarian development in queenless workers and lowers worker aggression towards objects coated with it. Production of 3-MeC31 by queens was depressed by an experimental immune challenge, and the same chemical was abundant on queenlaid eggs, suggesting that the workers' responses to the queen are conditional on her health and fecundity. Together with other studies, these results indicate that queen pheromones are honest signals of quality that simultaneously regulate multiple social behaviors. PMID:21331238
Coordinated transcriptional regulation patterns associated with infertility phenotypes in men
Ellis, Peter J I; Furlong, Robert A; Conner, Sarah J; Kirkman‐Brown, Jackson; Afnan, Masoud; Barratt, Christopher; Griffin, Darren K; Affara, Nabeel A
2007-01-01
Introduction Microarray gene‐expression profiling is a powerful tool for global analysis of the transcriptional consequences of disease phenotypes. Understanding the genetic correlates of particular pathological states is important for more accurate diagnosis and screening of patients, and thus for suggesting appropriate avenues of treatment. As yet, there has been little research describing gene‐expression profiling of infertile and subfertile men, and thus the underlying transcriptional events involved in loss of spermatogenesis remain unclear. Here we present the results of an initial screen of 33 patients with differing spermatogenic phenotypes. Methods Oligonucleotide array expression profiling was performed on testis biopsies for 33 patients presenting for testicular sperm extraction. Significantly regulated genes were selected using a mixed model analysis of variance. Principle components analysis and hierarchical clustering were used to interpret the resulting dataset with reference to the patient history, clinical findings and histological composition of the biopsies. Results Striking patterns of coordinated gene expression were found. The most significant contains multiple germ cell‐specific genes and corresponds to the degree of successful spermatogenesis in each patient, whereas a second pattern corresponds to inflammatory activity within the testis. Smaller‐scale patterns were also observed, relating to unique features of the individual biopsies. PMID:17496197
Antunes, Deborah; Jorge, Natasha A. N.; Caffarena, Ernesto R.; Passetti, Fabio
2018-01-01
RNA molecules are essential players in many fundamental biological processes. Prokaryotes and eukaryotes have distinct RNA classes with specific structural features and functional roles. Computational prediction of protein structures is a research field in which high confidence three-dimensional protein models can be proposed based on the sequence alignment between target and templates. However, to date, only a few approaches have been developed for the computational prediction of RNA structures. Similar to proteins, RNA structures may be altered due to the interaction with various ligands, including proteins, other RNAs, and metabolites. A riboswitch is a molecular mechanism, found in the three kingdoms of life, in which the RNA structure is modified by the binding of a metabolite. It can regulate multiple gene expression mechanisms, such as transcription, translation initiation, and mRNA splicing and processing. Due to their nature, these entities also act on the regulation of gene expression and detection of small metabolites and have the potential to helping in the discovery of new classes of antimicrobial agents. In this review, we describe software and web servers currently available for riboswitch aptamer identification and secondary and tertiary structure prediction, including applications. PMID:29403526
Simon, Matthew J; Iliff, Jeffrey J
2016-03-01
Cerebrospinal fluid (CSF) circulation and turnover provides a sink for the elimination of solutes from the brain interstitium, serving an important homeostatic role for the function of the central nervous system. Disruption of normal CSF circulation and turnover is believed to contribute to the development of many diseases, including neurodegenerative conditions such as Alzheimer's disease, ischemic and traumatic brain injury, and neuroinflammatory conditions such as multiple sclerosis. Recent insights into CSF biology suggesting that CSF and interstitial fluid exchange along a brain-wide network of perivascular spaces termed the 'glymphatic' system suggest that CSF circulation may interact intimately with glial and vascular function to regulate basic aspects of brain function. Dysfunction within this glial vascular network, which is a feature of the aging and injured brain, is a potentially critical link between brain injury, neuroinflammation and the development of chronic neurodegeneration. Ongoing research within this field may provide a powerful new framework for understanding the common links between neurodegenerative, neurovascular and neuroinflammatory disease, in addition to providing potentially novel therapeutic targets for these conditions. This article is part of a Special Issue entitled: Neuro Inflammation edited by Helga E. de Vries and Markus Schwaninger. Copyright © 2015 Elsevier B.V. All rights reserved.
Iris recognition based on key image feature extraction.
Ren, X; Tian, Q; Zhang, J; Wu, S; Zeng, Y
2008-01-01
In iris recognition, feature extraction can be influenced by factors such as illumination and contrast, and thus the features extracted may be unreliable, which can cause a high rate of false results in iris pattern recognition. In order to obtain stable features, an algorithm was proposed in this paper to extract key features of a pattern from multiple images. The proposed algorithm built an iris feature template by extracting key features and performed iris identity enrolment. Simulation results showed that the selected key features have high recognition accuracy on the CASIA Iris Set, where both contrast and illumination variance exist.
Multiple Mechanisms in the Perception of Face Gender: Effect of Sex-Irrelevant Features
ERIC Educational Resources Information Center
Komori, Masashi; Kawamura, Satoru; Ishihara, Shigekazu
2011-01-01
Effects of sex-relevant and sex-irrelevant facial features on the evaluation of facial gender were investigated. Participants rated masculinity of 48 male facial photographs and femininity of 48 female facial photographs. Eighty feature points were measured on each of the facial photographs. Using a generalized Procrustes analysis, facial shapes…
Feature Binding in Visual Working Memory Evaluated by Type Identification Paradigm
ERIC Educational Resources Information Center
Saiki, Jun; Miyatsuji, Hirofumi
2007-01-01
Memory for feature binding comprises a key ingredient in coherent object representations. Previous studies have been equivocal about human capacity for objects in the visual working memory. To evaluate memory for feature binding, a type identification paradigm was devised and used with a multiple-object permanence tracking task. Using objects…
Chen, Qiang; Chen, Yunhao; Jiang, Weiguo
2016-01-01
In the field of multiple features Object-Based Change Detection (OBCD) for very-high-resolution remotely sensed images, image objects have abundant features and feature selection affects the precision and efficiency of OBCD. Through object-based image analysis, this paper proposes a Genetic Particle Swarm Optimization (GPSO)-based feature selection algorithm to solve the optimization problem of feature selection in multiple features OBCD. We select the Ratio of Mean to Variance (RMV) as the fitness function of GPSO, and apply the proposed algorithm to the object-based hybrid multivariate alternative detection model. Two experiment cases on Worldview-2/3 images confirm that GPSO can significantly improve the speed of convergence, and effectively avoid the problem of premature convergence, relative to other feature selection algorithms. According to the accuracy evaluation of OBCD, GPSO is superior at overall accuracy (84.17% and 83.59%) and Kappa coefficient (0.6771 and 0.6314) than other algorithms. Moreover, the sensitivity analysis results show that the proposed algorithm is not easily influenced by the initial parameters, but the number of features to be selected and the size of the particle swarm would affect the algorithm. The comparison experiment results reveal that RMV is more suitable than other functions as the fitness function of GPSO-based feature selection algorithm. PMID:27483285
Automatic feature-based grouping during multiple object tracking.
Erlikhman, Gennady; Keane, Brian P; Mettler, Everett; Horowitz, Todd S; Kellman, Philip J
2013-12-01
Contour interpolation automatically binds targets with distractors to impair multiple object tracking (Keane, Mettler, Tsoi, & Kellman, 2011). Is interpolation special in this regard or can other features produce the same effect? To address this question, we examined the influence of eight features on tracking: color, contrast polarity, orientation, size, shape, depth, interpolation, and a combination (shape, color, size). In each case, subjects tracked 4 of 8 objects that began as undifferentiated shapes, changed features as motion began (to enable grouping), and returned to their undifferentiated states before halting. We found that intertarget grouping improved performance for all feature types except orientation and interpolation (Experiment 1 and Experiment 2). Most importantly, target-distractor grouping impaired performance for color, size, shape, combination, and interpolation. The impairments were, at times, large (>15% decrement in accuracy) and occurred relative to a homogeneous condition in which all objects had the same features at each moment of a trial (Experiment 2), and relative to a "diversity" condition in which targets and distractors had different features at each moment (Experiment 3). We conclude that feature-based grouping occurs for a variety of features besides interpolation, even when irrelevant to task instructions and contrary to the task demands, suggesting that interpolation is not unique in promoting automatic grouping in tracking tasks. Our results also imply that various kinds of features are encoded automatically and in parallel during tracking.
NASA Astrophysics Data System (ADS)
Guo, Dongwei; Wang, Zhe
2018-05-01
Convolutional neural networks (CNN) achieve great success in computer vision, it can learn hierarchical representation from raw pixels and has outstanding performance in various image recognition tasks [1]. However, CNN is easy to be fraudulent in terms of it is possible to produce images totally unrecognizable to human eyes that CNNs believe with near certainty are familiar objects. [2]. In this paper, an associative memory model based on multiple features is proposed. Within this model, feature extraction and classification are carried out by CNN, T-SNE and exponential bidirectional associative memory neural network (EBAM). The geometric features extracted from CNN and the digital features extracted from T-SNE are associated by EBAM. Thus we ensure the recognition of robustness by a comprehensive assessment of the two features. In our model, we can get only 8% error rate with fraudulent data. In systems that require a high safety factor or some key areas, strong robustness is extremely important, if we can ensure the image recognition robustness, network security will be greatly improved and the social production efficiency will be extremely enhanced.
Atypical progression of multiple myeloma with extensive extramedullary disease.
Jowitt, S N; Jacobs, A; Batman, P A; Sapherson, D A
1994-01-01
Multiple myeloma is a neoplastic disorder caused by the proliferation of a transformed B lymphoid progenitor cell that gives rise to a clone of immunoglobulin-secreting cells. Other plasma cell tumours include solitary plasmacytoma of bone (SPB) and extramedullary plasmacytomas (EMP). Despite an apparent common origin there exist pathological and clinical differences between these neoplasms and the association between them is not completely understood. A case of IgG multiple myeloma that presented with typical clinical and laboratory features, including a bone marrow infiltrated by well differentiated plasma cells, is reported. The tumour had an unusual evolution, with the development of extensive extramedullary disease while maintaining mature histological features. Images PMID:8163701
Spinal focal lesion detection in multiple myeloma using multimodal image features
NASA Astrophysics Data System (ADS)
Fränzle, Andrea; Hillengass, Jens; Bendl, Rolf
2015-03-01
Multiple myeloma is a tumor disease in the bone marrow that affects the skeleton systemically, i.e. multiple lesions can occur in different sites in the skeleton. To quantify overall tumor mass for determining degree of disease and for analysis of therapy response, volumetry of all lesions is needed. Since the large amount of lesions in one patient impedes manual segmentation of all lesions, quantification of overall tumor volume is not possible until now. Therefore development of automatic lesion detection and segmentation methods is necessary. Since focal tumors in multiple myeloma show different characteristics in different modalities (changes in bone structure in CT images, hypointensity in T1 weighted MR images and hyperintensity in T2 weighted MR images), multimodal image analysis is necessary for the detection of focal tumors. In this paper a pattern recognition approach is presented that identifies focal lesions in lumbar vertebrae based on features from T1 and T2 weighted MR images. Image voxels within bone are classified using random forests based on plain intensities and intensity value derived features (maximum, minimum, mean, median) in a 5 x 5 neighborhood around a voxel from both T1 and T2 weighted MR images. A test data sample of lesions in 8 lumbar vertebrae from 4 multiple myeloma patients can be classified at an accuracy of 95% (using a leave-one-patient-out test). The approach provides a reasonable delineation of the example lesions. This is an important step towards automatic tumor volume quantification in multiple myeloma.
Recursive feature elimination for biomarker discovery in resting-state functional connectivity.
Ravishankar, Hariharan; Madhavan, Radhika; Mullick, Rakesh; Shetty, Teena; Marinelli, Luca; Joel, Suresh E
2016-08-01
Biomarker discovery involves finding correlations between features and clinical symptoms to aid clinical decision. This task is especially difficult in resting state functional magnetic resonance imaging (rs-fMRI) data due to low SNR, high-dimensionality of images, inter-subject and intra-subject variability and small numbers of subjects compared to the number of derived features. Traditional univariate analysis suffers from the problem of multiple comparisons. Here, we adopt an alternative data-driven method for identifying population differences in functional connectivity. We propose a machine-learning approach to down-select functional connectivity features associated with symptom severity in mild traumatic brain injury (mTBI). Using this approach, we identified functional regions with altered connectivity in mTBI. including the executive control, visual and precuneus networks. We compared functional connections at multiple resolutions to determine which scale would be more sensitive to changes related to patient recovery. These modular network-level features can be used as diagnostic tools for predicting disease severity and recovery profiles.
Wang, Jinjia; Zhang, Yanna
2015-02-01
Brain-computer interface (BCI) systems identify brain signals through extracting features from them. In view of the limitations of the autoregressive model feature extraction method and the traditional principal component analysis to deal with the multichannel signals, this paper presents a multichannel feature extraction method that multivariate autoregressive (MVAR) model combined with the multiple-linear principal component analysis (MPCA), and used for magnetoencephalography (MEG) signals and electroencephalograph (EEG) signals recognition. Firstly, we calculated the MVAR model coefficient matrix of the MEG/EEG signals using this method, and then reduced the dimensions to a lower one, using MPCA. Finally, we recognized brain signals by Bayes Classifier. The key innovation we introduced in our investigation showed that we extended the traditional single-channel feature extraction method to the case of multi-channel one. We then carried out the experiments using the data groups of IV-III and IV - I. The experimental results proved that the method proposed in this paper was feasible.
ERIC Educational Resources Information Center
Berry, Ann Bassett; Mason, Linda H.
2012-01-01
A multiple-probe, multiple-baseline, across-subjects design was used to examine the writing performance of four low-achieving adult students with and without disabilities enrolled in general equivalency diploma (GED) preparatory classes. Students' writing was evaluated before instruction and after self-regulated strategy development (SRSD)…
ERIC Educational Resources Information Center
Trigano, Philippe
2006-01-01
Self-regulation has become a very important topic in the field of learning and instruction. At the same time, the introduction of new technologies in the field of Information and Communication Technologies (ICT) has made it possible to create rich Technology-Enhanced Learning Environments (TELEs) with multiple affordances for supporting…
ERIC Educational Resources Information Center
Chiu, Chi-yue, Ed.; Salili, Farideh, Ed.; Hong, Ying-yi, Ed.
This book presents 13 papers from a 1998 conference in Hong Kong that examined how to apply psychology to enhance learning and teaching quality and focused on multicultural education: (1) "The Role of Multiple Competencies and Self-Regulated Learning in Multicultural Education" (Chi-yue Chiu, Farideh Salili, and Ying-yi Hong); (2)…
ERIC Educational Resources Information Center
Nellis, Theresa M.
2017-01-01
Self-regulation is a significant predictor of student academic performance, over those traditional measures of intelligence and socioeconomic status. The failure to develop these skills may produce students who are at a four-times greater risk of behavioral issues, school dropout, and poor academic performance. This multiple qualitative case study…
Hovel-Miner, Galadriel; Pampou, Sergey; Faucher, Sebastien P; Clarke, Margaret; Morozova, Irina; Morozov, Pavel; Russo, James J; Shuman, Howard A; Kalachikov, Sergey
2009-04-01
Legionella pneumophila is the causative agent of the severe and potentially fatal pneumonia Legionnaires' disease. L. pneumophila is able to replicate within macrophages and protozoa by establishing a replicative compartment in a process that requires the Icm/Dot type IVB secretion system. The signals and regulatory pathways required for Legionella infection and intracellular replication are poorly understood. Mutation of the rpoS gene, which encodes sigma(S), does not affect growth in rich medium but severely decreases L. pneumophila intracellular multiplication within protozoan hosts. To gain insight into the intracellular multiplication defect of an rpoS mutant, we examined its pattern of gene expression during exponential and postexponential growth. We found that sigma(S) affects distinct groups of genes that contribute to Legionella intracellular multiplication. We demonstrate that rpoS mutants have a functional Icm/Dot system yet are defective for the expression of many genes encoding Icm/Dot-translocated substrates. We also show that sigma(S) affects the transcription of the cpxR and pmrA genes, which encode two-component response regulators that directly affect the transcription of Icm/Dot substrates. Our characterization of the L. pneumophila small RNA csrB homologs, rsmY and rsmZ, introduces a link between sigma(S) and the posttranscriptional regulator CsrA. We analyzed the network of sigma(S)-controlled genes by mutational analysis of transcriptional regulators affected by sigma(S). One of these, encoding the L. pneumophila arginine repressor homolog gene, argR, is required for maximal intracellular growth in amoebae. These data show that sigma(S) is a key regulator of multiple pathways required for L. pneumophila intracellular multiplication.
An empirical assessment of which inland floods can be managed
Mogollón, Beatriz; Frimpong, Emmanuel A.; Hoegh, Andrew B.; Angermeier, Paul
2016-01-01
Riverine flooding is a significant global issue. Although it is well documented that the influence of landscape structure on floods decreases as flood size increases, studies that define a threshold flood-return period, above which landscape features such as topography, land cover and impoundments can curtail floods, are lacking. Further, the relative influences of natural versus built features on floods is poorly understood. Assumptions about the types of floods that can be managed have considerable implications for the cost-effectiveness of decisions to invest in transforming land cover (e.g., reforestation) and in constructing structures (e.g., storm-water ponds) to control floods. This study defines parameters of floods for which changes in landscape structure can have an impact. We compare nine flood-return periods across 31 watersheds with widely varying topography and land cover in the southeastern United States, using long-term hydrologic records (≥20 years). We also assess the effects of built flow-regulating features (best management practices and artificial water bodies) on selected flood metrics across urban watersheds. We show that landscape features affect magnitude and duration of only those floods with return periods ≤10 years, which suggests that larger floods cannot be managed effectively by manipulating landscape structure. Overall, urban watersheds exhibited larger (270 m3/s) but quicker (0.41 days) floods than non-urban watersheds (50 m3/s and 1.5 days). However, urban watersheds with more flow-regulating features had lower flood magnitudes (154 m3/s), but similar flood durations (0.55 days), compared to urban watersheds with fewer flow-regulating features (360 m3/s and 0.23 days). Our analysis provides insight into the magnitude, duration and count of floods that can be curtailed by landscape structure and its management. Our findings are relevant to other areas with similar climate, topography, and land use, and can help ensure that investments in flood management are made wisely after considering the limitations of landscape features to regulate floods.
RAS oncogene-mediated deregulation of the transcriptome: from molecular signature to function.
Schäfer, Reinhold; Sers, Christine
2011-01-01
Transcriptome analysis of cancer cells has developed into a standard procedure to elucidate multiple features of the malignant process and to link gene expression to clinical properties. Gene expression profiling based on microarrays provides essentially correlative information and needs to be transferred to the functional level in order to understand the activity and contribution of individual genes or sets of genes as elements of the gene signature. To date, there exist significant gaps in the functional understanding of gene expression profiles. Moreover, the processes that drive the profound transcriptional alterations that characterize cancer cells remain mainly elusive. We have used pathway-restricted gene expression profiles derived from RAS oncogene-transformed cells and from RAS-expressing cancer cells to identify regulators downstream of the MAPK pathway.We describe the role of epigenetic regulation exemplified by the control of several immune genes in generic cell lines and colorectal cancer cells, particularly the functional interaction between signaling and DNA methylation. Moreover, we assess the role of the architectural transcription factor high mobility AT-hook 2 (HMGA2) as a regulator of the RAS-responsive transcriptome in ovarian epithelial cells. Finally, we describe an integrated approach combining pathway interference in colorectal cancer cells, gene expression profiling and computational analysis of regulatory elements of deregulated target genes. This strategy resulted in the identification of Y-box binding protein 1 (YBX1) as a regulator of MAPK-dependent proliferation and gene expression. The implications for a therapeutic application of HMGA2 gene silencing and the role of YBX1 as a prognostic factor are discussed.
78 FR 17613 - Special Local Regulations and Safety Zones; Recurring Events in Northern New England
Federal Register 2010, 2011, 2012, 2013, 2014
2013-03-22
... Multiple Sclerosis Event Type: Regatta and Sailboat Regatta. Race Sponsor: Maine Chapter, Multiple...]13'51'' W 8.7 Multiple Sclerosis Event Type: Power Boat Race Harborfest Lobster Boat/ Sponsor: Maine Chapter, National Tugboat Races. Multiple Sclerosis Society [[Page 17619
NASA Astrophysics Data System (ADS)
Price, Stanton R.; Murray, Bryce; Hu, Lequn; Anderson, Derek T.; Havens, Timothy C.; Luke, Robert H.; Keller, James M.
2016-05-01
A serious threat to civilians and soldiers is buried and above ground explosive hazards. The automatic detection of such threats is highly desired. Many methods exist for explosive hazard detection, e.g., hand-held based sensors, downward and forward looking vehicle mounted platforms, etc. In addition, multiple sensors are used to tackle this extreme problem, such as radar and infrared (IR) imagery. In this article, we explore the utility of feature and decision level fusion of learned features for forward looking explosive hazard detection in IR imagery. Specifically, we investigate different ways to fuse learned iECO features pre and post multiple kernel (MK) support vector machine (SVM) based classification. Three MK strategies are explored; fixed rule, heuristics and optimization-based. Performance is assessed in the context of receiver operating characteristic (ROC) curves on data from a U.S. Army test site that contains multiple target and clutter types, burial depths and times of day. Specifically, the results reveal two interesting things. First, the different MK strategies appear to indicate that the different iECO individuals are all more-or-less important and there is not a dominant feature. This is reinforcing as our hypothesis was that iECO provides different ways to approach target detection. Last, we observe that while optimization-based MK is mathematically appealing, i.e., it connects the learning of the fusion to the underlying classification problem we are trying to solve, it appears to be highly susceptible to over fitting and simpler, e.g., fixed rule and heuristics approaches help us realize more generalizable iECO solutions.
NASA Astrophysics Data System (ADS)
Li, L. L.; Jin, C. L.; Ge, X.
2018-01-01
In this paper, the output regulation problem with dissipative property for a class of switched stochastic delay systems is investigated, based on an error-dependent switching law. Under the assumption that none subsystem is solvable for the problem, a sufficient condition is derived by structuring multiple Lyapunov-Krasovskii functionals with respect to multiple supply rates, via designing error feedback regulators. The condition is also established when dissipative property reduces to passive property. Finally, two numerical examples are given to demonstrate the feasibility and efficiency of the present method.
Distributed acoustic cues for caller identity in macaque vocalization.
Fukushima, Makoto; Doyle, Alex M; Mullarkey, Matthew P; Mishkin, Mortimer; Averbeck, Bruno B
2015-12-01
Individual primates can be identified by the sound of their voice. Macaques have demonstrated an ability to discern conspecific identity from a harmonically structured 'coo' call. Voice recognition presumably requires the integrated perception of multiple acoustic features. However, it is unclear how this is achieved, given considerable variability across utterances. Specifically, the extent to which information about caller identity is distributed across multiple features remains elusive. We examined these issues by recording and analysing a large sample of calls from eight macaques. Single acoustic features, including fundamental frequency, duration and Weiner entropy, were informative but unreliable for the statistical classification of caller identity. A combination of multiple features, however, allowed for highly accurate caller identification. A regularized classifier that learned to identify callers from the modulation power spectrum of calls found that specific regions of spectral-temporal modulation were informative for caller identification. These ranges are related to acoustic features such as the call's fundamental frequency and FM sweep direction. We further found that the low-frequency spectrotemporal modulation component contained an indexical cue of the caller body size. Thus, cues for caller identity are distributed across identifiable spectrotemporal components corresponding to laryngeal and supralaryngeal components of vocalizations, and the integration of those cues can enable highly reliable caller identification. Our results demonstrate a clear acoustic basis by which individual macaque vocalizations can be recognized.
Distributed acoustic cues for caller identity in macaque vocalization
Doyle, Alex M.; Mullarkey, Matthew P.; Mishkin, Mortimer; Averbeck, Bruno B.
2015-01-01
Individual primates can be identified by the sound of their voice. Macaques have demonstrated an ability to discern conspecific identity from a harmonically structured ‘coo’ call. Voice recognition presumably requires the integrated perception of multiple acoustic features. However, it is unclear how this is achieved, given considerable variability across utterances. Specifically, the extent to which information about caller identity is distributed across multiple features remains elusive. We examined these issues by recording and analysing a large sample of calls from eight macaques. Single acoustic features, including fundamental frequency, duration and Weiner entropy, were informative but unreliable for the statistical classification of caller identity. A combination of multiple features, however, allowed for highly accurate caller identification. A regularized classifier that learned to identify callers from the modulation power spectrum of calls found that specific regions of spectral–temporal modulation were informative for caller identification. These ranges are related to acoustic features such as the call’s fundamental frequency and FM sweep direction. We further found that the low-frequency spectrotemporal modulation component contained an indexical cue of the caller body size. Thus, cues for caller identity are distributed across identifiable spectrotemporal components corresponding to laryngeal and supralaryngeal components of vocalizations, and the integration of those cues can enable highly reliable caller identification. Our results demonstrate a clear acoustic basis by which individual macaque vocalizations can be recognized. PMID:27019727
Zhou, Qiong; Wang, Man; Du, Ying; Zhang, Wei; Bai, Miao; Zhang, Zhuo; Li, Zhuyi; Miao, Jianting
2015-04-01
Growing evidence indicates that the activation of c-Jun N-terminal kinase (JNK) is implicated in the multiple major pathological features of Alzheimer disease (AD). However, whether specific inhibition of JNK activation could prevent disease progression in adult transgenic AD models at moderate stage remains unknown. Here we first investigated the potential disease-modifying therapeutic effect of systemic administration of SP600125, a small-molecule JNK-specific inhibitor, in middle-aged APPswe/PS1dE9 mice. Using behavioral, histological, and biochemical methods, outcomes of SP600125 treatment on neuropathology and cognitive deficits were studied in APPswe/PS1dE9 mice. Compared with vehicle-treated APPswe/PS1dE9 mice, chronic treatment of SP600125 for 12 weeks potently inhibited JNK activation, which resulted in a marked improvement of behavioral measures of cognitive deficits and a dramatic reduction in amyloid plaque burden, β-amyloid production, tau hyperphosphorylation, inflammatory responses, and synaptic loss in these transgenic animals. In particular, we found that SP600125 treatment strongly promoted nonamyloidogenic amyloid precursor protein (APP) processing and inhibited amyloidogenic APP processing via regulating APP-cleavage secretase expression (ie, ADAM10, BACE1, and PS1) in APPswe/PS1dE9 mice. Our findings demonstrate that chronic SP600125 treatment is powerfully effective in slowing down disease progression by markedly reducing multiple pathological features and ameliorating cognitive deficits associated with AD. This study highlights the concept that active JNK actually contributes to the development of the disease, and provides critical preclinical evidence that specific inhibition of JNK activation by SP600125 treatment may be a novel promising disease-modifying therapeutic strategy for the treatment of AD. © 2015 American Neurological Association.
NASA Astrophysics Data System (ADS)
Wilkinson, M. E.; Quinn, P. F.; Jonczyk, J.; Burke, S.; Nicholson, A.; Barber, N.; Owen, G.; Palmer, M.
2012-04-01
A number of studies have suggested that there is evidence that modern land-use management practices have increased surface runoff at the local scale. There is an urgent need for interventions to reduce the risk of flooding whilst also delivering multiple benefits (doing more for less). There are many settlements, which regularly suffer from flooding, which would benefit from upstream mitigation measures. Interventions at the source of runoff generation can have a positive impact on the flood hydrograph downstream. An integrated approach to managing runoff can also have multiple benefits on pollution and ecology, which could lead to beneficial impacts at the catchment scale. Belford, a small community in Northumberland, UK has suffered from an increased number of flood events over the past ten years. There is currently support within the English and Welsh Environment Agency for sustainable flood management solutions such as storage ponds, wetlands, beaver dams and willow riparian features which are being trialled at Belford. These runoff attenuation features (RAFs) also have benefits to water quality, capture sediment and create new ecological zones. Although the process by which numerous RAFs were deployed in Belford proved initially difficult to achieve within the existing regulatory framework, an efficient uptake process is now supported by local regulators including several branches of the Environment Agency. The Belford runoff management framework provides a step by step guide to implementing mitigation measures in the Belford burn catchment and could be easily applied to other catchments at a similar scale. The approach is based on implementing mitigation measures through engaging with catchment stakeholders and using solid field science and management protocols.
Multiple café au lait spots in familial patients with MAP2K2 mutation.
Takenouchi, Toshiki; Shimizu, Atsushi; Torii, Chiharu; Kosaki, Rika; Takahashi, Takao; Saya, Hideyuki; Kosaki, Kenjiro
2014-02-01
Recent advances in genetic diagnostic technologies have made the classic disease nosology highly complicated. This situation is exemplified by rasopathies, among which neurofibromatosis type 1 and Noonan syndrome represent prototypic entities. The former condition is characterized by multiple café au lait spots and neurofibromas, while the latter is characterized by distinct facial features, webbed neck, congenital heart disease, and a short stature. On rare occasions, the features of both neurofibromatosis and Noonan syndrome co-exist within an individual; such patients are diagnosed as having neurofibromatosis-Noonan syndrome. Here, we report familial patients with multiple café au lait spots and Noonan syndrome-like facial features. A mutation analysis unexpectedly revealed a mutation in MAP2K2 in both the propositus and his mother. The propositus fulfilled the diagnostic criteria for neurofibromatosis type 1, but his mother did not. Their phenotype was not consistent with that of cardio-facio-cutaneous syndrome, which is classically known to be associated with MAP2K2 mutations. The mother of the propositus had cervical cancer at the age of 23 years, consistent with the oncogenic tendency associated with rasopathies. The phenotypic combination of multiple café au lait spots and Noonan syndrome-like facial features suggested a diagnosis of neurofibromatosis-Noonan syndrome. Whether this condition represents a discrete disease entity or a variable expression of neurofibromatosis type 1 has long been debated. The present observation suggests that some perturbation in the RAS/MAPK signaling cascade results in multiple café au lait spots, a key diagnostic phenotype of rasopathies, although the exact mechanism remains to be elucidated. © 2013 Wiley Periodicals, Inc.
An Automated Parallel Image Registration Technique Based on the Correlation of Wavelet Features
NASA Technical Reports Server (NTRS)
LeMoigne, Jacqueline; Campbell, William J.; Cromp, Robert F.; Zukor, Dorothy (Technical Monitor)
2001-01-01
With the increasing importance of multiple platform/multiple remote sensing missions, fast and automatic integration of digital data from disparate sources has become critical to the success of these endeavors. Our work utilizes maxima of wavelet coefficients to form the basic features of a correlation-based automatic registration algorithm. Our wavelet-based registration algorithm is tested successfully with data from the National Oceanic and Atmospheric Administration (NOAA) Advanced Very High Resolution Radiometer (AVHRR) and the Landsat/Thematic Mapper(TM), which differ by translation and/or rotation. By the choice of high-frequency wavelet features, this method is similar to an edge-based correlation method, but by exploiting the multi-resolution nature of a wavelet decomposition, our method achieves higher computational speeds for comparable accuracies. This algorithm has been implemented on a Single Instruction Multiple Data (SIMD) massively parallel computer, the MasPar MP-2, as well as on the CrayT3D, the Cray T3E and a Beowulf cluster of Pentium workstations.
Abraham Lincoln's marfanoid mother: the earliest known case of multiple endocrine neoplasia type 2B?
Sotos, John G
2012-07-01
The nature and cause of President Abraham Lincoln's unusual physical features have long been debated, with the greatest attention directed at two monogenic disorders of the transforming growth factor β system: Marfan syndrome and multiple endocrine neoplasia type 2B. The present report examines newly discovered phenotypic information about Lincoln's biological mother, Nancy Hanks Lincoln, and concludes that (a) Lincoln's mother was skeletally marfanoid, (b) the President and his mother were highly concordant for the presence of numerous facial features found in various transforming growth factor β disorders, and (c) Lincoln's mother, like her son, had hypotonic skeletal muscles, resulting in myopathic facies and 'pseudodepression'. These conclusions establish that mother and son had the same monogenic autosomal dominant marfanoid disorder. A description of Nancy Hanks Lincoln as coarse-featured, and a little-known statement that a wasting disease contributed to her death at age 34, lends support to the multiple endocrine neoplasia type 2B hypothesis.
Multitasking: Effects of processing multiple auditory feature patterns
Miller, Tova; Chen, Sufen; Lee, Wei Wei; Sussman, Elyse S.
2016-01-01
ERPs and behavioral responses were measured to assess how task-irrelevant sounds interact with task processing demands and affect the ability to monitor and track multiple sound events. Participants listened to four-tone sequential frequency patterns, and responded to frequency pattern deviants (reversals of the pattern). Irrelevant tone feature patterns (duration and intensity) and respective pattern deviants were presented together with frequency patterns and frequency pattern deviants in separate conditions. Responses to task-relevant and task-irrelevant feature pattern deviants were used to test processing demands for irrelevant sound input. Behavioral performance was significantly better when there were no distracting feature patterns. Errors primarily occurred in response to the to-be-ignored feature pattern deviants. Task-irrelevant elicitation of ERP components was consistent with the error analysis, indicating a level of processing for the irrelevant features. Task-relevant elicitation of ERP components was consistent with behavioral performance, demonstrating a “cost” of performance when there were two feature patterns presented simultaneously. These results provide evidence that the brain tracked the irrelevant duration and intensity feature patterns, affecting behavioral performance. Overall, our results demonstrate that irrelevant informational streams are processed at a cost, which may be considered a type of multitasking that is an ongoing, automatic processing of taskirrelevant sensory events. PMID:25939456
Phenomenology of COMPASS data: Multiplicities and phenomenology - part II
Anselmino, M.; Boglione, M.; Gonzalez H., J. O.; ...
2015-01-23
In this study, we present some of the main features of the multidimensional COMPASS multiplicities, via our analysis using the simple Gaussian model. We briefly discuss these results in connection with azimuthal asymmetries.
Key structural features of nonsteroidal ligands for binding and activation of the androgen receptor.
Yin, Donghua; He, Yali; Perera, Minoli A; Hong, Seoung Soo; Marhefka, Craig; Stourman, Nina; Kirkovsky, Leonid; Miller, Duane D; Dalton, James T
2003-01-01
The purposes of the present studies were to examine the androgen receptor (AR) binding ability and in vitro functional activity of multiple series of nonsteroidal compounds derived from known antiandrogen pharmacophores and to investigate the structure-activity relationships (SARs) of these nonsteroidal compounds. The AR binding properties of sixty-five nonsteroidal compounds were assessed by a radioligand competitive binding assay with the use of cytosolic AR prepared from rat prostates. The AR agonist and antagonist activities of high-affinity ligands were determined by the ability of the ligand to regulate AR-mediated transcriptional activation in cultured CV-1 cells, using a cotransfection assay. Nonsteroidal compounds with diverse structural features demonstrated a wide range of binding affinity for the AR. Ten compounds, mainly from the bicalutamide-related series, showed a binding affinity superior to the structural pharmacophore from which they were derived. Several SARs regarding nonsteroidal AR binding were revealed from the binding data, including stereoisomeric conformation, steric effect, and electronic effect. The functional activity of high-affinity ligands ranged from antagonist to full agonist for the AR. Several structural features were found to be determinative of agonist and antagonist activities. The nonsteroidal AR agonists identified from the present studies provided a pool of candidates for further development of selective androgen receptor modulators (SARMs) for androgen therapy. Also, these studies uncovered or confirmed numerous important SARs governing AR binding and functional properties by nonsteroidal molecules, which would be valuable in the future structural optimization of SARMs.
ERIC Educational Resources Information Center
Greene, John O.; And Others
1993-01-01
Finds that the increased cognitive load accompanying multiple-goal messages arises from demands on time and processing capacity associated with assembling incompatible message features and that multiple-goal messages are characterized by heavier demand on processing capacity associated with maintaining more complex message-relevant specifications…
Temporal assessment of radiomic features on clinical mammography in a high-risk population
NASA Astrophysics Data System (ADS)
Mendel, Kayla R.; Li, Hui; Lan, Li; Chan, Chun-Wai; King, Lauren M.; Tayob, Nabihah; Whitman, Gary; El-Zein, Randa; Bedrosian, Isabelle; Giger, Maryellen L.
2018-02-01
Extraction of high-dimensional quantitative data from medical images has become necessary in disease risk assessment, diagnostics and prognostics. Radiomic workflows for mammography typically involve a single medical image for each patient although medical images may exist for multiple imaging exams, especially in screening protocols. Our study takes advantage of the availability of mammograms acquired over multiple years for the prediction of cancer onset. This study included 841 images from 328 patients who developed subsequent mammographic abnormalities, which were confirmed as either cancer (n=173) or non-cancer (n=155) through diagnostic core needle biopsy. Quantitative radiomic analysis was conducted on antecedent FFDMs acquired a year or more prior to diagnostic biopsy. Analysis was limited to the breast contralateral to that in which the abnormality arose. Novel metrics were used to identify robust radiomic features. The most robust features were evaluated in the task of predicting future malignancies on a subset of 72 subjects (23 cancer cases and 49 non-cancer controls) with mammograms over multiple years. Using linear discriminant analysis, the robust radiomic features were merged into predictive signatures by: (i) using features from only the most recent contralateral mammogram, (ii) change in feature values between mammograms, and (iii) ratio of feature values over time, yielding AUCs of 0.57 (SE=0.07), 0.63 (SE=0.06), and 0.66 (SE=0.06), respectively. The AUCs for temporal radiomics (ratio) statistically differed from chance, suggesting that changes in radiomics over time may be critical for risk assessment. Overall, we found that our two-stage process of robustness assessment followed by performance evaluation served well in our investigation on the role of temporal radiomics in risk assessment.
NIMEFI: gene regulatory network inference using multiple ensemble feature importance algorithms.
Ruyssinck, Joeri; Huynh-Thu, Vân Anh; Geurts, Pierre; Dhaene, Tom; Demeester, Piet; Saeys, Yvan
2014-01-01
One of the long-standing open challenges in computational systems biology is the topology inference of gene regulatory networks from high-throughput omics data. Recently, two community-wide efforts, DREAM4 and DREAM5, have been established to benchmark network inference techniques using gene expression measurements. In these challenges the overall top performer was the GENIE3 algorithm. This method decomposes the network inference task into separate regression problems for each gene in the network in which the expression values of a particular target gene are predicted using all other genes as possible predictors. Next, using tree-based ensemble methods, an importance measure for each predictor gene is calculated with respect to the target gene and a high feature importance is considered as putative evidence of a regulatory link existing between both genes. The contribution of this work is twofold. First, we generalize the regression decomposition strategy of GENIE3 to other feature importance methods. We compare the performance of support vector regression, the elastic net, random forest regression, symbolic regression and their ensemble variants in this setting to the original GENIE3 algorithm. To create the ensemble variants, we propose a subsampling approach which allows us to cast any feature selection algorithm that produces a feature ranking into an ensemble feature importance algorithm. We demonstrate that the ensemble setting is key to the network inference task, as only ensemble variants achieve top performance. As second contribution, we explore the effect of using rankwise averaged predictions of multiple ensemble algorithms as opposed to only one. We name this approach NIMEFI (Network Inference using Multiple Ensemble Feature Importance algorithms) and show that this approach outperforms all individual methods in general, although on a specific network a single method can perform better. An implementation of NIMEFI has been made publicly available.
DOE Office of Scientific and Technical Information (OSTI.GOV)
2013-03-07
LC-IMS-MS Feature Finder is a command line software application which searches for possible molecular ion signatures in multidimensional liquid chromatography, ion mobility spectrometry, and mass spectrometry data by clustering deisotoped peaks with similar monoisotopic mass values, charge states, elution times, and drift times. The software application includes an algorithm for detecting multiple conformations and co-eluting species in the ion mobility dimension. LC-IMS-MS Feature Finder is designed to create an output file with detected features that includes associated information about the detected features.
The first Korean patient with Potocki-Shaffer syndrome: a rare cause of multiple exostoses.
Sohn, Young Bae; Yim, Shin-Young; Cho, Eun-Hae; Kim, Ok-Hwa
2015-02-01
Potocki-Shaffer syndrome (PSS, OMIM #601224) is a rare contiguous gene deletion syndrome caused by haploinsufficiency of genes located on the 11p11.2p12. Affected individuals have a number of characteristic features including multiple exostoses, biparietal foramina, abnormalities of genitourinary system, hypotonia, developmental delay, and intellectual disability. We report here on the first Korean case of an 8-yr-old boy with PSS diagnosed by high resolution microarray. Initial evaluation was done at age 6 months because of a history of developmental delay, hypotonia, and dysmorphic face. Coronal craniosynostosis and enlarged parietal foramina were found on skull radiographs. At age 6 yr, he had severe global developmental delay. Multiple exostoses of long bones were detected during a radiological check-up. Based on the clinical and radiological features, PSS was highly suspected. Subsequently, chromosomal microarray analysis identified an 8.6 Mb deletion at 11p11.2 [arr 11p12p11.2 (Chr11:39,204,770-47,791,278)×1]. The patient continued rehabilitation therapy for profound developmental delay. The progression of multiple exostosis has being monitored. This case confirms and extends data on the genetic basis of PSS. In clinical and radiologic aspect, a patient with multiple exostoses accompanying with syndromic features, including craniofacial abnormalities and mental retardation, the diagnosis of PSS should be considered.
Joint Concept Correlation and Feature-Concept Relevance Learning for Multilabel Classification.
Zhao, Xiaowei; Ma, Zhigang; Li, Zhi; Li, Zhihui
2018-02-01
In recent years, multilabel classification has attracted significant attention in multimedia annotation. However, most of the multilabel classification methods focus only on the inherent correlations existing among multiple labels and concepts and ignore the relevance between features and the target concepts. To obtain more robust multilabel classification results, we propose a new multilabel classification method aiming to capture the correlations among multiple concepts by leveraging hypergraph that is proved to be beneficial for relational learning. Moreover, we consider mining feature-concept relevance, which is often overlooked by many multilabel learning algorithms. To better show the feature-concept relevance, we impose a sparsity constraint on the proposed method. We compare the proposed method with several other multilabel classification methods and evaluate the classification performance by mean average precision on several data sets. The experimental results show that the proposed method outperforms the state-of-the-art methods.
A Bayesian model averaging method for improving SMT phrase table
NASA Astrophysics Data System (ADS)
Duan, Nan
2013-03-01
Previous methods on improving translation quality by employing multiple SMT models usually carry out as a second-pass decision procedure on hypotheses from multiple systems using extra features instead of using features in existing models in more depth. In this paper, we propose translation model generalization (TMG), an approach that updates probability feature values for the translation model being used based on the model itself and a set of auxiliary models, aiming to alleviate the over-estimation problem and enhance translation quality in the first-pass decoding phase. We validate our approach for translation models based on auxiliary models built by two different ways. We also introduce novel probability variance features into the log-linear models for further improvements. We conclude our approach can be developed independently and integrated into current SMT pipeline directly. We demonstrate BLEU improvements on the NIST Chinese-to-English MT tasks for single-system decodings.
Deep learning of support vector machines with class probability output networks.
Kim, Sangwook; Yu, Zhibin; Kil, Rhee Man; Lee, Minho
2015-04-01
Deep learning methods endeavor to learn features automatically at multiple levels and allow systems to learn complex functions mapping from the input space to the output space for the given data. The ability to learn powerful features automatically is increasingly important as the volume of data and range of applications of machine learning methods continues to grow. This paper proposes a new deep architecture that uses support vector machines (SVMs) with class probability output networks (CPONs) to provide better generalization power for pattern classification problems. As a result, deep features are extracted without additional feature engineering steps, using multiple layers of the SVM classifiers with CPONs. The proposed structure closely approaches the ideal Bayes classifier as the number of layers increases. Using a simulation of classification problems, the effectiveness of the proposed method is demonstrated. Copyright © 2014 Elsevier Ltd. All rights reserved.
Multiplicative Multitask Feature Learning
Wang, Xin; Bi, Jinbo; Yu, Shipeng; Sun, Jiangwen; Song, Minghu
2016-01-01
We investigate a general framework of multiplicative multitask feature learning which decomposes individual task’s model parameters into a multiplication of two components. One of the components is used across all tasks and the other component is task-specific. Several previous methods can be proved to be special cases of our framework. We study the theoretical properties of this framework when different regularization conditions are applied to the two decomposed components. We prove that this framework is mathematically equivalent to the widely used multitask feature learning methods that are based on a joint regularization of all model parameters, but with a more general form of regularizers. Further, an analytical formula is derived for the across-task component as related to the task-specific component for all these regularizers, leading to a better understanding of the shrinkage effects of different regularizers. Study of this framework motivates new multitask learning algorithms. We propose two new learning formulations by varying the parameters in the proposed framework. An efficient blockwise coordinate descent algorithm is developed suitable for solving the entire family of formulations with rigorous convergence analysis. Simulation studies have identified the statistical properties of data that would be in favor of the new formulations. Extensive empirical studies on various classification and regression benchmark data sets have revealed the relative advantages of the two new formulations by comparing with the state of the art, which provides instructive insights into the feature learning problem with multiple tasks. PMID:28428735
Reduced multiple empirical kernel learning machine.
Wang, Zhe; Lu, MingZhe; Gao, Daqi
2015-02-01
Multiple kernel learning (MKL) is demonstrated to be flexible and effective in depicting heterogeneous data sources since MKL can introduce multiple kernels rather than a single fixed kernel into applications. However, MKL would get a high time and space complexity in contrast to single kernel learning, which is not expected in real-world applications. Meanwhile, it is known that the kernel mapping ways of MKL generally have two forms including implicit kernel mapping and empirical kernel mapping (EKM), where the latter is less attracted. In this paper, we focus on the MKL with the EKM, and propose a reduced multiple empirical kernel learning machine named RMEKLM for short. To the best of our knowledge, it is the first to reduce both time and space complexity of the MKL with EKM. Different from the existing MKL, the proposed RMEKLM adopts the Gauss Elimination technique to extract a set of feature vectors, which is validated that doing so does not lose much information of the original feature space. Then RMEKLM adopts the extracted feature vectors to span a reduced orthonormal subspace of the feature space, which is visualized in terms of the geometry structure. It can be demonstrated that the spanned subspace is isomorphic to the original feature space, which means that the dot product of two vectors in the original feature space is equal to that of the two corresponding vectors in the generated orthonormal subspace. More importantly, the proposed RMEKLM brings a simpler computation and meanwhile needs a less storage space, especially in the processing of testing. Finally, the experimental results show that RMEKLM owns a much efficient and effective performance in terms of both complexity and classification. The contributions of this paper can be given as follows: (1) by mapping the input space into an orthonormal subspace, the geometry of the generated subspace is visualized; (2) this paper first reduces both the time and space complexity of the EKM-based MKL; (3) this paper adopts the Gauss Elimination, one of the on-the-shelf techniques, to generate a basis of the original feature space, which is stable and efficient.
Qualitative dynamics semantics for SBGN process description.
Rougny, Adrien; Froidevaux, Christine; Calzone, Laurence; Paulevé, Loïc
2016-06-16
Qualitative dynamics semantics provide a coarse-grain modeling of networks dynamics by abstracting away kinetic parameters. They allow to capture general features of systems dynamics, such as attractors or reachability properties, for which scalable analyses exist. The Systems Biology Graphical Notation Process Description language (SBGN-PD) has become a standard to represent reaction networks. However, no qualitative dynamics semantics taking into account all the main features available in SBGN-PD had been proposed so far. We propose two qualitative dynamics semantics for SBGN-PD reaction networks, namely the general semantics and the stories semantics, that we formalize using asynchronous automata networks. While the general semantics extends standard Boolean semantics of reaction networks by taking into account all the main features of SBGN-PD, the stories semantics allows to model several molecules of a network by a unique variable. The obtained qualitative models can be checked against dynamical properties and therefore validated with respect to biological knowledge. We apply our framework to reason on the qualitative dynamics of a large network (more than 200 nodes) modeling the regulation of the cell cycle by RB/E2F. The proposed semantics provide a direct formalization of SBGN-PD networks in dynamical qualitative models that can be further analyzed using standard tools for discrete models. The dynamics in stories semantics have a lower dimension than the general one and prune multiple behaviors (which can be considered as spurious) by enforcing the mutual exclusiveness between the activity of different nodes of a same story. Overall, the qualitative semantics for SBGN-PD allow to capture efficiently important dynamical features of reaction network models and can be exploited to further refine them.
The molecular biology of the group VIA Ca2+-independent phospholipase A2.
Ma, Z; Turk, J
2001-01-01
The group VIA PLA2 is a member of the PLA2 superfamily. This enzyme, which is cytosolic and Ca2+-independent, has been designated iPLA2beta to distinguish it from another recently cloned Ca2+-independent PLA2. Features of iPLA2beta molecular structure offer some insight into possible cellular functions of the enzyme. At least two catalytically active iPLA2beta isoforms and additionalsplicing variants are derived from a single gene that consists of at least 17 exons located on human chromosome 22q13.1. Potential tumor suppressor genes also reside at or near this locus. Structural analyses reveal that iPLA2beta contains unique structural features that include a serine lipase consensus motif (GXSXG), a putative ATP-binding domain, an ankyrin-repeat domain, a caspase-3 cleavage motif DVTD138Y/N, a bipartite nuclear localization signal sequence, and a proline-rich region in the human long isoform. iPLA2beta is widely expressed among mammalian tissues, with highest expression in testis and brain. iPLA2beta prefers to hydrolyze fatty acid at the sn-2 fatty acid substituent but also exhibits phospholipase A1, lysophospholipase, PAF acetylhydrolase, and transacylase activities. iPLA2beta may participate in signaling, apoptosis, membrane phospholipid remodeling, membrane homeostasis, arachidonate release, and exocytotic membrane fusion. Structural features and the existence of multiple splicing variants of iPLA2beta suggest that iPLA2beta may be subject to complex regulatory mechanisms that differ among cell types. Further study of its regulation and interaction with other proteins may yield insight into how its structural features are related to its function.
Tie2 and Eph Receptor Tyrosine Kinase Activation and Signaling
Barton, William A.; Dalton, Annamarie C.; Seegar, Tom C.M.; Himanen, Juha P.
2014-01-01
The Eph and Tie cell surface receptors mediate a variety of signaling events during development and in the adult organism. As other receptor tyrosine kinases, they are activated on binding of extracellular ligands and their catalytic activity is tightly regulated on multiple levels. The Eph and Tie receptors display some unique characteristics, including the requirement of ligand-induced receptor clustering for efficient signaling. Interestingly, both Ephs and Ties can mediate different, even opposite, biological effects depending on the specific ligand eliciting the response and on the cellular context. Here we discuss the structural features of these receptors, their interactions with various ligands, as well as functional implications for downstream signaling initiation. The Eph/ephrin structures are already well reviewed and we only provide a brief overview on the initial binding events. We go into more detail discussing the Tie-angiopoietin structures and recognition. PMID:24478383
Genetic and epigenetic effects in sex determination.
Gunes, Sezgin Ozgur; Metin Mahmutoglu, Asli; Agarwal, Ashok
2016-12-01
Sex determination is a complex and dynamic process with multiple genetic and environmental causes, in which germ and somatic cells receive various sex-specific features. During the fifth week of fetal life, the bipotential embryonic gonad starts to develop in humans. In the bipotential gonadal tissue, certain cell groups start to differentiate to form the ovaries or testes. Despite considerable efforts and advances in identifying the mechanisms playing a role in sex determination and differentiation, the underlying mechanisms of the exact functions of many genes, gene-gene interactions, and epigenetic modifications that are involved in different stages of this cascade are not completely understood. This review aims at discussing current data on the genetic effects via genes and epigenetic mechanisms that affect the regulation of sex determination. Birth Defects Research (Part C) 108:321-336, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Solinas, Marta; Massi, Paola; Cinquina, Valentina; Valenti, Marta; Bolognini, Daniele; Gariboldi, Marzia; Monti, Elena; Rubino, Tiziana; Parolaro, Daniela
2013-01-01
In the present study, we found that CBD inhibited U87-MG and T98G cell proliferation and invasiveness in vitro and caused a decrease in the expression of a set of proteins specifically involved in growth, invasion and angiogenesis. In addition, CBD treatment caused a dose-related down-regulation of ERK and Akt prosurvival signaling pathways in U87-MG and T98G cells and decreased hypoxia inducible factor HIF-1α expression in U87-MG cells. Taken together, these results provide new insights into the antitumor action of CBD, showing that this cannabinoid affects multiple tumoral features and molecular pathways. As CBD is a non-psychoactive phytocannabinoid that appears to be devoid of side effects, our results support its exploitation as an effective anti-cancer drug in the management of gliomas. PMID:24204703
Molecular markers of paragangliomas/pheochromocytomas
Zaretsky, Andrew R; Alekseev, Boris Y; Pokrovsky, Anatoly V; Golovyuk, Alexander L; Melnikova, Nataliya V; Stepanov, Oleg A; Kalinin, Dmitry V; Moskalev, Alexey A; Krasnov, George S; Dmitriev, Alexey A; Kudryavtseva, Anna V
2017-01-01
Paragangliomas/pheochromocytomas comprise rare tumors that arise from the extra-adrenal paraganglia, with an incidence of about 2 to 8 per million people each year. Approximately 40% of cases are due to genetic mutations in at least one out of more than 30 causative genes. About 2530% of pheochromocytomas/paragangliomas develop under the conditions of a hereditary tumor syndrome a third of which are caused by mutations in the VHL gene. Together, the gene mutations in this disorder have implicated multiple processes including signaling pathways, translation initiation, hypoxia regulation, protein synthesis, differentiation, survival, proliferation, and cell growth. The present review contemplates the mutations associated with the development of pheochromocytomas/paragangliomas and their potential to serve as specific markers of these tumors and their progression. These data will improve our understanding of the pathogenesis of these tumors and likely reveal certain features that may be useful for early diagnostics, malignancy prognostics, and the determination of new targets for disease therapeutics. PMID:28187001
Genomic signatures of evolutionary transitions from solitary to group living
Kapheim, Karen M.; Pan, Hailin; Li, Cai; Salzberg, Steven L.; Puiu, Daniela; Magoc, Tanja; Robertson, Hugh M.; Hudson, Matthew E.; Venkat, Aarti; Fischman, Brielle J.; Hernandez, Alvaro; Yandell, Mark; Ence, Daniel; Holt, Carson; Yocum, George D.; Kemp, William P.; Bosch, Jordi; Waterhouse, Robert M.; Zdobnov, Evgeny M.; Stolle, Eckart; Kraus, F. Bernhard; Helbing, Sophie; Moritz, Robin F. A.; Glastad, Karl M.; Hunt, Brendan G.; Goodisman, Michael A. D.; Hauser, Frank; Grimmelikhuijzen, Cornelis J. P.; Pinheiro, Daniel Guariz; Nunes, Francis Morais Franco; Soares, Michelle Prioli Miranda; Tanaka, Érica Donato; Simões, Zilá Luz Paulino; Hartfelder, Klaus; Evans, Jay D.; Barribeau, Seth M.; Johnson, Reed M.; Massey, Jonathan H.; Southey, Bruce R.; Hasselmann, Martin; Hamacher, Daniel; Biewer, Matthias; Kent, Clement F.; Zayed, Amro; Blatti, Charles; Sinha, Saurabh; Johnston, J. Spencer; Hanrahan, Shawn J.; Kocher, Sarah D.; Wang, Jun; Robinson, Gene E.; Zhang, Guojie
2017-01-01
The evolution of eusociality is one of the major transitions in evolution, but the underlying genomic changes are unknown. We compared the genomes of 10 bee species that vary in social complexity, representing multiple independent transitions in social evolution, and report three major findings. First, many important genes show evidence of neutral evolution as a consequence of relaxed selection with increasing social complexity. Second, there is no single road map to eusociality; independent evolutionary transitions in sociality have independent genetic underpinnings. Third, though clearly independent in detail, these transitions do have similar general features, including an increase in constrained protein evolution accompanied by increases in the potential for gene regulation and decreases in diversity and abundance of transposable elements. Eusociality may arise through different mechanisms each time, but would likely always involve an increase in the complexity of gene networks. PMID:25977371
Social evolution. Genomic signatures of evolutionary transitions from solitary to group living.
Kapheim, Karen M; Pan, Hailin; Li, Cai; Salzberg, Steven L; Puiu, Daniela; Magoc, Tanja; Robertson, Hugh M; Hudson, Matthew E; Venkat, Aarti; Fischman, Brielle J; Hernandez, Alvaro; Yandell, Mark; Ence, Daniel; Holt, Carson; Yocum, George D; Kemp, William P; Bosch, Jordi; Waterhouse, Robert M; Zdobnov, Evgeny M; Stolle, Eckart; Kraus, F Bernhard; Helbing, Sophie; Moritz, Robin F A; Glastad, Karl M; Hunt, Brendan G; Goodisman, Michael A D; Hauser, Frank; Grimmelikhuijzen, Cornelis J P; Pinheiro, Daniel Guariz; Nunes, Francis Morais Franco; Soares, Michelle Prioli Miranda; Tanaka, Érica Donato; Simões, Zilá Luz Paulino; Hartfelder, Klaus; Evans, Jay D; Barribeau, Seth M; Johnson, Reed M; Massey, Jonathan H; Southey, Bruce R; Hasselmann, Martin; Hamacher, Daniel; Biewer, Matthias; Kent, Clement F; Zayed, Amro; Blatti, Charles; Sinha, Saurabh; Johnston, J Spencer; Hanrahan, Shawn J; Kocher, Sarah D; Wang, Jun; Robinson, Gene E; Zhang, Guojie
2015-06-05
The evolution of eusociality is one of the major transitions in evolution, but the underlying genomic changes are unknown. We compared the genomes of 10 bee species that vary in social complexity, representing multiple independent transitions in social evolution, and report three major findings. First, many important genes show evidence of neutral evolution as a consequence of relaxed selection with increasing social complexity. Second, there is no single road map to eusociality; independent evolutionary transitions in sociality have independent genetic underpinnings. Third, though clearly independent in detail, these transitions do have similar general features, including an increase in constrained protein evolution accompanied by increases in the potential for gene regulation and decreases in diversity and abundance of transposable elements. Eusociality may arise through different mechanisms each time, but would likely always involve an increase in the complexity of gene networks. Copyright © 2015, American Association for the Advancement of Science.
Preimplantation genetic diagnosis and the 'new' eugenics.
King, D S
1999-01-01
Preimplantation genetic diagnosis (PID) is often seen as an improvement upon prenatal testing. I argue that PID may exacerbate the eugenic features of prenatal testing and make possible an expanded form of free-market eugenics. The current practice of prenatal testing is eugenic in that its aim is to reduce the numbers of people with genetic disorders. Due to social pressures and eugenic attitudes held by clinical geneticists in most countries, it results in eugenic outcomes even though no state coercion is involved. I argue that technological advances may soon make PID widely accessible. Because abortion is not involved, and multiple embryos are available, PID is radically more effective as a tool of genetic selection. It will also make possible selection on the basis of non-pathological characteristics, leading, potentially, to a full-blown free-market eugenics. For these reasons, I argue that PID should be strictly regulated. PMID:10226925
Emotion, Cognition, and Mental State Representation in Amygdala and Prefrontal Cortex
Salzman, C. Daniel; Fusi, Stefano
2011-01-01
Neuroscientists have often described cognition and emotion as separable processes implemented by different regions of the brain, such as the amygdala for emotion and the prefrontal cortex for cognition. In this framework, functional interactions between the amygdala and prefrontal cortex mediate emotional influences on cognitive processes such as decision-making, as well as the cognitive regulation of emotion. However, neurons in these structures often have entangled representations, whereby single neurons encode multiple cognitive and emotional variables. Here we review studies using anatomical, lesion, and neurophysiological approaches to investigate the representation and utilization of cognitive and emotional parameters. We propose that these mental state parameters are inextricably linked and represented in dynamic neural networks composed of interconnected prefrontal and limbic brain structures. Future theoretical and experimental work is required to understand how these mental state representations form and how shifts between mental states occur, a critical feature of adaptive cognitive and emotional behavior. PMID:20331363
Substrate specificity of the ubiquitin and Ubl proteases
Ronau, Judith A; Beckmann, John F; Hochstrasser, Mark
2016-01-01
Conjugation and deconjugation of ubiquitin and ubiquitin-like proteins (Ubls) to cellular proteins are highly regulated processes integral to cellular homeostasis. Most often, the C-termini of these small polypeptides are attached to lysine side chains of target proteins by an amide (isopeptide) linkage. Deubiquitinating enzymes (DUBs) and Ubl-specific proteases (ULPs) comprise a diverse group of proteases that recognize and remove ubiquitin and Ubls from their substrates. How DUBs and ULPs distinguish among different modifiers, or different polymeric forms of these modifiers, remains poorly understood. The specificity of ubiquitin/Ubl-deconjugating enzymes for particular substrates depends on multiple factors, ranging from the topography of specific substrate features, as in different polyubiquitin chain types, to structural elements unique to each enzyme. Here we summarize recent structural and biochemical studies that provide insights into mechanisms of substrate specificity among various DUBs and ULPs. We also discuss the unexpected specificities of non-eukaryotic proteases in these families. PMID:27012468
DOE Office of Scientific and Technical Information (OSTI.GOV)
Strickland, Madeleine; Stanley, Ann Marie; Wang, Guangshun
Paralogous enzymes arise from gene duplication events that confer a novel function, although it is unclear how cross-reaction between the original and duplicate protein interaction network is minimized. We investigated HPr:EIsugar and NPr:EINtr, the initial complexes of paralogous phosphorylation cascades involved in sugar import and nitrogen regulation in bacteria, respectively. Although the HPr:EIsugar interaction has been well characterized, involving multiple complexes and transient interactions, the exact nature of the NPr:EINtr complex was unknown. We set out to identify the key features of the interaction by performing binding assays and elucidating the structure of NPr in complex with the phosphorylation domainmore » of EINtr (EINNtr), using a hybrid approach involving X-ray, homology, and sparse nuclear magnetic resonance. We found that the overall fold and active-site structure of the two complexes are conserved in order to maintain productive phosphorylation, however, the interface surface potential differs between the two complexes, which prevents cross-reaction.« less
Radiological features of late-onset lymphoedema in Noonan's syndrome.
Ho, Wan-Ling; Wang, Jou-Kou; Li, Yiu-Wah
2003-03-01
Noonan's syndrome is a multiple congenital anomaly syndrome with diverse manifestations. Lymphatic abnormalities occur in less than 20% of patients. We report a 14-year-old boy who presented with swollen lower limbs and dysmorphic features characteristic of Noonan's syndrome. The radiological features of this unusual case of late-onset lymphoedema in association with Noonan's syndrome are presented.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-06
... be active during all dynamic tests conducted to show compliance with Sec. 25.562. (2) The design and... novel or unusual design feature(s) associated with multiple place and single place side- facing seats... not contain adequate or appropriate safety standards for this design feature. These proposed special...
The β-Arrestins: Multifunctional Regulators of G Protein-coupled Receptors.
Smith, Jeffrey S; Rajagopal, Sudarshan
2016-04-22
The β-arrestins (βarrs) are versatile, multifunctional adapter proteins that are best known for their ability to desensitize G protein-coupled receptors (GPCRs), but also regulate a diverse array of cellular functions. To signal in such a complex fashion, βarrs adopt multiple conformations and are regulated at multiple levels to differentially activate downstream pathways. Recent structural studies have demonstrated that βarrs have a conserved structure and activation mechanism, with plasticity of their structural fold, allowing them to adopt a wide array of conformations. Novel roles for βarrs continue to be identified, demonstrating the importance of these dynamic regulators of cellular signaling. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
Waveform fitting and geometry analysis for full-waveform lidar feature extraction
NASA Astrophysics Data System (ADS)
Tsai, Fuan; Lai, Jhe-Syuan; Cheng, Yi-Hsiu
2016-10-01
This paper presents a systematic approach that integrates spline curve fitting and geometry analysis to extract full-waveform LiDAR features for land-cover classification. The cubic smoothing spline algorithm is used to fit the waveform curve of the received LiDAR signals. After that, the local peak locations of the waveform curve are detected using a second derivative method. According to the detected local peak locations, commonly used full-waveform features such as full width at half maximum (FWHM) and amplitude can then be obtained. In addition, the number of peaks, time difference between the first and last peaks, and the average amplitude are also considered as features of LiDAR waveforms with multiple returns. Based on the waveform geometry, dynamic time-warping (DTW) is applied to measure the waveform similarity. The sum of the absolute amplitude differences that remain after time-warping can be used as a similarity feature in a classification procedure. An airborne full-waveform LiDAR data set was used to test the performance of the developed feature extraction method for land-cover classification. Experimental results indicate that the developed spline curve- fitting algorithm and geometry analysis can extract helpful full-waveform LiDAR features to produce better land-cover classification than conventional LiDAR data and feature extraction methods. In particular, the multiple-return features and the dynamic time-warping index can improve the classification results significantly.
A judicious multiple hypothesis tracker with interacting feature extraction
NASA Astrophysics Data System (ADS)
McAnanama, James G.; Kirubarajan, T.
2009-05-01
The multiple hypotheses tracker (mht) is recognized as an optimal tracking method due to the enumeration of all possible measurement-to-track associations, which does not involve any approximation in its original formulation. However, its practical implementation is limited by the NP-hard nature of this enumeration. As a result, a number of maintenance techniques such as pruning and merging have been proposed to bound the computational complexity. It is possible to improve the performance of a tracker, mht or not, using feature information (e.g., signal strength, size, type) in addition to kinematic data. However, in most tracking systems, the extraction of features from the raw sensor data is typically independent of the subsequent association and filtering stages. In this paper, a new approach, called the Judicious Multi Hypotheses Tracker (jmht), whereby there is an interaction between feature extraction and the mht, is presented. The measure of the quality of feature extraction is input into measurement-to-track association while the prediction step feeds back the parameters to be used in the next round of feature extraction. The motivation for this forward and backward interaction between feature extraction and tracking is to improve the performance in both steps. This approach allows for a more rational partitioning of the feature space and removes unlikely features from the assignment problem. Simulation results demonstrate the benefits of the proposed approach.
ARNetMiT R Package: association rules based gene co-expression networks of miRNA targets.
Özgür Cingiz, M; Biricik, G; Diri, B
2017-03-31
miRNAs are key regulators that bind to target genes to suppress their gene expression level. The relations between miRNA-target genes enable users to derive co-expressed genes that may be involved in similar biological processes and functions in cells. We hypothesize that target genes of miRNAs are co-expressed, when they are regulated by multiple miRNAs. With the usage of these co-expressed genes, we can theoretically construct co-expression networks (GCNs) related to 152 diseases. In this study, we introduce ARNetMiT that utilize a hash based association rule algorithm in a novel way to infer the GCNs on miRNA-target genes data. We also present R package of ARNetMiT, which infers and visualizes GCNs of diseases that are selected by users. Our approach assumes miRNAs as transactions and target genes as their items. Support and confidence values are used to prune association rules on miRNA-target genes data to construct support based GCNs (sGCNs) along with support and confidence based GCNs (scGCNs). We use overlap analysis and the topological features for the performance analysis of GCNs. We also infer GCNs with popular GNI algorithms for comparison with the GCNs of ARNetMiT. Overlap analysis results show that ARNetMiT outperforms the compared GNI algorithms. We see that using high confidence values in scGCNs increase the ratio of the overlapped gene-gene interactions between the compared methods. According to the evaluation of the topological features of ARNetMiT based GCNs, the degrees of nodes have power-law distribution. The hub genes discovered by ARNetMiT based GCNs are consistent with the literature.
Benga, L; Goethe, R; Rohde, M; Valentin-Weigand, P
2004-09-01
Streptococcus suis is a porcine and human pathogen causing invasive diseases, such as meningitis or septicaemia. Host cell interactions of S. suis have been studied mainly with serotype 2 strains, but multiple capsular serotypes as well as non-typeable strains exist with diverse virulence features. At present, S. suis is considered an extracellular pathogen. However, whether or not it can also invade host cells is a matter of controversial discussions. We have assessed adherence and invasion of S. suis for HEp-2 epithelial cells by comparing 10 serotype 2 strains and four non-typeable (NT) strains. Only the NT strains and a non-encapsulated serotype 2 mutant strain, but none of the serotype 2 strains, adhered strongly and were invasive. Invasion seemed to be affected by environmental signals, as suggested from comparison of strains grown in different media. Further phenotypic and genotypic characterization revealed a high diversity among the different strains. Electron microscopic analysis of invasion of selected invasive NT strains indicated different uptake mechanisms. One strain induced large invaginations comparable to those seen in 'caveolae' mediated uptake, whereas invasion of the other strains was accompanied by formation of filipodia-like membrane protrusions. Invasion of all strains, however, was similarly susceptible to hypertonic sucrose, which inhibits receptor-mediated endocytosis. Irrespective of the uptake pathway, streptococci resided in acidified phago-lysosome like vacuoles. All strains, except one, survived intracellularly as well as extracellular acidic conditions. Survival seemed to be associated with the AdiS protein, an environmentally regulated arginine deiminase of S. suis. Concluding, invasion and survival of NT strains of S. suis in epithelial cells revealed novel evidence that S. suis exhibits a broad variety of virulence-associated features depending on genetic variation and regulation.
Initiation of DNA replication: functional and evolutionary aspects
Bryant, John A.; Aves, Stephen J.
2011-01-01
Background The initiation of DNA replication is a very important and highly regulated step in the cell division cycle. It is of interest to compare different groups of eukaryotic organisms (a) to identify the essential molecular events that occur in all eukaryotes, (b) to start to identify higher-level regulatory mechanisms that are specific to particular groups and (c) to gain insights into the evolution of initiation mechanisms. Scope This review features a wide-ranging literature survey covering replication origins, origin recognition and usage, modification of origin usage (especially in response to plant hormones), assembly of the pre-replication complex, loading of the replisome, genomics, and the likely origin of these mechanisms and proteins in Archaea. Conclusions In all eukaryotes, chromatin is organized for DNA replication as multiple replicons. In each replicon, replication is initiated at an origin. With the exception of those in budding yeast, replication origins, including the only one to be isolated so far from a plant, do not appear to embody a specific sequence; rather, they are AT-rich, with short tracts of locally bent DNA. The proteins involved in initiation are remarkably similar across the range of eukaryotes. Nevertheless, their activity may be modified by plant-specific mechanisms, including regulation by plant hormones. The molecular features of initiation are seen in a much simpler form in the Archaea. In particular, where eukaryotes possess a number of closely related proteins that form ‘hetero-complexes’ (such as the origin recognition complex and the MCM complex), archaeans typically possess one type of protein (e.g. one MCM) that forms a homo-complex. This suggests that several eukaryotic initiation proteins have evolved from archaeal ancestors by gene duplication and divergence. PMID:21508040
The metabotropic glutamate receptors: structure, activation mechanism and pharmacology.
Pin, Jean-Philippe; Acher, Francine
2002-06-01
The metabotropic glutamate receptors are G-protein coupled receptors (GPCR) involved in the regulation of many synapses, including most glutamatergic fast excitatory synapses. Eight subtypes have been identified that can be classified into three groups. The molecular characterization of these receptors revealed proteins much more complex than any other GPCRs. They are composed of a Venus Flytrap (VFT) module where glutamate binds, connected to a heptahelical domain responsible for G-protein coupling. Recent data including the structure of the VFT module determined with and without glutamate, indicate that these receptors function as dimers. Moreover a number of intracellular proteins can regulate their targeting and transduction mechanism. Such structural features of mGlu receptors offer multiple possibilities for synthetic compounds to modulate their activity. In addition to agonists and competitive antagonists acting at the glutamate binding site, a number of non-competitive antagonists with inverse agonist activity, and positive allosteric modulators have been discovered. These later compounds share specific properties that make them good candidates for therapeutic applications. First, their non-amino acid structure makes them pass more easily the blood brain barrier. Second, they are much more selective than any other compound identified so far, being the first subtype selective molecules. Third, for the negative modulators, their non competitive mechanism of action makes them relatively unaffected by high concentrations of glutamate that may be present in disease states (e.g. stroke, epilepsy, neuropathic pain, etc.). Fourth, like the benzodiazepines acting at the GABA(A) receptors, the positive modulators offer a new way to increase the activity of these receptors in vivo, with a low risk of inducing their desensitization. The present review article focuses on the specific structural features of these receptors and highlights the various possibilities these offer for drug development.
Real and Non-Real Time Interaction: Unraveling Multiple Threads of Discourse.
ERIC Educational Resources Information Center
Black, Steven D.; And Others
1983-01-01
Compares discourse in several different media and finds that strict sequentiality is not a universal feature of discourse. Concludes that discourse in nonreal time media, such as electronic message systems, has multiple threads. (FL)
Multiple Sclerosis: Hope Through Research | NIH MedlinePlus the Magazine
... turn Javascript on. Feature: Multiple Sclerosis Hope Through Research Past Issues / Spring 2012 Table of Contents Neil ... a champion for those with MS and for research to find the causes and cures for the ...
Multiple Sclerosis, Personal Stories | NIH MedlinePlus the Magazine
... please turn Javascript on. Feature: Multiple Sclerosis Personal Stories: Nicole Lemelle, Iris Young, Michael Anthony, John Cantú ... Better," an Internet video series that brings the story of MS to life through the eyes of ...
[Advances in the study of neuroendocrinological regulation of kisspeptin in fish reproduction].
Zhuo, Qi
2013-10-01
Kisspeptin, a key factor in the neuroendocrinological regulation of animal reproduction, is a peptide product encoded by kiss genes, which act as the natural ligand of GPR54. Over the last decade, multiple functional molecular forms of kisspeptin have been found in vertebrate species. In fish, the major molecular structural form is kisspeptin-10. The kisspeptin/GPR54 system has multiple important functions in reproduction. This review provides an overview of our current knowledge on kisspeptin and its role in regulating fish reproductive, including the distribution and location of kisspeptin neurons in the brain, the molecular polymorphism of fish kisspeptin, functional diversity, the molecular mechanism of fish reproductive regulation, and the molecular evolution of kisspeptin as well as the co-regulation of fish reproduction by kisspeptin and other functional molecules. Perspectives on the future of kisspeptin regulation in fish reproduction are also highlighted.
Visualization of Multi-mission Astronomical Data with ESASky
NASA Astrophysics Data System (ADS)
Baines, Deborah; Giordano, Fabrizio; Racero, Elena; Salgado, Jesús; López Martí, Belén; Merín, Bruno; Sarmiento, María-Henar; Gutiérrez, Raúl; Ortiz de Landaluce, Iñaki; León, Ignacio; de Teodoro, Pilar; González, Juan; Nieto, Sara; Segovia, Juan Carlos; Pollock, Andy; Rosa, Michael; Arviset, Christophe; Lennon, Daniel; O'Mullane, William; de Marchi, Guido
2017-02-01
ESASky is a science-driven discovery portal to explore the multi-wavelength sky and visualize and access multiple astronomical archive holdings. The tool is a web application that requires no prior knowledge of any of the missions involved and gives users world-wide simplified access to the highest-level science data products from multiple astronomical space-based astronomy missions plus a number of ESA source catalogs. The first public release of ESASky features interfaces for the visualization of the sky in multiple wavelengths, the visualization of query results summaries, and the visualization of observations and catalog sources for single and multiple targets. This paper describes these features within ESASky, developed to address use cases from the scientific community. The decisions regarding the visualization of large amounts of data and the technologies used were made to maximize the responsiveness of the application and to keep the tool as useful and intuitive as possible.
Clinical features of multiple organ failure in the elderly.
Wang, S W; Fan, L
1990-09-01
Multiple organ failure (MOF) in the elderly is a new syndrome evolved from multiple organ chronic diseases on the basis of multiple organ dysfunction in the aged. Its characteristics are clinically different from those of MOF due to serious trauma. 122 cases of MOF were analysed retrospectively and their clinical features discussed. MOF with a long course is the natural presentation in many of the elderly before death. Its main precipitating factors are pulmonary infection, metastatic carcinoma, cardiac attack, etc. The sequence of a failure in organs is heart, lung, kidney, liver, etc. The mortality is similar to that of MOF due to trauma. However, those suffering from 4-organ failure can still survive, and instead, the renal failure can be mostly fatal. More attention should be paid to the prevention of MOF in the elderly so as to shorten its developing course.
Nagano, Yasuhiko; Matsuo, Kenichi; Gorai, Katsuya; Sugimori, Kazuya; Kunisaki, Chikara; Ike, Hideyuki; Tanaka, Katsuaki; Imada, Toshio; Shimada, Hiroshi
2006-01-01
We present a case of a 72-year-old man with a common bile duct cancer, who was initially believed to have multiple liver metastases based on computed tomography findings, and in whom magnetic resonance cholangiography (MRC) revealed a diagnosis of bile duct hamartomas. At exploration for pancreaticoduodenectomy, liver palpation revealed disseminated nodules at the surface of the liver. These nodules showed gray-white nodular lesions of about 0.5 cm in diameter scattered on the surface of both liver lobes, which were looked like multiple liver metastases from bile duct cancer. Frozen section of the liver biopsy disclosed multiple bile ducts with slightly dilated lumens embedded in the collagenous stroma characteristics of multiple bile duct hamartomas (BDHs). Only two reports have described the MRC features of bile duct hamartomas. Of all imaging procedures, MRC provides the most relevant features for the imaging diagnosis of bile duct hamartomas. PMID:16534895
Light-Regulated Electrochemical Sensor Array for Efficiently Discriminating Hazardous Gases.
Liang, Hongqiu; Zhang, Xin; Sun, Huihui; Jin, Han; Zhang, Xiaowei; Jin, Qinghui; Zou, Jie; Haick, Hossam; Jian, Jiawen
2017-10-27
Inadequate detection limit and unsatisfactory discrimination features remain the challenging issues for the widely applied electrochemical gas sensors. Quite recently, we confirmed that light-regulated electrochemical reaction significantly enhanced the electrocatalytic activity, and thereby can potentially extend the detection limit to the parts per billion (ppb) level. Nevertheless, impact of the light-regulated electrochemical reaction on response selectivity has been discussed less. Herein, we systematically report on the effect of illumination on discrimination features via design and fabrication of a light-regulated electrochemical sensor array. Upon illumination (light on), response signal to the examined gases (C 3 H 6 , NO, and CO) is selectively enhanced, resulting in the sensor array demonstrating disparate response patterns when compared with that of the sensor array operated at light off. Through processing all the response patterns derived from both light on and light off with a pattern recognition algorithm, a satisfactory discrimination feature is observed. In contrast, apparent mutual interference between NO and CO is found when the sensor array is solely operated without illumination. The impact mechanism of the illumination is studied and it is deduced that the effect of the illumination on the discriminating features can be mainly attributed to the competition of electrocatalytic activity and gas-phase reactivity. If the enhanced electrocatalytic activity (to specific gas) dominates the whole sensing progress, enhancements in the corresponding response signal would be observed upon illumination. Otherwise, illumination gives a negligible impact. Hence, the response signal to part of the examined gases is selectively enhanced by illumination. Conclusively, light-regulated electrochemical reaction would provide an efficient approach to designing future smart sensing devices.
NASA Astrophysics Data System (ADS)
Chouhan, N. S.; Singh, M. K.; Singh, V.; Pathak, R.
2013-12-01
Interactions of 84Kr36 having kinetic energy around 1 GeV per nucleon with NIKFI BR-2 nuclear emulsion detector's target reveal some of the important features of compound multiplicity. Present article shows that width of compound multiplicity distributions and value of mean compound multiplicity have linear relationship with mass number of the projectile colliding system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rao, A; Net, J; Brandt, K
2015-06-15
Purpose: To determine associations between radiologist-annotated MRI features and genomic measurements in breast invasive carcinoma (BRCA) from the Cancer Genome Atlas (TCGA). Methods: 98 TCGA patients with BRCA were assessed by a panel of radiologists (TCGA Breast Phenotype Research Group) based on a variety of mass and non-mass features according to the Breast Imaging Reporting and Data System (BI-RADS). Batch corrected gene expression data was obtained from the TCGA Data Portal. The Kruskal-Wallis test was used to assess correlations between categorical image features and tumor-derived genomic features (such as gene pathway activity, copy number and mutation characteristics). Image-derived features weremore » also correlated with estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2/neu) status. Multiple hypothesis correction was done using Benjamini-Hochberg FDR. Associations at an FDR of 0.1 were selected for interpretation. Results: ER status was associated with rim enhancement and peritumoral edema. PR status was associated with internal enhancement. Several components of the PI3K/Akt pathway were associated with rim enhancement as well as heterogeneity. In addition, several components of cell cycle regulation and cell division were associated with imaging characteristics.TP53 and GATA3 mutations were associated with lesion size. MRI features associated with TP53 mutation status were rim enhancement and peritumoral edema. Rim enhancement was associated with activity of RB1, PIK3R1, MAP3K1, AKT1,PI3K, and PIK3CA. Margin status was associated with HIF1A/ARNT, Ras/ GTP/PI3K, KRAS, and GADD45A. Axillary lymphadenopathy was associated with RB1 and BCL2L1. Peritumoral edema was associated with Aurora A/GADD45A, BCL2L1, CCNE1, and FOXA1. Heterogeneous internal nonmass enhancement was associated with EGFR, PI3K, AKT1, HF/MET, and EGFR/Erbb4/neuregulin 1. Diffuse nonmass enhancement was associated with HGF/MET/MUC20/SHIP, and HGF/MET/RANBP9. Linear nonmass enhancement was associated with PIK3R1 and AKT activity. Conclusion: MRI-genomic association analysis revealed that several BRCA-associated gene features were associated with radiologist-annotated image features.« less
Loss of Asxl1 leads to myelodysplastic syndrome-like disease in mice.
Wang, Jiapeng; Li, Zhaomin; He, Yongzheng; Pan, Feng; Chen, Shi; Rhodes, Steven; Nguyen, Lihn; Yuan, Jin; Jiang, Li; Yang, Xianlin; Weeks, Ophelia; Liu, Ziyue; Zhou, Jiehao; Ni, Hongyu; Cai, Chen-Leng; Xu, Mingjiang; Yang, Feng-Chun
2014-01-23
ASXL1 is mutated/deleted with high frequencies in multiple forms of myeloid malignancies, and its alterations are associated with poor prognosis. De novo ASXL1 mutations cause Bohring-Opitz syndrome characterized by multiple congenital malformations. We show that Asxl1 deletion in mice led to developmental abnormalities including dwarfism, anophthalmia, and 80% embryonic lethality. Surviving Asxl1(-/-) mice lived for up to 42 days and developed features of myelodysplastic syndrome (MDS), including dysplastic neutrophils and multiple lineage cytopenia. Asxl1(-/-) mice had a reduced hematopoietic stem cell (HSC) pool, and Asxl1(-/-) HSCs exhibited decreased hematopoietic repopulating capacity, with skewed cell differentiation favoring granulocytic lineage. Asxl1(+/-) mice also developed mild MDS-like disease, which could progress to MDS/myeloproliferative neoplasm, demonstrating a haploinsufficient effect of Asxl1 in the pathogenesis of myeloid malignancies. Asxl1 loss led to an increased apoptosis and mitosis in Lineage(-)c-Kit(+) (Lin(-)c-Kit(+)) cells, consistent with human MDS. Furthermore, Asxl1(-/-) Lin(-)c-Kit(+) cells exhibited decreased global levels of H3K27me3 and H3K4me3 and altered expression of genes regulating apoptosis (Bcl2, Bcl2l12, Bcl2l13). Collectively, we report a novel ASXL1 murine model that recapitulates human myeloid malignancies, implying that Asxl1 functions as a tumor suppressor to maintain hematopoietic cell homeostasis. Future work is necessary to clarify the contribution of microenvironment to the hematopoietic phenotypes observed in the constitutional Asxl1(-/-) mice.
Frémin, Christophe; Bessard, Anne; Ezan, Frédéric; Gailhouste, Luc; Régeard, Morgane; Le Seyec, Jacques; Gilot, David; Pagès, Gilles; Pouysségur, Jacques; Langouët, Sophie; Baffet, Georges
2009-03-01
We investigated the specific role of the mitogen-activated protein kinase (MAPK) extracellular signal-regulated kinase 1 (ERK1)/ERK2 pathway in the regulation of multiple cell cycles and long-term survival of normal hepatocytes. An early and sustained epidermal growth factor (EGF)-dependent MAPK activation greatly improved the potential of cell proliferation. In this condition, almost 100% of the hepatocytes proliferated, and targeting ERK1 or ERK2 via RNA interference revealed the specific involvement of ERK2 in this regulation. However, once their first cell cycle was performed, hepatocytes failed to undergo a second round of replication and stayed blocked in G1 phase. We demonstrated that sustained EGF-dependent activation of the MAPK/ERK kinase (MEK)/ERK pathway was involved in this blockage as specific transient inhibition of the cascade repotentiated hepatocytes to perform a new wave of replication and multiple cell cycles. We identified this mechanism by showing that this blockage was in part supported by ERK2-dependent p21 expression. Moreover, continuous MEK inhibition was associated with a lower apoptotic engagement, leading to an improvement of survival up to 3 weeks. Using RNA interference and ERK1 knockout mice, we extended these results by showing that this improved survival was due to the specific inhibition of ERK1 expression/phosphorylation and did not involve ERK2. Our results emphasize that transient MAPK inhibition allows multiple cell cycles in primary cultures of hepatocytes and that ERK2 has a key role in the regulation of S phase entry. Moreover, we revealed a major and distinct role of ERK1 in the regulation of hepatocyte survival. Taken together, our results represent an important advance in understanding long-term survival and cell cycle regulation of hepatocytes.
Ground-truthing AVIRIS mineral mapping at Cuprite, Nevada
NASA Technical Reports Server (NTRS)
Swayze, Gregg; Clark, Roger N.; Kruse, Fred; Sutley, Steve; Gallagher, Andrea
1992-01-01
Mineral abundance maps of 18 minerals were made of the Cuprite Mining District using 1990 AVIRIS data and the Multiple Spectral Feature Mapping Algorithm (MSFMA) as discussed in Clark et al. This technique uses least-squares fitting between a scaled laboratory reference spectrum and ground calibrated AVIRIS data for each pixel. Multiple spectral features can be fitted for each mineral and an unlimited number of minerals can be mapped simultaneously. Quality of fit and depth from continuum numbers for each mineral are calculated for each pixel and the results displayed as a multicolor image.
Pareés, Isabel
2017-11-01
This clinical commentary discusses the phenomenology and treatment of paroxysmal dyskinesia in patients with multiple sclerosis. It calls for a consensus on the definition as well as for larger studies to better understand this unusual clinical association.
77 FR 23601 - Special Local Regulations and Safety Zones; Recurring Events in Northern New England
Federal Register 2010, 2011, 2012, 2013, 2014
2012-04-20
... Multiple Sclerosis Regatta......... Event Type: Regatta and Sailboat Race. Sponsor: Maine Chapter, Multiple...'' W. 8.7 Multiple Sclerosis Harborfest Event Type: Power Boat Tugboat Race. Race. Sponsor: Maine Chapter, National Multiple Sclerosis Society. Date: A one day event on Sunday during the third week of...
Forn, Marta; Muñoz, Mar; Tauriello, Daniele V F; Merlos-Suárez, Anna; Rodilla, Verónica; Bigas, Anna; Batlle, Eduard; Jordà, Mireia; Peinado, Miguel A
2013-12-01
DNA methylation and chromatin remodeling are frequently implicated in the silencing of genes involved in carcinogenesis. Long Range Epigenetic Silencing (LRES) is a mechanism of gene inactivation that affects multiple contiguous CpG islands and has been described in different human cancer types. However, it is unknown whether there is a coordinated regulation of the genes embedded in these regions in normal cells and in early stages of tumor progression. To better characterize the molecular events associated with the regulation and remodeling of these regions we analyzed two regions undergoing LRES in human colon cancer in the mouse model. We demonstrate that LRES also occurs in murine cancer in vivo and mimics the molecular features of the human phenomenon, namely, downregulation of gene expression, acquisition of inactive histone marks, and DNA hypermethylation of specific CpG islands. The genes embedded in these regions showed a dynamic and autonomous regulation during mouse intestinal cell differentiation, indicating that, in the framework considered here, the coordinated regulation in LRES is restricted to cancer. Unexpectedly, benign adenomas in Apc(Min/+) mice showed overexpression of most of the genes affected by LRES in cancer, which suggests that the repressive remodeling of the region is a late event. Chromatin immunoprecipitation analysis of the transcriptional insulator CTCF in mouse colon cancer cells revealed disrupted chromatin domain boundaries as compared with normal cells. Malignant regression of cancer cells by in vitro differentiation resulted in partial reversion of LRES and gain of CTCF binding. We conclude that genes in LRES regions are plastically regulated in cell differentiation and hyperproliferation, but are constrained to a coordinated repression by abolishing boundaries and the autonomous regulation of chromatin domains in cancer cells. Copyright © 2013 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
Mutations in THAP11 cause an inborn error of cobalamin metabolism and developmental abnormalities.
Quintana, Anita M; Yu, Hung-Chun; Brebner, Alison; Pupavac, Mihaela; Geiger, Elizabeth A; Watson, Abigail; Castro, Victoria L; Cheung, Warren; Chen, Shu-Huang; Watkins, David; Pastinen, Tomi; Skovby, Flemming; Appel, Bruce; Rosenblatt, David S; Shaikh, Tamim H
2017-08-01
CblX (MIM309541) is an X-linked recessive disorder characterized by defects in cobalamin (vitamin B12) metabolism and other developmental defects. Mutations in HCFC1, a transcriptional co-regulator which interacts with multiple transcription factors, have been associated with cblX. HCFC1 regulates cobalamin metabolism via the regulation of MMACHC expression through its interaction with THAP11, a THAP domain-containing transcription factor. The HCFC1/THAP11 complex potentially regulates genes involved in diverse cellular functions including cell cycle, proliferation, and transcription. Thus, it is likely that mutation of THAP11 also results in biochemical and other phenotypes similar to those observed in patients with cblX. We report a patient who presented with clinical and biochemical phenotypic features that overlap cblX, but who does not have any mutations in either MMACHC or HCFC1. We sequenced THAP11 by Sanger sequencing and discovered a potentially pathogenic, homozygous variant, c.240C > G (p.Phe80Leu). Functional analysis in the developing zebrafish embryo demonstrated that both THAP11 and HCFC1 regulate the proliferation and differentiation of neural precursors, suggesting important roles in normal brain development. The loss of THAP11 in zebrafish embryos results in craniofacial abnormalities including the complete loss of Meckel's cartilage, the ceratohyal, and all of the ceratobranchial cartilages. These data are consistent with our previous work that demonstrated a role for HCFC1 in vertebrate craniofacial development. High throughput RNA-sequencing analysis reveals several overlapping gene targets of HCFC1 and THAP11. Thus, both HCFC1 and THAP11 play important roles in the regulation of cobalamin metabolism as well as other pathways involved in early vertebrate development. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Attallah, Omneya; Karthikesalingam, Alan; Holt, Peter Je; Thompson, Matthew M; Sayers, Rob; Bown, Matthew J; Choke, Eddie C; Ma, Xianghong
2017-11-01
Feature selection is essential in medical area; however, its process becomes complicated with the presence of censoring which is the unique character of survival analysis. Most survival feature selection methods are based on Cox's proportional hazard model, though machine learning classifiers are preferred. They are less employed in survival analysis due to censoring which prevents them from directly being used to survival data. Among the few work that employed machine learning classifiers, partial logistic artificial neural network with auto-relevance determination is a well-known method that deals with censoring and perform feature selection for survival data. However, it depends on data replication to handle censoring which leads to unbalanced and biased prediction results especially in highly censored data. Other methods cannot deal with high censoring. Therefore, in this article, a new hybrid feature selection method is proposed which presents a solution to high level censoring. It combines support vector machine, neural network, and K-nearest neighbor classifiers using simple majority voting and a new weighted majority voting method based on survival metric to construct a multiple classifier system. The new hybrid feature selection process uses multiple classifier system as a wrapper method and merges it with iterated feature ranking filter method to further reduce features. Two endovascular aortic repair datasets containing 91% censored patients collected from two centers were used to construct a multicenter study to evaluate the performance of the proposed approach. The results showed the proposed technique outperformed individual classifiers and variable selection methods based on Cox's model such as Akaike and Bayesian information criterions and least absolute shrinkage and selector operator in p values of the log-rank test, sensitivity, and concordance index. This indicates that the proposed classifier is more powerful in correctly predicting the risk of re-intervention enabling doctor in selecting patients' future follow-up plan.
Classifying transcription factor targets and discovering relevant biological features
Holloway, Dustin T; Kon, Mark; DeLisi, Charles
2008-01-01
Background An important goal in post-genomic research is discovering the network of interactions between transcription factors (TFs) and the genes they regulate. We have previously reported the development of a supervised-learning approach to TF target identification, and used it to predict targets of 104 transcription factors in yeast. We now include a new sequence conservation measure, expand our predictions to include 59 new TFs, introduce a web-server, and implement an improved ranking method to reveal the biological features contributing to regulation. The classifiers combine 8 genomic datasets covering a broad range of measurements including sequence conservation, sequence overrepresentation, gene expression, and DNA structural properties. Principal Findings (1) Application of the method yields an amplification of information about yeast regulators. The ratio of total targets to previously known targets is greater than 2 for 11 TFs, with several having larger gains: Ash1(4), Ino2(2.6), Yaf1(2.4), and Yap6(2.4). (2) Many predicted targets for TFs match well with the known biology of their regulators. As a case study we discuss the regulator Swi6, presenting evidence that it may be important in the DNA damage response, and that the previously uncharacterized gene YMR279C plays a role in DNA damage response and perhaps in cell-cycle progression. (3) A procedure based on recursive-feature-elimination is able to uncover from the large initial data sets those features that best distinguish targets for any TF, providing clues relevant to its biology. An analysis of Swi6 suggests a possible role in lipid metabolism, and more specifically in metabolism of ceramide, a bioactive lipid currently being investigated for anti-cancer properties. (4) An analysis of global network properties highlights the transcriptional network hubs; the factors which control the most genes and the genes which are bound by the largest set of regulators. Cell-cycle and growth related regulators dominate the former; genes involved in carbon metabolism and energy generation dominate the latter. Conclusion Postprocessing of regulatory-classifier results can provide high quality predictions, and feature ranking strategies can deliver insight into the regulatory functions of TFs. Predictions are available at an online web-server, including the full transcriptional network, which can be analyzed using VisAnt network analysis suite. Reviewers This article was reviewed by Igor Jouline, Todd Mockler(nominated by Valerian Dolja), and Sandor Pongor. PMID:18513408
Abrams, Daniel A; Nicol, Trent; White-Schwoch, Travis; Zecker, Steven; Kraus, Nina
2017-05-01
Speech perception relies on a listener's ability to simultaneously resolve multiple temporal features in the speech signal. Little is known regarding neural mechanisms that enable the simultaneous coding of concurrent temporal features in speech. Here we show that two categories of temporal features in speech, the low-frequency speech envelope and periodicity cues, are processed by distinct neural mechanisms within the same population of cortical neurons. We measured population activity in primary auditory cortex of anesthetized guinea pig in response to three variants of a naturally produced sentence. Results show that the envelope of population responses closely tracks the speech envelope, and this cortical activity more closely reflects wider bandwidths of the speech envelope compared to narrow bands. Additionally, neuronal populations represent the fundamental frequency of speech robustly with phase-locked responses. Importantly, these two temporal features of speech are simultaneously observed within neuronal ensembles in auditory cortex in response to clear, conversation, and compressed speech exemplars. Results show that auditory cortical neurons are adept at simultaneously resolving multiple temporal features in extended speech sentences using discrete coding mechanisms. Copyright © 2017 Elsevier B.V. All rights reserved.
A novel visual saliency analysis model based on dynamic multiple feature combination strategy
NASA Astrophysics Data System (ADS)
Lv, Jing; Ye, Qi; Lv, Wen; Zhang, Libao
2017-06-01
The human visual system can quickly focus on a small number of salient objects. This process was known as visual saliency analysis and these salient objects are called focus of attention (FOA). The visual saliency analysis mechanism can be used to extract the salient regions and analyze saliency of object in an image, which is time-saving and can avoid unnecessary costs of computing resources. In this paper, a novel visual saliency analysis model based on dynamic multiple feature combination strategy is introduced. In the proposed model, we first generate multi-scale feature maps of intensity, color and orientation features using Gaussian pyramids and the center-surround difference. Then, we evaluate the contribution of all feature maps to the saliency map according to the area of salient regions and their average intensity, and attach different weights to different features according to their importance. Finally, we choose the largest salient region generated by the region growing method to perform the evaluation. Experimental results show that the proposed model cannot only achieve higher accuracy in saliency map computation compared with other traditional saliency analysis models, but also extract salient regions with arbitrary shapes, which is of great value for the image analysis and understanding.
Feature Interactions Enable Decoding of Sensorimotor Transformations for Goal-Directed Movement
Barany, Deborah A.; Della-Maggiore, Valeria; Viswanathan, Shivakumar; Cieslak, Matthew
2014-01-01
Neurophysiology and neuroimaging evidence shows that the brain represents multiple environmental and body-related features to compute transformations from sensory input to motor output. However, it is unclear how these features interact during goal-directed movement. To investigate this issue, we examined the representations of sensory and motor features of human hand movements within the left-hemisphere motor network. In a rapid event-related fMRI design, we measured cortical activity as participants performed right-handed movements at the wrist, with either of two postures and two amplitudes, to move a cursor to targets at different locations. Using a multivoxel analysis technique with rigorous generalization tests, we reliably distinguished representations of task-related features (primarily target location, movement direction, and posture) in multiple regions. In particular, we identified an interaction between target location and movement direction in the superior parietal lobule, which may underlie a transformation from the location of the target in space to a movement vector. In addition, we found an influence of posture on primary motor, premotor, and parietal regions. Together, these results reveal the complex interactions between different sensory and motor features that drive the computation of sensorimotor transformations. PMID:24828640
Mouse epileptic seizure detection with multiple EEG features and simple thresholding technique
NASA Astrophysics Data System (ADS)
Tieng, Quang M.; Anbazhagan, Ashwin; Chen, Min; Reutens, David C.
2017-12-01
Objective. Epilepsy is a common neurological disorder characterized by recurrent, unprovoked seizures. The search for new treatments for seizures and epilepsy relies upon studies in animal models of epilepsy. To capture data on seizures, many applications require prolonged electroencephalography (EEG) with recordings that generate voluminous data. The desire for efficient evaluation of these recordings motivates the development of automated seizure detection algorithms. Approach. A new seizure detection method is proposed, based on multiple features and a simple thresholding technique. The features are derived from chaos theory, information theory and the power spectrum of EEG recordings and optimally exploit both linear and nonlinear characteristics of EEG data. Main result. The proposed method was tested with real EEG data from an experimental mouse model of epilepsy and distinguished seizures from other patterns with high sensitivity and specificity. Significance. The proposed approach introduces two new features: negative logarithm of adaptive correlation integral and power spectral coherence ratio. The combination of these new features with two previously described features, entropy and phase coherence, improved seizure detection accuracy significantly. Negative logarithm of adaptive correlation integral can also be used to compute the duration of automatically detected seizures.
Neural basis for dynamic updating of object representation in visual working memory.
Takahama, Sachiko; Miyauchi, Satoru; Saiki, Jun
2010-02-15
In real world, objects have multiple features and change dynamically. Thus, object representations must satisfy dynamic updating and feature binding. Previous studies have investigated the neural activity of dynamic updating or feature binding alone, but not both simultaneously. We investigated the neural basis of feature-bound object representation in a dynamically updating situation by conducting a multiple object permanence tracking task, which required observers to simultaneously process both the maintenance and dynamic updating of feature-bound objects. Using an event-related design, we separated activities during memory maintenance and change detection. In the search for regions showing selective activation in dynamic updating of feature-bound objects, we identified a network during memory maintenance that was comprised of the inferior precentral sulcus, superior parietal lobule, and middle frontal gyrus. In the change detection period, various prefrontal regions, including the anterior prefrontal cortex, were activated. In updating object representation of dynamically moving objects, the inferior precentral sulcus closely cooperates with a so-called "frontoparietal network", and subregions of the frontoparietal network can be decomposed into those sensitive to spatial updating and feature binding. The anterior prefrontal cortex identifies changes in object representation by comparing memory and perceptual representations rather than maintaining object representations per se, as previously suggested. Copyright 2009 Elsevier Inc. All rights reserved.
Palaeohydrology of a 3D-maze cave (Hermannshöhle, Lower Austria)
NASA Astrophysics Data System (ADS)
Schober, Andrea; Plan, Lukas
2013-04-01
The 4.4 km-long Hermannshöhle (located in Kirchberg/Wechsel, Lower Austria) is one of the largest caves in the Lower Austroalpine Unit. It is developed in an isolated block of carbonate marble, taking up only 140 x 160 m of ground area and 73 m of elevation difference. The cave is unusual in two respects: (a) its dense network of corridors is arranged in a three-dimensional maze and (b) the most outstanding macro- and micromorphologic features were caused by paragenesis. Speleothems are abundant throughout the cave comprising flowstones, dripstones, helictites, popcorn, calcite rafts, a shield, and moonmilk. Even though most passages are canyon-shaped, the cave shows exclusively phreatic features. Sediment fills are abundant as well, mostly covering the floor of passages to an unknown depth, containing mainly allochthonous material, i.e. schists and gneisses. Besides some vadose dripwater the cave is dry today. A conspicuous feature is the lack of a single water path and instead a maze with multiple flow paths formed. Another interesting feature is that one part of the cave developed below the nearby Ramsbach brook but is still dry. There are small ponors reported from the Ramsbach brook (which were observed during river regulation) indicating an actively draining karst system, which is not yet explored. The aim of this study was to enlighten the palaeohydrology of this cave using morphological and sedimentological observations as well as U/Th dating of speleothems. First results show that the palaeo-environment and the hydrologic setting of the Hermannshöhle were drastically different from today. Undersaturated water sourced from nearby non-karstic gneisses and schists gave rise to well-developed contact karst features. Surprisingly the palaeo flow direction deduced from indicators like scallops and sediment structures was opposite to the flow direction of the present nearby brooks (Rams- and Feistrizbach). Following pulses of clastic sediment input a distinct system of paragenetic canyons developed creating the unique maze character of the cave.
Holler, Christopher J; Taylor, Georgia; McEachin, Zachary T; Deng, Qiudong; Watkins, William J; Hudson, Kathryn; Easley, Charles A; Hu, William T; Hales, Chadwick M; Rossoll, Wilfried; Bassell, Gary J; Kukar, Thomas
2016-06-24
Progranulin (PGRN) is a secreted growth factor important for neuronal survival and may do so, in part, by regulating lysosome homeostasis. Mutations in the PGRN gene (GRN) are a common cause of frontotemporal lobar degeneration (FTLD) and lead to disease through PGRN haploinsufficiency. Additionally, complete loss of PGRN in humans leads to neuronal ceroid lipofuscinosis (NCL), a lysosomal storage disease. Importantly, Grn-/- mouse models recapitulate pathogenic lysosomal features of NCL. Further, GRN variants that decrease PGRN expression increase the risk of developing Alzheimer's disease (AD) and Parkinson's disease (PD). Together these findings demonstrate that insufficient PGRN predisposes neurons to degeneration. Therefore, compounds that increase PGRN levels are potential therapeutics for multiple neurodegenerative diseases. Here, we performed a cell-based screen of a library of known autophagy-lysosome modulators and identified multiple novel activators of a human GRN promoter reporter including several common mTOR inhibitors and an mTOR-independent activator of autophagy, trehalose. Secondary cellular screens identified trehalose, a natural disaccharide, as the most promising lead compound because it increased endogenous PGRN in all cell lines tested and has multiple reported neuroprotective properties. Trehalose dose-dependently increased GRN mRNA as well as intracellular and secreted PGRN in both mouse and human cell lines and this effect was independent of the transcription factor EB (TFEB). Moreover, trehalose rescued PGRN deficiency in human fibroblasts and neurons derived from induced pluripotent stem cells (iPSCs) generated from GRN mutation carriers. Finally, oral administration of trehalose to Grn haploinsufficient mice significantly increased PGRN expression in the brain. This work reports several novel autophagy-lysosome modulators that enhance PGRN expression and identifies trehalose as a promising therapeutic for raising PGRN levels to treat multiple neurodegenerative diseases.
Boulder Ozone Sonde Data Analyses for Multiple Tropopause Origins
NASA Astrophysics Data System (ADS)
Petropavlovskikh, I. V.; Manney, G. L.; Johnson, B.; Minschwaner, K.; Torres, L.; Lawrence, Z. D.
2014-12-01
Boulder ozone profile measurements tend to feature structures with multiple layers in the troposphere, so called laminae. These have been shown to be related to several phenomena, including stratospheric air intrusions that are transported to the location of measurements and local gravity wave perturbations (Boulder is located near the Rocky Mountain range where gravity waves are prevalent). In addition, observations indicate that air from the tropical tropopause layer can be transported into regions with multiple tropopauses over the middle latitudes in the vicinity of the subtropical jets. We use GMAO's GEOS-5 data assimilation system products, including Modern-Era Retrospective analysis for Research and Applications (MERRA), interpolated to Boulder, Colorado, USA (40N, 105W) to assess incidence of upper tropospheric jets that influence UTLS ozone distribution. The proximity of the subtropical jet to Boulder results in frequent observations of multiple tropopauses. We analyze ozonesonde data launched in June-July 2014 to determine the origins of laminae observed in the upper troposphere/lower stratosphere (UTLS). Our tools include back trajectory analysis coupled with 4D satellite ozone profile data, including those from NASA's Aura Microwave Limb Sounder instrument. Filaments causing laminae in ozone profiles observed at Boulder will be tracked to origins in either stratospheric or tropospheric intrusions using reverse domain-filling (RDF) trajectory methods. Detailed studies of several ozone profiles collected over Boulder in June/July 2014 will help determine techniques for future analysis of a larger dataset that goes back to 1978. Ozone variability in the UTLS over Boulder is of importance for studies of local climatological ozone conditions, their causes/attribution, and with regard to EPA ozone regulations at the mountain sites across the USA.
ERIC Educational Resources Information Center
Lee, Hyunjoo
2016-01-01
This study examined how performance feedback type (progress vs. distance) affects Korean college students' self-regulation and task achievement according to relative goal importance in the pursuit of multiple goals. For this study, 146 students participated in a computerised task. The results showed the interaction effects of goal importance and…
MultiP-Apo: A Multilabel Predictor for Identifying Subcellular Locations of Apoptosis Proteins
Li, Hui; Wang, Rong; Gan, Yong
2017-01-01
Apoptosis proteins play an important role in the mechanism of programmed cell death. Predicting subcellular localization of apoptosis proteins is an essential step to understand their functions and identify drugs target. Many computational prediction methods have been developed for apoptosis protein subcellular localization. However, these existing works only focus on the proteins that have one location; proteins with multiple locations are either not considered or assumed as not existing when constructing prediction models, so that they cannot completely predict all the locations of the apoptosis proteins with multiple locations. To address this problem, this paper proposes a novel multilabel predictor named MultiP-Apo, which can predict not only apoptosis proteins with single subcellular location but also those with multiple subcellular locations. Specifically, given a query protein, GO-based feature extraction method is used to extract its feature vector. Subsequently, the GO feature vector is classified by a new multilabel classifier based on the label-specific features. It is the first multilabel predictor ever established for identifying subcellular locations of multilocation apoptosis proteins. As an initial study, MultiP-Apo achieves an overall accuracy of 58.49% by jackknife test, which indicates that our proposed predictor may become a very useful high-throughput tool in this area. PMID:28744305
MultiP-Apo: A Multilabel Predictor for Identifying Subcellular Locations of Apoptosis Proteins.
Wang, Xiao; Li, Hui; Wang, Rong; Zhang, Qiuwen; Zhang, Weiwei; Gan, Yong
2017-01-01
Apoptosis proteins play an important role in the mechanism of programmed cell death. Predicting subcellular localization of apoptosis proteins is an essential step to understand their functions and identify drugs target. Many computational prediction methods have been developed for apoptosis protein subcellular localization. However, these existing works only focus on the proteins that have one location; proteins with multiple locations are either not considered or assumed as not existing when constructing prediction models, so that they cannot completely predict all the locations of the apoptosis proteins with multiple locations. To address this problem, this paper proposes a novel multilabel predictor named MultiP-Apo, which can predict not only apoptosis proteins with single subcellular location but also those with multiple subcellular locations. Specifically, given a query protein, GO-based feature extraction method is used to extract its feature vector. Subsequently, the GO feature vector is classified by a new multilabel classifier based on the label-specific features. It is the first multilabel predictor ever established for identifying subcellular locations of multilocation apoptosis proteins. As an initial study, MultiP-Apo achieves an overall accuracy of 58.49% by jackknife test, which indicates that our proposed predictor may become a very useful high-throughput tool in this area.
Pei, Xin-Yan; Dai, Yun; Felthousen, Jessica; Chen, Shuang; Takabatake, Yukie; Zhou, Liang; Youssefian, Leena E; Sanderson, Michael W; Bodie, Wesley W; Kramer, Lora B; Orlowski, Robert Z; Grant, Steven
2014-01-01
The anti-apoptotic protein Mcl-1 plays a major role in multiple myeloma (MM) cell survival as well as bortezomib- and microenvironmental forms of drug resistance in this disease. Consequently, there is a critical need for strategies capable of targeting Mcl-1-dependent drug resistance in MM. The present results indicate that a regimen combining Chk1 with MEK1/2 inhibitors effectively kills cells displaying multiple forms of drug resistance stemming from Mcl-1 up-regulation in association with direct transcriptional Mcl-1 down-regulation and indirect disabling of Mcl-1 anti-apoptotic function through Bim up-regulation and increased Bim/Mcl-1 binding. These actions release Bak from Mcl-1, accompanied by Bak/Bax activation. Analogous events were observed in both drug-naïve and acquired bortezomib-resistant MM cells displaying increased Mcl-1 but diminished Bim expression, or cells ectopically expressing Mcl-1. Moreover, concomitant Chk1 and MEK1/2 inhibition blocked Mcl-1 up-regulation induced by IL-6/IGF-1 or co-culture with stromal cells, effectively overcoming microenvironment-related drug resistance. Finally, this regimen down-regulated Mcl-1 and robustly killed primary CD138+ MM cells, but not normal hematopoietic cells. Together, these findings provide novel evidence that this targeted combination strategy could be effective in the setting of multiple forms of Mcl-1-related drug resistance in MM.
Pei, Xin-Yan; Dai, Yun; Felthousen, Jessica; Chen, Shuang; Takabatake, Yukie; Zhou, Liang; Youssefian, Leena E.; Sanderson, Michael W.; Bodie, Wesley W.; Kramer, Lora B.; Orlowski, Robert Z.; Grant, Steven
2014-01-01
The anti-apoptotic protein Mcl-1 plays a major role in multiple myeloma (MM) cell survival as well as bortezomib- and microenvironmental forms of drug resistance in this disease. Consequently, there is a critical need for strategies capable of targeting Mcl-1-dependent drug resistance in MM. The present results indicate that a regimen combining Chk1 with MEK1/2 inhibitors effectively kills cells displaying multiple forms of drug resistance stemming from Mcl-1 up-regulation in association with direct transcriptional Mcl-1 down-regulation and indirect disabling of Mcl-1 anti-apoptotic function through Bim up-regulation and increased Bim/Mcl-1 binding. These actions release Bak from Mcl-1, accompanied by Bak/Bax activation. Analogous events were observed in both drug-naïve and acquired bortezomib-resistant MM cells displaying increased Mcl-1 but diminished Bim expression, or cells ectopically expressing Mcl-1. Moreover, concomitant Chk1 and MEK1/2 inhibition blocked Mcl-1 up-regulation induced by IL-6/IGF-1 or co-culture with stromal cells, effectively overcoming microenvironment-related drug resistance. Finally, this regimen down-regulated Mcl-1 and robustly killed primary CD138+ MM cells, but not normal hematopoietic cells. Together, these findings provide novel evidence that this targeted combination strategy could be effective in the setting of multiple forms of Mcl-1-related drug resistance in MM. PMID:24594907
Proportional plus integral MIMO controller for regulation and tracking with anti-wind-up features
DOE Office of Scientific and Technical Information (OSTI.GOV)
Puleston, P.F.; Mantz, R.J.
1993-11-01
A proportional plus integral matrix control structure for MIMO systems is proposed. Based on a standard optimal control structure with integral action, it permits a greater degree of independence of the design and tuning of the regulating and tracking features, without considerably increasing the controller complexity. Fast recovery from load disturbances is achieved, while large overshoots associated with set-point changes and reset wind-up problems can be reduced. A simple effective procedure for practical tuning is introduced.
Focus on Preschool Aquatics: Child Care Regulations.
ERIC Educational Resources Information Center
Sayre, Nancy E.
This paper proposes state regulations for the training of child care staff members in developmentally appropriate safe aquatic practices, outlines required features of any pools that children visit, and suggests safe practices for water-related activities at child care centers and swimming pools. The staff training regulation suggestions include…
Federal Register 2010, 2011, 2012, 2013, 2014
2012-07-17
... cohorts. Chart 1--Summary of the Proposed Regulations Issue and key features Benefits Cost/transfers... focus on issues related to streamlining institutional reporting requirements and proposed regulations... committee (the ``Loans Committee'') would address Federal student loan issues. The regulations considered by...
29 CFR 1904.30 - Multiple business establishments.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 29 Labor 5 2012-07-01 2012-07-01 false Multiple business establishments. 1904.30 Section 1904.30 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION... Recordkeeping Requirements § 1904.30 Multiple business establishments. (a) Basic requirement. You must keep a...
Multi Texture Analysis of Colorectal Cancer Continuum Using Multispectral Imagery
Chaddad, Ahmad; Desrosiers, Christian; Bouridane, Ahmed; Toews, Matthew; Hassan, Lama; Tanougast, Camel
2016-01-01
Purpose This paper proposes to characterize the continuum of colorectal cancer (CRC) using multiple texture features extracted from multispectral optical microscopy images. Three types of pathological tissues (PT) are considered: benign hyperplasia, intraepithelial neoplasia and carcinoma. Materials and Methods In the proposed approach, the region of interest containing PT is first extracted from multispectral images using active contour segmentation. This region is then encoded using texture features based on the Laplacian-of-Gaussian (LoG) filter, discrete wavelets (DW) and gray level co-occurrence matrices (GLCM). To assess the significance of textural differences between PT types, a statistical analysis based on the Kruskal-Wallis test is performed. The usefulness of texture features is then evaluated quantitatively in terms of their ability to predict PT types using various classifier models. Results Preliminary results show significant texture differences between PT types, for all texture features (p-value < 0.01). Individually, GLCM texture features outperform LoG and DW features in terms of PT type prediction. However, a higher performance can be achieved by combining all texture features, resulting in a mean classification accuracy of 98.92%, sensitivity of 98.12%, and specificity of 99.67%. Conclusions These results demonstrate the efficiency and effectiveness of combining multiple texture features for characterizing the continuum of CRC and discriminating between pathological tissues in multispectral images. PMID:26901134
Pattern of retinal morphological and functional decay in a light-inducible, rhodopsin mutant mouse.
Gargini, Claudia; Novelli, Elena; Piano, Ilaria; Biagioni, Martina; Strettoi, Enrica
2017-07-18
Hallmarks of Retinitis Pigmentosa (RP), a family of genetic diseases, are a typical rod-cone-degeneration with initial night blindness and loss of peripheral vision, followed by decreased daylight sight and progressive visual acuity loss up to legal blindness. Great heterogeneity in nature and function of mutated genes, variety of mutations for each of them, variability in phenotypic appearance and transmission modality contribute to make RP a still incurable disease. Translational research relies on appropriate animal models mimicking the genetic and phenotypic diversity of the human pathology. Here, we provide a systematic, morphological and functional analysis of Rho Tvrm4 /Rho + rhodopsin mutant mice, originally described in 2010 and portraying several features of common forms of autosomal dominant RP caused by gain-of-function mutations. These mice undergo photoreceptor degeneration only when exposed briefly to strong, white light and allow controlled timing of induction of rod and cone death, which therefore can be elicited in adult animals, as observed in human RP. The option to control severity and retinal extent of the phenotype by regulating intensity and duration of the inducing light opens possibilities to exploit this model for multiple experimental purposes. Altogether, the unique features of this mutant make it an excellent resource for retinal degeneration research.
Beyond CTLA-4 and PD-1, the Generation Z of Negative Checkpoint Regulators.
Le Mercier, Isabelle; Lines, J Louise; Noelle, Randolph J
2015-01-01
In the last two years, clinical trials with blocking antibodies to the negative checkpoint regulators CTLA-4 and PD-1 have rekindled the hope for cancer immunotherapy. Multiple negative checkpoint regulators protect the host against autoimmune reactions but also restrict the ability of T cells to effectively attack tumors. Releasing these brakes has emerged as an exciting strategy for cancer treatment. Conversely, these pathways can be manipulated to achieve durable tolerance for treatment of autoimmune diseases and transplantation. In the future, treatment may involve combination therapy to target multiple cell types and stages of the adaptive immune responses. In this review, we describe the current knowledge on the recently discovered negative checkpoint regulators, future targets for immunotherapy.
Beyond CTLA-4 and PD-1, the Generation Z of Negative Checkpoint Regulators
Le Mercier, Isabelle; Lines, J. Louise; Noelle, Randolph J.
2015-01-01
In the last two years, clinical trials with blocking antibodies to the negative checkpoint regulators CTLA-4 and PD-1 have rekindled the hope for cancer immunotherapy. Multiple negative checkpoint regulators protect the host against autoimmune reactions but also restrict the ability of T cells to effectively attack tumors. Releasing these brakes has emerged as an exciting strategy for cancer treatment. Conversely, these pathways can be manipulated to achieve durable tolerance for treatment of autoimmune diseases and transplantation. In the future, treatment may involve combination therapy to target multiple cell types and stages of the adaptive immune responses. In this review, we describe the current knowledge on the recently discovered negative checkpoint regulators, future targets for immunotherapy. PMID:26347741
Arc in synaptic plasticity: from gene to behavior
Korb, Erica; Finkbeiner, Steven
2011-01-01
The activity-regulated cytoskeletal (Arc) gene encodes a protein that is critical for memory consolidation. Arc is one of the most tightly regulated molecules known: neuronal activity controls Arc mRNA induction, trafficking, and accumulation, and Arc protein production, localization and stability. Arc regulates synaptic strength through multiple mechanisms and is involved in essentially every known form of synaptic plasticity. It also mediates memory formation and is implicated in multiple neurological diseases. In this review, we will discuss how Arc is regulated and used as a tool to study neuronal activity. We will also attempt to clarify how its molecular functions correspond to its requirement for various forms of plasticity, discuss Arc’s role in behavior and disease, and highlight critical unresolved questions. PMID:21963089
NASA Astrophysics Data System (ADS)
Sahu, Sunil Kumar; Singh, Reena; Kathiresan, Kandasamy
2016-12-01
Mangroves are taxonomically diverse group of salt-tolerant, mainly arboreal, flowering plants that grow in tropical and sub-tropical regions and have adapted themselves to thrive in such obdurate surroundings. While evolution is often understood exclusively in terms of adaptation, innovation often begins when a feature adapted for one function is co-opted for a different purpose and the co-opted features are called exaptations. Thus, one of the fundamental issues is what features of mangroves have evolved through exaptation. We attempt to address these questions through molecular phylogenetic approach using chloroplast and nuclear markers. First, we determined if these mangroves specific traits have evolved multiple times in the phylogeny. Once the multiple origins were established, we then looked at related non-mangrove species for characters that could have been co-opted by mangrove species. We also assessed the efficacy of these molecular sequences in distinguishing mangroves at the species level. This study revealed the multiple origin of mangroves and shed light on the ancestral characters that might have led certain lineages of plants to adapt to estuarine conditions and also traces the evolutionary history of mangroves and hitherto unexplained theory that mangroves traits (aerial roots and viviparous propagules) evolved as a result of exaptation rather than adaptation to saline habitats.
A Hybrid Feature Model and Deep-Learning-Based Bearing Fault Diagnosis
Sohaib, Muhammad; Kim, Cheol-Hong; Kim, Jong-Myon
2017-01-01
Bearing fault diagnosis is imperative for the maintenance, reliability, and durability of rotary machines. It can reduce economical losses by eliminating unexpected downtime in industry due to failure of rotary machines. Though widely investigated in the past couple of decades, continued advancement is still desirable to improve upon existing fault diagnosis techniques. Vibration acceleration signals collected from machine bearings exhibit nonstationary behavior due to variable working conditions and multiple fault severities. In the current work, a two-layered bearing fault diagnosis scheme is proposed for the identification of fault pattern and crack size for a given fault type. A hybrid feature pool is used in combination with sparse stacked autoencoder (SAE)-based deep neural networks (DNNs) to perform effective diagnosis of bearing faults of multiple severities. The hybrid feature pool can extract more discriminating information from the raw vibration signals, to overcome the nonstationary behavior of the signals caused by multiple crack sizes. More discriminating information helps the subsequent classifier to effectively classify data into the respective classes. The results indicate that the proposed scheme provides satisfactory performance in diagnosing bearing defects of multiple severities. Moreover, the results also demonstrate that the proposed model outperforms other state-of-the-art algorithms, i.e., support vector machines (SVMs) and backpropagation neural networks (BPNNs). PMID:29232908
Webster, Emily; Cho, Megan T; Alexander, Nora; Desai, Sonal; Naidu, Sakkubai; Bekheirnia, Mir Reza; Lewis, Andrea; Retterer, Kyle; Juusola, Jane; Chung, Wendy K
2016-11-01
Using whole-exome sequencing, we have identified novel de novo heterozygous pleckstrin homology domain-interacting protein ( PHIP ) variants that are predicted to be deleterious, including a frameshift deletion, in two unrelated patients with common clinical features of developmental delay, intellectual disability, anxiety, hypotonia, poor balance, obesity, and dysmorphic features. A nonsense mutation in PHIP has previously been associated with similar clinical features. Patients with microdeletions of 6q14.1, including PHIP , have a similar phenotype of developmental delay, intellectual disability, hypotonia, and obesity, suggesting that the phenotype of our patients is a result of loss-of-function mutations. PHIP produces multiple protein products, such as PHIP1 (also known as DCAF14), PHIP, and NDRP. PHIP1 is one of the multiple substrate receptors of the proteolytic CUL4-DDB1 ubiquitin ligase complex. CUL4B deficiency has been associated with intellectual disability, central obesity, muscle wasting, and dysmorphic features. The overlapping phenotype associated with CUL4B deficiency suggests that PHIP mutations cause disease through disruption of the ubiquitin ligase pathway.
Acquired bilateral telangiectatic macules: a distinct clinical entity.
Park, Ji-Hye; Lee, Dong Jun; Lee, Yoo-Jung; Jang, Yong Hyun; Kang, Hee Young; Kim, You Chan
2014-09-01
We evaluated 13 distinct patients with multiple telangiectatic pigmented macules confined mostly to the upper arms to determine if the clinical and histopathological features of these cases might represent a specific clinical entity. We retrospectively investigated the clinical, histopathologic, and immunohistochemical features of 13 patients with multiple telangiectatic pigmented macules on the upper arms who presented between January 2003 and December 2012. Epidermal pigmentation, melanogenic activity, melanocyte number, vascularity, epidermal thickness, and perivascular mast cell number of the specimens were evaluated. Clinically, the condition favored middle-aged men. On histopathologic examination, the lesional skin showed capillary proliferation and telangiectasia in the upper dermis. Histochemical and immunohistochemical analysis revealed basal hyperpigmentation and increased melanogenic activity in the lesional skin (P < .05). No significant difference in epidermal thickness or mast cell number was observed between the normal perilesional skin and the lesional skin. The clinical and histopathologic features of these lesions were relatively consistent in all patients. In addition, the features are quite distinct from other diseases. Based on clinical and histologic features, we suggest the name acquired bilateral telangiectatic macules for this new entity.
Vessel Sewage Discharges: Statutes, Regulations, and Related Laws and Treaties
Vessel sewage discharges can be regulated under multiple statutes, regulations, and laws/treaties, including the Clean Water Act, Title XIV, MARPOL Annex IV and the Vessel General Permit. This page describes how these are applied to vessel sewage.
Semi-automated surface mapping via unsupervised classification
NASA Astrophysics Data System (ADS)
D'Amore, M.; Le Scaon, R.; Helbert, J.; Maturilli, A.
2017-09-01
Due to the increasing volume of the returned data from space mission, the human search for correlation and identification of interesting features becomes more and more unfeasible. Statistical extraction of features via machine learning methods will increase the scientific output of remote sensing missions and aid the discovery of yet unknown feature hidden in dataset. Those methods exploit algorithm trained on features from multiple instrument, returning classification maps that explore intra-dataset correlation, allowing for the discovery of unknown features. We present two applications, one for Mercury and one for Vesta.
Photovoltaic module and interlocked stack of photovoltaic modules
Wares, Brian S.
2014-09-02
One embodiment relates to an arrangement of photovoltaic modules configured for transportation. The arrangement includes a plurality of photovoltaic modules, each photovoltaic module including a frame. A plurality of individual male alignment features and a plurality of individual female alignment features are included on each frame. Adjacent photovoltaic modules are interlocked by multiple individual male alignment features on a first module of the adjacent photovoltaic modules fitting into and being surrounded by corresponding individual female alignment features on a second module of the adjacent photovoltaic modules. Other embodiments, features and aspects are also disclosed.
Zhang, Fugui; Song, Jinglin; Zhang, Hongmei; Huang, Enyi; Song, Dongzhe; Tollemar, Viktor; Wang, Jing; Wang, Jinhua; Mohammed, Maryam; Wei, Qiang; Fan, Jiaming; Liao, Junyi; Zou, Yulong; Liu, Feng; Hu, Xue; Qu, Xiangyang; Chen, Liqun; Yu, Xinyi; Luu, Hue H.; Lee, Michael J.; He, Tong-Chuan; Ji, Ping
2016-01-01
Tooth is a complex hard tissue organ and consists of multiple cell types that are regulated by important signaling pathways such as Wnt and BMP signaling. Serious injuries and/or loss of tooth or periodontal tissues may significantly impact aesthetic appearance, essential oral functions and the quality of life. Regenerative dentistry holds great promise in treating oral/dental disorders. The past decade has witnessed a rapid expansion of our understanding of the biological features of dental stem cells, along with the signaling mechanisms governing stem cell self-renewal and differentiation. In this review, we first summarize the biological characteristics of seven types of dental stem cells, including dental pulp stem cells, stem cells from apical papilla, stem cells from human exfoliated deciduous teeth, dental follicle precursor cells, periodontal ligament stem cells, alveolar bone-derived mesenchymal stem cells (MSCs), and MSCs from gingiva. We then focus on how these stem cells are regulated by bone morphogenetic protein (BMP) and/or Wnt signaling by examining the interplays between these pathways. Lastly, we analyze the current status of dental tissue engineering strategies that utilize oral/dental stem cells by harnessing the interplays between BMP and Wnt pathways. We also highlight the challenges that must be addressed before the dental stem cells may reach any clinical applications. Thus, we can expect to witness significant progresses to be made in regenerative dentistry in the coming decade. PMID:28491933
Albihlal, Waleed S; Obomighie, Irabonosi; Blein, Thomas; Persad, Ramona; Chernukhin, Igor; Crespi, Martin; Bechtold, Ulrike; Mullineaux, Philip M
2018-05-19
In Arabidopsis thaliana, HEAT SHOCK TRANSCRIPTION FACTORA1b (HSFA1b) controls resistance to environmental stress and is a determinant of reproductive fitness by influencing seed yield. To understand how HSFA1b achieves this, we surveyed its genome-wide targets (ChIP-seq) and its impact on the transcriptome (RNA-seq) under non-stress (NS), heat stress (HS) in the wild type, and in HSFA1b-overexpressing plants under NS. A total of 952 differentially expressed HSFA1b-targeted genes were identified, of which at least 85 are development associated and were bound predominantly under NS. A further 1780 genes were differentially expressed but not bound by HSFA1b, of which 281 were classified as having development-associated functions. These genes are indirectly regulated through a hierarchical network of 27 transcription factors (TFs). Furthermore, we identified 480 natural antisense non-coding RNA (cisNAT) genes bound by HSFA1b, defining a further mode of indirect regulation. Finally, HSFA1b-targeted genomic features not only harboured heat shock elements, but also MADS box, LEAFY, and G-Box promoter motifs. This revealed that HSFA1b is one of eight TFs that target a common group of stress defence and developmental genes. We propose that HSFA1b transduces environmental cues to many stress tolerance and developmental genes to allow plants to adjust their growth and development continually in a varying environment.
DAG1, no gene for RNA regulation?
Brancaccio, Andrea
2012-04-10
DAG1 encodes for a precursor protein that liberates the two subunits featured by the dystroglycan (DG) adhesion complex that are involved in an increasing number of cellular functions in a wide variety of cells and tissues. Aside from the proteolytic events producing the α and β subunits, especially the former undergoes extensive "post-production" modifications taking place within the ER/Golgi where its core protein is both N- and O-decorated with sugars. These post-translational events, that are mainly orchestrated by a plethora of certified, or putative, glycosyltransferases, prelude to the excocytosis-mediated trafficking and targeting of the DG complex to the plasma membrane. Extensive genetic and biochemical evidences have been accumulated so far on α-DG glycosylation, while little is know on possible regulatory events underlying the chromatine activation, transcription or post-transcription (splicing and escape from the nucleus) of DAG1 or of its mRNA. A scenario is envisaged in which cells would use a sort of preferential, and scarcely regulated, route for DAG1 activation, that would imply fast mRNA transcription, maturation and export to the cytosol, and would prelude to the multiple time-consuming enzymatic post-translational activities needed for its glycosylation. Such a provocative view might be helpful to trigger future work aiming at disclosing the complete molecular mechanisms underlying DAG1 activation and at improving our knowledge of any pre-translational step that is involved in dystroglycan regulation. Copyright © 2012 Elsevier B.V. All rights reserved.
Tundo, Grazia R; Di Muzio, Elena; Ciaccio, Chiara; Sbardella, Diego; Di Pierro, Donato; Polticelli, Fabio; Coletta, Massimo; Marini, Stefano
2016-10-01
Somatostatin is a cyclic peptide, released in the gastrointestinal system and the central nervous system, where it is involved in the regulation of cognitive and sensory functions, motor activity and sleep. It is a substrate of insulin-degrading enzyme (IDE), as well as a modulator of its activity and expression. In the present study, we have investigated the modulatory role of somatostatin on IDE activity at 37 °C and pH 7.3 for various substrates [i.e. insulin, β-amyloid (Aβ) 1-40 and bradykinin], aiming to quantitatively characterize the correlation between the specific features of the substrates and the regulatory mechanism. Functional data indicate that somatostatin, in addition to the catalytic site of IDE (being a substrate), is also able to bind to two additional exosites, which play different roles according to the size of the substrate and its binding mode to the IDE catalytic cleft. In particular, one exosite, which displays high affinity for somatostatin, regulates only the interaction of IDE with larger substrates (such as insulin and Aβ 1-40 ) in a differing fashion according to their various modes of binding to the enzyme. A second exosite, which is involved in the regulation of enzymatic processing by IDE of all substrates investigated (including a 10-25 amino acid long amyloid-like peptide, bradykinin and somatostatin itself, which had been studied previously), probably acts through the alteration of an 'open-closed' equilibrium. © 2016 Federation of European Biochemical Societies.